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1 Conservation of Energy
1.1 The Search for a Perpetual Motion Machine

Don’t underestimate greed and laziness as forces for progress. Modern
chemistry was born from the collision of lust for gold with distaste for the
hard work of finding it and digging it up. Failed efforts by generations of
alchemists to turn lead into gold led finally to the conclusion that it could
not be done: certain substances, the chemical elements, are fundamental,
and chemical reactions can neither increase nor decrease the amount of an
element such as gold.

Now flash forward to the early industrial age. Greed and laziness have
created the factory, the train, and the ocean liner, but in each of these is a
boiler room where someone gets sweaty shoveling the coal to fuel the steam

In July of 1994, Comet Shoemaker-Levy struck the
planet Jupiter, depositing 7x10 22 joules of energy, and
incidentally giving rise to a series of Hollywood mov-
ies in which our own planet is threatened by an im-
pact by a comet or asteroid. There is evidence that
such an impact caused the extinction of the dinosaurs.
Left: Jupiter’s gravitational force on the near side of
the comet was greater than on the far side, and this
difference in force tore up the comet into a string of
fragments. Two separate telescope images have been
combined to create the illusion of a point of view just
behind the comet. (The colored fringes at the edges
of Jupiter are artifacts of the imaging system.) Top: A
series of images of the plume of superheated gas
kicked up by the impact of one of the fragments. The
plume is about the size of North America. Bottom: An
image after all the impacts were over, showing the
damage done.

Section 1.1 The Search for a Perpetual Motion Machine
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engine. Generations of inventors have tried to create a machine, called a
perpetual motion machine, that would run forever without fuel. Such a
machine is not forbidden by Newton’s laws of motion, which are built
around the concepts of force and inertia. Force is free, and can be multi-
plied indefinitely with pulleys, gears, or levers. The principle of inertia
seems even to encourage the belief that a cleverly constructed machine
might not ever run down.

The figures show two of the innumerable perpetual motion machines
that have been proposed. The reason these two examples don’t work is not
much different from the reason all the others have failed. Consider machine
(a). Even if we assume that a properly shaped ramp would keep the ball
rolling smoothly through each cycle, friction would always be at work. The
designer imagined that the machine would repeat the same motion over and
over again, so that every time it reached a given point its speed would be
exactly the same as the last time. But because of friction, the speed would
actually be reduced a little with each cycle, until finally the ball would no
longer be able to make it over the top.

Friction has a way of creeping into all moving systems. The rotating
earth might seem like a perfect perpetual motion machine, since it is
isolated in the vacuum of outer space with nothing to exert frictional forces
on it. But in fact our planet’s rotation has slowed drastically since it first
formed, and the earth continues to slow its rotation, making today just a
little longer than yesterday. The very subtle source of friction is the tides.
The moon’s gravity raises bulges in the earth’s oceans, and as the earth
rotates the bulges progress around the planet. Where the bulges encounter
land, there is friction, which slows the earth’s rotation very gradually.

1.2 Energy
The analysis based on friction is somewhat superficial, however. One

could understand friction perfectly well and yet imagine the following
situation. Astronauts bring back a piece of magnetic ore from the moon
which does not behave like ordinary magnets. A normal bar magnet, (c),
attracts a piece of iron essentially directly toward it, and has no left- or
right-handedness. The moon rock, however, exerts forces that form a
whirlpool pattern around it, (d). NASA goes to a machine shop and has the
moon rock put in a lathe and machined down to a smooth cylinder, (e). If
we now release a ball bearing on the surface of the cylinder, the magnetic
force whips it around and around at ever higher speeds. Of course there is
some friction, but there is a net gain in speed with each revolution.

Physicists would lay long odds against the discovery of such a moon
rock, not just because it breaks the rules that magnets normally obey but
because, like the alchemists, they have discovered a very deep and funda-
mental principle of nature which forbids certain things from happening.
The first alchemist who deserved to be called a chemist was the one who
realized one day, “In all these attempts to create gold where there was none
before, all I’ve been doing is shuffling the same atoms back and forth

(a) The magnet draws the ball to the
top of the ramp, where it falls through
the hole and rolls back to the bottom.

(b) As the wheel spins clockwise, the
flexible arms sweep around and bend
and unbend. By dropping off its ball
on the ramp, the arm is supposed to
make itself lighter and easier to lift over
the top. Picking its own ball back up
again on the right, it helps to pull the
right side down.

(c)

(d)

(e)

Chapter 1 Conservation of Energy
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among different test tubes. The only way to increase the amount of gold in
my laboratory is to bring some in through the door.” It was like having
some of your money in a checking account and some in a savings account.
Transferring money from one account into the other doesn’t change the
total amount.

We say that the number of grams of gold is a conserved quantity. In this
context, the word “conserve” does not have its usual meaning of trying not
to waste something. In physics, a conserved quantity is something that you
wouldn’t be able to get rid of even if you wanted to. Conservation laws in
physics always refer to a closed system, meaning a region of space with
boundaries through which the quantity in question is not passing. In our
example, the alchemist’s laboratory is a closed system because no gold is
coming in or out through the doors.

A similar lightbulb eventually lit up in the heads of the people who had
been frustrated trying to build a perpetual motion machine. In perpetual
motion machine (b) in the previous section, consider the motion of one of
the balls. It performs a cycle of rising and falling. On the way down it gains
speed, and coming up it slows back down. Having a greater speed is like
having more money in your checking account, and being high up is like
having more in your savings account. The device is simply shuffling funds
back and forth between the two. Having more balls doesn’t change anything
fundamentally. Not only that, but friction is always draining off money into
a third “bank account:” heat. The reason we rub our hands together when
we’re cold is that kinetic friction heats things up. The continual buildup in
the “heat account” leaves less and less for the “motion account” and “height
account,” causing the machine eventually to run down.

These insights can be distilled into the following basic principle of
physics:

The Law of Conservation of Energy
It is possible to give a numerical rating, called energy, to the state
of a physical system. The total energy is found by adding up
contributions coming from characteristics of the system such as
motion of objects in it, heating of the objects, and the relative
positions of objects that interact via forces. The total energy of a
closed system always remains constant. Energy cannot be created
or destroyed, but only transferred into or out of a system.

The moon rock story violates conservation of energy because the rock-
cylinder and the ball together constitute a closed system. Once the ball has
made one revolution around the cylinder, its position relative to the cylin-
der is exactly the same as before, so the numerical energy rating associated
with its position is the same as before. Since the total amount of energy
must remain constant, it is impossible for the ball to have a greater speed

The water behind the Hoover Dam has
energy because of its position relative
to the planet earth, which is attracting
it with a gravitational force. Letting
water down to the bottom of the dam
converts that energy into energy of
motion. When the water reaches the
bottom of the dam, it hits turbine
blades that drive generators, and its
energy of motion is converted into
electrical energy.

Section 1.2 Energy
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after one revolution. If it had picked up speed, it would have more energy
associated with motion, the same amount of energy associated with posi-
tion, and a little more energy associated with heating through friction.
There cannot be a net increase in energy.

Examples
Dropping a rock : The rock loses energy because of its changing
position with respect to the earth. Nearly all that energy is
transformed into energy of motion, except for a small amount lost
to heat created by air friction.
Sliding in to home base : The runner’s energy of motion is
nearly all converted into heat via friction with the ground.
Accelerating a car : The gasoline has energy stored in it, which
is released as heat by burning it inside the engine. Perhaps 10%
of this heat energy is converted into the car’s energy of motion.
The rest remains in the form of heat, which is carried away by
the exhaust.
Cruising in a car : As you cruise at constant speed in your car,
all the energy of the burning gas is being converted into heat.
The tires and engine get hot, and heat is also dissipated into the
air through the radiator and the exhaust.
Stepping on the brakes : All the energy of the car’s motion is
converted into heat in the brake shoes.

Discussion Question
Hydroelectric power (water flowing over a dam to spin turbines) appears to be
completely free. Does this violate conservation of energy? If not, then what is
the ultimate source of the electrical energy produced by a hydroelectric plant?

1.3 A Numerical Scale of Energy
Energy comes in a variety of forms, and physicists didn’t discover all of

them right away. They had to start somewhere, so they picked one form of
energy to use as a standard for creating a numerical energy scale. (In fact the
history is complicated, and several different energy units were defined
before it was realized that there was a single general energy concept that
deserved a single consistent unit of measurement.) One practical approach
is to define an energy unit based on heating water. The SI unit of energy is
the joule, J, (rhymes with “cool”), named after the British physicist James
Joule.  One Joule is the amount of energy required in order to heat 0.24 g
of water by 1°C. The number 0.24 is not worth memorizing.

Note that heat, which is a form of energy, is completely different from
temperature, which is not. Twice as much heat energy is required to prepare
two cups of coffee as to make one, but two cups of coffee mixed together
don’t have double the temperature. In other words, the temperature of an
object tells us how hot it is, but the heat energy contained in an object also
takes into account the object’s mass and what it is made of.

Later we will encounter other quantities that are conserved in physics,
such as momentum and angular momentum, and the method for defining
them will be similar to the one we have used for energy: pick some standard
form of it, and then measure other forms by comparison with this standard.
The flexible and adaptable nature of this procedure is part of what has made
conservation laws such a durable basis for the evolution of physics.

Chapter 1 Conservation of Energy
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Example: heating a swimming pool
Question : If electricity costs 3.9 cents per MJ (1 MJ = 1
megajoule = 106 J), how much does it cost to heat a 26000-
gallon swimming pool from 10°C to 18°C?
Solution : Converting gallons to cm3 gives

  26000 gallons × 3780 cm3

1 gallon  = 9.8x107 cm3.

Water has a density of 1 gram per cubic centimeter, so the mass
of the water is 9.8x107 g. One joule is sufficient to heat 0.24 g by
1°C, so the energy needed to heat the swimming pool is

   1 J × 9.8×107 g
0.24 g × 8°C

1°C = 3.3x109 J

=3.3x103 MJ   .
The cost of the electricity is (3.3x103 MJ)($0.039/MJ)=$130.

Example: Irish coffee
Question : You make a cup of Irish coffee out of 300 g of coffee
at 100°C and 30 g of pure ethyl alcohol at 20°C. One Joule is
enough energy to produce a change of 1°C in 0.42 g of ethyl
alcohol (i.e. alcohol is easier to heat than water). What tempera-
ture is the final mixture?
Solution : Adding up all the energy after mixing has to give the
same result as the total before mixing. We let the subscript i
stand for the initial situation, before mixing, and f for the final
situation, and use subscripts c for the coffee and a for the
alcohol. In this notation, we have

total initial energy = total final energy
E

ci
+E

ai
= E

cf
+E

af
   .

We assume coffee has the same heat-carrying properties as
water. Our information about the heat-carrying properties of the
two substances is stated in terms of the change in energy
required for a certain change in temperature, so we rearrange
the equation to express everything in terms of energy differ-
ences:

E
af
-E

ai
= E

ci
-E

cf
   .

Using the given ratios of temperature change to energy change,
we have

E
ci
-E

cf
= (T

ci
-T

cf
)(m

c
)/(0.24 g)

E
af
-E

ai
= (T

af
-T

ai
)(m

a
)/(0.42 g)

Setting these two quantities to be equal, we have
(T

af
-T

ai
)(m

a
)/(0.42 g) =   (T

ci
-T

cf
)(m

c
)/(0.24 g) .

In the final mixture the two substances must be at the same
temperature, so we can use a single symbol T

f
=T

cf
=T

af
 for the two

quantities previously represented by two different symbols,
(T

f
-T

ai
)(m

a
)/(0.42 g) =   (T

ci
-T

f
)(m

c
)/(0.24 g) .

Solving for T
f
 gives

Tf =
  Tci
mc
.24 + Tai

ma
.42

mc
.24 +

ma
.42

= 96°C.

Section 1.3 A Numerical Scale of Energy
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Once a numerical scale of energy has been established for some form of
energy such as heat, it can easily be extended to other types of energy. For
instance, the energy stored in one gallon of gasoline can be determined by
putting some gasoline and some water in an insulated chamber, igniting the
gas, and measuring the rise in the water’s temperature. (The fact that the
apparatus is known as a “bomb calorimeter” will give you some idea of how
dangerous these experiments are if you don’t take the right safety precau-
tions.) Here are some examples of other types of energy that can be mea-
sured using the same units of joules:

type of energy example

chemical energy released
by burning

About 50 MJ are released by burning 1
kg of gasoline.

energy required to break
an object

When a person suffers a spiral fracture
of the thighbone (a common type in
skiing accidents), about 2 J of energy
go into breaking the bone.

energy required to melt a
solid substance 7 MJ are required to melt 1 kg of tin.

chemical energy released
by digesting food

A bowl of Cheerios with milk provides
us with about 800 kJ of usable energy.

raising a mass against the
force of gravity

Lifting 1.0 kg through a height of 1.0
m requires 9.8 J.

nuclear energy released in
fission

1 kg of uranium oxide fuel consumed
by a reactor releases 2x1012 J of stored
nuclear energy.

It is interesting to note the disproportion between the megajoule
energies we consume as food and the joule-sized energies we expend in
physical activities. If we could perceive the flow of energy around us the way
we perceive the flow of water, eating a bowl of cereal would be like swallow-
ing a bathtub’s worth of energy, the continual loss of body heat to one’s
environment would be like an energy-hose left on all day, and lifting a bag
of cement would be like flicking it with a few tiny energy-drops. The
human body is tremendously inefficient. The calories we “burn” in heavy
exercise are almost all dissipated directly as body heat.

Chapter 1 Conservation of Energy
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Example: You take the high road and I’ll take the low road.
Question : The figure shows two ramps which two balls will roll
down. Compare their final speeds, when they reach point B.
Assume friction is negligible.
Solution : Each ball loses some energy because of its decreas-
ing height above the earth, and conservation of energy says that
it must gain an equal amount of energy of motion (minus a little
heat created by friction). The balls lose the same amount of
height, so their final speeds must be equal.

It’s impressive to note the complete impossibility of solving this prob-
lem using only Newton’s laws. Even if the shape of the track had been given
mathematically, it would have been a formidable task to compute the balls’
final speed based on vector addition of the normal force and gravitational
force at each point along the way.

How New Forms of Energy Are Discovered
Textbooks often give the impression that a sophisticated physics

concept was created by one person who had an inspiration one day, but in
reality it is more in the nature of science to rough out an idea and then
gradually refine it over many years. The idea of energy was tinkered with
from the early 1800s on, and new types of energy kept getting added to the
list.

 To establish the existence of a new form of energy, a physicist has to

(1) show that it could be converted to and from other forms of energy;
and

(2) show that it related to some definite measurable property of the
object, for example its temperature, motion, position relative to
another object, or being in a solid or liquid state.

For example, energy is released when a piece of iron is soaked in water, so
apparently there is some form of energy already stored in the iron. The
release of this energy can also be related to a definite measurable property of
the chunk of metal: it turns reddish-orange. There has been a chemical
change in its physical state, which we call rusting.

Although the list of types of energy kept getting longer and longer, it
was clear that many of the types were just variations on a theme. There is an
obvious similarity between the energy needed to melt ice and to melt
butter, or between the rusting of iron and many other chemical reactions.
The topic of the next chapter is how this process of simplification reduced
all the types of energy to a very small number (four, according to the way
I’ve chosen to count them).

It might seem that if the principle of conservation of energy ever
appeared to be violated, we could fix it up simply by inventing some new
type of energy to compensate for the discrepancy. This would be like
balancing your checkbook by adding in an imaginary deposit or withdrawal
to make your figures agree with the bank’s statements. Step (2) above guards
against this kind of chicanery. In the 1920s there were experiments that
suggested energy was not conserved in radioactive processes. Precise mea-
surements of the energy released in the radioactive decay of a given type of
atom showed inconsistent results. One atom might decay and release, say,
1.1x10-10 J of energy, which had presumably been stored in some mysterious

A

B

track #1

track #2

ball #1

ball #2

Forms of Energy Discovered in
Recent Times
Einstein showed that mass itself
could be converted to and from  en-
ergy, according to his celebrated
equation E=mc2, in which c is the
speed of light. We thus speak of
mass as simply another form of
energy, and it is valid to measure
it in units of joules. The mass of a
15-gram pencil corresponds to
about 1.3x1015 J. The issue is
largely academic in the case of the
pencil, because very violent pro-
cesses such as nuclear reactions
are required in order to convert any
significant fraction of an object’s
mass into energy. Cosmic rays,
however, are continually striking
you and your surroundings and
converting part of their energy of
motion into the mass of newly cre-
ated particles. A single high-energy
cosmic ray can create a “shower”
of millions of previously nonexist-
ent particles when it strikes the at-
mosphere. Einstein’s theories are
discussed in book 6 of this series.

Even today, when the energy con-
cept is relatively mature and stable,
a new form of energy has been
proposed based on observations
of distant galaxies whose light be-
gan its voyage to us billions of
years ago. Astronomers have
found that the universe’s continu-
ing expansion, resulting from the
Big Bang, has not been decelerat-
ing as rapidly in the last few billion
years as would have been ex-
pected from gravitational forces.
They suggest that a new form of
energy may be at work.

Section 1.3 A Numerical Scale of Energy
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form in the nucleus. But in a later measurement, an atom of exactly the
same type might release 1.2x10-10 J. Atoms of the same type are supposed to
be identical, so both atoms were thought to have started out with the same
energy. If the amount released was random, then apparently the total
amount of energy was not the same after the decay as before, i.e. energy was
not conserved.

Only later was it found that a previously unknown particle, which is
very hard to detect, was being spewed out in the decay. The particle, now
called a neutrino, was carrying off some energy, and if this previously
unsuspected form of energy was added in, energy was found to be con-
served after all. The discovery of the energy discrepancies is seen with
hindsight as being step (1) in the establishment of a new form of energy,
and the discovery of the neutrino was step (2). But during the decade or so
between step (1) and step (2) (the accumulation of evidence was gradual),
physicists had the admirable honesty to admit that the cherished principle
of conservation of energy might have to be discarded.

Self-Check
How would you carry out the two steps given above in order to establish that
some form of energy was stored in a stretched or compressed spring?

1.4 Kinetic Energy
The technical term for the energy associated with motion is kinetic

energy, from the Greek word for motion. (The root is the same as the word
“cinema” for motion picture, and in French the term for kinetic energy is
énergie cinématique.) To find how much kinetic energy is possessed by a
given moving object, we must convert all its kinetic energy into heat energy,
which we have chosen as the standard reference type of energy. We could do
this, for example, by firing projectiles into a tank of water and measuring
the increase in temperature of the water as a function of the projectile’s mass
and velocity. Consider the following data from a series of three such experi-
ments:

m (kg) v (m/s) energy (J)

1.00 1.00 0.50

1.00 2.00 2.00

2.00 1.00 1.00

Comparing the first experiment with the second, we see that doubling the

(1) A spring-loaded toy gun can cause a bullet to move, so the spring is capable of storing energy and then
converting it into kinetic energy. (2) The amount of energy stored in the spring relates to amount of compression,
which can be measured with a ruler.

Chapter 1 Conservation of Energy
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object’s velocity doesn’t just double its energy, it quadruples it. If we com-
pare the first and third lines, however, we find that doubling the mass only
doubles the energy. This suggests that kinetic energy is proportional to mass

and to the square of velocity,    KE∝mv 2 , and further experiments of this

type would indeed establish such a general rule. The proportionality factor
equals 0.5 because of the design of the metric system, so the kinetic energy
of a moving object is given by

KE =   1
2

mv 2    .

The metric system is based on the meter, kilogram, and second, with other
units being derived from those. Comparing the units on the left and right
sides of the equation shows that the joule can be reexpressed in terms of the
basic units as kg.m2/s2.

Students are often mystified by the occurrence of the factor of 1/2, but
it is less obscure than it looks. The metric system was designed so that some
of the equations relating to energy would come out looking simple, at the
expense of some others, which had to have inconvenient conversion factors
in front. If we were using the old British Engineering System of units in this
course, then we’d have the British Thermal Unit (BTU) as our unit of
energy. In that system, the equation you’d learn for kinetic energy would
have an inconvenient proportionality constant, KE=(1.29x10-3)mv2, with
KE measured in units of BTUs, v measured in feet per second, and so on.
At the expense of this inconvenient equation for kinetic energy, the design-
ers of the British Engineering System got a simple rule for calculating the
energy required to heat water: one BTU per degree Fahrenheit per gallon.
The inventor of kinetic energy, Thomas Young, actually defined it as
KE=mv2, which meant that all his other equations had to be different from
ours by a factor of two. All these systems of units work just fine as long as
they are not combined with one another in an inconsistent way.

Example: energy released by a comet impact
Question : Comet Shoemaker-Levy, which struck the planet
Jupiter in 1994, had a mass of roughly 4x1013 kg, and was
moving at a speed of 60 km/s. Compare the kinetic energy
released in the impact to the total energy in the world’s nuclear
arsenals, which is 2x1019 J. Assume for the sake of simplicity that
Jupiter was at rest.
Solution : Since we assume Jupiter was at rest, we can imagine
that the comet stopped completely on impact, and 100% of its
kinetic energy was converted to heat and sound. We first convert
the speed to mks units, v=6x104 m/s, and then plug in to the

equation   KE = 1
2mv 2  to find that the comet’s kinetic energy was

roughly 7x10 22 J, or about 3000 times the energy in the world’s
nuclear arsenals.

Section 1.4 Kinetic Energy
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Is there any way to derive the equation KE=   1
2
mv 2  mathematically from

first principles? No, it is purely empirical. The factor of 1/2 in front is
definitely not derivable, since it is different in different systems of units.
The proportionality to v2 is not even quite correct; experiments have shown
deviations from the v2 rule at high speeds, an effect that is related to
Einstein’s theory of relativity. Only the proportionality to m is inevitable.
The whole energy concept is based on the idea that we add up energy
contributions from all the objects within a system. Based on this philoso-
phy, it is logically necessary that a 2-kg object moving at 1 m/s have the
same kinetic energy as two 1-kg objects moving side-by-side at the same
speed.

Energy and relative motion
Although I mentioned Einstein’s theory of relativity above, it’s more

relevant right now to consider how conservation of energy relates to the
simpler Galilean idea, which we’ve already studied, that motion is relative.
Galileo’s Aristotelian enemies (and it is no exaggeration to call them en-
emies!) would probably have objected to conservation of energy. After all,
the Galilean idea that an object in motion will continue in motion indefi-
nitely in the absence of a force is not so different from the idea that an
object’s kinetic energy stays the same unless there is a mechanism like
frictional heating for converting that energy into some other form.

More subtly, however, it’s not immediately obvious that what we’ve
learned so far about energy is strictly mathematically consistent with the
principle that motion is relative. Suppose we verify that a certain process,
say the collision of two pool balls, conserves energy as measured in a certain
frame of reference: the sum of the balls’ kinetic energies before the collision
is equal to their sum after the collision. (In reality we’d need to add in other
forms of energy, like heat and sound, that are liberated by the collision, but
let’s keep it simple.) But what if we were to measure everything in a frame
of reference that was in a different state of motion? A particular pool ball
might have less kinetic energy in this new frame; for example, if the new
frame of reference was moving right along with it, its kinetic energy in that
frame would be zero. On the other hand, some other balls might have a
greater kinetic energy in the new frame. It’s not immediately obvious that
the total energy before the collision will still equal the total energy after the
collision. After all, the equation for kinetic energy is fairly complicated,
since it involves the square of the velocity, so it would be surprising if
everything still worked out in the new frame of reference. It does still work
out. Homework problem 13 in this chapter gives a simple numerical
example, and the general proof is taken up in ch. 4, problem 15 (with the
solution given in the back of the book).

Chapter 1 Conservation of Energy
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Discussion Questions
A. Suppose that, like Young or Einstein, you were trying out different equations
for kinetic energy to see if they agreed with the experimental data. Based on
the meaning of positive and negative signs of velocity, why would you suspect
that a proportionality to mv would be less likely than mv2?
B. The figure shows a pendulum that is released at A and caught by a peg as it
passes through the vertical, B. To what height will the bob rise on the right?

1.5 Power
A car may have plenty of energy in its gas tank, but still may not be able

to increase its kinetic energy rapidly. A Porsche doesn’t necessarily have
more energy in its gas tank than a Hyundai, it is just able to transfer it more
quickly. The rate of transferring energy from one form to another is called
power. The definition can be written as an equation,

P =   ∆E
∆t

   ,

where the use of the delta notation in the symbol ∆E has the usual notation:
the final amount of energy in a certain form minus the initial amount that
was present in that form. Power has units of J/s, which are abbreviated as
watts, W (rhymes with “lots”).

If the rate of energy transfer is not constant, the power at any instant
can be defined as the slope of the tangent line on a graph of E versus t.
Likewise ∆E can be extracted from the area under the P-versus-t curve.

Example: converting kilowatt-hours to joules
Question : The electric company bills you for energy in units of
kilowatt-hours (kilowatts multiplied by hours) rather than in SI
units of joules. How many joules is a kilowatt-hour?
Solution :
1 kilowatt-hour = (1 kW)(1 hour) = (1000 J/s)(3600 s) = 3.6 MJ.

Example: human wattage
Question : A typical person consumes 2000 kcal of food in a day,
and converts nearly all of that directly to heat. Compare the
person’s heat output to the rate of energy consumption of a 100-
watt lightbulb.
Solution : Looking up the conversion factor from calories to
joules, we find

∆E =   2000 kcal × 1000 cal
1 kcal

× 4.18 J
1 cal = 8x106 J

for our daily energy consumption. Converting the time interval
likewise into mks,

∆t =   1 day × 24 hours
1 day

× 60 min
1 hour

× 60 s
1 min  = 9x104 s   .

Dividing, we find that our power dissipated as heat is 90 J/s = 90
W, about the same as a lightbulb.

It is easy to confuse the concepts of force, energy, and power, especially
since they are synonyms in ordinary speech. The table on the following page
may help to clear this up:

A

B

Section 1.5 Power

Discussion question B.
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force energy power

conceptual
definition

A force is an interaction
between two objects that
causes a push or a pull. A
force can be defined as
anything that is capable of
changing an object's state of
motion

Heating an object, making it
move faster, or increasing its
distance from another object
that is attracting it are all
examples of things that
would require fuel or
physical effort. There is a
numerical way of measuring
all these kinds of things
using a single unit of
measurement, and we
describe them all as forms of
energy.

Power is the rate at which
energy is transformed from
one form to another or
transferred from one object
to another.

operational
definition

A spring scale can be used to
measure force.

If we define a unit of energy
as the amount required to
heat a certain amount of
water by a 1°C, then we can
measure any other quantity
of energy transferring it into
heat in water and measuring
the temperature increase.

Measure the change in the
amount of some form of
energy possessed by an
object, and divide by the
amount of time required for
the change to occur.

scalar or vector?
vector – has a direction in
space which is the direction
in which it pulls or pushes

scalar – has no direction in
space

scalar – has no direction in
space

unit newtons (N) joules (J) watts (W) = joules/s

Can it run out?
Does it cost
money?

No. I don't have to pay a
monthly bill for the
meganewtons of force
required to hold up my
house.

Yes. We pay money for
gasoline, electrical energy,
batteries, etc. because they
contain energy.

More power means you are
paying money at a higher
rate. A 100-W lightbulb
costs a certain number of
cents per hour.

Can it be a
property of an
object?

No. A force is a relationship
between two interacting
objects. A home-run baseball
doesn't "have" force.

Yes. What a home-run
baseball has is kinetic energy,
not force.

Not really. A 100-W
lightbulb doesn't "have" 100
W. 100 J/s is the rate at
which it converts electrical
energy into light.

Chapter 1 Conservation of Energy
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Summary
Selected Vocabulary

energy .............................. A numerical scale used to measure the heat, motion, or other proper-
ties that would require fuel or physical effort to put into an object; a
scalar quantity with units of joules (J).

power ............................... The rate of transferring energy; a scalar quantity with units of watts (W).
kinetic energy ................... The energy an object possesses because of its motion.
heat .................................. The energy that an object has because of its temperature. Heat is

different from temperature because an object with twice as much mass
requires twice as much heat to increase its temperature by the same
amount.

temperature ..................... What a thermometer measures. Objects left in contact with each other
tend to reach the same temperature. Cf. heat. As discussed in more
detail in chapter 2, temperature is essentially a measure of the average
kinetic energy per molecule.

Notation
E ...................................... energy
J ....................................... joules, the SI unit of energy
KE .................................... kinetic energy
P ...................................... power
W ..................................... watts, the SI unit of power; equivalent to J/s

Other Notation and Terminology to be Aware of
Q or ∆Q ............................ the amount of heat transferred into or out of an object
K or T ............................... alternative symbols for kinetic energy, used in the scientific literature

and in most advanced textbooks
thermal energy ................. Careful writers make a distinction between heat and thermal energy,

but the distinction is often ignored in casual speech, even among
physicists. Properly, thermal energy is used to mean the total amount of
energy possessed by an object, while heat indicates the amount of
thermal energy transferred in or out. The term heat is used in this book
to include both meanings.

Summary
Heating an object, making it move faster, or increasing its distance from another object that is attracting it

are all examples of things that would require fuel or physical effort. There is a numerical way of measuring all
these kinds of things using a single unit of measurement, and we describe them all as forms of energy. The SI
unit of energy is the Joule. The reason why energy is a useful and important quantity is that it is always
conserved. That is, it cannot be created or destroyed but only transferred between objects or changed from
one form to another. Conservation of energy is the most important and broadly applicable of all the laws of
physics, more fundamental and general even than Newton’s laws of motion.

Heating an object requires a certain amount of energy per degree of temperature and per unit mass,
which depends on the substance of which the object consists. Heat and temperature are completely different
things. Heat is a form of energy, and its SI unit is the joule (J). Temperature is not a measure of energy.
Heating twice as much of something requires twice as much heat, but double the amount of a substance does
not have double the temperature.

The energy that an object possesses because of its motion is called kinetic energy. Kinetic energy is
related to the mass of the object and the magnitude of its velocity vector by the equation

  KE = 1
2mv 2    .

Power is the rate at which energy is transformed from one form to another or transferred from one object
to another,

   P = ∆E
∆t    .

The SI unit of power is the watt (W).

Summary
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S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Homework Problems
1. Energy is consumed in melting and evaporation. Explain in terms of
conservation of energy why sweating cools your body, even though the
sweat is at the same temperature as your body.

2. Can the kinetic energy of an object be negative? Explain.

3. Estimate the kinetic energy of an Olympic sprinter.

4✓. You are driving your car, and you hit a brick wall head on, at full
speed. The car has a mass of 1500 kg. The kinetic energy released is a
measure of how much destruction will be done to the car and to your
body. Calculate the energy released if you are traveling at (a) 40 mi/hr, and
again (b) if you're going 80 mi/hr. What is counterintuitive about this,
and what implication does this have for driving at high speeds?

5✓. A closed system can be a bad thing — for an astronaut sealed inside a
space suit, getting rid of body heat can be difficult. Suppose a 60-kg
astronaut is performing vigorous physical activity, expending 200 W of
power. If none of the heat can escape from her space suit, how long will it
take before her body temperature rises by 6°C (11°F), an amount  suffi-
cient to kill her?  Assume that the amount of heat required to raise her
body temperature by 1°C is the same as it would be for an equal mass of
water. Express your answer in units of minutes.

6. All stars, including our sun, show variations in their light output to
some degree. Some stars vary their brightness by a factor of two or even
more, but our sun has remained relatively steady during the hundred years
or so that accurate data have been collected. Nevertheless, it is possible
that climate variations such as ice ages are related to long-term irregulari-
ties in the sun’s light output. If the sun was to increase its light output
even slightly, it could melt enough ice at the polar icecaps to flood all the
world’s coastal cities. The total sunlight that falls on the ice caps amounts
to about 1x1016 watts. Presently, this heat input to the poles is balanced by
the loss of heat via winds, ocean currents, and emission of infrared light,
so that there is no net melting or freezing of ice at the poles from year to
year. Suppose that the sun changes its light output by some small percent-
age, but there is no change in the rate of heat loss by the polar caps.
Estimate the percentage by which the sun’s light output would have to
increase in order to melt enough ice to raise the level of the oceans by 10
meters over a period of 10 years. (This would be enough to flood New
York, London, and many other cities.) Melting 1 kg of ice requires 3x103

J.

7S. A bullet flies through the air, passes through a paperback book, and
then continues to fly through the air beyond the book. When is there a
force? When is there energy?

Chapter 1 Conservation of Energy
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8 S. Experiments show that the power consumed by a boat’s engine is
approximately proportional to third power of its speed. (We assume that it
is moving at constant speed.) (a) When a boat is crusing at constant speed,
what type of energy transformation do you think is being performed? (b)
If you upgrade to a motor with double the power, by what factor is your
boat’s crusing speed increased?

9 S. Object A has a kinetic energy of 13.4 J. Object B has a mass that is
greater by a factor of 3.77, but is moving more slowly by a factor of 2.34.
What is object B’s kinetic energy?

10. The moon doesn’t really just orbit the Earth. By Newton’s third law,
the moon’s gravitational force on the earth is the same as the earth’s force
on the moon, and the earth must respond to the moon’s force by accelerat-
ing. If we consider the earth in moon in isolation and ignore outside
forces, then Newton’s first law says their common center of mass doesn’t
accelerate, i.e. the earth wobbles around the center of mass of the earth-
moon system once per month, and the moon also orbits around this
point. The moon’s mass is 81 times smaller than the earth’s. Compare the
kinetic energies of the earth and moon.

11 S. My 1.25 kW microwave oven takes 126 seconds to bring 250 g of
water from room temperature to a boil. What percentage of the power is
being wasted? Where might the rest of the energy be going?

12. The multiflash photograph below shows a collision between two pool
balls. The ball that was initially at rest shows up as a dark image in its
initial position, because its image was exposed several times before it was
struck and began moving. By making measurements on the figure,
determine whether or not energy appears to have been conserved in the
collision. What systematic effects would limit the accuracy of your test?
[From an example in PSSC Physics.]

Homework Problems



28

13. This problem is a numerical example of the imaginary experiment
discussed at the end of section 1.4 regarding the relationship between
energy and relative motion. Let’s say that the pool balls both have masses
of 1.00 kg. Suppose that in the frame of reference of the pool table, the
cue ball moves at a speed of 1.00 m/s toward the eight ball, which is
initially at rest. The collision is head-on, and as you can verify for yourself
the next time you’re playing pool, the result of such a collision is that the
incoming ball stops dead and the ball that was struck takes off with the
same speed originally possessed by the incoming ball. (This is actually a bit
of an idealization. To keep things simple, we’re ignoring the spin of the
balls, and we assume that no energy is liberated by the collision as heat or
sound.) (a) Calculate the total initial kinetic energy and the total final
kinetic energy, and verify that they are equal. (b) Now carry out the whole
calculation again in the frame of reference that is moving in the same
direction that the cue ball was initially moving, but at a speed of 0.50 m/s.
In this frame of reference, both balls have nonzero initial and final veloci-
ties, which are different from what they were in the table’s frame. [See also
homework problem 15 in ch. 4.]
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2 Simplifying the Energy
Zoo

Variety is the spice of life, not of science. The figure shows a few
examples from the bewildering array of forms of energy that surrounds us.
The physicist’s psyche rebels against the prospect of a long laundry list of
types of energy, each of which would require its own equations, concepts,
notation, and terminology. The point at which we’ve arrived in the study of
energy is analogous to the period in the 1960’s when a half a dozen new
subatomic particles were being discovered every year in particle accelerators.
It was an embarrassment. Physicists began to speak of the “particle zoo,”
and it seemed that the subatomic world was distressingly complex. The
particle zoo was simplified by the realization that most of the new particles
being whipped up were simply clusters of a previously unsuspected set of
more fundamental particles (which were whimsically dubbed quarks, a
made-up word from a line of poetry by James Joyce, “Three quarks for
Master Mark.”) The energy zoo can also be simplified, and it is the purpose
of this chapter to demonstrate the hidden similarities between forms of
energy as seemingly different as heat and motion.

Do these forms of energy have anything in common?
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2.1 Heat is Kinetic Energy
What is heat really? Is it an invisible fluid that your bare feet soak up

from a hot sidewalk? Can one ever remove all the heat from an object? Is
there a maximum to the temperature scale?

The theory of heat as a fluid seemed to explain why colder objects
absorbed heat from hotter ones, but once it became clear that heat was a
form of energy, it began to seem unlikely that a material substance could
transform itself into and out of all those other forms of energy like motion
or light. For instance, a compost pile gets hot, and we describe this as a case
where, through the action of bacteria, chemical energy stored in the plant
cuttings is transformed into heat energy. The heating occurs even if there is
no nearby warmer object that could have been leaking “heat fluid” into the
pile.

An alternative interpretation of heat was suggested by the theory that
matter is made of atoms. Since gases are thousands of times less dense than
solids or liquids, the atoms (or clusters of atoms called molecules) in a gas
must be far apart. In that case, what is keeping all the air molecules from
settling into a thin film on the floor of the room in which you are reading
this book? The simplest explanation is that they are moving very rapidly,
continually ricocheting off of the floor, walls, and ceiling. Though bizarre,
the cloud-of-bullets image of a gas did give a natural explanation for the
surprising ability of something as tenuous as a gas to exert huge forces. Your
car’s tires can hold it up because you have pumped extra molecules into
them. The inside of the tire gets hit by molecules more often than the
outside, forcing it to stretch and stiffen.

The outward forces of the air in your car’s tires increase even further
when you drive on the freeway for a while, heating up the rubber and the
air inside. This type of observation leads naturally to the conclusion that
hotter matter differs from colder in that its atoms’ random motion is more

A vivid demonstration that heat is a form of mo-
tion. A small amount of boiling water is poured
into the empty can, which rapidly fills up with
hot steam. The can is then sealed tightly, and
soon crumples. This can be explained as fol-
lows. The high temperature of the steam is in-
terpreted as a high average speed of random
motions of its molecules. Before the lid was put
on the can, the rapidly moving steam molecules
pushed their way out of the can, forcing the
slower air molecules out of the way. As the steam
inside the can thinned out, a stable situation was
soon achieved, in which the force from the less
dense steam molecules moving at high speed
balanced against the force from the more dense
but slower air molecules outside. The cap was
put on, and after a while the steam inside the
can began to cool off. The force from the cooler,
thin steam no longer matched the force from the
cool, dense air outside, and the imbalance of
forces crushed the can.

Chapter 2 Simplifying the Energy Zoo
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rapid. In a liquid, the motion could be visualized as people in a milling
crowd shoving past each other more quickly. In a solid, where the atoms are
packed together, the motion is a random vibration of each atom as it knocks
against its neighbors.

We thus achieve a great simplification in the theory of heat. Heat is
simply a form of kinetic energy, the total kinetic energy of random motion
of all the atoms in an object. With this new understanding, it becomes
possible to answer at one stroke the questions posed at the beginning of the
section. Yes, it is at least theoretically possible to remove all the heat from an
object. The coldest possible temperature, known as absolute zero, is that at
which all the atoms have zero velocity, so that their kinetic energies,

  KE = 1
2
mv 2 , are all zero. No, there is no maximum amount of heat that a

certain quantity of matter can have, and no maximum to the temperature
scale, since arbitrarily large values of v can create arbitrarily large amounts of
kinetic energy per atom.

The kinetic theory of heat also provides a simple explanation of the true
nature of temperature. Temperature is a measure of the amount of energy
per molecule, whereas heat is the total amount of energy possessed by all the
molecules in an object.

There is an entire branch of physics, called thermodynamics, that deals
with heat and temperature and forms the basis for technologies such as
refrigeration. Thermodynamics is discussed in more detail in my calculus-
based book Simple Nature, and I have provided here only a brief overview
of the thermodynamic concepts that relate directly to energy,  glossing over
at least one point that would be dealt with more carefully in a thermody-
namics course: it is really only true for a gas that all the heat is in the form
of kinetic energy. In solids and liquids, the atoms are close enough to each
other to exert intense electrical forces on each other, and there is therefore
another type of energy involved, the energy associated with the atoms’
distances from each other. Strictly speaking, heat energy is defined not as
energy associated with random motion of molecules but as any form of
energy that can be conducted between objects in contact, without any force.

Random motion of atoms in a gas, a
liquid, and a solid.

Section 2.1 Heat is Kinetic Energy
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2.2 Potential Energy: Energy of Distance or Closeness
We have already seen many examples of energy related to the distance

between interacting objects. When two objects participate in an attractive
noncontact force, energy is required to bring them farther apart. In both of
the perpetual motion machines that started off the previous chapter, one of
the types of energy involved was the energy associated with the distance
between the balls and the earth, which attract each other gravitationally. In
the perpetual motion machine with the magnet on the pedestal, there was
also energy associated with the distance between the magnet and the iron
ball, which were attracting each other.

The opposite happens with repulsive forces: two socks with the same
type of static electric charge will repel each other, and cannot be pushed
closer together without supplying energy.

In general, the term potential energy, with algebra symbol PE, is used for
the energy associated with the distance between two objects that attract or
repel each other via a force that depends on the distance between them.
Forces that are not determined by distance do not have potential energy
associated with them. For instance, the normal force acts only between
objects that have zero distance between them, and depends on other factors
besides the fact that the distance is zero. There is no potential energy
associated with the normal force.

The following are some commonplace examples of potential energy:

gravitational potential energy: The skateboarder in the photo has risen
from the bottom of the pool, converting kinetic energy into gravita-
tional potential energy. After being at rest for an instant, he will go
back down, converting PE back into KE.

magnetic potential energy: When a magnetic compass needle is
allowed to rotate, the poles of the compass change their distances
from the earth’s north and south magnetic poles, converting mag-
netic potential energy into kinetic energy. (Eventually the kinetic
energy is all changed into heat by friction, and the needle settles
down in the position that minimizes its potential energy.)

electrical potential energy: Socks coming out of the dryer cling
together because of attractive electrical forces. Energy is required in
order to separate them.

potential energy of bending or stretching: The force between the two
ends of a spring depends on the distance between them, i.e. on the
length of the spring. If a car is pressed down on its shock absorbers
and then released, the potential energy stored in the spring is trans-
formed into kinetic and gravitational potential energy as the car
bounces back up.

 I have deliberately avoided introducing the term potential energy up
until this point, because it tends to produce unfortunate connotations in
the minds of students who have not yet been inoculated with a careful
description of the construction of a numerical energy scale. Specifically,
there is a tendency to generalize the term inappropriately to apply to any

The skater has converted all his kinetic
energy into potential energy on the
way up the side of the pool.
Photo by J.D. Rogge, www.sonic.net/
~shawn.

Chapter 2 Simplifying the Energy Zoo
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situation where there is the “potential” for something to happen: “I took a
break from digging, but I had potential energy because I knew I’d be ready
to work hard again in a few minutes.”

An Equation for Gravitational Potential Energy
All the vital points about potential energy can be made by focusing on

the example of gravitational potential energy. For simplicity, we treat only
vertical motion, and motion close to the surface of the earth, where the
gravitational force is nearly constant. (The generalization to the three
dimensions and varying forces is more easily accomplished using the
concept of work, which is the subject the next chapter.)

To find an equation for gravitational PE, we examine the case of free
fall, in which energy is transformed between kinetic energy and gravita-
tional PE. Whatever energy is lost in one form is gained in an equal amount
in the other form, so using the notation ∆KE to stand for KE

f
–KE

i
 and a

similar notation for PE,  we have

 ∆KE = –∆PE
grav

   . (1)

 It will be convenient to refer to the object as falling, so that PE is being
changed into KE, but the math applies equally well to an object slowing
down on its way up. We know an equation for kinetic energy,

  KE = 1
2

mv 2    , (2)

so if we can relate v to height, y, we will be able to relate ∆PE to y, which
would tell us what we want to know about potential energy. The y compo-
nent of the velocity can be connected to the height via the constant accel-
eration equation

   v f
2 = v i

2 + 2a∆y    , (3)

and Newton’s second law provides the acceleration,

a = F/m   , (4)

in terms of the gravitational force.

The algebra is simple because both equation (2) and equation (3) have
velocity to the second power. Equation (2) can be solved for v2 to give
v2=2KE/m, and substituting this into equation (3), we find

2KE
f
/m = 2KE

i
/m + 2a∆y   .

Making use of equations (1) and (4) gives the simple result

∆PE
grav

 = –F∆y   .

[change in gravitational PE resulting from a change in
height ∆y; F is the gravitational force on the object, i.e. its
weight;  valid only near the surface of the earth, where F is
constant]

As the skater free-falls, his PE is con-
verted into KE. (The numbers would
be equally valid as a description of his
motion on the way up.)

PE=3000 J KE=0

PE=2000 J KE=1000 J

PE=1000 J KE=2000 J

PE=0 KE=3000 J

Section 2.2 Potential Energy: Energy of Distance or Closeness
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Example: dropping a rock
Question : If you drop a 1-kg rock from a height of 1 m, how
many joules of KE does it have on impact with the ground?
(Assume that any energy transformed into heat by air friction is
negligible.)
Solution : If we choose the y axis to point up, then F

y
 is negative,

and equals –(1 kg)(g)=-9.8 N. A decrease in y is represented by
a negative value of ∆y, ∆y=–1 m, so the change in potential
energy is –(–9.8 N)(–1 m)≈–10 J. (The proof that newtons
multiplied by meters give units of  joules is left as a homework
problem.) Conservation of energy says that the loss of this
amount of PE must be accompanied by a corresponding in-
crease in KE of 10 J.

It may be dismaying to note how many minus signs had to be handled
correctly even in this relatively simple example: a total of four. Rather than
depending on yourself to avoid any mistakes with signs, it is better to check
whether the final result make sense physically. If it doesn’t, just reverse the
sign.

Although the equation for gravitational potential energy was derived by
imagining a situation where it was transformed into kinetic energy, the
equation can be used in any context, because all the types of energy are
freely convertible into each other.

Example: Gravitational PE converted directly into heat
Question : A 50-kg firefighter slides down a 5-m pole at constant
velocity. How much heat is produced?
Solution : Since she slides down at constant velocity, there is no
change in KE. Heat and gravitational PE are the only forms of
energy that change. Ignoring plus and minus signs, the gravita-
tional force on her body equals mg, and the amount of energy
transformed is

(mg)(5 m) = 2500 J   .
On physical grounds, we know that there must have been an
increase (positive change) in the heat energy in her hands and in
the flagpole.

Here are some questions and answers about the interpretation of the
equation ∆PE

grav
 = –F∆y for gravitational potential energy.

Question: In a nutshell, why is there a minus sign in the equation?
Answer: It is because we increase the PE by moving the object in the
opposite direction compared to the gravitational force.

Question: Why do we only get an equation for the change in potential
energy? Don’t I really want an equation for the potential energy itself?
Answer: No, you really don’t. This relates to a basic fact about potential
energy, which is that it is not a well defined quantity in the absolute sense.
Only changes in potential energy are unambiguously defined. If you and I
both observe a rock falling, and agree that it deposits 10 J of energy in the
dirt when it hits, then we will be forced to agree that the 10 J of KE must
have come from a loss of 10 joules of PE. But I might claim that it started
with 37 J  of PE and ended with 27, while you might swear just as truth-
fully that it had 109 J initially and 99 at the end. It is possible to pick some
specific height as a reference level and say that the PE is zero there, but it’s
easier and safer just to work with changes in PE and avoid absolute PE

Chapter 2 Simplifying the Energy Zoo
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altogether.

Question: You referred to potential energy as the energy that two objects
have because of their distance from each other. If a rock falls, the object is
the rock. Where’s the other object?
Answer: Newton’s third law guarantees that there will always be two objects.
The other object is the planet earth.

Question: If the other object is the earth, are we talking about the distance
from the rock to the center of the earth or the distance from the rock to the
surface of the earth?
Answer: It doesn’t matter. All that matters is the change in distance, ∆y, not
y. Measuring from the earth’s center or its surface are just two equally valid
choices of a reference point for defining absolute PE.

Question: Which object contains the PE, the rock or the earth?
Answer: We may refer casually to the PE of the rock, but technically the PE
is a relationship between the earth and the rock, and we should refer to the
earth and the rock together as possessing the PE.

Question: How would this be any different for a force other than gravity?
Answer: It wouldn’t. The derivation was derived under the assumption of
constant force, but the result would be valid for any other situation where
two objects interacted through a constant force. Gravity is unusual, how-
ever, in that the gravitational force on an object is so nearly constant under
ordinary conditions. The magnetic force between a magnet and a refrigera-
tor, on the other hand, changes drastically with distance. The math is a little
more complex for a varying force, but the concepts are the same.

Question: Suppose a pencil is balanced on its tip and then falls over. The
pencil is simultaneously changing its height and rotating, so the height
change is different for different parts of the object. The bottom of the
pencil doesn’t lose any height at all. What do you do in this situation?
Answer: The general philosophy of energy is that an object’s energy is found
by adding up the energy of every little part of it. You could thus add up the
changes in potential energy of all the little parts of the pencil to find the
total change in potential energy. Luckily there’s an easier way! The deriva-
tion of the equation for gravitational potential energy used Newton’s second
law, which deals with the acceleration of the object’s center of mass (i.e. its
balance point). If you just define ∆y as the height change of the center of
mass, everything works out. A huge Ferris wheel can be rotated without
putting in or taking out any PE, because its center of mass is staying at the
same height.

Section 2.2 Potential Energy: Energy of Distance or Closeness
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Self-Check
A ball thrown straight up will have the same speed on impact with the ground
as a ball thrown straight down at the same speed. How can this be explained
using potential energy?

Discussion Question
You throw a steel ball up in the air. How can you prove based on conservation
of energy that it has the same speed when it falls back into your hand? What if
you threw a feather up? Is energy not conserved in this case?

2.3 All Energy is Potential or Kinetic
In the same way that we found that a change in temperature is really

only a change in kinetic energy at the atomic level, we now find that every
other form of energy turns out to be a form of potential energy. Boiling, for
instance, means knocking some of the atoms (or molecules) out of the
liquid and into the space above, where they constitute a gas. There is a net
attractive force between essentially any two atoms that are next to each
other, which is why matter always prefers to be packed tightly in the solid or
liquid state unless we supply enough potential energy to pull it apart into a
gas. This explains why water stops getting hotter when it reaches the boiling
point: the power being pumped into the water by your stove begins going
into potential energy rather than kinetic energy.

As shown in the figure on the left, every stored form of energy that we
encounter in everyday life turns out to be a form of potential energy at the
atomic level. The forces between atoms are electrical and magnetic in
nature, so these are actually electrical and magnetic potential energies.

All these energy transformations turn
out at the atomic level to be changes
in potential energy resulting from
changes in the distances between
atoms.

boiling

bending

breaking

chemical
reactions

Both balls start from the same height and end at the same height, so they have the same ∆y. This implies that their
losses in potential energy are the same, so they must both have gained the same amount of kinetic energy.

Chapter 2 Simplifying the Energy Zoo
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Even if we wish to include nuclear reactions in the picture, there still
turn out to be only four fundamental types of energy:

kinetic energy (including heat)
gravitational potential energy
electrical and magnetic potential energy
nuclear potential energy

Astute students often ask me how light fits into this picture. This is a
very good question, and in fact it could be argued that it is the basic
question that led to Einstein’s theory of relativity as well as the modern
quantum picture of nature. Since these are topics for books 4, 5, and 6 of
this series, we will have to be content with half an answer at this point.
Essentially we may think of light energy as a form of kinetic energy, but one

for which kinetic energy is not given by   1
2
mv 2  but rather by some other

equation. (We know that   1
2
mv 2 would not make sense, because light has no

mass, and furthermore, high-energy beams of light do not differ in speed
from low-energy ones.)

Discussion Question
Referring back to the pictures at the beginning of the chapter, how do all these
forms of energy fit into the shortened list of categories given above?

nuclear
reactions

This figure looks similar to the previ-
ous ones, but the scale is a million
times smaller. The little balls are the
neutrons and protons that make up the
tiny nucleus at the center of the ura-
nium atom. When the nucleus splits
(fissions), the potential energy change
is partly electrical and partly a change
in the potential energy derived from the
force that holds atomic nuclei together
(known as the strong nuclear force).

Section 2.3 All Energy is Potential or Kinetic
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Summary
Selected Vocabulary

potential energy ............... the energy having to do with the distance between to objects that
interact via a noncontact force

Notation
PE .................................... potential energy

Alternative Notation to be Aware of
U or V............................... symbols used for potential energy in the scientific literature and in most

advanced textbooks
Summary

Historically, the energy concept was only invented to include a few phenomena, but it was later general-
ized more and more to apply to new situations, for example nuclear reactions. This generalizing process
resulted in an undesirably long list of types of energy, each of which apparently behaved according to its own
rules.

The first step in simplifying the picture came with the realization that heat was a form of random motion on
the atomic level, i.e. heat was nothing more than the kinetic energy of atoms.

A second and even greater simplification was achieved with the realization that all the other apparently
mysterious forms of energy actually had to do with changing the distances between atoms (or similar pro-
cesses in nuclei). This type of energy, which relates to the distance between objects that interact via a force, is
therefore of great importance. We call it potential energy.

Most of the important ideas about potential energy can be understood by studying the example of gravita-
tional potential energy. The change in an object’s gravitational potential energy is given by

∆PEgrav = –Fgrav ∆y   , [if Fgrav is constant, i.e. the motion is all near the Earth’s surface]

The most important thing to understand about potential energy is that there is no unambiguous way to define
it in an absolute sense. The only thing that everyone can agree on is how much the potential energy has
changed from one moment in time to some later moment in time.

Chapter 2 Simplifying the Energy Zoo
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S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Homework Problems
1. Can the gravitational potential energy of an object ever be negative?
Note that the question refers to PE, not ∆PE, so that you must think
about how the choice of a reference level comes into play.

2. A ball is thrown straight up. At what position is its gravitational poten-
tial energy at a maximum? At what position is its kinetic energy at a
maximum?

3. (a) You release a magnet on a tabletop near a big piece of iron, and the
magnet leaps across the table to the iron. Does the magnetic potential
energy increase or decrease? Explain. (b) Suppose instead that you have
two repelling magnets. You give them an initial push towards each other,
so they decelerate while approaching each other. Does the magnetic
potential energy increase or decrease? Explain.

4. Let E
b
 be the energy required to boil one kg of water. (a) Find an

equation for the minimum height from which a bucket of water must be
dropped if the energy released on impact is to vaporize it. Assume that all
the heat goes into the water, not into the dirt it strikes, and ignore the
relatively small amount of energy required to heat the water from room
temperature to 100°C. [Numerical check, not for credit: Plugging in
E

b
=2.3 MJ/kg should give a result of 230 km.] (b) Show that the units of

your answer in part a come out right based on the units given for E
b
.

5 S. A grasshopper with a mass of 110 mg falls from rest from a height of
310 cm.  On the way down, it dissipates 1.1 mJ of heat due to air resis-
tance.  At what speed, in m/s, does it hit the ground?

6. A person on a bicycle is to coast down a ramp of height h and then pass
through a circular loop of radius r. What is the smallest value of h for
which the cyclist will complete the loop without falling? (Ignore the
kinetic energy of the spinning wheels.)

7« S. A skateboarder starts at nearly rest at the top of a giant cylinder,
and begins rolling down its side. (If she started exactly at rest and exactly
at the top, she would never get going!) Show that her board loses contact
with the pipe after she has dropped by a height equal to one third the
radius of the pipe.

8«. (a) A circular hoop of mass m and radius r spins like a wheel while its
center remains at rest. Its period (time required for one revolution) is T.
Show that its kinetic energy equals 2π2mr2/T2. (b) If such a hoop rolls with
its center moving at velocity v, its kinetic energy consists equals (1/2)mv2,
plus the amount of kinetic energy found in the first part of this problem.
Show that a hoop rolls down an inclined plane with half the acceleration
that a frictionless sliding block would have.

9 S. Students are often tempted to think of potential energy and kinetic
energy as if they were always related to each other, like yin and yang. To
show this is incorrect, give examples of physical situations in which (a) PE
is converted to another form of PE, and (b) KE is converted to another
form of KE.

Homework Problems
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10 ✓. Lord Kelvin, a physicist, told the story of how he encountered
James Joule when Joule was on his honeymoon. As he traveled, Joule
would stop with his wife at various waterfalls, and measure the difference
in temperature between the top of the waterfall and the still water at the
bottom. (a) It would surprise most people to learn that the temperature
increased. Why should there be any such effect, and why would Joule care?
How would this relate to the energy concept, of which he was the princi-
pal inventor? (b) How much of a gain in temperature should there be
between the top and bottom of a 50-meter waterfall? (c) What assump-
tions did you have to make in order to calculate your answer to part b? In
reality, would the temperature change be more than or less than what you
calculated? [Based on a problem by Arnold Arons.]

11 S. Make an order-of-magnitude estimate of the power represented by
the loss of gravitational energy of the water going over Niagara Falls. If a
hydroelectric plant was built at the bottom of the falls, and could convert
100% of this to electrical power, roughly how many households could be
powered?

12. When you buy a helium-filled balloon, the seller has to inflate it from
a large metal cylinder of the compressed gas. The helium inside the
cylinder has energy, as can be demonstrated for example by releasing a
little of it into the air: you hear a hissing sound, and that sound energy
must have come from somewhere. The total amount of energy in the
cylinder is very large, and if the valve is inadvertently damaged or broken
off, the cylinder can behave like bomb or a rocket.

Suppose the company that puts the gas in the cylinders prepares cylinder
A with half the normal amount of pure helium, and cylinder B with the
normal amount. Cylinder B has twice as much energy, and yet the tem-
peratures of both cylinders are the same. Explain, at the atomic level, what
form of energy is involved, and why cylinder B has twice as much.

13. A microwave oven works by twisting molecules one way and then the
other, counterclockwise and then clockwise about their own centers,
millions of times a second. If you put an ice cube or a stick of butter in a
microwave, you'll observe that the oven doesn't heat the solid very quickly,
although eventually melting begins in one small spot. Once a melted spot
forms, it grows rapidly, while the more distant solid parts remain solid. In
other words, it appears based on this experiment that a microwave oven
heats a liquid much more rapidly than a solid. Explain why this should
happen, based on the atomic-level description of heat, solids, and liquids.

Chapter 2 Simplifying the Energy Zoo
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3 Work: The Transfer of
Mechanical Energy

3.1 Work: The Transfer of Mechanical Energy
The concept of work

The mass contained in a closed system is a conserved quantity, but if
the system is not closed, we also have ways of measuring the amount of
mass that goes in or out. The water company does this with a meter that
records your water use.

Likewise, there are many situations in which we would like to know
how much energy comes in or out of a system that is not closed. Energy,
however, is not a physical substance like water, so energy transfer cannot be
measured with the same kind of meter. How can we tell, for instance, how
much useful energy a tractor can “put out” on one tank of gas?

The law of conservation of energy guarantees that all the chemical
energy in the gasoline will reappear in some form, but not necessarily in a

Section 3.1 Work: The Transfer of Mechanical Energy
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form that is useful for doing farm work. Tractors, like cars, are extremely
inefficient, and typically 90% of the energy they consume is converted
directly into heat, which is carried away by the exhaust and the air flowing
over the radiator. We wish to distinguish the energy that comes out directly
as heat from the energy that served to accelerate a trailer or to plow a field,
and we define a technical meaning of the ordinary word “work” to express
the distinction:

definition of work
Work is the amount of energy transferred into or out of a
system, not counting the energy transferred by heat conduction.

Self-Check
Based on this definition, is work a vector or a scalar? What are its units?

The conduction of heat is to be distinguished from heating by friction.
When a hot potato heats up your hands by conduction, the energy transfer
occurs without any force, but when friction heats your car’s brake shoes,
there is a force involved. The transfer of energy with and without a force are
measured by completely different methods, so we wish to include heat
transfer by frictional heating under the definition of work, but not heat
transfer by conduction. The definition of work could thus be restated as the
amount of energy transferred by forces.

Calculating work as force multiplied by distance
The examples in the figures on the left show that there are many

different ways in which energy can be transferred. Even so, all these ex-
amples have two things in common:

• A force is involved.
• The tractor travels some distance as it does the work.

In example (a), the increase in the height of the weight, ∆y, is the same
as the distance the tractor travels, call it d. For simplicity, we discuss the case
where the tractor raises the weight at constant speed, so that there is no
change in the kinetic energy of the weight, and we assume that there is
negligible friction in the pulley, so that the force the tractor applies to the
rope is the same as the rope’s upward force on the weight. By Newton’s first
law, these forces are also of the same magnitude as the earth’s gravitational
force on the weight. The increase in the weight’s potential energy is given by
F∆y, so the work done by the tractor on the weight equals Fd, the product
of the force and the distance moved:

W = Fd   .

In example (b), the tractor’s force on the trailer accelerates it, increasing
its kinetic energy. If frictional forces on the trailer are negligible, then the
increase in the trailer’s kinetic energy can be found using the same algebra
that was used in the previous chapter to find the potential energy due to
gravity. Just as in example (a), we have

W = Fd   .

(b) The tractor accelerates the trailer,
increasing its kinetic energy.

(a) The tractor raises the weight over
the pulley, increasing its gravitational
potential energy.

(c) The tractor pulls a plow. Energy is
expended in frictional heating of the
plow and the dirt, and in breaking dirt
clods and lifting dirt up to the sides of
the furrow.

Work is defined as the transfer of energy, so like energy it is a scalar with units of joules.

kinetic
energy of

a car
chemical
potential
energy

of
gas

car's gravitational
potential energy

etc.

work

work
work

work
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Does this equation always give the right answer? Well, sort of. In
example (c), there are two quantities of work you might want to calculate,
the work done by the tractor on the plow and the work done by the plow
on the dirt. These two quantities can’t both equal Fd,  because the work
done by the plow on the dirt is decreased by the heat lost in the plow itself.
It turns out that the equation W=Fd gives the work done by the tractor, not
the work done by the plow. How are you supposed to know when the
equation will work and when it won’t? The somewhat complex answer is
postponed until section 3.6. Until then, we will restrict ourselves to ex-
amples in which W=Fd gives the right answer.

We have also been using examples in which the force is in the same
direction as the motion, and the force is constant. (If the force was not
constant, we would have to represent it with a function, not a symbol that
stands for a number.) To summarize, we have:

rule for calculating work (simplest version)
The work done by a force can be calculated as

W = Fd  ,

if the force is constant and in the same direction as the motion. Some
ambiguities are encountered in cases such as kinetic friction.

Example: mechanical work done in an earthquake
Question : In 1998, geologists discovered evidence for a big
prehistoric earthquake in Pasadena, between 10,000 and 15,000
years ago. They found that the two sides of the fault moved 6.7
m relative to one another, and estimated that the force between
them was 1.3x1017 N. How much energy was released?
Solution : Multiplying the force by the distance gives 9x1017 J.
For comparison, the Northridge earthquake of 1994, which killed
57 people and did 40 billion dollars of damage, released 22 times
less energy.

Section 3.1 Work: The Transfer of Mechanical Energy
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Machines can increase force, but not work.
The figure above shows a pulley arrangement for doubling the force

supplied by the tractor (book 1, section 5.6). The tension in the left-hand
rope is equal throughout, assuming negligible friction, so there are two
forces pulling the pulley to the left, each equal to the original force exerted
by the tractor on the rope. This doubled force is transmitted through the
right-hand rope to the stump.

It might seem as though this arrangement would also double the work
done by the tractor, but look again. As the tractor moves forward 2 meters,
1 meter of rope comes around the pulley, and the pulley moves 1 m to the
left. Although the pulley exerts double the force on the stump, the pulley
and stump only move half as far, so the work done on the stump is no
greater that it would have been without the pulley.

The same is true for any mechanical arrangement that increases or
decreases force, such as the gears on a ten-speed bike. You can’t get out more
work than you put in, because that would violate conservation of energy. If
you shift gears so that your force on the pedals is amplified, the result is that
you just have to spin the pedals more times.

No work is done without motion.
It strikes most students as nonsensical when they are told that if they

stand still and hold a heavy bag of cement, they are doing no work on the
bag.  Even if it makes sense mathematically that W=Fd gives zero when d is
zero, it seems to violate common sense. You would certainly become tired
standing there. The solution is simple. Physicists have taken over the
common word “work” and given it a new technical meaning, which is the
transfer of energy. The energy of the bag of cement is not changing, and
that is what the physicist means by saying no work is done on the bag.

There is a transformation of energy, but it is taking place entirely within
your own muscles, which are converting chemical energy into heat. Physi-
ologically, a human muscle is not like a tree limb, which can support a
weight indefinitely without the expenditure of energy. Each muscle cell’s
contraction is generated by zillions of little molecular machines, which take
turns supporting the tension. When a particular molecule goes on or off
duty, it moves, and since it moves while exerting a force, it is doing work.
There is work, but it is work done by one molecule in a muscle cell on
another.

Chapter 3 Work: The Transfer of Mechanical Energy
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Positive and negative work
When object A transfers energy to object B, we say that A does positive

work on B. B is said to do negative work on A. In other words, a machine
like a tractor is defined as doing positive work. This use of the plus and
minus signs relates in a logical and consistent way to their use in indicating
the directions of force and motion in one dimension. In the example shown
on the left, suppose we choose a coordinate system with the x axis pointing
to the right. Then the force the spring exerts on the ball is always a positive
number. The ball’s motion, however, changes directions. The symbol d is
really just a shorter way of writing the familiar quantity ∆x, whose positive
and negative signs indicate direction.

While the ball is moving to the left, we use d<0 to represent its direc-
tion of motion, and the work done by the spring, Fd, comes out negative.
This indicates that the spring is taking kinetic energy out of the ball, and
accepting it in the form of its own potential energy.

As the ball is reaccelerated to the right, it has d>0, Fd is positive, and
the spring does positive work on the ball. Potential energy is transferred out
of the spring and deposited in the ball as kinetic energy.

In summary:

rule for calculating work (including cases of negative work)
The work done by a force can be calculated as

W = Fd  ,

if the force is constant and along the same line as the motion. The
quantity d is to be interpreted as a synonym for ∆x, i..e. positive and
negative signs are used to indicate the direction of motion. Some
ambiguities are encountered in cases such as kinetic friction.

Self-Check

What about the work done by the ball on the spring?

There are many examples where the transfer of energy out of an object
cancels out the transfer of energy in. When the tractor pulls the plow with a
rope, the rope does negative work on the tractor and positive work on the
plow. The total work done by the rope is zero, which makes sense, since it is
not changing its energy.

It may seem that when your arms do negative work by lowering a bag of
cement, the cement is not really transferring energy into your body. If your
body was storing potential energy like a compressed spring, you would be
able to raise and lower a weight all day, recycling the same energy. The bag
of cement does transfer energy into your body, but your body accepts it as
heat, not as potential energy. The tension in the muscles that control the
speed of the motion also results in the conversion of chemical energy to
heat, for the same physiological reasons discussed previously in the case
where you just hold the bag still.

Whenever energy is transferred out of the spring, the same amount has to be transferred into the ball, and vice
versa. As the spring compresses, the ball is doing positive work on the spring (giving up its KE and transferring
energy into the spring as PE), and as it decompresses the ball is doing negative work (extracting energy).

d=–5 cm

d=–2 cm

d=2 cm

d=5 cm
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One of the advantages of electric cars over gasoline-powered cars is that
it is just as easy to put energy back in a battery as it is to take energy out.
When you step on the brakes in a gas car, the brake shoes do negative work
on the rest of the car. The kinetic energy of the car is transmitted through
the brakes and accepted by the brake shoes in the form of heat. The energy
cannot be recovered. Electric cars, however, are designed to use regenerative
braking. The brakes don’t use friction at all. They are electrical, and when
you step on the brake, the negative work done by the brakes means they
accept the energy and put it in the battery for later use. This is one of the
reasons why an electric car is far better for the environment than a gas car,
even if the ultimate source of the electrical energy happens to be the
burning of oil in the electric company’s plant. The electric car recycles the
same energy over and over, and only dissipates heat due to air friction and
rolling resistance, not braking. (The electric company’s power plant can also
be fitted with expensive pollution-reduction equipment that would be
prohibitively expensive or bulky for a passenger car.)

Discussion Questions
A. Besides the presence of a force, what other things differentiate the pro-
cesses of frictional heating and heat conduction?
B. Criticize the following incorrect statement: “A force doesn’t do any work
unless it’s causing the object to move.”
C. To stop your car, you must first have time to react, and then it takes some
time for the car to slow down. Both of these times contribute to the distance
you will travel before you can stop. The figure shows how the average stopping
distance increases with speed. Because the stopping distance increases more
and more rapidly as you go faster, the rule of one car length per 10 m.p.h. of
speed is not conservative enough at high speeds. In terms of work and kinetic
energy, what is the reason for the more rapid increase at high speeds?

20 mph

40 mph

60 mph

80 mph

distance
covered
before
reacting

one car
length
per 10
mph

actual
stopping
distance

Because the force is in the opposite
direction compared to the motion, the
brake shoe does negative work on the
drum, i.e. accepts energy from it in the
form of heat.

shoe's force
on drum

motion of
drum

drum

shoe
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3.2 Work in Three Dimensions
A force perpendicular to the motion does no work.

Suppose work is being done to change an object’s kinetic energy. A force
in the same direction as its motion will speed it up, and a force in the
opposite direction will slow it down. As we have already seen, this is
described as doing positive work or doing negative work on the object. All
the examples discussed up until now have been of motion in one dimen-
sion, but in three dimensions the force can be at any angle θ with respect to
the direction of motion.

What if the force is perpendicular to the direction of motion? We have
already seen that a force perpendicular to the motion results in circular
motion at constant speed. The kinetic energy does not change, and we
conclude that no work is done when the force is perpendicular to the
motion.

So far we have been reasoning about the case of a single force acting on
an object, and changing only its kinetic energy. The result is more generally
true, however. For instance, imagine a hockey puck sliding across the ice.
The ice makes an upward normal force, but does not transfer energy to or
from the puck

Forces at other angles
Suppose the force is at some other angle with respect to the motion, say

θ=45°. Such a force could be broken down into two components, one along
the direction of the motion and the other perpendicular to it. The force
vector equals the vector sum of its two components, and the principle of
vector addition of forces thus tells us that the work done by the total force
cannot be any different than the sum of the works that would be done by
the two forces by themselves. Since the component perpendicular to the
motion does no work, the work done by the force must be

W = F
|| 
|d|   , [work done by a constant force]

where the vector d is simply a less cumbersome version of the notation ∆r.
This result can be rewritten via trigonometry as

W = |F| |d| cos θ   . [work done by a constant force]

Even though this equation has vectors in it, it depends only on their
magnitudes, and the magnitude of a vector is a scalar. Work is therefore still
a scalar quantity, which only makes sense if it is defined as the transfer of
energy. Ten gallons of gasoline have the ability to do a certain amount of
mechanical work, and when you pull in to a full-service gas station you
don’t have to say “Fill ‘er up with 10 gallons of south-going gas.”

Students often wonder why this equation involves a cosine rather than a
sine, or ask if it would ever be a sine. In vector addition, the treatment of
sines and cosines seemed more equal and democratic, so why is the cosine
so special now? The answer is that if we are going to describe, say, a velocity
vector, we must give both the component parallel to the x axis and the
component perpendicular to the x axis (i.e. the y component). In calculating
work, however, the force component perpendicular to the motion is
irrelevant — it changes the direction of motion without increasing or
decreasing the energy of the object on which it acts. In this context, it is

motion

force

W>0

W<0

W=0W=0

motion

force

F||

F

θ
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only the parallel force component that matters, so only the cosine occurs.

Self-Check
(a) Work is the transfer of energy. According to this definition, is the horse in
the picture doing work on the pack? (b) If you calculate work by the method
described in this section, is the horse doing work on the pack?

Example: pushing a broom
Question : If you exert a force of 21 N on a push broom, at an
angle 35 degrees below horizontal, and walk for 5.0 m, how
much work do you do? What is the physical significance of this
quantity of work?
Solution : Using the second equation above, the work done
equals

(21 N)(5.0 m)(cos 35°) = 86 J   .
The form of energy being transferred is heat in the floor and the
broom’s bristles. This comes from the chemical energy stored in
your body. (The majority of the calories you burn are dissipated
directly as heat inside your body rather than doing any work on
the broom. The 86 J is only the amount of energy transferred
through the broom’s handle.)

(a) No. The pack is moving at constant velocity, so its kinetic energy is staying the same. It is only moving horizon-
tally, so its gravitational potential energy is also staying the same. No energy transfer is occurring. (b) No. The
horse’s upward force on the pack forms a 90-degree angle with the direction of motion, so cos θ=0, and no work is
done.

Breaking Trail, by Walter E. Bohl.
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3.3 Varying Force
Up until now we have done no actual calculations of work in cases

where the force is not constant. The question of how to treat such cases is
mathematically analogous to the issue of how to generalize the equation
(distance) = (velocity)(time) to cases where the velocity was not constant.
There, we found that the correct generalization was to find the area under
the graph of velocity versus time. The equivalent thing can be done with
work:

general rule for calculating work
The work done by a force F equals the area under the curve on a graph
of F

||
 versus x. (Some ambiguities are encountered in cases such as

kinetic friction.)

The examples in this section are ones in which the force is varying, but is
always along the same line as the motion, so F is the same as F

||
.

Self-Check
In which of the following examples would it be OK to calculate work using Fd,
and in which ones would you have to use the area under the F-x graph?
(a) A fishing boat cruises with a net dragging behind it.
(b) A magnet leaps onto a refrigerator from a distance.
(c) Earth’s gravity does work on an outward-bound space probe.

An important and straightforward example is the calculation of the
work done by a spring that obeys Hooke’s law,

F ≈ –k(x-x
o
)   .

The minus sign is because this is the force being exerted by the spring, not
the force that would have to act on the spring to keep it at this position.
That is, if the position of the cart is to the right of equilibrium, the spring
pulls back to the left, and vice-versa.

We calculate the work done when the spring is initially at equilibrium
and then decelerates the car as the car moves to the right. The work done by
the spring on the cart equals the minus area of the shaded triangle, because
the triangle hangs below the x axis. The area of a triangle is half its base
multiplied by its height, so

  W = – 1
2
k(x – x o)

2
   .

This is the amount of kinetic energy lost by the cart as the spring deceler-
ates it.

It was straightforward to calculate the work done by the spring in this
case because the graph of F versus x was a straight line, giving a triangular
area. But if the curve had not been so geometrically simple, it might not
have been possible to find a simple equation for the work done, or an
equation might have been derivable only using calculus. Optional section
3.4 gives an important example of such an application of calculus.

xo

equilibrium
position

compressed

stretched

(a) The spring does work on the cart.
(Unlike the ball in section 3.1, the cart
is attached to the spring.)

(b)The area of the shaded triangle
gives the work done by the spring as
the cart moves from the equilibrium
position to position x.

F

x
x-xo

k(x-xo)

area = work performed

(a) If the boat is cruising at constant speed, then the forces are all presumably constant, so Fd is correct. (b) The
force is changing: weaker at first, and stronger as the magnet approaches the fridge. Fd would give the wrong
answer. (c) Gravity is getting weaker and weaker and the probe moves away from the earth. Fd would give the
wrong answer.

Section 3.3 Varying Force
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Example: energy production in the sun
The sun produces energy through nuclear reactions

in which nuclei collide and stick together. The figure
depicts one such reaction, in which a single proton
(hydrogen nucleus) collides with a carbon nucleus,
consisting of six protons and six neutrons. Neutrons and
protons attract other neutrons and protons via the strong
nuclear force, so as the proton approaches the carbon
nucleus it is accelerated. In the language of energy, we
say that it loses nuclear potential energy and gains
kinetic energy. Together, the seven protons and six
neutrons make a nitrogen nucleus. Within the newly put-
together nucleus, the neutrons and protons are continu-
ally colliding, and the new proton’s extra kinetic energy is
rapidly shared out among all the neutrons and protons.
Soon afterward, the nucleus calms down by releasing
some energy in the form of a gamma ray, which helps to
heat the sun.

The graph shows the force between the carbon
nucleus and the proton as the proton is on its way in,
with the distance in units of femtometers (1 fm=10-15 m).
Amusingly, the force turns out to be a few newtons: on
the same order of magnitude as the forces we encounter
ordinarily on the human scale. Keep in mind, however,
that a force this big exerted on a single subatomic
particle such as a proton will produce a truly fantastic
acceleration (on the order of 10 27 m/s2!).

Why does the force have a peak around x=3 fm, and
become smaller once the proton has actually merged
with the nucleus? At x=3 fm, the proton is at the edge of
the crowd of protons and neutrons. It feels many attrac-
tive forces from the left, and none from the right. The
forces add up to a large value. However if it later finds
itself at the center of the nucleus, x=0, there are forces
pulling it from all directions, and these force vectors
cancel out.

We can now calculate the energy released in this reaction by using the area under the graph to determine
the amount of mechanical work done by the carbon nucleus on the proton. (For simplicity, we assume that the
proton came in “aimed” at the center of the nucleus, and we ignore the fact that it has to shove some neutrons
and protons out of the way in order to get there.) The area under the curve is about 17 squares, and the work
represented by each square is

(1 N)(10-15 m) = 10 –15 J   ,
so the total energy released is about

(10-15 J/square)(17 squares)= 1.7x10 –14 J   .
This may not seem like much, but remember that this is only a reaction between the nuclei of two out of the

zillions of atoms in the sun. For comparison, a typical chemical reaction between two atoms might transform
on the order of 10 –19 J of electrical potential energy into heat — 100,000 times less energy!

As a final note, you may wonder why reactions such as these only occur in the sun. The reason is that
there is a repulsive electrical force between nuclei. When two nuclei are close together, the electrical forces
are typically about a million times weaker than the nuclear forces, but the nuclear forces fall off much more
quickly with distance than the electrical forces, so the electrical force is the dominant one at longer ranges.
The sun is a very hot gas, so the random motion of its atoms is extremely rapid, and a collision between two
atoms is sometimes violent enough to overcome this initial electrical repulsion.
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3.4 ∫ Applications of Calculus
The student who has studied integral calculus will recognize that the

graphical rule given in the previous section can be reexpressed as an integral,

  W = F dx
x 1

x 2

   .

We can then immediately find by the fundamental theorem of calculus that
force is the derivative of work with respect to position,

  F = dW
dx

   .

For example, a crane raising a one-ton block on the moon would be
transferring potential energy into the block at only one sixth the rate that
would be required on Earth, and this corresponds to one sixth the force.

Although the work done by the spring could be calculated without
calculus using the area of a triangle, there are many cases where the methods
of calculus are needed in order to find an answer in closed form. The most
important example is the work done by gravity when the change in height is
not small enough to assume a constant force. Newton’s law of gravity is

  F = GMm
r 2    ,

which can be integrated to give

W =
  GMm

r 2
dr

r 1

r 2

=   GMm 1
r 2

– 1
r 1

   .

Section 3.4 ∫ Applications of Calculus
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3.5 Work and Potential Energy
The techniques for calculating work can also be applied to the calcula-

tion of potential energy. If a certain force depends only on the distance
between the two participating objects, then the energy released by changing
the distance between them is defined as the potential energy, and the
amount of potential energy lost equals minus the work done by the force,

∆PE = –W   .

The minus sign occurs because positive work indicates that the potential
energy is being expended and converted to some other form.

It is sometimes convenient to pick some arbitrary position as a reference
position, and derive an equation for once and for all that gives the potential
energy relative to this position

PE
x
 = –W

ref→x
. [potential energy at a point x ]

To find the energy transferred into or out of potential energy, one then
subtracts two different values of this equation.

These equations might almost make it look as though work and energy
were the same thing, but they are not. First, potential energy measures the
energy that a system has stored in it, while work measures how much energy
is transferred in or out. Second, the techniques for calculating work can be
used to find the amount of energy transferred in many situations where
there is no potential energy involved, as when we calculate the amount of
kinetic energy transformed into heat by a car’s brake shoes.

Example: a toy gun
Question : A toy gun uses a spring with a spring constant of 10
N/m to shoot a ping-pong ball of mass 5 g. The spring is com-
pressed to 10 cm shorter than its equilibrium length when the
gun is loaded. At what speed is the ball released?
Solution : The equilibrium point is the natural choice for a refer-
ence point. Using the equation found previously for the work, we
have

PE
x
 =   1

2k x – x o
2

   .

The spring loses contact with the ball at the equilibrium point, so
the final potential energy is

PE
f

= 0   .
The initial potential energy is

PE
i

= (1/2)(10 N/m)(0.10 m)2   .
=0.05 J.

The loss in potential energy of 0.05 J means an increase in
kinetic energy of the same amount. The velocity of the ball is

found by solving the equation KE=   1
2mv 2 for v,

v =   2KE
m

=   (2)(0.05 J)
0.005 kg

= 4 m/s   .

Work and potential energy are not the
same thing. We are simply using work as

a way of calculating potential energy.

Chapter 3 Work: The Transfer of Mechanical Energy
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Example: gravitational potential energy
Question : We have already found the equation ∆PE=–F∆y for
the gravitational potential energy when the change in height is
not enough to cause a significant change in the gravitational
force F. What if the change in height is enough so that this
assumption is no longer valid? Use the equation

W=   GMm 1
r2

– 1
r1

 derived in the previous section to find the

potential energy, using r=∞ as a reference point.

Solution : The potential energy equals minus the work that would
have to be done to bring the object from r

1 
= ∞ to r = r

2
, which is

   PE = –  GMm
r .

This is simpler than the equation for the work, which is an
example of why it is advantageous to record an equation for
potential energy relative to some reference point, rather than an
equation for work.

Although the equations derived in the previous two examples may seem
arcane and not particularly useful except for toy designers and rocket
scientists, their usefulness is actually greater than it appears. The equation
for the potential energy of a spring can be adapted to any other case in
which an object is compressed, stretched, twisted, or bent. While you are
not likely to use the equation for gravitational potential energy for anything
practical, it is directly analogous to an equation that is extremely useful in
chemistry, which is the equation for the potential energy of an electron at a
distance r from the nucleus of its atom. As discussed in more detail later in
the course, the electrical force between the electron and the nucleus is
proportional to 1/r2, just like the gravitational force between two masses.
Since the equation for the force is of the same form, so is the equation for
the potential energy.

The twin Voyager space probes were perhaps the great-
est scientific successes of the space program. Over a
period of decades, they flew by all the planets of the
outer solar system, probably accomplishing more of
scientific interest than the entire space shuttle program
at a tiny fraction of the cost. Both Voyager probes com-
pleted their final planetary flybys with speeds greater
than the escape velocity at that distance from the sun,
and so headed on out of the solar system on hyperbolic
orbits, never to return. Radio contact has been lost, and
they are now likely to travel interstellar space for billions
of years without colliding with anything or being detected
by any intelligent species.

Section 3.5 Work and Potential Energy
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Discussion Questions

A. What does the graph ofPEx =   1
2k x – x o

2
  look like as a function of x?

Discuss the physical significance of its features.

B. What does the graph of PE = –  GMm
r  look like as a function of r? Discuss

the physical significance of its features. How would the equation and graph
change if some other reference point was chosen rather than r=∞?
C. Starting at a distance r from a planet of mass M, how fast must an object be
moving in order to have a hyperbolic orbit, i.e. one that never comes back to
the planet? This velocity is called the escape velocity. Interpreting the result,
does it matter in what direction the velocity is? Does it matter what mass the
object has? Does the object escape because it is moving too fast for gravity to
act on it?
D. Does a spring have an “escape velocity”?
E. Calculus-based question: If the form of energy being transferred is potential

energy, then the equations   F = dW / dx  and   W = F dx  become

  F = dPE / dx  and   PE = F dx . How would you then apply the following

calculus concepts: zero derivative at minima and maxima, and the second
derivative test for concavity up or down.

3.6* When Does Work Equal Force Times Distance?
In the first section of this chapter I gave an example of a case where the

work done by a force did not equal Fd. The purpose of this section is to
explain more fully how the quantity Fd can and cannot be used. To simplify
things, I write Fd throughout this section, but more generally everything
said here would be true for the area under the graph of F

||
 versus d.

The following two theorems allow most of the ambiguity to be cleared
up.

the work-kinetic energy theorem
The change in the kinetic energy associated with the motion of
an object's center of mass is related to the total force acting on
it and to the distance traveled by its center of mass according to
the equation ∆KEcm = Ftotal d cm.

This can be proven based on Newton’s second law and the equation

KE=   1
2
mv 2 . Note that despite the traditional name, it does not necessarily

tell the amount of work done, since the forces acting on the object could be
changing other types of energy besides the KE associated with its center of
mass motion.

The second theorem does relate directly to work:

When a contact force acts between two objects and the two
surfaces do not slip past each other, the work done equals Fd,
where d is the distance traveled by the point of contact.

This one has no generally accepted name, so we refer to it simply as the
second theorem.

Chapter 3 Work: The Transfer of Mechanical Energy
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A great number of physical situations can be analyzed with these two
theorems, and often it is advantageous to apply both of them to the same
situation.

Example: an ice skater pushing off from a wall
• The work-kinetic energy theorem tells us how to calculate the

skater’s kinetic energy if we know the amount of force and the
distance her center of mass travels while she is pushing off.

• The second theorem tells us that the wall does no work on the
skater. This makes sense, since the wall does not  have any
source of energy.

Example: absorbing an impact without recoiling?
Question : Is it possible to absorb an impact without recoiling?
For instance, would a brick wall “give” at all if hit by a ping-pong
ball?
Answer : There will always be a recoil. In the example proposed,
the wall will surely have some energy transferred to it in the form
of heat and vibration. The second theorem tells us that we can
only have nonzero work if the distance traveled by the point of
contact is nonzero.

Example: dragging a refrigerator at constant velocity
 • Newton’s first law tells us that the total force on the refrigerator

must be zero: your force is canceling the floor’s kinetic fric-
tional force. The work-kinetic energy theorem is therefore true
but useless. It tells us that there is zero total force on the
refrigerator, and that the refrigerator’s kinetic energy doesn’t
change.

 • The second theorem tells us that the work you do equals your
hand’s force on the refrigerator multiplied by the distance
traveled. Since we know the floor has no source of energy, the
only way for the floor and refrigerator to gain energy is from
the work you do. We can thus calculate the total heat dissi-
pated by friction in the refrigerator and the floor.

Note that there is no way to find how much of the heat is dissi-
pated in the floor and how much in the refrigerator.

Example: accelerating a cart
If you push on a cart and accelerate it, there are two forces
acting on the cart: your hand’s force, and the static frictional force
of the ground pushing on the wheels in the opposite direction.
 •Applying the second theorem to your force tells us how to

calculate the work you do.
•Applying the second theorem to the floor’s force tells us that the

floor does no work on the cart. There is no motion at the point
of contact, because the atoms in the floor are not moving.
(The atoms in the surface of the wheel are also momentarily at
rest when they touch the floor.) This makes sense, since the
floor does not have any source of energy.

• The work-kinetic energy theorem refers to the total force, and
because the floor’s backward force cancels part of your force,
the total force is less than your force. This tells us that only
part of your work goes into the kinetic energy associated with
the forward motion of the cart’s center of mass. The rest goes
into rotation of the wheels.

Section 3.6* When Does Work Equal Force Times Distance?
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3.7* The Dot Product
Up until now, we have not found any physically useful way to define

the multiplication of two vectors. It would be possible, for instance, to
multiply two vectors component by component to form a third vector, but
there are no physical situations where such a multiplication would be
useful.

The equation W =  |F| |d| cos θ is an example of a sort of multiplication
of vectors that is useful. The result is a scalar, not a vector, and this is
therefore often referred to as the scalar product of the vectors F and d. There
is a standard shorthand notation for this operation,

   A ⋅ B = A B cos θ    ,

[ definition of the notation    A ⋅ B ;

θ is the angle between vectors A and B ]

and because of this notation, a more common term for this operation is the
dot product. In dot product notation, the equation for work is simply

    W = F ⋅ d

 The dot product has the following geometric interpretation:

   A ⋅ B = |A| x (component of B parallel to A)

=  |B| x (component of A parallel to B)

The dot product has some of the properties possessed by ordinary
multiplication of numbers,

   A ⋅ B = B ⋅ A

    A ⋅ B + C = A ⋅ B + A ⋅ C

    cA ⋅ B= c A ⋅ B    ,

but it lacks one other: the ability to undo multiplication by dividing.

If you know the components of two vectors, you can easily calculate
their dot product as follows:

    A ⋅ B= A xB x + A yB y + A zB z    .

This can be proven by first analyzing the special case where each vector has
only an x component, and the similar cases for y and z. We can then apply

the rule     A ⋅ B + C = A ⋅ B + A ⋅ C  to generalize by writing each vector as

the sum of its x, y, and z components.

Chapter 3 Work: The Transfer of Mechanical Energy
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Summary
Selected Vocabulary

work ................................. the amount of energy transferred into or out of a system, excluding
energy transferred by heat conduction

Notation
W ..................................... work

Summary
Work is a measure of the transfer of mechanical energy, i.e. the transfer of energy by a force rather than

by heat conduction. When the force is constant, work can usually be calculated as

W = F
||
 |d|   , [only if the force is constant]

where d is simply a less cumbersome notation for ∆r, the vector from the initial position to the final position.
Thus,

• A force in the same direction as the motion does positive work, i.e. transfers energy into the object
on which it acts.

• A force in the opposite direction compared to the motion does negative work, i.e. transfers energy
out of the object on which it acts.

• When there is no motion, no mechanical work is done. The human body burns calories when it
exerts a force without moving, but this is an internal energy transfer of energy within the body, and
thus does not fall within the scientific definition of work.

• A force perpendicular to the motion does no work.

When the force is not constant, the above equation should be generalized as the area under the graph of F
||

versus d.

Machines such as pulleys, levers, and gears may increase or decrease a force, but they can never
increase or decrease the amount of work done. That would violate conservation of energy unless the machine
had some source of stored energy or some way to accept and store up energy.

There are some situations in which the equation W = F
||
 |d| is ambiguous or not true, and these issues are

discussed rigorously in section 3.6. However, problems can usually be avoided by analyzing the types of
energy being transferred before plunging into the math. In any case there is no substitute for a physical
understanding of the processes involved.

The techniques developed for calculating work can also be applied to the calculation of potential energy.
We fix some position as a reference position, and calculate the potential energy for some other position, x, as

PE
x
 = –W

ref→x
   .

The following two equations for potential energy have broader significance than might be suspected based
on the limited situations in which they were derived:

PE = 1
2

k(x-xo)
2   .

[ potential energy of a spring having spring constant k, when stretched or compressed from
the equilibrium position x

o
; analogous equations apply for the twisting, bending, compres-

sion, or stretching of any object. ]

PE =   – GMm
r

[ gravitational potential energy of objects of masses M and m, separated by a distance r; an
analogous equation applies to the electrical potential energy of an electron in an atom.]

Section Summary
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Homework Problems
1. Two cars with different masses each have the same kinetic energy. (a) If
both cars have the same brakes, capable of supplying the same force, how
will the stopping distances compare? Explain. (b) Compare the times
required for the cars to stop.

2. In each of the following situations, is the work being done positive,
negative, or zero? (a) a bull paws the ground; (b) a fishing boat pulls a net
through the water behind it; (c) the water resists the motion of the net
through it; (d) you stand behind a pickup truck and lower a bale of hay
from the truck’s bed to the ground. Explain.

3. In the earth's atmosphere, the molecules are constantly moving around.
Because temperature is a measure of kinetic energy per molecule, the
average kinetic energy of each type of molecule is the same, e.g. the
average KE of the O

2
 molecules is the same as the average KE of the N

2

molecules. (a) If the mass of an O
2
 molecule is eight times greater than

that of a He atom, what is the ratio of their average speeds? Which way is
the ratio, i.e. which is typically moving faster? (b) Use your result from
part a to explain why any helium occurring naturally in the atmosphere
has long since escaped into outer space, never to return. (Helium is
obtained commercially by extracting it from rocks.)

4. Weiping lifts a rock with a weight of 1.0 N through a height of 1.0 m,
and then lowers it back down to the starting point. Bubba pushes a table
1.0 m across the floor at constant speed, requiring a force of 1.0 N, and
then pushes it back to where it started. Compare the total work done by
Weiping and Bubba.

5. ✓ In one of his more flamboyant moments, Galileo wrote "Who does
not know that a horse falling from a height of three or four cubits will
break his bones, while a dog falling from the same height or a cat from a
height of eight or ten cubits will suffer no injury? Equally harmless would
be the fall of a grasshopper from a tower or the fall of an ant from the
distance of the moon." Find the speed of an ant that falls to earth from the
distance of the moon at the moment when it is about to enter the atmo-
sphere. Assume it is released from a point that is not actually near the
moon, so the moon's gravity is negligible.

6. [Problem 6 has been deleted.]

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.
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x1

x2

Problem 8: A cylinder from the 1965
Rambler’s engine. The piston is shown
in its pushed out position. The two
bulges at the top are for the valves that
let fresh air-gas mixture in.
Based on a figure from Motor Service’s
Automotive Encyclopedia, Toboldt and
Purvis.

7. (a) The crew of an 18th century warship is raising the anchor. The
anchor has a mass of 5000 kg. The water is 30 m deep. The chain to
which the anchor is attached has a mass per unit length of 150 kg/m.
Before they start raising the anchor, what is the total weight of the anchor
plus the portion of the chain hanging out of the ship? (Assume that the
buoyancy of the anchor and is negligible.)

(b) After they have raised the anchor by 1 m, what is the weight they are
raising?

(c) Define y=0 when the anchor is resting on the bottom, and y=+30 m
when it has been raised up to the ship. Draw a graph of the force the crew
has to exert to raise the anchor and chain, as a function of y. (Assume that
they are raising it slowly, so water resistance is negligible.) It will not be a
constant! Now find the area under the graph, and determine the work
done by the crew in raising the anchor, in joules.

(d✓) Convert your answer from (c) into units of kcal.

8. In the power stroke of a car's gasoline engine, the fuel-air mixture is
ignited by the spark plug, explodes, and pushes the piston out. The
exploding mixture's force on the piston head is greatest at the beginning of
the explosion, and decreases as the mixture expands. It can be approxi-
mated by F = a / x, where x is the distance from the cylinder to the piston
head, and a is a constant with units of N.m. (Actually a/x1.4 would be more
accurate, but the problem works out more nicely with a/x!)The piston
begins its stroke at x=x

1
, and ends at x=x

2
. The 1965 Rambler had six

cylinders, each with a=220 N.m, x
1
=1.2 cm, and x

2
=10.2 cm.

(a) Draw a neat, accurate graph of F vs x, on graph paper.

(b✓) From the area under the curve, derive the amount of work done in
one stroke by one cylinder.

(c✓) Assume the engine is running at 4800 r.p.m., so that during one
minute, each of the six cylinders performs 2400 power strokes. (Power
strokes only happen every other revolution.) Find the engine's power, in
units of horsepower (1 hp=746 W).

(d) The compression ratio of an engine is defined as x
2
/x

1
. Explain in

words why the car's power would be exactly the same if x
1
 and x

2
 were, say,

halved or tripled, maintaining the same compression ratio of 8.5. Explain
why this would not quite be true with the more realistic force equation
F=a/x1.4.

9. ∫ The magnitude of the force between two magnets separated by a
distance r can be approximated as kr –3 for large values of r. The constant k
depends on the strengths of the magnets and the relative orientations of
their north and south poles. Two magnets are released on a slippery surface
at an initial distance r

i
, and begin sliding towards each other. What will be

the total kinetic energy of the two magnets when they reach a final
distance r

f
? (Ignore friction.)
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10. ∫ A car starts from rest at t=0, and starts speeding up with constant
acceleration. (a) Find the car's kinetic energy in terms of its mass, m,
acceleration, a, and the time, t. (b) Your answer in the previous part also
equals the amount of work, W, done from t=0 until time t. Take the
derivative of the previous expression to find the power expended by the car
at time t. (c) Suppose two cars with the same mass both start from rest at
the same time, but one has twice as much acceleration as the other. At any
moment, how many times more power is being dissipated by the more
quickly accelerating car? (The answer is not 2.)

11.« ∫ A space probe of mass m is dropped into a previously unexplored
spherical cloud of gas and dust, and accelerates toward the center of the
cloud under the influence of the cloud's gravity. Measurements of its
velocity allow its potential energy, U, to be determined as a function of the
distance r from the cloud's center. The mass in the cloud is distributed in a
spherically symmetric way, so its density, ρ(r), depends only on r and not
on the angular coordinates. Show that by finding U(r), one can infer ρ(r)
as follows:

   ρ r = 1
4πGmr 2

d
dr

r 2dU
dr

   .

12. ∫ A rail gun is a device like a train on a track, with the train propelled
by a powerful electrical pulse. Very high speeds have been demonstrated in
test models, and rail guns have been proposed as an alternative to rockets
for sending into outer space any object that would be strong enough to
survive the extreme accelerations. Suppose that the rail gun capsule is
launched straight up, and that the force of air friction acting on it is given
by F=be – c x, where x is the altitude, b and c are constants, and e is the base
of natural logarithms. The exponential decay occurs because the atmo-
sphere gets thinner with increasing altitude. (In reality, the force would
probably drop off even faster than an exponential, because the capsule
would be slowing down somewhat.) Find the amount of kinetic energy
lost by the capsule due to air friction between when it is launched and
when it is completely beyond the atmosphere. (Gravity is negligible, since
the air friction force is much greater than the gravitational force.)

13 . A certain binary star system consists of two stars with masses m
1
 and

m
2
, separated by a distance b. A comet, originally nearly at rest in deep

space, drops into the system and at a certain point in time arrives at the
midpoint between the two stars. For that moment in time, find its veloc-
ity, v, symbolically in terms of b, m

1
, m

2
, and fundamental constants.

[Numerical check: For m
1
=1.5x1030 kg, m

2
=3.0x1030 kg, and b=2.0x1011 m

you should find v=7.7x104 m/s.]
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14 ∫. An airplane flies in the positive direction along the x axis, through

crosswinds that exert a force     F = a + bx x + c + dx y . Find the work

done by the wind on the plane, and by the plane on the wind, in traveling
from the origin to position x.

15. ∫ In 1935, Yukawa proposed an early theory of the force that held the
neutrons and protons together in the nucleus. His equation for the
potential energy of two such particles, at a center-to-center distance r, was
PE(r)=g r –1 e – r / a, where g parametrizes the strength of the interaction, e is
the base of natural logarithms, and a is about 10 –15 m. Find the force
between two nucleons that would be consistent with this equation for the
potential energy.

16. Prove that the dot product defined in section 3.7 is rotationally
invariant in the sense of book 1, section 7.5.

17. Fill in the details of the proof of     A ⋅ B= A xB x + A yB y + A zB z  in

section 3.7.

18 S. Does it make sense to say that work is conserved?

19. (a) Suppose work is done in one-dimensional motion. What happens
to the work if you reverse the direction of the positive coordinate axis?
Base your answer directly on the definition of work. (b) Now answer the
question based on the W=Fd rule.

Homework Problems
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4 Conservation of
Momentum

In many subfields of physics these days, it is possible to read an entire
issue of a journal without ever encountering an equation involving force or
a reference to Newton’s laws of motion. In the last hundred and fifty years,
an entirely different framework has been developed for physics, based on
conservation laws.

The new approach is not just preferred because it is in fashion. It
applies inside an atom or near a black hole, where Newton’s laws do not.
Even in everyday situations the new approach can be superior. We have
already seen how perpetual motion machines could be designed that were
too complex to be easily debunked by Newton’s laws. The beauty of conser-
vation laws is that they tell us something must remain the same, regardless
of the complexity of the process.

So far we have discussed only two conservation laws, the laws of
conservation of mass and energy. Is there any reason to believe that further
conservation laws are needed in order to replace Newton’s laws as a com-
plete description of nature? Yes. Conservation of mass and energy do not
relate in any way to the three dimensions of space, because both are scalars.
Conservation of energy, for instance, does not prevent the planet earth from
abruptly making a 90-degree turn and heading straight into the sun,
because kinetic energy does not depend on direction. In this chapter, we
develop a new conserved quantity, called momentum, which is a vector.
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4.1 Momentum
A conserved quantity of motion

Your first encounter with conservation of momentum may have come
as a small child unjustly confined to a shopping cart. You spot something
interesting to play with, like the display case of imported wine down at the
end of the aisle, and decide to push the cart over there. But being impris-
oned by Dad in the cart was not the only injustice that day. There was a far
greater conspiracy to thwart your young id, one that originated in the laws
of nature. Pushing forward did nudge the cart forward, but it pushed you
backward. If the wheels of the cart were well lubricated, it wouldn’t matter
how you jerked, yanked, or kicked off from the back of the cart. You could
not cause any overall forward motion of the entire system consisting of the
cart with you inside.

In the Newtonian framework, we describe this as arising from Newton’s
third law. The cart made a force on you that was equal and opposite to your
force on it. In the framework of conservation laws, we cannot attribute your
frustration to conservation of energy. It would have been perfectly possible
for you to transform some of the internal chemical energy stored in your
body to kinetic energy of the cart and your body.

The following characteristics of the situation suggest that there may be a
new conservation law involved:

A closed system is involved. All conservation laws deal with closed
systems. You and the cart are a closed system, since the well-oiled
wheels prevent the floor from making any forward force on you.

Something remains unchanged. The overall velocity of the system
started out being zero, and you cannot change it. This vague reference
to “overall velocity” can be made more precise: it is the velocity of the
system’s center of mass that cannot be changed.

Something can be transferred back and forth without changing the
total amount: If we define forward as positive and backward as
negative, then one part of the system can gain positive motion if
another part acquires negative motion. If we don’t want to worry
about positive and negative signs, we can imagine that the whole cart
was initially gliding forward on its well-oiled wheels. By kicking off
from the back of the cart, you could increase your own velocity, but
this inevitably causes the cart to slow down.

It thus appears that there is some numerical measure of an object’s quantity
of motion that is conserved when you add up all the objects within a
system.

Momentum
Although velocity has been referred to, it is not the total velocity of a

closed system that remains constant. If it was, then firing a gun would cause
the gun to recoil at the same velocity as the bullet! The gun does recoil, but
at a much lower velocity than the bullet. Newton’s third law tells us

F
gun on bullet

= – F
bullet on gun

   ,

and assuming a constant force for simplicity, Newton’s second law allows us

Chapter 4 Conservation of Momentum



65

to change this to

   m bullet
∆v bullet

∆t
=

   
– m gun

∆v gun

∆t
   .

Thus if the gun has 100 times more mass than the bullet, it will recoil at a
velocity that is 100 times smaller and in the opposite direction, represented
by the opposite sign. The quantity mv is therefore apparently a useful
measure of motion, and we give it a name, momentum, and a symbol, p. (As
far as I know, the letter “p” was just chosen at random, since “m” was
already being used for mass.) The situations discussed so far have been one-
dimensional, but in three-dimensional situations it is treated as a vector.

definition of momentum for material objects
The momentum of a material object, i.e. a piece of matter, is defined as

p = mv   ,
the product of the object’s mass and its velocity vector.

The units of momentum are kg.m/s, and there is unfortunately no abbrevia-
tion for this clumsy combination of units.

The reasoning leading up to the definition of momentum was all based
on the search for a conservation law, and the only reason why we bother to
define such a quantity is that experiments show it is conserved:

the law of conservation of momentum
In any closed system, the vector sum of all the momenta remains
constant,

p
1i 

+ p
2i 

+ ... = p
1f
 + p

2fi
 + ...   ,

where i labels the initial and f the final momenta. (A closed system is
one on which no external forces act.)

This chapter first addresses the one-dimensional case, in which the direction
of the momentum can be taken into account by using plus and minus signs.
We then pass to three dimensions, necessitating the use of vector addition.

A subtle point about conservation laws is that they all refer to “closed
systems,” but “closed” means different things in different cases. When
discussing conservation of mass, “closed” means a system that doesn’t have
matter moving in or out of it. With energy, we mean that there is no work
or heat transfer occurring across the boundary of the system. For momen-
tum conservation, “closed” means there are no external forces reaching into
the system.
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Example: a cannon
Question : A cannon of mass 1000 kg fires a 10-kg shell at a
velocity of 200 m/s. At what speed does the cannon recoil?
Solution : The law of conservation of momentum tells us that

p
cannon,i

 + p
shell,i

 = p
cannon,f

 + p
shell,f

   .
Choosing a coordinate system in which the cannon points in the
positive direction, the given information is

p
cannon,i

  = 0
p

shell,i
   = 0

p
shell,f

  = 2000 kg.m/s   .
We must have p

cannon,f
=–2000 kg.m/s, so the recoil velocity of the

cannon is 2 m/s.

Example: ion drive for propelling spacecraft
Question : The experimental solar-powered ion drive of the Deep
Space 1 space probe expels its xenon gas exhaust at a speed of
30,000 m/s, ten times faster than the exhaust velocity for a
typical chemical-fuel rocket engine. Roughly how many times
greater is the maximum speed this spacecraft can reach, com-
pared with a chemical-fueled probe with the same mass of fuel
(“reaction mass”) available for pushing out the back as exhaust?
Solution : Momentum equals mass multiplied by velocity. Both
spacecraft are assumed to have the same amount of reaction
mass, and the ion drive’s exhaust has a velocity ten times
greater, so the momentum of its exhaust is ten times greater.
Before the engine starts firing, neither the probe nor the exhaust
has any momentum, so the total momentum of the system is
zero. By conservation of momentum, the total momentum must
also be zero after all the exhaust has been expelled. If we define
the positive direction as the direction the spacecraft is going,
then the negative momentum of the exhaust is canceled by the
positive momentum of the spacecraft. The ion drive allows a final

The ion drive engine of the NASA Deep Space 1 probe, shown under construction (left) and being tested in a vacuum
chamber (right) prior to its October 1998 launch. Intended mainly as a test vehicle for new technologies, the craft neverthe-
less is scheduled to carry out a scientific program that includes a 1999 flyby of a near-earth asteroid and a rendezvous with
a comet in 2004.
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speed that is ten times greater. (This simplified analysis ignores
the fact that the reaction mass expelled later in the burn is not
moving backward as fast, because of the forward speed of the
already-moving spacecraft.)

Generalization of the momentum concept
As with all the conservation laws, the law of conservation of momen-

tum has evolved over time. In the 1800s it was found that a beam of light
striking an object would give it some momentum, even though light has no
mass, and would therefore have no momentum according to the above
definition. Rather than discarding the principle of conservation of momen-
tum, the physicists of the time decided to see if the definition of momen-
tum could be extended to include momentum carried by light. The process
is analogous to the process outlined in chapter 1 for identifying new forms
of energy. The first step was the discovery that light could impart momen-
tum to matter, and the second step was to show that the momentum
possessed by light could be related in a definite way to observable properties
of the light. They found that conservation of momentum could be success-
fully generalized by attributing to a beam of light a momentum vector in
the direction of the light’s motion and having a magnitude proportional to
the amount of energy the light possessed. The momentum of light is
negligible under ordinary circumstances, e.g. a flashlight left on for an hour
would only absorb about 10-5 kg.m/s of momentum as it recoiled.

The reason for bringing this up is not so that you can plug numbers
into a formulas in these exotic situations. The point is that the conservation

Momentum is not always equal to mv.
Halley’s comet, shown here, has a very elon-
gated elliptical orbit, like those of many other
comets. About once per century, its orbit
brings it close to the sun. The comet’s head,
or nucleus, is composed of dirty ice, so the
energy deposited by the intense sunlight boils
off water vapor. The bottom photo shows a
view of the water boiling off of the nucleus
from the European Giotto space probe, which
passed within 596 km of the comet’s head
on March 13, 1986. The sunlight does not
just carry energy, however. It also carries
momentum. Once the steam boils off, the mo-
mentum of the sunlight impacting on it pushes
it away from the sun, forming a tail as shown
in in the top image, taken through a ground-
based telescope. By analogy with matter, for
which momentum equals mv, you would ex-
pect that massless light would have zero
momentum, but the equation p=mv is not the
correct one for light, and light does have
momentum. (Some comets also have a sec-
ond tail, which is propelled by electrical forces
rather than by the momentum of sunlight.)

Modern Changes in the
Momentum Concept

Einstein played a role in two ma-
jor changes in the momentum con-
cept in the 1900s.

First Einstein showed that the
equation mv would not work for a
system containing objects moving
at very high speeds relative to one
another. He came up with a new
equation, to which mv is only the
low-velocity approximation.

The second change, and a far
stranger one, was the realization
that at the atomic level, motion is
inescapably random. The electron
in a hydrogen atom doesn’t really
orbit the nucleus, it forms a vague
cloud around it. It might seem that
this would prove nonconservation
of momentum, but in fact the ran-
dom wanderings of the proton are
exactly coordinated with those of
the electron so that the total mo-
mentum stays exactly constant. In
an atom of lead, there are 82 elec-
trons plus the nucleus, all chang-
ing their momenta randomly from
moment to moment, but all coor-
dinating mysteriously with each
other to keep the vector sum con-
stant. In the 1930s, Einstein
pointed out that the theories of the
atom then being developed would
require this kind of spooky coordi-
nation, and used this as an argu-
ment that there was something
physically unreasonable in the
new ideas. Experiments, however,
have shown that the spooky ef-
fects do happen, and Einstein’s
objections are remembered today
only as a historical curiousity.
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laws have proven so sturdy exactly because they can easily be amended to fit
new circumstances. Newton’s laws are no longer at the center of the stage of
physics because they did not have the same adaptability. More generally, the
moral of this story is the provisional nature of scientific truth.

It should also be noted that conservation of momentum is not a
consequence of Newton’s laws, as is often asserted in textbooks. Newton’s
laws do not apply to light, and therefore could not possibly be used to prove
anything about a concept as general as the conservation of momentum in its
modern form.

Momentum compared to kinetic energy
Momentum and kinetic energy are both measures of the quantity of

motion, and a sideshow in the Newton-Leibnitz controversy over who
invented calculus was an argument over whether mv (i.e. momentum) or
mv2 (i.e. kinetic energy without the 1/2 in front) was the “true” measure of
motion. The modern student can certainly be excused for wondering why
we need both quantities, when their complementary nature was not evident
to the greatest minds of the 1700s. The following table highlights their
differences.

Kinetic energy... Momentum...

is a scalar. is a vector.

is not changed by a force
perpendicular to the motion,
which changes only the direction
of the velocity vector.

is changed by any force, since a
change in either the magnitude or
direction of the velocity vector will
result in a change in the
momentum vector.

is always positive, and cannot
cancel out.

cancels with momentum in the
opposite direction.

can be traded for forms of energy
that do not involve motion. KE is
not a conserved quantity by itself.

is always conserved in a closed
system.

is quadrupled if the velocity is
doubled.

is doubled if the velocity is
doubled.

Here are some examples that show the different behaviors of the two
quantities.

Example: a spinning top
A spinning top has zero total momentum, because for every
moving point, there is another point on the opposite side that
cancels its momentum. It does, however, have kinetic energy.
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Example: momentum and kinetic energy in firing a rifle
The rifle and bullet have zero momentum and zero kinetic energy
to start with. When the trigger is pulled, the bullet gains some
momentum in the forward direction, but this is canceled by the
rifle’s backward momentum, so the total momentum is still zero.
The kinetic energies of the gun and bullet are both positive
scalars, however, and do not cancel. The total kinetic energy is
allowed to increase, because kinetic energy is being traded for
other forms of energy. Initially there is chemical energy in the
gunpowder. This chemical energy is converted into heat, sound,
and kinetic energy. The gun's “backward'” kinetic energy does
not refrigerate the shooter's shoulder!

Example: the wobbly earth
As the moon completes half a circle around the earth, its motion
reverses direction. This does not involve any change in kinetic
energy, and the earth’s gravitational force does not do any work
on the moon. The reversed velocity vector does, however, imply
a reversed momentum vector, so conservation of momentum in
the closed earth-moon system tells us that the earth must also
change its momentum. In fact, the earth wobbles in a little “orbit”
about a point below its surface on the line connecting it and the
moon. The two bodies’ momentum vectors always point in
opposite directions and cancel each other out.

Example: the earth and moon get a divorce
Why can’t the moon suddenly decide to fly off one way and the
earth the other way? It is not forbidden by conservation of
momentum, because the moon’s newly acquired momentum in
one direction could be canceled out by the change in the mo-
mentum of the earth, supposing the earth headed the opposite
direction at the appropriate, slower speed. The catastrophe is
forbidden by conservation of energy, because both their energies
would have to increase greatly.

Example: momentum and kinetic energy of a glacier
A cubic-kilometer glacier would have a mass of about 1012 kg. If it
moves at a speed of 10-5 m/s, then its momentum is 107 kg.m/s.
This is the kind of heroic-scale result we expect, perhaps the
equivalent of the space shuttle taking off, or all the cars in LA
driving in the same direction at freeway speed. Its kinetic energy,
however, is only 50 J, the equivalent of the calories contained in
a poppy seed or the energy in a drop of gasoline too small to be
seen without a microscope. The surprisingly small kinetic energy
is because kinetic energy is proportional to the square of the
velocity, and the square of a small number is an even smaller
number.

Discussion Questions
A. If a swarm of ants has a total momentum of zero, what can we conclude?
What if their total kinetic energy is zero?
B. If all the air molecules in the room settled down in a thin film on the floor,
would that violate conservation of momentum as well as conservation of
energy?
C. A  refrigerator has coils in back that get hot, and heat is molecular motion.
These moving molecules have both energy and momentum. Why doesn’t the
refrigerator need to be tied to the wall to keep it from recoiling from the
momentum it loses out the back?
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4.2 Collisions in One Dimension
Physicists employ the term “collision” in a broader sense than ordinary

usage, applying it to any situation where objects interact for a certain period
of time. A bat hitting a baseball, a radioactively emitted particle damaging
DNA, and a gun and a bullet going their separate ways are all examples of
collisions in this sense. Physical contact is not even required. A comet
swinging past the sun on a hyperbolic orbit is considered to undergo a
collision, even though it never touches the sun. All that matters is that the
comet and the sun exerted gravitational forces on each other.

The reason for broadening the term “collision” in this way is that all of
these situations can be attacked mathematically using the same conservation
laws in similar ways. In the first example, conservation of momentum is all
that is required.

Example: getting rear-ended
Question : Ms. Chang is rear-ended at a stop light by Mr. Nelson,
and sues to make him pay her medical bills. He testifies that he
was only going 35 miles per hour when he hit Ms. Chang. She
thinks he was going much faster than that. The cars skidded
together after the impact, and measurements of the length of the
skid marks and the coefficient of friction show that their joint
velocity immediately after the impact was 19 miles per hour. Mr.
Nelson’s Nissan weighs 3100 pounds, and Ms. Chang ’s Cadillac
weighs 5200 pounds. Is Mr. Nelson telling the truth?
Solution : Since the cars skidded together, we can write down
the equation for conservation of momentum using only two

velocities, v for Mr. Nelson’s velocity before the crash, and  v ′  for
their joint velocity afterward:

m
N
v = m

N  v ′  + m
C  v ′    .

Solving for the unknown, v, we find

v =    1 +
mC
mN

v ′    .

Although we are given the weights in pounds, a unit of force, the
ratio of the masses is the same as the ratio of the weights, and
we find v=51 miles per hour. He is lying.

The above example was simple because both cars had the same velocity
afterward. In many one-dimensional collisions, however, the two objects do
not stick. If we wish to predict the result of such a collision, conservation of
momentum does not suffice, because both velocities after the collision are
unknown, so we have one equation in two unknowns.

Conservation of energy can provide a second equation, but its applica-
tion is not as straightforward, because kinetic energy is only the particular
form of energy that has to do with motion. In many collisions, part of the
kinetic energy that was present before the collision is used to create heat or
sound, or to break the objects or permanently bend them. Cars, in fact, are
carefully designed to crumple in a collision. Crumpling the car uses up
energy, and that’s good because the goal is to get rid of all that kinetic
energy in a relatively safe and controlled way. At the opposite extreme, a
superball is “super” because it emerges from a collision with almost all its
original kinetic energy, having only stored it briefly as potential energy

This Hubble Space Telescope photo
shows a small galaxy (yellow blob in
the lower right) that has collided with
a larger galaxy (spiral near the cen-
ter), producing a wave of star forma-
tion (blue track) due to the shock
waves passing through the galaxies’
clouds of gas. This is considered a
collision in the physics sense, even
though it is statistically certain that no
star in either galaxy ever struck a star
in the other. (This is because the stars
are very small compared to the dis-
tances between them.)
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while it was being squashed by the impact.

Collisions of the superball type, in which almost no kinetic energy is
converted to other forms of energy, can thus be analyzed more thoroughly,
because they have KE

f
=KE

i
, as opposed to the less useful inequality KE

f
<KE

i

for a case like a tennis ball bouncing on grass.

Example: pool balls colliding head-on
Question : Two pool balls collide head-on, so that the collision is
restricted to one dimension. Pool balls are constructed so as to
lose as little kinetic energy as possible in a collision, so under the
assumption that no kinetic energy is converted to any other form
of energy, what can we predict about the results of such a
collision?
Solution : Pool balls have identical masses, so we use the same
symbol m for both. Conservation of energy and no loss of kinetic
energy give us the two equations

  mv1i + mv2i = mv1f + mv2f
1
2mv1i

2 + 1
2mv2i

2 = 1
2mv1f

2 + 1
2mv2f

2

The masses and the factors of 1/2 can be divided out, and we
eliminate the cumbersome subscripts by replacing the symbols
v

1i
,... with the symbols A, B, C, and D.

A+B = C+D
A2+B2 = C2+D2   .

A little experimentation with numbers shows that given values of
A and B, it is impossible to find C and D that satisfy these
equations unless C and D equal A and B, or C and D are the
same as A and B but swapped around. An algebraic proof is
given in the box on the left. In the special case where ball 2 is
initially at rest, this tells us that ball 1 is stopped dead by the
collision, and ball 2 heads off at the velocity originally possessed
by ball 1. This behavior will be familiar to players of pool.

Often, as in the example above, the details of the algebra are the least
interesting part of the problem, and considerable physical insight can be
gained simply by counting the number of unknowns and comparing to the
number of equations. Suppose a beginner at pool notices a case where her
cue ball hits an initially stationary ball and stops dead. “Wow, what a good
trick,” she thinks. “I bet I could never do that again in a million years.” But
she tries again, and finds that she can’t help doing it even if she doesn’t want
to. Luckily she has just learned about collisions in her physics course. Once
she has written down the equations for conservation of energy and no loss
of kinetic energy, she really doesn’t have to complete the algebra. She knows
that she has two equations in two unknowns, so there must be a well-
defined solution. Once she has seen the result of one such collision, she
knows that the same thing must happen every time. The same thing would
happen with colliding marbles or croquet balls. It doesn’t matter if the
masses or velocities are different, because that just multiplies both equations
by some constant factor.

Algebraic Proof of the Result in
the Example
The equation A+B = C+D says that
the change in one ball’s velocity is
equal and opposite to the change
in the other’s. We invent a symbol
x=C-A for the change in ball 1’s ve-
locity. The second equation can
then be rewritten as

A2+B2 = (A+x)2+(B-x)2   .

Squaring out the quantities in pa-
rentheses gives

A2+B2

= A2+2Ax+x2+B2-2Bx+x2   ,

which simplifies to

0 = Ax-Bx+x2   .

The equation has the trivial solu-
tion x=0, i.e. neither ball’s velocity
is changed, but this is physically
impossible because the balls can-
not travel through each other like
ghosts. Assuming x≠0, we can di-
vide by x and solve for x=B-A. This
means that ball 1 has gained an
amount of velocity exactly suffi-
cient to make it equal to ball 2’s
initial velocity, and vice-versa. The
balls must have swapped veloci-
ties.
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The discovery of the neutron
This was the type of reasoning employed by James Chadwick in his

1932 discovery of the neutron. At the time, the atom was imagined to be
made out of two types of fundamental particles, protons and electrons. The
protons were far more massive, and clustered together in the atom’s core, or
nucleus. Attractive electrical forces caused the electrons to orbit the nucleus
in circles, in much the same way that gravitational forces kept the planets
from cruising out of the solar system. Experiments showed that the helium
nucleus, for instance, exerted exactly twice as much electrical force on an
electron as a nucleus of hydrogen, the smallest atom, and this was explained
by saying that helium had two protons to hydrogen’s one. The trouble was
that according to this model, helium would have two electrons and two
protons, giving it precisely twice the mass of a hydrogen atom with one of
each. In fact, helium has about four times the mass of hydrogen.

Chadwick suspected that the helium nucleus possessed two additional
particles of a new type, which did not participate in electrical forces at all,
i.e. were electrically neutral. If these particles had very nearly the same mass
as protons, then the four-to-one mass ratio of helium and hydrogen could
be explained.  In 1930, a new type of radiation was discovered that seemed
to fit this description. It was electrically neutral, and seemed to be coming
from the nuclei of light elements that had been exposed to other types of
radiation. At this time, however, reports of new types of particles were a
dime a dozen, and most of them turned out to be either clusters made of
previously known particles or else previously known particles with higher
energies. Many physicists believed that the “new” particle that had attracted
Chadwick’s interest was really a previously known particle called a gamma
ray, which was electrically neutral. Since gamma rays have no mass,
Chadwick decided to try to determine the new particle’s mass and see if it
was nonzero and approximately equal to the mass of a proton.

Chadwick’s subatomic pool table. A disk of the naturally oc-
curring metal polonium provides a source of radiation ca-
pable of kicking neutrons out of the beryllium nuclei. The
type of radiation emitted by the polonium is easily absorbed
by a few mm of air, so the air has to be pumped out of the
left-hand chamber. The neutrons, Chadwick’s mystery par-
ticles, penetrate matter far more readily, and fly out through
the wall and into the chamber on the right, which is filled with
nitrogen or hydrogen gas. When a neutron collides with a
nitrogen or hydrogen nucleus, it kicks it out of its atom at
high speed, and this recoiling nucleus then rips apart thou-
sands of other atoms of the gas. The result is an electrical
pulse that can be detected in the wire on the right. Physicists
had already calibrated this type of apparatus so that they
could translate the strength of the electrical pulse into the
velocity of the recoiling nucleus. The whole apparatus shown
in the figure would fit in the palm of your hand, in dramatic
contrast to today’s giant particle accelerators.

polonium beryllium

to vacuum
pump
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Unfortunately a subatomic particle is not something you can just put
on a scale and weigh. Chadwick came up with an ingenious solution. The
masses of the nuclei of the various chemical elements were already known,
and techniques had already been developed for measuring the speed of a
rapidly moving nucleus. He therefore set out to bombard samples of
selected elements with the mysterious new particles. When a direct, head-on
collision occurred between a mystery particle and the nucleus of one of the
target atoms, the nucleus would be knocked out of the atom, and he would
measure its velocity.

Suppose, for instance, that we bombard a sample of hydrogen atoms
with the mystery particles. Since the participants in the collision are funda-
mental particles, there is no way for kinetic energy to be converted into heat
or any other form of energy, and Chadwick thus had two equations in three
unknowns:

equation #1: conservation of momentum
equation #2: no loss of kinetic energy
unknown #1: mass of the mystery particle
unknown #2: initial velocity of the mystery particle
unknown #3:  final velocity of the mystery particle

The number of unknowns is greater than the number of equations, so there
is no unique solution. But by creating collisions with nuclei of another
element, nitrogen, he gained two more equations at the expense of only one
more unknown:

equation #3: conservation of momentum in the new collision
equation #4: no loss of kinetic energy in the new collision
unknown #4: final velocity of the mystery particle in the new collision

He was thus able to solve for all the unknowns, including the mass of the
mystery particle, which was indeed within 1% of the mass of a proton. He
named the new particle the neutron, since it is electrically neutral.

Discussion Question
Good pool players learn to make the cue ball spin, which can cause it not to
stop dead in a head-on collision with a stationary ball. If this does not violate
the laws of physics, what hidden assumption was there in the example above?
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4.3* Relationship of Momentum to the Center of Mass

We have already discussed the idea of the center of mass in the first
book of this series, but using the concept of momentum we can now find a
mathematical method for defining the center of mass, explain why the
motion of an object’s center of mass usually exhibits simpler motion than
any other point, and gain a very simple and powerful way of understanding
collisions.

The first step is to realize that the center of mass concept can be applied
to systems containing more than one object. Even something like a wrench,
which we think of as one object, is really made of many atoms. The center
of mass is particularly easy to visualize in the case shown on the left, where
two identical hockey pucks collide. It is clear on grounds of symmetry that
their center of mass must be at the midpoint between them. After all, we
previously defined the center of mass as the balance point, and if the two
hockey pucks were joined with a very lightweight rod whose own mass was
negligible, they would obviously balance at the midpoint. It doesn’t matter
that the hockey pucks are two separate objects. It is still true that the
motion of their center of mass is exceptionally simple, just like that of the
wrench’s center of mass.

The x coordinate of the hockey pucks’ center of mass is thus given by
x

cm
=(x

1
+x

2
)/2, i.e. the arithmetic average of their x coordinates. Why is its

motion so simple? It has to do with conservation of momentum. Since the
hockey pucks are not being acted on by any net external force, they consti-
tute a closed system, and their total momentum is conserved. Their total
momentum is

mv
1
+mv

2
= m(v

1
+v

2
)

= m
   ∆x 1

∆t
+

∆x 2

∆t

=    m
∆t

∆ x 1 + x 2

=
   m
2∆x cm

∆t

= m
total

v
cm,x

In other words, the total momentum of the system is the same as if all its

In this multiple-flash photograph, we
see the wrench from above as it flies
through the air, rotating as it goes. Its
center of mass, marked with the black
cross, travels along a straight line,
unlike the other points on the wrench,
which execute loops.

Two hockey pucks collide. Their mu-
tual center of mass traces the straight
path shown by the dashed line.
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mass was concentrated at the center of mass point. Since the total momen-
tum is conserved, the x component of the center of mass’s velocity vector
cannot change. The same is also true for the other components, so the
center of mass must move along a straight line at constant speed.

The above relationship between the total momentum and the motion of
the center of mass applies to any system, even if it is not closed.

total momentum related to center of mass motion
The total momentum of any system is related to its total mass
and the velocity of its center of mass by the equation

ptotal = m
total

v
cm

   .

What about a system containing objects with unequal masses, or
containing more than two objects? The reasoning above can be generalized
to a weighted average

x
cm

 =   m 1x 1 + m 2x 2 + ...
m 1 + m 2 + ...    ,

with similar equations for the y and z coordinates.

Momentum in different frames of reference
Absolute motion is supposed to be undetectable, i.e. the laws of physics

are supposed to be equally valid in all inertial frames of reference. If we first
calculate some momenta in one frame of reference and find that momen-
tum is conserved, and then rework the whole problem in some other frame
of reference that is moving with respect to the first, the numerical values of
the momenta will all be different. Even so, momentum will still be con-
served. All that matters is that we work a single problem in one consistent
frame of reference.

One way of proving this is to apply the equation p
total

=m
total

v
cm

. If the
velocity of frame B relative to frame A is v

BA
, then the only effect of chang-

ing frames of reference is to change v
cm

 from its original value to v
cm

+v
BA

.
This adds a constant onto the momentum vector, which has no effect on
conservation of momentum.

The center of mass frame of reference
A particularly useful frame of reference in many cases is the frame that

moves along with the center of mass, called the center of mass (c.m.) frame.
In this frame, the total momentum is zero. The following examples show
how the center of mass frame can be a powerful tool for simplifying our
understanding of collisions.

Example: a collision of pool balls viewed in the c.m. frame
If you move your head so that your eye is always above the point
halfway in between the two pool balls, you are viewing things in
the center of mass frame. In this frame, the balls come toward
the center of mass at equal speeds. By symmetry, they must
therefore recoil at equal speeds along the lines on which they
entered. Since the balls have essentially swapped paths in the
center of mass frame, the same must also be true in any other
frame. This is the same result that required laborious algebra to
prove previously without the concept of the center of mass
frame.

Moving our head so that we are always
looking down from right above the cen-
ter of mass, we observe the collision
of the two hockey pucks in the center
of mass frame.

Section 4.3* Relationship of Momentum to the Center of Mass



76

Example: the slingshot effect
It is a counterintuitive fact that a spacecraft can pick up speed by
swinging around a planet, if arrives in the opposite direction
compared to the planet’s motion. Although there is no physical
contact, we treat the encounter as a one-dimensional collision,
and analyze it in the center of mass frame. Since Jupiter is so
much more massive than the spacecraft, the center of mass is
essentially fixed at Jupiter’s center, and Jupiter has zero velocity
in the center of mass frame, as shown in figure (b). The c.m.
frame is moving to the left compared to the sun-fixed frame used
in (a), so the spacecraft’s initial velocity is greater in this frame.
Things are simpler in the center of mass frame, because it is
more symmetric. In the sun-fixed frame, the incoming leg of the
encounter is rapid, because the two bodies are rushing toward
each other, while their separation on the outbound leg is more
gradual, because Jupiter is trying to catch up. In the c.m. frame,
Jupiter is sitting still, and there is perfect symmetry between the
incoming and outgoing legs, so by symmetry we have v

1f
=−v

1i
.

Going back to the sun-fixed frame, the spacecraft’s final velocity
is increased by the frames’ motion relative to each other. In the
sun-fixed frame, the spacecraft’s velocity has increased greatly.
The result can also be understood in terms of work and energy.
In Jupiter’s frame, Jupiter is not doing any work on the spacecraft
as it rounds the back of the planet, because the motion is
perpendicular to the force. But in the sun’s frame, the
spacecraft’s velocity vector at the same moment has a large
component to the left, so Jupiter is doing work on it.

Discussion Question
A. Make up a numerical example of two unequal masses moving in one
dimension at constant velocity, and verify the equation ptotal=mtotalvcm over a time
interval of one second.
B. A  more massive tennis racquet or baseball bat makes the ball fly off faster.
Explain why this is true, using the center of mass frame. For simplicity, assume
that the racquet or bat is simply sitting still before the collision, and that the
hitter’s hands do not make any force large enough to have a significant effect
over the short duration of the impact.

4.4 Momentum Transfer
The rate of change of momentum

As with conservation of energy, we need a way to measure and calculate
the transfer of momentum into or out of a system when the system is not
closed. In the case of energy, the answer was rather complicated, and
entirely different techniques had to be used for measuring the transfer of
mechanical energy (work) and the transfer of heat by conduction. For
momentum, the situation is far simpler.

In the simplest case, the system consists of a single object acted on by a
constant external force. Since it is only the object’s velocity that can change,
not its mass, the momentum transferred is

∆p = m∆v

which with the help of a=F/m and the constant-acceleration equation
a=∆v/∆t becomes

∆p = ma∆t

= F∆t   .

v2

v1i

v1f

v1i

v1f

(a) The slingshot effect viewed in the
sun’s frame of reference. Jupiter is
moving to the left, and the collision is
head-on.

(b) The slingshot viewed in the frame
of the center of mass of the Jupiter-
spacecraft system.
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Thus the rate of transfer of momentum, i.e. the number of kg.m/s absorbed
per second, is simply the external force,

F = ∆p/∆t   .

[ relationship between the force on an object and the
rate of change of its momentum; valid only if the force
is constant ]

This equation is really just a restatement of Newton’s second law, and in fact
Newton originally stated it this way. As shown in the diagram, the relation-
ship between force and momentum is directly analogous to that between
power and energy.

The situation is not materially altered for a system composed of many
objects. There may be forces between the objects, but the internal forces
cannot change the system’s momentum — if they did, then removing the
external forces would result in a closed system that was able to change its
own momentum, violating conservation of momentum. The equation
above becomes

F
total

= ∆p
total

/∆t   .

[ relationship between the total external force on a
system and the rate of change of its total momentum;
valid only if the force is constant ]

Example: walking into a lamppost
Question : Starting from rest, you begin walking, bringing your
momentum up to 100 kg.m/s. You walk straight into a lamppost.
Why is the momentum change of -100 kg.m/s so much more
painful than the change of +100 kg.m/s when you started walk-
ing?
Solution : The situation is one-dimensional, so we can dispense
with the vector notation. It probably takes you about 1 s to speed
up initially, so the ground’s force on you is F=∆p/∆t≈100 N. Your
impact with the lamppost, however, is over in the blink of an eye,
say 1/10 s or less. Dividing by this much smaller ∆t gives a much
larger force, perhaps thousands of newtons. (The negative sign
simply indicates that the force is in the opposite direction.)

This is also the principle of airbags in cars. The time required for the airbag
to decelerate your head is fairly long, the time required for your face to
travel 20 or 30 cm. Without an airbag, your face would have been hitting
the dashboard, and the time interval would have been the much shorter
time taken by your skull to move a couple of centimeters while your face
compressed. Note that either way, the same amount of mechanical work has
to be done on your head: enough to eliminate all its kinetic energy.

power = rate of
transferring energy

force = rate of
transferring momentum

momentum

energy

system
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Example: ion drive for spacecraft
Question : The ion drive of the Deep Space 1 spacecraft, pic-
tured earlier in the chapter, produces a thrust of 90 mN
(millinewtons). It carries about 80 kg of reaction mass, which it
ejects at a speed of 30000 m/s. For how long can the engine
continue supplying this amount of thrust before running out of
reaction mass to shove out the back?
Solution : Solving the equation F=∆p/∆t for the unknown ∆t, and
treating force and momentum as scalars since the problem is
one-dimensional, we find

∆t =   ∆p
F

=    mexhaust∆vexhaust
F

=
 80 kg 30000 m/s

0.090 N
= 2.7x107 s
= 300 days

Example: a toppling box
If you place a box on a frictionless surface, it will fall over with a
very complicated motion that is hard to predict in detail. We
know, however, that its center of mass moves in the same
direction as its momentum vector points. There are two forces, a
normal force and a gravitational force, both of which are vertical.
(The gravitational force is actually many gravitational forces
acting on all the atoms in the box.) The total force must be
vertical, so the momentum vector must be purely vertical too,
and the center of mass travels vertically. This is true even if the
box bounces and tumbles. [Based on an example by Kleppner
and Kolenkow.]

The area under the force-time graph
Few real collisions involve a constant force. For example, when a tennis

ball hits a racquet, the strings stretch and the ball flattens dramatically. They
are both acting like springs that obey Hooke’s law, which says that the force
is proportional to the amount of stretching or flattening. The force is
therefore small at first, ramps up to a maximum when the ball is about to
reverse directions, and ramps back down again as the ball is on its way back
out. The equation F=∆p/∆t, derived under the assumption of constant
acceleration, does not apply here, and the force does not even have a single
well-defined numerical value that could be plugged in to the equation.

As with similar-looking equations such as  v=∆p/∆t, the equation F=∆p/
∆t is correctly generalized by saying that the force is the slope of the p-t
graph.

Conversely, if we wish to find ∆p from a graph such as the one shown
on the left, one approach would be to divide the force by the mass of the
ball, rescaling the F axis to create a graph of acceleration versus time. The
area under the acceleration-versus-time graph gives the change in velocity,
which can then be multiplied by the mass to find the change in momen-
tum. An unnecessary complication was introduced, however, because we
began by dividing by the mass and ended by multiplying by it. It would

F

t
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have made just as much sense to find the area under the original F-t graph,
which would have given us the momentum change directly.

Discussion Question
Many collisions, like the collision of a bat with a baseball, appear to be
instantaneous. Most people also would not imagine the bat and ball as
bending or being compressed during the collision. Consider the following
possibilities:

(1) The collision is instantaneous.
(2) The collision takes a finite amount of time, during which the ball and bat
retain their shapes and remain in contact.
(3) The collision takes a finite amount of time, during which the ball and bat
are bending or being compressed.

How can two of these be ruled out based on energy or momentum consider-
ations?

4.5 Momentum in Three Dimensions
In this section we discuss how the concepts applied previously to one-

dimensional situations can be used as well in three dimensions. Often
vector addition is all that is needed to solve a problem:

Example: an explosion
Question : Astronomers observe the planet Mars as the Martians
fight a nuclear war. The Martian bombs are so powerful that they
rip the planet into three separate pieces of liquified rock, all
having the same mass. If one fragment flies off with velocity
components v

1x
=0, v

1y
=1.0x104 km/hr, and the second with

v
2x

=1.0x104 km/hr, v
2y

=0, what is the magnitude of the third one’s
velocity?
Solution : We work the problem in the center of mass frame, in
which the planet initially had zero momentum. After the explo-
sion, the vector sum of the momenta must still be zero. Vector
addition can be done by adding components, so

mv
1x 

+ mv
2x 

+ mv
3x

= 0   , and
mv

1y 
+ mv

2y 
+ mv

3y
= 0   ,

where we have used the same symbol m for all the terms,
because the fragments all have the same mass. The masses can
be eliminated by dividing each equation by m, and we find

v
3x

= –1.0x104 km/hr
v

3y
= –1.0x104 km/hr

which gives a magnitude of

|v
3
| =   v3x

2 + v3y
2

= 1.4x104 km/hr
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The center of mass
In three dimensions, we have the vector equations

F
total

 = ∆p
total

/∆t

and

p
total

 = m
total

 v
cm

   .

The following is an example of their use.

Example: the bola
The bola, similar to the North American lasso, is used by South
American gauchos to catch small animals by tangling up their
legs in the three leather thongs. The motion of the whirling bola
through the air is extremely complicated, and would be a chal-
lenge to analyze mathematically. The motion of its center of
mass, however, is much simpler. The only forces on it are
gravitational, so

F
total 

= m
total

g   .
Using the equation F

total
 = ∆p

total
/∆t, we find

∆p
total

/∆t
 
 = m

total
g   ,

and since the mass is constant, the equation p
total

 = m
total

 v
cm

allows us to change this to
m

total
∆v

cm
/∆t = m

total
g   .

The mass cancels, and ∆v
cm

/∆t is simply the acceleration of the
center of mass, so

a
cm

 = g   .
In other words, the motion of the system is the same as if all its
mass was concentrated at and moving with the center of mass.
The bola has a constant downward acceleration equal to g, and
flies along the same parabola as any other projectile thrown with
the same initial center of mass velocity. Throwing a bola with the
correct rotation is presumably a difficult skill, but making it hit its
target is no harder than it is with a ball or a single rock.
[Based on an example by Kleppner & Kolenkow.]

Counting equations and unknowns
Counting equations and unknowns is just as useful as in one dimen-

sion, but every object’s momentum vector has three components, so an
unknown momentum vector counts as three unknowns. Conservation of
momentum is a single vector equation, but it says that all three components
of the total momentum vector stay constant, so we count it as three equa-
tions. Of course if the motion happens to be confined to two dimensions,
then we need only count vectors as having two components.

Example: a two-car crash with sticking
Suppose two cars collide, stick together, and skid off together. If
we know the cars’ initial momentum vectors, we can count
equations and unknowns as follows:

unknown #1: x component of cars’ final, total momentum
unknown #2: y component of cars’ final, total momentum
equation #1: conservation of the total p

x

equation #2: conservation of the total p
y

Since the number of equations equals the number of unknowns,
there must be one unique solution for their total momentum
vector after the crash. In other words, the speed and direction at
which their common center of mass moves off together is unaf-
fected by factors such as whether the cars collide center-to-
center or catch each other a little off-center.
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Example: shooting pool
Two pool balls collide, and as before we assume there is no
decrease in the total kinetic energy, i.e. no energy converted
from KE into other forms. As in the previous example, we as-
sume we are given the initial velocities and want to find the final
velocities. The equations and unknowns are:

unknown #1: x component of ball #1’s final momentum
unknown #2: y component of ball #1’s final momentum
unknown #3: x component of ball #2’s final momentum
unknown #4: y component of ball #2’s final momentum
equation #1: conservation of the total p

x

equation #2: conservation of the total p
y

equation #3: no decrease in total KE
Note that we do not count the balls’ final kinetic energies as
unknowns, because knowing the momentum vector, one can
always find the velocity and thus the kinetic energy. The number
of equations is less than the number of unknowns, so no unique
result is guaranteed. This is what makes pool an interesting
game. By aiming the cue ball to one side of the target ball you
can have some control over the balls’ speeds and directions of
motion after the collision.
It is not possible, however, to choose any combination of final
speeds and directions. For instance, a certain shot may give the
correct direction of motion for the target ball, making it go into a
pocket, but may also have the undesired side-effect of making
the cue ball go in a pocket.

Section 4.5 Momentum in Three Dimensions



82

Calculations with the momentum vector
The following example illustrates how a force is required to change the

direction of the momentum vector, just as one would be required to change
its magnitude.

Example: a turbine
Question : In a hydroelectric plant, water flowing over a dam
drives a turbine, which runs a generator to make electric power.
The figure shows a simplified physical model of the water hitting
the turbine, in which it is assumed that the stream of water
comes in at a 45° angle with respect to the turbine blade, and
bounces off at a 90° angle at nearly the same speed. The water
flows at a rate R, in units of kg/s, and the speed of the water is v.
What are the magnitude and direction of the water’s force on the
turbine?
Solution : In a time interval ∆t, the mass of water that strikes the
blade is R∆t, and the magnitude of its initial momentum is
mv=vR∆t. The water’s final momentum vector is of the same
magnitude, but in the perpendicular direction. By Newton’s third
law, the water’s force on the blade is equal and opposite to the
blade’s force on the water. Since the force is constant, we can
use the equation

Fblade on water = ∆pwater/∆t   .
Choosing the x axis to be to the right and the y axis to be up, this
can be broken down into components as

Fblade on water,x = ∆pwater,x/∆t
= (–vR∆t-0)/∆t
= –vR

and
F

blade on water,y
= ∆p

water,y
/∆t

= (0–(–vR∆t))/∆t
= vR  .

The water’s force on the blade thus has
F

water on blade,x
= vR

F
water on blade,y

= –vR   .
In situations like this, it is always a good idea to check that the
result makes sense physically. The x component of the water’s
force on the blade is positive, which is correct since we know the
blade will be pushed to the right. The y component is negative,
which also makes sense because the water must push the blade
down. The magnitude of the water’s force on the blade is

|F
water on blade

| =  2 vR
and its direction is at a 45-degree angle down and to the right.

Discussion Questions
The figures show a jet of water striking two different objects. How does the
total downward force compare in the two cases? How could this fact be used
to create a better waterwheel? (Such a waterwheel is known as a Pelton
wheel.)
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4.6∫ Applications of Calculus
By now you will have learned to recognized the circumlocutions I use in

the sections without calculus in order to introduce calculus-like concepts
without using the notation, terminology, or techniques of calculus. It will
therefore come as no surprise to you that the rate of change of momentum
can be represented with a derivative,

  F total =
dp total

dt
   .

And of course the business about the area under the F-t curve is really an

integral,    ∆p total = F totaldt    , which can be made into an integral of a

vector in the more general three-dimensional case:

    ∆p total = F totaldt    .

In the case of a material object that is neither losing nor picking up mass,
these are just trivially rearranged versions of familiar equations, e.g.

  F = mdv
dt

 rewritten as 
  

F =
d mv

dt
. The following is a  less trivial example,

where F=ma alone would not have been very easy to work with.

Example: rain falling into a moving cart
Question: If 1 kg/s of rain falls vertically into a 10-kg cart that is
rolling without friction at an initial speed of 1.0 m/s, what is the
effect on the speed of the cart when the rain first starts falling?
Solution : The rain and the cart make horizontal forces on each
other, but there is no external horizontal force on the rain-plus-
cart system, so the horizontal motion obeys

  
F =

d mv
dt = 0

We use the product rule to find

   0 = dm
dt

v +mdv
dt    .

We are trying to find how v changes, so we solve for dv/dt,

  dv
dt

  = – v
m

dm
dt

=  – 1 m/s
10 kg

1 kg/s

= –0.1 m/s2   .
(This is only at the moment when the rain starts to fall.)

Finally we note that there are cases where F=ma is not just less conve-
nient than F=dp/dt but in fact F=ma is wrong and F=dp/dt is right. A good
example is the formation of a comet’s tail by sunlight. We cannot use F=ma
to describe this process, since we are dealing with a collision of light with
matter, whereas Newton’s laws only apply to matter. The equation F=dp/dt,
on the other hand, allows us to find the force experienced by an atom of gas
in the comet’s tail if we know the rate at which the momentum vectors of
light rays are being turned around by reflection from the molecule.
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Summary
Selected Vocabulary

momentum ....................... a measure of motion, equal to mv for material objects
collision ............................ an interaction between moving objects that lasts for a certain time
center of mass ................. the balance point or average position of the mass in a system

Notation
p ...................................... the momentum vector
cm .................................... center of mass, as in xcm, acm, etc.

Standard Terminology and Notation Not Used in This Book
impulse ............................ the amount of momentum transferred, ∆p
I, J .................................... impulse
elastic collision ................. one in which no KE is converted into other forms of energy
inelastic collision .............. one in which some KE is converted to other forms of energy

Summary
If two objects interact via a force, Newton’s third law guarantees that any change in one’s velocity vector

will be accompanied by a change in the other’s which is in the opposite direction. Intuitively, this means that if
the two objects are not acted on by any external force, they cannot cooperate to change their overall state of
motion. This can be made quantitative by saying that the quantity m1v1+m2v2 must remain constant as long as
the only forces are the internal ones between the two objects. This is a conservation law, called the conserva-
tion of momentum, and like the conservation of energy, it has evolved over time to include more and more
phenomena unknown at the time the concept was invented. The momentum of a material object is

p = m v   ,

but this is more like a standard for comparison of momenta rather than a definition. For instance, light has
momentum, but has no mass, and the above equation is not the right equation for light.  The law of conserva-
tion of momentum says that the total momentum of any closed system, i.e. the vector sum of the momentum
vectors of all the things in the system, is a constant.

An important application of the momentum concept is to collisions, i.e. interactions between moving
objects that last for a certain amount of time while the objects are in contact or near each other. Conservation
of momentum tells us that certain outcomes of a collision are impossible, and in some cases may even be
sufficient to predict the motion after the collision. In other cases, conservation of momentum does not provide
enough equations to find all the unknowns. In some collisions, such as the collision of a superball with the
floor, very little kinetic energy is converted into other forms of energy, and this provides one more equation,
which may suffice to predict the outcome.

The total momentum of a system can be related to its total mass and the velocity of its center of mass by
the equation

p
total

 = m
total

v
cm

   .
The center of mass, introduced on an intuitive basis in book 1 as the “balance point” of an object, can be
generalized to any system containing any number of objects, and is defined mathematically as the weighted
average of the positions of all the parts of all the objects,

  x cm =
m1x 1 + m2x 2 + ...

m1 + m2 + ...

with similar equations for the y and z coordinates.

The frame of reference moving with the center of mass of a closed system is always a valid inertial frame,
and many problems can be greatly simplified by working them in the inertial frame. For example, any collision
between two objects appears in the c.m. frame as a head-on one-dimensional collision.

When a system is not closed, the rate at which momentum is transferred in or out is simply the total force
being exerted externally on the system. If the force is constant,

F
total

 = ∆p
total

/∆t   .
When the force is not constant, the force equals the slope of the tangent line on a graph of p versus t, and the
change in momentum equals the area under the F-t graph.
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S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

Homework Problems
1. Derive a formula expressing the kinetic energy of an object in terms of
its momentum and mass.

2. Two people in a rowboat wish to move around without causing the boat
to move. What should be true about their total momentum? Explain.

3✓. A learjet traveling due east at 300 mi/hr collides with a jumbo jet
which was heading southwest at 150 mi/hr. The jumbo jet's mass is five
times greater than that of the learjet. When they collide, the learjet sticks
into the fuselage of the jumbo jet, and they fall to earth together. Their
engines stop functioning immediately after the collision. On a map, what
will be the direction from the location of the collision to the place where
the wreckage hits the ground? (Give an angle.)

4. A bullet leaves the barrel of a gun with a kinetic energy of 90 J. The gun
barrel is 50 cm long. The gun has a mass of 4 kg, the bullet 10 g.
(a✓) Find the bullet's final velocity.
(b✓) Find the bullet's final momentum.
(c) Find the momentum of the recoiling gun.
(d✓) Find the kinetic energy of the recoiling gun, and explain why the
recoiling gun does not kill the shooter.

5✓. The graph below shows the force, in meganewtons, exerted by a
rocket engine on the rocket as a function of time. If the rocket's mass if
4000 kg, at what speed is the rocket moving when the engine stops firing?
Assume it goes straight up, and neglect the force of gravity, which is much
less than a meganewton.

0

1

2

3

4

5

0 5 10 15
t (s)

F (MN)

6. Cosmic rays are particles from outer space, mostly protons and atomic
nuclei, that are continually bombarding the earth. Most of them, although
they are moving extremely fast, have no discernible effect even if they hit
your body, because their masses are so small. Their energies vary, however,
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and a very small minority of them have extremely large energies. In some
cases the energy is as much as several Joules, which is comparable to the
KE of a well thrown rock! If you are in a plane at a high altitude and are so
incredibly unlucky as to be hit by one of these rare ultra-high-energy
cosmic rays, what would you notice, the momentum imparted to your
body, the energy dissipated in your body as heat, or both? Base your
conclusions on numerical estimates, not just random speculation. (At
these high speeds, one should really take into account the deviations from
Newtonian physics described by Einstein's special theory of relativity.
Don't worry about that, though.)

7. Show that for a body made up of many equal masses, the equation for
the center of mass becomes a simple average of all the positions of the
masses.

8 S. The figure shows a view from above of a collision about to happen
between two air hockey pucks sliding without friction.  They have the
same speed, v

i
, before the collision, but the big puck is 2.3 times more

massive than the small one.  Their sides have sticky stuff on them, so when
they collide, they will stick together.  At what angle will they emerge from
the collision?  In addition to giving a numerical answer, please indicate by
drawing on the figure how your angle is defined.

9 ∫. A flexible rope of mass m and length L slides without friction over the
edge of a table. Let x be the length of the rope that is hanging over the
edge at a given moment in time.

(a) Show that x satisfies the equation of motion 
  d2x

dt 2
=

g
L

x . [Hint: Use

F=dp/dt, which allows you to ignore internal forces in the rope.]

(b) Give a physical explanation for the fact that a larger value of x on the
right-hand side of the equation leads to a greater value of the acceleration
on the left side.

(c) When we take the second derivative of the function x(t) we are sup-
posed to get essentially the same function back again, except for a constant
out in front. The function ex has the property that it is unchanged by
differentiation, so it is reasonable to look for solutions to this problem that
are of the form x=bect, where b and c are constants. Show that this does
indeed provide a solution for two specific values of c (and for any value of
b).

(d) Show that the sum of any two solutions to the equation of motion is
also a solution.

(e) Find the solution for the case where the rope starts at rest at t=0 with
some nonzero value of x.

10. A very massive object with velocity v collides head-on with an object
at rest whose mass is very small. No kinetic energy is converted into other
forms. Prove that the low-mass object recoils with velocity 2v.

vi

vi

Problem 8.
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11S. When the contents of a refrigerator cool down, the changed molecu-
lar speeds imply changes in both momentum and energy. Why, then, does
a fridge transfer power through its radiator coils, but not force?

12. A 10-kg bowling ball moving at 2.0 m/s hits a 1.0-kg bowling pin,
which is initially at rest. The other pins are all gone already, and the
collision is head-on, so that the motion is one-dimensional. Assume that
negligible amounts of heat and sound are produced. Find the velocity of
the pin immediately after the collision.

13 ∫«. A rocket ejects exhaust with an exhaust velocity u. The rate at
which the exhaust mass is used (mass per unit time) is b. We assume that
the rocket accelerates in a straight line starting from rest, and that no
external forces act on it. Let the rocket’s initial mass (fuel plus the body
and payload) be m

i
, and m

f
 be its final mass, after all the fuel is used up.

(a) Find the rocket’s final velocity, v, in terms of u, m
i
, and m

f
. (b) A typical

exhaust velocity for chemical rocket engines is 4000 m/s. Estimate the
initial mass of a rocket that could accelerate a one-ton payload to 10% of
the speed of light, and show that this design won’t work. (For the sake of
the estimate, ignore the mass of the fuel tanks.)

14 S. A firework shoots up into the air, and just before it explodes it has a
certain momentum and kinetic energy. What can you say about the
momenta and kinetic energies of the pieces immediately after the explo-
sion? [Based on a problem from PSSC Physics.]

15 «S. Suppose a system consisting of pointlike particles has a total
kinetic energy K

cm
 measured in the center-of-mass frame of reference.

Since they are pointlike, they cannot have any energy due to internal
motion. (a) Prove that in a different frame of reference, moving with
velocity u relative to the center-of-mass frame, the total kinetic energy
equals K

cm
+M|u|2/2, where M is the total mass. [Hint: You can save

yourself a lot of writing if you express the total kinetic energy using the
dot product.] (b) Use this to prove that if energy is conserved in one frame
of reference, then it is conserved in every frame of reference. The total
energy equals the total kinetic energy plus the sum of the potential
energies due to the particles’ interactions with each other, which we
assume depends only on the distance between particles. [For a simpler
numerical example, see problem 13 in ch. 1.]

Homework Problems
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5 Conservation of Angular
Momentum

“Sure, and maybe the sun won’t come up tomorrow.” Of course, the sun
only appears to go up and down because the earth spins, so the cliche
should really refer to the unlikelihood of the earth’s stopping its rotation
abruptly during the night. Why can’t it stop? It wouldn’t violate conserva-
tion of momentum, because the earth’s rotation doesn’t add anything to its
momentum. While California spins in one direction, some equally massive
part of India goes the opposite way, canceling its momentum. A halt to
Earth’s rotation would entail a drop in kinetic energy, but that energy could
simply by converted into some other form, such as heat.

Other examples along these lines are not hard to find. A hydrogen atom
spins at the same rate for billions of years. A high-diver who is rotating
when he comes off the board does not need to make any physical effort to
continue rotating, and indeed would be unable to stop rotating before he
hit the water.

A tornado touches down in Spring Hill, Kansas, May 20, 1957.
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These observations have the hallmarks of a conservation law:

A closed system is involved. Nothing is making an effort to twist the
earth, the hydrogen atom, or the high-diver. They are isolated from
rotation-changing influences, i.e. they are closed systems.

Something remains unchanged. There appears to be a numerical
quantity for measuring rotational motion such that the total amount
of that quantity remains constant in a closed system.

Something can be transferred back and forth without changing the
total amount: In the photo of the old-fashioned high jump above, the
jumper wants to get his feet out in front of him so he can keep from
doing a “face plant” when he lands. Bringing his feet forward would
involve a certain quantity of counterclockwise rotation, but he didn’t
start out with any rotation when he left the ground. Suppose we
consider counterclockwise as positive and clockwise as negative. The
only way his legs can acquire some positive rotation is if some other
part of his body picks up an equal amount of negative rotation. This
is why he swings his arms up behind him, clockwise.

What numerical measure of rotational motion is conserved? Car engines
and old-fashioned LP records have speeds of rotation measured in rotations
per minute (r.p.m.), but the number of rotations per minute (or per second)
is not a conserved quantity. A twirling figure skater, for instance, can pull
her arms in to increase her r.p.m.’s. The first section of this chapter deals
with the numerical definition of the quantity of rotation that results in a
valid conservation law.

5.1 Conservation of Angular Momentum
When most people think of rotation, they think of a solid object like a

wheel rotating in a circle around a fixed point. Examples of this type of
rotation, called rigid rotation or rigid-body rotation, include a spinning top,
a seated child’s swinging leg, and a helicopter’s spinning propeller. Rotation,
however, is a much more general phenomenon, and includes noncircular
examples such as a comet in an elliptical orbit around the sun, or a cyclone,
in which the core completes a circle more quickly than the outer parts.

If there is a numerical measure of rotational motion that is a conserved
quantity, then it must include nonrigid cases like these, since nonrigid
rotation can be traded back and forth with rigid rotation. For instance,

Chapter 5 Conservation of Angular Momentum
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there is a trick for finding out if an egg is raw or hardboiled. If you spin a
hardboiled egg and then stop it briefly with your finger, it stops dead. But if
you do the same with a raw egg, it springs back into rotation because the
soft interior was still swirling around within the momentarily motionless
shell. The pattern of flow of the liquid part is presumably very complex and
nonuniform due to the asymmetric shape of the egg and the different
consistencies of the yolk and the white, but there is apparently some way to
describe the liquid’s total amount of rotation with a single number, of
which some percentage is given back to the shell when you release it.

The best strategy is to devise a way of defining the amount of rotation
of a single small part of a system. The amount of rotation of a system such
as a cyclone will then be defined as the total of all the contributions from its
many small parts.

The quest for a conserved quantity of rotation even requires us to
broaden the rotation concept to include cases where the motion doesn’t
repeat or even curve around. If you throw a piece of putty at a door, the
door will recoil and start rotating. The putty was traveling straight, not in a
circle, but if there is to be a general conservation law that can cover this
situation, it appears that we must describe the putty as having had some
“rotation,” which it then gave up to the door. The best way of thinking
about it is to attribute rotation to any moving object or part of an object
that changes its angle in relation to the axis of rotation. In the putty-and-
door example, the hinge of the door is the natural point to think of as an
axis, and the putty changes its angle as seen by someone standing at the
hinge. For this reason, the conserved quantity we are investigating is called
angular momentum. The symbol for angular momentum can’t be “a” or “m,”
since those are used for acceleration and mass, so the symbol L is arbitrarily
chosen instead.

Imagine a 1-kg blob of putty, thrown at the door at a speed of 1 m/s,
which hits the door at a distance of 1 m from the hinge. We define this blob
to have 1 unit of angular momentum. When it hits the door, it will give up
most of its own angular momentum to the door, which will recoil and start
rotating.

Experiments show, not surprisingly, that a 2-kg blob thrown in the
same way makes the door rotate twice as fast, so the angular momentum of
the putty blob must be proportional to mass,

L ∝ m   .

Similarly, experiments show that doubling the velocity of the blob will
have a doubling effect on the result, so its angular momentum must be
proportional to its velocity as well,

L ∝ mv   .

You have undoubtedly had the experience of approaching a closed door
with one of those bar-shaped handles on it and pushing on the wrong side,
the side close to the hinges. You feel like an idiot, because you have so little
leverage that you can hardly budge the door. The same would be true with
the putty blob. Experiments would show that the amount of rotation the

An overhead view of a piece of putty
being thrown at a door. Even though
the putty is neither spinning nor trav-
eling along a curve, we must define it
has having some kind of “rotation”
because it is able to make the door
rotate.

As seen by someone standing at the
axis, the putty changes its angular
position. We therefore define it as hav-
ing angular momentum.

Section 5.1 Conservation of Angular Momentum
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blob can give to the door is proportional to the distance, r, from the axis of
rotation, so angular momentum must be proportional to r as well,

L ∝ mvr   .

We are almost done, but there is one missing ingredient. We know on
grounds of symmetry that a putty ball thrown directly inward toward the
hinge will have no angular momentum to give to the door. After all, there
would not even be any way to decide whether the ball’s rotation was
clockwise or counterclockwise in this situation. It is therefore only the
component of the blob’s velocity vector perpendicular to the door that
should be counted in its angular momentum,

L = m v⊥ r   .

More generally, v⊥ should be thought of as the component of the object’s
velocity vector that is perpendicular to the line joining the object to the axis
of rotation.

We find that this equation agrees with the definition of the original
putty blob as having one unit of angular momentum, and we can now see
that the units of angular momentum are (kg.m/s) . m, i.e. kg.m2/s. This gives
us a way of calculating the angular momentum of any material object or
any system consisting of material objects:

angular momentum of a material object
  The angular momentum of a moving particle is

L = m v⊥ r   ,
where m is its mass, v⊥ is the component of its velocity
perpendicular to the line joining it to the axis of rotation, and r
is its distance from the axis of rotation. Positive and negative signs
of angular momentum are used to describe opposite directions of
rotation.
  The angular momentum of a finite-sized object or a system of
many objects is found by dividing it up into many small parts,
applying the equation to each part, and adding to find the total
amount of angular momentum.

Note that r is not necessarily the radius of a circle. (As implied by the
qualifiers, matter isn’t the only thing that can have angular momentum.
Light can also have angular momentum, and the above equation would not
apply to light.)

Conservation of angular momentum has been verified over and over
again by experiment, and is now believed to be one of the three most
fundamental principles of physics, along with conservation of energy and
momentum.

A putty blob thrown directly at the axis
has no angular motion, and therefore
no angular momentum. It will not
cause the door to rotate.

v

v⊥

Only the component of the velocity
vector perpendicular to the line con-
necting the object to the axis should
be counted into the definition of angu-
lar momentum.
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Example: a figure skater pulls her arms in
When a figure skater is twirling, there is very little friction be-
tween her and the ice, so she is essentially a closed system, and
her angular momentum is conserved. If she pulls her arms in,
she is decreasing r for all the atoms in her arms. It would violate
conservation of angular momentum if she then continued rotating
at the same speed, i.e. taking the same amount of time for each
revolution, her arms’ contributions to her angular momentum
would have decreased, and no other part of her would have
increased its angular momentum. This is impossible because it
would violate conservation of angular momentum. If her total
angular momentum is to remain constant, the decrease in r for
her arms must be compensated for by an overall increase in her
rate of rotation. That is, by pulling her arms in, she substantially
reduces the time for each rotation.

Example: Earth’s slowing rotation and the receding moon
As noted in chapter 1, the earth’s rotation is actually slowing
down very gradually, with the kinetic energy being dissipated as
heat by friction between the land and the tidal bulges raised in
the seas by the earth’s gravity. Does this mean that angular
momentum is not really perfectly conserved? No, it just means
that the earth is not quite a closed system by itself. If we consider
the earth and moon as a system, then the angular momentum
lost by the earth must be gained by the moon somehow. In fact
very precise measurements of the distance between the earth
and the moon have been carried out by bouncing laser beams off
of a mirror left there by astronauts, and these measurements
show that the moon is receding from the earth at a rate of 2
millimeters per year! The moon’s greater value of r means that it
has a greater angular momentum, and the increase turns out to
be exactly the amount lost by the earth. In the days of the
dinosaurs, the days were significantly shorter, and the moon was
closer and appeared bigger in the sky.
But what force is causing the moon to speed up, drawing it out
into a larger orbit? It is the gravitational forces of the earth’s tidal
bulges. The effect is described qualitatively in the caption of the
figure. The result would obviously be extremely difficult to
calculate directly, and this is one of those situations where a
conservation law allows us to make precise quantitative state-
ments about the outcome of a process when the calculation of
the process itself would be prohibitively complex.

Restriction to rotation in a plane
Is angular momentum a vector or a scalar? It does have a direction in

space, but it’s a direction of rotation, not a straight-line direction like the
directions of vectors such as velocity or force. It turns out that there is a way
of defining angular momentum as a vector, but in this book the examples
will be confined to a single plane of rotation, i.e. effectively two-dimen-
sional situations. In this special case, we can choose to visualize the plane of
rotation from one side or the other, and to define clockwise and counter-
clockwise rotation as having opposite signs of angular momentum.

A figure skater pulls in her arms so that
she can execute a spin more rapidly.

A view of the earth-moon system from
above the north pole. All distances
have been highly distorted for legibil-
ity. The earth’s rotation is counterclock-
wise from this point of view (arrow).
The moon’s gravity creates a bulge on
the side near it, because its gravita-
tional pull is stronger there, and an
“anti-bulge” on the far side, since its
gravity there is weaker. For simplicity,
let’s focus on the tidal bulge closer to
the moon. Its frictional force is trying
to slow down the earth’s rotation, so
its force on the earth’s solid crust is
toward the bottom of the figure. By
Newton’s third law, the crust must thus
make a force on the bulge which is
toward the top of the figure. This
causes the bulge to be pulled forward
at a slight angle, and the bulge’s grav-
ity therefore pulls the moon forward,
accelerating its orbital motion about
the earth and flinging it outward.

Section 5.1 Conservation of Angular Momentum
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Discussion Question
Conservation of plain old momentum, p, can be thought of as the greatly
expanded and modified descendant of Galileo’s original principle of inertia, that
no force is required to keep an object in motion. The principle of inertia is
counterintuitive, and there are many situations in which it appears superficially
that a force is needed to maintain motion, as maintained by Aristotle. Think of a
situation in which conservation of angular momentum, L, also seems to be
violated, making it seem incorrectly that something external must act on a
closed system to keep its angular momentum from “running down.”

5.2 Angular Momentum in Planetary Motion
We now discuss the application of conservation of angular momentum

to planetary motion, both because of its intrinsic importance and because it
is a good way to develop a visual intuition for angular momentum.

Kepler’s law of equal areas states that the area swept out by a planet in a
certain length of time is always the same. Angular momentum had not been
invented in Kepler’s time, and he did not even know the most basic physical
facts about the forces at work. He thought of this law as an entirely empiri-
cal and unexpectedly simple way of summarizing his data, a rule that
succeeded in describing and predicting how the planets sped up and slowed
down in their elliptical paths. It is now fairly simple, however, to show that
the equal area law amounts to a statement that the planet’s angular momen-
tum stays constant.

There is no simple geometrical rule for the area of a pie wedge cut out
of an ellipse, but if we consider a very short time interval, as shown in the
figure, the shaded shape swept out by the planet is very nearly a triangle. We
do know how to compute the area of a triangle. It is one half the product of
the base and the height:

area = 1
2

bh   .

We wish to relate this to angular momentum, which contains the variables r
and v⊥ . If we consider the sun to be the axis of rotation, then the variable r
is identical to the base of the triangle, r=b. Referring to the magnified
portion of the figure, v⊥ can be related to h, because the two right triangles
are similar:

    h
distance traveled

=
v ⊥
v

The area can thus be rewritten as

area =
    

1
2

r
v ⊥ distance traveled

v
   .

The distance traveled equals |v|∆t, so this simplifies to

area =    1
2

r v ⊥ ∆t    .

We have found the following relationship between angular momentum and
the rate at which area is swept out:

sun

b

h

v
v⊥
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L =    2m area
∆t

   .

The factor of 2 in front is simply a matter of convention, since any con-
served quantity would be an equally valid conserved quantity if you multi-
plied it by a constant. The factor of m was not relevant to Kepler, who did
not know the planets’ masses, and who was only describing the motion of
one planet at a time.

We thus find that Kepler’s equal-area law is equivalent to a statement
that the planet’s angular momentum remains constant. But wait, why
should it remain constant? — the planet is not a closed system, since it is
being acted on by the sun’s gravitational force. There are two valid answers.
The first is that it is actually the total angular momentum of the sun plus
the planet that is conserved. The sun, however, is millions of times more
massive than the typical planet, so it accelerates very little in response to the
planet’s gravitational force. It is thus a good approximation to say that the
sun doesn’t move at all, so that no angular momentum is transferred
between it and the planet.

The second answer is that to change the planet’s angular momentum
requires not just a force but a force applied in a certain way. In section 5.4
we discuss the transfer of angular momentum by a force, but the basic idea
here is that a force directly in toward the axis does not change the angular
momentum.

Discussion Questions
A. Suppose an object is simply traveling in a straight line at constant speed. If
we pick some point not on the line and call it the axis of rotation, is area swept
out by the object at a constant rate? Would it matter if we chose a different
axis?
B. The figure below is a strobe photo of a pendulum bob, taken from under-
neath the pendulum looking straight up. The black string can’t be seen in the
photograph. The bob was given a slight sideways push when it was released,
so it did not swing in a plane. The bright spot marks the center, i.e. the position
the bob would have if it hung straight down at us. Does the bob’s angular
momentum appear to remain constant if we consider the center to be the axis
of rotation? What if we choose a different axis?

Discussion question B.

Discussion question A.

Section 5.2 Angular Momentum in Planetary Motion
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5.3 Two Theorems About Angular Momentum
With plain old momentum, p, we had the freedom to work in any

inertial frame of reference we liked. The same object could have different
values of momentum in two different frames, if the frames were not at rest
with respect to each other. Conservation of momentum, however, would be
true in either frame. As long as we employed a single frame consistently
throughout a calculation, everything would work.

The same is true for angular momentum, and in addition there is an
ambiguity that arises from the definition of an axis of rotation. For a wheel,
the natural choice of an axis of rotation is obviously the axle, but what
about an egg rotating on its side? The egg has an asymmetric shape, and
thus no clearly defined geometric center. A similar issue arises for a cyclone,
which does not even have a sharply defined shape, or for a complicated
machine with many gears. The following theorem, the first of two presented
in this section without proof, explains how to deal with this issue. Although
I have put descriptive titles above both theorems, they have no generally
accepted names.

choice of axis theorem
It is entirely arbitrary what point one defines as the axis for
purposes of calculating angular momentum. If a closed system's
angular momentum is conserved when calculated with one
choice of axis, then it will also be conserved for any other
choice of axis. Likewise, any inertial frame of reference may be
used.

Example: colliding asteroids described with different axes
Observers on planets A and B both see the two asteroids collid-
ing. The asteroids are of equal mass and their impact speeds are
the same. Astronomers on each planet decide to define their own
planet as the axis of rotation. Planet A is twice as far from the
collision as planet B. The asteroids collide and stick. For simplic-
ity, assume planets A and B are both at rest.
With planet A as the axis, the two asteroids have the same
amount of angular momentum, but one has positive angular
momentum and the other has negative. Before the collision, the
total angular momentum is therefore zero. After the collision, the
two asteroids will have stopped moving, and again the total
angular momentum is zero. The total angular momentum both
before and after the collision is zero, so angular momentum is
conserved if you choose planet A as the axis.
The only difference with planet B  as axis is that r is smaller by a
factor of two, so all the angular momenta are halved. Even
though the angular momenta are different than the ones calcu-
lated by planet A, angular momentum is still conserved.

A B

Chapter 5 Conservation of Angular Momentum



97

The earth spins on its own axis once a day, but simultaneously travels in
its circular one-year orbit around the sun, so any given part of it traces out a
complicated loopy path. It would seem difficult to calculate the earth’s
angular momentum, but it turns out that there is an intuitively appealing
shortcut: we can simply add up the angular momentum due to its spin plus
that arising from its center of mass’s circular motion around the sun. This is
a special case of the following general theorem:

spin theorem
An object's angular momentem with respect to some outside
axis A can be found by adding up two parts:
(1) The first part is the object's angular momentum found by
using its own center of mass as the axis, i.e. the angular
momentum the object has because it is spinning.
(2) The other part equals the angular momentum that the
object would have with respect to the axis A if it had all its
mass concentrated at and moving with its center of mass.

Example: a system with its center of mass at rest
In the special case of an object whose center of mass is at rest,
the spin theorem implies that the object’s angular momentum is
the same regardless of what axis we choose. (This is an even
stronger statement than the choice of axis theorem, which only
guarantees that angular momentum is conserved for any given
choice of axis, without specifying that it is the same for all such
choices.)

Example: angular momentum of a rigid object
Question : A motorcycle wheel has almost all its mass concen-
trated at the outside. If the wheel has mass m and radius r, and
the time required for one revolution is T, what is the spin part of
its angular momentum?
Solution : This is an example of the commonly encountered
special case of rigid motion, as opposed to the rotation of a
system like a hurricane in which the different parts take different
amounts of time to go around. We don’t really have to go through
a laborious process of adding up contributions from all the many
parts of a wheel, because they are all at about the same distance
from the axis, and are all moving around the axis at about the
same speed. The velocity is all perpendicular to the spokes,

v⊥ = v
= (circumference)/T
= 2πr/T

and the angular momentum of the wheel about its center is
L = mv⊥r

= m(2πr/T)r
= 2πmr2/T   .

Note that although the factors of 2π in this expression is peculiar to a
wheel with its mass concentrated on the rim, the proportionality to m/T
would have been the same for any other rigidly rotating object. Although an
object with a noncircular shape does not have a radius, it is also true in
general that angular momentum is proportional to the square of the object’s
size for fixed values of m and T. For instance doubling an object’s size

This rigid object has angular momen-
tum both because it is spinning about
its center of mass and because it is
moving through space.

Everyone has a strong tendency to
think of the diver as rotating about his
own center of mass. However, he is
flying in an arc, and he also has angu-
lar momentum because of this motion.

Section 5.3 Two Theorems About Angular Momentum
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doubles both the v⊥ and r factors in the contribution of each of its parts to
the total angular momentum, resulting in an overall factor of four increase.

 The figure shows some examples of angular momenta of various shapes
rotating about their centers of mass. The equations for their angular
momenta were derived using calculus, using methods discussed in supple-
ment 2-7. Do not memorize these equations!

power = rate of
transferring energy

force = rate of
transferring momentum

momentum

energy

system

torque = rate of trans-
ferring angular momentum

angular
momentum

wheel or hoop of radius R, with
its mass concentrated on the rim

thin rod of length b
rotating end over end

cube with sides of length b

sphere of radius R with
uniform density throughout

cylinder of radius R
rotating about its axis

cylinder of radius R and
length b rotating end over end

L=2πmR2/T L=π/6mb2/T

L=π/3mb2/T

L=4π/5mR2/T
L=πmR2/T

L=π/2mR2/T
   +π/6mb2/T

Discussion Question
In the example of the colliding asteroids, suppose planet A was moving toward
the top of the page, at the same speed as the bottom asteroid. How would
planet A’s astronomers describe the angular momenta of the asteroids? Would
angular momentum still be conserved?

5.4 Torque: the Rate of Transfer of Angular Momentum
Force can be interpreted as the rate of transfer of momentum. The

equivalent in the case of angular momentum is called torque (rhymes with
“fork”). Where force tells us how hard we are pushing or pulling on some-
thing, torque indicates how hard we are twisting on it. Torque is represented
by the Greek letter tau, τ, and the rate of change of an object’s angular
momentum equals the total torque acting on it,

τ
total

 = ∆L/∆t   .

(If the angular momentum does not change at a constant rate, the total
torque equals the slope of the tangent line on a graph of L versus t.)

As with force and momentum, it often happens that angular momen-
tum recedes into the background and we focus our interest on the torques.
The torque-focused point of view is exemplified by the fact that many
scientifically untrained but mechanically apt people know all about torque,
but none of them have heard of angular momentum. Car enthusiasts

Chapter 5 Conservation of Angular Momentum
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eagerly compare engines’ torques, and there is a tool called a torque wrench
which allows one to apply a desired amount of torque to a screw and avoid
overtightening it.

Torque distinguished from force
Of course a force is necessary in order to create a torque — you can’t

twist a screw without pushing on the wrench — but force and torque are
two different things. One distinction between them is direction. We use
positive and negative signs to represent forces in the two possible directions
along a line. The direction of a torque, however, is clockwise or counter-
clockwise, not a linear direction.

The other difference between torque and force is a matter of leverage. A
given force applied at a door’s knob will change the door’s angular momen-
tum twice as rapidly as the same force applied halfway between the knob
and the hinge. The same amount of force produces different amounts of
torque in these two cases.

It is possible to have a zero total torque with a nonzero total force. An
airplane with four jet engines would be designed so that their forces are
balanced on the left and right. Their forces are all in the same direction, but
the clockwise torques of two of the engines are canceled by the counter-
clockwise torques of the other two, giving zero total torque.

Conversely we can have zero total force and nonzero total torque. A
merry-go-round’s engine needs to supply a nonzero torque on it to bring it
up to speed, but there is zero total force on it. If there was not zero total
force on it, its center of mass would accelerate!

Relationship between force and torque
How do we calculate the amount of torque produced by a given force?

Since it depends on leverage, we should expect it to depend on the distance
between the axis and the point of application of the force. We’ll derive an
equation relating torque to force for a particular very simple situation, and
state without proof that the equation actually applies to all situations.

Consider a pointlike object which is initially at rest at a distance r from
the axis we have chosen for defining angular momentum. We first observe
that a force directly inward or outward, along the line connecting the axis to
the object, does not impart any angular momentum to the object.

A force perpendicular to the line connecting the axis and the object
does, however, make the object pick up angular momentum. Newton’s
second law gives

a = F/m  ,

and assuming for simplicity that the force is constant, the constant accelera-
tion equation a=∆v/∆t allows us to find the velocity the object acquires after
a time ∆t,

∆v = F∆t/m   .

We are trying to relate force to a change in angular momentum, so we
multiply both sides of the equation by mr to give

m∆vr = F∆tr

∆L = F∆tr   .

axis F

F
The simple physical situation we use
to derive an equation for torque. A
force that points directly in at or out
away from the axis produces neither
clockwise nor counterclockwise angu-
lar momentum. A force in the perpen-
dicular direction does transfer angu-
lar momentum.

The plane’s four engines produce zero
total torque but not zero total force.
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Dividing by ∆t gives the torque:

∆L/∆t = Fr

τ = Fr   .

If a force acts at an angle other than 0 or 90° with respect to the line joining
the object and the axis, it would be only the component of the force
perpendicular to the line that would produce a torque,

τ = F⊥r   .

Although this result was proved under a simplified set of circumstances, it is
more generally valid.

relationship between force and torque
The rate at which a force transfers angular momentum to an
object, i.e. the torque produced by the force, is given by

|τ| = r |F⊥ |   ,
where r is the distance from the axis to the point of application
of the force, and F⊥  is the component of the force that is
perpendicular to the line joining the axis to the point of
application.

The equation is stated with absolute value signs because the positive
and negative signs of force and torque indicate different things, so there is
no useful relationship between them. The sign of the torque must be found
by physical inspection of the case at hand.

From the equation, we see that the units of torque can be written as
newtons multiplied by meters. Metric torque wrenches are calibrated in
N.m, but American ones use foot-pounds, which is also a unit of distance
multiplied by a unit of force. We know from our study of mechanical work
that newtons multiplied by meters equal joules, but torque is a completely
different quantity from work, and nobody writes torques with units of
joules, even though it would be technically correct.

Self-Check
Compare the magnitudes and signs of the four torques shown in the figure.
[Answer on next page.]

The geometric relationships refered to
in the relationship between force and
torque.

F

F⊥

r

(1) (2) (3)

(4)
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Example: how torque depends on the direction of the force
Question : How can the torque applied to the wrench in the figure
be expressed in terms of r, |F|, and the angle θ?
Solution : The force vector and its F⊥ component form the
hypotenuse and one leg of a right triangle,

F

F⊥
θ

θ

and the interior angle opposite to F⊥  equals θ. The absolute
value of F⊥  can thus be expressed as

F⊥ = |F| sin θ   ,
leading to

|τ| = r |F| sin  θ   .

Sometimes torque can be more neatly visualized in terms of the quan-
tity r⊥ shown in the figure on the left, which gives us a third way of express-
ing the relationship between torque and force:

|τ| = r⊥ |F|   .

Of course you would not want to go and memorize all three equations
for torque. Starting from any one of them you could easily derive the other
two using trigonometry. Familiarizing yourself with them can however clue
you in to easier avenues of attack on certain problems.

The torque due to gravity
Up until now we’ve been thinking in terms of a force that acts at a

single point on an object, such as the force of your hand on the wrench.
This is of course an approximation, and for an extremely realistic calcula-
tion of your hand’s torque on the wrench you might need to add up the
torques exerted by each square millimeter where your skin touches the
wrench. This is seldom necessary. But in the case of a gravitational force,
there is never any single point at which the force is applied. Our planet is
exerting a separate tug on every brick in the Leaning Tower of Pisa, and the
total gravitational torque on the tower is the sum of the torques contributed
by all the little forces. Luckily there is a trick that allows us to avoid such a
massive calculation. It turns out that for purposes of computing the total
gravitational torque on an object, you can get the right answer by just
pretending that the whole gravitational force acts at the object’s center of
mass.

F

F⊥

r

θ

F

r⊥

r

[Answer to self-check on previous page.] 1, 2, and 4 all have the same sign, because they are trying to twist the
wrench clockwise. The sign of 3 is opposite to the signs of 1, 2, and 4. The magnitude of 3 is the greatest, since it
has a large r and the force is nearly all perpendicular to the wrench. Torques 1 and 2 are the same because they

have the same values of r and   F⊥ . Torque 4 is the smallest, due to its small r.
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Example: gravitational torque on an outstretched arm
Question :  Your arm has a mass of 3.0 kg, and its center of
mass is 30 cm from your shoulder. What is the gravitational
torque on your arm when it is stretched out horizontally to one
side, taking the shoulder to be the axis?
Solution : The total gravitational force acting on your arm is

|F| = (3.0 kg)(9.8 m/s2) = 29 N   .
For the purpose of calculating the gravitational torque, we can
treat the force as if it acted at the arm’s center of mass. The force
is straight down, which is perpendicular to the line connecting the
shoulder to the center of mass, so

F⊥ = |F| = 29 N   .
Continuing to pretend that the force acts at the center of the arm,
r equals 30 cm = 0.30 m, so the torque is

τ = r F⊥ = 9 N.m   .
Discussion Questions

A. This series of discussion questions deals with past students' incorrect
reasoning about the following problem.

Suppose a comet is at the point in its orbit shown in the figure.  The only
force on the comet is the sun's gravitational force.

sun

comet

Throughout the question, define all torques and angular momenta using
the sun as the axis.
(1) Is the sun producing a nonzero torque on the comet? Explain.
(2) Is the comet's angular momentum increasing, decreasing, or staying
the same?  Explain.

Explain what is wrong with the following answers.  In some cases, the answer
is correct, but the reasoning leading up to it is wrong.
(a) Incorrect answer to part (1): "Yes, because the sun is exerting a force on
the comet, and the comet is a certain distance from the sun."
(b) Incorrect answer to part (1): "No, because the torques cancel out."
(c) Incorrect answer to part (2): "Increasing, because the comet is speeding
up."

B. Which claw hammer would make it easier to get the nail out of the wood if
the same force was applied in the same direction?
C. You whirl a rock over your head on the end of a string, and gradually pull in
the string, eventually cutting the radius in half. What happens to the rock’s
angular momentum? What changes occur in its speed, the time required for
one revolution, and its acceleration? Why might the string break?
D. A helicopter has, in addition to the huge fan blades on top, a smaller
propeller mounted on the tail that rotates in a vertical plane. Why?
E. The photo shows an amusement park ride whose two cars rotate in oppo-
site directions. Why is this a good design?

F F

Discussion question B.

Discussion question E.

r
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5.5 Statics
Equilibrium

There are many cases where a system is not closed but maintains
constant angular momentum. When a merry-go-round is running at
constant angular momentum, the engine’s torque is being canceled by the
torque due to friction.

When an object has constant momentum and constant angular mo-
mentum, we say that it is in equilibrium. This is a scientific redefinition of
the common English word, since in ordinary speech nobody would describe
a car spinning out on an icy road as being in equilibrium.

Very commonly, however, we are interested in cases where an object is
not only in equilibrium but also at rest, and this corresponds more closely
to the usual meaning of the word. Trees and bridges have been designed by
evolution and engineers to stay at rest, and to do so they must have not just
zero total force acting on them but zero total torque. It is not enough that
they don’t fall down, they also must not tip over. Statics is the branch of
physics concerned with problems such as these.

Solving statics problems is now simply a matter of applying and com-
bining some things you already know:

• You know the behaviors of the various types of forces, for example
that a frictional force is always parallel to the surface of contact.

• You know about vector addition of forces. It is the vector sum of the
forces that must equal zero to produce equilibrium.

• You know about torque. The total torque acting on an object must be
zero if it is to be in equilibrium.

• You know that the choice of axis is arbitrary, so you can make a
choice of axis that makes the problem easy to solve.

In general, this type of problem could involve four equations in four
unknowns: three equations that say the force components add up to zero,
and one equation that says the total torque is zero. Most cases you’ll en-
counter will not be this complicated. In the example below, only the
equation for zero total torque is required in order to get an answer.

The windmills are not closed sys-
tems, but angular momentum is be-
ing transferred out of them at the
same rate it is transferred in, result-
ing in constant angular momentum.
To get an idea of the huge scale of
the modern windmill farm, note the
sizes of the trucks and trailers.
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Example: a flagpole
Question : A 10-kg flagpole is being held up by a lightweight
horizontal cable, and is propped against the foot of a wall as
shown in the figure. If the cable is only capable of supporting a
tension of 70 N, how great can the angle α be without breaking
the cable?
Solution : All three objects in the figure are supposed to be in
equilibrium: the pole, the cable, and the wall. Whichever of the
three objects we pick to investigate, all the forces and torques on
it have to cancel out. It is not particularly helpful to analyze the
forces and torques on the wall, since it has forces on it from the
ground that are not given and that we don’t want to find. We
could study the forces and torques on the cable, but that doesn’t
let us use the given information about the pole. The object we
need to analyze is the pole.
The pole has three forces on it, each of which may also result in
a torque: (1) the gravitational force, (2) the cable’s force, and (3)
the wall’s force.
We are free to define an axis of rotation at any point we wish,
and it is helpful to define it to lie at the bottom end of the pole,
since by that definition the wall’s force on the pole is applied at
r=0 and thus makes no torque on the pole. This is good, because
we don’t know what the wall’s force on the pole is, and we are
not trying to find it.
With this choice of axis, there are two nonzero torques on the
pole, a counterclockwise torque from the cable and a clockwise
torque from gravity. Choosing to represent counterclockwise
torques as positive numbers, and using the equation
|τ| = r |F| sin  θ, we have

r
cable

 |F
cable

| sin  θ
cable

 − r 
grav

|F
grav

| sin  θ
grav

 = 0   .

A little geometry gives θcable=90°−α and θgrav=α, so

r
cable

 |F
cable

| sin  (90°−α) − r 
grav

|F
grav

| sin  α = 0   .

The gravitational force can be considered as acting at the pole’s
center of mass, i.e. at its geometrical center, so r

cable
 is twice r

grav
,

and we can simplify the equation to read

2 |F
cable

| sin  (90°−α) − |F
grav

| sin  α = 0   .

These are all quantities we were given, except for α, which is the
angle we want to find. To solve for α we need to use the trig
identity sin(90°−x) = cos x,

2 |F
cable

| cos α − |F
grav

| sin  α = 0   ,

which allows us to find

   tan α = 2
|Fcable|
|Fgrav|

   ,

   α = tan– 1 2
|Fcable|
|Fgrav|

  = tan– 1 2 ×70 N
98 N

= 55° .

�
�
�
�

�
�
�
�α
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Stable and unstable equilibria
A pencil balanced upright on its tip could theoretically be in equilib-

rium, but even if it was initially perfectly balanced, it would topple in
response to the first air current or vibration from a passing truck. The pencil
can be put in equilibrium, but not in stable equilibrium. The things around
us that we really do see staying still are all in stable equilibrium.

Why is one equilibrium stable and another unstable? Try pushing your
own nose to the left or the right. If you push it a millimeter to the left, it
responds with a gentle force to the right. If you push it a centimeter to the
left, its force on your finger becomes much stronger. The defining charac-
teristic of a stable equilibrium is that the farther the object is moved away
from equilibrium, the stronger the force is that tries to bring it back.

The opposite is true for an unstable equilibrium. In the top figure, the
ball resting on the round hill theoretically has zero total force on it when it
is exactly at the top. But in reality the total force will not be exactly zero,
and the ball will begin to move off to one side. Once it has moved, the net
force on the ball is greater than it was, and it accelerates more rapidly. In an
unstable equilibrium, the farther the object gets from equilibrium, the
stronger the force that pushes it farther from equilibrium.

Note that we are using the term “stable” in a weaker sense than in
ordinary speech. A domino standing upright is stable in the sense we are
using, since it will not spontaneously fall over in response to a sneeze from
across the room or the vibration from a passing truck. We would only call it
unstable in the technical sense if it could be toppled by any force, no matter
how small. In everyday usage, of course, it would be considered unstable,
since the force required to topple it is so small.

unstable

stable

Pooh’s equilibrium is unstable.
(c) 1926 E.H. Shepard
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5.6 Simple Machines: The Lever
Although we have discussed some simple machines such as the pulley,

without the concept of torque we were not yet ready to address the lever,
which is the machine nature used in designing living things, almost to the
exclusion of all others. (We can speculate what life on our planet might have
been like if living things had evolved wheels, gears, pulleys, and screws.)
The figures show two examples of levers within your arm. Different muscles
are used to flex and extend the arm, because muscles work only by contrac-
tion.

Analyzing example (a) physically, there are two forces that do work.
When we lift a load with our biceps muscle, the muscle does positive work,
because it brings the bone in the forearm in the direction it is moving. The
load’s force on the arm does negative work, because the arm moves in the
direction opposite to the load’s force. This makes sense, because we expect
our arm to do positive work on the load, so the load must do an equal
amount of negative work on the arm. (If the biceps was lowering a load, the
signs of the works would be reversed. Any muscle is capable of doing either
positive or negative work.)

There is also a third force on the forearm: the force of the upper arm’s
bone exerted on the forearm at the elbow joint (not shown with an arrow in
the figure). This force does no work, because the elbow joint is not moving.

Because the elbow joint is motionless, it is natural to define our torques
using the joint as the axis. The situation now becomes quite simple, because
the upper arm bone’s force exerted at the elbow neither does work nor
creates a torque. We can ignore it completely. In any lever there is such a
point, called the fulcrum.

If we restrict ourselves to the case in which the forearm rotates with
constant angular momentum, then we know that the total torque on the
forearm is zero,

τ
muscle

 + τ
load

 = 0   .

 If we choose to represent counterclockwise torques as positive, then the
muscle’s torque is positive, and the load’s is negative. In terms of their
absolute values,

|τ
muscle

| = |τ
load

|   .

Assuming for simplicity that both forces act at angles of 90° with respect to
the lines connecting the axis to the points at which they act, the absolute
values of the torques are

r
muscle

F
muscle

 = r
load

F
arm

   ,

where r
muscle

, the distance from the elbow joint to the biceps’ point of
insertion on the forearm, is only a few cm, while r

load
 might be 30 cm or so.

The force exerted by the muscle must therefore be about ten times the force
exerted by the load. We thus see that this lever is a force reducer. In general,
a lever may be used either to increase or to reduce a force.

Why did our arms evolve so as to reduce force? In general, your body is
built for compactness and maximum speed of motion rather than maxi-
mum force. This is the main anatomical difference between us and the

(b) The triceps muscle extends the
arm.

axis
(elbow
joint)

load's
force

muscle's
force

axis
(elbow
joint)

load's
force

muscle's
force

(a) The biceps muscle flexes the arm.
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Neanderthals (their  brains covered the same range of sizes as those of
modern humans), and it seems to have worked for us.

As with all machines, the lever is incapable of changing the amount of
mechanical work we can do. A lever that increases force will always reduce
motion, and vice versa, leaving the amount of work unchanged.

It is worth noting how simple and yet how powerful this analysis was. It
was simple because we were well prepared with the concepts of torque and
mechanical work. In anatomy textbooks, whose readers are assumed not to
know physics, there is usually a long and complicated discussion of the
different types of levers. For example, the biceps lever, (a), would be classi-
fied as a class III lever, since it has the fulcrum and load on the ends and the
muscle’s force acting in the middle. The triceps, (b), is called a class I lever,
because the load and muscle’s force are on the ends and the fulcrum is in
the middle. How tiresome! With a firm grasp of the concept of torque, we
realize that all such examples can be analyzed in much the same way.
Physics is at its best when it lets us understand many apparently compli-
cated phenomena in terms of a few simple yet powerful concepts.
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5.7* Proof of Kepler’s Elliptical Orbit Law
Kepler determined purely empirically that the planets’ orbits were

ellipses, without understanding the underlying reason in terms of physical
law. Newton’s proof of this fact based on his laws of motion and law of
gravity was considered his crowning achievement both by him and by his
contemporaries, because it showed that the same physical laws could be
used to analyze both the heavens and the earth. Newton’s proof was very
lengthy, but by applying the more recent concepts of conservation of energy
and angular momentum we can carry out the proof quite simply and
succinctly, and without calculus.

The basic idea of the proof is that we want to describe the shape of the
planet’s orbit with an equation, and then show that this equation is exactly
the one that represents an ellipse. Newton’s original proof had to be very
complicated because it was based directly on his laws of motion, which
include time as a variable. To make any statement about the shape of the
orbit, he had to eliminate time from his equations, leaving only space
variables. But conservation laws tell us that certain things don’t change over
time, so they have already had time eliminated from them.

There are many ways of representing a curve by an equation, of which
the most familiar is y=ax+b for a line in two dimensions. It would be
perfectly possible to describe a planet’s orbit using an x-y equation like this,
but remember that we are applying conservation of angular momentum,
and the space variables that occur in the equation for angular momentum
are the distance from the axis, r, and the angle between the velocity vector
and the r vector, which we will call ϕ. The planet will have ϕ=90° when it is
moving perpendicular to the r vector, i.e. at the moments when it is at its
smallest or greatest distances from the sun. When ϕ is less than 90° the
planet is approaching the sun, and when it is greater than 90° it is receding
from it. Describing a curve with an r-ϕ equation is like telling a driver in a
parking lot a certain rule for what direction to steer based on the distance
from a certain streetlight in the middle of the lot.

The proof is broken into the three parts for easier digestion. The first
part is a simple and intuitively reasonable geometrical fact about ellipses,
whose proof we relegate to the caption of a figure; you will not be missing
much if you merely absorb the result without reading the proof.

(1) If we use one of the two foci of an ellipse as an axis for defining the
variables r and ϕ, then the angle between the tangent line and the line
drawn to the other focus is the same as ϕ, i.e. the two angles labeled ϕ in
the figure are in fact equal.

r

ϕ

A

ϕ ϕ

r

Proof that the two angles labeled ϕ are in fact equal: The definition of an ellipse is that
the sum of the distances from the two foci stays constant. If we move a small distance

 along the ellipse, then one distance shrinks by an amount    cos ϕ1 , while the other

grows by    cos ϕ2 . These are equal, so ϕ1=ϕ2.
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ϕ ϕ

r

α

d

s

The other two parts form the meat of our proof. We state the results
first and then prove them.

(2) A planet, moving under the influence of the sun’s gravity with less
then the energy required to escape, obeys an equation of the form

   sin ϕ = 1
– pr 2 + qr

   ,

where p and q are constants that depend on the planet’s energy and angular
momentum and p is greater than zero.

(3) A curve is an ellipse if and only if its r-ϕ equation is of the form

   sin ϕ = 1
– pr 2 + qr

   ,

where p and q are constants that depend on the size and shape of the ellipse
and p is greater than zero.

Proof of part (2)
The component of the planet’s velocity vector that is perpendicular to

the r vector is   v ⊥ =v sin ϕ, so conservation of angular momentum tells us
that L = mrv sin ϕ is a constant. Since the planet’s mass is a constant, this is
the same as the condition

rv sin ϕ = constant   .

Conservation of energy gives

  1
2
mv 2 – GMm

r  = constant   .

We solve the first equation for v and plug into the second equation to
eliminate v. Straightforward algebra then leads to the equation claimed
above, with the constant p being positive because of our assumption that
the planet’s energy is insufficient to escape from the sun, i.e. its total energy
is negative.

Proof of part (3)
We define the quantities α, d, and s as shown in the figure. The law of

cosines gives

   d 2 = r 2 + s 2 – 2rs cos α    .

Using α=180°–2ϕ and the trigonometric identities cos (180°–x)=–cos x and
cos 2x = 1–2 sin2x, we can rewrite this as

   d 2 = r 2 + s 2 + 2rs 1 – sin2ϕ    .

Straightforward algebra transforms this into

   
sin ϕ =

d 2 + r+s 2

2rs
   .

Since r+s is constant, the top of the fraction is constant, and the denomina-
tor can be rewritten as 2rs=2r(constant-r), which is equivalent to the desired
form.
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Summary
Selected Vocabulary

angular momentum .......... a measure of rotational motion; a conserved quantity for a closed
system

axis .................................. An arbitrarily chosen point used in the definition of angular momentum.
Any object whose direction changes relative to the axis is considered to
have angular momentum. No matter what axis is chosen, the angular
momentum of a closed system is conserved.

torque............................... the rate of change of angular momentum; a numerical measure of a
force’s ability to twist on an object

equilibrium ....................... a state in which an object’s momentum and angular momentum are
constant

stable equilibrium ............. one in which a force always acts to bring the object back to a certain
point

unstable equilibrium ......... one in which any deviation of the object from its equilibrium position
results in a force pushing it even farther away

Notation
L....................................... angular momentum
τ ............................................ torque
T....................................... the time required for a rigidly rotating body to complete one rotation

Standard Terminology and Notation Not Used in This Book
period ............................... a name for the variable T defined above
moment of inertia, I .......... the proportionality constant in the equation L = 2πI / T

Summary
Angular momentum is a measure of rotational motion which is conserved for a closed system. This book

only discusses angular momentum for rotation of material objects in two dimensions. Not all rotation is rigid
like that of a wheel or a spinning top. An example of nonrigid rotation is a cyclone, in which the inner parts
take less time to complete a revolution than the outer parts. In order to define a measure of rotational motion
general enough to include nonrigid rotation, we define the angular momentum of a system by dividing it up
into small parts, and adding up all the angular momenta of the small parts, which we think of as tiny particles.
We arbitrarily choose some point in space, the axis, and we say that anything that changes its direction
relative to that point possesses angular momentum. The angular momentum of a single particle is

L = mv⊥r   ,

where v⊥ is the component of its velocity perpendicular to the line joining it to the axis, and r is its distance
from the axis. Positive and negative signs of angular momentum are used to indicate clockwise and counter-
clockwise rotation.

The choice of axis theorem states that any axis may be used for defining angular momentum. If a
system’s angular momentum is constant for one choice of axis, then it is also constant for any other choice of
axis.

The spin theorem states that an object's angular momentum with respect to some outside axis A can be
found by adding up two parts:

(1) The first part is the object's angular momentum found by using its own center of mass as the
axis, i.e. the angular momentum the object has because it is spinning.
(2) The other part equals the angular momentum that the object would have with respect to the axis
A if it had all its mass concentrated at and moving with its center of mass.

Torque is the rate of change of angular momentum. The torque a force can produce is a measure of its
ability to twist on an object. The relationship between force and torque is

|τ| = r |F⊥ |   ,

where r is the distance from the axis to the point where the force is applied, and F⊥ is the component of the
force perpendicular to the line connecting the axis to the point of application. Statics problems can be solved
by setting the total force and total torque on an object equal to zero and solving for the unknowns.
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ba

Problem 5.

S A  solution is given in the back of the book. « A difficult problem.
✓ A computerized answer check is available. ∫ A problem that requires calculus.

In about five billion years, our own sun
will become a white dwarf like the small
dot at the center of this cloud of cast-
off gas.

Homework Problems
1✓. You are trying to loosen a stuck bolt on your RV using a big wrench
that is 50 cm long. If you hang from the wrench, and your mass is 55 kg,
what is the maximum torque you can exert on the bolt?

2✓. A physical therapist wants her patient to rehabilitate his injured elbow
by laying his arm flat on a table, and then lifting a 2.1 kg mass by bending
his elbow. In this situation, the weight is 33 cm from his elbow. He calls
her back, complaining that it hurts him to grasp the weight. He asks if he
can strap a bigger weight onto his arm, only 17 cm from his elbow. How
much mass should she tell him to use so that he will be exerting the same
torque? (He is raising his forearm itself, as well as the weight.)

3. An object thrown straight up in the air is momentarily at rest when it
reaches the top of its motion. Does that mean that it is in equilibrium at
that point? Explain.

4. An object is observed to have constant angular momentum. Can you
conclude that no torques are acting on it? Explain.  [Based on a problem
by Serway and Faughn.]

5. A person of weight W stands on the ball of one foot. Find the tension in
the calf muscle and the force exerted by the shinbones on the bones of the
foot, in terms of W, a, and b. For simplicity, assume that all the forces are
at 90-degree angles to the foot, i.e. neglect the angle between the foot and
the floor.

6. Two objects have the same momentum vector. Can you conclude that
their angular momenta are the same? Explain.  [Based on a problem by
Serway and Faughn.]

7. The sun turns on its axis once every 26.0 days. Its mass is 2.0x1030 kg
and its radius is 7.0x108 m. Assume it is a rigid sphere of uniform density.

(a✓) What is the sun’s angular momentum?

In a few billion years, astrophysicists predict that the sun will use up all its
sources of nuclear energy, and will collapse into a ball of exotic, dense
matter known as a white dwarf. Assume that its radius becomes 5.8x106 m
(similar to the size of the Earth.) Assume it does not lose any mass be-
tween now and then. (Don’t be fooled by the photo, which makes it look
like nearly all of the star was thrown off by the explosion. The visually
prominent gas cloud is actually thinner than the best laboratory vacuum
every produced on earth. Certainly a little bit of mass is actually lost, but
it is not at all unreasonable to make an approximation of zero loss of mass
as we are doing.)

(b) What will its angular momentum be?
(c✓) How long will it take to turn once on its axis?

Homework Problems
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Problem 10.

8. A uniform ladder of mass m and length L leans against a smooth wall,
making an angle θ with respect to the ground. The dirt exerts a normal
force and a frictional force on the ladder, producing a force vector with
magnitude F

1
 at an angle φ with respect to the ground. Since the wall is

smooth, it exerts only a normal force on the ladder; let its magnitude be
F

2
.

(a) Explain why φ must be greater than θ. No math is needed.

(b) Choose any numerical values you like for m and L, and show that the
ladder can be in equilibrium (zero torque and zero total force vector) for
θ=45.00° and φ=63.43°.

9 «. Continuing the previous problem, find an equation for φ in terms of
θ, and show that m and L do not enter into the equation. Do not assume
any numerical values for any of the variables. You will need the trig
identity sin(a-b) = sin a cos b - sin b cos a. (As a numerical check on your
result, you may wish to check that the angles given in part b of the
previous problem satisfy your equation.)

10. (a) Find the minimum horizontal force which, applied at the axle, will
pull a wheel over a step. Invent algebra symbols for whatever quantities
you find to be relevant, and give your answer in symbolic form. [Hints:
There are three forces on the wheel at first, but only two when it lifts off.
Normal forces are always perpendicular to the surface of contact. Note
that the corner of the step cannot be perfectly sharp, so the surface of
contact for this force really coincides with the surface of the wheel.]

(b) Under what circumstances does your result become infinite? Give a
physical interpretation.

11 «. A yo-yo of total mass m consists of two solid cylinders of radius R,
connected by a small spindle of negligible mass and radius r. The top of
the string is held motionless while the string unrolls from the spindle.
Show that the acceleration of the yo-yo is g/(1+R2/2r2). [Hint: The accel-
eration and the tension in the string are unknown. Use τ=∆L/∆t and
F=ma to determine these two unknowns.]

12. A ball is connected by a string to a vertical post. The ball is set in
horizontal motion so that it starts winding the string around the post.
Assume that the motion is confined to a horizontal plane, i.e. ignore
gravity. Michelle and Astrid are trying to predict the final velocity of the
ball when it reaches the post. Michelle says that according to conservation
of angular momentum, the ball has to speed up as it approaches the post.
Astrid says that according to conservation of energy, the ball has to keep a
constant speed. Who is right? [Hint: How is this different from the case
where you whirl a rock in a circle on a string and gradually pull in the
string?]

F1

θ

φ

F2

Problems 8 and 9.

Chapter 5 Conservation of Angular Momentum
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13.  In the 1950’s, serious articles began appearing in magazines like Life
predicting that world domination would be achieved by the nation that
could put nuclear bombs in orbiting space stations, from which they could
be dropped at will. In fact it can be quite difficult to get an orbiting object
to come down. Let the object have energy E=KE+PE and angular momen-
tum L. Assume that the energy is negative, i.e. the object is moving at less
than escape velocity. Show that it can never reach a radius less than

r
min

=
  

GMm
2E

– 1 + 1 + 2EL 2

G 2M 2m 3
   .

[Note that both factors are negative, giving a positive result.]

14. The figure shows a bridge made out of four identical trusses, each of
weight W. How much force must be supplied by each pier to hold up the
bridge?

15«. Two bars slanted at 45 degrees are attached to each other and to a
wall as shown in the figure. Each bar has weight W. The goal is to show
that the middle joint must be able to handle a strain W/2, and the top and

bottom joints   5W / 4 . [The problem could be set up with three equa-
tions of equilibrium for the top bar and three for the bottom bar, giving a
total of six equations in six unknowns (two unknowns for the components
of each of the three forces). A less tedious approach is as follows. First
prove that the horizontal forces at all three joints have the same magni-
tude, X, and figure out which are to the right and which are to the left.
Next, choose the top joint as an axis, and use the fact that the total torque
equals zero to prove X=W/2. Finally, find the vertical forces.]

16«. Two bars of length L are connected with a hinge and placed on a
frictionless cylinder of radius r. (a) Show that the angle θ shown in the
figure is related to the unitless ratio r/L by the equation

   r
L

= cos2 θ
2 tan θ    .

(b) Discuss the physical behavior of this equation for very large and very
small values of r/L.

17. You wish to determine the mass of a ship in a bottle without taking it
out. Show that this can be done with the setup shown in the figure, with a
scale supporting the bottle at one end, provided that it is possible to take
readings with the ship slid to two different locations.

Problem 14.

�
�

�
�
�

Problem 15.

Problem 16.

θ

Problem 17.

Homework Problems
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18 ∫. Two atoms will interact via electrical forces between their protons
and electrons. One fairly good approximation to the potential energy is
the Lennard-Jones potential,

  
PE(r) = k a

r
12

– 2 a
r

6
   ,

where r is the center-to-center distance between the atoms.

Show that (a) there is an equilibrium point at r=a, (b) the equilibrium is
stable, and (c) the energy required to bring the atoms from their equilib-
rium separation to infinity is k. [Hints: The first two parts can be done
more easily by setting a=1, since the value of a only changes the distance
scale. One way to do part b is by graphing.]

19. Suppose that we lived in a universe in which Newton’s law of gravity
gave forces proportional to r –7 rather than r –2. Which, if any, of Kepler’s
laws would still be true? Which would be completely false? Which would
be different, but in a way that could be calculated with straightforward
algebra?

20 S. The figure shows scale drawing of a pair of pliers being used to crack
a nut, with an appropriately reduced centimeter grid. Warning: do not
attempt this at home; it is bad manners. If the force required to crack the
nut is 300 N, estimate the force required of the person’s hand.

21. Show that a sphere of radius R that is rolling without slipping has
angular momentum and momentum in the ratio L/p=(2/5)R.

22. Suppose a bowling ball is initially thrown so that it has no angular
momentum at all, i.e. it is initially just sliding down the lane. Eventually
kinetic friction will bring its angular velocity up to the point where it is
rolling without slipping. Show that the final velocity of the ball equals 5/7
of its initial velocity. [Hint: You’ll need the result of problem 21.]

Problem 20.

Chapter 5 Conservation of Angular Momentum
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Exercises
Exercise 5A: Torque

Equipment:
rulers with holes in them
spring scales (two per group)

While one person holds the pencil which forms an axle for the ruler, the other members of the group
pull on the scales and take readings. In each case, determine whether the total torque on the ruler
appears to equal zero to roughly within the aqccuracy of the measurement.
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Solutions to Selected
Problems

Chapter 1

7. A force is an interaction between two objects, so
while the bullet is in the air, there is no force. There
is only a force while the bullet is in contact with the
book. There is energy the whole time, and the total
amount doesn’t change. The bullet has some kinetic
energy, and transfers some of it to the book as heat,
sound, and the energy required to tear a hole
through the book.

8. (a) The energy stored in the gasoline is being
changed into heat via frictional heating, and also
probably into sound and into energy of water waves.
Note that the kinetic energy of the propeller and the
boat are not changing, so they are not involved in
the energy transformation. (b) The crusing speed
would be greater by a factor of the cube root of 2, or
about a 26% increase.

9. We don’t have actual masses and velocities to
plug in to the equation, but that’s OK. We just have
to reason in terms of ratios and proportionalities.
Kinetic energy is proportional to mass and to the
square of velocity, so B’s kinetic energy equals

(13.4 J)(3.77)/(2.34)2 = 9.23 J

11. Room temperature is about 20°C. The fraction of
the power that actually goes into heating the water is

  (250 g) / (0.24 J/g¡C) × (100¡C —20¡C) / 126 s
1.25×103 J/s

=0.53

So roughly half of the energy is wasted. The wasted
energy might be in several forms: heating of the cup,
heating of the oven itself, or leakage of microwaves
from the oven.

Solutions to Selected Problems

Chapter 2

5.

E
total,i

= E
total,f

PE
i 
 + heat

i
= PE

f 
+ KE

f 
+ heat

f

  1
2mv 2 = PE

i
 – PE

f 
 + heat

i 
– heat

f

= –∆PE –∆heat

v =
   2 – ∆PE – ∆heat

m

= 6.4 m/s

7. Let θ be the angle she by which she has pro-
gressed around the pipe. Conservation of energy
gives

E
total,i

= E
total,f

PE
i

= PE
f 
+ KE

f

Let’s make PE=0 at the top, so

0 = mgr(cos θ–1) +   1
2mv 2    .

While she is still in contact with the pipe, the radial
component of her acceleration is

ar = v2/r   ,

and making use of the previous equation we find

a
r

= 2g(1–cos θ)   .

There are two forces on her, a normal force from the
pipe and a downward gravitation force from the earth.
At the moment when she loses contact with the pipe,
the normal force is zero, so the radial component, mg
cos θ, of the gravitational force must equal ma

r
,

mg cos θ = 2mg(1–cos θ)   ,

which gives

cos θ = 2/3   .

The amount by which she has dropped is r(1–cos θ),
which equals r/3 at this moment.
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9. (a) Example: As one child goes up on one side of a
see-saw, another child on the other side comes
down. (b) Example: A pool ball hits another pool ball,
and transfers some KE.

11. Suppose the river is 1 m deep, 100 m wide, and
flows at a speed of 10 m/s, and that the falls are 100
m tall. In 1 second, the volume of water flowing over
the falls is 103 m3, with a mass of 106 kg. The poten-
tial energy released in one second is (106 kg)(g)(100
m)=109 J, so the power is 109 W. A typical household
might have 10 hundred-watt applicances turned on at
any given time, so it consumes about 103 watts on
the average. The plant could supply a about million
households with electricity.

Chapter 3

18. No. Work describes how energy was transferred
by some process. It isn’t a measurable property of a
system.

Chapter 4

8. Let m be the mass of the little puck and M=2.3m
be the mass of the little one. All we need to do is find
the direction of the total momentum vector before the
collision, because the total momentum vector is the
same after the collision. Given the two components of
the momentum vector p

x
=mv and p

y
=Mv, the direction

of the vector is tan-1(p
y
/p

x
)=23° counterclockwise from

the big puck’s original direction of motion.

11. Momentum is a vector. The total momentum of
the molecules is always zero, since the momenta in
different directions cancal out on the average.
Cooling changes individual molecular momenta, but
not the total.

 15) (a) Particle i had velocity v
i
 in the center-of-mass

frame, and has velocity v
i
+u in the new frame. The

total kinetic energy is

   1
2m1 vv1 + uu 2

+ ...

where “...” indicates that the sum continues for all the
particles. Rewriting this in terms of the vector dot
product, we have

    1
2m1 vv1 + uu ⋅ vv1 + uu + ...

=     1
2m1 vv1⋅vv1 + 2uu⋅vv1 + uu⋅uu + ...

When we add up all the terms like the first one, we
get K

cm
. Adding up all the terms like the third one, we

get M |u|2/2. The terms like the second term cancel
out:

    m1uu⋅vv1 + ...

=     uu⋅ m1vv1 + ...    ,

where the sum in brackets equals the total momen-
tum in the center-of-mass frame, which is zero by
definition. (b) Changing frames of reference doesn’t
change the distances between the particles, so the
potential energies are all unaffected by the change of
frames of reference. Suppose that in a given frame of
reference,frame 1, energy is conserved in some
process: the initial and final energies add up to be the
same. First let’s transform to the center-of-mass
frame. The potential energies are unaffected by the
transformation, and the total kinetic energy is simply
reduced by the quantity M |u

1
|2/2, where u

1
 is the

velocity of frame 1 relative to the center of mass.
Subtracting the same constant from the initial and
final energies still leaves them equal. Now we
transform to frame 2. Again, the effect is simply to
change the initial and final energies by adding the
same constant.

Chapter 5

20. The pliers are not moving, so their angular
momentum remains constant at zero, and the total
torque on them must be zero. Not only that, but each
half of the pliers must have zero total torque on it.
This tells us that the magnitude of the torque at one
end must be the same as that at the other end. The
distance from the axis to the nut is about 2.5 cm, and
the distance from the axis to the centers of the palm
and fingers are about 8 cm. The angles are close
enough to 90° that we can pretend they’re 90 de-
grees, considering the rough nature of the other
assumptions and measurements. The result is (300
N)(2.5 cm)=(F)(8 cm), or F=90 N.
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Glossary
Angular momentum. A measure of rotational

motion; a conserved quantity for a closed
system.

Axis. An arbitrarily chosen point used in the
definition of angular momentum. Any object
whose direction changes relative to the axis is
considered to have angular momentum. No
matter what axis is chosen, the angular momen-
tum of a closed system is conserved.

Center of mass. The balance point or average
position of the mass in a system.

Collision. An interaction between moving
objects that lasts for a certain time.

Energy. A numerical scale used to measure the heat,
motion, or other properties th.at would require
fuel or physical effort to put into an object; a
scalar quantity with units of joules (J).

Equilibrium. A state in which an object’s momen-
tum and angular momentum are constant.

Heat. The energy that an object has because of its
temperature. Heat is different from temperature
(q.v.) because an object with twice as much mass
requires twice as much heat to increase its
temperature by the same amount. There is a
further distinction in the terminology, not
emphasized in this book, between heat and
thermal energy. See the entry under thermal
energy for a discussion of this distinction.

Kinetic energy. The energy an object posesses
because of its motion. Cf. potential energy.

Momentum. A measure of motion, equal to mv
for material objects.

Potential energy. The energy having to do with the
distance between to objects that interact via a
noncontact force. Cf. Kinetic energy.

Power. The rate of transferring energy; a scalar
quantity with units of watts (W).

Stable equilibrium. One in which a force always
acts to bring the object back to a certain point.

Temperature. What a thermometer measures.
Objects left in contact with each other tend to

reach the same temperature. Roughly speaking,
temperature measures the average kinetic energy per
molecule. For the distinction between temperature
and heat, see the glossary entry for heat.

Thermal energy.Careful writers make a distinction
between heat and thermal energy, but the distinction
is often ignored in casual speech, even among physi-
cists. Properly, thermal energy is used to mean the
total amount of energy posessed by an object, while
heat indicates the amount of thermal energy trans-
ferred in or out. The term heat is used in this book to
include both meanings.

Torque. The rate of change of angular momentum; a
numerical measure of a force’s ability to twist on an
object.

Unstable equilibrium. One in which any deviation of the
object from its equilibrium position results in a force
pushing it even farther away.

Work. The amount of energy transferred into or out of a
system, excluding energy transferred by heat conduc-
tion.
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Index

A

alchemists  13
angular momentum

choice of axis theorem  96
defined  91
definition  92
introduction to  89
related to area swept out  94
spin theorem  97

C

center of mass
frame of reference  75
related to momentum  74

Chadwick, James
discovery of neutron  72

choice of axis theorem  96
collision

defined  70
conduction of heat

distinguished from work  42

D

dot product of two vectors  56

E

electrical force
in atoms  72

electron  72
element, chemical  13
energy

gravitational potential energy  33
potential  32

equilibrium
defined  103

F

fulcrum  106

G

gamma ray  72

H

heat
as a fluid  30
as a form of kinetic energy  30

heat conduction
distinguished from work  42

J

Joyce, James  29

K

Kepler
law of equal areas  94

kinetic energy  20
compared to momentum  68

L

lever  106

M

momentum
compared to kinetic energy  68
defined  65
examples in three dimensions  79
of light  67
rate of change of  76
related to center of mass  74
transfer of  76

N

Neanderthals  107
neutron

discovery of  72
nucleus  72

P

particle zoo  29
perpetual motion machine  14
potential energy

electrical  36
gravitational  33, 53
nuclear  37
of a spring  52
related to work  52

power  23
proton  72

Q

quarks  29

R

rigid rotation
defined  90

S

scalar (dot) product  56
slingshot effect  76
spin theorem  97
spring

potential energy of  52
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work done by  52
statics  103

T

Temperature
as a measure of energy per atom  31

thermodynamics  31
torque

defined  98
due to gravity  101
relationship to force  99

W

work
calculated with calculus  51
defined  42
distinguished from heat conduction  42
done by a spring  52
done by a varying force  49
in three dimensions  47
positive and negative  45
related to potential energy  52

work-kinetic energy theorem  54
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Useful Data

Metric Prefixes
M- mega- 106

k- kilo- 103

m- milli- 10 –3

µ- (Greek mu) micro- 10 –6

n- nano- 10 –9

(Centi-, 10 –2, is used only in the centimeter.)

Notation and Units
quantity unit symbol
distance meter, m x, ∆x
time second, s t, ∆t
mass kilogram, kg m
area m2 (square meters) A
volume m3 (cubic meters) V
density kg/m3 ρ
force newton, 1 N=1 kg.m/s2 F
velocity m/s v
acceleration m/s2 a
energy joule, J E
momentum kg.m/s p
angular momentum kg.m2/s L

symbol meaning
∝ is proportional to
≈ is approximately equal to
~ on the order of

The Greek Alphabet
α Α alpha ν Ν nu
β Β beta ξ Ξ xi
γ Γ gamma ο Ο omicron
δ ∆ delta π Π pi
ε Ε epsilon ρ Ρ rho
ζ Ζ zeta σ Σ sigma
η Η eta τ Τ tau
θ Θ theta υ Υ upsilon
ι Ι iota φ Φ phi
κ Κ kappa χ Χ chi
λ Λ lambda ψ Ψ psi
µ Μ mu ω Ω omega

Conversions
Conversions between SI and other units:

1 inch = 2.54 cm (exactly)
1 mile = 1.61 km
1 pound = 4.45 N
(1 kg).g = 2.2 lb
1 gallon = 3.78x103 cm3

1 horsepower = 746 W
1 kcal* = 4.18x103 J

*When speaking of food energy, the word “Calorie” is used to mean 1 kcal,
i.e. 1000 calories. In writing, the capital C may be used to indicate

1 Calorie=1000 calories.

Conversions between U.S. units:
1 foot = 12 inches
1 yard = 3 feet
1 mile = 5280 ft

Earth, Moon, and Sun
body mass (kg) radius (km)radius of orbit (km)
earth 5.97x1024 6.4x103 1.49x108

moon 7.35x1022 1.7x103 3.84x105

sun 1.99x1030 7.0x105

The radii and radii of orbits are average values. The
moon orbits the earth and the earth orbits the sun.

Subatomic Particles
particle mass (kg) radius (m)
electron 9.109x10-31 ? – less than about 10-17

proton 1.673x10-27 about 1.1x10-15

neutron 1.675x10-27 about 1.1x10-15

The radii of protons and neutrons can only be given
approximately, since they have fuzzy surfaces. For
comparison, a typical atom is about 10-9 m in radius.

Fundamental Constants
speed of light c=3.00x108 m/s
gravitational constant G=6.67x10-11 N.m2.kg-2


