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Introduction

“Dusty”, or “complex” plasmas are plasmas containing solid or liquid particles (dust)

which are charged. The charges can be negative or positive, depending on the charg-

ing mechanisms operating in the plasmas. Dust and dusty plasmas are quite natural

in space. They are present in planetary rings, comet tails, interplanetary and inter-

stellar clouds (Goertz 1989; Northrop 1992; Tsytovich 1997), found in the vicinity of

artificial satellites and space stations (Whipple 1981; Robinson and Coakley 1992),

etc. Also, dusty plasmas are actively investigated in laboratories (Fortov et al. 2005;

Thomas 2009). Currently, the term “complex plasmas” is widely used in the litera-

ture to distinguish dusty plasmas specially “designed” for such investigations.

The presence of massive charged particles in complex plasmas is essential for

the collective processes. Ensembles of microparticles give rise to new very low-

frequency wave modes which represent the oscillations of particles against the quasi-

equilibrium background of electrons and ions. Overall dynamical time scales associ-

ated with the dust component are in the range 10–100 Hz. The particles themselves

are large enough to be visualized individually, and hence, their motion can be eas-

ily tracked. This makes it possible to investigate phenomena occurring in complex

plasmas at the most fundamental kinetic level.

Micron size particles embedded in a plasma not only change the charge composi-

tion, they also introduce new physical processes into the system, e.g., effects asso-

ciated with dissipation and plasma recombination on the particle surface, variation

of the particle charges. These processes imply new mechanisms of the energy influx

into the system. Therefore, complex plasmas are a new type of non-Hamiltonian

systems with the properties which can be completely different from those of usual

multicomponent plasmas.

Dust plays an exceptionally important role in technological plasma applications,

associated with the utilization of plasma deposition and etching technologies in mi-

croelectronics, as well as with production of thin films and nanoparticles (Selwyn

et al. 1989; Bouchoule 1999; Kersten et al. 2001). To control these processes, it

is necessary to understand the basic determining mechanisms, e.g., transport of dust

particles, influence of dust on plasma parameters.

Due to large charges carried by the grains (typically, on the order of thousand el-

ementary charges for a micron-size particle), the electrostatic energy of the mutual

interaction is remarkably high. Hence, the strong electrostatic coupling in the dust

subsystem can be achieved much more easily than in the electron-ion subsystem. In

complex plasmas, one can observe transitions from a disordered gaseous-like phase

to a liquid-like phase and the formation of ordered structures of dust particles-plasma

crystals. The first experimental observation of the ordered (quasicrystalline) struc-

xi
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tures of charged microparticles obtained in a modified Paul’s trap was reported by

Wuerker et al. (1959).

The enormous increase of interest in complex plasmas was triggered in the mid

1990’s by the laboratory discovery of plasma crystals. The possibility of dust sub-

system crystallization in a nonequilibrium gas discharge plasma was predicted by

Ikezi (1986). The first experimental observations of ordered particle structures were

reported in 1994 in radio frequency (rf) discharges (Chu et al. 1994; Hayashi and

Tachibana 1994; Melzer et al. 1994; Thomas et al. 1994). Later on, plasma crystals

were found in direct current (dc) discharges (Fortov et al. 1996b), thermal plasmas at

atmospheric pressure (Fortov et al. 1996a), and even nuclear-induced dusty plasmas

(Fortov et al. 1999). Today, the physics of complex plasmas is a rapidly growing

field of research, which covers various fundamental aspects of the plasma physics,

hydrodynamics, kinetics of phase transitions, nonlinear physics, and solid states, as

well as the industrial applications, engineering, and astrophysics. More and more

research groups throughout the world have become involved in the field, and the

number of scientific publications is growing exponentially.

In this book, we have made an attempt to provide a balanced and consistent pic-

ture of the current status of the field, by covering the latest development in the most

important directions of the experimental and theoretical research, and have outlined

the perspective issues to pursue in future. The major types of complex plasmas in

ground-based and microgravity experiments are considered. Properties of the mag-

netized, thermal, cryogenic, ultraviolet, nuclear-induced complex plasmas and plas-

mas with nonspherical particles are discussed. Various basic plasma-particle interac-

tions, including grain charging in different regimes, momentum exchange between

different complex plasma species, electric potential distribution around particles in

isotropic and anisotropic plasmas, and interactions between charged grains are inves-

tigated. The major forces acting on the particles and features of the particle dynamics

in complex plasmas are highlighted. An overview of the wave properties in differ-

ent phase states is given. Recent results on the phase transitions between different

crystalline and liquid complex plasma states are presented. Possible existence of the

liquid-vapor critical point in complex plasmas is briefly discussed. Fluid behavior of

complex plasmas and the onset of cooperative phenomena are considered. Particular

attention is given to astrophysical aspects of dusty plasmas and numerical simulation

of their properties. Diagnostics of complex plasmas is discussed in detail. Possible

applications of complex plasmas, interdisciplinary aspects, and perspectives are also

considered. An important feature of this book is detailed discussion of unique ex-

perimental and theoretical aspects of complex plasmas related to the experimental

investigations under microgravity conditions performed onboard Mir and ISS space

stations. Here an inestimable contribution came from the expertise of the members

of the Russian-German research team who are among the authors of this book.
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1

Types of experimental complex plasmas

Vladimir E. Fortov, Alexey G. Khrapak, Vladimir I. Molotkov, Gregor E.
Morfill, Oleg F. Petrov, Hubertus M. Thomas, Olga S. Vaulina, Sergey V.
Vladimirov

Plasmas have been investigated in the laboratory since the beginning of the last cen-

tury. Already in his pioneering work, Langmuir found dust particles appearing in

his discharges (Langmuir et al. 1924). At that time dust in a plasma was just seen

as a dirt effect, so the physics of the dusty plasma was not a topic of research. For

quite a while the topic of dusty plasmas was interesting mainly for astrophysicists,

and theory was developed for the charging of dust grains, their interaction, transport,

etc., in cometary and planetary atmospheres, interstellar matter, planet formation,

etc. (Grün et al. 1984; Goertz 1989; Hartquist et al. 1992). In the late 1980s,

laboratory research on dusty plasmas became important, again, especially for indus-

try. In the fabrication of chips and microelectronics using plasma processes, the dust

particles were always found after the manufacturing was finished. Claiming that the

dust must have come from outside, before the vacuum chamber was closed, industry

built the devices in the best clean rooms at that time. Nevertheless, the amount of

dust was not decreasing with the cleanliness of the surrounding laboratory. In 1988

G. Selwyn at IBM recognized that the particles grew during the plasma process (see

Figure 1.1) (Selwyn et al. 1989). Using laser light scattering he could show, in a

series of experiments, that starting from molecules the dust grew via the nanometer

scale up to micrometer sizes. The latter were causing the problems on the processed

wafers because of contamination or short cutting circuits. After that discovery the re-

search on dusty plasmas started in industry and application-oriented institutes. But,

at that time, the research was not concentrated on the physics of this new topic; it

was more related to avoiding the growth of dust. Nowadays, main trends in this ap-

plication research have changed, because in times of nanomaterials the possibility to

grow nanoparticles of different structure and composition opens up new possibilities

in this growing field.

Parallel to the rediscovery of dusty plasmas in the laboratory, a fundamental re-

search topic in dusty plasmas was formed. Ikezi (1986) proposed that Coulomb

crystallization might occur in dusty plasmas for typical plasma conditions and par-

ticle sizes of micrometers. This prediction was based on the one-component plasma

(OCP) model. He argued that similarly to this system a transition from fluid to crys-

talline states should occur in a multi-component plasma containing electrons, ions

and charged dust particles, provided the electric coupling between the particles is

strong enough. This paper led to discussions among scientists from the theoretical

space dusty plasma community. They supposed, that gravity would be a hindering

1
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FIGURE 1.1

Laser light scattering of a particle distribution above a wafer (Selwyn et al.

1989)

factor in forming large 3-dimensional crystalline structures from micrometer sized

particles and proposed the experiment “Plasma Crystal” to ESA for the so-called

Columbus Precursor Flights in 1991. They claimed that under microgravity condi-

tions, Ikezi’s forecast could become reality. The proposal was evaluated in a peer

process and received the highest rankings. Nevertheless it was rejected, because

based on theory only, it was considered too risky. Instead, the Principal Investigator,

Gregor Morfill, was asked to start experimental work under gravity conditions first,

before resubmitting the proposal. The latter followed the guidance of the board and

started the work in the laboratory with a PhD student. Shortly after the assembly

of the lab, it was found that plasma crystals could be formed in the laboratory, too.

The charged microparticles could be levitated in the sheath electric field of a capaci-

tively coupled rf discharge and could form, under special conditions, a 2-dimensional

plasma crystal (see Figure 1.2). The main reason, that this could happen was that the

microparticles were spherical and had a monodisperse size distribution. The result

was that all the particles received the same high charge and were levitated at the

same height in the sheath electric field. Another necessary condition was fulfilled by

the neutral gas damping, which was responsible for cooling down the particle com-

ponent. Finally, electric interaction between the microparticles was strong enough

to initiate the transition to a crystalline structure. The discovery of plasma crystals

was first presented during the International Conference on Phenomena in Ionized

Gases (ICPIG) in Bochum in 1993 and published the following year by Thomas et

al. (1994).

Interestingly, the so-called plasma crystals were discovered by two more groups

independently at nearly the same time, which clearly showed that the discovery was

just a matter of time (Chu and I 1994; Hayashi and Tachibana 1994). The discovery

of plasma crystals can be regarded as the trigger for many plasma physicists to start

investigations of this fascinating new state of matter, which shows so many interest-
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FIGURE 1.2

First plasma crystal, an ordered structure of microparticles, charged by the

surrounding plasma and levitated in the sheath electric field. The picture shows

a top view of the reflected laser light by a single-layer plasma crystal (Thomas

et al. 1994).

ing properties, first of all, the possibility to study processes on the most fundamental

level – the kinetic level.

In the beginning low-temperature rf discharges were mostly used for the research.

In the following years, dc discharges were also employed, providing new possibil-

ities, like large 3-dimensional clouds levitated in striations. In the meantime, even

fusion plasmas have become the topic of complex plasma research. In the next sec-

tions we introduce two most important discharges, the rf-capacitively or inductively

coupled and the dc discharges, used in complex plasma research.

1.1 Complex plasmas in rf discharges

Most complex plasma experiments have been and still are performed in capacitively

coupled rf discharges, as mentioned above. The reason for this is manyfold (Raizer

1991; Liberman and Lichtenberg 1994): (i) the capacitive sheath produces a strong

self bias of a couple of 10 V, which can be used to levitate the charged microparti-

cles; (ii) the rf-frequency is so high, that neither the dust particles nor the ions can
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respond to the changing electric field, and therefore they are (usually) cold, damped

by the neutral component to the room temperature; (iii) the electron temperature, re-

sponsible for the value of the charge on the particles, is reasonably high, on the order

of few eV.

Usually, the smaller the particle size is, the more layers in the vertical direction

can be formed. It is even possible to fill the plasma bulk with particles, if their size

is much below 1 µm – since then, gravity is no longer the dominating force in the

system.

On the other side, to use the special property of complex plasmas – the kinetic ob-

servation of single particles in a many particle system – it is necessary to use particles

with sizes above 1 µ . Gravity restricts such a system to a few layers in the vertical

direction. To perform experiments in the bulk with fully 3-dimensional complex

plasma systems it is necessary to use additional levitating forces, e.g. gas flow or

thermophoresis, or to remove gravity. The latter is possible on parabolic flights, on

sounding rockets or in experiments onboard the International Space Station (ISS).

For such microgravity experiments a special design of the rf discharge is manda-

tory, since the asymmetric discharge would destroy the homogeneity and symmetry

gained through microgravity. A highly symmetrical plasma chamber, a symmetri-

cally coupled parallel plate rf discharge, fulfills the special needs for a setup for

microgravity.

The two different setup-types will be described in the following paragraphs.

1.1.1 The GEC-RF-Reference Cell

A typical set-up, a modified Gaseous Electronics Conference (GEC)-RF-Reference

Cell (Hargis et al. 1994), will be explained in the following, as an example for

a laboratory study of 2-dimensional dusty plasma systems. The electrode system

consists of a driven rf electrode in the bottom of the apparatus and a grounded or

floating counter electrode at the top (see Figure 1.3). If the latter is removed the

metal vacuum chamber surrounding the electrode system, which is providing the

vacuum conditions for the low-pressure discharge, acts as the counter electrode. The

lower electrode is connected to an rf generator via a Pi-type matching unit. This

provides the matching of the 50 Ohm signal from the generator to the high Ohmic

plasma device. These directly applied rf currents and voltages create the high voltage

capacitive sheath between the electrode and the bulk plasma and lead to stochastic

or collisionless heating in the sheath and the ohmic heating in the bulk. The plasma

can be excited and controlled in inert gas, typically argon, in a pressure range from

≈ 0.1 to ≈ 1000 Pa (depending on the gas). Other molecular gases can be used also,

but inert gases do not form negative ions and provide a pure electropositive plasma.

The electrode is driven at a frequency of 13.56 MHz, producing a so-called low-

temperature plasma. Since the ion plasma frequency is much lower than the excita-

tion frequency, the ions are not affected by the alternating electric field and stay at

room temperature due to collisions with the much higher number of neutral atoms or

molecules (typical ionization rates are in the range of 10−8–10−6). Only the electrons

react to the rf-field and are heated to an average temperature of a few eV. Energetic
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(See color insert following page 242). The sketch shows a schematic drawing of a

typical rf electrode system with lower driven electrode and the grounded upper-

ring electrode. The microparticles are injected by a dispenser (not shown)

and levitate in the sheath electric field, additionally trapped horizontally by

a parabolic potential formed by a ring positioned on the electrode. The mi-

croparticles are illuminated by a laser beam expanded into a sheet parallel to

the electrode, and the reflected light is observed at 999000◦◦◦ by a CCD camera. The

image shows a typical assembly of the GEC-RF-Reference Cell.

electrons ionize neutral gas and thus are responsible for sustaining the plasma. In

the central region of the discharge a homogeneous bulk plasma of densities between

108–1010 cm−3 is formed.

The high voltage sheath with a negative self bias of a few tens of Volts is very im-

portant for the complex plasma under gravity conditions. Microparticles are injected

manually or by electric/electromagnetic dispensers. In the plasma they get charged

in a fraction of a second to thousands of elementary charges (dependent on their size)

and then they are trapped by the plasma generated electric potential.

The upward electrostatic force acting on the microparticles can balance gravity
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FIGURE 1.4

Original images of particles forming 2-dimensional clusters of different num-

bers of particles (Juan et al. 1998).

and allows them to levitate in a narrow region in the sheath. Every particle with

a certain charge to mass ratio should levitate at the same height above the lower

electrode; the smaller the ratio, the lower the leviation height. Since particles with

monodispersive size distribution are most often used in the basic complex plasma

experiments, they charge up to the same level in the plasma and form monolayer

structures. Two-dimensional liquid and crystalline systems and their phase transi-

tions are one of the interesting research topics in complex plasmas.

The particles are illuminated by a sheet of laser light parallel to the electrode and

the reflected light is observed at 90◦ by a CCD camera (see Figure 1.3). This allows

uss to study the full dynamics of the 2-dimensional system.

Single particles levitating in the sheath of the rf electrode can be used to probe

the sheath electric field and potential distributions. Additionally, single particles

are important for some basic complex plasma measurements, like the charge on

the microparticle or the ion wake formation downstream from the particles. If the

number of particles is increased step by step, one can investigate the formation of

clusters (Juan et al. 1998), small crystalline structures dominated by surfaces, and

observe the formation of a Mendeleev-like table, including stable configurations at

magic numbers of particles as well as metastable states (see Figure 1.4 and Section

1.4.5). Adding more and more particles to the 2D cluster, finally a stable mono-

layer is reached, no longer dominated by surface effects – a transition to collective
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behavior takes place.

Large 2-dimensional systems are investigated extensively. The particles strongly

interact via screened Coulomb forces and form, in most cases, 2-dimensional crys-

talline structures, so-called hexagonal lattices. Static analysis methods include the

pair correlation and bond-orientational correlation function, the real space analogies

to the structure factor measured in natural systems by Bragg reflexes. They show

the state and structure of the complex plasma. Additionally, dynamical observations

allow getting more details, e.g., on defect motion. Here, for example, supersonic mo-

tion of lattice defects through the crystal producing Mach cones was observed. Such

lattice defects appear as 5-7-fold dislocations, as single events or in strings. They

appear in regions of lower order through stress formation and overload. The infor-

mation on the dynamics of the generation and motion of dislocations is of general

interest in material sciences, the study of earthquakes, snow avalanches, colloidal

crystals, 2D foams, and various types of shear cracks. Complex plasmas are virtu-

ally undamped and form macroscopic systems which allow this study on the most

fundamental level – the kinetic level. In an experiment of Nosenko et al. (2008), a

2D finite plasma crystal was formed and observed with high time resolution for some

period of time. The whole structure slightly rotated which led to shear stress inside

the plasma crystal. The emerging shear strain and vorticity are discussed in Section

5.3.3.

The plasma chamber can be additionally modified by adding manipulation de-

vices. Two kinds of such a manipulation are possible. With laser beams it is possible

to manipulate the microparticles from outside, without a disturbance of the plasma.

A static laser beam could be used to introduce shear forces, a movable beam, e.g.,

by scanning mirrors, local heating or propagating Mach cones. A plasma disturbing

manipulation is a wire or a wire system put into the plasma and connected to an elec-

trical signal. Through short voltage pulses or an alternating signal, the cloud, which

is usually at the same height as the wire, can be excited. An interesting recent result

of such an excitation is the melting and recrystallization which we discuss in some

more detail.

The physics of 2-dimensional liquids and crystallites is rather rich and is there-

fore studied in many different systems. Of particular interest is the investigation of

the transitions between different phases. Theoretically, these transitions are consid-

ered in the so-called KTHNY theory, developed and refined by Kosterlitz, Thouless,

Halperin, Nelson and Young (Kosterlitz and Thouless 1973; Halperin and Nelson

1978; Nelson and Halperin 1979; Young 1979; Nelson 1983). In this theory the au-

thors predict two continuous transitions between the two phases passing a so-called

hexatic phase, characterized by a long range orientational but a short range trans-

lational order, instead of a first-order transition, which is usual for 3-dimensional

systems.

An interesting crystallization experiment with a 2D complex plasma crystal was

performed by Knapek et al. (2007). First, a crystalline monolayer with hexagonal

lattice structure was formed (Figure 1.5a) by particles levitated above a horizontal

rf electrode, similar to the above described GEC-RF-Reference setup, and confined

from two sides by tungsten wires (at the same height). To induce melting, a short
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FIGURE 1.5

Melting and recrystallization in 2-dimensional complex plasmas. Original im-

ages show (a) initial crystalline state before the melting, (b) liquid state short

after the melting (1.6 s after the pulse), and (c) metastable state at later stage of

recrystallization (7.0 s after the pulse) (Knapek et al. 2007).

negative electric pulse was applied to the wires. The pulse caused a disturbance,

which pushed the particles away from both wires to the center of the chamber leading

to the melting of the plasma crystal (Figure 1.5b). After the pulse, the system starts to

reorder, the particle velocities reduce significantly, and recrystallization takes place

(Figure 1.5c). The kinetics of this re-crystallization was investigated in terms of the

measured particle system temperature and structural properties, such as the defect

fraction and translational and orientational order parameters (for detail see Section

5.3.2.

In the sheath and pre-sheath of a rf discharge, it is possible to levitate not only sin-

gle layers of microparticles producing a 2-dimensional monolayer complex plasma

but also a couple of layers in the vertical direction (the smaller the particle size, the

larger the number of layers). This can finally end in an overall distribution of parti-

cles in the bulk of the plasma for sizes much below 1 µm, when gravity is no longer

the dominant force. Depending on plasma and particle parameters complex plasma

can form crystalline, liquid or gaseous (disordered) states. Usually, the crystal-like

(highly ordered) state is observed at high pressures, when plasma instabilities and

different mechanisms of the particle component heating are strongly suppressed.

First 3-dimensional observations of crystalline complex plasmas in a rf discharge,

the so-called plasma crystals, were published by Pieper et al. (1996). The authors

used an experimental set-up allowing a top view of the complex plasma in a plane

parallel to the lower electrode. By scanning the laser and optics in the vertical direc-

tion a 3-dimensional tomographic view of the full system was possible. In Figure 1.6

scans from two different crystalline structures are shown, body center cubic (bcc) and
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FIGURE 1.6

The two graphs show a 3-dimensional view of the crystalline structure of a

multi-layer plasma crystal (Pieper et al. 1996). The structure is body centered

cubic (bcc) in (a) and hexagonal in (b).

hexagonal aligned. Later, particle positions were determined from such scans (Zuzic

et al. 2000). Using the 3D coordinates measured in this way, it was found that the

horizontal interparticle distance ∆xy decreases by ≃ 40% from top to bottom. This

was attributed to the compression by the gravitational force. The particles are clearly

forming layers. The distribution of particles in each layer is rather narrow, so that

neighboring planes can be easily distinguished. A local order analysis shows that in

most regions of the crystal, the metastable hcp structure dominates over the ground

state fcc, which is a hint that the crystallization process is not fully finished at that

time.

Usually, gravity is compensated by the electric field in the sheath above the lower

electrode. Another way to compensate for gravity is to use the thermophoretic force

(see Sec. 2.5.2). This force builds up when a temperature gradient is applied, and

it acts in the direction of lower temperature. The thermophoretic force allows the

formation of quasi-zero-g condition in a complex plasma, hence making possible the

investigation the behavior of microparticles in the plasma bulk over a broad range of

parameters. Figure 1.7 shows the effect of the thermophoretic force on a cloud of
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FIGURE 1.7

Left: Side view of a complex plasma formed by 3.4 µµµm microparticles sus-

pended in a plasma, when no external temperature gradient is present. The gas

is argon, the pressure is 48 Pa, the rf amplitude is 45 V peak to peak, and the dis-

charge power is 17 mW. The number of particles is about 111000666, the field of view is

32××× 43 mm222. The lowest five lattice planes of large interparticle distance consist

of agglomerates. Right: Side view of a complex plasma at quasi-microgravity

conditions accomplished by thermophoresis. The temperature gradient applied

from outside is 1170 K m−−−111. The peak to peak amplitude is 82 V, the discharge

power is 57 mW, the pressure is 46 Pa, and the number of particles injected is

on the order of 10666. Both figures are from Rothermel et al. (2002).

particles studied by Rothermel et al. (2002). Left/right image shows the distribution

of the cloud without/with thermophoretic force.

Another laboratory development is the use of the thermophoretic force in combi-

nation with a special confining system on the lower electrode to produce Coulomb or

Yukawa balls – 3-dimensional clusters of a small number of microparticles forming

spherical structures. By positioning a quadratic glass box of a certain hight on the

lower rf electrode and adjusting the thermophoretic force acting on the microparti-

cles levitating inside this box by heating the lower electrode, it is possible to form

a potential trap for the particles which allows the formation of such a cluster (Arp

et al. 2005). A schematic of the apparatus is shown in Figure 1.8. This sketch in-

cludes the forces acting on the particles and the original particle cloud distribution

for different temperature gradients. With such a system many interesting static and

dynamic analysis can be performed with a model system of a nano-cluster. For more

details see Sec. 1.4.5.

1.1.2 Symmetrically driven rf discharge for microgravity experiments

Microparticles are strongly affected by gravity, contrary to the other plasma parti-

cles, the electrons and ions (Thomas et al. 1994). On the ground, a dc electric field

is usually employed to compensate gravity in a small region of the plasma chamber,

in the sheath. This allows measurements of the complex plasma under multi-layer
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FIGURE 1.8

Top: The sketch shows the assembly for the formation of Coulomb/Yukawa

clusters by using thermophoretic force and a confining glass box. The forces

acting on the microparticles are shown, too. Bottom: Distribution of the mi-

croparticle cloud at different temperature gradients (Arp et al. 2005).

(or 2 1/2-dimensional) conditions. To perform certain precision measurements, es-

pecially of large 3-dimensional isotropic systems, microgravity conditions are nec-

essary. Such experiments allow the study of systems and processes not attainable on

the ground (Morfill et al. 1999; Ivlev et al. 2003b; Thomas et al. 2005).

Under microgravity conditions the complex plasma is forced out of the areas of

strong electric fields, the sheath regions, and forms a homogeneous and isotropic

system in the bulk of the discharge. As mentioned earlier, the symmetry of the

electrode system has major influences on the symmetry of the complex plasma.

Figure 1.9 (left) shows that under gravity conditions only small complex plasma

systems – of limited extent in the vertical direction – can be investigated (in a region
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FIGURE 1.9

Microparticle (3.4 µµµm in diameter) distribution between the two electrodes un-

der gravity (left) and microgravity conditions (right). Under gravity the charged

particles sediment towards the lower electrode and can be levitated only by a

strong electric field in the sheath. Under microgravity the particles are dis-

persed all over the experimental volume, forming large 3D complex plasmas.

where gravity is compensated by a strong electric field). Under microgravity we

observe large complex plasma systems extended in all three space co-ordinates, as

shown in Figure 1.9 (right). This is because stresses in the particle cloud under mi-

crogravity are relatively weak, which provides a much broader range of the complex

plasma parameters available for investigations.

A well-balanced symmetrically driven rf electrode system provides a homoge-

neous distribution of the plasma with identical sheaths on both electrodes. This is

a mandatory condition for a homogeneous distribution of the microparticles under

microgravity conditions. A cross-sectional and perspective schematic of the newest

microgravity setup, the PK-3 Plus chamber, is shown in Figure 1.10 (Thomas et al.

2008). The vacuum chamber consists of a glass cuvette of form of a cuboid with a

quadratic cross section. Top and bottom flanges are metal plates. They include the rf

electrodes, electrical feedthroughs and vacuum connections. The electrodes are cir-

cular plates of aluminum with a diameter of 6 cm. The distance between electrodes

is 3 cm. The electrodes are surrounded by a 1.5 cm wide ground shield including

three microparticle dispensers on each side. The dispensers are magnetically driven

pistons with a storage volume at their ends. The storage volumes are filled with

microparticles and covered with a sieve with an adapted mesh size. The microparti-

cles are dispersed through the sieve into the plasma chamber by electromagnetically

driven strokes of the piston.

The thermal concept of a microgravity setup is very important, because for mi-

crometer particles a temperature gradient of only 1 K cm−1 would give rise to a

thermophoretic force of ≈ 10−1 g, which obviously would destroy the micrograv-

ity conditions. Thus, the electrodes are thermally coupled to the metal flanges. An

insulator ring of high thermal conductivity prevents a temperature gradient between

the electrodes and the structure. The metallic parts of the chamber, the electrodes,

flanges and connectors between the upper and lower flange are manufactured from



Types of experimental complex plasmas 13

insulator

plasma & particles

ground

g
la

s
s

rf electrode

field of
views

particle dispenser

rf electrode

6 cm

9 cm

10 cm

3 cm 5.4 cm

gas inlet

gas outlet

dispenser

rf-electrode

guard ring

electronic box

vacuum flange

window

FIGURE 1.10

(See color insert following page 242). The sketches show the 2D (left) and 3D

view of the plasma chamber (right) (Thomas et al. 2008).

highly conducting aluminum to additionally prevent a temperature drop between the

upper and lower part of the chamber.

The optical particle detection system consists typically of laser diodes with cylin-

drical optics to produce a laser sheet perpendicular to the electrode surface and video

cameras observing the reflected light at 90◦ with different resolutions [see Figure

1.10 (left) for typical field of views]. In the optical path interference filters at the

laser wavelength are used to filter out the plasma glow. The cameras and lasers are

mounted on a horizontal translation stage allowing a depth scan through the complex

plasma.

With such a set-up microgravity experiments have been performed and have led

to the observation of many interesting phenomena in liquid and crystalline complex

plasmas. First, different kinds of crystalline structures (fcc, bcc and hcp) in a stable

region of the complex plasma shown in Figure 1.11 (Nefedov et al. 2003a) were

found. Additionally, shocks and waves (Samsonov et al. 2003a; Khrapak et al. 2003)

and the boundary between the complex plasma and the microparticle-free plasma

(void) (Annaratone et al. 2002) were studied in detail. An overview of the typical

behaviour of complex plasmas under microgravity conditions is given below.

Figure 1.11 illustrates the typical static and dynamic behavior of complex plasmas

under microgravity conditions. The main features clearly seen are

1. a microparticle-free “void” in the center of the system for most of the experi-

mental parameters,

2. a sharp boundary between the void and the complex plasma,

3. demixing of complex plasma clouds formed by microparticles of different

sizes,

4. vortices in different areas away from the central axis,

5. crystalline structures along the central axis.
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FIGURE 1.11

Left: Shown is the electrode system including the microparticle dispensers and

the plasma area in between. The self-generated electric potential has a maxi-

mum in the center, decreasing radially and axially outwards. The radially sym-

metric forces on the particles are the electrostatic force FFFe dragging the negative

particles into the center and the ion-drag force FFF id acting in the opposite direc-

tion. Right: Structure and dynamics of a complex plasma containing particles

of two different sizes (3.4 µµµm and 6.8 µµµm diameter) under microgravity condi-

tions. The trajectories of the microparticles are shown for an exposure time of

3 sec.

The void, the microparticle free region in the center of the discharge, prevents

the formation of a homogeneous and isotropic distribution of the complex plasma.

The origin of the void is the ion drag force which often overcomes the electric force

in some vicinity of the discharge center and therefore pushes the particles out of

the central region (see sketch in Figure 1.11, left). Under certain conditions, the

void can be closed. This is very important for many dedicated experiments which

are planned for the future. With the PK-3 Plus setup there exist three ways of void

closure presently known: First by adjusting lowest rf power [as in the former ISS-

laboratory PKE-Nefedov (Lipaev et al. 2007)]; second, by using a symmetrical gas

flow; and third, by low frequency electric excitation (Thomas et al. 2008). The last

can be used additionally to initiate a phase transition from an isotropic fluid into a

so-called electrorheological string fluid, shown in Figure 1.12 (Ivlev et al. 2008).

The formation of such string fluids, or general electrorheological plasmas, is pos-

sible due to the manipulation of the interaction potential between the microparticles

along the field line. It can be changed from an isotropic screened Coulomb to an

asymmetric attractive potential through accelerating ions by the ac voltages at fre-

quencies above the dust plasma frequency applied to the electrodes. Thus, the ions

produce a wake region above and below the particles along the electric field axis,

while the particles cannot respond. For future microgravity experiments, it is fore-

seen to manipulate the interaction potential in all three directions, to receive a fully

isotropic attractive potential.
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FIGURE 1.12

The figure shows the transition from an isotropic fluid (left) to a string fluid

(right) observed in the PK-3 Plus laboratory onboard the ISS.

1.1.3 Complex plasmas in inductively coupled discharges

For completeness it should be mentioned that a plasma can be excited by an electric

field generated from an rf current in a conductor, too. The changing magnetic field of

this conductor induces an electric field in which the plasma electrons are accelerated.

Two types of such inductively coupled discharges are used to study complex plasmas.

The first one is a so-called circular inductor in the form of several rings around a glass

tube similar to the dc discharge tubes (Fortov et al. 2000c) discussed below.

Compared to capacitively coupled discharges, it forms no constant electric field

which allows the levitation of the microparticles. A potential trap for the particles

is formed due to the ambipolar electric field. Such a trap exists at the lower end of

the plasma, shown in Figure 1.13. The shape of the cloud which is trapped in this

region depends on plasma conditions. Typical structures observed in experiments are

shown in Figure 1.14.

The second inductively coupled device uses a flat inductor in addition to a usual

rf electrode for generating the plasma. There exists a modification to the GEC-RF-

Reference Cell, which employs such an inductor (Collins et al. 1996). The top

electrode is replaced here with a stainless steel cylindrical fixture into which a 100-

mm-diameter quartz window is installed. This window is parallel to the bottom

electrode forming a 3.5 cm gap between the window and the surface of the bottom

electrode. A copper coil is located on the atmospheric side of the window and is

connected to a 13.56 MHz rf generator through a matching network. Another 13.56

MHz rf generator powers the bottom electrode.

Figure 1.15 shows different structures formed by the particles in the Inductively

Coupled Plasma (ICP) discharge for different operating modes. Low power input to

both electrodes provides a low plasma density and the particles levitate above the

entire lower electrode. The shape of the cloud follows the contour of the disk placed

on the lower electrode (Figure 1.15a). A high density mode can be reached by an

increase of the power applied to the flat inductor. In this mode the trapping of the

particles occurs in a narrow region just above the disk (Figure 1.15b).
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FIGURE 1.13

Schematic of an inductively coupled discharge consisting of a glass tube and

a multi-ring inductor, which is mounted outside. The particle cloud can be

levitated at the lower end of the plasma (Fortov et al. 2000c).

FIGURE 1.14

Typical shapes and structures of the particle cloud levitating in the inductively

coupled discharge sketched in Figure 1.13 (Fortov et al. 2000c).
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FIGURE 1.15

Sketch of the combined capacitively and inductively coupled GEC-RF-

Reference Cell (Collins et al. 1996). The particle distribution is shown for low

power (a) and high power (b).

1.2 Complex plasmas in dc discharges

1.2.1 Ground-based experiments

A dc gas discharge can also be used for the formation of ordered structures in com-

plex plasmas (Fortov et al. 1996b, 1997b; Lipaev et al. 1997; Nefedov et al. 2000).

The sketch of the typical experimental setup is shown in Figure 1.16. A discharge is

usually generated in a vertically positioned cylindrical tube. The particles introduced

into the plasma can levitate in the regions where the external forces are balanced.

They are illuminated by a laser light and their positions are registered by a video

camera. Typical conditions in the discharge are: A pressure in the range 0.1–5 Torr

and a discharge current of ∼ 0.1–10 mA.

The ordered structures of particles are usually observed in standing striations of

the positive column of the glow discharge, but can also be observed in an electric

double layer formed in the transition region from the narrow cathode part of the

positive column to the wide anode part, or in specially organized multi-electrode

system having three or more electrodes at different potentials, etc. – that is, in the

regions where the electric field can be strong enough to levitate the particles.

Most of the experiments were performed in standing striations of glow discharges.

In the positive column of a low-pressure discharge, loss of electron energy in elastic

collisions is small and the electron distribution function is formed under the action of

the electric field and inelastic collisions. This can lead to the appearance of striations,

that is, regions of spatial periodicity of the plasma parameters with the characteristic

scale on an order of a few centimeters (Fortov et al. 2004a). The concentration of

electrons, their energy distribution, and the electric field are highly nonuniform along

the striation length. The electric field is relatively strong (around 10–15 V cm−1 at

a maximum) at the head of striation – that is, a region occupying 25–30% of the

total striation length – and relatively weak (around 1 V cm−1) outside this region.

The maximum value of the electron concentration is shifted relative to the maximum
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FIGURE 1.16

Schematic of the experimental setup for studying the formation of ordered

structures in a dc gas discharge.

strength of the electric field in the direction of the anode. The electron energy distri-

bution is substantially bimodal, with the head of the striation being dominated by the

second maximum whose center lies near the excitation energy of neutral gas atoms.

Due to the high floating potential of the discharge tube walls, the striations exhibit

a substantially two-dimensional character: The center-wall potential difference at

the head of the striation reaches 20–30 V. Thus, an electrostatic trap is formed at

the head of each striation, which in the case of vertical orientation of the discharge

tube is capable of confining particles with high enough charge and low enough mass

from falling into the cathode positioned lower, while the strong radial field prevents

particle sedimentation on the tube walls.

The process of structure formation proceeds routinely as follows: after being in-

jected into the plasma of the positive column, the charged particles fall past their

equilibrium position and then, over the course of several seconds, emerge and form

a regular structure which is preserved sufficiently long (until the end of observation)

provided that the discharge parameters are unchanged. The simultaneous existence

of ordered structures in several neighboring striations can also be observed. Fig-

ure 1.17a demonstrates an image of two dust structures formed by hollow thin-walled

microspheres made of borosilicate glass with a diameter of 50–63 µm in two neigh-

boring striations. Figure 1.17b shows their coalescence into one rather extended for-

mation, occurring due to varying the discharge parameters (Lipaev et al. 1997). This

figure indicates the possibility of forming structures much more extended in the ver-

tical direction than in rf discharges. In fact, the three-dimensional quasi-crystalline

dusty structures were obtained for the first time by Lipaev et al. (1997).

Figure 1.18 shows a video image of a plasma crystal. This structure was obtained
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FIGURE 1.17

Video images of structures formed by charged microspheres of borosilicate

glass: (a) in two neighboring striations (pressure around 0.5 Torr, discharge

current of 0.5 mA); (b) after their coalescence (pressure around 0.4 Torr, dis-

charge current of 0.4 mA). The scale length in the figures corresponds to 3 mm.

by Molotkov et al. (2004) in a dc discharge of neon-hydrogen mixture, where the

striations are strongly flattened. The lattice constant of this crystal is of the order of

700 µm. Figure 1.19 is a video image of a plasma-dust structure of the liquid type

(Fortov et al. 2000b). A convective motion of particles is observed in the lateral parts

of the structure. The particles move upwards at the periphery and downwards at the

center. Under some conditions in striations of the dc glow discharge, self-excitation

of the dust acoustic waves occurs (see Figure 1.20).

In dc discharges, the transition of quasi-crystalline structures to fluid and gaseous

states is also observed, similar to complex plasmas in rf discharges. This occurs

either by lowering the pressure or increasing the discharge current. For example,

for the structure comprising Al2O3 particles of diameter 3–5 µm at a pressure of

0.3 Torr and a current of 0.4 mA (estimated electron number density ne = 108 cm−3

and temperature Te ∼ 4 eV), the pair correlation function reveals long-range order

with four well-pronounced peaks (Lipaev et al. 1997). When the discharge current

is increased by almost one order of magnitude to 3.9 mA (ne = 8× 108 cm−3), the

structure “melts” and the pair correlation function reveals only short-range order. We

note that during this “phase transition” the interparticle distance, equal to 250 µm,

remains approximately constant but the ion Debye radius decreases considerably.

In order to obtain different values of the electric field and for a better stabilization

of striations, Vasilyak et al. (2000) performed experiments in a specially designed,

vertically arranged, conical discharge tube. The longitudinal electric field varied

over the conical tube length exhibiting a maximum in the lower narrow part. Parti-
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FIGURE 1.18

A horizontal cross-sectional view of a complex plasma crystal. The parameters

are: Melamine formaldehyde particles of 1.87 µµµm in diameter, discharge in

a neon-hydrogen mixture (1:1), pressure 0.8 Torr, current 1.1 mA, and mean

interparticle spacing ∼∼∼ 700 µµµm.

FIGURE 1.19

A vertical cross-sectional view of liquid-like structure. The parameters are:

Melamine formaldehyde particles of 1.87 µµµm in diameter, neon pressure

0.3 torr, and current 0.6 mA.
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FIGURE 1.20

A self-excited dust acoustic wave in a dc gas discharge at ppp = 0.2 Torr neutral

gas pressure (Fortov et al. 2000a). Wave characteristics are: Wave frequency

ωωω ∼∼∼ 60 s−1, wave number kkk ∼∼∼ 60 cm−−−111, phase velocity vvvppphhh ∼∼∼ 1 cm s−−−111.

cles of different mass were localized at different vertical positions in the discharge

tube, which resulted in the separation of the grains by size, charge, and mass along

the tube. It has been demonstrated by Vasilyak et al. (2000) that if a thin metal

plate with several openings is placed in the conical tube, different complex plasma

structures may be formed above the openings. Their dimensions depend on current

and pressure. The structures may hang above an opening in the form of a disk, in

the vicinity of an opening in the form of a ring, or even fill the entire surface above

the plate except for the openings themselves (Figure 1.21). The discharge current

increases from Figure 1.21a to Figure 1.21c.

Vasilyak et al. (2003) performed experiments in which a discharge tube 2 cm in di-

ameter was cooled with the use of Peltier elements. The middle part of the discharge

tube was cooled on both sides by two microrefrigerators 2.5 cm long, which tightly

fitted the side surface of the tube. Two gaps 8 mm wide were situated between the

microrefrigerators for observing dust structures. The particle structures (Figure 1.22)

were concentrated in striations close to the tube axis at air pressures of 0.1–0.5 Torr

and currents of 0.25–1 mA. Cooling the discharge tube walls by 20 K stretched the

particle structure in the radial direction under the action of thermophoretic forces.

First, the dust structure cross section transformed into an ellipse prolate toward cold

walls. Next, the cloud of dust particles divided into two circles, which experienced



22 Complex and Dusty Plasmas

FIGURE 1.21

Dusty plasma structures above a thin plate with circular openings and evolu-

tion of these structures with an increase of a discharge current from (a) to (c)

(Vasilyak et al. 2000).

deformations and were attracted to cold walls. Particles did not reach the walls under

the action of the radial temperature gradient but were confined in a new equilibrium

state, because the radial electric force directed toward the axis grew stronger as the

radius increased. Dust clouds of various shapes can be created by varying the temper-

ature field. If the walls of a discharge tube are locally cooled by microrefrigerators

in the longitudinal direction, all charged dust particles are withdrawn by the longitu-

dinal temperature gradient from the striation lying lower by 5–6 cm. They in part go

to cold tube walls in the region of refrigerators. Particles remain in the striations that

are situated above the refrigerators. Longitudinal thermophoretic forces are strong

enough to draw dust particles upward from electrostatic traps, that is, from stria-

tions. As a consequence, a new trap arises. This trap is formed as a result of the

superposition of thermophoretic and longitudinal electric field forces. Creating vari-

ous thermal traps with the use of Peltier elements allows the shape of dust structures

to be varied or even allows dust structures to be removed from the discharge region.

FIGURE 1.22

Particle structures obtained by cooling the two sides of the discharge tube: (a)

Arrangement of microrefrigerators (the horizontal discharge tube cross section

is shown; 1 – discharge tube, 2 and 3 – microrefrigerators, and 4 – dust struc-

ture); (b) Separation of the particle structure into two clouds (Vasilyak et al.

2003).
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FIGURE 1.23

Vertical cross section of the ordered particle structure in a stratified dc dis-

charge. In the lower region of the structure, the vertical oscillations of the par-

ticle density are present, in the central region high ordering appears, and in the

periphery of the upper region the particles exhibit convective motion.

Termophoretic forces can be used for changing particle distribution in the hori-

zontal cross section of relatively highly ordered structures in a dc glow discharge.

Presuming that the boundary geometry can affect particle distribution, Karasev et al.

(2008) used cylindrical coolers of diameter 2 cm and height 6 cm, held at 273 K

and placed against a striation containing a particle structure, to change the geometry

of its outer boundary. By varying the number of coolers, their positions, and their

separations from the tube wall, azimuthally asymmetric thermophoretic forces can

be used to form polygonal boundaries and vary the angles between their segments

(in a horizontal cross section).

Under certain discharge conditions, an increase in the number of particles gives

rise to complex structures where different regions coexist (see Figure 1.23): the high

ordering region (“plasma crystals”) and regions of convective and oscillatory mo-

tion of particles (“plasma liquids”). Usually, in the lower part of the structure, the

particles oscillate in the vertical direction (dust density waves) at a frequency of

25–30 Hz and a wavelength of about 1 mm, the mean interparticle distance being

200 µm. Such self-excited oscillations can correspond to instabilities of the dust

waves. Most of the central region of the structure is occupied by a crystal-like struc-

ture with a pronounced chain-like configuration. At the periphery of the upper part of

the structure, the particles undergo convective motion whose intensity decreases to-

wards the center of the structure. This complex picture is apparently associated with

a peculiar distribution of plasma parameters and forces acting on the dust particles

within a striation.

DC discharges give a possibility to observe different wave phenomena in complex

plasmas. Using special excitation techniques one can excite waves. Interesting re-
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FIGURE 1.24

Scheme of the experimental setup with the plunger.

sults have been achieved with the help of a gas–dynamic impact (Fortov et al. 2004b;

Molotkov et al. 2004; Pustyl’nik et al. 2004).

In the experimental setup similar to that presented in Figure 1.16, a plunger was

set below the cathode to excite the waves (Figure 1.24). The plunger was a hollow

thin-walled nickel cylinder of 26 mm diameter and height with the bottom made of

a polymeric pellicle. It was put at the bottom of the tube (15 cm separated from the

cathode) and moved with the help of a permanent magnet manually approached to

the plunger from outside the tube. In this way the plunger could be moved upward

and downward with a speed of about 30–40 cm s−1 and 4–5 cm space, creating a gas

flow with the duration of about 0.1 s, which displaced the dust grains with respect to

the striation. In some experiments a grid was inserted into the tube 7 cm above the

upper cut of the cathode. The grid was kept under the floating potential.

In the experiments without the grid, when the plunger was moved downward, the

dusty plasma structure was first slowly moving downward. During the time of 33 ms

it was displaced for about 500 µm. The structure became unstable at this position. It

moved rapidly back in the upward direction and several dust compressions appeared

propagating downward. At the end of the process the waves were damped and the

structure as a whole returnsed to its initial position. The characteristic wavelength

and frequency were 1.3 mm and 14 Hz, respectively. These waves are very similar to

the self-excited waves obtained by Fortov et al. (2000a). However they are different

since the self-excited waves are usually observed in the lower parts of the structure

in the area of higher electric field, whereas here they were formed in the upper part
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FIGURE 1.25

Sequence of videoframes presenting the evolution of the disturbance in the ex-

periments with the grid, (a) the initial structure, time interval between each

frame (b)–(e) is 83 ms.

of the structure.

It should be noted that the magnet which is used to transmit the motion to the

plunger influences the cathode sheath of the discharge. Because of this when the

plunger is moved downward, the striation performs an opposite motion. Conse-

quently, the displacement of the dust grains with respect to the distributions of the

plasma parameters is of the order of 2.5 mm. No changes in the shape of the par-

ticle structure are observed when the magnet is being moved. The estimated value

of the magnetic field created by the magnet in the striation region is on the order of

0.1 G. This is a rather weak magnetic field, which cannot produce any significant

disturbance in the plasma. It was experimentally verified that the influence of only

the magnet is not enough to produce the waves.

In the experiments with the grid, a solitary wave was obtained. The pressure was

again adjusted to 0.3 Torr and the discharge current was chosen in such a way that the

lowest striation was formed exactly below the grid. This occurred at the current of

0.1 mA. The dusty plasma structure was very close to the grid (at a distance of 4 mm).

After moving the plunger downward the structure was again for some time streaming

downward, then it stopped and began moving towards its initial equilibrium position,

and when it returned to the stable position, a disturbance propagating through it

appeared (Figure 1.25). The disturbance observed is nearly plane, and therefore, it

can be treated in terms of only one spatial variable. Figure 1.26 presents the shape

of the compression factor ξ , which is the ratio of the distribution of brightness in the

wave to the distribution of brightness in the initial structure, at different moments

of time. The disturbance consists of three parts: A is the first compression, B is the

rarefaction and C is the second compression. It is seen that the amplitudes for zones

A, B and C reach the values of 2.0, 0.65, and 1.2, respectively.
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FIGURE 1.26

Shapes of the compressional factor in the wave at different moments of time. AAA,

BBB, CCC denote three different structures of the wave: first compression, rarefac-

tion, and the second compression, respectively. Time interval between curves 1

and 2 is 120 ms, between curves 2 and 3 is 60 ms.

Another method to produce waves in complex plasmas is to apply an impulse of

axial magnetic field (Fortov et al. 2005c). To apply the electromagnetic impulse

the scheme shown in Figure 1.27a was used. In this setup 16 loops of copper wire

all in one horizontal plane were coiled around the discharge tube (impulse coil). A

battery of high-voltage capacitors was charged up to 1.2 kV and then discharged

onto the coil. The schematics of the impulse profile and its typical parameters are

shown in Figure 1.27b. The current impulse amplitude is on the order of 90 A.

The corresponding amplitude of the magnetic field inside the coil is estimated to be

150 G.

The impulse applied affects the striation only and produces no influence on the

dust particles because of their high inertia. The striation could be observed by the

videocamera as a bright background glow. The initial structure is shown in Fig-

ure 1.28a. When the impulse circuit is closed, the striation rapidly, i.e., for a time

less than the frame duration, moves upward towards the anode (glow disappears in

Figure 1.28b). As the striation moves away, the particles lose equilibrium and start

falling down under the effect of gravity (Figure 1.28c). Then, as the current is de-

creasing the striation is moving backwards. The returning striation drags the particles

upward (Figure 1.28d,e). Lower particles have more time to fall down than the upper

ones. This leads to the “stretching” of the particle structure (compare Figure 1.28b

and Figure 1.28f). In the next stage the pronounced division of the structure into two

parts with different particle velocities and densities is observed (Figure 1.29). The
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FIGURE 1.27

Scheme of the electromagnetic impulse experiments (a). The impulse shape,

registered by the Rogovsky coil is given schematically in (b).

FIGURE 1.28

Sequence of videoimages, presenting the behavior of the particle cloud and the

striation under the influence of the magnetic impulse. Here (a) corresponds to

the initial structure at ttt = 0, the moment of the electromagnetic impulse launch.

The images are adjusted so that the striation is seen as a bright background

glow. Area shown in each image is 5.0×××20.5 mm222.

steepening of the perturbation is obvious in Figure 1.30, where the shapes of the dust

density versus the vertical coordinate corresponding to the images in Figure 1.29, are

presented.

The modified dc discharge facility (Thompson et al. 1997; Merlino et al. 1998)

was used for experimental investigations of dust–acoustic waves. The facility is

shown schematically in Figure 1.31a. A discharge was formed in nitrogen gas at

a pressure p ∼ 100 mTorr by applying a potential to an anode disk 3 cm in diam-

eter located in the center of the discharge chamber. A longitudinal magnetic field

of about 100 G provided radial plasma confinement. If the discharge current was
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FIGURE 1.29

Sequence of the images, presenting the formation of the discontinuity front.

Area shown in each image is 5.4×××20.5 mm222.

FIGURE 1.30

Spatial profiles of the particle density near the front of the perturbation at

different moments of time corresponding to Figure 1.29. The curves indicate

pronouced steepening of the perturbation. Low density parts of the perturba-

tion are shown separately in the inset.
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FIGURE 1.31

(a) Schematic diagram of the experimental facility used to investigate dust–

acoustic waves in a dc gas discharge (Merlino et al. 1998). (b) Video images

of typical wave structures in dusty plasma for three different values of the ex-

ternal excitation frequency (shown to the right of the images) (Thompson et al.

1997). (c) Experimentally obtained by Merlino et al. (1998) dust–acoustic wave

dispersion relation (circles). The solid curve is computed from the theoretical

dispersion relation which accounts for dust–neutral collisions.

sufficiently high (> 1 mA), dust–acoustic waves appeared spontaneously, similar to

earlier experiments (Barkan et al. 1995). To investigate the properties of the waves

in more detail, a low-frequency sinusoidal modulation with frequencies in the range

of 6–30 Hz was applied to the anode. An example of the observed waves is shown in

Figure 1.31b for three different excitation frequencies. Assuming that the wave fre-

quency is determined by the external excitation frequency, the dispersion relation –

the k(ω) dependence in this case – can be obtained by measuring the wavelength.

The results are shown in Figure 1.31c. The observed waves exhibit linear dispersion

ω ∝ k and propagate with a velocity vph ∼ 12 cm s−1. From this it can be concluded

that the observed waves correspond to the dust–acoustic waves.

Another way of producing complex plasma structures in a dc discharge has been

developed by Uchida et al. (2000). A schematic diagram of the experimental appa-

ratus is shown in Figure 1.32. A dc argon discharge plasma is produced at 220 mTorr

by applying a negative dc potential of about 300 V to an upper electrode (cathode)
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FIGURE 1.32

A sketch of the experimental apparatus used by Uchida et al. (2000).

with respect to a middle grounded mesh anode. The plasma diffuses downward

through the mesh anode. The typical electron density and electron temperature of

the diffused plasma are 108 cm−3 and 1 eV, respectively. Two centimeters below the

mesh anode, a segmented particle levitation electrode is set up, consisting of three

electrodes. At the center of the levitation electrode there is a disc of 0.5 cm in diam-

eter, and two ring electrodes are set up around it. One is the ring electrode with inner

and outer diameters of 0.5 cm and 1.5 cm, respectively, and the other with 1.5 and

19 cm, respectively. Different dc potentials can be applied to the three electrodes

independently in order to control the potential profile in the particle levitation re-

gion. The dust particles are injected from a sieve into the glow region of the plasma

through the mesh cathode and anode.

A quite interesting modification of the previous setup was suggested by Sato et

al. (2000). It is shown in Figure 1.33 (left panel). The levitation (or confinement)

electrode was made as a fine grid with 300 mesh/inch, below which an auxiliary

dc discharge plasma was produced in addition to the main plasma. This additional

plasma is used for supplying a low-energy electron beam (an electron shower) on

the particles levitating above the levitation electrode which is provided by biasing

the auxiliary plasma negatively for electrons in this plasma to pass through the lev-

itation electrode. Increasing the auxiliary discharge current, it is possible to obtain

a gradual phase transition of the particle structure from the solid (ordered lattice) to

liquid state. Figure 1.33 (right panel) presents the top view of the solid-like structure

obtained under the action of the low-energy electron beam leading to an increase of

the negative charge on the grains. This double-plasma method is useful for levitation
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FIGURE 1.33

Left: Setup supplying electron shower on particles. Right: Top view of crystal-

like structure of particles at an auxiliary dc discharge current equal to 1.2 mA

(Sato et al. 2000).

of rather heavy dust particles (for example, Sato et al. (2000) observed a levitation

of glass balloons of 50 µm in diameter).

1.2.2 Microgravity experiments

The results of investigations of complex plasma performed in a dc discharge in the

laboratory ground-based experiments (Fortov et al. 1996b; Lipaev et al. 1997) were

used as a base for the first experiments to study dynamics of microparticles under

microgravity conditions. These experiments were performed onboard the Mir sta-

tion (Nefedov et al. 2002, 2003b; Fortov et al. 2003). Note that in dc discharges

some attention should be paid to compensate the action of the electric force in the

dc discharge positive column and to eliminate a drift of the negatively charged mi-

croparticles in the anode direction. For this purpose the additional special electrode

under the floating potential was used in the experiments.

The experimental setup is schematically shown in Figure 1.34. The main element

of the working chamber was a gas discharge tube of radius R = 1.6 cm filled with

neon to a pressure of p = 1 Torr. The distance between a plane anode and a cathode

was 28 cm. An insulated electrode was mounted at 4.5 cm from the anode. The elec-

trode was made as two steel grids (wire 60 µm in diameter) with 150 µm × 150 µm

meshes, and the distance between the grids was 1 cm. During experiments, the elec-

trode was under a floating potential and prevented negatively charged macroparticles

from escaping to the anode. Bronze spherical particles (diameter of 70–180 µm,

mean radius a = 62.5 µm, density of the material ρ = 8.2 g cm−3) were placed be-

tween the grid electrode and the cathode. The diagnostics of macroparticles were

performed with the use of a planar laser beam (“laser sheet” about 300 µm wide,

wavelength 0.67 µm) and additional illumination of the dust cloud by an incandes-

cent lamp. In the latter case, the number of detected particles was determined by the

depth of view of the video system, which allowed tracking the particle positions for
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FIGURE 1.34

Sketch of the experimental setup in experiments onboard the Mir station.

long enough time to analyze their transport characteristics.

Experiments were performed at different discharge currents between 0.1 and 0.8

mA varied by the current source. Bronze particles were initially situated on the

tube walls. For this reason, the system was subjected to a dynamic action (pushed)

after switching on a discharge to shake off particles from the tube walls. After the

dynamic action, bronze particles moved toward the grid electrodes, in the vicinity

of which ordered structures were formed. The discharge was then “quenched”, the

particles relaxed to the initial state (returned to the tube walls), and the experiment

was repeated at a new discharge current value.

The electric field of the grids provided axial confinement of the particle cloud,

while the radial confinement was due to the radial electric field increasing sharply

towards the tube walls. The basic plasma parameters were the following: Ne gas at a

pressure p ≈ 130 Pa, the electron temperature Te ≈ 3–7 eV, and the plasma number

density in the range from 108 to 3×108 cm−3. With increasing the discharge current

from 0.1 to 0.8 mA, the interparticle separation ∆ decreased from 1000 to 700 µm.

The measurements of the mean drift velocity of particles from the positive column

to the grid electrode were used by Nefedov et al. (2003c) to estimate their electric

charges. The average charge was found to be |Z| ∼ 1.5×106, practically independent

of the discharge current.

The experiments performed in the dc glow discharge onboard the Mir space station

confirmed that dc discharges could give new possibilities in studying complex plas-

mas under microgravity conditions. As a continuation of this direction of research
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FIGURE 1.35

Scheme of the PK-4 setup: 1 – chamber area for complex plasma experiments;

2 and 3 – service parts.

activities, efforts have been made to develop quite a new experimental setup based

on the combination of dc and rf discharges. The corresponding setup – called Plasma

Crystal-4 facility (or PK-4 setup) – is planned for operation onboard ISS (Fortov et

al. 2005b).

A scheme of the PK-4 experiment is presented in Figure 1.35. The gas-discharge

chamber represents a 40 cm length Π-shape glass tube with an inner diameter of

3 cm. Such a shape of the chamber was determined by a number of technical and

scientific requirements, in particular by the restricted size of space setups. The PK-4

chamber consists of an experimental part 1 and two identical service parts 2 and 3.

All scientific experiments are performed in part 1. The service parts contain vacuum

input/output ports to fill/pump a gas for the gas discharge. These ports contain the dc

electrodes, which are isolated from the gas inlet/pump system via a Schottky locker.

The service parts contain a set of dust dispensers (up to eight) to be used to inject

different kinds of particles into the discharge chamber. In most cases, monodisperse

spherical microparticles of size between 0.1 and 15 µm are used. The PK-4 setup is

now equipped with four dust dispensers, and different combinations of dust particles

can be used. In principle, nanoparticles synthesized directly in the discharge chamber

as well as rod-like particles can also be used in future experiments. The injected

particles are transported to the experimental part 1 with the help of the electric field

of the dc discharge or by the gas flow. Here they are illuminated by a laser sheet (17

× 0.15 mm2) and observed by CCD video cameras at 120 frames per second. The

recorded frames are stored in a PC in digital form. The discharge chamber can be

cleaned from dust particles by strong gas pulses.

The experimental part 1 is equipped with rf inductors and rf capacitors for ex-

citation of local discharges. One of the rf inductors is movable. Basic discharge
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modes are: Pure dc discharge (dc mode), combinations of dc discharge with one

rf inductive discharge [dc/rf(i) mode] or with two rf inductive discharges [dc/2rf(i)

mode], two rf inductive discharges [2rf(i) mode], and combination of dc discharge

with one rf capacitive discharge [dc/rf(c) mode]. The dc current and the power of the

rf(i) discharge can be modulated with a low frequency. A local heater is intended to

manipulate the dust particles with the help of temperature gradients in the discharge

gas. A high power manipulating laser allows the performance of a precise manipula-

tion of the complex plasma structures and flows. The application of a combination of

the listed manipulators allows manipulating the topology of dusty plasma formations

over a wide range. A photo of the PK-4 setup installed in a laboratory is presented

in Figure 1.36a.

To measure the distribution of the basic parameters of the background discharge

(the electron density ne, electron temperature Te, and space plasma potential ϕ), a

movable Langmuir probe has been used. Typical results of measurements of the

plasma parameters of the discharge in the dc mode are presented in Figure 1.36b.

The dc mode plasma is characterized by a high uniformity, which is an essential

condition for the creation of extended homogeneous particle structures and flows.

Measurements also showed that with the help of the two rf(i) local discharges it is

possible to control the space plasma potential distribution and to create a potential

well for dust clouds.

To confirm the basic principles put in the PK-4 development, special tests have

been performed under microgravity conditions of a short time duration. These tests

were performed onboard the special airplane A-300 ZERO-G. The duration of the

microgravity phase was about 22 s in each parabola. The main principles were con-

firmed. In particular, the transportation of charged particles from the service parts to

the experimental one with the help of a constant electrical field of the dc discharge

and the blocking of dust particles in the experimental part by the local rf(i) discharge

were successfully tested. Some interesting results have been obtained: formation of

extended 3D dust clouds in the positive column of the dc discharge, ordering of dust

structures in the field of the local rf inductive discharge, availability of dust acoustic

instabilities and nonlinear stationary dissipative waves. For the first time Usachev

et al. (2009) observed formation of a boundary-free dust cluster in a low-pressure

gas-discharge plasma.

In this experiment the dc discharge operated at Idc = 1.0 mA and Udc = 884 V,

and its uniform positive column filled almost the entire chamber volume. In addition

to the dc electrodes, the PK-4 discharge chamber in this experiment was equipped

with an rf coil installed in the vicinity of the tube center. The coil was powered by an

rf current at a frequency of 81.36 MHz and a power of 1.5 W. Under microgravity,

monodisperse melamine formaldehyde dust particles with a radius of 1.28 µm were

injected into the dc discharge plasma in the vicinity of the cathode. Being injected,

the charged dust particles drifted to the anode due to the dc electric field of the dis-

charge of about 2 V cm−1. The camera field of view (FoV) was 12.6 × 9.5 mm2 at

the tube axis. During the experiments the injected small particles formed an elon-

gated drifting uniform dust cloud with a diameter of 1.5 cm and a particle density

of nd ∼ 2×1011 m3, which was confined along the tube axis by the radial electric
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FIGURE 1.36

(a) Photo of PK-4 setup; (b) measured electron density nnneee, electron temperature

TTT eee, and plasma potential ϕϕϕ along the tube axis HHH for the dc discharge mode at

gas pressure ppp = 50 Pa, discharge current IIIdddccc = 1 mA, gas – Ne + 2%Xe. HHH = 0

corresponds to the center of the PK-4 chamber.
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FIGURE 1.37

Cluster formation and destruction in the central part of the discharge tube.

(a) Dust cloud in the uniform positive dc column just before the rf pulse: The

arrow shows the direction of particle drift, the bright point is the big particle.

(b) 60 ms after the rf pulse ignition: Beginning of the cluster formation, arrows

show dispersing of small particles, dashed circle shows a sphere of attraction

of small particles. (c) 120 ms after the rf pulse ignition: Formation of cluster

is complete, arrows show drift of residual small particles; the insert shows an

enlarged image of the cluster with 12 identified small particles. (d) Just after

the ending of rf pulse: The cluster is disrupted instantaneously, arrows show

small particles dispersed from the former cluster. The area shown is about 7 ×××
3 mm222.

field in the cylindrical dc positive column. In addition to the injected small particles,

heavy dust particle conglomerates randomly appeared in the dc discharge and FoV.

As soon as the heavy particles appeared in the FoV, an experimentalist manually ini-

tiated an rf discharge pulse of a rectangular shape with a duration of 180 ms. In the

process of these operations the formation of a boundary-free dust cluster, containing

one big central particle with a radius of about 6 µm and about thirty 1 µm-sized par-

ticles situated on a sphere with a radius of 190 µm with the big particle in the center

has been observed. Main stages of the cluster formation are shown in Figure 1.37.

The reason for this boundary-free cluster formation is identified as the ion drag force

acting on small particles in the ion flux directed to the big particle.

1.3 Thermal complex plasmas

Thermal complex plasma is a low temperature plasma with equal temperatures of

all species that contains small sized liquid or solid particles (Sodha and Guha 1971;

Yakubov and Khrapak 1989; Fortov et al. 2006a). The macroparticles interact effi-
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ciently with electrons and ions and often have major influence on plasma properties.

Effects associated with the presence of particles were observed in early experiments

(Sugden and Thrash 1951; Shuler and Weber 1954) with plasmas of hydrocarbon

flames. Because of the high macroscopic charges that the particles can acquire (of

the order of 102–104 e), strong interparticle interaction can lead to the formation of

ordered structures of particles, analogous to structures in liquids or solids (Ichimaru

1982).

An experimental study of the formation of ordered structures in a classical quasineu-

tal thermal plasma at atmospheric pressure and temperatures of 1700–2200 K was

carried out (Fortov et al. 1996a, 1997a, 2004a, 2005a, and references therein). The

rather large plasma dimensions (its volume is ∼ 10 cm3, which corresponds to a par-

ticle number on the order of 108 at a particle density of 107 cm−3), its uniformity,

and the absence of external electric and magnetic fields made it possible to eliminate

the effect of boundary conditions on phase transitions in the plasma.

1.3.1 Source of thermal plasma with macroparticles

The experimental setup includes a plasma generator and the diagnostic means for

determining the parameters of the particles and gas (Kondrat’ev et al. 1994). The

main part of the plasma source consists of a two-flare Mekker burner with propane

and air fed into its inner and outer flares. The diameter of the inner flare is 25 mm and

that of the outer, 50 mm. Particles are introduced into the inner flare of the burner.

The burner design makes it possible to create a laminar flow of plasma with uniform

parameter distributions (temperature, electron and ion densities). During operation,

the velocity Vg of the plasma flow was varied over 2–3 m s−1 and the electron density

in the flame, over 109–1011 cm−3. The temperatures of the electrons and ions were

equal and were varied over the range Ti = Te = Tg = 1700–2200 K. Spectroscopic

measurements of the temperature Td of the particles (Nefedov et al. 1995) showed

that it was close to the gas temperature (Td
∼= Tg). The combustion products were at

atmospheric pressure.

In these experiments a thermal plasma with two types of chemically inert parti-

cles, Al2O3 and CeO2 was studied. The particles of powder contain an admixture

of alkali metal compounds. Spectral measurements in the plasma flow revealed the

presence of alkali metal atoms (sodium and potassium) with low ionization poten-

tials. Thus, the main components of the plasma in one case were charged CeO2

particles, electrons, and singly charged Na+ ions, and, in the other, charged Al2O3

particles, electrons, and Na+ and K+ ions.

In order to study ordered structures in the plasma, it is necessary to have data on

the charge of the particles, as well as on the basic plasma parameters. The important

feature of this plasma source is that it creates a large plasma volume. As a result,

various diagnostic measurements of the plasma could be made. Various parameters

of the gas and macroscopic particles were determined, such as the electron and alkali

ion densities, the gas temperature, and the size and density of the macroparticles.
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FIGURE 1.38

Sketch of the experimental setup and probe diagnostics in thermal complex

plasmas.

1.3.2 Plasma diagnostics

The plasma was diagnosed by probe and optical techniques. The arrangement of the

probe measurements is shown in Figure 1.38. The density n of the positive alkali

metal ions was measured with an electrical probe (Benilov 1988; Kosov et al. 1991).

The rms error in the density determination was 20%. The local electron density

ne was determined by a method based on measuring the current I and longitudinal

electric field E in the plasma (Kosov et al. 1991). An electrode at constant voltage

relative to the burner was placed in the plasma flow to determine the current I. Two

platinum probes were introduced into the plasma to determine the tangential com-

ponent E of the electric field. The electrical conductivity of the plasma, σ = neeµe,

was determined on the basis of Ohm’s law j = σE ( j is the current density and µe is

the mobility of the electrons). The electron density was found from known µe. The

error in ne was less than 30%.

1.3.3 Particle diagnostics

A novel laser technique was used to determine the mean (Sauter) diameter Dd and

density nd of the macroparticles (Vaulina et al. 1996). This technique is based on

measurements of the extinction of light in a dispersive medium at small scattering

angles, and is intended for determining the characteristics of particles with sizes in

the range 0.5–15 µm.
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FIGURE 1.39

Sketch of the optical measurements of the sizes, density, and spatial structures

of macroparticles.

The setup includes a rotating disk with aperture stops of various diameters located

in front of a photodetector (Figure 1.39). An He–Ne laser (λ = 0.633 µm) is used as

the light source. For an error in the measurement of the extinction of about 2%, the

errors in recovering the particle sizes and density were about 3% and 10%, respec-

tively. The ordered structures were analyzed using the binary correlation function

(Ichimaru 1982) obtained with a laser time-of-flight counter. The measurement vol-

ume is formed by focusing the beam of an Ar+ laser (λ = 0.488 µm) onto the axial

region of the plasma stream. Radiation scattered by individual particles at an angle

of 90◦ when they cross the laser beam spot is collected by a lens and directed onto the

15µm-wide monochromator entrance slit. The diameter of the measurement volume

was less than 10 µm. The resulting pulsed signals were then processed to calculate

the binary correlation function g(r), which characterizes the probability of finding a

particle a distance r = Vdt from a given particle. Here t is time and Vd is the average

particle velocity (Vd ∼ Vg for micron-sized particles). An analysis of g(r) makes it

possible to describe the spatial structure and interparticle correlations in the particle

system.

Plasma diagnostics were performed in the temperature stabilized zone h = 25–40

mm above the top of the burner at various plasma temperatures and particle den-

sities. The plasma temperature was changed by varying the propane/air ratio over

0.95–1.47. Thus, it was possible to change the Debye radius, the distance between

particles, and the charge of particles in the plasma. Measurements of the spatial

structures of the macroparticles were compared with data for an aerosol stream at

room temperature. In the latter case, only air with particles of Al2O3 or CeO2 was

fed into the inner flare of the burner. This system simulates a plasma with a random

spatial disposition of the macroparticles (a “gaseous” plasma).

In measurements with CeO2 particles, the particle density nd was varied over the
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range (0.2–5.0)×107 cm−3 and the plasma temperature Tg over 1700–2200 K. As a

consequence, the ion density ni, varied from 0.4× 1010 to 4.0× 1010 cm−3 and the

electron density, over (2.5–7.2)×1010 cm−3. The CeO2 particles are polydisperse,

with a distribution half-width of less than 30% according to our measurements. The

average Sauter diameter of the particles was about 0.8 µm.

Based on these data, the quasineutrality condition Znd + ni = ne implies that the

CeO2 particles are positively charged to ∼ 103 e with accuracy on the order of the

factor 2. The observed magnitude and sign of the charge on the particles can be ex-

plained by thermal emission of electrons from the surface of heated CeO2 particles

(Sodha and Guha 1971; Fortov et al. 2006a), which are characterized by a low elec-

tron work function equal to ∼ 2.75 eV (Fomenko 1981). In the following analysis of

the data, we use the value Z ≈ 500 for the particle charge.

1.3.4 Spatially ordered structures in thermal plasmas

Figure 1.40 shows typical binary correlation functions g(r) for CeO2 particles in an

aerosol flow at room temperature (Tg ≃ 300 K) and in plasmas (Tg ∼ 2170 and 1700

K) (Fortov et al. 1997b). It is quite evident that the correlation functions g(r) for the

plasma with temperature Tg ∼ 2170 K and particle density np ∼ 2×106 cm−3 and for

the aerosol stream are essentially the same. Thus, the particles in the plasma interact

weakly and formation of ordered structures is impossible. This is also confirmed by

the plasma diagnostic measurements. The optical and probe measurements showed

that the average interparticle distance (∆ ∼ 50 µm) is roughly 3.5 times the Debye

radius (λD ∼ 14 µm), and thus, the interparticle coupling is weak.

For the lower plasma temperature Tg ≃ 1700 K and a particle density of nd ∼
5×107 cm−3, Figure 1.40c shows that the binary correlation function g(r) exhibits

the short ordering characteristic for liquids. Under these conditions the interparticle

coupling is much stronger and as a consequence the particles form an ordered liquid-

like structure.

The formation of ordered structures was observed only at sufficiently high (∼ 107

cm−3) particle densities. Lowering the concentration of CeO2 particles increases the

average distance between particles which lowers interaction energy. Then an ordered

structure does not develop, as shown in Figure 1.40b (nd ∼ 2×106 cm−3). Plasmas

with Al2O3 particles were studied at temperatures Tg ∼ 1900–2200 K. The higher

concentration of Na+ and K+ ions (by ∼ 10 times) leads to much stronger shielding

of electric interactions between the particles in this case. As a result no spatially

ordered structure was observed.

Another effect which can contribute to the formation of ordered structures in ther-

mal complex plasmas is the electric attraction between positively charged particles in

plasmas. The mechanism of this attraction is discussed in Section 2.3.1. Calculations

of the interaction potential applicable for a highly collisional (atmospheric pressure)

plasma (Khrapak et al. 2007) suggest that this mechanism could play some role in

the experiments discussed above.
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FIGURE 1.40

The binary correlation function ggg(((rrr))) for CeO222 particles in an air stream at

room temperature TTT ggg ≃≃≃ 333000000 K (a), in plasmas at a temperature TTT ggg ∼∼∼ 222111777000 K,

corresponding to weak coupling (b), and at a temperature TTT ggg ∼∼∼ 111777000000 K, corre-

sponding to stronger coupling (c).

1.4 Other types of complex plasmas

1.4.1 Complex plasmas at cryogenic temperatures

Structural and dynamical properties of ordered particle structures are greatly affected

by thermal regime of the discharge which determines the temperature of the heavy

plasma components – atoms, molecules, and ions. By cooling the discharge (e.g., to

cryogenic temperature), one can reduce the plasma screening length. As a result, the

mutual electric repulsion between charged microparticles significantly weakens; the

particles may come closer to one another and form dense dust structures (Fortov et

al. 2002; Asinovskii et al. 2006).
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Traditionally, the technique of electrons and ions cooling down to temperatures in

kelvin and millikelvin regimes is used to increase non-ideality of plasma systems.

In this way it is possible to receive condensed crystalline ionic systems in cryogenic

gas discharges (Fortov et al. 2006a), by laser cooling of atomic ions in non-neutral

plasmas confined in Penning-type traps (Gilbert et al. 1988), in Paul rf traps, and in

storage rings. Possibilities also exist for the observation of 2D crystalline structures

of electrons on the surface of liquid helium. Complex plasmas at cryogenic temper-

atures were studied first by Fortov et al. (2002), where structures of polydisperse

particles in rf and dc discharges cooled by liquid nitrogen (77 K) were experimen-

tally observed. It was estimated that the dust density nd in these experiments did

not exceed 106 cm−3. Moreover, the phenomenon of structure division into thin

transversal layers with sharp boundaries was observed when gas pressure decreased.

The layers were attributed to dust–acoustic instabilities. Super dense structures of

polydisperse particles were observed by Asinovskii et al. (2006) in striation of dc

discharge cooled by liquid helium (4.2 K). Although there was no possibility to de-

termine the distances between the particles directly (in contrast to the work by Fortov

at al. 2002), estimation made by the authors was nd ∼ 109 cm−3.

The experiments designed to reveal the importance of the temperature factor in

the formation of complex plasma structures were carried out in a cylindrically sym-

metric dc glow discharge generated in vertically oriented glass tube placed inside the

cryostat – the cylindrical double glass Dewar system (Figure 1.41). The outer Dewar

was used as a thermal guard and was filled with liquid nitrogen. The inner Dewar was

filled with liquid nitrogen or liquid helium according to the temperature required. A

glass discharge tube 1.2 cm in diameter and 42 cm in interelectrode distance was

suspended from the cryostat lid. The upper electrode is the cylindrical hollow anode

through which the particles were injected into the discharge. Particles were stored in

the container with grid at bottom and positioned above the anode. When shaking the

container the particles fell downwards through the grid. Monodisperse polystyrene

particles with a diameter of 5.44± 0.09 µm were used. In order to illuminate the

particles, a diode laser beam (λ = 532 nm) was introduced into the cryostat via op-

tical fibre. The observations were performed through 1 cm wide Dewar’s windows.

For recording of scattered light from the particles, CCD video camera was used at a

frame rate of 25 fps. The discharge was generated in He at a pressures p = 2–5 Torr

and currents I = 0.2–1.3 mA.

The dust particles in the dc discharge acquire negative charge and are trapped

in standing striations in the positive column. Each striation represents a parabolic

potential well in the horizontal plane and is characterized by sharp increase of the

electric field in the vertical direction, which is accompanied by only an insignificant

decrease of the electron density. Thus, electrostatic force acting on a charged parti-

cle can balance gravity and lead to the levitation of particles in striations. In order

to generate stable striations in a wide range of parameters, the discharge was locally

constricted in its lower part. The discharge constriction was produced by means of

a “capillary” – glass cylinder of 1 cm in diameter, which is narrowing to nozzle of

about 0.1 cm in diameter in its upper part. A potential jump arises inside the “capil-

lary” which can contribute to the generation of striations. Experiments demonstrated
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FIGURE 1.41

Scheme of experimental setup used to study complex plasma structures in a dc

discharge at cryogenic temperatures.

that a standing striation was generated above the “capillary” at both room and cryo-

genic temperatures.

In the experiments at room temperature, levitation of the chains consisting of sev-

eral dust particles aligned in the vertical direction was observed. The number of

chains varied from several up to several dozens, so the overall number of particles

did not exceed ∼ 100. Depending on discharge parameters, particle chains could be

found in the stationary state as well as moving around each other. It should be noted

that the vertical chain-like ordering of dust structure is typical for dc low pressure

glow discharges. Figure 1.42a represents the structure of particles obtained at dis-

charge current I = 0.5 mA, discharge voltage U = 4.2 kV and gas pressure p = 2

Torr. With the assumption Ti ≃ 300 K, the ionic Debye radius (which determines the

plasma screening length in this case) was estimated to be ∼ 40 µm. The interparticle

distance ∆ was measured to be 500–750 µm (nd ∼ 103–104 cm−3). Therefore, for

the room temperature, we have a ≪ λ ≪ ∆, where a is the particle radius.

Figure 1.42b shows side view of the particle structure in discharge cooled by liquid

nitrogen at U = 3.7 kV and at the same discharge current and neutral gas density

as we had in the experiments at room temperature. In this case the ionic Debye

radius was estimated to be ∼ 20 µm. At 77 K the structure consisted of long chains

of approximately 15–20 particles with 200–250 µm interparticle separation. This

structure is at least an order of magnitude denser (nd ∼ 105 cm−3) than that at room

temperature and consists of about 103 particles. Therefore, in the case of 77 K the
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FIGURE 1.42

Typical side view of the particle structure in a striation of the dc glow discharge:

a) at room temperature (300 K); b) at liquid nitrogen temperature (77 K). In

both cases discharge current and neutral gas density are the same: III = 0.5 mA

and nnn = 6.4×××111000111666 cm−−−333 (corresponding to the pressure ppp = 2 Torr at 300 K).

same inequalities as for the room temperature case, a ≪ λ ≪ ∆, are satisfied.

The experimental data were analyzed in order to compare the structural and dy-

namical properties of complex plasmas observed at temperatures near 300 and 77

K at the same discharge currents and neutral gas densities. Detailed analysis of

video images did not reveal qualitative changes in the two particle structures. The

measured pair correlation function g(x), where x = r/∆ is the normalized distance,

revealed close similarity, although the interparticle distances and the number of par-

ticles were considerably different in these two cases. Pair correlation functions also

show that the particle structures were highly ordered in the preferred (vertical) direc-

tion.

Observations show that the particles at 77 K move with higher velocities than

the particles at 300 K at the same discharge currents and neutral gas densities. The

recorded particle velocity distribution functions over horizontal (x) and vertical (y)

directions were found to be anisotropic (it can be related to a spatial inhomogeneity

of the plasma-dust system) and close to the Maxwellian functions. Kinetic tempera-

tures measured are Tx ∼ 1.0 eV, Ty ∼ 0.2 eV for particles in the discharge at 300 K

and Tx ∼ 0.9 eV, Ty ∼ 1.3 eV at 77 K. Therefore, we can conclude that cooling of

the discharge down to cryogenic temperatures leads to some “heating” of the particle

system.

Glow discharge cooled by liquid helium has properties that are radically different

from discharges at room and liquid nitrogen temperatures. Contrary to traditional dc
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discharges, investigations of stationary cryogenic discharge near 4.2 K are not nu-

merous. At present, elementary processes and plasma kinetics of such discharges re-

main practically unexplored. Also, there are no investigations concerning discharge

instabilities and, particularly, ionization waves (striations of positive column). Ex-

isting estimation indicate that the ionic Debye radius can be extremely small in this

case, ∼ 4 µm, which is of the order of the particle size. It was observed by Asinovskii

et al. (2006) that injection of monodisperse particles into the discharge could lead

to the formation of sphere-like particle structure within the striation as in the case of

polydisperse particles. The spherical structure vibrated (oscillated) in the horizontal

direction at a frequency of about 10 Hz. Obtained estimates for the observed struc-

ture indicate that here complex plasma was in a state characterized by a ∼ λ ∼ ∆.

1.4.2 Experiments with complex plasma induced by UV-radiation

One of the dust charging mechanisms in space is the photoemission. Under the in-

fluence of intensive fluxes of light, the dust particles can get positive electric charges

∼ (102–105)e and form crystal, liquid or gaseous dust structures (Rosenberg et al.

1996, 1999; Fortov et al. 1998; Vaulina et al. 2001). The phase state of these

structures is closely connected with diffusion processes, which are one of the basic

sources of the energy losses in complex plasmas.

The diffusion is a non-equilibrium mass transfer process caused by a thermal mo-

tion of particles, which leads to a steady state of the distribution of their concentra-

tions and is one of basic sources of the energy losses in real physical systems. The

diffusion occurs in various regimes, for example, Brownian diffusion of macroparti-

cles suspended in a background gas, or self-diffusion of the particles. For the clouds

consisting of positive ions and electrons, the joint diffusion transport of oppositely

charged particles (the ambipolar diffusion) may appreciably influence the dynamical

properties of the system. The case of ambipolar diffusion of low-ionized plasma in

the absence of a magnetic field was surveyed by Schottky (1924). The first results

of study of the polarization of oppositely charged particles for the two-component

system consisting of macroparticles and emitted photoelectrons under the influence

of sunlight in microgravity conditions were obtained by Vaulina et al. (2002) and

Nefedov et al. (2003b). It should be noted that direct experimental observations of

ambipolar diffusion for charged macroparticles are not feasible under usual labora-

tory conditions in the presence of gravity.

Detailed results of an experimental study of diffusion of dust particles, charged by

photoemission, under microgravity conditions were presented in the works by For-

tov et al. (1998), Vaulina et al. (2001, 2002), and Nefedov et al. (2003b). The data

were obtained during an investigation of a complex plasma induced by solar radia-

tion, onboard the Mir space station. These investigations have shown that under the

action of intensive solar radiation the micron-size particles can acquire considerable

positive electric charges (Fortov et al. 1998). The experimental study of the dust

diffusion was performed for bronze particles with the mean radius a ≃ 37.5 µm in

the background gas (neon) at a pressure of p = 40 Torr. The particles were contained

in a cylindrical glass tube, the bottom of which was the uviol window intended for
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FIGURE 1.43

(a) Sketch of the experimental setup. (b) Trajectories of moving particles after

the action of the solar radiation.

the solar illumination of the particle cloud. Extra illumination of particles by a laser

beam was used for improved diagnostics. The image was registered by a video cam-

era with the field of view ∼ 8×9 mm2, the definition in depth was about 9 mm (see

Figure 1.43a). Subsequently video-records were handled by a special program for

the identification of the displacements of individual particles. Under solar radiation

the number of recorded particles was determined by the definition in depth of the

video-system, which allowed tracing positions of particles during times sufficient

for the analysis of the particle dynamics. Trajectories of 40 particles (for 5 sec after

the beginning of solar irradiation) are shown in Figure 1.43b.

The first step of the experiment was the observation of the particles without the

action of the solar radiation. During the observations (∼ 20 min) the number of par-
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Experimental dependency of DDDxxx
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ttt, averaged for the different experiments, and their fit (solid lines) using the

functional form of Equation (1.1) at ννν fff rrr ≈≈≈ 333 s−−−111.

ticles in the field of view of video system did not vary significantly. The second step

was the observation of macroparticles while irradiating the cloud with the solar radi-

ation. Since in the initial state, the bronze particles were deposited on the ampoule

walls, the experiment was performed as follows: (1) dynamic effect (impact) on the

system with the closed window; (2) exposure in darkness ∼ 4 s ≫ ν−1
f r (ν f r is the

frequency of collision of dust with the gas molecules) to reduce the initial random

dust velocities; (3) illumination of the system by solar radiation; (4) relaxation of

the particles to the initial state (clinging to the ampoule walls) for the time ∼ 3–5

min. This interval is about three orders of magnitude shorter than the time for full

diffusion loss of particles at room temperature due to Brownian motion.

The measured particle kinetic temperatures and coefficients of thermal diffusion

are anisotropic: Tx ∼ 51 eV, Ty ∼ 22 eV; Dx
0 ∼ 1.4× 10−5 cm2s−1 and D

y
0 ∼ 6.2×

10−6 cm2s−1. Coefficients of the thermal diffusion of particles were calculated from

their measured velocities and displacements. The behavior of the measured functions

D
x(y)
d (t) (see Figure 1.44) at initial times of observation was close to that of non-

interacting particles (Vaulina and Khrapak 2001):

D
x(y)
d (t) = D

x(y)
0 (t){1− [1− exp(−ν f rt)]/ν f rt}. (1.1)

Note, that the function Dd(t) for particles in strongly interacting systems is not

monotonic, but has a pronounced maximum (Vaulina and Khrapak 2001), unlike

the results presented in Figure 1.44.

The initial dust concentration n0 was varied from ∼ 200 to ∼ 300 cm−3. The

dependencies of the relative dust concentration nd(t)/n0 on the time t are shown in

Figure 1.45. The charge of the particles was obtained from the approximations of

the curves nd(t)/nd for t > 40 s by the method detailed by Fortov et al. (1998) and

was close to Z ∼ 4×104 (±15%). Illustration of molecular dynamic simulations of
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Dependencies of nnnddd(((ttt)))///nnn000 on time ttt for the different initial concentration nnn000:

(filled circles) – 195 cm−−−333; (open circles) – 300 cm−−−333. Thin line is the calculation

by the method of molecular dynamics; curves (1) and (2) are the approximation

of Fortov et al. (1998); curve (3) is the function nnnddd///nnn000 ===exp(((−−−νννdddttt).

the particle transport due to the electric repulsion between the particles along with

the corresponding analytical approximations used to determine the particle charge

are presented in Figure 1.45 for conditions close to experimental ones (Fortov et al.

1998).

Since the considered system consists of the positively charged macroparticles and

the photoelectrons with the density ne ∼ Znd emitted by them, it is possible to as-

sume, that the transport properties of such a system depend on the ambipolar diffu-

sion of the particles. Because of the large difference of the electron µe and dust µd

mobilities, a negative surface charge appears on the tube walls. The incipient polar-

ization electric field blocks further separation of the charged components. Therefore,

the electrons and heavy dust particles can diffuse ”together” with some effective co-

efficient Da of the ambipolar diffusion (Raizer 1991):

Da = (Deµd + Ddµe)/(µd + µe). (1.2)

Here De and Dd are the free diffusion coefficients for electrons and dust particles,

respectively. In the case µe ≫ µd , we have

Da/Dd ≈ 1 + ZTe/T. (1.3)

With the measured temperatures (Tx , Ty), the ratios of the diffusion coefficients can

be estimated as Da/Dx
d ∼(0.8–1.6)×103, and Da/D

y
d ∼(1.8–3.6)×103 for Te ≃1–2

eV.

Since polarizing effects are possible only at weak perturbation of the electroneu-

trality of a system (δ n/n < 0.1) and the analyzed system could be close to elec-

troneutral one only at the initial stages of the experiment (for times smaller than



Types of experimental complex plasmas 49

∼ 10 seconds), the approximation of the experimental data on the evolution of the

particle concentration nd(t)/n0 by the function characterizing the velocity of particle

diffusion losses at the ampoule walls (see Figure 1.45) has been used:

dnd/dt = −ndνd . (1.4)

Here νd = Da/Λ2 is the frequency of diffusion losses, and Λ is the effective diffusion

length (Vaulina et al. 2001). For a cylinder with radius R = 15 mm and height ∼ 4R,

the value of R/2 = 0.75 cm. The value of νd was obtained from the experimental

curve nd(t)/n0 at t < 10 s, where the function nd(t)/n0 agrees well with the solu-

tion nd = n0 exp(−νdt) of Equation (1.4) for νd ≃ 0.032 s−1. An estimation of the

ambipolar diffusion coefficient yields Da ∼ 2×10−2 cm2s−1, which is in reasonable

agreement with theoretical result Da ≃ ZTeDd/T ∼ (1.2− 2.4)× 10−2 cm2s−1 ob-

tained for the measured values of Z ≃ 4× 104 and Dd/T ≃ 3× 10−7 cm2s−1eV−1

for Te ≃ 1−2 eV.

1.4.3 Nuclear-induced and track complex plasmas

Nuclear-induced plasma is produced by nuclear-reaction products which, passing

through a medium, create ion–electron pairs, as well as excited atoms and molecules

in their tracks. In terms of physical characteristics, the nuclear-induced plasma of

inert gases differs significantly from thermal and gas discharge plasmas. At relatively

low intensities of a radioactive source, typical for laboratory conditions, this plasma

has a distinct track structure. The tracks are randomly distributed in space.

The experiments were performed by Fortov et al. (1999) and Vladimirov et al.

(2001) in an ionization chamber which was placed in a hermetical transparent cell

FIGURE 1.46

Experimental setup: Injection of gas and particles mixture from the evacuation

and gas-filling system (1), container of dust particles (2), glass walls (3), metallic

electrodes (4), laser with a cylindrical lens (5), 2D radioactive source (6), video

camera (7), dc source (8), and various types of high-voltage electrode (A, B, C).
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TABLE 1.1
Major characteristics of ionizing particles.

Ionizing

particle

Average

initial energy,

keV

Total range in

solid matter

(CeO2), µm

Total range

in air (p =
1 atm), cm

Number of

secondary

electrons per

particle

β -particle 138 58 5.6 ≈ 5

Average fis-

sion fragment

9×104 5.5 2.3 ≈ 250

α-particle 6×103 20 4.7 ≈ 10

FIGURE 1.47

(a) Dust structures of micron-sized Zn particles in a nuclear-induced plasma in

neon at a pressure of 0.75 atm and an electric field strength of 30 V cm−−−111; (b) ro-

tating dust structures of micron-sized Zn particles in neon. The agglomeration

of particles is visible.

(Figure 1.46). Either β -particles (decay products of 141Ce) or α-particles and fission

fragments (decay products of 252Cf) were used as ionizing particles. The energies

of reaction products, their mean free paths in air and dust particle material, as well

as the average number of secondary electrons emitted in collisions of the ionizing

particle with a dust particle are given in Table 1.1.

In a plasma of atmospheric air at an external electric field strength of 20 V cm−1,

the levitating particles form liquid-like structures – the pair correlation function has

one maximum. At stronger electric fields, the dust particles move in closed trajecto-

ries which form a torus with the axis aligned with that of the cylindrical chamber.

In an inert gas, sufficiently dense dust clouds with sharp boundaries exist, and the

dust particles form a liquid-like structure inside these clouds (Figure 1.47a). In a

nonuniform electric field, the particles form rotating structures in which agglomer-

ation of small particles into coarse fragments proceeds in the course of time (Fig-

ure 1.47b).

In the experiments, particles of Zn and CeO2 were used. The particle radius was

estimated experimentally from the particle steady-state falling velocity after the re-
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moval of the electric field and was found to be 1.4 µm. The electric charge was

inferred from the equilibrium condition for slowly moving levitating particles. The

particle charge depended on the particle radius and lay in the range from 400 to 1000

elementary charges.

For the theoretical calculation of the charge on a spherical particle in the nuclear-

induced plasma, nontraditional approaches are used because this plasma is spatially

and temporarily inhomogeneous. The charging process is considered after the track

plasma has separated into two clouds: one of electrons and the other of ions. When

the electron or the ion cloud meets a dust particle on its drift to the correspond-

ing electrode, then this particle acquires some charge from the cloud. A statistical

treatment of these charging events constitutes the essence of the mathematical model

developed for calculating the particle charge. The electron current to the particle

is determined by the electron collection cross section in the collisionless limit. To

obtain the ion current, the diffusion approximation is used. In the numerical sim-

ulation by Fortov et al. (2001b) and Rykov et al. (2003) the code first generates

the event of creation, the direction of emission from the source, and the type of ion-

izing particle (alpha-particle or a fission fragment). The simulation shows that the

particle charge fluctuates with time. On the one hand, the dust particle acquires a

charge in the electron attachment process; on the other hand, its charge decreases

substantially in the less frequent events of interaction with the ions. The contribu-

tion from alpha-particles leads to a complicated dependence of the particle charge

on time. The characteristic timescale for changing the charge is 10−3–10−2 s. This

time is short enough, and hence the particle interaction with external fields can be

expressed in terms of effective constant charge. A time-averaged charge calculated

from this model is in most cases close to the values obtained for levitating particles

from the balance between gravity and electrostatic forces. The charge fluctuations

with amplitudes comparable to the charge itself can be one of the reasons preventing

the formation of highly ordered particle structures.

When a particle gets into the track region, the cascade electrons having a mean

energy of ∼ 100 eV could cause charges which are sufficient for dust system crystal-

lization. To investigate the charging process, a numerical model based on a system

of equations describing two-dimensional space-time track evolution has been de-

veloped. The system of equations includes the kinetic equation for electrons, the

continuity equation for heavy components (ions, atoms, etc.), the Poisson equation

and equations describing chains of plasma-chemical reactions. It follows from the

calculations that a particle can collect no more than 10 electrons from one track. This

means that the influence of many tracks is required in order to induce high charges

on the particle.

In order for the charging rate in the track regions to dominate over that due to

drift flows, the ionizing flux of a value of approximately 1013 cm−2 s−1 is required.

Such a flux can be obtained in the beam of a charged particle accelerator. The ex-

periments have been performed by Fortov et al. (2005a, 2006a,b) in different gases

(He, Ne, Ar, Xe, Kr). Electrostatic proton accelerator has been used for the exper-

iments. The experimental cell had the form of a rectangular parallelepiped with a

basement of 16 × 16 cm2 and a height of 12 cm (Figure 1.48). The cell’s side faces



52 Complex and Dusty Plasmas

Gas-cylinder 

Video recorder 

High voltage 
electrode 

CCD-camera 

Electric motor 

    Container 
with dust grains 

Laser 

Proton beam 

Titanum foil  

Vacuum pump 

V A HV 

FIGURE 1.48

The experimental setup for investigating complex plasmas under the influence

of a proton beam.

were made as glass windows, the particle structure behavior was observed by CCD

camera registering the light scattered by the particles. Horizontal proton beam with

an energy of 2 MeV was passed via titanium foil and a diaphragm 8 mm in diameter.

Monodisperse melamine-phenol particles with radii a of 0.505, 0.875, 1.50, 2.41,

and 2.75 µm were used in the experiments. The gas-particle mixture at a required

pressure was created in the cell after pumping by high vacuum pump.

The particle behavior proved to depend on the gas pressure considerably, whereas

the dependence on the gas type was weak. Main results of the experiment are as

follows. After pumping the gas-dust mixture into the cell, a gas pressure of about

25 Torr was established. Near the high-voltage electrode, in the paraxial area of

the proton beam, a dense particle structure was formed with an initial density of

5×106–107 cm−3. The process of particle structure formation in the proton beam

takes about 2–3 s. The particle structures have a cylindrical symmetry in equilibrium

with the maximum diameter 8 mm approximately coinciding with the beam diameter.

The structures can exist for 10 min or more at the same pressure. The structure is

destroyed when the proton beam is closed or when the voltage applied to the high-

voltage electrode is decreased or turned off.

By reducing the gas pressure in the experimental cell to less than several Torr, the

particle component is crystallized at a distance of ≈ 1 cm from the electrode. The

process of particle-ordered structure formation has a weak dependence on the gas

type. The crystal observed (for an example, see Figure 1.49) has a simple cubical

lattice with the mean distance between the particles of 90 µm in helium and 140 µm

in krypton and xenon. Crystal structures have been obtained for all types of gases

used in experiments and for particles of different diameters.



Types of experimental complex plasmas 53

FIGURE 1.49

An example of the crystal-like particle structure. The experiment is performed

in krypton gas with particles of 3 µµµm in diameter (voltage on a main electrode

is 140 V, beam current is 3 µµµA).

1.4.4 Particle structures in a dc discharge in the presence of magnetic
fields

The investigation of the response of complex plasmas to various external actions is

of great interest. Such actions can be used to control the spatial position, ordering,

and dynamics of complex plasma structures. Moreover, laboratory complex plasmas

under external actions are a good experimental model for investigating the formation

of dust and dusty plasma structures in space and various industrial and power facili-

ties (Fortov et al. 2004a). For instance, the effect of the magnetic field is important

for the analysis of the behavior of particles in the near-wall plasma in tokamaks. As

shown by Konopka et al. (2000), Klindworth et al. (2000), Sato et al. (2001), Che-

ung et al. (2003), Samsonov et al. (2003b), Paeva et al. (2004), Hou et al. (2005),

Dzlieva et al. (2005, 2006), and Karasev et al. (2006), the vertical magnetic field can

lead to the rotation of particle structures in the horizontal plane due to the tangential

component of the ion drag force. The majority of these experiments were performed

with rf and dc discharges in magnetic fields up to 400 G. However, Sato et al. (2001)

studied the effect of magnetic fields up to 4× 104 G on dusty plasma clouds in an

rf discharge and pointed out difficulties in obtaining a stable dc discharge in high

magnetic fields of thousands of Gauss.

In the experiment described below the possibility of the formation of complex

plasma structures and their dynamical characteristics in a dc glow discharge in axial

magnetic fields up to 2500 G are discussed. The experimental setup schematically

shown in Figure 1.50 (Vasil’ev et al. 2007) was used to investigate the action of

the magnetic field on complex plasma structures. A stratified dc glow discharge was

created in a vertically oriented cylindrical glass tube with cold electrodes. The inner
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Laser

FIGURE 1.50

Sketch of the experimental setup consisting of a cryostat of a superconducting

magnet, in which a gas discharge tube is placed, and a visualization system

including an illuminating laser and two video cameras is shown.

diameter of the tube was 36 mm and the distance between the electrodes was 600

mm. Spherical melamine formaldehyde particles of 5.5 µm in diameter were used to

form complex plasma structures in discharge striations. The particles were placed in

a container that had a mesh bottom and was located in the upper part of the discharge

tube. Particles were injected into the discharge with the use of a piezoelectric plate,

whose vibration ensured particle injection in the region of the positive column of

the discharge. Most of the experiments were carried out in neon gas at pressures of

several tenths of Torr with discharge currents of several tenths of microampere.

A superconducting cylindrical solenoid located in a liquid helium cryostat was

used as a generator of the magnetic field. The gas discharge tube was placed in a

so-called ”warm hole” 150 mm in diameter at the center of the cryostat. When the

cooled solenoid was in operation, the temperature in this hole was no lower than

273 K. The direction of the magnetic field can be changed by changing the current

direction in the solenoid. A system of two identical monocular optical periscopes

was developed for the observation and diagnostics of complex plasma structures in

the discharge inside the warm hole. Each periscope is a cylindrical tube with glass

prisms in the upper and lower ends. For the observation of a certain region of the
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FIGURE 1.51

Horizontal section of the dusty plasma structure in the dc glow discharge with

rotation in the magnetic field BBB equal to: (a) 75, (b) 500, and (c) 630 G. The

rotation direction in (a) and (c) is shown by the arrows. Rotation is not observed

in case (b).

gas discharge, each periscope can be vertically displaced by a distance equal to its

working height (300–450) mm. The particles were illuminated with 532-nm laser ra-

diation introduced inside the warm hole through the prisms of one of the periscopes.

The complex plasma structures were detected by means of two CCD video cameras

through the prisms of the second periscope and through the lower flat end of the gas

discharge tube (see Figure 1.50). This system allowed us to obtain images of the

structures in the horizontal and vertical planes.

The density of the electrons, their energy distribution, and the electric field are

strongly nonuniform over the length of a striation in the stratified positive column of

a dc glow discharge. The electric field is relatively high in the head of the striation,

which covers 25–30% of the striation length, is equal to about 10–15 V cm−1 in the

maximum, and is low outside this region (about 1 V cm−1). Due to the high floating

potential of the walls of the discharge tube, the striations are two-dimensional and

the potential difference between the center and wall in the striation head reaches 20–

30 V. Thus, an electrostatic trap, which can confine injected micron-size particles

levitating in the axial region of the vertical discharge, exists in the head of each

striation.

The experiments were performed with the discharge parameters such that the high

magnetic field did not induce the contraction of the discharge. The maximum lon-

gitudinal magnetic field equal to 2500 G at which the vertical striations hold was

obtained for the discharge in hydrogen at a pressure of several tenths of Torr. How-

ever, the particles injected into the discharge were not detected in the observation

region for this field magnitude. The particle structures in the discharge in H2 were

detected only in fields up to 1000 G in the form of flat monolayers consisting of a

small number of particles.

Small complex plasma structures were observed in the discharge striations in neon.

In the axial magnetic field, they rotated in the horizontal plane about the vertical

symmetry axis of the discharge. In a magnetic field of 75 G, the angular velocity of

the dusty cloud was directed against the magnetic field (Figure 1.51a). However, with

further increasing of the magnetic field, rotation was decelerated and terminated at

500 G (see Figure 1.51b). The rotation of the dusty structure in the opposite direction
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FIGURE 1.52

Measured angular velocity of the particle structure as a function of the magnetic

field strength. Solid line corresponds to calculation using Equation (1.5).

was observed in a field of 630 G (see Figure 1.51c), and the angular velocity of the

structure was aligned with the magnetic field. Figure 1.52 shows the experimental

angular velocities of the particle cloud in the striation of the dc glow discharge as

a function of the strength of the magnetic field. With further increase in the axial

magnetic field up to 700 G, the particles forming the structure in the axial region

of the discharge are displaced toward the periphery of the discharge, i.e., toward the

walls of the discharge tube. In this case, the angular velocity of the particles does

not change and is equal to 1–2 rad s−1. Small oscillations of dust particles are also

observed in this case. These oscillations are likely to be caused by instabilities of the

glow discharge in the presence of the magnetic field.

The particle structures containing ∼ 103 dust particles were obtained in the ex-

periments with neon in fields up to 300 G. The rotation of the structures was not

observed. In order to determine the structure and dynamical characteristics, the mass

transfer curves were calculated from the particle displacements in successive video

frames. These curves were then analyzed using a model developed by Vaulina et al.

(2005). Figure 1.53 shows the resulting kinetic energy and diffusion coefficient of

particles for various magnetic fields. It is seen that both quantities decrease with an

increase in the axial magnetic field. Correspondingly, the nonideality parameter of

the particle structure increases. As it is well known, the magnetization of the plasma

with the conservation of the discharge current leads to a decrease in the axial electric

field (see, e.g., Granovskii 1952; Golant et al. 1980). This decrease is likely to be

the cause of the freezing of the particle system when increasing the magnetic field

strength. However, the exact mechanism of crystallization requires further investiga-

tion.
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Magnetic field dependence of the kinetic temperature TTT , diffusion coefficient DDD,

and nonideality parameter ΓΓΓ∗∗∗ of the dusty plasma structure.

The rotation of particles in the axial magnetic field occurs due to the ion drag

force (Fortov et al. 2004a; Dzlieva et al. 2005, 2006; Karasev et al. 2006). The ions

azimuthally drift in the crossed axial magnetic field and radial electric field. The ion

drag force in the uniform rotation is balanced by the drag force with the neutral gas

of atoms.

The inversion of the radial electric field and, therefore, the angular velocity of

dust particles in the magnetic field can be caused by a change in the sign of the radial

component of the ion density gradient dni/dr and magnetization of electrons to a

degree such that their mobility becomes lower than the ion mobility.

Applying the expressions for the ion drag and neutral drag forces discussed in

detail in Section 2.5, one can estimate the dependence of Ωd on B. For the conditions

of an experiment by Vasil’ev et al., it was assumed that the radial distribution in the

striation region near the discharge axis, where the particle structure is located, has the

Bessel profile, which does not contradict the measurements reported by Golubovsky

and Nisimov (1995). In this case, dni/dr ≈ 0.128r in the particles location (r <
0.2 cm); i.e., the angular velocity should be independent of the radius in agreement

with the observations. The substitution of the experimental parameters yields the

following approximate dependence of Ωd on B:

Ωd ≈−10−2B
1−10−6B2

1 + 10−4B2
, (1.5)

which is shown by the solid line in Figure 1.52. Since the effect of the magnetic field

and the presence of the particles on the ni(r) is neglected in deriving Equation (1.5),
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this formula is valid only for small particle structures and low magnetic fields B .

100 G. Equation (1.5) provides a qualitatively correct magnetic field dependence of

the angular velocity of the particle structure. Qualitative agreement is also reasonable

up to B . 100 G. Note that the change in the sign of the angular velocity, which

occurs at B ≈ 1000 G, is attributed to the magnetization of electrons (their lower

mobility as compared to ions). However, in this case, the destruction of the potential

trap confining the dusty structure should be expected, but this destruction is observed

at higher magnetic fields (B ≈ 700 G) than B ≈ 500 G at which the direction of

rotation changes.

The reversal of the rotation direction is likely to be attributed to a change in the

direction of the diffusion plasma flux: The derivative dni/dr near the structure be-

comes positive. In this case, dni/dr outside the dusty structure remains negative and

the trap continues to exist. It is known that plasma recombination occurs on the sur-

face of dust particles, i.e., plasma is absorbed by the particle structure. The radial

diffusion flux from the axis to the walls in low magnetic fields B . 100 G prevails

over the flux absorbed by the structure. As the magnetic field increases, the plasma

is magnetized and the radial flux toward the wall decreases when the discharge cur-

rent is unchanged. The absorption of plasma by the particles also weakens, but to

a smaller degree, because magnetization does not affect the axial component of this

flux. As a result, at a certain value of B (≈ 500 G in our experiment), the total plasma

flux on the particles is larger than the plasma flux generated in the discharge near the

particle structure. Therefore, the inversion of the radial plasma flux occurs in the

central region of the discharge which leads to the change in the rotation direction of

the particle structure. With further increase in B, the region of the inversed diffusion

flux expands, the potential trap disappears, and the particle structure is destroyed

at B ≈ 700 G. According to the experimental results, the trap does not disappear

completely, but it shifts to the peripheral region of the discharge.

1.4.5 “Small” dust structures: Coulomb or Yukawa clusters and balls

1.4.5.1 Cluster types

Coulomb clusters are the ordered systems which consist of a finite number of mi-

croparticles interacting via a repulsive Coulomb potential and confined by external

forces (e.g., of electrostatic nature). In many cases, the interaction potential is be-

lieved to be of the Debye–Hückel (Yukawa) form, and therefore such systems are

called “Yukawa clusters”. The difference between the dust clusters and the dust

crystals is rather conditional: both systems in fact consist of a finite number of parti-

cles. The term “clusters” is usually reserved for systems with the number of particles

N ≤ 102–103, while larger formations are refereed to as “crystals”. A more precise

definition of clusters would be the ratio of the number of particles in the outer shell

to the total number of particles in the system. For crystals, this ratio should be small.

Similar systems can be formed, for instance, in non-neutral plasmas in Penning or

Paul traps (Gilbert et al. 1988; Dubin and O’Neil 1999), where the vacuum chamber

is filled with the ions, as well as in colloidal solutions with macroscopic charged
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particles (Grier and Murray 1994). Examples of two-dimensional clusters are elec-

trons on the surface of liquid He (Leiderer et al. 1987) and electrons in quantum dots

(Ashoori 1996; Filinov et al. 2001). The distinctions between systems are mainly

due to different types of interaction potential and different forms of confining poten-

tial.

Historically, clusters consisting of repulsive particles in an external confining po-

tential were first investigated with the use of numerical modeling (mostly by Monte

Carlo and molecular dynamic methods). Taking into account the possibility of ap-

plying the simulation results to dust particle clusters, we mention here works of

Bedanov and Peeters (1994), Schweigert and Peeters (1995), Candido et al. (1998),

Lai and I (1999), Astrakharchik et al. (1999a,b), Totsuji (2001), Totsuji et al. (2001,

2006), Drocco et al. (2003), Ichiki et al. (2004), and Kamimura et al. (2007). Most

simulations were performed for two-dimensional clusters in an external harmonic

(parabolic) potential. Such a configuration is usually realized in ground-based ex-

periments with complex plasmas in gas discharges. The simulations show that for a

relatively small number of particles in the cluster the “shell structure” is formed with

the number of particles N j in the jth shell (∑
j

N j = N).

The first experimental investigation of dust clusters was reported by Juan et al.

(1998). The experiment was performed in the sheath of an rf discharge. A hollow

coaxial cylinder of 3 cm in diameter and 1.5 cm in height was put on the bottom

electrode to confine the particles. Clusters with a number of particles from a few up

to 791 were investigated. Figure 1.4 shows images of typical clusters with different

numbers of particles, and Figure 1.54 demonstrates a series of the observed config-

urations. For large N, the inner particles arrange themselves into a quasi-uniform

hexagonal structure, whereas near the outer boundary particles form several circular

shells. The mean interparticle separation increases up to about 10% from the center

to the boundary.

The rotation of dust clusters around the symmetry axis was studied by Klindworth

et al. (2000), Ishihara et al. (2002), Cheung et al. (2004), Karasev et al. (2006),

Vasil’ev et al. (2007), and Carstensen et al. (2009). In Ishihara et al. work, the

cluster rotation was caused by the laser pressure. Both the rigid body and the dif-

ferential (intershell) rotation had been observed. In other works, the cluster rotation

was initiated by the presence of the magnetic field parallel to the cluster axis of sym-

metry. The rotational frequency was found to be linear with the weak magnetic field,

although it saturates at moderate magnetic field strength (Cheung et al. 2004), and it

is inversely proportional to the field in the strong field limit (Ishihara et al. 2002).

In an experiment by Cheung et al. (2004) performed in an inductively coupled

argon discharge at a pressure of 100 mTorr, the applied voltage on the confinement

electrode was set at +10 V. Melamine-formaldehyde particles were injected into the

plasma sheath above the circular electrode. The 2D dust particle clusters with dif-

ferent numbers of particles in a horizontal plane were formed. In particular, planar-2

(two particles in the horizontal plane) to planar-16 (16 particles) dust clusters were

formed using larger dust particles (radius a = 3.105 µm), and planar-2 to planar-12

dust clusters were formed using smaller dust particles (radius a = 1.395 µm).
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FIGURE 1.54

Typical shell configurations of several dust particle clusters consisting of differ-

ent numbers of particles (Juan et al. 1998).

Similarly to the simulation results of Bedanov and Peeters (1994), dust particle

clusters with a number (up to a few dozens) of particles observed in experiments by

Cheung et al. (2004) are arranged in shell configurations in the form of concentric

rings. The equilibrium configuration strongly depend on the exact number of parti-

cles in the cluster. On the other hand, large clusters, containing hundreds of particles,

have a core region which is of hexagonal order, like in a 2D monolayer. If the hori-

zontal confining potential is radially symmetric, then in order to match the boundary

of the confinement well, the outermost shells contain dislocations and are therefore

not perfectly hexagonal.

Also, we mention results of experiments by Annaratone et al. (2004), Arp et

al. (2004), and Antonova et al. (2008), where the three-dimensional clusters were

observed. The experiment by Annaratone et al. was performed in the adaptive rf

electrode chamber (the rf electrode is an assembly of small pixels, each having an

independent control of the rf voltage; Annaratone et al. 2003) filled with the argon

gas at a pressure in the range 40–80 Pa, with plastic particles of 6.8 µm diameter.

By a fine adjustment of the rf amplitude applied to a dc-grounded pixel it was possi-

ble to control the number of particles in the cluster and also its shape. The number

of particles varied from 4 up to about 200. In the equilibrium positions the vertical

confinement is provided by the electric field of the double layer/striation combined
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FIGURE 1.55

The cluster consisting of 190 particles. (a) The shell structure becomes evi-

dent by projecting all particles into the (ρρρ,,,zzz)-plane irrespective of their angular

position with regard to the zzz axis; (b) and (c) are bottom views of Coulomb

ball, showing the arrangement of the particles (small circles) in the shells su-

perimposed by the Voronoi cell analysis. Hexagons are shaded light gray and

pentagons dark gray (Arp et al. 2004).

with suitable conditions for the particle charging. It is unclear if the horizontal con-

finement is due to plasma pressure, internal forces among the cluster components, or

the ion drag force. More work is certainly needed in order to explain the formation

of such structures.

In the experiment by Arp et al. (2004, 2005), the so-called “Coulomb balls” –

spherical particle clouds, in which hundreds or thousands of identical plastic spheres

of 3.4 µm diameter are arranged in clearly separated crystalline shells – were ob-

served in an rf discharge at pressures of 50–150 Pa. The particles were levitated

by the thermophoretic force, which is excited by heating the lower plate, and the

radial confinement was provided by a short upright glass tube. The highest order

was observed in the outer shells, whereas in the center the particles were in a liquid

(amorphous) state with no significant orientational order.

Figure 1.55 shows the analysis of the structure for a cluster containing 190 parti-

cles. According to MD simulations (see, for example, Dubin and O’Neill 1999), one

can expect Coulomb crystals to form distinct “onion-like shells”, in which the par-

ticles are evenly arranged in patterns with five or six neighbors. Such kind of shell

structure becomes clearly visible when the particle positions are plotted in cylindri-

cal coordinates (x2 + y2)1/2 and z (Figure 1.55a). The spherical shells are clearly

separated in the lower half of the Coulomb ball. In the upper half a certain number

of defects with particles at intershell positions is found. This is a general tendency
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seen in most of the experiments. Figure 1.55b shows the outer shell of the 190 parti-

cle cloud, where the particles are found evenly distributed. The number of neighbors

for each particle is determined by a Voronoi analysis on the sphere. Besides the ex-

pected hexagons and pentagons, defect structures with seven neighbors were found.

The previous shell (1.55c) has only hexagons and pentagons. This kind of surface

structure was expected because of the incompatibility of a pure hexagonal lattice

with a curved surface and the incommensurability of particle numbers in adjacent

shells (Arp et al. 2004).

In dust clusters at zero temperature, the unique equilibrium configurations of par-

ticles in shells (N1, N2, N3, . . .) exist for a given particle number N. Such configura-

tions are to some extent analogous to Mendeleev’s Periodic Table of elements. The

structure of these clusters depends on the shape of the interaction potential, confining

potential and their relative strengths. At finite temperatures, metastable states with

energies close to the ground state can also be realized (Block et al. 2008; Kählert et

al. 2008). Further analysis is related to the stability of the cluster types. Assuming

that dust particle–particle interactions are of the screened Coulomb (Debye–Hückel)

type, the stability characteristics of a cluster can be analyzed by considering its total

energy (Bedanov and Peeters 1994)

E =
1

2
Ωr

N

∑
i=1

r2
i + Q2

N

∑
i> j

1

ri j

exp

(

− ri j

λD

)

, (1.6)

where Ωr is the strength of the radial (horizontal) confining potential energy in the

parabolic approximation, ri =
√

x2
i + y2

i is the radial coordinate of the ith particle,

and ri j = |ri − r j| is the distance between particles i and j. Note that instead of the

parabolic confinement, some studies (Bedanov and Peeters 1994) employ the hard-

wall confinement when the external radial potential energy is zero for radii less than

some radius, and infinity for larger radii.

The ground states and metastable structures of 2D dust particle clusters, their dy-

namical properties and phase transitions have been also studied theoretically by Lo-

zovik and Pomirchy (1990), Lozovik and Mandelshtam (1990, 1992) and, in appli-

cations to dusty plasmas by Astrakharchik et al. (1999a,b). A number of numerical

simulations were devoted to studies of packing and defects of strongly coupled 2D

clusters (Lai and I 1999) as well as to their structure and melting (Totsuji 2001;

Drocco et al. 2003). Generally, the observed configurations of dust particle clus-

ters agree well with theoretical predictions for a system of charged particles con-

fined by an external field (Lozovik and Pomirchy 1990; Lozovik and Mandelshtam

1990, 1992; Bedanov and Peeters 1994). This can be proved by a comparison of

the theoretically calculated numbers of particles in the shells and the experimentally

observed clusters (Vladimirov et al. 2005). Detailed experimental and theoretical

investigations of the metastable states of three-dimensional Yukawa clusters were

performed by Block et al. (2008) and Kählert et al. (2008).
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FIGURE 1.56

Normal mode spectrum of a three-particle cluster (Melzer 2003). (a) Particle

trajectories over 1 min. (b) Six normal modes of the cluster, the mode frequen-

cies ωωω222
ℓℓℓ are normalized to 111

222
ωωω222

000. (c) Measured mode spectrum of the modes;

the spectral power density is shown in gray scale, the circles correspond to the

calculated mode frequencies.

1.4.5.2 Oscillation spectra in 2D clusters

The oscillations in particle clusters were investigated by Schweigert and Peeters

(1995), Melzer et al. (2001), Amiranashvili et al. (2001), Melzer (2003), Kong

et al. (2004), Barkby et al. (2008) and Kedziora et al. (2008). To illustrate experi-

mental investigations, we first discuss the work by Melzer, where the normal modes

of 2D particle clusters of N = 1–145 particles trapped in the sheath above the lower

rf electrode were studied. The normal modes were obtained from the analysis of the

thermal Brownian motion of the particles around their equilibrium positions in the

cluster. This method extends the thermal excitation technique by Nunomura et al.

(2002) (developed for extended 2D lattices) to the case of finite particle clusters.

In Figure 1.56a the particle trajectories in an N = 3 cluster are shown. One can see

that the thermal fluctuations of the microspheres around their equilibrium positions

are small, but they are nevertheless sufficient to determine the mode spectrum. The

six eigenmodes of this cluster calculated for the Yukawa potential are depicted in

Figure 1.56b. There are the following modes: the breathing mode (ℓ = 1), rotation

of the entire cluster (ℓ = 2), a twofold degenerate “kink” modes (ℓ = 3,4), and the

two sloshing modes (ℓ = 5,6). The mode frequencies ω2
ℓ (in units of 1

2
ω2

0 ) are also

indicated for κ = 0. For κ > 0 the oscillation pattern of the eigenmodes is unchanged.

Their frequencies, however, depend on κ (see Figure 1.57). Obviously, the cluster

rotation and the sloshing mode are independent of κ . The frequencies of the kink

mode and the breathing mode increase with κ .

A typical analysis of the mode spectra uses forces that determine evolution and

dynamics of particles in a cluster. The confinement potential is usually assumed

to be parabolic structure. [Sometimes the square well potential – the “hard wall”

potential (Kong et al. 2004) is also used.] The interparticle interactions are usually

modelled by (unscreened or screened) Coulomb repulsion. A frictional force also can

be present to simulate the particles slowing down as they move through the plasma.



64 Complex and Dusty Plasmas

FIGURE 1.57

Mode frequencies of the three-particle cluster as a function of screening

strength κ calculated by Melzer (2003). The modes are the breathing mode

(((ℓℓℓ === 111))), the cluster rotation (((ℓℓℓ === 222))), the kink modes (((ℓℓℓ === 333,,,444))), and the sloshing

modes (((ℓℓℓ === 555,,,666))).

Once the equilibrium is established the total energy of the cluster is calculated using

Equation (1.6) (Schweigert and Peeters 1995; Melzer 2003).

For the general case of a cluster with N particles, there are 2N cluster modes.

These modes describe different ways in which the dust particles in the cluster can

oscillate. To determine these modes we can use the dynamical matrix calculated on

the basis of the total energy from Equation (1.6):

Eαβ ,i j =
∂ 2E

∂ rα ,i∂ rβ , j

, (1.7)

where α and β can both be equal to x or y, and i and j denote the particle num-

ber. This results is a 2N × 2N matrix. The eigenvalues of this matrix are then the

squared frequencies of oscillation, where the corresponding eigenvectors describe

the possible oscillation patterns.

The lowest frequency mode (LFM) was identified for different cluster sizes. For

small particle numbers the intershell rotation was shown to be the LFM, whereas

for larger clusters the formation of vortex–antivortex pairs was observed. This be-

havior is generally within the theoretical expectations for pure Coulomb systems

(Schweigert and Peeters 1995). Analysis of the highest frequency modes (HFM)

showed that for small clusters, the breathing mode with a coherent radial motion of

all particles is the HFM. For larger clusters, modes with a relative three-particle oscil-

lation localized in the center of the cloud provide the highest frequencies. The mode-

integrated spectrum shows two broad maxima which are explained from “shear-like”
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or “compression-like” modes. The transition from finite number to crystal-like prop-

erties was observed to occur at around N = 12 particles.

In the analysis of cluster oscillation modes, most studies assume constant dust

charges although the latter can vary in a plasma environment. The modes of clus-

ters formed by two and three dust particles were analyzed taking into account spa-

tial variations of the particle charge and shielding parameters by Kompaneets et al.

(2006). Variations of dust charges include the random fluctuating component re-

lated to plasma fluctuations (always present in gas discharges) via the dust charging

process. The fluctuations can in turn influence the kinetic energy of dust particles

(Vaulina et al. 2006) as well as the collective modes in the particle structures.

The charges on dust particles fluctuate for several reasons (Kedziora et al. 2008).

For example, thermal fluctuations are not correlated and one should expect the pres-

ence of an uncorrelated charge fluctuation component. However, the charge on a dust

particle immersed in a plasma is not an independent variable and is related to fluctu-

ations in a neighboring plasma. If the plasma fluctuations and, correspondingly, the

associated charge fluctuations have the correlation length exceeding the size of the

cluster, the fluctuations are correlated. Generally, a mixture of correlated and uncor-

related fluctuations should be expected in experiments with the particle clusters. In

recent studies by Barkby et al. (2008) and Kedziora et al. (2008) the analysis of the

oscillation normal modes in particle clusters with fluctuating charges was performed

for correlated/uncorrelated dust charge fluctuations. This analysis demonstrated the

normal mode splitting related to the variance of the fluctuations. It was reported that

the fundamental pure rotational modes are mostly affected by the charge fluctuations

while the least affected are the pure translational modes.

1.4.6 Complex plasmas with non-spherical particles

Most of the experimental and theoretical works dealing with the investigation of

complex plasmas were performed with spherical particles. However, some experi-

mental and theoretical investigations of complex plasmas with asymmetric particles

have been performed, too (Mohideen et al. 1998; Molotkov et al. 2000; Annaratone

et al. 2001; Fortov et al. 2001a; Vladimirov and Nambu 2001; Shukla and Mamun

2002; Ivlev et al. 2003a; Vladimirov and Ostrikov 2004; Maiorov 2004). Note that

in work by Mohideen et al. (1998) the geometrical aspect ratio was α ∼ 3, and the

first experiments with strongly asymmetric particles, α = (40−80)≫ 1, were carried

out by Molotkov et al. (2000) and Annaratone et al. (2001).

It is well known that colloidal solutions, which have much in common with com-

plex (dusty) plasmas, show a much broader spectrum of possible states in the case of

strongly asymmetric cylindrical or disk particles. In such solutions, liquid phase and

several liquid-crystal and crystal phases with different degrees of orientational and

positional ordering can be observed. It is also well known that the use of cylindri-

cal probes (in addition to spherical) considerably broadens the possibilities of low–

temperature plasma diagnostics. It is therefore obvious that the use of cylindrical

particles can considerably broaden the frontiers of complex plasma research.

In an experiment by Molotkov et al. (2000), where the experimental setup analo-
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gous to that shown in Figure 1.16 was employed, nylon particles (ρ = 1.1 g cm−3)

of length 300 µm and diameters 7.5 and 15 µm, as well as particles of lengths 300

and 600 µm and diameter 10 µm, were introduced into the plasma of a dc discharge.

The discharge was initiated in neon or a neon/hydrogen mixture at a pressure of

10–250 Pa. The discharge current was varied from 0.1 to 10 mA. In this parameter

range, standing striations were formed in the discharge, which made particle levi-

tation possible. A neon/hydrogen mixture was used to levitate heavier particles of

larger diameter (15 µm) or larger length (600 µm). In this case, the particles formed

structures consisting of 3–4 horizontal layers. Lighter particles levitated in pure neon

and formed much more extended structures in the vertical direction. In Figure 1.58,

a part of a horizontal cross section of an ordered structure levitating in a striation of

a dc discharge excited in a neon/hydrogen mixture (1 :1) at a pressure of 120 Pa and

discharge current of 3.8 mA is shown.

The observed structures formed by microcylinders revealed clear ordering. All

particles lay in the horizontal plane and were oriented in a certain direction. One

could expect that their orientation should be determined by the cylindrical symmetry

of the discharge tube. However, no correlation between the particle orientation and

discharge tube symmetry was found. Nor could the preferential orientation of the

particles be explained by the interparticle interaction, because individual particles

were oriented in the same direction. Presumably, the preferential orientation was

related to a weak asymmetry in the discharge. This was confirmed by the fact that

the orientation could be changed by introducing an artificial perturbation into the

discharge. In later experiments by Fortov et al. (2001a), nylon particles of lengths

300 and 600 µm and diameter 10 µm coated by a thin layer of conducting polymer

were utilized. In a dc discharge they formed structures identical to those formed by

uncoated particles of the same size.

Levitation of cylindrical particles was also observed near the sheath edge of a ca-

pacitively coupled rf discharge by Annaratone et al. (2001). In this experiment,

FIGURE 1.58

Digitized image of a part of a horizontal section of a structure formed by cylin-

drical macroparticles of length 300 µµµm and diameter 15 µµµm levitating in a stri-

ation of a dc discharge in a neon/hydrogen mixture at a pressure of 120 Pa and

discharge current 3.8 mA.
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FIGURE 1.59

Typical video images of structures formed by cylindrical particles levitating

near the sheath edge of an rf discharge. The discharge was initiated in krypton

at a pressure of 52 Pa and discharge power of 80 W. Left panel shows a top view,

dots correspond to vertically oriented particles; right panel gives a side view.

cylindrical particles of 300 µm in length and 7.5 and 15 µm in diameter were used,

and a small fraction of very long particles (up to 800 µm in length and 7.5 µm in

diameter) was also present. A typical picture of a structure formed by these parti-

cles is shown in Figure 1.59. Longer particles were oriented horizontally and mainly

located in the central part limited by a ring placed on the electrode, while shorter par-

ticles were oriented vertically along the electric field. Levitation and ordering of the

cylindrical particles occurred only for pressures higher than 5 Pa and for discharge

power above 20 W. An increase in the discharge power did not significantly affect

particle levitation. The average distance between vertically oriented particles varied

from 1 to 0.3 mm. An increase in the particle density leaded to quasi-crystalline

structure degradation and to an increase in the particle kinetic energies. The further

increase in density was impossible because the particles started to fall down from the

structure. Levitation of particles coated by a conducting polymer was not observed

in an rf discharge for the conditions at which the dielectric particles of the same

size and mass could levitate. Instead, the conducting particles stuck to the electrode,

preserving vertical orientation, and some stuck to each other forming multi-particle

fractal complexes with up to 10 particles.

The preferential orientation of cylindrical particles is determined by the interplay

between the interaction of nonuniform electric fields in striations or sheaths with the

particle charge and induced dipole and quadrupole moments. In a dc discharge, the

particle charge is typically larger than in an rf discharge, allowing particle levitation

in weaker electric fields. In this case, the dipole moment, which is proportional to

the electric field strength squared, is much smaller than in an rf discharge. This

can explain the different orientations of similar-sized particles: horizontal in a dc

discharge and vertical in an rf discharge.

The effect of the rf plasma parameters on the orientation of the levitating cylin-
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a b c

FIGURE 1.60

Levitation of the nylon particles L = 600 µµµm, a = 2.5 µµµm above an electrode

driven at Vpp = 430 V: (a) at 32 Pa (dc bias = 124 V); (b) at 60 Pa (dc bias =

95 V); (c) at 98 Pa (dc bias = 82 V). Each picture corresponds to an area of

16.3×12.2 mm2.

drical particles was investigated experimentally by Annaratone et al. (2009). The

experiments were performed in an rf parallel plate reactor in argon plasma used pre-

viously by Annaratone et al. (2004). In this reactor the lower electrode, 40 mm in

diameter, was rf driven at 13.56 MHz, the upper electrode and the chamber walls

were grounded. The strong geometrical asymmetry of the reactor is confirmed by

the building up of a high dc bias on the electrode, about two thirds of the rf voltage

amplitude. This rf enhanced sheath has proved to be essential for the levitation of

the nylon micro-rods 5 µm in diameter and 300–600 µm in length used in the ex-

periment. The particles were visualized by illuminating the chamber with a laser,

fanned out in a vertical plane, and recorded with a video camera from a side window.

The plasma parameters were measured by a Langmuir probe. With a driving peak-

to-peak voltage on the lower electrode Vpp = 430 V, the 600 µm micro-rods injected

in plasma levitated vertically for pressures lower than 60 Pa (see Figure 1.60a). For

pressures lower than 22 Pa, they formed two layers or even three layers at very low

pressures before falling down (about 15 Pa). At 60 Pa there is a co-existence of ver-

tical and horizontal orientations, Figure 1.60b, and for higher pressure the particles

are normally horizontal, Figure 1.60c. Observed change of the microrods orientation

is in good agreement with the theoretical model of Ivlev et al. (2003a).

When many particles are injected, some of them fall on the lower electrode. The

falling behavior is still strongly dominated by electrostatic effects. These particles

are shown, to give an example, in Figure 1.61 for p = 22 Pa and in Figure 1.62 for

p = 115 Pa. At low pressures the particles tend to attach vertically on top of an-

other already placed vertically (Figure 1.61). The attachment is more probable with

particles coated by conducting polymer than with the equivalent non-coated nylon

particles. A possible explanation of this effect is the dipole charge forming micro

currents at the very moment of the particles touching. The head to tail attachment

is typical of low pressure plasmas when the sheath is much larger than the particle

dimension and it was observed in several experiments. However, when the size of

the particle structure is comparable with the sheath dimension, some particles attach

with a tilt or even horizontally. This is due to the sheath deformation by the struc-

ture itself. This effect is shown in Figure 1.63 where the micro-rods are inserted
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FIGURE 1.61

Nylon, polypirol coated particles 300 µµµm in length and 2.5 µµµm in radius sus-

pended in an argon plasma at a pressure of 22 Pa above the lower electrode

driven at Vpp = 300 V. The area shown is 2.33×××4.01 mm2.

FIGURE 1.62

Nylon, polypirol coated particles (300 µµµm length and 2.5 µµµm radius) suspended

in an argon plasma at pressure 115 Pa above an electrode driven at Vpp = 300 V.

The area shown is 4.01×××1.44 mm2.
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FIGURE 1.63

Nylon, polyaniline coated particles (300 µµµm length and 2.5 µµµm radius) in a

complex plasma formed by 10 minutes etching of carbon in argon at a pressure

100 Pa. Symmetric rf discharge (PKE chamber) is driven at Vpp = 100 V. The

area shown is 15.0×××11.3 mm2.

in an argon plasma in which carbon had been etched for about 10 minutes. Sus-

pended nanoparticles are negatively charged and are repelled by the rods assembly

that, being coated by conducting polymer, is at the potential of the electrode. The

Mie-scattering of the laser light shows well the sheath profile. It is clear that the elec-

tric field in the upper part of the assembly is not vertical. A simple theoretical model

of the effect of the multiparticle complexes near the bottom electrode is discussed by

Annaratone et al. (2009).

Following Ivlev et al. (2003a) and Fortov et al. (2005a), let us consider levita-

tion of a micro-rod of mass m and charge Q suspended in the electric field E of the

rf discharge sheath. Parameters of the equilibrium state of the particle (the vertical

coordinate of its center of mass h0 and the orientation angle α0 with respect to the

vertical axis) can be found from minimization of the potential energy of the particle

U(h,α). We now assume that among the different forces that act on the suspended

micro-rods the electric force is dominant. Interaction between particles can be ig-

nored in low particle density structures when the Debye length is shorter than all the

other distances involved. Assuming for simplicity that the particle charge does not

depend on h and α, the potential energy is determined by the following expansion:

U(h,α) ≃ mgh + Qφ(h)− dE(h)

2
cos2 α − DE ′(h)

12
(3cos2 α −1)+ . . . , (1.8)
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with E < 0 and E ′ > 0. The magnitudes of the dipole and quadrupole moments

are d ≃ 1
24

EL3/Λ < 0 and D ≃ 1
6
QL2 < 0, respectively [here Λ = ln(L/a) with

the rod length L and radius a]. Equation (1.8) was obtained in the approximation

of a “weakly inhomogeneous field” [ℓE = |E0/E ′
0| ≫ L, where E(h) ≃ E(h0) +

E ′(h0)(h− h0)] for particles with high aspect ratio, L/a ≫ 1 (Ivlev et al. 2003a).

The equilibrium state of particles is determined by the absolute minimum of the po-

tential energy. The conditions ∂U/∂h = 0 (force balance) and ∂U/∂α = 0 (torque

balance) result in

mg ≃ QE0 + dE ′
0 cos2 α, (

E2
0 L

2Λ
+ QE ′

0)sin 2α = 0. (1.9)

The first equation shows that in addition to the gravity and monopole electric forces,

the dipole force contributes to the balance condition in a vertical directions. How-

ever, this force does not affect the balance noticeably. From the second equation

it follows that only two equilibrium orientation, vertical (α0 = 0) and horizontal

(α0 = π/2), are possible. The condition for the stable angle one can get from the

second derivative of the potential energy:

∂ 2U/∂α2 ∼ (K −1)cos2α0 > 0, (1.10)

where K is the ”orientational parameter”,

K =
2d ℓE

D
≡
(

e|E0|L
γrTe

)

ℓE

L
, (1.11)

and

γr =
2Λe|Q|

LTe

(1.12)

is the absolute value of the dimensionless particle potential. This shows that the

equilibrium is determined by the competition between the dipole and quadrupole

terms in Equation (1.8). The dipole torque turns the rod along the electric field,

whereas the quadrupole torque tends to make it horizontal. Hence, particles levitate

horizontally (α0 = π/2) when K < 1, and vertically (α0 = 0) when K > 1. It follows

from the obtained solutions that rotation of the rodlike particles in the vertical plane

is impossible (it was never observed experimentally either).

For comparison of the obtained experimental results with the described theoretical

model, it is necessary to estimate some plasma and particle parameters. The mass

of the particle is m = πa2Lρ ≃ 1.3×10−11 kg (ρ = 1.14×103 kg m−3). The loga-

rithm of the aspect ratio is Λ = 5.48. The electron energy is Te = 3 eV. The particle

charge is determined from Equation (1.9) using the measured value of the electric

field strength, Q ≃ mg/E0, and the dimensionless particles potential γr is determined

by Equation (1.12). Then, using experimental values of ℓE , the parameter K is cal-

culated. Results of these estimations are given in Table 1.2. One can see that in

agreement with our theoretical model, the vertical orientation of the rodlike particles

corresponds to K = 4.3 ≫ 1, the horizontal one to K = 0.10 ≪ 1, and transition be-

tween these two orientations takes place at K ∼ 1. Thus, experimental results are in
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TABLE 1.2
The rodlike particle charge Q, electric field strength E , spatial

scale of the field variation ℓE , and orientation parameter K for

different orientations.

Mixed
Vertical

orienta-

tion

Mainly

vertical

Mainly

horizon-

tal

Horizontal

orienta-

tion

−Q/e 9.8×104 1.6×105 2.1×105 2.7×105

−E , kV/m 8.4 5.0 3.8 3.0
ℓE , mm 1.27 0.53 0.38 0.23
K 4.3 0.63 0.26 0.10

reasonable quantitative agreement with the predictions of the theoretical model by

Ivlev et al. (2003a).

Technologies for manufacturing artificial flock materials most often utilize meth-

ods of pre-charging fibers in atmospheric-pressure corona discharges and their sub-

sequent deposition at a given angle onto a glue substrate in an external electric field.

Bulychev et al. (2003) and Dubinov and Sadovoy (2007) investigated experimentally

the possibility of the orienting very large fibers (Kapron threads 100 µm in diameter

and 3 mm in length) in glow discharges. Such fibers were about 1000 times heavier

than those used by Molotkov et al. (1999) and Annaratone et al. (2001). Methods

for extracting oriented fibers from the discharge region and for depositing them onto

glue substrate, as well as methods for controlling their orientation angle with respect

to the substrate surface were developed. The design of the camera and injector are

described in detail by Bulychev et al. (2001) and Dubinov and Sadovoy (2007). The

experimental results were as follows. When the fibers were injected into a unionized

gas at a pressure from 0.1 Torr to an atmospheric one with no discharge initiated,

they were observed not to be oriented and fell down on the substrate to lie there

horizontally with random orientation. In contrast, when the fibers were injected into

a steady uniform glow discharge, they fell down strictly vertically to orient them-

selves transverse to the discharge axis. After the fibers had reached the substrate,

their lower ends were glued to it and the fibers themselves remained in the vertical

position for an arbitrarily long time. The fibers glued to the substrate are shown in

an enlarged fragment of the photograph in Figure 1.64a.

Transverse orientation of the fibers was explained by Dubinov and Sadovoy (2007)

using comparison of the longitudinal and transverse components of the electric field

in the discharge. The longitudinal component is known to be rather weak (Raizer

1991), while the transverse component, which is associated with the plasma density

gradient near the dielectric wall of the chamber, can be as strong as a few hundred

volts per centimeter. These experimental results yield a simple method of controlling

the orientation angle of the fibers as they fall down on the substrate. Specifically, this

can be done by changing the direction of the transverse plasma density gradient near

the substrate surface with the help of a transverse limiter (see Figure 1.64b). Using
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(a) (b)

FIGURE 1.64

Photographs of fibers glued to a substrate: (a) in a longitudinally uniform glow

discharge; (b) in a glow discharge with a limiter. The arrows show the sites

where the fibers are glued (Dubinov and Sadovoy 2007)

.

this technique Bulychev et al. (2003) demonstrated experimentally that flock materi-

als with a given inclination angle of fibers can be produced artificially by depositing

fibers onto a glue substrate in a low-pressure glow discharge.

1.5 Formation and growth of dust particles

Generation of dust particles, ranging in size from a few nanometers to several tens of

microns, is frequently reported for various plasma processing facilities. The partic-

ulate matter in the processing plasmas has numerous implications for the semicon-

ductor micro-fabrication and materials processing. Here, the underlying physico-

chemical processes of the origin and growth of fine particles in reactive silane-,

hydrocarbon- , and fluorocarbon-based plasmas, are discussed (Vladimirov and Os-

trikov 2004; Vladimirov et al. 2005). Despite a difference in the process kinetics and

the plasma chemistry involved, the growth scenario can be similar. The dust growth

in chemically active plasmas starts with the formation of sub-nanometer/nano-meter-

sized protoparticles nucleated as a result of homogeneous or heterogeneous pro-

cesses. Thereafter, agglomeration/coagulation processes result in the generation of

a few tens of nanometers particles, which quickly acquire negative electric charge

as a result of collection of the plasma electrons and ions (Boufendi and Bouchoule
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1994). The dust growth then usually proceeds to sub-micron and micron sizes via a

relatively slow process of accretion of neutral or ionic monomers (e.g., deposition of

SiHx radicals on the grain surface in silane-based reactive plasmas).

Dust growth under the plasma conditions is not merely limited by the silane-,

hydrocarbon-, and fluorocarbon-based chemistries. For example, carbon nitride par-

ticles, with diameters of a few hundred nanometers, can grow at room temperatures

in rf capacitive discharges of N2+CH4 gas mixtures (Boufendi and Bouchoule 2002).

Generally speaking, solid particle growth can certainly take place in many other reac-

tive gas mixtures supporting polymerization and clustering processes in the ionized

gas phase. Furthermore, chemical nucleation in the ionized gas phase is not the

only possible mechanism of the dust growth in the processing plasmas. The particle

growth can also be induced by physical and reactive sputtering of the wall or elec-

trode material in the plasma-assisted dc/rf magnetron and other sputtering facilities.

1.5.0.1 Origin and mechanisms of growth of dust in silane plasmas

Plasmas of pure silane (SiH4) and its mixtures are widely used for applications in the

semiconductor industry ( e.g., integrated circuitry and silicon-based microchips, flat

panel displays, amorphous silicon solar cells). It is believed that understanding of the

fine particle generation processes in silane-based plasmas is the most comprehensive

as compared to other reactive plasma chemistries (Beck et al. 1994; Hollenstein

2000). The initial stages of the particle growth in pure silane discharges can ade-

quately be described by the steady-state homogeneous nucleation model (Kortshagen

and Bhandarkar 1999; Gallagher 2000). The basic assumption of the model is that

the particle growth process is triggered by SiH−
3 anions and/or SiHm neutral radicals,

which polymerize into SinHm radicals with larger numbers n of silicon atoms. With

an increase of n, larger molecular clusters, and eventually subnano- or nano-sized

particles of hydrogenated silicon are generated.

The apparent puzzle is to identify the precursor species and dominant gas-phase/sur-

face reactions for the growth of larger (> 104 silicon atoms) particles and relate the

dust growth to the discharge control parameters. There exist three major classes of

possible catalyst candidates in the silicon hydride clustering process (Bhandarkar et

al. 2000), namely, anions (negative ions), neutrals, and cations (positive ions). Over-

all, the underlying physics and chemistry of the dust origin and growth in chemically

active plasmas critically depends on the prevailing experimental conditions.

For example, short lifetime neutral radicals SiH2 can play the role at several stages

of the dust growth (Watanabe et al. 2001). Neutral complexes are able to incorpo-

rate into larger saturated molecules and can thus be considered as viable nanoparticle

growth precursors in reactive silane plasmas (Hollenstein 2000). Hence, in the short

residence time situations one could expect that short-lifetime, highly reactive neu-

tral radicals can efficiently support numerous homogeneous nucleation processes.

In particular, neutral radicals SiHm (m = 0–2) can be responsible for the nanopow-

der formation in dense helium or argon-diluted silane discharges (Watanabe 1997;

Koga et al. 2000). Likewise, positive ions can also be regarded as potential powder

precursors despite high activation barriers preventing the formation of higher-mass
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cations. In particular, cationic silicon clusters that contain up to ten silicon atoms

have been detected in argon/hydrogen thermal plasmas by means of time-resolved

mass-spectrometry by Leroux et al. (2000).

On the other hand, the anionic pathway is another viable route for the powder gen-

eration in silane-based plasmas. Invoking a simple argument that the formation of

particulates does require critically large clusters, one can conclude that typical resi-

dence times of the neutrals are not sufficient to trigger the efficient dust growth pro-

cess (Choi and Kushner 1993). However, the clustering process can involve negative

ions trapped by the ambipolar potential in the plasma. Furthermore, the negatively

charged intermediaries can increase the average residence time of the clusters and

enable their growth to the critical size (Choi and Kushner 1993). Similar, hydrosil-

icon anions can be efficiently confined in the near-electrode areas and participate in

the plasma-assisted clustering process. Thus, a large number of negative ions can

accumulate and grow towards higher masses according to the homogeneous model

(Gallagher 2000). Relevant time-resolved mass-spectrometry data have revealed that

the anionic pathway is the most likely route for the nanoparticle generation in low-

pressure rf silane plasmas (Hollenstein 2000). For example, the dust evolves from

the molecular to the particulate form in low-pressure silane rf capacitively coupled

plasmas (Howling et al. 1996). In this case the negative ions play a crucial role in

the powder nucleation and growth process, and the entire range of negatively charged

species, ranging from monosilicon anions through to nanometer-sized clusters, can

be observed (Howling et al. 1996). Furthermore, the anion confinement correlates

with the pronounced particle formation. Conversely, detrapping of the negative ions

strongly inhibits the entire growth process.

Results of recent numerical simulation of dust particle formation mechanisms in

silane discharges confirm that the anion SiH−
3 is the most dominant primary pre-

cursor of the particle formation. In fact, over 90% of the silicon hydride clustering

proceeds through the silyl anion (SinH−
2n+1) pathway, starting from SiH−

3 , whereas

only ∼ 10% is through the siluene anion (SinH−
2n) pathway, starting from SiH−

2 (De

Bleecker et al. 2004). This conclusion is valid for negatively charged silicon hydride

clusters SinH−
m containing up to 12 silicon and 25 hydrogen atoms.

The second phase of the dust particle growth can proceed via a rapid agglomer-

ation of small clusters into larger (usually ∼40–50 nm-sized) particles (Kortshagen

and Bhandarkar 1999). After the agglomeration phase is complete, the grain size

increases with the relevant thin film growth rates. Note that the key dust nucleation

and growth processes discussed above are most relevant to the plasmas of pure silane

discharges. However, many real thin film fabrication processes require a substantial

dilution of silane by hydrogen and/or argon. The offset and dynamics of the partic-

ulate growth appear quite different as compared to pure silane. In particular, silane

dilution complicates the discharge chemistry and elongates the time scales required

for the powder detection. Thus, the particulate size, bonding states, architecture, and

surface morphology of the particles grown in the pure and buffer gas diluted silane

plasmas can be quite different and critically depend on the reactive gas feedstock.

Physically, by varying the gas composition one can control the residence time tres
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of the precursor species in the discharge. Moreover, tres appears to be a critical factor

in the nanoparticle generation and growth. There is a direct correlation between

the residence time of the precursor radicals and the size of fine particles detected

(Bouchoule and Boufendi 1993). The selective trapping model of Fridman et al.

(1996) assumes that the neutrals should reside in the reactor volume long enough

to acquire a negative charge through the electron non-dissociative attachment and/or

heavy particle charge exchange collisions. In this case, the nano-sized particles can

be trapped in the near-electrode areas, building up the minimum number density for

the coagulation onset.

In mixtures of reactive gases currently used for fabrication of various functional

thin films and nanomaterials, the processes of fine powder generation are usually

more complicated than in pure silane plasmas. For example, high-density plasmas

of highly reactive SiH4+O2+Ar gas mixture (involving two electronegative gases –

silane and oxygen) are used for the fabrication of silica nanoparticles. The challenge

for the adequate understanding of the fine particle nucleation and growth processes is

to incorporate the complex effects of the numerous chemical reactions involved, high

reactivity of high-density (especially inductively coupled plasmas currently used as

benchmark plasma reactors for semiconductor manufacturing) plasmas, and finite re-

actor size effects (most of the currently existing models deal with spatially averaged

discharge models). From the plasma chemistry point of view, the polymerization of

critical clusters can involve a combination of several clustering pathways. The clus-

tering process in high-density SiH4+O2+Ar plasmas can proceed through various

ion–neutral and neutral–neutral clustering channels (Suh et al. 2003). Ion–neutral

clustering reactions can involve either positive or negative ionic precursors. On the

other hand, the neutral–neutral clustering develops through the self-clustering reac-

tion or by addition of SiO or SiO2 radicals to the growing polymeric chain. An inter-

esting peculiarity of dust-generating high-density plasmas of SiH4+O2+Ar mixtures

is that the rates of positive–negative ion neutralization are very high due to compa-

rable number densities of positively and negatively charged species. In this case, the

neutralization of anions (e.g., SiH−
3 , currently believed to be one of the most impor-

tant precursors for the dust growth in pure silane plasmas) occurs much faster than

the clustering of neutral species. This explains why neutral clusters exhibit higher

concentrations relative to anionic clusters (Suh et al. 2003).

Therefore, in each particular case the plasma chemistry behind the dust nucleation

and growth can be quite different even in the presence of the same silicon-bearing

precursor gas, which is an essential component for the fine particle nucleation. To

this end, one cannot a priori state which particular precursor radical triggers the

plasma polymerization of the critical clusters that nucleate into larger particles. How-

ever, it is quite possible to identify a few dominant clustering pathways and, relative

role of the species in any particular charge state (positive, negative, or neutral). In

this regard, one can perform the sensitivity analysis, which can give an answer as to

which reactions dominate the production and steady-state number densities of higher

silicon oxides [e.g., anions (SiOx)−11 or neutrals (SiOx)11)] (Suh et al. 2003).
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1.5.0.2 Growth of dust in hydrocarbon plasmas

The existing understanding of the nanoparticle growth in hydrocarbon (CmHn, e.g.,

methane, CH4, or acetylene, C2H2) discharges is currently less developed as com-

pared with the similar processes in the silane-based plasmas. However, the study

of the plasma chemistry and growth of nano-sized particles in relevant ionized gas

mixtures is gradually gaining momentum. For example, a numerical model of the

nanoparticle clustering kinetics in the low-pressure rf discharge in acetylene by Stoykov

et al. (2001) incorporates numerous gas-phase processes including the electron im-

pact dissociation, electron attachment leading to the negative ion generation, ion–ion

recombination, ion–neutral clustering, chemical reactions involving the hydrocarbon

(chain and aromatic) neutrals, as well as diffusion losses of the plasma species to the

discharge walls.

It is usually assumed that the carbon hydride clustering process is triggered by the

electron-impact abstraction of hydrogen from the acetylene monomer followed by

the efficient generation of CmHn radicals (with higher numbers of carbon and hydro-

gen atoms) via a chain of polymerization reactions (Stoykov et al. 2001). The model

allows one to predict the most probable clustering pathways as well as the temporal

evolution of the number densities of the major charged and neutral species. The most

likely clustering process proceeds through the addition of the anion species CiH
−
j to

the neutrals CmHn accompanied by the elimination of hydrogen and generation of the

higher-mass anions. Eventually, the rapid chemical nucleation stage evolves into the

equilibrium state, which can usually be reached when the particle loss to the walls is

compensated by the production of the new species. The equilibrium state is strongly

affected by the neutral gas temperature, rf power input, and working gas pressure.

Similarly, depending on the external parameters, the particle nucleation process can

be either enhanced or inhibited. Even though clustering occurs mainly through the

formation of linear molecules, the proportion of aromatic hydrocarbons increases

and becomes significant at higher working gas temperatures.

The results of numerical modeling of the clustering processes in acetylene plasmas

by Stoykov et al. (2001) demonstrate that after the initial increase in the species con-

centrations, the production rates slow down and eventually a steady state is reached.

This indicates that a balance between the species production and diffusion losses is

achieved. Note that the rates of the diffusion losses are proportional to the species

concentration and this loss channel plays only a minor role at the early stages of

particulate development. This certainly favors a quick initial rise in the number den-

sities of the reactive plasma species. Eventually, the diffusion losses are balanced by

the gas-phase reactions that lead to the particle production and a steady state of the

discharge can be established.

A comparison of the number densities of the structurally similar neutrals and an-

ions reveals that the anion concentrations are much lower. Since the density of pos-

itive ions is an upper limit for the combined anion and electron densities, the above

difference can be attributed to high growth rates of the neutral particles in acetylene

plasmas. This does not necessarily mean that nano-sized particles are mostly neutral.

In fact, one can note that most of the negative species are formed in the particle form,
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with the number densities of the same order of magnitude as the concentrations of

the neutral particles. The ratio between the number densities of neutral and negative

particles is important for the understanding of the details of the further growth pro-

cesses, which are affected by the grain charge (Kortshagen and Bhandarkar 1999).

To this end, the formation of neutral particles is favored at lower temperatures, higher

degrees of ionization, and higher pressures (Stoykov et al. 2001). It is interesting

that Fourier Transform Infra Red (FTIR) spectroscopy data collected in situ and from

the powder samples confirm a predominant production of the acetylenic compounds

in the ionized gas phase, although the presence of aromatic compounds appears to be

non-negligible. The mass spectrometry studies of the rf plasma in acetylene by De-

schenaux et al. (1999) show the presence of aromatic compounds such as benzene,

substituted benzenes and toluenes.

The above results are in an agreement with the experiments of Hong et al. (2002)

on the dust particle generation, size-controlled growth, diagnostics and deposition

in 13.56 MHz rf plasmas of Ar/CH4 and Ar/C2H2 gas mixtures. The most efficient

dust particle generation is commonly observed for the elevated rf power levels, which

indicates on the importance of the adequate amounts of the particle growth precur-

sors (Hong et al. 2002). Another in situ FTIR spectroscopy and the plasma-ion

mass spectrometry measurements of Kovacevic et al. (2003) evidence the highly-

monodisperse size distributions of nanoparticles grown in rf plasmas of Ar+C2H2

gas mixtures. This conclusion is also cross-referenced by the scanning electron mi-

croscopy of the powder samples collected during different growth phases. Measure-

ments of the intensity of the Rayleigh–Mie scattering of the infrared signal reveal

that the process of the fine particle generation, growth and disappearance is periodic.

The oscillation period of the infrared signal is approximately 35 min under prevailing

experimental conditions (Kovacevic et al. 2003). The time scales when the electron-

impact ionization is enhanced and the plasma parameters in Ar+C2H2 rf discharges

noticeably change due to the dust growth τC2H2
and appear to be consistently longer

than the corresponding time scales τSiH4
in silane-based plasmas.

The observed periodicity of the Reyleigh–Mie scattering signal can be attributed

to the fact that the negatively charged particles are confined in the plasma potential as

long as the different forces acting on the single particle are balanced (Kovacevic et al.

2003). Since the major forces acting on dust particles scale differently with the grain

radius, the actual particle confinement critically depends on their size. As soon as

the particles reach the critical size, they are either dragged out of the plasma bulk or

fall down onto the lower electrode, which results in a decrease of the scattered signal.

A quick drop in the intensity of the above signal evidences a highly monodispersive

character of the powder growth process in Ar+CH4 plasmas. Furthermore, the ex situ

scanning electron microscopy suggests that the particles collected 10 min after the

ignition of the discharge have a spheroidal shape with a particle diameter of about

150 nm and a fractal surface texture. It is thus likely that the accretion (uniform

deposition of the neutral species onto the particle’s surface) is probably a dominant

particle growth mechanism.

An interesting observation related to the dust growth process is a high consump-

tion of the acetylene monomer for the plasma polymerization as evidenced by the
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neutral mass spectrometry (Kovacevic et al. 2003). This is consistent with the find-

ings of Deschenaux et al. (1999) and Hong et al. (2002) that acetylene as a monomer

plays an important role in the fine powder formation in hydrocarbon plasmas. It

also turns out that acetylenic compounds play a vital role in the dust nucleation and

growth processes. There are two relevant experimental observations of Hong et al.

(2003). First, in Ar+C2H2 plasmas the fine particles usually nucleate spontaneously

at low discharge powers. On the other hand, the particle growth in Ar+CH4 plasmas

usually starts only after a transient elevation of the rf power or a quick inlet of the

C2H2 monomer into the discharge volume. This can presumably be attributed to dif-

ferent nucleation scenarios in Ar+CH4 and Ar+C2H2 discharges. Apparently, the

procedure of adding more C2H2 or rf power to the discharge is required to trigger

the nucleation of primary clusters and protoparticles, which is a quite slow process

in Ar+CH4 plasmas. Once the precursors are formed, the further growth process can

proceed under normal discharge operation conditions.

Note that the elevated abundance of the C2H2 monomer species in the Ar+CH4+H2

inductively coupled plasmas for the PECVD (plasma enhanced chemical vapor de-

position) of various carbon-based nanostructures (Tsakadze et al. 2004, 2005) can be

achieved by operating the discharge at elevated rf powers. One can thus presume that

the relevant nanostructure growth process can be strongly affected by the pronounced

formation of fine powder particles in the ionized gas phase. On the other hand, the

dynamics of the dust formation in Ar+C2H2 plasmas is periodic and results in the

following scenario: nucleation followed by further growth followed by development

of dust-free regions (dust voids, mostly due to the action of the ion drag force that

pushes the dust grains from the plasma bulk) followed by new nucleation in the dust-

free regions. A possible explanation for the differences in the dust growth dynamics

in methane-based and acetylene-based reactive environments is that the nucleation

process strongly depends on the concentration of C2H− negative ions efficiently gen-

erated in the Ar+C2H2 plasmas (Hong et al. 2003).

Another way to trigger dust generation in low-density methane-based plasmas is

to use a pulsed Nd:YAG laser (Stoffels et al. 1999). If the photon energy fits the

dissociation energy of the C-H bond, the absorption of UV photons results in the

rapid dissociation of methane molecules and creation of active radicals, which is

otherwise inefficient in the pristine methane plasma. In this way, it appears possible

to synthesize submicron-sized dust particles that can subsequently arrange into larger

agglomerates and structures levitating in the vicinity of the powered rf electrode

(Stoffels et al. 1999). Some of the resulting particle arrangements can be further

deposited and continue growing on the surface.

There are numerous indications that dust powder formation can also be induced

by the surface and reactor contamination effects. For example, in pure methane dis-

charges in a clean reactor chamber, the powder formation process takes at least a few

hundred seconds. However, in a contaminated reactor, the dust particle appearance

can be detected much faster. Thus, the dust formation might be affected by surface

effects as is the case for SiN dusty plasmas. However, no high mass neutrals, cations

or anions have been detected by the mass spectrometry, in contrast to the silane plas-

mas (Hollenstein 2000). Hence, it is very likely that large particles are formed via
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heterogeneous processes which are most common for the situations when the plasma

species are non-reactive and direct gas-phase reactions leading to the formation of

critical clusters are not efficient. In this case the dust particle growth can proceed via

the electron-induced surface desorption of nano-sized clusters. The initially neutral

clusters can migrate into the near-electrode/plasma sheath area where the probability

of their excitation/ionization via collisions with high-energy electrons is quite high.

Ion-molecular reactions can further contribute to the particulate growth. Finally, a

pronounced coagulation process can lead to the formation of larger agglomerates

(Hollenstein 2000).

1.5.0.3 Growth of dust in fluorocarbon plasmas

Fluorocarbon (CxFy) based plasmas have recently been widely used for ultrafine and

highly selective etching of polysilicon and a number of PECVD processes including

many common applications in thew microelectronic industry. Furthermore, many

plasma etching processes of silicon and its components, as well as deposition of

chemically resistant barriers, dry lubricants, etc., involve CF4, C2F6, CHF3, C2F4,

aromatic fluorocarbons, etc. (Buss and Hareland 1994). A gas phase particulate

formation is possible in capacitively coupled rf fluorocarbon plasmas. A sequence of

monochromatic images of particulate suspension and growth obtained from a 13.56

MHz capacitively coupled vinilydene fluoride plasma at 27 mTorr sustained with 30

W rf powers reveals that the time of the initial particle detection usually varies in the

∼ 10 to 250 s range (Buss and Hareland 1994). In this case, the particles are usually

non-agglomerated, have an almost spherical shape and can accumulate during the

extended discharge operation. The grain diameter typically ranges from 110 to 270

nm.

Similar to silane- and hydrocarbon-based plasmas, the particles develop in size

and evolve into a certain spatial pattern (e.g., dust cloud) usually suspended between

the two electrodes (Buss and Hareland 1994). The time of the first appearance of

particles is quite sensitive to the total gas pressure and the discharge chemistry. The

addition of hydrogen or hydrogen-containing gas (e.g., CH4) to a fluorocarbon dis-

charge can result in an increase of the particle growth rate and the corresponding

shortening of their first detection time. This effect can be attributed to the enhanced

production of free radicals by hydrogen atom abstraction of fluorine. The appearance

time for particles in a C2F4 plasma at 140 mTorr turns out to be approximately 110 s

(Buss and Hareland 1994). Assuming a constant radial growth rate (and estimating

a minimal diameter for the detection by the laser light scattering, one can obtain

0.5–1.4 nm s−1 for the particle growth rate. It is worth noting that the fluorocarbon

film growth on the substrate placed on the lower electrode has a comparable rate of

2 nm s−1.

RF discharges of octafluorocyclobutane-based gas mixtures also generate large

amounts of highly polymerized molecules, which correlates with the plasma poly-

merization processes in the gas phase (Takahashi and Tachibana 2001a). The chem-

istry behind the gas-phase nucleation processes can be quite similar in the silane-

and fluorocarbon-based plasmas. Indeed, higher fluorocarbons polymerized in the
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ionized gas phase can act as efficient precursors for the generation of nano-sized

particles and also take part in the thin film deposition processes.

Solid grains and agglomerates can also be abundant in fluorocarbon plasmas for

ultra-fine selective etching of SiO2 and PECVD of low-dielectric constant polymeric

films. There is a remarkable correlation between the polymerization in the ionized

gas phase and the relevant surface processes, which can shed some light on the pre-

vailing powder formation mechanisms in fluorocarbon plasmas. For example, fluori-

nated carbon particles can be generated in a parallel plate 13.56 MHz plasma reactor,

where a capacitively coupled plasma of c-C4F8 is sustained with the rf power den-

sity of 0.15 W cm−2 within the pressure range from 23 to 250 mTorr, which is typ-

ical of the PECVD of fluorinated amorphous carbon (a-C:F) thin films (Takahashi

and Tachibana 2001b). Under such conditions, numerous nano- and micron-sized

particles and agglomerates dispersed over the wafer surface can be observed. The

diameter of the gas-phase grown particles typically ranges from 0.5 to 2.3 microns.

In the intermediate pressure range (>50 mTorr), generation of the agglomerates with

the size in the few tens of micrometer range and composed of the primary spheri-

cal particles takes place (Takahashi and Tachibana 2001b). The number of primary

particles building up the agglomerates increases with pressure. A typical size of the

fluorocarbon-based agglomerate at 250 mTorr pressure is about 30 µm.

The gas-phase particulate polymerization can be inferred through the dependence

of the film deposition rate on the gas feedstock pressure. Specifically, the film de-

position rate decreases when the gas pressure exceeds 50 mTorr (Takahashi and

Tachibana 2001b). Presumably, this can be attributed to the enhanced loss of the gas-

phase polymer precursors to the particle generation processes. It is also worthwhile

to mention that no significant particulate formation in the gas phase is observed in

CF4 or C2F6-based discharges. Thus, it seems reasonable to conclude that stable CF4

and C2F6 molecules cannot be as efficient as precursors for the particle growth. Even

though the trigger catalyst plasma species are yet to be conclusively identified, one

can presume the nanocluster route for the fine particle growth. Furthermore, there is

a correlation between the clusterizing rates and the gas-phase concentrations of the

source gas molecules and the main products of the first-order reactions (Takahashi

and Tachibana 2001b).

We emphasize that similarly to SiH4 and CmHn plasmas considered above, the

negative ions also play an important role in the clustering reactions in fluorocarbon

plasmas. Thus, elucidation of the dust generation pathways, including a detailed

experimental investigation of the catalyst species and gas-phase reactions for poly-

merization is an apparent forthcoming challenge for the coming years. For exam-

ple, solid C:F particles can be polymerized in C4F8 plasmas under conditions of

pronounced generation of molecular species CF4, C2F6, and C2F4 (Takahashi and

Tachibana 2001b). Among them, the C2F4 molecule plays a leading role in the gas-

phase synthesis of dust grains (Takahashi and Tachibana 2002). A possible reason is

that this molecule can be activated in the plasma and subsequently transformed into

highly reactive species −CF=CF− and −CF=CF2 involved in numerous branching

and polymerization reactions. Thus, high molecular weight compounds appear and

act as the particle nucleation precursors. It is interesting to mention that under sim-
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ilar experimental conditions the particle growth and film deposition is usually not

observed in pure CF4 or C2F6 plasmas (Takahashi and Tachibana 2002).

1.5.0.4 Dust growth in plasma-enhanced sputtering facilities

Nano and micron-sized particles of various materials (graphite, titanium, copper,

silicon, etc.) can also be generated in plasma-enhanced sputtering facilities (Buss

and Hareland 1994; Samsonov and Goree 1999). Contaminant particles appear in

several kinds of plasma discharges with various sputtering targets. In particular,

silicon/silica, carbon, copper, etc., particles can be synthesized in dc/rf plasmas of

various gas feedstocks (Selwyn et al. 1990; Jellum et al. 1991; Ganguly et al. 1993).

For example, submicron- to micron-sized particles can be formed in the gas phase

of sputtering capacitively coupled discharges by using a variety of target materials

(Samsonov and Goree 1999). The dust clouds usually appear after a few seconds or

minutes of the discharge operation and can be detected by a sensitive video camera.

This period will further be referred to as the particle detection time tdet. Initially, the

particle cloud fills the entire volume between the electrodes except for the plasma

sheaths, with the highest density near the upper (powered) rf electrode. Once the

particles reach a critical diameter, which is approximately 120 nm in the experiments

of Samsonov and Goree (1999), the discharge becomes unstable. At the end of the

instability cycle one can observe an empty region (void) in the center of the particle

cloud. The void expands as the particles grow in size until the void fills in nearly the

whole inter-electrode region. This marks the end of the growth cycle tgrowth.

Typically, tdet varies from 15 s for copper to 10 min for aluminum, whereas tgrowth

varies from 3 min for Torr Seal epoxy to 3 hr for titanium sputtering targets (Sam-

sonov and Goree 1999). After the end of the growth stage, the sizes of the graphite,

titanium, stainless steel, and tungsten particles are usually in the submicron range

(typically 300–400 nm in diameter), whereas aluminum and copper particles grow

to micrometer sizes (typically 1–5 µm). Note that particles grown from different

materials feature different shapes. Some particles, such as copper or aluminium,

are filamentary fractals. In contrast, carbon particles usually have a bumpy spherical

shape. Other materials, such as titanium and stainless steel, form compact coagulants

of a few spheres. On the other hand, tungsten particles form compact agglomerates.

As compared with reactive (e.g., silane) plasmas, particle growth rates are usually

lower in the sputtering discharges mostly because of the lower number densities

of clustering/agglomerating species. However, the sputtering discharges have an

obvious advantage that they can produce particles from almost any solid material

that can be sputtered without decomposition. Similar to chemically active plasmas,

the particle growth process in sputtering discharges also develops in several stages.

However, in this case the particles originate as clusters released from the sputtering

target or the walls. Afterwards, the clusters nucleate into primary particles, which

can further agglomerate and form particulates of various shapes and architectures

(e.g., spongy and filamentary or compact and spheroidal).

Note that the electric charge is a critical factor in determining the shape of the

plasma-grown nanoparticles (Huang and Kushner 1997). Indeed, when particles
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have a small (typically negative) charge and a high velocity, they can easily over-

come Coulomb repulsion and form compact or spheroidal agglomerates. On the

other hand, when the charge is larger and the velocity is lower, the electrostatic re-

pulsion is stronger and an incoming particle is more likely to strike the end of a

particle chain than the middle (mostly because of the plasma shielding of the dis-

tant elements of the agglomerate), and this process tends to promote a filamentary or

fractal shape (Huang and Kushner 1997).

The picture of the particulate growth is certainly more complex in magnetron sput-

tering discharges (Selwyn et al. 1997). The mechanisms for particle generation,

transport and trapping during the magnetron sputter deposition are different from

the mechanisms reported in etching processes in reactive plasmas, due to the inher-

ent spatial non-uniformity of magnetically enhanced plasmas. Since the magnetron

sputtering facilities are usually operated at low pressures, the contribution from the

homogeneous mechanism (which is a dominant one in silane plasmas) is likely to

be small. Hence, most contamination problems in magnetron sputtering processes

can be attributed to heterogeneous contamination sources, such as wall flaking. Fur-

thermore, highly non-uniform plasmas typical of magnetron sputtering processes are

subject to simultaneous material removal and redeposition in different target regions.

Thus, the formation of filament structures can be favored. Meanwhile, the filaments

can be resistively heated by intense current flows, which can cause violent mechani-

cal failures and the removal of the filament into the plasma bulk. Combined with the

repulsion between the negatively charged filament and the sheath region, this pro-

cess can result in an acceleration of the filaments away from the sputter target, which

can be a source of hot and fast particles capable of damaging the substrate being

processed (Selwyn et al. 1997).

Note that dc/rf sputtering belongs to a larger group of particle generation mech-

anisms from the surrounding solid surfaces, encompassing the reactive ion etching

(Anderson et al. 1994), the filtered cathodic vacuum arc deposition (Beilis et al.

1999), the hollow cathode discharges, and some other processes. For example, in the

anisotropic etching controlled by directed ion fluxes, small columnary etch residues

are usually formed. As a result of a slight under-etching, the columns become thin-

ner at their base and thus unstable. Since the structures are negatively charged, the

Coulomb repulsion from the surface causes them to break off and to be ejected into

the discharge. The split etch residues are finally trapped in the glow by the plasma

force balance. The above mechanism is quite similar to the magnetically-enhanced

sputtering systems.
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Basic plasma–particle interactions

Sergey A. Khrapak and Alexey V. Ivlev

The study of interactions between an object and surrounding plasma is a basic physi-

cal problem with many applications ranging from astrophysical topics (Goertz 1989;

Mendis 2002) to operation of gas discharges (Dimoff and Smy 1970), technologi-

cal plasma applications (Bouchoule 1999; Kersten et al. 2001) and fusion related

research (Winter 2000; Krasheninnikov et al. 2004, de Angelis 2006). In com-

plex plasmas the plasma–particle interactions are especially important. They deter-

mine evolution of essentially any characteristic phenomenon occurring in complex

plasmas, such as self-organization, formation of ordered (crystal-like) structures and

other phase transitions, propagation and instabilities of low-frequency waves, trans-

port.

To understand and explain these phenomena, a detailed knowledge of the proper-

ties of plasma–particle interactions in a wide range of plasma parameters is required.

Of particular importance are basic processes such as particle charging; electric po-

tential distribution around a charged particle in plasmas; interparticle interactions;

momentum exchange between different plasma components and the dust particles

giving rise to the ion-, electron-, and neutral-drag forces; processes on the particle

surface. In this chapter we give a comprehensive overview of the current state un-

derstanding of these basic physical processes.

2.1 Charging of particles in complex plasmas

The particle charge is one of the most important parameters of complex plasmas.

It determines the particle interactions with plasma electrons and ions, with electro-

magnetic fields, between the particles themselves, affect properties of low-frequency

(dust acoustic waves), etc. Hence all studies of complex plasmas necessarily begin

with a model for the particle charge.

A non-emitting particle (grain) immersed in a plasma collects electrons and ions

and becomes charged. Its surface (floating) potential is determined from the balance

of collected ion and electron fluxes. Since electrons are much more mobile than

ions, the surface potential is negative and roughly equal to the electron temperature

φs =−zTe/e, where z is a (positive) coefficient of the order of unity. This ensures that

most of the electrons are unable to overcome the potential barrier between the parti-
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cle surface and surrounding plasma, and hence, ion and electron fluxes can balance

each other. The numerical coefficient z is not fixed, but in general depends on a num-

ber of plasma and particle parameters such as plasma composition (ion-to-electron

mass ratio), electron and ion temperatures, plasma screening length, ion and elec-

tron mean free paths with respect to collisions with neutrals, ion and electron drift

velocities (in the presence of the drifts), particle size and shape, particle material.

Considerable efforts have been made in order to accurately determine the particle

floating potentials (coefficient z) under different plasma conditions. This includes

theory, experiments, and numerical simulations. In this section an overview of these

activities is given.

The traditional and most frequently used approach to calculate the particle float-

ing potential in complex plasmas is the orbital motion limited (OML) theory (see,

e.g., Allen 1992). This approach is based on the analysis of ballistic (collisionless)

ion and electron trajectories in the central field of an individual charged particle and

allows the determination of the ion and electron collection cross sections from the

conservation of energy and angular momentum. Ion and electron fluxes are obtained

by integrating the collection cross sections over the corresponding velocity distribu-

tion functions. The application of the OML theory to the charging of particles in

isotropic and anisotropic plasma conditions is considered in Section 2.1.1.2.

Orbital motion limited theory operates with ballistic ion and electron trajectories

thus neglecting any effect associated with ion and electron collisions with neutrals.

At the same time, there have been a number of investigations, including theories,

experiments, and simulations, which clearly demonstrated that the largest variations

in z (about one order of magnitude in some cases) can be associated with the plasma

collisionality level (Zobnin et al. 2000, 2008; Lampe et al. 2001a, 2003; Bryant

2003; Fortov et al. 2004; Ratynskaia et al. 2004a; Khrapak et al. 2005b, 2006b;

Maiorov 2005; Vaulina et al. 2006; D’yachkov et al. 2007; Hutchinson and Patac-

chini 2007; Rovagnati et al. 2007; Gatti and Kortshagen 2008; Khrapak and Morfill

2008b). Thus, plasma collisionality is a very important factor affecting the mag-

nitude of the particle floating potential and charge. This issue will be discussed in

detail in Section 2.1.2.

If emission processes are involved (e.g., thermo-, photo-, and secondary electron

emission from the particle surface), the charge can be reduced in absolute magnitude

or even assume positive values (e.g., Goree 1994; Walch et al. 1995; Rosenberg et

al. 1999; Sickafoose et al. 2000). Effect of different emission processes on particle

charging is briefly discussed in Section 2.1.4.

In this chapter we also briefly discuss the effect of the presence of particles on

charge balance in plasmas (Section 2.1.5) and the properties of particle charge fluc-

tuations (Section 2.1.6).

2.1.1 Charging in collisionless plasmas

We start with the description of particle charging in the collisionless regime. In order

to clarify some of the assumptions underlying the collisionless OML approach, we

first briefly discuss the properties of particle motion in the central field.
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2.1.1.1 Motion of a particle in the central field

For a particle moving ballistically in the central field U(r), the total energy, E =
1
2
m(v2

r + v2
θ )+U(r), and the angular momentum, mρv, are conserved. Here m is the

particle mass, ρ is the impact parameter, vr and vθ are the radial and tangential ve-

locities, respectively, and v is the velocity at r → ∞. It follows from the conservation

laws that the radial motion of a particle is fully determined by the effective potential

energy,

Ueff(r,ρ) =
ρ2

r2
+

2U(r)

mv2
, (2.1)

where Ueff is normalized to the initial kinetic energy, E0 = 1
2
mv2. The particle motion

is restricted to the region where Ueff ≤ 1. This means that if for a given ρ an equation

Ueff(r,ρ) = 1 (2.2)

has root(s), then the largest of them determines the distance of the closest approach

to the center, r0. If a sphere of radius a is placed in the center, then the particle is

collected by this sphere when r0 ≤ a. For r0 > a, it experiences elastic scattering by

the center potential, but does not reach the sphere surface.

For a repulsive potential, U(r) > 0, the effective potential is a positive, mono-

tonically decreasing function of r. Therefore, Equation (2.2) has one solution. The

maximum impact parameter corresponding to particle collection is

ρ−
c (v) =







a

√

1− 2U(a)
mv2 , 2U(a)

mv2 < 1,

0, 2U(a)
mv2 ≥ 1.

(2.3)

For an attractive potential, U(r) < 0, there are several possibilities, depending on

the particular behavior of U(r) (Al’pert et al. 1965). The extremum values of Ueff(r)
are determined from the condition

r3(dU/dr) = mv2ρ2. (2.4)

If |U(r)| decreases everywhere more slowly than 1/r2, then the left-hand side of

Equation (2.4) grows monotonically, and there is only one solution to this equation.

This solution corresponds to a minimum in Ueff. Hence, Equation (2.2) has only

one solution, and similarly to Equation (2.3), we obtain for the maximum impact

parameter corresponding to collection

ρ+
c (v) = a

√

1− 2U(a)

mv2
. (2.5)

On the other hand if |U(r)| decreases more slowly than 1/r2 at small r but decreases

faster than 1/r2 at large r, then Equation (2.4) can have two solutions, and, hence,

Ueff has both maximum and minimum. Maximum is determined by the conditions

U ′
eff(rM) = 0 and U ′′

eff(rM) < 0, where primes denote derivatives with respect to r.

The maximum in Ueff always occurs at distances larger than the minimum.
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FIGURE 2.1

Curves of the effective potential for the radial particle motion in the central field

(for the Debye–Hückel potential) for two values of the scattering parameter βββ
(see text) and different dimensionless impact parameters ρρρ (indicated in the

figures). The potential barrier is absent at βββ === 111000 and present at βββ === 222000.

If Ueff(rM) ≥ 1, then Equation (2.2) can have multiple solutions: Physically, this

means that the potential barrier emerges, which reflects the particle. This is illus-

trated in Figures 2.1 and 2.2. From Equation (2.1), we see that there is a transitional

impact parameter

ρ∗ = rM

√

1− 2U(rM)

mv2
,

which separates particle trajectories into two groups: no barrier for ρ < ρ∗, but for

ρ > ρ∗, the potential barrier emerges and the particle is reflected at r ≥ rM. This

causes a discontinuity in the dependence of the distance of closest approach on ρ
(see Figure 2.2). In the case rM > a, the particles with ρ > ρ∗ cannot be collected by

the center. Thus, Equation (2.5) should be modified:

ρ+
c (v) =











a

√

1− 2U(a)
mv2 , a

√

1− 2U(a)
mv2 < ρ∗(v),

ρ∗(v), a

√

1− 2U(a)
mv2 ≥ ρ∗(v).

(2.6)

As a useful example let us consider the attractive Debye–Hückel (Yukawa) in-

teraction potential, U(r) = −(U0/r)exp(−r/λ ), where λ is the effective plasma

screening length. Usually (but not always), the plasma screening length coincides

with the linearized Debye radius, λ ≡ λD = λDi/
√

1 +(λDi/λDe)2, where λDi(e) =
√

Ti(e)/4πe2ni(e). In this case λ ≃ λDi, provided Te ≫ Ti. Some exceptions, includ-

ing screening of the particle charge in the regime of highly non-linear ion–particle
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FIGURE 2.2

(a) Normalized distance of the closest approach to the center rrr000 vs. normalized

impact parameter ρρρ . The curves are calculated for the Debye–Hückel poten-

tial for different values of the scattering parameter βββ . When βββ ≥≥≥ βββ cr ≃≃≃ 111333...222
a discontinuity appears due to a barrier in the effective potential. (b) Particle

trajectories during collisions for different impact parameters for the Debye–

Hückel interaction potential and scattering parameter βββ === 333000. Impact parame-

ters are chosen to be below, about, and above the transitional impact parameter

ρρρ∗∗∗ ≃≃≃ 444...222444λλλ .

interaction and the notion of effective screening length in anisotropic plasmas, will

be considered later in this chapter.

Let us normalize all the distances to λ . Then the behavior of the effective potential

Ueff is governed by two dimensionless parameters, the so-called scattering parameter

β =
U0

mv2λ
, (2.7)

and the normalized impact parameter, viz., Ueff(r)= ρ2/r2−2(β/r)exp(−r). Curves

of the effective potential for two values of β and different values of ρ are dis-

played in Figure 2.1. The potential barrier is absent at β = 10, while at β = 20,

the existence of the barrier leads to an abrupt jump in the distance of the closest ap-

proach, from r0 ≃ 0.7 to r0 ≃ 2.6 at ρ ≃ 3.8. An inflection point (the point where

maximum and minimum in the curve of the effective potential coincide) is deter-

mined from the condition U ′′
eff(rM) = 0. For the Debye–Hückel potential, it occurs at

r = (1 +
√

5)/2 ≃ 1.62 (Al’pert et al. 1965). The position of the emerging potential

barrier is the solution of the transcendental equation rM exp(rM) = β (rM −1). A so-

lution exists only if β ≥ βcr ≃ 13.2 and grows monotonically with β . The transitional

impact parameter is

ρ∗ = rM

√

rM + 1

rM −1
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and also increases with β starting from ρ∗(βcr) ≃ 3.33. For large β , Khrapak et al.

(2003b) obtained the following asymptotic solutions

rM ≃ lnβ − ln−1 β , ρ∗ ≃ lnβ + 1− 1
2

ln−1 β . (2.8)

The trajectories of scattered particles and the dependence of the distance of closest

approach on the impact parameter calculated for the attractive Debye–Hückel poten-

tial are shown in Figure 2.2.

2.1.1.2 Orbital motion limited (OML) approximation

In the OML approach three major assumptions are employed: (i) The particle is

isolated in the sense that other particles do not affect the motion of electrons and

ions in its vicinity; (ii) electrons and ions do not experience collisions during their

approach to the particle; (iii) the barriers in the effective potential are absent. Then

the cross sections for electron and ion collection are determined from the laws of

conservation of energy and angular momentum.

The collection cross section is πρ2
c , where ρc is the maximum impact parameter

for the collection. It is given by Equation (2.3) for the electrons and by Equation (2.5)

for the ions. Thus, the (velocity-dependent) collection cross sections are

σe(v) =







πa2
(

1 + 2eφs

mev2

)

, 2eφs

mev2 > −1,

0, 2eφs

mev2 ≤−1,
(2.9)

and

σi(v) = πa2

(

1− 2eφs

miv2

)

, (2.10)

where me(i) is the electron (ion) mass, v is the velocity of the electrons and ions

relative to the particle, the particle surface potential φs is negative, and the ions are

singly charged. An obvious advantage of the OML approximation is that the cross

sections are independent of the plasma potential distribution around the particle. This

is, however, only true when the potential satisfies certain conditions so that the barrier

in the effective potential is absent.

Electron and ion fluxes to the particle surface are determined by the integral of the

corresponding cross sections with the velocity distribution functions fe(i)(v):

Je(i) = ne(i)

∫

vσe(i)(v) fe(i)(v)d
3v,

where ne(i) is the electron (ion) number density. Using the Maxwellian velocity dis-

tribution of plasma particles fe(i)(v) = (2πv2
Te(i)

)−3/2 exp(−v2/2v2
Te(i)

), where vTe(i)
=

√

Te(i)/me(i) is the electron (ion) thermal velocity, we get after the integration

Je =
√

8πa2nevTe exp

(

eφs

Te

)

, (2.11)
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Dimensionless floating potential zzz ===−−−eeeφφφ s///TTT eee of an isolated spherical particle as

a function of electron-to-ion temperature ratio τττ === TTT eee///TTT iii for isotropic plasmas

of different gases.

Ji =
√

8πa2nivTi

(

1− eφs

Ti

)

. (2.12)

The evolution of the particle charge is governed by the equation

dZ

dt
= Ji − Je, (2.13)

and the stationary charge is determined from the flux balance,

Je = Ji. (2.14)

In dimensionless form Equation (2.14) can be rewritten as

vTe exp(−z) = vTi
(1 + zτ), (2.15)

where τ = Te/Ti is the electron-to-ion temperature ratio and plasma is quasineutral,

ne ≃ ni. Thus, within OML approximation the dimensionless floating potential z is

a function of only two parameters – the electron-to-ion temperature and mass ratios.

In Figure 2.3, values of z are presented for different gases (H, He, Ne, Ar, Kr, Xe) as

functions of τ. The particle floating potential decreases with τ = Te/Ti and increases

with the gas atomic mass. For typical values of τ ∼ 10−100 in gas discharges, the

dimensionless floating potential is in the range z ∼ 2−4. For a particle with a∼ 1 µm
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FIGURE 2.4

Dimensionless floating potential zzz === −−−eeeφφφ s///TTT eee of an isolated spherical particle

as a function of dimensionless time tttΩΩΩch for an argon plasma with τττ === 555000. The

particle is initially uncharged. The horizontal dashed line corresponds to the

stationary value of the potential.

and Te ∼ 1 eV, the characteristic charge number is |Z| ∼ (1−3)×103, if we assume

“vacuum” relation between the particle surface potential and charge, Q = aφs. This

is usually a good approximation in complex plasmas as long as the particles are small

(a ≪ λ ), while, in principle, there may be some deviations due to strongly nonlinear

screening and/or non-equilibrium distribution of the electrons and ions around the

particle.

To characterize the dynamics of particle charging let us introduce the character-

istic charging frequency Ωch. It is defined as the relaxation frequency for small

deviations of the charge from the stationary value Z0: Ωch = d(Ji−Je)/dZ|Z0
. Using

Equations (2.11) and (2.12), we obtain

Ωch =
1 + z√

2π

a

λDi

ωpi, (2.16)

where λDi =
√

Ti/4πe2ni is the ionic Debye radius, and ωpi = vTi
/λDi is the ion

plasma frequency. In deriving Equation (2.16) it is also assumed τ ≫ 1. The solution

of nonlinear Equation (2.13) with fluxes from Equations (2.11) and (2.12) and the

initial condition z|t=0 = 0 is shown in Figure 2.4. One can see that the overall time

scale of the nonlinear charging is of the order of Ω−1
ch .

Complex plasmas are often subject to electric fields. For instance, in ground-

based experiments with rf discharges the particles can levitate in the (pre)sheath

above the lower electrode, while in dc discharges the particles are often trapped in
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striations. Both these regions are characterized by high degree of plasma anisotropy

and strong electric fields. The larger the particle size is, the stronger the electric

field is required in order to compensate for gravity. The presence of the electric

fields causes plasma drifts relative to the particle component. This in turn can affect

particle charging by, for example, changing the collection cross sections and velocity

distribution functions of ions and electrons. The situation becomes in general more

complicated than in the case of an isotropic plasma, and we are not aware of any

self-consistent analytic solutions existing for this case. Therefore, let us only briefly

discuss the simplest approach to describe charging in anisotropic regime.

To get an idea how the plasma drifts can affect particle charging, we use the fol-

lowing simplifications. We take the OML collection cross sections, but instead of

isotropic Maxwellian distribution function use the shifted Maxwellian distributions,

viz.,

fi(e)(v) =
(

2πv2
Ti(e)

)−3/2

exp

[

(v−ui(e))
2

2v2
Ti(e)

]

, (2.17)

where ui(e) is the average drift velocity of ions (electrons). Integration of the cross

section Equation (2.10), with the shifted Maxwellian function Equation (2.17), yields

the following expression for the ion flux (Whipple 1981; Uglov and Gnedovets 1991;

Kilgore et al. 1994):

Ji =
√

π
a2niv

2
Ti

ui

[√
π(1 + 2ξ 2 + 2zτ)erf(ξ )+ 2ξ exp(−ξ 2)

]

, (2.18)

where ξ = ui/
√

2vTi
. Similarly, integrating the cross section Equation (2.9), with

shifted Maxwellian distribution Equation (2.17), the electron flux can be written as

(Uglov and Gnedovets 1991):

Je =
√

π
a2nev2

Te

ue

{√
π(1/2− ξ+ξ−) [erf(ξ+)− erf(ξ−)]

+ξ+e−ξ 2
− − ξ−e−ξ 2

+

}

, (2.19)

where ξ± =
√

z±ue/
√

2vTe . In the limit ui ≪ vTi
and ue ≪ vTe Equations (2.18) and

(2.19) reduce to Equations (2.12) and (2.11), respectively. In the opposite limit we

have

Ji = πa2niui

[

1 +(1 + 2zτ)(vTi
/ui)

2
]

(2.20)

and

Je = πa2neue

[

1 +(1−2z)(vTe/ue)
2
]

. (2.21)

Often, the drift of electrons is negligible while the ion drift is large. For example,

this occurs in the regime of ambipolar plasma, in the (pre)sheath regions, i.e., where

the electron distribution is close to Boltzmann, implying that the electric force acting

on the electrons is compensated by the electron pressure. In this case the electron

flux to the particle surface is given by Equation (2.11) while for the ions one should

use Equation (2.18). The resulting dimensionless floating potential of the particle as
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Dimensionless floating potential zzz === −−−eeeφφφ s///TTT eee of an isolated spherical grain as

a function of the ion drift to ion thermal velocity ratio, uuuiii///vvvTTT iii
(or Mach number

MMM === uuuiii///CCCIIIAAA), for a plasma with drifting ions. The calculations are for three

different electron-to-ion density ratios and correspond to an argon plasma with

τττ === 111000000.

a function of the ion drift velocity is shown in Figure 2.5 for three values of ne/ni.

The charge is practically constant for ui ≤ vTi
, then it increases with ui, attains a

maximum at ui ∼ (2–3)CIA (where CIA =
√

Te/mi is the ion–acoustic velocity), and

starts decreasing. Comparison of results calculated with exact flux Equation (2.18),

and with asymptotic Equations (2.12) and (2.20) (the latter are indicated by dotted

lines) shows almost no discrepancy, except for a narrow region near ui ∼ vTi
.

Figure 2.5 illustrates the behavior of the particle charge in a sheath above the elec-

trode in rf/dc discharges. The averaged electric field here increases almost linearly

towards the electrode (e.g., Tomme et al. 2000 and references therein). The ions

are accelerated by the electric field, which leads to an increase of z until ui becomes

several times larger than CIA. A positive space charge is developed in the sheath so

that ni/ne > 1 as the electrode is approached. This causes z to decrease compared to

the quasineutral region. Thus, when approaching the electrode from the unperturbed

bulk plasma, the dimensionless charge z first somewhat increases, reaches a max-

imum, and then decreases. The charge can even reach positive values sufficiently

close to the electrode. Examples of the dependence of the particle surface potential

on the distance from the electrode in collisionless and collisional sheaths of rf and

dc discharges were calculated by Nitter (1996) for a set of plasma parameters.
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FIGURE 2.6

The dimensionless charge, UUUQQQ === eee|||QQQ|||///aaaTTT eee (in the text zzz is adopted), and the

dimensionless dipole moment, UUUDDD === eeeddd///aaa222TTT eee, of the dielectric particle (solid

lines) versus Mach number of the plasma flow, MMM (Ivlev et al. 1999). The dotted

line corresponds to a metal particle. The dashed line is the asymptote for the

dipole curve. The figures correspond to (a) H, (b) He, (c) Ne, and (d) Ar.

The accuracy of neglecting the potential anisotropy caused by the ion flow (i.e, the

assumption of the OML collection cross section) was checked by Lapenta (1999) and

Hutchinson (2003, 2005) using particle-in-cell codes. It was shown that the potential

asymmetry is virtually negligible with respect to the total ion flux for a conduct-

ing particle. However, this is generally not true for a dielectric particle. The latter

acquires a significant dipole moment and the absolute magnitude of the charge of

dielectric particle is larger than that of conductive particle. Such trend was predicted

analytically by Ivlev et al. (1999). Figure 2.6 shows that the effect can be quite

significant. Another important circumstance which can affect the accuracy of ex-

pression (2.18) is the deviation of the ion velocity distribution function from shifted

Maxwellian (Schweigert 2001; Ivlev et al. 2005) discussed below. This important

issue has been addressed by Alexandrov et al. (2008), but needs to be investigated

in more detail.
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To conclude this section, let us discuss the major reasons that can make the OML

approximation inapplicable. Apart from central symmetry breaking in anisotropic

plasmas, briefly discussed above, these include:

(i) Effect of “closely packed” particles. The effect is two-fold. The particle com-

ponent contributes to the quasineutrality condition, making the ion density larger

than the electron density (Havnes et al. 1984). This increases the ratio of the ion-to-

electron flux and hence reduces the absolute magnitude of the particle charge com-

pared to the case of an individual particle. The strength of the effect can be character-

ized by the dimensionless parameter P = |Z|nd/ne ≡ z(aTe/e2)(nd/ne) (often called

“Havnes parameter”), which is the ratio of the charge residing on the dust particle

component to that on the electron component (nd is the particle number density). If

we simply use expressions (2.11) and (2.12) for the electron and ion fluxes together

with the quasineutrality condition ne = ni + Znd , we get in dimensionless units

√
τ exp(−z) =

√

me

mi

(1 + zτ)(1 + P).

The charge tends to that of an individual particle when P≪ 1, while it is reduced con-

siderably for P ≫ 1. In addition, when the interparticle separation ∆ is smaller than

the characteristic length of interaction between ions (electrons) and the particle, the

ion (electron) trajectories are affected by the presence of neighboring particles. The

analysis based on the consideration of particle motion in the central field is no more

applicable and the OML approximation fails. Barkan et al. (1994) demonstrated

experimentally that the effect of “closely packed” particles can lead to substantial

charge reduction.

(ii) Potential barriers. The OML theory presumes the absence of a barrier in the

effective potential energy. As discussed in Section 2.1.1.1 the barrier is absent for

repulsive interaction (i.e., for the electrons), but it can emerge for attractive interac-

tion (i.e., for the ions). In this case some (low energy) ions will be reflected from

this barrier, thus reducing the net ion flux to the particle and, therefore, increasing

the absolute magnitude of the floating potential. Allen et al. (2000) showed that for

a Maxwellian velocity distribution, there are always sufficiently slow ions, which are

reflected from the barrier. However, if the fraction of the ions which are not collected

because of the barrier is small then the corrections to OML are also small. Using

Equation (2.6) this requirement can be formulated in terms of the ion thermal ve-

locity a
√

1 + 2U(a)/Ti < ρ∗(vTi
). For the Debye–Hückel interaction potential with

the large ion thermal scattering parameter β (vTi
) ≃ zτ(a/λ ) > βcr, Khrapak et al.

(2004a) derived the following condition of the applicability of the OML approxima-

tion: √
2zτ(a/λ ) . ln[zτ(a/λ )].

For typical complex plasma parameters z ∼ 1 and τ ∼ 100, we get that OML is

applicable for a/λ . 0.2. Based on similar arguments Lampe (2001) showed that the

OML approximation is well justified when (a/λ )τ ≪ 100. Thus, the OML theory

works well for sufficiently small grains. Essentially the same conclusion is drawn
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by Kennedy and Allen (2003) from a consistent numerical solution for the surface

potential and potential distribution around the probe in a collisionless plasma.

(iii) Ion and electron collisions with neutrals. As mentioned above, plasma col-

lisionality is one of the most important factors determining the magnitude of the

particle floating potential in complex plasmas. The OML approximation deals with

ballistic ion trajectories and is, therefore, applicable only in the limit of very weak

collisionality. At the same time in practical situations, ion mean free path can often

be comparable to the plasma screening length, i.e., plasma is in the moderately col-

lisional regime. Moreover, in high pressure plasmas, ion and electron motion to the

particle can be completely collision dominated. Detailed discussion of the depen-

dence of the particle surface potential on the plasma collisionality is the subject of

the next section.

2.1.2 Effect of plasma collisionality on the particle charging

The qualitative picture of the dependence of the normalized floating potential z on

plasma collisionality is sketched in Figure 2.7. The plasma collisionality, measured

in units of the ratio of the plasma screening length to the ion mean free path λ/ℓi,

can be conventionally divided into three regimes: weakly collisional (WC), ℓi > λ ;

strongly collisional (SC), ℓi < λ ; and fully collisional plasma (FCP), ℓi, ℓe ≪ λ .

These regimes are indicated in Figure 2.7. In the collisionless limit (ℓi, ℓe ≫ λ ), OML

approximation yields very accurate values for the floating potential, provided the

particle radius is considerably smaller than the plasma screening length (see above).

When ion collisionality increases (although the ratio ℓi/λ can still be relatively large,

of the order of ten), the collisions start to affect the ion flux to the particle. As ex-

plained below, in this (weakly collisional) regime, collisions increase the ion flux

which leads to a decrease in z. The minimum is reached when the ion mean free path

is on the order of the plasma screening length. As the ion collisionality increases

further (ion mean free path decreases), a transition to the mobility-limited (hydrody-

namic) regime of ion collection occurs. In this regime the ion mobility is suppressed

by collisions, ion flux decreases, and z increases with increasing ion collisionality.

However, the magnitude of z does not exhibit constant growth. When the FCP regime

is reached, electron transport to the particle becomes collisional too. Then both elec-

tron and ion fluxes are equally suppressed by collisions, and the floating potential

saturates at some value which is independent of plasma collisionality.

Figure 2.7 demonstrates that the calculation of the particle floating potential in gas

discharges operating under different conditions requires an expression applicable in

a wide range of ion collisionality. Several such expressions have been proposed in

the literature. Below we review some of the proposed approximations, compare the

results obtained using these approximations, and briefly discuss their reliability.

A simple interpolation formula for the dependence of z on ion collisionality has

been proposed by Khrapak and Morfill (2008b). This interpolation (hereinafter re-

ferred to as KM interpolation) is based on properly combining the expressions appli-

cable in the cases of weak and strong ion collisionality. Let us, therefore, discuss the

corresponding limits.
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FIGURE 2.7

Sketch of the dependence of the particle normalized floating potential zzz ===
−−−φφφ seee///TTT eee on the ion collisionality index λλλ///ℓℓℓiii. The entire range of ion colli-

sionality is conventionally divided into three regimes: weakly collisional (WC),

strongly collisional (SC), and fully collisional plasma (FCP); for details see text.

A shaded region in the figure corresponds approximately to the plasma colli-

sionality pertinent to gas discharges operating in a wide range of neutral gas

pressures. The curve shows the dependence of zzz on λλλ///ℓℓℓiii calculated using the

model of D’yachkov et al. (2007) for neon plasma with τττ === 222000000, λλλ///aaa ≃≃≃ 333555, and

ℓℓℓeee///ℓℓℓiii === 333000. The corresponding OML and FCP values of zzz are zzzOML ≃≃≃ 111...999 and

zzzFCP ≃≃≃ 666...000.

An approximation for the collected ion flux in the weakly collisional regime can

be derived using the ideas discussed by Zakrzewski and Kopiczinski (1974) in the

context of plasma probe theory and more recently by Zobnin et al. (2000) and Lampe

et al. (2003) in the context of complex plasmas. Following the arguments of Lampe

et al. let us consider a sphere of radius R0 surrounding a small particle (a≪ R0). The

distance R0 determines the region of strong ion-particle coupling. It can be roughly

estimated from the condition |U(R0)| ≃ Ti, where U(r) denotes the potential energy

of the ion–particle interaction. When an ion orbiting around a particle makes a col-

lision with an atom within r . R0 a fast ion (which probably would not reach the

particle surface) loses its energy and angular momentum and has a low probability

to escape from the potential well. Such an ion has a high probability to be col-

lected by the particle, either directly after collision or through subsequent collisions.

Especially effective are charge exchange collisions which lead to a substitution of

the original ion by a low-energy ion created from a neutral atom. Essentially every

charge-exchange collision within r . R0 results in an ion collection by the parti-

cle. Thus, ion–neutral collisions enhance the ion flux to the particle in the weakly

collisional regime. A rough estimate of the collision-induced contribution to the col-
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lected ion flux is given by the product of the random (thermal) ion influx through the

spherical surface of radius R0 [for r > R0 the ion density and (Maxwellian) velocity

distribution are weakly perturbed by the presence of the particle] and the probability

to experience a collision within this sphere. For simplicity let us normalize all the

fluxes to the flux of Maxwellian ions collected by an uncharged sphere of radius a,

so that Jα =
√

8πa2nivTi
jα . The normalized ion flux into the interaction sphere is

jR0
≃ (R0/a)2; the probability to experience a collision is roughly ∼ R0/ℓi, provided

ℓi > R0, i.e., ions are weakly collisional. There are also ions which do not experience

collisions; their flux can be estimated as ≃ jOML(1−R0/ℓi), where jOML = 1+ zτ is

the normalized OML flux. The net ion flux to the particle in this weakly collisional

regime is therefore jWC
i ≃ 1 + zτ +(R3

0/a2ℓi), which basically coincides with Equa-

tion (31) from Lampe et al. (2003). Assuming that the electric potential distribution

around the particle follows the Debye–Hückel form, the expression for the ion flux

can be further simplified (Khrapak et al. 2005b) as

jWC
i ≃ 1 + zτ + 0.1(zτ)2(λ/ℓi). (2.22)

This expression is known as the collision enhanced collection (CEC) approximation

(Khrapak and Morfill 2006).

In the FCP limit, a fluid description of the ion and electron components can be

used. The system of equations to be solved includes conservation of the ion and

electron fluxes (Su and Lam 1963),

4πr2Dα [∇nα ± (nαe/Tα)∇φ ] = Jα (2.23)

and the Poisson equation for the electric potential around the particle

∆φ = −4πe[ni−ne]. (2.24)

Here α = i(e) corresponds to ions (electrons), Dα = ℓαvTα is the diffusion coeffi-

cient of the corresponding species and the positive (negative) sign on the left-hand

side of Equation (2.23) corresponds to ions (electrons). In this simplest formulation

all plasma production and loss mechanisms in the vicinity of the particle are ne-

glected. The boundary conditions for the potential are φ(a) = φs and φ(∞) = 0. For

an absorbing particle surface in the continuum regime (ℓi, ℓe ≪ a), the boundary con-

ditions are ni(a) = ne(a) = 0 and ni(∞) = ne(∞) = n0, where n0 is the unperturbed

plasma density. Analytic solution of this system of equations exists in the case of

sufficiently small grain, a ≪ λDe, where λDe =
√

Te/4πe2n0 is the electron Debye

radius. The corresponding expressions for the ion and electron fluxes are (Chang and

Laframboise 1976; Khrapak et al. 2006b)

ji ≃
√

2π
ℓi

a

zτ

1− exp(−zτ)
(2.25)

and

je ≃
√

2π
vTe

vTi

ℓe

a

zexp(−z)

1− exp(−z)
, (2.26)
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respectively. Chang and Laframboise found that in a one-temperature plasma (τ = 1)

deviations from these expressions exceed 10% for a/λDe & 1 for the electron flux

and a/λDe & 0.1 for the ion flux, correspondingly. Equating expressions (2.25)

and (2.26), we get the FCP limiting value of the floating potential. For a two-

temperature plasma with τ ≫ 1, we have zFCP ≃ ln[1 + (ℓe/ℓi)
√

Timi/Teme]. For

a one-temperature plasma, the result is particularly simple, zFCP = ln(De/Di). Very

good agreement between this expression and floating potentials obtained from the ex-

act numerical solution in the limit a/λDe → 0 was documented by Baum and Chapkis

(1970). We will not further discuss the FCP regime here, since it is beyond the typ-

ical range of ion collisionality in gas discharges, see Figure 2.7. We only mention a

few papers which addressed different aspects of charging in the FCP regime in the

context of complex plasmas (Pal’ et al. 2001, 2002; Bystrenko and Zagorodny 2003;

Filippov et al. 2003).

Much more important from a practical point of view is a wide pressure range

where the electron transport to the particle is collisionless while the ion transport is

collision dominated. Such partially collisional plasma (PCP) can, in particular, be

realized in noble gases, where the characteristic cross section for ion–neutral colli-

sions σin is typically between one and two orders of magnitude larger than that for

electron–neutral collisions σen. In addition, in argon, krypton, and xenon, σen has a

pronounced minimum for electron energies of about 1 eV – the so-called Ramsauer–

Townsend effect (Massey et al. 1969). In this partially collisional plasma regime the

electron flux to the particle can be calculated using the OML approximation. The

ion flux can be well approximated by the expression (2.25). This is because the elec-

tron density distribution around the negatively charged particle follows closely the

Boltzmann relation, independently of whether electrons are collisionless (Al’pert et

al. 1965) or highly collisional (Su and Lam 1963). The boundary conditions for

electron density at the particle surface are also virtually identical: In both cases elec-

tron density close to the grain surface is much smaller than the plasma density far

from the particle, provided z & 1. Hence, ion transport to the particle is governed by

essentially the same equations with identical boundary conditions both in FCP and in

PCP cases (Khrapak et al. 2006b). Taking also into account that usually in complex

plasmas zτ ≫ 1, the normalized ion flux that the particle collects in the regime of

strongly collisional ions can be further simplified,

jSC
i ≃

√
2π(ℓi/a)zτ. (2.27)

In the considered regime the ion flux decreases with increasing ion collisionality (de-

creasing ℓi) while the electron flux is independent of plasma collisionality. Therefore,

the partile floating potential increases in the absolute magnitude (see Figure 2.7).

Expressions (2.22) and (2.27) are then combined into a simple form

jeff
i =

(

1/ jWC
i + 1/ jSC

i

)−1
. (2.28)

This formula accurately describes the ion fluxes in the limits of weak and strong ion

collisionality and provides an interpolation between these two limits. It has been

postulated by Khrapak and Morfill (2008b) that the applicability conditions of this
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interpolation formula are a/λ ≪ 1 and βT . 10, where βT = (a/λ )zτ is the ion ther-

mal scattering parameter which measures the strength of the ion-particle coupling

in isotropic plasmas. In a wide pressure range (excluding only the FCP regime) the

floating potential can be calculated by equating jeff
i from Equation (2.28) to je from

the OML approximation. This yields

z = ln(vTe/vTi
jeff
i ). (2.29)

In this approximation z is a function of four dimensionless parameters: electron-to-

ion mass and temperature ratios (me/mi and τ), normalized particle radius a/λ , and

ion collisionality index λ/ℓi.

Another approximation for the ion flux that the particle collects in a collisional

stationary plasma has been proposed by Hutchinson and Patacchini (2007). This

is a fit (hereinafter referred to as Hutchinson’s fit) based on the computation of the

ion flux to a floating sphere using the Specialized-Coordinate Electrostatic Particle

and Thermals in Cell (SCEPTIC) code (Hutchinson 2003). The authors propose an

expression for the ion flux in the regime of weak collisionality that accounts for the

collision-induced flux enhancement. This expression can be written in the present

notation as

ji1 = (1 + τzOML)
[

1 + ln(1 + 17νs + 5ν2
s )
]

, (2.30)

where νs = (λ/
√

2ℓi)/[0.9 + 0.1(100/τ)1.5] is the scaled ion collision frequency

(ν = vTi
/ℓi) and zOML is the OML value of the particle surface potential. In the

opposite strongly collisional (continuum) limit, the authors use an expression which

can be written in the present notation as

ji2 = 1.30(ℓi/a)τ
{

ln
[

1.1 + 30(a/ℓi)
√

miTi/mHTe

]}1.15

, (2.31)

where mH is the proton mass. Combination of the two fluxes in the form

jeff
i = (1/ jw

i1 + 1/ jw
i2)

−1/w (2.32)

then agrees with the individual expressions in the corresponding limiting cases of

weak and strong collisionality and provides an interpolation between these limits.

Here w is an adjustable parameter which controls the maximum value of the ion flux

in the intermediate region. An empirical expression for w based on SCEPTIC results

is

w = (0.37 + 0.067lnτ) ln(λDe/a)−1. (2.33)

Equations (2.30)–(2.33) describe the dependence of the collected ion flux on ion

collisionality. Note that in the considered approximation the ion flux is independent

of the actual value of the particle surface potential, but depends only on its OML

limiting value zOML. The floating potential is obtained from Equation (2.29). In this

approximation z is also a function of me/mi, τ , a/λ , and λ/ℓi.

Another analytic fit for the ion flux in the intermediate regime of ion collisional-

ity has been proposed by Zobnin et al. (2008). This fit (hereinafter referred to as
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Zobnin’s fit) is based on the results of direct numerical solution of the ion kinetic

equation with the Bhatnagar–Gross–Krook (BGK) collision integral. The expression

for the ion flux in the present notation is

ji = (1 + zτ)

×
{

1 + (a/ℓi)zτ

0.07+2(a/λ )+2.5(a/ℓi)+[0.27(a/λ )1.5+0.8(a2/λ ℓi)]zτ+0.4(a/ℓi)2zτ/[1−0.4(a/ℓi)]

}

.

(2.34)

This expression reduces to the OML result in the limit of low collisionality (ℓi → ∞)

and tends to the continuum limit result in the opposite limit of high collisionality,

unless collisionality is too high, as discussed below. The floating potential is de-

termined from Equation (2.29), which is now transcendent, since ji depends on the

actual value of the floating potential z in the considered approximation. Similarly to

the previous approximations, z depends on me/mi, τ , a/λ , and λ/ℓi.

An analytic expression for the particle potential in collisional plasmas has been

derived by D’yachkov et al. (2007). In this model (hereinafter referred to as D’yach-

kov’s model) the influence of a collisionless layer (between the particle surface and

surrounding plasma) on the charging currents is investigated under the assumptions

ℓi(e) ≪ λ and a ≪ λ . The motion of ions (electrons) in the collisionless region is de-

termined from the energy and momentum conservation laws. Beyond the collision-

less region the drift-diffusion approximation is used. A proper matching procedure at

the boundary between collisionless and collisional regions allows the determination

of ion and electron fluxes to the particle surface. The floating potential is then ob-

tained from the balance of these fluxes. The corresponding transcendental equation

for z can be written in the present notation as

vTi
vTe

expz = exp[− zτ
1+ℓi/a

]
{

(1 + ℓi
a
)2 − ℓi

a
(2 + ℓi

a
)exp

[

− zτ
(1+ℓi/a)(2+ℓi/a)

]}−1

+ a√
2πzτℓi

{

1− exp
[

− zτ
1+ℓi/a

]

−
√

Teme
Timi

ℓi
ℓe

[

exp
(

z
1+ℓe/a

)

−1
]}

.
(2.35)

It can be shown that in the highly collisional limit (ℓi, ℓe → 0), the solution of Equa-

tion (2.35) yields zFCP value, while in the collisionless limit (ℓi, ℓe → ∞), the OML

result zOML is recovered. In this model z is a function of me/mi, τ , ℓi/a, and ℓe/ℓi

(in all calculations reported below ℓe/ℓi = 100 is fixed); i.e., apart from the other ap-

proximations, z is independent of the normalized particle radius a/λ . Note, however,

that the explicit use of the condition a ≪ λ in the derivations limits the applicability

of the D’yachkov’s model to the case of very small point-like grains.

Comparison between the results obtained from different approximations consid-

ered above is presented in Figures 2.8 and 2.9. Figure 2.8 shows the calculations

for an argon plasma with τ = 100 and two different particle sizes: λDe/a = 666.7
(λ/a = 66.3) in Figure 2.8(a) and λDe/a = 66.7 (λ/a = 6.6) in Figure 2.8(b). These

parameters are the same as in Figures 1 and 3 of the paper by Hutchinson and Pat-

acchini (2007). In Figure 2.9 are shown calculations for a neon plasma. The plasma

parameters in Figure 2.9 (a), λDe/a = 1490 (λ/a ≃ 100) and τ = 220, are relevant

to experimental results of Ratynskaia et al. (2004a) and Khrapak et al. (2005b) for

a = 0.6 µm particles, which are shown by open circles in this figure. (Note that in
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FIGURE 2.8

Dimensionless particle surface (floating) potential zzz === eee|||φφφ s|||///TTT eee as a function of

ion collisionality index λλλ///ℓℓℓiii for argon plasma. Calculations are for electron-to-

ion temperature ratio τττ === 111000000 and two different particle sizes: λλλ Deee///aaa === 666666666...777
(a) and λλλ Deee///aaa === 666666...777 (b). Solid curves correspond to the KM interpolation

formula (Khrapak and Morfill 2008b), dashed curves to the fit of Hutchinson

and Patacchini (2007), dotted curves to the fit by Zobnin et al. (2008), and dash-

dotted curves to the model by D’yachkov et al. (2007).

FIGURE 2.9

Dimensionless particle surface (floating) potential zzz === eee|||φφφ s|||///TTT eee as a function

of ion collisionality index λλλ///ℓℓℓiii for neon plasma. Calculations are for electron-

to-ion temperature ratio τττ === 222222000 and normalized particle size λλλ Deee///aaa === 111444999000

(a) and for τττ === 111000000 and λλλ Deee///aaa === 111666777 (b). Solid curves correspond to the KM

interpolation formula (Khrapak and Morfill 2008b), dashed curves to the fit

of Hutchinson and Patacchini (2007), dotted curves to the fit by Zobnin et al.

(2008), and dash-dotted curves to the model by D’yachkov et al. (2007). Open

circles in Figure 2.9(a) correspond to experimental results by Ratynskaia et al.

(2004a).
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reality each experimental point corresponds to particular values of τ and λ/a, since

in the experiment discharge pressure was varied, which inevitably led to some vari-

ations in plasma parameters. Therefore, “average” values of τ and λ/a have been

chosen for comparison.) The plasma parameters in Figure 2.9 (b), λDe/a = 167

(λ/a≃ 16.6) and τ = 100, are identical to those in Figure 9 of the paper by Hutchin-

son and Patacchini (2007).

The results presented in Figures 2.8 and 2.9 demonstrate that all the approxima-

tions considered exhibit the same qualitative dependence of the normalized floating

potential on ion collisionality, which has been discussed above. Note the rather close

agreement between Hutchinson’s and Zobnin’s fits and the KM interpolation for-

mula. Usually, the curve corresponding to Hutchinson’s fit lies in between the curves

corresponding to Zobnin’s fit and the KM interpolation. The curves calculated from

D’yachkov’s model tend to the accurate result in the limit of high collisionality, but

deviate from other approximations in the regime of weak and moderate collisionality.

A typical trend is that this model yields larger values of z as compared to the other

approaches for smaller particles and smaller values of z for larger particles. Thus, the

quantitative results of this model are apparently less reliable in predicting the parti-

cle charge in weakly and moderately collisional regimes. This is not very surprising

since in the D’yachkov’s model, the condition λ ≫ ℓi is assumed to be satisfied,

i.e., disagreement occurs outside the range of direct applicability of this model. Note

also that the curves based on Zobnin’s fit diverge from the other curves at sufficiently

high ion collisionality. The larger the particle, the smaller is the collisionality level

at which Zobnin’s fit becomes invalid.

A large number of calculations corresponding to the wide range of particle sizes

50 ≤ λDe/a ≤ 103 and electron-to-ion temperature ratios 10 ≤ τ ≤ 200 in argon and

neon gases performed by Khrapak and Morfill (2008b) demonstrates that the max-

imum relative difference between Zobnin’s and Hutchinson’s fits and between the

KM interpolation and Hutchinson’s fit usually does not exceed 10–15%. Thus, ex-

cept perhaps for some extreme regimes, not common for complex plasmas, Hutchin-

son’s and Zobnin’s fits along with the KM interpolation formula demonstrate rather

good agreement. The present accuracy of experimental charge measurements (see

below) does not allow us to make a definite choice between the considered approx-

imations. Hence, they can be equally recommended for use in estimating particle

floating potentials and charges in practical situations.

2.1.3 Experimental determination of the particle charge

2.1.3.1 Quasi-isotropic plasmas

A unique experimental determination of the particle charges in a wide range of com-

plex plasma parameters (including wide range of neutral gas pressures) has been

reported by Ratynskaia et al. (2004a) and Khrapak et al. (2005b). This experiment

was performed with the PK-4 facility (Usachev et al. 2004) in ground-based condi-

tions. It uses horizontally oriented dc-discharge tube filled with neon gas at pressures

20–150 Pa and particles of radii a ≃ 0.6 µm, a ≃ 1.0 µm, and a ≃ 1.3 µm. For these
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particle sizes the weak ambipolar radial electric field in the bulk plasma is sufficient

to compensate against gravity so that the particles can levitate in an isotropic plasma

near the tube axis.

The dynamics of particles of different sizes is studied varying the neutral gas pres-

sure p and the number of injected particles (controlled by settings of the particle dis-

penser), which allows the change of the particle number density nd inside the tube.

For a sufficiently low number of injected particles the flow is stable for all pressures

investigated. The flow is recorded for a number of different pressures. The charge is

then estimated from the force balance condition using the measured particle veloci-

ties. The most important forces are the electric force, the neutral drag force, and the

ion drag force. For the ion drag force the model of Khrapak et al. (2002) is used. For

a larger number of injected particles (and larger nd), an easily identifiable transition

to unstable flow (with a clear wave behavior) occurs at a certain threshold pressure

p∗, which can be found experimentally with an accuracy of about 1 Pa (Ratynskaia

2004a,b). This transition is a manifestation of the ion streaming instability caused by

the relative drift between the particle and the ion components. The value of p∗ de-

pends on nd (shifting towards higher pressures when nd is increased). In this case the

charge can be estimated from a linear dispersion relation describing the transition of

the particle flow to the unstable regime at p∗. The applicability of the linear disper-

sion relation method is, however, limited due to non-negligible effect of particles on

plasma parameters at large particle density (Khrapak et al. 2005b). In practice this

method was used only for smallest grains and low particle densities. The charges

determined from this experiment are shown in Figure 2.10 by open symbols.

Another experimental technique to determine the particle charge is based on ex-

citation of low-frequency (dust acoustic) waves and analysis of their dispersion re-

lations. Two experiments reporting estimates for the particle charge using this tech-

nique have been performed under microgravity conditions with the use of the PKE–

Nefedov facility (Nefedov et al. 2003). The waves in the particle cloud were excited

by applying a low-frequency modulation voltage to the electrodes. The charge was

then estimated by comparing the measured dispersion relations with the theoretical

ones. In this way the dimensionless charge was found to be z ∼ 0.4 (at p ≃ 25 Pa

argon gas pressure) by Khrapak et al. (2003c) and z ∼ 0.8 (at p ≃ 12 Pa argon gas

pressure) by Yaroshenko et al. (2004). The results of these experiments are shown

in Figure 2.10 by solid circle and square, respectively.

One more experimental method to determine the particle charge is based on gravity-

driven heavy “test” particle collisions with smaller particles levitating in the quasi-

isotropic region of an inductively coupled rf discharge plasma (Fortov et al. 2004).

A heavy particle falls down in a vertical glass tube and interacts with the cloud of

small particles suspended in the diffuse edge of the discharge. The interaction pro-

cess is recorded with a high-speed video camera and individual elastic “collisions”

are analyzed. Assuming the Debye–Hückel potential around each particle both the

particle charge and effective screening length can be estimated. Fortov et al. (2004)

estimated the particle charge for three different pressures (20, 30, and 50 Pa) of neon

gas. The results are shown in Figure 2.10 by solid triangles.

Figure 2.10 summarizes the results of different experiments performed to measure
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FIGURE 2.10

The dimensionless particle floating potential zzz === |||QQQ|||eee///aaaTTT eee as a function of the

ion collisionality index, λλλ///ℓℓℓiii (assuming λλλ ≃≃≃ λλλ D). Open symbols correspond to

the charges measured by Khrapak et al. (2005b) for particle radii aaa ≃≃≃ 000...666 µµµm

(squares), aaa ≃≃≃ 111...000 µµµm (triangles), and aaa ≃≃≃ 111...333 µµµm (circles). The symbols ××× and

+++ are for the charges found from MD simulation for plasma conditions similar

to those in Khrapak et al. (2005b) for aaa === 000...666 µµµm and aaa === 111...222555 µµµm. Solid

circle and square are the charges estimated from wave excitation technique in

PKE–Nefedov facility by Khrapak et al. (2003c) and Yaroshenko et al. (2004),

respectively. Solid triangles correspond to the charges obtained in the experi-

ment by Fortov et al. (2004). The dotted line is calculated using the collisionless

OML approach for an individual particle. The solid curve shows a calculation

using the analytic CEC approximation of Equation (2.22). These analytic cal-

culations are performed for plasma conditions relevant to the experiment by

Khrapak et al. (2005b): neon plasma with TTT eee === 7 eV and TTT iii === 000...000333 eV.

the particle charge. In analyzing data it is assumed here that the effective plasma

screening length is λ ≃ λD ≃ λDi for the quasi-isotropic plasma conditions investi-

gated. Figure 2.10 demonstrates reasonable agreement between the results of dif-

ferent experiments, although they were performed under different plasma conditions

(e.g., different types of discharges, different gases, different particle sizes, and differ-

ent plasma parameters). This indicates that the ion collisionality index λ/ℓi is one of

the most important parameters that controls the particle charge in isotropic complex

plasmas. Also shown in the figure are the results of molecular dynamics (MD) simu-

lations performed using the code developed by Zobnin et al. (2000) and modified for

plasma conditions relevant to those in experiments by Ratynskaia et al. (2004a) and
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Khrapak et al. (2005b). The solid curve corresponds to the floating potential calcu-

lated using CEC approximation of Equation (2.22). The agreement between theory,

simulations and experiments is rather good, especially taking into account that the

experimental accuracy is not expected to be much better than ∼ 30% for both z and

λ/ℓi. Note also that the obtained floating potentials are considerably smaller than

those calculated from collisionless OML theory (dotted line) for all the conditions

investigated.

Thus, ion–neutral collisions are experimentally identified as a main process affect-

ing and regulating particle charging in the bulk of gas discharges. All the considered

evidence clearly indicates that for a typical quasi-isotropic complex plasma, z . 1,

which is considerably smaller than the result of the collisionless OML theory.

2.1.3.2 Anisotropic plasmas

Experimental determination of the particle charge is especially important in cases

where the plasma parameters are unknown or cannot be determined with sufficient

accuracy. This is usually relevant to anisotropic plasma conditions (e.g., sheaths near

the plasma chamber walls or electrodes) where in addition to the charging model (al-

ready complicated by plasma anisotropy, non-neutrality, presence of “superthermal”

ions and electrons, etc.), one needs to choose an appropriate model for the sheath,

which is not trivial itself.

Several experimental methods were proposed to measure particle charge in sheath

or striation regions of electrical discharges. Some of them are discussed below.

Vertical resonance method. Characteristics of the vertical oscillations of a single

particle in the sheath are determined by the particle charge. Typical values of the

vertical resonance frequency Ωv are in the range 1–100 Hz and, hence, one can

use low-frequency excitations to estimate the charge. As a simplest example, we

refer to linear (harmonic) oscillations. By measuring the amplitude of the particle

oscillations at different frequencies and then fitting the obtained frequency response

curve with the well-known theoretical expression (Landau and Lifshitz 1976), it is

possible to determine the resonance frequency Ωv and the neutral damping rate νdn

simultaneously. This technique was first employed by Melzer et al. (1994), and later

it was used to determine the particle charges in different investigations (Trottenberg

et al. 1995; Zuzic et al. 1996; Homann et al. 1999; Piel and Melzer 2002; Piel et

al. 2003). The excitation is usually performed by applying a low-frequency signal

to the rf electrode (in a modified variant, to a Langmuir probe or a wire inserted into

a plasma in a vicinity of the levitated particle) or by using a focused laser beam.

The main difficulty in estimating the particle charge from experimental results is to

establish the relation between Ωv and Q. It is often supposed that the dependence of

Q on the height is much weaker than that of the electric field; i.e., in the first approxi-

mation one can assume Q ≃ const, and therefore Ω2
v ≃−QE ′

0/md , where E ′
0 denotes

the derivative of the electric field evaluated at the particle equilibrium position. At

sufficiently high pressures, the value of the derivative E ′ is practically constant over

the sheath and can be estimated using a certain theoretical model. (Probe measure-

ments in the sheath are not reliable due to uncertainty in their interpretation.) This
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introduces some inaccuracy in the measurement results. Nevertheless, this method

is often used in experiments because of its particular simplicity.

Vertical equilibrium. The method is based on the fact that when the potential

distribution in the sheath is suitably determined, the charge of an isolated particle

levitated in the sheath can be estimated from their equilibrium heights by using bal-

ance between gravity and electric force. The method was used by Tomme et al.

(2000) and later by Samarian and Vladimirov (2003). In this method care must be

taken in choosing an appropriate model for the sheath. Another possible source of

uncertainties is the effect of forces that are not taken into account (e.g., ion drag,

thermophoresis, etc.)

Dust lattice waves. Excitation of dust waves in strongly ordered particle structures

(e.g., particle chains or two-dimensional lattices) is often employed as a diagnostic

tool in studying dusty plasmas. The dispersion relations of the dust lattice waves can

be derived assuming a certain form of the interparticle interaction potential. Usu-

ally the Debye–Hückel potential is used. In this case the main parameters entering

into the dispersion relation are the particle charge Q and the ratio of the interparticle

distance to the effective screening length – the lattice parameter κ = ∆/λ . Other

parameters are either known in advance (e.g., particle mass) or can be easily deter-

mined in the experiment (e.g., interparticle distance). Hence, Q and κ can be esti-

mated by comparing an experimental dispersion relation with a relevant theoretical

model. The measured dispersion relations were used to estimate the particle charge

in experiments by Peters et al. (1996), Homann et al. (1997, 1998), and Nunomura

et al. (2000, 2002).

Other methods of charge determination were also used. In the collision method

proposed by Konopka et al. (2000a) two-particle collisions are produced in a sheath

region of an rf discharge using a horizontal electric probe, which allows the manip-

ulation of the particles. The form of the interaction potential is reconstructed from

the analysis of particle trajectories. It was found that for low discharge powers and

pressures, the interaction potential can be fitted with the Debye–Hückel (Yukawa)

potential within experimental uncertainties. From the fit the effective particle charge

and plasma screening length can be estimated.

Measurements of the particle charge in a stratified dc discharge plasma were per-

formed by Fortov et al. (2001). In this work, aperiodic oscillations of an isolated

particle were excited by a focused laser beam. Analysis of particle trajectory yielded

the charge.

A nonlinear dependence of the particle charge on its size was evidenced in ex-

periments in anisotropic plasmas (see, e.g., Tomme et al. 2000; Fortov et al. 2001;

Samarian and Vladimirov 2003). According to Samarian and Vladimirov (2002) this

nonlinear dependence can be attributed to the dependence of surrounding plasma pa-

rameters on particle size: The particles with different radii levitate in different re-

gions of the sheath or striation characterized by different plasma parameters, i.e.,

different ion and electron densities, ion drift velocity, electron temperature, etc. This

makes the particle surface potential dependent on particle size and thus causes a

nonlinear dependence of the particle charge on size, in contrast to the charging in

the bulk of gas discharges, where the floating potential only weakly depends on the
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particle size.

The effect of ion–neutral collisions on particle charging, discussed in detail in

connection with charging in isotropic plasmas, can apparently also be important in

anisotropic plasmas. In this case the effect is two-fold: In addition to destroying col-

lisionless ion trajectories in the vicinity of the particle, collisions change the structure

of the sheath or striation. Thus the charge can depend on the ion collisionality in a

quite complicated way, and we are not aware of any consistent theoretical study of

this effect. We note in this context an experiment by Fortov et al. (2001) where some

increase of the particle surface potential with pressure was reported.

2.1.4 Emission processes

The collection of ions and electrons from the plasma is not the only possible charg-

ing mechanism. Electrons can also be emitted from the particle surface due to

thermionic, photoelectron, and secondary electron emission processes. These pro-

cesses are important for dust charging in the working body of solid-fuel magnetohy-

drodynamic (MHD) generators and rocket engines (Sodha and Guha 1971; Yakubov

and Khrapak 1989; Soo 1990), in the upper atmosphere, in space (Whipple 1981;

Bliokh et al. 1995; Mendis 2002), and in some laboratory experiments, for instance,

in thermal plasmas (Fortov et al. 1996a,b), or in plasmas induced by UV irradia-

tion (Fortov et al. 1998), with photoelectric charging of particles (Sickafoose et al.

2000), charging by electron beams (Walch et al. 1995), etc. Emission of electrons

increases the particle charge and, under certain conditions, the particles can reach a

positive charge, in contrast to the situation discussed so far. Due to the emission pro-

cesses two-component systems consisting of dust particles and the electrons emitted

by them can in principle exist. In this case, the equilibrium potential (charge) of the

particle is determined by the balance of the fluxes that are collected by the particle

surface and emitted from it, so that the quasi-neutrality condition is Znd ≃ ne. Such

a system serves as the simplest model for investigating different processes associ-

ated with emission charging of particles (Yakubov and Khrapak 1989; Khrapak et al.

1999). Let us briefly consider each of the emission processes listed above.

Thermionic emission. For an equilibrium plasma characterized by a temperature

T , it is common to use the following expressions for the flux of thermoelectrons

(Sodha and Guha 1971):

Jth =
(4πaT )2me

h3
exp

(

−W

T

)

×











1, φs < 0,
(

1 +
eφs

T

)

exp

(

−eφs

T

)

, φs > 0.

Values of the work function W of thermoelectrons for different metals and semi-

conductors lie typically within the range from 2 to 5 eV. In the case of dielectric

particles, where free electrons appear due to ionization, thermionic emission cannot

play a significant role because the particles usually melt before thermionic emission

makes a substantial contribution to the electron flux. For negatively charged par-

ticles its electric field accelerates the electrons from the particle surface and some
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increase in emission current can be expected due to reduction of the work function

by the Schottky effect. Thermionic emission was identified as the dominant charging

mechanism in thermal plasmas (Fortov et al. 1996a,b).

Photoelectron emission. The electron emission can be caused by an incident flux

of photons with energies exceeding the work function of photoelectrons from the

particle surface (Rosenberg and Mendis 1995; Rosenberg et al. 1996). The charac-

teristic value of the work functions for most of the materials does not exceed 6 eV,

and hence photons with energies ≤ 12 eV can charge dust particles without ionizing

a buffer gas. The flux of emitted electrons can be written as (Goree 1994; Rosenberg

et al. 1999):

Jpe = 4πa2Y J











1, φs < 0,

exp

(

−eφs

Tpe

)

, φs > 0,

where J is the photon flux density and Y is the quantum yield for the particle material.

It is also assumed that the radiation is isotropic; the efficiency of radiation absorption

is close to unity, which occurs when the particle size is larger than the radiation

wavelength; and the photoelectrons possess a Maxwellian velocity distribution with

the temperature Tpe. This temperature lies in most cases within the ranges from 1

to 2 eV. The quantum yield is very low just above the threshold, but for the most

interesting regime of a vacuum ultraviolet, it can reach a value of one photoelectron

per several photons. Therefore, the photoelectric emission mechanism of particle

charging can be quite important in space.

Sickafoose et al. (2000) studied experimentally photoelectric emission charging of

particles with diameters of ∼ 100 µm. Conducting particles acquired a positive float-

ing potential and charge both increasing linearly with the decreasing work function

of photoelectrons. Behavior of particles charged by solar radiation in microgravity

conditions was investigated by Fortov et al. (1998). An analysis of particle dynam-

ics after UV irradiation revealed that the particles with mean radius 37.5 µm were

charged to approximately 104 e.

Secondary electron emission. The flux Jse of secondary electrons is connected

to that of primary electrons, Je, through the secondary emission coefficient δ , viz.,

Jse = δJe. The coefficient δ depends both on the energy E of primary electrons and

on the particle material. The dependence δ (E ) turns out to be practically universal

for different materials, if δ is normalized to the maximum yield δm of electrons,

and E is normalized to the value Em of energy at which this maximum is reached.

The corresponding expressions for the case of monoenergetic electrons were given

by Whipple (1981) and Goree (1994). The values of the parameters δm and Em

for some materials given by Whipple lie within the ranges δm ∼ (1−4) and Em ∼
(0.2−0.4) keV. For the case of Maxwellian-distributed electrons, the expression for

δ was given, for instance, by Goree.

Walch et al. (1995) experimentally investigated the charging of particles of vari-

ous materials and diameters from 30 to 120 µm by thermal and monoenergetic su-

perthermal electrons. When the charging was dominated by superthermal electrons,

the particles were charged to the potential proportional to the electron energy and
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the charge proportional to the particle radius. However, when the electron energy

reached a threshold value (different for various materials), from which the secondary

electron emission became important, a sharp decrease in the absolute magnitude of

the charge was found.

2.1.5 Quasineutrality of complex plasmas

The dust particles immersed in a plasma act as ionization and recombination centers.

Particles that emit electrons may increase the electron concentration in the plasmas.

Conversely, when the particles absorb electrons from the plasma, they become neg-

atively charged and reduce the electron density compared to the ion density. From

the quasi-neutrality condition, it is clear that the presence of particles influences the

plasma charge composition when |Z|nd/ne ≡ P & 1.

In the absence of emission processes, electrons and ions recombine on the par-

ticles. Plasma loss rates are determined by the expression QLe(i) = Je(i)nd , where

Je(i) is the flux of electrons (ions) absorbed by the particle surface. For large particle

concentrations, the losses of electrons and ions on the particles can exceed the re-

combination losses in the particle-free plasma (volume recombination and/or plasma

losses to the walls of a discharge camera). In self-sustained plasmas an increase in

the recombination frequency has to be compensated for by a corresponding increase

in the ionization frequency (Boeuf 1992; Lipaev et al. 1997). This can, for instance,

lead to an increase in the electron temperature and the discharge electric field.

When particles emit electrons, they serve as ionization sources as well. The parti-

cle contribution to the ionization is characterized by the flux of emitted electrons (see

the previous section). In the limiting case, emission from particles embedded into a

neutral gas completely determines the charge composition of the plasma, playing the

role of sources and sinks for the electrons.

2.1.6 Fluctuations of the particle charge

So far the particle charge was treated as a continuous regular variable. However,

the charging currents represent in reality sequences of events bound to electron and

ion absorption or emission by the particle surface. These sequences and time in-

tervals between the successive acts of absorption and emission are random. As a

result, the particle charge can fluctuate around its average value. The importance

of charge fluctuations was recognized rather early: Morfill et al. (1980) suggested

that charge fluctuations can have a major influence on dust transport in astrophysi-

cal plasmas. Several studies addressed the problem of charge fluctuations that arise

from the random nature of the charging process (Cui and Goree 1994; Matsoukas

and Russel 1995, 1997; Matsoukas et al. 1996). In particular, gas discharge plas-

mas, where particles are charged by collecting electrons and ions, were considered

within the framework of the OML approach. Several different charging mechanisms,

including thermionic and photoelectronic emission processes, were also considered

by Khrapak et al. (1999).

Charge fluctuations due to the discrete nature of charging can be described as a
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stationary, Gaussian and Markovian process (or the Ornstein–Uhlenbec process af-

ter Uhlenbeck and Ornstein 1930). This process was originally adopted to describe

the stochastic behavior of the velocity of a Brownian particle. In the above case,

it describes the behavior of the deviation of a particle charge number from its av-

erage value: Z1(t) = Z(t)− Z0, where Z0 = 〈Z(t)〉 is the average charge number

(Q0 = eZ0). Let us derive the main properties of charge fluctuations. For simplicity,

we limit consideration to the particle charging by electron and ion collection in the

OML approximation. Generalization to other charging mechanisms is trivial. The

Langevin equation for Z1(t) is

dZ1

dt
+ ΩchZ1 = f (t), (2.36)

where f (t) is the stochastic term, associated with random acts of electron/ion collec-

tion. Function f (t) satisfies the following properties: 〈 f (t)〉 = 0 and 〈 f (t) f (t ′)〉 =
2J0δ (t−t ′), where J0 = Je = Ji is the average flux of electrons and ions to the particle

in the stationary state. Applying these properties to the solution of Equation (2.36),

Z1(t) = Z1(0)exp(−Ωcht)+ exp(−Ωcht)
∫ t

0
f (t ′)exp(Ωcht ′)dt ′,

we obtain the following properties of charge fluctuations:

(1) The charge fluctuation amplitude has zero average:

〈

Z1

〉

= 0.

(2) The charge autocorrelation function decays exponentially,

〈Z1(t)Z1(t
′)〉 = 〈Z2

1〉exp
(

−Ωch|t − t ′|
)

, (2.37)

where the relative charge dispersion (squared fluctuation amplitude) is

σ2
Z ≡ 〈Z2

1〉
Z2

0

=
γZ

|Z0|
. (2.38)

Using OML theory we get

γZ =
1 + zτ

z(1 + τ + zτ)
≃ 1

1 + z
,

assuming that τ ≫ 1.

(3) The process Y (t) =
∫ t

0 Z1(t
′)dt ′ is Gaussian but neither stationary nor Marko-

vian. With the help of Equation (2.37) we obtain

〈Y (t)2〉 =
2〈Z2

1〉
Ω2

ch

[Ωcht + exp(−Ωcht)−1].

Usually, it is enough to use these properties for investigating the influence of

charge fluctuations on dynamic processes in complex (dusty) plasmas. In particu-

lar, the following investigations can be mentioned: dust particle “heating” (in terms
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of the kinetic energy) in an external electric field due to charge fluctuations was

studied by Vaulina et al. (1999a,b, 2000) and by Quinn and Goree (2000); insta-

bilities of particle oscillations due to charge fluctuations were considered by Morfill

et al. (1999a) and Ivlev et al. (2000); dust diffusion across a magnetic field due to

random charge fluctuations was investigated by Khrapak and Morfill (2002) with ap-

plication to astrophysical plasma. Dynamics of particles with fluctuating charges is

considered in details in Section 3.2.1.

We note that the discreteness of the charging process in not the only reason for

particle charge fluctuation. Spatial and temporal variations in plasma parameters and

collective effects in complex plasmas constitute other sources of charge fluctuations.

These issues, however, are much less investigated.

2.2 Electric potential distribution around a particle

2.2.1 Isotropic plasmas

The distribution of the electric potential φ(r) around an individual spherical particle

of charge Q = Ze satisfies the Poisson equation (2.24) with the boundary conditions

φ(∞) = 0 and φ(a) = φs. The particle potential and the charge are related through

dφ/dr|r=a = −Q/a2. It is often assumed that the electric potential around a small

particle in isotropic plasmas can be described by the Debye–Hückel (Yukawa) form,

φ(r) ≃ φs(a/r)exp [−(r−a)/λ ]≃ (Q/r)exp(−r/λ ). (2.39)

This result can be obtained by assuming Boltzmann distributions for ions and elec-

trons and solving the linearized Poisson equation. In the linear regime λ = λD.

Linearization is often invalid in complex plasmas since the particle floating po-

tential is φs ∼ −Te/e, and therefore, ion-particle coupling is very strong close to

the particle, provided Te ≫ Ti. Nevertheless, numerical solution of the nonlinear

Poisson-Boltzmann equation shows that the functional form of Equation (2.39) still

persists, but the actual value of the particle charge should be replaced by an effective

charge which is somewhat smaller in the absolute magnitude (Nefedov et al. 1998;

Bystrenko and Zagorodny 1999).

A greater influence on the potential structure is effected by the plasma absorption

on the particle surface. The continuous ion and electron fluxes from the bulk plasma

to the particle make their distributions non-Boltzmann. Although the deviations are

only marginal for repelled electrons (Al’pert et al. 1965), for attracted ions they are

quite substantial. In the absence of plasma production and loss in the vicinity of the

particle, conservation of the plasma flux completely determines the far asymptote of

the potential. As a result, at large distances the potential is not screened exponentially

but exhibits a power law decay. In collisionless plasmas the far asymptote scales as

φ(r) ∝ r−2 (Al’pert et al. 1965; Tsytovich 1997; Fortov et al. 2005). Close to the

particle (up to a distance of a few Debye radii from its surface), the Debye–Hückel
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(DH) form works reasonably well, but with λ = λeff, where the effective screening

length λeff can deviate considerably from λD. For example, numerical calculations

by Daugherty et al. (1992) have demonstrated that for a particle smaller than the

ion Debye radius, λeff ≃ λD. As the particle radius increases, λeff also increases and

can reach values comparable to λDe when a ∼ λDi. Ratynskaia et al. (2006) found

that the structure of the normalized electric potential computed numerically is rather

insensitive to the separate values of the dimensionless parameters a/λDi and zτ, but

depends universally on their product, the ion thermal scattering parameter βTi =
zτ(a/λDi) ≃ βT (in the following we will not distinguish between βTi and βT ). It

is instructive to compare the dependencies of λeff/λDi on βT obtained by Daugherty

et al. and Ratynskaia et al. It is worth noting that these calculations involve quite

different approximations: the ion energy distribution far from the particle is assumed

monoenergetic in Daugherty et al. and Maxwellian in Ratynskaia et al.; corrections

to the electron density distribution due to electron absorption on the particle surface

are taken into account in Daugherty et al., but neglected in Ratynskaia et al.; barriers

in the effective potential for the radial ion motion are accounted for in Daugherty

et al., but neglected in Ratynskaia et al. Nevertheless, the agreement between the

results by Daugherty et al. and Ratynskaia et al. is rather close, as can be seen from

Figure 2.11. A reasonable fit to the results by Daugherty et al. in the entire range of

βT investigated is given by

(λeff/λDi) ≃ 1 + 0.105
√

βT + 0.013βT . (2.40)

Note that λeff ≃ λDi for weak ion–particle coupling (linear screening), as expected.

Another important factor which influences the structure of the electric potential

around an absorbing particle in plasmas is ion–neutral collisions. For example, it

is well known that in strongly collisional plasmas, the far asymptote of the poten-

tial exhibits a Coulomb-like decay (Su and Lam 1963; Bystrenko and Zagorodny

2003; Khrapak et al. 2006b; Filippov et al. 2007a), instead of the ∝ r−2 decay in the

collisionless limit. Moreover, the long-range asymptote of the electric potential is ap-

proximately proportional to the collected ion flux (in the absence of plasma produc-

tion and loss in the vicinity of the particle). As has been shown in Section 2.1.2, the

ion flux is considerably affected by collisions even in the weakly collisional regime.

Therefore, the collisional contribution to the structure of the electric potential around

an absorbing particle can be significant even when ℓi > λ . Let us therefore discuss

this issue in more detail.

A simple linear kinetic model which accounts for the combined effect of ion ab-

sorption on the particle and ion–neutral collisions has been proposed independently

by Filippov et al. (2007b) and Khrapak et al. (2008). In this model a small (point-

like) individual grain of negative charge Q immersed in a stationary isotropic weakly

ionized plasma is considered. Plasma production and loss in the vicinity of the par-

ticle are neglected, except plasma absorption on the particle surface. This implies

that the characteristic ionization/recombination length is considerably larger than

the length scale under consideration. Electron density can be approximated with
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FIGURE 2.11

Ratio of the effective screening length to the ion Debye radius, λλλ eff///λλλ Diii as a

function of the ion thermal scattering parameter βββ TTT = zzzτττ(((aaa///λλλ Diii))). Solid circles

correspond to numerical calculations by Daugherty et al. (1992). Open circles

correspond to numerical calculations by Ratynskaia et al. (2006). In both cases

λλλ eff is obtained from the best fit of the numerically calculated potential with the

Debye–Hückel expression. To obtain the dependence of λλλ eff///λλλ Diii on βββ TTT from

the data presented in Daugherty et al., it is assumed that λλλ Diii ===
√

222EEE iii///444πππeee222nnn000,

where EEE iii is the energy of monoenergetic ions, which yields the correct length

scale for screening in the linear regime, and it is assumed that τττ === TTT eee///222EEE iii in

evaluating βββ TTT . The solid curve corresponds to the analytic fit of Equation (2.40).

high accuracy by the Boltzmann distribution

ne ≈ n0 exp(eφ/Te), (2.41)

where n0 is the unperturbed plasma density. The kinetic equation for the ions is

∂ f

∂ t
+ v

∂ f

∂ r
+

eE

m

∂ f

∂ v
= −ν( f −ni fM)−δ (r)vσ(v) f , (2.42)

where f is the ion velocity distribution function, fM = (2πv2
Ti
)−3/2 exp(−v2/2v2

Ti
)

is the Maxwellian distribution function normalized to unity and ni =
∫

f d3v is the

ion density (we assume that ions are in equilibrium with neutrals, so that vTi
= vTn).

The first term on the right-hand-side is the model collision integral in the Bhatnagar–

Gross–Krook form (Bhatnagar et al. 1954) with a constant effective ion–neutral

collision frequency ν . The second term represents the ion loss on a small particle

and is expressed through the effective (velocity dependent) collection cross section
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σ(v). Such a model kinetic description of ion absorption on a point-like grain has

been proposed by Filippov et al. (2007a) for collisionless plasmas. In this case σ(v)
is given by the OML model. In the collisional case σ(v) has a less transparent phys-

ical meaning and apparently cannot be determined from first principles. However,

Khrapak et al. (2008) proposed to use its relation to a “measurable” quantity – the

ion flux that the particle collects, Ji = n0

∫

vσ(v) fM(v)d3v. Assuming a certain func-

tional form for σ(v), one can then easily express the potential through the collected

ion flux Ji.

The equations for the electrons and ions are supplemented by the Poisson equation

∆φ = −4πe(ni−ne)−4πQδ (r). (2.43)

Standard linearization procedure then yields

φ(r) =
Q

r
exp(−kDr)− e

r

∫ ∞

0

kD sin(kr) f (θ )dk

k2 + k2
D

≡ φI + φII, (2.44)

where

f (θ) =
8n0

π3/2kD

∫ ∞
0 σ(ξ )ξ 2 arctan(ξ/θ )exp(−ξ 2)dξ

1−√
πθ exp(θ 2)[1− erf(θ )]

.

Here kD =
√

k2
De + k2

Di is the inverse linearized Debye radius, kDi(e) = λ−1
Di(e)

, θ =

(ν/
√

2kvTi
), and ξ 2 = v2/2v2

Ti
. The first term φI in Equation (2.44) is the familiar

Debye–Hückel potential. The second term φII appears due to ion absorption by the

particle and accounts for ion–neutral collisions. For a non-absorbing particle [σ(v)≡
0] only the conventional DH form survives, as expected. In this case ion–neutral

collisions do not affect the potential distribution.

In the collisionless (CL) limit we have ν = 0, θ = 0, and arctan(ξ/θ) = π/2.

Using the OML collection cross section σ(ξ ) = πa2
[

1 +(zτ)ξ−2
]

, one easily gets

φII(r) = −e

r

πa2n0(1 + 2zτ)

2kD
F (kDr), (2.45)

where F (x) = [e−xEi(x)− exEi(−x)] and Ei(x) is the exponential integral. This ex-

pression has been derived by Filippov et al. (2007a). For sufficiently large distances

x ≫ 1, F (x) ≈ 2/x and the corresponding potential is

φII(r) ≃−Te

e

(a

r

)2 1 + 2zτ

4(1 + τ)
, (2.46)

which coincides with the well-known result of probe theory (Al’pert et al. 1965;

Tsytovich 1997; Allen et al. 2000; Fortov et al. 2005). The transition from the DH

form to the long-range asymptote (2.46) occurs at about the location where these two

forms are equal (Lampe 2001), i.e., at

r ≃ λD [ln(2λD/a)+ lnln(2λD/a)] .
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In the opposite strongly collisional (SC) regime, we have θ ≫ 1, arctan(ξ/θ ) ≈
ξ/θ , and erf(θ) ≈ 1− π−1/2e−θ 2

(θ−1 − 1
2
θ−2). The actual form of σ(ξ ) is not

important since the integral in f (θ ) is directly expressed through the ion flux Ji in

this case. The potential is (Khrapak et al. 2008)

φII(r) ≃−e

r

Ji

Dik
2
D

[1− exp(−kDr)] , (2.47)

where Di = v2
Ti
/ν is the diffusion coefficient of the ions. This expression coincides

with the results obtained using the hydrodynamic approximation (Filippov et al.

2007a; Khrapak et al 2007b,c).

The most interesting regime relevant to many complex plasma experiments in gas

discharges is the weakly collisional (WC) regime, ℓi & λD. In this case, assum-

ing ν → 0 yields θ ≪ 1, arctan(ξ/θ ) ≈ π/2− θ/x, and erf(θ) → 0. To calculate

the potential, the functional form σ(ξ ) is required. Khrapak et al. (2008) have

made a simple assumption of a constant cross section, which allowed the avoid-

ance of divergence of the integrals in calculating f (θ ). They assumed σ(ξ ) = σ0 =
√

π/8(Ji/n0vTi
). Integration then yields

φII(r) ≃−e

r

√
π

4
√

2

Ji

kDvTi

{

F (kDr)+
επ3/2

ℓikD

[1− exp(−kDr)]

}

, (2.48)

where ε =
√

π − 4π−3/2 ≈ 0.60 is a numerical factor. The two terms in the curly

brackets of Equation (2.48) correspond to absorption induced “collisionless” and

“collisional” contributions, respectively. The collisional contribution to the potential

dominates over the collisionless one for r & (2/επ3/2)ℓi ≈ 0.6ℓi. Equation (2.48) is

approximate because of the assumption of a constant collection cross section. For

instance, substituting the OML expression for the ion flux in Equation (2.48) yields

the CL potential φII(r) = −(e/r)(πa2n0/2kD)(1 + zτ)F (kDr), which is different

from the exact expression (2.45) by a factor 1+zτ
1+2zτ (≈ 1

2
since usually zτ ≫ 1). Note

also that although Equation (2.48) is derived under the assumption kDℓi ≫ 1, it yields

a correct result (to an accuracy of a numerical factor very close to unity) also in the

opposite limit, kDℓi ≪ 1, as can be immediately seen by comparing Equations (2.47)

and (2.48).

To determine the ion flux Ji entering into Equation (2.48) one can use the ap-

proximations discussed in Section 2.1.2. Khrapak et al. (2008) used the CEC ap-

proximation [Equation (2.22)] in the WC regime and continuum limit expression

[Equation (2.27)] in the SC regime. An example of the electric potential distribution

calculated by Khrapak et al. (2008) is shown in Figure 2.12. The plasma parameters

used are representative for complex plasma experiments in gas discharges: argon

gas, τ = 100, and kDa = 0.01. The solid curves correspond to numerical integra-

tion of Equation (2.44) for three different ion collisionality indexes kDℓi, the dashed

curve corresponds to the SC (in fact, FCP) limit and the dotted curve to the CL limit.

For reference, the dash-dotted curve shows the DH potential. Note that the particle

surface potentials are different for different curves. This reflects the fact that not only
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FIGURE 2.12

Normalized electric potential around a small particle in an isotropic weakly

ionized plasma versus normalized distance. The solid curves are obtained using

numerical integration in Equation (2.44). Dashed (dotted) curve corresponds to

the analytic approximation in the strongly collisional (collisionless) limit. The

dash-dotted curve shows the Debye–Hückel potential with the surface potential

calculated from the (collisionless) OML model. The inset shows a comparison

between direct numerical integration of Equation (2.44) (solid lines with sym-

bols) and the approximate expression for the weakly collisional regime [Equa-

tions (2.44) and (2.48), marked by dashed curves].

the functional form but also the initial value of the potential at the particle surface

depend on the ion collisionality, as discussed in Section 2.1.2. The inset shows the

comparison between direct numerical integration of Equation (2.44) and the approx-

imate expression for the WC regime [Equations (2.44) and (2.48)]. The agreement

is rather good and improves with increasing ℓikD, as expected.

Figure 2.12 demonstrates that the long-range asymptote of the potential is domi-

nated by the combined effect of collisions and absorption. It exhibits Coulomb-like

decay φ(r) ∼ Qeff/r, where the effective charge Qeff is determined from the plasma

parameters and increases monotonically in absolute magnitude with ion collision-

ality. At short distances the potential follows the DH form (2.39), but the surface

potential shows a non-monotonic dependence on kDℓi. In the WC regime z decreases

with increasing collisionality, while in the SC regime z increases until it reaches a
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maximum value in the FCP regime (see Figure 2.7). In the WC regime the transition

from short-range DH to the long-range Coulomb-like asymptote occurs through an

intermediate ∝ r−2 decay. In the SC regime the potential is Coulomb-like starting

practically from the particle surface.

Thus, the combined effect of continuous ion absorption and ion–neutral collisions

determines both the amplitude and the functional form of the electric potential dis-

tribution around a small absorbing particle in plasmas. The results discussed here

have been obtained using a simple linear kinetic model which neglects any plasma

production and loss mechanisms in the vicinity of the particle (Filippov et al. 2007b;

Khrapak et al. 2008). It should be noted, that direct application of linear mod-

els to complex plasmas is usually limited to the cases of small particles and/or low

electron-to-ion temperature ratios when the range of “nonlinear” ion–particle inter-

action is considerably shorter than the plasma screening length. However, linear

theory seems to be the only tool available at the moment to obtain analytic results

and to demonstrate the important effect of ion–neutral collisions on the structure of

the electric potential. A fully self-consistent nonlinear model of the potential dis-

tribution around an absorbing particle in collisional plasma is a challenge for future

research. The last point to be mentioned here is that effects of plasma production

and loss in the vicinity of the particle (which have been neglected so far) can also

influence the structure of the electric potential. This topic has been investigated by

Filippov et al. (2007a) and Chaudhuri et al. (2008) using the hydrodynamic approx-

imation and assuming that plasma production is due to electron impact ionization,

while plasma loss is due to either electron–ion volume recombination or ambipo-

lar diffusion towards the discharge chamber walls and electrodes. Conditions under

which plasma production and loss mechanisms are of minor importance have been

identified by Chaudhuri et al.

2.2.2 Anisotropic plasmas

Strong electric fields are often present in laboratory conditions (e.g., in rf sheaths

or dc striations). This induces an ion drift and, hence, creates a perturbed region

of plasma density around the particle, caused by downstream focusing of ions – the

so-called “plasma wake”. One can apply the linear dielectric response formalism

(see e.g., Alexandrov et al. 1984) to calculate the potential distribution in the wake.

This approach is applicable provided ions are weakly coupled to the particle (i.e., the

region of nonlinear ion-particle electric interaction is small compared to the plasma

screening length). Note that higher ion drift velocities imply better applicability of

the linear theory. The electrostatic potential created by a point-like charge at rest is

defined in this approximation as

φ(r) =
Q

2π2

∫

eikrdk

k2ε(0,k)
, (2.49)

where ε(ω ,k) is the plasma permittivity and u is the ion flow velocity. Using a cer-

tain model for the permittivity, one can calculate the anisotropic potential distribution
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(Nambu et al. 1995; Vladimirov and Nambu 1995; Vladimirov and Ishihara 1996;

Ishihara and Vladimirov 1997; Xie et al. 1999; Lapenta 2000; Lemons et al. 2000).

The potential profile can also be obtained from numerical modeling (Melandsøand

Goree 1995; Lampe et al. 2000; Maiorov et al. 2001; Winske 2001; Lapenta 2002;

Vladimirov et al. 2003).

Physically, the generation of plasma wakes in anisotropic dusty plasmas is similar

to the generation of electromagnetic waves by a particle which is placed in a moving

medium (Bolotovskii and Stolyarov 1992; Ginzburg 1996), and the analogy with

the Vavilov-Cherenkov effect can be useful. The potential is no longer monotonic

within a certain solid angle downstream from the particle, but has a well pronounced

extremum (maximum for a negatively charged particle). Numerical modeling shows

that the shape of the wake potential is sensitive to the ion–neutral collisions (Hou et

al. 2003) and the electron-to-ion temperature ratio which governs Landau damping

(Lampe et al. 2001b). In typical situations, these mechanisms can effectively “smear

out” the oscillatory wake structure, leaving a single maximum.

Let us illustrate how the wake potential depends on the plasma flow. The ion drift

velocity is conveniently characterized by the value of the “thermal” Mach number,

MT = ui/vTi
. The pronounced anisotropic wake structure appears in both subther-

mal and superthermal regimes of the drift (both regimes are ubiquitous for typical

experimental conditions). In this context, one can mention the work of Lampe et

al. (2000) where some examples of the wake structures, calculated numerically for

different plasma conditions, are presented (for example, see Figure 2.13).

First we consider subthermal ion drift, MT . 1. The potential profile in this case

can be calculated from Equation (2.49) analytically within the BGK approach for

the ion–neutral collision integral (Schweigert 2001; Ivlev et al. 2005). The far-

field potential has a well-known ∝ r−3 asymptote (Montgomery et al. 1968). By

combining this with the near-field Yukawa core, in the case of small collisionality

(viz., small ratio of the ion–neutral collision frequency to the ion plasma frequency),

we can approximate the potential by the following expression (Kompaneets 2007):

φ(r,θ ) = Q

[

e−r/λD

r
−2

√

2

π

MT λ 2
D

r3
cosθ −

(

2− π

2

)M2
T λ 2

D

r3
(3cos2 θ −1)

]

.

(2.50)

Equation (2.50) is written in spherical coordinates, where θ is the angle between r

and ui and is accurate to o(M2
T /r3). It shows that microparticles attract each other

in a certain solid angle along the flow, and repel in the transverse direction. Such

behavior is usually observed in ground-based experiments – particles levitating in,

e.g., (pre)sheaths of rf discharges (Melzer et al. 1996b) form stable vertical “strings”.

This result highlights the importance of the self-consistent consideration of the ion

kinetics where the ion–neutral collisions are properly taken into account. Indeed,

the (somewhat arbitrary) use of, e.g., a shifted Maxwellian distribution (Wang et al.

1981) to model a flowing plasma yields attraction between particles in the transverse

direction, which contradicts the experimental observations.

In some ground-based experiments particles levitate in the regions where the elec-

tric field is so strong that the thermal Mach number can be significantly larger than
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FIGURE 2.13

Example of plasma wake (Lampe et al. 2000). The figure illustrates the complex

structure of the wake potential φφφ(((r))) (plasma flows to the right). Calculations are

for collisionless ions with a shifted Maxwellian distribution (MMMTTT === 777...555) and for

Boltzmann electrons (τττ === 222555). The (negatively charged) grain is at the center of

the left-most node, solid and dashed curves indicate contour lines for negative

and positive potentials, respectively, distance is in units of λλλ Deee.

unity; also, the collisionality can be rather high. The BGK collision integral is no

longer applicable in this case, because in highly suprathermal regimes the ion mean

free path rather than the collision frequency should be considered constant. Solution

of the kinetic equation with a constant mean free path yields the following asymp-

totic form of the ion velocity distribution f (v) in the formal limit MT → ∞:

f (v) = ni

√

2m

πT‖
exp

(

−mv2
z

2T‖

)

δ (v⊥), vz > 0, (2.51)

whereas for vz < 0 we have f = 0 (electric field E is directed along the z axis). Here

T‖ = eEℓi is the field-induced “temperature” characterizing such half-Maxwellian

distribution. [Note that similar distributions were directly measured in experiments

(Zeuner and Meichsner 1995; Rao et al. 1996) and obtained in simulations (Maiorov

2006)]. The distribution function given by Equation (2.51) significantly deviates

from the velocity distribution obtained in the framework of the BGK approach (see

Section 2.5.1.2).

In such highly suprathermal collisional regime, MT ≫ 1, the wake potential given

by Equation (2.50) is no longer applicable as well. The calculations based on the
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constant-mean-free-path model performed by Kompaneets et al. (2007) provide the

potential distribution for this case (in cylindrical coordinates):

φ(r⊥,z) =
2Q

πℓi

Re

∞
∫

0

dt
exp[it(z/ℓi)]

1 +(ℓi/λ )2Y (t)
K0

(

r⊥
ℓi

√

t2 +(ℓi/λ )2X(t)

1 +(ℓi/λ )2Y (t)

)

. (2.52)

Here λ = [eEℓi/(4πnie
2)]1/2 is the “field-induced” Debye length, and ℓi is the ion–

neutral mean free path. Further, K0 is the zero-order modified Bessel function of the

second kind. Equation (2.52) is expressed in terms of two functions,

X(t) = 1−
√

1 + it,

Y (t) =
2
√

1 + it

it

1
∫

0

dα

[1 + it(1−α2)]2
− 1

it(1 + it)
,

where the square root should be taken with positive real part. The asymptotic behav-

ior of Equation (2.52) at large distances is

φ(r,θ ) = −Qλ 2

ℓi

cosθ

r2

(

2

1 + cos2 θ

)3/2

+ O

(

1

r3

)

. (2.53)

Thus, at large distances the test charge produces a dipole-like field, with the dipole

moment Qλ 2/ℓi. For a negatively charged grain (Q < 0), this dipole moment is

directed along the ion drift. Note the difference from the pure dipole field, due to the

additional anisotropic factor [2/(1 + cos2 θ)]3/2.

Some other effects can affect the distribution of electric potential around a charged

particle in flowing plasmas. For example, the effects of finite particle size and asym-

metry of the charge distribution over its surface were considered by Ishihara et al.

(2000) and Hou et al. (2001). The effect of ion absorption on the particle surface

has been so far investigated only for subthermal ion flows in highly collisional plas-

mas (Chaudhuri et al. 2007). In this regime the absorption-induced ion rarefication

behind the particle can dominate over the effect of ion focusing and a negative space

charge region develops downstream from the particle.

2.3 Interparticle interactions

2.3.1 Isotropic plasmas

Let us first consider the electric interaction between a pair of particles. Assuming

for simplicity that the particles have equal charges which are independent of their

separation r, the interaction energy is

U(r) = Qφ(r). (2.54)
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As discussed above, depending on plasma parameters and interparticle separation

the interparticle electric interaction can exhibit properties of exponentially screened

Coulomb (DH) or inverse power-law (∝ r−2 or ∝ r−1) potentials. As shown by

Khrapak et al. (2008), the strength of interaction can depend non-monotonically on

ion collisionality (neutral gas pressure).

Besides electrical effects, there exist other mechanisms that can contribute to in-

terparticle interactions in complex plasmas. These are associated with the specific

property of complex plasmas – their thermodynamic openness caused by the contin-

uous exchange of matter and energy between the particles and surrounding plasma.

For instance, constant plasma absorption on the particle surfaces gives rise to a so-

called “ion shadowing” interaction (Ignatov 1996; Tsytovich et al. 1996; Lampe et

al. 2000; Khrapak et al. 2001), which is basically the ion drag force that one particle

experiences as a consequence of the ion flux directed to another neighboring particle

and vice versa. The ion shadowing force is always attractive. An approximate ex-

pression for the ion shadowing potential taking into account the effect of ion–neutral

collisions in the weakly collisional regime has been derived by Khrapak et al. (2008)

and Khrapak and Morfill (2008a). It can be written as

Ush ≃−1

3

√

2

π

Qe

r

Ji

vTi

Qe

Ti

Λ, (2.55)

where Λ is the modified Coulomb logarithm derived by Khrapak et al. (2002). For

small particles Λ ≃ ln(1+β−1
T ). Although the ion shadowing interaction is not pair-

wise, because it depends on the mutual orientation of the particles (when more than

two particles are involved), for sufficiently rarefied systems (when interaction occurs

mostly through binary collisions) Equation (2.55) is expected to be a good approxi-

mation.

Analysis of Equations (2.48) and (2.55) reveals that at large distances both electric

and ion shadow interaction potentials are proportional to Ji, which is not surprising

since both interaction mechanisms stem from the conservation of the ion flux col-

lected by the particle. Both interactions have r−1 long-range asymptote. Therefore,

depending on their relative magnitudes either attraction or repulsion occurs. An ap-

proximate condition for attraction has been derived by Khrapak and Morfill (2008a).

It is kDℓi & 4, i.e., rather low plasma collisionality is required in order to make ion

shadowing attraction operational in complex plasmas.

A mechanism of interaction similar to ion shadowing can be associated with the

neutral component, provided the particle surface temperature is different from the

temperature of the surrounding neutral gas (Tsytovich et al. 1998). If the particle

surface is hotter there is a net momentum flux from the particle into the plasma which

results in the repulsion between a pair of particles. If the particle surface is colder,

the momentum flux from neutral gas to the particle generates attraction between

the particles. In the free molecular (kinetic) regime an expression for this “neutral

shadowing” interaction potential is (Tsytovich et al. 1998)

Un(r) =
3π

8

a2 p

r

δT

Tn

, (2.56)
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where p is the neutral gas pressure and δT = Ts −Tn is the difference between the

temperatures of the particle surface and surrounding neutral gas. Experiments and

theoretical estimations (see Section 2.6) demonstrated that in low pressure gas dis-

charges the particle surface temperature is somewhat hotter that the neutral gas tem-

perature (Daugherty et al. 1993; Swinkels et al. 2000; Khrapak and Morfill 2006).

Estimation by Khrapak and Morfill has shown that under typical discharge conditions

the magnitude of neutral shadowing is usually weaker compared to ion shadowing

and electric interactions.

Another interesting feature related to the interparticle interactions in complex plas-

mas is the possibility of long-range electric attraction between the particles charged

positively by electron emission processes. This electric attraction has been discussed

by Delzanno et al. (2004, 2005) for collisionless plasma conditions and by Khrapak

et al. (2007b) and D’yachkov (2008) for strongly collisional plasmas. The physics

behind this attraction is the following. In the absence of plasma production and loss

in the vicinity of the particles, the net ion and electron fluxes directed to the particle

should balance each other. This implies that sufficiently far from the particle a weak

(ambipolar) electric field should exist, which accelerates less mobile ions and decel-

erates more mobile electrons. This long-range electric field is directed to the particle

center, independently of the sign of its charge. Another particle placed in this weak

electric field is attracted to the test particle if its charge is positive and is repelled

in the opposite case. Khrapak et al. (2007b) suggested that the considered mecha-

nism can be responsible for the formation of ordered particle structures in the “dusty

combustion” (thermal plasma) experiment by Fortov et al. (1996b,c), discussed in

Section 1.3.

2.3.2 Anisotropic plasmas

In anisotropic plasmas the wake effect is important (see Section 2.2.2). This effect is

usually invoked for explaining the vertical ordering of the particles (chain formation)

often observed in ground-based experiments. In fact, the interparticle interactions

become nonreciprocal due to the presence of wakes, so that the classical Hamiltonian

approach to the particle dynamics is no longer valid in this case (see Section 3.2).

Note that another effect was pointed out, which might play some role in the vertical

ordering of particles along the ion flow. This effect is connected with a distortion of

the ion velocity field by the upstream particle and the appearance of a horizontal

component of the force, caused by the ion momentum transfer to the downstream

particle (Lapenta 2002). This force – the ion drag force – pushes the downstream

particle back to the axis with the origin at the upstream particle position and parallel

to the ion flow. Numerical modeling of the ion velocity field in the wake showed that

for certain conditions the ion drag mechanism may prevail over the electrostatic one

(Lapenta 2002).
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2.3.3 Experiments

Determination of the interaction potential constitutes a delicate experimental prob-

lem. Only a few such experiments have been performed so far (Konopka et al. 1997,

2000a; Takahashi et al. 1998; Melzer et al. 1999; Hebner and Riley 2003; Hebner et

al. 2003). Let us briefly discuss these experiments.

An elegant method based on an analysis of elastic collisions between the two parti-

cles was proposed by Konopka et al. (1997, 2000a). In this experiment the particles

are introduced into an rf discharge through a small hole in the glass window built

into the upper electrode and are levitated above the lower electrode, where the elec-

tric field compensates for gravitational force. To confine the particles horizontally, a

ring is placed on the lower electrode, which introduces a horizontal parabolic con-

fining potential. The manipulation of the particles and activation of elastic collisions

between them is performed with the use of a horizontal electric probe introduced

into the discharge chamber. During the collision, the particle trajectories are deter-

mined by the confining potential and the interparticle interaction potential which is

a function of the interparticle distance. An analysis of recorded particle trajectories

during collisions yields the coordinates and velocities of both the particles during

collision. Then, the form of the interaction potential can be reconstructed from the

equation of motion. Application of this method (Konopka et al. 2000a) showed

that for low discharge powers and pressures the interaction potential can be well

described by the Debye–Hückel (Yukawa) form (2.39) within experimental uncer-

tainties. This is illustrated in Figure 2.14. Note that the measured potential is also

in remarkably good agreement with the analytic model by Kompaneets et al. (2007)

[see Equation (2.52)]. Unfortunately, the range of interparticle distances investigated

in the experiment was not broad enough to discriminate the DH model and that of

Kompaneets et al. More experiments are necessary to resolve this issue.

A method based on the laser manipulation of the particles was proposed to study

interaction between the particles in anisotropic plasmas by Takahashi et al. (1998).

Melzer et al. (1999) employed this method for two particles suspended simultane-

ously in the rf sheath: A single particle of radius a ≃ 1.7 µm, and a cluster of two

particles (of the same size) stuck together. The particles were introduced into a

plasma of an rf discharge in helium at a pressure of p ∼ 50−200 Pa. Because of the

different charge-to-mass ratios, the double particle levitated closer to the lower elec-

trode. Both particles, meanwhile, were almost free to move in the horizontal plane.

The first observation was the following: For sufficiently low pressures, the particles

tend to form a bound state, in which the lower particle is vertically aligned to the

upper one. With increasing pressure, the bound state can be destroyed, and then the

particle separation in the horizontal plane is limited only by a very weak horizontal

confinement produced by a specially concave electrode. The backward decrease of

pressure brings the system back into the bound state. It was found that the effect

exhibits hysteresis.

In order to prove that the observed bound state is not due to external confinement,

the particles were manipulated by laser radiation. The laser beam was focused on

either the upper or the lower particle, causing their motion. It was found that when
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FIGURE 2.14

Potential energy WWW III of interaction between two particles versus the distance

xxxRRR between them measured by Konopka et al. (2000a). Measurements were

taken with the particles of radius aaa ≃≃≃ 444...555 µµµm at ppp === 222...777 Pa in argon and

different rf peak-to-peak voltages UUUp. Symbols correspond to experimen-

tal results, solid lines show their fit to the DH (Yukawa) potential WWW III(((xxxRRR))) ===
(((QQQ222///xxxRRR)))exp(((−−−xxxRRR///λλλ ))) leading to the following effective particle charge number

ZZZ === QQQ///eee and screening length λλλ (TTT eee is the measured electron temperature): 1:

|||ZZZ|||=== 111333999000000, λλλ === 000...333444 mm, TTT eee === 222...000 eV, UUUp === 222333333 V; 2: |||ZZZ|||=== 111666555000000, λλλ === 000...444000

mm, TTT eee === 222...222 eV, UUUp === 111444555 V; 3: |||ZZZ||| === 111666888000000, λλλ === 000...999000 mm, TTT eee === 222...888 eV,

UUUp === 666444 V. Note that the screening length determined from the experiment is of

the order of the electron Debye radius.

the upper particle is pushed, the lower particle follows its motion. This behavior

proves that the lower particle is subject to an attractive horizontal force mediated by

the upper particle. In contrast, when the lower particle is pushed, the response of the

upper particle is much weaker and the bound state can be easily destroyed. Hence,

the interaction between the particles is clearly non-reciprocal.

Another set of experiments to measure forces produced by the ion wake field from

the upper (lighter) “target” particle by colliding the latter with the (heavier) “probe”

particle levitated at a lower height in a sheath of an rf discharge was reported by

Hebner and Riley (2003) and Hebner et al. (2003). In these experiments attractive

and repulsive interactions between charged particles were calculated using Newton’s

equations of motion for various experimental conditions (using different particles

sizes and neutral gas pressures). It was shown that the magnitude of attractive po-

tential increases with lowering the gas pressure. It was also found that the attractive

forces decay fairly rapidly as the vertical distance between the particles increases.

Fits to repulsive and attractive forces were proposed.

It is obvious that the experimental results reported by Melzer et al. (1999), Hebner

and Riley (2003) and Hebner et al. (2003) can be explained by the the wake effect.

However, the question of whether the attractive force has an electrostatic nature or is
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associated with the ion drag mechanism (Lapenta 2002) still needs to be investigated.

2.4 Momentum exchange

The momentum exchange between different species plays an exceptionally important

role in complex plasmas. For example, the momentum transfers in collisions with the

neutral gas “cool down” the system, in particular grains and ions, introducing some

damping. The forces associated with the momentum transfer from electrons and

ions to the charged particles – i.e., the electron and ion drag forces – often determine

static and dynamical properties of the particle component, affect wave phenomena,

etc. The momentum exchange in grain–grain collisions and its competition with the

momentum transfer in grain–neutral gas collisions governs grain transport proper-

ties, scalings in fluid flows, etc. While various aspects of electron–ion interaction

(collisions) as well as electron, ion, and grain collisions with neutrals have been well

studied, comparatively little work has been done on grain–electron, grain-ion and

grain–grain collisions.

In this section, we assume the Debye–Hückel (Yukawa) potential around the par-

ticle and perform a detailed analysis of the binary collisions involving the particles.

First, the momentum transfer cross section for different types of collisions is cal-

culated and analytic approximations for some limiting cases are derived. These ap-

proximations are used to estimate the characteristic momentum exchange rates in

complex plasmas. This provides us with a unified theory of momentum exchange

in complex plasmas in the binary collision approximation. Some direct applications

of the obtained results are also considered, e.g., calculations of the electron and ion

drag forces in complex plasmas, classification of possible complex plasma states in

terms of momentum exchange, the hierarchy of the momentum exchange in grain–

grain and grain–neutral collisions and corresponding dynamical states of complex

plasmas.

2.4.1 Momentum transfer cross section

We consider binary collision between two particles of masses m1 and m2 interacting

via an isotropic potential of the form

U(r) = −(U0/r)exp(−r/λ ),

where λ is the effective screening length, U0 > 0 for attraction and U0 < 0 for repul-

sion. The particle trajectories during collision are ballistic, i.e., any types of multiple

collisions are neglected. The problem is equivalent to the scattering of a single par-

ticle of reduced mass, µ = m1m2/(m1 + m2), in the central field U(r) (whose center

is at the center of masses of the colliding particles). The analysis of motion in the

central field was given in Section 2.1.1.1 and below we employ the results of this
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analysis. First, we study the case of point-like particles. The role of the finite grain

size will be addressed later.

The momentum transfer (scattering) cross section in this approximation is given

by the integral over impact parameters

σs = 2π

∫ ∞

0
[1− cosχ(ρ)]ρdρ , (2.57)

where χ is the deflection (scattering) angle. The latter depends on the impact pa-

rameter in the following way: χ(ρ) = |π − 2ϕ(ρ)|, where ϕ(ρ) = ρ
∫ ∞

r0
drr−2[1−

Ueff(r,ρ)]−1/2 and Ueff(r,ρ) = ρ2/r2 + 2U(r)/µv2 is the normalized effective po-

tential energy. The distance of closest approach, r0(ρ), in the integral above is the

largest root of the equation Ueff(r,ρ) = 1.

The scattering parameter, β (v) = |U0|/µv2λ , introduced in Section 2.1.1.1 is the

ratio of the Coulomb radius, RC = |U0|/µv2, to the effective screening length λ . It

characterizes the “coupling” between colliding particles: The coupling is weak when

the characteristic distance of interaction R0 ∼ RC, introduced through |U(R0)| =
1
2

µv2, is shorter than the screening length, i.e., when β (v) ≪ 1. In the opposite

limit, β (v) ≫ 1, when R0 ≫ λ , the coupling is strong. In addition, the normalized

momentum transfer cross section, σs/λ 2, depends only on β (Lane and Everhart

1960; Khrapak et al. 2003b, 2004b), which makes β (v) a unique parameter which

describes momentum exchange for Yukawa-type interactions.

Note that the theory of Coulomb scattering, which uses an unscreened (Coulomb)

potential and a cutoff at ρmax = λ in the integral (2.57), is widely used to describe

momentum exchange in collisions between electrons and ions in conventional plas-

mas. It holds for RC ∼R0 ≪ λ or β ≪ 1, i.e., in the limit of weak coupling. However,

for β ≥ 1 the theory of Coulomb scattering is not applicable: In this case the inter-

action range R0 is larger than the screening length and a considerable fraction of the

interaction occurs outside the Debye sphere providing substantial contribution to the

momentum transfer. The use of a cutoff at ρmax = λ considerably underestimates the

momentum transfer in this case (Khrapak et al 2002).

Now let us estimate the characteristic values of the scattering parameter for dif-

ferent types of collisions involving grains. Taking into account that |U0| ∼ |Z|e2 for

electron–grain and ion–grain collisions, and |U0| ∼ Z2e2 for grain–grain collisions,

we get the following hierarchy of characteristic scattering parameters: (i) Grain–

electron collisions, β de
T ∼ z(a/λ ) ∼ 0.01 − 0.3; (ii) Grain–ion collisions, β di

T ∼
zτ(a/λ ) ∼ 1− 30; Grain–grain collisions, β dd

T ∼ zd(a/λ ) ∼ 103 − 3× 104, where

zd = Z2e2/aTd ≡ z|Z|(Te/Td) is the normalized potential energy of two grains which

are just touching. We also assumed z ∼ 1, τ ∼ 102, a/λ ∼ 0.01− 0.3, |Z| ∼ 103,

and zd = z|Z|τ = 105 (for Td = Ti), which is typical for complex plasmas. These

estimates show that the coupling is weak only for grain–electron collisions. At the

same time, coupling for grain–ion and grain–grain collisions is usually strong, and

the theory of Coulomb scattering fails to describe such collisions. In connection with

grain–ion collisions, this issue has been discussed by Hahn et al. (1971), Khrapak et

al. (2002, 2003b, 2004b), and Fortov et al. (2005).
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Scattering angle χχχ versus the normalized impact parameter ρρρ///λλλ , where λλλ is

the effective screening length. The numerical calculations for a repulsive (a)

and attractive (b) Yukawa interaction potential are plotted for three different

scattering parameters βββ === 000...333,,,333 and 333000. The vertical dotted line at ρρρ ≃≃≃ 444...222λλλ
in (b) indicates the transitional impact parameter ρρρ∗∗∗ at which χχχ diverges.

The numerical calculation of the momentum transfer cross sections for a wide

range of β (0.1 < β < 103) for both attractive and repulsive Yukawa potential was

reported by Khrapak et al. (2004a). First, the dependence of the scattering angle on

the impact parameter, χ(ρ), was obtained. Then, Equation (2.57) was numerically

integrated yielding the momentum transfer cross sections. The obtained results are

presented in Figures 2.15 and 2.16.

The scattering angle χ(ρ) decreases monotonically for repulsive interactions for

all β . In contrast, for attractive interactions a monotone decrease of the scattering
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Momentum transfer cross section, σσσ s, normalized to πππλλλ
222

(where λλλ is the effec-

tive screening length), versus the scattering parameter βββ . The upper data are

for attractive and the bottom data are for repulsive Yukawa potentials. Crosses

correspond to the numerical results by Khrapak et al. (2004a), triangles are

numerical results by Lane and Everhart (1960), and circles are numerical re-

sults by Hahn et al. (1971). Solid curves correspond to the following analytic

expressions: 1: Equation (2.60); 2: Equation (2.61); 3: Equation (2.59). The

dotted line corresponds to the Coulomb scattering theory [Equation (2.58)]. All

the results are for pointlike particles.

angle is observed only for β . 1, while for 1 . β . βcr it becomes a non-monotone

function of ρ , and at β > βcr ≃ 13.2 the scattering angle diverges at the “transitional”

impact parameter ρ∗ ≃ λ (lnβ + 1− 1
2

ln−1 β ), see Equation (2.8). The divergence

of the scattering angle for attractive interactions arises from the barrier in the effec-

tive potential Ueff. Note also that when β ≪ 1, the trajectories are mainly deflected

within the plasma screening length (at ρ/λ . 1). In the opposite case β ≫ 1, the

scattering angle can be substantial even for ρ ≫ λ , both for repulsive and attractive

interaction. (This is another demonstration of the fact that the Coulomb scattering

theory is nonapplicable for β & 1, as discussed above.)

The results obtained for the momentum transfer cross section (Figure 2.16) show

the following features: The cross section for the attractive potential is always larger

than that for the repulsive potential (they converge in the limit of weak coupling β ≪
1). The cross section for the repulsive potential grows monotonically, while for the

attractive potential a local maximum and minimum appear near β = βcr. This non-

monotonic behavior is a consequence of the bifurcation which the scattering angle

χ(ρ) experiences in the range 1 . β . βcr. It is also evident from Figure 2.16 that the
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Coulomb scattering theory (shown by the dotted line) considerably underestimates

the cross section for both repulsion and attraction when β & 1.

Now let us consider different limiting cases when an analytic description for the

momentum transfer cross section is possible.

Repulsive potential. In the limit of weak coupling the Coulomb scattering the-

ory is applicable as discussed above. The well-known expression for the Coulomb

scattering cross section

σ C
s /πλ 2 = 2β 2 ln(1 + 1/β 2) (2.58)

is shown by the dotted line in Figure 2.16. For β & 1, Equation (2.58) is no longer

applicable; however, an asymptotic analytic approximation for the case β ≫ 1 can

be obtained as follows. The relevant characteristic of the steepness of the potential is

the parameter γ0 = |d lnU(r)/d lnr|r=R0
. The case γ0 ≫ 1 corresponds to a rapidly

decreasing steep potential so that the momentum is mostly transferred in a spherical

“shell” of radius R0 and thickness ∼ R0/γ0. Hence, the scattering resembles that of

a hard sphere potential (Baroody 1962; Smirnov 1982) and with increasing γ0 the

momentum transfer cross section tends to

σ HS
s /πλ 2 ≃ (R0/λ )2. (2.59)

For the Yukawa potential γ0 = 1+R0/λ ≫ 1, provided β ≫ 1. A rapidly converging

analytic solution for R0(β ) derived by Khrapak et al. (2004a) is R0/λ ≃ ln2β −
ln ln2β .

Attractive potential. For weak coupling (β ≪ 1) the theory of Coulomb scattering

is applicable. The momentum transfer cross section is the same as for the repulsive

potential and is given by Equation (2.58). It was shown by Khrapak et al. (2002)

that even for moderate β , the extension of the standard Coulomb scattering theory is

possible by taking into account all the trajectories with a distance of closest approach

shorter than λ . The definition of the maximum impact parameter (cutoff) then be-

comes r0(ρmax) = λ instead of ρmax = λ and leads to a modification of the Coulomb

logarithm. The modified Coulomb momentum transfer cross section is

σMC
s /πλ 2 ≃ 4β 2 ln(1 + 1/β ). (2.60)

Although this approach is not rigorous, Equation (2.60) shows very good agreement

with numerical results by Hahn et al. (1971), Kilgore et al. (1993) and Khrapak et al.

(2004a) up to β ∼ 5 (see Figure 2.16) and agrees exactly, of course, with Coulomb

scattering theory for β ≪ 1.

The case of strong coupling (β ≫ 1) requires a new physical approach. Such an

approach was formulated by Khrapak et al. (2003b). The existence of the potential

barrier in Ueff at β > βcr and the discontinuity in χ(ρ) it causes play a crucial role for

the analysis of collisions. As shown in Figure 2.15 the dependence of the scattering

angle on the impact parameter in the limit of long range interactions (β = 30) has

the following features: For “close” (ρ < ρ∗) collisions we have χ → π at ρ → 0, and

χ(ρ) grows monotonically until ρ = ρ∗, where it diverges; for “distant” collisions
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(ρ > ρ∗ ) the scattering angle decreases rapidly, due to the exponential decay of the

interaction potential.

It is convenient to consider the contributions from close and distant collisions into

the momentum transfer separately. As shown by Khrapak et al (2003b), the be-

havior of χ as a function of the normalized impact parameter ρ/ρ∗ is practically

independent of β for ρ < ρ∗. This self-similarity allows us to present this con-

tribution to the cross section (normalized to πλ 2) as ≃ A (ρ∗/λ )2, where A =

2
∫ 1

0 [1 − cos χ(ξ )]ξ dξ and ξ = ρ/ρ∗. The value of the factor A can be deter-

mined by direct numerical integration. It was found that A = 0.81± 0.01 for all

β in the range βcr ≤ β ≤ 500. For distant collisions the scattering angle decreases

rapidly in the vicinity of ρ∗. This makes it possible to apply the small angle ap-

proximation to estimate their contribution to the cross section (normalized to πλ 2)

as ≃ 2.0 + 4.0ln−1 β . Combining these contributions and keeping terms up to O(1),
we can write the momentum transfer cross section in the limit of strong coupling

attractive interaction as (Khrapak et al 2003b)

σSC
s /πλ 2 ≃ 0.81(ρ∗/λ )2 + 2.0, (2.61)

where (ρ∗/λ )2 ≃ ln2 β + 2lnβ . Expression (2.61) is valid for β ≥ βcr and pointlike

particles. Figure 2.16 shows the very good agreement between Equation (2.61) and

numerical calculations. A sufficiently accurate and even simpler approximation is

σ SC
s ≃ πρ2

∗ , which can be further justified when the finite size of the particle is taken

into account.

Finally, let us briefly discuss the role of finite particle size. In this case a new

length scale enters the problem. In contrast to the case of point-like particles, where

the scattering is described by the single parameter β , we now have a second pa-

rameter, a/λ . If the distance of the closest approach, r0, is smaller than a (or 2a

for particle–particle collisions), then the direct (touching) collision takes place. In

this case we will assume absorption for grain–electron and grain–ion collision, and

specular reflection for grain–grains collisions.

A detailed discussion of the effect of finite particle size on the momentum transfer

is given by Khrapak et al. (2004a). It is shown that for the repulsive interaction

(grain–electron and grain–grain collisions) the effect of finite size considerably af-

fects the momentum transfer only when coupling is very weak,

β . (a/λ )Λ−1/2, (2.62)

where Λ ≃ ln(1/β )≫ 1 is the Coulomb logarithm. Recalling that β de
T ∼ z(a/λ ) and

β dd
T ∼ zd(a/λ ) and since z ∼ 1, zd ≫ 1, we conclude that the effect of finite size can

usually be neglected for grain–electron and grain–grain collisions.

The effect of finite size is more important for attractive (grain-ion) interactions.

For example, for sufficiently large β the maximum impact parameter corresponding

to ion collection is ρ+
c = ρ∗, as follows from Equation (2.6). At the same time the

contribution to the momentum transfer from ions with ρ > ρ∗ vanishes at large β .

Hence in this case the momentum transfer is associated mostly with ions collected
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The total momentum transfer cross section, σσσ ΣΣΣ, normalized to πππλλλ 222
(λλλ is the

effective screening length), versus the scattering parameter βββ for the attractive

Yukawa potential. The numerical results for different values of aaa///λλλ are shown

to illustrate the role of finite particle radius aaa.

by the particle and the total momentum transfer cross section σΣ (sum of the contri-

butions due to scattering and absorption) tends to πρ2
∗ . However, this does not imply

much difference compared to the case of pointlike particles, because scattering with

large angles at ρ < ρ∗ and absorption (which formally corresponds to the scatter-

ing at π/2) produce comparable effects. The dependence σΣ(β ) for an attractive

Yukawa potential is shown in Figure 2.17 for different values of a/λ . One can see

that the momentum transfer can decrease or increase (in comparison with pointlike

particles), depending on the values of a/λ and β . At the same time, the momentum

transfer cross section is not very sensitive to the particle size – the deviation of σΣ

from σs for a pointlike particle does not exceed ∼ 50%.

2.4.2 Momentum exchange rates

Let us consider a test particle (grain) moving through a gas of field particles (elec-

trons, ions, or grains) having an isotropic Maxwellian velocity distribution func-

tion. The test particle velocity ud is assumed to be smaller than the field parti-

cle thermal velocity vTα . Introducing the momentum exchange rate νdα through

dud/dt = −νdαud , we get (Khrapak et al. 2004a)

νdα =
1

3

√

2

π

nα µdα

mdv5
Tα

∫ ∞

0
v5σΣ(v)exp(−v2/2v2

Tα
)dv,
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where σΣ(v) is the corresponding total momentum transfer cross section (function of

the relative velocity), µdα is the reduced mass, and α = e, i,d. Some results following

from this expression are given below.

2.4.2.1 Grain–electron collisions

For grain–electron interactions usually β de
T ≪ 1 and the standard Coulomb scattering

approach is applicable. This yields

νde ≃ (2
√

2π/3)(me/md)nevTe a2z2Λde, (2.63)

where ne, me, and vTe are the density, mass, and thermal velocity of electrons, and

Λde = z

∫ ∞

0
e−zx ln[1 + 4(λ/a)2x2]dx−2z

∫ ∞

1
e−zx ln(2x−1)dx

is the Coulomb logarithm for grain–electron collisions integrated over the Maxwellian

distribution derived by Khrapak and Morfill (2004). In the typical case (2/z)(λ/a)≫
1, we obtain Λde ≃ 2ln[(2/z)(λ/a)] with logarithmic accuracy.

2.4.2.2 Grain–ion collisions

For grain–ion interaction β di
T often exceeds unity and then the Coulomb scattering

approach is not applicable. In the case β di
T . 5, Equation (2.60) can be used. This

yields

νdi ≃ (2
√

2π/3)(mi/md)nivTi
a2z2τ2Λdi, (2.64)

where ni, mi, and vTi
are the density, mass, and thermal velocity of ions, and

Λdi ≃ 2z

∫ ∞

0
e−zx ln[1 + 2τ−1(λ/a)x]dx (2.65)

is the modified Coulomb logarithm for grain–ion scattering (Khrapak et al. 2002)

integrated over the Maxwellian distribution function [in Equation (2.65) we took into

account that τ ≫ 1]. In the limit of small β di
T or (1/zτ)(λ/a)≫ 1, the result reduces

to that of the Coulomb scattering theory and we have Λdi ≃ 2ln[(2/zτ)(λ/a)]. In

the opposite limit of very large scattering parameters, β di
T > βcr ≃ 13.2, the total

momentum transfer cross section is to good accuracy σΣ ≃ πρ2
∗ , where ρ∗ ∼ λ lnβ di

T .

This yields

νdi ≃ (8
√

2π/3)(mi/md)nivTi
ρ2
∗ . (2.66)

2.4.2.3 Grain–grain collisions

For grain–grain interactions the standard Coulomb scattering approach can be em-

ployed for only extremely small grain charges and/or extremely high grain energies,

so that β dd
T = zd(a/λ )≪ 1. In this situation we have

νdd ≃ (4
√

2π/3)ndvTd
a2z2

dΛdd , (2.67)
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where nd , and vTd
are the density, and thermal velocity of the grains, and

Λdd = zd

∫ ∞

0
e−zdx ln[1 +(λ/a)2x2]dx−2zd

∫ ∞

1
e−zdx ln(2x−1)dx,

is the Coulomb logarithm for the grain–grain collisions integrated over the Maxwellian

distribution. If (1/zd)(λ/a)≫ 1, the Coulomb scattering approach is applicable and

we have Λdd ≃ 2ln[(1/zd)(λ/a)] with logarithmic accuracy. In the regime β dd
T ≫ 1,

which is more typical for complex plasmas, the analogy with hard sphere collisions

can be used. The result is (Khrapak et al 2004a)

νdd ≃ (4
√

2π/3)ndvTd
R2

0. (2.68)

The obtained results for the momentum exchange in grain–grain collisions will be

used below to investigate the possible states of complex plasmas.

2.4.3 Momentum exchange diagram

The grain charges in complex plasmas, as well as the plasma screening length are not

constant. This is why the strength of the electrostatic coupling between the grains

can be easily changed experimentally over a fairly wide range (by varying, e.g., the

discharge conditions) (Morfill et al. 2002). This is a major distinguishing feature of

complex plasmas compared to conventional plasmas, where the ion charges are nor-

mally constant (single). In complex plasmas, one can observe the transitions from

the disordered, weakly coupled to strongly coupled states and the formation of or-

dered structures of grains – plasma crystals (Chu and I 1994; Hayashi and Tachibana

1994; Melzer et al. 1994, 1996a; Thomas et al. 1994; Fortov et al. 1996a,b, 1997,

2005; Thomas and Morfill 1996; Lipaev et al. 1997; Tsytovich 1997; Morfill et al.

2002, 2004; Piel and Melzer 2002).

Another major distinguishing feature of complex plasmas is that the overall dy-

namical time scales associated with the particle component are relatively long (dust

plasma frequency ∼10–100 Hz) (Tsytovich 1997; Piel and Melzer 2002; Khrapak

et al. 2003c). Furthermore, the grains themselves are large enough to be easily vi-

sualized individually. All together this makes it possible to investigate phenomena

occurring in different phases at the most fundamental kinetic level (Morfill et al.

2002, 2004; Fortov et al. 2005). Although there is always some damping introduced

into the complex plasma systems due to neutral gas friction (Piel and Melzer 2002),

the resulting damping rate is many orders of magnitude smaller than that in colloidal

suspensions, and it can easily be made much smaller than the major eigenfrequencies

of the particle component dynamics. Hence the most interesting dynamical phenom-

ena have usually enough time to evolve (Morfill et al. 2004).

Let us dwell upon these features of complex plasmas in detail.

Figure 2.18 represents different “phase states” of complex plasmas as functions

of the electrostatic (Coulomb) coupling parameter ΓS and the mean grain separa-

tion ∆, normalized either to the grain size a or to the screening length λ (“finiteness
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FIGURE 2.18

“Momentum exchange” diagram of complex plasmas in (((ΓΓΓS,,,κκκ))) parameter

space (Khrapak et al. 2004a). The vertical dashed line at κκκ === 111 condition-

ally divides the system into “Coulomb” and “Yukawa” parts. Different states

are marked in the figure. Regions I (V) represent Coulomb (Yukawa) crystals;

Regions II (VI) are for Coulomb (Yukawa) non-ideal plasmas; Regions III (VII

and VIII) correspond to Coulomb (Yukawa) ideal plasmas. Note that in the

Region VIII the electric Yukawa interaction asymptotically reduces to the hard

sphere limit. In region IV the electrostatic interaction is not important and the

system is like conventional system of hard spheres. For further explanations see

text.

parameter” α = ∆/a and “lattice parameter” κ = ∆/λ , respectively). The parame-

ter ΓS = Γexp(−κ), which characterizes the “actual” coupling ratio (potential en-

ergy/kinetic energy) for the Debye–Hückel interaction potential at the average inter-

grain distance, is expressed in terms of the (Coulomb) coupling scale Γ = Q2/∆Td

(note that in terms of Γ and κ the thermal scattering parameter is β dd
T = 2Γκ). The

use of ΓS implies that the calculations should be representative to some extent for

other types of “similar” interaction potentials, too (viz., with “similar” long- and

short-range asymptotes). The vertical line κ = 1 conditionally divides the diagram

into weakly screened (Coulomb) and strongly screened (Yukawa) parts. In Fig-

ure 2.18 we have set λ/a≡ α/κ = 100, which is typical of complex plasmas studied

so far, but there is in principle a wide range of variation, depending on grain size and

plasma conditions chosen. The “melting line” which indicates the liquid-solid phase

transition is shown by the upper solid line in Figure 2.18 is discussed in Section 5.1.

Further insight into the possible phase states shown in Figure 2.18 is obtained from

the results on the momentum transfer cross section for grain–grain collisions. This
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approach allows us to obtain a clear physical classification of complex plasmas. The

lower solid curve indicates the “transition” between “ideal” and “non-ideal” plasmas.

We determine this transition from the condition
√

σΣ/π = (4π/3)−1/3∆, which im-

plies that the characteristic range of grain–grain interaction (in terms of the momen-

tum exchange) is comparable to the intergrain distance (in terms of the Wigner-Seitz

radius). Above this line the interaction is essentially multiparticle, whereas below

the line only pair collisions are important. This refines the standard condition used

to define a “boundary” between ideal and non-ideal plasmas, ΓS ∼ 1. From the ther-

modynamical point of view, this line determines the limit of employing expansions

of the thermodynamical functions (e.g., virial expansion) over the (small) coupling

parameter.

It is important to note that for a one-component system of particles interacting

via Debye–Hückel (Yukawa) repulsive potential (as well as for any monotonic repul-

sive potential) no liquid–gas phase transition is possible (formally, the critical point

occurs at Td = 0). This is different, if the pair potential is not monotonic, e.g., a

long-range attractive component (for instance, ion shadow interaction) added to a

short-range repulsive electrostatic potential exists. This issue will be discussed in

more detail in Section 5.1.

The regions where the system is similar to that of hard spheres are also shown in

Figure 2.18: Below the left dotted curve the electrostatic interaction is too weak and

the momentum exchange occurs due to direct interparticle collisions; i.e., we have

a usual system of hard spheres where charges do not play any noticeable role. This

line corresponds to β dd
T = (a/λ )Λ

−1/2

dd [see Equation (2.62)]. The right dotted curve

marks the transition boundary for hard sphere-like interaction. Here the “mean” scat-

tering parameter for grain–grain collisions exceeds unity (β dd
T > 1), and hence, the

strongly screened electrostatic interaction reduces asymptotically to the hard sphere

limit with radius R0 ≃ λ ln(2β dd
T ).

Next we investigate complex plasma properties in terms of the competition be-

tween the momentum exchange in mutual grain–grain collisions and the interaction

with the surrounding medium.

Complex plasmas can be “engineered” as essentially a “one-phase fluid” (when

the interactions between the grains dominate) or as a “particle laden two-phase flow”

(when the interactions with the background medium are of similar or greater impor-

tance). We have illustrated this by plotting contours of constant ratios of the grain–

grain/grain–background momentum exchange rates, νdd/νdn, in the (ΓS,κ) diagram

in Figure 2.19.

In complex plasmas the exchange of momentum with the background medium is

mostly through grain–neutral gas collisions,

νdn = δ (8
√

2π/3)(mn/md)a
2nnvTn , (2.69)

where mn, nn, and vTn are the mass, density, and thermal velocity of neutrals, re-

spectively (Epstein 1924). The value of the numerical factor δ depends on the exact

process of neutral scattering from the particle surface. For example, δ = 1 for the

cases of complete absorption and specular reflection, while δ = 1 + π/8 ≃ 1.4 for
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Typical contours are shown of constant ratios of the momentum exchange rates

in grain–grain collisions relative to grain–background (neutral gas) collisions

(Khrapak et al. 2004a). The values νννdddddd///νννdddnnn === 111000222,,,111000,,,111,,,111000−−−111, and 111000−−−222 are

depicted in a phase diagram for complex plasmas in (((ΓΓΓS,,,κκκ))) parameter space

(from left to right). Also shown in the figure are the lines corresponding to crys-

tal melting (solid line) and the boundary between ideal and non-ideal plasmas

(dashed line). The following complex plasma parameters were used in these cal-

culations: Grains of radius aaa === 111 µµµm and material mass density of 1 g/cm333 in

argon plasma at a neutral gas pressure of 100 Pa; room temperature ions and

neutrals TTT iii ∼∼∼ TTT nnn ∼∼∼ 000...000333 eV, and aaa///λλλ === 111000−−−222.

diffuse scattering with full accommodation. According to Liu et al. (2003), the latter

value is more consistent with the experimental results.

For the momentum exchange rate in grain–grain collisions, we use Equation (2.68)

at β dd
T ≫ 1 (upper symbols in the figure) and Equation (2.67) at β dd

T ≪ 1 (lower sym-

bols). In the transition regime β dd
T ∼ 1, none of these approximations is applicable

and we have therefore simply linked the two regimes by dotted lines.

Figure 2.19 shows that there is a broad range of parameters where complex plas-

mas have the properties of one-phase fluids (νdd/νdn ≫ 1), and those of two-phase

fluids νdd/νdn ∼ 1. In the extreme limit of very small νdd/νdn, we can also, of

course, have “tracer particles” in the background medium, which provide practically

no disturbance to the background flow. Taking into account that a number of plasma

parameters (e.g., the neutral gas pressure, plasma screening length, the ratio a/λ )

can be varied relatively easily within approximately one order of magnitude, most of

the possible states can be investigated.

In concluding this section we note that the considered model uses a number of

simplifying assumptions (e.g., fixed form of the potential, ballistic trajectories during
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collisions, fixed particle charges) which are not necessarily satisfied in real complex

plasmas. Nevertheless, in many cases this simple model does provide reasonable

predictions, and hence, it can be considered as the basis for more sophisticated mod-

els. The described results can be important for “engineering” experiments which aim

to make use of special properties of complex plasmas.

2.5 Forces on particles

Knowledge of the major forces acting on microparticles in complex plasmas is essen-

tial for understanding dynamic phenomena and equilibrium configurations of com-

plex plasmas observed in experiments. The forces can be naturally divided into

two groups: The first one includes the forces which have electric nature: electron

drag, ion drag, and electrostatic forces, whereas the second one includes the charge-

independent forces: gravity, neutral drag, and thermophoretic forces. The calculation

of the ion drag force is rather complicated in some cases. At the same time, this force

is particularly important in complex plasmas and therefore it is a subject of a separate

section.

2.5.1 Ion drag force

An exceptionally important example of plasma–particle interactions is the ion drag

(wind) force which is caused by the momentum transfer from the flowing ions to

charged particles. Knowledge of the ion drag force in a wide regime of plasma pa-

rameters is necessary for understanding a variety of phenomena occurring in space

and in the laboratory. To illustrate the importance of the ion drag force for com-

plex plasmas, let us mention that this force is responsible for the formation of the

so-called voids – regions free of particles – in experiments under microgravity con-

ditions (Goree et al. 1999; Morfill et al. 1999b; Kretschmer et al. 2005; Lipaev et

al. 2007), it causes rotation of particle structures (e.g., clusters) in the presence of a

magnetic field (Konopka et al. 2000b; Ishihara et al. 2002; Kaw et al. 2002), affects

the properties of low-frequency waves (D’Angelo 1998; Khrapak and Yaroshenko

2003), contributes to the interparticle interactions (Khrapak et al. 2006a; Khrapak

and Morfill 2008a), etc.

Despite the high importance of the ion drag force, a complete self-consistent

model for this force, describing all cases of interest, has not yet been constructed.

Rather, there exist several approximations which can be utilized in certain parameter

regimes. Let us briefly mention the approaches used so far.

The traditional way to derive the ion drag force is based on the “binary collision

formalism”. Here the mechanical problem of the ion motion in the (central) field of

the charged particle is solved. Analysis of ion trajectories yields the velocity depen-

dent momentum transfer cross section. The force is then obtained by integrating the
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cross section with an appropriate ion velocity distribution function. This approach

can be applied for any form and strength of the ion–particle interaction, but since

one deals with ballistic ion trajectories, the effect of ion–neutral collisions, which is

often important in complex plasmas, cannot be consistently accounted for.

An alternative way to calculate the ion drag force is based on the so-called “linear

plasma response formalism” (see, e.g., Thompson and Hubbard 1960; Montgomery

et al. 1968). Instead of calculating single ion trajectories and then the momentum

transfer cross section, one can solve the Poisson equation coupled to the kinetic

equation for the ions and obtain the self-consistent anisotropic component of the

electric field induced by the ion flow at the position of the particle, which produces

the (drag) force. This approach consistently accounts for ion–neutral collisions and

potential anisotropy caused by the ion flow, but is applicable only for the weak ion–

particle coupling since linearizations are involved.

In the limit of very high plasma collisionality fluid (hydrodynamic) description

of plasma is possible. This basically corresponds to a highly collisional limit of the

kinetic approach. However, using the hydrodynamic formulation, one can easily take

into account ion absorbtion on the particle which inevitably occurs in plasmas. As

will be demonstrated below, in the highly collisional regime absorption represents a

very important factor which not only affect the magnitude of the force, but also its

direction.

In this section we present the results of these approaches and discuss unresolved

issues.

2.5.1.1 Binary collision approach

In collisionless plasmas it is natural to employ the binary collision (BC) approach

to calculate the ion drag force. Typical assumptions used in the BC approach are

an isotropic attractive Debye–Hückel (Yukawa) interaction potential between the ion

and the particle and a shifted Maxwellian velocity distribution function for the ions.

Initially, the ion drag force was calculated using the standard theory of Coulomb

scattering (Uglov and Gnedovets 1991; Barnes et al. 1992). Basically this is the lin-

ear approximation assuming that the characteristic length of ion–particle interaction

is much shorter than the plasma screening length and most of the ions are scattered

with small angles within the Debye sphere. This theory is extensively used to de-

scribe collisions in conventional electron–ion plasmas (e.g. Spitzer 1962). However,

it turns out that the Coulomb scattering theory underestimates considerably the mo-

mentum transfer cross section in ion–particle collisions and the ion drag force in

typical complex plasmas. The reason for that has been discussed in Section 2.4.1.

Let us review it here.

The point is that the negative (floating) surface potential of a non-emitting parti-

cle in plasmas is rather high, on the order of the electron temperature (see Section

2.1). Since the electron-to-ion temperature ratio is usually on the order of one (few)

hundred(s), ions are strongly coupled to the particle in a wide surrounding region.

This implies that the characteristic length of the ion–particle interaction can be com-

parable or even exceed the plasma screening length, which is of the order of the ion
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Debye radius in an isotropic plasma. For this reason, the standard Coulomb scat-

tering theory which neglects all collision events with impact parameters larger than

the plasma screening length becomes inadequate. There were attempts to improve

the situation by postulating the plasma screening length to be equal to the electron

Debye radius (Kilgore et al. 1993; Zafiu et al. 2003a). This assumption causes an

artificial enhancement of the ion drag force; however, it is arbitrary and physically

unjustified (Khrapak et al. 2003a; Zafiu et al. 2003b), at least for small particles in

quasi-isotropic plasmas.

The very fact that the standard Coulomb scattering theory fails to describe mo-

mentum transfer in ion–particle collisions was recognized by Khrapak et al. (2002)

who proposed an extension of the Coulomb scattering theory to the regime of mod-

erate ion–particle coupling. The modification merely affects the Coulomb logarithm,

as discussed in Section 2.4.1. Later on, the limit of strong ion–particle coupling was

investigated in detail and an analytic approach to calculate the ion drag force in this

regime was developed (Khrapak et al. 2003b, 2004a,b). This approach has been

discussed in Section 2.4.1.

Let us now present the quantitative results of the BC approach obtained for differ-

ent strengths of ion–particle coupling.

In the framework of the BC approach, the ion drag force Fid is completely de-

termined by the (velocity-dependent) total momentum transfer cross section for the

ion–particle collisions, σΣ, which has been derived in Section 2.4.1. The force is

Fid = mdνdiu, where u is the ion flow velocity and νdi is the momentum exchange

rate (the latter is given by averaging the cross section over the ion velocity distribu-

tion, see Section 2.4.2). The force depends on the magnitude of the thermal scattering

parameter, βT = |Q|e/λTi, where λ is the effective screening length (which does not

necessarily coincide with the Debye radius, see Sections 2.2.1 and 2.5.1.4).

For subthermal flows (when the thermal Mach number is small, MT ≡ u/vTi
≪ 1),

we can directly employ results of Section 2.4.2.2: At moderate coupling strength

(βT . 5), Equation (2.64) yields

Fid =
1

3
√

2π

(

Ti

e

)2

Λdiβ
2
T MT , (2.70)

where Λdi is given by expression (2.65). Here we also assume λ ≃ λDi for subthermal

ion flows (see Section 2.5.1.4). Equation (2.70) yields the scaling Fid ∝ (Q/λ )2MT .

In the linear regime βT ≪ 1 the logarithm is reduced to Λdi ≃ 2lnβ−1
T , which is

identical to the results of the standard Coulomb scattering theory. In the opposite

regime of strongly nonlinear scattering, βT ≫ βcr ≃ 13, we obtain from Equation

(2.66)

Fid ≃
2

3

√

2

π

(

Ti

e

)2

ln2 βT MT . (2.71)

In this case the force depends logarithmically on the scattering parameter and, hence,

on Q and λ .

For the case of arbitrary ion flow velocity the expressions for the ion drag force are

more complicated. They were derived by Khrapak et al. (2005a) for the regime of
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moderate ion–particle coupling and by Nosenko et al. (2007) for the regime of strong

ion–particle coupling, respectively. Note, that for highly superthermal ion flows with

MT ≫ 1, the drift velocity rather than the thermal velocity should be used to evaluate

the scattering parameter β . Also, the screening is determined by the electrons rather

than by ions in this case, λ ≃ λDe (see Section 2.5.1.4). Therefore, we conclude from

Equation (2.7) that the scattering parameter decreases rapidly with the Mach number,

and we can expect the linear scattering (weak coupling, β ∼ βT (λDi/λDe)M
−2
T ≤ 1)

to be typical for MT ≫ 1. Then the momentum transfer cross section is given by

Equation (2.58) and after the integration over the shifted Maxwellian distribution the

force is

Fid ≃
(

Ti

e

)2

ln

(

λDe

λDi

M2
T

βT

)

β 2
T

M2
T

. (2.72)

The ion drag decreases as ∝ M−2
T at large Mach numbers (neglecting a weak loga-

rithmic dependence). In the limit of a very high flow velocity, the momentum flux

onto the grain (collection) dominates over the scattering part and then the force tends

to the “geometrical asymptote”, Fid ≃ (Ti/e)2(a/2λ )2M2
T , which does not depend on

the particle charge.

2.5.1.2 Kinetic approach

The binary collision approach discussed above is applicable for any strength of ion–

particle coupling. However, it is not intrinsically consistent. These reasons are

the following: (i) Ion–neutral collisions are completely neglected; (ii) the approach

presumes a certain potential distribution around the test charge (usually isotropic

Yukawa-type potential), although in reality the potential is a self-consistent func-

tion of the plasma environment (e.g., ion collisionality, ion flow velocity); (iii) the

approach presumes a certain velocity distribution function for the ions (usually the

shifted Maxwellian distribution). These issues can be resolved by employing the

linear kinetic approach.

A comprehensive kinetic model accounting for the effect of ion–neutral collisions

on the ion drag force that a non-absorbing particle experiences in plasmas was de-

veloped by Ivlev et al. (2004a,b, 2005). In this model electrons are assumed to

have Boltzmann distribution. The ion component is described by the kinetic equa-

tion with the collisional integral in the model Bhatnagar–Gross–Krook (BGK) form

with constant ion–neutral collision frequency ν (see Section 2.2.1). The functional

form of the BGK collision integral is particularly suitable for the description of the

charge–exchange collisions. In reality, the ion–neutral collision cross section is a

complicated (monotonically decreasing) function of the ion velocity which cannot be

generally approximated by any simple scaling (Raizer 1991; Lieberman and Licht-

enberg 1994). It is reasonable, therefore, to choose the approximation ν = const

which allows us to represent the model collision operator in the convenient algebraic

form.

The ion and electron density perturbations are coupled to the Poisson equation.

Linearization of this system of equations allows one to obtain the magnitude of the

polarization field that the test charge embedded into a flowing plasma induces at its
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origin. The product of this polarization field and the particle charge yields the ion

drag force acting on a non-absorbing particle, Fid =−Q∇φ |r=0. The direction of the

ion drag force is obviously parallel to the ion flow.

The electric potential distribution around a non-absorbing test particle is given by

Equation (2.49). It is expressed via the plasma permittivity ε(0,k). The latter is

determined by the electron and ion responses, ε(ω ,k) = 1+ χe + χi. For Boltzmann

electrons we have χe ≃ (kλDe)
−2. The ion contribution χi should be in general ob-

tained from the self-consistent solution of the linearized kinetic equation coupled

to the Poisson equation. Ivlev et al. (2004a) used the conventional expression for

Maxwellian collisional ions (see, e.g., Alexandrov et al. 1984). They obtained that

in the limit MT ≪ 1 the force is

Fid ≃
1

3

√

2

π

(

Ti

e

)2 [

lnβ−1
T +

1√
2π

K (λD/ℓi)

]

β 2
T MT + O(M3

T ), (2.73)

where K (x) = xarctanx+(
√

π
2
−1) x2

1+x2 −
√

π
2

ln(1+x2) is the “collision function”

and λD is the linearized Debye length. For ℓi ≥ λD the function K is negligibly

small compared to the Coulomb logarithm and Equation (2.73) yields the standard

collisionless expression for the ion drag force [Equation (2.70) for βT ≪ 1] derived

from the BC approach. In terms of the ion kinetics, the origin of this force is the

Landau damping. In the opposite limit ℓi ≪ λD, the hydrodynamic effects become

more important, and the expression in the brackets in Equation (2.73) changes from

lnβ−1
T to ln[(ℓi/λD)β−1

T ]+
√

π
8
(λD/ℓi). If collisions become “very frequent”, ℓi ≤

βT λD, the kinetic effects disappear completely and the resulting ion drag force is

Fid ≃ (1/6)(Ti/e)2(λD/ℓi)β
2
T MT . (2.74)

Note that to avoid logarithmic divergence of the integral in deriving the ion drag

force at large k, the upper limit of integration was set to kmax ∼ (λDβT )−1. For larger

k linearization procedure is not justified since ion–particle interaction in this regime

is essentially nonlinear.

An important result obtained independently by Schweigert (2001) and Ivlev et

al. (2005) is that when the ion drift is generated by an external electric field E, the

assumption of Maxwellian ions is a good approximation only for subthermal flow ve-

locities. The point is that the kinetic equation with the BGK collision integral yields

the following solution for the steady-state ion distribution function in the electric

field (Schweigert 2001; Ivlev et al. 2005):

f (v‖,v⊥) = n0Φ⊥(v⊥)

∞
∫

0

Φ‖(v‖−ux)e−xdx. (2.75)

Here Φ‖ = (2πv2
Tn

)−1/2 exp(−v2
‖/2v2

Tn
) and Φ⊥ = (2πv2

Tn
)−1 exp(−v2

⊥/2v2
Tn

) are the

longitudinal and transverse factors of the Maxwellian neutral velocity distribution,

respectively, so that Φ ≡ Φ‖Φ⊥. As usual we assume that ion and neutral temper-

ature are equal, and hence, vTi
= vTn . The ion drift velocity in the mobility limit



158 Complex and Dusty Plasmas

is u = eE/miν . When u → 0 we have f → n0Φ, where n0 is the ambient (con-

stant) ion density. For subthermal ion drift, distribution (2.75) is close to the shifted

Maxwellian function, f ≃ n0Φ(v)(1 + uv/v2
Ti
). However, for u ≥ vTi

the deviation

from the Maxwellian form is significant.

Thus, for superthermal ion drifts, Maxwellian response for the ions is no longer

applicable. Using Equation (2.75) one can derive the self-consistent ion response

in a collisional plasma with the external electric field. This was done by Scweigert

(2001) and Ivlev et al. (2004b, 2005). The result is

χi(ω,k) =
(kλDi)

−2

1 + i(kµν/k2vTi
)MT







1 + 〈F (ξ2)〉

1 +
iν

ω + iν
F (ξ1)






, (2.76)

where the variables ξ1,2 are

ξ1 =
(ω + iν)/

√
2kvTi

√

1 + i(kµν/k2vTi
)MT

, ξ2 =
(ω − kµvTi

MT x + iν)/
√

2kvTi
√

1 + i(kµν/k2vTi
)MT

,

F (ξ ) is the dispersion function of the Maxwellian plasma (Fried and Conte 1961),

and the average is 〈. . .〉 =
∫ ∞

0 . . .e−xdx. Using plasma permittivity with the ion re-

sponse Equation (2.76), one can numerically calculate the ion drag force for arbitrary

Mach number and ion collision frequency. For small Mach numbers, χi tends to that

of Maxwellian plasmas and we recover Equation (2.73). For large Mach numbers

Ivlev et al. (2004b, 2005) obtained the following approximate expression for the ion

drag force

Fid ≃
√

2

π

(

Ti

e

)2

ln

(

4
ℓi

λD

MT

βT

)

β 2
T

MT

+ O(M−2
T ). (2.77)

Figure 2.20 shows the ion drag force normalized to β 2
T (Ti/e)2 versus the Mach num-

ber for different values of βT and λD/ℓi. One can see that analytic asymptotes agree

fairly well with the numerical results – depending on the value of λD/ℓi, the dis-

crepancy is ≤ 10 % at MT ≤0.2–0.3 [Equation (2.73)] and MT ≥10 –20 [Equation

(2.77)].

At large MT the kinetic approach yields the force which scales as Fid ∝ M−1
T , in

contrast to the scaling ∝ M−2
T in the binary collision approach [see Equation (2.72)].

This is because the ion distribution (2.75) deviates significantly from the Maxwellian

form in the superthermal regime. The scaling Fid ∝ M−1
T is not affected by a particu-

lar dependence of ν on the ion velocity, and hence, it is a generic feature of the self-

consistent approach at large Mach numbers. Another feature which follows from

the kinetic consideration is the dependence of the force on the ion mean free path.

Figure 2.20 shows that frequent ion–neutral collisions (ℓi ≪ λD) enhance the force

at small MT . This is due to the ion focusing (Ivlev et al. 2004a): Each collision

“eliminates” the angular momentum the ion had (with respect to the particle) before

the collision. The motion of the flowing ions becomes more radial due to attraction

towards the negatively charged particle. Thus, with increasing ion–neutral collision
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FIGURE 2.20

Normalized ion drag force versus the thermal Mach number of the ion flow MMMTTT

(Ivlev et al. 2005). The force depends on two parameters: Scattering parame-

ter βββ TTT , and ratio of the screening length to the thermal mean free path, λλλ D///ℓℓℓiii.

The data points correspond to numerical calculations with the ion susceptibility

from Equation (2.76), for βββ−−−111
TTT === 111000 (a) and βββ−−−111

TTT === 111000000 (b). Symbols represent

λλλ D///ℓℓℓiii === 000...111 (square), λλλ D///ℓℓℓiii === 111 (circle), and λλλ D///ℓℓℓiii === 111000 (triangle). Analytic

asymptotes at small and large Mach numbers [Equations (2.73) and (2.77), re-

spectively] correspond to the same values of λλλ D///ℓℓℓiii (solid, dashed, and dotted

lines, respectively).

frequency (decreasing ion mean free path), the focusing center moves closer to the

particle and the magnitude of the local enhancement of the ion density at the focusing

center increases (see Figure 2.21a in section 2.5.1.3). This additional positive space

charge attracts the negatively charged particle enhancing the ion drag force acting in

the direction of the ion flow. This mechanism, however, can operate only if the field

of the charged particle is stronger than the global field E . Otherwise, if E is rela-

tively strong (Mach number is large), it should de-focus the ion trajectories: After

each collision, the ions should accelerate mostly along E . Increase of collisionality

(decrease of ℓi) at constant MT ∝ Eℓi implies increase of the global electric field and,

hence, stronger de-focusing. In turn, the latter implies the decrease of the ion drag

force with increasing collisionality which we see in Figure 2.20 for superthermal ion
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flows.

The linear kinetic approach is not valid in the immediate vicinity of the charged

particle, where the electrostatic perturbations are too strong and the ion–particle in-

teractions are nonlinear. The criterium of the applicability of this approach is the

requirement that the actual contribution to the force from the “nonlinear” region is

relatively small. Usually this requirement is satisfied when the ion–particle scattering

parameter β is sufficiently small. For MT ≪ 1, the applicability of Equation (2.73)

is βT ≪ 1. In this limit, the collisionless part of Equation (2.73) coincides with the

results of the binary collision approach [see Equation (2.70)]. Larger Mach numbers

imply better applicability – similar to the results of the binary collision approach –

since the effective value of β decreases with increasing MT .

Another important issue is the effect of ion absorption, neglected in the kinetic

consideration. This effect is considered below in the case of a highly collisional

plasma.

2.5.1.3 Hydrodynamic approach

In contrast to the analytic results of the kinetic approach predicting an increase of

the ion drag force with ion collisionality at low flow velocities, some numerical sim-

ulations performed for collisional situations (Schweigert et al. 2004; Maiorov 2005)

demonstrated a decrease of the ion drag force compared to the collisionless situation,

and even negative values were reported (i.e., ion drag force was directed oppositely

to the ion flow). Since one of the most important differences between these two con-

siderations is the effect of plasma absorption on the particle – neglected in theory,

but accounted for in simulations – it is natural to assume that this effect is respon-

sible for the observed discrepancy. Although, Patacchini and Hutchinson (2008)

later doubted the correctness of the numerical results by Schweigert et al. (2004)

and Maiorov (2005), the above mentioned discrepancy between theory and simula-

tions motivated Khrapak et al. (2007c) to perform a detailed analysis of the highly

collisional limit in the hydrodynamic approximation, where the effects of plasma

absorption on the particle surface can be easily accounted for. This consideration

is merely of methodological interest, since highly collisional regime is seldom met

in practical complex plasmas. Nevertheless, taking into account the interesting and

unexpected character of the obtained results and possible applications to other fields

it is worth to discuss this issue briefly.

The problem is formulated as follows: A small individual stationary point-like

grain of charge Q is immersed in a highly collisional plasma. Quasi-neutral bulk

plasma conditions are assumed, where the ions exhibit subthermal drift while the

electrons form a stationary background (ambipolar plasma regime). The neutral

component is stationary as well. There are no plasma sources and sinks in the vicin-

ity of the particle (except for the particle surface). The collisional ion component is

described by the continuity and momentum equation in the hydrodynamic approxi-

mation,

∇(nivi) = −Jiδ (r), (2.78)
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(vi∇)vi = − e

mi
∇φ − ∇ni

ni
v2

Ti
−νvi +

f

mi
, (2.79)

where Ji is the ion flux to the particle and f is an external force responsible for the

ion drift. In equilibrium the ion drift velocity is u = f/miν . In the considered case

the ion drift is caused by a weak ambipolar electric field, but the final results are

independent of the nature of the drift-generating term. The electron density satisfies

the Boltzmann relation (2.41). The system is closed with the Poisson equation (2.43).

Standard linearization procedure yields

φ(r) =
4πQ

(2π)3

∫

exp(ikr)dk

χ1(ku,k)
+

4πe

(2π)3

∫

exp(ikr)dk

χ2(ku,k)
, (2.80)

where

χ1(ku,k) = k2 + k2
De + k2

Di

[

1 +
ku(iν −ku)

k2v2
Ti

]−1

, (2.81)

and

χ2(ku,k) = −i
k2v2

Ti
(k2 + k2

D)

Ji(iν −ku)
− i

ku(iν −ku)(k2 + k2
De)

Ji(iν −ku)
. (2.82)

The first term on the right-hand side of Equation (2.80) is the usual expression for the

potential around a pointlike non-absorbing grain in the limit of high collisionality.

The second term arises due to ion absorption [see Equation (2.78)]. The electron

absorption is not accounted for since it yields only small corrections to the force

(Khrapak et al. 2007c).

The ion drag force can be easily calculated in the limiting case of vanishing ion

flow, kℓi ≫ u/vTi
≡ MT . The resulting expression is (Khrapak et al. 2007c)

Fid ≃ (1/6)Q2k2
Di(ℓikD)−1MT +(1/6)Qek2

Di(ℓikD)−1(Ji/k2
DivTi

ℓi)(1 + k2
De/k2

D)MT .
(2.83)

The first term on the right-hand side of Equation (2.83) yields the force acting on a

non-absorbing particle. It coincides with the expression (2.74) obtained using kinetic

approach [Note that (2.74) was written assuming λD = λDi)]. The second term (ab-

sent in the kinetic model) corresponds to the effect of absorption. It yields a negative

contribution to the force, since Q < 0. Thus, in the highly collisional limit, plasma

absorption on the particle reduces the absolute magnitude of the ion drag force.

The magnitude of this reduction is determined by the actual value of the ion flux

Ji directed to the particle (Section 2.1). Using the continuum limit expression (2.27),

we get

Fid ≃−(1/6)Q2k2
Di(ℓikD)−1(1 + τ)−1MT , (2.84)

i.e., the force reverses sign! Clearly, this is a result of ion absorbtion on the particle

surface.

Let us briefly discuss the physical reason for the ion drag force reduction and sign

reversal. With no absorption taken into account, the ion–neutral collisions would

enhance the ion drag force (compared with the collisionless case) due to collision

induced ion focusing, as discussed in Section 2.5.1.2. In contrast, the absorption
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FIGURE 2.21

Electric potential behind a small negatively charged particle in a highly colli-

sional plasma with slowly drifting ions. Plot (a) corresponds to a non-absorbing

particle, while plot (b) corresponds to an absorbing particle. The ions are mov-

ing to the right. The direction of the ion drag force associated with ion focusing

(a) and ion depletion (b) behind the particle is shown by arrows. The calcula-

tions are performed by Chaudhuri et al. (2007) using the linear plasma response

technique for the following set of plasma parameters: TTT eee === TTT iii, |||QQQ|||eee///aaaTTT eee === 333,

aaa///λλλ D === 000...222, uuu///vvvTTT iii
=== 000...000000333, ℓℓℓiii///λλλ D === 000...000333(((000...000111))) for the upper (lower) curves.

Signs “+” and “–” correspond to the positive and negative space charge regions,

respectively.

of the ions causes a rarefication of the ion density downstream from the particle (see

Figure 2.21b). The two effects are added in a simple superposition in the linear model

and compete with each other. It turns out that in the limit of very small particle and

very high ion collisionality, rarefication dominates over focusing. The ion drag force

reverses its direction.

The sign reversal of the ion drag force in highly collisional plasmas has also been

found by Filippov et al. (2008) using a model similar to that described here. Nega-

tive values of the ion drag force were reported from a simple model considering an

absorbing sphere in a highly collisional plasma with flowing ions under the assump-

tion of a central Coulomb-like interaction potential between the ions and the sphere

(Khrapak et al. 2007a). Numerical simulation by Patacchini and Hutchinson (2008)

demonstrates the following dependence of the ion drag force on collisionality: It

slightly increases with collisionality in the weakly collisional regime, shows a local

maximum when ℓi ∼ λD, and then decreases reaching negative values in the limit of

high collisionality.
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An interesting consequence of the ion drag force sign reversal in the limit of a

highly collisional plasma has been discussed by Vladimirov et al. (2008). When a

particle moves in a plasma, it experiences the frictional (drag) force associated with

all plasma components – positive ions, negative electrons, and neutral gas. The neu-

tral drag force is likely to be dominant in most cases as long as the plasma is weakly

ionized. However, there might exist a narrow parameter regime when plasma-related

drag can overcome the neutral drag and, even more important, when the total drag

force can be directed along the particle motion, causing the particle to accelerate

until it reaches a free undamped frictionless motion.

Let us consider a stationary bulk quasi-neutral high pressure plasma, with motions

of both electrons and ions dominated by collisions with neutrals. A small individual

absorbing particle is slowly moving with respect to the plasma background. For

simplicity let us also assume that the plasma is in equilibrium, Te = Ti = Tn = T .

Under the additional assumptions u/vTi
≪ ℓi/λD < a/λD < βT ≪ 1, we can use

Equation (2.84) for the ion drag force acting on the particle. For a one-temperature

plasmas it yields

Fid ≃−(1/24)(Q2/λ 2
D)(λD/ℓi)(u/vTi

), (2.85)

where u is the particle velocity. The force acts in the direction of particle motion.

At high pressures considered here, it is reasonable to assume ℓn < a, where ℓn is

the mean free path of neutrals. In the limit of low Reynolds number corresponding

to a slow particle motion, the neutral drag force is

Fn ≃ 6πηau, (2.86)

where η ≃ nnmnℓnvTn is the gas viscosity. It is directed opposite to the particle

motion.

The last contribution to the friction is associated with the electron component.

However, since the ratio of the electron drag force to the ion (neutral) drag forces is

∝ [me/mi(n)]
1/2 in the considered case (Khrapak and Morfill 2004), the electron drag

force can be neglected.

Thus, the direction of the total friction force is determined by the competition of

the ion and neutral drag forces. Let us compare their absolute magnitudes. The force

ratio is

|Fid/Fn| ≃ (1/18)(n0/nn)(vTn/vTi
)βT (λD/ℓi)(λD/ℓn)z. (2.87)

In a weakly ionized plasma we have n0 ≪ nn; it is reasonable to assume that vTn ∼ vTi
;

applicability of the linear approach requires βT ≪ 1; the normalized potential z is

usually of the order of a few; the applicability of Equation (2.85) requires λD ≫ ℓi

and λD ≫ ℓn. The product of these three large factors can in principle compensate

for the smallness in (n0/nn)βT , reducing the total friction force compared to the pure

neutral drag force or even making the total friction negative.

In this case the particle is accelerated until u = ucr, when the balance between

the ion drag and neutral drag is reached. The existence of such a balance follows

from the fact that at high particle velocities only geometrical factors play a role and

Fi(n) ≃ πa2n0(n)mi(n)u
2, and thus Fid ≪ Fn since n0 ≪ nn. Although an exact value
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for ucr cannot be obtained within the present approach, Vladimirov et al. (2008)

suggested that ucr ∼ vTi
(ℓi/λD), which corresponds to the violation of the condition

used to derive Equation (2.85). The final velocity ucr is a stable equilibrium velocity

and the particle exhibits free undamped motion.

The described effect can lead to the following behavior of the particle component

in plasmas: A collection of absorbing particles can exhibit free frictionless motion

in a highly collisional weakly ionized plasma. The main reason for such an unusual

behavior is the openness of the plasma–particles system associated with continuous

plasma loss on the particle surfaces. Apart from complex plasmas it would also be

interesting to consider this effect in the context of colloidal suspensions, sand storms,

volcanic plumes, etc. The mechanisms considered here might be effective in these

systems, too.

Finally, let us point out that the effect of plasma production and loss on the ion

drag force has been investigated by Chaudhuri et al. (2008) for the case of highly

collisional plasmas. This has been done by simply adding the corresponding source

and loss terms to the ion continuity equation (2.78). Electron impact ionization has

been chosen to be the main plasma production mechanism. Two different scenarios

of plasma loss have been investigated: Electron–ion volume recombination (which

is relevant to high pressure plasmas) and ambipolar diffusion towards the discharge

chamber walls and electrodes (which occurs in low- and moderate-pressure gas dis-

charges).

The main results obtained by Chaudhuri et al. (2008) are as follows. For suffi-

ciently low ionization rate the ion drag force is not sensitive to plasma production

and loss in the vicinity of the particle. The force is directed opposite to the ion flow,

as discussed above. The plasma production and loss processes start to affect the

magnitude of the ion drag force when νI/ν ∼ (ℓi/λD)2, where νI is the characteristic

ionization frequency and ν is the frequency of ion–neutral collisions. With further

increasing ionization rate, not only the magnitude of the force depends on ionization

rate, but also its direction. In a plasma with sufficiently developed ionization the

ion drag force always acts in the direction of the ion motion, independently of the

plasma loss mechanism. Chaudhuri et al. (2008) identified the parameter regimes

for the positive and negative ion drag forces for both plasma loss mechanisms con-

sidered.

2.5.1.4 Complementarity of the approaches

Comparing the results of these approaches, the most important conclusion to be

drawn is that they are not really competitive but rather complementary: Binary

collision approach is more suitable to describe highly nonlinear collisionless cases

when both the characteristic length of ion–particle interaction and ion mean free

path exceed considerably the plasma screening length. This situation is typical for

(sub)thermal ion flows. Small Mach numbers also imply weak distortion of the po-

tential around the charged particle and weak deviation of the ion distribution from the

shifted Maxwellian function. In addition, binary collision formalism easily accounts

for ion absorption on the particle surface. Therefore, in this regime binary collision
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approach is more reliable. Existing experiments in weakly collisional plasmas (Hirt

et al. 2004; Nosenko et al. 2007) demonstrate reasonable agreement with the results

of BC approach. Collisionless numerical simulations by Hutchinson (2005, 2006)

also agree well with theory, although in some parameter regimes, discrepancies up

to a factor of ∼ 2 are reported.

On the other hand, for superthermal ions (when the characteristic length of ion–

particle interaction decreases rapidly with the Mach number and, hence, the linear

theory can be better applied!) both the particle potential and ion distribution function

are highly anisotropic, and then the linear plasma response formalism is more reli-

able. For instance, the kinetic approach allowed to deduce how the effective screen-

ing length, λ , entering the expressions for the ion drag force in BC approach, depends

on the ion flow velocity (Khrapak et al. 2005a). It was shown that at MT . 1 the

potential distribution around the particle is weakly affected by the flow, so that the

screening is determined by the linearized screening length, λ ≃ λD. For superthermal

flows the ion contribution to the screening rapidly vanishes and the effective screen-

ing length tends to the asymptote λ ≃ λDe. Figure 2.22 shows that this transition

occurs in a fairly narrow range of velocities around MT ≃1–3. The exact analytic

form of λ (MT ) is rather complicated, but it can be approximated reasonably well

(Fortov et al. 2005) with formula λ−2 ≃ f (MT )λ−2
Di + λ−2

De , where the fitting func-

tion is f = exp(−M2
T /2) (shown in Figure 2.22) or f = (1 + M2

T )−1.

An obvious advantage of the linear plasma response formalism is that it accounts

consistently for the ion–neutral collisions. Land and Goedheer (2006) proposed to

combine the results of BC and kinetic approaches to describe the ion drag force.

Namely, they used Equation (2.73) derived using kinetic approach and containing

the contribution from ion–neutral collisions, but with the Coulomb logarithm derived

using BC approach and accounting for the effect of moderate ion–particle coupling

[Equation (2.65)].

Note that it is rather complicated to describe self-consistently the effect of ion ab-

sorption on the particle surface within kinetic approach. On the other hand, this can

be easily done in the limiting case of highly collisional plasmas using a fluid (hydro-

dynamic) formulation of Section 2.5.1.3. An interesting result of this approach is a

possibility of the sign reversal of the ion drag force (Khrapak et al. 2007c). Essen-

tially the same quantitative result was obtained from an analysis of individual ion tra-

jectories in highly collisional plasmas under the assumption of an isotropic Coulomb

interaction potential between the ions and the particle (Khrapak et al. 2007a).

One should emphasize, however, that often the experimental conditions are such

that none of the approaches developed so far is directly applicable, e.g., when ion–

particle coupling is not weak and the ion mean free path is comparable or shorter than

the plasma screening length. There has been no approach proposed to treat this case

analytically, and this issue remains the major challenge for the theory of ion drag.

Presumably, in this regime the effect of nonlinear ion–particle coupling is more im-

portant than that of ion–neutral collisions. This is supported by experimental results

obtained in weakly and moderately collisional plasmas (Khrapak et al. 2003a; Zafiu

et al. 2003b; Klindworth et al. 2004; Yaroshenko et al. 2005) which demonstrated

reasonable agreement with analytic results of the BC approach. An indirect evidence
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FIGURE 2.22

The effective screening length λλλ of the charged particle in the flowing plasma

versus the thermal Mach number MMMTTT (ion flow velocity normalized to the ion

thermal velocity) for different electron-to-ion temperature ratios. Symbols are

numerical calculations (Khrapak et al. 2005a), lines are simple analytic fits

discussed in the text.

also comes from the good agreement between the theory and experimental observa-

tions related to the formation of voids – regions free of particles – in the central part

of gas discharges under microgravity conditions, which are believed to be produced

by the outwards pointing ion drag force (Khrapak et al. 2002; Kretschmer et al.

2005; Lipaev et al. 2007).

2.5.2 Other forces

Similar to the ion drag force, the electron drag force arises due to the momentum

transfer from the electrons drifting relative to the charged particles. In the binary col-

lision approximation, the electron drag force is Fed = mdνdeue, where νde is given by

Equation (2.63). Compared to the ion drag force, the effect of electron drag is usually

ignored because the electron-to-ion mass ratio is small. This is correct when ue ∼ ui,

e.g., in rf discharges, where electrons and ions drift together due to the ambipolar dif-

fusion. However, in the case of independent (mobility limited) drift (e.g., in the posi-

tive column of a dc discharge) the ratio of the ion-to-electron drag forces is indepen-

dent of masses and can be approximately estimated as Fid/Fed ∼ (Te/Ti)
2(σen/σin),

where σe(i)n is the transport cross section for electron (ion) collisions with neutrals.

A detailed investigation performed by Khrapak and Morfill (2004) shows that the
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electron drag force can indeed dominate over the electric and ion drag force in most

noble gases with relatively small electron temperatures (Te . 1 eV).

In ground-based conditions the gravitational force Fg = mdg usually plays an im-

portant role. In order to levitate the particle, it should be counterbalanced by other

forces. The electric force due to the electric field in the (pre)sheath or striation re-

gions of discharges can provide the balance. The magnitude of the electric force is

Fel = QE , where E is the electric field strength. A correction to Fel due to plasma po-

larization in the vicinity of the particle (of the order of a/λD, induced by the external

electric field) was derived by Daugherty et al. (1993). This effect increases the abso-

lute magnitude of the electric force. The external field also induces a dipole moment

on a particle, ∼ a3E , which is pointed along the field. For a dielectric particle, an

additional dipole moment can be induced due to anisotropy in charging (Ivlev et al.

1999). In the nonuniform electric field such a dipole will experience an additional

force ∼ 1
2
a3(E2)′. It is worth mentioning that the particle charge in the electric field

is implicitly dependent on the field magnitude through, e.g., induced plasma and/or

charging anisotropy, ion (electron) drift velocities. The problem of trapped ions is

also an important issue related to the electric force acting on a particle in plasmas:

Ions on trapped orbits can shield the particle from external electric field, leading to a

decrease of the electric force.

If a temperature gradient is present in a neutral gas, then the particle experiences

a thermophoretic force. The force is due to asymmetry in the momentum transfer

from neutrals and is directed towards lower gas temperatures. In the case of full

accommodation of neutrals colliding with the particle surface, Talbot et al. (1980)

derived the following expression for the thermophoretic force:

Fth = −4
√

2π

15

a2

vTn

κn∇Tn, (2.88)

where κn is the thermal conductivity coefficient of gas. For atomic gases κn ≃
1.33(vTn/σnn), where σnn is the cross section of neutral–neutral collisions (Raizer

1991). In this case Fth ≃ −1.8(a2/σnn)∇Tn. Rothermel et al. (2002) derived an

expression with a different numerical factor, Fth ≃ −3.33(a2/σnn)∇Tn, and found

good agreement between this expression and experimental results. Note that the

thermophoretic force depends on the particle radius, gas type (through σnn), and

temperature gradient, but does not depend on the gas pressure and temperature. For

particles of about 1 µm radius and mass density ∼ 1 g cm−3 in an argon plasma,

the force is comparable to the force of gravity at temperature gradients |∇Tn| ∼ 10 K

cm−1. The corrections to the force for the case when the particle is situated near the

electrode or the walls of a discharge chamber, which basically change the numerical

factor in Equation (2.88), were derived by Havnes et al. (1994). Experimental in-

vestigations of the effect of thermophoretic force on the behavior of particles in gas

discharge plasmas were performed by Jellum et al. (1991), Balabanov et al. (2001),

and Rothermel et al. (2002). In these works, it was shown that the thermophoretic

force can be used for particle levitation in ground-based conditions as well as for

controlled action on the ordered structures of particles.
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And finally, the neutral drag force is the main mechanism responsible for friction

when a particle is moving through a stationary plasma. This is because the ionization

fraction is usually quite low, on the order of 10−7–10−6. Neutral drag can be also

important when gas is flowing relative to the particles. When the Knudsen number

Kn = ℓn/a is large and the relative velocity between the particle and the gas ud is

small compared to the thermal velocity of neutrals vTn , then

Fn = −mdνdnud , (2.89)

where νdn is the momentum exchange rate given by Equation (2.69). The minus sign

means that the force acts in the direction opposite to the relative velocity. For high

relative velocities (ud ≫ vTn ), the neutral drag force is proportional to the velocity

squared (see, for example, Draine and Salpeter, 1979), Fn ≃ −πa2nnmnu2
d . In the

opposite limit of small Knudsen numbers Kn ≪ 1, the Stokes expression applies,

Fn = −6πηaud, where η is the viscosity of neutral gas. In most practical cases

Equation (2.89) is applicable to calculate the neutral drag force in complex plasmas.

2.6 Particle surface temperature

The particle surface temperature is determined by the balance of energy fluxes di-

rected to/from the particle surface and is generally different from the temperature

of surrounding gas. As discussed in Section 2.3.1 the temperature difference be-

tween the particle surface and the surrounding neutral gas gives rise to the so-called

“neutral shadowing” interparticle interaction. Therefore, knowledge of the particle

surface temperature is of considerable importance.

Two experiments were performed to measure the temperature of the particles sus-

pended in plasmas. Daugherty and Graves (1993) have measured the temperature of

phosphorescent manganese activated magnesium fluorogermanate (MFG) particles.

They recorded the phosphorescent decay of MFG when the plasma was suddenly

turned off and made use of the fact that the time constant for this decay is a well-

defined function of temperature. Swinkels et al. (2000) employed laser–induced

fluorescence of dyed melamine-formaldehyde spheres to measure their internal tem-

perature. Both experiments were performed in low pressure rf discharges in argon

and demonstrated that the particle temperature was somewhat hotter than the sur-

rounding neutral gas temperature.

Theoretical model for the particle surface temperature in noble gases uses the

following assumptions (Daugherty and Graves 1993; Swinkels et al. 2000; Igna-

tov 2002): The main heating mechanism is energy deposition from the collected

ions, electrons, and their recombination on the particle surface, and the main cooling

mechanisms are collisions with neutral atoms and radiation. Daugherty and Graves

(1993), Swinkels et al. (2000) and Ignatov (2002) used collisionless OML theory to

estimate plasma fluxes to the particle. Khrapak and Morfill (2006) refined this model
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FIGURE 2.23

Relative difference between the particle and the neutral gas temperatures ver-

sus discharge power. In the figure experimental results by Swinkels et al. (2000)

are compared with the results of collisional (CEC) and collisionless (OML) the-

oretical models of particle charging. Except for the lowest value of discharge

power collisional model yields better agreement between theory and experi-

ment. Relatively large discrepancy at low power correlates with dramatic in-

crease in measured electron temperature in the experiment. This increase leads

to the corresponding increase in the particle floating potential and ion–particle

coupling, which can make CEC approximation for charging insufficiently accu-

rate. This can explain the observed difference.

by taking into account collision induced enhancement of the ion flux to the particle

using CEC approximation (see Section 2.1.2). This yields in general better agree-

ment with the available experimental data as demonstrated in Figure 2.23. Although

in the considered case the difference between the results of application of collisional

and collisionless models of particle charging is not large, in other regimes one can

expect much larger difference. Thus, the importance of the proposed modification

should not be underestimated.

Typical values of the relative temperature difference between the particle surface

and neutral gas are in the range ∆T/Tn ≃ 0.1–0.2. Estimates by Khrapak and Morfill

(2006) show that for usual plasma parameters the magnitude of neutral shadowing

interaction is considerably smaller than that of ion shadowing and electric interac-

tions.
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Ratynskaia, S., Quinn, R. A., Höfner, H., and Morfill, G. E. (2004). The project

“Plasmakristall-4” – A dusty plasma experiment in a combined dc/rf(i) discharge

plasma under microgravity conditions. Czech. J. Phys., 54, C639–C647.

Vaulina, O. S., Khrapak, S. A., Nefedov, A. P., and Petrov, O. F. (1999a). Charge

fluctuations induced heating of dust particles in a plasma. Phys. Rev. E, 60, 5959–

5964.

Vaulina, O. S., Nefedov, A. P., Petrov, O. F. and Khrapak, S. A. (1999b). Role of

stochastic fluctuations in the charge on macroscopic particles in dusty plasmas.

JETP, 88, 1130–1136.

Vaulina, O. S., Khrapak, S. A., Samarian, A. A., and Petrov, O. F. (2000). Effect of

stochastic grain charge fluctuations on the kinetic energy of the particles in dusty

plasma. Phys. Scripta, T84, 229–231.

Vaulina, O. S., Repin A. Yu., and Petrov, O. F. (2006). Empirical approximation for

the ion current to the surface of a dust grain in a weakly ionized gas-discharge

plasma. Plasma Phys. Rep., 32, 485–488.

Vladimirov, S. V. and Ishihara, O. (1996). On plasma crystal formation. Phys. Plas-

mas 3, 444–446.

Vladimirov, S. V. and Nambu, M. (1995). Attraction of charged particulates in plas-

mas with finite flows. Phys. Rev. E 52, R2172–R2174.

Vladimirov, S. V., Maiorov, S. A., and Ishihara, O. (2003). Molecular dynamics

simulation of plasma flow around two stationary dust grains. Phys. Plasmas, 10,

3867–3873.

Vladimirov, S. V., Khrapak, S. A., Chaudhuri, M., and Morfill, G. E. (2008).

Superfluid-like motion of an absorbing body in a collisional plasma. Phys. Rev.

Lett., 100, 055002/1–4.

Walch, B., Horanyi, M. and Robertson, S. (1995). Charging of dust grains in plasma

with energetic electrons. Phys. Rev. Lett., 75, 838–840.

Wang, C. L., Joyce, G., and Nicholson, D. R. (1981). Debye shielding of a moving

test charge in plasma. J. Plasma Phys., 25, 225–231.

Whipple, E. C. (1981). Potentials of surfaces in space. Rep. Prog. Phys., 44, 1197–

1250.

Winske, D. (2001). Nonlinear wake potential in a dusty plasma. IEEE Trans. Plasma

Sci., 29, 191–197.

Winter, J. (2000). Dust: A new challenge in nuclear fusion research? Phys. Plasmas,

7, 3862–3866.



184 Complex and Dusty Plasmas

Xie, B., He, K., and Huang, Z. (1999). Attractive potential in weak ion flow coupling

with dust-acoustic waves. Phys. Lett. A, 253, 83–87.

Yakubov, I. T. and Khrapak, A. G. (1989). Thermophysical and electrophysical prop-

erties of low temperature plasma with condensed disperse phase. Sov. Tech. Rev.

B. Therm. Phys., 2, 269–337.

Yaroshenko, V. V., Annaratone, B. M., Khrapak, S. A., Thomas, H. M., Morfill, G.

E., Fortov, V. E., Lipaev, A. M., Molotkov, V. I., Petrov, O. F., Ivanov, A. I., and

Turin, M. V. (2004). Electrostatic modes in collisional complex plasmas under

microgravity conditions. Phys. Rev. E, 69, 066401/1–7.

Yaroshenko V., Ratynskaia, S., Khrapak, S., Thoma, M. H., Kretschmer, M., Höfner,
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Particle dynamics

Alexey V. Ivlev

3.1 Vertical oscillations in an rf sheath

In most of the ground-based experiments, negatively charged dust particles can only

levitate in the regions of sufficiently strong electric fields, where the electric force

and other forces exerted in a plasma (e.g., ion drag) compensate for gravity (unless

the particles are too heavy). This occurs, for example, in the pre-sheath and sheath

regions of an rf discharge, where the electric field averaged over the oscillation pe-

riod is directed along gravity force (due to the large mass, neither the dust particles

nor the ions respond to the rf field at frequency 13.56 MHz). This is also true for

striations in a dc discharge. The electric field E in these regions rapidly increases

downwards. The particle charge Q varies with height, both due to the ion accelera-

tion in the electric field (see Figure 2.5) and a decrease of the ratio ne/ni < 1 with

E . Usually, the (negative) charge first somewhat decreases and attains a minimum,

then it starts increasing and eventually can even reach positive values. Examples

of numerical calculations of the dependence of the particle surface potential on the

distance from the electrode in collisionless and collisional sheaths of rf and dc dis-

charges were given by Nitter (1996) and Ikkurthi et al. (2008) for different sets of

plasma parameters.

Let us first consider elementary dynamics of a single particle. If the vertical coor-

dinate (height) x = 0 is assigned to the equilibrium particle position, then for small

displacements around the equilibrium, the net force can be expanded into series,

F(x)/md = −Ω2
vx + α1x2 +α2x3 + . . . (3.1)

where Ωv is the resonance frequency of vertical oscillations and coefficients αi char-

acterize nonlinearity. The major contribution to Equation (3.1) is often due to the

electrostatic force Fel = QE , and then the resonance frequency is determined by

mdΩ2
v = −d(QE)/dx|x=0. It is well known (Ivlev et al. 2000b; Tomme et al. 2000)

that at sufficiently high pressures (e.g., above ≃ 20 Pa for argon) the electric field in

the sheath varies almost linearly. At lower pressures, however, the deviations from

the linear profile can be significant. Therefore, depending on the discharge parame-

ters and the particle mass, the nonlinearity in Equation (3.1) is determined either by

the sheath field profile or by the charge variations with the height (Ivlev et al. 2000b;

Zafiu et al. 2001).
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Due to the relatively large mass of the dust particles, the magnitude of the res-

onance frequency Ωv is rather low – it is typically in the range 1–100 Hz. Hence,

it is convenient to use low-frequency excitations for determining the parameters of

the force (3.1) which can then be expressed through the plasma and particle pa-

rameters. As the simplest example we refer to a harmonic excitation of particle

oscillations. The oscillation amplitude A(ω) grows when ω approaches Ωv. The

amplitude reaches the maximum at ω =
√

Ω2
v − 1

2 ν2
dn; the width of the resonance

peak is ∼ νdn. Hence, changing ω and measuring A(ω), one can determine Ωv and

νdn. As the excitation amplitude increases, the oscillations reveal all features pecu-

liar to an unharmonic oscillator: hysteresis of the frequency response curve, shift of

the resonance frequency, and secondary resonances (Ivlev et al. 2000b; Zafiu et al.

2001). Figure 3.1 shows evolution of the frequency response curve, A(ω), with the

amplitude of the sinusoidal excitation voltage applied to the wire below the particle.

Knowledge of the resonance frequency and of the nonlinear coefficients, recovered

from the fitting of the measured curves with the analytical formulas, allows us to

obtain the electric field and/or dust particle charge distributions in a relatively broad

region across the sheath. The measurements can also be compared with the results of

the numerical models, which take into account the dependencies of particle charge,

electric field, and external force amplitude on the vertical coordinate, as well as the

location of an excitation source with respect to the dust particle and force balance in

the sheath (Wang et al. 2002).

3.2 Non-Hamiltonian dynamics

Complex plasmas are non-Hamiltonian systems, not only because of conventional

friction of grains against the background neutral gas, but also due to specific plasma

interactions that give rise to new classes of non-Hamiltonian dynamics. Under cer-

tain conditions these interactions result in spontaneous excitation of individual and

collective particle motion (Zhakhovskii et al. 1997; Vaulina et al. 1999; Morfill et

al. 1999, 2004; Ivlev et al. 2003). Below we consider a few interesting examples of

such dynamics.

3.2.1 Role of variable charges

As we already mentioned in Section 2.1.6, the individual particle charges in complex

plasmas fluctuate randomly with time around some equilibrium value which, in turn,

is some function of the spatial coordinates (Fortov et al. 2005). This fact makes the

particle dynamics nonconservative.

The simplest class of non-Hamiltonian dynamics is realized when the charge is

a function of the coordinates (Zhakhovskii et al. 1997), Q = Q(r): The force QE

acting on a particle in a potential electric field E(r) = −∇φ(r) cannot be expressed
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FIGURE 3.1

Amplitude of the vertical particle oscillations in an rf sheath (Ivlev et al. 2000b).

The data for a 777...666 µµµm particle are shown near the primary resonance for in-

creasing (a) and decreasing (b) frequency of excitation, ω , and for different

amplitude of the sinusoidal excitation voltage: 50 mV (open circles), 100 mV

(closed circles), and 200 mV (squares). Solid lines show the least-squares fit of

the points to theory. The vertical dotted line indicates the position of the reso-

nance frequency, ΩΩΩv, obtained from the fit.

in terms of a gradient of a scalar function, because ∇× (Q∇φ) ≡ ∇Q×∇φ is not

equal to zero in the general case. The dynamics is Hamiltonian only when the charge

gradient is collinear with the electric field (in this case, the force depends on a single

longitudinal coordinate, and therefore, it can always be written as a derivative of

some scalar function over the coordinate). Thus, particles with variable charges

could gain energy from the ambient plasma.

Another example of nonconservative dynamics is due to the so-called “delayed

charging” effect (Nunomura et al. 1999; Ivlev et al. 2000a; Pustylnik et al. 2006),

which stems from the fact that the charging frequency Ωch [see Equation (2.16)]
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is finite. Therefore, the charge of a moving particle experiences some delay with

respect to its equilibrium local value Q(r), so that the dynamics is non-Hamiltonian

also for 1D motion. Moreover, if |Q(r)| increases along E (which is always the

case for particles levitating in ground-based experiments), then the absolute value

of the momentary charge is smaller than |Q(r)| when the particle moves along E

and larger when the particle moves back. Thus, the work done over the oscillation

period is always positive – the particle acquires energy from the electric field. The

oscillations grow exponentially provided the energy gain is higher than the friction

dissipation, which requires (Ivlev et al. 2000a)

2νdn . (ℓE/ℓZ)Ω2
v/Ωch,

where ℓE = |E|/|∇E| and ℓZ = |Z|/|∇Z| are the spatial scales of the field and charge

inhomogeneity, respectively (usually, ℓE ≪ ℓZ), and Z is the particle charge number,

Q = Ze.

Now, let us consider random charge variations (fluctuations) assuming a constant

(i.e., independent of r) mean charge number Z (Vaulina et al. 1999; Ivlev et al.

2000a). In experiments, the vertical particle confinement is usually determined by

the balance of electrostatic and gravity forces, mdg = ZeE , and the equation of the

vertical motion is determined by the charge fluctuation Z1(t),

ẍ +νdnẋ+ Ω2
v[1 + Z1(t)/Z]x = gZ1(t)/Z. (3.2)

Using the stochastic properties of the charge fluctuations [see Equations (2.37) and

(2.38)], it can be easily shown (Vaulina et al. 1999) that for typical conditions

νdn ≪ Ωv ≪ Ωch, the mean kinetic energy of vertical oscillations associated with

the random force at the right-hand side of Equation (3.2) saturates at

Ed ≃ σ 4
Z |Z|mdg2

2νdnΩch

,

as it follows from the fluctuation–dissipation theorem. In accordance with Equation

(2.38), the relative charge dispersion (due to charge discreteness) is σ2
Z ∼ |Z|−1. The

neutral damping rate scales with gas pressure as νdn ∝ p, so that the mean energy

decreases as Ed ∝ p−1. Note also that, since Ωch ∝ a, νdn ∝ a−1, and |Z| ∝ a, we

have Ed ∝ a2 ∝ m
2/3

d ; i.e., the mean energy of oscillations increases with the particle

mass. For typical experimental conditions the energy can be of the order of a few eV

or even higher.

In addition to this heating, the charge variations can trigger the parametric insta-

bility of the oscillations (Ivlev et al. 2000a), due to the random variations of the

oscillation frequency in Equation (3.2). Then the mean energy grows exponentially

with time – the instability condition is

2νdn . σ 2
Z Ω2

v/Ωch. (3.3)

Note, however, that if the charge variations are due to the discreteness of plasma

charges, then the magnitude of the dispersion is fairly small and the instability is

only possible at pressures far below ∼ 1 Pa.
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For a set of particles, we have to define the mutual interactions. Let us again con-

sider the role of spatial variations. The electrostatic potential created at r by a charge

located at ri is φi(r) = Z(ri)φunit(|r− ri|), where φunit(r) is the (isotropic) potential

of a unit charge. The resulting electric field is Ei(r) = −Z(ri)(∂/∂ r)φunit(|r− ri|).
Hence, particles i and j interact via the force

Fi j = −eZ(ri)Z(r j)(∂/∂ ri)φunit(|ri − r j|). (3.4)

Note that the mutual interactions are reciprocal, Fi j =−F ji, so that the total momen-

tum of the system is conserved.

Principal features of non-Hamiltonian dynamics with interactions (3.4) can be un-

derstood by considering a 1D system of two charged grains which can move along

the x-axis (Zhdanov et al. 2005). The repulsing particles have to be confined ex-

ternally. Generally, the confinement is electrostatic and, hence, charge-dependent.

However, since electrostatic forces are potential in the 1D case, we can always write

the confinement force on a particle as Fconf = −dUconf/dx. We now introduce a 2D

space x = (x1,x2), with x1,2 being the particle coordinates, and define the external

confinement potential as Uext(x) ≡Uconf(x1)+Uconf(x2). Then the equations of two

particle motion can be written in the following vector form:

md(ẍ + νdnẋ) = −∂Uext/∂ x− eZ1Z2(∂φunit/∂x), (3.5)

where φunit = φunit(|x2 − x1|) and Z1,2 ≡ Z(x1,2). In addition to the confinement and

interaction forces, we introduced a friction force with the damping rate νdn. One

can see from Equation (3.5) that the 1D dynamics of two particles is mathematically

identical to 2D dynamics of a single particle. The dynamics is non-conservative,

because work Wloop done (due to mutual interactions) over a closed path (loop) ℓ in

plane x is not equal to zero. Using Stokes’ theorem, the work can be expressed via

the integral over the surface Sℓ bounded by the path:

Wloop = e

∫

Sℓ

(Z1Z′
2 + Z′

1Z2)φ
′
unit dx1dx2,

where the prime denotes the derivative with respect to the argument.

The sign of Wloop is determined by the direction of motion along ℓ; i.e., the charge

variations can serve either as a sink (Wloop < 0) or a source (Wloop > 0) of the energy.

In the latter case the motion of interacting particles can be unstable. In dissipa-

tive systems one can expect that at the nonlinear stage motion converges asymptot-

ically to a limit cycle, with the balance between the energy gain and frictional loss,

Wloop − 2νdnτEd = 0, where τ is the oscillation period and Ed is the mean kinetic

energy averaged over τ. We see that the magnitude of the work done over path ℓ is

determined by the area Sℓ. This implies that when νdn → 0, the contour ℓ of periodic

motion (if such motion is possible at all) should degenerate into some line, so that Sℓ

tends to zero as well.

The non-Hamiltonian dynamics of many particles with variable charges was inves-

tigated using Molecular Dynamics (MD) simulations by Zhdanov et al. (2005). The
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FIGURE 3.2

“Mutual” phase portraits of self-excited particle oscillations triggered by spa-

tially varying charges (Zhdanov et al. 2005). Two particles perform a 1D mo-

tion, their coordinates (((xxx111,,,xxx222))) form periodic trajectories that are shown for

several values of damping rate νννdddnnn; the highest values are chosen in the vicinity

of the self-excitation cut-off. By varying initial momentums of the particles, one

can obtain attractors of type I (a) or II (b). Coordinates are measured in units

of the screening length λλλ and the damping rate is normalized by the dust-lattice

frequency scale ΩΩΩDL ===

√

QQQ222///mmmdddλλλ333
.

simplest case is the “2+2” particle system, where two outer particles are fixed and

two inner particles movable. Particles interact via the Yukawa potential φunit(x) =
eexp(−x/λ )/x with the screening length λ , and the spatial dependence of the charge

is given by a step-wise function ∝ tanh[(x−xjump)/σjump] varying along the x-axis by

the magnitude ∆Z, where xjump is the position of the charge “jump” and σjump ≪ xjump

is the width of the “jump”. The initial interparticle distance ∆ is determined from the

equilibrium condition. It was found that spontaneous oscillations set in when the

magnitude of the charge gradient exceeds a certain threshold: When the initial (equi-

librium) coordinates of the particles are relatively far from xjump (a few σjump), which

implies relatively weak charge variations, the oscillations decay and the mean kinetic

energy falls off as ∝ e−2νdnt . When the initial position of one of the particles is suf-

ficiently close to xjump (about σjump or less), so that the charge variations are strong

enough, the kinetic energy does not decay. On the contrary, Ed eventually saturates

at a constant level and the oscillations become periodic, converging asymptotically

to the attractors shown in Figure 3.2. Varying initial conditions it was found that

two different types of attractors are possible, either type I (Figure 3.2a) or type II

(Figure 3.2b), with no regular correspondence to the initial conditions (e.g., initial

particle momenta). One can see that the oscillation contours become narrower and

have a tendency to degenerate into a single line as the damping rate νdn decreases.

On the other hand, there exists a critical friction beyond which self-sustaining oscil-

lations are no longer possible. The “width” and “length” of the oscillation contours

at the critical νdn are roughly the same, indicating that the area Sℓ of the contour is
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about to achieve its maximum.

3.2.2 Role of plasma wakes

Another class of non-Hamiltonian dynamics occurs when charged grains (now we as-

sume for simplicity that the charges are constant) are embedded in a flowing plasma,

with ions moving relative to grains due to, e.g., ambipolar diffusion. Then the screen-

ing cloud around a charged grain is no longer spherically symmetric, which gives

rise to higher (dipole, quadruple, etc.) moments in the mutual interaction. As we

discussed in Section 2.2.2, the screening cloud in this case is usually referred to as

a “plasma wake”, instead of the “Debye sphere” in the isotropic case. We should

point out the curious fact that in some cases the mathematical description of wakes

is identical to the equations describing, e.g., hydrodynamic interactions of bubbles

in conventional fluid flows (Beatus et al. 2006).

In order to understand the dynamics of such systems, one should note the follow-

ing: Complete ensembles of elementary charges in complex plasmas can be conve-

niently subdivided into two distinct categories – a subsystem of “bound” charges at

the grain surface and a subsystem of “free” plasma charges in the surrounding wakes.

Plasma wakes play the role of a “third body” in the mutual grain–grain interaction

and, hence, make the pair interaction nonreciprocal (Melzer et al. 1999): The force

exerted by a wake of grain 1 on grain 2 is generally not equal to the force of wake

2 acting on grain 1. Thus, in contrast to the case of variable charges, the total par-

ticle momentum is no longer conserved. The center-of-mass motion is governed by

equation (Kompaneets 2007)

md(r̈c + νdnṙc) = 1
2
Q(∂/∂rr)[φ(−rr)−φ(rr)]+ Fext. (3.6)

Here rc = 1
2
(r1 +r2) and rr = r2−r1 are the center-of-mass and relative coordinates,

respectively, and φ(rr) [ 6= φ(−rr)] is an anisotropic wake potential [see, e.g., Equa-

tion (2.50)]. In addition to the mutual interactions, in Equation (3.6) we introduced a

force Fext which describes the interaction of grains with a (constant) external electric

field (assuming constant charges, this field may be presented as a gradient of some

scalar function). Equation (3.6) shows that one can easily construct such a loop ℓ
for the motion of the center of mass that the work Wloop done by the nonreciprocal

interaction over the loop is not equal to zero:

Wloop ∝

∫

Sℓ

(∂/∂rc)× (∂/∂rr)[φ(−rr)−φ(rr)] dSℓ.

This occurs when rc and rr are correlated (e.g., due to resonances), so that (∂/∂rc)×
(∂/∂rr) 6= 0 and the dynamics of interacting particles is non-conservative.

Such non-conservative dynamics results in spontaneous heating of complex plas-

mas. As an example, let us consider an experiment on melting of a crystalline mono-

layer (Ivlev et al. 2003). The microparticles were levitated in the strong vertical

electric field of the sheath above a planar rf electrode and confined horizontally by a

weak radial field. When the number of particles in the monolayer exceeded a certain
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a) b)

FIGURE 3.3

Melting of 2D crystal (Ivlev et al. 2003). (a) Top view of the particle monolayer

in the experiment with 888...999 µµµm particles in argon at pressure of 2.8 Pa. The

particles are in crystalline state, until the density exceeds a certain threshold

and the monolayer melts. The figure shows trajectories over 3.1 s after the

melting starts. (b) Top view of the particle monolayer in the MD simulation

with parameters similar to the experiment. In both cases, the average kinetic

energy of particles in the center saturated at ∼∼∼ 333000 eV.

threshold (correspondingly, the interparticle distance decreased, with the smallest

distance in the center due to the radial confinement) the monolayer started melt-

ing, from the center to the periphery. The horizontal particle trajectories during the

melting process are shown in Figure 3.3a. Simultaneously, oscillations in a verti-

cal direction were triggered. It was possible to stop the melting by increasing the

pressure – the system always returned to a stable crystalline monolayer.

The experiment was simulated using an MD code which contains a first-principles

representation of the short-range shielded Coulomb forces and the wake forces due to

the streaming ions. In the numerical simulations the basic findings of the experiment

could be reproduced: When the number of particles in the simulation exceeded a cer-

tain threshold the monolayer melted. In such unstable cases the interparticle distance

in the center of the monolayer was close to the experimentally measured values. The

melting developed in a manner similar to the experiment (see Figure 3.3b). Also,

with increasing pressure (neutral friction) the system became stable. Finally, when

the particle interaction was reduced to a spherically symmetric potential (without

wakes), the system was always stable, indicating that the wakes indeed play the de-

cisive role in the melting.

Quantitative conditions for the melting onset can be derived from the following

simple model proposed by Ivlev et al. (2003): Negatively charged particles of charge

Q and mass md are separated horizontally by a distance ∆ and interact via a (spher-
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ically symmetric) screened potential. The excess positive charge of the wake, Q̃,

is approximated by a pointlike charge located at distance ∆̃ downstream from the

particle. Vertically, the particles are confined in a potential well with their eigenfre-

quency Ωv. It is known that in a crystalline monolayer, in addition to conventional

in-plane acoustic modes (dust lattice waves, see Section 4.4.2), there exists also an

out-of-plane optical mode associated with vertical particle oscillations (Samsonov et

al. 2005). The in-plane and out-of-plane modes are coupled due to particle–wake in-

teraction. The coupling is weak when the corresponding branches ω(k) are far away

from each other, but becomes strong at the resonance, when they intersect. This hap-

pens when the number density of particles exceeds a threshold. Then the branches

are modified and form a hybrid branch in the vicinity around the intersection point,

where the resonance coupling can drive an instability with the growth rate

Im ω ∼ |Q̃∆̃/Q∆|(ω2
0 /Ωv)−νdn, (3.7)

where ω0 =
√

Q2/md∆3 (see Section 4.4.2). One can see from Equation (3.7) that

the coupling part is proportional to the dipole moment of the wake, Q̃∆̃, and the

instability is suppressed when the damping is sufficiently high. It is remarkable that

such a simple model not only recovers all qualitative features seen in the experiment,

but also gives very good (within ≃ 5 %) quantitative agreement.

An additional mechanism contributing to the mode coupling can be due to spa-

tial charge variations and/or variations of the screening, and this effect might sig-

nificantly affect the instability (Kompaneets et al. 2005; Yaroshenko et al. 2005).

Note that the non-Hamiltonian dynamics of dust grains due to nonreciprocity of the

particle–wake interactions (and/or charge/screening variations) can also cause melt-

ing of 3D crystals (Melzer et al. 1996).

3.3 Kinetics of ensembles with variable charges

Since ensembles of particles with variable charges are generally non-Hamiltonian

systems, the use of thermodynamic potentials to describe them is not really justified.

An appropriate way to investigate the evolution of such systems is to use the kinetic

approach (Ivlev et al. 2004, 2005). As long as properties of the charge variations are

known, one can consider the dynamics and kinetics of the grains independently from

the plasma kinetics.

Kinetic equation. In the absence of external fields, the kinetics of charged grains

is governed by the mutual collisions and by the collisions with neutrals, so that the

kinetic equation for the grain distribution function f (p) is:

d f/dt = Stdd f + Stdn f . (3.8)

The grain-neutral collision integral does not depend on particle charges and can be

written in usual Fokker–Planck form (equivalent to the Langevin equation).
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As regards the grain–grain collisions (here we investigate dilute gaseous ensem-

bles and hence focus on the binary interactions only), one should note a very im-

portant point (Ivlev et al. 2005): Generally, we cannot use the collision integral in

the classical Boltzmann form, because its derivation employs the unitarity relation

(Lifshitz and Pitaevskii 1981). This relation is not necessarily satisfied for ensem-

bles with variable charges: Naturally, the grain–grain collision integral applies only

for those transitions occurring (between different kinetic “states”) in the subsystem

of charged grains. Due to the exchange of energy with free plasma charges, the sub-

system of grains is not conservative – the momentum exchange during a collision is

affected by the charging processes. Therefore, the unitarity relation can be fulfilled

only after the summation over the complete set of states, including those correspond-

ing to the subsystem of the plasma charges. Thus, we have to write the collision

integral in the most general form:

Stdd f (p) =

∫

[

w(p′,p′
1; p,p1) f (p′) f (p′

1)−w(p,p1; p′,p′
1) f (p) f (p1)

]

dp1dp′dp′
1.

(3.9)

Here, w(p,p1; p′,p′
1) is a probability function for a pair of colliding particles with

momenta p and p1 to acquire momenta p′ and p′
1, respectively, after the scattering.

Equation (3.9) accounts for all possible transitions (p′,p′
1) → (p,p1) (sources) and

(p,p1) → (p′,p′
1) (sinks), and then is averaged over p1. The function w can be

determined by solving the mechanical problem of the binary scattering with given

interaction between the particles.

The mechanics of binary grain collisions can be conveniently considered in terms

of the center-of-mass and relative coordinates. (Below we consider grains of the

same mass, although all results can be straightforwardly generalized for arbitrary

mass ratio.) For a pair of particles with momenta p and p1, the center-of-mass and

relative momenta are pc = 1
2
(p + p1) and pr = p1 −p, respectively. In the absence

of external forces, the center-of-mass momentum is conserved, and the relative mo-

mentum is changed during the collision,

p′
c = pc, p′

r = pr + q. (3.10)

For constant charges, the absolute value of the relative momentum, pr ≡ |pr|, is

conserved, and only the direction changes (elastic scattering) (Landau and Lifshitz

1976). Charge variations also cause pr variations (Ivlev et al. 2005). Hence, the

exchange of the relative momentum can be divided into elastic and inelastic parts,

q = q0 + δ q: The elastic part keeps the magnitude of the relative momentum con-

stant, |pr + q0| = pr. The vector of inelastic momentum exchange, δ q, is parallel to

p′
r, and its magnitude is δq = p′r − pr.

The kinetics of particles with variable charges has a very important hierarchy of

time scales (Ivlev et al. 2005): Each interparticle collision is accompanied by (i)

elastic momentum exchange q0, which provides the relaxation of the distribution

function to the Maxwellian equilibrium (Lifshitz and Pitaevskii 1981) – while keep-

ing the mean kinetic energy of the particles Ed constant, and (ii) inelastic momen-

tum exchange δq, which causes variation of Ed . Due to the relative smallness of
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the charge variations, the resulting inelastic momentum exchange is small as well,

δq ≪ q0. This implies that process (ii) is much slower than (i). Therefore, the ve-

locity distribution remains close to the Maxwellian form, f (p) ≃ fM(p), with the

temperature Td = 2
3
Ed .

Thus the temperature is the only parameter that determines the evolution of the

ensemble. This implies that the system can be treated with fluid equations: The

momentum equation [with the friction force −νdnv added] remains unaffected since

the charge variations conserve the net momentum. In the temperature equation, along

with the friction (sink) term one has to add a source term due to charge variations. In

accordance with Equation (3.8), the resulting combination of these terms is

Ṫd =
∫

(p2/3md)(Stdd f + Stdn f )dp. (3.11)

For the grain–neutral collisions the integral is simply equal to −2νdn(T −Tn). For the

grain–grain collisions, one can expand the integrand into a series over δq. Retaining

the linear and quadratic terms and integrating in parts, we obtain (Ivlev et al. 2005),

∫

p2Stdd f dp ≃ 1

2

∫

(prA +B) fM(pc) fM(pr) dpcdpr, (3.12)

where A (pc,pr)=
∫

δqw̃dδq and B(pc,pr)= 1
2

∫

(δ q)2w̃dδq are the Fokker–Planck

coefficients (Lifshitz and Pitaevskii 1981; van Kampen 1981). Here w̃(pr,pc;δ q) ≡
w(p,p1; p′,p′

1) and the momenta are related by Equation (3.10). The smallness of

coefficients A and B is ensured by the smallness of the charge variations (for con-

stant particle charges, the inelastic momentum exchange is equal to zero and, hence,

A = B ≡ 0).

Heating. Irrespective of which type of charge variations plays the major role –

charge inhomogeneity or fluctuations – the interparticle interaction can be distin-

guished in terms of the “interaction strength”: For particles interacting via a short-

range screened electrostatic potential (with the screening length λ ), the measure

of the interaction strength is the “scattering parameter” β dd
T = Q2/λTd (see Sec-

tion 2.4). When β dd
T is large enough the interaction is of the hard-spheres type. In

the opposite case, when the ratio is small, the interaction is of the Coulomb type,

similar to that between electrons and ions in usual plasmas. Below, these two limits

are refereed to as the “low-temperature” and “high-temperature” regimes, respec-

tively, with the transition temperature being Ttr = Q2/λ . Equations (3.11) and (3.12)

result in the following equation for the particle temperature (Ivlev et al. 2005):

Ṫd ∼ αT
γ

d −2νdn(Td −Tn). (3.13)

Coefficient α and exponent γ in the source term depend on the temperature regime.

In the case of inhomogeneous charges, the exponent is γ = 3/2 for Td ≪ Ttr and

γ = 1/2 for Td ≫ Ttr. We see that in the low-temperature regime the temperature

exhibits an explosion-like growth provided the friction rate νdn is low enough. At

higher temperatures, however, the growth is always saturated (see Figure 3.4a). For
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FIGURE 3.4

Self-heating in a system of particles with variable charges (Ivlev et al. 2005).

Asymptotic behavior of the particle kinetic temperature is shown for inhomo-

geneous charges (a) and fluctuating charges (b). The transition temperature

TTT tr separates the “hard-spheres” (low-temperature, TTT ddd ≪≪≪ TTT tr) and “Coulomb”

(high-temperature, TTT ddd ≫≫≫ TTT tr) collisional regimes. Solid lines correspond to the

source (charge variation) term in Equation (3.13), symbols αααHS and αααC de-

note coefficients for the “hard-spheres” and “Coulomb” regimes, respectively.

Dashed line correspond to the friction term.

the fluctuating charges we have, respectively, γ = 2 and γ = 1 for the low- and high-

temperature regimes. This means that, unlike the case of the inhomogeneous charges,

the temperature does not saturate but can grow exponentially at Td ≫ Ttr (see Figure

3.4b). Numerical MD simulations fully support the theoretically predicted scalings.
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Waves and instabilities

Alexey V. Ivlev and Sergey A. Khrapak

The charged dust grains embedded into plasmas not only change the electron–ion

composition and thus affect conventional wave modes (e.g., ion–acoustic waves), but

also introduce new low-frequency modes associated with the microparticle motion,

alter dissipation rates, give rise to instabilities, etc. Moreover, the particle charges

vary in time and space (see Section 3.1), which results in important qualitative differ-

ences between complex plasmas and usual multicomponent plasmas. Depending on

the strength of interparticle interaction, complex plasmas can be in weakly coupled

(gaseous-like) or strongly coupled (liquid-like) states, and form crystalline structures

(see Section 5.1). This gives us a unique opportunity to investigate wave phenomena

occurring in different phase states – in particular, nonlinear waves – at the kinetic

level.

Complex plasmas observed in laboratory or space experiments in most cases form

strongly coupled liquid or crystalline states. The uncorrelated gaseous-like phase

can be seen when there is a strong energy influx into the sub-system of grains, which

causes substantial increase of the grain temperature and, hence, decrease of the cou-

pling strength. This heating can be due to the spatial and/or temporal charge vari-

ations (as discussed in Section 3.1), or induced by dust wave instabilities triggered

in complex plasmas (as discussed below in Sections 4.2.2 and 4.4.4). At the same

time, for ideal plasmas the theoretical analysis of the wave modes and major instabil-

ities can be performed in the most simple form. Therefore, we first consider major

wave properties of gaseous complex plasmas and then discuss features peculiar to

the waves in strongly coupled plasmas.

The comprehensive kinetic approach to study waves in complex plasmas is accom-

panied by serious difficulties: One has to deal with the dust–dust and dust–ion colli-

sion integrals which, in contrast to usual plasmas, cannot be considered in the linear

approximations for realistic experimental conditions. Also, the grain charge should

be treated as a new independent variable in the kinetic equation, which makes the

calculations much more complicated. There has been a series of publications where

the substantial progress in the self-consistent kinetic theory of complex plasmas has

been achieved by Tsytovich and de Angelis (1999, 2000, 2001, 2002, 2004). One

should admit, however, that this problem is still far from being solved. On the other

hand, in many cases the (relatively) simple hydrodynamic approach based on the

analysis of the fluid equations allows us to catch essential physics of the processes

and, hence, to understand major dynamical properties of complex plasmas. There-

fore, the analysis of major wave modes and instabilities can be done with the fluid

199
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model. Of course, in some cases the applicability of the results of the hydrodynamic

approach have certain limitations, especially where the damping and/or the growth

rates of the modes are concerned, and then the kinetic approach has to be employed.

In this chapter we first briefly describe different experimental techniques used to

excite the waves, and then discuss in detail the wave properties of complex plasmas

in gaseous, liquid, and crystalline states.

4.1 Wave excitation technique

The methods used for the wave excitation in complex plasmas conditionally divide

the experiments into two categories: passive and active. The former employ “nat-

ural” perturbations which are triggered spontaneously, e.g., wave instabilities (Chu

et al. 1994; Barkan et al. 1995; Molotkov et al. 1999; Fortov et al. 2000, 2003;

Misawa et al. 2001; Zobnin et al. 2002; see Sections 4.2.2, 4.4.4, and 4.5.2) or Mach

cones (Samsonov et al. 1999, 2000; see Section 4.5.3), whereas the latter use meth-

ods of controlled action produced with the specially designed devices. Generally, the

active experiments provide much better flexibility, but in some particular cases the

passive experiments yield remarkably good results, e.g., natural spectrum of waves

in plasma crystals (Nunomura et al. 2002b, 2005; Zhdanov et al. 2003a; see also

Section 4.4.2).

The methods of the active (controlled) wave excitation in complex plasmas are

very diverse. First of all, this can be the electrical action produced in plasmas with

biased Langmuir probes (Peters et al. 1996; Nakamura et al. 1999; Nakamura and

Sarma 2001; Nakamura 2002), wires (Zuzic et al. 1996; Pieper and Goree 1996;

Samsonov et al. 2002, 2004a,b, 2005), or electrodes (Thompson et al. 1997; Mer-

lino et al. 1998; Luo et al. 1999, 2000; Khrapak et al. 2003; Yaroshenko et al.

2004), which allows the excitation of both ion and dust waves. The electrical meth-

ods are very effective in creating waves of large amplitude and arbitrary geometry

(see Section 4.5). On the other hand, the major drawback of these methods is that

the electrical perturbations cannot be localized in small regions, and that this action

can strongly affect global plasma parameters (Samsonov et al. 2001). To produce

the local action on dust particles, which does not affect the discharge plasma, the

laser radiation is the most widely used method (Homann et al. 1997, 1998; Melzer

et al. 2000; Nunomura et al. 2000, 2002a, 2003; Piel et al. 2002; Nosenko et al.

2002a, 2004; Liu et al. 2003). This method is employed for manipulation by single

particles and small particle sets, and allows us to excite the Coulomb cluster rota-

tion (see Section 1.4.5), vertical oscillations of individual particles (see Section 3.1)

and low-frequency waves in plasma crystals (see Section 4.4), and to generate Mach

cones (see Section 4.5.3). This technique, however, requires very high laser power

when waves of large amplitude are needed, e.g., Mach cones, solitons (Melzer et

al. 2000; Nunomura et al. 2003; Nosenko et al. 2004), or when the perturba-
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tion should be simultaneously produced over an extended area, e.g., to excite planar

waves in three-dimensional plasmas. The alternative method which provides local

action on microparticles and, at the same time, the sufficient strength of the pertur-

bations is the use of the electron beams (Vasilyak et al. 2002, 2003). Recently, this

method was successfully employed to cause local excitation, melting, and disruption

of plasma crystals, by changing the magnitude of the beam current. This technique,

however, requires further development to be widely used in complex plasma experi-

ments. Large amplitude waves can also be produced using perturbations of a neutral

gas pressure (density) (Samsonov et al. 2003; Fortov et al. 2004; see Section 4.5.2).

4.2 Waves in ideal (gaseous) complex plasmas

Considering the dust species as an ideal gas, one can write the continuity and mo-

mentum equations for the dust density nd and velocity vd in the following forms:

∂nd

∂ t
+ ∇(ndvd) = 0, (4.1)

∂ vd

∂ t
+(vd ·∇)vd = − Q

md

∇φ − ∇(ndTd)

mdnd

−∑
β

νdβ (vd −vβ ). (4.2)

The last term in Equation (4.2) describes the momentum transfer force (“drag”) on

the dust particles caused by the collisions with the “light” species – electrons, ions,

and neutrals (β = e, i,n). The corresponding momentum exchange rates derived in

the binary collision approximation, νdβ , are given in Section 2.4.2. As long as the

flow velocities of the light species are much smaller than the thermal velocities,

νdβ does not depend on vβ . An important difference between the drag force due to

collisions with neutrals (“neutral drag”) and the force caused by the collisions with

the charged species (“ion drag” and “electron drag”) is that the latter includes both

the direct collisions with the grain surface (“collection” part) and elastic scattering

by the grain electrostatic potential (“orbital” part), i.e., νdβ = νcoll
dβ +νorb

dβ . The dust

viscosity usually does not play a noticeable role in the gaseous phase and, therefore,

is not included in Equation (4.2).

The fluid equations for electrons and ions are (α = e, i)

∂ nα

∂ t
+ ∇(nαvα) = QIα −QLα − Jαnd , (4.3)

∂vα

∂ t
+(vα ·∇)vα = − eα

mα
∇φ − ∇(nα Tα)

mα nα

−∑
β

νorb
αβ (vα −vβ )−

(

QLα

nα
+νcoll

αd

)

vα . (4.4)
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The continuity equations include source terms, QIα , and two types of sink – “dis-

charge” loss QLα and the “dust” loss Jαnd . The source of electrons and ions which

sustains the discharge is usually the volume ionization in electron–neutral collisions

(Raizer 1991; Lieberman and Lichtenberg 1994), and then QIe = QIi = νIne, where

νI is the ionization frequency. (In some cases the secondary electron emission,

thermionic emission, and photoelectric emission from the surface of the grains can

also provide contributions to QIe, see Section 2.1.4). The “discharge” loss term is

usually due to the diffusion towards the discharge chamber walls and can be esti-

mated as QLe = QLi ∼ (Dai/L2)ni, where Dai is the ambipolar (ion) diffusion coeffi-

cient and L is the spatial scale of the “global” plasma inhomogeneity (i.e., distance

between the rf electrodes or the radius of the dc discharge tube). The “dust” loss

terms are due to electron and ion absorption on the grain surface (see Section 2.1.5)

and are determined by the corresponding fluxes on a grain, Jα , described in Sec-

tion 2.1.

The representation of the momentum transfer force in the form ναβ (vα − vβ ) is

valid as long as the mean free path of the species is shorter than the spatial scale

of the perturbations (e.g., the inverse wave vector k−1). Note that the change of the

electron or ion momentum due to absorption by the dust grains does not depend on

the grain velocity, and this is also taken into account in Equation (4.4). The reciprocal

momentum transfer rates are related to each other as follows:

mα nα ναβ = mβ nβ νβ α . (4.5)

Variability of the grain charges implies that the fluid equations for the density and

momentum should be coupled to the charge transport equation which has the follow-

ing form:
∂ Z

∂ t
+ vd ·∇Z = Ji − Je, (4.6)

where Z = Q/e is the particle charge number. The system of equations is closed by

the Poisson equation,

∇2φ = −4πe(ni−ne + Znd). (4.7)

One can also take into account the temperature variation of the species caused by

the wave perturbations. There are two limiting cases: Isothermal variations – when

the time scale of the perturbations exceeds the time scale of temperature relaxation

due to the thermal conductivity – and adiabatic variations in the opposite case. Then

the partial pressure of each species, nα Tα , scales as ∝ n
γα
α , where γα is the effective

polytropic index.

4.2.1 Major wave modes

In ideal unmagnetized plasmas only longitudinal wave modes can be sustained. The

dispersion relations of these modes can be written as a sum of the partial susceptibil-

ities (plasma responses),

ε(ω,k) = 1 + χe + χi + χd = 0, (4.8)
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where the electron and ion responses are expressed via density and potential pertur-

bations as χe,i = ±4πek−2δne,i/δφ . The dust response depends also on the charge

variations, so that χd =−4πk−2(Zδnd +ndδZ)/δφ . By linearizing Equations (4.1)–

(4.7) one can obtain the partial responses in the hydrodynamic approximation (for the

results of the kinetic theory, see, e.g., Tsytovich et al. 2001, 2002).

In order to retrieve the wave modes existing in complex plasmas, let us first con-

sider the case of the multi-component plasmas – when the variations of the grain

charges are neglected. At this point we also neglect collisions and assume the equi-

librium plasma ionization and loss: This approach allows us to obtain satisfactory

results for the real part of the dispersion relations ω(k), unless the actual damping

(growth) rate of the waves is comparable with ω . The partial plasma responses in

this case are

χα = −
ω2

pα

ω2 − γαk2v2
Tα

, (4.9)

where ωpα is the plasma frequency of the corresponding species. (When the flow is

present with the drift velocities uα , one should simply substitute ω → ω −k ·uα .)

For the plasma waves (plasmons with ω ≫ kvTe ) the microparticles remain at rest

and, therefore, the functional form of the dispersion relation, ω2 = ω2
pe + 3k2v2

Te
,

is not affected by the presence of the dust grains (in the hydrodynamic approach

one can treat plasma waves as one-dimensional oscillations with γe = 3). However,

the electron plasma frequency ωpe is changed because the charged grains affect the

quasineutrality condition for unperturbed densities, ni = ne + |Z|nd , and hence the

electron density. A similar effect is also observed for the ion–acoustic (IA) waves,

where the electrons provide equilibrium neutralizing background and dust remains

at rest, kvTi
≪ ω ≪ kvTe . For electrons we have χe = (kλDe)

−2 and then Equations

(4.8) and (4.9) yield

ω2

k2
= γiv

2
Ti

+
ω2

piλ
2
De

1 + λ 2
Dek2

. (4.10)

The first term represents ordinary ion thermal sound mode which can exist when the

ion mean free path is much smaller than the wavelength k−1. Usually this term is

relatively small and can be neglected compared to the second term, which actually

represents the IA mode. This IA term depends on the ion-to-electron density ratio,

which can be conveniently characterized by the “Havnes parameter” P (Havnes et al.

1987),

ni/ne −1 = |Z|nd/ne ≡ P. (4.11)

Generally, when P ≪ 1 the effect of dust on the conventional (plasma and ion–

acoustic) modes can be neglected. Otherwise, for P & 1 the role of dust can be

significant and then, in order to highlight this effect, the IA waves are referred to as

the dust ion–acoustic (DIA) mode. In the long-wavelength limit kλDe ≪ 1 the phase

velocity of the DIA mode can be conveniently expressed via the ion thermal velocity,

CDIA = ωpiλDe ≡
√

(1 + P)τ vTi
, (4.12)
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where τ = Te/Ti is the electron-to-ion temperature ratio, which is much larger than

unity for typical rf and dc discharges, so that CDIA exceeds significantly the ion

thermal velocity (note that CDIA does not depend on Ti). The role of the dust species

on the IA waves was first considered by Shukla and Silin (1992). The DIA waves

were studied in a series of experiments (see, e.g., Barkan et al. 1996a,b; Merlino et

al. 1998) where the increase of the phase velocity with the grain density was clearly

demonstrated.

Charged dust particles give rise to another acoustic mode associated with the mo-

tion of charged grains, whereas both the electrons and ions provide equilibrium neu-

tralizing background. For kvTd
≪ ω ≪ kvTi

, we have χe,i = (kλDe,i)
−2, and then

Equations (4.8) and (4.9) yield

ω2

k2
= γdv2

Td
+

ω2
pdλ 2

D

1 + λ 2
Dk2

, (4.13)

where λ−2
D = λ−2

De + λ−2
Di is the linearized Debye length. In analogy with the DIA

waves [Equation (4.10)], the first term represents the dust thermal mode and the

second one corresponds to the dust–acoustic (DA) mode. The phase velocity of the

DA mode does not depend on the dust temperature and in the long-wavelength limit

kλD ≪ 1 can be written as

CDA = ωpdλD ≡
√

Pτ

1 +(1 + P)τ

√

|Z| Ti

Td

vTd
. (4.14)

There is a clear similarity between the ion and dust acoustic modes: Equations (4.12)

and (4.14) show that for both modes the ratio of the phase velocity to the thermal

velocity is determined by the temperature ratio of the light-to-heavy species – Te/Ti

for DIA waves and Ti/Td for DA waves. A peculiarity of the DA waves is that the

charge-to-mass ratio of the dust grains is typically 108–1010 times smaller than that

of the ions, and therefore, the dust waves have relatively low frequencies, ∼10–

100 Hz. The dispersion relation for the DA wave was first derived by Rao et al.

(1990). Since the typical values of |Z| are on the order of thousands, the phase

velocity of DA waves can be much larger than vTd
, even if Td exceeds Ti (of course,

the Havnes parameter should not be too small).

The first reported observation of spontaneously excited dust waves was in an rf

magnetron discharge at a frequency≃ 12 Hz (Chu et al. 1994). Later the dust waves,

either self-sustained or excited externally, were seen in numerous experiments under

quite different experimental conditions: For example, in Q-machine at ≃ 15 Hz with

the phase velocity ≃ 9 cm s−1 (Barkan et al. 1995), in dc discharges in the range

≃6-30 Hz with the phase velocity ≃ 12 cm s−1 (Thompson et al. 1997; Merlino et

al. 1998), and at ≃ 60 Hz with the phase velocity ≃ 1 cm s−1 (Molotkov et al. 1999;

Fortov et al. 2000). There were numerous experiments performed in rf discharges

where self-excited waves (Zobnin et al. 2002; Fortov et al. 2003; Piel et al. 2006;

Schwabe et al. 2007) or externally driven waves (Khrapak et al. 2003; Yaroshenko et

al. 2004; Thomas et al. 2007; Annibaldi et al. 2007) were investigated. Figure 4.1
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FIGURE 4.1

Wave structure observed in PKE-Nefedov experiments by Annibaldi et al.

(2007). The experiments were performed under microgravity conditions in ar-

gon rf-discharge plasma at a pressure 12 Pa with particles of 3.4 µµµm diameter.

The particles were visualized by the vertical laser sheet of about 150 µµµm thick-

ness. The waves were excited by applying a low-frequency modulation voltage

to the lower rf electrode. The snapshot (side view) shows the response of the

particles at a frequency of 23 Hz.

shows the waves excited by a periodic modulation of the dc bias of the (lower) rf

electrode obtained under microgravity conditions by Annibaldi et al. (2007). Most

of such experiments, however, were done with strongly coupled plasmas. The weak

coupling was probably achieved only when the excitation amplitude was fairly large

or the waves were unstable (e.g., Barkan et al. 1995; Fortov et al. 2003; Schwabe

et al. 2007), which eventually provided sufficiently high “temperature” of grains. A

quantitative comparison with the linear dispersion relations is not really justified in

these cases. Therefore, an accurate experiment to verify the DA dispersion relation

in gaseous complex plasmas is still necessary, though the first experimental observa-

tions of the dust thermal mode was recently reported by Nunomura et al. 2005.

Note that when the variations of the grain charges induced by waves are taken into

account, the DIA phase velocity remains the same, but the DA velocity is changed

(Melandsø et al. 1993; Fortov et al. 2000, Ivlev and Morfill 2000). However, this

change does not exceed the factor ≃
√

(2 + z)/(1 + z) compared to Equation (4.14),

which is typically less than ≃ 15%. Therefore, for practical use Equation (4.14) is

quite sufficient.

4.2.2 Damping and instabilities

The wave modes can exist only when the damping is weak, so that the actual imagi-

nary part of the dispersion relation, |ωi|, is much smaller than the real part ωr – only



206 Complex and Dusty Plasmas

then one can speak about the wave propagation. The waves can also be unstable,

because of various mechanisms operating in complex plasmas – we discuss these

mechanisms below. As long as |ωi| is much smaller than ωr, the latter is approxi-

mately determined by the real part of the permittivity (4.8), i.e., Re ε(ωr,k) ≃ 0, and

the former is given by (Alexandrov et al. 1984)

ωi ≃ − Im ε(ω ,k)

∂ Re ε(ω ,k)/∂ω

∣

∣

∣

∣

ω=ωr

.

This is very convenient formula for the practical use.

First we discuss the kinetic effects – namely, the role of the Landau damping. For

each wave mode, the Landau damping can be due to wave resonance with “heavy”

species (i.e., ions for DIA waves and dust for DA waves) and with “light” species

(electrons for DIA waves and ions for DA waves). The damping caused by heavy

species scales as |ωi/ωr| ∝ exp(− 1
2
C2/v2

T ), where C and vT are the corresponding

phase velocity and the thermal velocity of heavy species, respectively (Lifshitz and

Pitaevskii 1981; Rosenberg 1993). From Equations (4.12) and (4.14) we see that

even in isothermal complex plasmas, the C/vT ratios can be quite large: CDIA/vTi
is

large when P ≫ 1, and CDA/vTd
is large because |Z| ≫ 1. This makes substantial

difference compared to usual plasmas, where CIA/vTi
can be large and, thus, the IA

waves can propagate only when τ ≫ 1 [DIA waves were studied in the double plasma

device, e.g., by Nakamura and Sarma (2001), and the Q-machine, e.g., by Barkan et

al. (1996a), where τ ≃ 1]. Thus, the damping on heavy species is usually small in

(dense) complex plasmas.

In the absence of the plasma flows the Landau damping on light species is rel-

atively weak as well, because of the small charge-to-mass ratios: For DIA waves

the (relative) damping rate is |ωi/ωr| .
√

(1 + P)me/mi, whereas for DA waves

|ωi/ωr| .
√

P(1 + P)−1|Z|mi/md (Lifshitz and Pitaevskii 1981; Rosenberg 1993).

Nevertheless, in experiments with the DIA waves performed at very low pressures,

p ∼ 10−2–10−3 Pa, the electron Landau damping can be an important mechanism of

dissipation (Popel et al. 2004). For DA waves, however, it does not play a noticeable

role. The Landau damping is, of course, modified when a stream of light species

exists in a plasma (see below).

Now let us dwell upon the other mechanisms responsible for the damping and

instabilities of the DIA and DA waves. Below we assume that the electron-to-ion

temperature ratio τ is large, as it usually is in experiments. Such assumption al-

lows us to simplify formulas substantially (note that even for τ ≃ 1, the resulting

expressions yield fairly good quantitative agreement with the exact formulas).

DIA mode. Along with the Landau damping the major dissipation mechanisms

are the collisions with neutrals and variations of the grain charges (Jana et al. 1993;

Varma et al. 1993; Ma and Yu 1994; D’Angelo 1994; Ivlev and Morfill 2000). In

addition, there is a counterplay between ionization and loss – this can cause either

damping or instability, depending on the value of P (D’Angelo 1997; Ivlev et al.

1999; Wang et al. 2001b). All three contributions to the imaginary part ωi (assuming
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that it is much smaller than ωr) can be derived from the fluid approach which yields

2ωi ≃−νin −
1−P

1 + P
νI −

P2Ωch

(1 + P)(1 + z)
,

where νin is the frequency of the ion–neutral collisions and Ωch is the charging fre-

quency [see Equation (2.16)]. In sufficiently dense complex plasmas (when P ≫ 1),

the major damping mechanism can be due to the “coherent” charge variations in-

duced by waves (the mechanism is effective because the DIA frequency can be

comparable to Ωch). The ion–neutral collisions as well as ionization do not usu-

ally play any significant role in the DIA wave experiments, since the gas pressure is

low enough (see, e.g., Barkan et al. 1996a; Luo et al. 1999; Nakamura and Sarma

2001).

As regards the DIA instabilities, the major mechanism operating in experiments is

associated with the electron drift relative to ions (Barkan et al. 1996b; Merlino 1997)

– the so-called “current-driven instability” which is well-known for the IA waves in

usual plasmas. Essentially, this instability is the reversed electron Landau damping –

the energy exchange due to the resonance electron-wave interaction changes the sign

when the drift velocity ue exceeds the phase velocity of the DIA waves CDIA. The

growth rate associated with this instability can be estimated as (Rosenberg 1993)

ωi

ωr
≃
√

π

8

me

mi

(1 + P)
(ue/CDIA −1)

(1 + k2λ 2
De)

3/2
.

When the damping rates discussed above (including the ion Landau damping) are

low enough, the current-driven instability sets on (Merlino 1997; Merlino et al.

1998). The charge variations can somewhat modify the growth rate (Annou 1998).

DA wave mode. The major damping mechanism operating in experiments with

complex plasmas is certainly neutral gas friction. The resulting damping, 2ωi ≃
−νdn, is determined by the corresponding momentum exchange rate [see Equation

(2.69)]. However, along with the damping there are a number of instability mecha-

nisms which turn out to be quite important in experiments. Below we mention the

most important types of the DA instability:

(i) Ion streaming instability: This can be triggered when ion currents are present in

a plasma (e.g., due to electric fields in rf sheaths and dc striations). The mechanism

of the (DA) ion streaming instability is completely identical to that of the (DIA)

current-driven instability. The ion streaming instability is often observed in complex

plasma experiments performed in different discharges (see, e.g., Barkan et al. 1995;

Molotkov et al. 1999; Ratynskaia et al. 2004), and it has been studied theoretically

in numerous publications, e.g., Rosenberg 1993, 1996, 2002; D’Angelo and Merlino

1996; Kaw and Singh 1997; Mamun and Shukla 2000. Figure 4.2 shows an example

of such instability observed in a rf capacitively coupled discharge by Schwabe et al.

(2007).

The presence of the ion flux modifies properties of the DA mode. This can be

appropriately taken into account by using the kinetic expression for the ion suscepti-

bility. Also, the kinetic approach allows us to include properly the effect of the ion–

neutral collisions: The collisions in discharges are mostly of the charge-exchange
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1 mm

FIGURE 4.2

Spontaneous excitation of dust waves observed in laboratory experiments by

Schwabe et al. (2007). The experiments were carried out in an rf discharge in

argon at a pressure of 23 Pa with particles of 1.28 µµµm diameter. The instability

sets on when the particle density in the cloud exceeds a threshold, provided the

gas pressure is low enough.

type, which makes it possible to employ the model BGK (Bhatnagar, Gross and

Krook) form of the ion collision integral. Assuming shifted Maxwellian distribution,

the ion response is (Alexandrov et al. 1984)

χi(ω ,k) =
1

(kλDi)2







1 +F (ξ )

1 +
iνin

ω −k ·ui + iνin

F (ξ )






, ξ =

ω −k ·ui + iνin√
2kvTi

, (4.15)

where F (ξ ) is the Maxwellian dispersion function (Fried and Conte 1961). In

limiting cases Equation (4.15) can be substantially simplified: For |ξ | ≪ 1, the

power series for the dispersion function is F (ξ ) ≃ −2ξ 2 + i
√

πξ , and for |ξ | ≫ 1

the asymptotic expansion is F (ξ ) ≃ −1− 1
2
ξ−2 + i

√
πξ e−ξ 2

. Therefore, when

|ω −k ·ui + iνin| ≪ kvTi
we obtain

χi(ω ,k) ≃ 1

(kλDi)2

[

1 + i

√

π

2

ω −k ·ui

kvTi

]

, (4.16)

where ui is the drift velocity of ions. The real part in Equation (4.16) coincides with

the results of the fluid approach in this limit [see Equation (4.9)], the imaginary part

is due to the Landau damping. In the opposite limit |ω − k · ui + iνin| ≫ kvTi
the

resulting susceptibility can be written in the following form:

χi(ω ,k) ≃−
ω2

pi

(ω −k ·ui)(ω −k ·ui + iνin)− k2v2
Ti

. (4.17)

This limit denotes either a strongly collisional case (when the ion mean free path

is shorter than k−1) or the case of “cold hydrodynamics” (when ui ≫ vTi
, so that
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the thermal motion can be neglected). In both cases the fluid approach is applicable

and, hence, Equation (4.17) can be directly obtained from Equations (4.3) and (4.4),

assuming equilibrium ionization/recombination and neglecting other collisions.

Note that Equation (4.15) is derived assuming the shifted Maxwellian function for

the ion velocity distribution. This assumption, however, is only justified when the

ion flow is (sub)thermal – otherwise deviations from the Maxwellian form become

too strong [see Equation (2.75)] which, in turn, strongly affects the expression for the

ion susceptibility χi. Therefore, for the superthermal flow one should use Equation

(2.76) (Schweigert 2001; Ivlev et al. 2004, 2005).

The threshold for the ion streaming instability is determined from the (numerical)

solution of Equation (4.8), by using Equations (4.16) or (4.17) for the ion response

and substituting χe ≃ (kλDe)
−2 and χd ≃−ω2

pd/ω(ω + iνdn). Experiments show that

by increasing the neutral gas pressure up to sufficiently high values (typically, dozens

of Pa) the instability can be suppressed, apparently because the neutral gas friction

increases as well. The theoretical analysis [which can be somewhat simplified for

the subthermal (Fortov et al. 2000) and superthermal (Joyce et al. 2002) limits of

the ion drift] yields the pressure threshold which is in a good agreement with the

experiments.

(ii) Ionization instability: Unlike the DIA waves, ionization cannot directly cause

the instability of the DA waves – because the ionization creates new ions, but not

dust grains. Nevertheless, ionization can in fact trigger the DA instability, because

the ions can effectively transfer their momentum to the grains via the ion drag force

(D’Angelo 1998; Ivlev et al. 1999; Ostrikov et al. 2000). The whole instability

mechanism operates as follows: When the dust density fluctuates – say, decreases

– in some region, ionization increases (because the electron density grows keeping

quasi-neutrality), which creates additional ion outflow from the region. This flux

exerts an additional ion drag force pushing the grains away, and thus, the dust density

decreases further. Obviously, this instability is of the aperiodic type (i.e., ωr = 0)

and, thus, is independent of νdn. The instability condition ωi > 0 is satisfied when

(D’Angelo 1998; Ivlev et al. 1999; Wang et al. 2001b)

[P−1νid − (1 + P)−1νin]νI & k2v2
Ti
.

Here, νid is the effective frequency of the ion–dust collisions, which is related to

the “ion drag” rate νdi introduces in Section 2.4.2.2 via miniνid = mdndνdi. The

larger the dust grains are, the higher the value of νid is and, hence, the condition for

the instability is more relaxed. There are grounds to believe that this instability is

responsible for the onset of the void formation in complex plasmas (D’Angelo 1998;

Ivlev et al. 1999; Samsonov and Goree 1999; Ostrikov et al. 2000; Wang et al.

2001b).

(iii) Charge variation instability: This is due to the grain charge variations induced

by the DA wave. In contrast to the DIA waves, now the charges are very close to the

momentary equilibrium (because |ω| ≪ Ωch), and therefore, their variations alone

are unlikely to be a reason for an instability or damping. However, in the presence

of an external electric field E (e.g., ambipolar fields or the fields in rf sheaths and dc
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striations), the wave-correlated charge variations result in non-zero (average) work

done by the electric force (Fortov et al. 2000, 2003; Zobnin et al. 2002). The sign

of this work is determined by the orientation of the wave vector k with the respect

to the electric field. The dust susceptibility that takes into account these effects is

(Fortov et al. 2000)

χd(ω ,k) ≃−
ω2

pd

ω(ω + iνdn)

[

1 +
ieE ·k

(1 + z)Tik2

]

.

This expression should be used together with Equation (4.16) or (4.17) for the flow-

ing ions, because the electric field causes an ion drift with a velocity which is usually

determined by the ion mobility µi, via ui = µiE . Numerical solution of Equation

(4.8) by Fortov et al. (2000) yields the instability threshold which takes into account

both the ion stream and the charge variations. It was shown that the charge vari-

ations can relax the conditions for the instability onset significantly, resulting into

lower values of the threshold pressure. Then the instability can be triggered when

the density of dust particles exceeds a critical value (Fortov et al. 2000; Zobnin et

al. 2002).

4.3 Waves in strongly coupled (liquid) complex plasmas

In the beginning of this chapter we mentioned that complex plasmas are normally

observed in experiments forming strongly coupled states. The pair correlation func-

tion of microparticles usually exhibits short-range order indicating that plasmas are

in liquid-like states or that the particles form ordered crystalline structures. Disper-

sion properties of strongly coupled plasmas significantly deviate from those of ideal

gaseous plasmas discussed above. There are many different theoretical approaches

to study waves in strongly coupled systems: These are, e.g., the “quasi-localized

charge approximation” (Kalman and Golden 1990) employed for complex plasmas

by Rosenberg and Kalman (1997) and Kalman et al. (2000), the “multicomponent

kinetic approach” by Murillo (1998, 2000), and the “generalized hydrodynamic ap-

proach” applied by Kaw and Sen (1998), Kaw (2001), and Xie and Yu (2000). The

last is probably the most physically “transparent” approach which allows us to track

evolution of the dispersion properties of complex plasmas in a broad range of cou-

pling parameter Γ, from the ideal gaseous state (Γ . 1) up to the strongly coupled

state (Γ ≫ 1) – when the system crystallizes. There have also been numerical MD

simulations of the wave modes in strongly coupled complex plasmas (Winske et al.

1999; Ohta and Hamaguchi 2000), which are in reasonably good agreement with the

results of the above mentioned theoretical approaches.

Following the model of “very viscous liquids” originally proposed by Maxwell

and generalized by Frenkel (1946), in the framework of generalized hydrodynamics

(GH), the ensemble of strongly coupled dust grains is treated as a continuous medium
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which reveals properties of viscous liquids in response to slow perturbations, but

behaves as an elastic body when the perturbation time scales are short enough (Kaw

and Sen 1998; Kaw 2001). The transition between these two regimes occurs at the

so-called “Maxwellian relaxation time” τM. The fluid equation of motion for the

velocity perturbation δvd has the following form:

∂δ vd

∂ t
= − Q

md

∇φ − ∇pd

mdnd

−νdnδvd

−
t
∫

−∞

dt ′
∫

dr′ ηd(r− r′,t − t ′)δvd(r
′,t ′). (4.18)

The integral term is the linear viscoelastic operator in a homogeneous stationary

medium written in a general form. It takes into account both spatial and temporal

correlations of stresses exerted in strongly-coupled systems, in addition to the local

homogeneous stress – the pressure term ∝ ∇pd . By using the simplest form of the

viscoelastic operator with the exponentially decaying memory effects, we have for

the viscosity kernel:

ηd(ω ,k) ≃
ηk2 +( 1

3
η + ζ )k(k · )

1− iωτM

.

[Here (k · ) denotes a scalar product with δvd .] Parameters of the stress operator –

viscosities η and ζ and relaxation time τM, as well as pressure pd – are determined by

the correlation part of the energy of the electrostatic interaction u(Γ,κ) (normalized

by the dust temperature). In a weakly coupled regime, Γ . 1, the Debye–Hückel

approximation yields u ≃ −
√

3
2

Γ3/2 (here and below in this section Γ corresponds

to the Wigner-Seitz radius). For the liquid phase in the range 1 . Γ . 200, the

normalized correlation energy can be well approximated by the scaling (Farouki and

Hamaguchi 1994) u = aΓ+bΓ1/4 + c+dΓ−1/4, where coefficients a, b, c, and d are

some functions of the lattice parameter κ . In the one-component plasma (OCP) limit,

κ = 0, the Monte Carlo (MC) simulations by Slattery et al. (1980) yield a ≃−0.89,

b ≃ 0.94, c ≃−0.80, and d ≃ 0.18. For κ . 1 the dependence of the coefficients on

the lattice parameter is rather weak (Farouki and Hamaguchi 1994), a(κ)≃−0.89−
0.10κ2 + 0.0025κ4 + . . ., which means that the OCP results are quite applicable for

this range of κ . The relaxation time is expressed as follows (Ichimaru et al. 1987):

τMv2
Td

= η∗(1− γd µd + 4
15

u)−1, where η∗ = 4
3
η + ζ and µd = T−1

d (∂ pd/∂ nd)Td
=

1 + 1
3
u + 1

9
Γ∂ u/∂ Γ is the isothermal compressibility. The first and second viscosity

coefficients, η and ζ , can also be deduced from the results of numerical simulations

and experiments by Saigo and Hamaguchi (2002), Salin and Caillol (2002, 2003),

Nosenko and Goree (2004).

Using the Fourier transformation of Equation (4.18) together with the continuity

equation (4.1), one can derive the dispersion relations of different wave modes.
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4.3.1 Longitudinal waves

The dust susceptibility is (δvd parallel to k)

χd(ω ,k) = −
ω2

pd

ω(ω + iνdn)− γdµdk2v2
Td

+
iη∗ωk2

1− iωτM

. (4.19)

The dispersion relation is determined by Equation (4.8) by substituting χe,i ≃ (kλDe,i)
−2

together with Equation (4.19). Naturally, two limits can be distinguished: The “hy-

drodynamic regime” ωτM ≪ 1 and the “strongly coupled regime” ωτM ≫ 1 (fol-

lowing the terminology adopted from the OCP literature). For Γ ≫ 1 the correlation

energy is mostly determined by the Madelung part, u ≃−0.89Γ, and then the results

are reduced to the following simple form:

ωτM ≪ 1 : ω
[

ω + i(νdn + η∗k2)
]

≃
[

1

1 + k2λ 2
D

−0.4

(

vTd

CDA

)2

Γ

]

C2
DAk2,

ωτM ≫ 1 : ω(ω + iνdn) ≃
[

1

1 + k2λ 2
D

−0.24

(

vTd

CDA

)2

Γ

]

C2
DAk2.

(4.20)

The right-hand side of Equation (4.20) is independent of Td , and the second terms

represent the “coupling correction” to the gaseous DA dispersion relation (4.13).

At sufficiently large Γ these terms play a very important role – the dispersion can

even change the sign, so that the group velocity becomes negative (∂ω/∂k < 0) at

large k. This feature is peculiar to the longitudinal modes in plasma crystals (see

Section 4.4), which indicates that there is no qualitative difference between the dis-

persion properties of (strongly coupled) liquid and crystalline complex plasmas. It

is noteworthy that the other approaches yield essentially the same results for the real

part of the dispersion relation (see Figure 4.3). The important difference revealed in

the GH approach is only for the imaginary part – in addition to the neutral friction,

the viscosity contributes to the dissipation in the hydrodynamic regime. However,

for typical experimental conditions the neutral gas friction prevails and the viscos-

ity can provide the major contribution to the dissipation only if the gas pressure is

low enough. Also, the neutral gas friction can hamper the role of the “coupling

correction”, and when νdn becomes comparable to ωpd , the difference between the

dispersion relations of ideal and strongly coupled complex plasmas can be washed

away completely (Rosenberg and Kalman 1997; Kaw and Sen 1998; Kaw 2001).

Presumably, that was the reason why in experiments where the coupling parameter

was quite high, the dispersion properties were nevertheless found to be very similar

to those derived for ideal plasmas (see, e.g., Pieper and Goree 1996). Note that the

longitudinal waves in strongly coupled plasmas are subject to the ion streaming in-

stability, similar to that discussed in Section 4.2.2, now with the thresholds and the

growth rate functions of Γ (e.g., Kaw and Sen 1998).
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FIGURE 4.3

Dispersion relation of dust waves in strongly coupled complex plasmas, as de-

rived from the quasi-localized charge approximation by Rosenberg and Kalman

(1997). The frequency is normalized to the dust plasma frequency ωωωpddd and the

wave vector is normalized to the particle separation ∆∆∆. The results are for the

screening parameter κκκ === 000...555 and different values of the coupling parameter ΓΓΓ.

The curve ΓΓΓ === 000 recovers the dispersion relation for the DA waves in gaseous

complex plasmas [Equation (4.13) with TTT ddd === 000].

4.3.2 Transverse waves

For the transverse waves (δ vd perpendicular to k), the dispersion relation can be

directly obtained from the Fourier transformed Equation (4.18),

ω
[

ω + i(τ−1
M + νdn)

]

=
η∗k2 + νdn

τM

. (4.21)

This mode is also strongly affected by the neutral gas friction – the effects of strong

coupling disappear when νdn & η∗k2. If the neutral friction can be neglected then in

the hydrodynamic regime ωτM ≪ 1, Equation (4.21) reduces to the ordinary damped

mode for a shear flow in viscous liquids, ω ≃ −iη∗k2. In the opposite regime we

obtain a non-dispersive acoustic mode, ω ≃
√

η∗/τM k, which is analogous to elastic

shear waves in solids. The shear waves triggered in liquid complex plasmas due to
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instability have been observed experimentally by Pramanik et al. (2002) [however,

the mechanism responsible for the instability is not fully understood (Mishra et al.

2000; Kaw 2001; Pramanik et al. 2002)].

Thus, the GH approach allows us to track evolution of the wave dispersion proper-

ties as the coupling parameter Γ increases and, thus, to cover the transition from the

ideal gaseous to the strongly coupled state. However, the phenomenological hydro-

dynamic approach can provide us with only the qualitative convergence to the wave

modes in crystals and, of course, cannot retrieve features peculiar to a particular lat-

tice type (especially when the wavelength becomes comparable to the interparticle

distance). Therefore, for a quantitative study of waves in plasma crystals, one should

employ a different approach which is discussed in the next section.

4.4 Waves in plasma crystals

The theoretical model of waves in crystals – the so-called “dust–lattice” (DL) waves

– is based on the analysis of the equation of motion for individual particles. For a

particle having the coordinate r, the equation of motion is

md r̈ + mdνdnṙ = −∇Udd + Fext. (4.22)

Here Udd = Q2 ∑
i
|r− ri|−1 exp(−|r− ri|/λD) is the total energy of the electrostatic

dust–dust coupling (interaction potential is assumed to be of the Debye–Hückel

form), the summation is over all particles with ri 6= r. The force Fext includes all

“external” forces (except for the neutral drag force which is explicitly included to

the left-hand side), e.g., confinement, excitation (lasers, electric pulses, beams, etc.),

thermal noise (Langevin force). Such diversification of the forces is convenient be-

cause the eigenmodes of the system do not depend on Fext. When the particles in

a crystalline state are sufficiently far from the melting line (see Figure 5.1, Section

5.1), as a “first iteration” one can neglect the influence of the thermal motion in the

dispersion properties. Then the waves can be considered as perturbations of cold

particles which form an ideal lattice in the equilibrium.

4.4.1 One-dimensional strings

The simplest model for studying waves in crystals is the one-dimensional “particle

string” (Kittel 1976). The motion is allowed only along the string, which formally

corresponds to the infinite transverse confinement. This model was adopted to study

waves in plasma crystals by Melandsø (1996). The string model shows very good

agreement with the first experiments performed with one-dimensional plasma crys-

tals (Peters et al. 1996; Homann et al. 1997). Moreover, when particle separation ∆
exceeds the screening length λD, so that only the interaction with the nearest neigh-

bors is important, the string model turns out to be appropriate to describe DL waves
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also in two-dimensional plasma crystals (Zuzic et al. 1996; Homann et al. 1998).

The string model yields the following dispersion relation in the nearest neighbor

approximation:

ω(ω + iνdn) = 4Ω2
DLe−κ(κ−1 + 2κ−2 + 2κ−3)sin2 1

2
k∆, (4.23)

where Ω2
DL = Q2/mdλ 3

D is the DL frequency scale and κ = ∆/λD is the lattice pa-

rameter. The experimentally observed wave frequencies usually vary from a few Hz

for strings up to a few dozens of Hz for monolayers (e.g., Peters et al. 1996; Zuzic

et al. 1996; Nunomura et al. 2002b), which is in agreement with the estimated mag-

nitude of ΩDL. Simple formula (4.23) is very convenient to evaluate spectra of the

longitudinal DL waves.

4.4.2 Two-dimensional triangular lattice

Most of the experiments on the DL waves have been performed so far in two-

dimensional complex plasmas – crystalline monolayers suspended in rf electrode

sheaths (Zuzic et al. 1996; Homann et al. 1998; Nunomura et al. 2000, 2002a,b,

2005; Zhdanov et al. 2003a). Particles in the monolayers form a hexagonal (tri-

angular) lattice. The dispersion relation for the in-plane DL modes in such lattices

was derived by Peeters and Wu (1987), Dubin (2000), Wang et al. (2001a), and Zh-

danov et al. (2003a). The perturbations are determined by the following equation

(Zhdanov et al. 2003a): ω(ω + iνdn)δ rω,k = Dω ,kδrω ,k, where the components of

the dynamics matrix are Dxx
ω,k = α −β , D

yy
ω ,k = α +β , and D

xy
ω,k = D

yx
ω,k = γ , and the

coefficients α , β , and γ are represented by the following sums over all neighbors (m

and n are integers):

α = Ω2
DL ∑

m,n
e−K(K−1 + K−2 + K−3)sin2 1

2
k ·R,

β = Ω2
DL ∑

m,n
e−K(K−1 + 3K−2 + 3K−3)[(R2

y −R2
x)/R2]sin2 1

2
k ·R,

γ = Ω2
DL ∑

m,n
e−K(K−1 + 3K−2 + 3K−3)[2RxRy/R2]sin2 1

2
k ·R.

(4.24)

Here K = R/λD is the lattice parameter for the neighbor separated by vector R =
(Rx,Ry), with the components

Rx = m
√

3
2

∆, Ry = ( 1
2
m+ n)∆. (4.25)

The dispersion relation for the in-plane DL modes is determined by the eigenvalues

of the dynamics matrix,

ω±(ω± + iνdn) = α ±
√

β 2 + γ2. (4.26)

The two branches, ω+(k) and ω−(k), represent the “high-frequency” and “low-

frequency” modes, respectively. These modes are shown in Figure 4.4 for different
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FIGURE 4.4

Dispersion relations of the DL waves in a monolayer hexagonal lattice at dif-

ferent propagation angles θθθ (Zhdanov et al. 2003a). The phonon spectra of

thermally excited waves is shown, as measured (a)–(d) in experiments (argon

gas pressure about 1 Pa, plastic particles of 8.9 µµµm diameter) and (e)–(h) in MD

simulations. The theoretical dispersion relations are superposed: dotted line

for the high-frequency mode ωωωhhh and dashed line for the low-frequency mode

ωωω lll (in the text ωωω±±± are adopted, respectively). The frequency is normalized to

ωωω000 ===

√

QQQ222///mmmddd∆∆∆333 ≡≡≡ κκκ−−−333///222ΩΩΩDDDLLL and the wave vector is normalized to the inter-

particle distance ∆∆∆. (i) – (k) Phonon spectra of the waves propagating at θθθ === 111555◦

measured experimentally. The high- and low-frequency branches have mixed

longitudinal (L) and transverse (T) polarization. (l) Polarization of the high-

frequency (PPPhhh) and low-frequency (PPPlll) modes predicted by the theory. In the

long-wavelength limit the high-frequency mode is purely longitudinal (PPPhhh === 111),

and the low-frequency mode is purely transverse (PPPlll === 000).
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orientations of the wave vector with respect to the lattice (i.e., different propaga-

tion angle θ ) (Zhdanov et al. 2003a). In the long-wavelength limit branches ω±(k)
are isotropic. The dependence on the propagation angle is revealed only at larger

k, where the dispersion can be negative (∂ω/∂k < 0). Along with the theoretical

curves and the results of MD simulations (Figure 4.4e–h), the experimental data are

shown in Figure 4.4a–d. The experimental results were obtained by employing a

very effective technique proposed by Nunomura et al. (2002b): Instead of using

external excitation and measuring the particle response, the naturally excited (ther-

mal) particle motion is recorded and a Fourier transform of the velocities, Vω,k, is

computed. The highest values of the energy density, ∝ |Vω,k|2, are concentrated in

close proximity to distinct curves in (ω,k)-space, which are identified as dispersion

curves.

One should be reminded here that ω(k) is completely defined by the wave vectors

from the first Brillouin zone (Kittel 1976). For a hexagonal lattice the first zone is a

hexagon determined by the basis reciprocal vectors A,B = 2π∆−1( 1√
3
,±1), which

corresponds to k ≤ 2√
3
π∆−1 for θ = 0◦, and to k ≤ 4

3 π∆−1 for θ = 30◦. If k is

beyond the first zone, then vector G = iA+ jB (with some integer i and j) should be

subtracted, so that k′ = k−G lies in the first zone and, thus, ω(k) is equal to ω(k′).

Branches ω±(k) are often referred to as the “longitudinal” and “transverse” modes.

Such a distinction, however, is not always appropriate (Zhdanov et al. 2003a): The

branches are purely longitudinal and transverse only when the propagation angle is

θ = 0◦ and 30◦. Otherwise, for an arbitrary θ , the longitudinal polarization can be

prescribed to ω+, and the transverse one to ω− (i.e., perturbation δ rω,k is parallel or

perpendicular to k, respectively) only when the wave vectors are sufficiently small,

i.e., in the long-wavelength limit. As k approaches the first Brillouin zone the polar-

ization of branches ω±(k) starts alternating between longitudinal and transverse, as

shown in Figure 4.4i–l. This is because for arbitrary θ the short-wavelength longi-

tudinal perturbations cause the transverse ones and vice versa: The modes become

coupled, so that one cannot distinguish between them. The coupling disappears only

in “symmetrical” cases – when θ = 0◦ and 30◦. Thus, the more general division into

the “high-frequency” and “low-frequency” branches seems to be more suitable.

Note that the one-dimensional dispersion relation for the particle string can be

recovered from Equations (4.24)–(4.26) by setting m = 0. This corresponds to the

summation along the primitive translation vector ∆(0,1) (mode ω+ represents per-

turbations parallel to the string, and mode ω− is prohibited). It is remarkable that in

the nearest neighbor approximation (κ & 2) and in the long-wavelength limit, branch

ω+(k) almost coincides with Equation (4.23) (Dubin 2000; Samsonov et al. 2000;

Zhdanov et al. 2003a). Moreover, for the propagation angle about θ = 30◦, the

high-frequency branch is well approximated by the string model at any k.

In the long-wavelength limit the DL branches (which are purely longitudinal or

transverse in this case) have an acoustic dispersion, with the phase velocities C
l,t
DL =

lim
k→0

ω±/k (superscripts “l” and “t” denote the longitudinal and transverse polariza-

tion, respectively). The velocities can be written as C
l,t
DL = CDLFl,t(κ) (Peeters and
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Wu 1987; Wang et al. 2001a; Zhdanov et al. 2003b), where

CDL = ΩDLλD ≡
√

Q2

mdλD

(4.27)

is the DL velocity scale. The magnitude of CDL is on the order of a few cm s−1

for typical experimental conditions (Nunomura et al. 2000, 2002a). In order to

compare CDL with the phase velocity of DA waves in gaseous complex plasmas,

one can use the following convenient expression: CDL ≡
√

κ3/3C̃DA, where C̃DA is

given by Equation (4.14) calculated for dust density ñd = ( 4
3
π∆3)−1. Exact formulas

for functions Fl,t(κ), which can be derived from Equations (4.24)–(4.26), are rather

complicated. However, for a practical range of κ , the functions can be very well

approximated by simple polynomial expansions. For κ ≤ 5, we have with accuracy

better than 1% (Peeters and Wu 1987; Zhdanov et al. 2003b):

Fl ≃ 2.69κ−1(1−0.096κ−0.004κ2), Ft ≃ 0.51κ−1/2(1−0.039κ2). (4.28)

Note that in the OCP regime (κ ≪ 1), the scaling of the longitudinal velocity with

κ as well as the magnitude of the velocity (Cl
DL ≃ 2.7κ−1CDL) is different from

the results for the one-dimensional string (Cl
DL ≃ 1.4

√
−κ−1 lnκ CDL) (Wang et al.

2001a). Recently, the long-wavelength DL modes in crystalline monolayers were

investigated in active experiments (Nunomura et al. 2000, 2002a), where the waves

were excited with chopped laser radiation. The measured dispersion relations were

found to be in remarkably good agreement with the theoretical results.

In addition to the in-plane waves, the particles in crystalline monolayers can also

sustain the vertical (out-of-plane) DL wave mode, which is shown in Figure 4.5. The

vertical mode is due to the balance between gravity and strongly inhomogeneous ver-

tical electric force on a particle (e.g., in rf sheaths). This implies the (lowest-order)

vertical parabolic confinement characterized by the frequency of a single particle os-

cillation, Ωv. Employing the one-dimensional string model with parabolic transverse

confinement, one can derive the dispersion relation for the vertical DL mode (nearest

neighbor approximation) (Vladimirov et al. 1997)

ω(ω + iνdn) = Ω2
v −4Ω2

0e−κ(κ−2 + κ−3)sin2 1
2
k∆. (4.29)

This is the optical branch, lim
k→0

ω = Ωv, which has a negative dispersion, so that the

group and phase velocities have opposite signs. An analytical dispersion relation for

the vertical mode in a two-dimensional hexagonal lattice has been derived by Qiao

and Hyde (2003) and Samsonov et al. (2005). In the nearest neighbor approximation

and in the long-wavelength limit, it agrees well with Equation (4.29). However, for k

close to the first Brillouin zone, the dispersion of the two-dimensional vertical mode

becomes positive for any propagation angle, and then the vertical mode cannot be ap-

proximated by Equation (4.29). The theoretical dispersion relations are in reasonable

agreement with the experimental results obtained for long waves by Liu et al. (2003)

and Samsonov et al. (2005). Nevertheless, deeper experimental investigations of the

vertical DL mode (similar to what has been done for the in-plane modes) are still

required in order to perform comprehensive quantitative comparison with the theory.
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FIGURE 4.5

Vertical DL waves observed in a monolayer hexagonal lattice by Samsonov et

al. (2005). Experiments were performed in a GEC rf chamber in argon gas

at pressure about 1–2 Pa, with plastic particles of 8.9 µµµm diameter. Particles

were illuminated by a horizontal laser sheet of about 200–300 µµµm thickness.

The waves were excited by applying a (negative) voltage pulse to the horizontal

wire positioned at the left edge. Top view of the lattice is shown at time 1.4–

1.5 s after the excitation, when the wave packet was well formed. The particles

are visible only if they are in the plane of the illuminating laser sheet. The

stripes of particles apparently move from right to left due to the vertical wave

motion, revealing the lines of constant phase. Individual particles do not move

horizontally. The numbers on the images indicate the frame number (at 230.75

fps).
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4.4.3 Three-dimensional plasma crystals

So far, no reliable experimental results on the DL waves in three-dimensional plasma

crystals have been reported. Basically, there are two reasons for this:

(i) The major problem of the wave investigation in three-dimensional complex

plasmas is the lack of effective 3D diagnostics. The laser sheets which are employed

to render the particle motion cannot precisely reveal the information (viz., particle

velocity) in the direction perpendicular to the sheet. The technique that is currently

available for 3D diagnostics [based on the particle color coding of the third dimen-

sion, see brief description by Annaratone et al. (2004)] restricts the analysis to a

relatively small volume and also is very complicated technically. Therefore, the ma-

jor experimental efforts (to study waves and other dynamical phenomena) have been

focused so far on the crystalline monolayers.

(ii) In the ground-based experiments it is rather difficult to obtain 3D plasma crys-

tals of “good quality”: The particle clouds are very stressed in the vertical direction

(unless the particles are about 1 µm or smaller, but then their recognition becomes

difficult) – the inhomogeneity scale can be comparable to the particle separation

(e.g., Zuzic et al. 2000; Nefedov et al. 2003). In contrast, the plasma crystals pro-

duced under microgravity conditions occur in the most normal, isotropic, stress-free

state which can be obtained in complex plasmas. Recent experiments performed with

the PK-3 Plus rf setup onboard the ISS by Thomas et al. (2008) allowed us to form

fairly homogeneous crystals with a relatively small number of dislocations, which is

very important for the comparison with theory.

Below we briefly mention the main theoretical results for the DL waves in three-

dimensional plasma crystals: The number of acoustic modes which can be sustained

in crystals is 3. Since the number of particles per elementary lattice cell, r, can be

more than one (e.g., r = 2 for the body centered cubic (bcc) and r = 3 for the face

centered cubic (fcc) lattices), the remaining 3(r− 1) modes have an optical disper-

sion (although these modes can be degenerate) (Kittel 1976). In the long-wavelength

limit, the phase velocities of the (acoustic) modes are isotropic. When κ ≪ 1 (OCP

regime), the κ-scaling of the longitudinal phase velocity, Cl
DL ≃ 5.0(7.0)κ−3/2CDL

for a bcc (fcc) lattice, is different from that for one- and two-dimensional model,

whereas the transverse acoustic velocity, Ct
DL ≃ 0.19κ−1/2CDL (both for bcc and

fcc lattices), has the same scaling (Wang et al. 2001a). Note that in comparison

to monolayers, Equations (4.27) and (4.28), the magnitude of the phase velocity in

three-dimensional crystal is larger for the longitudinal mode and is smaller for the

transverse mode. For arbitrary κ one can obtain the phase velocities of all modes

in the long-wavelength limit by using the results for the elastic constants of Yukawa

crystals (e.g., Robbins et al. 1988).

It is noteworthy that the wave modes in three-dimensional plasma crystals are

similar to those in solids. Therefore, the comprehensive investigation of particle dy-

namics in plasma crystals can give us an excellent opportunity to study generic wave

phenomena – mode interaction, umklapp processes, phonon scattering on defects,

etc. – at the kinetic level.



Waves and instabilities 221

4.4.4 Instabilities in plasma crystals

A number of different mechanisms can trigger wave instabilities and cause eventual

melting of plasma crystals. Some of these instabilities can operate irrespective of

the phase state (although, the parameters of the instabilities depend on the coupling

parameter Γ), some are peculiar to plasma crystals, and some can set in only when

the crystal has a particular dimensionality (e.g., the instability can be triggered in

monolayers only). The common type is the ion streaming instability, which is similar

to that discussed in Section 4.2.2. For strongly coupled and crystalline states, the

instability threshold was calculated by Kalman and Rosenberg (2003). It was found

that the strong coupling generally leads to an enhancement of the growth rates. The

major wave instabilities peculiar to plasma crystals are as follows:

(i) Wake-induced instability in three-dimensional crystals: The charged grains sus-

pended in rf sheaths or dc striations often assemble themselves into the so-called

“vertically aligned” hexagonal lattices. Such structures can be stable only at suffi-

ciently high pressures. When the pressure (and, thus, the damping rate νdn) decreases

below a certain threshold, the particles start oscillating horizontally, which indicates

the instability onset (Melzer et al. 1996). The further (relatively slight) pressure

decrease leads to an increase of the oscillation amplitude and melting of the crystal

(Melandsø 1997; Schweigert et al. 1998). This instability occurs because the pres-

ence of wakes makes the interparticle interaction non-reciprocal, and hence, the total

energy of the particle system is not conserved. The source of the energy is the ion

flux. The instability was first analyzed theoretically by Melzer et al. (1996) using

the model of a point-like dipole downstream from the grain. This model yields very

good qualitative agreement with experiments.

(ii) Coupling instability in monolayers: This mechanism was considered in detail

in Section 3.2.2. It might be one of the main reasons for the monolayer melting at

pressures below ∼ 10 Pa.

(iii) Instability due to defects: Another instability mechanism which can be espe-

cially important in bilayer crystals is associated with the so-called “strong defects” –

the particles which are located above and below the “complete” layers (Schweigert et

al. 2000). These particles were shown to be very effective sources of the local heat-

ing. The instability due to strong defects starts somewhat before the wake-induced

instability sets on, and makes the melting transition more smoothed as the pressure

decreases.

(iv) Instability due to charge fluctuations: Stochastic variations of the grain charges

can trigger another instability in plasma crystals (Morfill et al. 1999). The mecha-

nism of energy gain in this case is similar to stochastic heating considered in Sec-

tion 3.2.1: The charge variations not only provide an additional Langevin-like term

in the equations of the particle motion, but also result in a multiplicative effect, in-

ducing a parametric instability. The instability can be triggered when the neutral

damping is below a threshold,

νdn . σ 2
Z Ω2

DL/Ωch,

where σ 2
Z is the dimensionless charge dispersion [see also the condition for the in-
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stability of a single particle, Equation (3.3)]. If the variations of the grain charges

are due to the discreteness of plasma (electron and ion) charges, then the magnitude

of the dispersion is fairly small, σ 2
Z ∼ |Z|−1, and the instability is only possible at

pressures far below ∼ 1 Pa (Morfill et al. 1999). However, in sufficiently dense

complex plasmas, the charge fluctuations might be due to the dust grain discreteness

(Tsytovich and de Angelis 2002), which yields substantially larger values of σ 2
Z , and

hence, the instability can be possible at much larger pressures. Nevertheless, one

should note that so far there have been no reliable experiments where this type of

instability has been clearly identified.

4.5 Nonlinear waves

Complex plasmas, as any other plasmas are nonlinear media where the waves of fi-

nite amplitude cannot be generally considered independently. Nonlinear phenomena

in complex plasma are very diverse, due to a large number of different wave modes

which can be sustained. The wave amplitude can reach a nonlinear level because of

different processes: This is not necessarily an external forcing or the wave instabili-

ties – it can also be a regular collective process of nonlinear wave steepening. In the

absence of dissipation (or when the dissipation is small enough), nonlinear steepen-

ing can be balanced by wave dispersion which, in turn, can result in the formation

of solitons. When the dissipation is large, it can overcome the role of dispersion and

then the balance of nonlinearity and dissipation can generate shock waves. In many

cases the lowest-order nonlinear terms are quadratic, and then the weakly nonlinear

soliton dynamics is governed by the Korteweg-de Vries (KdV) equation (Karpman

1975). For solitons of arbitrary amplitude, the method of the Sagdeev pseudopoten-

tial is very convenient (Sagdeev 1966): In particular, this method allows us to deter-

mine the upper value of the Mach number beyond which the dispersion is no longer

sufficient to balance the nonlinearity, and thus, the collisionless shock is formed due

to “collective” dissipation. The “conventional” dissipation is often determined by

viscosity, and then the shock waves can be described by the KdV-Burgers equation

(Karpman 1975; Shukla 2003). However, in complex plasmas there is a rich variety

of mechanisms which determine nonlinear and dispersive properties of the medium.

This generally makes the description of nonlinear waves in complex plasmas more

complicated.

4.5.1 Ion solitons and shocks

The theory predicts that in complex plasmas (as well as in electronegative plas-

mas) both compressive and rarefactive dust ion–acoustic solitons are possible (e.g.,

Bharuthram and Shukla 1992; Pillay and Bharuthram 1992). It was shown that the

properties of the DIA solitons (profile and the range of Mach numbers where the
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solitons can exist) are strongly affected by the form of the electron and ion distri-

bution function, in particular, by the presence of “cold” and “hot” populations (e.g.,

in space environment) and trapped electrons (e.g., in laboratory plasmas). The com-

pressive DIA solitons were observed in experiments by Nakamura and Sarma (2001)

performed in a dusty plasma device at very low pressures (p ∼ 10−2 Pa), whereas

in plasmas with a negative ion component the rarefactive solitons were also reported

(Ludwig et al. 1984; Nakamura 1987). At such pressures the collisions with neutrals

play almost no role, and a weak dissipation does not destroy the profile of DIA soli-

tons as long as the dissipation time scales are longer than the duration of the soliton

existence (Popel et al. 2003, 2004). As regards the DIA shocks, they were observed

in different experiments (Luo et al. 1999; Nakamura et al. 1999; Nakamura 2002)

performed at pressures p ∼ 10−2–10−3 Pa. Depending on the parameter regime (in

particular, number density of grains), different dissipation mechanisms can play the

major role (Popel et al. 2001, 2004): Along with the ion viscosity (due to collisions

with grains), these are grain charge variations (ion absorbtion) and Landau damping.

The general trend is that in the absence of dust the shock front exhibits pronounced

oscillatory structure (Nakamura 2002) typical for collisionless ion–acoustic shocks

(Taylor et al. 1970). As the dust density increases, the peaks become smoothed and

eventually disappear, leaving the monotonic front profile, as shown in Figure 4.6.

4.5.2 Dust solitons and shocks

Longitudinal dust solitons of moderate amplitude were observed in experiments by

Samsonov et al. (2002) and Nosenko et al. (2002b). Both experiments were per-

formed in rf discharges at low pressures (p ≃1.8–2 Pa). The solitons were excited in

crystalline monolayers by electrical pulses or by the laser beams. Figure 4.7 shows

the evolution of the soliton propagating along the crystal (Samsonov et al. 2002).

Theoretical study of the soliton dynamics is based on the analysis of Equation (4.22).

Defining x as the propagation vector and retaining the lowest-order nonlinearity and

dispersion terms, the resulting equation for the nonlinear wave dynamics is (Sam-

sonov et al. 2002; Zhdanov et al. 2002)

∂ 2u

∂ t2
+ νdn

∂u

∂ t
= C2 ∂ 2

∂x2

(

u + ℓ2 ∂ 2u

∂ x2
+

1

2
Λu2

)

. (4.30)

Here u = ∂δ r/∂ x ≃ −δ nd/nd is the particle density modulation expressed via the

longitudinal derivative of the (in-plane) displacement, C is the long-wavelength DL

phase velocity (which is independent of the direction of propagation), ℓ2 is the dis-

persion coefficient which generally can have either sign (it has the dimension of

squared length), and Λ is the nonlinear coefficient. Without the frictional dissipation,

Equation (4.30) is readily reduced to the KdV equation by employing the stretched

coordinates (x−Ct,t). The soliton can only exist when ℓ2 and Λ have opposite signs,

so that the following relations can be fulfilled: − 1
3
ΛA = 4ℓ2/L2 = M2 −1, where A

and L are the soliton amplitude and width, respectively, and M = V/C is the Mach

number for the soliton velocity. The Mach number is a convenient control parameter

which defines the soliton profile, −u = Acosh−2(ξ/L), with ξ = x−Vt.
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FIGURE 4.6

DIA shock observed in a double plasma device (Nakamura 2002). Experiments

were performed with argon gas at pressure about (((222−−−444)))×××111000−−−222 Pa, for differ-

ent densities nnnddd of the dust particles of about 8.9 µµµm diameter. The DIA waves

were excited with a positive ramp voltage applied to the source anode, and the

signals were detected by the movable Langmuir probe. The electron density

perturbations were recovered from the perturbations of the electron saturation

current on the probe.

In two-dimensional hexagonal lattices (Zhdanov et al. 2002), ℓ2 is always posi-

tive and has a very weak dependence on the direction of propagation; Λ is always

negative and can depend on the direction substantially, especially at κ & 1. Such

a combination of signs implies that only compressive (A > 0) supersonic (M > 1)

solitons can propagate in crystalline monolayers, as is observed in experiments. For

κ & 1, one can calculate parameters of Equation (4.30) by using the results for a

one-dimensional string (Samsonov et al. 2002),

C2 = C2
DLκ2 [G(κ)/κ ]′′ ,

ℓ2 = 1
12

λ 2
Dκ2 [G′′(κ)/κ ]′′ / [G(κ)/κ ]′′ ,

Λ = κ [G(κ)/κ ]′′′ / [G(κ)/κ ]′′ ,

(4.31)

where G(κ) = − ln(eκ − 1). This relatively simple theoretical model provides re-
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FIGURE 4.7

Dust soliton observed in experiments with a monolayer hexagonal lattice by

Samsonov et al. (2002). Experimental conditions and the wave excitation tech-

nique are described in Figure 4.5. Compression factor 111 +++ δδδnnnddd///nnnddd versus dis-

tance to the wire is plotted at different times. The solid lines show the theoretical

fits to the experimental data. The fits and experimental points at later times are

offset down (by 0.4, 0.7, 1.0, and 1.3).

markably good agreement with the experiments. If the neutral gas pressure is low

enough, the friction does not destroy the soliton (Samsonov et al. 2002). The per-

turbation simply slows down, approaching the asymptote V = C, and the form of

the soliton changes in accordance with the analytical solution (i.e., the amplitude

decreases and the width increases, keeping the “soliton relation” AL2 = const, see

Figure 4.7). Thus, one can speak about a “weakly dissipative soliton” when the

dissipation time scale, ∼ ν−1
dn , exceeds the time scale of the wave itself, ∼ Ω−1

DL.

The theory predicts in-plane transverse (shear) solitons in two-dimensional lattices

(Zhdanov et al. 2002), as well as the solitons due to the coupling between longitu-

dinal in-plane and vertical out-of-plane modes (Ivlev et al. 2003). Such solitons,

however, have not yet been observed in experiments. There have also been a number

of theoretical papers on properties of the DA solitons in gaseous complex plasma

(Rao et al. 1990; Verheest 1992; Mamun et al. 1996; Ma and Liu 1997; Xie et al.

1999; Ivlev and Morfill 2001), but no experiments have been done so far.

As regards the dust shock waves, this topic still needs to be explored, both theoret-

ically and experimentally. The theory of shocks in weakly coupled complex plasmas

has been studied, e.g., by Melandsø and Shukla (1995) and Popel et al. (1996). It

was suggested that the major dissipation mechanism providing the shock formation
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FIGURE 4.8

Dust shock wave propagating in a monolayer hexagonal lattice (Samsonov et

al. 2004b). Experimental conditions and the the wave excitation technique are

described in Figure 4.5. Initially undisturbed particles (a) were swept from left

to right (b) and (c) forming a shock with a sharp front. The lattice melted behind

the front. At later times (d) the shock weakened due to the neutral drag and a

soliton was formed.

can be the dust charge variations, and the weak shocks can be described by the KdV-

Burgers equation. These results, however, have better applicability to the space envi-

ronment, where the complex plasmas can be found in the gaseous state and where the

the charge variation effects are not inhibited by the gas friction (see Section 4.2.2).

For the strongly coupled plasmas, the generalized hydrodynamic approach (see Sec-

tion 4.3) was proposed by Kaw and Sen (1998) and Shukla (2003). This approach

suggests that weak shocks cannot be described by the KdV-Burgers equation in gen-

eral case (Kaw and Sen 1998). In experiments, “pure” shocks have been observed so

far only in two-dimensional crystals by Samsonov et al. (2004a,b). (The term “pure”

implies here that the momentum exchange in dust–dust collisions prevails over the

momentum loss due to neutral gas friction, νdd ≫ νdn, so that charged grains have

properties of one-phase fluids, see Section 2.4.3.) These shocks [generated by elec-

trical pulses, like the solitons in experiments of Samsonov et al. (2002)] caused

melting of the crystal behind the front, as shown in Figure 4.8. As the shock propa-

gated and weakened it was seen that the melting ceased. Further propagation of the

pulse was in the form of a soliton, as described above. Other examples of strong dust

discontinuities were observed in microgravity experiments with an rf discharge by

Samsonov et al. (2003) and in ground-based dc experiments by Fortov et al. (2004).

In both cases the shock-like structures were triggered in three-dimensional complex

plasmas using gas pulses. The experiments were performed at high gas pressures

about 50–120 Pa, when the friction dissipation is very strong, νdn ∼100–300 s−1.
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Nevertheless, the “shocks” were observed during a few seconds almost undamped,

which suggests that there must be a mechanism of strong energy “influx” into the

structures (e.g., modulational instability). Therefore, the dust discontinuities ob-

served by Samsonov et al. (2003) and Fortov et al. (2004) should rather be referred

to as “dissipative structures” where pure hydrodynamic effects presumably play a

minor role.

4.5.3 Mach cones

Dispersion relations of dust modes in complex plasmas suggest that, irrespective of

the plasma state [see Equations (4.13), (4.20), (4.21), and (4.26)], the phase veloc-

ity attains the maximal value in the long-wavelength limit. For acoustic modes this

velocity – the “sound speed” C – is finite and, therefore, similar to conventional me-

dia, the supersonic perturbations (i.e., with Mach number M = V/C > 1) are always

localized behind the object which produces these perturbations (this can be a rapidly

moving charged particle or a bunch of particles, biased probe, etc.). The perturba-

tion front has a conical form in a three-dimensional case and therefore it is called

a “Mach cone”. In a two-dimensional case the same name is adopted, although the

front is a planar V-shaped perturbation. The opening angle µ of the front at large

distances from the object (where the nonlinearity should not play important role) is

determined by the well-known relation sin µ = C/V ≡ M−1.

Originally, it was suggested that the Mach cones (wakes) can be excited in space

dusty plasmas – e.g., in planetary rings by big boulders (Havnes et al. 1995, 1996)

moving through the dust at a velocity that is somewhat higher than C. It was expected

that the discovery of Mach cones and the measurements of the opening angles during

the Cassini mission to Saturn will yield new information on the dusty plasma condi-

tions in planetary rings. Unfortunately, no Mach cones detected during this mission

were reported. The Mach cones in laboratory complex plasmas were discovered

by Samsonov et al. (1999, 2000) in two-dimensional plasma crystals. They were

generated by single particles spontaneously moving beneath the monolayer along

straight trajectories. [The physical mechanism which drives such motion is still an

open issue; for one of the possible explanations, see Schweigert et al. (2002).] In

experiments of Melzer et al. (2000), the Mach cones were excited by the radiation

pressure of a focused laser beam. The wake reveals a multiple cone structure behind

the front, as shown in Figure 4.9. Generally, the wake structure is determined by

the dispersion and nonlinear properties of particular wave modes excited behind the

front (Zhdanov et al. 2002; Nosenko et al. 2003). The formation of the second

cone behind the first one, with the opening angle smaller for the second cone can be

ascribed to the shear (transverse) wave front (Nosenko et al. 2002a, 2003), because

the (longitudinal) sound speed is larger than the shear phase velocity [see Equations

(4.27) and (4.28)]. Also, the shape of the cone wings can be affected by the inho-

mogeneity of the particle density, as suggested by Zhdanov et al. (2004). It was

proposed by Havnes et al. (1996) and Melzer et al. (2000) to use the Mach cones

as a tool to determine local parameters of complex plasmas, e.g., particle charge and

the screening length, making use of the measured sound speed.
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FIGURE 4.9

Mach cone observed in a monolayer hexagonal lattice by Samsonov et al. (2000).

Experiments were performed in a GEC rf chamber in krypton gas at pressure

about 1.2 Pa, with plastic particles of 8.9 µµµm diameter. The cone was excited by

a supersonic particle which moved spontaneously beneath the monolayer. (a)

Particle velocity vector map derived from particle positions in two consecutive

video fields, (b) gray-scale speed map, and (c) gray-scale number density map.

The first cone consists of particles moving forward, and it coincides with the

high density region. The second cone has particles moving backward, and it

coincides with the low density region.
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Kinetic studies of fluids and solids with
complex plasmas

Alexey V. Ivlev, Gregor E. Morfill, and Sergey A. Khrapak

How relevant are liquid-like or solid-like complex plasmas to the study of classic

phenomena in conventional condensed media? The implication is clear – if they are

relevant, this opens up a completely new kinetic approach, which will then have a

major impact in a field of great future potential. As was pointed out in Section 2.4.3,

one of the interesting aspects of strongly coupled complex plasmas is that although

they are intrinsically multispecies systems, the rate of momentum exchange through

mutual (electrostatic) interactions between the microparticles can exceed that of in-

teractions with the background neutral gas significantly – thus providing an essen-

tially single-species system for kinetic studies. Moreover, comparison in terms of

similarity parameters – e.g., Reynolds, Rayleigh, or Weber numbers for fluids – sug-

gests that liquid complex plasmas can be like conventional liquids (e.g., water) – but

observed at the atomistic level!

Because of these unique properties, complex plasmas can indeed serve as a pow-

erful new tool for investigating fluid flows on (effectively) nanoscales, including

the all-important mesoscopic transition from collective hydrodynamic behavior to

the dynamics of individual particles, as well as nonlinear processes on scales that

have not been accessible for studies so far. Of particular interest could be kinetic

investigations of the onset and nonlinear development of hydrodynamic instabili-

ties. Individual particle observations can provide crucial new insights – e.g., whether

the coarse-grained concept of basic hydrodynamical instabilities (Kelvin–Helmholtz,

Rayleigh–Taylor, Richtmyer–Meshkov, etc.) is still adequate on interparticle dis-

tance scales, whether there are any microscopic origins of instabilities (in particular,

what trajectories can trigger instabilities), etc. Another important issue is, of course,

the atomistic structure and dynamics of fluids – in particular, what critical changes

occur in the (atomic) structure of solids that give them the ability to flow, are there

any characteristic patterns in microscopic dynamics associated with that transition,

what conditions form supercooled liquids and glassy states, etc.

Regarding the solid phases, the current interest where highly resolved dynamical

measurements in complex plasmas may bring significant advances lies in domain

boundaries and defects – associated with excited crystal lattice states and even grain

boundary melting and the pre-melting phenomenon (Gleiter 1989; Phillpot and Wolf

1990; Alsayed et al. 2005; Pusey 2005). This is of relevance in understanding pos-

sible kinetic scenarios of both crystal–crystal phase transitions (in particular, in the

239
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context of externally constrained systems) and crystal–liquid transitions (especially

in 2D). Other areas of interest are annealing, phonons, shock melting and various

nonlinear phenomena.

5.1 Phase diagram of complex plasma

One of the fundamental characteristics of an interacting many-particle system is the

coupling strength between the particles. It is measured in units of the potential en-

ergy of interaction between neighboring particles normalized by their mean kinetic

energy. As discussed in Sections 2.2.1 and 2.3.1 there is a wide parameter range

where interparticle interaction (at least its short- and middle-range parts) can be well

approximated with the Debye–Hückel (Yukawa) form. For the Debye–Hückel inter-

action potential, the coupling strength is characterized by two parameters because

the interaction has a length scale. These are the coupling parameter Γ determined by

the magnitude of the bare Coulomb interaction and the screening parameter κ :

Γ = Q2/Td∆, κ = ∆/λ , (5.1)

where Td characterizes mean kinetic energy (temperature) of the particles, λ is the

appropriate screening length (e.g., for small grains in isotropic plasmas λ ≃ λD),

and ∆ = n
−1/3

d is the interparticle distance. The coupling strength is characterized by

the “screened” coupling parameter ΓS = Γexp(−κ), and the system is usually called

“strongly coupled” when ΓS & 1. Note that the coupling parameter is related to the

grain–grain “scattering parameter” βdd introduced in Section 2.4 via βdd = Γκ .

Most theories developed so far to describe the properties of complex plasmas em-

ploy the following model: Negatively charged particles are trapped within the plasma

volume due to some confining force (usually of electrostatic character) and interact

with each other via the isotropic Yukawa repulsive potential, with the screening de-

termined by the plasma electrons and ions. This model gives a rather simplified

picture of complex plasma behavior and is not always applicable, especially when

plasma anisotropy plays an important role. Moreover, this model does not take into

account variations of particle charges, long-range interactions, non-reciprocity, etc.

(see Section 3.1). However, the model was shown to be useful in providing qualita-

tive results which are in many cases confirmed by experiments, and hence, it should

be considered as a reasonable basis from which more sophisticated models might be

constructed.

Besides complex plasmas, particles interacting with the Yukawa potential have

been extensively studied in different physical systems ranging from elementary par-

ticles to colloidal suspensions. Not surprisingly, their phase diagrams have received

considerable attention. Various numerical methods (usually MC or MD simulations)

have been employed by Kremer et al. (1986), Robbins et al. (1988), Meijer and

Frenkel (1991), Stevens and Robbins (1993), Hamaguchi et al. (1997), Vaulina
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FIGURE 5.1

Phase diagram of Yukawa systems, obtained from numerical modeling. Open

circles correspond to the bcc–fcc phase boundary (Hamaguchi et al. 1997). The

fluid–solid phase boundary (melting line) is marked by squares (Stevens and

Robbins 1993), solid circles (Hamaguchi et al. 1997), and triangles (Meijer and

Frenkel 1991). The crosses correspond to jumps in the diffusion constant, ob-

served in the simulations of dissipative Yukawa systems (Vaulina and Khrapak

2001; Vaulina et al. 2002). The solid line represents the analytic approximation

of the melting line [Equation (5.2)], the dashed line is the fit to the numerical

data judged by eye.

and Khrapak (2001),Vaulina et al. (2002). Figure 5.1 shows the phase diagram

of Yukawa systems in the (Γ,κ)-plane, summarizing available numerical results. For

sufficiently strong coupling, Γ > ΓM, where ΓM(κ) denotes the melting curve, there

are solid face-centered cubic (fcc) and body-centered cubic (bcc) phases, whereas for

Γ < ΓM, the system is in a fluid state. The bcc phase is stable at small κ , while fcc is

stable at larger κ . The triple point is at Γ ≃ 3.47×103 and κ ≃ 6.90 (Hamaguchi et

al. 1997).

Of particular interest for plasma crystallization experiments is the form of the

melting (crystallization) curve ΓM = ΓM(κ) (Ikezi 1986; Robbins et al. 1988; Meijer

and Frenkel 1991; Stevens and Robbins 1993; Hamaguchi et al. 1997; Ohta and

Hamaguchi 2000; Vaulina and Khrapak 2000). Results obtained for one-component

plasma (OCP) systems (κ = 0) indicate that the crystallization occurs at Γ ≃ 106 [if

the distance is measured in units of the Wigner-Seitz radius, (4πnd/3)−1/3, then Γ ≃
172, see Ichimaru (1982), Dubin (1990), Farouki and Hamaguchi (1993)]. Different

analytical approximations for ΓM(κ) were proposed (see, e.g., Fortov et al. 2004).

Vaulina and Khrapak (2000) suggested employing the Lindemann criterion where the

dust–lattice frequency for a 1D string (see Section 4.4) is used for the characteristic
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timescale. The melting line obtained is

ΓMe−κ
(

1 +κ + 1
2
κ2
)

≃ 106, (5.2)

which yields remarkably good agreement with the results of numerical simulations

at κ . 10 (see Figure 5.1). One should note, however, that the arguments used

in deriving Equation (5.2) are not really rigorous (for instance, there are no clear

physical arguments to justify the choice of the dust–lattice frequency instead of, e.g.,

the Einstein frequency).

As discussed in Section 2.2.1, plasma absorption on the particles, nonlinearities

in ion–particle interaction, and ion–neutral collisions can lead to considerable devi-

ations of the actual electric interaction potential from the Debye–Hückel form. The

deviations are especially pronounced at long distances, where the interaction is not

exponentially screened, but has a power law asymptote (∝ 1/r2 in collisionless plas-

mas and ∝ 1/r in collisional plasmas). This can have important consequences for

the phase diagram of complex plasmas. For example, in the extreme case of strongly

collisional plasmas, combining Equations (2.47) and (2.47) with Equation (2.27) for

Ji in the SC limit, we get U(r) ≃ (Q2/r)(kDi/kD)2[1 + (Ti/Te)exp(−kDr)]. Since

usually Te > Ti, the interaction potential is very close to the unscreened Coulomb

form for all r. Thus, in this case the phase diagram of Yukawa systems is com-

pletely irrelevant. Complex plasmas behave as a Coulomb system of particles with

effective charge Q(kDi/kD) somewhat smaller than the actual charges due to partial

plasma screening. The crystallization/melting condition is ΓM ≃ 106(kD/kDi)
2. For

Te ≫ Ti it reduces to ΓM & 106, while for a one-temperature plasma (Te = Ti) we get

ΓM & 212.

There are different phenomenological criteria for the crystallization (melting),

which are often practically independent of the exact form of the interparticle interac-

tion, and therefore, many of them are applicable to complex plasmas. Best known is

the Lindemann criterion (Lindemann 1910), according to which melting of the crys-

talline structure occurs when the ratio of the root-mean-square particle displacement

to the mean interparticle distance reaches a value of ≃0.1–0.2. Another criterion

was suggested by Hansen and Verlet (1969) who observed that in 3D hard-sphere

systems the first maximum of the static structure factor is equal to ≃ 2.85 at the

melting curve [for inverse-power-law interaction potentials ∝ r−n, this value varies

in the range from ≃ 2.6 for n = 1 to ≃ 3.0 for n = 12, Hansen and Schiff (1973)].

For 2D systems, to our knowledge, this criterion has not been systematically tested

so far. There also exists a crystallization criterion for the pair correlation function

proposed by Raveche et al. (1974): For inverse-power-law interactions, the critical

ratio of the first (nonzero) minimum to the first maximum lies in the range from

≃ 0.1 (for n = 1) to ≃ 0.26 (for hard spheres). A simple dynamic crystallization cri-

terion, similar to some extent to the Lindemann criterion, was proposed by Löwen et

al. (1993). According to this criterion, crystallization occurs when the properly nor-

malized diffusion constant reduces below a certain value. This critical value depends

on the dissipation ratio νdn/ωE. In highly dissipative limit, the ratio of the diffusion

constant to that of non-interacting particles is ∼ 0.1 on the crystallization line. In the
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“single-species” (non-dissipative) regime the diffusion constant normalized to ωE∆2

has a distinct asymptote of ≃ 0.0032 at crystallization (Ohta and Hamaguchi 2000;

Vaulina et al. 2002). This dynamical criterion holds for both 2D and 3D systems

(Löwen 1996).

So far we have considered only the repulsive electric interaction between like-

charged particles. However, as discussed in Section 2.3.1, other interaction mecha-

nisms can operate in complex plasmas as a result of their thermodynamic openness.

For example, the so-called ion shadowing effect can provide the long-range attractive

branch of the interaction potential. This can further complicate the phase diagram

of complex plasmas. For instance, Khrapak et al. (2006) considered the possibility

for the liquid–vapor phase transition and, in particular, a liquid–vapor critical point

occurrence in complex plasmas. Their analysis was based on the qualitative similar-

ities in the binary interaction potentials compared to conventional gases and liquids

(electrical repulsion at short distances and attraction due to ion shadowing at larger

distances). The main requirements for the observation of the critical point formu-

lated by Khrapak et al. (2006) are as follows: Isotropic plasma conditions (in order

for ion shadowing to operate ion drifts should be at least subthermal), weak external

confinement (interparticle separation should be large enough so that the particles can

“feel” attraction), low neutral gas pressure (ion shadowing operates and attraction

exists), and the critical temperature should be higher than the neutral gas tempera-

ture (which is the lower limit of the particle kinetic energy due to Brownian motion).

Theoretical estimation of the critical point parameters yielded the result that it could

be observable in microgravity experiments for realistic plasma conditions (Khrapak

et al. 2006). Unfortunately, calculations by Khrapak et al. neglected any direct ef-

fect of ion–neutral collisions on the interaction potential. More recent calculations

by Khrapak et al. (2008) and Khrapak and Morfill (2008) taking into account col-

lisional effects demonstrated that much lower pressures (on the order of 1 Pa) than

previously expected are required to approach the critical point. This can complicate

the search for the liquid–vapor critical point for the following reasons: First, gas dis-

charge operation at such low pressures might be unstable. Second, the problem of a

void formation may become crucial at low pressures. Obviously, the whole issue of

the effect of “natural” attraction on the phase states and phase transitions in complex

plasmas needs further detailed investigation. The possibility of external manipula-

tion of the interparticle interactions and the emerging new properties of the phase

diagram of complex (electrorheological) plasmas are discussed in Section 5.2.6.

Some experiments are preformed with multispecies complex plasmas, when mi-

croparticles of different sizes are injected in the discharge chamber – such investiga-

tions have been regularly carried out under microgravity conditions (Nefedov et al.

2003; Thomas et al. 2008). Fluid phase transitions in this case are governed by the

mechanisms that are very different from those operating in one-component complex

plasmas: It is well known that a tendency for particles of different sizes to mix or

demix is basically determined by the relative strengths of their interactions (Hansen

and McDonald 1986). The fluid–fluid phase separation in such multicomponent sys-

tems does not require an attraction in the interparticle interactions – the necessary

condition for the fluid phase transition in single-species systems. The phase equi-
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librium is governed by relations that are often referred to as the Lorentz-Berthelot

mixing rules (Maitland et al. 1981). It is remarkable that in the vicinity of the critical

point the behavior of binary mixtures (with short-range, e.g., Yukawa, interactions)

belongs to the same universality class as that of a conventional liquid–vapor phase

transition in simple fluids (Fisher 1974).

It has been shown by Ivlev et al. (2009) that the asymmetry of interparticle in-

teractions in binary complex plasmas always stimulates the phase separation in the

isotropic (bulk) regime. This tendency does not depend on a particular shape of

the interaction potential. For typical conditions of experiments with binary complex

plasmas the regime of the spinodal decomposition is easily achievable. Apparently,

this process is illustrated in Section 5.2.4 (see Figure 5.6c), where the appearance of

a smooth-surface droplet is the clear manifestation of a positive surface tension. This

conclusion provides us with strong grounds to believe that binary complex plasmas

could be ideal model systems to study atomistic dynamics of fluid phase transitions

and the associated phenomena, such as critical behavior or effects of the surface

tension.

In concluding this section it is worth noting that depending on the phase state – liq-

uid or solid – one can choose different timescales to characterize collective dynamics

of microparticles. For liquid and amorphous solid complex plasmas the dust plasma

frequency, ωpd =
√

4πQ2nd/md , can be used as the measure, whereas for crystals

the modes depend on a particular lattice structure, so that the Einstein frequency

ωE is the more appropriate scale. The ratio ωE/ωpd is a (monotonously decreasing)

function of the screening parameter κ , and for different lattices it typically varies

between a few units and a few tenths (Robbins et al. 1988; Knapek et al. 2007a). To

avoid confusion, in this chapter we decided to use ω−1
E as the characteristic dynami-

cal timescale for both liquids and solids.

5.2 Strongly coupled fluids

In this section we discuss various generic processes that can be studied at the kinetic

level with fluid complex plasmas. We start with the consideration of physical mech-

anisms underlying the atomistic dynamics of supercooled fluids, proceed with the

detailed discussion of elementary processes governing momentum and energy trans-

port, and address the “discreteness issue” of hydrodynamics – what happens to basic

hydrodynamic phenomena when the relevant spatial scales become comparable to

the interparticle distance. Finally, we focus on processes occurring in finite-sized

systems, by considering confined fluids and discuss novel types of “electrorheolog-

ical plasmas” where the binary interactions can be tuned by an external ac electric

field, similar to that in “regular” electrorheological fluids.
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5.2.1 Atomistic dynamics in fluids

Liquid complex plasmas can be considered as one of the best model systems to in-

vestigate fundamental long-standing problems of the classical physics of fluids. In

particular, understanding the properties of supercooled fluids (especially in the vicin-

ity of the glass transition) is one of the most controversial issues (Jäckle 1986; March

and Tosi 2002), where a number of mutually exclusive interpretations of various as-

pects of the complex behavior are still under discussion. Weak neutral damping

of complex plasmas plays a constructive role for such investigations, allowing us

to control the cooling rate and, therefore, to bring the fluid to a desirable degree

of overcooling [and, hence, vary the glass transition temperature, see, e.g., March

and Tosi (2002)]. Kinetic investigations of supercooled fluids with complex plasmas

may help us to get a deeper insight into other major issues, e.g., which elemen-

tary mechanisms determine the stability of supercooled fluids against crystallization

(Jäckle 1986), what is the kinetics of the glass transition and how do the relevant pro-

cesses like arrest of the structural relaxation and loss of ergodicity evolve (Fischer

1993; Sillescu 1999), what microscopically determines the variation of the trans-

port properties (especially, self-diffusion) in the supercooled state (Saltzman and

Schweizer 2006). Liquid complex plasmas are apparently the only available model

system where the dynamics of rapid relaxation can be studied at the kinetic level.

Atomistic behavior in liquid states has been observed in numerous experiments

with 2D and quasi-2D strongly coupled complex plasmas (Juan et al. 2001; Lai and

I 2002; Woon and I 2004; Nunomura et al. 2006; Ratynskaia et al. 2006; Huang

and I 2007; Liu and Goree 2007, 2008). As an example, let us consider one par-

ticular experiment performed by Juan et al. 2001. Figure 5.2a shows a snapshot

where most particles are mutually confined by (quasi-ordered) neighbors, and ex-

hibit caged motion with small amplitude oscillations. However, there is a certain

fraction of particles that are in a rearrangement state. Spatially, one can observe

coherent cage-escape events – strings or vortices surrounding crystallites (ordered

domains) with the size of a few ∆. Usually, a local rearrangement ceases after the

involved particles jump a distance of ≃ ∆ and then reenter the new caged state. Par-

ticles may start coherent rearrangement only after accumulation of sufficient “con-

structive” perturbations, and then transfer the excess energy to the neighbors through

mutual interactions. The coherent motion is rapidly smeared out unless further con-

structive perturbation occurs at a timescale smaller than the momentum relaxation

time.

Introducing external stress greatly enhances the formation of micro-vortices. Fig-

ures 5.2b and c show an experiment by Juan et al. 2001, where external stress

in liquid complex plasmas was introduced by a laser. One can see that the inten-

sity of micro-vortices gradually decays with distance from the shear source to the

remoter regions. The observations can be reasonably explained by the following

phenomenology: Even in a stress-free cool liquid, thermal agitation can distort the

caging potential of neighboring particles through changing the particles’ relative po-

sitions, transfer energy to particles, and induce vortex-like escape over caging bar-

riers. But introducing an external stress breaks the symmetry and further promotes
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FIGURE 5.2

Dynamical heterogeneity seen in quasi-2D liquid complex plasmas (Juan et al.

2001). (a) Trajectories of 7 µµµm diameter particles with 15 and 30 s exposure

times for the laser-free liquid state. Shown below are the pair correlation func-

tions of particle positions, ggg(((rrr))), and bond orientations, ggg666(((rrr))). Figures (b) and

(c) show particle trajectories in the laser-enhanced vortex motion under 45 and

90 mW laser power, respectively. The arrows indicate the position and direction

of the laser beam.
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forward jumping. In the low stress regime, when any rearrangement occurs at a

low rate, the motion is still strongly constrained by caging. Increasing the stress

level further usually promotes the rearrangement, although the advection can some-

times be jammed, forming local solid-like regions. Assisted by thermal fluctuations,

the stressed particles will find the easiest “percolation” paths for rearrangement and

branch off from the stressed zone. The vacancy left behind can be filled by the trail-

ing particles or by the particles in the neighborhood of the laser beam, thus forming

the vortices originated from the laser zone. Under the strong mutual particle interac-

tion, these vortices quickly relax through cascaded excitations of new vortices with

decaying strength in remote regions.

As we already mentioned above, observation at the individual particle level may

help us to shed light on what “elementary processes” determine the rich variety of

unusual properties peculiar to supercooled fluids. In addition, knowledge of the fully

resolved particle kinetics would allow us to calculate basic transport properties of

the system from first statistical principles and then compare the results with exist-

ing models (Hansen and McDonald 1986). The common approach is to employ the

Green–Kubo formalism that yields transport coefficients expressed in terms of time

integrals over the relevant microscopic autocorrelation functions (of, e.g., velocity,

shear stress, and energy flux for self-diffusion, shear viscosity, and heat conduction,

respectively). This standard theory, however, is based on the assumption that the time

integrals converge and, therefore, excludes an important class of processes called

“fractional Gaussian noises”, which lead to particle trajectories described in terms

of the fractional Fokker-Planck dynamics. For these processes the mean square dis-

placement (MSD) scales as ∝ t2H , where H is the Hausdorff exponent: For H = 1/2

we have standard diffusion, for H < 1/2 the resulting motion is subdiffusive, and

for H > 1/2 the motion is superdiffusive. Standard diffusion theory also fails if the

velocity probability distribution function is non-Gaussian but has algebraic tails, so

that the velocity variance diverges.

Statistical analysis of individual particle trajectories in complex plasmas at suf-

ficiently low temperatures (high densities) usually reveals subdiffusion at short and

intermediate timescales (which are at the same time much longer than the “in-cage”

oscillation time ∼ ω−1
E ), with the crossover to normal diffusion at much longer times

(Lai and I 2002; Nunomura et al. 2006), as shown in Figure 5.3. (The crossover

can be mediated by a relatively short superdiffusive stage.) On the other hand, sev-

eral experiments (Ratynskaia et al. 2006; Liu and Goree 2007, 2008) demonstrate

persisting superdiffusive long-time behavior. One should bear in mind that the long-

time superdiffusion in complex plasmas has been observed either in relatively small

and inhomogeneous systems (e.g., in experiment by Ratynskaia et al. (2006), where

superdiffusion might be triggered by boundary/confinement effects), or in systems

with noticeable large-scale flow [which enhances transport and and therefore in-

creases asymptotical long-time value of H, e.g., an experiment by Liu and Goree

(2008)]. One should also mention that in other systems (e.g., colloids) superdiffu-

sive behavior apparently has never received reliable confirmation (Reichman et al.

2005).

It is generally accepted that above the glass transition fluids have properties of a
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FIGURE 5.3

Mean squared displacement of particles in quasi-2D strongly coupled complex

plasmas (Lai and I 2002). A and B indicate experiments performed at different

temperatures with particles of 7 µµµm diameter. One can see a transition from

subdiffusive behavior (dominated by in-cage motion) to the long-time normal

diffusion, mediated by a short superdiffusive stage (associated with cage-escape

events).

viscoelastic medium (March and Tosi 2002; Fischer 1993; Jäckle 1986). The sim-

plest model that can be employed to describe diffusion in such media is based on a

linear viscoelastic Langevin equation with a single relaxation time,

v̇+(νdn/τ)

∫ t

−∞
e−(t−t′)/τv(t ′)dt ′ = f(t),

where f is a random force (per particle) that satisfies the fluctuation–dissipation the-

orem and τ is the memory relaxation time (Hansen and McDonald 1986; van Zanten

and Rufener 2000). Assuming “long-range” memory, νdnτ ≫ 1, the qualitative be-

havior of the MSD derived from this simple approach has all the distinct features

observed in experiments: Short ballistic motion, MSD ≃ 3v2
T t2; for t .

√

τ/νdn

with crossover to a plateau, MSD ≃ const; and eventual transition to normal dif-

fusion, MSD ≃ 6v2
T ν−1

dn t, at t & τ . Of course, quantitative agreement can only be

received with more sophisticated models, e.g., by employing the nonlinear Langevin

equation based on the formalism of the dynamic density functional theory (Saltzman

and Schweizer 2006).

A similar approach can also be employed to describe the flow of supercooled

fluids under external stress. The essential feature of a viscoelastic flow is that it

displays elastic deformation on short temporal and spatial scales but looks more like

a viscous flow on larger scales. In the framework of the linear Maxwell model (see,

e.g., Landau and Lifshitz 1986), the strain γ is a superposition of two components:

The elastic contribution responds to the stress through Hooke’s law, σ = Gγ , and

the viscous contribution through Newton’s relation, σ = ηγ̇ , where G and η are the
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high-frequency Young’s modulus and static shear viscosity, respectively. From these

limiting relations follows the differential equation

G−1σ̇ + η−1σ = γ̇. (5.3)

The general solution expresses the stress as a linear response on the time history of

the strain rate with an exponentially decaying response function with the Maxwell

timescale τM = η/G. This classical model implies a separation between the elastic

and hydrodynamic responses controlled by the Deborah number γ̇τM: The response

is viscous at timescales t ≫ τM and elastic for t ≪ τM, at intermediate timescales we

have a complex Young’s modulus (or viscosity). By measuring the response to ex-

ternal stresses at different frequencies one can obtain the complex Young’s modulus,

derive τM, and compare it with the results retrieved from the diffusion measurements.

5.2.2 Kinetics of stable shear flows

Macroscopically, the hydrodynamic behavior of fluid complex plasmas can be de-

scribed in the framework of continuous media. The momentum (Navier-Stokes) and

energy equations should be modified appropriately, in order to take into account the

frictional interaction with the background neutral gas (Fortov et al. 2005). This

interaction is characterized by the dust–neutral momentum exchange rate νdn [see

Equation (2.69)], and the resulting equations for the mean velocity v and kinetic

temperature T of microparticles (complemented with the continuity equation for the

mass density ρ = mdnd) are

∂tv +(v ·∇)v + νdnv = −∇p/ρ +(η/ρ)∇2v,

∂tT + v ·∇T + 2νdn(T −Tn) = χ∇2T + QH .
(5.4)

Here, η and χ are, respectively, the dynamical shear viscosity and thermal diffusivity

of the microparticle component (see this and next sections; note that η and ρχ are

functions of ρ and T and, therefore, in the general case the operator ∇ should act on

them as well). Also, p is the pressure of dust species determined by an appropriate

equation of state and QH is the heat source per particle (e.g., due to external heating

or viscous heating).

The obvious necessary condition for implementing Equations (5.4) is that all rel-

evant length scales should be much larger than the discreteness scale ∆, so that the

model of continuous media can be well applied. Yet another essential assumption is

that the background gas remains at rest – this allows us to consider complex plasmas

as a single-species fluid with a weak background friction proportional to the local

velocity (Ivlev et al. 2007b): Collisions with microparticles do not affect diffusive

motion of neutrals as long as the diffusion length at timescales ∼ ℓnd/vTn exceeds

the complex plasma size L, which yields ℓnnℓnd & L2. The mean free path of neutrals

due to collisions with micron-size particles, ℓnd = (πa2nd)
−1, is usually about a few

meters, whereas the mean free path of neutral–neutral collisions (say, at pressures

∼ 3 Pa) is ℓnn ∼0.3–1 cm. Thus, the assumption that neutrals remain unaffected is
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FIGURE 5.4

Planar Couette flow in a 2D complex plasma (Nosenko and Goree 2004).

Initially crystalline microparticles of 8.09 µµµm diameter are sheared by two

counter-propagating laser sheets. At the onset of plastic flow (a), the parti-

cles hop between equilibrium lattice sites. In a fully developed shear flow (b),

the particle motion is highly irregular on smaller scales comparable with the

interparticle spacing, but on larger scales it is like a laminar flow in a fluid.

Trajectories over ≃≃≃1.7 s are shown.

very well satisfied for typical system sizes L . 10 cm. Note, however, that some-

times spontaneous global flows in neutral gas might be triggered, e.g., due to strong

temperature gradients (Mitic et al. 2008) or magnetic fields (Carstensen et al. 2009).

Let us now take a closer look at the individual particle trajectories in a fluid com-

plex plasma that exhibits a macroscopic flow. In complex plasmas, one can easily in-

duce various types of flows with controllable characteristics by applying laser beams

or creating controllable flows in the neutral gas (see Section 4.1). A clear advan-

tage of such methods of particle manipulations is that the background plasma, and

hence parameters of the interparticle interaction, remain unchanged, yet the charac-

teristics of the particle flow – especially the flow shear rate – can be varied over an

exceptionally broad range.

In fact, shear flows appear as an almost inevitable ingredient of more complicated

flows. Even in the simplest case of laminar shear flows, many fundamental questions

immediately arise: What is the kinetic structure of the flow (e.g., how does the trans-

verse momentum relaxation occur)? What is the kinetics of non-Newtonian fluids
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(e.g., what determines the relevant timescales in the viscoelastic fluids)? What hap-

pens at shear fluid boundaries (e.g., how good is the Navier ansatz for the slip veloc-

ity and what is the corresponding slip length)? In the case of multiphase flows, many

more fundamental problems turn up, especially those related to the shear boundaries.

Probably, the most “obvious” one is the contact-line singularity problem: a movable

intersection of the fluid–fluid interface with the solid wall is incompatible with the

no-slip boundary condition (Qian et al. 2006).

The simplest experimental configuration that allows us to encompass most of the

issues mentioned above is a 2D monolayer of particles, and the easiest way to create

shear flows in this case is to use laser manipulation. Figure 5.4 shows an example of

such an experiment performed by Nosenko and Goree (2004), when particles formed

an (almost perfect) hexagonal crystalline monolayer, and the shear flow was created

by applying two counter-propagating laser sheets. By increasing the laser power

and, hence, the level of shear stress, the authors observed that the particle suspension

passed through four distinct stages: elastic deformation, defect generation while in a

solid state, onset of plastic flow, and fully developed shear flow. Figure 5.4 presents

data for the latter two stages. At the onset of plastic flow, Figure 5.4a, the particles

hopped between equilibrium lattice sites. Domain walls developed, and they moved

continuously. The crystalline order of the lattice in the shearing region deteriorated,

broadening the peaks in the static structure factor (not shown here). At still higher

levels of shear stress, the lattice fully melted everywhere, and a shear flow developed,

Figure 5.4b.

In terms of the applied laser power (and hence the resulting stress), the onset of the

plastic flow is a rather distinct phenomenon with well-defined yield stress, suggesting

that simplest rheological models [e.g., modifications of the Bingham plastic model,

see Meyers and Chawla (1998)] are quite appropriate to describe the shear-induced

melting. On the other hand, the individual trajectories of “percolating” particles that

identify the onset of the plastic flow are quite peculiar: They have a zigzag-like

shape, jumping along the local principal vector of the hexagonal lattice, i.e., in the

direction where the macroscopic lattice has the least yield stress.

At the stage of fully developed shear flow, the particle motion is highly irregular

on a small scale compared to the interparticle spacing, but on a larger scale, it is like

a laminar flow in a fluid. In this case, the liquid-like order of the particle suspen-

sion can be clearly identified from the diffusiveness of the structure factor. Particles

are confined so that after flowing out of the field of view on one side, they circu-

late around the suspension’s perimeter and reenter on the opposite side. Within the

field of view, more than 95% of the time-averaged flow velocity is directed in the

x-direction, with less than 5% of the flow velocity diverted in the y-direction. It is

worth noting that for all values of the laser power used in the experiment the local

velocity distribution of particles is (with very good accuracy) a Maxwellian one, al-

though at highest shear rates the mismatch between the longitudinal and transverse

temperatures is as high as ∼ 30%. This means that the internal momentum and en-

ergy equilibration in the particle ensemble is fast enough to balance the heat released

due to the shear flow, and hence, the concept of equilibrium viscosity (as a function

of self-consistent temperature corresponding to a given flow regime) is well justified.



252 Complex and Dusty Plasmas

Numerical simulations (Saigo and Hamaguchi 2002; Salin and Caillol 2002) pre-

dict that the shear viscosity of complex plasmas depends on the concentration of

microparticles, which is one of the essential features of complex fluids. Moreover,

experiments and simulations by Nosenko and Goree (2004), Gavrikov et al. (2005),

Donko et al. (2006), and Ivlev et al. (2007a) verified that the viscosity can exhibit

significant shear thinning and/or thickening. This non-Newtonian behavior of com-

plex plasmas occurs because the viscosity η is a strong function of the particles’

kinetic temperature which, in turn, is determined by the local viscous heat released

due to shear flow and is proportional to ηγ̇2. Based on this simple rheological model

(Ivlev et al. 2007a), one can identify three distinct regimes for a qualitative de-

pendence of the viscosity and the shear stress σ = ηγ̇ on the shear rate γ̇: (i) At

sufficiently low γ̇ , the viscosity remains constant and stress grows linearly with γ̇ ,

which corresponds to Newtonian fluids; (ii) above a certain critical value of γ̇ , shear-

thinning is observed, which can be quite significant – the viscosity can decrease by

an order of magnitude; (iii) at even higher γ̇ , the crossover to the shear-thickening

occurs. A remarkable rheological feature is that the viscosity decrease in the second

regime can be so rapid that the σ(γ̇) dependence may have an anomalous N-shaped

profile. In this case the part of the curve with dσ/dγ̇ < 0 becomes unstable and the

flow is accompanied by a discontinuity in γ̇ . This causes the formation of shear bands

– a phenomenon often observed in complex fluids (Salmon et al. 2003). Thus, liq-

uid complex plasmas can exhibit essential rheological features peculiar to “classic”

non-Newtonian fluids.

Moreover, by combining different methods to induce shear flows – e.g., inhomo-

geneous gas flows and laser beams – one can directly measure the shear viscosity in

the entire range of shear rates – all the way to the limit where the discreteness enters

and a fluid cannot be formally considered as a continuous medium. Probably, the

most surprising result of such an investigation was that at “extreme” shear rates (up

to γ̇ ∼U/∆, where U is the magnitude of the flow velocity and ∆ is the interparticle

distance), the formal hydrodynamic description with the Navier-Stokes equation still

provides fairly good agreement with the experiment (Ivlev et al. 2007a).

It is worth mentioning that the transport coefficients of fluid complex plasmas,

including the viscosity, could be calculated numerically for an arbitrary rate of the

frictional dissipation (Vaulina et al. 2002; Vaulina and Dranzhevskii 2007). How-

ever, in contrast to steady-state structural properties (see Section 5.1), the kinetics of

individual particles in strongly dissipative systems (say, when νdn/ωE & 1) would

inevitably be different from that in conventional single-species fluids. Therefore,

such systems would probably not be relevant for investigating, e.g., the kinetics of

the momentum transfer in shear flows. In the next subsection, where we focus on

the kinetics of the energy transport, the importance of weak frictional dissipation

becomes particularly clear.

5.2.3 Kinetics of heat transport

Thermal conductivity is an important property of matter that is essential in many

engineering applications. At the same time, the behavior of thermal conductivity
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in various situations is governed by diverse fundamental processes that occur at the

atomistic (kinetic) level. Measurements of the thermal conductivity in regular matter

are only possible at a macroscopic scale and, therefore, cannot resolve the details

of the heat transfer processes at their atomistic level due to the lack of experimental

techniques to study the motion of individual atoms. Therefore, in this case also,

liquid or solid complex plasmas occupy an invaluable position of an experimental

model system where the motion of individual “atoms” can be observed in real time.

Analysis of the heat transport, especially in 2D crystalline systems, is a controver-

sial problem that has a long history: Some authors claim that the thermal conduc-

tivity of such systems diverges in the thermodynamic limit. Liquid systems are far

less studied – one can mention a simulation of frictionless hard disks by Shimada et

al. (2000), where the thermal conductivity slowly diverged as well, and a theoretical

study by Ernst et al. (1970), where the lack of a valid thermal conductivity was con-

jectured. Systems undergoing a phase transition, to our knowledge, were not studied

at all.

Kinetics of the heat transport in liquid and solid complex plasmas was experimen-

tally investigated by Fortov et al. (2007) and Nosenko et al. (2008). Below we focus

on the experiment performed by Nosenko et al. (2008) in a 2D complex plasma that

is undergoing a phase transition and therefore constitutes a mixture of crystalline

and liquid phases. To melt the lattice locally and to control the temperature of the

resulting liquid complex plasma, the laser-heating method has been employed, so

that particles were pushed randomly by the radiation pressure force. To produce a

quasi-1D temperature gradient, with temperature varying mostly in the y direction,

a narrow area which extended fully across the particle suspension in the x direction

was heated, as shown in Figure 5.5a. Under these conditions, heat was transferred

mainly by thermal conductivity in the region where the temperature gradient was

high.

Figure 5.5b shows the resulting profiles of the kinetic particle temperature, T (y),
measured for different values of the laser power. The particle suspension was melted

in this temperature range, as can be seen from the analysis of the pair correlation

function g(r) (see Figure 5.5c) : Far from the laser-heated area, g(r) has the char-

acteristic appearance of the solid phase with notably many peaks, whereas inside

the laser-heated area, g(r) is typical for a liquid phase with a few peaks. (Note that

the background temperature of the crystal, Tb, was naturally increasing with the ap-

plied laser power Plaser.) Also, according to the KTHNY theory (see Section 5.3.2),

a 2D solid melts via two second-order phase transitions: Estimates show that the

two temperatures corresponding to the transitions lie well within the temperature

range achieved in the experiment. Irrespective of the applied heating power Plaser,

all the measured temperature profiles are very well fitted by the exponential function

T (y) ∝ exp(y/Lheat), where the heat transport length Lheat turned out to be practically

constant. In the framework of the continuous approach to the heat transport, such

scaling implies that Lheat is identical to the friction length
√

χ/2νdn [see Equation

(5.4)], and hence the thermal diffusivity χ is practically independent of T .

Thus, the heat transport in a 2D system that undergoes a phase transition turns

out to be quite interesting: On the one hand, the experiment yielded the expected
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FIGURE 5.5

Heat transport in 2D complex plasmas (Nosenko et al. 2008). (a) Example of

the particle trajectories (8.09 µµµm diameter, duration ≃≃≃ 1.7 s, image is kindly

provided by V. Nosenko) in a 2D plasma crystal heated by a laser at a power

of PPPlaser = 16 W (heated region yyy >13.6 mm). (b) Profiles of the kinetic particle

temperature as a function of the transverse coordinate yyy, for different values

of PPPlaser. The inset shows the background particle temperature TTT b. (c) Pair

correlation function ggg(((rrr))) far from the heated region (left) and inside the heated

region (right), suggesting crystalline and liquid states, respectively.
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result that the thermal conductivity χ does not exhibit any major discontinuity at the

liquid–solid phase boundary – such behavior is well known in regular matter (March

and Tosi 2002). On the other hand, the values of χ obtained for different particle

temperatures are almost the same. This result is not trivial, since individual phases,

solid and liquid, are expected to have a temperature-dependent thermal conductivity.

Nosenko et al. (2008) suggested that the dominant mechanism of thermal conduction

in such systems is phonon scattering on heterogeneous fluctuations that occur in the

melting region.

It is important to emphasize that although the measured temperature profile (viz.,

the value of Lheat) is determined by friction, the thermal conductivity itself is solely

determined by internal generic properties of the medium (Yukawa system in our

case) and does not depend on the damping: It was shown that the effective length of

the phonon scattering ℓph that actually determines the heat conduction (χ ≃ 1
2
Clℓph)

is at least an order of magnitude smaller than the length of the frictional phonon

decay (≃Cl/νdn), where Cl is the measured longitudinal acoustic velocity (see Sec-

tion 3.3). This allows us to extrapolate the knowledge about the kinetics of heat

transport (gained with weakly damped complex plasmas) to regular condensed mat-

ter and, thus, to understand more about generic atomistic processes governing the

thermal conductivity.

5.2.4 Hydrodynamics at the discreteness limit

The “discreteness issue” of continuous media can be formulated as follows: “What

is the smallest scale at which the conventional hydrodynamic description breaks

down?” Apparently, the answer depends on the particular problem under consid-

eration: It is determined by the similarity variables (and hence the related physical

parameters) that play the major role in the description of the macroscopic problem.

For instance, for a planar shear flow this is, primarily, the Reynolds and Mach num-

bers, whereas for a flow past an obstacle or a droplet breakup this can be the Weber

number. (Of course, one should remember that the basic parameters entering hydro-

dynamics such as viscosity or surface tension are quantities which are well defined

only for sufficiently large systems.)

To get the quantitative characteristics of hydrodynamic behavior at the discrete-

ness limit, let us discuss the progress achieved so far in exploring interfacial insta-

bilities occurring in large systems of discrete particles.

Wysocki and Löwen (2004) performed MD simulations of the Rayleigh-Taylor

(RT) instability in the fully damped (Brownian) regime peculiar to colloidal suspen-

sions. In these simulations, two different scenarios were observed that occur for

either “high” or “low” surface tension. The high-surface-tension scenario is charac-

terized by interfacial instability which is similar in spirit to the classical Rayleigh-

Taylor instability (Chandrasekhar 1961). AS in the regular undamped case, the clas-

sical threshold value for the wavelength of unstable interface perturbations is con-

firmed. In contrast, when the interfacial surface tension is low enough, a completely

different development is observed: The particles penetrate the interface easily as a

result of the driving field and form microscopic lanes. The structure of these lanes
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is very similar to that seen in numerical simulations (Chakrabarti et al. 2004) and

experiments (Leunissen et al. 2005) with driven colloidal suspensions. These re-

sults are obtained in the regime when the classical RT threshold for the unstable

wavelength (calculated for given values of the surface tension and driving force) is

smaller than the interparticle distance and hence a breakdown of hydrodynamics is

expected.

Thus, the microscopic appearance of the RT instability might be completely dif-

ferent as the discreteness enters, and this conclusion is rather intuitive: The surface

tension is the only stabilizing mechanism of the instability, and once this mechanism

becomes negligible, and hence, allows growth at hydrodynamic scales smaller than

the discreteness limit, the hydrodynamics itself becomes meaningless. On the other

hand, the instability should develop in some form anyway, and the only imaginable

picture for that is the interpenetrating strings, as observed in the simulations and

experiments.

In addition to colloidal suspensions (Leunissen et al. 2005) and pedestrian zones

(Helbing et al. 2000), the lane formation can be easily triggered in complex plasmas

(Morfill et al. 2006; Sütterlin 2009). As we have already pointed out, complex plas-

mas provide a very important intermediate dynamical regime that is between classic

undamped fluids and fully damped colloidal suspensions: In complex plasmas, the

“internal” dynamics associated with the interparticle interaction can be undamped

whereas the large-scale hydrodynamics can be strongly affected by friction. Never-

theless, the mesoscopic appearance of the lane formation in colloids and in complex

plasmas is quite similar, which gives us grounds to believe that this phenomenon

constitutes an ultimate generic form of the RT instability in any driven (strongly

coupled) fluid.

Figure 5.6 shows an example of lane formation observed in complex plasmas with

particles of different sizes (Sütterlin 2009). The net force acting on particles in a

discharge plasma (a combination of the electric and ion drag forces; see Section 2.4)

depends on the diameter and plays the role of an effective gravity pointed to the

right (the force is relatively strong at the left edge and almost vanishing at the right

edge of the figure). Initially, the large particles formed a (practically homogeneous)

“background” fluid. When a small fraction of individual small particles entered the

system from the left, their sedimentation towards the right edge of the figure was

accompanied by a remarkable self-organization sequence: First, the particles form

strings flowing along the force field (Figure 5.6a); then, as the field decreases, strings

organize themselves into larger mesoscopic streams (Figure 5.6b); and at the later

stage, when the field almost vanishes, streams merge to form a spheroidal droplet

with well-defined surface (Figure 5.6c), indicating the transition to the regime when

the effective surface tension should play the primary role.

In order to investigate the RT instability in further detail, let us consider examples

of highly resolved shear flows observed in complex plasmas (Morfill et al. 2004a)

and shown in Figure 5.7. Different flow topologies were observed, with the (average)

flow lines being either straight (Figure 5.7a) or curved with a radius of curvature of

about 80–100 ∆ (Figure 5.7b). The lower part of the microparticle cloud is at rest.

The observations suggest that the width and the structure of the transition (mixing)
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FIGURE 5.6

(See color insert following page 242). Lane formation in complex plasmas. A

short burst of small (3.4 µµµm) particles injected into a cloud of large (9.2 µµµm)

background particles is driven from left to right. Stages of (a) initial lane forma-

tion, (b) merging of lanes into larger streams, and (c) eventual droplet formation

are shown. Each figure is a superposition of two consecutive color-coded images

(1/50th s apart, green to red), entire sequence is about 2.5 s long. Images are

kindly provided by M. Rubin-Zuzic.
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FIGURE 5.7

Two examples of highly resolved complex plasma flows (Morfill et al. 2004a).

The figures show (a) a shear flow over a flat-surface plasma crystal and (b) a flow

over a curved-surface plasma crystal. Note the small angle perturbations in the

particle trajectories in (a), and the considerably larger scattering in the curved

flow in (b). Particles are of 6.8 µµµm diameter, the flow velocity is ∼∼∼1 mm s−−−111.

layer strongly depends on the geometry. For the planar flow the interface is quite

smooth, with the flow along a particular monolayer. The trajectories of individual

flowing particles experience only weak deflections and the overall flow appears to

be stable and laminar. In contrast, the curved flow interface has a curious rough

structure; the flow is not laminar; a “mixing layer” is formed. It is also apparent that

the mixing layer becomes unstable at the individual particle level. The microscopic

behavior may be interpreted as the centrifugally driven RT instability. Analyzing a

whole sequence of such images, one can quantify “elementary” (discrete) perturba-

tions in two ways – the fraction of interpenetrating (say, & ∆) particles, and the frac-

tion of particles undergoing “large angle” (say, & 30◦) collisions in the surface layer.

For instance, for the straight flow the quantities are (almost) 0 %, and ∼ 3 %, for the

curved flow ∼ 3 %, and ∼ 30 %. The latter can be understood kinetically in terms of

the higher collision frequency with smaller impact parameter due to particle inertia at

a curved surface. This has also been confirmed by numerical simulations conducted

for similar geometry and flow conditions as in the experiments. The topology of

the mixing layer found in the simulations corresponds closely to the measurements,

which supports the kinetic interpretation.

Following these considerations, one can argue that the Kelvin–Helmholtz (KH)

instability at the discreteness limit also has a different appearance. In order to il-

lustrate this point, we consider another example of the hydrodynamic behavior of
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liquid complex plasmas (Morfill et al. 2004b) shown in Figure 5.8. Particles were

flowing around an “obstacle” – the void of size ∼ 100 ∆. One can see stable laminar

shear flow around the obstacle, the development of a downstream “wake” exhibiting

stable vortex flows, and a mixing layer between the flow and the wake. The enlarge-

ment of the mixing layer (Figure 5.8b) shows that the flow is quite unstable at the

kinetic level, with instabilities becoming rapidly nonlinear. The width of the mix-

ing layer grows monotonically with distance from the border where the laminar flow

becomes detached from the obstacle. The growth length scale is on the order of a

few ∆, i.e., much smaller than the hydrodynamic scales n(dn/dx)−1 or u(du/dx)−1,

which would be expected macroscopically in fluids and which refer to the RT or KH

instability, respectively. This rapid onset of surface instabilities followed by mix-

ing and momentum exchange at scales ∼ ∆, i.e., the smallest interaction length scale

available, is not consistent, therefore, with conventional macroscopic fluid instability

theories. While this could not rightfully be expected at the kinetic level, it clearly

points to new physics and, possibly, a hierarchy of processes that is necessary to de-

scribe interacting fluid flows: First, binary collision processes provide particle and

momentum exchange on discreteness scales (a few ∆); then collective effects (due to

the correlations defining fluid flows) take over and propel this “discrete” instability to

macroscopic scales, creating cascades of growing clumps characterized by increased

vorticity.

Although the onset of the instability shown in Figure 5.8 occurs at scales ∼ ∆, its

further development is in amazing agreement with the simplest conceptual picture of

the continuous jet turbulence: It is well known that the mixing between a jet and its

surroundings occurs in two stages (see, e.g., Tennekes and Lumley 1972). During

the first stage (which is a distinct peculiarity of jets), a shear layer is formed imme-

diately downstream of the jet source, between jet stream and surroundings. As one

moves downstream, there is an early linear-instability regime, involving exponential

growth of small perturbations introduced at the jet source. Then, there is a gradual

transition to the second stage associated with the nonlinear regime of the KH insta-

bility, where the dynamics of large-scale vortex formation and merging becomes the

defining feature of the transitional shear flow. Apparently, the observed clump cas-

cading fully mimics this scenario, which suggests – again – that the similarity of the

coarse-grained hydrodynamics is preserved down to the physical discreteness limit.

Unfortunately, so far in experiments with complex plasmas, it has been impossi-

ble to observe the second stage typical to any developed turbulence – when vortices

(clumps) break down leading to a more disorganized flow regime characterized by

smaller-scale vortices. The spectral energy content at this stage should be consis-

tent with the Kolmogorov’s inverse cascade theory of turbulence. These processes

develop at much longer timescales, when the neutral friction starts playing an im-

portant role and simply “freezes out” free hydrodynamic motion. In order to observe

this turbulent stage in experiments, one needs to decrease the neutral gas pressure

substantially and to increase the size of the complex plasmas.

These examples suggest a naive microscopic picture of the hydrodynamic instabil-

ities: It is not unreasonable to conclude that many instabilities have a kinetic analog

or trigger and that the most effective trigger mechanism is provided by binary large
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a)

b)

FIGURE 5.8

Flow past an obstacle in fluid complex plasmas (Morfill et al. 2004b). (a) Over-

all topology of the 3.7 µµµm particle flow, the system is approximately symmetric

around the vertical axis (exposure time 1 s). The flow leads to a compressed

laminar layer, which becomes detached at the outer perimeter of the wake. The

steady vortex flow patterns in the wake are illustrated. The boundary between

the laminar flow and wake becomes unstable; a mixing layer is formed, which

grows in width with distance downstream. (b) An example of the mixing layer

(an enlargement of the left side, exposure time 0.05 s). The points (lines) repre-

sent traces of slow (fast) moving microparticles. The inset shows trajectories of

individual particles in the mixing layer.
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angle scattering in localized structures and/or inhomogeneities of scales comparable

to the particle correlation length. However, the mathematical techniques required to

quantify the kinetic behavior and to transfer this to macroscopic scales still need to

be developed.

5.2.5 Confined fluids

As fluid systems are engineered to smaller and smaller scales, down to the atomic

size, the special effects associated with the confinement of fluids become increas-

ingly important. The behavior of such systems is a fundamental problem in technol-

ogy (including areas such as lubrication, adhesion, nanofluidics, microchannel spec-

trometry, and surface functionalization). The general consensus is that the smaller

the system, the more important the confinement even for intrinsic properties (Hum-

mer et al. 2001; de Mello 2006; Heller et al. 2006; Whitby and Quirke 2007). It

is inevitable that there will be new physics associated with finite size effects, due

to surface interactions and reduced dimensionality. From the application point of

view, understanding the functionalization of nanoflow surfaces to achieve the de-

sired form of hydrophobic or hygroscopic behavior (for a given fluid) in the absence

or presence of, e.g., external fields (which would give rise to nano-electrorheology

or electro-osmotic flows) is clearly one of the aims – and no doubt there are many

others (Miller et al. 2001; Vaitheeswaran et al. 2004).

There have been many studies of confined flow systems, e.g., nanoporous materi-

als (ordered or disordered), thin fluid films, and microchannels. Amongst the areas

of interest are topics such as demixing (segregation) of biological fluid components,

flows in nano-capillaries, and the effects of confinement on the fluid structure and

on freezing and melting [for a review, see Whitby and Quirke (2007) and Alba-

Simionesco et al. (2006) and references therein]. The optimum way to study the

basic (generic) physics is to employ a system where kinetic measurements are pos-

sible at all relevant length and time scales. Currently the only systems capable of

satisfying all these requirements are complex plasmas. We will see in Section 5.2.6

that complex plasmas have electrorheological properties under certain conditions and

that it is possible to “design” the binary interaction potential between the particles

using external fields (Ivlev et al. 2008). This provides great opportunities for future

basic and applied research in a number of fields in condensed matter physics and

beyond, and in particular for confined (nano) systems.

In this section we concentrate specifically on the first studies involving liquid com-

plex plasmas, their “kinetic structure” in confined channel flows, and their depen-

dence on the confinement potential. All confined flow experiments with complex

plasmas so far have been conducted on the ground, i.e., the microparticles are sus-

pended against gravity in the sheath region above the lower electrode. Horizontal

confinement is effected either by non-conducting glass walls (which then attain float-

ing potential), by conducting segmented electrodes (that can be actively powered and

used to transport the particles), or by conducting metal channels placed on the lower

electrode.

Teng et al. (2003) reported on the microscopic observation of the confinement-
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induced layering in quasi-2D complex plasma liquids. Two parallel vertical plates

were put on a horizontal rf electrode surface to laterally confine particles and, hence,

to form mesoscopic channels down to a few interparticle spacings in width. Mi-

croscopically, the particle mutual interaction tends to generate ordered triangular

lattice-type domains with small amplitude position oscillations, which can be reor-

ganized through string- or vortex-type hopping activated by thermal noise. However,

the boundaries suppress the nearby transverse hopping. Figure 5.9 shows some snap-

shots of particle configurations and the corresponding transverse density distribution

for different number of “layers”, N. Basically, at larger N, the density profiles with

their decaying oscillation from both boundaries manifest the confinement-induced

(two to three) almost frozen outer layers near each boundary, which sandwich the

more disordered isotropic liquid with a flat density profile in the center region. The

transition to the layered structure up to the center at N . 7 is evidenced by the ap-

pearance of sharp peaks of the density profile. Similar structure was observed in a

series of experiments with the so-called “dusty balls” – 3D spheroidal clusters con-

sisting of a few thousand particles, which have a shell structure (of 3–4 layers) near

the surface and a liquid (amorphous) state in the central bulk (Arp et al. 2004).

Using the same experimental setup as in Teng et al. (2003), the atomistic dynamics

of the shear flow in a quasi-2D mesoscopic complex plasma liquid has been studied

by Chan et al. (2004). Due to the formation of the nearby layered structure shown

in Figure 5.9, the persistent and directional slow drive from the external stress along

the boundary enhances cage-escape structural rearrangements which cascade into the

liquid through many-body interaction. It was found that the flow consists of two outer

shear bands, about three interparticle distances in width, adjacent to the boundaries

and a central small-shear zone. The former has higher levels of both longitudinal and

transverse velocity fluctuations. The shear banding phenomenon originates from the

local stress release through the local rearrangement events adjacent to the boundary.

In a different experiment, converging and diverging (“nano”) flows were inves-

tigated by Fink et al. (2005). One of the interests here was the determination of

possible “selection rules” for the flow – e.g., how in detail the system evolves ki-

netically from N flow lines to N − 1 flow lines when N becomes small. A second

interest was to find out if there was a preferred instantaneous “structure” of the fluid

particles during the flow line transitions. An example is shown in Figure 5.10a. The

flow converges by one interparticle spacing ∆ over a distance of typically six ∆ (i.e.,

reduction of one flow line), so that the convergence angle is about 10 degrees. The

figure shows the following features: (i) The typical structure of the fluid is hexago-

nal – i.e., the same as the 2D crystalline ground state. (ii) The transition from 4 to 3

flow lines goes via a localized 5/7 dislocation. (iii) The transition from 3 to 2 flow

lines goes via alternating jumps (“zipping”) of particles from the “central” flow line

(which disappears) to the two outer ones. The characteristic “structures” observed

are shown schematically in Figure 5.10b.

The results by Fink et al. (2005) confirm the observations shown in Figure 5.9

for a plane non-converging channel. As the system becomes smaller (in terms of

flow lines), it begins to look instantaneously like a solid. This is, of course a conse-

quence of the channel surface, which in these experiments is a “slip surface” (i.e., the
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FIGURE 5.9

Liquid complex plasmas in narrow channels (Teng et al. 2003). The typical

snapshots of the 7 µµµm particle configurations and the transverse particle density

distributions, nnnyyy, for different experiments with decreasing “number of layers”

NNN (width measured in units of the interparticle spacing), from 11 to 3.

complex plasma does not have any “wetting” properties). Experiments with rough

surfaces (on the scale of the interparticle separation) have not been performed yet.

In such a case we would expect surface friction to play a role with associated modi-

fication of the flow structure and dynamics.

5.2.6 Electrorheological fluids

In this section we focus on an interesting class of so-called “electrorheological” (ER)

fluids which have presently acquired significant attention. “Conventional” ER fluids

consist of suspensions of microparticles in (usually) nonconducting fluids with a
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a)

b)

FIGURE 5.10

Converging 2D complex plasma flow in the limit of very few flow lines (Fink et

al. 2005). (a) The convergence of particles of 3.4 µµµm diameter goes from 4 to 2

lines. The experiment was designed to investigate fluid structure and dynamical

selection rules during the (discrete) flow line reduction. (b) Characteristic “fluid

structures” observed in different regimes of the converging flow.

different dielectric constant (Chen et al. 1992; Dassanayake et al. 2000). The inter-

particle interaction, and hence the rheology of ER fluids, is determined by an exter-

nal electric field, which polarizes microspheres and thus induces additional dipole–

dipole coupling. The electric field plays the role of a new degree of freedom that

allows us to “tune” the interaction between particles. This makes the phase diagram

of ER fluids remarkably diversified (Yethiraj and van Blaaderen 2003; Hynninen and

Dijkstra 2005).

The term “electrorheological fluid” is self-explaining (Stangroom 1983; Carlson

et al. 1990): At low electric fields microparticles may be fully disordered and then

(provided their concentration is low as well) ER fluids may be just normal Newto-

nian fluids. At larger fields, however, the situation can change dramatically – due to

the increased dipole–dipole attraction particles arrange themselves into strongly cou-

pled chains (“strings”, or even “sheets”) along the field. This naturally changes the

rheology – e.g., at low shear stresses ER fluids can behave like elastic solids, while

at stresses greater than a certain yield stress they are viscous liquids again. ER fluids

have a significant industrial application potential – they can be used in hydraulics,

photonics, display production, etc. (Stangroom 1983; Carlson et al. 1990; Yethiraj

et al. 2004).

In contrast to conventional ER fluids (e.g., colloids) where the induced dipoles

are due to polarization of the microparticles themselves, in complex plasmas the

primary role is played by clouds of compensating plasma charges (mostly, excess

ions) surrounding negatively charged microparticles (see Section 2.2). Without an

external field the cloud is spherical (“Debye sphere”); when a field is applied, the
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cloud (which then acquires a fairly complicated shape and is called “plasma wake”)

is shifted downstream from the particle, along the field-induced ion drift. In this case

the pair interaction between charged microparticles is generally non-reciprocal (i.e.,

non-Hamiltonian, see Section 3.2.2). The non-reciprocity of the interaction could

be eliminated only if the wake potential were an even function of coordinates, i.e.,

ϕ(r) = ϕ(−r). A simple “recipe” to create such a reciprocal wake potential is as

follows (Ivlev et al. 2008): One has to apply an ac field of a frequency that is (i)

much lower than the inverse timescale of the ion response (ion plasma frequency,

typically ∼ 107 s−1) and, at the same time, (ii) much higher than the inverse dust re-

sponse time (dust plasma frequency, typically ∼ 102 s−1 or less). Then the ions react

instantaneously to the field whereas the microparticles do not react at all. The ef-

fective interparticle interaction in this case is determined by the time-averaged wake

potential. The resulting interaction is rigorously reciprocal (Hamiltonian), so that

one can directly apply the formalisms of statistical physics to describe ER plasmas.

Quantitatively, the (field-induced) interparticle interaction in ER plasmas can be

determined from the linear dielectric response formalism (see Section 2.2.2). For

subthermal ion drift the interaction potential is given by Equation (2.50), which ba-

sically represents the far-field asymptotics for the potential expanded into a series

over small ui (with the angular dependence of the first three coefficients being pro-

portional to that of the corresponding multipoles, i.e., charge, dipole, quadrupole).

Furthermore, all “odd” terms (∝ u
j
i with odd j) are proportional to linear combina-

tions of the odd-order Legendre polynomials whereas “even” terms are combinations

of the even-order polynomials. Thus, for an ac field E(t) with 〈E〉t = 0, all odd-order

terms disappear in the time-averaged potential 〈ϕ〉t , which becomes an even function

of coordinates. The effective energy Q〈ϕ〉t of the time-averaged pair interaction is

(Ivlev et al. 2008)

W (r,θ ) ≃ Q2

[

e−r/λ

r
−0.43

M2
T λ 2

r3
(3cos2 θ −1)

]

. (5.5)

Thus, the effective interaction consists of two principal contributions: The first “core”

term represents the spherically symmetric Debye–Hückel part, whereas the second

term is due to the interaction between the charge of one particle and the quadrupole

part of the wake produced by another particle. The charge–quadrupole interaction

is identical to the interaction between two equal and parallel dipoles of magnitude

≃ 0.65MT Qλ . This implies that for small MT the interactions in ER plasmas are

equivalent to dipolar interactions in conventional ER fluids.

One can compare ER colloids and ER plasmas in terms of the dipole–dipole cou-

pling (Tao 1993; Gulley and Tao 1997; Hynninen and Dijkstra 2005). Since the

magnitude of the induced dipole is proportional to the volume of the “polarizable

sphere”, the field necessary to achieve a given coupling in ER colloids will be much

larger than that in ER plasmas. In colloids, microparticles of radius a acquire dipoles

∼ a3Ecoll and are separated by distance ∼ a, whereas the interaction in plasmas is

determined by Equation (5.5) with typical separation ∼ λ . The equivalent field for

colloids is then Ecoll ∼ MT (a/λ )1/2(|Q|/a2). For typical experimental conditions,
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the electric field E ∼ 3 V/cm in plasmas (which corresponds to MT ∼ 1) is equiva-

lent to Ecoll ∼ 3 kV/cm in colloids.

The investigated phase diagram of ER colloids reveals a remarkable variety of

crystalline states (Chen et al. 1992; Yethiraj and van Blaaderen 2003; Hynninen

and Dijkstra 2005). In addition to “isotropic” bcc and fcc lattices, the hexago-

nal close-packed (hcp) structure can be a ground state in a fairly broad range of

phase variables. Moreover, unusual “anisotropic” crystalline states become possible,

like body-centered orthorhombic (bco) and body-centered tetragonal (bct); the phase

transition between them is of the second order. On the other hand, relatively little

research has been done on the fluid phase. In particular, the dynamics and details of

the phase transition between “isotropic” and “string” fluids is practically unexplored

(Tao 1993; Gulley and Tao 1997).

The “isotropic-to-string” phase transition in ER plasmas was investigated in ex-

periments under microgravity conditions by Ivlev et al. (2008). Particles remained

in a disordered fluid state as long as the amplitude of the applied AC (alternating

current) field was below a certain threshold. Increasing the field further triggered

rearrangement of particles: They became more and more ordered, until eventually

well-defined particle strings were formed along the direction of the field. The tran-

sition between isotropic and string fluid states was fully reversible – decreasing the

field brought the particles back into their initial isotropic state. The trend to form

strings increased with particle size. The molecular dynamic (MD) simulations per-

formed with similar parameters gave remarkable agreement with the experiment.

In order to quantify the isotropic-to-string phase transition, a suitable order pa-

rameter that is sensitive to the changing particle structures has to be employed (Ivlev

et al. 2008). Conventional approaches, e.g., binary correlation or bond orienta-

tion functions, and Legendre polynomials turned out to be too insensitive. Much

more satisfactory results were obtained by implementing the α (see, e.g., Räth et

al. 2002) – a local nonlinear measure for structure characterization, with which

any symmetry changes can be quantified by using the longitudinal and transverse

distributions P‖(α) and P⊥(α). For the onset of the isotropic-to-string transition,

the difference between the transverse and longitudinal scaling indices averaged over

the ensemble, ∆α =
∫

αP⊥dα − ∫ αP‖dα , was used as a scalar order parameter,

whereas MT played the role of the control parameter. The obtained data were quite

well approximated with a two-parametric fit ∆α ∝ (MT −Mcr
T )γ for MT > Mcr

T and

∆α = 0 for MT ≤ Mcr
T , which might suggest a second-order or a weak first-order

phase transition between isotropic and string fluids (Tao 1993). Note that for a

weakly coupled ER plasma, which implies gaseous-like ensembles of particles where

triple interactions play a minor role, a simple analytical criterion for the isotropic-to-

string phase transition can be derived from the analysis of the second virial coeffi-

cient, B = π
∫ ∞

0

∫ 1
−1(1− e−W/Td )r2drdx (see, e.g., Landau and Lifshitz 1978), where

x = cosθ and W (r,x) is given by Equation (5.5).

Figure 5.11 summarizes the experimental results and the comparison with the MD

simulations (Ivlev et al. 2008). The structural order of the well-developed strings is

quite evident in both experimental and simulation data shown in the top two rows.

The lower two rows show the corresponding distributions P‖(α) and P⊥(α).
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FIGURE 5.11

Formation of strings in ER plasmas (Ivlev et al. 2008). First row: Micrograv-

ity experiments (6.8 µµµm particles, raw data), microparticles are illuminated

by a thin (less than mean interparticle distance) laser sheet parallel to the ap-

plied ac electric field. Examples of “low” (first column), “intermediate” (second

column), and “high” (third column) fields are shown, the peak-to-peak volt-

age of the ac signal (applied to two parallel horizontal electrodes) is indicated.

Second row: MD simulations, the same configuration as in the experimental

setup, the field is measured in units of the thermal Mach number MMMTTT (scale

bars correspond to 2 mm). Third and forth rows: Histograms for longitudi-

nal (left curve) and transverse (right curve) distributions of the scaling indices,

PPP‖(((ααα))) and PPP⊥(((ααα))), calculated for the experiment and simulation, respectively.

(Note that at higher densities the particle positions in neighboring strings be-

came highly correlated.)
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So far, colloidal suspensions have been the major focus for ER studies, providing

a wealth of information (Chen et al. 1992; Dassanayake et al. 2000; Yethiraj and van

Blaaderen 2003; Hynninen and Dijkstra 2005). The discovery that complex plasmas

also have electrorheological properties adds a new dimension to such research – in

terms of time/space scales and for studying new phenomena: An essentially single-

species system of microparticles in complex plasmas enables us to investigate previ-

ously inaccessible rapid elementary processes that govern the dynamical behavior of

ER fluids – at the level of individual particles. In particular, such investigations may

allow us to study critical phenomena accompanying second-order phase transitions

(Khrapak et al. 2006; Kompaneets 2009).

5.3 Solids

In this section we concentrate specifically on the kinetic description of the crystalline

state in complex plasmas, with the focus on various dynamical aspects that may have

generic nature and therefore play an important role in regular solids. This section

starts with the kinetic characterization of crystals – the approach which (in principle)

is equally appropriate for 2D and 3D cases. Then we proceed with different crys-

tallization scenarios peculiar to 2D and 3D systems. We also discuss creation and

dynamics of dislocations – the process that is absolutely relevant for 3D crystals as

well, but has been properly investigated so far only in 2D plasma crystals.

5.3.1 Atomistic dynamics in crystals

Transitions between solid and fluid phases as well as between different crystalline

states, rheological and transport properties of the fluid phase, energy relaxation and

hierarchy of metastable states are determined by the magnitude of the coupling pa-

rameter Γ [see Equation (5.1)], which can be also considered as the measure of

(inverse) temperature. In turn, Γ depends sensitively on local variations in crystal

structure and provides information about the occurrence of localized excited states

and nonstationary processes.

The value of Γ can be determined experimentally (Knapek et al. 2007a), by link-

ing the individual particle dynamics with the local density and crystal structure using

the Einstein frequency ωE, which refers to linear oscillations of individual particles

(atoms) in a lattice. In local equilibrium, the dynamics of individual particles in each

lattice cell is statistically equivalent and can be described by a Langevin equation

(see, e.g., VanKampen 1981). Therefore, cells represent a canonical ensemble with

the Maxwell-Boltzmann distribution, ∝ exp[−md(v
2 + ω2

Er2)/2Td], as illustrated in

Figure 5.12. Then one can deduce thermodynamic characteristics locally, from the

independent Gaussian fit of the velocity and displacement distribution: The veloc-

ity dispersion is Td/md and the displacement dispersion is Td/mdω2
E ≡ ∆2/Γ̃, where
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a b c

FIGURE 5.12

(See color insert following page 242). Dynamics of particles in a lattice of a 2D

crystal (Knapek et al. 2007a). (a) Distribution of velocities vvvxxx (red dots) and

vvvyyy (blue dots) with Maxwellian fits (solid lines). (b) Distribution of displace-

ments xxx (red dots) and yyy (blue dots) of particles in their nearest-neighbor cage,

solid lines are Gaussian fits. (c) Particle trajectories in their respective nearest-

neighbor cells during the measurement time of ≃≃≃12.3 s (colors correspond to

the progression of time). Particles are of 9.19 µµµm diameter.

a) b)

FIGURE 5.13

(See color insert following page 242). 2D maps of local crystal parameters

(Knapek et al. 2007a). Distribution of (a) effective coupling parameter Γ̃ and (b)

interparticle distance ∆ is shown; the Voronoi cell around each particle is color

coded according to the value of the measured quantity. The circles indicate the

position of a sevenfold-fivefold pair defect; blue cells seen at the upper edge of

(a) are due to the particle cage-escape event (see Section 5.2.1).

Γ̃ = (ωE/ωpd)
2Γ is the effective coupling parameter modified by the screening [the

ratio of the Einstein to the dust-plasma frequency is a function of the screening pa-

rameter κ only, see Robbins et al. (1988) and Knapek et al. (2007a)]. For such

a linear description to hold, it is essential that particles in the lattice perform suffi-

ciently small oscillations. The role of anharmonic effects can then be neglected, so

that the oscillations of the neighboring particles are uncoupled and can be treated

independently.
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An exemplary map of Γ̃ measured in a 2D plasma crystal is shown in Figure 5.13a.

This map can be used to probe correlations with various local processes occurring in

a crystal. For instance, there is a 5/7 dislocation just outside the regime analyzed (the

position is marked by a circle), and there is some indication that the coupling strength

in the vicinity of a non-stationary cage-escape event is substantially decreased. At the

same time, comparison with the density map (see Figure 5.13b) shows no correlation.

The interparticle spacing shown in Figure 5.13b varies by about 0.5% per cell, so

that the 2D density inhomogeneities are about 1% per cell. By performing indepen-

dent measurements of the longitudinal and transverse acoustic modes (viz., acoustic

velocities Cl,t, see Section 3.3) that are very sensitive to the screening parameter κ
(Fortov et al. 2005), one can obtain a map of the coupling parameter Γ (rather than

Γ̃) and thus define the state of the crystal within the phase diagram (see Figure 5.1).

A straightforward application of the method described above could be to deter-

mine the local Lindemann criterion of crystal melting, viz., what is the critical mag-

nitude of the mean squared displacement, what are the characteristic patterns of the

caged particle motion in the vicinity of the melting transition, what is the role of

dynamical heterogeneity, etc.

5.3.2 Scalings in 2D crystallization

The characterization of solid, supercooled (glassy) and liquid states is, in general,

not straightforward. Different models for the solid–liquid phase transition have been

put forward. For 2D systems, models of particular relevance are the dislocation the-

ory of melting – the Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY) the-

ory [which involves two phase transitions – with an intermediate, so called “hexatic

phase” in between – one associated with the unbinding of dislocation pairs and the

other with the unbinding of disclination pairs, see Kosterlitz and Thoules (1973),

Halperin and Nelson (1978, 1979), Young (1979), and Nelson (2002)], and the the-

ory of grain-boundary induced melting (see Chui 1982, 1983).

Apparently, one of the central questions in understanding phase transitions in 2D

strongly coupled systems is what the critical parameters are that determine which

melting scenario will be realized in a particular experiment (i.e., whether the melting

occurs in accordance with the KTHNY scenario, or the transition is preempted by

grain-boundary-induced melting). The accompanying questions are whether the cor-

relation functions associated with the crystal and hexatic phases have the appropriate

scaling behavior, and what the order is of the observed phase transitions in the “ther-

modynamic limit”. These issues have been discussed extensively (see, e.g., reviews

by Alba-Simionesco et al. (2006) and Strandburg 1988).

It is generally believed that the value of the defect core energy plays a critical role

in the realization of the melting scenario (Strandburg 1988). The KTHNY mech-

anism should operate when the core energy exceeds ≃ 2.8TM1 (where TM1 is the

temperature of unbinding of dislocation pairs), otherwise grain-boundary-induced

melting should occur. Below we focus on two experiments that illustrate the kinetics

accompanying these melting mechanisms.

The experiments by Zahn and Maret (2000) performed with colloidal particles are
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a cb

FIGURE 5.14

(See color insert following page 242). Recrystallization in 2D complex plasmas

(adapted from Knapek et al. 2007b). (a) Snapshot showing intermediate struc-

ture of 9.19 µµµm particles during the recrystallization. (b,c) Color-coded 2D

maps for two consecutive stages of recrystallization (about 10 s apart, map b

corresponds to snapshot a). The background gray scale corresponds to the local

value of the bond-orientational function |||ψψψ666|||; the arrows represent the vector

field of ψψψ666 on the complex plane; defects are marked by red (fivefold) and blue

(sevenfold) dots.

an excellent example of the KTHNY scenario [for other examples, see, e.g., Murray

and Winkle (1987), and Marcus and Rice (1997)]. Supermagnetic spherical colloids

were confined by gravity to a horizontal flat water/air interface. A vertical magnetic

field was applied, which induced a magnetic moment, so that a (repulsive) dipole–

dipole potential dominated the interaction. Thus changing the magnetic field strength

allows external tuning of the coupling parameter and the study of phase transitions

in a controlled way. The data obtained with video microscopy (about 2000 particles)

were analyzed in terms of the bond order correlation function, g6(t) = 〈ei6θ(t)〉, as

a function of time, where θ (t) denotes the angle fluctuation of a fixed bond. Three

regimes can be identified: The crystalline regime at large Γ, where g6 = const, the

isotropic liquid regime at low Γ, where g6(t) decays exponentially; and an interme-

diate regime, where g6(t) decays as a power law, indicating the hexatic phase. These

findings are in quite good agreement with the KTHNY theory, supporting the two-

stage melting for systems with an r−3 interaction potential (the core energy occurs

above the critical value of 2.8TM1).

The melting via grain boundaries was apparently seen in several experiments with

complex plasmas (see, e.g., Quinn et al. 1996; Melzer et al. 1996a; Knapek et

al. 2007b; Nosenko et al. 2009). Let us consider the experiment by Knapek et al.

(2007b), where a 2D monolayer of about 3400 particles was first allowed to crystal-

lize, and then it was perturbed and melted by an electric impulse. The subsequent
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recrystallization was recorded with high spatial and temporal resolution (see Fig-

ure 5.14). To make a comparison with the KTHNY theory, the local variation of

orientational ordering was investigated by calculating the bond-orientational func-

tion, ψ6 = 1
n ∑ j ei6θ j , over the n nearest neighbors for each particle, with θ j being

the angle between the nearest-neighbor bond and a reference axis. The modulus

|ψ6| of this complex quantity yields the bond order parameter, which is unity for an

ideal hexagonal structure, and the argument arg(ψ6) is a measure for cell orientations

with respect to the reference axis. The kinetic temperature of the system was defined

from the velocity distribution of the particles (by fitting with a Maxwell-Boltzmann

distribution, see Figure 5.12).

Figure 5.14b,c shows color-coded maps of |ψ6| for two consecutive stages of re-

crystallization. The location of jumps in bond orientation is clearly correlated with

the lines of (fivefold/sevenfold) defect locations. After melting, as the system cools

down, the crystalline domains grow and merge with neighboring regions, as illus-

trated in Figure 5.14b, causing the bonds to tilt to the (single) orientation of the

growing region. Eventually, a metastable state shown in Figure 5.14c is reached

which is characterized by highly ordered adjoined crystalline domains.

The dynamic evolution of the lattice defects in 2D complex plasmas can be sum-

marized as follows: (i) The instantaneous 2D structure revealed mainly hexagons,

pentagons and septagons at all temperatures sampled. (ii) The fraction of pentagons

and septagons was identical within the statistical uncertainties – they practically al-

ways appear in pairs. (iii) The hexagonal “ground state” (also the lowest energy

state) dominated at all temperatures sampled. (iv) The local disorder, identified as

the fraction of pentagons or septagons, could be approximated by a power-law de-

pendence on temperature, as shown in Figure 5.15.

These facts indicate that unlike 3D liquids, which may have their own distinct

local order [pentagon-like, see Frank (1952); Reichert et al. (2000)] – quite different

from the crystalline state – 2D liquids do not exhibit a special local order. They

can appear as a crystal with different amounts of lattice dislocations, which depend

on the temperature. As the temperature decreases, these dislocations may partially

annihilate (anneal) and they can also have a tendency to form strings, which act as

domain boundaries separating homogeneous ordered regions.

The implications of these experimental findings are obvious:

• they show that the fundamental stability principles of condensed matter de-

pend on the external constraints – in such a way that for 2D systems the self-

organization favors mixtures of the ground state and the next most excited

states;

• furthermore, the power-law behavior with respect to the order parameter “tem-

perature” shows that there is no characteristic scale;

• if these findings are generic (perhaps for a certain class of materials) then they

are significant for characterizing physical properties and – ultimately – for

monolayer, membrane and nano-engineering;
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FIGURE 5.15

Fraction of the five- and sevenfold defects, NNN555,,,777///NNN, during the recrystallization

(adapted from Knapek et al. 2007b). As temperature decreases, the number of

defects in a hexagonal lattice obeys a power-law dependence, NNN555,,,777 ∝∝∝ TTT 000...444
ddd (solid

line), revealing a classic scale-free behavior. Three different experiments are

shown.

• to understand whether the findings have generic implications, we need to de-

velop a kinetic theory that has a sufficiently general character to allow extrap-

olation to other systems.

Temperature scaling for domain boundaries. Given the above findings one can

develop a simple theory that describes this process of self-organization. This theory

is based on the early work of Frenkel (1955).

At a given temperature, a 2D system of N particles is divided into ζ = N/N̄d

homogeneous domains, each containing N̄d particles on average, with boundaries

made up of pairs of pentagons and septagons. We assume that the structural order in

the individual domains is uncorrelated. While it is clear that there will be a spectrum

of domain sizes, let us for the moment consider only averages (the justification for

this approach will become apparent later).

If the mean separation between the particles is ∆, then the mean domain radius is

determined by π r̄2 = π(∆/2)2(N/ζ ), i.e., r̄ = 1
2
(N/ζ )1/2∆. The interfaces have an

additional amount of “line energy” Ē = 2π r̄ζσ , where σ is the “line tension” (in-

teraction between domains is neglected). Substituting for r̄ gives Ē = π∆(Nζ )1/2σ .

As a result of the domain structure, the system entropy increases. The measure of

disorder is characterized by the number of different ways in which the particles may

be organized (assuming homogeneity inside each domain), P = N!/[(N/ζ )!]ζ . If N

and N/ζ are sufficiently large, then using Stirling’s approximation yields P ≃ ζ N .

The entropy is S = lnP and the mean free Helmholtz energy is accordingly F̄ =
π∆(Nζ )1/2σ −NTd lnζ . Assuming that during recrystallization the system remains
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always in thermodynamic equilibrium, from ∂ F̄/∂ζ = 0 we have

ζ =

(

2Td

π∆σ

)2

N.

Remarkably, ζ does not depend on N̄d, the mean particle population of a domain. We

have now established a relationship between ζ and Td . At this stage we can introduce

the fractal nature of the domains as a hypothesis. This hypothesis is also intended

to account for the size distribution of the domains, which we have not explicitly

discussed. We write N̄d∆2 = const(N̄s∆)1+α , where N̄s is the average number of par-

ticles in a domain wall. (Note that with the above definition we would have α = 1

if the domain was circular, whereas for long narrow strip domains α → 0, which

suggests that 0 < α < 1.) Substituting this scaling yields finally the total number of

particles in all the domain boundaries, Ntot(= N5 +N7)≡ ζ N̄s, which obeys the scal-

ing Ntot/N ∝ T
2α

1+α
d . From the measurements we have 2α/(1+α)≃ 0.4, which gives

α ≃ 0.25 if σ is temperature independent (obviously, if σ is temperature dependent

then α becomes larger than 0.25). The obtained fractal exponent lies in the expected

range 0 < α < 1, but no physical argument has been obtained so far regarding its

specific value. This could imply that α may be material-dependent.

Thus, it is possible to explain the observations of the recrystallization of a 2D

plasma crystal with simple thermodynamic arguments, provided the following ma-

jor assumptions are satisfied: (i) The system is instantaneously in thermodynamic

equilibrium. (ii) The evolution takes the form of uncorrelated domains with size and

number depending on temperature. (iii) Domain boundaries are always of the same

type (here 5/7 dislocations). (iv) The domain lines satisfy on average a constant

fractal relationship, independent of temperature. (v) The line tension of the domain

boundaries is temperature independent (or has a power law dependence on Td). (vi)

The free energy of the domain walls dominates the system evolution.

5.3.3 Dynamics of dislocations

Even far above the melting line, dislocations are ubiquitous in both 2D and 3D crys-

tals. Dislocations are essential for understanding such properties as plasticity, yield

stress, susceptibility to fatigue, and fracture. Their generation and motion is of inter-

est in materials science (Kittel 1961), the study of earthquakes and snow avalanches

(Kirchner et al. 2002), colloidal crystals (Schall et al. 2004), 2D foams (Abd el

Kader and Earnshaw 1999), and various types of shear cracks (Abraham and Gao

2000; Rosakis et al. 1999).

In elastic theory, a dislocation’s core is treated as a singularity in an otherwise con-

tinuous elastic material. Obviously, such a simplified approach is often too crude to

capture essential quantitative characteristics of dislocations, whose scales are usually

on the order of the lattice constant. In regular solids dislocation dynamics is almost

impossible to study experimentally at an atomistic level (Murayama et al. 2002) be-

cause of the small distances between the atoms (or molecules), high characteristic
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FIGURE 5.16

Generation and dynamics of dislocation pairs in a 2D plasma crystal (Nosenko

et al. 2008). Maps of (a) triangulation of the particle positions, (b) bond-

orientational function |||ψψψ666|||, and (c) vorticity (((∇∇∇××× v) are shown for four dif-

ferent moments of time: (1) 0.33, (2) 0.57, (3) 0.70, and (4) 1.00 s. A pair of

dislocations is indicated in (a) by arrows. Particles are 8.09 µµµm in diameter.

frequencies, and the lack of experimental techniques of visualizing the motion of

individual atoms.

In contrast to regular solids, complex plasmas turned out to be an exceptionally

suitable model system for experimental study of the discrete structure and dynamics

of dislocations. In the experiment by Nosenko et al. (2007), a 2D plasma crystal was

heavily stressed due to inhomogeneous (parabolic) radial confinement. That was the

reason for the strong variation of the number density across the crystal and, as a

consequence, for the appearance of topological defects (indicated in Figure 5.16a).

Most of the defects formed linear chains that constitute domain boundaries in the

crystal. During the course of the experiment, dislocations (i.e., isolated pairs of five-

fold and sevenfold defects) were continuously generated due to the shear introduced

by a slow rotation of the crystal. They then moved around and finally annihilated

with each other or at domain boundaries.

In order to characterize dislocations at the discreteness limit, one has to relate dis-

crete and continuous measures of shear deformation. The most appropriate discrete

measure (which is, at the same time, insensitive to uniform compressions, rotations,
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and translations, etc.) is the modulus of the bond-orientational function |ψ6| shown

in Figure 5.16b. In the limit of weak simple shear, the following relation can be

used: |ψ6| ≃ 1− 9γ2 where γ is the shear strain (Nosenko et al. 2007). For weak

pure shear, |ψ6| ≃ 1− 2.25ε2, where ε is the elongation, which is the measure of

pure shear deformation. The dislocation dynamics can be conveniently character-

ized in terms of 2D vorticity, (∇×v), shown in Figure 5.16c (where v is the particle

velocity).

Figure 5.16b shows that the shear strain had quite a nonuniform distribution. It

was higher (i.e., |ψ6| lower) in two kinds of locations. First, it was high in domain

boundaries – the two nearly parallel bright stripes in Figure 5.16b (or equivalently

the chains of fivefold and sevenfold defects in Figure 5.16a). Second, a “diffuse

background” of shear strain appeared between the domain boundaries. The diffuse

shear strain increased with time. When it locally exceeded a certain threshold, a pair

of edge dislocations was created in that location, as one can see in the second row

of Figure 5.16; these dislocations appear as bright spots in (b) or as pairs of fivefold

and sevenfold defects in (a), all indicated by arrows. Once a pair of dislocations

was created, they moved rapidly apart (third and fourth rows). The Burgers vectors

in such a pair were oppositely directed and equal in magnitude, so that the total

Burgers vector was naturally conserved.

Creation of dislocation pairs is characterized by several distinct stages in the evo-

lution of the shear strain: First, the shear strain builds up gradually in a certain

location. Second, when the shear strain in this location exceeds a threshold, a pair of

dislocations is born. Third, the shear stress is rapidly relaxed when the dislocations

separate, and gradually drops to the background level. This cycle then starts over

again, perhaps in a different location.

Dislocations that move supersonically create clear signatures – Mach cones that

can be seen in Figure 5.16c, fourth row (see also Section 4.5.3). The Mach cones

were composed of shear waves and not of compressional waves, because they were

excited by dislocations moving faster than the transverse acoustic velocity, Ct, but

slower than the longitudinal one, Cl. The average speed of supersonic dislocations

in the experiment was about 2Ct. In fact, linear elastic theory predicts that a gliding

edge dislocation cannot overcome the sound speed of shear waves Ct because the

energy radiated by a moving dislocation becomes infinite at this speed. However,

gliding edge dislocations moving at the speed of 1.3Ct to 1.6Ct were observed in

atomistic computer simulations (Gumbsch and Gao 1999). To the best of our knowl-

edge, the results reported by Nosenko et al. (2007) provide the first experimental

evidence that dislocations can indeed move faster than Ct.

5.3.4 3D crystallization

Growth of 3D crystals is a very important branch of industry, with numerous applica-

tions ranging from semiconductors, substrates for high temperature superconductors,

piezo sensors, ferroelectric memories, optical elements to nano-structures, quantum

dots and organic systems. There are different facets to crystal growth, homoge-

neous nucleation, heterogeneous nucleation, epitaxial growth, molecular beam epi-
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taxy, chemical vapor deposition, etc. While techniques for visualization (and quality

control) of crystal growth have improved greatly, the detailed kinetic understanding

of dynamical growth processes is still far from complete. The same holds for nano-

and microparticle contamination in production processes.

For a deeper understanding of the kinetics of crystal growth, the use of model

systems that allow visualization in real space and time at the individual particle

level is desirable. It is no surprise, therefore, that colloidal suspensions have been

widely studied in the past in order to learn more about the generic properties of self-

organization [see, e.g., Vlasov et al. (2001), Alsayed et al. (2005) and references

therein]. The only essential limitation of colloids for this purpose is the damping by

the suspension fluid, which makes it practically impossible to investigate atomistic

dynamics.

With the discovery of plasma crystals, a new system became available for studying

the fully resolved dynamics of self-organization processes. Research into 3D crys-

tallization may benefit from this, and consequently a number of studies have been

conducted, beginning with the investigation of basic crystal properties [3D crystal

structure, acoustic modes, etc., see Zuzic et al. (2000) and Zhdanov (2003)] and

the liquid-solid phase transitions (see Thomas and Morfill 1996; Rubin-Zuzic et al.

2006).

Structural properties of steady-state 3D plasma crystals were investigated in nu-

merous experiments (Chu and I 1994; Quinn et al. 1996; Hayashi 1999; Zuzic et

al. 2000; Arp et al. 2004). Crystalline structures such as bcc, fcc, and hcp, as well

as their coexistence, were found for certain plasma and particle parameters, as il-

lustrated in Figure 5.17. We see the co-existence of the (presumable) ground state

(fcc) and a metastable state (hcp), which seems to mark the domain borders (Zuzic

et al. 2000). Such borders are also seen between domains of the same structure but

different lattice orientation. Note that in addition to these “isotropic” structures, also

the vertically aligned hexagonal lattices – when particles form consecutive hexago-

nal layers in the horizontal direction, but vertically they are aligned in strings – were

observed (see, e.g., Melzer et al. 1996b). Such lattices usually form in rf sheaths or

dc striations, where significant ion flow is present. They can exist because the lower

particles are attracted by the wake potentials of the upper ones, so that this attraction

overcomes the mutual particle repulsion (see Section 2.3.2). The vertically aligned

lattices are quite common for ground based experiments and are usually formed by

particles of a few microns in diameter. For smaller particles the wake effect pre-

sumably becomes too weak, so that the particles form conventional close-packed

crystals.

Based on available experimental data one can claim that there are (at least) two

distinct macroscopic scenarios of crystallization in 3D complex plasmas. These can

be referred to as “uniform nucleation” and “crystallization front”, and which path-

way is realized in the experiment depends heavily on the boundary conditions. If

the (initially) liquid complex plasma is brought into the regime corresponding to a

solid phase in Figure 5.1 then in the bulk region, where boundaries play no role, the

system usually develops towards the uniform nucleation (although sometimes parti-

cles form a “visibly” amorphous solid; whether this is a 3D glassy state still needs
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FIGURE 5.17

(See color insert following page 242). Domain structure of a 3D plasma crystal

(Zuzic et al. 2000). Particles are of 3.38 µµµm diameter; three consecutive lattice

planes are shown; each particle in the middle plane is color-coded in accordance

with the local order (red corresponds to the fcc lattice cell and green to hcp);

particle in two adjacent planes are indicated by crosses and stars.

to be clarified). In this case one normally observes coexistence of mesoscopic crys-

talline domains of different structure and orientation (see Figure 5.17), similar to

nanostructured regular solids (Gleiter 1989, 2000). However, closer to the complex

plasma boundaries, when a steep potential well exists (e.g., plasma sheaths close to rf

electrodes), the crystallization often develops in the form of a front propagating from

boundaries inwards into the particle cloud. Apparently, a steep boundary in this case

facilitates formation of a hexagonal “substrate” which then triggers the propagating

layer-by-layer crystallization process (Rubin-Zuzic et al. 2006).

Below we discuss the measurements of the dynamical evolution and kinetic struc-

ture of a 3D crystallization front (Rubin-Zuzic 2006) and relate this to theoretical

models. The first two images of Figure 5.18 show a slice through a 3D complex

plasma crystallization front. One can see a number of features, such as the detailed

(kinetic) structure of the front and different crystal domains with different structure

and/or orientation.

Let us focus on two particular features, which could be quite generic for a certain

class of substances – both in the liquid and solid phases. These are the discovery of

a distribution of small “droplets” in the crystal phase and small “crystallites” in the

fluid phase (henceforth called phaselets), that are seen in Figure 5.18c, and a narrow

(few lattice distance extent) premelted region in the crystalline regime (perpendicular

to the front) where particles exhibit enhanced mobility signifying interfacial melting.

Phaselets. Figure 5.19 summarizes the measured characteristics of phaselets. Due
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a)

b)

c)

FIGURE 5.18

(See color insert following page 242). Crystallization front in a 3D complex

plasma (Rubin-Zuzic et al. 2006). Figures (a) and (b) illustrate the front prop-

agating upwards (images are about 16 s apart from each other). Each figure is

a superposition of 10 consecutive video frames (about 0.7s); particle positions

are color-coded from green to red, i.e., “caged” particles appear redder, “fluid”

particles are multicolored. (c) The local order for figure (b), where red implies

high crystalline order, black denotes the fluid phase, and yellow indicates transi-

tional regions. Along with the crystallization front, droplets and crystallites are

seen that may grow and then dissolve again. Particles are of 1.28 µµµm diameter.
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to the special kinetic observations are possible with complex plasmas, these fea-

tures could be resolved down to sizes of a few particles. There are two general

features worth noting: (i) The size spectra of both droplets and crystallites are com-

patible with power laws (Figure 5.19, right column). This suggests that within the

observable parameter range (∼ 10 to ∼ 103 particles) there is no characteristic length

scale that determines either formation or dissolution. (ii) The larger crystallites and

droplets tend to live longer (Figure 5.19, left column). By “life time” we mean the

growth + dissolution phases, so this result is not too surprising. There is, however, a

substantial spread in the individual life times.

At first sight, the development of the crystallites can be simply explained in terms

of the thermodynamics: If we naturally assume the temperature (both in the liq-

uid and crystalline regimes) below the melting point TM, then the evolution of seed

crystallites (which always form due to random fluctuations) is determined by the

competition between a decrease in the bulk free energy and an increase in the sur-

face energy. If the seed crystallite is large enough, the bulk contribution overcomes

the surface part and it can grow further.

As for the droplets observed in the crystal regime, the mechanism responsible for

their formation should be quite different, because thermodynamically, both the bulk

and the surface contributions cause the free energy to increase. It is possible that af-

ter the initial solidification, a gradual relaxation from a metastable to a ground state

(for example, from hcp to bcc or fcc structure) occurs downstream from the crystal-

lization front. This is naturally accompanied by a release of latent heat. Then the

droplets could be a local manifestation of this relaxation. The larger the droplet, the

longer it takes to dissipate the released heat, and the longer its lifetime. The existence

of interfacial melting between two large domains seen in Figure 5.18 supports this.

Interfacial melting. Regular solids usually exhibit domains of locally ordered

regimes (grains), which are separated by domain (grain) boundaries (see, e.g., Gleiter

2000). Thermodynamically, these grain boundaries are different (both in energy

and entropy) from the homogeneous crystal regimes. When such a grainy crystal

is heated and approaches its melting point, the grain boundaries may play a special

role – they can act as “seeds” of pre-melting regions. In a number of experiments

using different colloidal suspensions, the effect of grain boundary melting has been

demonstrated (Pusey and van Megen 1986; Gasser et al. 2001; Alsayed et al. 2005).

A kinetic (first principle) theory of melting faces several obstacles – there are

long-range many-body interactions to contend with, there is the structural symmetry

and periodicity, and universality classes are not known. Experimentally it has been

possible to conduct studies with hard sphere colloids, and more recently using special

temperature dependent colloidal systems [which contain microgel particles where

diameters depend on temperature and therefore allow controlled tuning of the volume

packing fraction, see Pusey and van Megen (1986), and Alsayed et al. (2005)].

As a result of these experiments (and particularly also studies of water ice), it has

become established that crystal surfaces may form melted layers and that similar pre-

melting occurs at defects in crystals, too. This suggests that the less perfect crystal

structure and the associated interfacial free energy is the parameter that determines

grain boundary melting.
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FIGURE 5.19

Characteristics of crystallites and droplets (adapted from Rubin-Zuzic et al.

2006). Area of crystallites (a) and droplets (b) measured in units of a single

particle cell (squared interparticle distance ∆∆∆222) versus their lifetimes, and his-

tograms showing number of crystallites (c) and droplets (d) versus their areas.

Figure 5.18 shows that in the dynamical 3D crystallization front studies using

complex plasmas, interfacial melting can be also observed. This is significant for

three reasons:

• The measurement “slice” shown in Figure 5.18 was obtained in a large (mil-

lions of particles) complex plasma assembly, many interparticle spacings away

from the boundaries. Hence, the measurements confirm that interfacial melt-

ing is not necessarily an effect confined to narrow surface regions.

• Damping in strongly coupled complex plasmas is rather weak. This implies

that energy transport is to a large extent governed by phonons in the crystalline

phase and dust-acoustic (sound) waves in the fluid regime.

• The particle interaction is primarily electrostatic. This implies that the same

process – interfacial melting – occurs in different systems with different forms

of binary particle interactions. In other words, the process can be generic and

is not dependent on peculiarities or special features of the system.

For these reasons we conclude that the complementarity of research between atomic,

molecular, colloidal, and complex plasma studies promises to yield much more than
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just the sum of its parts. A ubiquitous and still poorly understood process – like

melting – needs different inputs, different constraints, generalization from different

sources and new approaches, so that the principal mechanisms can be identified and

combined to a fundamental kinetic theory.
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Dusty plasmas in the solar system

Mihály Horányi, Ove Havnes, Gregor E. Morfill

6.1 Introduction

Dust particles immersed in plasmas and UV radiation collect electrostatic charges

and respond to electromagnetic forces in addition to all the other forces acting on

uncharged grains. Simultaneously they can alter their plasma environment. Dusty

plasmas represent the most general form of space plasmas. The interplanetary space,

comets, planetary rings, the dusty surfaces of airless celestial objects, Noctilucent

clouds are all examples where electrons, ions and dust particles coexist. As the

subject is rapidly expanding, there are several reviews that cover different aspects

of dusty plasma phenomena in the solar system (Axford and Mendis 1974; Grün

et al. 1984; Mendis et al. 1984; Goertz 1989; Hartquist et al. 1992; Mendis and

Rosenberg 1994; Bliokh et al. 1995; Horányi 1996; Cho and Röttger 1997; Horányi

et al. 2004). In this chapter we discuss a selected set of examples, including a)

dusty plasmas in the Earth’s mesosphere, where remote sensing observations using

radars were recently recognized as a possible diagnostic tool of the dusty plasmas

in this region; b) planetary rings, including the spokes in Saturn’s B-ring that played

an important role in the early development of dusty plasma studies; and c) the lunar

surface.

6.2 Noctilucent clouds

The Earth’s mesosphere, ∼ 50 to ∼ 90 km above the surface, is the boundary region

between outer space and the denser lower atmosphere. In the mesosphere most of

the incoming precipitation of energetic electrons and ions is stopped and most of the

meteoric particles burn up. Since there is a comparatively low energy input from

solar radiation into the mesosphere, its temperature on the average falls off from its

highest value just above the stratosphere to a minimum at a height ∼ 85–90 km, the

mesopause. Above this, the temperature increases with height due to UV absorption

by molecular oxygen and nitrogen, while below the mesosphere in the stratosphere

there is also a positive temperature gradient with height due to absorption of UV by
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ozone. The global mesospheric air circulation system also has a profound influence

on the mesospheric temperatures. On the northern hemisphere from mid-May to late

August the circulation pattern is such that there is a net upward wind draught of a few

cm s−1 in the polar region. Due to adiabatic cooling of the expanding upward wind

draught the polar mesospheric summer temperature is lowered and the minimum at

the mesopause is generally in the range of 110–150 K, then the coldest region on the

Earth (von Zahn and Meyer 1989; Lübken 1999). The wind draught is downward in

winter and the temperature in the polar mesopause region is then around 200–220 K

(Lübken et al. 2006).

The plasma environment in the mesosphere is one with a very low fractional ion-

ization. The neutral density in the upper part of the mesosphere around 85 km is

1020 m−3 while the electron density can vary from as low as 108 m−3 or less dur-

ing night-time conditions with no ionizing particle precipitation, to several times 109

m−3 during quiet day-light conditions and in excess of 1010 m−3 during disturbed

conditions with ionizing precipitation. Also, during quiet night-time conditions the

majority of the negative charges can be on heavy negative ions, creating a charging

environment where the positive ions may be lighter than the negative charge carri-

ers, possibly creating positively charged dust of low charges (Rapp et al. 2005). It

is probable that there always is a population of small meteoritic so-called “smoke

particles” present in the upper parts of the mesosphere as a result of a process where

meteor particles burn up, mainly in the height region 75–110 km, as they enter the

atmosphere. Part of the evaporated gas re-condenses to form the smoke-particles

(Rosinsky and Snow 1961; Hunten et al. 1980; Kalashnikova et al. 2000; Megner et

al. 2006). The smoke particles most likely consist of metals and silicate compounds

(Plane 2004) and have radii probably less than a few nanometers. The material evap-

orated off the meteoric particles as they burn up in the atmosphere can also lead to the

formation of atomic metallic layers in the upper parts of and above the mesosphere.

Observed anticorrelations between the strength of these metallic layers and the pres-

ence of dust particles in noctilucent clouds (NLC) (Gadsden and Schröder, 1989)

and in the radar scattering dusty Polar Mesospheric Summer Echoes (PMSE) layers

(Cho and Röttger 1997; Rapp and Lübken 2004) show that metals can be deposited

on the dust particles (Plane 2004).

In the summer, when the mesospheric temperature falls to below the dew point for

water vapor, larger particles are formed when water condenses, most likely on me-

teoric smoke particles, to form icy dust particles which may be observed visually as

NLC if they are large enough. Von Cossart et al. (1999) found that in NLC observed

with lidars, the average dust radius is ∼50 nm with an average number density den-

sity of ∼ 100 cm−3. The dust particles formed in the summer mesosphere, whether

visual or sub-visual will normally be electrically charged and thereby affect the elec-

tron density in their vicinity. Due to the low plasma temperature the dust charges are

low, from –1e to several times this, depending on the dust size. Density gradients in

the dust gas, most likely caused by neutral air turbulence (Rapp and Lübken 2004),

will cause density gradients also in the electron (and ion) gas which will lead to

radar backscatter from the dust layers. That the dust controls the electron gas in the

PMSE layers has been shown in a number of rocket experiments which find a strong
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FIGURE 6.1

The dust charge number density as measured with the dust probe on the dust

payload MiniDusty-06 (MD-06) and the PMSE radar backscatter measured

with a 53.5 MHz radar (Havnes et al. 2001)

correlation between dust charge density and PMSE backscatter strength (Havnes et

al. 1996, 2001; Mitchell et al. 2001, 2003; Smiley et al. 2003). Figure 6.1 shows

the strong correlation between dust charge density in a PMSE layer and the radar

backscatter from the same layer, for a case where the rocket payload passed through

the PMSE layer along the radar beam (Havnes et al. 2001).

The very first direct detection of charged mesospheric dust particles was done by

Havnes et al. (1996) with their bucket shaped DUSTY probe. At the opening of the

bucket (Faraday cup), facing in the ram direction, a grid at +6.2 V closed the interior

of the probe to the thermal ambient plasma which has a temperature of ∼ 150 K, or

∼ 0.01 eV. Dust particles with sizes from a few nm in radius and more will easily

penetrate the grid since they have a velocity relative to the grid on the order of 1

km s−1, the rocket payload velocity, leading to relative kinetic energies ≥ 10 eV

for ice particles of radius > 1 nm. For dust particles of around 1 to 2 nm and less

the airflow around the payload will most likely deflect most of the dust particles

away from the probe. The detection of such small particles, with new types of dust

detectors, has been at the focus of rocket in situ investigations of the mesosphere the

last several years (Rapp et al. 2005; Amyx et al. 2008; Rapp and Strelnikova 2008;

Strelnikova et al. 2009). Observations indicate that the winter mesosphere from

60–90 km is populated by very small nanometer meteor smoke particles of densities

varying from 109 m−3 at 65 km to more than 1011 m−3 at 85 km. These densities are

a factor of 5 above model calculations (Megner et al. 2006). During the summer the

mesosphere below around 80 km apparently does not contain many meteoric smoke
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particles, presumably because they have been swept out of this height region by the

upward wind draught. In the majority of launches with different dust probes, the

observations show that the dust particles most often are negatively charged. Also,

in cases with high dust densities, the majority of the electrons resided on the dust

particles (Havnes et al. 1996; Lübken et al. 1998) creating the so-called electron

bite-outs (Pedersen et al. 1969; Ulwick et al. 1988) with few free electrons.

Estimates of the dust charge and dust sizes is also dependent on the ion–electron

pair production QI due to neutral gas ionization by radiation or particle precipita-

tion. Rapp and Lübken (2001) considered the charging for various dust densities and

sizes, and plasma densities or QI values. For typical quiet conditions with little or

no particle precipitation, they find that the charges on the dust can vary from −1e for

radius below 10 nm with a linear increase to ∼ −2e for 30 nm and −3e for 50 nm

particles. However, dust density effects may change this since an increase in dust

density will lower the average charge (Havnes et al. 1990; Rapp and Lübken 2001).

A direct computation of dust charges based on dust charge densities and plasma den-

sity measurements with rocket probes, combined with lidar measurements of dust

sizes and densities (e.g., von Cossart et al. 1999), is not always possible because

there may be a large population of dust particles which are too small (≤ 15–20 nm)

to be detected by the lidars. A population of small but numerous dust particles may

easily be carrying most of the dust space charge and will be the ones mainly detected

by the dust probes. For the launch rocket flight ECT02 (Havnes et al. 1996, Rapp

and Lübken 2004) where the absence of lidar detection of dust indicates small dust

particles, the observations are consistent with dust sizes from 20 nm and below with

charges of the order of −1e. It appears that the production of negative dust charges

is well understood and that the main charging effects are due to electron and ion col-

lision with and attachment onto dust particles, including polarization effects during

collisions (e.g. Rapp and Lübken 2001). Photodetachment of electrons (Weingart-

ner and Draine 2001; Dimant and Milikh 2004) has been shown by Havnes et al.

(2004), from measurements of the relaxation rate of dust charges in PMSE radar

overshoot experiments (Havnes et al. 2003) where the PMSE signal is modulated

by high power transmitters (Rietveld et al. 1993), to be of minor importance for the

PMSE dust charging.

The PMSE radar backscatter modulation is caused by the heating of the electrons

during the time the heating transmitters are on, combined with the extra dust charging

which the heated electrons cause during the same phase. Havnes (2004) predicted

that an overshoot can be produced where the PMSE signal strength, after first being

weakened when the heater is switched on (Chilson et al. 2000), flares up or over-

shoots to a strength up to 7 to 8 times that of the undisturbed PMSE signal as the

heating is switched off (Figure 6.2). This effect is only apparent in heating cycles

where the heater off time is long enough to allow the dust charges to relax back to

their equilibrium charges in the unheated electron gas. The overshoot effect, which

has been observed in several PMSE overshoot campaigns (Havnes et al. 2003; Kassa

et al. 2005; Biebricher et al. 2006; Naesheim et al. 2008), shows promise of being

a useful diagnostic tool. It has also been observed for Polar Mesospheric Winter

Echoes (PMWE) (La Hoz and Havnes 2008) where it is very weak in spite of a con-



Dusty plasmas in the solar system 295

47.5 48 48.5 49 49.5 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

1

2

3

PMSE OCC on 5 July 2004 with heater on at 9 hour 48 min

Time in minutes from 09
h

 00
m

 UT

P
M

S
E

 in
te

n
si

ty
 in

 a
rb

it
ra

ry
 u

n
it

s

Height 85.2 km

FIGURE 6.2

The radar PMSE backscatter during a heater cycling where the heater trans-

mitters were on for 20 sec (from 1 to 2) and off for 160 sec (from 3 to 0 in the

next heating cycle). We see the immediate weakening from 0 to 1 as the heater

is switched on and the strong overshoot from 2 to 3 as the heater is switched off

(from Kassa et al. 2005).

siderable electron heating effect from around 200 K to around 1000 K indicating the

presence of very small dust particles with around 3 nm radius (Havnes and Kassa

2009).

A number of rocket dust charge measurements have indicated that positive dust

particles may also be present in the summer mesosphere (Havnes et al. 1996; Gelinas

et al. 1998; Horányi et al. 2000; Rapp et al. 2005; Amyx et al. 2008). However,

in several cases this is clearly the effect of secondary charge production during dust

impacts where charges may be rubbed off the impact point during glancing impacts

(Tomsic 2001). For one rocket probe experiment DUSTY 2 (Havnes et al. 1996),

positive currents were measured on the front grid of the probe and at first interpreted

as due to impacts of positive dust particles. A later detailed modeling of the effect

of payload rotation and grid structure on the impact rate, including fragmentation of

impacting dust particles and secondary charge production, showed that the observed

variation of the positive current with the payload rotation, could only be explained

by electrons being rubbed off from the front grid by the impact of the dust particles

(Havnes and Naesheim 2007). Similar effects can probably explain other reported

observations of positively charged dust particles (e.g., Amyx et al. 2008) but there

may be cases where the observed positive charges on the mesospheric dust particles

are real (Rapp et al. 2005).
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6.3 Planetary rings

The motion of small charged grains making up the faint, diffuse rings of Jupiter and

Saturn can be surprisingly complex, as this is often determined by electromagnetic

forces in addition to gravity, drag and radiation pressure. There are many excit-

ing phenomena associated with the interaction of magnetospheric fields and plas-

mas with the embedded dust grains. Lorentz resonances (Schaffer and Burns 1987),

gyrophase-drifts due to compositional and/or plasma density and/or plasma tempera-

ture gradients (Northrop et al. 1989), transport due to charge (Morfill et al. 1980) or

magnetic field fluctuations (Consolmagno 1980), shadow resonances (Horányi and

Burns 1991), and the coupling between radiation pressure and electrodynamic forces

(Horányi et al. 1992), for example, might all play a role in shaping the distribution

of small charged grains in planetary rings. The dust becomes an integral component

of the magnetosphere since it acts as a source/sink of the plasma. The produced low

energy photo and secondary electrons or the sputtered off ions might significantly

alter the magnetospheric plasma distribution, for example. Though many of these

processes are now recognized, dusty planetary magnetospheres still hold surprises,

as they can result in possible capture of interplanetary dust, the transport of ring ma-

terial across vast distances, and even the ejection of small charged grains from the

magnetosphere, for example (Horányi 1996).

6.3.1 Simplified dynamics

The equation of motion of a charged dust grain (of mass m and charge Q), as written

in Gaussian units in an inertial coordinate system fixed to the planet’s center, is

r̈ =
Q

m

(

ṙ

c
×B+ Ec

)

− µ

r3
r , (6.1)

where r is the grain’s position vector, c is the speed of light, B is the magnetic

field, and µ equals the gravitational constant times the planet’s mass. For an infinite

conductivity magnetosphere that rigidly co-rotates with the planet with a rotation

rate of Ω, Ec = (r×Ω)×B/c is the co-rotational electric field. We have neglected

the planet’s oblateness, as well as the forces due to radiation pressure and the plasma

and neutral drags.

To make a connection to the familiar Kepler problem, let us assume that the mag-

netic field can be given as that of a simple dipole located at the center with its mag-

netic moment aligned with the rotation axis of the planet. This picture is a reasonable

first approximation for the magnetic fields at Jupiter (J) and Saturn (S). Now, in the

equatorial plane B = B0(R/r)3, where B0 is the magnetic field at the surface and R is

the radius of the planet (BJ
0 = 4.2, BS

0 = 0.21 Gauss and RJ = 7.1×104,RS = 6×104

km). The magnetic field lines pierce the equatorial plane at right angles pointing anti-

parallel to Ω. The resulting co-rotating electric field points radially outward with an

amplitude of Ec = E0(R/r)2 (EJ
0 = 5.8×10−5,ES

0 = 2.4×10−6 V m−1). Naturally,
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the force acting on dust particles associated with the co-rotational electric field also

depends on their charge, Fel = QEc. The charge in turn, as discussed above, is a

function of the plasma environment, the material properties of the grain, the charg-

ing history, relative velocity, etc. Generally the grain’s charge can have a complicated

history, but for the moment let us assume it remains a constant.

Assuming an average density of ρ = 1 g cm−3, the ratio of the electrostatic force

to gravity is

Fel/FG = αφva−2
µ (6.2)

(αJ = 5.7× 10−3, αS = 5.3× 10−4). In the typical range of −50 ≤ φv ≤ 10, for

particles with the radius in units of microns aµ ≫ 1, electrostatic forces represent a

perturbation only and these grains follow approximate Kepler orbits. On the other

hand, particles with aµ ≪ 1 can be dominated by electromagnetic forces and gravity

becomes a perturbation.

Let us return to Equation (6.1) and rewrite it in the equatorial plane of a planet

using polar coordinates

r̈ = rϕ̇2 +
q

r2
(ϕ̇ −Ω)− µ

r2
, (6.3)

ϕ̈ = − ṙ

r

( q

r3
+ 2ϕ̇

)

, (6.4)

introducing q ≡ QB0R3/mc, so that the combination q/r3 = ωg becomes the local

gyrofrequency (the angular rate dust particles circle about magnetic field lines).

On a circular equilibrium orbit, where the the sum of the radial components of all

the forces is zero (ϕ̈ = r̈ = ṙ = 0 and ϕ̇ = constant = ψ), Equation (6.3) yields an

algebraic equation for the angular velocity, ψ

ψ2 + ωgψ −ωgΩ−ω2
k = 0 , (6.5)

where ωk = (µ/r3)1/2 is the Kepler angular velocity. For big particles, terms that

contain ωg can be dropped and we recover ψ = ±ωk. For very small particles, terms

that are not multiplied with ωg are to be dropped and ψ = Ω. Very small grains are

picked up by the magnetic field and co-rotate with the planet.

Equations (6.3) and (6.4) can be integrated to yield constants of the motion

E =
1

2
(ṙ2 + r2ϕ̇2)− µ + qΩ

r
, (6.6)

J = r2ϕ̇ − q

r
. (6.7)

For large particles (q → 0) these constants become the Kepler energy and angular

momentum. The Jacobi constant, H = E −ΩJ, remains a constant even if Q changes

with time (Northrop and Hill 1983; Schaffer and Burns 1987).

The right-hand side of Equation (6.3) can be written solely as a function of r

using Equation (6.7) to replace ϕ̇, and we can express r̈ = − ∂U
∂r

, where the effective



298 Complex and Dusty Plasmas

FIGURE 6.3

The effective potential for dust grains with aaaµ = 0.01, 0.1, and 1, started from

Io on circular Kepler orbits with φφφVVV === −−−333000 (dashed lines) and +3 (continuous

lines). To avoid the overlap of these curves, since only their shape is important,

we have shifted them apart by plotting UUU+ 1.1×××|||min(UUU)||| instead of UUU itself.

potential

U(r) = −µ + qΩ

r
+

J2

2r2
+

qJ

r3
+

q2

2r4
. (6.8)

The equilibrium orbit with a given J can be found from here by solving the equation
∂U
∂ r

= 0. For any r, the initial condition ṙ = 0 and ϕ̇ = ψ [that is, the solution to

Equation (6.5)] satisfies ∂U
∂r

= 0.

Small grains are constantly generated by micro-meteoroid bombardment of the

moons, or in the case of Jupiter, probably also by the volcanoes on Io. Generally,

their escape velocity is small that ϕ̇(t = 0) = ωk. For the initial Kepler orbit J =
r2(ωk −ωg).

Figure 6.3 shows U(r) for particles started from Io (r0 = 5.9RJ) at Jupiter for the

two typical values (−30,+3) for φv (Horányi et al. 1993a,b). Particles with negative

surface potentials remain confined in the vicinity of r0. However, grains in a certain

size range with positive charges are not confined [U(r) shows no minima]. What

sets this size range? In the case of positively charged grains the force due to the

co-rotational electric field points radially out, opposing gravity. The upper limit in

size for ejection, amax
µ is set by the condition Fel/FG > 1.

The lower limit in dust size for ejection is due to the fact that very small grains be-

have like ions or electrons circling magnetic field lines. The radius of their trajectory

is the gyroradius rg =| wmc/QB |=| w/ωg |, where w is the relative velocity be-
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tween the co-rotating magnetic fields and the particle. For Kepler initial conditions,

w = r(Ω−ωk). The motion of these grains is well described by the guiding center

approximation if the size of their orbit is smaller than the characteristic length scale

for variations in the magnetic fields, | rg∇B/B |< 0.1 (| ∇B/B |= 3/r in the equato-

rial plane of an aligned centered dipole). The upper limit in grain size satisfying this

condition (i.e., the smallest grains that will be ejected) is

a∗µ =

(

10−3B0R3φ

4πr2ρwc

)1/2

. (6.9)

Grains in the range a∗µ < aµ < amax
µ will be ejected from the magnetosphere. As these

positively charged grains move outward, they gain energy from the co-rotational

electric field

W =
∫ r1

r0

EQdr = E0R2Q

(

1

r0

− 1

r1

)

, (6.10)

where the upper limit of the integration, r1, is the characteristic size of the mag-

netosphere. This mechanism explains the ejection of small grains from a planetary

magnetosphere that was first observed by Ulysses during its close encounter with

Jupiter in 1992 (Grün et al. 1993). The process was also identified at Saturn by

Cassini measurements in 2004 (Kempf et al. 2005).

Substituting the approximate values for Jupiter (r0 = 6RJ , the location of Io, and

r1 = 50RJ, the characteristic size of the magnetosphere) and Saturn (r0 = 6.3RS,

the location of Dione, and r1 = 20RS) in Equation (6.10) yields an estimate for the

escape speeds vescape = 3/aµ for Jupiter, and vescape = 0.6/aµ for Saturn (Horányi

2000).

The typically nanometer-sized grains expected to be ejected from Jupiter and Sat-

urn are below the calibration threshold of the dust instruments; however, due to their

large predicted speeds, they can generate sufficiently large signals that are consistent

with the observations.

6.3.2 Saturn’s E-ring

The in situ dust measurements by the Cassini Dust Analyzer (Srama et al. 2006),

in combination with imaging (Porco et al. 2006) and plasma measurements (Wang

et al. 2006; Kurth et al. 2006), provide an unprecedented opportunity to study the

size and spatial distributions of dust in Saturn’s E-ring. One of the major discoveries

of Cassini to date has been that the south-polar region of the moon Enceladus is

geologically active, and it is the source of most of the E-ring particles (Spahn et al.

2006a,b). Enceladus has been long thought to be the source of the E-ring grains as the

optical depth sharply peaks just outside the orbit of this moon. Another surprising

discovery is the extent of the E-ring material much beyond its earlier recognized

boundaries of 3–8 RS, (RS ≃ 6× 104 km, the radius of Saturn), perhaps reaching

even the orbit of Titan at RTi = 20.3RS (Srama et al. 2006). Dust particles can

be transported outwards from Enceladus due to plasma drag (Morfill et al. 1983;

Havnes et al. 1992; Dikarev, 1999), but along the way they also lose mass due
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to sputtering (Jurac et al. 2001a). The competition between these sets the range

particles with a given initial size can reach.

Plasma drag acting alone results only in a slow enough adiabatic orbital expan-

sion; hence, dust grains approximately follow slowly expanding circular Kepler or-

bits. The plasma drag is dominated by the co-rotating oxygen ions. In this initial

analytic model we ignore the deviations from co-rotation due to mass-loading and

use a simple approximation for the density of nO+ ≃ 100(RE/ra)
4, where RE = 4RS,

and ra is the semi-major axis. The characteristic temperature TO+ ≃ 100 eV, and the

thermal speed of vth
O+ ≃ 25 km s−1.

Already at Enceladus the relative velocity between dust particles and the co-

rotating O
+ ions vrel = ra(Ω−ωK) > vth

O+ , where Ω = 1.64× 10−4 s−1 is the ro-

tation velocity of Saturn and ωK =
√

µ/r3
a is the Kepler angular velocity, with

µ = 3.8× 1022 cm3s2, the product of Saturn mass and the gravitational constant.

Hence, the drag force acting on a dust particle is dominated by direct collisions

as opposed to distant Coulomb interactions (Morfill and Grün, 1979; Morfill et al.

1993).

Fd = npmiπa2v2
rel = nO+mO+πa2r2

a(Ω−ωK)2 , (6.11)

where mO+ ≃ 16 AMU is the mass of the O+ ions.

The drag force acting on the grain increases the orbital energy; hence, the semi

major axis changes at a rate

dra

dt
=

2r2
a

µ
Ė =

2r2
a

mµ
FdraωK2πnO+mO+

r5
a

mµ
a2ωK(Ω−ωK)2

=
3nO+mO+

2a

(

Ω2µ−1/2r
7/2
a −2Ωr2

a + µ1/2r
1/2
a

)

, (6.12)

where E = −µ/(2ra) is the orbital energy per unit mass, and m(t) = (4π/3)a3(t) is

the mass of the dust grain. Substituting the density of O+ ions, measuring the semi-

major axis in units of Saturn’s radius, the grain radius aµ in units of microns, and the

time in years Eg.(6.12) can be rewritten as

dras

dty
=

1

aµ

(

0.12ras
−1/2 −0.61ras

−2 + 0.78ras
−7/2

)

≃ 0.03

aµ
, (6.13)

approximately a constant for fixed aµ in the range of 4 < ras < 20.

The drag time from Enceladus to Titan is τD ≃ 500aµ year. If the characteristic

lifetime of a grain due to sputtering in the E-ring is τs = τ0aµ , where τ0 ≃ 50 years

is the lifetime of a grain with aµ = 1 (Jurac et al. 2001a), no particle could make

this trip. However, as particles move outwards, the plasma density drops and their

sputtering lifetime gets prolonged; simultaneously their drag rate increases due to

their diminishing size.

Due to sputtering, the radius of a dust particles decreases at a rate, independently

of its size, as
daµ

dt
= − 1

τ0

. (6.14)
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FIGURE 6.4

The number density of grains with aaa∗∗∗ = 0.1, 0.3, 1, and 3 µµµm (from top to

bottom, respectively), based on Equation 6.16, assuming an initial power-law

size distribution nnn(((aaa))) ∼∼∼ aaa−−−ppp with ppp = 2.5 in the size range of 0.1 <<< aaa <<< 10 µµµm,

normalized to nnn(((aaa∗∗∗ = 1 µµµm) = 1 at the orbit of Enceladus (Horányi et al. 2008)

We have used energy-dependent sputtering yields (Jurac et al. 2001a,b) to estimate

that the lifetime of a micron sized particle is expected to increase from≃ 50 at ras = 4

to ≃ 600 years at ras = 20. Combining Equations (6.13) and (6.14), and using a

simple fit for τ0 ≃ 78−15ras + 2ras
2, results in

daµ

dras

= − aµ

0.06ras
2 −0.45ras + 2.34

, (6.15)

and the radius of the eroding particle as function of distance for grains originating

from Enceladus becomes

a

a0

= 1.18exp [−3.34arctan(0.2ras −0.75)], (6.16)

indicating that the radius of a grain drops to < 5% of its initial value a0 when reach-

ing ras = 20. Equation (6.16) also indicates that the shape of any initial size distribu-

tion remains fixed as particles drift and erode, as the entire distribution shifts towards

smaller sizes with increasing ras.

From the conservation of particle flux, the number density of grains with an initial

a0 drops as na0
(ras)/na0

(ras = RE) = (RE ṙaRE
)/(rasṙas), which remains indepen-

dent of a0; however, the coupled Equations (6.12) and (6.14) have to be integrated

numerically (for any a0) to obtain the universal (RE ṙaRE
)/(rasṙas) function.

The density for a fixed grain size a∗ can be calculated for an initial size distribution

by first using Equation (6.16) to get the original size a0(a
∗,ras) the grain started

with at Enceladus. For example, Figure 6.4 shows the spatial distribution of grains
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for various a∗, assuming a power-law size distribution with an index of –3.5 for the

production rate of grains at Enceladus (Juhász and Horányi, 2002; Juhász et al. 2007;

Kempf et al. 2008). Due to plasma drag, the density becomes n(a0) ∼ a−2.5
0 , and we

set the size range of 0.1 < a0 < 10 µm. The upper limit of an initial size distribution

determines the spatial range of particles with a given size. In the example shown

in Figure (6.4), there are no particles with aµ > 3 beyond ras ≃ 6, or particles with

aµ > 1 beyond ras ≃ 8.2.

A continuous scan of the dust densities has been derived from the impact rates

measured by Cassini during the ring-plane crossing in orbit 7. The estimated densi-

ties drop from a maximum of ≃ 0.5 m−3 near Enceladus in the ring-plane to ≃ 10−4

m−3 at a distance of about 15 RS at a height of about 2 RS (Srama et al. 2006). The

≃ 4 orders of magnitude drop seems to be reasonably well matched by the simple

analytical estimates of the combined effects of drag and sputtering of small grain.

Due to plasma drag, particles can be transported from 4 to 20 RS and will arrive there

with a few % of their original radius due to sputtering losses. If grains with aµ ≫ 0.5
are found at this distance, they would have to originate from one of the more distant

moons. However, to date no dust density enhancements have been noticed while

crossing the ring-plane near the orbits of any other satellites. Alternatively, if found,

these grains could also be signatures of dust impacts on unseen small moonlets.

These calculations also indicate that the geysers on Enceladus have been supplying

the E-ring material at an approximately constant rate at least for several hundreds of

years.

6.3.3 Spokes

The intermittently appearing, approximately radial markings on Saturn’s B-ring (see

Figure 6.5) are thought to be caused by small charged dust particles that are lofted

from their parent bodies due to electrostatic forces. They were first recognized in

measurements made by the Voyager spacecraft (Smith et al. 1981, 1982), though

they were possibly seen earlier in ground-based observations (Robinson 1980). The

Hubble Space Telescope (HST) monitored the activity of the spokes starting shortly

before the ring-plane crossing in 1995 until October 1998, when spokes were no

longer seen by HST (McGhee et al. 2005). This was thought to be due to the

changing illumination of the rings, as the solar elevation angle (measured from the

ring-plane) increased due to the orbital motion of Saturn. Contrary to expectations,

Cassini did not find spokes either on its approach or after its orbital insertion in July

2004 until September of 2005, indicating that spokes are a seasonal phenomenon and

their formation can be suspended.

The seasonal variation of spoke activity has been suggested to be a consequence

of the variable plasma density near the ring. The plasma density is a function of the

solar elevation angle, since it is generated mainly from the rings by photoelectron

production and by photo-sputtering of neutrals that are subsequently ionized (Farrell

et al. 2006; Mitchell et al. 2006). While this seems to be a reasonable explanation

for the seasonal variability of spoke activity after their formation, we are still lack-

ing a generally accepted explanation for their triggering mechanism. It is generally



Dusty plasmas in the solar system 303

FIGURE 6.5

Top: Voyager 2 images of spokes in the B-ring (Smith et al. 1981, 1982). The

image on the left was captured in back-scattered light before closest encounter,

the spokes appear as dark radial features across the ring plane. The image

on the right was taken in forward-scattered light after Voyager crossed the ring

plane, looking back towards the Sun, and the spokes appear as bright markings.

Typical dimension of these spokes are 10,000 km in length and 2000 km in width.

The changing brightness indicates that spokes consist of small grains with radii

comparable to the wavelength of the visible light (<<< 111µµµm). At the time these

images were taken, the rings’ opening angle to the sun was 8◦◦◦. Bottom: The

first set of spoke observations by Cassini taken on September 5, 2005 (opening

angle is 20.4◦◦◦), over a span of 27 minutes. These faint and narrow spokes were

seen from the unilluminated side of the B-ring. These spokes are approximately

3,500 kilometers long and 100 kilometers wide, much smaller than the average

spokes seen by Voyager. These images were taken with a resolution of 17 km per

pixel at a phase angle of 145◦◦◦ when Cassini was 13.5◦◦◦ above the dark side of the

rings as the spokes were about to enter Saturn’s shadow. Courtesy NASA/JPL-

Caltech and NASA/JPL/SSI.
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believed that spoke formation involves charging and electric fields acting on small

grains, but this process requires a much higher plasma density than is commonly

expected in the near-environment of the rings (Hill and Mendis 1982; Goertz and

Morfill, 1983).

Spokes are composed of dust particles in a narrow size distribution centered at

about aµ ≃ 0.6, where aµ is the radius in units of µm (McGhee et al. 2005). Spokes

initially cover an approximately radial strip with an area of A ≃ 103 × 104 km2,

with a characteristic optical depth of τ ≃ 0.01. The total number of elevated grains

can be estimated to be on the order of Nd ≃ Aτ/(πr2
a) ≃ 1023. If the grains are

released simultaneously and carry just a single electron when released from their

parent bodies, the formation of the spoke cloud requires a minimum surface charge

density (associated with the spoke grains), measured in units of electron charges

σ∗
e = Nd/A ≃ 106 cm−2, orders of magnitude higher than the charge density, σ 0

e ,

expected from the nominal plasma conditions in the B-ring.

The nominal plasma environment near the optically thick B-ring is set by the

competing electron and ion fluxes to and from the ring due to photoelectron pro-

duction from the ring, as well as the ionosphere, and the photo-ionization of the

ring’s neutral atmosphere that is maintained by photo-sputtering. All of these are

expected to show a seasonal modulation with the ring’s opening angle with re-

spect to the Sun. The characteristic electron energy is Te ≃ 2 eV, and the plasma

density is expected to be on the order of 0.1–1 cm−3 (Waite et al. 2005). The

characteristic shielding distance is λD = 740
√

Te/np = 1− 3× 103 cm, larger than

the average distance between the cm – m sized objects in the B-ring, which has

a comparable vertical thickness, h ≃ 103 cm. Hence, it is reasonable to treat the

B-ring as a simple sheet of material (Goertz and Morfill, 1983). The nominal sur-

face potential, including its possible seasonal variations, is expected to be in the

range of −5 < φR < 5 V. The surface charge density can be estimated from Gauss’s

law, σ 0
e = E⊥/(4πe)≃ (φV

R /300)/(4πeλD)≃ 750φV
R (np/T )1/2 < 1−3×103 cm−2,

where E⊥ is the electric field normal to the ring, φV
R is the electrostatic potential mea-

sured in volts, and e is the charge of an electron. The fact that σ 0
e ≪ σ∗

e indicates that

the formation of a spoke requires a higher than normal plasma density, or requires

increasing the ring potential directly as we are suggesting. The expected charge, in

units of e, on a grain resting on the surface is Qd = 10−8σ 0
e πa2

µ ≪ 1; hence, the

vast majority of micron sized grains remain uncharged, and the fractional Qd can be

interpreted as the probability of a grain to have a single charge (Goertz and Morfill,

1983):

Pe = 2.4×10−5a2
µφV

R

(

np

Te

)1/2

. (6.17)

Neglecting cohesive/adhesive forces, a small grain with a single e charge can be

lifted from the ring-plane if the electrostatic force acting on it exceeds gravity, eE⊥ >
2πσmGm, where σm = 100 g cm−2 is the average surface mass density of the B-ring

(Cuzzi et al. 1984), and m is the grain’s mass. This is true for both positive or
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negative φR. The radius of the largest grain that can be lifted is

amax
µ ≃ 2

(

φV
R

)1/3
(

np

Te

)1/6

. (6.18)

Even in the low plasma density of np = 0.1 cm−3, amax
µ ≃ 2 due to the very small

gravitational acceleration normal to the ring-plane.

Once a grain is lifted its charge could change due to the currents collected in

the sheath above the ring-plane, where the plasma is dominated by charge carriers

with the sign of charge opposite to φR. For example, when charging of the ring

is dominated by photoelectron production from the ring itself, there is a sheath of

electrons above the positively charged ring. Based on numerical examples, if a grain

can travel with its original charge to a height of ≃ 0.1λD, it will probably get through

the sheath, even if it subsequently loses its charge or changes its polarity (Morfill et

al. 1983; Mitchell et al. 2006). The time it takes to travel across 0.1λD is tD =

λD

√

0.2m/eφR ≃ 5×102
√

Te/(φV
R np) a

3/2
µ s. Spokes seem to form quickly, as they

were noticed fully developed on images taken five minutes after a previous frame

with no sign of spoke activity (Smith et al. 1982). Requiring, for example, that

tD < 30 s for aµ = 0.6 necessitates a plasma density np > 10 cm−3, higher than its

normally expected value.

The time to neutralize a grain is approximately tQ =
(

npvthπa2
)−1

, where vth is the

thermal speed of electrons (for positive grain potential, φR > 0) or ions (for negative

grain potential, φR < 0), and the probability of crossing the sheath with its charge

intact is Pc = e−tD/tQ , with the exponent tD/tQ = αa3.5
µ , where α ≃ 103Te(np/φV

R )1/2

for φV
R > 0, or 103Ti(np/φV

R )1/2(me/mi)
1/2 for φR < 0.

The net probability for a grain to leave the ring-plane is the product of the proba-

bilities of having a charge on the surface and the probability of crossing the plasma

sheath above it, P = PePc ∼ a2e−αa3.5
. This suggests a narrow size distribution cen-

tered on a∗µ = β
(

φV
R /np

)1/7
T−2/7, with β ≃ 1.2× 10−1 and 0.6, for electrons and

O+
2 ions, respectively. Figure 6.6 shows P as function of grain size and plasma den-

sity. These consideration indicate that spoke formation involves intermittent, short

lived periods of φV
R < 0 with a plasma density of 10 < np < 100 cm−3. The lower

limit is set by the requirement that spokes form in less than 5 minutes, and the up-

per limit and that φV
R < 0 are set to support a narrow size distribution of the spoke

particles near 0.6 µm in radius.

It was suggested that the spoke initiation conditions described above could be

produced by a meteorite impact–produced plasma cloud (Goertz and Morfill, 1983).

Such a cloud was shown to expand, cool and recombine, as it rapidly propagated

in the radial direction, explaining many of the observed spoke characteristics. The

proposed propagation speed of such a cloud was recently reexamined and awaits

further observational constraints (Farmer and Goldreich, 2005; Morfill and Thomas

2005).

During the first four years (2004–2008) of the Cassini missions, spokes observa-

tions remained a high priority. After almost a year of no spoke activity, they were
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FIGURE 6.6

The probability for a dust grain to leave the ring-plane as function of its size

for low plasma densities assuming φφφVVV
RRR === 555 V (dashed lines) and high plasma

densities with φφφVVV
RRR === −−−555 V. The curves are labeled with the value of the plasma

density, nnnppp . The vertical dark band marks the characteristic size range of spoke

particles indicated by HST observations (McGhee et al. 2005).

seen to reappear in the fall of 2005, indicating the governing role of the solar el-

evation angle with respect to the rings, as predicted (Nitter et al. 1998; Mitchell

et al. 2006). The new observations show spokes that are much fainter than those

seen by the Voyagers though the solar elevation angle by now (2008) has a similar

value. This could be a result of the solar cycle variability of the UV flux reaching

Saturn, as indicated in Figure 6.7, that is responsible for plasma production in both

the atmosphere and over the rings. The average solar ionizing UV flux can typically

change over a factor of two between solar maximum and minimum conditions, and

its effects on spokes are yet to be investigated.

6.4 Lunar surface

The electrostatic levitation and transport of lunar dust remains an interesting and con-

troversial science issue since the Apollo era of the 1970s. This issue is also of great

engineering importance in designing human habitats and protecting optical and me-
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FIGURE 6.7

The approximately sinusoidal variation of the solar elevation angle BBB′′′ as a func-

tion of time. The first two dots on this curve indicate the Voyager encounters

in 1980 and 81, and the third dot indicates the first spoke siting by Cassini in

September 2005. The thick continuous (dashed) segments (1995–2004) indicate

a period of (un)successful spoke observations by HST (McGhee et al. 2005).

The thick segment starting in 2006 is indicating the observations of spokes by

Cassini. The small dots in the background show the number of sunspots as a

proxy for solar UV variability.

chanical devices (Colwell et al. 2007). As a function of time and location, the lunar

surface is exposed to solar wind plasma, UV radiation, and/or the plasma environ-

ment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic

charge and contribute to the large-scale surface charge density distribution. They

emit and absorb plasma particles and solar UV photons, and represent an electro-

magnetic interface to the lunar interior. There are several in situ and remote sensing

observations that indicate that dusty plasma processes could be responsible for the

mobilization and transport of lunar soil. These include a) imaging by the TV cameras

of Surveyor 5, 6 and 7; b) the fields and particles measurements by the Suprathermal

Ion Detector Experiment (SIDE) of Apollo 12, 14 & 15, and the Charged Particle Lu-

nar Environment Experiment (CPLEE) of Apollo 14; and c) the dust measurements

by the Lunar Ejecta and Meteorite Experiment (LEAM) of Apollo 17.

6.4.1 Imaging

Images taken by the television cameras on Surveyors 5, 6 and 7 gave the first indica-

tion of dust transport on the airless surface of the Moon (Criswell 1973; Rennilson

and Criswell 1974). These TV cameras consisted of a vidicon tube, 25 and 100 mm

focal length lenses, shutters, and color filters surmounted by a mirror that could be
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FIGURE 6.8

An unprocessed image of the lunar horizon glow from Surveyor 7 (National

Space Science Data Center).

adjusted by stepping motors to move in both azimuth and elevations. Images taken

of the western horizon shortly after sunset showed a distinct glow just above the

lunar horizon dubbed horizon glow (HG). This light was interpreted to be forward-

scattered sunlight from a cloud of dust particles < 1 m above the surface near the

terminator. The HG had a horizontal extent of about 3 degrees on each side of the

direction to the Sun (Figure 6.8).

Assuming that the observed signal is dominated by diffraction of sunlight, this

horizontal extent corresponds to spheres of radius ≃ 5 µm for observations at visi-

ble wavelengths. The observed intensity of the signal, its duration (up to 2.5 hours),

and its vertical and horizontal extent rule out micrometeoroid ejecta, scattering off

surface grains, and reflections involving glints off the spacecraft (Rennilson and

Criswell 1974). However, it is difficult to analyze these images. In order to deter-

mine the physical dimensions of the bright cloud, the determination of the distance

to the cloud is needed. By analyzing the shape of the lower boundary of the Sur-

veyor 7 HG cloud and matching it to the local topography from orbital photographs

of the Surveyor 7 landing site, Rennilson and Criswell (1974) placed the cloud at the

visible horizon, or approximately 150 m from the camera. The vertical extent of the

cloud is 1.9 mrad or about 30 cm at that distance. Its horizontal extent of 100 mrad

makes the observed cloud 14 m wide, though this dimension may be a result of the

light scattering properties of the cloud: it could be much larger with the parts of the

cloud further from the Sun line not scattering sufficient light into the cameras.

The astrophotometer on the Lunokhod-2 rover also reported excess brightness,

most likely due to HG (Severny et al. 1975). An independent set of observations

related to dust levitation/transport phenomena is the description of the visual obser-

vations of the Apollo-17 crew during sunrise as it was seen from lunar orbit. They

reported the appearance of bright streamers with fast temporal brightness changes

(seconds to minutes) extending in excess of 100 km above the lunar surface. Mc-

Coy and Criswell (1974) argued for the existence of a significant population of lunar

particles scattering the solar light. The rough estimates indicated that the scatterers

are submicron (≃ 0.1µm) sized grains. These drawings were analyzed again (Zook

and McCoy 1991) and most of the earlier conclusions were verified. This study also

estimated the scale height of this ”dusty-exosphere” H ≃ 10 km, and suggested that

dust levitation could be observed using ground based telescopes. A new simple the-
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oretical model suggests that these could be particles with radii < 10 nm lofted from

the lunar surface by electrostatic forces (Stubbs et al. 2006).

The last set of observations consist of the images taken of the lunar limb by the

star-tracker camera of the the Clementine spacecraft, which showed a faint glow

along the lunar surface, stunningly similar to the sketches of the Apollo 17 astronauts

(Science News 3/26/94, H. Zook, private communications, 1994). The interpretation

of these images was complicated by the presence of the scattered light from zodiacal

dust particles, and it was never completed due to the untimely death of H. Zook in

2001.

6.4.2 Plasma and electric field measurements

The Moon is exposed to a variety of plasma conditions along its orbit about the

Earth. Outside the Earth’s magnetosphere, it is immersed in the solar wind. On

the lit side of the surface, solar UV radiation dominates charging, resulting in a few

volts positive surface potential (Manka 1973). In the absence of solar illumination,

the night-side is expected to charge negatively (Figure 6.9). However, the night-side

surface potential is determined by a complex set of plasma conditions.

An early model of the lunar day-side plasma environment (Walbridge 1973) indi-

cated that at local noon the photoelectron flux is ≃ 1011 cm−2s−1 with an average

energy of ≃ 2 eV, giving an electron density of ≃ 4.5× 103 cm−3 and a surface

potential of +3.5 V. However, measurements of photoelectron yield from lunar soil

samples (Willis et al. 1973) found a lower level of emission, 3×109 cm−2s−1 or

4.5 µA m−2. This emission level gives an electron density of only 130 cm−3 and a

Debye length of ∼ 1 m.

The typical flow speed is ≃ 400 km s−1, and the characteristic temperature of the

solar wind plasma is kT ≃ 10 eV. The thermal speed of the solar wind protons is

on the order of 40 km s−1, much below the flow speed; hence, they represent a su-

personic flow. On the contrary, the electron thermal speed is close to 2000 km s−1,

much faster than the bulk speed; hence, they remain subsonic, and – to a good ap-

proximation – the bulk speed can be neglected. Consequently, a void in the solar

wind protons behind the Moon could form. However, as electrons separate from the

protons, a polarization electric field builds up, accelerating the ions and slowing the

electrons, resulting in a filling of the plasma void behind the Moon. The lunar wake

is often modeled as a plasma expansion into vacuum (Samir et al. 1983). This ex-

pansion leads to enhanced electron temperatures and energetic streaming ion beams

towards the surface (Halekas et al. 2005). Measurements of electrons on the lunar

night-side by the Lunar Prospector spacecraft support this simple model and suggest

a night-side lunar surface potential of at least –35 V and more likely near –100 V

(Halekas et al. 2002).

In the Earth’s magnetotail the potential may exceed 500 V negative at times, due

to high energy electron fluxes to the surface, usually within the Earth’s plasma sheet

(Halekas et al. 2005). These large negative surface potentials, inferred from Lunar

Prospector data, most frequently occurred on the lunar night-side but were also ob-

served on the day-side when the photoelectron current would be expected to prevent
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FIGURE 6.9

Top: The predicted electrostatic charge density distribution; Bottom: the mea-

sured lunar surface potential as a function of the solar zenith angle. The

range of uncertainty is indicated by the shaded box in the figure (Freeman and

Ibrahim 1975).

such large negative potentials, possibly indicating a strong variability in the photo-

electron current from the lunar surface. This in turn suggests the possibility of small

scale spatial and temporal variations in the day-side lunar surface potential.
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We are aware of only two sets of in situ measurements that gave estimates of the

lunar surface potential. The Apollo SIDE measured the energy of ions at the lunar

surface (Freeman et al. 1973). The instrument was isolated from the lunar surface

by an adjustable voltage biased electrical mesh – working as an artificial ground.

This made it possible to vary the electrostatic potential between the SIDE instrument

and the lunar surface. By biasing SIDE to negative potentials, it collected ions that

were generated in the tenuous lunar atmosphere by solar wind electron impact or

by photo-ionization. As the initial energies of these ions are negligibly small, their

measured energies (per charge) can be used to estimate the accelerating electric field.

Figure 6.9 shows the estimated lunar surface potential as a function of solar zenith

angle. However, there are large uncertainties in deriving the surface potential, φ0,

from the electric field, E , estimates. This is due to the plasma distribution above the

surface that determines a characteristic shielding distance, the Debye length. In units

of cm, λD ≃ 700(kT/n)0.5, where kT is the plasma temperature in units of eV, n is

the plasma density in units of cm−3, and the electric field E ≃ φ0/λD. However, λD is

expected to change from ≃ 1m in the relatively dense day-side plasma to ≫ 100 m in

the dilute night-side plasma environment. The SIDE ion detector was approximately

50 cm above the lunar surface, a height that is comparable to λD on the lit side,

but much shorter than that on the night-side, or when the Moon is shadowed by the

Earth in the magneto-tail. Hence, the measured ion energies at these times could be

due to only a fraction of the surface electric field, explaining the large uncertainties

indicated in Figure 6.9.

The CPLEE had similar science goals to SIDE (O’Brien and Reasoner 1971;

Burke and Reasoner 1972). In addition to ions, it also measured the energy (up

to 200 eV) of electrons at a height of 26 cm above the surface, in two independent

collectors pointing up and 60◦ from vertical toward lunar west. Due to the geometry

of this setup, CPLEE could only measure electrons moving towards the lunar sur-

face. The measurements indicated electrons with energies up to 200 eV on occasion.

However, these energetic electron fluxes vanished during eclipse by the Earth, indi-

cating that they are most likely electrons produced from the lunar surface by solar

UV. As photoelectrons are generated with a few eV energy, the measurements indi-

cated a large electric field pointing away from the surface, or a surface potential that

from time to time is +200 V (Reasoner and Burke 1973). These high potentials were

reached when the Moon was in the Earth’s magnetotail and shielded from the solar

wind.

The terminator region must have a complex history as the generally strong electric

fields on the lit side pointing away from the surface are replaced by weaker fields

pointing towards the Moon. The continued reduction of photo-emission at diminish-

ing solar zenith angles on large scales are accompanied with the presence of shadows

adjacent to more directly illuminated and photo-emitting surfaces on the small spa-

tial scale of boulders, rocks, and crater rims. This could produce strong localized

electric fields due to the variation in the photoelectron current from shadowed to il-

luminated regions. The time dependent changes of the areas of neighboring lit/dark

patches have been suggested to possibly lead to “supercharging” and lift-off of lunar

fines. (De and Criswell 1977; Pellizari and Criswell, 1978a,b).
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6.4.3 Dust measurements

The LEAM Experiment was deployed by the Apollo-17 astronauts on December 11,

1972. It started measurements after the return of the landing module and continued

to make observations for about 3 years. The science objectives of LEAM were (1)

to investigate the interplanetary dust flux (primary particles) bombarding the lunar

surface, (2) to investigate the properties of the lunar ejecta (secondary) particles,

(3) to follow the temporal variability of these dust fluxes along the lunar orbit, and

(4) to observe interstellar particles. The design and the expected performance of

the LEAM experiment were similar to those for the dust experiments onboard the

Pioneer 8 and 9 spacecraft that were launched into heliocentric orbits in 1967 and

1968, respectively (Berg et al. 1973, 1974).

The LEAM instrument consisted of three sensor systems. The EAST sensor was

pointed 25 degrees north of east, so that once per lunation its field of view swept

into the direction of the interstellar dust flow. The WEST sensor was pointing in

the opposite direction as a control for the EAST sensor, while the UP sensor was

parallel to the lunar surface and viewed particles coming from above. Each of these

systems was composed of two sets (front and back) of 4 x 4 basic sensor elements

to determine the impacting particle’s mass, m, and velocity vector, v. The sensors

used a combination of thin plastic films and grids to measure the current from the

plasma cloud generated as the dust particles penetrated the film, a signal pulse with

amplitude proportional to m × v2.6. The two groups of sensors in a system were

placed 5 cm apart, and a time-of-flight setup was used to determine the speed of

an impacting dust particle. All of the 16 front sensors were enabled to provide a

start signal, and all of the 16 back sensors were designed to provide a stop signal

for a total of 256 different combinations, enabling the determination of the velocity

vector of the penetrating dust particles. In addition, the back film was attached to

a microphone with an acoustic signal proportional to the momentum of the grain.

The only exception for this redundant arrangement was the WEST sensor, which

lacked a front film. This sensor was designed to identify low-speed ejecta impacts

that were expected not to penetrate the front film. Hence, the WEST sensor could not

measure particle speed. Extensive laboratory calibrations were performed on these

sensors using a 2 MeV electrostatic accelerator with particle masses in the range of

10−13 < m < 10−9 g, and velocities in the range of 1< v < 25 km s−1. The pulse

height amplitudes (PHA) from the film-grid sensors were sorted in the range from

0 to 7, and in the preflight calibration the front film rarely registered a PHA greater

than 3. Most preflight calibration dust impacts gave rise to signals from both films,

indicating that the particles had penetrated the front film and passed on to the rear

film.

Once LEAM started to operate it became clear that its observations contradicted

expectations. Based on previous measurements in interplanetary space by Pioneer

8 and 9, for example, the expected impact rate of interplanetary dust particles was

a few impact detections per day. Instead, LEAM registered up to hundreds of im-

pacts per day. Most puzzling was the fact that these events registered in the front

film only, but with the maximum possible PHA of 7. Additionally, the LEAM op-
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FIGURE 6.10

The number of dust impacts per 3 hour intervals integrated over 22 lunations

(Berg et al. 1976). The EAST and WEST sensors showed an approximately

unchanged behavior with constant PHA, while the UP sensor registered a de-

clining rate with suddenly dropping PHA after about 20 months on the lunar

surface (O. Berg, personal communication, 2006).

erating temperature exceeded its predicted maximum value of 146◦ F at lunar noon,

indicating possible thermal problems that were initially believed to be responsible

for generating noise in the electronics and possibly responsible for the elevated im-

pact rates. This was supported by the correlation of the elevated impact rates with

the passage of the terminator, both at sunrise and at sunset. As data accumulated, a

systematic behavior was recognized. The terminator event rate started to increase up

to 60 hours before the sunrise at the site, and persisted for a period of approximately

30–60 hours. In this period the rates were up to 100 times higher than the normal

background rates (Berg et al. 1976). The rates dropped two orders of magnitude dur-

ing local noon. Interestingly, no increased rates were observed during lunar eclipses.

Figure 6.10 shows the number of dust impacts onto Lunar Ejecta and Meteorite Ex-

periment (LEAM) per 3-hour period, integrated over 22 lunar days.

A new picture emerged to replace the high temperature electronics explanation:

LEAM was registering slow-moving, highly charged lunar dust particles. There were

two subsequent studies done to verify this point: a theoretical work to model the

response of the electronics (Perkins 1976) and an experimental study of the LEAM

flight spare (Bailey and Frantsvog 1977). The results of the sensor modeling and

circuit analysis showed that charged particles moving at velocities < 1 km s−1 do
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produce large PHA responses via induced voltages on the entry grids, as opposed to

signals from impact generated plasmas. This explains why the rear films remained

silent even though the front sensor was thought to be hit by an energetic dust grain.

The experimental study had a similar conclusion: extremely slow moving particles

(v < 100 m s−1) generate a LEAM response up to and including the maximum PHA

of 7 if the particles carry a positive charge Q > 10−12 C. Both of these studies suggest

that the LEAM events are consistent with the sunrise/sunset–triggered levitation and

transport of slow moving, highly charged lunar dust particles. Assuming a day-time

surface potential of +5 V, the LEAM measurements indicate grain sizes on the order

of millimeters in radius! The entire LEAM data set is shown in Figure 6.10 for all

three sensor surfaces. While the daily average PHA remained relatively constant for

the EAST and WEST sensors, it exhibited a rapid decline for the UP sensor after

20 months, perhaps indicating dust accumulation on the topside of LEAM (O. Berg,

personal communications, 2006).

6.4.4 The lunar dust environment

The dust environment of the Moon has remained a controversial issue since the

Apollo era. Visual observations and photographic images from the Apollo com-

mand modules and images from the Clementine mission have been used to indicate

the presence of dust at high altitudes above the lunar surface. The in situ and re-

mote sensing observations on the lunar surface, as discussed above, indicate that

dusty plasma processes are responsible for the mobilization and transport of lunar

soil. However, there is a lack of both observations and theoretical understanding to

directly relate the existing surface and high altitude phenomena, and the existence of

a significant “dusty-exosphere” remains a question. In addition to the dusty plasma

processes acting on the lunar surface, a lunar dust exosphere could also be maintained

by the continual bombardment by interplanetary dust particles. These can produce

secondary ejecta grains with sufficient speeds to reach tens of kilometers in altitude,

expected to form a “permanently” present, approximately spherically symmetric dust

exosphere.

Dust charging, mobilization, and transport is expected to be most efficient near the

terminators, where large surface electric fields can be generated due to differential

charging across lit and dark regions. Hence, future observations from a satellite in

orbit around the Moon at an altitude of ∼ tens of kilometers could be used to measure

the variability of size and spatial distribution of small grains and gain insight into the

efficiency of dusty plasma processes acting on the lunar surface. There is also a need

to develop dusty plasma diagnostic packages for future surface landers that could

directly measure the plasma parameters, as well as the mass, charge, and velocity

distributions of lofted dust particles.
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6.5 Summary

We used three examples to demonstrate that dusty plasma processes can be responsi-

ble for shaping the characteristics of the plasma environment, as well as the size and

spatial distributions of the small embedded dust grains. In Noctilucent clouds these

processes are thought to be responsible for generating electron density bite-outs and

unexpected charge states of small solid particles, for example. Future combination

of in situ rocket measurements with improved sensors, ground based lidar and radar

measurements, and satellite observations are expected to bring about major advances

in our understanding of the physics of this region. This will be of great significance,

as Noctilucent clouds are thought to be indicators of the global changes in our cli-

mate. Planetary rings are an excellent laboratory to study dusty plasma processes

acting on large scales. The combination of imaging, with in situ measurements of the

plasma parameters, the electric and magnetic fields, and dust provide a rich comple-

mentary data set. The extension of the Cassini mission beyond its prime (2004–2008)

for an additional four years could provide an unprecedented series of observations

that cover a full period of seasons. The dusty plasma processes acting on the lunar

surface are of great scientific interest, and their understanding has great importance

in the design of future lunar habitats, to ensure the safety of the astronauts, and the

long-term operations of all mechanical and optical devices.
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7

Numerical simulation of complex plasmas

Olga S. Vaulina and Boris A. Klumov

7.1 Molecular dynamics simulations of complex plasmas: Basic

concepts

7.1.1 Methods of simulation of the dynamics of dust particles

The major problem encountered in studying the physical properties of non-ideal sys-

tems is associated with the absence of an analytical theory of liquid that would be

capable of explaining its thermodynamic properties, giving the equation of state,

describing the effects of heat and mass transfer, etc. Two basic approaches are em-

ployed in the development of approximate models for the description of the liquid

state. The first approach involves a semiempirical method of determining the corre-

lation of the parameters of liquid with one another and with the properties of initial

crystals, which is based on analogies between the crystalline and liquid states of

matter (Balescu 1975; Frenkel 1976; March and Tosi 2002). The second approach is

based on a complete statistical calculation of the properties of non-ideal media by the

method of molecular dynamics using model data on the energy of particle interaction

(Young and Alder 1971; March and Tosi 2002). This simulation procedure enables

one to study diverse physical phenomena (phase transitions, thermal diffusion of par-

ticles, viscosity and thermal conductivity, the dynamics of the system approaching

the equilibrium state, etc.). Numerical simulations of the dynamical properties of

non-ideal systems are of great importance from the standpoint of the theory of liq-

uids because, due to strong interparticle interaction, no small parameter is present in

such systems which could be used for analytical description of the state of the system

and thermodynamic characteristics, as it is possible in the case of gas.

Two well-known numerical algorithms are usually employed for analyzing the

transport characteristics of systems of interacting particles, namely, the Monte Carlo

method and the method of molecular dynamics (MMD). As distinct from the Monte

Carlo method, which was developed for the calculation of equilibrium values, the

MMD enables one to describe the approach of the system under investigation to the

state of equilibrium. Therefore, the MMD is an indispensable tool for use in studying

the processes of heat and mass transfer and wave propagation, and the dynamics of

formation of instabilities. This method is based on the solution of a set of ordinary

differential equations, i.e., equations of motion of particles in the field of various

forces. Within this approach, we can identify the method of molecular dynamics

325
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based on the integration of invertible equations of motion of particles (MIM, the

method of invertible motion) and the method of Brownian dynamics (or Langevin

dynamics) (MBD) based on the solution of Langevin equations and taking into ac-

count the irreversibility of the processes under investigation. In the former case

(MIM), only the elastic interactions of particles are taken into account ignoring the

dissipation (friction) and other processes of energy exchange between particles and

surrounding medium (thermostat). The motion of particles in such a system is not

stable, and procedures of re-normalization of the calculation data are employed after

a certain number of integration steps for maintaining the equilibrium temperature of

the particles. This approach is adequate to simulate processes in atomic systems,

but cannot be employed for analyzing the motion of macroparticles in a laboratory

plasma where the dissipation due to collisions with gas atoms or molecules plays an

important role.

Unlike the MIM, the MBD takes into account the loss of kinetic energy of particles

due to friction forces, and the equilibrium state of a system with constant tempera-

ture is maintained due to its exchange of energy with the thermostat. This exchange

is modeled by a random force Fran correlated with the friction forces in the system

using the fluctuation-dissipation theorem (Landau and Lifshitz 1980; Lichtenberg

and Lieberman 1992). The special importance of the MBD in simulating the dy-

namics of particles in dusty plasma is based on the fact that the Langevin equation

enables one to take into account the interactions between dust particles and “thermo-

stat particles”, which maintain statistical equilibrium in the system. This equilibrium

is observed in numerous experimental situations, where the Maxwellian distributions

of the velocities of dust particles are reported. In so doing, the MBD enables one to

take into account the processes of energy exchange between the particles and sur-

rounding medium both due to their collisions with molecules of surrounding gas and

due to other stochastic processes, for example, fluctuations of the particle charges,

which cause an increase in the kinetic temperature of the particle system relative to

the gas temperature (Zhakhovskii et al. 1997; Vaulina et al. 1999).

7.1.2 Equations of motion of dust particles

Along with random forces Fran, which are the sources of thermal motion of particles,

the forces of pair interparticle interaction Fint are taken into account in a set of Nd

equations of motion (where Nd is the number of particles) for simulating equilibrium

microscopic processes in uniform extended clouds of interacting particles,

md

d2rk

dt2
= ∑

j

Fint(r)|r=|rk−r j |
rk − r j

|rk − r j|
−mdν f r

drk

dt
+ Fran. (7.1)

Here, Fint(r) = −∂U/∂ r, r = |rk − r j| is the interparticle spacing, U is the po-

tential energy of pair interaction, md is the particle mass, and ν f r is the coeffi-

cient of friction of dust particles due to their collisions with surrounding medium

(mostly with neutrals). Under conditions of the local thermodynamic equilibrium,

the average value of the random force is < Fran >= 0, and the autocorrelation func-
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L
cut

FIGURE 7.1

Sketch of numerical simulation procedure using periodic boundary conditions.

tion < Fran(0)Fran(t) >= 6T mdν f rδ (t) describes the delta-correlated Gaussian pro-

cess (Cummins and Pike 1974; Ovchinnikov et al. 1989). Such stochastic pro-

cesses can be simulated using random increments of momentum of particles px
ran =

(2Tν f r∆tmd)
1/2ψ , where px

ran is the momentum increment by one degree of free-

dom, ψ is some random quantity distributed by normal law with mean-square devia-

tion equal to unity, and ∆t is the time integration step for Equations (7.1). For correct

integration of random forces, the integration step ∆t has to be short enough. Periodic

boundary conditions in directions x, y and z, which enable one to maintain constant

the number of particles and their average kinetic energy, are usually used for studying

equilibrium processes in extended three-dimensional dust systems. Such conditions

can be realized by way of simulating 27 identical cubic cells, the space positions of

particles in which are maintained similar to their position in the central cell at each

instant of count time (see Figure 7.1). Upon crossing any boundary of the central

cell, the particle comes back at the velocity it escapes from the cell, but from the op-

posite side. For simulating the dynamics of particles in extended dust layers formed,

for example, in the sheath region of an rf discharge, periodic boundary conditions

in the two selected directions (nine computational cells) are used. In the remaining

direction the effect of balanced external forces is usually used.

Numerical experiment usually proceeds as follows: Initially the particles are lo-

cated randomly within the central cell. Then, due to interaction between them, the
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process of self-organization starts. After the equilibrium (for the given system pa-

rameters) configuration of particles is reached, the dynamic characteristics (the ve-

locities and displacements of particles) are analyzed for the particles in the central

cell.

In calculating the forces of interparticle interaction, all particles of the complete

system of 27 (or nine, in the case of two-dimensional problem) cells are taken into

account. However, the interparticle interaction is often cut-off at some distance

r = Lcut . For example, for the Yukawa potential the computational cell size L is

defined by the condition L ≫ λD (Farouki and Hamaguchi 1992) and the cut-off

length usually does not exceed several interparticle distances Lcut = (4–8)∆. This

corresponds to the number of “independent” particles (in the central cell) ranging

from 64 to 512. Such a cut-off of the interaction potential does not result in a signif-

icant error in the case of screening parameter κ = ∆/λD > 1. In simulating systems

with κ < 1, longer-range interactions must be taken into account. This can be real-

ized using an appropriate algorithm which is based on constructing a large number of

translation cells (Hamaguchi et al. 1997). This method, however, was developed for

studying the properties of crystals and is far from always acceptable for simulating

the dynamics of liquid systems characterized by the absence of long-range order in

the arrangement of particles.

In order to simulate the dynamics of a finite system of particles contained in a

trap formed, for example, by electric fields Eext of a gas-discharge chamber, the

force term describing this electric confinement as well as other forces which can be

present in the system (e.g., gravity, ion drag force, thermophoretic force, etc.) should

be added to Equation (7.1).

To conclude this section let us derive the scaling parameters of the equations of

motion. Dimensionless equations of motion are often employed for simulating the

dynamics of particles; these equations enable one to avoid repeated calculations of

the properties of systems with the same self-similar properties. By way of example,

consider the re-normalization of equations of motion (7.1) for a system of particles

interacting via screened Coulomb (Yukawa) pair potential. Using the mean inter-

particle spacing ∆ = n
−1/3

d as a unit of distance, the inverse dust plasma frequency

ω−1
pd = (4πQ2nd/md)

−1/2 as a unit of time, and the thermal velocity of particles

vT d = (Td/md)
1/2 as a velocity unit, the normalized equations of motion of particles

in projection into Cartesian coordinate axis OX have the form

Ẋk = (4πΓ)−1/2Vk, (7.2)

V̇k = ∑
j 6=k

(4πΓ)−1/2 1 + κRk j

R3
k j

exp(−κRk j)(Rk jeX)− ξVk +
√

2ξ f (τ), (7.3)

where Xk and Vk denote dimensionless coordinate and velocity of the k-th particle, τ
is dimensionless time, Rk j = Rk −R j, eX is the unit vector in the direction of the axis

OX , ξ = ν f r/ωpd , and f (τ) is the delta-correlated white noise: < f (τ) >= 0 and

< f (0) f (τ) >= δ (τ). Therefore, the behavior of the system under consideration is

defined by three dimensionless parameters Γ, κ , and ξ . In the frictionless (ξ = 0)
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limit, the method of molecular dynamics (MIM) is adequate and the system is char-

acterized only by the non-ideality parameter Γ and the screening parameter κ . As

discussed above, in this case the periodic re-normalization of particle velocities must

be employed for maintaining a constant temperature of the system because of free

exchange between the potential and kinetic energies. For finite ξ , modified MBD

can be used. In this case the system temperature is defined by the parameters of the

Langevin force. It is maintained constant automatically and requires no correction

during simulation.

7.2 Numerical simulation of spatial correlations between dust par-

ticles

7.2.1 Pair and three-particle correlation functions

Laboratory dusty plasma, which exhibits a number of unique properties, is a good

experimental model both for studying the properties of highly non-ideal plasma and

for better understanding the phenomena of self-organization of matter in nature. Ex-

perimental investigations of dusty plasmas can play an important role in verifying the

existing models and developing new phenomenological models for highly non-ideal

liquid systems. Such models are of great importance because, due to strong interpar-

ticle interaction, no small parameter is present in the theory of liquid which could be

used for analytical description of the state of the liquid system and thermodynamic

characteristics, as is possible for gases (Balescu 1975; Frenkel 1976; March and Tosi

2002).

The equilibrium properties of liquid are fully described by a set of probability

density functions gs(r1,r2, . . .rs) of the location of particles at points r1, r2, . . . rs.

In the case of isotropic pair interaction, the physical properties of liquid (such as

pressure, energy density, and compressibility) are fully defined by the pair correla-

tion function g(r) = g2(|r1 − r2|) (Ailawadi 1980) which, in turn, depends on the

type of interaction potential between the particles and on the particles’ temperature

(Ichimaru 1982),

g(r) = exp{−[U(r)/Td]+ N(r)+ B(r)}, (7.4)

where r is the distance between two particles, U(r) is the potential energy of pair

interaction, Td is the kinetic energy of random (thermal) motion of particles, N(r)
is defined by the functions g1(r1) and g(r), and B(r) takes into account higher or-

der correlations and is a complex integral function of gs(r1,r2, . . . ,rs) at s > 2. In

the hypernetted-chain approximation it is assumed that B(r) = 0, and the Ornstein–

Zernike relation is used to determine N(r) (Ailawadi 1980; Ichimaru 1982). How-

ever, the available results of numerical investigations demonstrate the inadequacy of

the hypernetted-chain approximation even in the case of weak non-ideality of the
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systems under investigation (Raverche and Mountain 1972; Raverche et al. 1972;

Wang and Crumhansr 1972; Ailawadi 1980; Ichimaru 1982). It is only the inclusion

of higher order correlations [B(r) 6= 0] that produces results which coincide with the

data of numerical simulation (Ichimaru 1982). Therefore, determining the form of

g(r) in the general case requires information both about the type of the pair interac-

tion potential U(r) and about the behavior of correlation functions gs(r1,r2, . . . ,rs)
at s > 2, or it requires the use of some approximations for these functions. Within the

model of one-component plasma, the approximating functions for deviation of the

effective energy of interacting particles from the energy of their Coulomb interaction

U(r) = Q2/r at distances shorter than the mean interparticle spacing ∆ = n
−1/3

d can

be written in the form (Ichimaru 1982)

[N(r)+ B(r)]T = Q2(1.25−0.39
r

rs

)/rs at 0.4 < r/rs < 1.8 (7.5)

[N(r)+ B(r)]T = Q2[1.057−0.25(
r

rs

)2]/rs at r/rs < 0.2, (7.6)

where rs = (4πnd/3)−1/3 is the Wigner-Seitz radius. Therefore, even in the approx-

imation of pair interparticle interaction, correlation functions of higher order (s > 2)

are of significant importance. Information about the three-particle correlation func-

tion g3(r1,r2,r3) is of importance in calculating the physical characteristics of the

medium, which depend on derivatives of the pair correlation function g(r) with re-

spect to temperature ∂g(r)/∂ T or density ∂g(r)/∂ρ (entropy, coefficients of ther-

mal expansion, etc.). The three-particle correlation function g3(r1,r2,r3) defines the

probability of simultaneous detection of three particles in the vicinity of points r1,

r2, and r3. The superposition approximation (Kirkwood relation) is most frequently

used for the approximation of the three-particle correlation function,

g3(r1,r2,r3) ≃ g
sp
3 (r1,r2,r3) = g(r1 − r2)g(r2 − r3)g(r3 − r1). (7.7)

Relation (7.7) is often employed for calculating integral equations in the kinetics of

interacting particles, as well as in recovering interparticle interaction potentials, by

methods based on the use of the hypernetted-chain approximation or the Percus–

Yevick equation (Raverche and Mountain 1972; Raverche et al. 1972; Wang and

Crumhansr 1972; Ailawadi 1980; Ichimaru 1982). Nevertheless, the available results

of numerical investigations performed for the case of hard sphere interaction and for

particles interacting with potentials of the Lennard–Jones type demonstrate the in-

adequacy of the superposition approximation even in the case of low densities of

particles (Raverche and Mountain 1972; Raverche et al. 1972; Wang and Crumhansr

1972; Ailawadi 1980; Ichimaru 1982). As the non-ideality of the liquid systems un-

der investigation increases, the difference of the approximation g
sp
3 (r1,r2,r3) from

the exact value g3(r1,r2,r3) can be as significant as ∼100%. The experimental veri-

fication of superposition approximation for real liquids and gases is difficult because

no direct determination of the three-particle correlation function is possible in the

absence of information about coordinates of individual particles. Analysis of three-

particle correlations in real liquids involves the use of indirect diagnostic methods,
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(a) 

(b)

(c) 

1

(d)

FIGURE 7.2

Video images of illuminated particle layer (a, b) and trajectories of motion of

particles (c, d) for different experiments: (a, c) ppp = 3 Pa, WWW = 10 W; (b, d) ppp = 7

Pa, WWW = 10 W.

for example, measurements of the structure factor S(k) for several values of pressure

of the medium at a constant temperature, whence ∂g(r)/∂n is recovered; this lat-

ter derivative, in turn, contains information about three-particle correlation function

(Raverche and Mountain 1972; Raverche et al. 1972). The extraction of such infor-

mation calls for additional data on isothermal compressibility of the medium under

investigation.

Unlike real liquids and gases, laboratory dusty plasma is a good experimental

model for studying the physical properties of non-ideal systems because, due to the

size of dust particles, their coordinates can be videofilmed which greatly simplifies

the use of direct contactless methods for their diagnostics. An experimental investi-

gation of three-particle correlations in a complex plasma was performed by Vaulina

et al. (2004a) in an rf discharge with a setup shown schematically in Figure 1.3. This

experiment was performed in argon gas at a pressure between p = 2 Pa and p = 10 Pa

and discharge power between W ≃ 2 and W ≃ 10. The particles used were monodis-

perse latex spheres of radius a≃ 1.7 µm and mass density of ρ ≃ 1.5 g cm−3. Under

the experimental conditions, the particles formed four to ten flat horizontal layers in

a sheath region above the lower discharge electrode. The particle cloud was illumi-

nated by a laser knife (∼200–300 µm thick) and the scattered light was recorded

by a video camera. Fragments of video images of the particles registered in the

illuminated particle layer are shown in Figures 7.2a and 7.2b for different experi-

mental conditions. The observed particle structures were of the liquid-like type with

the mean interparticle spacing ∆ ranging from 260 to 350 µm. The processing of

video records produced pair correlation functions g(r) and three-particle correlation

functions g3(r12,r23,r31) (ri j = |ri − r j|) averaged over a period of ∼1–2.5 s under
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g(r/Δ)

r/Δ

FIGURE 7.3

The pair correlation functions of particles in an rf discharge plasma ggg(((rrr///∆∆∆)))
measured experimentally for different plasma parameters: ppp = 3 Pa, WWW = 10 W

(diamonds); ppp = 3 Pa, WWW = 2 W (circles); ppp = 7 Pa, WWW = 10 W (triangles). Solid

curves correspond to numerical simulations for different values of the modified

coupling parameter ΓΓΓ∗∗∗ (the values are shown in the figure).

      (a)               (b)             (c)          (d) 

FIGURE 7.4

The measured correlation functions ggg333 (top row) and superposition approxima-

tion ggg
sssppp

333 (bottom row) for different experimental conditions: (a) ppp = 7 Pa, WWW =

10 W, δδδ = 0.61; (b) ppp = 3 Pa, WWW = 2 W, δδδ = 0.28; (c) ppp = 3 Pa, WWW = 10 W, δδδ = 0.2;

(d) ppp = 5 Pa, WWW = 9 W, δδδ = 0.3.

constant experimental conditions. The trajectories of motion of the particles during

the time of averaging of pair correlation functions are shown in Figures 7.2c and

7.2d.
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The pair correlation functions g(r/∆) are given in Figure 7.3 for different values

of gas pressure p and discharge power W . The cross sections of the obtained three-

particle correlation functions g3(r12,r23,r31) (ri j = |ri−r j|) with a fixed value of r12,

which is equal to that of the most probable interparticle spacing rmax (r12 = rmax) de-

termined by the position of the maximum of the pair correlation function g(r), are

shown in Figure 7.4 for the same discharge parameters. Also shown in this figure

are the results of calculation of the three-particle function g
sp
3 (r12,r23,r31) within su-

perposition approximation (7.7). In order to represent these functions g3(r12,r23,r31)
and g

sp
3 (r12,r23,r31) in a descriptive “two-dimensional” form convenient for compar-

ison, they were normalized to the value of the maximum of g3(r12,r23,r31): black

color corresponds to unity, and white color corresponds to g3 = g
sp
3 ≡ 0. The devia-

tion of the function g
sp
3 (r12,r23,r31) from the results of calculation of g3(r12,r23,r31),

which is given in the caption of Figure 7.4, was calculated proceeding from the rela-

tive mean-square error of superposition approximation,

δ =
1

N1/2

[

N

∑
i=1

(

g3(r12,r2i,ri1)−
g

sp
3 (r12,r2i,ri1)

g3(r12,r2i,ri1)

)2
]1/2

, (7.8)

where N is the total number of space elements dri in the neighborhood of a point

with coordinate ri, into which the dust layer being analyzed was broken up.

The pair correlation functions obtained as a result of numerical simulation of sys-

tems of particles interacting via the screened Coulomb (Yukawa) potential are shown

in Figure 7.3 for different values of the effective non-ideality parameter

Γ∗ = Q2/(T∆)(1 + κ + κ2/2)exp(−κ), (7.9)

which defines the phase state of Yukawa systems (Vaulina and Vladimirov 2002;

Vaulina et al. 2002; Vaulina and Petrov 2004), as discussed in Section 5.1. The

results of measurements of g(r) agree well with the systems being simulated with

Γ∗ ∼ 100, 38, and 18. The calculation of three-particle correlation functions and

their superposition approximations for some non-ideality parameters are illustrated

in Figure 7.5. Note the good agreement between the cross sections of three-particle

correlation functions for numerical and experimental data in the cases where similar

agreement is observed between the shapes of the pair correlation functions.

Visual analysis of the results reveals that the recorded particle structures exhibit

short-range orientational order. This is reflected in the emergence of maxima of

g3(r12,r23,r31) in the nodes of hexagonal clusters shown by dashed lines in Figures

7.4a–c. As the maximum of the pair correlation function increases (see Figure 7.3),

the magnitude of these maxima located at distances r close to rmax increases, and

new maxima arise at distances r ≃ 2rmax. This effect does not show up when the

superposition approximation g
sp
3 (r12,r23,r31) is analyzed. The formation of regular

dust clusters is observed as a result of the increase in the effective coupling param-

eter (at Γ∗ > 25) when the dynamics of the liquid system become similar to those

of a solid and can be treated within the “theory of jumps” developed for describing

strongly correlated molecular liquids (Frenkel 1976; Vaulina and Vladimirov 2002).
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  (a)                      (b)                

FIGURE 7.5

Three-particle correlation functions ggg333 (top) and superposition approximation

ggg
sssppp

333
(bottom) obtained in numerical simulations for different values of the effec-

tive coupling parameter ΓΓΓ∗∗∗: (a) ΓΓΓ∗∗∗ = 37.5, δδδ = 0.62; (b) ΓΓΓ∗∗∗ = 17.5, δδδ = 0.6.

In so doing, the orientational number (which defines the number of nearest neigh-

bors) becomes equal to the number of nearest neighbors in lattices of the crystal

type. Therefore, the particle subsystem melts with the type of its packing retained.

The majority of metals melt in a similar manner.

The results of experimental investigations of three-particle correlations can be

used for qualitative structure analysis of non-ideal systems and enable one to readily

detect the presence of clusters of different shapes (similar to the cross sections of

cubic lattices of different types) in the dust layer being analyzed (see Figure 7.4d).

The cross sections of different crystal lattices (on the face of elementary cubic cell),

as well as the functions g3(r
max,r12,r23,r31) and g

sp
3 (rmax,r12,r23,r31) for Γ∗ ∼ 400

are illustrated in Figure 7.6.

7.2.2 Pair correlation functions and phase states of the particle subsys-
tems

Pair correlation functions g(r) are most frequently employed for quantitative anal-

ysis of the phase state and space order of a particle system in plasmas. Numerical

simulation by Vaulina and Petrov (2004) reveals that, for a wide range of isotropic

pair potentials U(r), the space correlation of particles in non-ideal systems is defined

by the ratio of the second derivative U ′′ of potential at a point of mean interparticle

spacing ∆ to the particle temperature T and does not depend on friction. In systems

of particles interacting via the screened Coulomb (Yukawa) potential with κ . 6, the
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    ( )                   (b)                  (c) 

FIGURE 7.6

Cross sections of (a) crystal cubic lattice and of functions (b) ggg333 and (c) ggg
sssppp

333

calculated for these cross sections. Top row – the cross section of a bcc lattice;

bottom row – the cross section of the fcc lattice (δδδ = 0.4), which corresponds to

hexagonal arrangement of particles (δδδ = 0.8).

effective coupling parameter Γ∗ fully defines the shape of pair correlation function

g(r) from Γ∗ ∼ 1 to the crystallization point of the system, where a body centered

cubic (bcc) crystal structure is formed at Γ∗ ≃ 106 (Vaulina and Vladimirov 2002;

Vaulina et al. 2002; Vaulina and Petrov 2004). An example of pair correlation func-

tions for such systems with different parameters Γ∗ is shown in Figure 7.3. The de-

pendencies of the first maxima (g1, S1) of the pair correlation functions g(r) and the

structure factor S(q) and the positions of these maxima (r = dg1, k = dS1), as well as

of the ratio g1/gmin (here, gmin = min[g(r)] at r 6= 0), on the parameter Γ∗ are shown

in Figures 7.7–7.9 for different system parameters. An abrupt increase (jumps) in

the values of the first maxima of correlation functions g(r) and S(q) (from ∼ 2.65

to ∼ 3.1, Figure 7.7), as well as of the ratio g1/gmin (from ∼ 5 to ∼ 7, Figure 7.9),

is observed between Γ∗ ≃ 100 and Γ∗ ≃ 110, where crystallization occurs. Such

behavior is in good agreement with the well-known criterion of crystallization sug-

gested by Hansen and Verlet (1969), which defines the value of the first maximum

S1 for the liquid structure factor as being lower than 2.85, as well as with another

empirical criterion according to which the ratio of the maximal value of pair correla-

tion function to its value at the first minimum on the crystallization line of different

systems is close to ≃ 5. Because this value does not depend on the viscosity of sur-

rounding gas, this criterion agrees with the results of calculation of crystallization

of non-dissipative systems by methods of molecular dynamics, which do not take

into account the friction of particles (coefficient of friction of particles ν f r = 0) (Van

Horn 1969; Robbins et al. 1988; Meijer and Frenkel 1991; Hamaguchi et al. 1997).
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Γ*

FIGURE 7.7

The maximums of the structure factor (SSS111, fine line) and the pair correlation

function (ggg111, bold line) as a function of the effective coupling parameter ΓΓΓ∗∗∗

for dissipative Yukawa systems (Vaulina and Vladimirov 2002; Vaulina et al.

2002; Vaulina and Petrov 2004), as well as for non-dissipative systems (ννν fff rrr =

0): solid triangles indicate the values of ggg111 for Yukawa systems (Robbins et

al. 1988); open triangles correspond to the values of ggg111 in the one-component

plasma (OCP) model (Ichimaru 1982); circles show the values of SSS111 in the OCP

model (Ichimaru 1982). Horizontal dashed line corresponds to SSS111 = 2.85.

Γ*

FIGURE 7.8

The relative position kkkSSS111///kkk∆∆∆ (1, fine line) of SSS111 and the relative position dddggg111///∆∆∆
(2, bold line) of ggg111 as functions of the effective coupling parameter ΓΓΓ∗∗∗ (here kkk∆∆∆ =

2πππ///∆∆∆). Dashed lines indicate the positions of maximum of correlation functions

for a bcc lattice: 3, dddggg111 = (((333
√

333///(((444nnnddd))))))
111///333

; 4, kkkSSS111 = 2πππ(((
√

222nnnddd)))
111///333

.
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g g

Γ

FIGURE 7.9

The ratio ggg111///gggmmmiiinnn as a function of the effective coupling parameter ΓΓΓ∗∗∗.

7.3 Transport properties of complex plasma: Numerical study

7.3.1 Transport of particles in non-ideal media

The problems associated with transport processes in dissipative systems of interact-

ing particles are of significant interest in various fields of science and engineering

(like hydrodynamics, plasma physics, medicine, physics and chemistry of polymers,

etc.) (Cummins and Pike 1974; Balescu 1975; Frenkel 1976; Ovchinnikov et al.

1989; March and Tosi 2002). The major problem encountered in studying the phys-

ical properties of such systems is associated with the absence of an analytical theory

of liquid that would be capable of explaining its thermodynamic properties, giving

the equation of state, describing the effects of heat and mass transfer, etc. As was

already mentioned, two basic approaches are employed at present in developing the

theory of highly non-ideal systems and approximate models for the description of the

liquid state of matter. The first approach involves the complete statistical calculation

of the properties of non-ideal media using model data on the energy of particle inter-

action (Balescu 1975; Frenkel 1976; March and Tosi 2002). The second approach is

the semiempirical method of determining the correlation of the parameters of liquid

with one another and with the properties of crystals, which is based on analogies

between the crystalline and liquid states of matter (Young and Alder 1971; March

and Tosi 2002).

The semiempirical method is based on the so-called “theory of jumps”. This the-

ory is based on the assumption that the molecules of liquid are in an equilibrium

(“settled”) state for a period of time required to acquire an energy (activation energy)

sufficient to overcome the potential barriers related to the the presence of the neigh-

boring molecules and to move (“jump”) to a new “settled” state. Therefore, one can
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assume that a diffusing (active) particle is capable to migrate by performing a jump

to one of the equivalent positions in an imaginary lattice. The random walk of an

active particle over the “lattice” sites after a large number of jumps is described by

equations of macroscopic diffusion (with some time-independent coefficient D), i.e.,

Fick’s laws are valid (Cummins and Pike 1974; Ovchinnikov et al. 1989). However,

the existing level of experimental physics dictates the need for going beyond the

limits of diffusion approximation. In particular, the description within macroscopic

kinetics may turn out to be insufficient for analyzing the processes occurring on short

time scales. The investigation of processes of mass transfer over short times of obser-

vation is of special importance from the standpoint of studying fast processes, such

as the propagation of shock waves, pulsed action, or the motion of the front of chem-

ical transformations in condensed media (Cummins and Pike 1974; Ovchinnikov et

al. 1989), as well as from the standpoint of analyzing the transport characteristics

of highly dissipative (ξ ≫ 1) media, such as colloidal solutions, plasma of combus-

tion products, nuclear-induced plasma at atmospheric pressures (Fortov et al. 1996,

1999), where the correct measurement of diffusion coefficients of particles calls for

long-term experiments.

The use of hydrodynamic approaches results in a successful description of par-

ticle transport only in the case of short-range interactions. When the interparticle

interactions are not as weak as in the case of gases, one fails to construct a correct

kinetic equation. The fundamental theories of transport are based on the fact that

the particle number density of each component of the system under consideration

is a hydrodynamic variable which slowly varies in space and time. Such systems

are in the state of statistical equilibrium and can be characterized by a certain set

of physical parameters, for example, concentration, kinetic temperature, and pres-

sure, which can experience only slight fluctuations around their average equilibrium

values. In statistical physics, such a state is described using various Gibbs distribu-

tions depending on the type of contact of the system with environment (thermostat),

which prohibits or allows the exchange of energy or particles with this environment;

Nyquist formulas, Green functions, and the fluctuation-dissipative theorem are used

for analyzing equilibrium fluctuations and transport coefficients (Young and Alder

1971; Cummins and Pike 1974; Balescu 1975; Frenkel 1976; Landau and Lifshitz

1980; Ovchinnikov et al. 1989; Lichtenberg and Lieberman 1992; Zhakhovskii et

al. 1997; Vaulina et al. 1999; March and Tosi 2002).

The transport coefficients (such as the coefficients of diffusion D, thermal conduc-

tivity χ , viscosity η) characterize the thermodynamic state of the system and reflect

the nature of interparticle interaction. For gases the coefficients of self-diffusion,

kinematical viscosity ν = η/ρ , and thermal diffusivity θ = χ/(ρcp) are on the

same order of magnitude and can be approximated by analytical expressions (Frenkel

1976; March and Tosi 2002). Here ρ = mdnd , and cp is the specific heat capacity

under constant pressure. The presence of such relations for the liquid state of matter

enables one to use the known hydrodynamic models for analyzing the propagation of

waves, shear flows, formation of vortexes and various instabilities in highly non-ideal

media.

The numerical simulation of transfer processes in simple monatomic liquids with
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a wide range of interaction potentials reveals that, when the particle mean free path

ld−d is comparable to the mean interparticle distance ∆, the transport coefficients can

be approximated by the following relations (March and Tosi 2002):

D ≃ 0.6∆vTd
exp(−0.8s), (7.10)

η ≃ 0.2ρ∆vTd
exp(0.8s), (7.11)

χ ≃ (1.5kB/md)∆vTd
exp(0.5s). (7.12)

Here, vTd
= (Td/md)

1/2, and s is proportional to configurational entropy.

For highly correlated liquids (ld−d ≪ ∆), the coefficients D ∝ exp(−W/Td) and

η ∝ exp(W/Td) acquire an exponential dependence on inverse temperature. Here, W

is the activation energy (Young and Alder 1971; Frenkel 1976; March and Tosi 2002).

Simulations of transport processes in systems with isotropic pair potentials reveal

that the correlation between the coefficients D and η is independent of the degree

of correlation between the particles and obeys the Stokes formula, η ≃ Td/(8∆D)
(Young and Alder 1971; March and Tosi 2002). One can assume that this agreement

is observed for the coefficients of diffusion and thermal conductivity of such liquids.

Then, in view of Equations (7.10) and (7.12), the coefficient θ = χ/(ρcp) can be

written as (Fortov et al. 2005b)

θ ≃ 1.5kB

mdcp

∆Vt

(

0.6∆vTd

D

)5/8

, (7.13)

where kB is the Boltzmann constant.

The main difference between the properties of simple liquids and complex plas-

mas is associated with the presence of dissipation, mostly due to particle–neutral

collisions. In the limit of very low dissipation the results of simulations of the dy-

namics of particles in plasmas and simple liquids should coincide. The normalized

coefficients of diffusion D∗(Γ∗) = D/(ω∗∆2) and viscosity η∗(Γ∗) = η/(ω∗∆2) for

this case are shown in Figure 7.10 for the simulated systems of particles interact-

ing via the screened Coulomb (Yukawa) potential. Here ω∗ =
√

TdΓ∗/π∆2md is the

effective frequency associated with the interacting particle component. Also shown

in Figure 7.10 is the normalized coefficient of thermal diffusivity θ ∗ = θ/(ω∗∆2)
determined by the data of simulation of particle diffusion using relation (7.14) of the

following section for cp = 2.5kB/md .

7.3.2 Diffusivity

The diffusion of particles is the main process of mass transfer, which defines the en-

ergy loss (dissipation) in systems under investigation. In the case of small deviations

of such a system from statistical equilibrium, the diffusion coefficient D of parti-

cles is described by the relation which is a particular case of Green–Kubo formulas

(Young and Alder 1971; Cummins and Pike 1974; March and Tosi 2002),

D =
1

3

∫ ∞

0
〈V (0)V (t)〉dt, (7.14)
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FIGURE 7.10

Normalized transport coefficients DDD∗∗∗ (1) obtained by Ohta and Hamaguchi

(2000), θθθ ∗∗∗ (2) calculated from Equation (7.13), and ννν∗∗∗ (3) obtained by Saigo

and Hamaguchi (2002) as functions of the effective coupling parameter ΓΓΓ∗∗∗ for

non-dissipative Yukawa systems.

where 〈V (0)V (t)〉 is the autocorrelation function of particle velocities V , and t is

time. For investigating the evolution of the process of mass transfer D(t), the auto-

correlator of velocities 〈V (0)V (t)〉 is integrated for a finite interval of time,

D(t) =
1

3

∫ t

0
〈V (0)V (t)〉dt. (7.15)

The diffusion coefficient of interacting particles can be further obtained from particle

displacements at t → ∞,

DL = lim
t→∞

D(t), (7.16)

where the function D(t) can be written as

D(t) = 〈〈(∆r)2〉N〉t . (7.17)

Here, ∆r = ∆r(t) is the displacement of an individual particle during time t, 〈...〉N

denotes the averaging over an ensemble consisting of N particles, and 〈...〉t denotes

the averaging over all periods of time of duration t during the total time of mea-

surements. The need for the last is defined by the requirement of correct determi-

nation of the mean characteristics of strongly correlated liquid systems which are

not ergodic (in accordance with the “theory of jumps”). The dynamical behavior

of systems of particles interacting via screened Coulomb (Yukawa) potential was
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numerically investigated by Vaulina and Vladimirov (2002). It was observed that

〈[∆r(t)]2〉N ≃ 〈〈[∆r(t)]2〉N〉t only for the case of weakly correlated systems with the

effective coupling parameter Γ∗ . 40.

The “jumps” observed in the systems simulated are illustrated in Figure 7.11

which shows the difference between the ensemble averaging ∆N = 〈[∆r(t)]2〉N/∆
and the time averaging ∆t

N = 〈〈[∆r(t)]2〉N〉t/∆ in the vicinity of the crystallization

line.

Note that in determining the diffusion coefficient of dust particles in Equation

(7.16), the limit t → ∞ is understood in the sense that the time t is long compared to

other microscopic time scales of the system, but it is short compared to the character-

istic time of diffusion through a distance of the order of the system size or to a time

during which the parameters of dust plasma can significantly vary in the experiment.

Because of interaction between particles, the value of D turns out to be lower than

that of the Brownian coefficient of diffusion for the same particles in the absence

of interaction, D0 = Td/(mdν f r). In the limiting case of crystal structure we have

D → 0, because the displacements of particles located in the crystal lattice sites are

limited. Therefore, the ratio D/D0 in dissipative systems of interacting particles is

largely reflective of the nature and force of interaction between particles.

Because no assumptions of the pattern of thermal motion are made in deriving re-

lations (7.14)–(7.17), these relations are valid for gases, liquids and solids. However,

in the majority of cases, the calculation of diffusion coefficient using these relations

N
t

FIGURE 7.11

Illustration of “jumps” in simulations of Yukawa systems (bold: ∆∆∆ttt
NNN line for ΓΓΓ∗∗∗

= 92).
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does not permit analytical solutions. The simple relation D ≡ D0 = Td/(mdν f r),
which is known as the Einstein relation, can be derived only for non-interacting

(“Brownian”) particles. Virial expansions or relations based on analogies with criti-

cal phenomena in liquids were used to include the forces of interparticle interaction

in processes of thermal diffusion of particles (Cummins and Pike 1974; Donko and

Nyiri 2000; Hofman et al. 2000; Ohta and Hamaguchi 2000). Within the semiempiri-

cal “jumps theory” the analytical relation for the coefficient of diffusion of molecules

in liquid can be written as (Frenkel 1976; March and Tosi 2002)

D =
∆2

2mτ0

exp(−W/Td), (7.18)

where ∆ is the average spacing between molecules, m is the molecular mass, τ0 is

the characteristic time defining the frequency of transitions of molecules from one

“settled” state to another, and W is the energy barrier the particle has to overcome

during these transitions. The exponential dependence of D on temperature T of

molecular liquids is supported by experimental results.

Vaulina and Vladimirov (2002), Vaulina and Petrov (2004), and Vaulina et al.

(2002) proposed that a similar temperature dependence for the coefficient of ther-

mal diffusion D of interacting particles in plasmas can hold. They suggested that

the behavior of the diffusion coefficient of particles forming a dissipative Yukawa

system is governed by the effective coupling parameter Γ∗ and the scaling param-

eter ζ = ω∗/ν f r. For highly non-ideal liquid structures (Γ∗ > 50), Vaulina and

Vladimirov (2002) and Vaulina and Petrov (2004) proposed the following approx-

imate expression

D =
TdΓ∗

12πmdν f r(1 +ζ )
exp(−cΓ∗/Γ∗

M), (7.19)

where Γ∗
M ≃ 106 is the melting (crystallization) point; c = 2.9 for ζ ≥ 0.41 and

c = 3.15 for ζ ≤ 0.14.

For systems with screening parameter κ . 6, the error of approximation of the

results of calculation of D using formula (7.19) does not exceed 3% for Γ∗ & 50.

The error increases up to 7–13% when Γ∗ decreases to ∼ 40. For Γ∗ ≃ 30, this error

is approximately 25–30%. The results of simulation of the dynamics of particles

in dissipative (ν f r 6= 0) and non-dissipative (ν f r ≡ 0, ζ → ∞) systems are shown

in Figure 7.12 (Ohta and Hamaguchi 2000; Vaulina and Vladimirov 2002). These

results indicate that the normalized value of the diffusion coefficient D∗ ≡ D(ν f r +
ω∗)md/Td is a universal function of the effective coupling parameter Γ∗ in the range

5 . Γ∗ . 106, provided κ . 6 (i.e., when bcc lattice is formed). As the value of Γ∗

approaches that at the melting point of the system (Γ∗ → Γ∗
M ≃ 106), the value of

diffusion coefficient experiences a jump (decreases by several orders of magnitude

in the narrow range of 102 ≤ Γ∗ ≤ 106). This jump is an indicator of the first-order

phase transition (crystallization). In addition, it follows from Figure 7.12 that the

ratio D/D0 is fully defined by the parameters Γ∗ and ζ and weakly depends on κ
alone as long as κ . 6. Moreover, if the dissipation is high enough (ζ ≪ 1), D/D0

does not depend on ζ either. On the other hand, for ζ ≫ 1, the numerical results tend
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FIGURE 7.12

The normalized function DDD∗∗∗ (black lines), averaged over the results of numeri-

cal simulation of Vaulina and Vladimirov (2002), as a function of parameter ΓΓΓ∗∗∗,

and the approximation of this dependence (gray lines) using relation (7.19) for

(1) ζζζ ≥≥≥ 0.41 and (2) ζζζ ≥≥≥ 0.14; and the value of DDD∗∗∗ for Yukawa non-dissipative

systems (ζζζ →→→ ∞∞∞) (Ohta and Hamaguchi 2000): open circles, κκκ = 0.16; solid cir-

cles, κκκ = 0.48; open squares, κκκ = 0.97 ; grey squares, κκκ = 1.61; solid squares, κκκ
= 2.26; open triangles, κκκ = 3.2; solid triangles, κκκ = 4.8; dotted line, κκκ = 8.

to the results obtained for non-dissipative Yukawa systems by Ohta and Hamaguchi

(2000). Therefore, the dynamic criterion of melting (Löwen et al. 1993), according

to which D/D0 ≃ 0.1 at crystallization, turns out to be valid for strongly dissipative

systems. However, it finds no confirmation in the case of weakly dissipative systems

(ζ ≫ 1). As the screening parameter increases to κ & 6, the type of lattice of the

system in its solid state changes to the fcc lattice (Vaulina et al. 2002), and significant

differences are observed in the behavior of the diffusion coefficient compared to the

case κ . 6 (see Figure 7.12).

Relation (7.19) enables one to determine the effective coupling parameter Γ∗ from

the results of measurements of the mean interparticle spacing, temperature, and dif-

fusion coefficient of dust particles in liquid systems. Numerical simulation data can

be used for the diagnostics of weakly correlated structures with Γ∗ . 50 (see Figure

7.12). Agreement between the transport characteristics of the simulated liquid-like

Yukawa systems and experimentally obtained plasma–particle structures was exper-

imentally verified in a number of complex plasma studies in gas discharges of dif-
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Experimentally obtained by Vaulina et al. (2003) values of gggmmmaaaxxx as a function of

the effective coupling parameter ΓΓΓ∗∗∗ calculated from the results of measurements

of diffusion of dust particles in a dc discharge: Diamonds correspond to ground-

based conditions, triangles, microgravity experiments onboard Mir station. In

addition, results obtained in an rf discharge in ground-based conditions are

shown by circles. The solid line indicates numerical calculation of the function

gggmmmaaaxxx(ΓΓΓ∗∗∗) for Yukawa systems.

ferent types (Vaulina et al. 2003). The dependence of the maximum gmax of the

measured pair correlation functions g(r) on the value of the effective coupling pa-

rameter obtained using the results of measurements of the diffusion coefficients and

temperatures of particle systems is shown in Figure 7.13. Reasonable agreement is

observed in all cases investigated. However, it must be emphasized once again that,

for a number of reasons (such as plasma anisotropy, long-range interactions includ-

ing the shadowing effects, the effect of external forces and/or boundary conditions,

variability of the particle charge), the direct application of results of numerical simu-

lation of three-dimensional Yukawa systems for analyzing the experimental results is

mainly limited by the conditions of microgravitation or by rather small particle sizes

in the laboratory conditions.

7.3.3 Viscosity

Viscosity is a transport phenomenon which defines the dissipation of energy upon

deformation of the medium. The factor of proportionality between the rate of shear

strain and the arising shear stress (shear viscosity coefficient η) can be obtained

using the Green–Kubo relation

η =
nd

TN

∫ ∞

0
〈Jxy(0)Jxy(t)〉dt, (7.20)
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FIGURE 7.14

The normalized viscosity coefficient ηηη∗∗∗ as a function of the effective coupling

parameter ΓΓΓ∗∗∗ obtained from Equation (7.22) (bold lines) and from Equation

(7.23) (fine lines) for: (1) ζζζ ≤≤≤ 0.14, (2) ζζζ ≤≤≤ 0.41 in dissipative Yukawa systems.

Symbols show the function ηηη∗∗∗(((ΓΓΓ∗∗∗))) for non-dissipative systems (ννν fff rrr = 0): Solid

squares (Wallenborn and Baus 1978) and open squares (Donko and Nyiri 2000)

represent calculations for the OCP model. Other symbols correspond to the

Yukawa model (Saigo and Hamaguchi 2002) with different screening parame-

ters: Open circles, κκκ = 0.16; grey circles, κκκ = 0.81; solid circles, κκκ = 1.61; open

triangles, κκκ = 3.2; solid triangles, κκκ = 4.8.

where 〈Jxy(0)Jxy(t)〉 is the autocorrelation function of momentum fluxes Jxy. In the

case of highly non-ideal media, this function can be obtained by numerical simula-

tion of the dynamics of interacting particles. The results of numerical calculations of

coefficient η in the Yukawa model (for ζ = 0.16−4.8) (Saigo and Hamaguchi 2002)

and in the OCP model (Wallenborn and Baus 1978; Ohta and Hamaguchi 2000) for

the case of vanishing viscosity (ζ → ∞, ν f r → 0) are presented in Figure 7.14, which

shows the dimensionless coefficient η/η0, where η0 = Γ∗
∆2

√

πTdmd
Γ∗

M
. One can readily

see that the values of viscosity obtained in these studies are defined by the value of

effective coupling parameter within the numerical error estimated by the authors to

be 20% or even higher.

The Stokes relation is often employed for analyzing the correlation between the

coefficients of viscosity and self-diffusion in liquid metals and dielectrics in the
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vicinity of their crystallization point (Young and Alder 1971; March and Tosi 2002),

η =
Td

6πDaeff

. (7.21)

Here, aeff is some effective radius of a spherical molecule. The complexity of ver-

ifying this relation for a wide range of parameters of liquid state of matter largely

consists in that the measurements of the coefficient of self-diffusion in liquids often

give only the order of its magnitude (in view of the presently employed spectrometric

procedures). Another difficulty consists in that aeff in real liquids may appreciably

depend on temperature or pressure. Within the theory of “jumps”, the simultaneous

solution of Equations (7.18) and (7.21) produces the well-known Andrade semiem-

pirical formula η ∝ f (T )exp(W/T ), where W is the activation energy of jumps and

f (T ) is some function which exhibits a weaker temperature dependence than the

exponent. This formula is the main analytical relation used for the approximation

of the temperature dependence of viscosity of liquids over rather short intervals of

variation of their temperatures.

A similar correlation between transport coefficients was obtained by way of empir-

ical fitting the numerically data (in a wide range of Γ∗ between Γ∗ ≃ 1 and Γ∗ ≃ 100)

for the coefficients D and η in Yukawa systems (Vaulina and Petrov 2004),

η ≃ Td

8D∆
. (7.22)

In so doing, it was found that aeff in the considered systems is almost constant:

aeff(Td)≃ const. The normalized value of viscosity η∗ = η/[η0(1+ζ−1)], obtained

using formula (7.22) and data of calculation of the diffusion coefficients of particles

for weakly dissipative systems (ζ ≥ 0.41) is shown in Figure 7.14 (curve 1). (Note

that η∗ = η/η0 for ζ−1 = 0.) The mean-square deviation of this quantity from the

data of direct numerical calculation of coefficients of viscosity (Wallenborn and Baus

1978; Donko and Nyiri 2000; Saigo and Hamaguchi 2002) is within the numerical

errors (∼20%). Curve 2 in Figure 7.14 corresponds to the case of highly dissipative

systems (ζ ≤ 0.14), which is often realized in experiments with complex plasmas.

An analytical approximation of shear viscosity for strongly correlated particle struc-

tures (Γ∗ > 50) can be written as

η ≃ 4.65(1 + ζ )ν f rmd

Γ∗∆
exp

(

c
Γ∗

Γ∗
M

)

, (7.23)

where c = 2.9 for ζ ≥ 0.41 and c = 3.15 for ζ ≤ 0.14 (see Figure 7.14).

Finally we note that experimental analysis of transport coefficients (diffusion and

viscosity) in liquid-like complex plasma structures, which are formed in the sheath

area of an rf discharge in a wide range of complex plasma parameters, reveals good

agreement with the results of numerical investigations by Vaulina et al. (2003,

2004b, 2008).
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7.4 Complex plasmas in narrow channels

7.4.1 2D complex plasmas in narrow channels

One of the important problems in the physics already mentioned in Chapter 5 is

the behavior of micro- and nanoparticles in narrow channels when the interparticle

distance is comparable with the channel width; in this case, the effect of the walls on

the state of the particle system can be very important (see, e.g., Teng et al. 2003).

The features of the flow of charged fluids in capillaries (Deegan et al. 1997), the

investigation of confinement-induced phase transitions (see, e.g., Christenson 2001;

Alba-Simionesco 2006), the physics of nanofluids (Pozhar 2000), the penetrability

of ion channels in biophysics (Doyle et al. 1998), and the effect of the confinement

on the state of granulated media (see, e.g., Clerc et al. 2008) are all among problems

for which investigations of complex plasmas can be very informative.

Due to the fast diffusion of electrons on the walls of the discharge chamber, the

central region of the discharge is positively charged and is a potential well for nega-

tively charged particles. The profile of the confining potential (confinement) Φc near

the center can be considered as parabolic,

Φc(x) ∝ (x− xc)
2, (7.24)

where xc is the center of the discharge region. The confinement was measured by

Konopka et al. (2000) who showed that the confinement is close to the parabolic

shape in the central discharge region. The electric field in the near-electrode region

of the discharge increases much more strongly than in the bulk, and the confinement

is close to the hard wall.

The boundaries-induced effects are usually insignificant in the investigations of a

two-dimensional complex plasma, because large particle ensembles (Nd > 104) with

close longitudinal (Lx) and transverse (Ly) spatial scales are usually considered. In

this case, the effect of the Nb boundary dust particles is small: Nb ∼ Nd(∆/Lx,y) ∝√
Nd ≪ Nd , where ∆ is the mean interparticle distance [∆ =

√

(LxLy)/Nd]. Usually,

in the experiments with complex plasmas, ∆ ∼ 10−2 cm and Lx, Ly ∼1 cm.

Firstly, let’s consider crystallization of 2D complex plasmas in narrow channels

(Ly ≪ Lx) whose width is comparable with the interparticle distance (Ly ∼ ∆) (Klu-

mov and Morfill 2007). In this case, the effect of the boundary particles can become

dominant since Nb ∝ Nd(∆/Ly) ∼ Nd .

We discuss here the impact of the confinement potential on the crystallization

properties and local order of the particle component. For this reason, we consider

a complex plasma which is in the strongly coupled state. This means that the non-

ideality (coupling) parameter of the system of charged particles in plasmas is

Γs ≡ (Q2/Td∆)exp(−κ) > 1, (7.25)

where Td is the kinetic temperature of the particle component and κ = ∆/λD is the

screening parameter. Note that here the coupling parameter Γs is defined as the actual
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strength of electric interaction at the mean interparticle separation normalized to the

particles kinetic temperature.

It is known that two-dimensional Yukawa systems (e.g., 2D plasma crystals) with

Γs ≫ 1 and moderate screening parameter values (κ ∼ 1) have a hexagonal crystal

lattice. Thus, for 2D Yukawa systems we define the local order as the ratio of the

six-fold cells to the total number of particles.

The behavior of an ensemble of the particles is numerically simulated by the

molecular dynamics (MD) method. For simplicity, it is assumed that all the par-

ticles have the same charge, |Q| ∼ 3×103e, and the pair interaction between the dust

particles is described by the Debye–Hückel (Yukawa) potential. The equations of

particle motion

mr̈i = −Q∇Φc −Q∑∇φ −mγ ṙi + Li (7.26)

are numerically solved for N = 400 particles in the two-dimensional geometry (pla-

nar monolayer). The terms on the right-hand side of equations (7.26) describe the

interaction of the particles with the confinement potential Φc, electrostatic interac-

tion between the particles, the drag of the dust particles due to collisions with neutral

atoms and molecules of the buffer gas (neutral drag), and the random Langevin force

Li (thermal noise induced by neutral particles), which is determined from the rela-

tion:

〈Li(t)L j(t + τ)〉 = 2γmkBδi jδ (τ) (7.27)

under the condition

〈Li(t)〉 = 0. (7.28)

For 2D systems, the periodic boundary conditions are imposed on the side edges

(x = {0,Lx}). In the transverse direction, the particles are confined by the con-

finement potential (y = {0,Ly}, which is either a parabolic potential, Φc(y) ∝ (y−
Ly/2)2, or a hard wall potential, Φc(y) ∝ exp[(y−Ly)/∆w] at y > Ly and Φc(y) ∝
exp(−y/∆w) for y < 0, where ∆w is a stiffness of the hard wall potential. In the

simulations described here a value of ∆w ≃ ∆/3) was used.

Figure 7.15 shows the results of the MD simulations of the simplest 1D Yukawa

system, a chain of 20 particles for the parabolic and hard wall confinements. The

qualitative difference between the equilibrated positions for these types of confine-

ments is clearly seen: for the parabolic potential, the interparticle distance ∆ is min-

imal in the center of the system and increases near the boundaries. In the case of the

hard wall, the interparticle distance for a given parameter κ ≃ 2 is nearly the same

in the bulk and decreases noticeably only near the boundaries. Thus, by varying

the confinement potential, one can change the particle density near the boundaries

and, correspondingly, the density of the defects appearing in the crystal lattice due to

the presence of the boundary. The results of the 2D MD simulations of the Yukawa

system presented below confirm this expectations.

In the 2D case, initially, the particles with the charge Q are randomly distributed

in the two-dimensional space (a rectangle with the sides Lx and Ly) with the initial

value N6/Nd < 0.5 at given values of the neutral gas temperature Tn and screening

parameter κ , which correspond to a certain coupling parameter Γs. When simulat-

ing the channels with different thicknesses, the area of the system, Lx ×Ly, and the
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FIGURE 7.15

Impact of the elastic hard wall (a) and parabolic (b) confinements on the evo-

lution of a one-dimensional chain of particles interacting via Yukawa potential.

The xxx−−− ttt diagrams for 20 particles with the size 2aaa = 1 µµµm are presented. Ini-

tially, the particles are randomly distributed over the space LLL = 1 cm. The neu-

tral gas density is ρρρggg ∼∼∼ 111000−−−777 g/cm3, the particle charge is |||QQQ||| = 3×××111000333eee, and the

screening length is λλλ D = 1 mm. It is seen that the interparticle distance ∆∆∆ near

the system boundaries in the steady-state decreases in the case (a) and increases

in the case (b).

number of particles, Nd are conserved. The method of establishing the steady state

is used to determine the quasi-equilibrium configuration of the particles, for which

the Delaunay triangulation and Voronoi cell method are used to determine the near-

est neighbors for each particle. Using these data, the ratio N6/Nd characterizing the

local order is calculated. Some results of the molecular dynamics simulation of such

a system of particles for various Γs and κ values are presented and discussed below.

The mean value N6/Nd , characterizing the local order in the system with the

parabolic and hard wall confinements is shown in Figure 7.16 as a function of Γs

at κ = 1 for different system aspect ratios Lx/Ly. The local order is determined by

using 50 sequential snapshots of the particle positions in the steady-state stage in the

system (t ≫ γ−1), and the time interval δ t between the neighboring frames is chosen

from the condition δ t ≥ γ−1 in order to reduce the influence of the time correlations.

Figure 7.16 also shows the snapshot of the particle positions in both confinement

potentials for close parameters Γs ≃ 100 and Delaunay triangulations convenient for
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FIGURE 7.16

Relative number of particles having six nearest neighbors NNN666///NNNddd versus the

coupling parameter ΓΓΓsss for the hard wall (squares) and parabolic confinements

(circles) at different aspect ratios of a 2D Yukawa system.

visualizing the nearest neighbors of the particles and the presence of the defects.

In agreement with the expectations for such a system when Lx/∆, Ly/∆ ≫ 1 (left

panel of Figure 7.16) the effect of the boundaries is small and both confinements

provide close dependencies of N6/Nd on Γs. Note that value of N6/Nd increases

sharply with Γs at Γs ≃ 30–40 and is saturated at the level 〈N6/Nd〉 ≃ 1 for Γs ≥
102. The sharp increase of N6/Nd corresponds to the well-known liquid–solid phase

transition (see, e.g., Fortov et al. 2005a). Figure 7.16 also shows 〈N6/Nd〉 versus Γs

for the parabolic confinement at κ = 0.5 (dashed line) and κ = 2 (dash-dotted line).

This plot shows that the liquid–solid transition region is shifted toward smaller Γs

when the screening parameter κ increases.

Similar dependencies for smaller channel widths Ly/∆ ∼ 3 are presented in Figure

7.16 (right panel). In this case, the liquid–solid transition is less pronounced than for

the case of Ly/∆≫ 1. A significant decrease in the fraction of “crystallized” particles

〈N6/Nd〉 for Γs ≫ 1 is observed for the hard wall confinement. Such a result can be

explained by the fact that fast crystallization of the particles occurs near the wall. In

this case, the density of the particles near the wall is higher and, correspondingly,

the interparticle distance is smaller than that in the bulk. For this reason, the rigid

wall induces defects, which are usually pairs consisting of the particles with five and

seven nearest neighbors (five- and seven-fold cells). This effect disappears in the

case of the parabolic confinement, because the particle density near the boundary

is lower than that in the bulk; hence, the defect number is much smaller than this

number for the hard wall confinement for the same values of Γs and κ .
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FIGURE 7.17

Geometry of the considered 3D problem. Initially NNNddd = 16,000 particles with

the charge QQQ and interacting via Yukawa potential are randomly distributed in

the space between two plates. The confinement limits the zzz coordinate of the

particle (0 ≤≤≤ zzz ≤≤≤ LLLzzz), whereas in the (xxx,,,yyy) plane, the particles are located in the

region LLLxxx ×××LLLyyy: 000 ≤≤≤ xxx,,, yyy ≤≤≤ LLLxxx,,,yyy.

7.4.2 3D complex plasmas in narrow channels

The 3D case was investigated by Klumov and Morfill (2008) for Nd = 16,000 parti-

cles, which are randomly distributed in a narrow channel at the initial time. Figure

7.17 shows the geometry of the 3D problem. The confinement limits the position of

the particles along the z axis (0 ≤ z ≤ Lz), whereas in the (x,y) plane, the particles

are located in the region (0 ≤ x,y ≤ Lx,y). The periodic boundary conditions are used

on the lateral edges: (x = {0,Lx}, y = {0,Ly}).

As discussed in Section 5.1, in an infinite system of particles interacting via the

Yukawa potential, the solid state in equilibrium can have only two types of crys-

tal lattices: face-centered cubic (fcc) for large values of κ and body-centered cu-

bic (bcc) for small κ . The hexagonal close-packed (hcp) phase can be formed in

non-equilibrium Yukawa systems (see, e.g., Klumov et al. 2006; Rubin-Zuzic et

al. 2006). This is due to the closeness of the energies required for the formation of

the hcp and fcc phases (Hamaguchi et al. 1997). To identify the fcc/hcp/bcc lattice

types, it is sufficient to know the positions of three nearest crystal layers A, B, and C.

In this case, the type of the appearing crystal lattice can be determined visually. For

this reason, we consider the behavior of a Yukawa system consisting of three layers.
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hcp

bcc

ico

FIGURE 7.18

(See color insert following page 242). Crystallized Yukawa system in the narrow

channel for the parabolic confinement. The particles form three layers A, B,

and C. The particles of layers A, B, and C are marked by blue, green, and red,

respectively. It is seen that layer C is almost completely screened by layer A,

which means that the hcp lattice is dominant in that case. The bcc phase is

also seen. A small number of clusters (∼∼∼1%) have icosahedral-like (fivefold)

symmetry.

Some simulation results for the Yukawa system are presented in Figures 7.18 and

7.19 for the parabolic and hard wall confinements, respectively. Here the positions of

the particles in the (x,y) plane are shown (all three layers of the particles are given).

The calculations were performed with the following system parameters: the size and

charge of the particles were a ≃ 1 µm and |Q|= 3×103e, respectively; κ = 2–3; and

the neutral gas density was ρg ∼ 10−7 g cm−3.

Both figures demonstrate the steady-state crystalline phase of the Yukawa system

at Γs ∼ 104. In both figures, the particles of a certain layer are shown by a cer-

tain color (particles are color-coded by z-coordinate). It is seen that the parabolic

confinement leads primarily to the formation of crystallites with the ABA layer ar-

rangement (the third layer is screened by the first layer), which is typical for the hcp

or bcc phases. A relatively small number of clusters (∼ 1%) have icosahedral (ico)
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hcp

fcc

QC

QC

FIGURE 7.19

(See color insert following page 242). Crystallization of the particles in the nar-

row channel for the hard wall confinement. The domains having hcp and fcc

lattice types are clearly seen. A significant number of clusters have a quasi-

crystalline (QC) phase. The inset shows the unit cell of the QC phase, which is

a distorted hcp/fcc unit cell.

symmetry. Note that this lattice type is induced by the boundaries of the system. The

regions with the ABA (hcp/bcc phases) and ABC (particles of three layers are seen)

layer arrangements are clearly seen in Figure 7.19 for the hard wall confinement. A

significant number of dust particles have fcc and hcp lattice types.

The appearance of a new quasi-crystalline (QC) phase for the hard wall confine-

ment is very interesting. The unit cell of this phase is shown in the inset in Figure

7.19 and is the hcp/fcc phase distorted by the rotation of the upper and lower layers

with respect to the middle layer.

The compression of the considered three-layer system along the z-axis (or the

decrease the screening parameter κ) results in bifurcation of the system to two-layer

systems at definite “wall separation”. Similarly, the increase of “wall separation”

results in bifurcation to stable four-layer system for both types of confinement. So

the stable three-layer system can exist only in a rather narrow range of parameters

(particle charge, screening length, screening parameter). Figure 7.20 shows stable
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FIGURE 7.20

(See color insert following page 242). Crystallization of the particles in the nar-

row channel for the parabolic (a, b) and hard wall (c, d) confinements. Parti-

cles are color-coded by zzz-coordinate. Stable three-layers configurations of the

Yukawa system (a, c) are presented. These systems close to the two-layer config-

uration (b, d) are also shown. The insets show pair correlation function ggg(((rrr///∆∆∆)))
for each layer, including the central one (solid line).

configurations of the confined Yukawa systems at different “wall separations”. It is

clearly seen that the phase state of the crystallized systems changes significantly with

“wall separation”, which means that we can control phase state of such systems via

decrease or increase of the κ value or the “wall separation”. Figure 7.21 presents

the evolution of Yukawa systems at different “wall separations”. Relative density

of particles is presented for both parabolic (top panel) and hard wall (bottom panel)

types of confinement.

Figure 7.22 shows the particle density distribution and the total number of particles

in each layer for two types of confinement. It is seen that, as in the two-dimensional

case, the density of the particles for the hard wall confinement near the boundaries is
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FIGURE 7.21

Evolution of the Yukawa system at different “wall separations”. Relative den-

sity of particles is shown for both parabolic (top panel) and hard wall (bottom

panel) types of confinement.

higher than that in the center. The relation is opposite for the parabolic confinement.

Such a density distribution is the main cause of the indicated features of the Yukawa

system crystallization in narrow channels.

For the case of the hard wall confinement, the particles are first crystallized near
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FIGURE 7.22

Relative density of the particles ρρρNNN versus dimensionless coordinate z̃zz ≡≡≡ zzz///LLLzzz for

parabolic (aaa) and hard wall (bbb) confinements for different “wall separations”.

The total number of particles in each layer NNN///NNNtttooottt(((z̃zz))) as a function of z̃zz are also

shown for stable three-layers systems (squares) and systems close to bifurcation

points: transition (3-2) (up triangles) and (4-3) (down triangles), respectively.

the boundary (z = 0, Lz), whereas all three layers are formed almost simultaneously

for the parabolic confinement. Thus, the confinement type significantly affects the

local order and the crystal–lattice type of the system of particles interacting via the

Yukawa potential in narrow channels. Note that the confinement leads to the ap-

pearance of the new crystal–lattice types (quasi-crystalline and icosahedral phases),

which are absent on the phase diagram of the 3D infinite Yukawa systems.

Thus, the effect of confinement on the behavior/crystallization of the Yukawa sys-

tems in both two-dimensional and three-dimensional narrow channels has been nu-

merically investigated using the molecular dynamics simulations. The parabolic and

hard wall confinements, which are the “soft” and “hard” confinements, have been

considered. These types of confinement lead to quite different behaviors of the parti-
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cle density near the boundaries. This behavior, in turn, strongly affects the local order

and the type of the crystal lattice, in particular, a new stable quasi-crystalline phase

appears for the hard wall confinement. Thus, the principle possibility of controlling

the behavior/flow of complex plasmas in narrow channels is confirmed, which can

be very important for the investigations and applications of micro- and nanofluids

and nanomaterials.

7.5 Crystallization waves in complex plasmas

We note that the crystalline state (plasma crystal) of the complex plasma was ex-

perimentally discovered in 1994 and was theoretically predicted as early as in 1986.

However, crystallization waves in the complex plasma were experimentally observed

only recently by Rubin-Zuzic et al. (2006).

Some of the related results have been already discussed in Section 5.3.4. Below

we describe numerical simulations which are able to reproduce the observations. In

the experiment, an extended plasma crystal consisting of about 107 polymer 1.3 µm

particles (with a mean interparticle distance of ∆ ≃ 80 µm) was first created in an

rf discharge plasma in argon (at a pressure of p ≈ 0.23 mbar and a frequency of

13.6 MHz). The plasma crystal was melted by sharply reducing the discharge power

(followed by a sharp increase to the initial value). The decrease in the power likely

led to a decrease in the magnitude of the particle charge Q and, correspondingly, to a

decrease in the coupling strength (i.e., in the Γs parameter). As a result, the particle

component passed from the strongly coupled to weakly coupled state. The further

recrystallization process of the particle component was observed by a high-resolution

video camera (1028× 772 pixels, 15 fps).

As revealed, recrystallization in such a system is of the wave character: crystal-

lization begins with the lower boundary of the melted crystal and has the form of a

wave with a pronounced front, which propagates upwards in the direction opposite

to the gravitational force. Figure 7.23 shows photographs (obtained by superposition

of ten sequential frames) demonstrating the propagation of the crystallization wave

in the system at various times. The interface between the crystal and liquid phases

is clearly seen; the characteristic front thickness is on the order of the interparti-

cle distance. The characteristic front-propagation velocity is vcf ≃ 100 µm/s, which

corresponds to the formation of approximately one ordered layer of particles per

second. As the crystallization wave propagates, the front velocity decreases slightly.

The mean interparticle distance is equal to 80 µm and depends slightly on the form

of the phase.

It is worth noting the complex fractal structure of the crystallization wave front

with the minimum inhomogeneity scale of about ∆. In the process of the crystal-

lization wave propagation, small inhomogeneities on the wave front disappear: their

coalescence occurs with the formation of larger inhomogeneities. It is important to
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FIGURE 7.23

Photographs (obtained by superposition of ten sequential frames) demonstrat-

ing the evolution of the crystallization wave propagating through the complex

plasma at ttt = 0 (aaa), ttt = 10 (bbb) and ttt = 25 sec (ccc) after the beginning of the crys-

tallization process. In the beginning the particles are in a disordered state (the

crystal is melted). In the process of system recrystallization, the order wave

(crystallization that travels from the bottom to the top and has a pronounced

front whose width is of the order of the interparticle distance ∆∆∆ is seen. The

particles behind the crystallization wave front form two regions with different

structures. Note that the kinetic temperature of the particles behind the crys-

tallization wave front is noticeably lower.

note that Figure 7.23 also shows the relative kinetic temperature of the particles: the

temperature of the particles behind the crystallization wave front is noticeably lower.

According to frame-by-frame analysis of the motion of particles, the ratio of the tem-

peratures Tliq and Tcr ahead of and behind the crystallization wave front is estimated

as Tliq/Tcr ≃ 2. The presented experimental results demonstrate the propagation of

the crystallization wave in a complex plasma at the kinetic level.

Let us try to numerically reproduce the observation data by simulating the behav-

ior of an ensemble of particles by the molecular dynamics simulations. For sim-

plicity, we assume again that all the particles have the same charge |Q| ∼ 3× 103e,

where e is the electron charge, and the pair interaction between the dust particles is

described by a screened Coulomb (Yukawa) potential, U(r) = (Q2/r)exp(−r/λD),
where λD is the screening length. Other parameters of the complex plasma (particle

size, neutral gas density, etc.) are the same as in the experiment. We use the follow-
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FIGURE 7.24

Recrystallization in a 2D Yukawa system. The temperature field and positions

of the particles at a certain time after the start of recrystallization are presented.

The darker color corresponds to the lower kinetic temperature of the particles.

ing boundary conditions in the simulations: the lower boundary of the calculation re-

gion is a potential well of hard wall type and simulates the near-electrode discharge

region, whereas the upper boundary is free. The periodic boundary conditions on

the lateral edges are used for both 2D and 3D geometries. Initially, the particles in

the preliminarily created crystalline state are instantaneously heated and the plasma

crystal is rapidly melted. Some results of the molecular dynamics simulation of the

further recrystallization of the particle system are presented below.

Figure 7.24 shows the positions of 900 particles and their energy at a certain mo-

ment of time for a 2D plasma crystal. It is seen that a particle cooling wave with a

complex fractal structure is formed and propagates from the bottom to the top. Such

a (2D) system is rapidly crystallized, and this crystallization of the particle system is

of the bulk type, rather than wave. Nevertheless, such a simulation reproduces well

a number of the features of experiments such as the cooling wave and its structure,

as well as the sedimentation of particles in the crystallization process and gravitation

compression of the plasma crystal.

Figure 7.25 shows the initial stage of the formation of the crystallization wave

according to the 3D molecular dynamics (Nd = 27,000) simulation. In this case,

the crystallization-wave velocity is close to the experimental values and depends

slightly on the screening length and effective gravity force. Figure 7.26 shows the

dependence of the crystallization wave velocity on the dimensionality (1D, 2D, and

3D) of the particles system.

The strong decrease in the crystallization wave velocity with increasing of the di-
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FIGURE 7.25

Crystallization wave in a 3D Yukawa system. The temperature field and po-

sitions of the particles at a certain moment of time after the plasma crystal

melting are presented. The darker color corresponds to the lower kinetic tem-

perature of the particles. The local order ahead of/behind the crystallization

wave front is determined. The coexistence of different lattice types, including

the metastable phase (hcp), is shown.

mensionality of the plasma crystal can be explained by the increase in the number

Nb of the nearest neighbors with which each single particle interacts. Indeed, the

inequality λD/∆ ≤ 1 is often satisfied in experiments with complex plasmas. For this

reason, the contribution of long-range interactions (r ≥∆) is exponentially small. For

the linear particle chain, Nb = 2; for the 2D system, Nb = 6; for the 3D case Nb = 12

[Nb = 12 for the perfect face centered cubic (fcc) and hexagonal close packing (hcp)

lattice types and Nb = 8 for the body centered cubic (bcc) lattice]. According to

the thermodynamic representations, Nc ∝ exp(Nb) combinations are possible for the

formation of an ordered structure consisting of Nb elements; therefore, the crystal-

lization wave front velocity is expected to be vcf ∝ exp(−Nb). Figure 7.26 also shows

the values calculated by the expression exp(−Nb). It reproduces well the results of

molecular dynamics simulation.

We emphasize that the mean interparticle distance ∆, which depends on the charge

and density of the particles, on the effective gravity force, and is determined in the

simulation, is one of the key parameters in the molecular dynamics calculations re-
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FIGURE 7.26

Crystallization wave velocity versus the dimensionality of the Yukawa system

according to the molecular dynamics simulation (open circles) and experiment

(solid circle). The values calculated by the expression exp(((−−−NNNbbb))), where NNNbbb = 2,

6, and 12 for the 1D, 2D, and 3D geometries, respectively, are also shown (solid

squares).

ported here. This circumstance makes it possible to estimate the charge Q of the

particles using the crystallization wave propagation velocity and the interparticle dis-

tance ∆. For the considered experiment, |Q| ∼ (3÷5)×103e.

The 3D molecular dynamics simulation allows the determination of an important

characteristic of the crystallization process, the local order of dust particles behind

the crystallization wave front (see next section). It is well known that the infinite

crystallized 3D Yukawa systems in equilibrium can form only two lattice types: bcc

(for small κ values) and fcc (for larger κ) (see, e.g., Fortov et al. 2005a).

Finally, in this section, the behavior of the ensemble of charged particles inter-

acting via the Yukawa potential has been investigated by the molecular dynamics

method. The complex plasma parameters were taken to be close to the experimen-

tal values. The systems of the particles were considered in the 1D (linear particle

chain), 2D (plane monolayer), and 3D geometries. The local order of the parti-

cle system ahead of/behind the crystallization wave front has been determined for

the 3D case. The coexistence of different types of the crystal lattice including the

metastable hcp phase has been observed behind the crystallization wave front, which

indicates the presence of the strong non-equilibrium conditions behind the front. Al-

though the results of 2D simulation are in qualitative agreement with the experiment

and, in particular, reproduce the temperature field of the particles, the sharp temper-

ature front, and the particle cooling wave propagating from the bottom to the top,

demonstrate the complex structure of the crystallization wave front, only 3D simu-
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lation results are in quantitative agreement with the crystallization wave propagation

velocity. The visualization of the particles in experiments with complex plasmas is

usually performed in the 2D geometry (side view image). The results of this work

allow an important conclusion that the effect of the real geometry (dimensionality)

can be decisive in experiments with complex plasmas.

7.5.1 Local order analysis of 3D data

To determine the local order of the particles a bond order parameter method is used

(Steinhardt et al. 1983). In the framework of this method, the local rotational invari-

ants for each particle are calculated and compared with those for perfect lattice types

like fcc/hcp/bcc/ico (see Figure 7.27).

Local rotational invariants of second order ql(i) and third order wl(i) are calculated

for each particle i by using M nearest neighbors Nb(i):

ql(i) =

(

4π

(2l + 1)

m=l

∑
m=−l

| qlm(i)|2
)1/2

(7.29)

wl(i) =∑
m1,m2,m3

m1+m2+m3=0

[

l l l

m1 m2 m3

]

qlm1
(i)qlm2

(i)qlm3
(i), (7.30)

where

qlm(i) =
1

Nb(i)

Nb(i)

∑
j=1

Ylm(ri j) (7.31)

and Ylm are the spherical harmonics, ri j = ri − r j, where ri are the coordinates of

i-th particle. In Equation (7.30)

[

l l l

m1 m2 m3

]

are the Wigner 3 j-symbols, and the

summation in the latter expression is performed over all indices mi = −l, ..., l, that

satisfy the condition m1 + m2 + m3 = 0.

FIGURE 7.27

(See color insert following page 242). The lattice types we try to identify: hexag-

onal close packing (hcp), face centered cubic (fcc), body centered cubic (bcc) and

icosahedron (ico) (from left to right).



Numerical simulation of complex plasmas 363

It is important to stress that each lattice type has its own unique set of ql and wl

rotational invariants. This gives us the possibility to identify observed lattice types,

by comparing the observed ql, wl values with those types qid
l , wid

l for perfect lattice.

To define the local order around a particle we used q4, q6, w4, and w6 rotational in-

variants. The rotational invariants can be easily calculated for perfect fcc/hcp/ico/bcc.

For fcc/hcp/ico the number of nearest neighbors Nb = 12 and we have for fcc: qfcc
4 =

0.1909, qfcc
6 = 0.5745, wfcc

4 = −0.1593, wfcc
6 = −0.01316; for hcp: q

hcp
4 = 0.0972,

q
hcp
6 = 0.4847, w

hcp
4 = 0.1341, w

hcp
6 = −0.01244; and for icosahedral lattice type

(ico): qico
4 = 0, qico

6 = 0.6633, wico
4 = −0.1593, wico

6 = −0.1697.

High values of qcr
6 for all cited lattice types can be used to study early stage of

nucleation/crystallization in different systems (see, e.g., Auer and Frenkel 2004). We

note, that for uncorrelated system, mean value 〈q6〉 ≃ N
− 1

2
b is significantly smaller

than qcr
6 . For instance, if Nb = 12, the value 〈q6〉 ≈ 0.29.

For the bcc case Nb = 8 and qsc
4 = 0.5092, qsc

6 = 0.6285, wsc
4 = −0.1593, wsc

6 =
0.1316. Sometimes, to identify bcc clusters it is important to know the position

of the second shell having 6 particles [the distance between the nearest-neighbor

and the second shell in the bcc lattice is relatively small, (2/
√

3− 1)∆ ≃ 0.15∆].

Consequently, the thermal motion of the second shell particles can easily distort the

rotational invariants and they can be identified as nearest neighbors. For Nb = 14 we

have qbcc
4 = 0.0363, qbcc

6 = 0.510, wbcc
4 = 0.1593, wbcc

6 = 0.01316.

The lattice of a real plasma crystal is always distorted because of various factors.

For example, a difference in slow particle drifts between different regions of the

crystal can give rise to shear stress and, therefore, to its local distortion. Rotational

motion can give rise to torsional defects on scales comparable to ∆. Crystalline struc-

ture can also be distorted by short-wavelength acoustic disturbances, etc. Therefore,

of interest are the changes in ql and wl due to various distortions of fcc/hcp/ico/bcc

lattices. Data of these kinds are shown in Figure 7.28, where the variations of ql

and wl due to weak shear, compression/dilation, and torsion of these lattices (with-

out change in the nearest neighbors) are shown on the q4–q6 plane. Note that these

distortions generally reduce the value of q6 for all of the lattice types. Note also that

local invariants are more sensitive to torsion and less sensitive to shear and compres-

sion. The data shown in Figure 7.28 can be used to find dilated hcp/fcc lattices and

quasi-crystalline phase regions (torsional defects of fcc/hcp lattice).

We identified the hcp/fcc clusters behind the crystallization front (see Figure 7.25)

in our 3D molecular dynamics simulations of a Yukawa system. Below we present

the local order analysis of some recent three-dimensional experimental and simula-

tion data.

7.5.1.1 Complex plasmas in a homogeneous dc discharge tube

Here we present a full 3D reconstruction of a particle cloud in a dc discharge plasma

(Mitic et al. 2008). In contrast to typical complex plasma experiments in dc dis-

charge tubes, the particles in the experiment described here were not levitated in

striations, where strong variations in the electric field lead to inhomogeneities in
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FIGURE 7.28

(See color insert following page 242). Variations of the rotational invariants qqq444

and qqq666 for different lattice types at different distortions: compression/extraction

(C), shear (S) and torsion (T). The curves are color-coded by relative deforma-

tion values (S, T). We also plotted here the invariants for the fcc lattice (cal-

culated by using 8 nearest neighbors) and body centered tetragonal (bct) – the

compressional modification of bcc.

particle clouds even on small scales. Instead, the particles were confined in a hori-

zontally mounted discharge tube by a weak radial electric field of the discharge. The

discharge conditions were selected in such a way that no striations were present in

the positive column. In this way large homogeneous particle clouds could be estab-

lished.

The three-dimensional positions of the particles in the observed part of the cloud

are presented in Figure 7.29. Particle positions are overlain for all microspheres in

the cloud showing the projection of the system in the side view and top view (images

in Figure 7.29 upper part and lower part, respectively). As can be clearly seen, the

particles in the bulk of the cloud represent a kind of vertically oriented structure

with a single distinct outer particle layer which represents the structure of the radial

confinement across the discharge tube.

Local order analysis of the data presented in Figure 7.29 reveals liquid-like be-
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FIGURE 7.29

(See color insert following page 242). Experimentally recorded particle posi-

tions in the yyy–zzz (top) and xxx–yyy (bottom) planes. Particles are color-coded by the

corresponding third coordinate presented in mm. About 6000 particles were

detected.

havior of the particles. Figure 7.30 shows the simulated distributions of a Yukawa

system in q4–q6 plane for both a liquid-like system (Γs ∼ 1) (b) and a crystallized

one (Γs ≃ 104) (a). Also, results of the experiment are plotted revealing liquid-like

behavior of the observed data (c). To obtain the crystallized Yukawa system we per-

formed 3D MD simulations of 6000 particles in a box with external confinement of

a hard wall type in vertical direction (z) with periodic boundary conditions in hori-

zontal (x, y) directions.
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FIGURE 7.30

Distribution of dust particles at different values of ΓΓΓsss in the plane of local order

parameters qqq444–qqq666 (calculated by using 12 nearest neighbors) as seen from MD

simulations of Yukawa systems along with experimental data. Scattered data

are color-coded by third order rotational invariant www444 value. Data for perfect

hcp (△△△) and fcc (∇∇∇) are also plotted. Distribution (b) shows a liquid-like sys-

tem with ΓΓΓsss ∼∼∼ 111, while case (a) corresponds to crystallized Yukawa system with

ΓΓΓsss≃≃≃ 111000444. Experimental data are scattered within the area marked with (c) and

presented in detail in the insert.

7.5.1.2 3D Complex plasmas onboard International Space Station

The three-dimensional positions of the particles observed in an experiment onboard

the International Space Station (ISS) are presented in Figure 7.31. The figure shows

one of the best plasma crystal ever created. As local order analysis of the 3D data

shows, more than 90% of the particles are in the crystalline state. Only a small part

of the plasma crystal close to the void is melted (liquid-like state).

Figures 7.32 and 7.33 show particle distribution over q4–q6 plane for both ex-

perimental data and results of molecular dynamics simulations of the crystallized

Yukawa system. The results are in favor of the Yukawa crystallization onboard ISS.
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FIGURE 7.31

Recorded particle positions in an experiment onboard ISS. Particle are color-

coded by qqq666 value. About 10444 particles were detected.

7.6 On the role of dust in cometary plasma

The cometary coma consists of neutral gas, plasma, and dust grains. Dust grains can

influence both the neutral and charged coma’s constituents. Usually, the presence of

dust particles in a plasma results in additional losses of both electrons and ions due to

the plasma recombination on the particle surfaces. Solar radiation makes the impact

of dust even more complicated: It now depends on the solar flux, the dust number

density, photoelectric properties of the dust particles, the dust particle composition,

distribution of sizes, etc. Here we discuss a simple kinetic model developed to evalu-

ate the role of dust particles in the coma plasma chemistry. This model demonstrates

that this role can be crucial, resulting in a non-trivial behavior of both electron and

ion densities in the plasma. It turns out that the coma’s dust particles can be nega-

tively as well as positively charged depending on their composition. These opposite

charges can result in fast coagulation of the particles forming complex aggregate

shapes of cometary grains.

Let us analyze the impact of dust grains on the plasma chemistry of inner cometary

comae. As we are mostly interested in qualitative effects of the grain presence in the

coma, the simplified model of the cometary coma is used. The comet is located at

heliocentric distance of 1 AU (1 AU ≈ 1.5×1013 cm is the average Earth–Sun dis-

tance). Main ionization source for such a coma is photoionization of water molecules

by extreme solar UV light (λ < 98.4 nm). Typical plasma densities are ne, ni ∼ 102–

104 cm−3; the density of neutrals is in the range of nn ∼ 1010–1013 cm−3. As density
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decays with the distance as r−2 from the nucleus, the typical size of the region of

interest is on the order of 103 km.

In this study, we use the gas-to-dust mass ratio equal to unity. A typical size a

of dust particles is believed to be 0.3–3 µm, so the typical dust number density is

nd ∼ 0.1−−102 cm−3 for the neutral density nn ∼ 1013 cm−3 of interest here (we

assume the mass density of a grain to be 1 g cm−3). These parameters of the coma

are quite realistic (Altwegg et al. 1999; Combi et al. 2004; Rodgers et al. 2004;

Haider and Bhardwaj 2005).

Microparticles can affect the coma plasma composition via different ways. First,

plasma recombination on the surfaces of dust particles can constitute a significant

sink of the plasma. This effect, depending on the dust number density, often results

in strong depletion of the plasma. Second, the dust particle surfaces can be the source

of electrons due to the photoelectric effect. We note that dependence of the efficiency

of the radiation absorption on the refractive index, size of a dust particle, and the

radiation wavelength is quite complex. Figure 7.34 shows the absorption (scattering)

efficiencies σabs/sca calculated for 121-nm radiation (hydrogen Lyman-α radiation)

according to the Mie theory as functions of the particle size a. We consider here the

Lyman−α line because it is the most important for the photoelectric effect on dust
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FIGURE 7.32

Local order analysis of data from an experiment onboard ISS. The figures show

initial liquid-like (a) and crystallized (b) state of the complex plasma on the

plane of rotational invariants qqq444–qqq666, calculated by using 12 nearest neighbors

(top panels) and 8 nearest neighbors (bottom panels). Additionally rotational

invariants for perfect lattice types (hcp, fcc, bcc) are plotted.
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FIGURE 7.33

Local order analysis of MD simulations of Yukawa systems with hard wall con-

finement.

particles, see Equation (7.34) below.

The inset of Figure 7.34 shows the complex refractive index as a function of the

photon energy for several different materials (Palik 1998). We point out a very small

imaginary part of the refractive index m (which determines the absorption of radi-

ation by a particle) in the optical range for ice particles. The values of m for other

considered materials are relatively large. We see that the absorption efficiencies of

the radiation are close to 1 for the grain sizes of interest (a ∼ 1 µm).

The effect of dust particles on the ionization balance in the cometary coma can

be estimated from the system of the continuity equations for the number densities of

electrons ne and positive ions ni (H2O+, OH+, H+, O+, etc), as well as for the grain

charge Q = Ze. In the local approximation, the set of equations is given by (Klumov
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FIGURE 7.34

Optical properties of various-composition micro-particles as calculated using

the Mie theory. The efficiencies of scattering σσσ sca and absorption σσσabs of 121-

nm radiation versus the particle size aaa for various micro-particle materials: ice,

iron, silicon, and ice-coated silicon (at the corresponding radius ratio 1:2). The

known scaling is shown for small aaa values (σσσ sca ∝∝∝ aaa444 and σσσ abs ∝∝∝ aaa). The inset

shows both the (solid lines) real and (dash-dotted) imaginary parts of the com-

plex refractive index mmm versus the photon energy hhhννν for several materials which

can be present in a dust particle.

et al. 2000, 2005a,b):

∂ne

∂ t
= qe −α rec

m nenm
i + π〈νphoto

ed a2nd〉−π〈νeda2nd〉,
∂ na

i

∂ t
= qa

e −βana
i −π〈νada2nd〉,

∂ nm
i

∂ t
= qm

e +βana
i −α rec

m nenm
i −π〈νmda2nd〉, (7.32)

∂Za

∂ t
= ν

photo
d +νad + νmd −νed.

Here, we divide positive ions into two distinct groups: the atomic (superscript a)

(O+, H+, etc.) and molecular (superscript m) ions (H2O+, OH+, CO+
2 , etc.). For

atomic ions recombination in three-body collisions can be neglected in comparison

with other processes. The recombination coefficient for molecular ions is α rec
m ∼
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10−7 cm3 s−1. The introduced groups reflect the presence of atomic and molecular

positive ions in the inner coma. More detailed plasma chemistry of the cometary

coma is not necessary for the present purpose. The terms νed and ν jd ( j = a,m)

describe the losses of electrons and ions on dust particles; βa is the conversion rate

of atomic ions to molecular ones due to the charge transfer reaction; qe = qa
e + qm

e is

the ionization rate due to primary sources of ionization (solar UV radiation, photo-

electron, fast particles, etc.) that provide a steady state plasma density in the dust-

free coma at the level of ne = ni ≈
√

qe/α rec ≃ 102 ÷ 104 cm−3. Furthermore, in

Equations (7.32) 〈...〉 means averaging over the particle size distribution and νphoto
d

describes creation of photoelectrons when solar radiation is absorbed by a single dust

particle with the radius a. The coefficients νed and ν jd can be evaluated using the

orbit motion limited (OML) approach (see Section 2.1.1.2).

The dust induced photoelectric rate ν
photo
d can be evaluated from the expression

νphoto
ed =

λW
∫

0

σabs(λ ,a,m)ΦλY (λ ,m,a)dλ , (7.33)

where Φλ is the spectral solar flux and λW is the maximum (threshold) radiation

wavelength for the photoelectric effect (hc/λW = W , where W is the work func-

tion for a given grain material). For example, λW for ice, iron, sodium, potassium,

aluminum, and silicon corresponds to the photon energy of 8.7, 4.7, 2.4, 2.3, 4.1,

and 4.85 eV, respectively. The photoelectron yield Y (λ ,m,a) entering into the ex-

pression for νphoto
ed increases rapidly with the photon energy in the above-threshold

region (|λ/λW | ≤ 1) and is often estimated by the expression Y (λ ) = Y∞(1−λ/λ ∗)
(Draine 1978), which interpolates experimental data. The characteristic values are

Y∞ ∼ 10−2–10−1 and λ ∗ ≃ λW . It is worth noting that Y increases when the grain

size a decreases. In the considered model, the yield Y appears to be an important pa-

rameter. We stress that λW depends on the particle charge. If the particle is positively

charged, only photons with energies 2π h̄c/λ −W −Qe/a create photoelectrons.

In the absence of the photoelectric effect, the OML currents lead to the net neg-

ative charge on dust due to higher mobility of plasma electrons as compared to that

of ions. It should be noted that for typical coma conditions the effect of ion–neutral

collisions on the particle charging can be important. It has been shown (see, e.g.,

Fortov et al. 2005a; Khrapak et al. 2005) that even rare ion–neutral collisions in-

crease total ion current to an individual particle and, hence, the absolute magnitude

of the (negative) charge decreases. In collision-dominated regime, the ion current

decreases due to decrease of the ion mobility, so that the particle charge increases in

the absolute magnitude (see, e.g., Khrapak et al. 2007). Within the range of plasma

coma parameters (of interest here) both decrease as well as increase of the particle

charge are possible, see sketch in Figure 2.7. However, the associated differences in

the charges in comparison with the (collisionless) OML approach are not too large.

Moreover, the presence of other dust grains also leads to a change in the particle

charges. In fact, this effect can completely mask the effect of ion–neutral collisions
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on particle charging, and hence, the collisionless OML model can be employed in

the first approximation.

The ionization rate q
photo
d induced by the photoelectric effect on dust particles can

be roughly estimated from

q
photo
d ≃ πa2ndσabsF(Ly−α)Y (Ly−α,m,a). (7.34)

For the assumed parameters of cometary coma, viz., the dust number density nd ≃
0.1÷ 102 cm−3 and the grain size a ≃ 1 µm, the value of q

photo
d can achieve 102 ÷

104 cm−3 s−1, which can be much higher than the steady state ionization rate qe ≃
α recn2

e ≃ 0.1÷10 cm−3s−1 for a dust-free coma.

Figure 7.35 shows results of kinetic simulations of dusty coma. The set of equa-

tions (7.32) is solved numerically for the assumed realistic conditions. The case

study presented in Figure 7.35 shows the dust particle charge number Z (bottom

panel), the electron density ne (top panel), and the molecular ion density nm (middle

panel) versus the grain number density nd and the effective (resulting in the pho-

toelectric effect) cumulative solar flux. We can clearly see that strong influence of

dust particles on the plasma composition occurs at fairly moderate values of dust

number densities nd ∼ 1 cm−3. As a result, both depletion and increase of the elec-

tron density can be observed in the dusty coma (depending on the grain properties

and number density) complemented by complicated behavior of the molecular ion

component. This complex behavior can be explained by the competition of ioniza-

tion/recombination processes.

The particle charge numbers can be rather large (|Z| ≫ 1), and this can drastically

change the transport properties of such a plasma. This means that any quantitative

analysis of cometary plasma environment [e.g., by using the multiscale MHD model

(Haberli et al. 1997)] should take into account the dust-related effects.

We stress that the charge on dust particles can be positive as well as negative,

depending on the grains photoelectric properties and their concentration. The effect

is shown in more detail in Figure 7.36.

Figure 7.36 shows case study of the impact of particle number density nd and

composition (ice/iron) on plasma parameters. Top panel (a) shows the variations of

charge numbers of both icy (Zice) and iron (Ziron) micrometer size particles versus

nd at different ice/iron particles mixing ratio γii (γii ≡ nice
d /niron

d , nice
d + niron

d = nd).

Bottom panel (b) shows electron ne and ion ni densities at different dust number

density nd and different ice/iron particles mixing ratio. The value of ice/iron mixing

ratio γii varies from 0 to 1. It is clearly seen from Figure 7.36 that both positively

and negatively charged particles are present in the coma in wide ranges of nd and γii.

The effect of bipolar charges on dust particles can result in coagulation of the

oppositely charged grains, which in turn strongly influences the composition of the

coma plasma. Because of relatively strong electric forces, the characteristic times of

the coagulation are relatively short. As a result of coagulation, larger particles form,

with more probable negative charge residing on them due to plasma absorption (with

higher electron mobility). The formed aggregate particles can be of complex fractal

shape. It is important that these aggregates are formed directly in coma bulk and not
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FIGURE 7.35

Plasma composition of a cometary coma from numerical solution of Equations

(7.32). The dust particle charge number ZZZ (bottom panel), logarithm of the

electron density lg(((nnneee))) (top panel) and logarithm of the molecular ion density

lg(((nnnmmm
iii ))) (middle panel) in the cometary coma at 1 AU are presented versus the

effective solar flux and the dust particle number density nnnddd . The neutral gas

number density is about 111000111222 cm−−−333; the dust particle size is 1 µµµm; the ionization

rate is qqqeee ≃≃≃ 111 cm−−−333 s−−−111. Strong influence of grains on the plasma composition

occurs at fairly moderate values of the dust number density nnnddd .
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FIGURE 7.36

Impact of the particle number density nnnddd and composition (ice/iron) on plasma

parameters. Top panel (a) shows the variations of charge numbers of both icy

(ZZZice) and iron (((ZZZiron) micrometer size particles versus nnnddd at different ice/iron

particles mixing ratio. Bottom panel (b) shows electron nnneee and ion nnniii densities

at different dust number density nnnddd and different ice/iron particles mixing ratio.

introduced there by expanding neutral gas drag from evaporating nucleus’ surface.

Recent optical observations by Kolokolova et al. (2004) provide some support to the

assumption about complex shapes of coma grains. In future modeling of cometary

environment, the effects of time-dependent distribution of grain sizes (and their in-

fluence on the coma plasma) should be taken into account.

To conclude, we have discussed here a kinetic model describing the impact of

dust particles on cometary comae. We have shown that dust particles, depending on

their sizes, number density and photoelectric properties, can strongly affect plasma

composition of the dusty cometary coma. It is important that positively as well as
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negatively charged dust particles can appear in the coma. These opposite charges

result in fast coagulation of particles. The shape of the resulting aggregated grains

can be complex.

7.7 Electronegative complex plasmas

Addition of an electronegative gas leads to the appearance of negative ions in the

discharge. This can strongly affect the plasma parameters and particle charges and,

hence, the phase state of the particle component of complex plasmas. The presence

of negative ions also affects forces acting on the particles which, in turn, can affect

the equilibrium properties of particle structures, e.g. location, shape of the structure,

void size.

Here we discuss a change in the state of complex plasma upon the addition of

molecular oxygen O2 to the rf argon discharge. To begin with, we estimate the

influence of molecular oxygen on the plasma composition. For this purpose, we

will use the plasma chemical model of discharge in the Ar/O2 mixture (all plasma

parameters are averaged over the discharge volume). For a quasi-neutral complex

plasma, the corresponding set of equations has the form:

∂n j(t)

∂ t
= R

prod
j −Rloss

j −Rd
j −n j/τ j, (7.35)

∂Z

∂ t
= νi+ −νi− −νe, (7.36)

ni+ + Znd = ne + ni− . (7.37)

Here, n j describes the concentrations of electrons and all sorts of ions (positive and

negative) in the discharge and also the concentrations of metastable argon and oxy-

gen atoms and molecules which can affect the plasma parameters. R
prod
j and Rloss

describe the photochemical sources and sinks of the j-th component; Rd
j describes

the loss of j-th component at the surface of dusty particles; and τ j ≃ L2/D j is the dif-

fusional lifetime of the j-th component in the discharge where D j is the correspond-

ing diffusion coefficient. We note that the diffusion coefficient strongly depends on

the plasma composition; e.g., for the positive ions, D j ranges from the ambipolar

(at low concentrations of negative ions) to unipolar (for ion-ion plasma) type. In the

charging equation, the terms νe, νi− and νi+ describe the electron, negative-ion and

positive-ion fluxes to a particle, respectively. The last can be evaluated using OML

approximation.

Since Ti+ ≈ Ti− ≪ Te, the contribution of the negative ions to the charging flux

balance can be ignored. The equilibrium concentrations of the charged components

and the charge of a micron-sized particle in the considered discharge are presented in

Figure 7.37 as functions of the partial concentration ([O2]/[Ar]) of molecular oxygen
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FIGURE 7.37

The composition of an rf discharge plasma in O222/Ar mixture and the charge

number ZZZ of an individual particle as functions of the partial concentration

[O222]/[Ar] of molecular oxygen.

in the mixture. One can see that, starting with even negligible concentrations of

molecular oxygen (O2/Ar≥ 10−6), the plasma composition changes considerably to

transform from the electron–ion plasma (e and Ar+) to the ion–ion plasma, in which

O+
2 and O− are the major ions while the electron density is strongly suppressed.

Such a drastic transformation of the plasma composition is caused by the fast charge–

transfer reaction Ar+ +O2 → Ar+O+
2 of argon ions on oxygen molecules (the back

reaction is almost fully inhibited at room temperature due to a large difference in the

ionization potentials of argon (15.75 eV) and molecular oxygen (12.2 eV) and by the

electron dissociative attachment to the oxygen molecule: O2 + e → O− + O+ e.

The latter reaction produces negative ions, which are accumulated in the dis-

charge due to the trapping electric field configuration for negatively charged par-

ticles. This effect results in a significant decrease in the absolute magnitude of the

particle charge, as compared with the pure argon plasma.

It should be emphasized that such a change in plasma composition can have an

appreciable effect on the processes of ion transport in the discharge, because the res-

onance charge–exchange Ar+–Ar cross section exceeds, by approximately one order

of magnitude, the polarization scattering cross section of the O+
2 ion in argon. This

effect can also be important for the momentum transfer from ions to particles, i.e.

for the determination of the ion drag force. The dimensionless charge (potential)
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Dimensionless charge of micrometer particle in an rf discharge in O222/Ar mix-

ture versus the partial concentration ([O222]/[Ar]) of molecular oxygen in argon

and the particle concentration.

|Q|e/aTe of a dust particle is shown in Figure 7.38 as a function of particle concen-

tration nd and partial concentration of molecular oxygen [O2]/[Ar]. One can see that,

for nd ∼ 103–105 cm−3, i.e., for experimental conditions typical for complex plas-

mas, a considerable decrease in the particle charge can be caused by the O2 impurity.

Note that the effects considered, likely show little dependence on the type of elec-

tronegative gas M. This is because the main processes inducing these effects – the

formation and accumulation of negative ions in plasma and the fast charge exchange

of argon ions on impurity species (Ar+ + M → Ar + M+; the back reaction is inhib-

ited because the ionization potential of the argon atom is greater than the ionization

potential of M) – are efficient for any electronegative gas.

The results presented qualitatively describe changes in the charge composition of

complex plasmas in the presence of the O2 admixture. However, to determine the

forces acting on the particles in a real discharge, it is necessary to know the spatial

distribution of the complex plasma parameters in the discharge. Let us consider a

one-dimensional discharge geometry (the coordinate x = ∓L/2 corresponds to elec-

trodes, and x = 0 corresponds to the discharge center). The ion and electron spa-

tiotemporal distributions can be determined from the set of balance equations after

adding to Equations (7.35) the term describing the j-th component transport in the
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drift–diffusion approximation:

∂n j(x,t)

∂ t
+ ∇J j(x,t) = R

prod
j (x,t)−Rloss

j (x,t)−Rd
j (x,t), (7.38)

J j(x,t) = µ jn j(x,t)E(x,t)−D j∇n j(x,t), (7.39)

∂Z

∂ t
= νp −νn −νe. (7.40)

Here, J j is the j-th charged component flux, µ j is the mobility coefficient, and E

is the electric field. As long as the mean free path of ions (both positive and nega-

tive) is much smaller than L, the drift–diffusion approximation is quite justified for

the ions. To determine the electron spatial distribution, the Boltzmann distribution

De∇ne(x,t)+ µeneE(x,t) ≈ 0 can be used. For the metastable species, only the dif-

fusion term is taken into account in the transport equation. The boundary conditions

for the set of equations (7.38)–(7.40) are the following: from the symmetry consider-

ations, J j = 0, E = 0 in the discharge center, and n j = 0 in the near electrode region.

The solution of the system of Equations (7.38)–(7.40) is shown in Figure 7.39.

The thermophoretic force can also make a contribution to the balance of forces

acting on the particles. One can easily show that the pure argon discharge does not

induce any noticeable thermophoretic force, because the temperature inhomogeneity

of neutrals is very small for the typical discharge parameters. Indeed, in pure argon,

the quenching Ar+Ar∗→ 2Ar of metastable argon atoms with the rate constant kAr
q is

the main source of heating neutrals. In this case, the neutral gas is heated up to ∆Tn ≃
kAr

q n∗ε∗τ∗ ≤ 0.01 K, where ε∗ ∼ 10 eV is the energy released by quenching and τ∗

is the diffusion lifetime of a metastable atom in the discharge. Hence, this process

cannot lead to a noticeable heating of neutrals. As a result, the thermophoretic force

induced in a pure argon discharge is considerably smaller than the ion drag and

electric forces.

In contrast, in the Ar/O2 mixture, the situation with heating the neutral gas be-

comes quite different, because the metastable argon atoms can be efficiently quenched

in the reaction O2 + Ar∗ → 2O + Ar with the rate constant k
O2
q ∼ 10−10 cm3s−1 re-

sulting in heating of the neutral gas by ∆Tn ≃ 1 K.

Even more efficient heating is induced by the metastable oxygen ion O(1D). This

effect is caused by a high concentration of O(1D) in the discharge (because of the low

excitation energy) and controlled by the rate of the quenching reaction Ar+O(1D)→
Ar + O. In the general case, a change ∆TN in the temperature of neutrals in their

reactions of quenching metastable oxygen species can be estimated by the formula

∆Tn ≃ ∑
i

ki
ene

[O2]

[Ar]
τDεi, τD = L2/Dn, (7.41)

where ki
e is the rate of the formation of the i-th metastable species by electron impact

and εi is the corresponding transition energy. For [O2]/[Ar] = 10−2 the heating is

mainly due to O(1D), and ∆Tn can reach a few K. In this case the thermophoretic

force can be comparable to the ion drag force for particles with sizes a ≃ 3µm. Note
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FIGURE 7.39

Spatial dependency of the electric field and ion and electron densities in an rf

discharge in O222/Ar mixture. Pure argon discharge (top panel) and [O222]/[Ar] =

10−−−222 (bottom panel).

that the central zone of the discharge is heated stronger than its periphery, so that the

thermophoretic force expels particles from the discharge. Therefore, the considered

mechanism contributes to the void formation in electronegative plasmas.

It is worth noting that the neutrals in argon plasma are heated by practically any

impurity gas M. This heating is caused by the quenching reaction: Ar∗ + M → Ar +
M (as a rule, the rate constant kM

q for such reactions considerably exceeds kAr
q ). The

efficiency of this process depends on the impurity concentration in the discharge, on

the rate constant kM
q and the fraction of the excited metastable state energy released

to heat the neutrals (the rest of the energy is lost in the inelastic processes: ionization,

dissociation, and excitation of the radiating M levels).

Thus, the addition of molecular oxygen to argon plasma induces a number of

important effects. The composition and transport properties of plasma change sub-

stantially: electron–ion plasma transforms to the ion–ion plasma. The appreciable

decrease in the particle charge can also change the phase state (e.g., melt plasma
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crystal) and the configuration of the particle structures. The electric field also de-

creases in the discharge (see Figure 7.39), thereby changing the force balance for the

particles. In addition, metastable argon and oxygen states initiate heating of the neu-

tral gas, and the corresponding induced thermophoretic force makes a considerable

contribution to the balance of forces acting on the particles.
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Diagnostics of complex plasma

Oleg F. Petrov and Olga S. Vaulina

8.1 Introduction

In studying dusty plasmas in addition to the diagnostics of the gas phase, one needs

to determine the basic parameters of particles. These parameters, along with the

parameters of plasma (densities and temperatures of electrons, ions, and neutrals),

define the basic properties of plasma (electrophysical, optical, and thermodynamic).

While the parameters of the gas phase can be determined by methods which were

previously successfully used in studying gas plasma (in so doing, it is necessary to

take into account the possible perturbation influence of particles on the measurement

results), the diagnostics of particles requires the development and application of spe-

cial methods. This chapter deals with the methods of diagnostics of parameters of

particles such as their sizes, concentration, refractive index, and surface temperature.

Most attention is given to the optical methods of diagnostics, because they offer a

number of advantages. These advantages include high accuracy, absence of action

on the object subjected to measurements, high-speed response, and the possibility of

automatic data processing and acquisition of data in real time. It is further demon-

strated how to take into account the effect of particles in measuring the parameters

of gas phase by conventional methods such as the generalized reversal method and

the total absorption method.

8.2 Light scattering and absorption measurements

Contactless diagnostic methods are based on measurements of attenuation, scatter-

ing, or emission of light by the particles. Problems of two basic types exist in the

theory of scattering and absorption of light by small particles. The direct problem is

that of calculation of scattered field provided that the basic characteristics of particle

are preassigned, namely, the size d = 2a, the shape, and the absolute refractive index

m = n− ik of the particle material. The inverse problem consists in recovering these

parameters from the characteristics of scattered field. It is the inverse problem that

is of prime interest in the case of experimental investigations (Cummins and Pike

385
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1974; Dubnishchev and Rinkevicius 1982; Bohren and Huffman 1983Klochkov et

al. 1985).

In practice one often has to deal with aggregates of large numbers of particles. A

system of particles is characterized by the extinction coefficient Kext , scattering coef-

ficient Ksca, absorption coefficient Kabs, and scattering indicatrix p. The coefficients

Kext , Ksca, and Kabs have the meaning of probability of respective process related to

a unit volume. The indicatrix p defines the probability that a photon propagating in

a certain direction will be scattered in some other direction. The correlation between

the coefficients Kext , Ksca, and Kabs is defined by Kext = Ksca + Kabs.

In the general case, the theoretical approach to light scattering by numerous parti-

cles is a very complicated problem. However, simple relations can be obtained under

certain conditions, which relate the parameters of dispersed medium with the optical

parameters of a single particle,

Kext = ndσext , Ksca = ndσsca, Kabs = ndσabs, p = p0, (8.1)

where σext , σsca, and σabs denote the cross sections of extinction, scattering, and

absorption of light by a single particle, respectively; p0 is the indicatrix of light

scattering by a single particle; and nd is the number of particles per unit volume

(particle density). Also used for characterizing the optical properties of particles are

the efficiencies of extinction Qext , scattering Qsca, and absorption Qabs,

Qext = σext/S, Qsca = σsca/S, Qabs = σabs/S, (8.2)

where S is the area of projection of particle onto a plane perpendicular to the incident

beam.

The validity of relations (8.2) is defined by the conditions of single and incoherent

(independent) scattering. The single scattering implies that the field scattered by all

particles is small in the neighborhood of each particle compared to the field generated

by electromagnetic wave incident on the particle. The total scattered field is the sum

of fields scattered by single particles. The incoherence of scattering implies that the

phases of waves scattered by single particles are not related by any relations. The

total intensity of scattering by a system of particles in this case is equal to the sum of

intensities of scattering by single particles.

At present, the problem involving a sphere of arbitrary radius and refractive index

is exactly solvable in the theory of interaction between electromagnetic wave and

small particle. This problem is known as Mie theory (Bohren and Huffman 1983).

8.2.1 Mie theory

The Mie theory deals with scattering and absorption of light by single particles. The

problem is formulated as follows. A plane-polarized wave is incident on a homoge-

neous spherical particle of certain size and composition placed in a linear, isotropic,

and homogeneous medium. It is necessary to determine the electromagnetic field

at all points of the particle and at all points of the medium. As a result of solution

of this problem, expressions are derived for the intensities of radiation scattering,
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as well as expressions for the efficiencies of extinction, scattering, and absorption,

and for scattering indicatrix, as functions of complex refractive index m = n− ik and

diffraction parameter ρ = πd/λ (λ is the wavelength of the radiation).

In addition to being used for describing the optical properties of a sphere, the Mie

theory can be used in a first approximation for describing the optical properties of

non-spherical particles as well. It was found that in the regime of small angles, parti-

cles, irrespective of their shape, scatter much like spheres of the same cross section.

As the scattering angle θ increases, the differences increase in such a manner that

the pattern of scattering for θ > 10◦–15◦ becomes close to the pattern of diffraction

on a sphere of the same volume.

A similar effect is observed for a polydisperse system of spheres. The effective

dimension for such particles is usually provided by the Sauter diameter D32 which

is defined by the ratio of average volume to average cross-sectional area and plays

a leading role as regards small-angle scattering and cross sections of light scattering

and absorption. The simulation of scattering particles of complex geometry or in-

homogeneous structure offers no marked advantages, because the inversion of their

optical characteristics enables one to form an opinion of only some equivalent pa-

rameters.

The diagnostics of particles in an optically dense medium calls for additional cal-

culations which present no special difficulties given the present-day level of devel-

opment of mathematical apparatus and computer equipment. The estimates of the

effect of multiple scattering on radiation transfer in dusty plasma demonstrate that

the single scattering approximation is valid in the case of the majority of labora-

tory investigations, for example, for measuring the attenuation at optical density of

the medium τ <5–6 or for registering the scattering in the region of small angles

θ < 10◦ at τ <1–2.

The processes of condensation or chemical reactions on the surface of particles

can cause the inhomogeneity of the material of the particles. A model of a sphere in

a shell is used for analyzing the scattering from a nuclei condensation coated with

a liquid shell or from chemically reacting particles. The thickness of a nonuniform

layer is not known in the majority of practical cases and is defined by the processes

of conversion of particles; the equivalent refractive index of a uniform sphere is used

to advance in studying these processes. The regular shape of the object is directly

confirmed by the results of measurements of the total scattering indicatrix. Infor-

mation about the uniformity of the sample can be obtained only for narrow-disperse

distributions of weakly absorbing particles by way of analyzing the special features

of their optical characteristics. These special features (lobes of indicatrix, oscillation

of spectral dependence of optical cross sections) are due to the interference pattern

of scattering by the particles. Therefore, any non-uniformities (of size, shape, or

material) of single scatterers or of their ensemble smooth out the oscillation of the

optical characteristics. The correspondence of the selected model (Mie theory, single

scattering, etc.) to the experimental conditions can be confirmed by agreement be-

tween the results of independent measurements of the parameters of particles using

different methods.
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8.2.2 Determination of the size, concentration, and refractive index of
particles

The principal characteristic defining the choice of the method of particles diag-

nostics is the diffraction parameter, that is, the ratio between the particle radius a

and the wavelength λ of the radiation. For example, a combination of the meth-

ods of dynamic and static scattering is used for determining the sizes and complex

refractive index m of particles whose sizes are small compared to the wavelength

(a|m− 1| ≪ λ ). Successful solution of the inverse problem in this (Rayleigh) ap-

proximation is largely defined by simple analytical relations between the parameters

of particles and the optical characteristics being recorded. The methods involving

measurements of small-angle scattering enable one to recover the average diameter,

concentration, and size distribution function of particles f (a). These methods are

limited to the range of validity of Fraunhofer diffraction (a|m−1| ≫ λ ) and cannot

be used for determining the refractive index of particles.

The methods involving measurements of attenuation of radiation are relatively

simple among the methods employed for recovering the average diameter, refrac-

tive index, and density of particles whose sizes are comparable to the wavelength

(a|m−1| ∼ λ ). On the contrary, the methods involving measurements of scattering

indicatrix are labor-consuming and complicate the measurement procedure.

For example, the spectral transparency method is based on measurements of ex-

tinction of light radiation at several wavelengths λi and on the data for the refractive

index of particles. The extinction of a light beam passing through an aggregate of

randomly positioned particles of different sizes is due to the absorption and scattering

of radiation by the particles. Assuming that the multiple scattering can be ignored,

the optical transparency Tr (extinction of radiation) at some wavelength λi is found

from the correlation between the intensities of incident I0 and transmitted I radiation,

Tr = I/I0 = exp[−τ(λi)] = exp[−ndσ ext (λi)l], (8.3)

where l is the optical path, τ(λi) is the optical density, and σ ext(λi) =
∞
∫

0

σext f (a)da

is the average extinction cross section for a wavelength λi.

The unknown parameters of particles (diameter or refractive index) are recovered

from the results of measurements of relative optical density qi = τ(λi)/τ(λ1) (at

three or more wavelengths λi) using the procedure of minimization of the mean-

square deviation S between the experimental qmeas
i and calculated qcalc

i data,

S =
N

∑
i=1

(

qcalc
i −qmeas

i

Nδiq
meas
i

)2

, (8.4)

where δi is the relative value of experimental error, and N is the number of wave-

lengths at which measurements are performed. Relative measurements in numerous

cases enable one to eliminate from calculations additional unknown parameters, for

example, the concentration of particles under investigation or geometry of the mea-

suring volume.
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Recovering the parameters of particles by the spectral dependencies of the charac-

teristics being registered most often presumes that the dispersion of complex refrac-

tive index m(λ ) is known or that this dispersion can be ignored, m(λ ) = const. The

latter assumption holds for numerous weakly absorbing dielectrics in the visible and

near IR spectral ranges, for example, aluminum and silicon oxides, as well as for ash

and coal of some types.

In determining the parameters of particles, one needs to know the model size dis-

tribution of particles in addition to the model which takes into account the dispersion

of refractive index (Nefedov et al. 1995, 1997). In the majority of cases, exponential-

power functions and Gaussian distributions are used in calculations. In so doing, the

dependence of spectral transparency Tr on the particle size for polydisperse particles

is defined by their average Sauter diameter,

D32 =

2
∞
∫

0

a3 f (a)da

∞
∫

0

a2 f (a)da

. (8.5)

The Sauter diameter is further used for determining the mass and volume concentra-

tion Cv of particles,

Cv =
2τD32S

3lσ ext

, (8.6)

where S = π
∞
∫

0

a2 f (a)da is the average cross-sectional area for polydisperse particles.

For large particles, whose average diffraction parameter is ρ = πD32/λ ≫ 1, the

volume concentration for known optical density τ depends only on D32, because

σ ext/S ≈ 2. For particles with ρ = 5− 40, the value of σ ext/S is defined by the

Sauter diameter and complex refractive index of particles m = n− ik.

One can determine the average size and concentration of particles and, at the

same time, recover the real part n of complex refractive index of weakly absorbing

(k ≤ 0.01) particles using the aperture transparency method which involves mea-

surements of the dependence of attenuation on the angular aperture of photodetector

(Nefedov et al. 1997). Because the attenuation and scattering of monochromatic ra-

diation are measured using this method, the dispersion of refractive index n(λ ) can

be found as well.

A schematic diagram of measurements is given in Figure 8.1. In recovering the

parameters of particles, use is made of the fact that, during measurements of extinc-

tion at high values of the parameter of diffraction of particles, a part of the radiation

scattered by particles is incident on the photodetector because of finiteness of the

aperture angle θd of photodetector and strong elongation of scattering indicatrix. As

a result, the value of extinction cross section σ∗
ext (θd) turns out to be lower than their

actual σext ,

σ∗
ext(θd) = σext −∆σ =

∞
∫

0



σext − (1/2)σsca

θd
∫

0

p(θ)sinθdθ



 f (a)da. (8.7)
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FIGURE 8.1

The scheme of measurements of attenuation of radiation: (1) radiation source,

(2) particles, (3) aperture diaphragm, (4) lens, (5) photodetector.

FIGURE 8.2

The angular distribution of relative attenuation qqq(((θθθ ddd ,,,ddd,,,mmm))) for monodisperse

latex particles of different diameters ddd: (1) 2 µµµm, (2) 4 µµµm, (3) 3 µµµm; (λλλ ===
000...666333333 µµµm).

The relative value of extinction q[θd , f (a),m] = σ∗
ext (θd)/σext will be defined only

by the size distribution function of particles f (a) and by the refractive index m.

Given by way of illustration in Figure 8.2 is the dependence of q(θd ,d,m) on θd for

monodisperse latex spheres (m = 1.58) in water for different particle diameters d.

Note that the effect of multiple scattering on the value of q at θd < 10◦–12◦ is

insignificant as regards measurements of particles in plasma media with τ <1–2. The

dependence of q[θd, f (a),m] on θd for homogeneous spheres is calculated by the Mie

theory. The unknown parameters of particles can be found by minimization of mean-

square deviation (8.4) between the calculated qcalc
i and experimentally obtained qmeas

i

values for different aperture angles θdi (i = 1−N).

The optical methods are based on the principle of scattering or attenuation of light
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FIGURE 8.3

A typical scheme of optical counter.

by single particles moving in the measuring volume and of registering the intensity

of scattered light or its attenuation by a photodetector which transforms light pulses

to voltage pulses. Not more than one particle should be located in the measuring

volume for correctly determining the size or concentration of particles. Otherwise, an

error arises, because two and more particles located in this volume will be registered

as one, thus leading to underestimation of the number of particles and to apparent

increase in their size.

The devices designed to implement these methods are known as optical counters.

The particle size is determined by the amplitude of pulsed signal generated by this

particle at the photodetector outlet. For comparing the pulse amplitude with the

particle size, calculations are performed by the Mie theory and the optical counter is

precalibrated against particles of known size.

The advantages offered by optical counters include the high spatial resolution, the

possibility of analyzing the parameters of particles in real time, the possibility of

determining the particle size distribution function, etc. The most important require-

ments of optical counters as regards the diagnostics of particles in high-temperature

flows include their minimal sensitivity to the complex refractive index of particle

material and to the shape and temperature of particles.

A typical optical counter which registers particles with respect to scattering is

shown in Figure 8.3. As a rule, the source of radiation is provided by a laser. The

laser radiation beam is focused by the first lens for obtaining a waist of certain di-

ameter W0. The radiation scattered by particles is collected by another lens at an

angle θ to the optical axis and directed to the entrance slit of photodetector. The



392 Complex and Dusty Plasmas

measuring volume is formed by the intersection of the focal region of laser beam

with the slit image. Signals from the photodetector are analyzed for obtaining infor-

mation about the size distribution of particles. Calculations by the Mie theory and

calibration measurements using particles of known size (latex particles, as a rule) are

performed for determining the dependence of the amplitude of scattering signal on

the particle diameter.

The minimal permissible concentration of particles in the flow when determining

their size by an optical counter is 104–105 cm−3. The upper limit of concentration

of particles being analyzed is associated with the condition that not more than one

particle enters the measuring volume at a time. This limit is inversely proportional to

the size of the measuring volume. This in turn restricts the lower limit of the size of

particles being analyzed, because a concentration of 106–107 cm−3 can be attained

for submicron particles in some technical devices in high-temperature flows. The

lower limit for the size of particles is approximately 0.1 µm. The decrease in size of

the measuring volume causes a nonuniform distribution of laser radiation density in

this volume. In so doing, particles of the same size, some of which fly through the

center of measuring volume and the others through its edge, will initiate pulses of

different amplitudes at the photodetector outlet. This poses an additional problem of

uniqueness of determination of size and restricts the upper limit of the particle size.

8.3 Spectral methods of determination of particle parameters

8.3.1 Particle temperature

The majority of optical methods of determining the temperature of luminous plasma

media are based on measurements of the intensity of plasma self-radiation and the

attenuation of light from an external source. In the general case, determining the

temperature of gas or particles calls for correct calculation of radiation transfer in the

plasma medium under investigation and for reliable preliminary data on the emissiv-

ity E of the particle layer. The emissivity of particles in plasma is defined by its

geometry and by the optical characteristics of single particles. Given the size, refrac-

tive index, and concentration of particles, the emissivity can be calculated by means

of the scattering theory. However, the optical characteristics of particles are usually

not known and need to be studied. Because the particles are exposed to a strong ef-

fect of external conditions, it is far from always that preliminary information can be

obtained about their optical characteristics. Therefore, for reliable measurements of

the temperature of two-phase plasma media, it is necessary that all of the parameters

appearing in the equations of radiation transfer should be determined in the course

of experimental measurements under the same external conditions.

One of the methods of determining the temperature of particles is by registering

the self-radiation of the particles of the medium at different angles or at different

optical densities. However, such measurements require a priori information either
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about the quantum survival probability ω or about the scattering indicatrix of parti-

cles p.

When the Kirchhoff law is applied, the determination of the temperature of par-

ticles reduces to measuring the radiation intensity and the emissivity of the layer of

particles (brightness pyrometry method). The disadvantage of this method consists

in the low accuracy of measurements, because in the general case the equation of

radiation transfer must be solved for obtaining the emissivity. With this approach,

one needs information about the geometric dimensions of the object under investi-

gation, the scattering indicatrix, the quantum survival probability, the particle size

distribution function, and the complex refractive index of the particle material. In

addition, it is not always that the results of solution of transfer equation, obtained

for infinitely extended media, can be used in application to real objects. Significant

indeterminacy with respect to the value of emissivity arises because of inadequate

knowledge of complex refractive index of particle material, especially, of its imagi-

nary part (absorption index). The absorption index depends on both the wavelength

and temperature.

The accuracy of temperature measurements can be increased by using the method

of color pyrometry. For example, according to the method of two-color pyrometry,

the particle temperature Td is found from the expression

Td =

[

1/Tc +
λ1λ2

c2(λ2 −λ1)
ln

(

E(λ1,Td)

E(λ2,Td)

)]−1

, (8.8)

where E(λi,Td) is the emissivity of particles, c2 is a constant in the Planck equation,

and Tc is the color temperature of particles calculated as

Tc =
c2(λ2 −λ1)

λ1λ1

[

5ln(λ2/λ1) ln

(

Id(λ2,Td)

Id(λ1,Td)

)]−1

, (8.9)

where Id(λi,Td) is the particle radiation intensity.

The color method is advantageous in that the emissivity ratio E(λ1,Td)/E(λ2,Td)
used in the method weakly depends on temperature and geometric dimensions of the

object. In the case of relative measurements, the effect of the error of measurement

of optical density, particle sizes, and other parameters is reduced.

True values of temperature can be measured only if the dependence E = E(λ ,T )
is known. The gray body approximation can be used. In this case, it is assumed that

E is independent of λ . The layer of particles radiates as a gray body provided the

condition kρ ≥ 1 is valid. In the visible region for particles with k ≥ 1, this condition

is valid for particles with radii exceeding 0.5 µm. This condition is less favorable for

metal oxides (k ≤ 10−2), because very large particles are required. The relative error

of measurements, caused by the “non-grayness” of radiation, will have the form

∆T

Tc
= − λ1λ2Td

c2(λ2 −λ1)
ln

(

E(λ1,Td)

E(λ2,Td)

)

. (8.10)

Real disperse media are characterized by the dependence of temperature on par-

ticle radius Td = Td(a). In this case the temperature averaged over particle sizes is
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measured. The exact solution can be obtained only under conditions of single scatter-

ing, given the particle size distribution function and the functional dependence Td(a).
Another approach involves the determination of temperature of single particles.

The radiation-absorption method uses the transfer equation which can be written

as follows for a plane-parallel layer of radiating, absorbing, and scattering medium

(a high-temperature gas at temperature Tg containing particles at temperature Td)

assuming local thermodynamic equilibrium:

µ
∂ Iλ (x,µ)

∂ x
= −(αg +αd + σd)Iλ (x,µ)+ αgIB(Tg)+ αdIB(Tg)+ j

(s)
λ

, (8.11)

where Iλ (x,µ) is the radiation intensity at a point defined by coordinate x and angle

ζ (cosζ = µ), αg is the absorption coefficient of the gas, αd is the absorption coeffi-

cient of the layer of particles, σd is the scattering coefficient of the layer of particles,

and IB(Tg) is the Planck function. The term j
(s)
λ

defines the contribution of multiple

scattering and can be written as

j
(s)
λ

=
σλ

2π

1
∫

−1

p(µ ,µ ′)Iλ (x,µ ′)dµ ′, (8.12)

where p(µ ,µ ′) is the probability of scattering of radiation in the direction µ .

The temperature of “non-gray” particles can be determined using the spectromet-

ric method which does not require a priori information about the optical properties

of particles. The method involves spectral measurements of self-radiation and optical

density of a layer of particles and uses an empirical inversion technique (procedure

of minimization of mean-square deviation between the experimental and calculated

data) (Nefedov et al. 1995, 1997).

For plasma with particles, which optical properties at some wavelength λ are char-

acterized by the survival probability of quantum (single scattering albedo) ω(λ ) =
σ sca(λ )/σ ext(λ ), by the optical density τ(λ ), by the scattering indicatrix p(λ ), and

by the temperature Td , the optical characteristics of particles are determined from

the results of measurements of three signals, namely, SP (signal of radiation of parti-

cles), SL (signal of radiation of standard lamp with temperature TL), and SPL (signal

of lamp radiation transmitted through plasma) at wavelength λ ,

SP(λ )

SL(λ )
=

E(λ )IB(Td ,λ )

IB(TL,λ )
, (8.13)

τ(λ ) = − ln

(

SPL −SP

SL

)

, (8.14)

E(λ ) = [1−ω(λ )]
∞

∑
i=0

ω(λ )Λ
(i)
λ (τ, p), (8.15)

where Λ
(i)
λ

(τ, p) denotes some invariants, the value of which depends on the geome-

try of the medium and on the direction of radiation. Therefore, the emissivity E(λ )
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is a function of two unknown quantities ω and p which are defined by the size and

refractive index of particles.

Measurements of the optical density τ(λ ) (8.14) enable one to select the required

approximation for solving transfer equations and, consequently, the number of terms

of the series i = N ≥ 0, which must be taken into account in calculating E(λ ). For

measuring the emissivity of the medium with τ(λ ) < 3, it is sufficient to take into

account single scattering (N = 1), because exact calculations at N ≥ 2 give a vari-

ation in E(λ ) of only 1–2%. When multiple scattering can be ignored (i = 0), the

emissivity of disperse medium can be written as

E(λ ) = [1−ω(λ )]1− exp[−τ(λ )] = W (λ )1− exp[−τ(λ )]. (8.16)

The error in the determination of E(λ ) due to unaccounted-for multiple scattering

for particles with the diffraction parameter ρ = 1–20 and ω(λ ) = 0.6 is . 2% for

limited measuring volume at τ(λ ) ≤ 1.

In this case, the problem of determining the temperature reduces to the choice of

adequate approximation for spectral dependence of survival probability of quantum

albedo ω(λ ) [or function W (λ ) = 1−ω(λ )]. Curves of the following form can be

used for spectral approximation of the function W (λ ):

W (λ ) = c/(λ aτb). (8.17)

Here, the parameters a, b, and c are independent of the wavelength. Relative mea-

surements eliminate the parameter c. In the absence of dispersion of refractive index

of particles in the working wavelength range, the criterion of the choice of the ap-

proximation for ω(λ ) can be provided by the parameter γ =< ρ > (n−1). The val-

ues of a and b are given in Table 8.3.1 for different values of the parameter γ . Note

that, for the majority of particles of combustion products, the typical values of refrac-

tive index m = n− ik in the optical wavelength range lie in the ranges n = 1.4÷2.4
and k = 0÷0.1 or k = 0.4÷1.4.

The limiting cases 1 and 5 are quite obvious. For example, for Rayleigh particles

with γ < 0.1, the survival probability of quantum albedo is ω(λ ) = const/λ 3, and

τ(λ )∼ 1/λ . In the majority of cases, the value of ω(λ ) is less than or approximately

equal to 0.01. This means that W (λ ) → 1, and the emissivity E(λ ) hardly depends

on ω(λ ). The plasma medium containing large particles (γ > 40) is optically gray

[E(λ ) ∼ const]; τ(λ ) and ω(λ ) are independent of λ . In other cases, relation (8.17)

is used for approximation of spectral dependence W (λ ). The choice of suitable ap-

proximation E(λ ) is based on the results of analysis of spectral dependence of τ(λ )
in the working wavelength range or on additional data on the value of parameter γ
obtained, for example, using other diagnostic methods. The parameter a will be the

second unknown parameter (Td , a) in the set of equations (8.13)–(8.15). This prob-

lem can be solved using regression analysis techniques by way of ensuring optimal

agreement between the measurement and calculation data.
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TABLE 8.1
Functions W (λ ) for spectral approximation of emissivity.

k ≤ 0.1 k ≥ 0.4
γ =< ρ > (n−1) W (λ ) τ(λ )

1 γ > 40/χ(a) const const const

2 γ > 3 const/(τλ a); constτ dτ/dλ > 0;

a = −0.1÷0.5 (±dτ/dλ )(b)

3 3/4χ < γ < 3 const/(τλ a); const/(τ1/3λ a); ±dτ/dλ
a = 1÷1.5 a = −0.5÷0

4 γ < 3/4χ const/(τλ a); const/(τλ a); dτ/dλ < 0; τ ∼ λ β

a = 0.65÷1 a = 0.5÷0.6 β = −4÷ (−1)

5 γ < χ/10 const → 1 const → 1 τ ∼ 1/λ

Note: (a) χ = 1.0 for particles with k ≤ 0.1, χ = 1.5 at k ≥ 0.4; (b) for the case of

narrow-disperse distributions of particles with k ≤ 0.1.

8.3.2 The spectrometric method of the particle size and refractive index
determination

If the particle temperature is determined, the emissivity E(λ ) can be obtained from

relation (8.13). On the other hand, E(λ ) is a function of two unknown quantities

ω(λ ) and p(λ ), which are determined by the size and refractive index (material) of

particles. By solving Equations (8.13), (8.14), and (8.16), one can obtain the spectral

dependence of albedo ω(λ ), which contains information about the size and complex

refractive index of particles m = n− ik. Similar to the spectral transparency method,

it is assumed that the dispersion of complex refractive index m(λ ) is known or it can

be ignored [m(λ ) = const].

For absorbing particles (k 6= 0), the spectral dependence of albedo ω(λ ) is a func-

tion of Sauter diameter D32 and refractive index m, provided that the parameter γ
meets the condition γ ≥ 5. In this case, the unknown parameters of particles can be

determined by the optimal agreement between the experimental qmeas
i = ωmeas(λi)

and calculation qcalc
i (D32,m) = ωcalc(λi) data on several wavelengths λi(i = 1÷N)

using the procedure of minimization of the mean-square deviation (8.4). For parti-

cles with γ < 5, the spectral distribution of ω(λ ) can depend on the form of the size

distribution function. Then, most suitable model functions f (a) are used.

8.3.3 Simultaneous determination of the particle size, refractive index,
and temperature

The main difficulties of the optical diagnostics of particles are associated with the

ambiguity of solution of inverse problems of the scattering theory in recovering two

or more unknown parameters. Therefore, the majority of existing methods require

a priori information about the size or refractive index of particles. In a number
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of cases, a combination of methods enables one to eliminate the ambiguity of in-

verse solutions in the absence of additional information about the parameters of the

particles. For example, a procedure was developed involving measurements of spec-

tral transparency and dynamic scattering for determining the dispersion of optical

constants, concentration, and size of Rayleigh particles. The principal difficulties in-

volved in the practical use of this procedure are associated with the application of the

Kramers–Kronig relation, because the interpolation of measurement results in a lim-

ited spectral region can cause significant errors (from 15% to 50%) in determining

n(λi) and k(λi) for individual wavelengths λi even in numerical calculations.

For particles with sizes comparable with or larger than the wavelength, a com-

bination of the aperture transparency method and the spectrometric method enables

one to simultaneously measure average sizes, concentration, and optical constants of

particles, as well as to obtain information about the dispersion of complex refractive

index (Nefedov et al. 1995).

If the dispersion of the refractive index of particles in the working spectral range

cannot be ignored, neither the spectral transparency method nor the spectrometric

method permits of reliable determination of the sizes in the absence of the informa-

tion on the function m(λ ). In this case, an independent method can be employed to

measure the average particle diameter D32, and the value of k(λi) can be determined

from the equation dS(λi)/dk(λi) = 0 [see Equation (8.4)] for each wavelength λi.

The average diameter D32, the concentration nd , and the real part n of refractive

index of particles can be obtained using the aperture transparency method. This

method enables one to estimate the dispersion of particle sizes. This information can

be used for the approximation of polydisperse distributions of particles with γ < 5

by model functions. Measurements of the spectral dependence of the optical density

τ(λ ) can be used for correction and elimination of possible ambiguity of the diameter

D32. Comparison of particle sizes obtained as a result of independent measurements

by the spectrometric and spectral transparency methods serves as indirect verification

of the effect of dispersion m(λ ) on the optical characteristics E(λ ) and τ(λ ).

8.3.4 The effect of particles on the determination of the concentration
of alkali metal atoms and the gas temperature

The concentration of alkali metal atoms, along with the temperature of gas and par-

ticles, defines the electrophysical properties of a dusty plasma and can have a sig-

nificant effect on various physicochemical processes. The presence of particles in

plasma media causes a variation of their optical and radiative characteristics. There-

fore, in measuring the concentration of atoms and the gas temperature by conven-

tional methods of optical diagnostics, one should take into account the effect of par-

ticles on the processes of radiation transfer (Samarian et al. 2000).

The conventional methods of determining the concentration and temperature of

atoms in pure gas include the method of total absorption and the method of spectral

line reversal.

Method of total absorption. The measurements of gas temperature and concen-

tration of atoms presume the presence of a standard source of radiation calibrated
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against the blackbody temperature, with the optical beam I(λ ) of this source being

focused such that scattered radiation would not reach the photodetector. The spectral

radiation intensity distribution of the standard source (lamp), which passes in a two-

phase medium and reaches the photodetector, can be written as follows, disregarding

multiple scattering:

I(λ ) = IB(TL,λ )exp(−τ)+
[

αg(λ )IB(Tg,λ )+ αd(λ )IB(TP,λ )
]

[1− exp(−τ)]/τ,
(8.18)

where τ is the optical density of two-phase plasma medium. Because the optical

characteristics of particles (αd , τd) within the narrow spectral range of the radiation

line hardly depend on wavelength λ , the integral coefficient of total absorption on

the spectral line of gas atoms can be written as

A(λ ) =
[SL exp(−τd)+ SP−SPL]∆λ

SL exp(−τ)
, (8.19)

where SL is the signal of lamp radiation, SPL is the signal of lamp radiation that

passed in the plasma, and SP is the signal of self-radiation of the plasma. These

signals are measured for the total spectral range of absorption with a rectangular

instrument function of spectral width ∆λ .

One can readily observe that the only difference from the case of “pure” gas con-

sists in the factor exp(−τd): it is this factor that determines the magnitude of ad-

ditional attenuation by the particles. Therefore, the measurement of the coefficient

A(λ ) (equivalent width of absorption line) does not present any special difficulties,

and the concentration of atoms in a two-phase medium can be determined using con-

ventional computational algorithms developed for “pure” gases.

Conventional reversal method. In the case where the optical density of particles

τd is much lower than the coefficient of absorption of gas atoms αg(λ ) [αg(λ ) ≪
τd] within the working segment of the spectral line of radiation ∆λ isolated by the

photodetector, the gas temperature can be found from the formula

IB(Tg,λ ) = IB(TL,λ )SPL/(SL + SP −SPL). (8.20)

Therefore, if the condition
τd∆λ

∫

αg(λ )dλ
< 0.1 (8.21)

is valid at the center of the spectral line of radiation, we can ignore the effect of

particles and determine the gas temperature by (8.20). In doing so, the error in

determining the temperature Tg due to the effect of particles will not exceed 0.5%.

Generalized reversal method. One of the most optimal methods, which allows the

elimination of the effect of particles on the results of measurements of gas tempera-

ture, is that of registering three signals (SL, SP, and SPL) on two wavelengths λi and

λ j,

IB(λ ,Tg)

IB(λ ,TL)
=

SP(λi)τ(λi)/Λi −SP(λ j)τ(λ j)/Λ j

[τ(λi)− τ(λ j)]SL

, (8.22)
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where Λi = 1− exp[−τ(λi)] = (SL −SPL + SP)/SL.

The principal advantage in using relation (8.22) is that such measurements do

not require information about the optical characteristics of the dispersed phase and,

therefore, do not introduce additional errors. In addition, the algorithm described

above enables one to partly compensate for the effect of multiple scattering and can

be employed for determining the gas temperature in two-phase media with an optical

density τd < 2.

Note that the determination of Tg and αg(λ ) from measuring spectral intensity of

lines of radiation of gas atoms calls for a detector device with a high resolution and

for significant efforts to compensate errors of measurements. Registering the distri-

bution of intensity over the spectral line profiles under rapidly changing conditions

of real flows requires simultaneous spectral measurements on several wavelengths,

which involve the use of a corresponding number of detectors. Therefore, the com-

pensation for fluctuations of the optical characteristics of two-phase media results

in bulky structures of optical instruments. At present, matrix photodetectors are ex-

tensively employed for simultaneous spectral measurements. However, the spectral

resolution of such instruments does not always allow reliable measurements of the

gas temperature by generalized reversal methods. If the radiation line segment ∆λ
isolated by the detector is not narrow enough and the emissivity of the medium varies

considerably, such measurements will result in a distortion of the temperature and of

the optical characteristics.
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Applications

Vladimir E. Fortov, Alexey G. Khrapak, Sergey V. Vladimirov

9.1 Technological and industrial aspects

Dusty plasmas have been present in various industrial applications for many decades.

These are, e.g., precipitation of aerosol particles in combustion products of elec-

tric power stations, plasma spraying, and electrostatic painting. Moreover, powder-

contaminated plasmas pose a number of challenges to the microelectronic industry,

materials science, and gas discharge research and development areas. For example,

particulate powders with the sizes comparable to feature sizes of the semiconductor

integrated circuits have become a troublesome factor in the semiconductor micro-

manufacturing. Dust in the plasma reactors often causes irrecoverable defects and

line shorts in some ultra-large scale integrated circuits, which can totally compromise

the entire microchip fabrication process.

In the beginning of the 1990s, it became clear that a large part of contamination

found on the surface of silicon wafers after the manufacturing was not because of

insufficient cleaning, but in fact was an inevitable consequence of plasma etching

and deposition technologies. In most capacitively coupled rf discharge reactors, all

particles are charged negatively and levitate close to one of the electrodes. After

the discharge is switched off, they are deposited on the wafer surface. Sub-micron

particles deposited on the wafer can reduce the working surface, cause dislocations

and voids, and reduce adhesion of thin films. Enormous efforts put forth on reduction

of the number of undesirable dust particles in industrial plasma reactors have brought

positive results (Selwyn et al. 1989; Bouchoule 1999; Kersten et al. 2001, 2003a,b).

Thus dust obviously plays a role as a contaminant in plasma technological pro-

cesses. However, it has become obvious in recent years that the presence of dust in

plasmas does not necessarily lead to undesirable consequences. Thus, the accents

in the dust particle research in technology are gradually shifting from the traditional

view of them as unwelcome process “killer” contaminants to often desired elements

that can, for example, dramatically affect and even improve the basic properties of

plasma-made thin films.

Powders produced by employing plasma technologies can have interesting and

useful properties: very small sizes (from a nanometer to micrometer range), monodis-

persity, and high chemical activity. The size, structure and composition of the powder

can be varied easily in compliance with the specific requirements of a certain tech-

401
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nology. In this connection, two trends can be distinguished in applied dusty plasma

research (Kersten et al. 2001, 2003a,b; Vladimirov and Ostrikov 2004; Vladimirov

et al. 2005). The first one represents a development of well-established technologies

of surface modification, with the dust particles now being the subject of treatment.

In order to create particles with specific properties, coating, surface activation, etch-

ing, modification, or separation of clustered grains in plasmas can be adapted. The

second important trend is the creation of new nanostructure materials, like thin films

with an inclusion of nanometer-sized particles. The typical size of the elements of

integrated circuits in microelectronics is reduced every year and in the nearest future

it will likely reach 10 nm. Furthermore, capacitively coupled rf discharges are of-

ten replaced by inductively coupled ones: The particle trapping is more difficult in

capacitive discharges, which leads to a significant amount of the particles dropping

onto the surface of the silicon wafer during plasma processing. Thus, the solution

introduced in the 1990’s, which was mostly based on dust particle confinement in

special traps, does not work for these devices. This poses a serious problem for

the production of integrated circuits of the next generation, which demands further

applied research of the properties of dusty plasmas.

One of the key modern issues in the industrial applications of the complex plasma

systems is in the tailoring of various properties of the plasma-generated micro- and

nanoparticles and nanoclusters in the ionized gas phase. Such particles and clusters

can be regarded as building units in nanofabrication involving doping, structural in-

corporation or self-assembly processes. In particular, in the low-energy nanocluster

chemical vapor deposition (Jensen 1999), the cluster charge is critical for the growth

of various silicon- and carbon-based nanofilms (Hwang et al. 2000). To this end, the

charge and size of molecular clusters are the crucial parameters for the explanation

of the unique architectures of many nano-sized objects. The nanocluster charge ap-

pears to be a key reason for the highly anisotropic growth of ordered nanostructures,

such as silicon nanowires and carbon nanotubes (Hwang et al. 2000).

Apart from the common deleterious aspect, nano- and micron-sized particles have

a number of applications in material engineering, optoelectronic, optical, petrochem-

ical, automotive, mineral and several other industries. For example, ultra-fine parti-

cles can be efficiently incorporated into polymeric/ceramic materials to synthesize a

number of advanced nanostructured materials for the applications as water repellent,

protective, fire resistant, functional and other coatings. Furthermore, fine powders

of ∼10 nm-sized particles have been widely used as catalysts for inorganic manu-

facturing, ultra-fine UV-absorbing additives for sunscreens and other outdoor appli-

cations. Other applications include textiles, wear-resistant ceramics, inks, pigments,

toners, cosmetics, advanced nanostructured and bioactive materials, environmental

remediation and pollution control, waste management, as well as various colloidal

suspensions for mining, metallurgical, chemical, pharmaceutical industries, and food

processing.

Nanoparticles have recently emerged as valuable elements of several technolo-

gies aiming to tailor the materials properties at nano-scales and manufacture novel

nanoparticle-assembled materials with unique optical, thermal, catalytic, mechani-

cal, structural and other properties and featuring nano-scale surface morphologies
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and architectures (Roco et al. 1999). The rapidly emerging applications of nanopar-

ticles include nanopatterned and nanocomposite films, nanocrystalline powders and

consolidated structures, and sophisticated nanoparticle assemblies that represent new

forms of supramolecular crystalline matter. Further potential applications include but

are not limited to nano-scale inorganic synthesis, dispersions and suspensions with

the controlled fluid dynamics, and nano-sized single/few-electron data storage units.

In addition, fine particles, advertently injected into the plasma, can be trapped

and subsequently coated to enhance their surface properties (e.g., for catalytic ap-

plications) (Kersten et al. 2003b). Plasmas can also be used to oxidize (and thus

eliminate) contaminant particles in a bio-gas. In this way, it is also possible to elec-

trically charge and control nanometer-sized soot particles in diesel engine exhausts.

This is an example of the complex plasma treatment of soot and aerosol particles for

environmental remediation.

A number of high-pressure discharge systems has recently been used for the syn-

thesis of various nanoparticles. For example, metallic titanium nanoparticles can be

generated in an atmospheric pressure plasmas containing argon, hydrogen, and tita-

nium tetrachloride (TiCl4). This is an alternative to conventionally used multi-stage

production of metallic titanium from titanium ores such as rutile (Murphy and Bing

1994). Another interesting recent advance is the highly efficient synthesis of sili-

con nanoparticles in atmospheric pressure microhollow discharges in argon–silane

mixtures (Sankaran et al. 2003). It is also interesting to note that metal nanoparti-

cles can be synthesized by the plasma enhanced chemical vapor deposition in highly

unusual environments such as micron-sized channels of microchannel glass. This

can be achieved, e.g., by using a metal–organic precursor ferrocene (C5H5)2-Fe and

differential pumping across the microchannels (McIlroy et al. 2003).

Non-equilibrium atmospheric pressure plasmas in the dielectric barrier discharge

configurations can also be used for electrostatic rupture of Gram-negative E. coli

and Gram-positive Bacillus subtilis bacteria (Laroussi et al. 2003). The electrostatic

disruption mechanism for cell rupture requires that the local electrostatic tension of

the cell wall overcome its tensile strength. The electrostatic charge on the surface

of bacteria originates due to electron and ion collection currents in a manner similar

to solid dust grain charging in a plasma. To this end, airborne bacteria exposed to

high-pressure non-equilibrium plasmas can also be regarded as microscopic “dust”

particles.

To conclude, fine solid particles in plasma technologies are indeed deleterious

process contaminants as, e.g., in microelectronics. To this end, significant progress

has been achieved in the development of various methods of removal and suppres-

sion of dust in various industrial facilities. Most recently, however, the plasma-

grown solid grains have become increasingly attractive for a number of thin-film

technologies including but not limited to low-temperature self-assembly of ordered

nanoparticle arrays, nanocrystalline and polymorphous silicon–based thin films for

optoelectronic functionalities and devices, biocompatible calcium phosphate–based

bio-ceramics for dental surgery and orthopedic applications, and hard wear-resistant,

self-lubricating, UV-protecting and many other functional coatings. Despite a no-

table progress in industrial applications of the plasma-grown micro-/nanoparticles,
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some of them still remain at the research and development stage.

In view of the most recent advances in the science and applications of fine pow-

ders, control and manipulation (and eventually the adequate management strategies)

of the plasma-grown solid particles is becoming a matter of utmost importance.

However, this aim cannot be achieved without proper understanding of the under-

lying physics of the basics of plasma-fine particle interactions. For this reason, the

dynamics and self-organization of the particulate matter, as well as various collec-

tive processes in low-temperature complex plasma systems, are crucial (Vladimirov

and Ostrikov 2004; Vladimirov et al. 2005). Indeed, without proper understanding

of the fundamentals of basic dust–plasma (and wherever applicable dust–solid sub-

strate/wall) interactions, it is impossible to adequately and self-consistently describe

the real processes in the complex plasma systems with variable-sized particulate mat-

ter of complex shapes and internal organization, such as nanoclusters and complex

nucleates and agglomerates. On the other hand, knowledge of the collective phenom-

ena involving charged dust particles is important in the studies of self-organization

and critical phenomena in gas discharges that affect the origin and growth of fine

powder particles. Thus, fundamental and applied aspects of the problems are insep-

arably associated with each other.

9.2 Dust in fusion reactors

It is well known that dust particles are present in magnetic confinement fusion de-

vices (Winter 2000; Vladimirov and Ostrikov 2004). Their origin is mostly the

plasma–surface interaction. The radioactive dust contains large amounts of hydrogen

isotopes, with up to 50% in tritium.

Physically, tritium, incorporated into carbonaceous dust, undergoes radioactive

decay, and this can lead to dust charging and the formation of the nuclear-induced

plasmas. In the plasma, charged dust particles can be transported and levitated.

There are thus two major sets of problems related to particulate generation in fu-

sion devices. One of them is related to the safety of operation of the fusion reactor,

the other being related to the plasma parameters and stability. Specifically, dust-

bound tritium inventory is a major safety concern for future fusion reactors. The

main problem in this regard is that dust cannot be reprocessed together with tritium,

thus increasing the site inventory. Dust is also a potential carrier of tritium in the

case of a severe reactor failure. Furthermore, if the reactor cooling systems are dam-

aged, large amounts of hydrogen can form an explosive mixture with oxygen from

the environment.

The key point of another aspect is that large amounts of dust can accumulate at

the bottom of the device (which is usually a divertor area in tokamak and stellarator

devices). Dust accumulation can impede the heat transfer to the cooling surfaces

and also compromise specially designed gaps for electrical insulation or thermal
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expansion purposes. Such layers can sublimate when exposed to huge heat loads.

On the other hand, this can lead to a source of plasma impurities adversely affecting

the plasma parameters and stability.

What are the specific sources of origin and formation mechanisms of dust particles

in fusion devices? Significant parts of the plasma-exposed surfaces (e.g., limiters, di-

vertors, antennas for rf heating) are often coated with carbon-based materials, such

as graphite or carbon fiber composites. However, carbon suffers from high erosion

rates from intense physical sputtering and chemical erosion. As a result of the expo-

sure to chemically active hydrogen, several forms of hydrocarbon are released from

the surfaces into the plasma edge where they interact with the plasma and could be

ionized or dissociated. Edge-localized modes and pressure-driven instabilities or dis-

ruptions (quick and uncontrollable discharge quenching leading to deposition of the

plasma-stored energy onto the surface) at the plasma edge can lead to excessive heat

fluxes onto the divertor surfaces.

It is clear at present that more understanding of the mechanisms responsible for

particulate production from plasma–surface interactions in fusion devices is required.

Moreover, this area has been highlighted by the U.S. Fusion Safety Program as one of

the priority areas of research. Recently developed plasma/fluid and aerosol models of

disruption simulation experiments in the SIRENS high heat flux facility integrate the

necessary mechanisms of plasma–material interactions, plasma and fluid flow, and

particulate generation and transport (Sharpe et al. 2001). The model successfully

predicts the size distribution of primary particulates generated in SIRENS disruption-

induced material immobilization experiments.

The estimated erosion rate of the carbon material can be quite high, up to 2×1021

m2s−1 in the TEXTOR (Tokamak EXperiment for Technology-Oriented Research)

fusion device. The eroded material is usually redeposited in a form of carbon-based

layers in the areas of lower heat fluxes, and contains a large amount of radioactive

hydrogen isotopes. The dust thus becomes radioactive and can carry a large propor-

tion of tritium inventory. The main factor to be utilized for successful solution of the

problem is the presence of the electrical charge at the dust particles. In these con-

ditions, the equilibrium particle charge is determined by competition of secondary

electron emission and electron and ion absorbtion from the ambient plasma.

One can estimate the charge that can be accumulated by a carbon-based particle

due to radioactive decay of tritium (half-lifetime of t1/2 = 12.3 years with a max-

imum electron energy of 18.6 keV) (Winter 2000). Specifically, the number of β -

decays in a 5 µm-sized carbon particle carrying 0.4 hydrogen isotopes (with 50%

tritium) per carbon atom, can reach up to 5× 102 per second. Assuming that all

β -electrons leave the particle, the secondary electron emission yield of unity, and

mean charge lifetime of 1 s, one can calculate that such a particle can accumulate a

positive equilibrium charge of Q = 5×102 e. The electric field of 38 V cm−1 would

be sufficient to confine such a particle near the surface.

The size of particulates in fusion devices varies in broad ranges, from a few tens

of nanometers to several millimeters. The estimates of the total amount of rede-

posited radioactive dust by Winter (2000) show that large amounts up to a few tens

of kilograms can be generated in the International Thermonuclear Experimental Re-
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actor (ITER) device. The dust composition is mostly carbon but may also include

all other materials used inside the vessel or for wall conditioning purposes (e.g., B,

Si). In the TEXTOR experiments, a large number of almost perfect metallic spheres

with diameters from 10 µm to 1 mm has been identified. The most likely forma-

tion mechanism is the reactor wall flaking (heterogeneous process) with subsequent

coagulation of metal atoms on hot and non-wetting graphite surfaces. It is also in-

teresting to note that very small, sub-100 nm carbon particles can be formed in the

fusion devices as a result of CVD (Chemical Vapor Deposition) processes in carbon

vapor. Formation of small globular clusters, fullerene-like materials, etc., is also pos-

sible. In the TEXTOR device, agglomerates of individual particles of about 100 nm

in diameter are frequently observed. Another possible mechanism is the dust growth

in the scrape-off layers (detached plasmas in the proximity of divertors and limiters),

where the conditions are quite similar to those in chemically active low-temperature

hydrocarbon plasmas. Under such conditions, the growth will probably proceed via

negative hydrocarbon ions and multiple ion–neutral reactions.

Large particles introduced into the plasma can also induce a disruption. However,

usually if a discharge is fully developed, their effect on the discharge performance

is weak. However, if particles pre-exist in the vessel prior to the plasma start-up, a

significant amount of impurities can be released into the plasma volume. Indeed, the

intensive impurity radiation is often observed during the start-up phase and may be

due to the levitated dust. As was already mentioned, β -decay of tritium may lead

to charging of dust and formation of nuclear-induced plasmas, which may affect

the initiation phase of a thermonuclear plasma. It is worth noting that the electron

number density of nuclear-induced plasmas is typically about 5×109 cm−3. When

the gas pressure in the vessel increases to about 10−3 mbar, the plasma breakdown

takes place and the fast β -electrons from T-decay ionize the gas along their track

(on the order of 103 m at this pressure). In this way, about 500 electron–ion pairs

per β -electron can be formed. The plasma induced by radioactive particles can be

formed in a simple parallel plate model reactor configuration even without any mag-

netic field. In this case, dust levitation and formation of ordered dust structures is

possible (Fortov et al. 2002). Therefore, study of the possible methods to remove

the radioactive dust from or minimize its consequences on the operation of the fusion

reactors becomes increasingly important. Note that use of the thermophoretic force

can be a viable route for the removal of the radioactive dust (Yokomine et al. 2001).

In the ITER dust can represent a serious safety hazard. ITER, similar to most of the

existing fusion devices, will have wall parts made of graphite and carbon composites.

As we have already noticed, the tritium implantation into the carbonaceous dust can

result in appearance of dust particles, where for one atom of carbon there are two

atoms of tritium. The mass of tritium in large devices like ITER may be as high as

dozens of kilograms. Such a high amount raises serious problems related to the safety

of the operation. Thus, the problem of dust removal from thermonuclear devices

represents one of the most important scientific and technical problems.
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9.3 Nuclear photovoltaic electric battery

Application of radioactive materials for electric power production started soon after

the discovery of radioactivity. At present, radioactive isotopes are widely used in

power engineering. Different methods of energy conversion of the radioactive decay

into other kinds of energy (thermal, electric, light) have been developed. Radioiso-

tope thermoelectric power generators have been widely adopted for autonomous hy-

drometeorlogical stations, for radio and light marine buoys, for medicine (radionu-

clide cardiostimulators with electric power supply on a basis of 238Pu), and for power

supply of spacecrafts. As a main fuel for generators, 90Sr, 238Pu, and 210Po are used.

In the foregoing systems, energy needs do not exceed 100 W. When power of the

energy-release of 1–10 kW is necessary, the thermionic converters with 235U as the

heat source are used. All these energy sources have disadvantages, in particular, very

low efficiency. Moreover, a nuclear reactor is very complicated to produce. Recently,

a new method of the nuclear-to-electric energy conversion was proposed by Baranov

et al. (2000) and Filippov et al. (2005). The operating principle of the novel atomic

battery is as follows: high-energy particles, which are formed during the decay of

a radioactive material, ionize an inert gas such as xenon. The dissociative recom-

bination of formed diatomic xenon ions results in the effective excitation of xenon

excimers which emit vacuum ultraviolet photons with a wavelength of about 172

nm. These photons are absorbed on a wide band-gap photoconverter and generate

electron–hole pairs. Estimates indicate that the total efficiency of a battery utilizing

this principle may be as high as 25–35%. A pictorial diagram of the proposed atomic

battery is given in Figure 9.1, and the main elements and processes occurring in such

a battery are shown in Figure 9.2. Besides small spherical particles, the radio-isotope

fuel may have other geometric shapes such as thin wires and foils. The efficiency of

the energy yield, averaged over the spectra of β -particles, turns out to be higher than

80% even with a particle diameter (thickness) of 100 microns.

In order to use solid isotopes in the photovoltaic converters, it is necessary to

have the isotope surface area as large as possible, because the mean free path of

the ionizing particles in the isotope material is very short (e.g., the mean free path

of β -radiation with the mean decay energy in 90Sr is about 180 µm). Therefore, a

homogeneous mixture of gas and isotope dust is a very good option. Excitation of the

gas mixture is performed by α- or β -radiation from the radioactive dust. Estimates

show that at a dust size of 1–20 µm and dust number density of 105–109 cm−3, it is

possible to obtain the power density of ∼ 1 W m−3. The gas pressure has to be of the

order of 1÷ 10 Bar to ensure effective energy conversion of β - or α-radiation into

UV radiation. The main technical problem here is to have a homogeneous gas–dust

mixture at high gas pressures. Experiments of Babichev et al. (2004), Pal’ et al.

(2005), and Filippov et al. (2006) performed in such systems demonstrate that this

is possible in principle. Processes of self-organization occurring in nuclear-induced

plasmas result in the formation of stationary structures and, hence, provide relatively

homogeneous redistribution of particles over the plasma volume.
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FIGURE 9.1

Schematic diagram of an aerosol photovoltaic source of electric energy.

FIGURE 9.2

Scheme of the main components and processes occurring in an aerosol photo-

voltaic source of electric energy.



Applications 409

Simulation of dusty plasma properties in a photovoltaic electric source was per-

formed by Filippov et al. (2005). In noble gases, the condition of locality of the

electron energy distribution function (EEDF) is violated. Therefore, Filippov et al.

(2003) developed a nonlocal model of dust particle charging, which takes into ac-

count the nonlocality of the EEDF using the nonlocal method of moments (Ingold

1989). Dust particle charge as a function of radius for different values of the spe-

cific power of a photovoltaic source of electric energy was calculated. From this

the strength of interparticle coupling can be calculated and predictions can be made

whether the particle system forms highly ordered crystal-like or less ordered liquid-

like structures.

The plasma created by a beam of high-energy electrons upon ionization of a

gaseous medium containing dust particles of micron sizes has physical properties

close to the plasma of the aerosol photovoltaic energy source. Investigation of such

plasma by Filippov et al. (2005) revealed the following:

1. The experimental investigation of the formation of dust particle structures in a

nuclear-excited plasma demonstrated the possibility of a gas–dust mixture to

organize into a structure levitating in the gravity field.

2. The experiments revealed the possibility of using a photoconverter to generate

electrical power upon the excitation of a gas medium by a beam of high-energy

electrons which simulate β -particles.

3. β -active isotopes with a half-life of 10 to 30 years are most promising as fuel

for an autonomous photovoltaic source of electric energy with a service life-

time of 10 years and longer.

4. The dust particle size was found to have limitations from both below and

above. The limitation from below is associated with the fact that, in the case

of small particles, their number per unit volume turns out to be enormous (the

radius and concentration of dust particles are related by the need to ensure the

specific power of the source on a level of 0.1–10 W/l that is acceptable from

the practical standpoint). As a result, the main process in the loss of diatomic

xenon ions becomes the absorption on the particles. Then, the energy equal

to the ionization potential is used to heat dust particles. This causes a reduc-

tion of the efficiency of the PSEE. The dust particle size is restricted from

above because, first, it is difficult to “suspend” large particles in the gravity

field and, second, their concentration turns out to be low; therefore, the mean

interparticle distance becomes large, and the particles cease to interact with

one another.

5. In order to reduce a loss of energy in the dust component of a gas–dust mixture,

it is necessary to raise the pressure as the specific power of a battery increases.

6. A constraint is imposed on the external electric field because of the Joule heat-

ing of the gas. The external field is necessary for the formation and prevention
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of the sedimentation and deposition of a levitating cloud of dust particles on

the construction elements.

To conclude, for the successful development of adequate scientific principles of

atomic batteries based on dust-plasma structures, the investigations has to be con-

tinued. At present, an experimental setup is available, and the intense research of

the possibility to create ordered structures of dusty plasma produced by a stationary

beam of high-energy electrons is being performed. The experiments are being con-

tinued to determine the efficiency of conversion of the beam energy to the electric

power with the aid of a standard photoconverter using xenon, krypton, argon/nitrogen

mixtures, and air. The activities which are aimed at developing a wide band-gap

diamond photoconverter have been started; after completing these activities, it is

planned to perform experiments with xenon.
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The sketches show the 2D (left) and 3D view of the plasma chamber (right) (Thomas et al.
2008).



FIGURE 5.6
Lane formation in complex plasmas. A short burst of small (3.4 μm) particles injected into a
cloud of large (9.2 μm) background particles are driven from left to right. Stages of (a) initial
lane formation, (b) merging of lanes into larger streams, and (c) eventual droplet formation
are shown. Each figure is a superposition of two consecutive color-coded images (1/50th s
apart, green to red), entire sequence is about 2.5 s long. Images are kindly provided by M.
Rubin-Zuzic.



a b c

FIGURE 5.12
Dynamics of particles in a lattice of a 2D crystal et al. 2007). (a) Distribution of velocities vx
(red dots) and vy (blue dots) with Maxwellian fits (solid lines). (b) Distribution of displace-
ments x (red dots) and y (blue dots) of particles in their nearest-neighbor cage, solid lines are
Gaussian fits. (c) Particle trajectories in their respective nearest-neighbor cells during the
measurement time of � 12.3 s (colors correspond to the progression of time). Particles are of
9.19 μm diameter.

a) b)

FIGURE 5.13
2D maps of local crystal parameters (Knapek et al. 2007). Distribution of (a) effective coupling
parameter Γ̃ and (b) interparticle distance Δ is shown, the Voronoi cell around each particle is
color coded according to the value of the measured quantity. The circles indicate the position
of a sevenfold-fivefold pair defect, blue cells seen at the upper edge of (a) are due to the particle
cage-escape event (see Section 5.2.1).
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FIGURE 5.14
Recrystallization in 2D complex plasmas (Knapek et al. 2007b). (a) Snapshot showing inter-
mediate structure of 9.19 μm particles during the recrystallization. (b,c) Color-coded 2D maps
for two consecutive stages of recrystallization (about 10 s apart, map b corresponds to snap-
shot a). The background gray scale corresponds to the local value of the bond-orientational
function |ψ6|, the arrows represent the vector field of ψ6 on the complex plane, defects are
marked by red (fivefold) and blue (sevenfold) dots.

FIGURE 5.16
Domain structure of a 3D plasma crystal (Zuzic et al. 2000). Particles are of 3.38 μm diameter,
three consecutive lattice planes are shown, each particle in the middle plane is color-coded in
accordance with the local order (red corresponds to the fcc lattice cell and green to hcp),
particle in two adjacent planes are indicated by crosses and stars.
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FIGURE 5.17
Crystallization front in a 3D complex plasma (Rubin-Zuzic et al. 2006). Figures (a) and (b)
illustrate the front propagating upwards (images are about 16 s apart from each other). Each
figure is a superposition of 10 consecutive video frames (about 0.7 s), particle positions are
color-coded from green to red, i.e., “caged” particles appear redder, “fluid” are multicolored.
(c) The local order for figure (b), where red implies high crystalline order, black denotes the
fluid phase, and yellow indicates transitional regions. Along with the crystallization front,
droplets and crystallites are seen that may grow and then dissolve again. Particles are of
1.28 μm diameter.
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FIGURE 7.18
Crystallized Yukawa system in the narrow channel for the parabolic confinement. The par-
ticles form three layers A, B, and C. The particles of layers A, B, and C are marked by blue,
green, and red, respectively. It is seen that layer C is almost completely screened by layer A.
It means that the hcp lattice is dominant in that case. The bcc phase is also seen. A small
number of clusters (∼ 1%) have icosahedral-like (fivefold) symmetry.
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FIGURE 7.19
Crystallization of the particles in the narrow channel for the hard wall confinement. The
domains having hcp and fcc lattice types are clearly seen. A significant number of clusters
have a quasicrystalline (QC) phase. The inset shows the unit cell of the QC phase, which is a
distorted hcp/fcc unit cell.
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FIGURE 7.20
Crystallization of the particles in the narrow channel for the parabolic (a, b) and hard wall (c,
d) confinements. Particles are color-coded by z-coordinate. Stable three-layers configurations
of the Yukawa system (a, c) are presented. These systems close to the two-layer configuration
(b, d) are also shown. The insets show pair correlation function g(r/Δ) for each layer, including
the central one (solid line).

FIGURE 7.27
The lattice types we try to identify: hexagonal close packing (hcp), face centered cubic (fcc),
body centered cubic (bcc) and icosahedron (ico) (from left to right).
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FIGURE 7.28
Variations of the rotational invariants q4 and q6 for different lattice types at different distor-
tions: compression/extraction (C), shear (S) and torsion (T). The curves are color-coded by
relative deformation values (S, T). We also plotted here the invariants for the fcc lattice (cal-
culated by using 8 nearest neighbors) and body centered tetragonal (bct) - the compressional
modification of bcc.

FIGURE 7.29
Experimentally recorded particle positions in the y− z (top) and x− y (bottom) planes. Par-
ticles are color-coded by the corresponding third coordinate presented in mm. About 6000
particles were detected.
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