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a b s t r a c t

In recent years the ventral pallidum has become a focus of great research interest as a mechanism of
reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once
associated primarily with motor functions rather than regarded as a reward structure in its own right.
However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward
in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward
and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation
enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and
motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that
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the ventral pallidum may serve as an important ‘limbic final common pathway’ for mesocorticolimbic
processing of many rewards.
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. Ventral pallidum function: moving beyond movement

The ventral pallidum was recognized as a distinct anatomical
tructure only a few decades ago. Heimer and Wilson first identified
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he ventral pallidum in 1975 as the primary output for the ven-
ral striatum (nucleus accumbens), and suggested it served a
ole similar to globus pallidus in the striatal-pallidal circuitry for
orsal striatum (caudate-putamen) [1]. Previously the ventral pal-

idum often had been lumped with adjacent areas including the

lobus pallidus, substantia innominata, extended amygdala sys-
em, lateral preoptic area of hypothalamus (far rostral and lateral
ypothalamus), or the polymorph layer of the olfactory tubercle.
oday, however, its distinctive limbic-thalamocortical anatomical
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and lateral edge of the lateral hypothalamus, and in fact, many clas-
sical electrolytic lesions of the lateral hypothalamus that produced
aphagia with aversion also damaged the ventral pallidum as well as
lateral hypothalamus [59,60]. This positioning may be important,

1 The only other neural lesion known to cause active aversion to sweet tastes is
the classic ‘thalamic preparation’, in which the entire telencephalon composed of
all structures anterior to the thalamus is removed by suction ablation or similar
surgery, leaving intact thalamus, hypothalamus, midbrain and brainstem [67,68].
Importantly, the ‘thalamic preparation’ may damage the ventral pallidum, which
is part of the telencephalon, raising the possibility that ventral pallidum damage
might similarly be responsible for the thalamic animal’s aversion to sucrose. The
importance to positive hedonic reactions of a ventral telencephalic structure such as
ventral pallidum is emphasized by the consideration that basic hedonic reactions to
taste are preserved in decerebrate animals transected above the superior colliculus
but below most of the hypothalamus (with only the brainstem functioning) [68–70].
This presents a rather curious scenario: removing the ventral pallidum by itself or
with the rest of the telencephalon, while leaving the diencephalic hypothalamus
and thalamus as well as the brainstem, dramatically reduces hedonic reactions. But
removing the ventral pallidum and telencephalon, plus the diencephalic hypotha-
lamus and thalamus, fails to have much of an effect on hedonics. How can this be?
For many behavioral functions, the brain contains a hierarchical organization such
that brainstem signals are regulated by forebrain structures [71–74]. The taste path-
way traverses through brainstem structures, such as nucleus of the solitary tract and
parabrachial nucleus in rodents, then through the forebrain in bifurcating gustatory
sensory paths (e.g. to gustatory thalamus then gustatory cortex) and limbic paths
56 K.S. Smith et al. / Behavioural

onnectivity, and histochemical and neuronal makeup (e.g. high
evels of substance P, enkephalins, and iron; heterogeneous cell
ypes including cholinergic and GABAergic projection neurons;
asal firing rates that are generally slower than dorsal pallidal but
aster than striatal projection neurons), are recognized to distin-
uish ventral pallidum from other surrounding structures [1–16].

Notions of the ventral pallidum as a striatal output for move-
ent, comparable to globus pallidus, contributed originally to a

iew that it functioned as a motor expression site [17,18]. For
xample, based on a series of behavioral studies, Mogenson et
l. proposed that nucleus accumbens projections to the ventral
allidum translated limbic motivation signals into motor output
18,19]. This account attributed “limbic–motor integration” [19]
o accumbens–pallidal systems, and specifically identified ventral
allidal projections to brainstem (e.g. pedunculopontine tegmen-
um) as a primary motor output for limbic motivation signals.
owever, transferring input from accumbens to brainstem motor-

elated targets is only one feature of ventral pallidum connectivity.
he ventral pallidum is also a central convergent point for input
rom orbitofrontal, prefrontal and infralimbic cortex, the amyg-
ala, lateral hypothalamus, ventral tegmental area, parabrachial
ucleus, subthalamic nucleus, and other structures related to
eward [20–35]. Conversely, the ventral pallidum projects back to
early all of its input sources including the nucleus accumbens for
eciprocal information exchange [8,13,36–41]. Further, ventral pal-
idum outputs re-enter corticolimbic loops via direct projections
o medial prefrontal cortex, and dense projections to mediodor-
al nucleus of thalamus, which relays in turn to prefrontal cortex
6,10,11,13,36,38,42,43]. Such limbic-related anatomical connectiv-
ty sets the stage for the ventral pallidum to mediate reward and

otivation functions at many levels in the brain, beyond merely
iding translation to movement [35,40,44–54].

The most crucial evidence that ventral pallidum mediates
eward, however, must come from actual functional demonstra-
ions that ventral pallidum manipulations have consequences for
eward. That is, do manipulations of ventral pallidum actually alter
eward-related measures of neural activation and reward-directed
ehavior? Many such studies have now been conducted, which we
eview below. Together they provide strong evidence that the ven-
ral pallidum is needed for normal reward, that it can add new
eward value to stimuli, and that its neurons can encode reward
nd incentive motivation to gain external rewards.

. The ventral pallidum is necessary for reward

.1. Necessary for motivation to eat and hedonic impact

Perhaps the earliest experiments to implicate ventral pallidum
n reward and motivation functions were a set of studies by Mor-
ane that pushed the boundaries of food reward functions beyond
he lateral hypothalamus to include the ventral pallidum and globus
allidus [55]. Morgane reported that electrolytic lesions to the
lobus pallidus (which now can be recognized to have damaged
entral pallidum), caused aphagia (failure to voluntarily eat) and
dipsia (failure to drink) in rats, similar to lesions of the lateral
ypothalamus [55–61], despite not damaging the lateral hypotha-

amus (the pallidal lesions being anterior, further lateral or dorsal
o the hypothalamus). This early lesion study did not distinguish
etween globus pallidus and ventral pallidum, but rather damaged

oth, and used the name of globus pallidus for the entire dam-
ged region. However, our own inspection of Morgane’s lesions, as
ell as early lateral hypothalamic lesions, in published histologi-

al figures indicates the aphagia-inducing lesions damaged ventral
allidum as well as their intended target structure. These data,
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ogether with a later study that found that aphagia can be pro-
uced by lesions of the posterior ventral pallidum that do not invade
lobus pallidus or lateral hypothalamus [60], confirmed a role for
he ventral pallidum as a key component of the neural system for
ating and food ‘wanting’ [62].

The ventral pallidum may play an even more unique role in
ediating reward beyond being necessary for motivated eating:

t is the only structure known to us in which local lesions also
liminate normal ‘liking’ for sucrose, and replace it with ‘disliking’
60]. ‘Liking’ is a second core component of reward, in addition to
wanting,’ and for many the most crucial. For natural food rewards,
liking’ has objective consequences in affective reactions patterns,
uch as orofacial reactivity patterns in response to tastes that are
omologous across species [63–66].

Lesion studies of ventral pallidum and lateral hypothalamus
ave attempted to map the locus for a particular affective change

n reward that often accompanied aphagia-producing lesions: the
oss of acceptance or positive hedonic reactions to the taste of
alatable food (such as tongue protrusions and lip licking), and
eplacement by active aversion reactions (such as gapes or head-
hakes). In the late 1970s, studies by Schallert and Whishaw [59]
nd Stellar et al. [61] found that active avoidance of food (e.g. with-
rawal from a food- or chocolate-containing spoon) and aversion
o intraorally infused food (e.g. ejection of the reward followed by
version reactions like face washing) was produced by what was
escribed as damage to the anterior portion of lateral hypothala-
us [59,61]. That damage encroached on what is now known to

e ventral pallidum. Active avoidance-aversion was not produced
y damage to more posterior subregions in the lateral hypothala-
us (which caused aphagia without active aversion) [59]. A later
apping study actually contrasted ventral pallidum, globus pal-

idus or lateral hypothalamic excitotoxin lesions, and found that
ctive aversion to sucrose was caused only if a lesion damaged the
entral pallidum (specifically its posterior end, overlapping with
art of the adjacent substantia innominata) [60] (Fig. 1).1 Of note,
he posterior and medial edge of ventral pallidum abuts the anterior
e.g. to ventral pallidum) [75,76]. We have argued that basic affective and emotional
eactions can be generated by the brainstem (e.g. in parabrachial nucleus: [77]), but
n the normal intact brain these signals are under inhibitory control by forebrain
edonic structures like the ventral pallidum. This may be why we can observe rel-
tively normal hedonics in decerebrated animals but impaired hedonics in animals
ith localized ventral pallidal lesions. See [74] and [54] for more detail.
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Fig. 1. Neurochemical maps of hedonic ‘liking’ and motivational ‘wanting’ in the ventral pallidum. Microinjections of DAMGO to stimulate opioid transmission in the posterior
ventral pallidum hotspot enhance reward ‘liking’ (increased hedonic orofacial reactions to sweet taste such as tongue protrusion shown in image insert) and also enhance
‘wanting’ (increased motivated eating behavior) (top; red hexagons). The same DAMGO microinjections in an anterior coldspot decrease both ‘liking’ and ‘wanting’ measures
below normal (blue). The posterior hedonic hotspot overlaps with the crucial zone where ventral forebrain lesions produce aversion to palatable tastes and aphagia (purple
o ons in
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utline). By contrast, blockade of ventral pallidal GABA with bicuculline microinjecti
bottom left; red), but fail to change normal hedonic ‘liking’ reactions at the same site
I, substantia innominata (For interpretation of the references to color in this figure

iven evidence for a ‘hedonic hotspot’ in the posterior ventral pal-
idum that we will describe below where ‘liking’ can actually be
nhanced by neurochemical activity.

This elimination of normal food reward (suppressed ‘liking’ and
wanting’, with enhanced aversion) that follows posterior ventral
allidum lesions may also be achieved with temporary neurochem-

cal inactivation of ventral pallidal activity by excessive GABAergic
nhibition. Microinjection of the GABAA agonist muscimol in the
entral pallidum was recently reported to attenuate intake of
accharine-flavored water or of bitter quinine-water, and to replace
ositive hedonic taste reactions to saccharine taste with aversive
eactions [78]. These GABA microinjections that enhanced aversion
id not explicitly distinguish subregions of the ventral pallidum,
nd reported effects were averaged for the entire ventral pallidum
though placements fell within the posterior lesion-aversion zone
nd extended anteriorly too).

Some evidence from humans also supports the idea that the ven-
ral pallidum may be needed for normal motivation and hedonics. A
ecent clinical report describes a drug-addicted human patient with
artial lesions to the ventral pallidum (overlapping with globus pal-

idus) who, after the lesions, “reported the disappearance of all drug
ravings and remained abstinent from all recreational drugs other
han an occasional glass of wine with dinner,” and “reported that
e no longer experienced pleasure from drinking alcohol” (p. 786)
79]. The patient also “endorsed a depressed mood” and doctors
oted a general “anhedonia” (p. 786) [79]. However, the patient
lso gained weight throughout this period, contrary to the lesion-
nduced aphagic effects in rodents described above, which may
erhaps reflect spared parts of the ventral pallidum in the patient

the extent of damage is not clear from the published report of the
till-living patient). In a second recent case [80], a patient with bilat-
ral damage to the globus pallidus (the lesion is described by the
uthors as perhaps extending into the ventral pallidum) reported
n “inability to feel emotions”, and was noted by analysts to have a

a
m

m
c

crease food ‘wanting’ and eating behavior virtually throughout the ventral pallidum
om right; white). Maps depict data reconstructed from [60,123]. VP, ventral pallidum;
, the reader is referred to the web version of the article).

at affect and “a profound lack of motivation” (p. 413). In a reward
ask, the patient worked much less than normal to increase view-
ng time of pleasant pictures like food (by pressing a keyboard key),
nd reported less arousal from the pictures. His ratings of picture
leasantness were normal, and he worked normally to decrease
iewing time of unpleasant pictures. The lesions thus appear to
ave impaired his ability to motivate behavior towards positive
isual stimuli, though the extent of ventral pallidum damage is
gain not clear.

.2. Necessary for reward learning and performance

Lesion or inactivation studies have further shown the ventral
allidum to be crucial for learning or performing learned responses
elated to rewards, in addition to generating the impact of uncon-
itioned rewards. In operant and place preference conditioning
tudies, for example, ventral pallidum excitotoxin lesions or tem-
orary inactivation (by microinjection of GABA or glutamate drugs,
r lidocaine to block sodium channels) reduce baseline or primed
ever pressing for alcohol, i.v. cocaine, and electrical stimulation
o the medial forebrain bundle [81–88]. Rats with ventral pal-
idum GABAergic inactivation also have diminished willingness to

ork hard on an instrumental task to obtain sucrose reward, and
nstead shift their choice toward normal chow that can be obtained

ore easily, an effort shift similar to that produced by depletion
f mesolimbic dopamine [89]. Ventral pallidum inactivation also
educes Pavlovian incentive learning about rewards, such as acquir-
ng and expressing learned preferences for environments paired

ith sucrose, amphetamine, and morphine reward [90–92], and

dditionally impair performance in a variety of discrimination or
atching tasks [93–104].
Thus, in total, features of normal reward learning and memory,

otivational ‘wanting’, and hedonic ‘liking’ all appear to depend
ritically on the ventral pallidum. Among these reward compo-
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ents, normal hedonics may quite specifically require the ventral
allidum in a relatively unique way, whereas the other components
an also be impaired by damage to other brain structures.

. Ventral pallidal mechanisms for enhancing reward
mpact

Beyond being necessary for normal reward, as reflected by
mpairments induced by lesion or inactivation, specific neurobi-
logical activations in the ventral pallidum may also be sufficient
o cause increases in the hedonic or motivational impact of stimuli.
hat is, it may be possible to enhance reward ‘liking’ or ‘wanting’ by
hemical or other stimulation of the ventral pallidum. Necessary and
ufficient causations are distinct forms of reward mediation, and do
ot always converge on the same reward substrates [54,105], but
hey may do so in the ventral pallidum.

Perhaps the first evidence suggesting that ventral pallidum
ctivations can enhance the rewarding impact of stimuli and
ctions came from brain stimulation studies in the 1990s, which
emonstrated that animals would repeatedly press a lever to
elf-stimulate through electrodes implanted in ventral pallidum
53,106,107], similarly to electrodes in the lateral hypothalamus
nd medial forebrain bundle [106,108–110]. This finding indicated
hat circuit activation through ventral pallidal stimulation was suf-
cient to activate a reward for instrumental pursuit, and placed
he ventral pallidum as part of a larger network of limbic sites
here reward might actually be generated in neural activity. More

ecent studies have begun to characterize the ventral pallidal neu-
otransmitters systems that play a role in enhancing reward ‘liking’
ersus ‘wanting’, with some intriguing chemical and anatomical
ompartmentalizations.

.1. Disinhibition of ventral pallidum from GABA suppression:
timulation of food ‘wanting’ (but not ‘liking’)

The use of intracranial drug microinjection to manipulate neu-
otransmission in limbic circuits has been particularly important
or evaluating the natural chemical signals that mediate reward
nhancement. This work has indicated the possibility that release
f ventral pallidum neurons from tonic inhibitory GABA inputs
rom nucleus accumbens, central amygdala, and other areas (i.e.
isinhibition), is a chief ‘downstream’ mechanism by which hyper-
olarizations in nucleus accumbens stimulate motivation and
eward [44,111–114]. Microinjections in nucleus accumbens of
ABA agonists, glutamate AMPA antagonists, or opioid or cannabi-
oid agonists all stimulate eating behavior and pursuit of drugs
nd other rewards, through mechanisms that have been suggested
o include local accumbens inhibition and disinhibition of ventral
allidum [48,50,113,115–122].

In an early study addressing chemical mechanisms of reward
nhancement within the ventral pallidum, microinjection of a
ABAA receptor antagonist (bicuculline) in ventral pallidum was
hown to dramatically increase eating behavior and food intake
52], which has also been observed subsequently [78,123] (Fig. 1).
n order to test whether this stimulation of the motivation to eat
nvolved enhancement of hedonic impact of food, we and others
ave conducted taste reactivity tests of ‘liking’ changes induced by
icuculline in the ventral pallidum [123] (Fig. 1). Taste reactivity
esults indicated that GABA blockade in the ventral pallidum com-

letely fails to elevate hedonic reactions to taste rewards. Neither in
he posterior area where lesions produce aversion nor in any other
rea did bicuculline microinjection cause any detectable elevation
f normal hedonic reactions to sucrose [78,123]. This has led us to
onclude that ventral pallidal GABA disinhibition appears to be a
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echanism of enhancing ‘wanting’-without enhancing ‘liking’-for
ood reward [50,54].

Such a pattern of ‘wanting’ without ‘liking’ augmentation is
imilar to the effect previously shown to result from activating
esolimbic dopamine systems by several manipulations: electrical

timulation of the medial forebrain bundle, systemic amphetamine
r cocaine administration, microinjection of amphetamine into
ucleus accumbens, neural sensitization induced by repeated psy-
hostimulant exposure, or elevation of synaptic dopamine levels
y genetic knockdown of the dopamine transporter [124–128]. In
ll of these cases of pure ‘wanting’ enhancement, dopaminergic
timulation enhanced motivated behavior to obtain or consume
eward but failed to enhance hedonic reactions to tastes. Similarly
n humans psychostimulant exposure that elevates dopamine lev-
ls and subjective ratings of drug or food reward ‘wanting’ has
een reported in several studies to fail to also enhance subjec-
ive ratings of pleasure liking or euphoria [129,130]. It is not yet
nown how ventral pallidum GABA and mesolimbic dopamine
nteract in such cases, but there are several possibilities. For exam-
le, dopamine neurons also innervate ventral pallidum directly
25,26] and appear to have an important, but as yet unspeci-
ed, role in reward. For example, psychostimulant microinjection

nto the ventral pallidum is sufficient to condition a place prefer-
nce [131] and increase eating behavior [132], while D1 receptor
ntagonist microinjection reduces intake [78] and dopaminergic
erminal lesions block the development of a preference for cocaine-
aired environments [133]. Local dopamine release can suppress
he inhibitory influence of GABA transmission on ventral pallidum
ring [134], indicating a modulatory role in GABAergic disinhi-
ition of neural activity that may be important for motivation
nhancements. Additionally, direct ventral pallidal modulation of
idbrain dopamine activity via projections to ventral tegmental

rea [135–138] is another possible mechanism by which ventral
allidal GABAergic disinhibition might stimulate ‘wanting’ without

liking’.
However, while GABAergic disinhibition of ventral pallidum

eurons does not increase hedonic impact, GABAA receptor acti-
ation by the agonist muscimol into the central ventral pallidum
educes normal hedonic reactions to sucrose and elevates aversive
eactions [78,139], which may parallel the aversion consequence of
entral pallidum lesions [60]. Additionally, normal avoidance and
version to a taste previously paired with lithium-chloride sickness
an be reduced by ventral pallidal GABAA activation with bicu-
ulline [140]. One possibility is that baseline neuronal activity in
entral pallidum has a necessary role in normal hedonic valua-
ion, although depolarization induced by GABAergic disinhibition
s not sufficient to cause enhancement of food’s hedonic valuation
despite enhancing the motivation to eat and reducing the expres-
ion of learned aversions).

.2. Ventral pallidum opioids: ‘liking’ and ‘wanting’ stimulation
n a posterior hotspot

Opioid neurotransmission is a more potent substrate for hedo-
ic reward in ventral pallidum. Mu opioid stimulation is capable
f enhancing hedonic ‘liking’ as well as motivational ‘wanting’, at
east in a cubic millimeter hotspot of posterior ventral pallidum.
rain opioids have long been linked to hedonic and motivational
roperties of food, drugs and other incentives [141–147]. The
entral pallidum has abundant mu opioid receptors [148–151],

nd ventral pallidum opioid transmission is centrally involved
n conditioned place preference and drug self-administration
30,152–156].

In contrast to GABA blockade, it turns out that increase in opioid
ransmission in the ventral pallidum is sufficient to enhance hedo-
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ic ‘liking’ reactions to sucrose as well as motivational ‘wanting’ to
at, but only in a restricted subregion of posterior ventral pallidum
Fig. 1). In a recent study, we identified this posterior subregion as
n opioid hedonic hotspot where microinjections of the mu opioid
gonist DAMGO more than doubled taste ‘liking’ (hedonic reactions
o sucrose) and quadrupled food ‘wanting’ (eating behavior) [123].
os plume mapping of drug functional spread helped reveal that the
pioid hedonic hotspot was contained in the posterior half of the
entral pallidum and was roughly a cubic millimeter in size. Inter-
stingly, the hedonic hotspot overlaps with the area where lesions
bolish food reward and cause sucrose aversion [60], although an
xplicit comparison mapping of these opposite manipulations has
et to be made.

The special reward features of the posterior hotspot are under-
cored by observations that mu opioid stimulation of a more central
nd anterior coldspot location in ventral pallidum actually sup-
resses taste ‘liking’ reactions and eating behavior below normal

evels, instead of enhancing them [123]. This difference reveals that
pioid ‘liking’ and ‘wanting’ enhancement mechanisms are both
ighly localized to the hotspot in the posterior ventral pallidum. By
ontrast, the same reward functions are suppressed by the opioid
oldspot in the anterior ventral pallidum.

An intriguingly similar segregation of positive affect to the pos-
erior half ventral pallidum has recently been observed in human
rain activations. In functional MRI studies, posterior ventral pal-

idum was reported to become more active during the presentation
f images depicting appetizing food like chocolate cake, perhaps
orresponding to the rat posterior hotspot above [157,158]. By
ontrast, negative pictures of disgusting and rotten food were
eported to stimulate activity in more anterior regions of the ven-
ral pallidum, perhaps corresponding to the rat anterior coldspot
158].

The posterior opioid hotspot additionally may be the best loca-
ion for stimulating instrumental seeking for brain stimulation
eward. In perhaps the first foreshadowing of the hedonic hotspot,
icroinjection of an opioid agonist in the posterior ventral pal-

idum was reported to increase the amount a rat will work to
elf-stimulate through electrodes implanted in the medial fore-
rain bundle, while the same microinjection in anterior ventral
allidum suppressed self-stimulation below normal levels [46].
hat bivalent pattern seems quite similar to the more precisely
apped effects on taste ‘liking’ reactions and spontaneous food

ntake [123]. Also, the posterior ventral pallidum has an advantage
or brain stimulation facilitation by microinjections of a delta opi-
id agonist [159]. Further, self-stimulation of an electrode in the
entral pallidum itself also appears to have an anterior–posterior
radient, as electrical current thresholds required for maintaining
elf-stimulation decline from the anterior to posterior ends, indi-
ating that stimulation in the posterior hotspot is a more potent
eward to animals even at low intensities [106].

Why would the hotspot in posterior ventral pallidum have more
ositive reward functions than the anterior ventral pallidum? There
re a few known neurobiological features of the hotspot in the
osterior ventral pallidum that might be involved. The posterior
entral pallidum appears to have higher enkephalin levels than
nterior ventral pallidum [160,161], a higher ratio of noncholin-
rgic to cholinergic cells [162], and a less dense concentration of
resynaptic mu opioid receptors [149] compared to anterior ventral
allidum. Lastly, marked differences in anatomy have been noted
or dorsal and lateral versus ventral and medial subregions of ven-

ral pallidum in a plane at the anteroposterior level of the anterior
ommissure [14–16,37], which may be relevant as posterior ventral
allidum is more laterally placed in the brain (though the functional
ole of medial-lateral or dorsal-ventral subdivisions in reward is not
et clear).
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.3. Accumbens–pallidum opioid interaction: asymmetric paths
or ‘liking’ and ‘wanting’

The ventral pallidum hotspot forms a functional circuit with
nother cubic-millimeter hedonic hotspot in medial shell of
ucleus accumbens that similarly uses mu opioid signals to control

liking’ and ‘wanting’ [50,54,163]. To evaluate interactions between
otspots and structures, we pitted opioid activation of the ven-
ral pallidum hotspot against simultaneous opioid suppression of
he accumbens hotspot, and vice versa [164]. We found that opi-
id inactivation in the nucleus accumbens (via microinjection of
aloxone in nucleus accumbens hotspot) blocked the elevation of

liking’ normally caused by opioid activation in the posterior ven-
ral pallidum (via microinjection of DAMGO in ventral pallidum
otspot). Similarly, ‘liking’ elevation from opioid stimulation of
he accumbens hotspot was blocked by opioid inactivation of the
entral pallidum hotspot. In addition, opioid activation in either
otspot also increased distant Fos protein expression in the other
otspot (and naloxone suppressed distant Fos), showing that opi-
id activation in one site recruits the other into activation as a
eurobiological circuit. Thus, ‘liking’ elevation appears to require
imultaneous participation of both opioid hotspots in ventral pal-
idum and accumbens (Fig. 4).

These results imply that a traditional anatomical view of the
entral pallidum as purely a serial output for ventral striatal signals
s only partially true. The ventral pallidum can equally influence
he functional reward output of upstream accumbens as can be
nfluenced as a downstream consequence of accumbens activa-
ion, indicating a bidirectional interaction in which opioid-related
nformation flows both ways. This possibility is also consistent

ith known bidirectional physiological interactions and reciprocal
natomical connections [1,39,44,165–168].

The circuit dynamics for controlling ‘wanting’ turn out to be a bit
ifferent from those controlling ‘liking’. Elevation of food ‘wanting’
ppears to be asymmetrically dominated by opioid activation of the
ccumbens hotspot [164]. We found that eating elevation after opi-
id activation in the accumbens hotspot was not blocked by opioid
lockade of the ventral pallidum hotspot. However, accumbens opi-
id blockade prevented any eating stimulation by opioid activation
f the ventral pallidum hotpot. For motivation to eat (food ‘want-
ng’), opioid activation in the nucleus accumbens seems able to
timulate food intake in the absence of endogenous opioid recruit-
ent in ventral pallidum (perhaps through connections with other
otivation sites like the lateral hypothalamus [164,169–174]).

. Neuronal activity in ventral pallidum hotspot codes
eward

How are reward ‘liking’ and ‘wanting’ encoded by neuronal firing
ithin the ventral pallidum hotspot? A neural reward code must

epresent features of a sensory reward in profiles of neural activity,
nd the information in this neural representation is available for
ommunication to efferent targets [175]. We have found evidence
n recent behavioral electrophysiology experiments that the firing
atterns of neurons in the ventral pallidum hotspot code reward
nd associated stimuli, and may discriminate learning, ‘liking’ and

wanting’ components of reward.
Ventral pallidal neurons fire with a phasic burst of excitation to

sucrose pellet reward [176]. If that sucrose pellet is paired associa-

ively as an unconditioned stimulus (UCS) with a tone conditioned
timulus (CS+), ventral pallidum neurons develop an anticipatory
xcitation response to the auditory Pavlovian CS+ that predicts
uture sucrose reward as rats learn [176]. When multiple serial CS+
ues are presented, ventral pallidum neurons fire to each cue, and
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ith extended training develop a more prominent phasic excita-
ion to the first predictive cue (CS+1) compared to a subsequent cue
CS+2) that occurs closest to reward [127,176] (Fig. 3). This pattern is
imilar to mesolimbic dopamine neurons [177](but see: [178]), and
aximal firing to the first predictor has been taken to imply rep-

esentation of cue predictive value [127,177,179]. Unlike dopamine
eurons, however, neurons in the ventral pallidum hotpot continue
o be strongly activated by sucrose rewards even long after they
re predicted (when the Pavlovian association is well established),
uggesting that the firing can represent hedonic information in
ddition to the predictive value of cues.

However, firing to reward properties of stimuli is confounded
ith sensory stimulus identity (e.g. sweetness of reward), arousal,

nd motor reactions, making their functional interpretation diffi-
ult. More focused experiments are required to pinpoint the coded
euronal representation for the hedonic value of reward and incen-
ive value of a cue. Recently, we have conducted a series of studies
esigned explicitly to isolate hedonic, motivation, and learning fea-
ures in excitatory bursts of ventral pallidum firing.

.1. Ventral pallidum neurons encode reward hedonic ‘liking’ and
ncentive salience ‘wanting’

To isolate hedonic signals in ventral pallidum activity, we chal-
enged ventral pallidum neurons with a shift in hedonic value of
eward while keeping sensory identify stable [180] (Fig. 2). When
ats were in a normal physiological state, ventral pallidal neu-
ons were observed to fire vigorously in response to an orally
nfused sucrose taste, which evoked hedonic ‘liking’ reactions in
behavioral taste reactivity test, but firing was less to an intensely

alty taste (3× seawater concentration) that evoked aversive reac-
ions. However, after animals were given diuretic injections to
eplete them of bodily sodium, a sodium appetite developed and
he intense salt taste evoked hedonic ‘liking’ reactions similar to
ucrose. Ventral pallidal neurons then responded with an increased
ring rate to the intense salt taste, equal in magnitude to the
esponse evoked by the sucrose taste [180] (Fig. 2) Additional anal-
ses of firing during oral, grooming, and locomotion movements
ndicated that ventral pallidum firing did not simply encode move-

ents. Ventral pallidum neurons thus pass the most stringent test
or hedonic coding that is dis-confounded from sensory coding:
eing able to track hedonic shifts of a single sensory stimulus from
asty to pleasant [116,175,180,181].

A separate but related study asked whether ventral pallidum
eurons could additionally code the incentive salience of Pavlovian
ues predicting salt or sucrose, in a way that could differentiate
ncentive ‘wanting’ from learned prediction of reward outcome
182]. Incentive salience theory posits that Pavlovian reward cues
ake on motivation features, which are similar in some ways to
he motivation features of the unconditioned rewards they pre-
ict [183–185]. For example, reward cues become attractive and

wanted’ themselves. Although the incentive value of a conditioned
eward cue is confounded with its predictive value, there is a way to
isentangle these features in studies of neuronal coding by exploit-

ng natural appetites. ‘Wanting’ for cues that predict sweet or salty
ewards can be modulated directly by the same hunger, and sodium
ppetite physiological states that modulate the value of sucrose or
alt UCS rewards, even if the unconditioned rewards have never
een experienced in those appetite states [184,186–189]. For exam-
le, rats that have learned that a sour or bitter flavor is associated

ith salt, will later seek out and drink just the sour or bitter flavor

y itself when they are in a physiological salt appetite state, and
ill show positive hedonic facial reactions to the conditioned flavor

hat previously was aversive [187,188,190]. In reverse, cues paired
ith normally pleasant sweet tastes can come to evoke aversive

n
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eactions and avoidance if the associated taste is devalued in a sep-
rate context (e.g. through pairing with lithium-chloride sickness)
190,191]. We harnessed this feature of cue incentive modulation
o ask if ventral pallidum neurons code the motivation value of a
earned cue, independently of what hedonic consequence the cue
redicts based on its prior associative pairings with an uncondi-
ioned stimulus [182]. We paired auditory tone CS+s with either
ucrose taste or intense sodium chloride taste UCSs that were
nfused into a rat’s mouth. Initially after training, an auditory CS+
one predicting oral infusion of an aversive salt taste evoked vir-
ually no firing response from posterior ventral pallidal neurons,
hereas a tone predicting sucrose evoked a large firing response.
fter sodium depletion was induced by hormone injections, the salt
nd sucrose tones equally evoked intense firing from ventral pall-
dal neurons, even in extinction and prior to ever re-experiencing
he salt taste in its new ‘liked’ state (salt ‘liking’ was confirmed in a
ubsequent taste reactivity test) (Fig. 2). This indicates that ventral
allidum firing tracks the incentive salience of reward-predictive
ues, and can integrate physiological needs to engage incentive
otivation in an ‘on the fly’ manner without time spent learning

ew cue-reward contingencies.
The ventral pallidum may code for incentive motivation in

umans as well. In one intriguing recent functional MRI study, ven-
ral pallidal activity was elevated during the presentation of images
ignaling that a relatively large amount of money would be earned,
hich also evoked a motivated behavioral response (lever squeeze)

o obtain the money [192]. Remarkably, ventral pallidal activity was
ven increased when the presentation of a relatively large money
eward was too fast to be consciously detected, even though it
till evoked a motivated behavioral response. Motivation-related
ctivations of ventral pallidum in neuroimaging studies have simi-
arly been observed with consciously detectable stimuli, including
mells predicting tasty food or pictures depicting food [193,194].

.2. Ventral pallidum neurons encode incentive sensitization and
istinguish ‘wanting’ versus ‘liking’ enhancements

In the neural recording studies above, incentive salience ‘want-
ng’ and hedonic ‘liking’ were enhanced together by natural
ppetite, but ‘wanting’ can be separately enhanced alone by
ther manipulations, such as mesolimbic dopamine activation
y amphetamine or psychostimulant drug-induced sensitization
105]. Can hedonic versus motivational features of reward codes
n neuronal firing be separately tracked or told apart by ventral
allidum circuits? The answer seems to be yes.

A recent study in our group found that sensitization of motiva-
ion ‘wanting’, but not ‘liking’, caused by repeated drug exposure is
ncoded in profiles of ventral pallidum neural activity [127] (Fig. 3).
irst, rats were trained to associate a series of two cues (CS+1
ollowed by CS+2) with a sucrose reward. They were then given
cute amphetamine injections, chronic intermittent amphetamine
njections to cause sensitization, or both, and examined for ven-
ral pallidum neuronal responses to reward cues in the context of
levated dopamine transmission. After sensitization, the response
rofile of ventral pallidum neurons shifted away from prediction
oding (maximal response to initial predictor CS+1) and towards
ncentive coding (maximal response to a CS+2 cue that occurred
ubsequently just before reward when motivation was highest),
ven though the sensitized rats had been drug-free for two weeks
rior to testing (Fig. 3). This incentive magnification change was

ot attributable to new learning as it occurred when the animals
ad no opportunity to experience new cue-reward pairings after
ensitization was induced. Acute administration of amphetamine
n the day of test similarly shifted neural responding toward the
ncentive cue, and combining acute amphetamine with prior sen-
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Fig. 2. Ventral pallidum hotspot neurons encode the incentive salience of cues and hedonic value of rewards. (Top) Neurons fire little to a learned cue predicting an unpalatable
salt taste, but fire in a phasic burst when the cue gains incentive value after sodium depletion and salt-appetite (raster and histogram traces show an example neuron recorded
during baseline homeostasis and another neuron recorded after salt depletion firing in response to the salt cue at time zero) [182]. This dynamic computation integrates prior
learned associations and physiological state to update incentive salience ‘on-the-fly’ and prior to ever re-experiencing the predicted taste. (Bottom) Normally, the unpalatable
salt taste evokes ‘disliking’ reactions (e.g. oral gaping) and evokes little ventral pallidum firing, but after sodium depletion the same taste evokes ‘liking’ reactions (e.g. tongue
protrusions) and bursts of ventral pallidal excitatory firing to compute magnified hedonic impact [180].

Fig. 3. Ventral pallidum neurons encode incentive sensitization. Mesolimbic dopamine stimulation after acute or repeated (sensitized) amphetamine injection increases
incentive salience coding in magnified phasic burst of firing of to an incentive cue (CS+2), but not maximally predictive cue (CS+1), in a cue series. When the cue sequence
is learned, ventral pallidum neurons fire little to the fully predicted CS+2 (shown at left is an example neuron). After acute or repeated amphetamine exposure to increase
‘wanting’, ventral pallidum neurons fire vigorous bursts of excitation to the same CS+2 incentive cue in an extinction session (shown in center is an example neuron recorded
after amphetamine sensitization) [127]. Profile analysis (Right) on responses to multiple stimuli shows that dopaminergic ‘wanting’ increases by sensitization or acute
amphetamine injection shift ventral pallidum firing away from a more predictive cue (CS+1) toward a incentive cue (CS+2), and fail to increase firing to the predicted UCS
reward. Similar magnification of incentive firing over prediction firing in ventral pallidum neurons occurs with dopamine or opioid stimulation directly in the nucleus
accumbens [195].
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itization biased the profile towards incentive responding most of
ll.

In a further study, we separated ‘liking’ and ‘wanting’ firing
odes in ventral pallidum more distinctly by enhancing them indi-
idually with different pharmacological manipulations [195]. We
sed neurochemically and neuroanatomically focused manipula-
ions of the nucleus accumbens to enhance ‘wanting’ only (with
opaminergic amphetamine microinjection) or to enhance ‘liking’
s well as ‘wanting’ (with opioid DAMGO microinjection). At the
ame time, we assessed phasic excitations in ventral pallidal firing
hat encode cue incentive salience and reward hedonics. Accum-
ens stimulation with dopamine or opioid agonists led to a striking
agnification of ventral pallidum phasic excitation peaks to an

ncentive CS+2 cue, without affecting excitation to the first and
aximally predictive CS+1 cue (nor to a CS-minus that lacked any

ncentive value), and did so on the very first cue presentations in
xtinction prior to re-learning or reward revaluation. Both DAMGO
nd amphetamine also increased consumption of a tasty choco-
ate candy as a behavioral consequence of heightened ‘wanting’.
y contrast, only opioid stimulation also enhanced hedonic ‘liking’
eactions to sucrose and caused ventral pallidum neurons to also
agnify their firing response to a sucrose reward. Amphetamine

y comparison completely failed to enhance either behavioral ‘lik-
ng’ reactions or ventral pallidal excitatory firing to sucrose. Our
esults suggested that the ventral pallidum may use separate pop-
lation and firing rate activity patterns to distinguish ‘wanting’
rom ‘liking’ enhancements. This would mean that ventral pal-
idum neurons may convey distinctly coded signals for ‘liking’
ersus ‘wanting’ features of reward enhancement to downstream
tructures, which might modulate decision making and behavioral
eactions appropriate to the particular reward component being
nhanced.

Reward cues also activate ventral pallidum in humans, and we

peculate that the incentive-coding patterns we have observed
n rats may underlie ventral pallidum blood flow activation to
rug reward cues in drug addicts that trigger motivation to take
rug again. Cue-triggered ‘wanting’ for drugs may be a very basic
esponse that does not need elaborate cognition. For example,

a
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p

ig. 4. Sagittal rodent brain diagram highlighting the ventral pallidum as a final pathw
ogether opioid hedonic hotspots in the posterior ventral pallidum and dorsal-rostral accu
ucleus. ‘Wanting’ systems (green) link together mesolimbic dopamine, and opioid mot
entral pallidum is also connected with mesolimbic-thalamocortical loops (pink) and ba
hart schematic shows ventral pallidum at an intersection of limbic connections with cog
ypothalamus; PFC, prefrontal cortex; STN, subthalamic nucleus; NAc, nucleus accumbens; V
arabrachial nucleus; Amyg, amygdala (For interpretation of the references to color in this
esearch 196 (2009) 155–167

hildress et al. [196] presented cocaine addicted subjects with
ictures of drug-associated cues (e.g. images of drug taking) that
ould not be consciously detected. Yet the images not only trig-
ered ventral pallidum activation (along with other limbic/cortex
ites), but the intensity of ventral pallidal (and amygdala) activa-
ion predicted later positive affective reactions to the same cues
hen they were consciously seen (specifically, facilitated correct

abeling of positive affective words). This shows that even subcon-
ciously detected drug cues can engage ventral pallidum activation
n addicts to promote motivational reactions, which may contribute
o exacerbation of drug taking in the presence of incentive cues.
ndeed, there is now a wealth of evidence that the ventral pal-
idum is an important structure for drug seeking, taking, and relapse
n animal models of addiction [81,83,90,91,111,131,154,197–200],
nd a key site of neuroadaptations following repeated drug
xposure that may contribute to sensitization, addiction, and
elapse vulnerabilities [201–207]. How incentive processing of
eward cues by ventral pallidum circuits contribute to drug
aking and addiction will be an important issue for future
esearch.

. Ventral pallidum roles in affiliation and sex

Another important natural reward for evolution and behav-
or is sex and social affiliation, and several studies have revealed

ventral pallidal involvement in those processes too. For exam-
le, in humans, ventral pallidum/ventral globus pallidus activity

s reported to increase during male sexual arousal [208], and
n response to subliminally presented pictures of happy human
aces or sexual images [196,209]. In the Callicebus Titi monkey, a

onogamous species of South American primate, males that are
o-habitating and pair bonded with their female mate show ele-
ated ventral pallidal glucose metabolism, which was interpreted

s implying a link between ventral pallidum neural activity and the
aintenance of male/female affiliation [210].
In rodents, an exciting body of work on the monogamous prairie

ole has demonstrated that transmission of the hormone vaso-
ressin in the ventral pallidum is especially critical in regulating

ay for limbic ‘liking’ and ‘wanting’ signals. ‘Liking’ systems (shown in red) link
mbens shell, and potential link with a GABAergic hedonic signal in the parabrachial
ivational signals in the accumbens and ventral pallidum, and larger circuits. The

sal ganglia or brainstem motor output (gray) to influence cognition and action. Pie
nitive, motor, and reward structures. PPT, pedunculopontine tegmentum; LH, lateral

TA, ventral tegmental area; SN, substantia nigra; mdThal, mediodorsal thalamus; PBN,
figure legend, the reader is referred to the web version of the article).
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ocial affiliation and pair bonding [211–214]. After co-habitating
nd mating with a female, monogamous male voles form a pref-
rence for that particular female over another, and vasopressin
n the ventral pallidum appears to play a critical role. Monoga-

ous male prairie voles have greater vasopressin V1a receptor
inding in the ventral pallidum compared to a non-monogamous
pecies of meadow vole in which a male may have multiple female
ates but not form any pair bonds [215]. Male prairie voles contain
greater density of V1a receptors in the ventral pallidum com-

ared to females [216], and active mating behavior by the male
ole engages vasopressin-dependant mechanism that increase Fos
xpression in the ventral pallidum [217]. Pair bonding can even
e enhanced in some prairie voles by directly stimulating vaso-
ressin V1a receptors in the ventral pallidum via viral vector gene
elivery of V1a receptors, which also causes male voles to increase
heir affiliative behavior towards other males [215]. Further, V1a
eceptor upregulation in the ventral pallidum can cause the sex-
ally promiscuous meadow vole to behave like a prairie vole and
orm a preference for a single familiar female [218].

However, at present it is too early to say if the ventral pallidum
ediates ‘liking’ and/or ‘wanting’, or learning, of affiliation and sex.

till, it is worth highlighting at this early stage that the ventral pal-
idum is a common site for enhancing at least two critical natural
ewards, both sex and food, as well as drug rewards.

. The ventral pallidum as a limbic final common pathway

To summarize, a growing body of work has demonstrated major
oles for the ventral pallidum in food reward, sex, social affilia-
ion, electrical brain stimulation reward, drugs of abuse, winning

oney, and other rewards. The ventral pallidum is a convergent
oint for limbic reward signals and an intermediate stage to diverse
ognitive, affective and motor processes. It is a central site for cod-
ng and causing enhancements of reward learning, hedonics, and

otivation (Fig. 4).
Its centrality in reward anatomy and function might be cap-

ured most comprehensively by describing the ventral pallidum as
‘limbic final common pathway’ for reward signals in the brain.

his concept borrows from Charles Sherrington’s early formula-
ion of “final common pathway” to describe spinal motor nuclei
s the last-stage through which signals must travel to influence
ovement [219]. Applied to limbic reward functions, the ventral

allidum might analogously be viewed as an essential convergent
oint for hedonic and motivational signaling pathways in the brain,
nd thus a final pathway for reward. This does not mean that reward
unctions are all contained within the ventral pallidum, nor that the
entral pallidum is necessarily the only pathway for reward to influ-
nce behavior or cognition. It simply suggests that reward pathways
onverge upon ventral pallidum, and that this funneling of signals
lays a special role in generating major reward components. As
ith motor nuclei for movement, the ventral pallidum as a limbic
nal pathway passes the tests of being necessary for reward (with-
ut it, hedonics and motivation cannot be enhanced), sufficient
o enhance reward (contains mechanisms that actively enhance
edonic impact and motivation), and a site of neural reward rep-
esentation (represents hedonics and motivation in patterns of
ctivity that can be sent to efferent target systems). These roles
istinguish the ventral pallidum as among the most crucial sites
or reward and motivation in the brain.
cknowledgements
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