
TLFeBOOK

Neural Engineering

TLFeBOOK

Computational Neuroscience
Terrence J. Sejnowski and Tomaso A. Poggio, editors

Neural Nets in Electric Fish, Walter Heiligenberg, 1991

The Computational Brain, Patricia S. Churchland and Terrence J. Sejnowski, 1992

Dynamic Biological Networks: The Stomatogastric Nervous System, edited by Ronald M.
Harris-Warrick, Eve Marder, Allen I. Selverston, and Maurice Moulins, 1992

The Neurobiology of Neural Networks, edited by Daniel Gardner, 1993

Large-Scale Neuronal Theories of the Brain, edited by Christof Koch and Joel L. Davis,
1994

The Theoretical Foundations of Dendritic Function: Selected Papers of Wilfrid Rall with
Commentaries, edited by Idan Segev, John Rinzel, and Gordon M. Shepherd, 1995

Models of Information Processing in the Basal Ganglia, edited by James C. Houk, Joel L.
Davis, and David G. Beiser, 1995

Spikes: Exploring the Neural Code, Fred Rieke, David Warland, Rob de Ruyter van
Steveninck, and William Bialek, 1997

Neurons, Networks, and Motor Behavior, edited by Paul S. Stein, Sten Grillner, Allen I.
Selverston, and Douglas G. Stuart, 1997

Methods in Neuronal Modeling: From Ions to Networks, second edition, edited by Christof
Koch and Idan Segev, 1998

Fundamentals of Neural Network Modeling: Neuropsychology and Cognitive Neuro-
science, edited by Randolph W. Parks, Daniel S. Levine, and Debra L. Long, 1998

Neural Codes and Distributed Representations: Foundations of Neural Computation,
edited by Laurence Abbott and Terrence J. Sejnowski, 1999

Unsupervised Learning: Foundations of Neural Computation, edited by Geoffrey Hinton
and Terrence J. Sejnowski, 1999

Fast Oscillations in Cortical Circuits, Roger D. Traub, John G. R. Jefferys, and Miles A.
Whittington, 1999

Computational Vision: Information Processing in Perception and Visual Behavior, Hanspeter
A. Mallot, 2000

Graphical Models: Foundations of Neural Computation, edited by Michael I. Jordan and
Terrence J. Sejnowski, 2001

Self-Organizing Map Formation: Foundations of Neural Computation, edited by Klaus
Obermayer and Terrence J. Sejnowski, 2001

Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Sys-
tems, Chris Eliasmith and Charles H. Anderson, 2003

TLFeBOOK

Neural Engineering
Computation, Representation, and Dynamics in Neurobiological Systems

Chris Eliasmith and Charles H. Anderson

A Bradford Book
The MIT Press
Cambridge, Massachusetts
London, England

TLFeBOOK

c� 2003 Massachusetts Institute of Technology
All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval) without
permission in writing from the publisher.

This book was typeset in Times by the authors using LYX and LATEX and was printed and bound in
the United States of America.

Library of Congress Cataloging-in-Publication Data

Eliasmith, Chris.
Neural engineering : computation, representation, and dynamics
in neurobiological systems / Chris Eliasmith and Charles H.
Anderson.

p. cm. – (Computational neuroscience)
“A Bradford book.”
Includes bibliographical references and index.
ISBN 0-262-05071-4 (hc.)
1. Neural networks (Neurobiology) 2. Neural networks (Computer

science) 3. Computational neuroscience. I. Anderson, Charles H.
II. Title. III. Series.

QP363.3 .E454 2002
573.8’5–dc21

2002070166

10 9 8 7 6 5 4 3 2 1

TLFeBOOK

To Jen, Alana, Alex, and Charlie

and

To David Van Essen

TLFeBOOK

This page intentionally left blank

TLFeBOOK

Contents

Preface xiii

Using this book as a course text xvii

Acknowledgments xix

1 Of neurons and engineers 1

1.1 Explaining neural systems 3

1.2 Neural representation 5
1.2.1 The single neuron . 9
1.2.2 Beyond the single neuron 11

1.3 Neural transformation 13

1.4 Three principles of neural engineering 15
1.4.1 Principle 1 . 16
1.4.2 Principle 2 . 17
1.4.3 Principle 3 . 18
1.4.4 Addendum . 18

1.5 Methodology 19
1.5.1 System description . 19
1.5.2 Design specification 21
1.5.3 Implementation . 21
1.5.4 Discussion . 22

1.6 A possible theory of neurobiological systems 23

I REPRESENTATION

2 Representation in populations of neurons 29

2.1 Representing scalar magnitudes 30
2.1.1 Engineered representation 30
2.1.2 Biological representation 33

2.2 Noise and precision 40
2.2.1 Noisy neurons . 40
2.2.2 Biological representation and noise 42

2.3 An example: Horizontal eye position 44
2.3.1 System description . 44
2.3.2 Design specification 46
2.3.3 Implementation . 47

TLFeBOOK

viii Contents

2.3.4 Discussion . 48

2.4 Representing vectors 49

2.5 An example: Arm movements 52
2.5.1 System description . 53
2.5.2 Design specification 54
2.5.3 Implementation . 55
2.5.4 Discussion . 55

2.6 An example: Semicircular canals 57
2.6.1 System description . 57
2.6.2 Implementation . 58

2.7 Summary 59

3 Extending population representation 61

3.1 A representational hierarchy 61

3.2 Function representation 63

3.3 Function spaces and vector spaces 69

3.4 An example: Working memory 72
3.4.1 System description . 73
3.4.2 Design specification 74
3.4.3 Implementation . 77
3.4.4 Discussion . 78

3.5 Summary 79

4 Temporal representation in spiking neurons 81

4.1 The leaky integrate-and-fire (LIF) neuron 81
4.1.1 Introduction . 81
4.1.2 Characterizing the LIF neuron 83
4.1.3 Strengths and weaknesses of the LIF neuron model . . . 88

4.2 Temporal codes in neurons 89

4.3 Decoding neural spikes 92
4.3.1 Introduction . 92
4.3.2 Neuron pairs . 94
4.3.3 Representing time dependent signals with spikes 96
4.3.4 Discussion . 103

TLFeBOOK

Contents ix

4.4 Information transmission in LIF neurons 105
4.4.1 Finding optimal decoders in LIF neurons 105
4.4.2 Information transmission 109
4.4.3 Discussion . 114

4.5 More complex single neuron models 115
4.5.1 Adapting LIF neuron 116
4.5.2 �-neuron . 118
4.5.3 Adapting, conductance-based neuron 123
4.5.4 Discussion . 126

4.6 Summary 127

5 Population-temporal representation 129

5.1 Putting time and populations together again 129

5.2 Noise and precision: Dealing with distortions 132

5.3 An example: Eye position revisited 136
5.3.1 Implementation . 136
5.3.2 Discussion . 137

5.4 Summary 139

II TRANSFORMATION

6 Feed-forward transformations 143

6.1 Linear transformations of scalars 143
6.1.1 A communication channel 143
6.1.2 Adding two variables 148

6.2 Linear transformations of vectors 151

6.3 Nonlinear transformations 153
6.3.1 Multiplying two variables 154

6.4 Negative weights and neural inhibition 160
6.4.1 Analysis . 161
6.4.2 Discussion . 166

6.5 An example: The vestibular system 168
6.5.1 System description . 169
6.5.2 Design specification 174

TLFeBOOK

x Contents

6.5.3 Implementation . 175
6.5.4 Discussion . 180

6.6 Summary 182

7 Analyzing representation and transformation 185

7.1 Basis vectors and basis functions 185

7.2 Decomposing � 192

7.3 Determining possible transformations 196
7.3.1 Linear tuning curves 200
7.3.2 Gaussian tuning curves 204

7.4 Quantifying representation 206
7.4.1 Representational capacity 206
7.4.2 Useful representation 208

7.5 The importance of diversity 210

7.6 Summary 216

8 Dynamic transformations 219

8.1 Control theory and neural models 221
8.1.1 Introduction to control theory 221
8.1.2 A control theoretic description of neural populations . . 222
8.1.3 Revisiting levels of analysis 225
8.1.4 Three principles of neural engineering quantified 230

8.2 An example: Controlling eye position 232
8.2.1 Implementation . 233
8.2.2 Discussion . 240

8.3 An example: Working memory 244
8.3.1 Introduction . 244
8.3.2 Implementation . 244

8.3.2.1 Dynamics of the vector representation 244
8.3.2.2 Simulation results 245

8.3.3 Discussion . 248

8.4 Attractor networks 250
8.4.1 Introduction . 250
8.4.2 Generalizing representation 254
8.4.3 Generalizing dynamics 256

TLFeBOOK

Contents xi

8.4.4 Discussion . 258

8.5 An example: Lamprey locomotion 260
8.5.1 Introduction . 260
8.5.2 System description . 261
8.5.3 Design specification 264
8.5.4 Implementation . 265
8.5.5 Discussion . 271

8.6 Summary 273

9 Statistical inference and learning 275

9.1 Statistical inference and neurobiological systems 275

9.2 An example: Interpreting ambiguous input 281

9.3 An example: Parameter estimation 283

9.4 An example: Kalman filtering 287
9.4.1 Two versions of the Kalman filter 288
9.4.2 Discussion . 291

9.5 Learning 293
9.5.1 Learning a communication channel 294
9.5.2 Learning from learning 298

9.6 Summary 300

Appendix A:
Chapter 2 derivations 301

A.1 Determining optimal decoding weights 301

Appendix B:
Chapter 4 derivations 303

B.1 Opponency and linearity 303

B.2 Leaky integrate-and-fire model derivations 303

B.3 Optimal filter analysis with a sliding window 305

B.4 Information transmission of linear estimators for
nonlinear systems 309

Appendix C:
Chapter 5 derivations 313

TLFeBOOK

xii Contents

C.1 Residual fluctuations due to spike trains 313

Appendix D:
Chapter 6 derivations 317

D.1 Coincidence detection 317

Appendix E:
Chapter 7 derivations 319

E.1 Practical considerations for finding linear decoders for � and ���� 319

E.2 Finding the useful representational space 323

Appendix F:
Chapter 8 derivations 327

F.1 Synaptic dynamics dominate neural dynamics 327

F.2 Derivations for the lamprey model 327
F.2.1 Determining muscle tension 327
F.2.2 Error . 329
F.2.3 Oscillator dynamics 331
F.2.4 Coordinate changes with matrices 332
F.2.5 Projection matrices . 333

References 335

Index 351

TLFeBOOK

Preface

This book is a rudimentary attempt to generate a coherent understanding of neurobiological
systems from the perspective of what has become known as ‘systems neuroscience.’ What
is described in these pages is the result of a five year collaboration aimed at trying
to characterize the myriad, fascinating neurobiological systems that we encounter every
day. Not surprisingly, this final (for now) product is vastly different from its ancestors.
But, like them, it is first and foremost a synthesis of current ideas in computational,
or theoretical, neuroscience. We have adopted and extended ideas about neural coding,
neural computation, physiology, communications theory, control theory, representation,
dynamics, and probability theory. The value of presenting a synthesis of this material,
rather than presenting it as a series of loosely connected ideas, is to provide, we hope,
both theoretical and practical insight into the functioning of neural systems not otherwise
available. For example, we are not only interested in knowing what a particular neuron’s
tuning curve looks like, or how much information that neuron could transmit, we want to
understand how to combine this evidence to learn about the possible function of the system,
and the likely physiological characteristics of its component parts. Attempting to construct
a general framework for understanding neurobiological systems provides a novel way to
address these kinds of issues.

Our intended audience is quite broad, ranging from physiologists to physicists, and
advanced undergraduates to seasoned researchers. Nevertheless, we take there to be three
main audiences for this book. The first consists of neuroscientists who are interested in
learning more about how to best characterize the systems they explore experimentally. Of-
ten the techniques used by neuroscientists are chosen for their immediate convenience—
e.g., the typical ‘selectivity index’ calculated from some ratio of neuron responses—but
the limitations inherent in these choices for characterizing the systemic coding properties
of populations of neurons are often serious, though not immediately obvious (Mechler and
Ringach 2002). By adopting the three principles of neural engineering that we present,
these sorts of measures can be replaced by others with a more solid theoretical foundation.
More practically speaking, we also want to encourage the recent trend for experimentalists
to take seriously the insights gained from using detailed computational models. Unfortu-
nately, there is little literature aimed at providing clear, general methods for developing
such models at the systems level. The explicit methodology we provide, and the many
examples we present, are intended to show precisely how these three principles can be
used to build the kinds of models that experimental neuroscientists can exploit. To aid the
construction of such models, we have developed a simulation environment for large-scale
neural models that is available at http://compneuro.uwaterloo.ca/.

The second audience consists of the growing number of engineers, physicists, and com-
puter scientists interested in learning more about how their quantitative tools relate to the
brain. In our view, the major barrier these researchers face in applying proven mathematical

TLFeBOOK

techniques to neurobiological systems is an appreciation of the important differences be-
tween biological and traditionally engineered systems. We provide quantitative examples,
and discuss how to understand biological systems using the familiar techniques of linear
algebra, signal processing, control theory, and statistical inference. As well, the examples
we present give a sense of which neural systems are appropriate targets for particular kinds
of computational modeling, and how to go about modeling such systems; this is important
for those readers less familiar with the neurosciences in general.

Our third audience is the computational neuroscience community; i.e., those familiar
with the kind of approach we are taking towards characterizing neurobiological systems.
Because we claim to develop a general approach to understanding neural systems, we sus-
pect that researchers already familiar with the current state of computational neuroscience
may be interested in our particular synthesis, and our various extensions of current results.
These readers will be most interested in how we bring together considerations of single
neuron signal processing and population codes, how we characterize neural systems as
(time-varying nonlinear) control structures, and how we apply our techniques for gener-
ating large-scale, realistic simulations. As well, we present a number of novel models of
commonly modeled systems (e.g., the lamprey locomotor system, the vestibular system,
and working memory systems) which should provide these readers with a means of com-
paring our framework to other approaches.

Computational neuroscience is a rapidly expanding field, with new books being pub-
lished at a furious rate. However, we think, as do others, that there is still something miss-
ing: a general, unified framework (see section 1.6 for further discussion). For instance,
past books on neural coding tend to focus on the analysis of individual spiking neurons
(or small groups of neurons), and texts on simulation techniques in neuroscience focus ei-
ther at that same low level or on higher-level cognitive models. In contrast, we attempt to
bridge the gap between low-level and high-level modeling. As well, we do not focus on
models of a specific neural system as a number of recent books have, but rather on princi-
ples and methods for modeling and understanding diverse systems. Furthermore, this work
is not a collection of previously published papers, or an edited volume consisting of many,
often conflicting, perspectives. Rather, it presents a single, coherent picture of how to un-
derstand neural function from single cells to complex networks. Lastly, books intended as
general overviews of the field tend to provide a summary of common single cell models,
representational assumptions, and analytical and modeling techniques. We have chosen to
present only that material relevant to constructing a unified framework. We do not want
to insinuate that these various approaches are not essential; indeed we draw very heavily
on much of this work. However, these are not attempts to provide a unified framework—
one which synthesizes common models, assumptions, and techniques—for understanding
neural systems. We, in contrast, have this as a central goal.

TLFeBOOK

The fact that there are so many book-length discussions of the topics we address should
serve as a warning: we are not providing a comprehensive overview of computational
neuroscience. But, given the prevalence of recent calls for a neuroscientific theory, we
think that trying to construct a unified approach is a useful undertaking. There are points
in the book where we make strong claims regarding the ability of the framework (and
underlying theory) to unify our understanding of neural systems. Often we do this for
rhetorical reasons: stating the strongest position is often a way to make the position
clear. When pushed, however, we refer to this framework as a ‘zeroth-order guess’ about
how neural systems function. We think, then, that there is lots of work left to do (see
http://compneuro.uwaterloo.ca/ for a long list). Nevertheless, we feel that even a
zeroth-order guess is better than no guess at all, and is likely, once articulated, to lead
to better guesses. As a result, even if we turn out to be terribly wrong, we do think this
framework is useful for organizing ideas about neurobiological systems. It has proven
immensely useful to us, we sincerely hope others will find some utility in it as well.

TLFeBOOK

This page intentionally left blank

TLFeBOOK

Using this book as a course text

The purpose of this book is to introduce our framework to currently active researchers in
neuroscience, and to those who may be interested in moving into the field (e.g., engineers,
physicists, or biologists). However, because there are not overly many textbooks covering
this material, and because we attempt to integrate many current ideas into a coherent
picture of neurobiological systems, we have found that this material is well-suited for use
as a course text. As such, we have developed a curriculum and programming tools for a
graduate-level course in computational neuroscience based on this book. These materials
include problem sets and solutions, course notes, examples, and a code library written in
MatLab R�. This material is available at http://compneuro.uwaterloo.ca/.

Students who completed the course have had diverse backgrounds and included psy-
chologists, physicists, engineers, mathematicians, and neuroscientists. Because this book
is intended for a wide audience, we often provide a brief introduction to topics relevant to
an analysis or simulation we are presenting. The inclusion of such introductory material
helps the book function as a course text. It also means that the prerequisites for a course
based on the book can be kept minimal. We suggest that students be familiar with linear
algebra and calculus. As well, familiarity with neuroscientific methodology, Fourier trans-
forms, Laplace transforms, and some basic MatLab skills serve to make the course more
manageable, but are not mandatory. Lastly, if using the book as a text, we suggest changing
the order in which the chapters are presented. This allows students to begin familiarizing
themselves with simulation techniques earlier in the course. As well, it allows students to
understand basic transformations before being confronted with complex representations.
For these reasons we prefer to present the chapters in the following order in a course set-
ting: 2, 4, 5, 6, 3, 7, 8, 9.

TLFeBOOK

This page intentionally left blank

TLFeBOOK

Acknowledgments

We are indebted to a great many people who have helped shaped our efforts—in many
different ways.

I am confident that this book would never have been finished without the support, in-
spiration, and patient ears of my friends and family: Jerry and Janet Elias, Steve, Kim,
Michael, and Jessica Elias, Barb, Gord, and Jodi Smith, and Jen, Alana, and Alex Elia-
smith. Thank you all so much. For their contributions ‘above and beyond the call of duty,’
special thanks to Janet Elias and Jen Eliasmith. As well, the unerring guidance and sup-
port provided by William Bechtel and Paul Thagard made this book a possibility. Finally,
valuable interactions with Chris Lee, Pete Mandik, Whit Schonbein, Chase Wrenn, and
Tadeusz Zawidski have significantly helped shape the final product.

—Chris Eliasmith

The encouragement and thoughtful suggestions of David Van Essen over the years of
our collaboration have significantly influenced the development of the ideas presented in
this book. My thanks to him for his support and for his friendship. I am pleased to ac-
knowledge the important assistance of dedicated and enthusiastic graduate students (in
chronological order): Bruno Olshausen, Subrata Rakshit, Hayit Greenspan, Michael Bar-
ber, Shahin Hakimian, Chris Eliasmith, Brandon Westover and Brian Fischer. In addition,
the members of the Computational Neuroscience Research Group (CNRG) at Washing-
ton University, Professor John Clark, Qingfeng Huang, Zoran Nenadic, Ali Mahani, Harris
Nover, and Libby Buchholtz, provided many hours of discussion, dedicated work, and sig-
nificant intellectual contributions. Finally, I wish to thank Pat Anderson for her support
over the many years we have been together.

—Charles H. Anderson

This book is by no means the result of the work of just two people. Many individ-
uals have contributed directly through their hard work or indirectly through challenging
and thought-provoking discussions or, in many cases, both. It is evidence of the interdis-
ciplinary nature of this kind of work that their ranks include physicists, mathematicians,
engineers, neuroscientists, and philosophers. Here they appear together: Kathleen Akins
and the members of the McDonnell Project in Philosophy and the Neurosciences, Dora
Angelaki, William Bechtel, Andy Clark, Carson Chow, Pat Churchland, Greg DeAnge-
lis, Peter Dayan, Jay Hegde, Steve Highstein, Brody Johnson, Dan Marcus, John Miller,
Bruno Olshausen, Alex Pouget, Jesse Prinz, Subrata Rakshit, Dave Redish, Sebastian Se-
ung, Larry Snyder, David Tank, Tom Thach, Dave Touretzky, Todd Troyer, Rachel Wong,
and Rich Zemel.

TLFeBOOK

Much of the work that underlies various sections of this book has been done by
members of the CNRG. In particular, we would like to thank Michael Barber (sections 9.2
and 3.2), Libby Buchholtz (sections 6.4 and 8.5), Shahin Hakimian (section 6.3), Qingfeng
Huang (section 5.2), Ali Mahani (section 9.5.1), and Brandon Westover (sections 4.3, 7.3,
8.5, and 9.4). Without their dedication and valuable discussion, much of this material would
not have developed as it has.

Few of the pieces of this project would have fallen into place in such a timely manner
were it not for the assistance of MIT Press, especially Barbara Murphy, Sara Meirowitz,
and Mike Rutter. As well, many of the pieces would not have been there to fall into
place without the guidance or data provided for various sections by Kathleen E. Cullen,
Steve Elias, Bard Ermentrout, Boris Gutkin, Christof Koch, and Hugh Wilson. Finally, we
would not have had the time and resources to even begin the book without the generous
funding of the National Science Foundation, the McDonnell Project in Philosophy and the
Neurosciences, the McDonnell Center for Higher Brain Function, the Social Sciences and
Humanities Research Council of Canada, and the Mather’s Foundation.

Despite these many helping hands, we have no doubt managed to insert various errors.
These alone are solely our responsibility.

—Chris Eliasmith and Charles H. Anderson, August 15, 2002

TLFeBOOK

1 Of neurons and engineers

Neurons are fascinating, wildly diverse devices. Some, like the giraffe primary afferent,
have axons that are 15 feet long. Others, like the typical granule cell, have axons that
are only about 100 microns long. Some, like the common pyramidal cells, produce and
transmit stereotypical action potentials (neural spikes) down their axon. Others, like the
retinal horizontal cells, communicate without such spikes. Some send action potentials at
speeds over 400 km/h. Others transmit spikes at a mere 2 km/h. Some, like the purkinje
cells, have about 200,000 input connections. Others, like the retinal ganglion cells, have
only about 500 such connections. There are literally hundreds and hundreds—by some
estimates thousands—of different kinds of neurons in the brain.1 And, taken together their
numbers are staggering: ���� neurons in the human brain; at least ���� synapses; 45 miles
of fiber; 100 different kinds of neurotransmitters. Such facts simply impress most people,
but they can be exceedingly daunting to those interested in explaining and understanding
neural systems.

How are we to get an explanatory grip on any system that is this complex? In this
book we pursue the idea that the quantitative tools typically associated with the field of
engineering hold great promise for understanding complex neural systems. Many of these
tools have their roots in theoretical physics, mathematics, and even pure logic, but it is
typically in the hands of engineers that they are applied to physical systems like the brain.
Once we consider brains as purely physical devices, it becomes perfectly natural to reach
into the engineer’s toolbox and grab ahold of information theory, control theory, signal
processing theory, and a host of other such formalisms in order to understand, characterize,
and explain the function of such systems. It is, after all, a functional understanding of the
brain that neuroscience is after—at least part of what neuroscientists want to know is how
neurons cooperate to give rise to complex behavior—and it is characterizing function that
is the engineer’s primary concern. Thus, the theoretical tools of engineering are likely
well-suited to helping us figure out what all of those neurons are doing.

Of course, these tools cannot be blindly applied to characterize neurobiological sys-
tems. For instance, merely reproducing, at some abstract level, a function of the brain (such
as playing chess) is not enough for neuroscience (although it might be for artificial intelli-
gence). Neuroscientists are interested in knowing how neurons give rise to brain function.
For their purposes, the vast amounts of knowledge they have culled in recent decades must
be respected when trying to understand neural systems; such neurobiological constraints
are some of the best constraints we have when trying to understand how brains give rise
to behavior. To illustrate, it is standard practise in communications theory to assume that

� There are at least 23 kinds of amacrine cells alone.

TLFeBOOK

2 Chapter 1

incoming signals are evenly sampled over the range of the signal. A number of optimal
decoding strategies have been devised that take advantage of this particular kind of sam-
pling. However, this kind of sampling is clearly not present in neural systems. Sampling
densities often change over the range of the signal, and the particular sample points can be
quite different even between two members of the same species. This is because neurons
are diverse, unlike the typical components of artifactual communications systems. Thus,
looking to the actual constraints respected (or not) by neurobiological systems is important
for applying various mathematical tools in the appropriate manner.

In what follows, we are committed to devising a neuroscientifically respectable ap-
proach to modeling neurobiological systems. Being concerned with actual neural systems
means embracing all of the ‘messiness’ of such systems. Such messiness exists because
brains are natural physical systems whose functioning is exquisitely shaped by real-world
environments. Unlike their artifactual counterparts, they have not been designed to function
like theoretical computational systems such as Turing machines. This does not mean that
computational theory isn’t useful, it just means that it shouldn’t be taken at face value. We
need to adopt and adapt the engineer’s tools in order to successfully quantify the function
of neural systems. So, while brains are first and foremost implemented computational sys-
tems, and there are extensive tools that have been developed for quantifying such computa-
tional systems, brains respect a set of design constraints significantly different from those
typically respected by engineered systems. Like mother nature, an engineer is a practical
scientist who has to build things that work. But mother nature, unlike an engineer, does not
rely on carefully manufactured, fault tolerant, and nearly identical parts.

These considerations will come as no surprise to some. Indeed, engineering tools have
been successfully applied to neural systems for many years (Fitzhugh 1958). Information
theoretical analyses of spike trains (Rieke et al. 1997), basis function characterizations
of neural representations (Poggio 1990), and control theoretic characterizations of neural
systems (Wolpert and Kawato 1998), have all resulted in sophisticated, biologically con-
strained computational models of neurobiological systems. However, much of this work
has been carried out in relative isolation: those using information theory do not seem to
be talking to those doing basis function research or using control theory, and vice versa.
One of our main goals in this book is to provide a synthesis of these approaches to under-
standing the brain. Although determining how such seemingly disparate research programs
are related often requires significant extrapolation, we are not trying to provide new tools.
Rather, we are trying to articulate a new way to use them together, and we are hoping to
make them available to new users.

In order to accomplish these goals we adopt the terminology of both engineers and
neuroscientists, but we assume minimal background in either engineering or neuroscience
on the part of the reader. So, when introducing our framework, or discussing specific

TLFeBOOK

Of neurons and engineers 3

examples of its application, we provide: 1) the relevant neuroscientific details needed to
understand the new way of applying these tools to neurobiological systems; and 2) the
relevant technical details needed to introduce these tools to new users. We have taken
this approach because we think the communication between neuroscientists and engineers
needs to be strengthened. We think there are likely benefits to both parties: engineers may
come to understand novel computational strategies and sharpen existing analytical tools;
and neuroscientists may come to a more precise understanding of neurobiological function
and be better able to direct future experimentation.

These are goals that can be accomplished without a perfect understanding of neuro-
biological systems; which is why we have some hope of success. As necessary, we make
simplifications, approximations, and guesses that, in the long run, destine our models to
function differently than the real neural systems they are intended to model.2 These as-
sumptions are generally due either to a lack of neuroscientific knowledge, or a limitation
of current engineering tools. This is, we take it, further evidence that neuroscience and
engineering are in an excellent position to be mutually beneficial. In particular, making
assumptions has clear benefits to both engineers and neuroscientists as they can guide ex-
periments to gain the facts that are missing, help determine what kinds of facts are the most
useful, tell us what kinds of analytical tools are needed, and help us better understand how
to apply the tools available.

In sum, what we present in this book is a principled, unified approach to understanding
neurobiological systems that employs the quantitative tools of engineers, respects neuro-
scientific results, and should be of mutual benefit to neuroscientists and engineers. In the
remainder of this chapter, we provide an overview of our approach. In the remainder of the
book, we provide the details and examples that demonstrate how the approach described
in this first chapter is supposed to work.

1.1 EXPLAINING NEURAL SYSTEMS

Neural systems are amazingly adept at solving problems. Seagulls open shellfish by
dropping them on rocks, or even in front of moving cars (Grandin and Deesing 1998).
Bees excel at finding their way through natural environments, and communicating what
they learned on the trip (Gould 1975). Rats have an excellent sense of direction, even in
complete darkness (Redish 1999). Primates are so good at dealing with problems that they
have learned to fashion tools to help themselves cope (McGrew 1992). Being interested
in neurobiology means being interested in providing explanations of how these diverse

� This too, may be considered in the spirit of engineering. As the apocryphal bumper sticker famously notes:
“Engineers are approximately perf ect”.

TLFeBOOK

4 Chapter 1

kinds of nervous systems give rise to such interesting, proficient behaviors. Of course,
neuroscientists and others have been providing such explanations, whether good or bad,
for decades. One fairly typical aspect of these explanations is that they invoke the notion of
representation. Representations, broadly speaking, serve to relate the internal state of the
animal to its environment; they are often said to ‘stand-in for’ some external state of affairs.
At least since Hubel and Wiesel (1962), neuroscientists have talked of neurons representing
their environment. Current discussions in neuroscience continue to rely heavily on the
notion (see, e.g., Desimone 1991; Felleman and Essen 1991).3

Neuroscientists are by no means the only scientists to use the term ‘representation’ in
this way. Indeed, the notion of a ‘mental representation’ has a two thousand year history
in Western thought (Watson 1995). The explanatory power of representations comes from
the fact that they can be manipulated internally without manipulating the actual, external,
represented object. The benefits of being able to do this range from simply saving energy to
being able to generate life-saving predictions. In general, then, representations help solve
problems. So, it is hardly surprising that this notion is used by neuroscientists to explain
the behavior of neurobiological systems.4

While representations are an important ingredient of the kinds of explanations that
neuroscientists are interested in, they are not the only ingredient. There would be little
interesting behavior produced by a neurobiological system that was simply ‘filled’ with
representations. Rather, we also need to understand how representations are manipulated,
exploited, related, updated, and so on. That is, we need to characterize how representations
are transformed such that they are useful. In order to recognize an object, for example, the
retinal image must, in some sense, be compared to past experiences (hence ‘re-cognize’).
Those past experiences are not stored as retinal images. Instead, they have been trans-
formed into a form that aids recognition; irrelevant features are ignored, noise is eliminated,
and metrics along various dimensions are extracted. As well, similar transformations must
be carried out on the current retinal image in order for such a comparison to occur. All
of this work can be understood in terms of transformations from one representation into
another. Consider also a more behavior-oriented example; reaching for an object. In order
to know where the object is, an animal must rely on information regarding the orientation

� A search of PubMed abstracts using “representation and neurons” results in over two thousand hits (see
http://www.ncbi.nlm.nih.gov/PubMed/).
� Of course, representational explanations are not the only kinds of explanations that neuroscientists are inter-
ested in. There are numerous questions concerning how neurobiological systems develop, what kinds of chemicals
affect neural functioning, how the basic biological mechanisms supporting neuron activity function, and so on.
These kinds of questions may need different kinds of explanations. However, the focus of this book is on what
is often called ‘systems’ neuroscience, the part of neuroscience concerned with explaining the behavior of the
(average, adult) neurobiological system in terms of its components. In this context, representational explanations
so far seem to be the best kind of explanation available.

TLFeBOOK

Of neurons and engineers 5

of the eyes, head, and body. In this case we can think of the retinal image as presenting the
initial ‘eye-centered’ information regarding the position of the object, which needs to be
eventually translated into arm-centered information in order to give rise to the appropriate
reaching action. Again, this kind of change of coordinate systems can be understood in
terms of the transformation of internal, neural representations.

So, we take the central problem facing neuroscientists to be one of explaining how
neurobiological systems represent the world, and how they use those representations,
via transformations, to guide behavior. As a result, we have divided the book into two
main parts. The first part, consisting of chapters 2–5, is concerned with characterizing
neural representations. The second part, consisting of chapters 6–9, is concerned with
understanding transformations of such representations. In the next two sections we provide
a brief overview of our approach to this problem. As will become clear, despite this
preliminary distinction between representation and transformation, they are intimately
related.

1.2 NEURAL REPRESENTATION

The main problem regarding mental representation, both historically and for contemporary
philosophers of mind, is to determine the exact nature of the representation relation;
that is, to specify the relation between, and representationally relevant properties of,
things ‘inside the head’ and things ‘outside the head’. The traditional approach to solving
this problem is to consider the data (broadly construed) available from metaphysics,
introspection, psychology, and more recently neuroscience, in order to deduce: 1) the
representation relation; and 2) ways of determining what things are representations and
what things are represented. However, we do not take this approach. Rather, we define
outright the representational relationship and its relata, and see if our definition does the
explanatory work that is needed. We happen to think that, as a matter of fact, our definition
of representation does speak to the problems of mental representation that arise when
adopting the traditional approach, but showing that is beyond the scope of this book (see
Eliasmith 2000 for a detailed discussion). So, we will not discuss, except in passing, how
to determine what things are representations and what things are represented. Rather, we
take the standard kinds of representational claims that neuroscientists make more-or-less
at face value, and show how our account makes those claims precise. So, for example,
we take it (at least initially) that neural firings represent the stimulus that causes them,
and we presume that neural populations represent the external objects or variables that
the population activity is correlated with. In both cases, we use our definition to give an
explanatorily and predictively useful account of what it means to make those claims. And,
in both cases, we adjust the claims to make them more theoretically sound.

TLFeBOOK

6 Chapter 1

In order to precisely define the representation relation we turn to the quantitative tools
of engineering. Specifically, we believe that there is a close tie between neural representa-
tions as understood by neuroscientists and codes as understood by communications engi-
neers (Reza 1961). Codes, in engineering, are defined in terms of a complimentary encod-
ing and decoding procedure between two alphabets. Morse code, for example, is defined
by the one-to-one relation between letters of the Roman alphabet, and the alphabet com-
posed of a standard set of dashes and dots. The encoding procedure is the mapping from
the Roman alphabet to the Morse code alphabet and the decoding procedure is its inverse
(i.e., the mapping from the Morse code alphabet to the Roman alphabet).

Representations, in neuroscience, are seldom so precisely defined but there are some
commonalities between this notion of a code and the typical use of the term ‘representa-
tion’. For instance, the term ‘representation’ is usually used to denote one or more neural
firings from one or more neurons. For example, a neuron is said to represent a face at a
certain orientation if it fires most strongly when the animal is presented with a face at that
orientation (Desimone 1991). However, neural representations tend to be graded represen-
tations; i.e., a neuron fires more or less strongly depending on the nearness of the stimulus
to what is called its ‘preferred’ stimulus (that is, the stimulus that causes it to have the
highest firing rate). Neuroscientists are interested in characterizing the relation between
this graded representation and stimuli that evoke it. In fact, this standard description of
neural behavior maps quite nicely onto the notion of encoding in engineering: neural fir-
ings encode properties of external stimuli.

However, in order to characterize the representation relation in a manner similar to
the way communications engineers characterize codes, we must also identify the decoding
procedure. This is a surprisingly natural constraint on representation in neural systems. If
there is a neuron that initially seems to fire most strongly to a face at a certain orientation,
then it must be used by ‘downstream’ processes in order for the claim that it actually
represents that orientation to make any sense. If the previously described neural firing was,
in fact, used by the system to determine eye orientation (and it just so happened that in
the initial experiment face orientation and eye orientation covaried because the eyes were
always facing forward), then the best case could be made for it representing eye orientation
(given subsequent, better controlled experiments), and not face orientation. Of course,
what it means for a downstream system to use these neural firings is that the downstream
system can extract (i.e., decode) that particular information (e.g., eye orientation) from
those neural firings. This holds as well for graded representations as for any other kind
of representation. So decoding is as important to characterizing neural representations as
encoding (we return to these issues in chapter 6).

Now, in order to fully characterize neural representation as a code, we need to specify
the relevant alphabets. A problem arises for neural representation here because there are so

TLFeBOOK

Of neurons and engineers 7

many different possible alphabets that can be identified. For instance, if we are interested
in the representations of individual retinal ganglion cells, it seems that something like
light intensities at certain retinal locations and spike trains of single neurons would be the
relevant alphabets. In contrast, if we are interested an entire cortical area, like the primary
visual cortex, it seems that something more like color, spatial frequency, intensity, etc.
over the whole visual field and spike trains of large populations of neurons would be the
relevant alphabets. The alphabets in these cases are extremely different. Nevertheless, if
we are interested in a general understanding of neural representation (i.e., a general means
of finding encoding and decoding rules), we can find general commonalities between
these alphabets. Namely, we can understand these behaviors as relating neural responses
(alphabet 1) and physical properties (alphabet 2).

In fact, we think it is possible to be a bit more specific. Neuroscientists generally
agree that the basic element of the neural alphabet is the neural spike (see, e.g., Martin
1991, p. 334). However, it may be that the neural alphabets that are actually used include
the average production rate of neural spikes (i.e., a rate code), specific timings of neural
spikes (i.e., a timing code), population-wide groupings of neural spikes (i.e., a population
code), or the synchrony of neural spikes across neurons (i.e., a synchrony code). Of these
possibilities, arguably the best evidence exists for a combination of timing codes (see
Rieke et al. 1997 for an overview) and population codes (see Salinas and Abbott 1994;
Seung and Sompolinsky 1993; and Abbott 1994 for an overview).5 For this reason, we
take these two kinds of basic coding schemes to comprise the alphabet of neural responses
(i.e., alphabet 1).

However, it is much more difficult to be any more specific about the nature of the alpha-
bet of physical properties. We can begin by looking to the physical sciences for categories
of physical properties that might be encoded by nervous systems. Indeed, we find that
many of the properties that physicists traditionally identify do seem to be represented in
nervous systems; e.g., displacement, velocity, acceleration, wavelength, temperature, pres-
sure, mass, etc. But, there are many physical properties not discussed by physicists which
also seem to be encoded in nervous systems; e.g., red, hot, square, dangerous, edible, ob-
ject, conspecific, etc. Presumably, all of these latter ‘higher-order’ properties are inferred
on the basis of (i.e., are the results of transformations of) representations of properties more
like those that physicists talk about. In other words, encodings of ‘edible’ depend, in some
complex way, on encodings of more basic physical properties like wavelength, tempera-
ture, etc. Given this assumption, our focus is (as it is in neuroscience, generally) on trying
to understand how nervous systems encode the more basic physical properties. Eventually,

� For a demonstration that rate codes are a specific instance of timing codes see Rieke et al. (1997). For empirical
evidence that synchrony codes are not used by nervous systems see Kiper et al. (1996) and Hardcastle (1997).

TLFeBOOK

8 Chapter 1

however, we need to be able to explain how the property of being edible, or being an ob-
ject is encoded by neurons. We think that this framework is flexible enough to help with
this problem, but for the time being we focus our attention on characterizing more basic
physical properties, where we believe successes can be more convincingly demonstrated.

This, then, is how ‘neural representation’ in neuroscience can be defined analogously to
how ‘codes’ are defined in communications engineering. To recap, neurons encode phys-
ical properties into population-temporal neural activities that can be decoded to retrieve
the relevant information. However, there are also important differences between engi-
neered codes and neural representations. Perhaps most importantly, the former are specified
whereas the latter are discovered. So there can be (and should be) a lot of debate concerning
what is actually represented by a given neuron or neural population. Even without wading
into the philosophical quicksand that surrounds such representational claims, we can dis-
cover something important about the proposed definition of representation. That is, there is
bound to be some arbitrariness to the decoding we pick and thus the claims that we make
regarding representation in neural populations. This is especially true at the beginning of
our explorations of neural systems.

There are two sources of this seeming arbitrariness. First, since knowing what is
represented depends in part on how it is subsequently used, it seems like we already have
to know how the system works in order to know what it represents. But, of course, how
the system works is precisely what we are trying to figure out when we are talking about
representation. This problem seems much less of an obstacle once we realize that many
difficult explanatory problems are resolved by making guesses about how things work and
then testing those guesses (this is just the idealized ‘scientific method’). So, although the
‘fact of the matter’ about what is represented will only be resolved once we have a fairly
comprehensive understanding of what is actually represented in the brain, this should not
be taken to be an insurmountable difficulty, or viciously circular. Specifically, it does not
mean that our interim hypotheses are wrong, just that they might be (which is why they are
hypotheses). In effect, what is ‘really’ represented is whatever is taken to be represented in
a more-or-less complete, coherent, consistent, and useful theory of total brain function—
a theory at least many decades away. But this does not mean that it is pointless to make
representational claims now; in fact, making such claims is an essential step towards such
a theory.

The second source of seeming arbitrariness stems from the fact that information
encoded by a neural population may be decoded in a variety of ways. To see why,
consider a neural population that encodes eye velocity. Not surprisingly, we can decode the
information carried by this population to give us an estimate of eye velocity. However, we
can also decode that same information to give us an estimate of a function of eye velocity
(e.g., the square). This is because we can essentially ‘weight’ the information however

TLFeBOOK

Of neurons and engineers 9

we see fit when decoding the population activity; different weightings result in different
decoded functions. Since representation is defined in terms of encoding and decoding, it
seems that we need a way to pick which of these possible decodings is the relevant one for
defining the representation in the original population. We resolve this issue by specifying
that what a population represents is determined by the decoding that results in the quantity
that all other decodings are functions of. We call this the ‘representational decoding’. Thus,
in this example, the population would be said to represent eye velocity because eye velocity
and the square of eye velocity are decoded. Things are not quite so simple because, of
course, eye velocity is also a function of the square of eye velocity. This problem can
be resolved by recalling considerations brought to bear on the first source of ambiguity;
namely that the right physical quantities for representation are those that are part of a
coherent, consistent, and useful theory. Because physics (a coherent, consistent, and useful
theory) quantifies over velocities (and not squares of velocities), so should neuroscience
(as this renders science as a whole more coherent, consistent and useful).

While these considerations may seem distant from empirical neuroscience, they play
an important role in specifying what is meant by claims that a neuron or neural population
is representing the environment; claims that empirical neuroscientists make all the time.
So, throughout the course of the book we revisit these issues as various examples and
analyses are presented that provide greater insight into the nature of neural representation.

In sum, there are good reasons to think that neuroscientists can and should rigorously
define the notion of neural representation along the lines that engineers have defined the
notion of codes.6 Specifically, both encoding and decoding are important for defining neu-
ral representation, and the relevant alphabets are neural activities and physical properties.
There are important differences between neural representation and engineered codes that
raise important theoretical issues regarding the nature of neural representation. Neverthe-
less, considerations from engineering provide an excellent starting point for characterizing
neural representation. In the next two sections we present more detail on how coding theory
can play this role.

1.2.1 The single neuron

To adopt an engineering perspective regarding neural function, we can begin by asking:
What kind of physical devices are neurons? Fortunately, there is some consensus on an
answer to this question; neurons are electro-chemical devices. Simpler yet, the behavior
of single neurons can be well-characterized in terms of their electrical properties. In fact,
detailed, quantitative, and highly accurate models of single cell behavior have been around

� We are by no means the first to suggest this (see, e.g., Fitzhugh 1958; Rieke et al. 1997; Abbott 1994; Seung
and Sompolinsky 1993).

TLFeBOOK

10 Chapter 1

for about 50 years, and continue to be improved (see Bower and Beeman 1995 for a history
and some recent models). By far the majority of vertebrate neurons can be understood as
physical devices that convert an ‘input’ voltage change on their dendrites into an ‘output’
voltage spike train that travels down their axon. This spike train is the result of a highly
nonlinear process in the neuron’s soma that relies on the interaction of different kinds of
voltage-gated ion channels in the cell membrane. These spike trains then cause further
electrical changes in the dendrites of receiving (i.e., postsynaptic) neurons.

The dendrites themselves have active electrical properties similar to those in the soma,
which result in a current flowing to the soma from the dendrites.7 The soma voltage itself
is determined by the current flowing into the soma from the dendrites, as well as active
and passive membrane resistances and a passive membrane capacitance. Typically, the
passive membrane time constant in the soma (determined by the passive resistance and
capacitance) is on the order of about 10 ms. This time constant effectively characterizes
the time-scale of the ‘memory’ of the soma with respect to past signals. Thus, the signal
generation process only ‘remembers’ (or is sensitive to) dendritic inputs that occurred in
the very recent past—perhaps as long ago as 200 ms, but more typically in the tens of
milliseconds.8 So, considered as electrical devices, neurons have highly nonlinear input
processes (at the dendrites), highly nonlinear output processes (in the soma, resulting in
voltage spike trains), and a fairly short signal memory (in both dendrites and at the soma).

Because neurons can be characterized as electrical devices that transmit signals in
this way, it is fairly natural to analyze their behavior using the tools of signal processing
theory. In other words, given this characterization neurons can be directly analyzed as
information processing devices. Adopting this perspective leads to the insight that neurons
are effectively low-precision electrical devices that transmit about 1–3 bits of information
per neural spike, or a few hundred to a thousand bits per second (see section 4.4.2). This
means that modeling their output using 16 bit floating point numbers updated at hundreds
of megahertz—as those in the artificial neural net community tend to do—is not a good
way to characterize real, neurobiological representation. We are concerned with neural
representation only from this combination of a biological and engineering perspective; i.e.,
understanding real neurons as electrical devices.

� Although we begin by assuming that dendritic contributions are linear, we discuss a means of modeling the
likely dendritic nonlinearities in section 6.3.
� Of course, the dendrites themselves have a longer memory, commonly characterized by a synaptic weight
(which can change due to learning). However, even in the dendrites, there is a sense in which the memory of
recent electrical input decays within about 200 ms. Specifically, if we distinguish the synaptic weight (which
changes slowly) from the postsynaptic current (which changes rapidly as spikes are received), as most models do,
then the memory of activity is short (i.e., on the order of the time constant of the postsynaptic current). Because
synaptic weights change slowly, they can be considered fixed on the time-scale of the synaptic currents and
somatic spikes. Given the large difference in time scales, synaptic weights can therefore be considered separately
from dendritic postsynaptic currents. In particular, the weights can be treated as a simple multiplier, or gain, on a
stereotypical postsynaptic response.

TLFeBOOK

Of neurons and engineers 11

Nevertheless, it is useful to examine how real neurons, considered as information
processors, are analogous to transistors on silicon computer chips. Like transistors, neurons
are: 1) electrical devices; 2) highly nonlinear; and 3) signal/information processors. These
similarities make it very natural to use the kinds of mathematical tools that have been used
by engineers in the past to understand transistor signal processing in order to understand
neurons. However, we must bear in mind that, unlike transistors, neurons: 1) have very
short memories; 2) output voltage spikes; 3) are heterogeneous; and 4) are biological (i.e.,
not manufactured). These differences again make it clear that we have to be careful exactly
how we apply engineering tools to understanding neurobiology. In chapter 4, we discuss
a means of characterizing neurons as signal processors with these differences in mind
and using both simple and realistic neural models. Because of the diversity of models
we consider, it becomes clear that our approach does not rely on the functioning of specific
kinds of neurons (or neural models). This helps make the approach a general one. And,
more importantly, the insights gained by understanding single neurons as information
processors are essential for putting them together to build realistic, large-scale models.

1.2.2 Beyond the single neuron

Despite our discussion of single neuron function, the focus of this book is definitively
not on the analysis of single neurons (c.f. Koch 1999; Wilson 1999b; Rieke et al. 1997).
Rather, it is on understanding how groups or populations of neurons can be characterized
as working together to support neural representation and transformation. To this end, we
begin our discussion of representation with population-level considerations (in chapter
2) before worrying about the details of information processing in individual neurons (in
chapter 4). After developing these two aspects separately, we combine them to give a
general description of ‘population-temporal’ representation (in chapter 5). As we show,
describing population coding more-or-less independently of the specifics of individual
neuron function provides the flexibility to model many levels of representational detail
concurrently in a single model.

Because our focus is on population representation, we go to some length to show that
having to depend on highly nonlinear processing elements (i.e., the neurons), does not
necessarily result in difficult-to-analyze representations. This result is not too surprising
if we again consider the analogy between neurons and transistors. Binary representations
in computers rely on encoding signals into ‘populations’ of highly nonlinear processing
elements (i.e., the transistors). Nevertheless, these signals are decoded using a simple linear
decoder (see section 2.1.1). Similarly, we show that considering populations of nonlinear
neurons can result in good, simple, linearly decodable representations (see section 4.3.2).
Furthermore, as more neurons are included in the representation, it becomes even better;
but only if the resulting population is heterogeneous (i.e., has a range of neuron properties).

TLFeBOOK

12 Chapter 1

In other words, population activity can be linearly decoded to give an increasingly accurate
indication of what was originally (nonlinearly) encoded, with an increasing number of
heterogeneous neurons.

There are two important results here. First, it is extremely fortunate that we are able to
extract the information that was nonlinearly encoded using a linear decoder because that
allows many of the tools of linear signals and systems theory, a very well-developed and
understood field in engineering, to be at our disposal. Second, the often underemphasized
property of the heterogeneity of neural systems become central. Given this perspective,
the heterogeneity of neural populations can be explained from a functional point of view;
in fact, heterogeneity becomes indispensable for a good representation (see section 7.5).
This has significant consequences for both experimentalists and theoreticians. Specifically,
this result shows that it is more appropriate for experimentalists to report the distributions
of neuron response properties, rather than presenting a few ‘typical’ (i.e., best) neurons
in detail. It is more appropriate because it is the distribution that provides insight into
the kind of representation employed by, and the function of, the system under study (see
sections 7.4 and 7.3). For theoreticians this result means that assuming that every neuron
in a population is identical is going to give significantly misleading results, despite such
assumptions making the system mathematically simpler to handle.

The sensitivity of neural representation to population-level properties like heterogene-
ity and the number of neurons suggests that it is most useful to think of neural represen-
tation in terms of populations, rather than in terms of single neurons. Thus, we argue that
it the fundamental unit of signal processing in the nervous system is the simplest neural
population (a neuron pair), rather than the single neuron (see section 4.3.2).

Adopting this perspective on neural representation has some useful pragmatic results.
In particular, focusing on population coding permits us to consider a given model with
varying degrees of detail. We can, for instance, build a simulation using only population
representations, ignoring the details of individual neurons. Or, we can build the same simu-
lation using neural-level representations and including whatever degree of biological detail
is appropriate. Or, we can build that same simulation using both kinds of representation
concurrently.9 This flexibility is useful because it addresses an important need in neuro-
science: “Ideally, we wish to be able to move smoothly between levels of models and to
understand how to reduce systematically more complex models into simpler forms that
retain their essential properties” (Marder et al. 1997, p. 143). Our analysis of representa-
tion addresses this need by concurrently supporting various levels of representation; from
highly abstract population representations to the single cell representations of detailed con-

� The simulation package that we have released with this book supports such multi-level simulations. It can be
found at http://compneuro.uwaterloo.ca.

TLFeBOOK

Of neurons and engineers 13

ductance models. When formalizing these representational levels, we discuss how to define
a representational hierarchy that spans the levels of biological structure from single neu-
rons through networks and maps to brain areas. To preview, this hierarchy begins with
scalar representations, like those found in nuclei prepositus hypoglossi for controlling hor-
izontal eye position (sections 2.3, 5.3, and 8.2). It then incorporates slightly more complex
vector representations, like those found in motor cortex for controlling arm motion (section
2.5) and those found in vestibular nucleus for representing angular velocity and linear ac-
celeration of the head (sections 6.5). Lastly, we use the hierarchy to characterize functional
representations, like those found in lateral intraparietal cortex (sections 3.4 and 8.3). De-
spite our not providing examples of the hierarchy past this specific representational level,
we show how it is straightforward to generalize these examples to more complex repre-
sentations (like vector fields). While it is unlikely that there is a precise relation between
such a representational hierarchy and biological structure, being able to build a general and
flexible hierarchy proves useful for characterizing such structure at many different levels.

1.3 NEURAL TRANSFORMATION

In part II of this book we show that our characterization of neural representation paves
the way for a useful understanding of neural transformation. This is largely because
transformation, like representation, can be characterized using linear decoding. However,
rather than using the representational decoder discussed earlier, we use what we call a
transformational decoder. The contrast between these two kinds of decoders lies in the
fact that, when performing a transformation on encoded information, we are attempting to
extract information other than what the population is taken to represent. Transformational
decoding, then, is not a ‘pure’ decoding of the encoded information. So, for example,
if we think that the quantity � is encoded in some neural population, when defining the
representation we identify the decoders that estimate � (i.e., the information that is taken
to be ‘primarily’ encoded by that population). However, when defining a transformation
we identify decoders that estimate some function, ����, of the represented quantity, �.
In other words, we find decoders that, rather than extracting the signal represented by a
population, extract some transformed version of that signal.

Defining transformations in this way allows us to use a slight variation of our represen-
tational analysis to determine what transformations a neural population can, in principle,
support (see section 7.3). This allows us to determine how well a given neural popula-
tion can support the transformations defined by a particular class of functions. This can
be very important for constraining hypotheses about the functional role of particular neu-
ral populations that are observed in a neurobiological system. We show that neurons with

TLFeBOOK

14 Chapter 1

certain response properties support particular transformations better than others. This is
a good reason to think that populations with those properties are involved in computing
certain transformations rather than others. In other words, this approach enables a good,
quantitative characterization of the functional potential of sets of neurons.

Furthermore, defining transformations in this way permits us to analytically find
connection weights in a biologically plausible network. So, rather than having to train a
fully connected network using a learning rule (which might prove difficult if not impossible
for large-scale simulations), we can define the representations we take to be in the system
and the transformations that those representations undergo, and then directly find the
weights to implement those transformations. This is beneficial in that it allows us to
test explicit hypotheses about the function of a particular neural system, without having
to worry about how to train that system to perform some function. As well, there is a
significant practical benefit, in terms of computational savings, in not having to simulate
large training regimes for complex models. Notably, this does not mean that learning is
somehow antithetical to our approach (we discuss the relation of this approach to learning
in chapter 9), it merely means that we do not need to rely on training to have interesting,
biologically plausible models.

However, this is not the whole story about neural transformation. Transformations,
as we have discussed them so far, are just like computing some function of �. However,
this kind of static computation of a function is not, alone, a good description of the kinds
of transformations neurobiological systems typically exhibit. Animals have evolved in a
dynamic environment and are themselves dynamic systems. So, it is essential to be able to
characterize the dynamics of the transformations that neural populations support. Again,
engineers have a number of useful quantitative tools for describing dynamic systems. In
particular, modern control theory has been successfully used by engineers to describe a
huge variety of dynamic systems, both natural and artificial. In order to apply these same
techniques to neural systems, we must identify the ‘state vector’ (i.e., the real-valued vector
that tracks the system’s internal variables) of the system. In chapter 8 we argue that neural
representations can play this role. Given our analyses of neural representation, which
include vector representation, this should come as no surprise. However, because neurons
have intrinsic dynamics dictated by their particular physical characteristics, we must also
adapt the standard control theory toolbox for understanding neurobiological systems (see
section 8.1). Once this is done, we can directly apply the techniques for analyzing complex
dynamic systems that have been developed by, and for, engineers.

Describing dynamics in this manner allows us to address issues that have proven very
difficult for other approaches: “A great challenge for the future is to understand how the
flexible modulation of motor circuits occurs without the loss of their essential stability”
(Marder et al. 1997, p. 147). We attempt to meet this specific challenge in section 8.5.

TLFeBOOK

Of neurons and engineers 15

More generally, because the stability (and various other high-level properties) of control
systems is well understood, we believe that this approach to neural dynamics can help
quantify our understanding of the dynamics of a wide range of neurobiological systems in
an interesting, new way (see section 8.4).

1.4 THREE PRINCIPLES OF NEURAL ENGINEERING

To this point in the chapter we have outlined, in very general terms, the approach that we
develop in the remainder of the book. In this section, we consolidate these previous consid-
erations by clearly stating the guiding assumptions of our approach. Much of our argument
for these ‘principles of neural engineering’ is of the proof-is-in-the-pudding variety. That
is, throughout the course of the book we provide numerous examples of detailed models of
a wide variety of neurobiological systems that were constructed based on these principles.
But, our goal is not to simply provide examples, rather it is to demonstrate how to use these
principles. That is, we are interested in describing a framework for understanding and sim-
ulating neurobiological systems in general. Thus we provide not only this set of guiding
principles, but also a methodology for applying these principles. In order to demonstrate
this methodology, we follow it for each of the examples we present. It is important for our
purposes that not only are a large number and variety of examples provided, but that they
are also built with consistent assumptions and with a consistent methodology. Given our
discussion to this point, these principles should be unsurprising:

Three principles of neural engineering

1. Neural representations are defined by the combination of nonlinear encoding (exem-
plified by neuron tuning curves) and weighted linear decoding (see chapters 2, 3, 4, and
5).

2. Transformations of neural representations are functions of variables that are represented
by neural populations. Transformations are determined using an alternately weighted linear
decoding (i.e., the transformational decoding as opposed to the representational decoding;
see chapters 6 and 7).

3. Neural dynamics are characterized by considering neural representations as control
theoretic state variables. Thus, the dynamics of neurobiological systems can be analyzed
using control theory (see chapter 8).

We take these three principles to be excellent guiding assumptions for the construction
of biologically plausible, large-scale simulations of neurobiological systems. While it is
premature to state these principles more quantitatively, later on we will be in a position
to do so (see section 8.1.4). In addition to these main principles, there is an important
addendum which guides our analyses of neurobiological systems:

TLFeBOOK

16 Chapter 1

Addendum

4. Neural systems are subject to significant amounts of noise. Therefore, any analysis of
such systems must account for the effects of noise (see sections 2.2, and 5.2).

We do not consider this addendum to be a principle because, rather than being a claim
about how to explain the functioning of neurobiological systems, it is a claim about how to
analyze such systems. Nevertheless, it is essential for articulating the principles in detail.
In the next four sections, we briefly discuss the strengths of, and possible concerns with,
these principles and the addendum.

1.4.1 Principle 1

Principle 1 emphasizes the importance of identifying both encoding and decoding when
defining neural representation. Moreover, this principle highlights the central assumption
that, despite a nonlinear encoding, linear decoding is valid (see Rieke et al. 1997, pp.
76–87). As discussed in detail by Rieke et al., a nonlinear response function like that of
typical neurons is, in fact, unrelated to whether or not the resulting signal can be linearly
decoded.10 That is, the nature of the input/output function (i.e., encoding) of a device is
independent of the decoder that is needed to estimate its input. This means that a nonlinear
encoding could need a linear or nonlinear decoding, and vice versa. This is because the
decoding depends on the conditional probability of input given the output and on the
statistics of the noise (hence our addendum). Perhaps surprisingly, linear decoding works
quite well in many neural systems. Specifically, the additional information gained with
nonlinear decoding is generally less than 5%.

Of course, nonlinear decoding is able to do as well or better than linear decoding at
extracting information, but the price paid in biological plausibility is generally thought to
be quite high (see, e.g., Salinas and Abbott 1994). Furthermore, even if there initially seems
to be a case in which nonlinear decoding is employed by a neural system, that decoding
may, in the end, be explained by linear decoding. This is because, as we discuss in section
6.3, nonlinear transformations can be performed using linear decoding. Thus, assuming
linear decoding at the neuron (or sub-neuron, see section 6.3) level can well be consistent
with nonlinear decoding at the network (or neuron) level. So, especially in combination
with principle 2, linear decoding is a good candidate for describing neural decoding in
general.

It is important to emphasize that analyzing neurons as decoding signals using (optimal)
linear or nonlinear filters does not mean that neurons are presumed to explicitly use opti-

�� During this same discussion, Rieke et al. mention that there are certain constraints on when linear decoding
will work. In particular, they claim that there can be only a few, preferably one, spike(s) per correlation time of
the signal. However, we have found that this not the case (see section 4.3.3).

TLFeBOOK

Of neurons and engineers 17

mal filters. In fact, according to our account, there is no directly observable counterpart
to these optimal decoders. Rather, the decoders are ‘embedded’ in the synaptic weights
between neighboring neurons. That is, coupling weights of neighboring neurons indirectly
reflect a particular population decoder, but they are not identical to the population decoder,
nor can the decoder be unequivocally ‘read-off’ of the weights. This is because connection
weights are determined by both the decoding of incoming signals and the encoding of the
outgoing signals (see, e.g., section 6.2). Practically speaking, this means that changing a
connection weight both changes the transformation being performed and the tuning curve
of the receiving neuron. As is well known from work in artificial neural networks and
computational neuroscience, this is exactly what should happen. In essence, the encod-
ing/decoding distinction is not one that neurobiological systems need to respect in order to
perform their functions, but it is extremely useful in trying to understand such systems and
how they do, in fact, manage to perform those functions.

1.4.2 Principle 2

The preceding comments about representational decoders apply equally to transforma-
tional decoders. This should be no surprise given our prior discussion (in section 1.3) in
which we noted that defining a transformation is just like defining a representation (al-
though with different decoders). However, we did not previously emphasize the kinds of
transformations that can be supported with linear decoding.

It has often been argued that nonlinear transformations are by far the most common
kind of transformations found in neurobiological systems (see, e.g., Freeman 1987). This
should not be surprising to engineers, as most real-world control problems require com-
plex, nonlinear control analyses; a good contemporary example being the remote manip-
ulator system on the international space station. This should be even less of a surprise to
neuroscientists who study the subtle behavior of natural systems. As Pouget and Sejnowski
(1997) note, even a relatively simple task, such as determining the head-centered coordi-
nates of a target given retinal coordinates, requires nonlinear computation when considered
fully (i.e., including the geometry of rotation in three dimensions). Thus, it is essential that
we be able to account for nonlinear as well as linear transformations. In section 6.3 we
discuss how to characterize nonlinear transformations in general. We provide a neurobio-
logical example of a nonlinear transformation (determining the cross product) that allows
us to account for a number of experimental results (see section 6.5). Thus we show that
assumptions about the linearity of decoding do not limit the possible functions that can be
supported by neurobiological systems.

This result will not be surprising to researchers familiar with current computational
neuroscience. It has long been known that linear decoding of nonlinear ‘basis functions’
can be used to approximate nonlinear functions (see section 7.4). Nevertheless, our analysis

TLFeBOOK

18 Chapter 1

sheds new light on standard approaches. Specifically, we: 1) show how observations about
neural systems can determine which nonlinear functions can be well-approximated by
those systems (section 7.3); 2) apply these results to large-scale, fully spiking networks
(section 6.5); and 3) integrate these results with a characterization of neural dynamics and
representation (section 8.1.3).

1.4.3 Principle 3

As noted in section 1.3, we can adapt standard control theory to be useful for modeling
neurobiological systems by accounting for intrinsic neuron dynamics. There are a number
of features of control theory that make it extremely useful for modeling neurobiological
systems. First, the general form of control systems, captured by the state-space equations,
can be used to relate to the dynamics of non-biological systems (with which engineers may
be more familiar) to the dynamics of neurobiological systems. Second, the engineering
community is very familiar with the state-space approach for describing the dynamic
properties of physical systems, and thus has many related analytical tools for characterizing
such systems. Third, modern control theory can be used to relate the dynamics of ‘external’
variables, like actual joint angles, to ‘internal’ variables, like desired joint angles. This
demonstrates how one formalism can be used to span internal and external descriptions of
behavior.

Adopting this perspective on neural dynamics allows us to develop a characterization
of what we call a ‘generic neural subsystem’. This multi-level, quantitative characterization
of neural systems serves to unify our discussions of neural representation, transformation,
and dynamics (section 8.1.3).

Given our previous discussion regarding the importance of nonlinear computations,
a focus on standard control theory, which deals mainly with linear dynamics, may seem
unwarranted. However, contemporary nonlinear control theory, which may prove more
valuable in the long run, depends critically on our current understanding of linear systems.
Thus, showing how linear control theory relates to neurobiological systems has the effect
of showing how nonlinear control theory relates to neurobiological systems as well. In fact,
many of the examples we provide are of nonlinear dynamic systems (see sections 6.5 and
8.2).

1.4.4 Addendum

There are numerous sources of noise in any physical system, and neurobiological systems
are no exception (see section 2.2.1). As a result, and despite recent contentions to the
contrary (van Gelder and Port 1995), neural systems can be understood as essentially
finite (Eliasmith 2001). This is important, though not surprising, because it means that

TLFeBOOK

Of neurons and engineers 19

information theory is applicable to analyzing such systems. This ubiquity of noise also
suggests that knowing the limits of neural processing is important for understanding that
processing. For instance, we would not expect neurons to transmit information at a rate
of 10 or 20 bits per spike if the usual sources of noise limited the signal-to-noise ratio to
10:1, because that would waste valuable resources. Instead, we would expect information
transmission rates of about 3 bits per spike given that signal-to-noise ratio as is found in
many neurobiological systems (see section 4.4.2).

These kinds of limits prove to be very useful for determining how good we can expect
a system’s performance to be, and for constraining hypotheses about what a particular
neural system is for. For example, if we choose to model a system with about 100 neurons
(such as the horizontal neural integrator in the goldfish), and we know that the variance
of the noise in the system is about 10%, we can expect a root-mean-squared (RMS) error
of about 2% in that system’s representation (see section 2.3). Conversely, we might know
the errors typically observed in a system’s behavior and the nature of the relevant signals,
and use this knowledge to guide hypotheses about which subsystems are involved in which
functions. Either way, information regarding implementational constraints, like noise, can
help us learn something new about the system in which we are interested.

1.5 METHODOLOGY

As noted previously, our central goal is to provide a general framework for constructing
neurobiological simulations. We take this framework to consist of two parts: the guid-
ing principles just outlined; and a methodology for applying those principles, which we
describe next. So our interests are practical as well as theoretical. To this end, we have
written a software package in MatLab R� that can be used with this methodology (and ap-
plies the principles). Nearly all of the models discussed in the remainder of the book have
been implemented with this package. The package, examples, documentation, and some
extras are available at http://compneuro.uwaterloo.ca.

We present the methodology in three stages: system description; design specification;
and implementation.

1.5.1 System description

The main goal of this first step is to describe the neural system of interest in such a way
that the principles outlined in section 1.4 are directly applicable to it. In particular, available
neuroanatomical data and any current functional understanding should be used to describe
the architecture, function, and representations of the neural system. This description should
include at least:

TLFeBOOK

20 Chapter 1

1. basic interconnectivity between subsystems (i.e., what is connected to what);

2. neuron response functions (i.e., distributions of neuron parameters evident in the rele-
vant populations);

3. neuron tuning curves (i.e., distributions of encoding functions of the relevant popula-
tions);

4. subsystem functional relations; and

5. overall system behavior.

Of course, if this information was easily available, we might have little reason to construct
a model. As a result, many of these details will probably be hypotheses. The point is to
make explicit the assumptions that inform the model. Then, any differences between model
function and the function of the modeled system may be traced to these assumptions.

Importantly, the last two functional descriptions (4. and 5.) need to be expressed in
mathematical terms. In particular, the relevant neural representations need to be specified
in such a way that they can be used to write explicit transformations that perform the
specified functions. The goal here is to translate the functional description provided in
neurobiological terms into a description in mathematical terms. So, for example, we might
describe a particular neural subsystem as acting as working memory for spatial locations.
To provide a mathematical description, we must identify a represented variable (e.g., �),
units (e.g., degrees from midline), and a description of the dynamics that captures the
notion of memory (e.g., ����� � �, i.e., � stays the same over time; see section 8.3). In
this case, there is a natural correspondence between time derivatives equaling zero and
memory, which we have exploited. In most cases, the translation is much more involved.
If this subsystem is part of a larger neural system that we are interested in simulating, then
a similar procedure must be carried out for each subsystem. Control theory-like diagrams
can be very useful for performing this decomposition.

Essentially, this step requires a rigorous formulation of hypotheses we may have
regarding the function of the system we are interested in. Admittedly, this mathematical
description may be highly abstract (e.g., describing a swimming eel as instantiating a
kind of sine function; see section 8.5). But that is acceptable so long as the description
is complete. It is not necessary to hypothesize about the functioning of every individual
neuron or neuronal group, so long as we have a hypothesis about the overall behavior.
In fact, our framework is intended to be a means of determining what the likely role
of neurons or groups of neurons is at these ‘lower’ levels. Any differences between the
resulting simulation and known neurobiological properties of these lower levels (e.g.,
connectivity, tuning curves, etc.) should help improve the higher-level hypothesis. Given
the improved higher-level formulation, predicted neural properties can again be examined,

TLFeBOOK

Of neurons and engineers 21

and so on. Thus, this methodology supports a ‘bootstrapping’ approach to understanding
neural systems.

In sum, the main purposes of this step are to: 1) identify the relevant neurobiological
constraints; 2) identify the represented system variables; and 3) rigorously relate those
variables to one another in such a way that the observed behavior results.

1.5.2 Design specification

The purpose of the design specification is to further delineate the real-world limitations
that are known, or assumed to be present, for the neural system. As a result of the ad-
dendum, we must be explicit about the operating conditions (e.g., noise) that the system
is subject to. This second step in the methodology explicitly demands stating the imple-
mentational constraints. So, given the representation for each variable as determined in the
system description, the dynamic range, precision, and signal-to-noise ratio for each de-
gree of freedom of those variables must be specified. Similarly, the temporal and dynamic
characteristics (e.g., bandwidth, power spectrum, stable regimes, etc.) must be described.
Ideally, these specifications would be made on the basis of available data. However, they
may also be parameters to be manipulated during the implementation stage of the method-
ology. Adopting this route allows us to ask questions like: How much noise could such
a system tolerate? How good does the encoding of individual neurons have to be under
various noise conditions? What is the minimum allowable bandwidth for the system to
function properly? and so on.

Although the precise specifications may not seem important, they can significantly af-
fect the final model that is generated (see section 2.3.3). This goes to show the significance
of implementational constraints for building good neurobiological models. If, for example,
the signal-to-noise ratio must be extremely high for a particular variable, there will have to
be many neurons dedicated to representing that variable (or fewer highly precise neurons).
Conversely, if we have good estimates of the number of neurons in a particular system, we
can use that information to determine possible design specifications.

In sum, the main purpose of this step is to precisely specify the implementational
constraints on the model for each represented variable identified in the previous step.

1.5.3 Implementation

The third step of the methodology involves generating and running the model itself. Given
the system description and design specification, this step combines them to determine the
appropriate decoding rules, and hence synaptic weights, needed to implement the desired
behavior.

Because the original system description may be framed in terms of high-level neural
representations, it is often possible to simulate some parts of the model at the level of

TLFeBOOK

22 Chapter 1

those representations (i.e., without simulating every individual neuron’s function) while
simulating other parts of the model with more realistic spiking neurons. As well, the
amount of detail in the model of individual neurons (e.g., a rate model, spiking model,
or conductance model) can vary from one part of the model to another. The computational
savings of these variations in detail can be significant for large-scale models. In many
cases, large-scale models could not be simulated on available hardware without this kind
of control over the amount of detail incorporated into various parts of the model.

In general, the purpose of the implementation step is to run numerical experiments
on the model. These experiments may take the form of simply changing the input to
the network, or they might involve changing system properties defined in the design
specification. The implementation stage thus supports performing an in-depth analysis of
the model’s behavior (e.g., stability analysis, sensitivity to noise, etc.). The results of such
experiments and analyses can be used to inform revisions to either of the two previous
steps. In the end, the results of such numerical experiments often suggest neurobiological
experiments to pursue in the system being modeled (see, e.g., 6.5 and 8.3).

In sum, the main purpose of the final step of the methodology is to apply the principles
of neural engineering outlined previously to embed the system description into a plausible
neural model, and to analyze and experiment with the resulting simulation.

1.5.4 Discussion

The three main steps of the methodology and their objectives are summarized in table
1.1. These steps provide a ‘recipe’ for generating simulations of neurobiological systems.
However, applying these steps to real systems is seldom a straightforward task. Although
we have presented the methodology as consecutive steps, it is often necessary in practice to
iterate over these steps (i.e., ‘bootstrap’ from an initial guess to a final model). Often, the
reason for such interplay between steps is the preponderance of gaps in our knowledge
about the system we are modeling. Of course, one of the greatest benefits of a good
simulation can be determining precisely where those gaps lie.

There are a number of ways in which detailed simulations constructed using this
methodology can help fill these gaps. For one, such simulations can both fine-tune and
test hypotheses about neural function. More importantly, they can help predict properties
of systems based on partial information. For example, if we think a given system performs
some function, we can use this methodology to make predictions about what distributions
of neurons there should be and what kinds of dynamic properties they should have (see
section 6.5). In addition, constructing models using control theory makes it possible to
build in top-down constraints (e.g., stability) observed in the real system, giving insight into
how those constraints might be met in neurobiological systems (see section 8.5). Notably,
the effects of bottom-up constraints (e.g., cellular properties) can be studied at the same

TLFeBOOK

Of neurons and engineers 23

Table 1.1
Summary of the methodology for generating neurobiological models.

Step 1 System description

- Identify the relevant neurobiological properties (e.g., tuning curves, connectivity, etc.).

- Specify the representations as variables (e.g., scalars, vectors, functions, etc.).

- Provide a functional description including specification of subsystems and overall system
architecture.

- Provide a mathematical description of system function.
Step 2 Design specification

- Specify the range, precision, and signal-to-noise ratio for each variable.

- Specify the temporal and dynamic characteristics for each variable.
Step 3 Implementation

- Determine the decoding rules for implementing the specified transformations.

- Determine which parts of the model are to be simulated to which degrees of detail.

- Perform numerical experiments using resulting simulation.

time, by varying the parameters of the single neuron model being used. As a result, this
approach can serve to unify the often antagonistic top-down and bottom-up perspectives
on how to best understand neurobiological systems.

The challenges that arise in applying this methodology can vary significantly from
system to system. This will become apparent as we explore the numerous examples in the
remainder of the book. The variation stems from many sources: different systems are of
varying degrees of complexity; different systems have distinct dynamics and are thus more
or less sensitive to different implementational constraints; and, perhaps most importantly,
there are unequal amounts of neuroscientific detail about different systems. Nevertheless,
the principles we have outlined in section 1.4 and the methodology we have outlined here
prove to be useful tools for generating biologically plausible, yet computationally tractable
models.

1.6 A POSSIBLE THEORY OF NEUROBIOLOGICAL SYSTEMS

To this point, we have presented what we have called a ‘framework’ that consists of a
set of three principles and a corresponding methodology. We have chosen these terms
because they are neutral regarding the scientific status of this approach. Nevertheless, in
this section we explore the possibility that the three principles can be properly called a
theory of neurobiological systems. Note that the practical utility of the framework itself is
independent of whether this claim is found convincing.

Recently, a consensus has begun to develop about the state of theories in neuroscience;
there aren’t any. Or at least there aren’t any good ones (Churchland and Sejnowski 1992;

TLFeBOOK

24 Chapter 1

Marder et al. 1997; Stevens 1994; Crick and Koch 1998; see also Stevens 2000 or many of
the other ‘Viewpoints’ in the same issue). Neuroscience is, in other words, “data rich, but
theory poor” (Churchland and Sejnowski 1992, p. 16). We believe that the three principles
identified in section 1.4, to continue the metaphor, can put a few coins into theory’s purse.
Although the diversity of neurobiological systems is generally thought to be antithetical to
building theories, in the case of nervous systems a theory that does not account for the true
complexities of the system is likely to be inadequate. Thus, as we have been emphasizing,
we are interested in presenting a theory that respects the neurobiological data in all its
diversity. In this way, we hope to engage both the theoretically inclined and the empirically
inclined at the same time.

But why do we think that the three principles we have identified might constitute
a theory? Perhaps the easiest way to see why these principles constitute a theory is to
compare them to a paradigmatic theory. Consider Newton’s laws of motion. Newton’s
laws constitute a theory of motion for a number of reasons. First, they unify what was,
until Newton, considered two distinct kinds of motion; celestial and sublunar. Second,
Newton’s laws are constructed to be consistent with the known data about the motion of
objects, gathered largely by Galileo. Hence his laws are data-driven. Third, Newton’s laws
allow for the prediction of planetary orbits, changes in tides, and the flattening of the earth
at the poles. The fact that such predictions are a result of the theory make it useful. In
addition to these main conceptual features, his laws are also quantitative. This allows his
theory to be applied to a wide variety of phenomena in a rigorous manner.

The three principles outlined earlier share each of these features. First, these principles
unify population and temporal representation, showing that both can be understood as non-
linear encoding and linear decoding. As well, the principles unify neural representations,
transformations, and dynamics in a coherent theoretical structure. Second, the principles
are consistent with much of the data gathered from neurobiological systems, as their suc-
cess at modeling a variety of systems demonstrates. The methodology outlines how such
data can directly inform the models. Third, these principles support specific predictions
regarding the properties of systems that are modeled. For instance, in section 6.5.4, we dis-
cuss predictions regarding receptor distribution on populations of neurons in the vestibular
nucleus, as well as the distribution of neuron tuning curves in those populations. As well,
more general predictions regarding which kinds of transformations are best supported by
neuron populations with particular tuning curves are discussed in section 7.3. Lastly, al-
though we have not presented the quantitative versions of these principles here, they can
be found in section 8.1.4.

One interesting aspect of Newton’s theory is that it is also, strictly speaking, false.
Nevertheless, it is still a theory and it is still very useful for understanding and predicting
(approximately) a wide variety of phenomena. Given the supreme complexity of neurobi-

TLFeBOOK

Of neurons and engineers 25

ological systems, we would not be surprised if the same was true of this theory (in fact we
would be surprised if it was not). However, these principles, which are the result of a syn-
thesis of recent work in neuroscience, is consistent with our current knowledge regarding
these systems. And, as such, are likely to be very useful for understanding and predicting
a wide variety of neurobiological phenomena. As well, given the clear need for a theory
in neuroscience, even a theory that we expect to be disproved in the long run can play a
valuable role. It can, for instance, help unify explanations across diverse systems, help to
better organize existing data, facilitate experimental design, and help demonstrate where
theoretical efforts should be focused.

In conclusion, we take it that the these three principles, like Newton’s three laws, con-
stitute a theory because they are useful, unified, data-driven, and quantitative. Neverthe-
less, we do not think that this theory can explain all there will be to explain about neuro-
biological function. However, we do think that it is good theory, as demonstrated by the
numerous useful, often state-of-the-art models it has generated; and we also think it is a
good theory.

TLFeBOOK

26 Chapter 1

This page intentionally left blank

TLFeBOOK

I REPRESENTATION

TLFeBOOK

This page intentionally left blank

TLFeBOOK

2 Representation in populations of neurons

By measuring physical properties like velocity, acceleration, position, and so on, physi-
cists can explain and predict much of our ever-changing universe. The predictive success
of modern-day physics is singularly impressive. But, we would be wrong to think that pre-
diction is a competence of physicists alone. Many non-human organisms are also highly
successful in predicting changes in their environment. Toads catch flies, foxes catch rab-
bits, and monkeys catch tree branches—all because they represent where their target will
be. Of course, in order to figure out where the target will be, it is necessary to represent
the current physical properties of the target (e.g., where the target currently is, what its
velocity currently is, etc.). In fact, the way physicists make predictions in physics, and the
way monkeys know how to catch a swaying branch share this fundamental feature. Both,
that is, represent the current state of physical properties in order to predict the future state
of physical properties. Notably, both monkeys and physicists need much more than just
these measurements (both, for example, need ‘theories’ that transform measurements into
predictions; see part II), but both need to represent physical facts about the environment in
order to make predictions at all.

As theoreticians interested in understanding the complex behaviors of nervous systems,
we need to know how these physical properties can be represented by neurons. One very
useful characteristic of the way physicists and engineers deal with physical properties is
that they break them down into two parts: a scalar magnitude and a unit. Scalar magnitudes
are values that determine the position of the property on a scale, which is set by the
unit. This distinction is made because there are many mathematically describable relations
that hold between physical properties (e.g., Newton’s second law, � � ��). Notably,
all of these relations hold regardless of which units are chosen (e.g., imperial units or
metric units). From our perspective, the arbitrariness of units provides for the possibility
of a general theory of neural representation. In other words, if we characterize how
magnitudes are encoded by neural activities, regardless of units, then we have characterized
the generally shared aspect of physical properties using the generally shared aspect of
neural encodings. Thus, understanding how scalar magnitudes are encoded into neural
activities is an important first step towards a general theory of neural representation (see
section 2.1).

Presumably, once we understand how a scalar can be represented, it is just a matter
of mathematical generalization to combine such scalars into sets of scalars, allowing us
to understand the representation of more complex objects like vectors, vector fields, and
arbitrary functions of these. Of course, things turn out to be a rather more complicated that
‘just’ mathematical generalization. Nevertheless, the motivation is a sound one: it turns out

TLFeBOOK

30 Chapter 2

that once we know how neurons can be understood as representing scalars, we are well on
our way to understanding more general forms of neural representation (see section 2.4).

2.1 REPRESENTING SCALAR MAGNITUDES

2.1.1 Engineered representation

If we suppose that the theory of signals and systems applies to nervous systems, we must
also suppose that there are some similarities between natural and engineered systems.
Indeed, as noted in section 1.2, there are many. Most obviously, both neurobiological
and engineered encodings of physical quantities often use the combined resources of
many simple encoders. Computers use transistors and biological systems use neurons.
Additionally, both computers and neurobiological systems are real physical systems, which
means that they have a limited capacity and operate in noisy environments (see section 2.2).
Finally, both kinds of system encode all physical magnitudes into some common language:
for computers it is the binary language of high and low voltages; for biological systems it
is (generally) the language of neural spikes. These three similarities suggest that carefully
characterizing engineered representation will give us some insight into how to usefully
characterize biological representation. Thus, we begin by examining the construction of
representations in digital computers, and identify some analogous processes in nervous
systems.

Digital computers are perhaps the best-known and most widespread example of sys-
tems that use engineered representations of scalar values. As with nervous systems, many
of the representations used in computers are generated from continuous physical magni-
tudes in the external world. One such example is the digitization of sound. In this case,
compression waves generated by vibrations in a medium are transduced into a time depen-
dent voltage (e.g., by the diaphragm and magnet of a microphone). This voltage is then
passed to an analog-to-digital converter and encoded as a series high (‘on’) and low (‘off’)
voltages for use by a computer. At any moment in time, certain sets of these high and low
voltages represent the magnitude of the original input voltage, and thus the vibrations of
the original sound.

Let us consider the representation of the scalar-valued voltage signal in the binary
language of computers. Consider, then, a standard type of analog-to-digital converter
(ADC) called a ‘flash’ or ‘parallel’ converter, which is diagrammed in figure 2.1. This kind
of ADC is extremely fast, although in practice it is limited to low resolution applications
because of the expense of the large number of components needed. To generate an � -bit
representation of an input signal, the flash ADC compares the unknown input voltage to a
known reference voltage through a large number (����) of comparators (�� in figure 2.1).

TLFeBOOK

Representation in populations of neurons 31

Reference
Voltage

Input Voltage

Encoder Binary
Output

R1

R2N

C1

C2N-1
. . .

. . .

. . .

Figure 2.1
Schematic layout of a flash analog-to-digital converter. There are �� resistors, �, and �

�
� � comparators, �

which generate a binary ‘thermometer code’ of the incoming continuous voltage.

The reference voltage is systematically decreased with a series of �� resistors, ��, so that
the reference voltage at successive comparators is slightly lower. A comparator registers a
high voltage (‘1’) if the reference voltage is higher than the input voltage, and a low voltage
(‘0’) otherwise. In this way, all of the comparators whose reference voltage is less than the
input voltage output a ‘1’. For this reason, the comparators in flash ADCs are often said to
use a “thermometer code” because increasing the input voltage causes a comparable rise
in the number of comparators that are ‘on’, just as increasing the temperature causes a rise
in mercury in a thermometer. In order to be useful to a digital computer, the thermometer
code is converted in to a binary code by an encoder.

In some sense, there are two encoding steps in this example. In the first step, the tem-
perature code is generated by converting one magnitude (i.e., the voltage) into another (i.e.,
the number of comparators that are ‘on’). In the second step, a more useful (i.e., compact)
binary representation is generated by the encoder. Analogously, in a peripheral neuron the
dendritic tree first converts one magnitude (e.g., pressure, temperature, etc.) into another
(i.e., voltage changes at the soma). Then, the more useful spike representation is generated
by the soma.1 In the ADC, the encoder generates the final binary representation using a

� Spikes are ‘more useful’ because they are extremely important for transmitting information over long distances
in biological systems. Note also that in some cases (e.g., mammalian retina) the conversion to spikes may not
occur until after the signal has passed through a number of soma.

TLFeBOOK

32 Chapter 2

nonlinear transformation of the comparator results. In the neuron, the soma generates the
final spike representation also using a nonlinear transformation of the voltage coming from
the dendrites.

In both cases, the representation relation we are interested in is that between the input
to the ‘device’ and its output. We can, at least for the purposes of understanding the
representation relation, ignore what happens in between. So, in both cases, we can express
the input as a magnitude of some physical property (e.g., 1.3 V, 1.3 ÆC), and the output
as a ‘standardized’ code. Also, in both cases, there is a particular range of the physical
magnitude that the device can actually represent.2 So, in most cases we cannot address
issues of representation independently of characterizing the effective range (and precision)
of the representation (see section 2.2).

Note that in order to characterize the range, we have to specify the units of the physical
magnitude. However, as mentioned earlier, we can begin to understand representation
without worrying about the particular units. So, in the case of an ADC, we treat the
input signal as a dimensionless integer value between, say, 0 and 15 (represented by the
temperature code) that we are trying to encode using a binary code. Of course, these are
simplifications that must be rescinded (as we do in sections 2.2 and, for example, 2.3).

We can now begin to characterize representation in the ADC. From section 1.2 we
know that both the encoding and decoding must be specified. In the case of the relationship
between our chosen integer range and a binary code, these procedures are quite simple. In
particular, we can identify the following two procedures: an encoder

����� �

�
�� �� ���	
� �
���

�� ��
������
(2.1)

and a decoder

�� �

��
���

�������� (2.2)

where

�� �
����

In (2.1) ����� is the result of the encoding, where � is the bit number and � is the
number of ‘on’ units in the temperature code. This equation thus tells us what binary
digit should be at which bit number in order to encode the integer value that is equal to
the number of ‘on’ units. In the second equation, (2.2), � is the number of bits in our

� Engineers often control the range of an input to an ADC (e.g., with an amplifier or limiter) in order to use
available parts. This can be seen as analogous to the use of perceptual aids, like microscopes or telescopes.

TLFeBOOK

Representation in populations of neurons 33

representation, and �� is the integer that has the value of an ‘on’ bit at bit number �. Thus,
�� embodies a rule for estimating the original value of � (i.e., ��), given a set of bit values,
�����, and their positions, �, in a binary word. For this reason, the �� are called the decoding
weights; i.e., the weights that can be used to decode the encoded representation, �����.
Notably, �� can be found by a linear combination of the relevant encoded coefficients and
decoding weights. This is true despite the highly nonlinear encoding process in (2.1). In
other words, linear decoding is used to successfully estimate a magnitude that was encoded
with a nonlinear process. The same, we will see, is true for neurobiological representation.
This fact underlies the first principle of the neural engineering discussed in section 1.4.

For the ADC, equations (2.1) and (2.2) express the relation between an integer mag-
nitude at the input and its representation as distributed across a series of ‘on’ or ‘off’
transistors (so it is a distributed representation). Despite the fact that each transistor only
carries a ‘1’ or a ‘0’, once we know the encoding and decoding relations we can understand
the set of them as representing an integer value that none of them could represent on its
own. Although these equations are not in a general form, they give a first sense of how we
can represent scalar magnitudes using a population of encoders. The challenge now is to
discover how this kind of characterization can be successfully applied to neurobiological
systems.

2.1.2 Biological representation

In the case of neurobiological representation, the population of encoders is comprised of
neurons rather than transistors. Neuroscientists have clearly demonstrated that individual
neurons respond selectively to various stimuli including velocities, colors, motion, sound
intensities, pressure, and so on. These neurons can be thought of as encoding the rele-
vant physical property into the alphabet of neural activity. To reiterate our example: just
as transistors in an ADC encode the thermometer code into a binary representation, so too
neurons in biological systems encode scalar magnitudes into a neural activity represen-
tation. Again, what we need to know in order to characterize this latter representational
relation are the encoding and decoding procedures. Because we assume that the decoding
procedure is linear (as in the ADC case), equation (2.2) again applies. So, we just need to
know what the ����� and �� are in order to define the representation relation.

First, in order to understand the encoding procedure that gives rise to the relevant
�����, we need to look to neuroscience. In section 1.2.1, we noted that neuron spike trains
encode current changes in the neuron’s soma due to dendritic input. Stereotypical neuron
response functions (firing rate versus soma current) are shown in figure 2.2. Notably, in this
case (and for the rest of this chapter) we have characterized the neurobiological system as
encoding physical magnitudes into neural firing rates (rather than with individual spikes).
This is a simplification that is removed in chapter 4.

TLFeBOOK

34 Chapter 2

Figure 2.2
Three stereotypical neuron response functions from human cortical regular spiking cells. (From McCormick
et al. 1985 c� The American Physiological Society, reproduced with permission.)

Functions of the kind shown in figure 2.2 are called neuron response functions. They
tell us how neural activity relates to soma currents. But, what we need to know, of course,
is how that activity relates to real-world physical magnitudes, not soma currents. In fact,
neurophysiologists are in the business of discovering just that kind of relation; known as a
neuron’s tuning curve. The tuning curve of a neuron is typically found by presenting the
system that the neuron is in with a series of systematically varied stimuli, and recording
the neuron’s response. The neurophysiologist can then construct a graph (like that shown
in 2.3) of the relation between the relevant physical magnitude and the neuron’s firing rate.

The tuning curve is thus the result of two processes. The first is an extremely complex
process that includes all processing of input signals and spikes up to the soma of the neuron
of interest. This process generates a particular current at the soma. The second process,
which has been well-characterized by neuroscientists, results in the generation of voltage
spikes given this soma current. It is this second process that is described by the neuron’s
response function. Together, these two processes determine the neuron’s tuning curve.

In order to keep these two processes clearly distinct, we write the first as ����, and the
second as � ������. Thus, a general expression for the neural encoding process is

���� � � ������ �

TLFeBOOK

Representation in populations of neurons 35

The soma current, ����, actually results from combining two distinguishable currents.
One is a ‘bias’ or ‘background’ current that is the result of intrinsic processes in the
neuron, and/or constant input current from the rest of the nervous system. This current is
responsible for the background firing rates of neurons (together, the background firing rates
determine the origin of the represented magnitude, �). We call this current �����. The other
current contributing to ���� we call the ‘driving’ current, �����. As its name suggests, this
second current is that aspect of the soma current that drives the neuron’s behavior from
its background state. This is the current that is generated by connected neurons whose
responses vary as the result of variations in the stimulus.3

Let us assume that the driving current is directly related to the relevant physical
magnitude, �, as

����� � ���

The parameter� serves two functions. One is to convert the units of the physical variable to
current units. The other is to scale the magnitude of � such that the tuning curve observed
by neurophysiologists, ����, is properly reproduced given the response function � ���.

Finally, the response function, � ���, is determined by the intrinsic properties of the
neuron. These include the resistances, capacitances, absolute refractory period, etc. that are
typically used to model single neuron behavior. Notably, this framework does not depend
on the response function being determined by any particular set of intrinsic properties. As
we show in chapter 4, various neural models, each with their own characterization of � ���,
can be used to model single neuron behavior.

Bringing these considerations together, the encoding process of a given neuron can be
written mathematically as

���� � � ������ �

where

���� � ����� � �����

and

����� � ���

� Throughout the book, we assume that input currents are what drive neural firing. We realize that, biophysically,
it is conductances that are varied by neural input. This adds an additional nonlinearity that we do not explicitly
include in our models, but only serves to change � ��� in an inessential way. Cases in which this difference
might matter (e.g., when inhibitory and excitatory inputs have different nonlinear affects on conductance) can be
handled by the framework, as shown by section 6.4.

TLFeBOOK

36 Chapter 2

-40 -30 -20 -10 0 10 20 30
-20

0

20

40

60

80

100

120

140

160

180

x (degrees)

fir
in

g
ra

te
 (

sp
ik

es
/s

)

data
LIF neuron

Figure 2.3
A typical neuron tuning curve in the nuclei prepositus hypoglossi that codes for horizontal eye position. The
grey line indicates a leaky integrate-and-fire (LIF) neuron approximation to the actual tuning curve (black line).
This is a tuning curve (as opposed to a response function) because it is a function of some variable, �, not just
current entering the soma. (Special thanks to Kathleen E. Cullen for this data).

This, then, completes a preliminary characterization of the encoding half of the neu-
robiological representation relation. In order to characterize the decoding half, let us look
at a simple example. Consider, then, the relation between eye position and neuron activity
in the nuclei prepositus hypoglossi (NPH) and the rostral medial vestibular nucleus of the
brainstem. These nuclei participate in gaze control by integrating a velocity input to deter-
mine a desired eye displacement. More specifically, neurons in these areas are responsible
for representing and controlling horizontal eye position (see Robinson 1989 for a review).
A typical relation between the firing rate, �����, of neuron � and horizontal eye position,
�, in this population of neurons is shown in figure 2.3. Recall that this is a neuron tuning
curve.

As shown in this figure, a convenient and often used approximation to this kind of
tuning curve can be generated using the leaky integrate-and-fire (LIF) neuron model (see
section 4.1 for a derivation and further discussion). In this case, we can write our encoder
as

TLFeBOOK

Representation in populations of neurons 37

����� � �� �������

�

��
�

�

�
���

� ����� ��

�
��

��	��
	��

�
�����

� � �� ���� ������ � � ���	��
���

	�
��
����

(2.3)

where

����� � ���� ������ �

The response function, �� ���, is determined by the intrinsic properties of the particular
neuron, 	. These properties include the absolute refractory period,
�	
 , the �� time
constant,
�� , and the current threshold, � ���	��
��. The precise form of this equation is
not important for present purposes. However, because we adopt the LIF neuron throughout
our discussion, it is useful to introduce at this point. In any case, (2.3) defines the process
that encodes eye positions into neural firing rates just as (2.1) defined the process that
encoded decimal values into binary ones.

As noted, the representation generated by the ADC is a distributed representation
that requires many transistors to precisely encode scalar values. Similarly, neurobiological
systems need many neurons to precisely encode scalar values. In humans, horizontal eye
position is encoded by approximately a thousand neurons in the brainstem. In order to
accurately encode scalars over the range of possible eye positions, different neurons in this
population encode different parts of the full range with different degrees of sensitivity. A
limited sample of LIF tuning curves for such a population is shown in figure 2.4 (these
have been normalized to the range ���� �� for simplicity).

We now have a reasonably complete characterization of the encoding process that this
neurobiological system uses to represent horizontal eye positions. However, our purpose in
considering this example, is to better understand how to determine the relevant decoders,

�.

Because we know what we want our population to represent (i.e., a range of eye
positions), and because we have assumed that the decoding process is linear, we can
determine what the optimal decoders are. In order to do this, let us form an expression
for the error that can be minimized to determine the values of
�:

� �
�

�

�
�

��

�
��

��
���

�����
�

��
��

�

��
��

��
���

�����
�

��	
�

� (2.4)

TLFeBOOK

38 Chapter 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

x (degrees/max degrees)

fir
in

g
ra

te
 (

sp
ik

es
/s

)

Figure 2.4
Sample tuning curves from the neural integrator population as approximated by LIF neurons.

where ���� indicates the integral (i.e., average) over �.4 Equation (2.4) is the average error
(i.e., the square of the difference between our representation and the actual value, �) when
the scalar, �, takes on values between -1 and 1. Minimizing this ‘mean square error’ and
thus finding the (mean square) optimal �� ensures that our representation of � encoded
with ����� can be well-decoded over the relevant interval (i.e., [-1, 1] in this case). Solving
(2.4) for the ��, where each �� is an element of the vector �, gives (see appendix A.1)

� � ����� (2.5)

where

��� � ������������� �

� More generally, ������� �
�
�������� ���
���� ��

where ���� is a weighting factor. For instance, if we let ���� �
�

�����
, then the precision of the resulting representation varies as the distance from the origin. This reflects the

well-known Weber-Fechner law from psychophysics. In all of the examples we present, there is no weighting
function unless otherwise specified.

TLFeBOOK

Representation in populations of neurons 39

and

�� � ��������� �

This completes our characterization of the representation of a scalar magnitude in the
neural integrator. That is, we have identified the encoding and decoding relations between
horizontal eye positions and neural activity of the relevant neurons in the brainstem.
Mathematically, we can express this representation with two equations, the encoding,

����� � ��

�
���� �����

�

and the decoding,

�� �
�

�

��������

Of course, there is nothing about these equations that depends on this particular example.
These equations, then, are an initial characterization of how to represent scalar magnitudes
using neural activity in general. Clearly, we have made a number of unrealistic assumptions
(e.g., no noise, encoding with rates, etc.) but eventually we show how each of these
assumptions can be removed. As simple as this characterization is, it is a significant
beginning.

Before relaxing these assumptions, it is worthwhile discussing the similarities and
differences between this kind of neural representation and engineered representation. First
the differences. For one, the encoding process in digital computers results in either a high
or low voltage state, whereas the encoding process in this biological example results in a
real-valued analog quantity (the firing rate). For another, the decoding process in digital
computers is well-known beforehand, whereas we had to determine a reasonable decoding
process on the basis of the encoders and our assumptions about the kind of decoding
that was expected. As mentioned earlier, this second point highlights the centrality of
principle 1, presented in the last chapter (see section 1.4). Like most assumptions, this
one will be justified if adopting it leads to a comprehensive and powerful characterization
of neural representation; a claim that needs to be adjudicated in the context of the whole
framework. A third difference between the biological and engineered representations is
that the biological representation is far more redundant than the engineered representation.
If a single transistor fails to operate correctly, the digital representation could be ‘off’
by as much as the most significant bit. However, if a single neuron fails, the biological
representation will only be slightly less precise, because there are numerous other neurons
encoding the value in a similar way. The neurobiological representation is, in this sense,
‘more’ distributed than the human engineered one. The trade-off, of course, is that far more
neurons than transistors are needed to encode a value with a particular degree of precision
over a given range of values.

TLFeBOOK

40 Chapter 2

There are also a number of notable similarities between these two kinds of represen-
tation. First, in both cases, the encoders are all similar (although non-identical). Thus, in
both cases, there is something like a standard functional unit that is used multiple times
to encode the representation. Second, both representations are, in the standard sense, dis-
tributed. That is, both representations are spread across more than one encoder. Third, in
both cases, increasing the number of encoders increases the precision of the representation,
although clearly to different degrees.5

Taken together, these similarities and differences both justify and limit the application
of standard engineering approaches to understanding representation in the realm of neu-
robiology. Simply put, the similarities justify adopting a similar characterization of engi-
neered and neural representations (e.g., linear decoding of nonlinear encoding). However,
as we warned in chapter 1, the differences between these two domains should make us wary
of blindly applying the engineering characterization. If, for example, biological represen-
tations are ‘overcomplete’ (i.e., highly redundant) whereas engineered representations are
‘complete’ (i.e., not redundant), then we cannot simply apply mathematical tools that suc-
cessfully describe the latter to describing the former. That being said, we nevertheless have
a fruitful place to begin our explorations of the nature of neurobiological representation.
Let us begin, then, by relaxing some of our assumptions.

2.2 NOISE AND PRECISION

2.2.1 Noisy neurons

In order to properly characterize the representations in neurobiological systems, we have
to know how precise neurobiological representations actually are. Typically, engineers
and computer scientists interested in artificial neural networks assume that their ‘neurons’
output double floating point precision real numbers every clock cycle (� ��

�� bits/s).
However, Rieke et al. (1997) and others have shown that real neurons generally have
only about 1–3 bits of precision per spike in their output signal (� �

�� bits/s; see section
4.4.2 for more detail). When building any physical system, the components we use have
some intrinsic limitations on their performance. If the components are very precise, we
need only a few to represent a signal precisely. If the components are imprecise, we need
many of them to represent that signal with the same precision. Neurons, compared to many
engineered devices, are imprecise. In other words, they are noisy components.

If there is any expectation of noise or uncertainty in a signal being transmitted from
one neuron to the next, then the information capacity of that ‘channel’ drops dramatically.

� As well, the dynamic range of the digital representation scales as �� whereas that of the neural representation
scales as

�
� (see section 2.3.3).

TLFeBOOK

Representation in populations of neurons 41

Consider the simple analogy of sending a message down a telephone wire using voltage
spikes. If the wire introduces even a small amount of jitter to each spike, then the distance
between spikes at their destination will be slightly different from the distance between
spikes as they were sent. It would therefore be unwise and, as a matter of fact, impossible
to rely on the exact distance between spikes to transmit messages. In other words, if the
transmitted spikes are randomly and slightly moved, and we attempt to decode a message
based on the exact distance between spikes, we would be guaranteed to decode a different
message than the one that was encoded. In fact, we would be randomly misled about the
message that was originally encoded. In the real world, of course, telephone wires have
exactly these problems—whether it be because of interfering electrical fields, tiny quantum
effects, or imprecisions in manufacturing and materials—noise is ubiquitous.

Nature is subject to the same problems. In fact, a neuron’s axon is a lot like a noisy
telephone wire. Lass and Abeles (1975), for example, have found that mylenated axons
introduce a few microseconds of jitter over a length of about 10 cm. A few microseconds
of jitter is not much noise, but it is a start, and there are many other sources of noise in
neurons. For one, presynaptic neurons have been found to be rather unreliable in their
release of vesicles into the synaptic cleft given the presence of an action potential in the
presynaptic axon (Stevens and Wang 1994). For another, the amount of neurotransmitter
in each vesicle can vary unsystematically (Henneman and Mendell 1981). Of course, these
sources of noise affect information transmission in the nervous system just as electrical
noise affects information transmission in telephone wires. This might give rise to the
worry that successfully passing messages with neurons won’t ever work. Despite these
sources of noise, neurons have been shown to respond similarly to similar signals with
the right statistics (i.e., natural statistics; Bair and Koch 1995; Mainen and Sejnowksi
1995). So neurons, though noisy, are able to support a reasonable amount of information
transmission. In other words, they are somewhat unpredictable, but not entirely unreliable.

So, we now know two important empirical facts about neurons: 1) they are noisy
devices; and 2) they have the ability to transmit a signal of interest. This tells us that the
code used by neurons is a robust one under natural conditions, as we would expect.6 Notice
that parallel concerns about noise do not appear to arise for engineered representations.
However, appearances can be deceiving. In fact, the large differences between ‘high’ (+5
V) and ‘low’ (-5 V) voltages are chosen precisely because they make the effects of noise
negligible (Kang and Leblebici 1996; Douglas et al. 1995). There is, however, a high
cost paid by eliminating noise in this fashion: computational density becomes orders of
magnitude lower and power consumption becomes significantly higher (Hammerstrom

� Rieke et al. (1997) note that the coding efficiency of neurons is within a factor of two of the physical limits
set by the statistics of the spike train. Thus, there is no coding scheme that could use such spike trains to encode
more than about twice as much information regarding the stimulus signal.

TLFeBOOK

42 Chapter 2

1995; Mead 1990). Because energy consumption is a serious constraint on biological
evolution, nature has (evidently) not been willing to pay this price. It has even been
suggested that the neurobiological strategy for obtaining precision in the face of noise
underlies its “superior performance” in the real world (Douglas et al. 1995, p. 256).
In any case, neurons have not been designed to simply avoid the affects of noise the
way transistors have been. So, unlike characterizations of engineered representations,
characterizations of biological representations must explicitly address the effects of noise.
This realization is the basis for the addendum to the principles of neural engineering
discussed in section 1.4.

2.2.2 Biological representation and noise

The discussion in section 2.2.1 shows how various sources of noise can effect the transmis-
sion of a signal from a neuron to its neighbor. Although the sources of noise are diverse,
ranging from axon jitter to vesicle release properties, they all have the effect of introducing
uncertainty into any signal sent by the ‘transmitting’ neuron. A simple way to account for
this uncertainty is to lump these sources of noise together by introducing a single noise
term, �. This term should be understood as an amalgamation of the uncertainty introduced
by each of the various processes.

Using this noise term, we can write the ‘transmitted’ firing rate as ����� � ��. That is,
the firing rate that a ‘receiving’ neuron effectively sees will be the actual firing rate, �����,
plus some random variation introduced into that neurons activity by the noise sources, ��.
The estimate of �, ��, for the receiving neuron then becomes

�� �

��
���

������ � ������ (2.6)

To find the decoding weights, ��, we again construct and minimize the mean square error
as we did in (2.4). In this case, we must average over both the range of values of � and the
expected noise, �:

� �
�

�

��
��

��
���

������ � �����

���
���

�
�

�

��
��

�
��
���

������� �

��
���

����

����
���

� (2.7)

In order to proceed further, we make standard assumptions about the kind of noise present
in biological systems. In particular, we assume that the noise is Gaussian, independent, has

TLFeBOOK

Representation in populations of neurons 43

a mean of zero, and has the same variance for each neuron.7 Solving (2.7) then results in
an expression much like (2.4) with the addition of a noise term:

� �
�

�

��
��

��
���

�������

���
�

�

��
�����

���� ������� � (2.8)

Because the noise is independent on each neuron, the noise averages out except when � � �.
So, the average of the ���� noise is equal to the variance, 	�, of the noise on the neurons.
Thus, the error with noise becomes

� �
�

�

��
��

��
���

�������

���
�

� 	�
��
���

��� � (2.9)

We refer to the first squared term in this expression as the error due to static distortion
(since it does not depend on the dynamics of �), and the second term as the error due to
noise.

We can now find the optimal decoding weights, ��, by minimizing the energy as we
did to find (2.5):

� � ����
 (2.10)

where

��� � ������������� � 	�Æ��

and

�� � ���������

where Æ�� is an � �� matrix with ones on the diagonal (i.e., a Kronecker delta function
matrix).8

Equation (2.10) is thus an expression for determining the decoding weights that min-
imize the mean square decoding error under the given noise conditions (characterized by
	�). This equation incorporates four important factors for describing neural representation:

� There is some biological support for this assumption. For example, Rieke et al. (1997) note that in the case of
frog calls, “the distribution of effective noise amplitudes is nearly Gaussian” (p. 184).
� One practical consequence of including noise in our characterization of neural representation is that the matrix
� is guaranteed to be invertible despite our use of a highly overcomplete representation. Previously in (2.5),
� would generally be singular because when using large numbers (i.e., >40) of neurons, there are likely to be
two with very similar response functions (making two of the rows in � equal). This means that � would not
be invertible. Although (pseudo-) inversion can be accomplished by singular value decomposition or any similar
procedure, direct inversion is computationally more efficient. We provide a detailed analysis of � and discuss
related issues in section 7.4.

TLFeBOOK

44 Chapter 2

1) the amount of noise effecting each neuron; 2) the range over which the neurons represent
the scalar (i.e., [-1,1]); 3) the precision with which the neurons represent the scalar (i.e.,
���); and 4) the number of neurons that participate in the representation, � . Notably,
these factors are not independent since specifying some of them will determine what the
others are. For example, if we know the number of neurons, the range of sensitivity, and
the precision of the representation, we can determine what the (Gaussian) noise profile of
the neurons must look like. Similarly, if we know how noisy the neurons are, the range,
and the precision of the representation, we can determine the minimum number of neurons
there must be participating in the representation.

Equation (2.10) is thus a result of taking seriously implementational constraints on
neurobiological representation. By including the nonlinearities and noise that are intrin-
sic to the components that implement the representation, we get a theoretically useful yet
practical characterization of neurobiological representation. Of course, these kinds of phys-
ical constraints directly determine measurable properties of nervous systems. Thus, taking
implementation seriously in our theoretical characterization of representation provides a
means of connecting this framework directly to empirical work. In the next section, we
provide one example of how our framework and current empirical results can together
provide a useful picture of the representations used in a simple neural system.

2.3 AN EXAMPLE: HORIZONTAL EYE POSITION

With this characterization of neurobiological representation in hand, we are in a position to
consider a specific neurobiological example—representing eye position. We have already
introduced some aspects of the representation in this neural system. In this section we
provide more detail and take the opportunity to describe how to apply the methodology
we introduced in chapter 1 (section 1.5). However, we are not yet in a position to use all
aspects of the methodology because we have yet to introduce a means of characterizing
transformations.9

2.3.1 System description

As mentioned in section 1.5.1, the purpose of the system description step is both to gather
the relevant neuroscientific data and to express our resulting understanding of the system
in mathematical terms. We have already done much of this work in section 2.1.2.

First let us reiterate and expand the relevant neurobiological considerations. Recall
that two nuclei in the brainstem, the nuclei prepositus hypoglossi (NPH) and the rostral

� We more fully characterize this same system in sections 5.3, where we introduce spiking neurons, and 8.2,
where we include the relevant transformations and input signals.

TLFeBOOK

Representation in populations of neurons 45

medial vestibular nucleus (VN), play a central role in controlling horizontal eye position
(see Robinson 1989 or Moschovakis 1997 for a review). Together, these populations are
often called the neural integrator because they convert a velocity signal into a displacement
signal. The neurons in these populations project to motor neurons in the abducens and
oculomotor nucleus, which then project to the two major muscles that control horizontal
eye movement, the lateral and medial recti (Seung 1996). Disturbances to the abducens and
oculomotor neurons do not permanently affect eye positions, whereas disturbances to the
NPH-VN do. For this reason, the NPH-VN neurons are thought to be the locus of a stable
eye displacement signal (Seung 1996).10

Like most vestibulo-ocular neurons, the neurons in this population are thought to be
linear over a wide range (Moschovakis 1997; Arnold and Robinson 1991). For this reason,
the response functions of these neurons are often modeled as rectified lines (i.e., a straight
line but whose negative values are set to zero). However, using nonlinear, conductance-
based models of single neurons results in more biologically plausible models (Lee et al.
1997). We again use LIF neurons, whose tuning curves closely approximate the response
of conductance models, and whose general form is expressed by (2.3).11

Single unit recordings have shown that, over the population, the majority of position
sensitive cells are active when gaze is centered (Delgado-Garcia et al. 1989), with back-
ground rates between about 0–150 spikes/s (Moschovakis 1997). These neurons have also
been found to have sensitivities between about 0.1 and 7 spikes/s per degree (Fukushima
et al. 1992). A small set of tuning curves based on (2.3) with this kind of distribution of
parameters is shown in figure 2.5. The most objectionable assumption we have made about
the neural population displayed in this figure is that all of the firing rates are the same
at maximal eye deflections. However, this assumption simplifies subsequent analysis and,
more importantly, we later show that it does not effect the results (see section 5.3).

Note that there are two distinct subpopulations depicted here; those with rightward
increasing responses (‘on’ neurons) and those with leftward increasing responses (‘off’
neurons). As well, the majority of neurons have a background firing rate when the eyes are
straight ahead (i.e., at � � �). These are both features of the NPH-VN network seen in
monkeys (Moschovakis 1997).

To summarize, we take the variable � to range over horizontal eye positions and to be
encoded in a population of neurons in the NPH-VN using response functions of the form
of (2.3) and with parameters distributed as depicted in figure 2.5.

�� Also see Fukushima et al. (1992) for an in-depth argument based on anatomical and physiological data that
NPH is well-suited to act as a neural integrator.
�� Note that we are here concerned only with the displacement related responses of these neurons. Many tend to
have velocity related responses as well (Moschovakis 1997).

TLFeBOOK

46 Chapter 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

x (degrees/max degrees)

fir
in

g
ra

te
 (

sp
ik

es
/s

)

Figure 2.5
A sample of 50 nonlinear LIF tuning curves for a population of neurons used to encode horizontal eye position.
The neurons are distributed such that the majority of cells are active when the eyes are centered (i.e., at � � �).

2.3.2 Design specification

As described in section 1.5.2, design specification addresses issues of the precision, noise,
and range of the relevant representations. The range in this case is straightforward. Hu-
mans, for example, have approximately a �50 degree range of horizontal motion (Davson
1990, p. 657). In this example, we normalize this range to the interval between -1 (leftmost
position) and 1 (rightmost position).

The amount of noise we expect in the neural representation can be derived from recent
results regarding the transmission of signals by individual neurons (Rieke et al. 1997; see
section 4.4 for more detail). As mentioned in section 2.2.1, neurons carry about 3 bits of
information per spike. This means that the code allows approximately 10% error. Thus,
we assume that our neurons can encode with a signal-to-noise ratio of 10:1 (i.e., 10%
error; ��

� ��� assuming an even distribution of possible signals). As before, we assume
independent, Gaussian noise with a mean of zero for each neuron.

As for the precision of the representation, we leave this unspecified and consider it the
purpose of our model to determine the relation between the precision of the representation
and the number of neurons, given the specifications we have made in this section.

TLFeBOOK

Representation in populations of neurons 47

10
0

10
2

10
410

-6

10
-4

10
-2

10
0

N (number of neurons)

sq
ua

re
 e

rr
or

neurons
1/N

10
0

10
2

10
410

-15

10
-10

10
-5

10
0

N (number of neurons)
sq

ua
re

 e
rr

or

neurons
1/N2

1/N4

a) b)

Figure 2.6
Simulation results showing the relation between the precision of the representation and the number of neurons in
the representing population. a) Decreasing error due to noise as a function of the number of neurons. We added
randomly generated LIF neurons to build up the populations, assuming parameters distributed as for figure 2.5.
For comparison, the line ��� is also plotted. b) Decreasing error due to static distortion for the same population.
For comparison, the lines ���� and ���� are also plotted.

2.3.3 Implementation

Much of the implementational work for this example has already been completed in
section 2.2.2. To briefly review, the expression for the estimate of eye position, ��, is
a linear combination of decoding weights �� and neural encodings, �����, as shown in
equation (2.6). To find the decoding weights under noise, we derived (2.9) which can be
minimized, resulting in decodings weights given by (2.10). The system description and
design specification we provided in the two preceding sections specify both �����, and ��.
Therefore, we can directly solve (2.10).

With this characterization of neural representation, we can perform computational
experiments to determine the relation between the precision of the representation and the
number of neurons in the population, � . As can be seen in figure 2.6a, the mean square
error due to noise of the representation decreases as ��� .

This result agrees with previous results using maximum likelihood estimation (see,
e.g., Snippe and Koenderink 1992 and Paradiso 1988). Because maximum likelihood
provides a theoretical bound on optimal representation, these results show that this kind
of representation is a good one.12 This is not surprising given the close relation between
our approach and maximum likelihood methods (Salinas and Abbott 1994). In fact, we can
directly show that this sort of performance is expected. Note that all of the tuning curves in

�� This has been discussed in greater detail elsewhere (Seung and Sompolinsky 1993).

TLFeBOOK

48 Chapter 2

our model have the same firing rate, �, at � � � or ��; i.e., ����� � � for all ‘on’ neurons,
�, and zero otherwise. Therefore,

� �

��

���

�������

� � �
�

�
��

�� �
�

��
�

Of course, our method finds optimal �� over all possible positions, but this argument
shows that we should expect �� � ��� , since both � and � remain constant for any
� . Furthermore, from equation (2.9) we know that the noise term is proportional to�

�

���
��
�
� ���� � ��� . Thus, the square error due to noise (see 2.2.2) decreases

as approximately ��� .
Figure 2.6b demonstrates numerically that the other source of error, the error due to

static distortion, decreases as ����. In fact, the error due to static distortion goes as ����

for large � if there is no noise in the system (not shown). However, these results are
mainly of academic interest since once the number of neurons increases beyond around 10
in number, the error due to noise dominates the error due to static distortion. Given this
analysis, it is clear that we can achieve a root-mean-square precision of around 1% with
approximately 100 neurons.

2.3.4 Discussion

This example gives a first demonstration of why it is useful to characterize neurobiolog-
ical systems as representing. In this particular case, such a characterization provides us
with specific hypotheses regarding how well a neural population can encode information
about some external state. It also lets us know how that encoding changes if neurons are
removed or damaged. Furthermore, this representational analysis gives insight into how
a population of neurons can be thought of as working together to more effectively pro-
cess signals. That is, it gives us a theoretical foundation for understanding the relation
between the functioning of individual neurons and the characterization of neural systems
as processing ‘higher-level’ variables like eye position. On occasion we call variables like
eye position higher-level representations to contrast them with neural activity (i.e., firing
rates or spikes), which we call basic representations. We consider the latter ‘basic’ be-
cause there is a general consensus that neurons are the basic units of neural function. In
contrast, determining which neurons belong in a particular population (i.e., participate in
a particular higher-level representation) is an open issue in most cases. However, in order
to generate useful explanations of neural systems, it is often necessary to talk in terms of

TLFeBOOK

Representation in populations of neurons 49

higher-level representations, since explanations in terms of individual neurons can quickly
become overly complex. As well, being able to relate basic and higher-level representa-
tions may serve as a bridge between higher-level behavioral sciences, like psychology, and
more basic behavioral sciences, like neuroscience. As discussed in section 3.1, higher-level
representations can be similarly combined to produce even higher-level representations.
This permits generating theories regarding behavior in terms of very high level representa-
tions that may be many steps removed from neural activity (see section 8.5). The relation
between each of these levels of representation can be defined by the relevant decoding
weights.

In this particular example, the decoding weights, ��, that we find define what we
earlier called the representational decoding. If we think of the signal � as the input to
these neurons, and the estimate of that signal, ��, given their firing rates, �����, as the
output, then the decoding weights are those weights that make the input/output transfer
function as linear as possible over the relevant range under the given noise profile (see
figure 2.7). Equivalently, we can think of the decoding weights as being chosen to best
approximate a linear function given the nonlinear response functions. That is, the weights
are chosen such that when we add up all the response functions in the population, the
total is (nearly) equal to the original signal, �, over its entire range. This is a natural way
of understanding a representation because, if we think of a representation as standing-in
for what it represents, then we would expect that manipulating the representation (i.e., ��)
would be much like manipulating what it represents (i.e., �). This will only be true, of
course, if the representation and what it represents are in some sense the same (or nearly
the same). An input/output transfer function that was a perfectly straight line with slope
of one and that intersected the origin would indicate that the representation and what it
represents were identical. In this case, we have quantifiable deviations from that ideal kind
of representation.

2.4 REPRESENTING VECTORS

Vector representations have a long history in neuroscience, and have been found in a wide
variety of neural systems, including those responsible for producing saccades (Lee et al.
1988), estimating the orientation of visual input (Gilbert and Wiesel 1990), encoding an
organism’s spatial orientation (Zhang 1996), detecting wind direction (Miller et al. 1991),
coding echo delay (O’Neill and Suga 1982), and controlling arm movement (Georgopoulos
et al. 1984). Vector representations have been implicated in diverse anatomical areas in-
cluding hippocampus, motor cortex, vestibular systems, frontal cortex, peripheral sensory
systems, visual cortex, and cerebellum. So it is essential to have a viable characterization
of vector representation.

TLFeBOOK

50 Chapter 2

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

x

neural representation
ideal representation

^

Figure 2.7
The input/output transfer functions for the neural representation in NPH and an ideal representation.

Mathematically, vectors are simply a set of scalars. Thus, it should not be surprising
that our characterization of scalar representation generalizes quite naturally to vectors.
However, a simple-minded mathematical generalization will not be satisfactory because
we need to correctly describe the particular implementation(s) of vector representation
found in nervous systems. This means that we cannot just construct multiple, independent
representations of scalars and then combine them in order to represent vectors. Rather, we
must account for the fact that neuron tuning curves themselves often show sensitivity to
multiple dimensions. Similarly, a particular neuron in a population representing a vector
can be sensitive to almost any direction in the vector space, not just one or a few of
the cardinal directions (i.e., axes), which a simple-minded generalization might assume.
Of course, using multi-dimensional tuning curves is equivalent to using a representation
that employs representations of independent scalars. However, given our commitment
to understanding neural systems in terms of the properties of neurons, it is essential to
characterize neural representation with an eye to actual neural responses.

A multi-dimensional LIF tuning curve has much the same form as a single dimension
tuning curve. However, the input current is determined in a different manner. Specifically,

TLFeBOOK

Representation in populations of neurons 51

we can write

����� � �� �������

����� �
�

�
���
� � ���� ��

�
��

����������
	

�	���

� � (2.11)

where

����� � ��

�
����
�
�
	 �	�
�� �

For a neuron sensitive to two different dimensions, the function ����� defines a plane
whose maximal slope is along ���. This plane is then subjected to the LIF nonlinearity,
�� ���, as before. The resulting 2-D tuning curve is shown in figure 2.8a.13

The vector ��� is called the preferred direction vector of a cell with this kind of
response. This is because, for a given vector magnitude, the cell responds most strongly to
inputs whose direction aligns with the preferred direction vector (see figure 2.8b). So, the
vector is ‘preferred’ because it causes the highest firing rate for a given magnitude and it
is a ‘direction’ because it has a particular orientation in some (possibly high-dimensional)
vector space.

Although ��� seems to be a parameter that was not included in the scalar case, equation
(2.11) can be thought of as a D-dimensional version of the response in equation (2.3).
Previously, when we were discussing scalar representation in section 2.1, the
�� parameter
was implicitly 1 for ‘on’ neurons or -1 for ‘off’ neurons, resulting in a positive or negative
slope respectively. In the one-dimensional scalar problem there are only two possible
preferred directions (positive and negative). However, in the higher-dimensional problem,
there are infinitely many possible preferred directions. This is why it becomes necessary
to explicitly include ��� in our formulation.14 Because ��� centrally defines the encoding
procedure, we also call it the encoding vector.

Having determined the encoding, we again turn to determining the relevant decoding.
Our expression for the decoding of a vector, �, is much like that for a scalar in equation
(2.2):15

�� �

��
���

�������� (2.12)

�� For notational convenience, we write the vector dot product between two �-dimensional vectors, � and �
as ����

�
which is to indicate the sum over the elements of the vectors, i.e.,

�
�

���
�������� which defines the

dot product. This is consistent with our previous usage of ���, as the dot product can be thought of as the discrete
version of the integral. Using the brackets in both of these contexts simplifies notation.
�� Note also that the preferred direction vector is always normalized to be a unit vector.
�� Indexing the elements of the vectors explicitly, this is equivalent to ����� �

�
�
��	�
�����.

TLFeBOOK

52 Chapter 2

-2 -1 0 1 2 3
0

100

200

300

400

500

600

θ (radians)
fir

in
g

ra
te

 (
sp

ik
es

/s
)

-1 -0.5 0 0.5 1
-1

0

1
0

200

400

600

x

y

fir
in

g
ra

te
 (

sp
ik

es
/s

)a) b)

Figure 2.8
Tuning curves for a LIF neuron encoding a 2-dimensional input vector. a) The normalized tuning curve given by
equation (2.11). b) The preferred direction is at an angle of ��� radians, where the maximal firing rate is
achieved. This is the more commonly plotted ‘cosine tuning curve’ for the same neuron as in a). Note that this
second tuning curve only describes sensitivity to direction, not magnitude.

In fact, the expressions for the error and optimal weights are much like (2.4) and (2.5)
respectively, and the procedure for including noise in the representation is analogous to
that discussed in section 2.2. As a result, we do not need to derive any new methods for
finding the decoders for vectors, they can be found in the same way as the decoders for
scalars. We have thus defined a general form for vector representation consisting of the
encoding,

����� � ��

�
��

�
��
�
�

�
�

� �
����

�

�
(2.13)

and the decoding,

�� �

��
���

�������
� (2.14)

This kind of vector representation has been extensively compared to other kinds of
vector representation, as we discuss in the next section.

2.5 AN EXAMPLE: ARM MOVEMENTS

One of the best known examples of population coding in higher mammals is the represen-
tation of arm movements in motor cortex. Largely due to the efforts of Apostolos Geor-
gopoulos and his colleagues (see Georgopoulos et al. 1984; Georgopoulos et al. 1986;

TLFeBOOK

Representation in populations of neurons 53

Georgopoulos et al. 1989; Georgopoulos et al. 1993), it has been shown that populations
of broadly tuned cells in monkey motor cortex represent arm movements using a weighted
vector code. The particular weighted vector code that Georgopoulos and his collaborators
have used to demonstrate this is what they call a ‘population vector’. However, to distin-
guish this kind of population vector decoding from the optimal linear decoding we are
considering, we call it a ‘preferred direction’ decoding. This kind of code is much like
(2.12) except that the decoding vector is assumed to be the same as the encoding (i.e.,
preferred direction) vector; i.e., ��

�
��

�
, so under this characterization

�� �

��

���

��������� (2.15)

Because this approach to understanding population codes has been around for so long, it
has be extensively analyzed and compared to other kinds of population decoding, including
the optimal linear approach we are using (see, e.g., Salinas and Abbott 1994). In this
section, we reproduce some of these past results while using a more realistic neural
model.16

2.5.1 System description

The system description in this section is taken largely from Georgopoulos et al. (1984).
In this paper, Georgopoulos et al. examine two-dimensional arm movements in rhesus
monkeys. They report a series of experiments in which the monkeys are cued to move in
one of eight directions, either inward or outward (see figure 2.9). They find that a subset
of arm-related motor cortical cells is used to produce movements in this particular task.
Thus, the cells they analyze are both appendage and task specific. Of these cells, 75% are
directionally tuned (i.e., they had a single preferred direction, ���). This directional tuning
is independent of the destination of the arm movement. In other words, a cell tuned to
‘��Æ up’ has its maximal firing rate when the movement is in the top right quadrant of the
outward task, and also when the movement is in the bottom left quadrant of the inward
task (see figure 2.9). Georgopoulos et al. note that the directional tuning of these cells has
a fairly general form. Of the tuned cells, 78% are fit with a cosine tuning curve of the form

����� � �� � �� � �	
��� � ���� (2.16)

where �� is angle of the preferred direction vector, �� is the angle of the direction of
movement, and �� and �� are regression coefficients. The preferred directions, ��, are
roughly evenly spread around the ��
Æ arc.

�� In particular, the Salinas and Abbott (1994) analysis uses rectified linear neurons, while we use leaky
integrate-and-fire neurons.

TLFeBOOK

54 Chapter 2

90o

0o

Figure 2.9
Outwards (left) and inwards (right) arm movement tasks. (Adapted from Georgopoulos et al.
1984 c� Neurosciences Research Foundation, reproduced with permission.)

Notably, Georgopoulos et al. are concerned only with decoding the direction of arm
movement, which is why the firing rates are parameterized with respect to � only. Of
course, �, is a scalar. Thus, this equation describes the encoding of a scalar, not a vector.
However, there is evidence that the primary motor area is involved in coding the magnitude,
as well as the direction of the movement velocity vector (Todorov 2000; Moran and
Schwartz 1999; Schwartz 1994). Thus, a more complete picture is gained by thinking of
the motor cortex as encoding a two dimensional vector, �, where

����� � ��

�
��

�
��
�
�

�
�

� �����

�

�
� (2.17)

This kind of encoding captures all of the information present in (2.16); i.e., direction
information. In fact, we can reconstruct the cosine tuning curves of (2.16) by sampling
the possible directions of � (as shown in figure 2.8b). Substituting a ‘sweeping’ series of
vectors of the same magnitude into (2.17) results in a tuning curve that can be expressed in
the form of (2.16); this is a straightforward consequence of using the dot product in (2.17).
However, (2.17) also captures the ability of these neurons to encode the magnitude of a
vector (as is evident from figure 2.8a).

2.5.2 Design specification

We can rely on the same general considerations about the information transmission of
neurons as we did in section 2.3.2, to justify the assumption that the variance of the noise
is 0.1 of the maximum neuron firing rate. The range of possible vector directions in this
case is a 360Æ circle. Finally, the vector magnitudes are normalized to fall in the range
��� ��. As well, we again take the purpose of this discussion to be a characterization of the
precision of the representation given our characterization of neural representation.

TLFeBOOK

Representation in populations of neurons 55

2.5.3 Implementation

For both the preferred direction and optimal linear decoding, the encoding is of the same
form, described by equation (2.17). As mentioned, the decoding is also of the same form
in both cases, i.e.,

�� �

��

���

������ � ������ (2.18)

although in the preferred direction decoding,�� � ���. To find the optimal decoders under
noise in the vector case, we perform the squared error minimization described in section
2.2, integrating over the vector, �.

As shown in figure 2.10, the optimal decoders perform significantly better than the
preferred direction decoders for any population size. Furthermore, the rate of improvement
with additional neurons is much greater for the optimal decoders than the preferred direc-
tion decoders. This means that more information can be extracted with fewer neurons and
that the information from any additional neurons is better used. Note that this comparison
only accounts for the ability to decode the direction of the encoded vector. Magnitude in-
formation, while encoded, has simply been ignored in generating this comparison. This is
because the preferred direction decoding cannot extract magnitude information very well
at all (Salinas and Abbott 1994).

2.5.4 Discussion

As we can see from this example, extending this approach for characterizing neural
representation from scalars to vectors requires little additional theory (most notably making
the encoding vectors, ��

�
, explicit). As well, this example serves to emphasize a point that

has been made by a number of researchers in the past: optimal linear decoders are very
good, very simple, and neurologically plausible (Abbott 1994; Pouget et al. 1998; Pouget
et al. 1993; Salinas and Abbott 1994). These decoders are very good because they are
better than other linear decoders, the preferred direction decoders being just one example.
They are very simple precisely because they are linear. And, they are neurologically
plausible because neurons can clearly perform the linear computations necessary to support
this characterization of representation.17 As well, although we have only discussed static
representation, such representations can also be used for modeling the functions of motor
cortex. For instance, Nenadic et al. (2000) use this kind of representation in a simple model
of two-dimensional arm control.

�� Nevertheless, we think neurons can perform nonlinear computations. We leave the many interesting issues
that arise regarding nonlinear computation to chapter 5.

TLFeBOOK

56 Chapter 2

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

10
1

N (number of neurons)

sq
ua

re
 e

rr
or

preferred direction decoders
optimal decoders

Figure 2.10
Preferred direction decoding compared to the optimal linear decoding of the direction of arm movement. The
optimal linear decoding performs significantly better and improves more rapidly with additional neurons.

Finally, it is worth emphasizing that this example demonstrates that the preferred di-
rection characterization of vector representation should be reconsidered. Notably, the pop-
ulation vector characterization is an intuitive and convenient means of understanding the
activity of neurons as representational. However, when contrasted with this alternate char-
acterization of neural representation it is clear that intuition can sometimes lead us astray.
While the preferred direction approach has been used for many years, and has helped us
gain a better understanding of neural representation, it does not have a solid theoretical
foundation; choosing preferred direction vectors for decoding was a convenience. For this
reason, much of the information carried by the neurons is lost using the preferred direction
characterization. Neural systems generally do not seem this suboptimal when it comes to
exploiting the information capacity of their components (see the many examples in Rieke
et al. 1997). As a result, the optimal linear characterization, which does have a good theo-
retical foundation and is a natural part of a unified understanding of neural representation
should be preferred. Salinas and Abbott (1994) have convincingly shown that representa-
tions like (2.12) uniquely combine accuracy and neurological plausibility. We have repro-
duced this result, and are engaged in showing that such representations can also be a part
of a principled approach to understanding neural representation.

TLFeBOOK

Representation in populations of neurons 57

2.6 AN EXAMPLE: SEMICIRCULAR CANALS

As mentioned in section 2.5.1, the preferred direction vectors of the neurons in motor
cortex are more-or-less evenly distributed in the relevant vector space. Therefore, in the
arm movement representation, the encoding vectors, ���

, were also evenly distributed over
the ���

Æ range of the representation. However, vectors need not always be represented
in this manner. Rather, this aspect of the representation depends on the particular system
being modeled.

In this section, we briefly describe an alternative 2-dimensional vector representation
that is more akin to the kind of representation seen in the semicircular canals of the
vestibular system. Our purpose in this section is to show that the theoretical approach
we have been presenting must be supplemented by experimental information regarding the
particular system being modeled. Although, as we show, such information does not always
make a big difference to the quality of the representation, it can make a big difference to
the topology of the network, and thus to the kinds of predictions we make about the system
being modeled (e.g., what computations are or are not likely to be supported).18

2.6.1 System description

There are three semicircular canals on each side of the head, oriented at approximately right
angles to each other (see figure 6.11). Each canal is filled with a fluid (endolymph) and is
end-stopped by a gelatinous membrane (the cupula). Embedded in this membrane are a
large number of tiny hair cells, whose deflections cause neighboring neurons to fire action
potentials. The signal carried by the canal afferent neurons is proportional to the angular
velocity of the head along the direction of the canal’s orientation. This signal is generated
as follows: an angular acceleration of the head causes the canal to move relative to the
fluid inside it (since the fluid has a moment of inertia and is free to flow). The movement
of the fluid deforms the cupula, thus bending the hairs embedded in it, and causing the
neurons to fire. The afferent neurons fire in direct proportion to the deformation of the
cupula. The reason the neurons carry a signal about angular velocity, and not angular
acceleration, is that the fluid’s angular velocity very rapidly matches that of the canal
after an acceleration, but the cupula is not very elastic. This means that the degree of
deformation of the cupula by the fluid quickly tracks the angular velocity (since the applied
force due to acceleration has a time constant of about 3 ms) and the cupula only slowly
regains its original shape after such a deformation (with a time constant of about 10 s; for
a more comprehensive explanation see Wilson and Jones 1979, pp. 43–55). So, the canals
generally operate as integrating accelerometers (at least over a bandwidth corresponding
to frequencies normally incurred during natural movement; Wilson and Jones 1979, p. 54).

�� The relation between topology and function is discussed in detail in chapters 5–7.

TLFeBOOK

58 Chapter 2

Given this description, it is natural to take the vector being represented by the semi-
circular canals to be angular velocity, �. Although this is a three dimensional vector in
the vestibular system, we have restricted this example to 2-dimensions in order to compare
it directly with the results of the previous section.19 Thus, we will be implementing the
angular velocity around only two of the three possible axes. Because neurons in canals on
opposite sides of the head are sensitive to velocities in opposite directions, they comprise
‘on’ and ‘off’ subpopulations, like those in the eye position example.

We skip the design specification as we assume it is identical to the previous example,
in order to facilitate comparison.

2.6.2 Implementation

Since this representation is equivalent to that in section 2.5, we can write the expression
for this representation exactly as in equations (2.17) and (2.18). However, we can also be
explicit about the fact that we only use encoders along two orthogonal axes. Thus, for the
encoding we can write

������ � ���

�
���

�
�
����

�
�
� �������

�
� (2.19)

We have introduced an extra index �, to denote the four populations (two ‘on’ and two
‘off’) involved in this representation. This allows us to be more explicit about the nature
of the encoding vectors. In particular, ���� � �� for � � �� � and ���� � ��� for
� � �� 	, where the �� are the unit vectors along the orthogonal axes, i.e., �� �
� �� and
�� �
� ��. Thus, all of the neurons have preferred directions along the principle axes. The
decoding then becomes

� �
�
���

���������� (2.20)

Writing the representation in this way shows that (2.20) is identical to simply combining
two distinct scalar representations (i.e., the scalar representation for� � �� � and the scalar
representation for � � ��). This is because we could treat these two parts of the sum over
� independently given that the relevant �� are orthogonal, and thus independent.

Comparing this kind of representation to that of the previous example (where the en-
coding vectors of the population are evenly distributed around the entire space being rep-
resented), we see that the quality of the representation is essentially the same (see figure
2.11). The slight differences in the errors is a result of randomly choosing neural popula-
tions of a given size. However, the slope is identical, meaning that the representations are
improving at the same rate.

�� For a detailed model employing the full 3-D representation see section 6.5.

TLFeBOOK

Representation in populations of neurons 59

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

N (number of neurons)

sq
ua

re
 e

rr
or

evenly distributed decoders
axis only decoders

Figure 2.11
Comparison of a vector representation using preferred direction vectors distributed only along the axes (as in the
semicircular canals) with a vector representation using preferred direction vectors distributed evenly throughout
the vector space (as found in motor cortex). As expected, these representations are equally precise for a given
population size. Results averaged over 4 runs for each value of � .

In conclusion, then, choosing the kind of neural representation to employ in a model
depends on the particular neural system being modeled. However, the characterization of
neural representation we have been discussing can be used to quantify the representation
regardless of what particular kind it is. This means that the optimal linear approach can
help us pick out general properties of neural representation (such as the relation between
error and population size) that are independent of implementation, while being able to
incorporate the specific properties of individual neural systems (such as the particular
distribution of preferred direction vectors in the system).

2.7 SUMMARY

At the start of the chapter we suggested that neurobiological representation could be under-
stood analogously to engineered codes. We pursued this analogy to show both similarities
and differences between neural representation and codes used in digital computers. The
most important similarity was that both engineered and neural coding could be defined by
nonlinear encoding and linear decoding.

TLFeBOOK

60 Chapter 2

We then noted that, in the neurobiological case, encoding was well understood, but that
we needed a means of finding the decoders. As a result, we presented a method for finding
the optimal linear decoders.We extended this noise-free analysis to include the effects of
noise in order to make this characterization appropriate for real neurobiological systems.
This completed the introduction to the main aspects of population representation that we
employ throughout the remainder of the book.

We subsequently considered the specific example of the neural integrator, to demon-
strate how the theory could be applied to a particular neurobiological system. In that section
we showed that the error in the representation due to noise decreased in proportion to the
number of neurons in the population. We also showed that the static error due to distortion
decreased in proportion to the square of the number of neurons.

Having laid the foundations for understanding neural representation of scalars, we
demonstrated that it could be generalized to characterize vector representation as well.
We compared this characterization of vector representation to the more popular ‘preferred
direction’ characterization, using representations in motor cortex as our example. We ar-
gued, after Salinas and Abbott (1994), that this optimal linear approach should be preferred
over other approaches for its unique combination of precision and neural plausibility. We
then turned to the example of the semicircular canals to show that the specific properties of
the neurobiological system we model are both important and can be accounted for by the
characterization we have presented.

TLFeBOOK

3 Extending population representation

As mentioned in section 2.1 of the last chapter, it is reasonable to expect that understanding
scalar representation provides an important first step towards understanding more complex
kinds of representation. In section 2.4, we showed precisely how we could generalize
scalar representation to the the case of vectors. In fact, the resulting characterization for
vectors was identical to the scalar case with the exception of having to explicitly identify
the encoding vectors. In section 3.1 of this chapter, we argue that this generalization is
one that can be repeated for more complex kinds of representation. This leads us to the
identification of a representational hierarchy.

The next step on this hierarchy after vector representation is function representation.
So, in sections 3.2–3.4 we describe how to characterize function representation using this
same approach. We also discuss the deep and important relation between function repre-
sentation and vector representation in section 3.3. We then show how function represen-
tation is relevant for understanding certain neurobiological systems by considering such
representations in lateral intraparietal cortex (LIP).

3.1 A REPRESENTATIONAL HIERARCHY

In section 2.3 we described how the neurons in the horizontal neural integrator could be
understood as supporting a higher-level scalar representation. In sections 2.5 and 2.6, we
examined two different kinds of vector representation. Table 3.1 summarizes the kinds of
representation we have considered so far.

The theory employed in each of these cases does not essentially depend on the precise
nature of the higher-level representation. For instance, the vestibular and motor representa-
tions could have been vectors of any dimension. And, furthermore, these two implementa-

Table 3.1
The three kinds of higher-level representation discussed so far.

Neural System Dimension Encoder (�����) Decoder (��)

Neural
Integrator

1-D scalar ��

�
���� ������

� �
� �������

Motor Cortex 2-D vector ��

�
��

�
����

�
�
� ������

� �
� �������

Semicircular
Canals

2-D vector ���

�
���

�
�����

�
�
� �������

� �
��� ���������

TLFeBOOK

62 Chapter 3

tions of vector representation equivalently represent any vector. The only reason to choose
one kind of representation over the other, in such cases, is that the neurobiological evidence
demands one kind of representation rather than another. There is nothing inherently better
or worse about either of these two kinds of vector representation. This implies two things.
First, as we have been insisting, this is clear evidence that we must turn to the neurobiolog-
ical system itself to properly constrain our representational characterization. Second, our
analysis of such representation does not depend on neurobiological detail, which is why it
might serve to provide a unified understanding of representation.

Comparing, for the moment, the characterizations of vector and scalar representation,
we see that the major difference is merely an increase in the number of dimensions being
represented. This can be understood as the beginnings of a kind of representational hier-
archy, ordered by the number of dimensions a representation can effectively characterize:
scalar representations can only characterize one-dimensional problems; whereas vector
representations can characterize a large but finite number of dimensions. It is natural to ex-
trapolate this hierarchy. That is, we can allow the elements of the vectors to become contin-
uously indexed, and hence cover an infinite dimensional space (i.e., represent a function).1

And, we can combine finite and infinite indices to represent infinite sets of finite vectors
(i.e., a vector field). We have summarized these steps in table 3.2.

Note that in each case, the ‘basic’ representation (i.e., neural activities) are what these
representations are defined over. So, the representation relation is defined by the encoding
and decoding processes which relate higher-level and basic representations. The higher-
level representations, themselves, are ordered by increasing dimensionality to give rise to
this representational hierarchy. It is important to keep in mind that there is more than one
possible implementation at each representational level. So, this hierarchy in no way relieves
us from being responsible to the particular neurobiological system we are interested in
understanding.

Nevertheless, being able to construct such a hierarchy is useful for a number of
reasons. First, the fact that all of the levels of such a hierarchy are of a standard form
suggests that this characterization provides a unified way of understanding representation
in neurobiological systems. This is why the first principle of neural engineering stated in
chapter 1 describes the form of the equations shown in table 3.2. Although we do not
provide detailed examples of all possible kinds of representation captured by this table, we
do examine scalar, vector, and function representations.

Second, if we can construct a hierarchy in such a way that it is applicable to diverse
neurobiological systems, then we have a very general means of characterizing representa-

� There are important subtleties in the relation between vector and function representation that technically violate
this distinction, as discussed in section 3.3. Nevertheless, categorizing kinds of neurobiological representation in
this way is conceptually useful.

TLFeBOOK

Extending population representation 63

Table 3.2
The first levels of the representational hierarchy. Each level of this hierarchy is defined in terms of basic
representations, i.e., neural activity.

Kind Encoder (�����) Decoder (��)

Scalar (1) ��

�
���� �����

�

� �
�
�������

Vector (�) ��

�
��

�
����������

�
�

� �����
�

� �
�
�������������

Function (�) ��

�
��

�
����	���	�

�
�

� �����
�

� �
�
�����	�����	�

Vector Field
(���)

��

�
��

�
����	
 ������	
 ����

�
� �����

�

� �
�
�����	
 �������	
 ����

tion. Moreover, the fact that the approach we have outlined does not completely determine
which representational characterizations are best for particular neural systems, suggests
that this framework is appropriately flexible; i.e., sensitive to empirical data.

Third, being able to work at, and move between, the various levels in such a hierarchy
has important practical consequences. For instance, suppose we are interested in modeling
a complex neurobiological system that represents a vector field. The hierarchy makes
is possible to consider the function representation and vector representation aspects of
the vector field representation separately, before combining them. That is, this kind of
hierarchy supports the decomposition of complex representations into simpler ones, often
making problems far more computationally tractable than they might otherwise be. While
it may not be immediately apparent from table 3.2 how this will work, we provide an
example of this kind of decomposition in section 8.5.

To demonstrate the generality of this way of thinking about representation, let us now
consider a third level of the representational hierarchy.

3.2 FUNCTION REPRESENTATION

There are many cases when it is appropriate to describe neural systems as representing
functions. Representation of visual images, auditory streams, patterns of movements, tac-
tile sensations, and velocity fields, are all naturally considered representations of functions.
This is because, in each of these cases, neural systems must represent the more-or-less con-
tinuous variation of one parameter (e.g., light intensity) with respect to the more-or-less
continuous variation of another parameter (e.g., spatial location). In fact, we suspect that
function representation is one of the most common kinds of neural representation.

TLFeBOOK

64 Chapter 3

For a specific example, consider research on working memory that has shown a
sensitivity to shape as well as position in neurons in lateral intraparietal (LIP) cortex
(Sereno and Maunsell 1998). If these neurons were sensitive to only the position of a
stimulus, we would perhaps want to claim that the population was representing a set of
vectors, i.e., the vectors denoted by � � ���� ��� ���, covering all relevant spatial locations.
However, since there are other dimensions being represented (in this case, shape) at each
spatial location, we know that there will be different patterns of neural activity for different
stimuli at the same position. Thus, the population encodes a set functions that can represent
distinguishable shapes at every spatial location, i.e., the functions ��� ��� � �����,
where � is a set of parameters that pick out a particular function of �. In the case of
shape sensitive neurons, the parameters �, determine the function, ��, that represents a
specific shape at location �. Different values of � would thus result in different functions
that encode the presence of different shapes at the same location (for a more complete
discussion of a similar example, see 8.3). This kind of complex representation can support
many kinds of transformations that neurobiological systems take advantage of, including
texture processing, object recognition, and tactile memory.

At first glance, it may seem that function representation is significantly more compli-
cated than scalar or vector representation because of the parameter �. However, in our
previous discussion of scalar and vector representation, notice that we identify variables
(e.g., � or �) that range over a set of scalars or vectors. So, when discussing neural repre-
sentation in terms of variables, we are actually talking about the representation of sets of
scalars or vectors (e.g., all possible eye positions between -50 and 50 degrees, or all pos-
sible arm positions in a horizontal plane). Similarly, when discussing functions, we must
talk about sets of functions that comprise some function space (or part of some function
space). The purpose of the� parameter is to make this explicit, since it is not captured by
standard mathematical notation (i.e., we do not have a standard way of writing a variable
that ranges over functions instead of scalar magnitudes).

Perhaps the most important step in characterizing function representation, is delimiting
the set of functions to be represented (this is precisely what we must do in the design
specification). Not only do we need sufficient physiological data to have a sense of what
functions could be represented, but we must also try to express that set of functions in a
mathematically concise way. This can often be quite challenging (see, e.g., sections 8.3
and 8.5).

Nevertheless, the general expression for identifying an ensemble of functions, or a
‘function space’, is straightforward. For simplicity, let us consider functions of the scalar
variable, �. We begin by characterizing the valid domain of the functions,

���� ��	 � � ������ ������ (3.1)

TLFeBOOK

Extending population representation 65

and then construct a mathematical representation of the whole ensemble:

������ �
�

�

������� ���� � ����� 	
�� � ��� � � � ���� (3.2)

Equation (3.1) defines the domain for any given function in the set defined by (3.2).2

This mathematical representation resembles our previous characterization of neural
representation, but only superficially (see sections 7.1 and 7.4 for further discussion).
Unlike neural representation, this function space is characterized by linear combinations
of an orthonormal basis, ����� (see section 7.1 for a discussion of ‘basis functions’).
This, then, is like using Cartesian coordinates to represent vectors, usually not what neural
systems do (a point to which we will return shortly).

A familiar example of defining an ensemble of functions in this way is given by the
standard Fourier decomposition,

������ �
����

�

��

���

���� ����	��� ����� ��
�	���� (3.3)

where 	� � �

� ����� � �����. Here, each choice of the
�� � �� parameters, �,
defines a particular function ����. For instance, if we choose ���� � � (and let all the
other components be zero), we get a single period cosine wave over the range of �. If,
instead, we similarly choose ���� � �, we get a single period sine wave over the range of
�. As is well known, using this decomposition we can choose the� parameters to get any
function we want over this range.

However, in neural systems we seldom, if ever, want to represent any function. As a
result, we need to define limits on the coefficients � in this representation. This is why
equation (3.2) includes the probability distribution ����.3 Specifying a probability distri-
bution is a convenient means of determining which functions may actually be represented;
i.e., of specifying the ‘range’ of functions. Since the set of coefficients is drawn from some
probability distribution, ����, it is that distribution that defines the function space. If, in
the Fourier example, we structure ���� so that values of ���� for small � are likely to
be small, and values of ���� for large � are likely to be large, we will have an ensemble
of high bandpass functions (i.e., functions composed of high frequency sines and cosines).
If, instead, we structure ���� so that only one particular� is likely to be chosen, we will
have defined a set of signals with one member.

� It may be more accurate to write �������� since these functions are only defined with respect to this
particular set of basis functions. However, since the �� never change once picked, it is more compact to write
������.
� As usual, we assume that implementational constraints will play a role in which coefficients are used. As a
result, we always pick� for some finite � where each �� coefficient has a limited precision.

TLFeBOOK

66 Chapter 3

Once we have defined the function space in this way, we can begin to construct a neural
representation of that space. The neural encoding, as before, is determined by the intrinsic
properties of neurons as well as their relation to the rest of the system, as captured by an
encoder. Specifically, we write

���������� � ����� � ���������� (3.4)

where

����� � ��

�
������������

�
�

� �����

�
	 (3.5)

This expression should look familiar because of its strong resemblance to vector encoding
specified by equation (2.13). There are two main differences. One is that the preferred
direction, or encoding, vector has been replaced by the function ������. However, this
‘encoding function’ plays much the same role, as discussed below. Second, rather than a dot
product, the angle brackets ��� indicate integration over the parameter �. This is because
integration functions much like a dot product over a continuous space—both provide a
measure of similarity when employed in this way. Notice that because of this integration,
the � parameter is integrated out of (3.5). As a result, the soma current �� is only a function
of the coefficients, �. This is to be expected because the firing rates in the population ��

are always representing some function over �. The particular function being represented
is picked out uniquely by the parameters �, so the firing rates are only a function of
those parameters. This is why (3.4) includes �����, which we generally use in place of
����������. As a result of this parameterization, when we think of the tuning curve as a
function of �, and not of�, we may be surprised by the result that the tuning curve looks
quite different for different stimuli.

Consider the example of encoding orientation in primary visual cortex. In figure 3.1,
the stimulus (i.e., encoded function) defining this tuning curve is an oriented bar. If the
stimulus had been two oriented bars at right angles to one another (i.e., a different������),
we would expect this tuning curve to be bimodal (i.e., have its highest activity at both 0
and 90 degrees).4 Thus, it would be wrong to think that we can identify the tuning curve
of a cell independently of how we probe the cell. So it would also be wrong to think that
any, arbitrary tuning curve can be used to define neural encoding. Rather, things are more
complicated.

To see why, let us return to the question of how the encoding functions, ������, play
a role analogous to encoding vectors. Suppose that the tuning curve of some neuron,

� This is often what is seen in V1 cells for such cross stimuli (Jay Hegde, personal communication). Although
this response is by no means the only one (Shevelev 1998; Shevelev et al. 1998), which suggests there is more
work yet to do in characterizing these encoding functions.

TLFeBOOK

Extending population representation 67

80 60 40 20 0 20 40 60 80 100
0

50

100

150

200

250

300

350

orientation (degrees)

fir
in

g
ra

te
 (

sp
ik

es
/s

)

V1 data
best LIF fit
encoding function

Figure 3.1
Example tuning curve for a cell from a macaque monkey in primary visual cortex (data provided by Dan
Marcus). For this cell, � ranges over orientations of bars in the receptive field. Note that the encoding function
includes the gain, ��, and bias, �����

�
.

�, is approximately Gaussian in shape. This means that when the cell is systematically
probed with stimuli that vary along some dimension, �, it responds as depicted in figure
3.1. As usual, we model this response using a LIF neuron, whose response function is a
monotonically increasing function of current. What we must determine, then, is how to
map the dimension � onto current, � , in such a way that the response of our model cell
looks like the response in figure 3.1. That is, we must determine an encoding function that
relates our currently encoded function to changes in soma current. This is precisely the role
of the encoding vector in a vector representation. Furthermore, assuming that the function
to be encoded, ������, is normalized then, if that input function matches the encoding
function, the cell will respond most strongly. In this way, our encoding function becomes
the cell’s ‘preferred’ function, just as the encoding vector is the cell’s ‘preferred’ vector.

So, tuning curves are a result of the similarity between encoding functions and an
encoded function, modulated by neuron response properties. In neural systems, then, we
are in the difficult position of trying to find out how to characterize the tuning curve
somewhat independently of the particular encoded function. From mathematics we know
that we can represent any function as a series of delta functions, Æ���. So, if we probe the

TLFeBOOK

68 Chapter 3

neuron with a series of delta function inputs, ������ � Æ������, at many positions, �, we
can determine how it will respond to any function composed of a series of delta functions,
i.e., any function. As a result, putting the series of delta function responses that the cell
generates together will result in a function that looks like the encoding function (modulo
the effects of the intrinsic neuron response properties). In fact, probing neurons with delta
functions is one way of understanding what neuroscientists are doing when they probe
cells with some simple stimuli (like single oriented bars). Thus, these kinds of experiments
provide good evidence of what the encoding function is in neurons. So, in the example
shown in figure 3.1, the encoding function is taken to look a lot like the final neural tuning
curve. But, we must always remember that how much these kinds of tuning curves resemble
encoding functions depends on how much the stimuli used in the experiment resembles the
appropriate delta function; and determining that is seldom a trivial matter.

So far we have centered our discussion on the encoding of functions. To understand
representation, of course, we must also characterize the decoding. Fortunately, finding
decoders for functions is very similar to finding decoders for vectors and scalars. In
particular, we can find the decoding functions by minimizing the mean square error. First,
let us explicitly write the linear decoding we are assuming to give our estimate of ������
as

������� �
�

�

����������� (3.6)

where the ����� are the optimal linear decoding functions we need to find. We proceed, as
before, by constructing and minimizing the mean square error between our estimate and
the original signal. Again, we include noise to give

� �

��
�������

�
�

������ � ��������

���
���

	 (3.7)

Minimizing this error gives, as before,

���� � �������� (3.8)

where

��� � ������������� �
��Æ�� (3.9)

����� � �������������� 	 (3.10)

The resulting decoding functions, ����, are thus perfectly analogous to the decoding
vectors found earlier. To construct an estimate of the encoded function, we simply sum

TLFeBOOK

Extending population representation 69

these functions weighted by the relevant neuron activity. This is somewhat like the Fourier
representation discussed earlier in equation (3.3), but the neural decoders are not orthonor-
mal. We have thus defined a general form for function representation consisting of the
encoding,

���������� � ����� � ��

�
��

�
������������

�
�

� �����
�

�
(3.11)

and the decoding,

������� �
�
�

����������� (3.12)

On a practical note, it is often difficult to define the probability distribution 	���,
which is needed to find the decoding vectors. Instead, however, if we know approximately
what kinds of functions are represented in the neural system of interest, we can use this
knowledge to effectively characterize 	���. That is, we can take the set of functions that
we know to be represented in the system and then determine what vectors,�, can be used
to represent these functions. We can then minimize over that set of vectors in (3.7) rather
than 	���. Effectively, we are sampling some distribution, 	���, and constructing a Monte
Carlo estimate of it assuming each example function has an equal probability. While less
than ideal, this approach is often more appropriate in a practical setting.

3.3 FUNCTION SPACES AND VECTOR SPACES

Before proceeding to a concrete example, it is important for us to discuss the intimate and
important mathematical relation between function spaces and vector spaces. In section 3.2,
we defined the set of functions to be represented by some neural population in terms of an
orthonormal basis, �����, as (see (3.2))

������ �

��
�

������� (3.13)

Because this basis is orthonormal, to find the coefficients,
�, we can project the basis
onto the function being represented, ������:

� � �������������
�
� (3.14)

As a result, the function ������ is completely defined by the vector of coefficients
� � 	
�� � � � �
�
 and the basis ����. Thus, as we have discussed, choosing a set of
� vectors defines the ensemble of functions that we are interested in. In the context of

TLFeBOOK

70 Chapter 3

building models, choosing this set defines the possible higher-level representations that a
neural system can support.

It is this same ensemble of functions that is taken to be represented at the basic level,
i.e., by neurons. As mentioned in our discussion of (3.5), the soma current resulting from
encoding these functions is only sensitive to the coefficients, �. This means that we can
write the soma current as ����� and the neural activity as �����. And that we can decode
����� to estimate� (which completely determines ������). In other words, we can think
of a population representing the functions ������ as representing the vectors� instead.

However, we must ensure that the range of represented � match those that we have
defined by specifying the function ensemble. That is, we do not want our estimated value
of ������ to lie outside the ensemble defined in (3.13) and (3.14). One way to ensure
this is to constrain the neural decoders, �����, to lie in this same space. To do this, let us
represent these decoders using the same orthonormal basis as we used in (3.13) and (3.14),
i.e., let us write

����� �

��

�

��������� (3.15)

Similarly, there is no point in allowing our encoding functions, ������, to encode some
function ������ in such a way that it cannot be decoded by these constrained decoders,
so we can define the encoders in the same manner, namely

������ �

��

�

���������� (3.16)

We can now use the relations in (3.15) and (3.16) to re-write (3.11) as follows:

����� � ��

�
�	�

��
���

���������������

�
�

� ����	�

�
�

� ��

�
	�

	�
���

�����Æ��

� ����	�

�

� ��

�
	�

	�
�

�����

� ����	�

�

� ��

�
	� ������� � ����	�

�

We have thus expressed the problem of function encoding as one of vector encoding, given
an orthonormal basis.

TLFeBOOK

Extending population representation 71

Similarly, we can express the problem of function decoding as one of vector decoding.
Recall from (3.8) that

���� � ��������

We can multiply both sides by���� to obtain

� � ������

where

��� � ������������
�
� ���Æ�� (3.17)

��

�� � ���������
�
� (3.18)

We now have an equivalent vector representation (with respect to �����) for the function
representation defined in (3.12) and (3.11), which can be summarized as an encoding

����� � ��

�
�� ������� � 	����

�

�
�

and a decoding

	�� �
�

�

�����
���

or

	� �
�

�

��������

So, we no longer need to explicitly talk about the variable � when discussing the encoding
and decoding of functions in the space spanned by �����. Instead, we can perform all
encoding and decoding in terms of the vector of coefficients, �. However, if we want to
know what functions, ���
��, are being encoded and decoded, we eventually have to relate
the vectors,�, back to the original function space. We do this by decoding that vector,�,
using the basis, �����.

As before, in order to find � � �
�� � � � �
�� we do not have to explicitly express
���� (i.e., the probability distribution that determines which functions are most likely to
be represented). Instead, we can define some set of vectors ��, where each member, ��,
is found by projecting some represented function ����� onto the �����. Again, this is like
performing a Monte Carlo estimate of the ideal ����. We then use this set,��, to find�� in
(3.18) above. This effectively minimizes the encoding/decoding error of all vectors in ��

without regard for other vectors in the same space. This is precisely what we want, since
we are most interested in having accurate representations of functions whose projections
onto ����� give��.

TLFeBOOK

72 Chapter 3

We have now shown how any problem that demands function representations can be
turned into a vector problem. This raises the question: Why should we bother distinguish-
ing between these two classes of representation? There are two reasons, one practical and
the other more theoretical. On the practical side, it is simply far more natural to think
of some problems in terms of functional representations (e.g., LIP working memory; see
section 3.4).

On the more theoretical side, because each element, ��, of a vector of coefficients
is related to some particular basis, �����, we often have reasons to treat different ��
differently, depending on the kinds of dynamics or representation we observe in a given
system. For example, if we have a Fourier basis, we may want to damp high frequencies
and thus limit the gain of �� associated with those frequencies (see, e.g., section 8.5). In
contrast, cases of standard vector representations treat each component of the vector being
represented equally (see, e.g., section 6.5).

In the next section, we show both how function representation can be used, and
give an example of why it is often preferable to think of a system in terms of function
representation rather than vector representation.

3.4 AN EXAMPLE: WORKING MEMORY

In computational neuroscience there has been a long-standing interest in constructing
model neural networks that are able to store simple functions, especially single, uniform-
height Gaussian ‘bumps’, ‘hills’, or ‘blobs’. These functions are stored as localized in-
creases in neural activity approximately in the shape of a Gaussian function (technically
not true Gaussians). Such activity ‘bumps’ have been thought to be present in various
neural systems including the head direction system (Zhang 1996; Touretzky and Redish
1996; Skaggs et al. 1995), frontal working memory systems (Laing and Chow 2001), pari-
etal working memory systems (Snyder et al. 1997), and visual feature selecting systems
(Hansel and Sompolinsky 1998). Although there is a wide variety of systems that can be
modeled as representing Gaussian bumps, we focus on parietal areas that store visual tar-
gets. For the time being, we also only focus on the ability of this neural system to represent
functions, not store them (see section 8.3 for our discussion of the dynamics of these sys-
tems).

Representation in parietal areas is not a simple matter. For example, there is evidence
that parietal areas can hold multiple saccadic targets in memory at the same time, suggest-
ing that multi-modal functions can be stored (Platt and Glimcher 1997). As well, it has been
shown that the activity in parietal areas is sensitive to non-spatial parameters (e.g., shape
(Sereno and Maunsell 1998)), suggesting that a bump of activity at a single location can

TLFeBOOK

Extending population representation 73

be different heights under different stimulus conditions.5 None of the models proposed to
date support either multiple bumps or bumps of different amplitudes (see Hansel and Som-
polinsky 1998; Kishimoto and Amari 1979; Laing and Chow 2001; Camperi and Wang
1998).

3.4.1 System description

We are interested in modeling the behavior of a subpopulation of neurons in the lateral
intraparietal area (LIP) of the neocortex. Although only about 5 millimeters square in
macaque monkeys, LIP has been the focus of intensive study (see Andersen et al. 1997;
Colby and Goldberg 1999 for a review). LIP receives direct projections from extrastriate
visual areas and projects to the superior colliculus and frontal eye fields, both of which
have been implicated in the control of saccadic eye movements. As well, LIP is strongly
connected to other areas in posterior parietal cortex, including areas 7a, 7b, VIP and MST
(Andersen et al. 1997). By far the majority of cells in LIP respond to a visual stimulus
placed in their receptive field during a fixation task. Gnadt and Andersen (1988) showed
that during a delay period after the presentation of such a stimulus, many neurons in LIP
had a sustained firing rate. Subsequently, a debate has developed as to whether these
neurons primarily code the intent of the animal to move to a target (Andersen et al.
1997) or whether the firing is a result of drawing the attention of the animal to the
location (Colby and Goldberg 1999). However, participants on both sides of the debate
agree that a significant number of the cells in LIP code the remembered location of the
stimulus (Mazzoni et al. 1996). It is this subpopulation of the cells, and their ability to
code remembered locations that we are interested in.

During the delay period, it is clear that the sustained firing rates serve to encode the
spatial position of the stimulus. For simplicity, we describe only the encoding of positions
along only one spatial dimension, �. Given the evidence that multiple targets can be
represented concurrently in LIP (Platt and Glimcher 1997), and that non-spatial parameters
of the stimulus, in particular shape, can affect the response of neurons in LIP (Sereno and
Maunsell 1998), LIP representation must be more complex than previously thought. It is
undoubtedly the case that the effect of shape on tuning curves in LIP is both subtle and
complex. But, for simplicity we take it that, at a minimum, these experiments show that
the functions encoded in LIP must be sensitive to parameters of the stimulus other than
just location. In this model, we let the amplitude of the encoded function serve to reflect
this sensitivity to non-spatial parameters. Thus, a tall bump at a particular location encodes
something different (e.g., a wide stimulus) than a short bump at the same location (e.g., a

� This has also been shown for frontal working memory systems, which are also often modeled as bump networks
(Romo et al. 1999).

TLFeBOOK

74 Chapter 3

narrow stimulus). In sum, we take this subpopulation of LIP neurons to represent a set of
functions, ������, that are composed of one or more Gaussian-like bumps, each of which
can be of a different amplitude. Although this is clearly a simplification of the space of
functions that are probably represented by these LIP neurons, it is sufficiently complex to
capture some of the most salient properties of the area.

We now need to characterize the kinds of tuning curves found in LIP that are used
to represent this ensemble of functions. Fortunately, most neurons exhibit Gaussian-like
tuning curves, with a median standard deviation of about 5 degrees (Platt and Glimcher
1998). Focusing on just one spatial dimension, we can write the tuning curves in the
standard form, i.e.,

����� � ��

�
��

�
������������

�
�

� �����

�

�
�

where the encoding functions, ������, are uniform height Gaussians that are evenly dis-
tributed over the visual field. The neuron response properties, defined by ��, ��, and �����

�
,

are assumed to be such that they result in an even distribution of thresholds over the range
of possible amplitudes of the function �����). Thus, there are some neurons that respond
strongly to low amplitude stimuli and others that do not respond until the stimuli is of quite
high amplitude. Notably, in LIP, the width of the tuning curve varies approximately linearly
with eccentricity (Platt and Glimcher 1998). Thus, there are narrow (� � degree) tuning
curves near the fovea and wider (� �	 degrees) tuning curves in the periphery. For sim-
plicity, we do not include this variation of tuning curves, but assume 	 � �	 degrees.6 A
sample of the population of tuning curves is shown in figure 3.2.

3.4.2 Design specification

Because we are interested in the representation of functions, the design specification step
is broken into two parts. First, we must identify the function space that is to be represented
(i.e., the ‘higher-level’ representation). Then, we must specify the more implementation-
oriented constraints on the neural representation (i.e., the ‘basic’ representation). The first
step is concerned with defining the range and precision of the idealized representation (in
an orthonormal space). The second step is concerned with specifying how we implement
this idealized representation in a neural population.

To specify the range and precision of the functions to be represented in the orthonormal
space, we must define the structure of the distribution of parameters,�, that determine the
ensemble of functions to be represented. As mentioned in section 3.2, it is often difficult to
explicitly write down an expression for this distribution,
���, so we must resort to other
means of specifying the relevant function space.

� If this is disconcertingly unrealistic, note that we can consider our model and results to be an inversely, linearly-
scaled model of the actual system. This kind of distortion will not affect our results in any significant way.

TLFeBOOK

Extending population representation 75

-60 -40 -20 0 20 40 60
0

50

100

150

200

250

300

350

ν (degrees)

fir
in

g
ra

te
 (

sp
ik

es
/s

)

Figure 3.2
A sample of tuning curves for a simulated population of LIP neurons. Note that the neurons have diverse
background firing rates, widths, and heights as seen in LIP.

Nevertheless, to begin we can re-write our standard expression for the ensemble of
functions from (3.2):

������ �
�

�

������� ���� � ����� 	
�� � ��� � � � ���� (3.19)

We have thus defined our function ensemble as a linear combination of some orthonormal
basis,����. It is straightforward to specify the range of domain of the functions, ������.
In this case, we note that the visual field spans approximately 120 degrees of arc, so we
write

���� ��� � � ������ ������ (3.20)

where ���� � �
�Æ and ���� �
�Æ, with �Æ being straight ahead. For convenience, we
often normalize this range so that � � ���� ��. As well, since the basis is orthonormal, we
can specify the range of allowed coefficients of the functions to be represented as

�� � ������ ������

where we choose ���� � � and ���� � ��� for this example. Thus we assume that

TLFeBOOK

76 Chapter 3

the non-spatial parameter represented in LIP is normalized to the interval ��� ��, in the
appropriate units.

Before we can place more constraints on the coefficients, we must have some idea
of what the orthonormal basis functions are. Suppose, for the time being, that we will
use sine and cosine functions, as if we were doing a Fourier expansion. One of the main
constraints we have to impose in defining our ensemble of functions, is the number of bases
that we use, denoted by � in (3.19) above. Since, in this case, we have limited the set of
functions to be represented in our model to combinations of Gaussians, we can choose a
maximum frequency that allows us to represent Gaussians of some particular width, �. We
can find this frequency by taking the Fourier transform of a Gaussian of width �. Since
we are assuming that our representation is a linear combination of encoding functions,
������, we know that we will not be able to successfully represent anything narrower than
these encoding functions. Thus, a reasonable choice for � is about two or three times larger
than the encoding function width, since such functions can be well represented. Taking the
Fourier transform of a Gaussian with � � ��Æ gives a maximum frequency of about 0.4
cycles/degree. Then by the Nyquist sampling theorem, we know that we need � � ��

frequency channels to represent any function over the visual field well.
We have now precisely defined the space that our ensemble of smooth (i.e., no fre-

quencies above 0.4 cycles/degree) functions occupy. However, we do not want to represent
all functions in this space, since we are interested only in a subset of the functions that
are sums of Gaussians. Ideally, we would now construct the probability density function,
����, that picks out only those functions we want. Because this is unduly difficult, we in-
stead ‘sample’ the ideal density function by explicitly finding the amplitudes for functions
of the kind we want to represent, and then averaging our error over just those functions, as
discussed earlier (see section 3.2).

This completes the design specification in the orthonormal space. We now need to state
our assumptions about the representation at the level of the individual neurons. As before,
we take the noise to have a variance of 0.1. In order to encode the range of amplitudes
between ���� and ���� in an unbiased way, we assume an even distribution of neuron
intercepts. Essentially, we can think of each of the parameters,��, as being a scalar that we
want to encode with a certain precision. This problem is perfectly analogous to the problem
of representing � to a certain precision in the eye position example (see section 2.3). Thus,
we can use what we learned from that example so, assuming that we want to encode our
�� with a signal-to-noise of about 25:1, we need about 50 neurons per �� parameter.
Thus, our network will consist of � � �� � ���� neurons. We have now specified the
range and precision of our encoding for both the higher-level and basic representations.

TLFeBOOK

Extending population representation 77

3.4.3 Implementation

As usual, we find the population decoders by minimizing the error expressed in (3.7). We
can use these population decoders in combination with LIF neuron responses to determine
our estimate of the encoded function. Later, we use a spiking version of this representation
to support a model of the dynamics of LIP (see section 8.3). For the time being, however,
let us look at the resulting function representation in more detail.

In section 3.4.2 we assumed that the orthonormal basis would be somewhat Fourier-
like. However, we know that they will not be a Fourier basis because, given what we know
about LIP, a set of infinite, cyclic functions will not be a viable basis. Specifically, because
the functions we are interested in representing are defined over a finite space (i.e., from -60
to 60 degrees), we need to find an orthonormal basis over that space.

To find the desired orthonormal basis, we must define the space of possible functions
to be encoded. This can be done by taking all of the encoding functions, ������ in the
population together and determining what the space is spanned by those encoders (which
are not orthonormal and thus overcomplete). We can then use a technique known as
Singular Value Decomposition (SVD) to find an orthonormal basis that spans the same
space as the encoders (see figure 3.3 for the result). In section 7.2 we describe these
concepts and techniques (i.e., SVD, spanning, overcomplete representations, etc.) in more
detail. For now, let us just assume this result.

This orthonormal basis is very much like a Fourier basis restricted to a finite interval.
Successive functions have one additional half-cycle over the range of �. However, unlike
the Fourier basis, all of these functions go to zero at the extremities of the variable being
encoded. This is very important because it ensures that there will not be any undesirable
‘end-effects’ that might disrupt a good representation.

Now that we have defined the relevant orthogonal basis, �����, for defining the func-
tions that we take to be represented in LIP, we are in a position to switch our charac-
terization of this system from a function representation to a vector representation if we
so choose. However, because there is an intuitively close relationship between Gaussian
bumps at multiple positions and bumps of neural activity at those positions, and because it
is far less intuitive how the vectors of coefficients that represent these bumps with respect to
some basis are related, it is simply easier to talk about the Gaussian bumps than the equiv-
alent vectors of coefficients. But we should note that while there is no reason to perform
this switch when considering representation in isolation, it provides a significant practical
advantage when considering the dynamics of this system as demonstrated in section 8.3.

Of course, regardless of whether we characterize this problem as a function represen-
tation or vector representation problem, we can find the optimal linear decoders for the
function space we have defined. Doing so results in a very good representation of the kinds

TLFeBOOK

78 Chapter 3

-60 -40 -20 0 20 40 60
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

ν (degrees)

first basis
second basis
third basis
fourth basis
fifth basis

Figure 3.3
The first five orthonormal basis functions found using SVD on the population encoders.

of functions observed in LIP. Figure 3.4 shows the neural representation found using those
decoders. In fact, the representation is so good that the error is unnoticeable in this graph.
However, once dynamics are introduced into the model, the effects of the error become
quite obvious (see section 8.3).

3.4.4 Discussion

Considering neural representation in LIP helps demonstrate that characterizing function
representation is only slightly more challenging than characterizing scalar and vector rep-
resentation, despite the fact that function representations often seem significantly more
complex. For instance, the challenge of constructing a system that can represent multiple
Gaussian bumps of different heights may seem significantly more difficult than construct-
ing a system that can represent a single scalar. However, the methodology and theory are
identical: define the neural encoding and find the optimal linear decoders. Using this ap-
proach, we have built the ability to support fairly complex representations directly into our
model.

Certainly this representation could be improved upon in a number of ways: we could
more carefully model the distribution of tuning curves in LIP; we could more carefully

TLFeBOOK

Extending population representation 79

-1 -0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x(
ν)

ν

input function
neural representation

Figure 3.4
Neural representation of a ‘double bump’ function. Notice that each bump is a different height.

characterize the set of functions that can be represented by LIP; we could use two-
dimensional tuning curves (as we have done elsewhere Eliasmith and Anderson 2001);
and, as always, we could use more realistic spiking neurons. However, each of these
improvements is not outside the scope of the general approach we have taken, and some we
address in more detail later. More importantly, the model outlined here is a good, simple
first step to building these more complex models.

3.5 SUMMARY

We began this chapter by arguing that our previous analysis naturally leads to the con-
struction of a representational hierarchy for neurobiological representation. We suggested
that being able to construct such a hierarchy demonstrates that this approach is unified and
general, yet flexible. Table 3.3 summarizes the parts of the hierarchy we have explicitly
defined, and that we use in the remainder of the book.

We then showed that, in fact, vector and function representation are intimately related.
In particular, function representations can be implemented as vector representations with
respect to some orthonormal basis. Nevertheless, it is often more intuitive to characterize

TLFeBOOK

80 Chapter 3

neural systems as representing functions. We presented one such example in the case of
modeling the representations in area LIP.

Table 3.3
A summary of population representation for scalars, vectors, and functions.

Representation Definition

� � ������ �����

����� � ���������

�� �
�

� �������

����� � ���� ������

Scalar � �
��
��

�
� ������ � 	����

�
�
�
��	

� � �
��
�

��
 �
�
 � ��	Æ�

�
 � �������
�����

	� � �� � �������

� � ���� � � � � ��� for � �
���

����� � ���������

�� �
�

� �������

����� � ��

�
����

�
�
� ������

Vector � �
��
��

�
� ������ � 	����

�
�
�
��	

� � �
��
�

��
 �
�
 � ��	Æ�

�
 � �������
 �����

	� � ���������

���� for � � ������ �����

���
�� �
��

� ������� for� � ����

������
��� � ����� � ���������

����
�� �
�

� ����������

Function ����� � ��

�
���
��������

�

� ������

� �
��
���
���

�
� ������ � 	�������

�
�
�
��	�

���� � �
��
����

��
 �
�
 � ��	Æ�

�
 � �������
 ����
�

	���� � ����
�� � ������
�

TLFeBOOK

4 Temporal representation in spiking neurons

Few neurobiologists will heed any characterization of neural representation if it depends on
the assumption that neurons output real-valued firing rates. This is because it might come as
no surprise that real-valued output from neurons can be used to represent signals changing
constantly in real time. But neurons in real nervous systems traffic in neural spikes. As a
result, what we need to know is how these highly discontinuous, nonlinear outputs can be
used to successfully represent continuous temporal signals. In other words, neural spikes
are fundamental features of neurobiological systems that present an unavoidable challenge
for understanding neural representation in its ‘full-fledged’ form; i.e., as the encoding and
decoding of time-varying signals in populations of spiking neurons.

In this chapter, our goal is precisely to understand the representation of time-varying
signals by spiking neurons. In order to reach this goal, we begin by introducing a spiking
version of the leaky integrate-and-fire (LIF) model. We use this model extensively in
our subsequent simulations and thus begin by discussing its strengths and weaknesses.
Eventually, we demonstrate that our framework does not, in any way, depend on this
particular neural model. Neverthelesss, it is a useful place to begin our consideration of
temporal encoding in neural systems.

Again, because we are interested in characterizing representation, we are confronted
with the challenge of developing a method for decoding the results of this kind of encoding
as well. In many ways, the approach we develop is analogous to that in the previous
chapters; we again rely on the mean square error to find optimal linear decoders. There
are some important differences as well, but the similarities hint at the fact that the first
principle outlined in chapter 1 applies to both population and temporal coding.

4.1 THE LEAKY INTEGRATE-AND-FIRE (LIF) NEURON

4.1.1 Introduction

The properties of the leaky integrate-and-fire (LIF) model neuron have been investigated
since 1907, even before much was known about actual spike generation in neural systems
(Arbib 1995; Koch 1999, p. 335). Since that time, the LIF model has become a standard
approximation to the complex behavior exhibited by real, spiking neurons. It is widely used
for a number of reasons. First, it is a very simple model that affords a good approximation
to the behavior of many kinds of real neurons under a wide range of conditions. Second,
it has been shown to be a limiting case of more complex conductance models such as
the well-known Hodgkin-Huxley model (Partridge 1966). Third, though simple, the LIF

TLFeBOOK

82 Chapter 4

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Vth

Spike

τref

time (ms)

vo
lta

ge
 (

V
)

δ(t-tn)

tn

{
{
Sub-threshold

Super-threshold

τRC{
Figure 4.1
Leaky integrate-and-fire (LIF) neuron with constant current input. When the sub-threshold soma voltage reaches
the threshold voltage, ��� , the model emits a delta function spike, Æ�� � ���. The model is then reset for a time,
�
��� , before again integrating its input. As discussed in section 4.1.2, the sub-threshold regime is

well-characterized by an RC circuit, parameterized by �
�� .

neuron is far more realistic than rate neurons because it introduces the most prominent
nonlinearity in neural systems—the neural action potential, or spike.

It is this third reason that is most important for those concerned with understanding
neural representation. As we show, being able to understand the neural code as modeled
by the spiking behavior of the LIF neuron goes a long way to understanding representation
in far more detailed neural models (see section 4.5). Thus, we could have based our
discussion of representation on one of the more complex models found in section 4.5,
but, as that section shows, little theoretical insight would be gained. The LIF neuron, then,
is a convenient and fruitful mixture of realism and simplicity (Koch 1999, see especially
chp. 14).

In its standard form, the LIF neuron has two behavioral regimes: sub-threshold and
super-threshold. As shown in figure 4.1, the sub-threshold behavior during a constant soma
input consists of an ever-slowing approach towards the input voltage. Once the threshold
is reached, super-threshold behavior begins and an infinitely thin and infinitely tall delta-
function voltage spike (Æ��� ���) with unit area (i.e.,

�
�

��
Æ�� � ��� �� � �) is produced.

The system is then reset to zero for some time period, ���� , before it is allowed to again
begin its approach to threshold.

TLFeBOOK

Temporal representation in spiking neurons 83

There are a number of physiologically motivated features of this model. First, the spike
which is produced is both narrow and stereotypical as is seen in many real neurons. Of
course, representing the spike as a delta function is a mathematical convenience. However,
as long as the width of the neural spike in the neuron being modeled is small compared to
the typical interspike interval, using a delta function approximation is warranted. Typically,
neural spikes are about 1–2 ms in width compared to interspike intervals between 50 and
200 ms (i.e., 50–200 Hz), so the delta-function approximation is a good one. Second, the
absolute refractory period, ���� , that forces the LIF model voltage to zero for a short
duration after a spike is emitted is an excellent approximation to a similar phenomena
found in real neurons (Koch 1999). Third, the sub-threshold leaky integration of the
model is produced by a simple passive resistance-capacitance circuit whose elements have
physiological correlates. We introduce and discuss this circuit in more detail in the next
section.

As we note in sections 4.1.3 and 4.5, there are a number of shortcomings of the LIF
model as well. But the realism, or lack thereof, of LIF neurons is itself of little importance
to us because we are only interested in the model to the extent that it allows us to construct
a useful formalism for understanding neural representation. Showing that the formalism
we construct using LIF neurons is generally applicable is the burden of sections 4.3–4.5.

4.1.2 Characterizing the LIF neuron

The LIF neuron is best understood as a passive RC circuit coupled to an active spike
(i.e., delta function) generator (see figure 4.2). This circuit provides a simple means of
describing the time course of the membrane potential, � . The membrane potential is the
result of the interaction between charges, �, in the fluids inside and outside the cell. These
charges are separated by the cell membrane, which acts as a dialectric layer. The capacitor,
�, in the LIF circuit accounts for the charge build-up on either side of the bilipid layer that
comprises the membrane. Notably, there is never any movement of charge across the lipid
membrane itself (Jack et al. 1975, p. 13). Rather, the capacitive current �� results from a
change in the amount of charge separated by the membrane. Given that the voltage across
the capacitor is � � ���, we can find �� by differentiating:

�� � �
��

��
	 (4.1)

In addition to the capacitance of the bilipid layer, the LIF model includes a leak
resistance,
, that models the effects of (some of) the proteins embedded in the lipid
membrane. These particular proteins act as ion channels, allowing sodium, potassium,
and chloride ions to pass through the otherwise impervious membrane. The concentration
gradients across the neuron membrane of the various ions results in the movement of ions

TLFeBOOK

84 Chapter 4

Outside Membrane

Inside Membrane

V CRJR

JM

JCτref

δ(tn)

V=Vth

Figure 4.2
An RC circuit that implements the LIF neuron. The standard RC circuit, describing the sub-threshold behavior
of the neuron is that part outside of the dashed box. It consists of the membrane potential, � , the leak resistance,
�, and the capacitance due to the bilipid layer, � . The active, super-threshold behavior is described by the
additional components inside the dashed box. When the membrane potential is equal to the voltage threshold,
��� , at a time, �� , the short-circuit switch is closed, resulting in a ‘spike’, Æ����. The switch remains closed,
resetting the circuit and holding � � �, until it is opened after the refractory period, ���� .

into and out of the cell. The ionic current, ��, accounts for this passive ‘leak’ of charge
across the membrane.1 Ohm’s law tells us that the ionic current is

�� �
�

�
� (4.2)

The final current of importance to the LIF model is the membrane current, �� . In
effect, this current represents the input to the model. It can be thought of as the somatic

� Because we are assuming that the circuit is passive, � is constant and we can assume that linear cable theory is
applicable (see Jack et al. 1975, chapters 8, 9, and 10 for a discussion of nonlinear cable theory applied to cellular
models).

TLFeBOOK

Temporal representation in spiking neurons 85

current resulting from all of the postsynaptic currents (PSCs) generated at the dendrites. As
mentioned previously, we consider this current to be comprised of two distinct components,
the bias or background current, �����, and the drive current, ��. The bias current is an
ever-present, steady state current, whereas the drive current accounts for the rapid current
fluctuations due to dendritic inputs.

Since the flow of charge must be conserved between the inside and outside of the
membrane (i.e., Kirchoff’s law applies), we know that

�� � �� � ��� (4.3)

Substituting equations (4.1) and (4.2) into (4.3) and rearranging gives

�� � �
��

��
�

�

�
��

��
� �

�

���
�� � ���� 	 (4.4)

where ��� � ��.
Recall that this ordinary, first-order, partial differential equation only describes the pas-

sive behavior of the LIF model. In figure 4.2, the distinction between the active and passive
components of the circuit is denoted by a dashed box. Once the membrane potential, � ,
crosses the LIF neurons threshold, �	
, the components in this box control the model’s
behavior. In particular, the gate denoted by ���
 closes and a delta function, Æ����, spike is
generated. By short-circuiting the capacitor and resistor, the gate sets the potential across
the membrane to zero (i.e., the assumed resting potential) since there is no way for a dif-
ference in charge to build up. This gate stays closed for a length of time, ���
 , equal to the
absolute refractory period of the neuron being modeled.

Solving equation (4.4) for � is examined in some detail in appendix B.2. The result,
which can be verified by differentiating, is

� ��� � ���
�
��
�	��

��
�
� (4.5)

From this equation, we can determine the effects of past input on the model’s behavior. In
effect, we can begin to understand when the model’s ‘memory’ is important, and when it is
not. To do this, let us consider changes to the membrane time constant, ��� (i.e., changes
to either the resistance or capacitance). First, we can see that under a constant input current,
�� , and after a length of time equal to ��� , � ��� will be equal to approximately two-thirds
(i.e., ��
��) of the steady state input, ���. So, a larger time constant means both that it
takes longer to get up to threshold for above-threshold inputs, and that a slower ‘forgetting’
is occurring when there is no input. Notably, ��� becomes much less important if the input
current is extremely high. In this case, � ��� becomes nearly linear between the resting

TLFeBOOK

86 Chapter 4

voltage and the threshold voltage for most values of ��� . Given the fact that the circuit
is reset after the threshold is passed, high input current results in very little effect of past
states on current behavior. Thus, there is an interplay between �

�� and the magnitude of
the input current that determines the relevance of past input to the LIF neuron behavior.

In real neural systems, of course, the input current, �� , is not static, but time varying.
As we discuss in appendix B.2, the model’s behavior under these conditions can be
understood as a convolution between the input signal and the exponential leak. Under that
characterization, the voltage right now (at �) depends on all past current input, �� ���,
where the input is weighted by a function that exponentially decays as that input gets
further away (in the past) from the present time. In other words, the present voltage depends
most strongly on the most recent inputs, and exponentially ‘forgets’ about past inputs as
they get farther away. It is, in fact, this latter description that most accurately captures the
nonlinearity inherent in the LIF model (and which we use in our simulations). However,
equation (4.5) is easier to handle analytically because �� is assumed to be relatively static.

In particular, we can use (4.5) to derive an expression for the neuron response rate
curve that we used extensively in chapter 2. We know that the steady-state firing rate of an
LIF neuron is inversely proportional to the length of time it takes the RC circuit to pass
���. Note that because we are here concerned with steady-state firing (i.e., constant input
current), this derivation is based on the assumption that the input current is changing slowly
compared to the interspike interval as assumed when finding (4.5). Under this assumption,
the time to threshold is equal to the length of time, ���, it takes the circuit described by
equation (4.5) to pass ��� plus the absolute refractory period, ���� :

������ �
�

��� � ����
� (4.6)

From equation (4.5) we can find ��� as follows:

��� � ���

�
�� �

����	

��
�

��� � ��
�� ��

�
��

���

���

�
� (4.7)

Substituting (4.7) into (4.6), we find that the firing rate as a function of the input current
�� is

���� � �
�

���� � ��� ��
�
�� ���

���

� � (4.8)

Note that ��� � ����, so we can cancel the resistance terms. As well, if we know what
the input current is as a function of some ‘external’ variable, 	, we can re-write equation

TLFeBOOK

Temporal representation in spiking neurons 87

-1 -0.5 0 0.5 1
x

fir
in

g
ra

te
 (

sp
ik

es
/s

)

0.2
0.4
0.6
0.8
1.0

-1 -0.5 0 0.5 1
x

fir
in

g
ra

te
 (

sp
ik

es
/s

)
-1 -0.5 0 0.5 1

x

fir
in

g
ra

te
 (

sp
ik

es
/s

)

20
40
60
80
100

-1 -0.5 0 0.5 1
x

fir
in

g
ra

te
 (

sp
ik

es
/s

)

1
2
3
4
5

a) b)

c) d)
0.1
0.3
0.5
0.7
0.9

0

100

200

300

400

500

0

50

100

150

200

250

300

0

50

100

150

200

250

300

0

50

100

150

200

250

300

Figure 4.3
The effects of changing various parameters on the LIF response function. a) Varying ��� between 20 and 100
ms. b) Varying ����� between 0.2 and 1.0 nA. c) Varying ���	 between 1 and 5 ms. d) Varying �
� between 0.1
and 0.9 nA. Note that � � ��, and unless explicitly changed, ����� � ��, �
� � �, ��� � ��, ���	 � �.
Changing these parameters is partially redundant as demonstrated by comparing a), b), and d). Specifically,
varying �
� is like varying both ���	 and �����, thus in subsequent models we do not vary �
�.

(4.8) in the form we first encountered it in section 2.1.2, i.e.,

���� �
�

���� � ��� ��
�
�� ���

�� ���

� � (4.9)

where �� ��� � �� � �	
��. Recall from section 2.1.2 that � is both the gain and a unit
conversion factor, and �	
�� accounts for the steady background input to the cell. Figure
4.3 demonstrates the effects of changing various of the parameters in this equation on the
shape of the neuron response function.

TLFeBOOK

88 Chapter 4

4.1.3 Strengths and weaknesses of the LIF neuron model

We have now progressed from basic considerations of neuron physiology and simple
circuits through a derivation of the spiking LIF model to arrive at a derivation of a rate
LIF model. In order to motivate our focus on the LIF model, we have already discussed
many of its strengths. To summarize, the LIF neuron model:

1. naturally incorporates a number of physiological parameters, including membrane ca-
pacitance, membrane (passive leak) resistance, and absolute refractory period;

2. is a good approximation over the normal operating range (i.e., low firing rates) of most
neurons; and

3. introduces the ‘important’ nonlinearity of real neurons, i.e., the neural spike.

Essentially, we agree with Koch (1999) that “such single cell models represent the most
reasonable trade off between simplicity and faithfulness to key neuronal attributes” (p.
335). In addition, it is important for the characterizations of representation we have intro-
duced previously that there is an analytic expression for the rate curve of such a neuron. As
can be seen from section 2.1.2, this approach depends on our being able to define ����� in
order to minimize the error expressed by equation (2.4). Being able to write ����� explic-
itly as in equation (4.9) makes it easier to solve this error for large populations of neurons.
In particular, it makes it possible to generate large populations of model neurons whose
tuning curves can be easily manipulated.2

The weaknesses of the LIF model have been extensively discussed in the neuroscien-
tific literature (Koch 1999; Softky and Koch 1995; Jack et al. 1975; Shamma 1989). Many
of the concerns regarding the use of LIF neurons can be summarized by noting that LIF
neurons are physiologically unrealistic to some degree. For example, LIF neurons have
no spatial extent; i.e., they are ‘point’ neurons. A real neuron is extended in space, so the
membrane potential at one location may be very different from the potential at another lo-
cation. Furthermore, being a point neuron means that the electrochemical properties of the
dendrites are completely neglected in the LIF neuron. And, as a final example, the complex
time courses of membrane ion conductances are not accounted for. Contrary to what is as-
sumed by equation (4.2), the membrane ionic currents tend to be nonlinear functions of
both the membrane potential and time (Jack et al. 1975). All of these sorts of physiological
facts are simply ignored by the LIF model.

Why do we think ignoring all of these important details will not hamper our attempts
at understanding neural coding? The answer is simple: our approach does not depend on

� It is also possible to generalize the approach we take to neurons that have dynamic tuning curves (e.g.,
adapting neurons). We do not discuss this generalization in any detail, although see section 4.5 for an approach
to understanding such neurons that does not depend on this generalization.

TLFeBOOK

Temporal representation in spiking neurons 89

how spikes are generated. It only depends on the statistics of spike generation. Of course,
including more physiological detail will make our model statistics more closely match
the actual statistics of spike generation. For this reason, detailed models are eventually
important (see Deco and Schurmann 1998); we discuss a number of them in section 4.5).
However, our method for analyzing some statistics or other remains the same.3

It has been suggested by Softky and Koch (1993) that the problems with models like
the LIF go much deeper. They claim that such models do not even have the right kinds of
statistics. In particular, they show (using LIF neurons as an example) that models which
assume linear summation of dendritic inputs are inconsistent with the highly irregular firing
statistics found in most cortical neurons. Given the standardly assumed (i.e., Poisson)
statistics of spikes impinging on a LIF neuron with linear dendrites, the output of that
neuron will be less variable than its input. This is simply a consequence of the ‘law of
large numbers’ (or ‘Bernoulli’s theorem’) familiar to probability theorists. This law states
that the variance of a random variable linearly comprised of other random variables, each
with a variance ��, is equal to �

�

�
, where � is the number of random variables. Clearly,

as � becomes large the variance of the resulting variable becomes small. This means that
standard LIF models that sum dendritic PSCs will have a lower variability in their firing
rate than their randomly firing input neurons. However, this is not a problem with the LIF
neuron itself, but a problem with how the input current, �� , is determined. Suffice it to say
that there are a number of ways that �� can be determined such that the output from a LIF
neuron is sufficiently variable. So, there are ways to make LIF neurons have the relevant
statistics, which means that the statistical analyses we perform can generalize properly.

4.2 TEMPORAL CODES IN NEURONS

When discussing temporal representation (a.k.a. temporal coding) in neurons, it is difficult
to avoid the vigorous debate between those who take the code to be a rate code (Shadlen
and Newsome 1994; Shadlen and Newsome 1995; Buracas et al. 1998), and those who
take it to be a timing code (de ruyter van Steveninck et al. 1997; Softky 1995; Rieke et al.
1997). In this section we show why this debate is, from our perspective, irrelevant to a
good understanding of temporal representation in neurons.

Both rate codes and timing codes are clearly time dependent codes. A rate code, as
proposed by Adrian (1928) is one that takes the information about a stimulus to reside
in the mean firing rate of a spike train over a relatively long time window (about 100
ms). From this perspective, which still finds favor with some neuroscientists, the observed

� Our approach is certainly not unique and the independence of this kind of approach from particular models has
been noted before (de ruyter van Steveninck and Bialek 1988).

TLFeBOOK

90 Chapter 4

variability about this mean firing rate is considered to be noise (see, e.g., Shadlen and
Newsome 1994; Shadlen and Newsome 1995). So defined, there are a wide variety of
problems with adopting such a rate code as being a general feature of neural systems.
First, most animals are embedded in highly dynamic environments and encounter signals
that change very rapidly. If these animals needed to integrate information over an extended
period (of even 100 ms), they would have little chance of survival. Indeed, there is plenty of
evidence that many behavioral decisions are made on the basis of one or two neural spikes,
which can arrive only a few milliseconds apart (see Rieke et al. 1997, pp. 55–63 for a good
review). Second, there are limitations of rate coding that clearly do not affect some neural
systems. For example, the frequency/amplitude ambiguity4 can be resolved by a timing
code, but not by a rate code (Bialek and Rieke 1992). Real neural systems seem to have
no problem with this ambiguity. Third, there is experimental evidence that different input
spike trains with the same mean rate, but different temporal structure produce significantly
different output from the same cell (Segundo et al. 1963). Fourth, Zador (1998) has shown
that the existence of a mean rate code contradicts the observed redundancy of synaptic
connections. In particular, he has shown that the information transmission of such a code
falls with redundant synaptic connections. However, such connections are common in
neural systems. Fifth, and lastly, rate codes cannot support the information transmission
rates observed in real neurons (Rieke et al. 1997), although it has long been known that a
timing code can (MacKay and McCulloch 1952). In conclusion, there are many reasons to
think that the neural code is not a mean rate code.

So, is the neural code obviously a timing code? Unfortunately not. For instance, there is
evidence that the precise timing of spikes is not mandatory for the successful transmission
of neural signals (Bialek et al. 1991).5 More generally, whether or not the neural code is a
timing code depends on what we mean by ‘timing code’. The standard timing code is one
that takes spike train variability to encode the stimulus signal (MacKay and McCulloch
1952; de ruyter van Steveninck and Bialek 1988; Softky 1995; Rieke et al. 1997). One
way of expressing this kind of code is to take the inverse of the interspike intervals (i.e.,
1/ISI) as a measure of the variations in a single trial. Because the same stimulus commonly
elicits different spike trains, this kind of measure is often averaged over a number of trials.
The averaged measure is sometimes called the ‘instantaneous’ rate code for the neuron
(Buracas et al. 1998; Rieke et al. 1997). The term ‘rate code’ should not be too surprising
here, as the measure is equivalent to a rate code where the window size approaches a limit

� This ambiguity arises in auditory neurons because sounds with high amplitude that are not at the preferred
frequency of a neuron can result in the same spike rate as sounds with low amplitude at the neuron’s preferred
frequency.
� Actually, for those who like timing codes, this is evidence of the ‘robustness’ of a timing code. For those who
like rate codes, this is evidence of the lack of importance of precise timing.

TLFeBOOK

Temporal representation in spiking neurons 91

of zero. However, the fact that the window size is so small has prompted many to consider
this code a timing code.

There are other timing codes, as well. For example, Optican and Richmond (1987)
suggest that information about spatial patterns can be found in an ‘onset’ timing code
(see also Richmond and Optican 1990). They argue that the placement of spikes relative
to stimulus onset carries information about the stimulus, and that this information can
be about non-temporal features, such as shape (Optican and Richmond 1987). Although
more recent results have contradicted this interpretation (Tovee et al. 1993), the ubiquity of
adaptation in excitatory cortical neurons (i.e., the slowing of firing rates given sustained,
super-threshold input) suggests that it may be the case that spike times relative to stimulus
onset are important. The main difference between this kind of code and the instantaneous
rate code is that non-temporal features are thought to be multiplexed into the time course
of the neurons. So, traditional rate codes suffer a number of limitations, instantaneous
rate codes do not seem to be rate codes, and onset timing codes are not empirically well
supported.

This brief review gives some sense of the kinds of approaches to neural coding
available, and why they are at odds. But, why did we say that choosing amongst these
different codes is irrelevant? There are three reasons. The first is semantic. That is, there is
little agreement as to whether instantaneous rate codes are rate codes (Buracas et al. 1998;
Stevens and Zador 1995) or timing codes (Rieke et al. 1997; de ruyter van Steveninck and
Bialek 1988). So, it would be unclear what we meant if we simply claimed that we were
exploring a rate code or a timing code. The second reason is that it seems likely that the
brain uses different codes for different problems (Zador 1998; Rieke et al. 1997); perhaps
rapid sensory processing is more likely to use a timing code and static sensory processing
is more likely to use a rate code (Buracas et al. 1998). This leads us to our third, and
far more important reason for not ‘choosing’ a code: we simply don’t have to. Given the
statistical methodology that we adopt (section 4.3), the ‘appropriate’ code is determined
by the signals that are represented and the properties of the neurons which represent those
signals. In cases where the signals are rapidly varying relative to the interspike interval,
something more like a timing code is appropriate. In cases where the dynamic range of
the signals is large, but the correlation time is fairly long relative to the interspike interval,
something more like a rate code is appropriate (see section 4.4). The method we discuss is
effective for both of these cases. As well, in cases where the neurons adapt, thus changing
the placement of spikes relative to stimulus onset, an appropriate code can be found again
using the same method (see sections 4.5.1 and 4.5.3). In other words, we do not need to
commit ourselves to one particular kind of coding as being central to neural representation.
The approach we use here is general enough to characterize the kind of coding appropriate
to the problem at hand. This understanding of neural coding thus transcends concerns about
whether neurobiological systems use rate or timing codes.

TLFeBOOK

92 Chapter 4

4.3 DECODING NEURAL SPIKES

4.3.1 Introduction

Recently, there has been a large amount of attention given to the information theoretic
properties of neural spike trains (Bialek et al. 1991; Miller et al. 1991; Koch 1999; Stevens
and Zador 1996; Richmond and Optican 1990; Roddey and Jacobs 1996; Bialek and Rieke
1992). The resulting attempts to decode neural spike trains have been largely successful,
and provided many insights into neural coding. Given this success, there is no need to
develop a completely new means of understanding neural representation. As a result, the
methods we discuss in this section are a variation on past themes, to which we introduce
only modest improvements. Thus, the importance of this section largely lies not in its
novelty, but in the fact that it is an integrated part of a general, unified framework for
modeling large-scale neural systems.

To begin, then, recall that a LIF neuron provides a good characterization of the
temporal encoding process that is found in nervous systems (see figure 4.4). That is, a
LIF neuron produces a series of stereotypical output spikes, Æ�� � ���, given some real-
valued input signal, ����. To put this more precisely, and in the same form as encountered
in chapter 2, we write

������� � ���������� (4.10)

�
�

�

Æ��� ���� (4.11)

where

������� � ������� � �����	

Here, the encoding function � ��� is defined by the parameters of the LIF neuron. As a
result of these parameters, the model produces spikes (i.e., Æ��� ���) at times ��. In order
to understand this output as a representation, we must find the relevant decoder.

In real nervous systems, it makes the most sense to think of peripheral neurons (e.g.,
retinal ganglion cells) as encoding some external, time-varying signal. This is because the
encoded signals are relatively easy to pick out: they can be light intensities, velocities,
pressure changes, or any other time-dependent physical magnitude. Such signals are fairly
directly encoded into a series of neural spikes, Æ�� � ���, in nervous systems. As neurons
become farther removed from the periphery, it is often less clear what the signal is that is
being encoded. Nevertheless, a ‘central’ neuron is clearly part of some encoding process.
The fact that the neuron is only one of many elements that give rise to the encoding

TLFeBOOK

Temporal representation in spiking neurons 93

x(t) encoder

decoder

δ(t-tn)
encoder

x(t)

decoder

y(t)=f(x(t))

δ(t-tn)

peripheral
decoding

central
decoding

^ ^

Figure 4.4
The temporal encoding and decoding process. Some physical signal, ����, such as light intensity is encoded by
peripheral neurons into a series of spikes, Æ�� � ���. These can be passed to a (non-neural) decoder to give an
estimate, �����, of the original signal and thus help quantify the signal processing characteristics of the neural
system. In more central neurons, the characterization is the same, but the signal being estimated, ����, will be
some complex function of the input, i.e., ���� � �������. Thus the decoder is a means of characterizing all of
the encoding steps that precede that decoding. A long-standing problem in computational neuroscience is
determining the relevant decoder (FitzHugh 1961).

process simply means that when we attempt to decode that neuron’s spike train, we should
not associate the decoder with that particular neuron regardless of its relations to other
neurons. Rather, such decoders must be associated with the entire encoding process that
they complement (see figure 4.4). But, importantly, the problem of characterizing neural
representation remains the same.

Despite the fact that a central neuron is only one part of some highly complex encoding
process, we can still uniquely identify each neuron with one encoding process. As a result,
we can assume that the decoder associated with a neuron is the decoder for the encoding
process for which that neuron is the terminus. With this in mind, we will not be lead too
far astray if we think of decoders as being associated with a particular neuron. However,
we must remember that neurons do what they do (i.e., encode what they encode) because
of their relations to other neurons, and not solely in virtue of their intrinsic properties.

TLFeBOOK

94 Chapter 4

4.3.2 Neuron pairs

In order to successfully find the decoders in this picture of neural representation, it helps
to make things a bit more complicated. That is, it helps to consider two neurons at
a time instead of just one. This may seem strange, as the fundamental unit of signal
processing in the nervous system is often thought to be the single neuron. However,
given the considerations of the previous chapters, it is clear that we must understand
representation in populations of neurons in order to understand the behavior of neural
systems. The simplest possible population is a pair of neurons. So, while being simple,
understanding temporal representation in pairs of neurons constitutes a significant first step
towards understanding temporal representation in populations. And, importantly, some of
the more troublesome properties of single neurons (e.g., their highly nonlinear responses)
become far less troublesome when we consider neuron pairs.

This might come as no surprise to communications engineers. It has been known since
the 1920s that superior amplifiers can be built by using complementary pairs of tubes or
transistors. This kind of amplifier is commonly known as a push-pull amplifier (see figure
4.5). These amplifiers are significantly more efficient than single element amplifiers that
achieve the same linearity (Sawdai and Pavlidis 1999). In general, the push-pull topology
provides higher efficiency, higher power output, greater symmetry in the output signal, and
a wider range of linear responses compared to a single element circuit.

For our purposes, the increase in linearity is of the most interest. The reason that the
push-pull arrangement provides this benefit is that the nonlinearities in the elements are
used to offset one another near the midpoint of the range of operation (usually 0). In effect,
each element is used to code half of the input signal. However, the halves overlap such
that their sum in the overlapping region serves to linearize the total response, despite each
element having significant nonlinearities in the same region (see figure 4.5). Thus, the total
range over which the response of the system is reasonably linear is greater than could be
achieved with two independent (i.e., averaged) elements.

So what does this have to do with neural coding? There is evidence that nervous
systems often use a similar strategy. It is not unusual to find ‘on’ and ‘off’ cells in a
population that codes a single physical quantity. Most obviously, ‘on’ and ‘off’ retinal
ganglion and lateral geniculate nucleus cells are used to code light intensities (Hubel
and Wiesel 1962). In the neural integrator circuit, the neurons can be divided into two
groups; those whose response increases during leftward movements and those whose
response increases during rightward movements (Fukushima et al. 1992). The same is
true of velocity sensitive neurons in the head-direction system of mammals (Redish 1999)
and angular acceleration sensitive cells in the vestibular system (Wilson and Jones 1979).
In motor cortex, cells are broadly tuned and have a wide range of preferred directions

TLFeBOOK

Temporal representation in spiking neurons 95

-1 0 1
-1

0

1

Input
Signal

Individual Tube
Responses

Combined
Response

Single Tube Response Function

Figure 4.5
A push-pull amplifier. The input signal has nonlinear distortions introduced by each of the elements, but when
the responses of the elements are summed those distortions cancel. The result is a highly linear reproduction of
the original input signal over a wide range, despite nonlinear elements.

(Georgopoulos et al. 1993). This is simply a generalization to higher dimensions of the
same kind of strategy. That is, for most one-dimensional slices that go through zero in
this two-dimensional space, we observe the same kinds of opponency cells we see in
these other systems; that is, some increase firing for movement in one direction and some
increase firing for movement in the opposite direction.6 In many cases, then, cells have
an opponency relation analogous to that of push-pull amplifiers. And we think the reason
might be generally the same—this is a more effective means of constructing a system with
a broader range of linear responses.7 In appendix B.1 we explain why opponency provides
more linear responses.

There is another reason that opponency is important. This second reason is unique
to neurons. It is crucial for neurons to have this kind of arrangement because they do
not encode their input with a continuous output signal. Amplifiers have continuous output.
Neurons, in contrast, have an ‘all-or-none’ output in the form of a voltage spike. In order to

� This is the result of the large number of neurons randomly distributed over the hypersphere in the relevant
space. We do not mean to insinuate that neurons are actually paired (i.e., for each neuron there will always be a
neuron tuned to the opposite direction).
� Neural systems are often quite linear over a broad range. For instance, in some vestibular systems there is only
a 10% deviation from linearity over a 16 fold change in stimulus intensity (Wilson and Jones 1979, p. 99).

TLFeBOOK

96 Chapter 4

understand the consequences of this difference, consider a simple code in a perfectly linear
neuron: the more intense the stimulus, the higher the firing frequency, with zero intensity
equal to zero firing frequency. Significant problems arise with this kind of code for low
stimulus intensities. At low intensities, the neuron fires at low frequencies so it will take
a very long time to determine what the frequency is. A mechanism decoding the output
would have to wait until it sees enough spikes to guess what the firing frequency is. In
other words, the lower the stimulus intensity, the longer it takes for the neuron to transmit
information about stimulus intensity. This is not acceptable for a system attempting to
operate in a rapidly changing environment.

However, this problem is solved with an opponency arrangement. By adding a second
neuron that increases firing with decreasing stimulus intensity, we have guaranteed that the
average firing rate (so the average time to transmit information about stimulus intensity) is
constant. If we are not too concerned about having a constant average firing rate, so long
as it is above a certain value, we can increase the slope of our encoding neurons. This gives
us a better signal-to-noise ratio over the same range since a smaller change in stimulus
intensity leads to a large change in the output firing rate. A similar argument holds in the
case of nonlinear neurons like the LIF neuron.

In sum, this on-off opponency arrangement provides a temporally efficient and more
linear encoding than is evident from examining single neurons. Since we are interested in
constructing linear decoders for neural encodings, it is likely that the more linear response
from a pair of neurons will serve our purposes better.8 As well, since we are ultimately
interested in understanding temporal codes in neural populations, it makes sense to start
with one of the simplest populations—just two neurons. Given these considerations, we
take it that neuron pairs are at least as fundamental for understanding the properties of
neural representation as individual neurons.

4.3.3 Representing time dependent signals with spikes

Taking opponent neurons as the fundamental unit of signal processing in neural systems,
figure 4.6 shows what we take to be the basic encoding and decoding steps that are
needed to characterize neural representation. As mentioned earlier, the encoding process
is determined by the neural model we have chosen (LIF in our case) and so we are largely
concerned with the task of determining the appropriate decoder. This is much like the
problem we originally faced in chapter 2, except that we are interested in understanding
the representation of a continuously changing function of time, rather than a static scalar
or vector.

� Notably, Rieke et al. (1997) also find optimal decoders by examining two neurons, although they do not make
much of the point.

TLFeBOOK

Temporal representation in spiking neurons 97

x(t)

encoder decoder
δ+(t-tn)

x+(t)

encoder
δ-(t-tn)

^

decoder

x-(t)^

x(t)^+

'On' Neuron

'Off' Neuron

Figure 4.6
Encoding and decoding with an on-off neuron pair. Just like the push-pull amplifier, each neuron encodes part of
the signal, and their decoded sum provides a good representation of the whole signal.

As a result, we begin by making the same well-supported assumption about the
linearity of the decoding as we did for the population code (see Rieke et al. 1997 for an
excellent review, especially pp. 76–98 and 168–172; see also Bialek et al. 1991; Bialek and
Zee 1990). In particular, we presume that we can decode the neural spike train by taking
a (continuous, time-shifted) sum of some decoding function, ��� � ���, weighted by the
encoded signal (see figure 4.7 for an intuitive picture of linear decoding). We know, given
the LIF model, that the signal, ����, is encoded as a series of delta functions, which we can
write as

�
�
Æ��� ���. Thus, our decoding of the encoded function, ����, can be expressed

as

����� �

�
�

�

���� ���
�
�

Æ��� � �����
�� (4.12)

This kind of expression is known as a convolution integral. This equation says that our
best guess as to what ���� is, can be found by adding up the occurrences of a time-shifted
decoding function (analogous to the decoding weights, ��, in the population code). Another
way of describing this decoding process is to say that we are assuming that there is some
linear system that can decode the spike train, Æ�� � ���, and successfully reconstruct the
original input signal that was presented to the neuron. Our job, then, is to find this linear
system.

TLFeBOOK

98 Chapter 4

Because a linear system can be completely characterized by its impulse response, ����,
finding the linear system is the same as finding, ����. In particular, the output from any
linear system, ����, can be written as a convolution integral of the input, ����, and the
system’s impulse response, ����:

���� �

�
���� ������������

This is clearly analogous to equation (4.12) above. So what we mean when we say
that we assume a linear decoding, is that we can find an impulse response, ����, that
reconstructs the original signal. Because the function ���� in equation (4.12) is a series
of delta functions, we can simplify the integral by evaluating it analytically to give

����� �
�
�

���� ���� (4.13)

Note that calling ���� a linear decoder (or linear filter) does not mean that we assume that
we can find ���� by a linear analysis of the neuron’s response. In fact, we have shown
explicitly elsewhere that a linear analysis will not allow us to find this decoding filter
(Anderson et al. 2000). In some ways, this should not be surprising given how nonlinear
neurons really are.

Now that we have a characterization of the general nature of temporal representation,
we need to consider if there are any special properties of the signals themselves. This is
because any constraints on what is actually represented by nervous systems can help us
find the relevant decoders. To this end, it is important to emphasize that we do not want
a linear decoder that will decode one particular signal. Rather, we want a linear decoder
that is useful for decoding all signals of interest; i.e., we want to find a linear decoder that
is good for an ensemble of signals, just as we earlier wanted decoders for an ensemble of
functions. There is good evidence that real neurons are optimized for passing information
about particular ensembles—namely, natural signals (de ruyter van Steveninck et al. 1997).
It would be very surprising if biological relevance had not played a role in constraining the
representational characteristics of neural systems, so this is just what we might expect.9

One general property of naturally occurring signals that we assume is that they are not
unique in time. This property variously goes by the name of ‘stationarity’, ‘ergodicity’, or
‘time independence’. By definition, if a signal (or process or system) is stationary, then the
statistics of any sample of the signal does not depend on the temporal placement of that
sample. So, for example, signals consisting of natural images are stationary because they

� This makes it rather unfortunate that many experiments in neurophysiology use very unnatural signals (e.g.,
step functions) to characterize neuron responses. Using signals drawn from a more natural ensemble often shows
the neurons to be more adept at passing signals that was previously thought (Mainen and Sejnowksi 1995).

TLFeBOOK

Temporal representation in spiking neurons 99

have the same kinds of statistics now as they did yesterday, and as they will tomorrow. In
general, sensory signals do not have clearly defined beginnings and endings, so they can
be usefully treated as stationary.

Being able to ascribe the property of stationarity to natural signals is important because
it allows us to define the relevant ensembles of signals using statistically independent
coefficients. In particular, we can write the ensemble that we take to be represented as
a Fourier series:10

������ �

��������

����������

������
����� (4.14)

where� is the vector of frequency amplitudes and �� is ��� where �� is the frequency
step size. The series of frequency components, ��, consists of � complex frequency
components where ����� � �������, and � is odd. It is important to note that we
always assume a finite � . The reason we do this is because we are always interested
in characterizing systems that operate in the real world, under tight implementational
constraints. Under such conditions, there will always be some finite time, � , that is the
maximum length of a signal in our ensemble. Given the duality between the length of time
of a signal and its resolvability in the frequency domain, we know that �� � �	
� . This
guarantees that we can faithfully represent our signal with a finite number of frequency
components.

As before, choosing a particular set of amplitude coefficients (i.e., a specific� vector)
picks out one signal in this ensemble (see section 3.2). So, in order to properly define an
ensemble of signals, we must specify what values the vector � can assume. Again, we
can do this by specifying the probability distribution of�. Assuming that each component
of � is an independent Gaussian random variable whose variance is given by the power
spectrum �����, we can write a Gaussian distribution11

�������� �
��

�	�����
�������

��������� (4.15)

Given stationarity, we know that these distributions define the distribution of all of the
amplitudes,�, namely,

���� �

��������

���

��������� (4.16)

and ����� � �������.

�� This is equivalent to our definition in equation (3.3), but is in a more convenient form for the subsequent
analysis.
�� Notably, the experiments that we later compare our results to draw signals from signal ensembles with the
same structure (Bialek et al. 1991).

TLFeBOOK

100 Chapter 4

Now that we have a means of describing the relevant signal ensembles, we can
return to the problem of finding an optimal linear filter. Recall that we are interested
in analyzing pairs of neurons, and take the system of interest to be comprised of two
complimentary neurons, whose response profiles mirror one another (see figure 4.6).
Appropriately extending equation (4.11), we can write the encoding of the pair of neurons
of some signal (picked out by�) into � spikes as

������ �

����

�

Æ��� ��� ���� �

�����

�

Æ��� ��� ����

�
��

���

��

���

��Æ��� ��������

where �� � � for the ‘on’ spikes and �� for the ‘off’ spikes as before. We use ������

to indicate the response of the pair of neurons; that is, all of the spikes produced by both
neurons given the input (this is not the same as the estimate of the signal in (4.13)). In
order to find the optimal linear filter for decoding this signal, we want to minimize the
mean square error, as we did in (2.4):

� �
�
�������� ���� ��������

�
�
���

(4.17)

�

��������� �
�
���

���� �������

�
�
�	

���

�

where � indicates convolution. Rather than attempting to minimize this error in the time
domain, we can use the Fourier transform to express the error in the frequency domain. This
has the immediate advantage of turning the convolution in (4.17) into a multiplication. As
a result, we can write the error for each frequency channel as (see appendix B.3)

��	�� �

�

�

���	��� ��	����	�����

�

�
�

� (4.18)

Unfortunately, this is a very high-dimensional integral. Specifically, it will have as
many dimensions as there are frequency components needed to define the ensemble of
signals. It is very difficult to directly evaluate this kind of integral, so instead we perform a
Monte Carlo estimate of its solution. In other words, we generate a large number of actual
signals, ������� (where
 indexes a particular set of values for our amplitudes, �), find
the spike train responses from the pair of neurons, �������, and then determine the linear

TLFeBOOK

Temporal representation in spiking neurons 101

filter, ����, that minimizes the average error between the linear estimate of the signal and
the original signal (see appendix B.3 for details).

This analysis, though more intuitive in the time domain, is more efficient in the
frequency domain. This is because the number of degrees of freedom (i.e., the number
of free parameters used to estimate our linear filter) is much smaller in the frequency
domain, even though the results are equivalent. To see why this is the case, consider the
following example of finding the optimal filter for the retinal ganglion parvo cells. The
peak frequency response of these cells is at about 30 Hz (Van Essen and Anderson 1995).
Assuming that the membrane leakage time constant is approximately 20 ms (and thus that
effects of inputs about 100 ms in the past can be ignored (i.e., ����)), we can determine the
number of frequency components needed to characterize the filter. As mentioned earlier,

�� �
��

�

�
��

���	

� �����

So the number of components needed is

� �

�

��
�
�

Each of these components is complex, so the problem of describing the linear filter ����
has approximately 6 degrees of freedom. In contrast, if we were to try and estimate the
filter in the time domain, where sample times necessary for good approximations are on the
order of .1 ms or less, we would have approximately 1000 points in ���� to estimate (i.e.,
almost three orders of magnitude more degrees of freedom). Of course we could put various
constraints on how these parameters were estimated in order to reduce the complexity of
the problem. However, in the frequency domain, we have a built-in, unbiased means of
reasonably limiting the number of parameters that need to be estimated to find the linear
filter.

Theoretically speaking, in order to estimate this filter, we need only run many short
trials (of size � � ���� or so). However, large numbers of short trials is expensive both
experimentally and numerically, and startup transients are likely to influence the results
of such experiments. So, as also done by Rieke et al. (1997), we have developed a means
of ‘windowing’ signals of several seconds so as to analyze these longer experiments as if
they were many shorter experiments. As discussed in more detail in appendix B.3, there
are several advantages to our method over existing ones. Most importantly, our windowing
method makes more efficient use of the data from short trials, decreasing the likelihood of

TLFeBOOK

102 Chapter 4

error from transients. This has important practical consequences since many experimental
preparations cannot be maintained for the long run times needed to employ previous
methods.12

As shown in appendix B.3, minimizing the windowed version of (4.18) gives

����� �
�������

��������
��

����������
�
�

� (4.19)

where the convolution with the window is included in the averaging, ���
�

, to emphasize
that this is a means of approximating the average over the stochastic variables, �. From
the numerator of (4.19) we can see that the filter will have a low amplitude if there is not
much correlated power between the input amplitudes and the spike train amplitudes. The
denominator tells us that this is also true if the average power of the spike trains is large at
a particular frequency. This can occur if the neurons have a high mean background firing
rate that generates power that is uncorrelated with the input signal.

Those familiar with past analyses of this kind may be wary of certain limitations of this
kind of filter. In particular, Rieke et al. (1997) note that linear filtering is far more likely
to work if the correlation time of the signals being encoded are significantly shorter than
the mean interspike interval (ISI) (p. 86). This is because having a short correlation time
relative to mean ISI ensures that individual spikes are providing independent information
about the signal. If this was not the case, then there may be significant interactions between
neighboring spikes, i.e., both spikes may be providing information about the same parts of
the signal. However, there is nothing in the preceding analysis that makes assumptions
about the relation between the mean ISI and the correlation time of the input signal. So,
it is merely a possibility that linear decoding will not work in the case where correlation
times are long compared to mean ISI. In fact, as we show in section 4.4.1, linear decoding
performs very well even for long correlation times.

Fortunately, we are now in a position to quantify precisely what it means for our de-
coder to work well. To determine how accurately our optimal linear filtering approximates
the original signal, we can substitute (4.19) back into (4.18) to obtain the residual error,
�� :

������ �
�
�������

�

�
�

�
��������

��������
�
�
�

�
���������

�

�
�

�

This error will only be zero when there are no interharmonic distortions that generate

�� The method used by (Rieke et al. 1997) was employed in the context of experimental run times as long as 2
days.

TLFeBOOK

Temporal representation in spiking neurons 103

spurious power at frequency ��. Nonlinear processes, even those as simple as the LIF
neuron, generally do suffer from these kinds of distortions (Anderson et al. 2000). The
residual error is a good measure of how well our linear decoding works, and is analogous
to what we called ‘static error’ in chapter 2.

We have now shown how to define the representation of time dependent signals in pairs
of spiking neurons. Specifically, we have defined the encoding

������ �

��

���

��Æ��� �������� (4.20)

and decoding

����� � ���� �������� (4.21)

where

����� �
�������

��������
��

���������
�

�
�

	 (4.22)

4.3.4 Discussion

Now that we know how to find the optimal temporal filter, and have a means of determining
how good it is, let us consider the linear decoder, ����, in more detail. As just noted, our
estimate of the signal that is encoded by the neurons into the spike train is given by (4.21).
Substituting (4.20) into (4.21), and recalling the result in (4.13), we can write

����� �

��
���

��Æ��� ���� � ���� (4.23)

�

��
���

������ ����	 (4.24)

In essence, this equation says that our estimate is found by putting a waveform in the shape
of the linear filter at each spike time and summing the results (see figure 4.7).

This estimate is closely related to the population estimates we used in the previous
chapters. In particular, we could re-write (4.24) as

������� �

��
�

��������������� (4.25)

where � is the number of time-steps we have divided the signal into, the
� are 1, 0, or
-1, depending whether or not a neuron emitted a spike, and the ����� are all time-shifted

TLFeBOOK

104 Chapter 4

'On' spikes

'Off' spikes

Input signal

Decoded estimate

Figure 4.7
An example of linear filtering. The input signal, ����, is fed into the somas of a pair of on-off neurons which
encode the signal into ‘on’ and ‘off’ spikes. To get an estimate, �����, of that signal, we can linearly filter those
spike trains by effectively placing the filter at the time of occurrence of each spike and summing the result. When
the on and off neurons are symmetrical, their respective filters will be ‘mirror images’, as shown in the figure.

versions of ���� (i.e., ��� � ���). This notation is unusual because the neuron activity in
the population code is mapped onto activity (the presence of a spike) at some time ��,
so, as in the case of the population code, for each ‘active element’ we need one decoder.
This results in a large number, � , of temporal decoders, all of which are essentially the
same. While awkward, this notation shows exactly how the temporal decoders and the
population decoders perform the same function—both serve to translate an activity back
into the original domain that was encoded (i.e., either � for the population code or ���� for
the temporal code). As an aside, it is interesting to note that most of the coefficients, ��, in
(4.25) will be zero for any particular signal. In this sense, the representation is a ‘sparse’
representation. It makes sense that the neural code is sparse, as this results in more efficient
coding (Olshausen 2000) and a better use of available energy (Baddeley 1996).

Because ���� is a function, its representation is much like the representation of ����
that we discussed in section 3.2. Looking again at equation (3.6) we see that it is indeed
very similar to (4.25). However, there is also an important difference between population
and temporal encoding that becomes evident from this comparison. Namely, there is no
temporal encoding function in the sense of ������. This is because the temporal encoding is
defined completely by the intrinsic properties of the neuron, which are captured by �� ���.
This difference means that it is much more difficult to derive the same kinds of analytical
results for understanding temporal coding as we do for population coding (see section 7.3).

TLFeBOOK

Temporal representation in spiking neurons 105

Nevertheless, it proves to be useful that both temporal and population codes in neurons
can be characterized using linear coding, since it allows us to unify these two kinds of
coding (as we discuss in section 5.1). Before doing so, however, let us consider a number of
examples of how to use this characterization of temporal coding to measure the efficiency
of information transmission in neural models. We begin with the simple LIF neuron and
progress to more complex models. Perhaps the most important lesson to be learned from
these examples is that the basic LIF model has just about the same information transmission
characteristics as its more complex counterparts. And, both kinds of models perform
comparably to real neurons.

4.4 INFORMATION TRANSMISSION IN LIF NEURONS

While we now have a method for characterizing temporal representation, there are two
related issues that we have so far ignored or only partially addressed. First, we suggested
that this analysis applied to spike trains with both short and long-correlation times, unifying
rate and timing codes—we must show that this is the case. And second, we did not
discuss how these optimal decoders (or ‘filters’) relate to their biophysical counterparts,
the postsynaptic currents (PSCs). Although these subsequent discussions rely solely on
applying our method to the LIF model, in section 4.4.2 we relate these results to the
information characteristics of real neurons. As well, in section 4.5 we compare LIF results
with the same measures in more complex neuron models. These comparisons show that it
is reasonable to use simple LIF neurons in simulations of neural information processing.

4.4.1 Finding optimal decoders in LIF neurons

It is important that nothing in our discussion of optimal linear decoders depends on the
nature of the encoder. Of course, choosing a specific encoder greatly affects the particular
optimal decoder that we find, but the methods and analyses we discuss are independent
of the encoder. In this section we present results using LIF neurons as our encoder. For
these simulations, and all similar ones in this chapter, we assume that our signal ensemble
is band-limited Gaussian white noise (an assumption shared with the experiments on real
neurons that we compare our results to). As well, the encoding in each case is done by a
symmetrical pair of ‘on’ and ‘off’ neurons. This ensures that the optimal filter is the same
for both neurons (as we have assumed to this point, see (4.24)). The LIF neurons we use
for our analyses have a background firing rate of 40 Hz, a refractory period of 2 ms, and
an RC time constant of 20 ms.

In figure 4.8, the optimal linear decoder is shown in both the frequency and time do-
mains. The decoder displayed here was found using the sliding window analysis described

TLFeBOOK

106 Chapter 4

-50 0 50
0

1

2

3

4

5

6

frequency (Hz)
-0.01 0 0.01

-1

0

1

2

3

4

time (s)

a) b)

Figure 4.8
An optimal linear decoder for a pair of LIF neurons in a) the frequency domain and b) the time domain.

in section 4.3.3 and appendix B.3 on the signal shown in figure 4.9a. Using four seconds
of data, we are able to find a filter that very successfully decodes the original input signal,
as well as other signals that were randomly drawn from the same ensemble (as shown in
figures 4.9b and 4.9c).

We can see from figure 4.10 that the encoding of the original signal via the LIF neuron
into a spike train introduces spurious power, especially at high frequencies. This is not
surprising given the ‘spiky’ nature of the encoding. The power at frequencies that are
actually in the signal, however, are also well-preserved. Thus, one of the main functions
of the decoding filter is to remove these spurious high frequency components while not
otherwise altering the spectrum; i.e., it acts as a low pass filter. As can be seen in figure 4.8,
the filter does indeed resemble a low pass filter. Thus it is localized in time (figure 4.8b) and
nearly flat for frequencies below some cutoff (50 Hz in this case) in the frequency domain
(figure 4.8a). The precise width of the optimal filter in the time domain depends on the
kinds of signals that were used to find it. For higher frequency signals, it will be thinner,
increasing the cutoff frequency of the low-pass filter. Conversely, for a lower frequency set
of signals, it will be wider in the time domain and have a lower cutoff frequency. It is also
worth noting at this point that the filter somewhat resembles a dendritic PSC. Specifically,

TLFeBOOK

Temporal representation in spiking neurons 107

a) b)

c)

time (s)
0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5
input signal
estimate
spike

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

Figure 4.9
a) Reconstruction of the randomly generated signal used to find the optimal filter in figure 4.8 (RMSE = 0.153).
Figures b) and c) show reconstructions of randomly generated signals from the same distribution as the signal in
a). These were reconstructed using the filter found using the signal in a). RMSE = 0.149 for b) and RMSE =
0.142 for c).

it is localized in time and has a large, rapidly decaying initial response. However, it is
clearly non-causal as it is defined over both negative and positive parts of the time axis.

As mentioned earlier, there is some concern about being able to use such decoders for
signals with long correlation times (see Rieke et al. 1997, p. 86). However, in figure 4.11,
it is evident that the optimal filter found for the signal with a short correlation time (figure
4.9) works equally well for a signal with a long correlation time. This is true in general.
A thousand trials of both slow (i.e., frequency channels between 0 and 4 Hz) signals with
long correlation times and fast signals (i.e., frequency channels between 0 and 30 Hz) with
short correlation times results in a mean RMSE for the signals with long correlation times
of 0.123 and mean RMSE for those with short correlation times of 0.147. This is true
despite finding and using the optimal filter for the fast signals only (i.e., short correlation
times). Thus, the same filter not only works for signals with long correlation times, it
actually works better than for signals with low correlation times. This is to be expected,
since RC circuits (like the LIF neuron) function as low pass filters, and thus are better able
to preserve lower frequencies. However, as shown in figure 4.12, finding the optimal filter
using a long correlation time ensemble results in an even better estimate of such signals,
as expected.

TLFeBOOK

108 Chapter 4

-100 -50 0 50 100
0

1

2

3

4

5

6

7

8
x 10

4

frequency (Hz)

am
pl

itu
de

signal power
spike power

Figure 4.10
Comparisons of the power of the original signal (depicted in figure 4.9a) and the spike train which encodes the
signal (also depicted in figure 4.9a). Note that all power in the spikes signal above 30 Hz is not in the original
signal.

By comparing figures 4.9 and 4.11, we can see how the same neuron is using something
more like a ‘timing’ code in the first case, and something more like a ‘rate’ code in the
second case (look especially at the spike times, indicated by small dots). By comparing
figures 4.11 and 4.12, we can see that both seem to use a kind of rate code. However, in
figure 4.12, the optimal filter is much wider in the time domain because it was constructed
from a set of signals with more similar statistics. If the optimal filter gets wider (while
remaining equally smooth), then the precise timing of spikes becomes less important for
decoding the signal, thus acting more like a rate code. We have verified this by introducing
random jitter in the spike times that encode either the fast (short correlation time) or slow
(long correlation time) signal. As expected, the RMS error increases significantly more
when decoding the jittered spike trains for fast signals (using the ‘fast’ optimal filter)
than for slow ones (using the ‘slow’ optimal filter), despite the fact that the spike trains
have approximately the same total number of spikes. As well, the RMS error increases
significantly more for the slow signals decoded with the ‘fast’ optimal filter. Thus, the
average firing rate is more informative about the slow signals, as long as we know it is
drawn from a distribution with long correlation times.

TLFeBOOK

Temporal representation in spiking neurons 109

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

input signal
estimate
spike

Figure 4.11
Reconstruction of a randomly generated signal from a distribution guaranteeing a low frequency signal, using
the optimal filter from figure 4.8. This filter was found using a signal distribution with high frequencies as well.
Nevertheless, this reconstruction works very well (RMSE = 0.143). Note that the time scale has been lengthened.

So, in conclusion, we have found a means for determining an optimal decoder that
works well under a variety of conditions. Not surprisingly, the optimal filter generally
works better for a signal drawn from an ensemble with characteristics similar to those used
to find the optimal filter. Nevertheless, filters found from ensembles that generally result
in short correlation times work very well for signals with longer correlation times. So, this
method of finding optimal filters bridges the gap between timing and rate codes because it
works effectively in either realm.

4.4.2 Information transmission

In order to compare the behavior of LIF information processing to that of natural neural
systems, let us briefly review the information characteristics observed for real neurons.
Chief amongst the measures of information processing is information transmission rates,
measured in bits per spike or bits per second. These measures are surprisingly consistent
across many different neural systems. In the cricket cercal system, which measures wind
velocity, information rates of between about 150 (Roddey and Jacobs 1996) and 300

TLFeBOOK

110 Chapter 4

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

input signal
estimate
spike

Figure 4.12
Reconstruction of a the same signal from figure 4.11 using an optimal filter based on a long correlation time
(i.e., low-frequency) ensemble (RMSE = 0.122). The error is slightly improved, and the high-frequency aspects
of the reconstruction in figure 4.11 are removed.

(Bialek and Rieke 1992) bits per second have been reported.13 These rates are equivalent
to between 1.1 and 3 bits per spike. In the bullfrog sacculus, which senses ground-borne
vibrations, Bialek et al. (1991) report transmission rates of about 3 bits per spike. As well,
Bialek et al. (1991) show that motion-selective H1 neurons in the blowfly visual system
carry about 3 bits per spike. In salamander retina, recent results suggest that information
is transmitted at a rate of about 3.4 bits/spike (Berry II and Meister in press). In primate
visual area V5, information transmission rates of 1–2 bits per spike have been observed
(Buracas et al. 1998). The highest transmission rates we have seen reported are for the
bullfrog auditory neurons, which reach rates as high as 7.8 bits per spike (Rieke et al.
1997, p. 185). Notably, these rates were only achieved for stimuli with frequency spectra
of naturally occurring bullfrog calls. Broadband stimuli had transmission rates of about 1.4
bits per spike. In sum, natural sensory systems are generally able to encode stimuli with
between about 1 and 3 bits of information per spike (see also Rieke et al. (1997) for a
review).

�� Although Miller et al. (1991) calculate the rate to be about 40 bits per second, they used a 100 ms binned rate
code to calculate information.

TLFeBOOK

Temporal representation in spiking neurons 111

These are impressively high transmission rates that approach the optimal possible
coding efficiencies (de ruyter van Steveninck and Bialek 1988; Rieke et al. 1997). In the
frog sacculus, the cricket cercal system, the bullfrog auditory system, and the electric fish
electrosensory system, the codes are between 20 and 60% efficient (Wessel et al. 1996;
Rieke et al. 1997, p. 180). And, efficiency significantly increases when stimuli are restricted
to be more like naturally occurring stimuli of interest to the organism (Rieke et al. 1997, p.
185).14 All of these measures of information transmission performance in natural systems
are found by closely related methods. The researchers use opponent neurons, assume
stationarity, and find optimal linear filters, just as we have done. What is of interest to
us, as modelers, is to see how these measures in neurobiological systems compare to those
for model neurons. So, in the remainder of this section, we perform a similar analysis for
the LIF neuron.

To begin, we must realize that model neurons are entirely deterministic. Thus, unlike
real neurons, they can be run under conditions of no noise. Technically, then, information
transmission rates can be unlimited. However, we can still find an analogous information
measure because we linearly decode a nonlinear system. In particular, we can compare the
total variance to the variance that is unexplained by our linear decoding procedure. Usually
noise is the source of unexplained variance, but in this case, it is the result of our linear
filtering.

We can derive and express the information transmission per frequency channel as (see
appendix B.4 for the derivation)

�������� �
�

	

��

�

�
���

�
�������

�

�
��

�������
�

�
�

�
����������������

��
�

������������
�

�
��� (4.26)

�
�

	

���

�
���

�
���������

�
�
��

���������
�
�
�

�
����������������

��
�

��������
��
�

�
��� � (4.27)

In (4.27), the numerator expresses the total variance at the output, while the denominator
expresses the variance that is not explained by our assumption that the output is linearly
related to the input. Equation (4.26) has a similar interpretation, though in terms of the
input signal. Because we assume linear decoding, these equations express only a lower
bound on the amount of information that could be transfered through this system (figure

�� Also note, that the estimation of information transmission rates using this method places a lower bound on the
amount of information transmitted by the code. There are reasons to think this bound generally underestimates
the actual amount of information transmitted (Stevens and Zador 1996). Thus, efficiencies are likely even higher.

TLFeBOOK

112 Chapter 4

-100 -50 0 50 100
0

0.5

1

1.5

2

2.5

frequency (Hz)

in
fo

rm
at

io
n

(b
its

)

Figure 4.13
Information transmission for the example in section 4.4.1 (see figures 4.9, 4.10, and 4.11). This shows the
amount of information decodable from the original signal at each frequency band using the optimal filter.

4.13 depicts the application of these equations to the example in the section 4.4). The
resulting information transmission rates for this example are 1.24 bits per spike or 114
bits per second. Both of these measures are comparable to those reported earlier for real
neurons.

If we had a more sophisticated, nonlinear decoding technique, we could get a better
estimate of the input signal given the output, and thus increase the information transmis-
sion. However, Rieke et al. (1997) argue that nonlinear decoding only provides about a
5% improvement in information transmission in real neurons. And, more importantly, it is
unclear how such nonlinear techniques relate to biophysical mechanisms.

Linear filtering does not suffer this same lack of biological realism because it can
be related to the production of postsynaptic currents (PSCs) in the postsynaptic cell. In
fact, we can use (4.27) to determine the information transmission using PSCs instead of
the optimal filter. Assuming a simple PSC model, ������� � �

������� , where ���� is the
synaptic time constant, we can perform an analogous analysis on the resulting decoding.15

�� The analysis is not strictly identical because, in order to determine the PSC information transmission, we
replace the spike train with the PSC filtered signal. That is, � in (4.26) and (4.27) is the frequency domain
representation of the PSC filtered signal for this analysis.

TLFeBOOK

Temporal representation in spiking neurons 113

-100 -50 0 50 100
0

0.5

1

1.5

2

2.5

frequency (Hz)

in
fo

rm
at

io
n

(b
its

)

Figure 4.14
Information decodable using the postsynaptic current (PSC) as a temporal filter instead of the optimal filter as in
figure 4.13.

These results are shown in figure 4.14. As can be seen from this figure, information
transmission using PSCs compares very favorably to that using the optimal filter. Over
the entire range, there is a 6% decrease in the information transmitted using the PSCs
compared to the optimal filter. This is a very small loss considering the vast increase in
neurological plausibility when using PSC decoding.

Figure 4.15 provides an example of decoding a signal with PSCs, which can be
compared to the optimal decoding in the previous section (see figure 4.9a). Here, we
can see that the decoding is good, though not as good as for the optimal case. However,
information transmission rates are similar at 1.17 bits per spike or 108 bits per second;
again similar to what is observed in real neural systems. As well, despite the fact that the
RMS error is about twice that of the optimal decoders, it is still reasonably low. This is not
too much of a concern since we are only using two neurons in this example. Given what
we know about the effects of increasing the number of neurons in the population, we can
be reasonably confident that this error can be reduced by adding neurons (in chapter 5, we
explicitly show this to be the case). Given these promising results, and the vastly increased
physiological plausibility of models that rely on PSCs as their temporal filters, all of the
simulations we present in subsequent chapters use PSCs as the temporal decoder.

TLFeBOOK

114 Chapter 4

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5
input signal
estimate
spike

time (s)

Figure 4.15
Signal reconstruction using PSC (RMSE = 0.287). This compares favorably to the reconstruction using the
optimal filter in figure 4.9a.

It is worth noting that there are other methods for finding information transmission
rates that often result in higher transmission rates (Stevens and Zador 1996; Buracas
et al. 1998). However, by far the majority of researchers who have found information
rates in real neural systems have used reconstruction methods like the one we have
adopted. Thus, taking this approach facilitates comparisons with the analyses done on
real neurobiological systems. Nevertheless, Stevens and Zador (1996) have made it clear
that such reconstruction methods do not provide the highest possible lower bound on
information transmission.

4.4.3 Discussion

Our central focus to this point in the chapter was on finding optimal decoders for char-
acterizing temporal representation in neurobiological systems. However, we noted along
the way that we do not expect there to actually be such optimal decoders in real neural
systems. So why bother finding optimal decoders? There are a number of reasons. First,
optimal decoders allow us to calculate quantitative measures of the system’s performance.
This means we can objectively compare the information processing characteristics of neu-

TLFeBOOK

Temporal representation in spiking neurons 115

ral models to actual neurons. Second, developing such measures provides bounds on the
performance of systems that might use non-optimal decoders, like PSCs. Third, if the op-
timal linear decoder does a good job of decoding, and the non-optimal decoder is substan-
tially like the optimal decoder, then it is reasonable to assume that neural systems can be
well-characterized as doing linear filtering of spike trains. Fourth, once we have used the
optimal decoder to show that linear decoding is useful, we can more easily combine our
characterization of the temporal code with that of the population code (as we do in sec-
tion 5.1). Finally, getting a general handle on how to understand filtering in neural systems
(optimal or not) should ultimately allow us to predict what kinds of filters (i.e., the charac-
teristics of the PSCs) we expect to see given the task of certain neural systems. This is not
an avenue we have explored in detail, although finding and quantifying optimal filters is a
first step along this path.

4.5 MORE COMPLEX SINGLE NEURON MODELS

It is important to compare the LIF neuron to more complex models because there are
serious concerns regarding the neurobiological plausibility of the LIF model. For example,
the LIF model is very limited with respect to its modeling of the active spiking behavior
of neurons. In particular, the so-called ‘spike’ in LIF models is simply ‘stuck on’ to the
output when the membrane voltage crosses threshold. This is done essentially to make the
output look like that produced by real neurons. More complex models include detailed
descriptions of the active mechanisms that actually produce the voltage changes that occur
during the spiking process. As well, LIF models include only a single ion current and
thus do not have adapting firing rates. In mammalian cortical neurons, there are at least
12 different ion currents (Gutnick and Crill 1995; Johnston and Wu 1995). Furthermore,
in a large subset of these neurons (e.g., the ‘regular-spiking’ cells), some of these currents
result in spike adaptation.

Our strategy in this section is to consider successively more complex models. Thus we
begin by introducing an extra ion current needed to explain adaptation into an LIF model
(section 4.5.1). However, this model still does not explain spiking. Next, we consider a
model that has been developed as a canonical model of a large class of neurons (section
4.5.2). This model is called the �-neuron, and includes the spike generation process as part
of its intrinsic dynamics (Ermentrout 1996; Gutkin and Ermentrout 1998a). However, this
model does not include adaptation and makes mathematical reductions unfamiliar to most
neurophysiologists. For these reasons, we conclude by considering a conductance-based
model, which we call the Wilson model, that includes a number of currents that account
directly for adaption and the relevant dynamics of the spiking process (section 4.5.3).

TLFeBOOK

116 Chapter 4

a) b)

Figure 4.16
a) An adapting spike train recorded from a human regular spiking cortical neuron with an input current of 1.6
nA. b) Adaptation at different input strengths. ISI is the interspike interval, which increases with interval number
for every input current. (From McCormick et al. 1985 c� The American Physiological Society, reproduced with
permission.)

During our consideration of each of these models, we analyze their information pro-
cessing behavior using the methods developed previously. As a result, we conclude by
comparing all four models to show that the various increases in complexity do not sig-
nificantly affect information transmission. And, just as important when constructing large
simulations, we show that the LIF neuron is a far less computationally demanding model
to run.

4.5.1 Adapting LIF neuron

Adaptation, or slowing of the spike rate, is seen prominently in what are called ‘regular
spiking’ cortical neurons (Connors and Gutnick 1990). When these neurons are injected
with a depolarizing step function, they spike rapidly at first, but quickly slow their fir-
ing rate to a much lower steady-state firing rate (see figure 4.16). In order to capture this
behavior in a leaky integrate-and-fire (LIF) model, we can incorporate the voltage depen-
dent resistance as shown in figure 4.17 (Wehmeier et al. 1989; Koch 1999). This mimics
the effects of the slow hyperpolarizing potassium current (������ in figure 4.17) found in
regular-spiking cells.

We can write the equations governing this circuit as follows:

��

��
� �

�

���

�
� �� �

�

������

�� ���

�
(4.28)

�������

��
�

������

������
�

TLFeBOOK

Temporal representation in spiking neurons 117

Outside Membrane

Inside Membrane

V CRJR

JM

JCτref

δ(tn)

V=Vth

RadaptJadapt

Figure 4.17
RC circuit for LIF with adaptation. The dynamics of variable resistor, ������, are controlled by an adaptation
time constant, ������. (See figure 4.2 for the circuit with no adaptation).

Equation (4.28) is identical to (4.4) with the addition of the time varying resistance,������.
Notably, the time constant that controls the speed of adaptation, ������, will be large
compared to the RC time constant of the circuit, ��� . Assuming the cell is initially at rest
(i.e., � � � and ������ ��), once ��� is passed and an action potential is produced, the
voltage dependent resistance, ������, begins to decrease (i.e., the conductance increases)
by some value, ��	
.16 This introduces an extra current, ������, which acts to lessen the
effects of the input voltage, �� . Thus, it takes longer for the next action potential to be
generated because there is a larger difference between ����
����� and ��
�
� than there was
at rest. When there is no input, the resistance drifts exponentially towards its resting state.

Perhaps surprisingly, this simple addition to the LIF model makes it behave quite
similarly to detailed conductance-based models, as shown in figure 4.18. As can be seen
in this figure, the strong nonlinearity of the LIF model near threshold is also removed

�� For mathematical convenience, it is easier to model the decreasing resistance as an increasing conductance.
Note that the conductance is 0 when the resistance is�.

TLFeBOOK

118 Chapter 4

0 0.5 1 1.5 2

input current (nA)

0

100

200

300

integrate-and-fire
compartmental

1st ISI 2nd

adapted

fr
eq

ue
nc

y
(H

z)

Figure 4.18
Comparison of an adapting LIF neuron with a biophysically detailed, conductance-based model of a layer 5
pyramidal neuron. (From Koch 1999, p. 337 c� Oxford University Press, reproduced with permission.)

by the inclusion of adaptation. In fact, Ermentrout (1998a) has shown that, in general,
adaptation in highly nonlinear neurons serves to linearize the response function. Notably,
this linearization of the response function makes it more likely that we can find a good
linear decoder.

Comparing figures 4.19 and 4.9a is instructive regarding the effects of including
adaptation in our model neuron. As can be seen, the resultant decoding is very similar
to the original LIF. In fact, both the RMSE and the information transfer rate are the same.
However, the efficiency of the adapting LIF is significantly higher (2.23 bits/spike) than
the standard LIF (1.24 bits/spike). This suggests that the ubiquity of adaptation in cortical
neurons might serve to improve the efficiency of information transfer.

So, the adapting LIF model is just as good, if not better than the standard LIF model.
However, there is also a 25% increase in the length of time it takes to simulate the adapting
model, so the computational costs are significantly higher.

4.5.2 �-neuron

Recently, there have been a number of attempts to generate simple, nonlinear, spiking
models that effectively capture the behaviors of an entire class of neurons (Gutkin and
Ermentrout 1998a; Ermentrout 1996; Hoppensteadt and Izhikevich 1997; Hoppensteadt
and Izhikevich in press). Most of these are focused on understanding the dynamics of what

TLFeBOOK

Temporal representation in spiking neurons 119

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

input signal
estimate
spike

Figure 4.19
Signal reconstruction using the optimal filter as the decoder and the adapting LIF model as the encoder
(������ � �� ms,���� � �� nS, RMSE = 0.153). This can be compared to figure 4.9a, where the same signal
and decoder are used but the encoder is the non-adapting LIF model.

are called ‘class I’ neurons. Hodgkin (1948) proposed a distinction between two classes
of neurons, where class I neurons are those that can spike at arbitrarily low frequencies
and steadily increase their frequency as a function of input current.17 Notably, mammalian
neurons are almost all class I neurons (Wilson 1999b, p. 149).

Class I neurons are very similar to Hodgkin-Huxley neurons, except that they incor-
porate an extra, very fast, voltage dependent potassium current, called the A-current (��
in figure 4.20). Notice that the circuit describing class I behavior (figure 4.20) no longer
incorporates a delta function generator as in the case of the LIF neuron. This is because
the time courses of the voltage dependent potassium (��) and sodium (���) channels are
responsible for the generation of the neural spike (for a discussion of the dynamics of these
currents see Nelson and Rinzel 1995).

�� In fact, Hodgkin suggested that there are three classes, but the third is a class of neurons that do not fire
repetitively at all; presumably this is a methodological artifact. Class II neurons are those, like the famous
Hodgkin-Huxley neuron (Hodgkin and Huxley 1952), that have a non-zero minimum spiking frequency, can
have graded spike size, and whose firing rates are less sensitive to changes in input current strength. Arvanitaki
(1938) earlier presented a similar classification.

TLFeBOOK

120 Chapter 4

EA

Outside Membrane

Inside Membrane

V CRJR

JM

JCRAJA RKJK RNaJNa

E EK ENa

Figure 4.20
RC circuit for class I neurons. The parameters ���, �� , ��, and � are the sodium, slow potassium, fast
potassium (A-current), and membrane leakage resistances, respectively. The equilibrium potentials, �, for the
respective currents are shown as batteries. For further related discussion see section 4.5.3.

It is natural to characterize the dynamics of class I cells in the language of nonlinear
systems theory (see Rinzel and Ermentrout 1989 for a discussion of nonlinear systems
theory in the context of neural models). In particular, the class I cells contain what is known
as a saddle-node bifurcation (Wilson 1999b; Hoppensteadt and Izhikevich in press). This
occurs because of the change in recovery dynamics due to the near-rest threshold of the A-
current activation and inactivation. Being able to describe the behavior of class I neurons
in this general way has lead to the development of canonical models of such neurons.18

In order for canonical models to be useful, they need to be simple. This way, the
universal properties of the entire family of models can be studied more easily. Recently,
Bard Ermentrout and his colleagues have developed a simple canonical model for class I
neurons called the �-neuron (Ermentrout and Kopell 1986; Ermentrout 1996; Gutkin and
Ermentrout 1998a; Gutkin and Ermentrout 1998b). The �-neuron is a 1-dimensional model
that preserves the dynamics of a saddle-node bifurcation. Essentially, the model describes
the location of the neural state vector along the spike trajectory with a single phase variable,

�� A canonical model is one which any member of a family of models can be transformed into, using a
continuous change of variables (Hoppensteadt and Izhikevich 1997).

TLFeBOOK

Temporal representation in spiking neurons 121

0

6

0

6

0

1.5

0 40 80
time (ms)

1

2

0 40 80
time (ms)

spike
absolute
refractory

relative
refractory

excited

thresholdrest

θ=π

θ=0=2π

a) b) c) d)

Figure 4.21
Theta-neuron behavior. In (a) and (c) the upper diagram shows the location of critical points on the invariant
circle, the middle graph shows the behavior of �, and the lower graph is the trace of �� � ��� �� showing the
spikes. (a) Excitable regime with � � � � �	�
. The stable state is the node on the right. The single spike is
evoked by a pulse stimulus (marked by the triangle) that forces � past the saddle fixed point on the right. (b)
Meeting of the saddle and node points with � � � � 	. The trajectory has an infinite period. (c) Oscillatory
regime where the stable state is now a limit cycle with � � � � 	�
. Periodic behavior of the phase variable and
spikes in ��� ��� �� are present. (d) Phase evolution and its analog to membrane voltage states. Note that the
spike occupies a small region near �. A strong enough stimulus will push � past the threshold and into the
excited region. Here the regenerative dynamics that summarize active conductances carry the phase through the
spike. (Adapted from Gutkin and Ermentrout 1998a and Hoppensteadt and Izhikevich in press both c� MIT
Press, reproduced with permission.)

�. The model can be written as

��

��
� ��� ��� �� � �� � ��� ���� � �� ��	 � �
�� ��
� (4.29)

where � is a bias (analogous to ����� in equation (2.3)) and � is the input (analogous to
��).

The behavior of this model is summarized in figure 4.21. As can be seen from this
figure, the �-neuron displays the main qualitative features of a class I spiking neuron,
including distinct subthreshold and superthreshold regions, an all-or-none spike, a steady-
state resting point, and an absolute and relative refractory period.19

The �-neuron more than just captures the qualitative features of spiking neurons. (Hop-
pensteadt and Izhikevich) (in press) rigorously show how complex conductance models can
be reduced to models like the �-neuron. Thus, determining the information transmission
characteristics of this neuron is very useful for providing insight into the behavior of a wide

�� The presence of the absolute refractory period is evident from (4.29). While the neuron is spiking, the effect
of the input will be minimal since � � ��� � � 	 for values of � near �.

TLFeBOOK

122 Chapter 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

input signal
estimate
spike

Figure 4.22
Signal reconstruction using an optimal filter and the �-neuron model as the encoder (RMSE = 0.160).

variety of neurons. Figure 4.22 shows the decoded �-neuron spike train for the same signal
used in past examples. Note that the background firing rate and maximal firing rate over
the range were matched the LIF models using � and a gain, �.

The �-neuron compares favorably to the LIF neurons in most respects. The RMS error
and information transmission rates are within 5% of each other. There is a slightly larger
difference in efficiency, where the LIF (1.24 bits/spike) outperforms the �-neuron (.96
bits/spike), but the values are comparable. The biggest difference between the models is
that it takes approximately 100 times longer to run the �-neuron. This, of course, is a major
drawback when trying to run models of large, complex systems.

Given the generality of the dynamics of a canonical model like the �-neuron, we
take these results to be indicative of what should be found in all class I models. So, it
is reassuring to see just how similar the information transmission characteristics are to a
simple LIF model. However, despite the generality of the �-neuron, it does suffer some
important limitations. For one, the output does not map directly onto voltage changes in
real neurons, so spike shape is not modeled (although spike timing is). More importantly,

TLFeBOOK

Temporal representation in spiking neurons 123

adaptation is not included in the �-neuron.20 Given the ubiquity of adaption in mammalian
cortical cells, it is important that we consider models that both spike, and adapt. As
well, on a more methodological note, the �-neuron, and the methods used to reduce
conductance-based models to it, are unfamiliar to most neuroscientists. In contrast, more
direct reductions, like those found in the FitzHugh-Nagumo (FitzHugh 1961), Morris-
Lecar (1981), and Rinzel (1985) models are likely to be more familiar. These models
explicitly describe voltage dynamics, and thus produce true action potential traces, unlike
the �-neuron.

4.5.3 Adapting, conductance-based neuron

In this section, we consider the most realistic of the models we have seen so far; we call
it the Wilson neuron (Wilson 1999b; Wilson 1999a). The Wilson neuron is a conductance-
based model of the regular spiking neuron in mammalian neocortex. This model includes
adaptation but, unlike in the adapting LIF model, the dynamics of the adaptation current are
modeled directly after the calcium-dependent potassium current thought to be responsible
for adaptation in class I neurons (Wilson 1999b). Like the �-neuron, this model includes
spiking dynamics. However, the reduction of this model from conductance-based models
is very direct, resulting in a model that also captures the voltage dynamics observable in
real neurons. As a result, this model captures features of neural spiking not addressed by
the previous models. For example, changes in spike height with frequency, spike shapes,
and after-hyperpolarization are captured by this model.

Let us briefly consider the reduction of complex conductance models to the Wilson
neuron to show its relation to more empirically generated models (see Wilson 1999b;
Wilson 1999a). To begin, consider the famous Hodgkin-Huxley (1952) model whose
parameters were derived directly from experimental observations of the giant squid axon:

�
��

��
� �����

���� ������ ��	
��� ����� ��� ��� �
� (4.30)

��

��
�

�

���� �
������� �� (4.31)

��

��
�

�

���� �
����
�� �� (4.32)

�	

��
�

�

���� �
��	���� ��� (4.33)

The circuit for this model is identical to figure 4.20, with the A-current removed. The pa-
rameters ���, �� , and � are the sodium, potassium and membrane leakage conductances

�� Although it could be included, by adding a second dimension to the model analogous the slow A-current.

TLFeBOOK

124 Chapter 4

(�

�
), respectively. The parameters �, �, and � are the sodium activation, sodium inac-

tivation, and potassium activation parameters, respectively. These parameters model the
dynamics of the opening and closing of ion channels in the cell membrane. Notably, the
equilibrium values of these parameters (� , � , and �) and their respective time constants
(��, ��, and ��) are functions of the membrane potential, � . Finally, the equilibrium po-
tentials (shown as batteries in figure 4.20), ���, �� , and � are the potentials for which
the net ionic current across the membrane is zero (these are largely due to the ion con-
centration gradients across the membrane). Thus, these equations capture a fourth-order
nonlinear system. Analyses of such complex systems are extremely difficult.

Fortunately, Rinzel (1985) noticed two very useful simplifications. First, he pointed
out that �� is extremely small, so (4.31) can be eliminated by approximating 	 as ��� �

(since the equilibrium, ��� �, is reached quickly). Second, he realized that sodium chan-
nels close at approximately the same rate, but in the opposite direction as the potassium
channels. Thus, (4.32) can be eliminated by letting � � � � �. Notably, there is now a
single ‘recovery’ variable that results from the amalgamation of � and �, call it
. These
simplifications mean that an accurate approximation to the Hodgkin-Huxley equations can
be found in a two-dimensional system.

As mentioned in the previous section, the introduction of the A-current accounts for
the differences between the Hodgkin-Huxley and class I neurons. A direct introduction of
this current makes the two-dimensional model a three-dimensional one. However, Rose
and Hindmarsh (1989) showed that a good approximation to the effects of this current
is found by making the equation for the recovery variable,
, quadratic.21 Thus, a good
approximation to a class I neuron can be achieved in a two-dimensional system.

In order to introduce adaptation into the model, we must add a slow potassium current
(analogous to ����	
 in the adapting LIF neuron), governed by the conductance variable
� . Using parameters found to produce good approximations in human neocortical neurons,
we can write the final Wilson model as (after Wilson 1999a; Wilson 1999b, p. 157)

�

�

�
� �

�
����� ��	�� �

��� �

�
�� � ���

��

�� � �	�� �
��� � �	� � �� (4.34)

�
�

�

	�

�
�
� ���� � �� �

��� �
���

�
(4.35)

�

�
�

�

����
��� � ���� � �	����� �
���� (4.36)

Equation (4.34) incorporates the resting potentials of sodium and potassium ions at 48
and -95 mV. The quadratic in � and the constants multiplying
 and � in (4.34) are

�� See Rush and Rinzel 1994 for reservations regarding this interpretation of the A-current.

TLFeBOOK

Temporal representation in spiking neurons 125

0

50

100

150

200

250

0 0.4 0.8 1.2 1.6 2

transient
steady state

sp
ik

e
ra

te
 (

H
z)

I (nA)

model transient

model steady

Figure 4.23
Wilson’s conductance-based model compared to real data (from Avoli et al. 1994 c� Springer-Verlag as in
Wilson 1999b, reproduced with permission). Both transient and steady state (i.e., after adaptation) properties of
a human regular spiking cortical neuron are reproduced well, and over a range of inputs.

found by fitting the nullclines of this system to the full conductance model. In (4.35), the
contributions of the standard potassium current (linear) and the A-current (quadratic) have
been amalgamated, as suggested by Rose and Hindmarsh (1989). Finally, (4.36) includes
a term with the resting potential, -75.4 mV, so as to ensure the current has no effect at
rest. Notably, the time constant of this current is very long (99.0 ms) so as to produce an
appropriate adaptation without affecting the shape of the spike. As can be seen from figure
4.23, these equations do an excellent job of approximating the behavior of real regular-
spiking neurons.

As shown in figure 4.24, decoding the spike train of this model again works well.
The neurons used here are again matched to the original LIF model for background and
maximal firing rates. In this case, the information transmission rate (91 bits/s) and RMS
error are about 20% worse than for the LIF model. However, the efficiency is improved (2
bits/spike, a 30% increase). Given the results of the adapting LIF model this is likely due to
inclusion of the adapting current. Again, by far the greatest difference between this model
and the LIF model is that it takes approximately 600 times longer to run the same problem.

TLFeBOOK

126 Chapter 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

input signal
estimate
spike

Figure 4.24
Signal reconstruction using an optimal filter and the conductance-based model as the encoder (RMSE = 0.186).

4.5.4 Discussion

In this section, we have progressed from the simple LIF model to a conductance-based,
adapting model that is known to capture a wide-variety of detailed biophysical results
(Wilson 1999b; Wilson 1999a). What we have shown through this discussion, is that the
information transmission characteristics of a variety of single-cell models are not only very
similar to one another, but also to neurons found in real neurobiological systems. Table 4.1
summarizes the results from the various models we have explored. As this table shows,
there is not a very large spread in either the information transmission rates or efficiencies,
although the adapting neurons are consistently more efficient. It is also important to note
that the efficiencies of the models lies comfortably within the range of efficiencies reported
for actual neurobiological systems, between about 1 and 3 bits/spike (see section 4.4.2). By
far the greatest differences between the models lies in their run times. All in all, this tables
shows that the simple LIF model is a good trade-off between a realistic neural encoder and
a computationally tractable model. As models become large, computational tractability
becomes extremely important. Because our focus in this book is on large-scale modeling,
we adopt the LIF as our neural model of choice.22

�� However, the software package associated with this book allows the user to pick any of these models when
constructing a simulation.

TLFeBOOK

Temporal representation in spiking neurons 127

4.6 SUMMARY

In this chapter, we have been largely concerned with introducing and formally characteriz-
ing neural spiking, the most salient neural nonlinearity. We began with a study of the leaky
integrate-and-fire (LIF) model, which is simple, yet incorporates this central nonlinearity.
We then turned to a general discussion of temporal coding in neurons and argued that 1) it
is not necessary to understand neural coding in terms of a rate code/timing code dichotomy,
and 2) considering pairs of neurons as fundamental to temporal coding is highly produc-
tive. We then described a means of finding optimal temporal decoders for pairs of neurons.
This analysis is very similar to those that have been done on neurons in the past, with some
slight improvements (i.e., Gaussian windowing).

We employed this analysis on the LIF neuron to show that these methods effectively
bridge the gap between timing and rate codes, allowing us to remain agnostic as to what
‘the’ code of neural systems is. As well, we showed that the simple LIF neuron has
approximately the same information transfer characteristics as both real neurons and more
complex neuron models. Our examination of these more complex models both showed
how they could be included in this general framework and demonstrated that the LIF model
strikes a convenient balance between neural plausibility and computational cost.

In addition, we addressed the issue of the biophysical relevance of the optimal de-
coders. We showed that the post-synaptic currents (PSCs) could be used in place of the
optimal decoders with little loss in information transfer. The gain in neural plausibility is,
of course, enormous. As a result of these considerations, all of our subsequent models use
the LIF model and PSC temporal filtering.

Table 4.1
Comparison of information transmission characteristics of various model neurons.

Neuron Rate Bits/spike RMSE Run time (s)

LIF 114 1.24 0.153 0.18

Adapting LIF 114 2.23 0.153 0.24

�-Neuron 109 0.96 0.160 20.1

Wilson Model 91 2.00 0.186 125.2

TLFeBOOK

128 Chapter 4

This page intentionally left blank

TLFeBOOK

5 Population-temporal representation

To this point in the book, we have been concerned with understanding two different aspects
of neural representation: 1) the representation of a static variable by a population of rate
neurons; and 2) the representation of a time-varying scalar with two spiking neurons. As
mentioned along the way, we need to combine these two codes in order to have a general,
plausible theory of neural representation. That is the central purpose of this chapter.

5.1 PUTTING TIME AND POPULATIONS TOGETHER AGAIN

As suggested earlier, putting population and temporal representation together ends up be-
ing a straightforward matter. This is because we have understood both kinds of represen-
tation by identifying the relevant encoding and decoding. Specifically, we consistently use
nonlinear encoding and linear decoding. For both kinds of representation, the nonlinear
encoding is defined by the characteristics of the neuron, and the linear decoders are found
by performing a least squares optimization.

In this section, we unite population and temporal representation by considering the
representation of time-varying vectors. Because we have previously related both scalar
representation and function representation to vector representation, we concentrate only on
vector representation for this derivation. In particular, recall that the population estimate of
a vector, �, before adding noise can be written

�� �
�

�

�������
� (5.1)

where ����� is some nonlinear function defined by the neural response characteristics, and
�

�
is the optimal decoding weight.
In the last chapter, we defined the decoding of the ‘spike’ representation for a scalar

which can be easily generalized to the vector case, i.e.,

����� �
�

���

������ ����� (5.2)

where ���� is our optimal decoder, and ��� are the occurrence times of neural spikes from
neuron � (which are determined by our model of the nonlinear neural encoder). Previously,
�� were �� for the on/off neurons, so we can assume for the time being that the �� are
oppositely directed vectors in the vector space. In a sense, this is already the decoding of
a population representation, although it is a somewhat degenerate population because we
always assume that there are only two neurons. Just how degenerate becomes evident in

TLFeBOOK

130 Chapter 5

the vector case, because any �-dimensional vector representation can be reduced to an
equivalent one-dimensional representation. In order to capture more complex time-varying
representations, we must generalize the spike representation by relating it to our general
characterization of population representation.

To do so we first need to define the encoding. Of course, real neural systems have
neither a population of neurons encoding a static magnitude, nor two identical but opposite
neurons encoding a time-varying signal. Rather, they have populations of neurons encoding
time-varying signals. So, we need to define a population of encoders of a time varying
signal; i.e., we need to define some ��������. We begin in much the way that we did in
chapter 2:

�������� � ������������

�������� � ��

�
��

�
����

�
�

� ������ �

Now, rather than using an activity model to define the nonlinearity ��, we use a
temporal encoding model, the spiking LIF neuron. This means that the function �� will
generate a series of spikes, Æ�� � ����, in response to the input signal, ����. The precise
spike times of neuron 	, ���, are determined by the parameters of the LIF model (i.e., ��,
������ , � ��� ,
�, ��	� , and �
���).

We have now defined a spiking encoder that gives rise to the activity, ��������. How-
ever, it is no longer clear what the relation is between this set of spikes and the continuous
function ����� that we previously used in defining our population representation. In other
words, we do not know what population decoders,��, we can use to decode this encoding.
However, looking again at the temporal decoding in equation (5.2) gives us a hint. Recall
that this is a degenerate population code. When we introduced this equation in the scalar
case, we noted that �� was 1 for the ‘on’ neuron and and -1 for the ‘off’ neuron. These, then
play a mathematically analogous role to the decoding weights in equation (5.1). However,
in a non-degenerate situation (i.e., with more than two neurons), it still is not immediately
obvious what the �� will be. Only if we can relate the
��� ���� in the temporal represen-
tation to the ����� in the activity representation, will we show how the �� in the latter case
relate to the �� in the former case. That is, since
��� ���� and ����� act as coefficients for
some decoding weights (�� and ��) relating the coefficients may tell us how to relate the
decoding weights.

Given an analogously defined
��� ���� for the vector case, these relations turn out to
be trivial because both
��� ���� and ����� are measures of the ‘activity’ of the same LIF
model. In other words, the LIF response function, �����, is the instantaneous activity of
the same encoder that generates the spikes at times ��� filtered by
���. Thus, as discussed

TLFeBOOK

Population-temporal representation 131

in appendix C.1, we find that

����� �

��
�

����� � Æ��� ����

�
�

(5.3)

�

��
�

����� ����

�
�

� (5.4)

This equation should not be taken to mean that the ����� are the result of an encoding using
����. Instead, it shows that these two results of encoding can be identified.

So, as shown later in section 5.2 and appendix C.1, we can use the same �� with the
spiking population as we did with the rate population. However, we do not want to average
over long periods of time when we are interested in neural dynamics and real-time temporal
representation. So, rather than the time-averaged �����, we can use the ‘instantaneous’ rate
which, as � in (5.4) goes zero, is simply

�
� ����� ����.

Thus, replacing ����� with ��� � ���� in equation (5.1) we arrive at the population-
temporal decoding:

����� �
�
���

������� ����� (5.5)

Note that the product of ����� and �� results in a scaled version of �����. Thus we can
simplify (5.5) by defining a new ‘population-temporal filter’, �����, to be that product.
This gives

����� �
�
���

����� �����

Just as we did in chapter 2, we can now re-introduce noise into the representation. In
this case, however, the noise is in the form of spike time jitter rather than random varia-
tions in firing rate. Notice, however, that introducing noise in spike timing is equivalent
to introducing random variations in firing rate since spike timings are taken to encode in-
stantaneous firing rate. Thus we are guaranteed that the analysis in chapter 2 regarding the
effects of noise is applicable in this case as well. So, our final expression for estimating a
time varying scalar signal under noise is

����� �
�
���

����� ��� � ����� (5.6)

As in chapter 2, the noise term ��� is assumed to be drawn from a Gaussian distribution
with zero mean.

TLFeBOOK

132 Chapter 5

In order to find the population-temporal filters that decode the encoded signal, we
perform a least squares minimization, just as we did in previous chapters. First, we form
our expression for the error:

� �

��
������� �

�
���

����� ��� � ����

�
�
��
���

� (5.7)

Now we can minimize (5.7) in one of two ways: we can either use a combination of
the techniques in chapters 2 and 4; or we can just use the method from chapter 4. In
general, we prefer to use a combination of techniques for two reasons: 1) as discussed
earlier, we use the postsynaptic current in place of the optimal temporal decoder to
improve the neurological plausibility of the models; and 2) this allows us to solve part
of the problem (the population decoders) analytically, rather than relying on Monte Carlo
methods (i.e., using necessarily incomplete sampling of the signal space). Furthermore,
as we show in section 7.4, being able to consider just the population decoders allows
for a rigorous characterization of the population representation. This is very useful for
quantifying the representations in a particular population and for guiding hypotheses about
the function of the system being modeled. So, in the end, despite having defined a unified
population-temporal representation, it is more useful to consider the ‘population’ and the
‘temporal’ aspects somewhat independently. Nevertheless, we know that the combined
decoders behave in just the ways characterized for each of the parts independently. Of
course, nothing makes this more evident than examples, which we consider in section 5.3.

However, before we get to examples, it is useful to consider noise in more detail.
Although we have introduced noise in (5.6), we have not demonstrated that the temporal
representation we are considering is robust to the introduction of such noise. We have left
this demonstration until now because only in the context of a population code can we fully
characterize the effects of noise on neural representation.

5.2 NOISE AND PRECISION: DEALING WITH DISTORTIONS

Knight (1972) shows that it is important to add noise to the LIF neuron model in order to
both improve the computational properties of LIF-based models and to better approximate
the behavior of real neurons. On the computational side, he shows that the addition of noise
stops disruptive phase-locking tendencies and thus improves the transmission of stimulus
information. He also shows that the highly cusped, non-linear response function of the LIF
neuron is made significantly more linear with the addition of noise, better approximating

TLFeBOOK

Population-temporal representation 133

the behavior of real neurons.1 Knight thus establishes that noise cannot be ignored when
doing computational modeling with LIF neurons.

There are two ways noise can be included in our analyses when finding optimal
decoders. First, we can introduce noise to spike trains before they are used to find the
optimal filter; we call this ‘pre-noising’. Second, we can introduce noise to the spike train
after it is used to find the optimal filter and then decode the noisy spike train; we call this
‘post-noising’. In both cases, ‘introducing noise’ means randomly jittering the spikes by
some �� picked from a normal distribution with a variance, ��, equal to 2 ms.

Both pre- and post-noising result in little significant effect. Specifically, for pre-noising
both the RMS error and the amount of information transfered decrease by less than 1%.
For post-noising, shown in figure 5.1, we see a larger effect, but the information transfer
still only drops by 9.6%. A similar analysis has been done with data from real neurons, and
again this kind of linear decoding was found to be similarly robust to noise (Bialek et al.
1991).

So, although in this regime of fast correlation times the spike train is more like a timing
code than a rate code, highly precise timing is not mandatory. This is important because
we know that real neurons operate in a noisy environment and representations that relied
heavily on precise spike timing would be severely corrupted. The results presented here
show that the methods we developed in section 4.3.3 appropriately generalize to these
kinds of environments. So, like the population code presented in chapters 2 and 3, the
temporal code is a good one under natural, noisy conditions.

However, a new concern regarding noise arises when the population and temporal
codes are considered together. Namely, the temporal code introduces a possibly new kind of
distortion to the population code. Specifically, using spikes decoded by either the optimal
filter or the PSC filter results in significant fluctuations in the estimate of ���� (the kinds
of fluctuation depend on the shape of the decoder). But, in developing the population
code we used rate neurons, which had smooth, real-valued outputs, �����. So, it is not
immediately clear what effect switching such a characterization to spiking neurons will
have. Fortunately, the fluctuations introduced by neuron spiking can be treated as ‘just
another’ noise term. Or, simpler yet, it can be included in the noise term already in the
population analysis, ��� .

To show this, consider that when the input to a LIF neuron, ����, is constant, the neuron
generates a uniform spike train with interspike intervals given by �������� � �

������������

where �� ���������� is the function describing the spike train produced by the LIF neuron
as usual. According to our characterization of temporal representation, these spike trains

� This kind of linearization can also be accomplished by introducing adaptation (see figure 4.18). In all likelihood
the results from real neurons include a combination of these two effects.

TLFeBOOK

134 Chapter 5

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

input signal
estimate
spike

Figure 5.1
Reconstruction of a signal from a noisy spike train. The optimal filter was found using the noiseless spike train.
Random spike jitter was then introduced (�� � �ms) and the signal was decoded. Total information transfer
drops by 9.6% and RMSE = 0.189.

are filtered by the PSC linear filter, �����, resulting in a postsynaptic activity,����� ��, given
by

����� �� �
�

�

�� ��� ��������� � ���� � (5.8)

where ��� is the time of the first spike, or the phase of the spike train relative to some fixed
clock. The �th spike of the �th neuron in the population will have some phase lag relative to
other neurons in the population determined by ��� . For this analysis we assume that these
��� are random variables that can take on any value between � and �������� with equal
probability, and are statistically independent across neurons.

We can now find the variance of our estimate, �����, of the signal, ���� by determining
the mean activity of each neuron based on (5.8). This variance is a result of the fluctuations
introduced by using spikes to transmit the signal. The derivation of the variance, �������, is

TLFeBOOK

Population-temporal representation 135

in appendix C.1, where we show that

������� �
�

�

��
� ��������

��
�

�� ����������� � ��������

�
�

where

���	� �

�
�

��

����
���� 	����

Notably, this variance takes on a maximum value when the width of the filter,
����,
is much smaller than the interspike interval and different neurons do not spike within the
window occupied by each other’s filter. This is because the filtered spike trains,
���� ��,
of individual neurons will not overlap one another. If they do overlap, the result from
each neuron is essentially averaged, and the fluctuations introduced by the peaked filters is
reduced. In the limit where there is much overlap, then

��������
�
�

������������ �

�
�

��

��	��	

� ��

so �
�

��������� �

�

��������

� ���������

In this case, the filtered spike trains look exactly like the output from the original rate
model. Thus, in this limit, the optimal population decoders, ��, will be exactly the same.
Furthermore, since we can characterize the fluctuations that are introduced by the spiking
model in terms of the variance of the resulting estimate, ��

�����, and because noise added to
the neuron outputs also produces a variance in the estimate, we can capture the effects of
spiking by adding an equivalent noise term to the neuron outputs.

In our discussion of population representations, we found that the error introduced into
our representation was a result of both static error (from the nonlinearities in the encoders),
and the error due to noise (see section 2.2.2). We can now include the error due to spiking
fluctuations into this expression to determine the error from all sources in a population-
temporal representation:

������ � ������	 ��
���� ����
	�
����
�

�
�

�

��
��

�
�

�������

���
�

� ��
�

�
�

��
� � ��

������

TLFeBOOK

136 Chapter 5

So, we can keep our past analyses the same and choose a variance, ��, that reflects both
noise and the effects of the fluctuations due to spiking (for further discussion, see appendix
C.1). Given the analysis in chapter 2, this means that the distortion effects due to spiking
will also go down as �

�
(� is the number of neurons). So, our means of finding the optimal

decoding weights for the population representation will be exactly the same whether we
use rate neurons or spiking neurons given our characterization of temporal coding. There
is no more direct way of demonstrating this than through an example.

5.3 AN EXAMPLE: EYE POSITION REVISITED

In section 2.3, we used the neural integrator as a means of introducing population coding of
a scalar magnitude. In order to show that adding a temporal component to our represented
signal does not adversely affect that characterization, we revisit that example in this section.
In other words, we reuse the example in order to substantiate our claims in chapter 2 that
the analysis there extends to more realistic neural models, and to show that our combined
population-temporal decoder is a good one.

An additional benefit is that we do not have to re-describe the neural system. In fact,
the system description and design specification (in sections 2.3.1 and 2.3.2 respectively)
are nearly identical. In order to improve the realism of our model slightly, we no longer
assume that the maximal firing rate of neurons is equal at the maximum deflection of
the eyes as shown in figure 5.2 (Moschovakis 1997). We show in section 5.3.1 that this
improvement does not adversely affect the expected precision of the representation. With
this one alteration in mind, our specifications for the model are as follows: the variable
���� encodes eye position at a time, �; eye position neurons are well-modeled by spiking
LIF neurons whose parameters are distributed as in 5.2; the range of the representation is
normalized to [-1,1]; and the expected noise is independent, Gaussian distributed, has a
mean of 0, and a variance of 0.1.

5.3.1 Implementation

To begin, we want to verify that simply changing the distribution of neurons in the
population, by allowing a range of maximal firing rates at maximal eye deflection does
not adversely affect the ability of the system to deal with noise. Figure 5.2 shows a sample
of tuning curves in the population used in these simulations. Figure 5.3 shows that, for a
static encoding, noise decreases as before (see section 2.3), at a rate proportional to ��� ,
where � is the number of neurons.

We can now compare these results to those found with the same set of neuron tuning
curves, but using spiking neurons. As before (see section 4.3), we draw our signals from

TLFeBOOK

Population-temporal representation 137

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

x (degrees/max degrees)

fir
in

g
ra

te
 (

sp
ik

es
/s

)

Figure 5.2
A sample of 50 nonlinear tuning curves for a population of neurons used to encode horizontal eye position.

an ensemble defined in terms of statistically independent coefficients, � (see equation
(4.14)). In particular, we assume the coefficients are Gaussian distributed (as in equation
(4.15)), and cover a bandwidth of 5 Hz. This defines a signal ensemble that is Gaussian
band-limited white noise, as before (see section 4.4).

Figure 5.3 shows the decrease in error as the number of neurons increase for the activity
model neurons and for the PSC-filtered spiking neurons. Although, as this graph shows, the
activity neurons have a slightly smaller error for a given number of neurons, both models
show a decrease in error which goes as ��� . Thus, for any activity model representation,
we can build an equally accurate filtered spiking model representation, although we may
need a few extra neurons. This demonstrates that, as expected, the analyses we perform on
the simplified rate model translate to our more biologically plausible model that includes
neural spikes and more realistic postsynaptic behavior.

5.3.2 Discussion

Although we do not show it here, these same results hold for vector and function repre-
sentation. This should not be surprising given the close relationship we have established
between scalar and vector representation and between vector and function representation.

TLFeBOOK

138 Chapter 5

10
0

10
1

10
2

10
3

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

N (number of neurons)

sq
ua

re
 e

rr
or

activity neurons
spiking neurons
1/N

Figure 5.3
Simulation results showing the relation between the precision of representation and the number of neurons in the
population. The solid line shows the decreasing error due to noise as a function of the number of neurons for the
activity neurons. The dashed line indicates the same trend for the PSC filtered spiking neurons. For the spiking
case, MSE is determined over a 1 second run for a 5 Hz band-limited signal. Although the activity population
has slightly better absolute error, both display the same tendency to decrease error at a rate proportional to ���
(the dotted line).

To conclude our overview of population-temporal representation, let us consider the
population-temporal code of functions, which we have not yet directly addressed. As in
the case of scalars, amalgamating temporal and population coding is a simple matter. The
encoding is

������� ����� � ������� � ��

�
��

�
���� ����������

�
�

� 	����

�

�
�

which can be written as

������� �
�
�

���� �������

since � is integrated out, as discussed in section 3.2.

TLFeBOOK

Population-temporal representation 139

Our decoded estimate of the function is thus

����� ���� �
�

�

������������ (5.9)

�
�

�

����� �� � ����� (5.10)

�
�

���

�� ��� �� ������� � (5.11)

where the ����� in (5.9) could be found by minimizing the appropriate error as in section
3.2. Alternately, we can look at equation (5.10), in which the function ����� �� is the
population-temporal filter and ����� is the spike train produced by neuron � in response to
the function characterized by�. We can then minimize the error,

� �

��
���� �����

�
�

������ � 	�� � ����� ��

���
�����

�

to find the population-temporal filter. Although we have amalgamated the parameters
for determining the functions of � with the parameters for determining the temporal
functions in the vector �, this is by no means necessary. As mentioned in section 5.1,
we can minimize the temporal and population errors independently and then construct
the population-temporal filter. Or, as also mentioned earlier, we can approximate this
minimization by assuming the PSCs are given as the temporal filters and then find the
optimal population decoders only. In any case, this example shows that the considerations
for scalar population-temporal representation generalize to the representation of functions
as expected. We examine a neurobiological example of population-temporal function
representation in section 8.3.

5.4 SUMMARY

We began this chapter by showing that our previously independent population and temporal
representation characterizations could be combined. As a result, we defined a population-
temporal representation by identifying the encoding

�������� �
�

�
��

�
�������

�
�

� ����	
�

	
�

TLFeBOOK

140 Chapter 5

and decoding

����� �
�

�

�
�
��������

�
�

���

������ � Æ��� ����

�
�

���

����� �����

where the ����� can be found directly, or by determining ���� and �� independently. As
mentioned, in the remainder of the book we opt for the latter approach, as it allows easier
analysis and more direct generalization.

We then showed that this representation was robust to noise. Furthermore, we demon-
strated that determining the decoders under noise is the same for the rate and spiking neu-
ron models. This is because the fluctuations due to spiking can be included in the original
expression for error by simply adding another noise term.

TLFeBOOK

II TRANSFORMATION

TLFeBOOK

This page intentionally left blank

TLFeBOOK

6 Feed-forward transformations

In the first half of this book we have concentrated on characterizing representation in
neurobiological systems. Ultimately, however, we do not merely want to catalog kinds
of representation, but instead to explain the behavior of these systems by reference to
their representations. In order to do so, we can understand that behavior as a result of
representations being compared, contrasted, combined, weighted, averaged or otherwise
transformed. So, along with a story about representation, we need, just as much, a story
about how representations can be manipulated. Only by understanding both representation
and transformation can we begin to explain the wide variety of intriguing behaviors
exhibited by neurobiological systems.

So, in the second half of this book, we characterize neurobiological transformations.1

Doing so requires us to be concerned with a) the different types of transformations in neu-
robiological systems, b) how to implement transformations in neurobiological systems, and
c) the dynamics of transformations in neurobiological systems. In this chapter, we discuss
the basics of implementation. In the next chapter we present an analysis that can help
us determine the kinds of transformations a neural population can support, and gives us
deeper insight into the nature of neural representation. In chapter 8, we address the dy-
namics of neural systems. There, we provide a general characterization of neural dynamics
and present a number of examples that show how the general characterization can be ap-
plied. Finally, in the last, more speculative chapter we return to issues of implementation
and discuss learning and statistical inference as it can be understood within this frame-
work. Together, these chapters provide an overview and analysis of many of the kinds of
transformations found in neurobiological systems.

6.1 LINEAR TRANSFORMATIONS OF SCALARS

6.1.1 A communication channel

Let us begin by considering the simplest kind of linear, feed-forward transformation: none
at all. As ridiculous as this suggestion may at first seem, it helps elucidate a technique
that can be used to implement significantly more complex transformations. To make the
example seem more interesting, let us consider this transformation as characterizing a
simple communication channel. The purpose of such a channel is to send some signal

� A terminological note: although we use the term ‘transformations’ throughout, we do not object to calling these
same processes ‘computations’. However, the term ‘computation’ has, for many, a definition along the lines of
“rule-governed manipulation of discrete, symbolic representations” (see, e.g., Gelder 1995; Fodor and Pylyshyn
1988). This definition is inappropriate for many of the kinds of computations we discuss.

TLFeBOOK

144 Chapter 6

x y

ai bjωji

Figure 6.1
A communication channel in a neural network. Solid lines indicate possible connections. Dotted lines indicate
an encoding/decoding relation.

from one location to another location. In this case, our signal will be a scalar value, �, and
the two locations are neural populations � and � (see figure 6.1).

We can begin constructing our model by writing down the representations in the two
neural populations, as derived in section 2.1.2. Thus, we have the population

����� � �� ������� (6.1)

� ��

�
��

����� �����
�

�
(6.2)

�� �
�
�

������
�
� � (6.3)

where (6.2) defines the encoding and (6.3) defines the decoding. As before, �� ��� is taken
to be defined by a LIF neuron, and ��� is 	 for ‘on’ neurons and �	 for ‘off’ neurons. In
(6.3) we have introduced a new notation with respect to the decoding weight, ��� . From
now on, we often write the variable that the decoder is for (i.e., �) as a superscript on the
decoder (i.e., ��), as this serves to disambiguate decoders. Disambiguation is important
because, as we will see, characterizing transformations often requires identifying multiple
decoders.

For population � we define the representation analogously:

���	� � �� ����	�� (6.4)

� ��

�
��

���	 � �����
�

�
(6.5)

TLFeBOOK

Feed-forward transformations 145

�� �
�

�

������
�
� � (6.6)

Now, in order to implement a communication channel using these two populations, we
need to define the transformation in terms of the representations in each population. In this
case, the transformation is simply � � �. That is, we want our population � to represent
whatever is represented by �. Knowing this transformation allows us to write the activities
of � in terms of those of � by substituting � for � (since � � �). Thus,

����� � ��

�
��

����� 	����
�

�
(6.7)

� ��

�
��

���
�
�

������
�
� � 	����

�

�
(6.8)

� ��

��
�

������� � 	����
�

�
� (6.9)

where
�� � ��
����

�
� . Equation (6.8) is a result of supposing that � � �� and substituting

(6.3) into (6.7). In this case, ��� is the transformational decoder (although it happens to be
the same as the representational decoder because of the simple nature of the transforma-
tion that describes a communication channel). Equation (6.9) is the standard ‘connection
weight’ form for(6.8). Equation (6.9) essentially says that the activity of some neuron in
the � population is a sum of the activity of the neurons connected to it in the � popula-
tion, times a weight and passed through the nonlinear (LIF) response function. In more
neurobiological terms, the instantaneous firing rate of a neuron in �� is a result of the LIF
response to the current 	����, which is determined by the sum of the dendritic currents
(i.e.,
�������) plus some biasing background current 	����

� . The dendritic currents are de-
termined by the product of their synaptic efficacy (
��) and the instantaneous firing rate of
the presynaptic neuron �����.

In order to turn this firing rate model into a spiking model, we can employ the
techniques discussed in section 5.1. There, we showed that we can write

����� �
�
�

���������
�
�

�
�
��	

���� ��	��
�
� �

TLFeBOOK

146 Chapter 6

So, the spike trains of the � population are now determined as follows:2

�������� � ��

�
��

������� � �����
�

�
(6.10)

� ��

�
���

���

�
���

����� �����
�
� � �����

�

�
� (6.11)

� ��

�
��

���

	������� ���� � �����
�

�
�
 (6.12)

where 	�� � ��
����

�
� as for the rate model. Of course, in these cases, �� ��� is presumed to

be defined by a spiking LIF neuron. Again, the elements of equation (6.12) have correlates
in neurophysiology. In particular, the 	�� are synaptic efficacies, the filters (i.e., temporal
decoders) ����� are post-synaptic currents (PSCs), the ��� are spike arrival times for spike �
from neuron �, and �����

� is the bias current. These interpretations have each been discussed
in more detail previously. We should note that the PSCs are better indexed ������, indicating
the PSC at synapse � on neuron
. However, for convenience, we assume for the time being
that each neuron onto which neuron � synapses has the same (unweighted) PSC. This, of
course, is emphatically not the same as assuming that all currents produced in all dendrites
are the same given the occurrence of a spike. Those currents are a product of ����� and 	��.

In order to render our model more realistic, we can include the effects of noise on
the activities. This changes the values of the decoding weights, ��

� , and results in the
substitution of ����� � �� for ����� above. Otherwise little in the derivations themselves
changes.

Suppose, now, that we are interested in implementing a slightly more complex trans-
formation. That of a static gain on our input (i.e., � � ��). The derivations follow exactly
as before with the following result:

��������� � ��

�
��

���

	������� ���� � �����
�

�
�
 (6.13)

where 	�� � ���
����

�
� . The results of simulating this network for � � ��	 is shown in

figure 6.2.

� Alternatively, we could use ����� �
�

��� �
�
� �� � ����� in which case we find �������� �

��

��
��� ����� � ����� � ������

�
where ������ ����� � ���

�
� ��� �����. In some sense, writing the weight,

��� , as a function of time more directly reflects the observed behavior of postsynaptic cells (i.e., a scaled PSC).
However, distinguishing weights from temporal decoders is, as previously mentioned, extremely important for
performing useful analyses of neurobiological systems (see, for example, section 7.3).

TLFeBOOK

Feed-forward transformations 147

0 0.02 0.04 0.06 0.08 0.1
-2

-1

0

1

2

3

en
se

m
bl

e
2

time (s)

estimate
actual

0 0.02 0.04 0.06 0.08 0.1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

en
se

m
bl

e
2

time (s)

estimate
actual

a) b)

Figure 6.2
Simulation results for a communications channel with static gain using 200 spiking LIF neurons. a) Shows the
results from a ramp input, where the upper line is the input (i.e., the � population) and the lower line is the
output (i.e., the � population). In both cases, the grey line indicates the ideal value of the higher-level variable
(i.e., �). This network includes noise. b) Shows the effects of finding the decoding vectors while ignoring the
effects of noise, and then running the simulation under the same noise conditions as in a). The system becomes
extremely sensitive to noise, destroying the desired behavior.

As figure 6.2 once again demonstrates, noise cannot be ignored when constructing
models of neurobiological systems. The system whose results are shown in figure 6.2b
has, in fact, the same amount of noise in its input signal as the system whose results are
shown in figure 6.2a. The difference is only that the decoders in figure 6.2a were found
under the expectation of noise. Without including this expectation explicitly, the network’s
behavior is ruined.

This network also demonstrates two important theoretical results of the work we have
done in the first half of the book. First, it shows that we are able to analytically determine
the weights needed for a network to implement a desired transformation. Analytically
determining weights is one of the major strengths of this framework. For one, this means
we do not have to concern ourselves with the difficulties involved in analyzing a learned
network—such analyses often prove to be a momentous or fruitless undertaking. For
another, we do not have to worry about whether or not our chosen training set permits the
network to learn the function we would like to examine in a model network. For a third,
finding the weights analytically is generally far less computationally intensive than running
large training regimes. Finally, it might prove useful to consider these weights a good ‘first
guess’ for a system that is then ‘fine-tuned’ by an appropriate learning algorithm. As is
well known, having a good first guess can greatly speed learning. So, in general, and as
we demonstrate concretely later, being able to find network weights directly allows us to

TLFeBOOK

148 Chapter 6

efficiently generate large-scale networks with complex behaviors.3 In sum, being able to
avoid or incorporate learning as necessary makes this approach usefully flexible, and thus
appropriate for many of the standard uses of neurobiological simulation (see section 9.5
for more on the relation of this framework to learning).

The second result highlighted by this simple example is that carefully characterizing
neural representation is central to understanding neural transformation. This becomes even
more evident in section 7.3, where we provide a quantitative demonstration of the relation
between representation and transformation in a neural population. In this example, we
have shown how we can ‘plug’ one representational characterization, �, into another,
�, in order to determine the weights that implement the desired transformation between
the two. Thus, the limitations or strengths of a pre-transformed representation can carry
over to post-transformed representation. So knowing what those limitations and strengths
are is tantamount to knowing how the resulting network functions. Let us consider some
more examples to show that this approach of simply ‘plugging in’ representations works
surprisingly well.

6.1.2 Adding two variables

In order to implement any linear transformation, we need to be able to multiply variables
by a constant (as we have done above) and add two (or more) variables together. In order
to add two variables, we need to define the representations in three neural populations. We
can then arrange these populations as shown in figure 6.3, to transform the representations
of the scalars in the first two populations to a representation of their sum in the third.

We begin by assuming the same representational definitions as in section 6.1.1. Thus,
all three populations have encoding and decoding relations defined analogously to that
shown here for the �� population:

����� � ��

�
��
����� �����

�

�
(6.14)

�� �
�
�

������
�

� � (6.15)

Our desired transformation in this case is simply

	 � �� ��

� Of course, none of this implies that learning is not important to a complete understanding of neural function.
We return to these issues in chapter 7.

TLFeBOOK

Feed-forward transformations 149

x

y

ai

bj

ωkj

ωki

z

ck

Figure 6.3
A network to sum two variables. Solid lines indicate possible connections. Dotted lines indicate an
encoding/decoding relation.

So, as before, we assume our estimates are good ones (i.e., �� � �, etc.) and substitute the
representations for � and � into the encoding rule for � to give

����� �� � ��

�
��

������ �� � �����
�

�

� ��

�
���

���

�
��

�

	�����
�
� �

�
�

�����
�
�

�
	� �����

�

�

� ��

�
��

�

���	���� �
�
�

���
���� � �����
�

� �

where the weights ��� � ��
����

�
� and ��� � ��

����
�
� determine the connection strengths

needed to perform the given transformation (i.e., addition). Given the resultant firing rates,
�����, we determine the estimated value of � by using the appropriate decoding rule. Again,
we can make this rate model into a spiking model by using PSCs as our linear temporal
decoder,
���. Figure 6.4 shows the results of simulating such a network, using spiking LIF
neurons.

TLFeBOOK

150 Chapter 6

0 0.05 0.1 0.15 0.2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

en
se

m
bl

e
3

time (s)

estimate
actual

Figure 6.4
Addition of two variables using 600 spiking LIF neurons (200 in each population). The original inputs, two 20
Hz sine waves, and their sum are shown as grey lines. The decoded outputs are shown as black lines. As
expected, there is a slight time lag between the inputs and their sum due to propagation delays.

Since we now have the tools to multiply by a constant and sum two variables, we can
also perform scalar subtraction (i.e., � � � � ���� � �). In fact, we now have a general
‘recipe’ for constructing linear transformations of scalars in neurally plausible networks.
First, define the encoding and decoding rules for however many variables are involved in
the operation (e.g., equations (6.14) and (6.15)). Second, write the transformation to be
performed in terms of these variables, one of which is the output variable (e.g., � above).
Third, write the transformation using the decoding expressions for all variables except
the output variable. And fourth, substitute this expression into the encoding expression
of the output variable. Rather than performing each of these steps in consecutive layers,
as we have done above, it is perfectly feasible to implement various parts of a complex
transformation in parallel. In the end, the output layer’s activities are written in terms of
the weighted activities of the input layers.

Being able to provide a general method for implementing linear transformations shows
that this framework allows for the modular design and implementation of a network model.
Once we write the function being performed by a network in terms of some set of variables,
we can then define pseudo-independent populations of neurons to represent those variables.

TLFeBOOK

Feed-forward transformations 151

That is, we can define ‘representational modules’ and then interconnect them using weights
found by employing these techniques. Of course, this modularity need not be obvious in
the neurobiological system itself. We could, after all, randomly mix the spatial position of
neurons in our model. However, the function will be preserved so long as we keep the right
weights in the right places. With such a spatially randomized model, it may be very difficult
to determine, after the fact, which neurons belong to which ‘populations’ as defined in the
original modularization of the problem. This shows that comparing a model with a real
system may be a subtle and difficult task. Furthermore, there will likely be many cases in
which it is not reasonable to model a system as a set of modular neuronal populations, even
though we could construct such a model. Again this demonstrates that we must always look
to the neuroscientific data to determine what a reasonable modularization is for a given
system. However, modularization is still a useful feature of the framework because often
the only feasible way to model large, complex systems is by first decomposing them into
smaller modules (Bechtel and Richardson 1993). We provide an example of this process in
section 6.5.

Given the ability to modularize complex transformations, we are in a position to
implement any linear combination of scalar variables in a realistic spiking network. As
useful as this may be, we need to generalize it in two ways. First, we need to explore
transformations of more complex kinds of representations (e.g., vectors). We do this
next, in section 6.2. Second, it is clear that the set of linear operations is too limited to
capture a number of interesting network-level behaviors. So, we need to expand the set of
transformations available to us in order to generate models capable of exhibiting something
akin to the range behaviors of neurobiological systems. This is the purpose of section 6.3.

6.2 LINEAR TRANSFORMATIONS OF VECTORS

Constructing a network to perform vector addition is perfectly analogous to constructing a
network to perform scalar addition. In fact, the network topology itself is identical to that
portrayed in figure 6.3. The only difference is that each of the variables represented is a
vector, rather than a scalar. Proceeding as before, we first define the representation of the
variables involved:

����� � ��

�
��

�
��
�
�

�
�

� �
����

�

�
(6.16)

�� �
�
�

������
�

�
� (6.17)

TLFeBOOK

152 Chapter 6

We again assume that the other variables, � and �, have analogous definitions. Note that
we must now include the encoding (or ‘preferred direction’) vector, ���

, in the encoding
rule (6.16). Recall that this essentially converts a vector of some physical magnitude into a
scalar, via the dot product. In the scalar case, we did not need to explicitly denote this sort
of conversion.

Next, we define the transformation we want to implement in the network:

� � ���� ����

This transformation includes both a static scalar gain factor �� and vector addition. So, as
before, constructing this network shows how to construct a network to perform any linear
transformation.

Finally, we write the transformation using the representations defined by (6.16) and
(6.17) and substitute that expression into the encoding rule for the output variable, �:

������� ���� � ��

�
��

�
�������� ����

�
�
� ������

�

� ��

�
���

�
���

�
	��

�

������
�

� � ��

�

������
�

�

�
�

�

� ������

�
�

� ��

�
�

�

	������� �

�

	������� � ������

�
�

where 	�� � ����

�
����

�

�

�
�

and 	�� � ����

�
����

�

�

�
�

. More generally, we can allow

the scalars, �� and ��, to be the matrices, �� and ��. In this case, the resulting weights

are of the form 	�� � ��

�
������

�

�

�
�

. Using matrices rather than scalars permits the

incorporation of various kinds of linear operations such as rotation and scaling.
As before, we can include spiking neurons in this transformation by allowing ����� ��

� ��� � ����. Figure 6.5 shows results from simulating this network for �� � �� � �.
Notice that after a brief 20 ms startup transient, the sum remains quite accurate, even under
noisy conditions.

Clearly, this network does a good job of vector addition using the representations
we have defined. If we want to improve the network’s performance, we can simply add
neurons. Although we have not discussed this transformation in the context of a specific
neurobiological system, there are indications that such a network may be used in frontal
eye fields for control of saccades (Bickle et al. 2000; Goldberg and Bruce 1990). Before
developing an example of transformations in a specific neurobiological system, let us first
consider more complex, nonlinear transformations.

TLFeBOOK

Feed-forward transformations 153

-0.1 0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

x2

x 1

vector 1
vector 2
vector sum
actual value

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

time (s)
co

m
po

ne
nt

 m
ag

ni
tu

de

a) b)

Figure 6.5
Results of vector addition where � � ���� ��� (vector 1), � � ��� ��� (vector 2) using 1200 spiking LIF neurons
(400 for each population). In each case, the desired answer is shown as a grey line and the population decoding
is shown as a black line. The thickest line, �, is the sum of � and �. a) Vector addition in state space. b) Vector
addition over time, with each component of each vector drawn separately.

6.3 NONLINEAR TRANSFORMATIONS

As mentioned previously, the impressively complex behavior exhibited by neural systems
is unlikely to be fully explained by linear transformations alone. Rather, there is abundant
evidence that nonlinear operations are central to neural transformations (see Koch and
Poggio 1992 and Mel 1999 for a partial review).4 For example, the responses of neurons
in the visual pathway of the locust are best predicted by the product of the angular image
velocity and a function of the angular size of the object on the locust’s retina (Koch 1999,
p. 347; Koch and Segev 2001). As well, in primates there is evidence that some coordinate
transformations in parietal areas are a result of finding the product of representations of eye
and head positions (Zipser and Andersen 1988). These are both examples of multiplication,
one of the simplest but most important nonlinear transformations. Nonlinearities, then,
span the phylogenetic tree.

The reason that nonlinearities like multiplication are so important, is that they vastly
increase computational power and storage capacity (Giles and Maxwell 1987). Koch

� Here is a non-comprehensive list of examples of multiplication in neurobiological systems: disparity tuning
in binocular visual cells (Ohzawa et al. 1990), responses to illusory contours (Peterhans and von der Heydt
1989), responses to periodic gratings (von der Heydt et al. 1991), velocity tuning (Nowlan and Sejnowski
1993), various kinds of motion perception (Koch 1999; Koch and Poggio 1992; Nowlan and Sejnowski 1993;
Adelson and Bergen 1985; Mel 1999), direction selectivity (Adelson and Bergen 1985), shape selectivity with
spatial invariance (Fukushima et al. 1983), and modulation by selective attention (Anderson and Van Essen 1987;
McAdams and Maunsell 1999).

TLFeBOOK

154 Chapter 6

(1999) points out that such nonlinearities are actually necessary for doing true information
processing (p. 346). If we suppose that evolution is capable of finding near-optimal, or
even good solutions to information processing problems, then we would expect to find
nonlinearities in nervous systems trying to solve those problems. As a result, we take
it to be a ‘hard constraint’ on theories of neurobiological systems that they be able to
incorporate multiplication.

It may seem obvious, given the nonlinear responses of the spike generating mecha-
nisms in neurons themselves, that nonlinearities are common in neurobiological systems.
However, it is not immediately evident that neurons can easily generate highly nonlinear
functions (like multiplication) of their input currents since the spike generating nonlinear-
ities often exhibit a fairly linear response (and tend, if anything, to be sublinear). By far
the majority of neural models assume that the soma current is simply a sum of the synaptic
currents. If this is true, multiplication must be a network behavior, rather than one found
in single cells. However, there is mounting evidence that soma currents are nonlinear func-
tions of dendritic inputs (Mel 1994; Mel 1999). So, there are two options for explaining
multiplication; as a network property or as a cellular property (or both, perhaps). Even if
we have tendencies to think one explanation is more likely than the other, it is a matter of
debate as to how either networks (Salinas and Abbott 1996) or cells (Mel 1994) can mul-
tiply inputs—even though there is ample evidence that multiplication occurs somewhere
(see footnote 4).

In the next section we consider both the possibility that multiplication is a network
property and the possibility that it is a cellular property. We show how both possibilities
can be accounted for by the framework we are presenting. We cover both possibilities
to show the flexibility of the framework and also to demonstrate the manner in which
it can be sensitive to experimental results (since such results will presumably, on a case
by case basis, determine if a given nonlinearity is a cellular or network effect). We put
multiplication to use in a model of vestibular function in section 6.5.

6.3.1 Multiplying two variables

In this section, we discuss three different ways to understand multiplication in neurobio-
logical systems. First, we consider the possibility that there is a dendritic mechanism that
directly implements multiplication (or a suitable variant). In this case, we can include mul-
tiplication in our framework by simply permitting multiplication of the inputs to a neuron.
Second, we consider how to implement multiplication at a network level using the frame-
work more directly. And, third, we consider the possibility that the network level analysis
can be embedded directly into the dendrites of a neuron, so as to provide a novel explana-
tion for multiplication at the cellular level.

TLFeBOOK

Feed-forward transformations 155

There have been many proposals for how multiplication can be implemented at the
cellular level, usually in the dendritic tree (Mel 1994; Koch and Poggio 1992). These
include, for example, the suggestion that dendrites have logarithmic response properties
and thus multiplication could be done as a sum of these logarithms (Koch and Poggio 1992;
Tal and Schwartz 1997; Durbin and Rumelhart 1989).5 Or, alternatively, that shunting
inhibition could provide the necessary nonlinearity (Poggio 1981; Torre and Poggio 1978).
Or, perhaps best known, that presynaptic spike ‘coincidence detection’ can be used to
implement multiplication in dendrites (see Mel 1994, pp. 1058–9 for relevant references;
Stevens and Zador 1998). Coincidence detection has long been known to be able to
underwrite multiplication in spiking neurons (Küpfmüller and Jenik 1961). This is becuase
a receiving neuron with coincidence detection will spike at a frequency proportional to the
product of two input spike train frequencies.

We have elsewhere presented a simple model which employs coincidence detection
directly (Hakimian et al. 1999). In that model, we begin by defining the representations
for �, �, and � as in (6.14) and (6.15) above. The transformation we wish to implement is
simply � � � � �, so we can write the firing rates for � as

���� � �� � ��

�
��

����� � �� � �����
�

�

� ��

�
���

�
����

�
�

	�����
�
� �

�
�

�����
�
�

�
	� �����

�

�

� ��

�
��

�	�

����	����
���� � �����
�

� �

where ���� � ��
����

�
� �

�
� . While it is an easy matter to multiply firing rates in a computer

model (since they are real valued variables), here we are interested in implementing this
network using spiking neurons. Therefore we need to employ a biologically plausible
mechanism like coincidence detection. Writing the output of the the 	� and
� populations
as spikes gives

	����
���� �
�

	�

���� ��
�
���� �����

To show that this can be implemented by coincidence detection, let us suppose that the
filters
��� are narrow Gaussians.6 We can write this multiplication as (see appendix D.1

� Recall that �� � ������������.
� Note that the only real constraint on the choosing ���� to get the desired result is that it be narrow relative to
the distance between neighboring spikes. Choosing Gaussians makes the analysis mathematically simpler.

TLFeBOOK

156 Chapter 6

for a complete derivation)

���������� �
�

���

���������
�����

��������������

�
�

���

����������
���������������

�
�

���

�
�

�
�
�
��

�������

�

��
� �
�
����������

�
����

�
�

���

�
��

�
��

�������

�

��
����

��
�
�
��������������

� (6.18)

where �� is the (small) variance of the Gaussian filter, ����. Equation (6.18) implements a
kind of coincidence detection. Notice that in this product, the first Gaussian is centered on
the mean of the possibly coincident spike times and the second is peaked only if ��� � ���,
otherwise it is near zero everywhere. So, the resulting filtered and multiplied signal consists
of narrow Gaussians near the mean of ��� and ��� only if they are approximately equal;
i.e., if they are coincident. So, this kind of coincidence detection can implement the
multiplication we need. Many researchers have thought that the main nonlinearity in
dendritic trees must be this kind of coincidence (Softky and Koch 1995; Stevens and Zador
1998; see also Mel 1994, pp. 1058–9 for relevant references).

However, the above analysis also shows a weakness in the coincidence hypothesis.
Notice that in order to implement multiplication in this fashion, each spike from a neuron
in population � must be compared to each and every spike in population �. Because
coincidence detection, if it takes place, must take place between neighboring synapses,
the receiving population, 	, has to have
� synapses (where
� is the number of neurons
in population �) near each of the
	 synapses. So, for any cell in the � population, it has to
make
	 connections to each cell in the 	 population. This kind of ‘over-full’ connectivity
is not at all neurobiologically realistic.7

Notice also that although we have assumed coincidence detection is the mechanism
underlying multiplication in this example, we could equally have assumed one of the other
possible mechanisms, so long as the somatic current is a product of the post-synaptic cur-
rents. Perhaps there are other implementations that do not have biologically unrealistic
consequences—perhaps even implementations of coincidence detection. Nevertheless, it
should be clear such solutions to the problem of implementing multiplication are indepen-

� By ‘over-full’ we mean to note that this needs more connections than a fully connected network. A fully
connected network has one connection from each �� and �� to each �� . This network requires �� � � more
connections from each �� to each �� . Note that even full connectivity is unrealistic in real nervous systems.

TLFeBOOK

Feed-forward transformations 157

x

y

ai

bj

ωlj

dl

ωli

z

ckωkl

m

Figure 6.6
Schematic network for performing multiplication with LIF neurons. This is like the network for scalar addition
(in figure 6.3), with the inclusion of a middle, or ‘hidden’, layer,�.

dent of any of the central assumptions of our framework. This is both good and bad. It is
good because it means that any actual dendritic mechanism that implements multiplication
can be merged with the framework. It is bad because it also means that there is no expla-
nation of such mechanism to be found in the assumptions underlying the framework. In
contrast, the two subsequent solutions to implementing multiplication, which do not have
the undesirable consequences of this kind of coincidence detection, are more directly tied
to the assumptions underlying our approach.

Let us now consider how to implement multiplication in a network, without assuming
nonlinearities in the dendrites. Perhaps surprisingly, most solutions for multiplication have
been cellular solutions (although see Salinas and Abbott 1996). This is surprising because
the neurons in most computational models do not have nonlinear dendrites.

In order to implement multiplication in a network, we define our representations of �,
�, and � as before. However, we also include a ‘middle layer’,�, (or ‘hidden layer’) which
is a vector representation that combines the two scalar inputs such that their product can be
extracted (i.e., decoded). We define the representation for� as we did before in equations
(6.16) and (6.16) for vectors. The resulting network is shown in figure 6.6.

TLFeBOOK

158 Chapter 6

The transformation that relates� to the input values is simply �� � � and �� � �.
That is, the components of� are equal to the inputs. The transformation that relates� to
the output variable is � � ���� � �� � ��. In order to implement this second transfor-
mation, we need to known how to decode ����, so we must also find the transformational
decoder ��� , where

����� �
�

�

�������� �

We can do this, as usual, by minimizing the error

�� �

��
����� �����

���
�

�

We can now find the appropriate expressions for the connection weights in the network.
We do this, as before, by substituting our decoding rules into the encoding rules of the
population that represents the output of the transformation. In this case, we have two sets
of transformations to consider. First, we must relate the input to the middle layer:

���� � �	 ��� �
�

�
��

�
����

�
� ��

�

�
�
�

�
��

�
����

� �	� ����

� ��
�
� ��

�

�

�
�

	

�

�

��

�� ���	� �
�
�

��

�� ����� � ��
�

�

 �

where
��

�� � ���
�
�
����

� and
��

�� � ���
�
�
����

� . Next, to find the weights for the second
transformation, we proceed along the same lines:

�	������ �
	

�
�	

�
��	����

�
� ��

	

�

�
	

�
�	

�
��	
�
�

��������

�
� ��

	

�

�
	

��
�

	������ � ��
	

�
�

where
	� � �	
��	�

�
� . As usual, this transformation can be directly implemented in a noisy

spiking network (see figure 6.7).
Essentially, we have derived the middle (or ‘hidden’) layer of a standard artificial

neural network (ANN) architecture. In the ANN literature, it is well known that such
an architecture permits nonlinear and linear functions of the input to be learned (usually

TLFeBOOK

Feed-forward transformations 159

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time (sec)

estimate
actual

Figure 6.7
Results of multiplication by the spiking network shown in 6.6. There are 200 LIF neurons in each of the �, �,
and � populations and 400 in the middle layer,�. The network is driven by ramp input to � and �. Shown here
is the decoded output variable, �, and the correct answer (grey line).

by backpropagation). Here we have shown how to derive the weights for implementing
the desired nonlinear function. Better yet, we have done so assuming neurobiologically
reasonable neurons (unlike most ANNs). And, since we have done so with well-understood
principles, we know how the network works and we can quantify its limitations (see section
7.3 for a precise description of the principles governing this sort of network).

However, the neurophysiological evidence suggests that multiplication is not imple-
mented (or at least is not only implemented) at the network level (Mel 1999; Mel 1994;
Koch and Poggio 1992). It has been reasonably well-established that dendrites tend to
have nonlinear interactions with other nearby dendrites (Mel 1999; Koch 1999; Bugmann
1991). If a cell has such nonlinear dendritic interactions, it should be able to perform some-
thing akin to multiplication (although the precise mechanism is not yet well understood). It
has been noted that such a cell (i.e., one that has nonlinear dendrites) has the computational
power akin to two-layer ANNs (Mel 1999; McKenna et al. 1992). So, it is natural to think
that we could implement the final two layers of the network in figure 6.6, in a single cell.8

� This is related to the historically common suggestion that neurons with nonlinear dendritic trees can be

TLFeBOOK

160 Chapter 6

This amounts to embedding the middle layer in this network,�, into the dendritic trees of
cells of the � population.

In doing so, we can take advantage of the flexibility of the framework. In particular, we
could think of the �� ��� functions as being a nonlinearity internal to the dendrites. How-
ever, we may not want the �� ��� function to be a spiking nonlinearity (although there is
some evidence of dendritic spikes; Schwindt and Crill 1998; Llinás and Sugimori 1980).
Rather we want to pick whichever �� ��� is relevant to the nonlinearity actually observed
in dendrites. Only small variations to the ‘standard’ interpretation of the framework would
result. For example, the connection weights that we find would not be considered synaptic,
but rather they would be mapped to the efficacy with which a somatic current is produced
by a particular dendritic current. Other than such interpretive changes, the relevant deriva-
tions can proceed exactly as before.

The idea of embedding this kind of network structure into dendrites follows closely
standard notions of how to understand nonlinearities in neurons. For instance, the notion
of a “multiplicative subunit” (Softky and Koch 1995, p. 883), or other “dendritic subunit”
(Mel 1994, p. 1061), has often proved useful in understanding dendritic nonlinearities.
Such subunits are a natural analog to the nodes in the middle layer of the network solution
proposed above. So, thinking of this kind of network structure as being embedded into
dendritic trees does not violate standard notions of the organization of dendritic function. In
fact, the only major consequence for our understanding of neural systems that embedding
nonlinearities into dendrites has is that it would allow a lot more to be done with a lot fewer
neurons.

Before turning our attention to a neurobiological example that incorporates both linear
and nonlinear transformations, we digress briefly to discuss an important problem in neural
simulation that is often avoided by modelers. However, we have now developed the tools
necessary for tackling this difficulty—getting rid of negative weights.

6.4 NEGATIVE WEIGHTS AND NEURAL INHIBITION

Our approach, like most, does not distinguish between positive and negative elements of
the connection weight matrix, ��� . However, in real neurobiological systems, there are
significant differences between neural excitation (which correspond to positive elements
of ���) and neural inhibition (which correspond to negative elements of ���). In fact,
there is a specific subclass of neurons, called ‘interneurons’ or ‘nonspiny neurons’, that
use GABA (or glycine) neurotransmitters to inhibit the firing of postsynaptic neurons.

described as implementing large networks of nonlinear operations (de Nó and Condouris 1959; Torre and Poggio
1978; Rall and Segev 1987; Koch et al. 1983; Zador et al. 1992).

TLFeBOOK

Feed-forward transformations 161

However, projections to these interneurons are only excitatory. So, all projections from
pyramidal cells have positive connection weights. As well, all projections from inhibitory
neurons are negative. So, in neural systems, there is generally not a mixture of positive and
negative connection weights; all connections matrices are either purely positive or purely
negative (see figure 6.8). The ‘problem of negative weights’ is thus one of understanding
how interneurons take the place of the negative elements of the connection weight matrix,
��� .

It is natural to think of the interneurons as ‘inverting’ the input they receive from one
local population and projecting it to a subsequent population that would have otherwise
received a negative weight (see figure 6.8).9 So, the problem of understanding how to re-
alistically implement connection matrices in a neurobiological model depends on devising
a principled way of distinguishing negative from positive input and determining two new
sets of connection weights (from the input population to the inhibitory neurons and from
the inhibitory neurons to the output population). The reason this challenging problem is of-
ten avoided by modelers is that the ‘obvious’ solution—to insert an ‘inverting’ interneuron
for every negative weight—is entirely biologically unrealistic.

6.4.1 Analysis

The general strategy we adopt for finding the appropriate weight matrices is to augment the
representation, �, in the �� population in such a way that the bias to the resulting currents
in the �� population can be canceled out by input from the interneurons, ��. Of course,
the augmentation to the �� representation must be sensitive to what is being represented
in order to provide the appropriate bias. We can think of the augmentation as an extra
dimension added to the � representation which is some function of �, ����. We call this
function the ‘biasing function’.

To begin, we need to determine an appropriate form for this biasing function. We
know that whatever biasing function we choose, we should be able to decoded it with
only positive decoding weights. One way to find such a function is to simply set all of the
decoders to � and determine what function is decoded using the ����� as coefficients. By
doing this, we find the function that is decoded is approximately ������, or, more generally
�� �������. So, adding and later subtracting a function of this form to the signal going
from the �� population to the �� population should allow all of the weights to be positive.

In order to add this biasing function, we must define the decoding for it in terms of the
�� activities, which we can do as usual:

����� �
�

�

������
�
� �

� Inhibitory interneurons almost always project locally (with the exception of Purkinje cells).

TLFeBOOK

162 Chapter 6

ai bjωji ≥ 0

ωki ≥ 0 ωjk ≤ 0

x y

ck

Figure 6.8
Introduction of inhibitory interneurons into a simple feed-forward communication channel (figure 6.1 depicts
the original circuit).

We can now include this function as another dimension in the space being sent from ��

to �� . If we now add this function, ����, into the encoding for the currents, �� , in the ��
population, we have

����� � ��

��
��
�

� ��
�
�
� ����

�����
�
� �����

�

�
�
�

�
��

��
��
�

� �
�

�

�
�
� ���� �

�
�

��
����� � �����

�

�
�
�

�������� � �����
� �

where we have distinguished the ���� component from the other components (i.e., �) in
the vector space represented by the �� neurons. The challenge now becomes to make the
��� elements positive. In order to do this, we need to find the appropriate encoders, ���� , and

decoders, ��� , for � such that ��� � �. The encoders and decoders for � are determined as
usual.

TLFeBOOK

Feed-forward transformations 163

In fact, there is a well-defined relation between the encoders and decoders for � to
ensure ��� � �. Specifically, since

��

��
��
�

� �
�

�

�
�
� ���� �

�
�

�
� ��� � ��

then

�

�
��
�

� �
�

�

�
�

�
�
�

� ���� �

which will be satisfied if

���� � max�

�
��

�
��
�

� �
�

�

�
�

�
�
�

�
� � (6.19)

Let us consider this equation in more detail for a moment. What we want to do is ensure we
have no negative weights ���. For the original circuit (with no interneurons), these weights

are simply
�
��
�

� �
�

�

�
. The intuitive way to eliminate any negative weights in this expression

is to add a bias to all of them equal to the value of the largest negative one. This is the
purpose of the product ���� �

�
� , although what is added will depend on which neuron, �, we

are considering. To figure out what we must add to the original matrix, we need to identify
the largest negative weight coming from neuron � (this is done in the numerator of (6.19)).
Now we must know either the encoders or decoders for ���� so we can determine the other.
But, whichever we know, they must be positive. If they were not, then we might incorrectly
identify the largest negative weight since the negative signs would cancel. Because we have
a means of determining the decoders (below), this constraint will apply to them.

Let us now consider the decoders in more detail. Because the function ���� is not
completely defined (i.e., �� and �� are not determined), we allow the decoders to have
the following form:

�
�
� � ���

��
� ����

��
� �

We can then solve, as usual, for the �
��
� and �

��
� decoders. Effectively, the first of these

decoders can be used to decode � and the second can be used to decode ���� using the 	�
activities. However, we still must find �� and �� in order to fully define the decoder ��� .

Given the considerations regarding (6.19) above, we know that the decoders must be
positive. That is

���
��
� ����

��
�
 �

TLFeBOOK

164 Chapter 6

or, equivalently,

��
����
� � �� (6.20)

where � � ������� and �����
� � ����� � �

��
� �. So, we can consider the problem we need

to solve to be one of finding a unit vector, � that points in some direction, �, in this two-
dimensional space for which (6.20) is satisfied (see figure 6.9). If we find this vector, then
� � �������� 	
�����. In fact, we will only be able to satisfy (6.20) if all of the vectors
�
����
� lie in a half-plane, i.e., ����

� ���� � �.
Our numerical experiments show that this condition is almost always satisfied for

randomly generated neuronal ensembles at any dimension.10 In general, there will be a
range of angles, ������ �����, for which this condition is met. A natural choice in this
range is the mean, which works well, but we have found that it is often better to weight the
mean in favor of the constant term; i.e., we choose

� � ���

�
����

�

�

�

�
� ���

�
���� �

�

�

�
� (6.21)

Figure 6.9 shows an example of finding � for a population of 200 neurons. Now that we
have completely defined �

�
� � we can find ���� using (6.19). As a result, our biasing current

is now defined.
The next step is to remove that biasing current from the determination of the current

in the 	� neurons. Recall that the current is introduced only so we can find positive
weights. Once we have found such weights, we need to remove it to preserve the original
transformation. The additional bias current is the current introduced into the 	� neurons by
the biasing function, i.e.,

�
� ��� � �� ��

�
� ���� (6.22)

� �� ��
�
�

�
�� �������

�
(6.23)

� �� ��
�
��� � �� ��

�
�������� (6.24)

Subtracting these currents from the 	� currents gives the total current to each 	� neuron
as

���� �
�
�

������� �
���	� � �� ��

� ����

�
�
�

������� �
���	� � �� ��
�
��� � �� ��

�
������

��

Because the first term in (6.24) is constant, it can be added directly into the
���	� current

�� The violations we have seen are limited to one or two neurons in populations of about 200 neurons.

TLFeBOOK

Feed-forward transformations 165

30

210

60

240

90

270

120

300

150

330

180 0

φ f1
i

K

θmax-

θmin+

φf
2 i

π
2

π
2

θmax

θmin

Figure 6.9

Finding the decoding vectors to remove negative weights. The preliminary decoding vectors �
����
� are the many

thin vectors. Because these lie in a half-plane (i.e., ����
� �

��� � �), it is possible to find�, which has a
positive dot product with all of them. Technically, � can lie anywhere between ����

�

�
�

and ����
�

�
�

, but
that found using (6.21), and pictured here, results in a smaller range of dot product values.

already present in the �� neurons, i.e.,

��������
� � �����

� � ��
�������

The second term, however, is a function of � and thus must be provided from another input.
This is a natural role for the interneurons.

In order to provide the appropriate input, the interneurons, ��, must be provided
with the ���� signal. Note that, regardless of the dimensionality of �, this is always a
one-dimensional signal. Furthermore, because these neurons only need to represent the
quadratic component of the positive definite function ����, the ensemble can consist of
only positively-sloped (i.e., ‘on’) neurons. As a result, the encoding vectors, ���, will all be

TLFeBOOK

166 Chapter 6

equal to 1. The soma current for the �� neurons is thus

����� � ��
����� � �����

�

� ��

�

�

�
�
� ����� � �����

�

�
�

�

�������� � �����
� �

As before, the bias currents to the interneurons can be readjusted to remove the effects of
the constant part of ����:

��������
� � �����

� � ��	��

This ensures that the net signal to these neurons includes on the quadratic component. This
component can then be decoded from the �� neurons using only positive decoders:

�	����� �
�

�

�����������

This can then be used to cancel out for the remaining bias current in (6.24). As a result, the
total current to the
� population from the �� and �� populations is

����� �
�

�

�������� � ��������
� �

�

�

������������

where ��� � ��
���
� ��. We have thus constructed a circuit which acts as a communication

channel where all of the connectivity weight matrices are positive. As figure 6.10 demon-
strates, this circuit works as expected.

6.4.2 Discussion

In essence, our strategy here has been to first minimize the amount of negative current
needed to drive the
� population (via the constant bias) and then to use the interneurons
to provide whatever negative current is still needed. Notably, it is possible to skip the first
step (minimizing the needed negative current) and use the techniques above for finding
the negative current directly. However, taking this more direct route results in demands on
the interneurons that parallel those on the excitatory neurons. This is generally not what is
seen in mammalian cortex. Rather, the large majority of projections from pyramidal (i.e.,
excitatory) cells are to other pyramidal cells (Thomson and Deuchars 1997), suggesting
that interneurons have significantly different (in some ways muted) demands placed on
them.

The results in figure 6.10 suggest that the interneurons are playing a similar role here.
When the interneurons are removed, the circuit actually performs quite well over the mid-

TLFeBOOK

Feed-forward transformations 167

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5
full circuit
no inhibition
original circuit

x

x̂

Figure 6.10
Communication channel using only positive weights. The topology of this network is shown in figure 6.8. This
network performs quite well (RMSE=0.0085) and comparably to the original circuit with negative weights
(RMSE=0.0044). When the inhibitory interneurons are removed, the circuit performs much worse (RMSE=.16).

dle range (i.e., between ����), so the interneurons are largely not needed. Outside of this
range, they act to linearize the response, but do not need to provide an extraordinary amount
of input to the �� population. As a result, the interneurons carry much less information,
and play a muted role compared to the �� population. So we have presented a slightly less
straightforward, but more biologically realistic alternative for including interneurons in our
circuits.11

It is also important that there is nothing in the previous derivation that assumes
that the transformation between the �� and �� populations is an identity (as it is for a
communication channel). Thus, these techniques can be used to construct such circuits for
any transformation that we can define in neural systems.

And finally, this solution to the negative weights problem would not have been possible
without a good understanding of neural transformation and neural representation. Thus,
understanding transformations can help solve traditionally difficult theoretical problems. In
the next section, we show how understanding transformations can help in a more practical
manner; by allowing us to build realistic, large-scale models of complex behavior.

�� In fact, there are many possible solutions to this problem that we have investigated, but this is the simplest we
have found that is biologically plausible.

TLFeBOOK

168 Chapter 6

6.5 AN EXAMPLE: THE VESTIBULAR SYSTEM

Einstein (1945) noted that measurements of linear acceleration are ambiguous. In particu-
lar, if we only know our linear acceleration, we cannot tell if we are tilting in a gravitational
field, or accelerating perpendicular to that field. In the vestibular systems of animals, rang-
ing from fish to humans, there are organs called otoliths that serve to measure linear accel-
eration. Given Einstein’s insight, we know that signals from these organs cannot be used
to distinguish inertial acceleration from gravitational acceleration. However, animals quite
successfully distinguish tilts in earth’s gravitational field from horizontal linear accelera-
tions. Naturally, the question arises as to how this distinction is made by neurobiological
systems that rely on otoliths.

Indeed, precisely how this distinction is made is a matter of some debate in contempo-
rary neuroscience (Angelaki et al. 1999; Telford et al. 1997; Merfeld et al. 1999; Snyder
1999). The two main competing hypotheses are that either additional sensory information
(usually thought to be from the semicircular canals) is used (Guedry 1974; Mayne 1974)
or that, in practice, because linear accelerations tend to result in high-frequency responses,
and tilts tend to result in low-frequency responses, the appropriate filtering of the otolith
signal can be used to distinguish tilts from linear accelerations (Paige and Tomko 1991). In
a series of experiments on macaque monkeys, Angelaki et al. (1999) show that inactivation
of the semicircular canals results in precisely the kinds of eye movement errors we would
expect if only the otolith were being used to distinguish translational from tilt accelerations
under those conditions. Similarly, Merfeld et al. (1999) show that reflexive eye movements
in humans are most consistent with a combination of canal and otolith information. This
kind of evidence strongly supports the contention that there is a combination of sensory sig-
nals, from the otolith and semicircular canals, that is used to determine appropriate motor
responses to various kinds of acceleration (see also Angelaki and Dickman 2000; Wilson
and Jones 1979).

Importantly, Angelaki et al. (1999) have suggested a specific series of transformations
that can be used to determine an unambiguous translational acceleration given the otolith
and semicircular canal signals. In this section, we present the results of our collaboration
with these researchers to develop a detailed neurobiological model that implements these
transformations using our framework (see also Eliasmith et al. 2002). This example is
useful for two reasons. First, it encompasses the major themes of this chapter: linear
transformations, nonlinear transformations, and modularization. Second, it shows how
constructing models can lead to useful predictions about the properties of neurons in a
modeled system. In this way, it clearly demonstrates the utility of collaborative efforts
involving both experimental and theoretical neuroscientists.

TLFeBOOK

Feed-forward transformations 169

6.5.1 System description

The vestibular system consists of peripheral vestibular labyrinth organs and a number
of nuclei in the brainstem. The model we present encompasses both the labyrinths and
the parts of the vestibular nucleus that receive direct projections from the labyrinths. In
this section, we specify the high-level representations used by the system, and derive a
mathematical description of the system using these high-level variables.

The vestibular labyrinths are located slightly behind the jaw in primates and are
part of what is often called the “inner ear.” The labyrinths are composed of two main
parts, the semicircular canals and the otolith organs (see figure 6.11). The functioning
of the semicircular canals has been described in section 2.6.1. As noted there, there is
a significant, but opposite, bias in the sensitivity of velocities encoded by the canals on
each side of the head (thus the left canals are more sensitive to leftward and backward
rotations and the right canals are more sensitive to rightward and forward rotations; (Kelly
1991)). So, for the purposes of our model, we take the two complimentary sets of neurons
to include populations that represent the components of angular velocity biased to the left,
�����, and right,�����, sides respectively.

The other main sensory components of the labyrinth are the otolith organs. These
are composed of two distinct parts, the saccular macula and the utricular macula. The
two maculae are very similar in structure and function, although the utricular macula is
oriented in an approximately horizontal plane, and the saccular macula is oriented in an
approximately vertical (saggital) plane (see 6.11 and 6.12). Each macula is a mostly flat
surface that is covered by many groups of hair cells that are embedded in a gelatinous sheet.
Inside this sheet are tiny crystals of calcium salts which are the actual otoliths (Greek: “ear
rocks”). Flexing these hair cells causes adjoining neurons to fire action potentials. Much
like in the canals, the inertia of the otoliths during an acceleration causes the gelatinous
sheet to move relative to the macula, thus bending the hair cells embedded in it. This
bending of the hair cells induces the afferent neurons to fire in proportion to the linear
acceleration that caused them to bend. Again, there is an ipsilateral bias in encoding vectors
on each side of the head (Wilson and Jones 1979, p. 111). We thus take there to be two
neural populations (left and right) each of which encodes accelerations on the horizontal
and vertical planes,����� and�����.

It is interesting to note that these two organs employ quite different ways of repre-
senting 3-dimensional vectors. The canals do so by (approximately) sensing each of the 3
orthogonal components equally, whereas the otoliths do so by sensing each of the possi-
ble directions in two planes (see figure 6.12). These different approaches place different
implementational constraints on the neural system as a whole, and are important when it
comes to defining the exact nature of the transformations that the resulting representations

TLFeBOOK

170 Chapter 6

Figure 6.11
Human vestibular labyrinth organ. The two most obvious canals are those that sense ear to ear rotation. The
others are cut away. The otoliths are located just below these two canals (from Brödel et al. 1946).

take part in. This again shows why it is important to look at the relevant neurobiology in
some detail when attempting to construct a useful model of a neural system.

The purpose of modeling this system is to test an hypothesis about how the signals
provided by the otoliths can be disambiguated. As noted in the introduction, there is
evidence that the signal from the semicircular canals is used to extract the acceleration
and head tilt information from the otolith signal, but how?

We know that the otolith signal, �, is equal to the sum of the gravitational, �, and
inertial accelerations, �:

� � �� � (6.25)

� � �� � (6.26)

� � �� �� (6.27)

We may now recall, from physics, that for a frame of reference rotating with angular

TLFeBOOK

Feed-forward transformations 171

a)

b)

Inferior

Posterior

Superior

Anterior

Medial

Anterior
Lateral

Posterior

Figure 6.12
Otolith preferred direction vectors. a) Utricular macula (horizontal). b) Saccular macula (vertical). Between the
utricle and saccule, all three directions are covered with preferred direction vectors (Fernández and Goldberg
1976a; Fernández and Goldberg 1976b; Fernández and Goldberg 1976c). (From Spoendlin 1966 c� University
of Pennsylvania Press, reproduced with permission.)

velocity �, and some vector �, �� � � � � � � ������.12 In this problem, the rate of change
of gravity is always zero in the inertial frame, so � ������ � �. As a result, when we take the
temporal derivative of 6.27, and substitute this expression for ��, we have

�� � ����� �� (6.28)

Substituting (6.26) into (6.28) gives

�� � ����� ������ (6.29)

�� The notation ������ indicates the vector observed from the rotating frame of reference.

TLFeBOOK

172 Chapter 6

As suggested in a recent paper by Angelaki et al. (1999), this provides a good, quantitative
hypothesis about one function of the vestibular nucleus (see also Hess and Angelaki 1997).

We can now characterize the dynamics of the neural population that represents this
inertial acceleration, using the first order Taylor expansion:13

��� � �� � ���� � � ����� (6.30)

� ���� � �

�
����� ������ �����������

�
(6.31)

Together, these equations suggest a neural circuit like that shown in figure 6.13. This
diagram shows a particular modularization of the computation needed to determine the
true inertial acceleration given the angular velocity, �, and the linear acceleration,�.

We think that this modularization is a reasonable one given what is currently known
about vestibular neuroanatomy. As already discussed, there is good evidence that angu-
lar velocity and linear acceleration are represented by the labyrinths. The afferent neurons
from the labyrinths project to various sub-nuclei in the vestibular nucleus (Büttner-Ennever
1999). These projections are represented by the leftmost arrows in figure 6.13. In partic-
ular, Deiters’ nucleus and the descending nucleus primarily receive otolith projections,
whereas the medial and superior nuclei mainly receive canal projections. There are strong
commissural fibers linking the two sides of the brain stem in these nuclei, thus allowing
information from both the left and right labyrinths to be combined. The former nuclei are
thus modeled by the �� population and the latter nuclei by the �� population in figure 6.13.
However, there are parts of both Deiters’ and the medial nuclei that receive input from both
systems. As again shown in figure 6.13, we model this convergence of information from
the canals and otoliths as taking place in the �� population. It is here that we presume the
central nonlinear transformation (the cross product) takes place. There is less evidence as
to where the representation of inertial acceleration in the �� population might reside in the
vestibular system. This is one way in which future experiments may be able to challenge
or confirm this modularization.

In the case of the otoliths, there is physiological evidence that a population of neurons
in the vestibular nuclei have responses that are a combination of the afferent responses.
Specifically, it has been shown that there is a broad spread of preferred direction vectors
in the nuclei neurons throughout the 3-dimensional space, with only slight biases in
favor of the horizontal and vertical planes (Wilson and Jones 1979, p. 165). In contrast,
the vestibular nucleus neurons that the canals project to preserve the strong distinction
between the three orthogonal directions of the canals, although there are physiological
differences. In particular, the background firing rates of the vestibular nuclei neurons tend

�� Note that this is the same as approximating a derivative with Euler’s method: �����
��

�
������������

��
.

TLFeBOOK

Feed-forward transformations 173

I(t)
C=[Ω(t),I(t)-A(t)]

A(t)

bj(t)

Ω(t)

ck(t)

ai(t)

dl(t)

A(t)

+-

+
+
+

++

++

++

.AL(t)

AR(t)

ΩL(t)

ΩR(t)

Figure 6.13
A high-level modularization of a vestibular circuit that can estimate the true inertial acceleration given the
labyrinth inputs. Note that �����, ����� and ���� each have 3 sub-populations (one for each preferred
direction). Similarly, there are horizontal and vertical sub-populations in the ����� and ����� (although not in
����, as explained in the text).

to be about half that of the afferent neurons (Wilson and Jones 1979, p. 152). Given that
the spontaneous activity in the afferents covers a range of 18–160 spikes/s with a mean
of about 110 in primates, these vestibular nuclei neurons likely have rates between about
9–80 spikes/s with a mean of about 45 (Wilson and Jones 1979, p. 92). The background
firing in the otolith neurons are similarly related, although they tend to be about 30% lower
in both cases (Fernández and Goldberg 1976a).

We now have a relatively complete characterization of the tuning curves of cells en-
coding ���� and ����, but we have said little about the cells involved in computing the
cross product. Anatomy suggests, and physiology bears out, that there are strong conver-
gent projections of both the otolith and canal systems within the vestibular nucleus (Wilson
and Jones 1979, p. 166; Curthoys and Markham 1971; Searles and Barnes 1977; Büttner-
Ennever 1999). This kind of convergence could support the sorts of transformations neces-
sary to compute the inertial acceleration as shown in figure 6.13. In fact, the tuning curves
and other physiological properties of these two populations are precisely what we are most

TLFeBOOK

174 Chapter 6

interested in, given our assumptions. Determining what they look like in the model is in-
tended to help physiologists know what to look for in the real system. Note that because
we have assumed linear dendrites in this model, it is likely that the tuning curves in the ����

population will be most informative about tuning curves in the real system (since they will
be the same regardless of whether or not the neurons in this system are best modeled as
having linear or nonlinear dendrites). Because the biophysical properties of these neurons
are similar to other cells in the vestibular nucleus, we model them using similar parameter
regimes. So it is hypotheses regarding the tuning curves and other characteristics of these
populations that we are interested in discovering by constructing this model.

6.5.2 Design specification

In the case of vestibular responses, it is difficult to find experiments elucidating the precise
range over which the sensory organs operate. Rather, most experiments are designed to
determine the range over which the organs are linear, in order to contrast those responses
with some observed nonlinear responses. In the case of both the canals and the otolith
organs, that linear range is quite large (Wilson and Jones 1979). For this reason, we confine
ourselves to constructing a model that is designed to provide insights into this broad, but
linear, range. Thus, we take the range, precision, and noise of the higher-level variables to
be determined by the behavior of single cells in the ranges that are best documented in the
current literature.

Not surprisingly, the range of linear responses of the sensory afferents includes the
most common kinds of motion experienced by the system (Wilson and Jones 1979, p. 54).
In the case of the canals, it has been shown that the gain is essentially flat for all cells with
stimuli ranging from .1 to about 1 Hz. Furthermore, the majority of cells have a flat gain
up to about 8 Hz (Wilson and Jones 1979, p. 100). In the case of the otoliths, Fernández
and Goldberg (1976a) showed that the frequency gain of the otoliths is flat over a range
from DC to about 2 Hz (which was the maximum tested). This corresponds to a linear
response between about 0 and 1 g.14 In a separate set of experiments, these researchers
tested single afferents over a range of -1.23 to 1.23 g and found a slightly lower gain to
negative accelerations (i.e., accelerations opposite to the preferred direction vector) than to
positive accelerations. However, both responses were quite linear, with only the negative
response saturating. This suggests that these neurons respond much like LIF neurons with
a threshold of about -1 g. The cutoff of the real neurons was much less abrupt than that
of an idealized LIF, but this difference can be accounted for by the addition of noise or
moderate adaptation, as discussed previously.

�� Note that 1 g = acceleration due to gravity �10 m/�� .

TLFeBOOK

Feed-forward transformations 175

To determine the range of gains found in these populations, we can look to the results
on the sensitivity of single cells. For the canal afferents, the sensitivity has been found
to range between 0.1 and 0.8 spikes/s per degree/s�, with an average value of about 0.4
(Wilson and Jones 1979, p. 98). In the otolith, the sensitivity has been reported to be about
35 spikes/s per g (Fernández and Goldberg 1976a). Notably, the vestibular neurons that the
afferents project to tend to have a sensitivity that is about double the afferents (Wilson and
Jones 1979, p. 155), suggesting that they also have gains that are approximately double. In
each case, we assume a Gaussian noise with �� � ��, as usual.

6.5.3 Implementation

In order to construct a neural model of this system, we need to embed each of the higher-
level representations and transformations identified in figure 6.13 into the relevant neural
populations. The representations and transformations up to the vestibular nucleus should
be evident given previous discussions, so we do not consider them further. We focus instead
on the representation and transformations of the vestibular neurons that perform the cross
product, a highly nonlinear operation.

As in the multiplication example, we take the first population of neurons involved in
the cross-product transformation, �����, to construct an integrated representation of the
input space,�, by encoding���� and ��������� simultaneously using a six-dimensional

encoding vector, ��
�

:

���� � ��� ����� � ��

�
��

�
����

�
�
� �����

�

�

� ��

�
��

�
��
�

� �� ��
�

� �����

�
�

� �����
�

�

� ��

	

�

�

	��
� �
�
�

	���� �
�
�

	���� � �����
�

�

 �

where 	�� � ��

�
��
�

� �
�
�

�
�

, 	�� � ��

�
��
�

� �
�

�

�
�

, and 	�� � ���

�
��
�

� �
�

�

�
�

.

Note that the canal input, �, is represented by three sub-populations. Thus, each
of the components of the � input is represented by a distinct population of neurons,
which together comprise
����. In contrast, the otolith representation, �, is distributed
across a whole host of preferred direction vectors that effectively tile the three-dimensions
of possible linear accelerations. This difference is not evident from looking at the ��

population, but is an important part of the model.

TLFeBOOK

176 Chapter 6

Now that we have defined the encoding of �, we also need to define the decoding, in
order to have defined the representation. As usual, we take the decoding to be

� �

�

�

��� ������ (6.32)

However, we also need to use this encoding in the �� population to compute the cross-
product of elements in the � space. Thus, we need to define the decoding for the function
� ��� which we take to be the cross product of the first and last three elements of the vector
�. This decoding is

� ��� �
�

�

��

�
������ (6.33)

For both (6.32) and (6.33), we find the decoding vectors by minimizing the relevant errors,
as before.

We are now in a position to characterize the final transformation of the circuit, which
results in the estimate of �. We take the encoders of the final population, ��, to consist of
three dimensional vectors that adequately tile the � space. The decoders, ��

�
, are determined

as usual. What is of greatest interest for the �� population is the transformation that
determines the neuron activities at any given time, �. To describe the dynamics of this
population, we can use equation (6.30) and directly write ������� ���:15

������� ��� � ��

�
	�

�
��
�

�
���� ��

�
�

�
����

�

�
�

Substituting from (6.30) we have

������� ��� � ��

�
	�

�
��
�

�

�
���� � �

�
����� ������ �����������

���
�

�
����

�

�

� ��

��
��

���������� � �
�
�

�������� � �
�
�

�������� �
����

�

	

where ���� � 	�

�
��
�

��
�

��

�
�

, and ��� � 	�

�
��
�

��
�

�

�
�

. Because this transformation includes

the derivative of the otolith signal, ��, we should consider the use of ��� as short-hand for
a more complex projection which we do not discuss here.

We can now test our model by comparing it to experimental results gathered from
monkeys. In order to show that the vestibular system is able to estimate the true inertial ac-
celeration, despite the ambiguity in the otolith signal, the following set of three experiments
was performed on macaque monkeys (see figure 6.14). First, the animal was subjected only
to translational (i.e., inertial) acceleration. Second, the animal was subjected to a transla-

�� Also see section 8.2.1 for a more detailed discussion and justification.

TLFeBOOK

Feed-forward transformations 177

θ θ

Translation Only Translation adds to tilt Translation cancels tilt

0 200 400 600
-40

-20

0

20

0 200 400 600

0

0.2

0.4

0 200 400 600
-40

-20

0

20

0 200 400 600

0

0.2

0.4

-40

-20

20

0 200 400 600

0

0.2

0.4

0 200 400 600
0

time (ms)

I (
g)

ey
e

ve
l(

o /
s)

a)

b)

c)

Figure 6.14
Experiments showing that the otolith is not solely responsible for tVOR. In row a) are depicted the movements
the animal is subjected to. Row b) shows the resulting eye velocity in each case. Row c) shows the true
translation acceleration of the animal in each case. (Data provided by Dr. Dora Angelaki.)

tional acceleration coupled with an angular rotation chosen to double the otolith signal.
Third, the animal was subjected to a translational acceleration coupled with an angular ro-
tation chosen to cancel the otolith signal. Thus, any estimate of translational acceleration
based solely on otolith information would be severely adversely affected in the last two
of these three cases. Nevertheless, eye position changes resulting from the translational
vestibular ocular reflex (tVOR), are very similar in each of these three cases (as shown in
figure 6.14). This suggests that the otolith signal is not solely responsible for the tVOR.

Figure 6.15 shows the results of the model compared to both a direct solution of
equation (6.29) and the averaged data from the rightmost column of figure 6.14. As can
be seen here, the model compares favorably with the experimental results.

In figure 6.16a we have shown the model results from all three cases. As can be seen,
in each case the estimate of the true translational acceleration is similar despite the widely
varying otolith input. Thus the model verifies that the hypothesis is a reasonable one, and
that it can be implemented in a biologically plausible, spiking network.

Notably, once we have constructed the higher-level model described by figure 6.13, we
can run our simulation in a number of ways. The results we have discussed so far are for the
fully spiking network. However, we can, for instance, run the simulations using the higher-
level representations directly (i.e., encoding and decoding the higher-level variables rather

TLFeBOOK

178 Chapter 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

50

time (ms)

ey
e

ve
lo

ci
ty

 (
de

gr
ee

s/
s)

eye movement
model prediction
equation prediction

Figure 6.15
Experimental data, equation solution, and model solution for the case in which the otolith signal is canceled. The
model consists of a total of 5000 spiking LIF neurons, and incorporates representations of all three spatial
dimensions. Comparisons between the model output and the eye position data incorporate a gain reduction
which has been experimentally verified for tVOR, and can range between .1 and .25.

than calculating all the weights and generating spikes) for some or all of the populations.
Alternatively, we can run the model using rate neurons, or any other neural model. These
kinds of alternative simulations can provide for more insight into the effects of changing
single cell properties, or very significant computational savings. In figure 6.16 we compare
the spiking simulation and the rate simulation. This comparison verifies that, indeed, the
rate neuron simulation mimics the behavior of the spiking neuron solution, although there
are some differences that might be of interest. Of course, the rate neuron solution is much
faster to run; in this case just over 10 times faster. Being able to run simulations quickly
can be very useful when debugging, or otherwise ‘playing’ with a model.

As we have emphasized, one of the reasons for constructing this model is to determine
what the tuning properties of certain populations in the model are expected to look like.
Of particular interest are those neurons performing the cross-product, since it would
be a boon to this hypothesis to verify that such a computation is actually done in the
vestibular nucleus. On the basis of this model, we expect these neurons to have preferred
direction vectors in a six-dimensional space, which is sensitive to both angular velocity
and acceleration (specifically the difference between the otolith signal and the estimate of

TLFeBOOK

Feed-forward transformations 179

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

140

160

time (s)

ey
e

ve
lo

ci
ty

 (
de

gr
ee

s/
s)

roll cancel translation
translation only

roll add translation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

ey
e

ve
lo

ci
ty

 (
de

gr
ee

s/
s)

time (s)

a) b)

roll cancel translation
translation only

roll add translation

Figure 6.16
A comparison of a) the spiking neuron model for all three cases and b) the rate neuron model for all three cases.
The simulation in b) runs just over 10 times faster.

true inertial acceleration). However, this expectation is based mainly on our chosen means
of implementing the equation. It is possible, for instance, to perform the cross product
as a series of multiplications between components of these vectors. In this case, neuron
preferred direction vectors would lie in two dimensional spaces. However we choose to
implement the cross product, there must be neurons whose preferred direction vectors
mix the otolith and vestibular signals. Furthermore, given the fact that there is a nonlinear
transformation being performed, we expect neurons in this population to have fairly low
background firing rates and more often than not require significant input to begin firing.
This is due to the fact that a greater range is required farther from zero for nonlinear
computations than for linear computations.

In addition, the dynamics of the network provide predictions regarding the kinds of
receptors we expect to find on neurons in the various populations. Although we have
not discussed the dynamics in detail here, they provide an indication of some differences
between the populations in the network. In particular, based on this model, we expect
the neurons participating in the � population to have recurrent connections to NMDA-
type receptors because the recurrence requires slow synaptic decays to function well. The
remaining connections can be fast, AMPA-type receptors. This suggests that some cells in
the � population will have both kinds of receptors on the same cell. This is consistent with
known properties of neurons in the vestibular nucleus (Chen et al. 2000).

TLFeBOOK

180 Chapter 6

6.5.4 Discussion

We have chosen this example because it helps highlight both practical and theoretical
issues. On the practical side, this model provides a good demonstration of how models
can, and should, influence experimentation. This model provides a simulation of a specific
hypothesis made by experimentalists based on their observations of, and theorizing about,
a particular system. Adopting some reasonable assumptions about neural function, we can
generate specific predictions about what else should be found in a system that abides by
that original hypothesis. It should now be possible for the neurophysiologists to re-examine
the vestibular system with an eye to finding particular kinds of cells, whose presence would
strongly support their original hypothesis. Of course, if no such cells are found, there are
any number of possible reasons why, but if they are, it is probably not just a coincidence.

One of the reasons our predictions may not be born out is because writing down
the transformation does not determine the implementation—it only determines possible
implementations. So, for example, there are other modularizations of this equation that
do not need a population that represents �����, as this one does (see figure 6.13). So, we
should construct models to explore the various possible implementations and determine
which, if any, predictions are consistent across them. At the same time, we could eliminate
possible implementations by comparing them to available neuroscientific data. As a result,
the interplay between experiment and model should be ongoing and mutually beneficial.

On the more theoretical side, this example exposes an important tension in the frame-
work as we have so far discussed it. Recall that in section 6.1.2 we noted that it is useful
to define representational modules, such that a particular variable can be said to be rep-
resented by a particular neural population. We also know that in order to define a repre-
sentation, we need to identify both the encoding and decoding processes. Thus, different
decodings of the same neural population would lead us to make different representational
claims about a given neural population. But, in this model we identify multiple decodings
for the same population. Specifically, in the population that encodes the � space, we de-
fine the decoding function over the� space in (6.32), but it is never used in the model. We
only ever use the decoders, ��

�
, from (6.33). How, then, can we consistently claim that the

population can be treated as a module representing� if only the � ��� decoders are used?
The answer is reasonably straightforward: we take a population to represent whatever

variable each decoding population’s response can be written as a function of. So for
example, if each population that receives projections from �� represents some function
of �, then it makes sense to claim that �� represents �. In a sense, then, � is something
like the ‘primary’ representation of that population, despite the fact that one population
may decode it as representing �� and another may decode it as representing ��. This
is true even if no population decodes it as representing �. Given this definition, why

TLFeBOOK

Feed-forward transformations 181

claim that �� represents � given that there is only one way in which this information is
decoded? There are two reasons. First, we do not suppose that, in a real brain, these neurons
only project to this one population, ��. Presumably, there are many other populations that
these neurons would project to, and we think it most likely that those decodings can be
written as a function of �, given how � is defined. Second, to choose a more complex
representation for the population of neurons would mean identifying a more complex
encoding function. This is because whatever is represented by the population must be
encoded by the population. Thus, if we thought �� encoded the cross product of its inputs,
we would have to identify encoding functions that mapped the input,� and ���, to their
cross product. It is highly unlikely that such functions, if we could even find them, would
result in reasonable tuning curves for neurons in ��. In contrast, we can find reasonable
encoding functions that map� and ��� into�, making it better to claim that �� represents
�.

There is one final constraint to consider regarding claims about what a particular mod-
ule represents: our current physical theories. This constraint distinguishes the claim that
the afferents from the otolith represent linear acceleration from the claim that they repre-
sent the square of linear acceleration. Of course, any function that can be written in terms
of one can be re-written in terms of the other. The reason we choose linear acceleration
to be represented by otolith afferents is that we already have physical theories that take
linear acceleration (not its square) to be foundational. This may seem obvious, but it nev-
ertheless deserves mention because it helps show what our claims about representation in
neurobiological systems really depend on.

To clarify these points, figure 6.17 shows a hypothetical example in which each of
these considerations is relevant. Suppose �� and �� are vertical and horizontal velocities
respectively. We would claim that the ����� population represents the velocity vector �
because each of the populations that it projects to uses some transformation of �. This is
true despite the fact that � is never decoded in the neural system. As well, the encoding
vectors we would need to map �� and �� into � would be simple and result in reasonable
neuron tuning curves. Finally, we would claim that it represents velocity because this
is a concept that we are very familiar with from our physical theories. This, then, is
how we should substantiate the claim that ����� can be understood as a representational
module that represents �, where that representation is defined by the relevant encoding
and decoding vectors for � (and not any function of �). Still, that population is used to
carry information about many things other than � (in fact, only things other than �) by
subsequent populations.

There is one final consequence of this view of representation that needs to be discussed.
Note that in figure 6.17, there is some neural population representing � that projects to the
����� population. Suppose that the neurons ����� actually respond to changes in � (perhaps

TLFeBOOK

182 Chapter 6

vh

vv

I
v=[vh vv]

|v|2

vv

(vh+vv)
3

ai(t)

Figure 6.17
Considerations when justifying representational claims. What we take to be represented by the population �����
depends on how the information encoded by the population is used. What is represented is what all decodings
can be written as functions of (� in this case). If information carried by ����� is not decoded, it is not
represented (like � , or blows to the head).

� is intensity). Even under these conditions, we would not claim that the population
represents � . We are assuming, of course, that we have identified all of the projections
from this neural population as well. Since none of the populations it projects to uses any
information about � , it would be entirely gratuitous to write the relevant transformations as
functions of � . Therefore, � does not help define the representation of the neural population
and is not represented by that population—regardless of the fact that the ����� neurons
respond to changes in � . If this seems counter-intuitive, note that there are many things
that influence neural firing that we would not want to count as being represented by that
neural firing. Consider, for instance, blows to the head. Such blows would certainly affect
neural firing, and may even do so in a systematic manner. Nevertheless, none of the changes
in neural firing are used by the system to represent blows to the head. Therefore, blows to
the head are not represented by those neurons even though their activity is affected by
such blows. As odd as this example may sound, it makes clear that understanding how a
population’s activity is used (i.e., decoded) is essential to understanding representation in
that population.

6.6 SUMMARY

The discussions in the first half of the book relating to neural representation allowed us
to move quickly from basic linear transformations to nonlinear transformations. This is
due to the tight relation between representation and transformation captured by the second
principle of neural engineering (see section 1.4.2).

TLFeBOOK

Feed-forward transformations 183

We began by showing how linear transformations for both scalars and vectors could
be defined by determining the relevant transformational decoder. We then discussed var-
ious possible implementations of nonlinear transformations, showing that these could be
realized using linear decoding as well. Being able to characterize both linear and non-
linear transformations, we set out to tackle the problem of negative weights that is often
left unaddressed by modelers. We showed that given an appropriate augmentation to the
representation in a neural population, we can construct a biologically plausible implemen-
tation of any transformation (i.e., one with no mixture of positive and negative connection
weights).

Finally, in section 6.5, we presented a large-scale model of the vestibular system that
both accounts for current data and makes some predictions about the system under study.
This model includes both linear and nonlinear transformations implemented in a network
of spiking LIF neurons.

TLFeBOOK

184 Chapter 6

This page intentionally left blank

TLFeBOOK

7 Analyzing representation and transformation

To this point, we have presented examples demonstrating the utility of adopting this sort
of understanding of neural representation and transformation. However, one of the great
benefits of most good theories is that they provide a means of dissecting, at an abstract
level, the notions employed by the theory. In this chapter, we discuss analyses of both
representation and transformation. In particular, we show how to characterize the possible
transformations a neural population can support, and we describe a means for determining
what can be usefully represented by a neural population.

In order to present these analyses concisely, we begin, in sections 7.1 and 7.2, by pre-
senting some of the technical background relevant to understanding the subsequent discus-
sion. Because different disciplines use diverse terminology, notation, and presentation of
this material, introducing it here permits us to present our preferred vocabulary, and show
how it relates to our previous characterizations of neural representation and transformation.

We conclude, in section 7.5, by identifying an important new category for the analysis
of neural representation and transformation that has not received sufficient attention.
We argue that the heterogeneity of neuron tuning curves found in neural systems plays
an important role; a role central to constructing good representations and determining
transformations supported by a system.

7.1 BASIS VECTORS AND BASIS FUNCTIONS1

Representation, as we have characterized it, is defined by the combination of encoding and
decoding. These processes map elements under one description to elements under some
other description. Mathematically, we can characterize these processes as functions map-
ping one ‘space’ onto another. Ideally, the encoding and decoding functions are inverse
mappings between spaces. Thus, any object mapped from one space onto an object in an-
other space by the encoding function would be mapped back onto the object in the original
space by the decoding function. To understand how to characterize such abstract spaces,
and the mappings between them, we can turn to linear algebra. As originally conceived
by Descartes, linear algebra is for expressing geometrical relations using arithmetic. So,
it should not be surprising that linear algebra is central to a quantitative understanding of
abstract representational ‘spaces’.

A representational space, like any other, is a specific kind of vector space. Vectors are
simply collections of mathematical objects, be they numbers, functions, or other vectors.

� Much of this section may be (tedious) review for those familiar with these topics, and can be skipped without
loss of continuity.

TLFeBOOK

186 Chapter 7

A vector space is a set of vectors that is closed under addition and multiplication (meaning
that a sum or multiple of any two vectors in the set is also in the set). This definition usually
results in many vectors being in a vector space. So it is important to be able to characterize
such a space compactly (i.e., not by writing down all the members). Doing so introduces
the notion of the basis of a vector space. A basis is an independent set of vectors that span
the vector space.

A set of vectors �� is independent if

���� � ���� � � � �� ���� � �

only when

�� � �� � � � � � �� � ��

where �� are scalars. As a result, � must be equal to the dimension of the vectors in � in
order for �� to be independent.

A set of vectors spans a vector space if any vector in that space can be written as a
linear sum of those vectors. That is, if for all � � � there are some ��,

���� � ���� � � � �� ���� � ��

then the set of vectors �� span the vector space �.
Note that if the vectors in �� are independent, then the set of coefficients, �, is unique

for each �. In this case, �� is called a basis. The standard Cartesian basis in any number of
dimensions is comprised of the unit vectors along the principle axes. All the vectors in the
standard bases are orthogonal (meaning that the dot product of any two will be zero; i.e.,
� � � � ����

�
�
�

�
�������� � �). This kind of basis is called an orthogonal basis.2

It should be clear that bases are useful because they let us succinctly describe all mem-
bers of a vector space. So far, the definitions we have provided are the standard ones that are
found in any linear algebra text. These definitions are suitable for characterizing abstract
spaces and mathematical objects. But, when we are concerned with real physical systems,
like neurobiological systems, less strict constraints on bases are relevant. If we relax the
constraint that the vectors have to be independent, we have what is called an overcomplete
basis (or sometimes ‘frame’). Of course, overcomplete bases are (strictly speaking) redun-
dant for defining the vector space. Thus, descriptions employing overcomplete bases are
are not as succinct as those employing complete, or orthogonal bases. But, in the uncertain,
noisy world of physical systems, this redundancy can prove invaluable for error correction
and the efficient use of available resources (Goyal et al. 2001). In other words, when real-

� As well, if the length of all the vectors in an orthogonal basis is equal to one (i.e., if they are all unit vectors)
then we have an orthonormal basis (e.g., the standard Cartesian basis).

TLFeBOOK

Analyzing representation and transformation 187

world constraints come into play, the succinctness of our description of the relevant vector
space is not all that matters—‘usability’ matters too.

Before addressing the importance of such constraints directly, let us first consider
the relation between bases and representation as we have so far understood it. Intuitively
speaking, we can think of each basis vector as ‘taking a measurement’ of where a particular
data point lies in the vector space. We can thus make use of the redundancy of an
overcomplete basis by ‘cross-checking’ our answers between different vectors and thus
making our representation more robust. In order to see how bases relate to representation,
and how they can be used to make the representation robust, let us consider a simple
example (see figure 7.1). Let the vector � be written in a standard Cartesian basis (e.g.,
in two dimensions, � � ���� ��� � ��� � ���). If we have a system that uses a different
basis, say one in which both basis vectors (i.e., � and �) are rotated by 45 degrees (call these
�
�

and �
�
), we need to re-write � in this basis in order to relate it to other objects in that

system.
In particular, we can write the encoding of � into this basis as

�� � ���
�
�
�
� (7.1)

which is simply the dot product projection of the vector onto the new basis. To find out
where the point � � ���� ��� � ����

� ����
lies in the original space, we can decode �

from this new basis (i.e., write it in terms of the standard basis) using

� �
�

�

����
� (7.2)

This way, we can move back and forth between bases (see figure 7.1a). Notice that if we
substitute (7.1) into (7.2), we recover the same vector we originally encoded. Equation
(7.1) thus defines the representation of � in terms of � in the new, rotated space. Given the
encoding and decodings we have defined, we know exactly how to map the �� coefficients
onto the �� ones. Thus we can think of the coefficients �� as ‘representing’, or ‘carrying the
same information’, or ‘encoding’ the original coefficients ��. This simple example shows
how basis functions and representations are related: representation relations are defined
by identifying and relating bases. In this example, that definition was very straightforward
since both bases were orthogonal and thus independent.

Let us now consider an example in which the encoding basis is overcomplete. Suppose
that we do not know what the decoding basis is, but we do know what the encoding
basis is (this is the problem we have been addressing in neurobiology, i.e., we take the
encoding to be defined). We can guarantee that the encoding basis is overcomplete by
using redundant, non-orthogonal encoders (see figure 7.1b). Let us choose the encoding
basis that consists of three vectors in the Cartesian plane, equally spaced at 120 degree

TLFeBOOK

188 Chapter 7

-2 -1 0 1 2
-2

-1

0

1

2

i

j φ
1

φ
2

x

y

-2 -1 0 1 2
-2

-1

0

1

2

i

j φ
1

φ
2

φ
3

x

y

a) b)
(a1φ1, a2φ2) (a1φ1, a2φ2)

Figure 7.1
Representing a single point using different basis vectors. In both cases, the standard Cartesian basis is shown (�
and �). The projection of the point shown is ������ �����, as indicated by the dashed lines. In a) an orthonormal

basis rotated by ��Æ is used. The projection of the point is thus
��

����

�
�

�
��

�
, as indicated by the dotted

lines. In b) an overcomplete basis consisting of three equally spaced unit vectors is used. The projection of the

point onto this basis is
��

���

�
���

�
���
�

��� ������

�
, as indicated by the dotted lines (note the projection

onto �� is the same as onto � and is thus a dashed line).

intervals (i.e., ��
�
� �

�
�

�
�
�

�
�, ��

�
� ��

�
�

�
�
�

�
�, and ��

�
� ��� ���). Now, since these

encoders are not independent, (7.1) and (7.2) do not hold as they did before (which can
be easily verified by substitution). So, we need to identify the set of vectors that span the
space into which our vector � is being encoded (i.e., the decoding basis). To find this basis,
we first assume, as before, that

� �
�

�

����
� (7.3)

and

�� �
�
�
��
�

�
�

� (7.4)

We can now substitute (7.4) into (7.3) to give

� �
�
�

�
���

�

�
�

�
�
�

TLFeBOOK

Analyzing representation and transformation 189

Writing the dot product explicitly, we get

���� �
�

���

���� �����������

�
�

�

����
�

�

������������

Since

���� �
�

�

����Æ���

we know that

Æ�� �
�

�

������������

or, in matrix notation,

� � ���� (7.5)

where � is the identity matrix, the columns of � are the ��, and the rows of �� are the ���.
We can thus solve for the decoders

� �
�
��
�
��
�
��

��
�
�

providing the desired vectors ��. Performing the calculations for this example gives
�
�
� �

�
�

�
� �

�
�, �

�
� ��

�
�

�
� �

�
�, and �

�
� ��� � �

�
�, i.e.,

�� �
�

�
���� (7.6)

These, then, are the vectors that form the overcomplete basis for the vector space in which
the �� are coordinates. Thus, they are also the decoding vectors which help define the
representation of � by the coefficients ��. It is, of course, the �� and the ��� together that
define the representation completely. The latter tell us how to encode elements into this
space, and the former tell us how to decode elements from this space back to the original
Cartesian space.

We are now in a position to understand why this kind of redundant representation can
be important for systems in the real world. As we have emphasized, any physical device
is subject to noise. Given the way we have characterized representation, representing the
physical properties measured by �, means storing the coefficients ��. Noise, of course,
disrupts our ability to store those values perfectly. If we use one physical device for each
coefficient we have to store, it is reasonable to assume that the noise affecting one device
is independent of the noise affecting another. As is well known, the mean square error will

TLFeBOOK

190 Chapter 7

-1.5 -1 -0.5 0 0.5 1 1.5

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

D

ra
tio

a) b)

Figure 7.2
Comparing complete and overcomplete representation. a) The shape of complete (black lines) and overcomplete
(dashed grey lines) represented spaces. b) The relative increase in the corner areas of a �-dimensional
hypercube compared to a hypersphere.

decrease as ��� where � is the number of measurements made in this kind of system.
This far, things are the same for the complete and overcomplete representation.

However, this ��� decrease is true over the whole space represented by the chosen
basis. As shown in figure 7.2a, complete and overcomplete basis vectors represent differ-
ent spaces. Specifically, a �-dimensional complete representation equally well represents
all parts of a �-dimensional hypercube whereas an overcomplete representation equally
well represents all parts of a �-dimensional hypersphere. Since there are the same total
number of measurements, � , for each kind of representation, the overcomplete represen-
tation will have less error for a point randomly chosen in the space. This is because the
overcomplete representation evenly allocates its resources over the whole space. The com-
plete representation, in contrast, allocates more of its resources to representing the corners
of the hypercube. In other words, the complete representation assumes that there is a bias
in the space to be represented (i.e., there will be more information in the corners). In fact,
as shown in figure 7.2b, this bias becomes worse as the dimensionality of the space, �,
increases—almost exponentially worse.

So, if there is no particular structure to the space to be represented, the overcomplete
representation will be more robust to noise than the complete representation (Goyal et al.
1998). It is only in the special case that the space has the most vectors to be represented
in the corners of a hypercube that the complete representation will do better. If there is
some structure to the space, but it is not of this exact form (i.e., with clustering in the
corners), then there will be an overcomplete representation that can represent the space

TLFeBOOK

Analyzing representation and transformation 191

better (although it may not be a basis that is equally spaced over the area of the unit circle).
So, in general, overcomplete representations are less subject to error than orthogonal ones.

Before we move on, a few comments are in order. First, it is somewhat arbitrary which
set of vectors we call the overcomplete basis and which set we call the encoders. It can be
shown that both� and ��, in fact, form a basis for the same space. It can also be shown that
given either� or �� as the encoders (or decoders), the other set will be found as the decoders
(or encoders). Second, any set of overcomplete encoding/decoding vectors found in this
manner will satisfy equation (7.5), and are therefore said to be biorthogonal. This is another
way of expressing the close relation between the two bases. This is because together � and
�� act like an orthogonal basis. That is, they define a means of moving between vector
spaces. Third, and perhaps most importantly, the � and �� we use throughout this book
do not, technically, satisfy the definitions we have provide here. However, they nearly
satisfy these definitions, and the definitions provide a useful way of understanding what
the relation between our encoders and decoders is. The reason that the definitions are not
satisfied by our � and �� is that we always pass the encoding (i.e.,

�
� �

��
�
�

) through a

nonlinear neuron response function (i.e., � ���). But notice that neuron response functions
are not that nonlinear: generally speaking, the stronger the input current, the higher the
firing rate (i.e., they are monotonically increasing). More to the point, neurons are linear
enough that the preceding discussion is quite relevant to understanding how they represent.
Of course, we have to do extra work (e.g., distortion analyses, noise analyses, etc.) to see
just how far off neurons are when we treat them as if they were more linear than they
actually are.

Finally, we have so far only talked about vectors, but this discussion applies equally
to basis functions. Just as basis vectors define a vector space, so basis functions define a
function space. Perhaps the most widely known basis functions are the sines and cosines.
The Fourier decomposition is one that defines some function ���� in terms of coefficients,
��, times a basis, �������� and ��	����� (see equation 3.3). This is an orthonormal basis.
But, just as in the vector case, we can have overcomplete basis functions as well. These are
like the
����� and ����� we encountered in our characterization of function representation.
Recall that these were used to characterize the tuning curve. So, in a sense, the tuning
curves are like a set of overcomplete basis functions for the space they represent. As we
discuss in section 7.3, looking in more detail at the space defined by the tuning curves
helps us understand what functions can be computed using different neural populations.
However, before we can turn to this problem, we need to be familiar with one more
analytical technique, singular value decomposition (SVD).

TLFeBOOK

192 Chapter 7

7.2 DECOMPOSING �

In order to better understand neural representation and transformation, we need methods
for analyzing the � matrix introduced in chapter 2. Recall that, in the vector case with
noise, � is defined by the equation

��� � ������������
�
� ��Æ�� � (7.7)

To simplify matters, let us temporarily consider the representation in a noise-free system.
Thus, we are concerned with

��� � ������������
�
� (7.8)

The rows of the � matrix consist of the projections (dot products) of each neuron tuning
curve on itself and every other tuning curve. In general, the result of a projection can be
thought of as a measure of similarity. So, each entry in the � matrix measures the similarity
between two tuning curves. Taken together, all of these similarity measures in the � matrix
make it something like a covariance matrix. That is, any entry in the matrix tells us how
well-correlated the firing of any two neurons in the population is.3 In a sense, then, this
matrix carries the information about the structure of the space being represented by those
tuning curves. That is why it is essential to analyze this matrix in more detail.

To begin, let us introduce a new, but convenient matrix notation for our characterization
of neural representation. First, recall that for the estimate of �� we typically write

�� �

��

�

�������� (7.9)

where we have assumed that the relevant preferred direction vectors, ���, are chosen
randomly from a uniform distribution on the surface of the unit hypersphere (so the
magnitude �����

� � �). As well, the elements of the encoded vector, �, are presumed
to be drawn from a uniform distribution inside the unit hypersphere (so the magnitude
���� � �).4

� The � matrix is a kind of matrix sometimes called the ‘Gram’ matrix. Strictly speaking Gram matrices are
not the same as covariance matrices. In particular, the covariance matrix measures variance around the mean,
��� � ������� � ������� ������ � ��������� � ������������� ���. Nevertheless, the second moments (singular
values) of both matrices can be used to characterize neural transformations. We prefer to analyze the Gram
matrix because it permits us to explicitly extract and exploit the population bias (e.g., this plays a central role in
characterizing negative weights). Performing a similar analysis on the correlation matrix is equivalent to principle
components analysis (PCA).
� This second assumption can easily be relaxed, but simplifies the current analysis.

TLFeBOOK

Analyzing representation and transformation 193

Let us now assume, for the time being, that � is discretized over the range � �

�����������, with a spacing of ��. Let � , ��, and �� denote the number of neurons,
the number of vector elements in �, and the number of elements in the discretization
of �, respectively. We can then write our expression for our estimate of � as a matrix
multiplication, i.e.,

�������
� ����������

�

where

�
� �

�
�����������

�������� ������� ���� � � � ������� ���� ��������

�������� ��������

...
... � � �

...
...

���������� ����������

�������� ������� ���� � � � ������� ���� �� ������

�
�����������

�

That is, the� matrix is the transpose of the neuron tuning curves, �� is a matrix in which
each row is the estimate of � at the corresponding discretized value of �, and � is a matrix
in which each row is a decoding vector.

As we know, the central problem for characterizing representation is that of finding the
optimal � given a set of vectors,�, we wish to encode. To solve this problem, we take�
as given and solve for � as follows:

� � ��

�
�
� � �

�
��

���
������

� � �� (7.10)

Presuming we take the inverse of��
� in the right way, this is the same as minimizing

the mean square error between the originally encoded value and our estimate. That is, we
find5

� � �
�
� (7.11)

� � �
�
��

� These are the equivalent expressions to those we found earlier, without the discretization of �; namely,
��� � �������� ����

�
and �� � ��������

�
.

TLFeBOOK

194 Chapter 7

so,

� � �
��� (7.12)

� �����������

We can now write an expression for the estimate of� in matrix notation as

�� � ��

� ����
������

��

Of course, the major assumption we have made is that we can take the inverse of � ‘in
the right way’. Notice that because this matrix has no noise term, and because some tuning
curves are likely to be similar for a large population, the matrix � is likely to be singular,
or nearly singular so it is not invertible (i.e., it is ill-conditioned). As a result, we need to
use analytical tools suitable for handling singular matrices in order to characterize �.

There exists a general, and very powerful, technique for analyzing singular matrices
called singular value decomposition (SVD). Very briefly, an SVD decomposition of an
� �� matrix,�, results in three matrices whose product gives�, i.e.,

���� � ���������
�

��� �

The matrix � is a diagonal matrix whose entries are called the singular values of�. In the
case when � is square (as with �), the matrices� and� are both square and orthogonal,
meaning:

�
�
� � ��� � ��

� � ��� � ��

This also shows that the inverse of the matrices � and � are equal to their transposes.
Given that the inverse of a diagonal matrix is simply 1 over the diagonal elements, the
inverse of the original matrix� is:

�
�� � ������

� (7.13)

In the case where� is singular (or nearly so), some elements of � are zero (or very small),
so the inverse of � includes infinite (or very large) terms, meaning the inverse of � is ill-
defined (as expected for singular or near singular matrices). In this case, the SVD ‘pseudo-
inverse’ is defined as in (7.13) where for �� � �, the inverse is set to �.

If a matrix, such as �, is singular, then part of the space it maps (in this case �) is
mapped to �. This subspace of � is called the null space of �, and its dimension is called
the nullity, �, of �. The elements of � that are not mapped to � are mapped to what is
called the range of �. The dimensionality of the range is called the rank,�, of the matrix,
�. For an � �� square matrix,�� � � � .

TLFeBOOK

Analyzing representation and transformation 195

Even in the case when a matrix is singular (or nearly so), SVD can be very informative.
In particular, the columns of � whose corresponding singular values are non-zero form
an orthonormal basis that spans the range of �. Similarly, the columns of � whose
corresponding elements are zero form an orthonormal basis that spans the null space of
�. Because, in our case, � (i.e., �) is a symmetric matrix (i.e., ��� � ���) � and � are
the same matrix, meaning that bases for both the null space and range are in one matrix.
We can show this as follows:

� � �
�

���
�

� ��
�
�
� �

Therefore,� � � since � is diagonal (i.e., � � ��) and since SVD gives a unique enough
decomposition.6 So, we can write the decomposition of � as

� � ���
� �

or equivalently, in summation notation,

��� �
�

�

���������

This decomposition is useful for characterizing representation and transformation for
a number of reasons. First, as already mentioned, the relevant � matrix provides an
orthogonal basis for both the range and nullity of �. Because � tends to be singular, both
bases are important. Second, when a vector in � lies in the range of �, the SVD pseudo-
inverse guarantees that the corresponding vector from � found from (7.12) minimizes the
length of that � vector. This is important because given that � is singular, there are an
infinite number of solutions for�. The solution that provides the shortest vector is a natural
and compact choice from the set. Third, when a vector in � lies in the nullity of �, the
SVD pseudo-inverse guarantees that the best (in the least squares sense) � given� will be
found. In other words, this ‘pseudo-inverse’ minimizes the error in (7.19). Thus, we can
use SVD to find the optimal decoding functions as in (7.10) which we can now write as

� � ������
�
�
�� (7.14)

� The decomposition is unique enough in that linear combinations of any columns whose corresponding �

values are identical can replace those columns. However, since the relevant matrices are the same for SVD
of symmetrical matrices, any such manipulation on � can be done to �. Note that this result can also be
proven using eigenvector decomposition theorems that show that any symmetric matrix can be written in the
form � � ��

�� (Shields 1968, p. 214).

TLFeBOOK

196 Chapter 7

Given the properties of SVD, we know that this is the same solution we would find by

constructing the error explicitly (i.e., � �

��
�� ��

���
�

), taking the derivative, and

setting it to zero, as we have previously done.
While SVD turns out to be useful for understanding both representation and transfor-

mation, some of the representational analyses make more sense after we have characterized
transformation. As a result, we begin by considering transformation first.

7.3 DETERMINING POSSIBLE TRANSFORMATIONS

We have already presented examples of both linear and nonlinear transformations using
neural populations, but we have not presented a general, theoretical characterization of
transformation. While such examples are useful, they do not show how to answer a pivotal
question about transformations and neurobiology, namely: Given a neural population, what
are the possible transformations that it can support? Here, we present a general analytical
technique for answering this question.7

In section 7.2 we used SVD to find the representational decoders of �. Here, we
perform a similar analysis to find an expression for the decoding vectors needed to decode
any transformation of �:

���� � ���

�
� ���� � �

�
��

�

�� � ���
������ ����

� �
���

Performing SVD on��
� to find the inverse, as before, gives

�
� � ������

�
� ����� (7.15)

where �� are the linear decoders for estimating the transformation ����. So, the represen-
tational decoder, �, is found in the special case where ���� � �. Notice that regardless
of which transformation we need decoders for, we always perform SVD on the same ma-
trix, � � �

�
�. This suggests that understanding the properties of � can provide general

insight into all possible decodings of the population, ��.
Recall that singular value decomposition finds the matrix �, whose columns are

orthogonal vectors spanning the range and null-space of �, and a diagonal matrix of
singular values, �. The singular values are useful because they tell us the importance of

� We have previously presented a similar analysis in Westover et al. (2002).

TLFeBOOK

Analyzing representation and transformation 197

the corresponding � vector. There are a number of ways of thinking about ‘importance’
in this case. For instance, we can think of ‘importance’ as being related to the error that
would result if we left a particular vector out of the mapping. If we remove a vector with
a high singular value from the decomposition and then reconstruct �, we introduce a lot
of error into the reconstructed matrix (and therefore into estimates of the inverse which
determine the decoders). Conversely, if we remove a vector with a low singular value, we
introduce little error. Or, we can think of ‘importance’ as being related to the variance
of population firing along the vectors in the � matrix. Under this interpretation, the �
vector with the largest corresponding singular value can account for the most variance in
the population firing over the range of the population’s representation. The � vector with
the second largest singular value explains the next most variance, and so on. Relatedly,
we can think of ‘importance’ as being the amount of (independent) information about
changes in population firing that can be extracted by looking only at data projected onto
the corresponding� vector.

In general, we can think of the magnitude of the singular value as telling us how
relevant the dimension defined by the corresponding � vector is to the identity of the
matrix we have decomposed. Since the matrix we have decomposed is like the correlation
matrix of the neuron tuning curves, the large singular values are most important for
accounting for the structure of those correlations. It is that structure that encodes the input
variable, so accounting for the correlational structure is equivalent to accounting for the
encoding of the input variable. Knowing exactly what information was encoded permits us
to determine what we can decode.8

It is also relevant that the vectors in � are orthogonal. Since these vectors can be used
to reconstruct to original � matrix, they provide an (ordered) orthogonal basis for that
matrix. This is very useful because the original � matrix was generated by a non-ordered
non-orthogonal basis; the neuron tuning curves. To make this point more quantitative, let us
begin by defining a point in the ‘neuron space’ (i.e., the space spanned by the overcomplete
neuron tuning curves) as

� � ���� � ���� � � � �� ���� �

In this notation, the vectors �� serve as axes for the state space of the neural population. A
point in this space is defined by the neuron firing rates from each neuron in the population
(which, taken together, form the vector �).

Because the neural responses are non-independently driven by some variable, �, only a
subspace of the space spanned by the �� vectors is ever actually occupied by the population.
The � matrix, because it tells us the correlations between all neurons in the population,

� See appendix E.1 for some related and important practical considerations regarding decoding of ����.

TLFeBOOK

198 Chapter 7

provides us with the information we need to determine what that subspace is. When we
find the� vectors in the SVD decomposition, we have characterized that subspace because
those are the orthogonal vectors that span it. Better yet, as discussed previously, we know
which vectors are most important and which least important for defining the subspace.

This information is exactly what is needed in order to determine what functions can be
computed by the particular encoding of � found in the �� population. To see why, let us
use (7.14) to write our estimate of � in matrix form as

�� � �������
�
�
��

or, more simply

�� � ��� (7.16)

where

� � ���

so

����� �
�

�

��������� (7.17)

and

� � �
��
�
�
�
�
�

� �
�
��

��
�
�
�
�
�

� �
���

so

�� �
�

�

������

Notice that � and � in (7.16) are rotated versions of� and� respectively. Specifically,
they are rotated into the coordinate system defined by �. So we can think of � as the
rotation matrix that aligns the first axis of the coordinate system along the dimension with
the greatest variance in the encoding of �, the second axis along the dimension with the
second greatest variance, and so on. As a result, and as shown in appendix E.2, the �

vectors also end up being orthogonal and ordered by importance. That is, they tell us what
can be extracted, and how well it can be extracted, from the neural population.

We can think of the components of � as basis functions of the space that includes
the ensemble of transformations definable on � using the encoding in the population ��.
This is more evident in (7.17) where we write � in summation notation. There it is quite

TLFeBOOK

Analyzing representation and transformation 199

-4
-2

0
2

4

-2

-1

0

1

2

-2

-1.5

-1

-0.5

0

0.5

1

U1
U2

U
3

Figure 7.3
An example of a neural subspace (black line) and its projection onto the� axes (grey lines). This example is
taken from a population with monotonically increasing tuning curves (see section 7.3.1). The different scales of
the axes indicate their relative importance, i.e., the magnitude of the associated singular value.

obvious that ����� at a particular value of � is the neuron firing rates at that value of �
projected onto the �th orthonormal� vector (see figure 7.3). Whichever ���� functions
have reasonably large associated singular values, are exactly the functions that we can do
a good job of extracting from our encoding of the input space, �. Of course, we can also
extract any linear combinations of those ���� functions quite well. But, because these
functions are ordered, the more useful the ‘first’ ���� function is for reconstructing some
transformation, ����, the better we can extract that transformation, ����.

In practice, we can look at the resulting ���� functions and determine what sort of
basis we seem to have. For example, if the ���� look like sines and cosines, we have
a Fourier basis. So from that encoding of �, we can compute any functions that can
be constructed with the sines and cosines available. As we show in the next section, it
is somewhat surprising, but very convenient, that we find recognizable bases when we
analyze realistic neural populations.

Before seeing two examples of this, it is useful to note that introducing noise into the �
matrix does not greatly change this analysis. Rather than think of the neural state vectors as
defining points in the neural space, we can think of them as defining clouds of points, where
the structure of the cloud is determined by the neural noise. Thus the subspace defined by

TLFeBOOK

200 Chapter 7

the encoding of some variable, �, also becomes blurred. So, for instance, in figure 7.3,
the thick dark line would look something like a tube whose boundary is determined by
the magnitude of the noise. Notably, the noise is likely to have a constant variance along
each axis in the � space, so it will have a greater effect on axes with small corresponding
singular values. Thus decoding functions that are linear combinations of ���� functions
with large singular values will also be the most robust to corruption by noise.

Finally, before concluding this section, let us briefly discuss transformations of func-
tion representations. Not surprisingly, the analysis of such transformations is a straight-
forward extension of the analysis of vector transformations. This is true for two reasons.
First, any function representation in the face of noise, will be equivalent to some high-
dimensional vector representation under no noise. Second, we define function represen-
tations as expansions in some orthonormal basis, with only a certain number of terms in
the expansion. Thus, any function in such a representation can be perfectly described by
its finite coefficients, which themselves can be treated as a vector space (as discussed in
section 3.3). We provide more detailed examples of function transformations in the next
chapter, but suffice it to say that, in some ways, they are nothing new.

7.3.1 Linear tuning curves

While it is useful to know the general theory that applies to any population, examining a
specific example shows how the theory can be useful for analyzing real neural systems.
In this section, we present the results from applying the above analysis to a population of
neurons with broad, nearly linear tuning curves, like those seen in the neural integrator
(see figure 7.4). These kinds of neurons are most common in peripheral motor systems, but
are also found in vestibular systems and cortex. We first present an analysis of encoding
a scalar variable, �, and later discuss encoding of a vector, �, which introduces some
additional complexities to the analysis.

As mentioned in section 7.3, in order to get a good idea of the kinds of functions that
can be encoded by a given population, we must look at the ���� functions to see what kind
of basis they form. For the population in figure 7.4, these functions are given by

����� �
�

�

���������

Recall that the ����� are the projection of the population state space onto the orthonormal
� vectors (see figure 7.3). Plotting the first five (i.e., the five with the highest corresponding
singular values) of these functions gives us a good sense of what basis spans the neural
space (see figure 7.5a). It is clear from this figure that this set of functions closely
resembles a polynomial basis because the first function is approximately constant, the
second approximately linear, the third approximately quadratic, etc. One of the most

TLFeBOOK

Analyzing representation and transformation 201

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

fir
in

g
ra

te
 (

H
z)

x

Figure 7.4
Broadly tuned population of neuron tuning functions encoding the scalar �. Fifty of the 200 neurons used are
shown here. These resemble the population of neurons found in the neural integrator (see section 2.3).

common polynomial bases used in mathematics is the Legendre basis, �����, which is
defined over the interval [-1,1] and results from the orthogonalization of ��.9 Scaled
versions of the first five elements of this basis are plotted in figure 7.5b. Surprisingly, the
����� very closely approximate �����.

This analysis highlights an important difference between our analysis of � and a prin-
ciple components analysis (PCA) of the correlation matrix (see footnote 3). In particular,
we find that �����, an approximately constant function, can be well-approximated by this
population (in fact it has the highest singular value). This fact is essential to our earlier
solution to the problem of negative weights that we discussed in section 6.4, because we
rely heavily on decoding a constant value.

Generally, the similarity between ����� and ����� means that this neural population
supports the extraction of functions that can be well-estimated using the standard Legendre
basis. Recall, however, that the ����� functions are ordered by their singular values. Thus,
the higher-order polynomial terms are not as well encoded by our population as the lower-
order ones. So, computing functions that depend strongly on precise high-order terms will
be prone to error.

� One way of expressing the basis is: ����� �
�����

����
�
�

���

��
�� ��

���.

TLFeBOOK

202 Chapter 7

-1 -0.5 0 0.5 1
-4

-2

0

2

4

x
-1 -0.5 0 0.5 1

-4

-2

0

2

4

x

l
1
(x)

l
2
(x)

l
3
(x)

l
4
(x)

l
5
(x)

χ
1

χ
2

χ
3

χ
4

χ
5

a) b)

Figure 7.5
a) The first five ���� functions for the neural population in figure 7.4. b) The first five functions in the Legendre
polynomial basis. These functions have been normalized to match the magnitude of the ����.

In some ways, this is a natural basis to be found from the tuning curves in the
population in figure 7.4. The tuning curves are very broad, and the polynomial basis is
also very broad. These tuning curves are approximately linear, and the more linear basis
functions are also the first ones. The Legendre polynomial basis is ordered by decreasing
linearity so it should not be too surprising that this population supports the functions in
precisely that order. However, none of this would be true if the population did not do a good
job of evenly tiling the input space. If, for example, there were only high gain neurons,
whose slopes were the same sign as their �-intercepts (i.e., if the ‘on’ and ‘off’ sub-
populations were ‘clumped’ near ���� and ���� respectively), we would not expect the
linear term to be better supported than the quadratic term. In this sense, the heterogeneity of
the population helps it support the more natural ordering of the polynomial basis; clumping
would defeat this ordering. Thus, this particular set of ����� functions does not just
depend on the general ‘shape’ of the neuron tuning curves, but also on which neurons
are included in a population, i.e., the degree of heterogeneity (see section 7.5 for more on
the importance of heterogeneity).

The preceding discussion and examples all assume transformations of a scalar vari-
able, �. These results generalize as expected to transformations of a vector, �. However,
there are additional analyses we can perform for vectors of two or more dimensions. When
computing transformations of populations encoding �-dimensional vectors, we must re-
alize that there are additional cross terms (e.g., ����) that introduce variations in the en-
coding that are not present in scalar transformations.10 For example, consider encoding

�� In fact, we found the cross-term decoder in our previous example of multiplying two variables discussed in
section 6.3.1.

TLFeBOOK

Analyzing representation and transformation 203

a 2-dimensional vector with a population like that in figure 7.4. As in the scalar case,
transformations that can be written as polynomial expansions are best supported by this
population. However, the expansions are now of the form

���� � �� � ���� � ���� � ���
�

�
� ���

�

�
� ������ � � � �

�

�������

���

��

���

�������
�
�
����
�

�

where ������ is the highest order term in the transformation and � indexes the �th order
terms in the expansion (all terms whose exponents sum to � are considered �th order terms).
As we can see, the cross terms (i.e., ����

���
�

) are quite common. In order to characterize
how well an arbitrary function can be decoded from a representation of �, we need to know
how big the singular values of these cross terms are as well.

A quick inspection of the singular values of the population reveals that all terms of
a given order have singular values of approximately the same magnitude (see figure 7.6).
Between the singular values of different orders, however, there is a significant change in
magnitude of the values. This means that a given population equally supports transforma-
tions of any given order, �. As well, there is an exponential decay in the magnitude of the
singular values as a function of the order of the polynomial. This means that lower-order
functions are significantly better supported by these kinds of broadly tuned neural popu-
lations. That is, the ability to extract higher-order functions drops more quickly with an
increase in the order of the function than compared to the scalar case.

In fact, we can determine exactly how many singular values, �� , there should be for
each order, �, in the polynomial for a input space of size � by using the equation for
determining �-combinations of a multi-set:

����� �� �
�� �� � ���

���� � ���
� (7.18)

Figure 7.6 shows that this equation roughly predicts the large magnitude changes in
the singular values, especially for the lower singular values. This tells us how many �
basis functions there are for each polynomial order, and that they are (nearly) equally
important to computing transformations of that order. Since the function in (7.18) goes as
approximately ��, we know that computing higher-order terms for high-dimensional input
spaces requires many, many neurons. This is because we need a population of neurons that
can precisely encode many degrees of variation (i.e., have a large number of singular values
significantly higher than the background noise). Of course, this is to be expected—more
complex and higher-dimensional functions take more resources to compute.

TLFeBOOK

204 Chapter 7

2 4 6 8 10 12 14 16 18 20 22
7

8

9

10

11

12

13

14

15

16

singular value

l-combination of multiset

singular values

5 10 15 20 25 30 35
7

8

9

10

11

12

13

14

15

16

singular value

a) b)

Figure 7.6
Singular values compared to �-multi-set predictions for �-dimensional input spaces. In a) � � � in b) � � �.
Clearly the multi-set predictions get worse for higher singular values, especially for small �. Nevertheless, it
does capture the main structure of the more important singular values.

7.3.2 Gaussian tuning curves

Perhaps the most common kind of tuning curve found in the central nervous systems of
mammals is that with ‘bell-shaped’ (or Gaussian or cosine) tuning (see figure 7.7). It is
useful to see how this kind of population differs in the transformations it supports from the
broadly tuned linear population we have already discussed.

Figure 7.8 shows the first five ����� functions for this population. These functions
look quite different from those in figure 7.5. First, there is no linear term. This lack of a
linear term suggests that this population will not do as well supporting a linear transforma-
tion as the previous population. In general, the ����� for this Gaussian population more
closely approximate a Fourier basis than a polynomial basis. The main difference between
this basis and a Fourier basis is that these are defined on a finite domain [-1,1]. If the �-axis
was periodic, the ����� functions are even more similar to the standard Fourier basis. As
a result of getting this particular set of �����, we know that this population supports trans-
formations that can be defined using something like a Fourier series expansion, particularly
if the low frequencies are most important.

To more directly compare the relative strengths of the linear and Gaussian encodings,
we can look directly at how the singular values decline in each case. This is shown for both
populations in figure 7.9. This figure demonstrates that both populations do an equally good
job of encoding the constant term. However, the linear population also encodes the linear
term extremely well, whereas the Gaussian population drops off steeply for its first sine

TLFeBOOK

Analyzing representation and transformation 205

-1 -0.5 0 0.5 1
0

50

100

150

200

250

300

350

400

450

500

x

fir
in

g
ra

te
 (

hz
)

Figure 7.7
Sample tuning curves from the Gaussian tuned population. These are typical cortical tuning curves found, for
example, in area LIP (see section 3.4).

term. After that, however, the Gaussian singular values fall off less quickly than those for
the linear population. Thus higher frequency transformations, those with many ‘wiggles’,
are better encoded by the Gaussian population. Nevertheless, the linear population has
a clear advantage for more linear and low-order transformations. We can understand this
difference as being a result of the fact that populations with broad tuning curves have many
neurons firing at each value of the encoded variable, permitting a good reconstruction of
each value (i.e., a linear reconstruction). In contrast, Gaussian populations have only a few
neurons firing for each value of the variable, making it more difficult to reconstruct a linear
function.

In general, then, we can examine the ����� functions, which span the active state
space of a population, to determine what kinds of transformations are and are not well-
supported by that population. This can be extremely useful for constraining hypotheses
about the kinds of transformations we expect to see in a real neural population once we
have a sense of what kind of encoding is being used. Being able to thus generate constraints
on the function of neural populations based on easily observable properties (tuning curves
in this case), should be a boon to our understanding neurobiological systems.

TLFeBOOK

206 Chapter 7

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

2.5

time (s)

χ
1

χ
2

χ
3

χ
4

χ
5

Figure 7.8
The first five ����� functions for the population in figure 7.7. The resulting basis is like a Fourier basis defined
over a finite interval.

7.4 QUANTIFYING REPRESENTATION

As with transformations, our characterization of neural representation to this point has
primarily consisted of examples. As a result, much of the generality of the approach
has been missed. For this reason we now turn to a more theoretical discussion of neural
representation. The main advantage of taking this abstract point of view is that it allows us
to directly examine some of the general properties of neural representation, thus providing
deeper insight into the representational characterization of neural systems.

The two properties of neural representation that we concern ourselves with are repre-
sentational capacity and robustness, or usefulness, of a representation. In this section we
define these notions explicitly. In section 7.5, we show how they apply to characterizing
neurobiological representation.

7.4.1 Representational capacity

It is natural to suggest that a particular vector � is ‘perfectly’ represented by our encoding
just in case we can (exactly) get � back once we have encoded it. In other words, it makes

TLFeBOOK

Analyzing representation and transformation 207

1 2 3 4 5 6 7 8 9 10 11
12

13

14

15

16

17

18

19

20

21

singular value

gaussian
linear

Figure 7.9
Comparison of the change in magnitude of singular values for the neural populations with linear and Gaussian
tuning curves. These show that linear and low-order transformations are better handled by the linear population
and high frequency transformations are better handled by the Gaussian population. See text for further
discussion.

sense to take a system to be ‘perfectly’ representing a value only when the encoding of that
value can be used (i.e., decoded) to represent that value. We can generalize this intuitive
notion of a ‘perfect’ representation to give us a preliminary measure of representational
capacity. In particular, let us take the capacity of a representation to be the number of values
that can be represented with an error of zero.11 This is clearly different from mean square
error (MSE) as a measure of the goodness of a representation. But, since we minimize MSE
in finding our representation, they are often closely related (i.e., the higher the capacity, the
lower the MSE).

In order to find the capacity of the representation, we begin by writing the difference
between our estimate and the original vector (i.e., the error) as

� � ��� ���

� �������
������

��

� �������
������ ��� (7.19)

�� Of course noise will makes it technically impossible to recover an exact value. This is why we consider the
effects of noise in the next section.

TLFeBOOK

208 Chapter 7

where � is the identity matrix (i.e., ones on the diagonal, zeros elsewhere). We can see from
(7.19) that � � � when

� � ����
������

� (7.20)

More specifically, some particular vector, ��, is perfectly represented when �� � �,
meaning that the �th row of the estimate is equal to the �th row of the identity matrix
�. So, the more rows of the estimate that are equal to their respective identity vectors,
the higher the representational capacity of the network whose tuning curves make up the
matrix, �. More generally, the more similar the rows are to the identity matrix, the better
the representation (in the mean-square sense).

This notion of representational capacity extends to both scalars and functions. Most
obviously, this is because scalars are 1 dimensional vectors. To carry out the same analysis
as above for functions, we can discretize the dimension, �, much as we did for � earlier
(see section 7.2). Note that in both cases, nothing in the analysis depends on our choice
of step size for �� or ��. Letting these go to the limit zero, we see that the above results
follow for continuous valued functions as well. Having defined representational capacity,
it is natural to ask how we can maximize it. We address this question in section 7.5.

7.4.2 Useful representation

First, let us consider how to characterize the space that can be usefully represented by the
set of neuron tuning curves that make up �. By ‘usefully represented’ we mean that the
representation has a reasonably high signal-to-noise ratio (SNR), which is conventionally
taken to mean a SNR of 1 or greater. The reason that the cutoff is usually put at a SNR
of 1 is that any output signal at this SNR has an equal chance of being the result of noise
or transmitted signal. Beyond this point, information transmission becomes very slow, and
thus wasteful of resources (i.e., ‘useless’). No matter what cutoff point we choose, we must
determine the sensitivity of our representation to noise. It is this sensitivity that determines
how good the representation is relative to the chosen cutoff. In order to determine that
sensitivity, we must again consider the noiseless system. That is, we must again look
carefully at the inverse of �, i.e., ���

���� in (7.19).
In particular, the characterization of our estimate of � that depends on finding the

orthogonal basis of �, can be used to characterize the expected error. Recall, then, that we
can write

�� � ��� (7.21)

TLFeBOOK

Analyzing representation and transformation 209

where � � �� and � � ���. This expression allows us to determine that the residual
error is (see appendix E.2)

�� �
�
�
�
�
�

�

�

�

�����
�

�

�� � ��
�

� (7.22)

where �� is the �th singular value and ��
�

is the variance of the Gaussian distributed
noise.

We can see from (7.22) by how much the �th basis function, ��, reduces the error in
our estimate under the influence of noise. Specifically, (7.22) tells us that as the singular
value, ��, approaches the value of the variance of the noise, ��

�
, the corresponding �th

element does not usefully contribute to the representation. This is because the �� term in
(7.22) acts to normalize the effects of the projection onto the non-normalized basis, ��.
When the noise becomes near the magnitude of that normalization term (i.e., SNR = 1 or
less), the projection onto the relevant �� becomes ‘mis-normalized’ and thus contributes
incorrectly to the representation. That is, it will introduce error into the representation.
This tells us that those basis functions whose corresponding singular value is equal to or
smaller than the noise, should not be used if we want a good representation. Recall that
we began this analysis in order to characterize what the ‘useful’ representational space of
some set of neuronal tuning curves is. We now have a precise way of finding this space.
The useful representational space is that space spanned by the basis functions, ��, whose
corresponding singular values, ��, are greater than the variance of the noise, ��

�
, affecting

a single neuron.
So, given this analysis we can appreciate an intimate connection between the number

of singular values we preserve in the � matrix and the sensitivity to noise. In particular,
since any singular values smaller than the amount of noise add little information to our
representation, we can truncate or ignore the singular values and their corresponding basis
functions below the noise level. Thus, rather than including noise when finding the optimal
decoders, we can leave noise out and truncate the singular values appropriately, using just
the remaining singular values to perform the necessary inversion (i.e., to find���). Another
way of saying this is to note that we can perform the pseudo-inverse of the � matrix (which
is likely to be singular) using only the singular values greater than the expected noise. We
can also take the opposite perspective on finding the inverse and directly choose a number
of singular values that we want to preserve. Of course, this determines an assumed noise
level in the encoding. Such predictions can be useful for comparing simulation results to
what is observed in real systems.

Because standard algorithms that implement SVD result in a decreasing ordering of
the singular values, in practice it is easy to establish a ‘cutoff’ value (equal to the variance

TLFeBOOK

210 Chapter 7

of the noise), after which the corresponding bases are simply ignored in the representation.
The exact choice of a cutoff is not crucial, because this decomposition is known to give the
minimal entropy and the lowest error for whatever limited number of singular values are
taken (Watanabe 1965).

Interestingly, it is sometimes the case that truncating the singular values higher than the
expected noise level results in a better decoding. This is especially likely if the population
is being subsequently decoded for only the lowest-order terms. This is because a fairly
unreliable encoding of higher-order terms may actually introduce error into the decoding
of the lower-order functions. If that higher-order information is never used, it can be better
to ignore it all together.

In addition, increasing the dimensionality of the input space (e.g., encoding vectors
instead of scalars) demands more singular values. As demonstrated in figure 7.6, more
singular values are needed to decode the same order function from encodings of higher di-
mensional spaces. These considerations highlight that there are intimate ties between noise,
singular values, the dimensionality of the input space, the usefulness of the representation,
and the functions that can be decoded from the population.

7.5 THE IMPORTANCE OF DIVERSITY

In section 7.4, we identified two ways in which we could measure the ‘goodness’ of
a set of neurons for representing some vector, �. First, we defined the representational
capacity of a population of neurons as the number of perfect representations (i.e., �� � �)
it supports. Second, we showed how to determine the space that could be well-represented
under noisy conditions by a given population of neurons. In this section, we show how the
diversity, or ‘heterogeneity’, of the population of neurons relates to its ability to support
good representations.

When we look at neurobiological systems, heterogeneity is immediately evident (see,
e.g., Miller et al. 1991). Neurons seldom have the same tuning curves or response profile as
one another. However, there are clearly similar neurons. In fact, much of cortex seems to
be organized on the principle of having similar neurons near one another. But, ‘similarity’
and ‘sameness’ are two very different things. Nevertheless, modelers and theoreticians
have often assumed that populations of neurons have exactly the same tuning properties
and/or response profiles. This is done because it often serves to simplify the relevant
mathematics (it is much easier to generalize over sets of the same object, or objects that
vary along a few parameters). As well, systems built from devices with very nearly identical
response characteristics are far more familiar to many modelers and theoreticians. This
is because when it comes to engineered devices, we go to great lengths to manufacture

TLFeBOOK

Analyzing representation and transformation 211

components that meet strict standards. These standards (as the name implies) guarantee
near identity of responses under specified conditions. Thus, the systems that are built
with such components are systems that can be analyzed by assuming each component is
identical. Our purpose in this section is to show that this common assumption is a poor one
in the context of neural representation. In fact, it results in a systematic under-estimation
of the representational abilities of neural populations.

To show this, let us consider the representational capacity and noise tolerance of popu-
lations of leaky integrate-and-fire neurons representing some scalar quantity, �. In order to
compare different assumptions about the similarity of these populations, we consider the
four different kinds of populations shown in figure 7.10. The first two populations depicted
in this figure represent the standard modeling assumptions about neural populations: a) all
the neurons are nearly identical; or b) all the neurons have the same tuning curves shifted
by some fixed amount. The first assumption is perhaps simplest of all: let all of the devices
be (essentially) the same. The second assumption is slightly more sophisticated in that it
takes into account the fact that certain nonlinearities in the devices can be countered by
using the same device to represent different parts of the total range of the variable. Both
of these populations are homogeneous insofar as the properties determining the response
function are very similar across the population. The second two populations are more rea-
sonable assumptions about the distribution of neuron tuning curves: c) the neurons are
evenly spaced over the range of the variable; or d) the neurons are randomly distributed
over the range of the variable. However, in both of these cases, the neurons have hetero-
geneous tuning curves; each of ��� (RC time constant), ���� (absolute refractory period),
�
���	 (bias current), and � (gain) vary widely (although within physiological ranges). In

fact, assuming the even distribution of �-intercepts is not biologically realistic, but as we
show, it provides a suggestion as to what might be the optimal strategy that biological
systems are approximating.

We can now compare each of these distributions using the two previously derived
measures of representational goodness. The results of such a comparison are shown in
figures 7.11 and 7.12. First let us consider figure 7.11, a comparison of representational
capacity. Clearly, the even distribution for both the shifted neurons and the heterogeneous
neurons perform the best, since their representational capacity scales linearly with the
number of neurons. The randomly distributed neurons do not perform as well, and the
neurons from the maximum distribution perform worst of all. The reason that the latter
two populations do not perform as well is that any linearly dependent tuning curves greatly
reduce the representational capacity (as can be seen from (7.20)). Since the randomly
chosen �-intercepts have a chance of being the same (or similar enough), they have
a chance of resulting in linearly dependent curves that reduce the capacity (and this
chance increases with the number of neurons chosen). Since the maximum distribution

TLFeBOOK

212 Chapter 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
no

rm
al

iz
ed

 fi
rin

g
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

no
rm

al
iz

ed
 fi

rin
g

ra
te

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

no
rm

al
iz

ed
 fi

rin
g

ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

no
rm

al
iz

ed
 fi

rin
g

ra
te

a) b)

c) d)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 7.10
Various distributions of � -intercepts in a population of LIF neurons. a) A set of �-intercepts randomly chosen
from a distribution in which the intercepts are near the maximum (i.e., the ‘maximum’ distribution). b) An even
distribution of �-intercepts where all of the neuron parameters are otherwise the same. c) An even distribution of
x-intercepts with randomly chosen neuron parameters. d) A set of �-intercepts randomly chosen from an even
distribution with randomly chosen neuron parameters. Different distributions of �-intercepts that have very
different representational properties as discussed in the main text.

constrains the choice of curves far more than the even distribution (and all curves have
the same maximum firing rate at � � ��), its representational capacity falls off sooner.
The reason the capacity in this distribution actually decreases as the number of neurons
increases is that the chances of any particular neuron not being linearly dependent on some
other neuron decreases as we continue to choose tuning curves from this same, limited
distribution.

In contrast, the population that is randomly chosen from the even distribution fairs
quite well. In fact, in the limit of large numbers of neurons, it should perform the same

TLFeBOOK

Analyzing representation and transformation 213

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

number of neurons

ca
pa

ci
ty

random intercepts
evenly spaced intercepts
maximum distribution
shifted functions

Figure 7.11
Representational capacity as a function of the number of neurons for the different neural populations shown in
figure 7.10. The maximum distribution performs the worst. The two even distributions perform about the same.
The population with randomly selected �-intercepts performs comparably although as the number of neurons
becomes large, redundancy in the random selection becomes more likely and the capacity begins to fluctuate. In
the limit, however, this population will have the same capacity as the evenly distributed population.

with respect to representational capacity as neurons that are forced to be exactly evenly
spaced. As a result, if there was a high cost associated with enforcing a strict even spacing,
relaxing this constraint should not result in much loss in representational capacity. One
way to enforce a strictly even spacing in neural systems, would be to encode the precise
physiological properties of the neurons in each population. This, of course, is a ridiculously
high price for natural systems to pay, especially when an approximation through more-or-
less random selection does nearly as well. Thus the heterogeneous tuning curves found in
natural systems strikes a balance between representational capacity and the kinds of cost
associated with more precise spacing.

Of course, this analysis completely ignores noise, so such conclusions are entirely
preliminary. When we turn to examining the usability of these different representations, the
fact that the shifted function distribution fairs well with respect to capacity is overshadowed
by the fact that it performs significantly worse under noisy conditions. As can be seen from
figure 7.12, both the random and the even distributions of realistic, heterogeneous tuning
curves are more resilient to noise as the number of neurons increases than either of the
other distributions. In particular, they clearly improve at a faster rate.

TLFeBOOK

214 Chapter 7

Worst off, again, is the population whose �-intercepts are chosen from the maximum
distribution. This is because adding more of the (nearly) same nonlinear components will
not help improve any approximation to a linear function (in this case, the linear function
is � � �). We cannot, in other words, take any linear combination of the curves depicted
in figure 7.10a and get a straight line over all values of �. In fact, the reason engineers can
usually assume that adding more of some component will improve the performance of the
system under noise is that the components themselves are quite linear. When this is not the
case, as it clearly isn’t for neurons, adding more of the same component will not help much
at all.

The reason that the shifted neurons eventually perform less well than the more ran-
domly distributed neurons is somewhat more subtle. Clearly, figure 7.12 shows that this
strategy is pretty good for small numbers of neurons (i.e., <100).12 However, as the num-
ber of neurons increases beyond these small numbers, the heterogeneous populations do
significantly better (and improve at a faster rate). Essentially this is because the hetero-
geneous populations provide more flexibility for fitting a curve. Perhaps an analogy will
help. Suppose that we have the task of fitting a set of curved edged blocks inside a straight
edged figure. We have two sets of blocks to choose from. One, the homogeneous set, in
which all of the blocks are of the same shape (though of every different size), and one, the
heterogeneous set, in which the blocks are randomly picked to be of various shapes (of
every different size). Suppose also that the shape in the homogeneous set fits fairly well
into the straight-edged figure and that it is one of the possible shapes in the heterogeneous
set. Now, when we have a few blocks, the homogeneous set will be quite good (by design)
at fitting in the figure. However, in the same case, the heterogeneous set has a low chance
of having members whose shape is the same as the members of the homogeneous set, and
thus only has a few such shapes. When the number of blocks gets sufficiently large, the
homogeneous set still only has one kind of shape. In contrast, the heterogeneous set has all
kinds of shapes, many of which are going to be the same as that in the homogeneous set.
Thus, the heterogeneous set can fit the straight edged shape at least as well as the homoge-
neous set and it can probably do even better since one of the many other shapes will likely

�� We should note here that for the shifted population, we chose a neuron response curve that gave the best
answer (i.e., best noise characteristics and representational capacity). Many realistic response curves when shifted
this way are even worse on this measure than the maximum distribution population. This is because they are
more linear over the range of �, but still highly nonlinear when the neurons ‘turn on’. As a result, the beginning
nonlinearity cannot be compensated for by the remaining, fairly linear response curve. Since we are doing a linear
decoding, we can only multiply any neurons in the population by a constant when using them to approximate some
function (a line in this case). If we pick a large constant, the error from the nonlinearity will be large. If we pick a
small constant, the error from the nonlinearity will be small, but so will the correction to our estimate of the line.
This is not true for the population we used because the tuning curves continuously get shallower over the range
of �. In sum, the strategy of ‘shifting’ the exact same function over the range of � is only successful for particular
functions, and it is unsuccessful for many functions that look like realistic neuron tuning curves.

TLFeBOOK

Analyzing representation and transformation 215

10
1

10
2

10
3

10-3

10-2

10-1

100

101

number of neurons

er
ro

r

random intercepts
evenly spaced intercepts
maximum distribution
shifted functions

Figure 7.12
The effect of �-intercept distribution on error. Neurons with more diverse �-intercepts are significantly better for
estimating � than the same number of neurons all with the same �-intercept. As well, the heterogeneous
populations eventually outperform, and improve at a faster rate than, the shifted population. On average,
choosing random intercepts from a distribution approaches the enforced even spacing of intercepts and so the
two heterogeneous populations do nearly equally well (results averaged over 15 runs).

do a good job of filling in the small holes left by that (homogeneous) shape. This analogy
gives a sense of how heterogeneity can be uniquely well-exploited to fit desired functional
shapes.

Notice that there is again a clear difference between the two heterogeneous populations
as well. As we see from figure 7.12, a population with perfectly evenly spaced �-intercepts
has consistently lower error than a population whose �-intercepts are randomly chosen
from an even distribution over the range of � (all else being equal). However, the rate of
decrease in the error is the same for both populations. But, the random population is far
more neurobiologically plausible. So, while the evenly spaced distribution is useful for
showing a lower bound on the error, it is not likely to be found in real neural systems.
Again, the reason is likely that it is far too costly to worry about ‘engineering’ precisely
spaced �-intercepts when random ones do nearly as well. So, the heterogeneity found in
real neural populations is both easy to generate and provides for very good representations.

TLFeBOOK

216 Chapter 7

Notice also that our analysis in section 7.3 provides evidence for the importance of
heterogeneity to transformations as well. The heterogeneity, or lack thereof, in a given
neural population greatly affects the ability of that population to support certain kinds
of transformations. In particular, a homogeneous population is one that acts much like
the orthogonal basis discussed in section 7.1. That is, it assumes that there is a particular
structure to the space to be represented.

This suggests two things: 1) given the observed heterogeneity in real systems, they
are likely able to compute a wide variety of functions very well; and 2) approximating
real systems by using multiple instances of the same tuning curve is a bad idea since
such systems will not support the variety of transformations that are supported in real
systems. Rather, homogeneous approximations will ‘clump’ the encoding of the input
space in such a way as to seriously alter the decodable transformations. A less biased
tiling of the input space comes for free with heterogeneous response properties. This has
important consequences for the kind of information reported by experimentalists about
the systems they study. Typically, a few of the ‘best’ neurons are plotted, analyzed, and
discussed in detail in research reports and journal articles. But, what is important for getting
a sense of both the representational and transformational power of the system in general,
is the distribution of the tuning curves in the whole population. It is that distribution
that determines the goodness of the representation and the possible transformations it can
support. So, as theoretically troublesome and empirically messy as heterogeneity may be
at times, it is an important property of neurobiological systems that should not be ignored.

Despite such considerations, an emphasis on the importance of heterogeneity for good
representations is scarce in neuroscience. However, it is clear that along with notions
like orthogonality and overcompleteness, heterogeneity is an important representational
category. The heterogeneous population is clearly overcomplete, but so are the shifted and
maximum distribution populations. The fact that it is heterogeneous is what matters to
good representational capacity, improved noise tolerance, and its ability to support the
appropriate transformations.

7.6 SUMMARY

In order to characterize neural representation and transformation generally, we began
by comparing the standard algebraic notion of a complete orthogonal basis to the less-
typical notion of an overcomplete basis. We showed why overcomplete bases are generally
useful for unbaised representation in systems subject to noise. We then described the very
powerful technique for analyzing singular matrices called singular value decomposition
(SVD). We showed that applying this technique to the � matrix resulted in the identification

TLFeBOOK

Analyzing representation and transformation 217

of an orthogonal basis, �, spanning the space represented by the neurons in a given
population. As well, it identifies the diagonal matrix � of singular values that is a natural
measure of the importance of the corresponding basis vector.

We then employed these techniques to determine how well, and what, transformations
could be supported by a given neural population. We showed how the tuning curves of
the population determined what transformations could be decoded using that population.
Interestingly, for both the linear and Gaussian tuning curves we examined, a familiar set of
basis functions emerged.

We then turned to the task of understanding the form of neural representation. We used
the preceding characterization to define two general properties of neural representation,
representational capacity and usability. By considering four different populations of LIF
neurons, we demonstrated that the population that most closely mirrored those found in
real systems does a good job of maximizing both of these properties, while minimizing
demands for constructing such a population. In particular, we argued that the heterogene-
ity of the populations was responsible for these desirable results. Thus, heterogeneity is an
important property to consider when characterizing neural representation and transforma-
tion.

TLFeBOOK

218 Chapter 7

This page intentionally left blank

TLFeBOOK

8 Dynamic transformations

To this point, we have characterized both linear and nonlinear transformations of represen-
tations in neurobiological systems. In classical cognitive science, this is all that is needed
to completely understand a cognitive system (Newell 1990). However, it is increasingly
common for contemporary cognitive scientists to argue that we must add one more ingre-
dient to any theory attempting to provide a satisfactory explanation of cognitive systems;
dynamics. Not only do we need to know that a system can get from one state to another,
we also need to know how long it takes to do so. In order for a system to successfully per-
form some functions (e.g., catching a baseball), it must perform them within a certain time
frame (e.g., before the ball has moved out of range). So, if we want to know which func-
tions a system can actually perform in the real world, we must characterize the system’s
dynamics.

While it may be understandable that dynamics was initially ignored by those studying
cognitive systems,1 it would be strange, indeed, to leave dynamics out of the study of neu-
robiological systems. Even the simplest nervous systems performing the simplest functions
demand temporal characterizations (e.g., locomotion, digestion, sensing, evasion, stalking,
mating, etc.). As a result, single neurons have almost always been modeled by neurosci-
entists as essentially dynamic systems (see Bower and Beeman 1995, or chapter 4 for a
review). As well, electrophysiologists analyze cellular responses in terms of ‘onsets’, ‘la-
tencies’, ‘stimulus intervals’, ‘steady states’, ‘decays’, etc.—these are all terms describing
the temporal properties of a neuron’s response. The fact is, the systems under study in neu-
robiology are dynamic systems and as such they make it very difficult to ignore time. The
fundamental importance of time to understanding neural systems is not surprising as these
are systems that have evolved in dynamic environments to which their own dynamics must
be closely matched; otherwise they would not be here to study.

Engineers have also had a longstanding interest in understanding dynamic systems. In
order to build something that works in the real world, the dynamics of the real world must
be taken into account. For this reason, many useful quantitative tools have been developed
by mathematicians, physicists, and engineers for the study of dynamics. Chief amongst
these is linear systems theory, the study of ‘simple’ or ‘simplified’ dynamic systems. These
systems are simple precisely because they are linear. Qualitatively speaking, however, they
can be highly complex, sophisticated, and very useful kinds of systems to understand.
In fact, very few real-world systems are truly linear. But, in practice, many are well-

� Dynamics may have been initially ignored because classical cognitive science relied heavily on the ‘mind as
computer’ metaphor. For Turing machines, which were taken to define the class of computers, time is utterly
irrelevant.

TLFeBOOK

220 Chapter 8

approximated by a linear model. As a result, linear systems theory has found broad
application, ranging over areas as diverse as economics, circuit analysis, aeronautics,
communications, and robotics. It has, in fact, been applied to nearly every area of study
by mechanical, electrical, systems, chemical, and industrial engineers.

An important subfield in linear systems theory is linear control theory. Linear sys-
tems theory provides a means of analyzing linear systems, whereas linear control theory
provides a means of designing and synthesizing such systems. Linear control theory is
concerned with notions like the stability, controllability, invertability, and observability of
linear systems. In order for such notions to be of much use, it is generally necessary to
perform a detailed analysis of the system under consideration. Like neurobiologists, then,
control theorists need to analyze real-world dynamic systems. Perhaps these disciplines
can share an approach to understanding such systems and learn from each other in the
process.

The fact that control theorists and neurobiologists have many of the same interests has
not gone unnoticed. Perhaps most famously, the interdisciplinary movement founded in
the early 1940s known as ‘cybernetics’ was based on precisely this insight (Weiner 1948;
Rosenblueth et al. 1943). Of the more well-known figures in the movement, two were
neurophysiologists (Warren McCulloch and Arturo Rosenblueth), one a mathematicians
(Norbert Weiner) and one an engineer (Julian Forrester). Cybernetics was inspired by the
observation that closed-loop negative feedback could be used to guide a system to its goal.
Furthermore, cyberneticists claimed that living systems were goal-oriented systems. Thus,
closed-loop control, it was argued, should be a good way to understand the behavior
of living systems. However, much of the focus of cybernetics was on characterizing
only the output behavior of systems, not their internal processes. At the time, control
theory (now deemed ‘classical’ control theory) focused solely on the external, input/output
description of a system. With the so-called ‘cognitive revolution’ of the mid-1970s, interest
in cybernetics waned due in part to its close association with behaviorism (also focused
solely on input/output descriptions), which fell out of intellectual favor.

In the 1960s, many of the limitations of classical control theory were rectified with
the introduction of what is known as ‘modern’ control theory (Lewis 1992). Modern
control theory introduced the notion of an internal system description; i.e., one that
includes system state variables as part of the description. It is interesting that with the
cognitive revolution researchers interested in the behavior of living systems realized they
needed to ‘look inside’ the systems they were studying and, at about the same time,
researchers interested in controlling engineered systems began to ‘look inside’ as well.
However, most of those interested in human behavior adopted the digital computer as
a metaphor for the workings of the mind. The ubiquity of this metaphor has served to
distance the cognitive sciences from modern control theory. Nevertheless, modern control

TLFeBOOK

Dynamic transformations 221

theory offers tools better suited than computational theory to understanding biological
systems as fundamentally temporal, dynamic systems operating in changing, uncertain
environments. For this reason, we adopt modern control theory as a means of understanding
neurobiological systems.

After a brief introduction to modern control theory, we spend the remainder of the
chapter developing successively more involved biological examples. These examples show
how control theory is a natural ally of the account of representation and transformation
developed so far.

8.1 CONTROL THEORY AND NEURAL MODELS

8.1.1 Introduction to control theory

There are two equations that effectively summarize linear control theory:

����� � ����� ������ (8.1)

���� � ����� ������� (8.2)

These equations constitute what is known as the internal description of a linear system.
Together, they are often called the state equations of a system because the vector ����
consists of variables that together describe the (internal) state of the system. It is the
dynamics of these variables that is of the most interest. This is because the state vector,
����, serves to summarize the effects of all past input. Thus, all future output depends only
on the current value of the state vector and the future input. In a sense, then, the state vector
is a bridge between the past input and the future output.

The remaining variables in these equations are understood as follows (see figure 8.1):
���� is the input or control vector, ���� is the output vector, � is the dynamics matrix,
� is the input matrix, � is the output or sensor matrix, and � is the feedthrough matrix.
The dimensions of each of the vectors can be different, but these dimensions determine the
corresponding matrix dimensions. Thus, there can be multiple inputs, outputs, and state
variables, whose interactions are determined by the elements of the matrices.

The system depicted in figure 8.1 is called time-invariant because none of the matrices
are functions of time. This means that the parameters controlling the dynamics of the
system are taken not to change over the period of interest. This is often a useful simplifying
assumption, but it is clearly unrealistic in describing neurobiological systems. We discuss
both time-invariant and time-varying systems (see section 8.2). One assumption that we
do not relax is that the systems we are interested in are lumped systems. A lumped system
is one whose state variables are finite. A system whose state has infinitely many variables

TLFeBOOK

222 Chapter 8

A

B

D

C
x(t)x(t)u(t) y(t)

∫
.

Figure 8.1
A generic block diagram for a time-invariant linear system showing the elements of equations (8.1) and (8.2). In
this diagram ���� is the state vector, ���� is the input or control vector, ���� is the output vector, � is the
dynamics matrix, � is the input matrix, � is the output or sensor matrix, and� is the feedthrough matrix.

is called a distributed system. Of course, any distributed system can be arbitrarily well
approximated by a sufficiently large lumped system. The examples we deal with are all
reasonably small lumped systems.

8.1.2 A control theoretic description of neural populations

Given the ubiquity of nonlinear transformations in neurobiological systems, it is far from
clear that such linear analyses will be of use. This, in fact, is not a problem unique
to neurobiological systems. Because there is no general theory for analyzing nonlinear
systems, the study of such systems is generally based on linear systems theory. We
adopt this same strategy. So, while we consider both linear and nonlinear neurobiological
systems, we always base our analyses on linear control theory.

The means by which we integrate control theory and our previous analyses of represen-
tation and transformation is captured by the third principle of neural engineering: neural
dynamics can be characterized by taking neural representations to be control theoretic state
variables. In other words, elements of the state vector, �, (i.e., the state variables) just are
the representations we find in neural populations. And, the relations between these vari-
ables (as defined by the system matrices) are the transformations implemented by these
populations. However, we cannot take the control theoretic descriptions of the relations
between variables at face value. Rather, we need to relate the intrinsic dynamics of neural
populations to the standard control theoretic characterization. This allows for a ‘transla-
tion’ between standard control theory and a neurally relevant system description.

In figure 8.1, there are four matrices and a transfer function. In order for this to be a
dynamic system, the transfer function (integration in this figure) needs to be a function of

TLFeBOOK

Dynamic transformations 223

time. Given how we have so far characterized neural function, there are two possibilities
for transfer functions in a neural population; that is, there are two parts of the system that
are inherently dynamic. One is the synaptic filter, ����, and the other is the soma voltage,
� ���. Surprisingly, we can show that the synaptic filter generally dominates the dynamics
of the cellular response as a whole (see appendix F.1).

As mentioned earlier, a good approximation to synaptic dynamics is given by (see
section 4.4.2)2

���� �
�

�
����� � (8.3)

where � is the synaptic time constant. This function describes the postsynaptic current
(PSC) produced by the arrival of a spike and, of course, it is the linear decoder we discussed
extensively in chapter 4. So, we need to characterize the dynamics of neural systems with
respect to this decoder.

We can begin by drawing a ‘neural’ control diagram (see figure 8.2), like that in figure
8.1. This diagram is missing the feedthrough and output matrices from figure 8.1. However,
in the case of a neural system, where each such subsystem describes a single population,
both the feedthrough matrix and the output matrix can be taken to be incorporated into the
input matrix of a subsequent population. Thus, these two matrices need not be explicitly
considered here. Note also that the original integration is replaced by ����, the Laplace
transform of the synaptic dynamics, ����, in equation (8.3).

It is very convenient to use the Laplace transform when characterizing dynamics
with differential equations. Essentially, this transform provides a means of writing and
manipulating differential equations algebraically. Much like the Fourier transform, the
independent variable for the Laplace transform, �, can be thought of as frequency. The
following equation defines the Laplace transform:

������� �

�
�

�

��������	�

� ����

Here, ���� is in the time domain and ���� is in the frequency domain.
Taking the Laplace transform of the time-invariant internal description, equations (8.1)

and (8.2), gives

� This is a significant simplification, though a good approximation to true PSCs. In particular, it ignores the
rapid (yet finite) rise in the observed PSC. We have used various forms for this filter in numerical experiments
and have found that including a finite rise time tends to improve the dynamics of the simulation. However, the
increased complexity of analyzing more faithful models serves to obscure the insights that can be gained by (at
least initially) considering a simpler model. Nevertheless, similar techniques can be employed to analyze other
synaptic models.

TLFeBOOK

224 Chapter 8

A'

B'
u(t) x(t)

h(s)

Figure 8.2
A generic neural population as a linear system. Note that the feedthrough matrix and output matrix are not
included as part of the figure because both can be incorporated into the input matrix of the subsequent
population. �� and �� are the neural dynamics and neural input matrices respectively. The transfer function,
����, is the Laplace transform of the synaptic dynamics.

����� � ����� ������ (8.4)

���� � ����� ������� (8.5)

Given figure 8.2, we can see that equation (8.5) will always be ���� � ���� for a neural
subsystem, so we focus on equation (8.4). The system described by figure 8.2 can be
written as

���� � ���� � ������� ��������

or, in the frequency domain,

���� � ���� ������� �������� � (8.6)

The Laplace transform, ����, of ���� as given by (8.3) is

���� �
�

� � ��
�

Therefore,

���� �
�

� � ��
������� ��������

�
�
��

��� � �
������� �������� �

So,

���� � ������ � �
�� ������� ��������

����� � �
�� ���

� �� ���� � �
��������� (8.7)

TLFeBOOK

Dynamic transformations 225

Equating the right-hand sides of (8.4) and (8.7) defines the relation between the dynamics
and input matrices for the standard control system and the neural control system. Namely,

�
�
� ��� � (8.8)

�
� � ��� (8.9)

where � is the appropriately dimensioned identity matrix.
As simple as these equations are, given a control system in the standard form of figure

8.1, we can use them to determine the equivalent neural system in the standard form of
figure 8.2. We present a detailed example of this in section 8.2, where we re-examine the
neural integrator previously presented in sections 2.3 and 5.3.

8.1.3 Revisiting levels of analysis

Before examining specific examples that use this relation, let us consider how the preceding
analysis can help articulate the theory as it has been presented so far. Recall that in chapter
2 we introduced the distinction between basic representations (i.e., neural activities) and
higher-level representations (i.e., encoded physical properties). In this section we examine
how higher-level and basic representations can be related using the control theoretic
approach just discussed. As well, we show how to move easily between descriptions
employing these different levels of representation. As a result, we characterize a generic
neural subsystem that can be combined to construct large, complex models with various
degrees of neural realism (possibly within the same model).

To understand the subsequent discussion, a few comments on notation are in order.
First, we adopt the conventions from linear control theory that, in systems diagrams: 1)
boxes denote transfer functions (which define the dynamics of the system); 2) circles
denote matrices that multiply their inputs; and 3) intersecting lines indicate addition. We
also introduce a convention to use a rightward pointing triangle to indicate a function of
the input that may be nonlinear. As well, we use Greek superscripts to index populations,
and Roman subscripts to index neurons within a population.

Based on the discussion in the previous section, we can draw a standard subsystem
at the basic level (see figure 8.3). Here we have a system that is consistent with typical
neuroscientific descriptions of neuron function. Spike trains,

�
�
Æ���� ����, from various

preceding populations,�, arrive at the synaptic cleft and, by the action of neurotransmitters,
induce a current change,���

�� ����, in the postsynaptic dendrites of neurons in population�.
These resulting postsynaptic currents (PSCs) are filtered versions of the presynaptic spike
train, where the filter is well-approximated by ��� � 	����� . Either at the time of filtering
or due to various dendritic processes, these PSCs can have varying degrees of effect on the
changes in the somatic current,
�

� ���. The synaptic weights, ���
�� , model this effect. There

TLFeBOOK

226 Chapter 8

1

Σδα(t-tin)n

...

...

Ji
α
(t)

synaptic
weights

soma1

PSCs

dendrites
{

ωαβij

ωαβ'ij

Gi
α
[.]

Σδβ(t-tjn)n

Σδβ'(t-tjn)n

1+sτij
αβ'

1+sτij
αβ

Figure 8.3
The basic-level analysis as a system diagram. Spike trains from presynaptic neurons are shown on the left and
the output spike train is shown on the right. The latter is the result of weighted dendritic PSCs that are passed
through a spiking nonlinearity in the soma. See text for further explanation.

is then a highly nonlinear process,��
� ���, which can be modeled in any number of ways (see

section 4.5), that results in a series of output spikes,
�

� Æ
���� ����. These spikes travel to

subsequent neural populations. Of course, subsequent populations can be described using
this same diagram, since the inputs and outputs are both neural spike trains. Thus we can
build up basic-level descriptions of complex neural systems using combinations of this
subsystem.

The main problem with adopting solely this level of description is that there is enor-
mous flexibility in choosing weight matrices. This is where the ability to relate high-level
transformations to weight matrices eventually becomes important. But suppose, for the
time being, that we did not know how to relate weight matrices to higher-level descrip-
tions. We still might have a good idea of what the high-level transformations are in a neural
system (recall the vestibular system example in section 6.5). In such a case we would be
in a good position to generate a control theoretic system description, since we would know
both the dynamics and the representations in the system. Figure 8.4 shows the result of
such a characterization.

At this level of description, we define the input to the subsystem as some (possibly
nonlinear) function of the variables we take to be received by the neural system. This input
is filtered by the population filters, ������, and may also be transformed in some manner
by ���. Notably, ��� can be either the input matrix or a dynamics matrix, depending
on the origin of the signal, ����� (i.e., it will be the dynamics matrix for � � � and
an input matrix otherwise). The result is the variable, �����, that is represented by the
current neural population. This signal is then sent to subsequent populations that can be
characterized using this same high-level description.

TLFeBOOK

Dynamic transformations 227

M
αβ

M
αβ'

1

x
α
(t)

1

F[x
αβ
(t)]

F'[x
αβ'
(t)]

...

...

...

F'[.]

F[.]
1+sταβ

1+sταβ'
x
αβ'
(t)

x
αβ
(t)

Figure 8.4
The higher-level analysis as a system diagram. The input from previous populations is decoded, passed through
the population filter, and then transformed by the relevant control matrices. Note that we can introduce the���

matrices and the ������ filters in any order because both are linear transformations. We have chosen to write
the matrix second, in order to be consistent with the basic-level diagram above. See text for further explanation.

Given our previous characterizations of both representation and transformation, we
have the tools to reconcile these two descriptions (see figure 8.5). Essentially, this figure
combines figures 8.3 and 8.4 and provides more detail regarding the origin of the synaptic
weights. In figure 8.5, the solid-line boxes highlight the dendritic components, which
have been separated into postsynaptic filtering by the PSCs, and the synaptic weights.
The weights themselves are determined by three matrices: 1) the decoding matrix whose
elements are the decoders, ���

� , for some (possibly nonlinear) function, � , of the signal,
�
����, that comes from a preceding population, �; 2) the encoding matrix whose elements

are the encoders, ��
�

� , for this population; and 3) the higher-level transformation matrix,
�

��, that defines the transformations relating populations � and �. The most significant
change between this and the preceding two figures is that the nonlinear functions, � , are
decoded after being filtered by the PSCs. Because the decodings and filtering are all linear,
they can be written in any order.

As a brief review, it is useful to relate this figure to the equations we have presented so
far. First, consider the expression for the spike generating mechanism for neurons, �, in the
population �:

�

�

Æ���� ���� � �� ��
�
� ���� �

As usual, we take the somatic current, ��
� ���, to be determined by a dot product of the

TLFeBOOK

228 Chapter 8

M
αβ

M
αβ'

1
φj
Fβ

φj
Fβ'

φi
α Gi[.]

...

...

...

...

Ji
α
(t)

synaptic weights

soma

higher-level
description

basic-level description

1

∼

PSCs

dendrites

F
αβ
[x
β
(t)]

F
αβ'
[x
β'
(t)]1+sτij

Σδα(t-tin)n

Σδβ(t-tjn)n

Σδβ'(t-tjn)n
αβ'

1+sτij
αβ

Figure 8.5
A generic neural population systems diagram. This figure is a combination of the higher-level and basic-level
system diagrams (denoted by dotted lines). The solid-line boxes highlight the dendritic elements. The synaptic
weights are shown decomposed into the relevant matrices. See text for further discussion.

neuron’s encoding vector with the variable being represented by the population:

��� ��� � ��

�
��
�

� �
����
�
�

� �� ����� � (8.10)

Now, to determine an expression for �����, we can look to equation (8.6) and see that we
can generalize that expression to be

�
���� �

�
�

���������
�
�����

So,

�
���� �

�
�

������ ����
�
�����

or, because we need not constrain ourselves to linear systems, we can write more generally

�
���� �

�
�

������ ������� ��������

Thus,��� is the input matrix relating the output of population 	 to the state of population
�. As mentioned earlier, the dynamics matrix,��, in (8.6) is simply the special case,���.

TLFeBOOK

Dynamic transformations 229

Given the work of the previous two chapters, we can compute (nonlinear) functions,
� , of the preceding population’s input as follows:

��� ������� �
�

�

�
���
�

�

���

�
��
�� ��� � Æ��� �

�
����

�
�

�����

�
���
� �

��
�� ��� �

�
�����

where �
�
��� indicates the �th spike time from population � to the current population that

goes from neuron � in � to � in 	. Similarly, ����� ��� indicates the PSC in the dendrite of

neuron � of 	 to which neuron � in � projects. The decoders, ����
� are the optimal linear

decoders for the function, ���, of the output of population � that projects to 	. We can
now substitute our expression for ����� into (8.10):

�� ��� � 	�

�
��
�

�

�
�

������ ������� �������

�
�

�
� 	�
�
� (8.11)

� 	�

�
��
�

�

�
�����

������ �����
���
� �

��
�� ��� �

�
����

�
�

�
� 	�
�
� � (8.12)

As usual, we can simplify this expression by constructing the connections weights:

�
��
�� �

�
��
�

��
���

���
�

�
�
�

Note, however, that in (8.12) we now have two linear filters, ������ and �
��
�� ���, even

though they are of the same form. Conveniently, they can be combined to give a third filter,

��
�� ��� � ������ � ����� ���.3 This gives a compact expression for the soma current:

�� ��� � 	�
�
�����

�
��
��

��
�� ��� �

�
���� �
� 	�
�

� �

Fortunately, we can simplify this expression while preserving the expected behavior and
greatly reducing the computational load. To begin, we note that the convolution of the

� In fact, we could avoid there being two linear filters by taking ���� to be the weighted neuronal spike trains
themselves. Doing so means that � ������ �

�
�� �

�
� Æ�� � ����, so that only one ���� would be present in

(8.12). This definition of ���� is not obviously consistent with the definition of neural representation presented
in chapter 4. However, given that real neural spikes are not infinitely thin delta functions, these two ways of
understanding ���� approach one another for large populations. Most importantly of all, both approaches work
very well for constructing large-scale models.

TLFeBOOK

230 Chapter 8

two filters, ����, results in a filter, ����, that looks much like the original ����. The main
difference is that there is a larger attenuation of very high frequency information by ����

(i.e., it does not have an infinitely steep onset, as ���� does). Nevertheless, we can use the
original ���� in place of the ���� and get similar behavior. In fact, the ���� filter generally
serves to make the system less stable over time, so designing stable systems using this
filter is more difficult than using the ���� filter. As well, this substitution guarantees that
the previous analyses we have done using ���� as the filter will apply to any systems we
model.

In addition to this substitution, we can gain significant computational savings by
ignoring, at least for the time being, the complexity introduced to the system model by
the subscripts � and � on the filter. In fact, when we run simulations at the higher-level,
we have no choice but to ignore these subscripts since we can only define one ���� per
population. In other words we must assume that the filters ����� ��� between all neurons in
� and all neurons in � are the same. For simplicity, we adopt this assumption at the basic
level as well. We do, however, allow that the filters on the projections from various � to �

may be different.
Despite this simplification in practice, the equations and the systems diagrams are

general. That is, they are equally suited to complex and simple applications. As a result
of these simplifications, the expression for the soma current becomes

��
� ��� � ��

�

�����

	
��
�� ���� �

�
���� � �� ���	

�

Although the somewhat Baroque notation may serve to obscure how to apply the theory, it
should make it clear how flexible the theory can be.

8.1.4 Three principles of neural engineering quantified

In chapter 1, we mentioned that in order for the principles of neural engineering to
underwrite a theory of neurobiology, they must be quantitatively expressed. We are now in
a position to do just that. As we have already shown the relation between scalars, vectors,
and functions, we only present these principles as they relate to vectors.

Principle 1

Neural representations are defined by the combination of nonlinear encoding and weighted
linear decoding.
Neural encoding is defined by

�

�

Æ��� ���� � ��

�
��

�
�������

�

� ����	

�

�

TLFeBOOK

Dynamic transformations 231

Neural decoding is defined by

����� �
�

�

���������
�

�
�

where

�������� �
�

�

����� � Æ��� ����

�
�

�

����� �����

In both cases, � indexes neurons in population and � indexes spikes transmitted from one
population to another.

Principle 2

Transformations of neural representations are functions of the variable that is represented
by the population. Transformations are determined using an alternately weighted linear
decoding.
Assuming the encoding in principle 1, we can estimate a function of ���� as

�������� �
�

�

���������
�
� �

where, �������� is defined as before. The only difference between this decoding and the
representational decoding are the decoders themselves, ��� .

Principle 3

Neural dynamics are characterized by considering neural representations as control theo-
retic state variables. Thus, the dynamics of neurobiological systems can be analyzed using
control theory.
Allowing ���� to be a state variable and ���� to be the input, we have the following general
expression for the encoding:

�

�

Æ��� ���� � 	�

�

�

�
��� ������ � ��

�
���� ��

�
������

�
�

� ������

�
�

To get a better understanding of how these principles can be used together, let us
consider a simple example in some detail.

TLFeBOOK

232 Chapter 8

8.2 AN EXAMPLE: CONTROLLING EYE POSITION

In sections 2.3 and 5.3 we discussed the relevant anatomy and physiology of the areas
of the brainstem implicated in controlling eye position. Here, we adopt the same system
description and design specification and focus on the addition of dynamics to this network.

As mentioned in 2.3, this area of the brain is often called the ‘neural integrator’. The
reason is simple: it acts to integrate a velocity command, ����, and produce a displacement
command, ����, that is sent to the motor neurons controlling eye position, i.e., ���� ��
������. The evidence that the nuclei prepositus hypoglossi (NPH) contains a neural

integrator for horizontal eye position is impressively consistent (see Fukushima et al. 1992
for a review).

However, this system does not act as a perfect integrator. In a set of psychophysical
experiments, Hess et al. (1985) show that the drift of horizontal eye position in the dark
in humans, has a time constant of between 20 s and ~100 s, with a mean of 70 s. They
suggest that drift could be understood as being comprised of two components: gaze-
dependent drift, which was centripetal (towards the center); and ‘constant drift’ which
was unidirectional. Together, these two components result either in centripetal drift or
unidirectional drift that progressively slows as eye position moves across center. Notably,
the eye traces in these experiments show many small corrective saccades, so it is likely that
systems other than just the NPH integrator are responsible for this behavior. Nevertheless,
these experiments suggest that the integrator is quite good, being able to help sustain an
eye displacement for long periods of time. Even in the much simpler eye position integrator
found in the goldfish (~40 neurons), time constants of about 10 s have been observed
(Seung et al. 2000). Work in this system has shown that the integrating behavior cannot be
entirely explained by molecular mechanisms (Askay et al. 2001). So, network structure is
central to understanding this system’s behavior.

While generating networks that perform reasonably good integration using spiking
neurons is not novel (see, e.g., Seung and Sompolinsky 1993), it provides an excellent,
simple example that relies on all three principles we have discussed. As well, large parts
of the ensuing discussion do not focus on horizontal eye position integration in particular,
but rather consider the more general problem of constructing integrators. This is partly
motivated by the fact that building integrators has long been recognized as a difficult, yet
central, problem in analog computing. It is also motivated by the importance of stability,
noise reduction, and other computational properties of integrators that are essential for
complex behavior in neural systems (see section 6.5 for further discussion). For this reason,
we present a characterization of integration that applies quite broadly. Thus, success on
this simple example both validates the approach, and sets the stage for the more complex
models we subsequently consider (see section 8.3).

TLFeBOOK

Dynamic transformations 233

x(t)u(t)

A'

B'

Figure 8.6
Higher-level block diagram for the neural integrator. For clarity, we use the state variable, ����, in place of the
transfer function ���� to designate the population.

8.2.1 Implementation

The basic system we are interested in implementing is shown in figure 8.6. The network
consists of a recurrently connected population, like that shown in figure 8.2, receiving
a velocity command, ����. It has long been known that this kind of feedback is central
to implementing an integrator in an analog circuit. It has also long been known that
integration is a difficult problem to solve using analog devices because of the high demands
on precision. So, despite the apparent simplicity of the integrator, a close inspection of this
circuit reveals a number of interesting properties of neural systems modeled in this way. As
mentioned, these properties are relevant for modeling many more complex, and interesting
circuits.

We can express the dynamics of an integrator in standard control theoretic form as

�� � ����� ������ (8.13)

���� �
�

�
������ ������� � (8.14)

where � � 	 and � � �. Previously, we derived equations (8.8) and (8.9), that show
the relation between standard control theoretic description and one which is amenable to
neural dynamics. Using these equations, we find the equivalent neural control matrices in
figure 8.6, �� and ��, to be

�� � �

�� � ��

where � is the time constant of the PSC of the population representing ����.
In order to use this high-level description of the dynamics in a model, we need to

integrate it with the neural representation we have defined for this system. This is a specific
example of the general derivation provided in section 8.1.3. First, consider the time domain

TLFeBOOK

234 Chapter 8

description of the system in figure 8.6:

���� � ���� � ������� �������� � (8.15)

Writing this convolution explicitly gives

���� �

� �

��

���� ��� �������� ��������� ���� (8.16)

Substituting the activity population representation into (8.16) for ����� gives

���� �

� �

��

���� ���

�
��
�
�

	���
��
�

� ��������

�
���� (8.17)

which means that the spiking population representation is

���� �

� �

��

���� ���

�
����

���

���� � ����

�
� ��������

�
� ���� (8.18)

So, depending on our preferred degree of simulation realism, we can use any of equations
(8.16), (8.17), or (8.18) as expressions for the dynamics of ����. The first equation models
the dynamics of the high-level variable, the second models the dynamics over rate neurons
and the third models the dynamics using spiking neurons. Let us consider generating
a spiking network, but using (8.17) as it makes the derivation simpler. As well, we
demonstrate how to mixing levels in one model by leaving the input ���� as a high-level
variable.

We proceed as follows:

	���� � ��

	

�

�����
�

�
� ����	

�

�
�

Substituting (8.17) for ����, and leaving the higher-level representation of the input, ����,
gives

	���� � ��

�

�

� �

��

���� ���

�
��
�
�

	���
��
�

� ��������

�
��� �
�

�
� ����	

�

�
�

Using the convolution operator, we have

	���� � ��

�

�

���� � �
�

�
��
�
�

	����

�
� �������

��
� ����	

�

�
(8.19)

TLFeBOOK

Dynamic transformations 235

� ��

�
���� �

��
�

�������� ��� �������

�
� 	����

�

�

 (8.20)

where ��� � ���
����

��� .
As shown in section 5.1, we can now substitute our expressions for the decoded spike

trains (e.g.,
�

� �������) into (8.20) and let �� be the spiking LIF nonlinearity to give the
spiking implementation description. This shows precisely how various levels of the generic
subsystem can be simulated (see figure 8.5). Choosing a particular kind of simulation
(high-level, activities, or spikes) determines both how realistic the simulation is, and what
computational demands will be imposed by the simulation.

Although in this section we are concerned with the neural integrator, the preceding
procedure for combining dynamics and the various levels of description is general. Let
us now turn to considering more specific issues that arise for implementing an integrator.
Recall that in order to have a perfect integrator, we need �� � �. While we can set ��

exactly to some desired constant, we know that we cannot expect our estimate of
��� (i.e.,
�
���) to be perfect (even if there is no noise). Thus the product �
����� will not be exactly
equal to
�����. We can account for this error by supposing that, in fact, �
��� is perfect and
�� is subject to error. This allows us to determine what affect changing the element that we
can control, ��, has on our simulation. Of course, if �� is not exactly 1, then in the standard
control diagram, � is not exactly 0. So, it is useful to examine exactly what happens when
� is not exactly 0.

Consider, again, equation (8.4):

��� �
�

�
��
��� �������

�
�

�

��� �

�

�
�����

From this equation we can see that if � is slightly greater than zero, the dynamics become
unstable because some small fraction of
��� is added to the current value of
��� at every
time step. As well, if � is slightly less than zero, the system becomes ‘leaky’ since some
small fraction of
��� is subtracted from
��� at every time step. In other words, � acts like
a (negative) rate constant for the system. We call this the effective rate constant, and its
inverse the effective time constant, �

���
� �

�
���

, of the system:

� � �
�

�
���

�

TLFeBOOK

236 Chapter 8

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time (s)

x(
t)

ideal
25ms
50ms
100ms

Figure 8.7
Integration of a pulse with a recurrent network of 20 LIF neurons. Plots for � � ��� ��� and ��� ms compared
to the ideal integrator. The average �

���
� ���, ���, ���, and� seconds respectively.

Since we know the equivalent value of � in the neural circuit, we know that

�

�

�
���

�

��
� �

�

�
���

�
�

����
�

This shows two things: 1) how the synaptic time constant, � , of constituent neurons
affects the integration abilities of the circuit of which they are a part; and 2) that the
goodness of the ���� representation affects the integration abilities of the circuit. In the
first case, we can see that a longer � makes for a longer effective time constant (note
that a perfect integrator has an infinite effective time constant). Thus neurons with longer
synaptic time constants (e.g., neurons with NMDA receptors) are more suited to integration
(see figure 8.7). In the second case, we can see that as �� nears unity, the effective time
constant becomes infinite. Thus, setting �� � � means that all of the integration error
is a result of representation error. So, the better our representation of ���� (and thus the
closer ������� matches ������), the better job we can do of implementing stable dynamics
(exemplified in the extreme by perfect integration).

TLFeBOOK

Dynamic transformations 237

Unfortunately, this also means that our analysis of the dynamics of the neural integrator
is not as simple. This is because, the error in ����� varies as a function of �. We know
that our neural population more accurately represents ���� for some values, and is only
‘perfect’ at a few points (see section 7.2). A more detailed way of showing how well a
neural population represents some signal is to compare the estimated value, �����, with the
actual value, ����, for each possible value in the range of ����. This kind of comparison is
shown in figure 8.8a. That graph shows precisely how the error fluctuates as a function of
�.

Notably, graphs like that in figure 8.8a tell us quite a bit about the dynamics of
the system. As the inset shows, we can ‘trace’ the progress of repeated encodings and
decodings of the represented variable �. Repeated encoding and decoding, of course, is
exactly what happens in a feedback network. So, following the movement of successive
encodings tells us how a feedback network drifts over time. As well, the magnitude of the
difference between the ideal curve and our representation gives us a sense of how quickly
the representation in the network drifts. Figure 8.8b displays the same error information,
but in more detail. However, tracing dynamics on this graph is less intuitive because the
axes are scaled differently. Nevertheless, we know that whenever the error is positive, the
network drifts in a positive direction at a speed proportional to the error (and similarly in
the negative direction). Thus, every other zero-crossing on this graph (as on that in figure
8.8a), represents a dynamically stable point. This is because positive error to the left of the
point and negative error to the right of the point both cause the system to drift towards that
point.

The identification of these dynamically stable points suggests a more appropriate
measure of the system’s overall stability. In particular, it is useful to identify the system’s
drift velocity, ��

�
.4 In fact, figure 8.8b gives a good sense of what the drift velocity looks

like over the range of �, since the drift velocity is essentially the derivative of this curve.
We can use this measure to determine how various network properties and neuron

properties affect it. We already know from figure 8.7 that as � increases, drift velocity
decreases (note that slower drifts are better for an integrator). There are two other important
factors that affect drift velocity. The first should be quite obvious: the number of neurons
matters a great deal. Since the representation of ���� improves as we increase the number
of neurons (i.e., the error decreases), we expect repeated encoding and decoding to disturb
the representation in a larger population much less than in a smaller population. This is
shown in figure 8.9a. The second factor, which is perhaps less obvious, is the RC time
constant, ��� , of the neurons. As shown in figure 8.9b, longer RC time constants make for

� Note that we call this measure a velocity because it is very much like ��
��

, since � determines the effective time
step for the system. The drift velocity measures much the same property as ���� but relies on representational
error rather than the value of �� . Of course, it is the product of �� and the error that determine the dynamics.

TLFeBOOK

238 Chapter 8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

x

0.25 0.3 0.4 0.45

0.3

0.35

0.4

0.45

^

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

x

er
ro

r
a)

b)

0.35

Figure 8.8
Representational linearity of the network used in figure 8.7. a) The linearity over the range of �. The grey line
indicates perfect linearity. The expanded view shows the dynamics of the example in figure 8.7. Each 90Æ angle
indicates the behavior after one additional time step. b) The difference between the estimate and actual value of
� at every point, again the dynamics are shown over the same range.

better integrators. Notably, this is not because a longer RC time constant gives the neuron
a longer ‘memory’ as might first be supposed (i.e., it does not act like �). Rather, longer
RC time constants result in more linear response functions, especially near the neuron’s
threshold (see, e.g., figure 4.3). In other words, the notoriously steep onset of the LIF
neuron becomes less steep as �

�� increases. This has the effect of reducing the error when

TLFeBOOK

Dynamic transformations 239

-1 -0.5 0 0.5 1
-0.04

-0.02

0

0.02

0.04

0.06

er
ro

r

ideal
10ms
50ms

x
-1 -0.5 0 0.5 1

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

x

er
ro

r

ideal
20 neurons
100 neurons

a) b)

Figure 8.9
Effects of a) population size and b) RC time constant on integrator performance. In all networks, � � �� ms. In
a) ��� � �� ms and average drift velocities are ���� for � � �� and ���� for � � ���. In b) � � �� and
average drift velocities are ��	 for ��� � �� ms and ��	 for ��� � �� ms.

fitting the resulting response functions to a straight line (which is precisely what we are
doing when we find the decoders). Both of these examples show that reducing error, be it
by increasing the number of neurons, or changing �

�� , always improves the integrating
ability of the circuit. It is interesting to note that the response functions of neurons found
in neural integrators of the goldfish are extremely linear (Seung et al. 2000). We suspect
the reason for this is that linear neuron responses greatly reduce representational error.

We now have a good sense of how to control the performance of the basic integrator.
However, these ways of controlling network performance are based on static properties of
the network. But, we can also use this simple example to introduce dynamic control. In the
case of the integrator, the most natural parameter to control dynamically is �� (in equation
(8.15)) because it directly determines the dynamic characteristics of the network.

In order to use a population of neurons to control this parameter, we can define a
representation for it and then include that representation in equations like (8.19) above. Let

����� �
�

�

������
��

� �

and substitute this into (8.19) to give

����� � ��

�
��

�
	��� � ���

��
�

������
��

�

�
�

������
�
� �
�����

��
� ���	
�

�
(8.21)

TLFeBOOK

240 Chapter 8

We know that to perform a multiplication between the recurrent signal, ����, and the
control signal, �����, we can introduce a new population whose dimensionality is the sum
of those being multiplied (see section 6.3.1). So let

���� �
�

�

������
�

�

be such a population. So, we can write (8.21) as

����� � ��

�
��

�
���� � ���

��
�

������
�

�
�	�
���

��
� ������

�
� (8.22)

where

����� � ��

�
��

�

�������� �����������

�
� ������

	
(8.23)

� ��

�
��

��
�

������
�
�
����� �

�
	

�	����

�

	
�����

�
� ������

�
� (8.24)

Figure 8.10a depicts the system described by these equations. Note that because ����� is a
function of time, equations (8.22) and (8.24) describe a linear time-varying system. Or, if
we take ����� to be an input to the system (rather than a time-varying dynamics matrix),
then these equations describe a nonlinear system. This example thus shows how we can use
this framework to implement these broader classes of control systems. Figure 8.10b shows
the effects of changing ����� on the neural integrator. Notice that when ����� is reduced
from 1 to .5, the circuit begins to act like a low-pass filter, rather than an integrator.

Although simple, this example is important for showing one important way to control
the dynamics of a neural system. We can, in general, manipulate the parameters in the
relevant ��� matrix using a control signal that is encoded by another population. For
instance, we have also constructed a circuit in which we control the input matrix, 	�. This
is another means of constructing a time-varying or nonlinear system. In this case, changing
the value of 	� simply scales the input signal,
���. Although controlling elements of
any ��� generally introduces nonlinearities into the model, as in this example, it often
provides an intuitive way of controlling the dynamics of a given system (see section 8.5
for another example).

8.2.2 Discussion

As mentioned in the introduction, both our analyses and previous ones have shown how to
construct networks that perform reasonably good integration using spiking neurons (see,
e.g., Seung and Sompolinsky 1993). These analyses have helped determine how to impose
network properties (i.e., choose synaptic weights, and numbers of neurons) that result in
the ability to integrate an input signal. However, the fact that this model is part of a general

TLFeBOOK

Dynamic transformations 241

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x(
t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

in
pu

t

time (s)

b)

U(t)
A'(t)

ideal
time-varying

a)
x(t)

u(t)
B'

p(t)

mxp

A'(t) mpA

Figure 8.10
Time-varying neural integrator. In a) we have drawn the equivalent control circuit. Note that we need to multiply
the time constant, �� , by ���� to determine the appropriate input to the integrator. This nonlinear operation
necessitates an extra population, ����, as in the otolith example. All of the ��� values are �. In b) we show the
output of the integrator, ����� the integration time constant, �� ���, and the input signal, ����. For this simulation,
� � ����, ���� � ��ms, and ��� � ��ms in all three populations.

framework has additional benefits. For instance, in showing how single cell properties,
such as the synaptic time constant, � , and RC time constant, ��� , affect integration as
well, we have integrated the network and cellular levels of analysis. This is important
because it is clear that both single cell and network properties matter to overall system
dynamics. As well, having constructed the model as part of a general framework makes it

TLFeBOOK

242 Chapter 8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

x

fir
in

g
ra

te
 (

H
z)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
er

ro
r

a) b)

Figure 8.11
Neural integrator performance with thresholds distributed as in the real integrator. a) Distribution of a small
network with most neurons active near zero. b) The error plot showing less error and therefore better dynamics
near zero (compare to figure 8.8 for an even distribution).

easy to generalize such examples to examine more complex control systems; e.g., a time-
varying system. As a consequence, we can apply what we learn when modeling systems
like the eye-position integrator to more complex models that have similar connectivity
(e.g., the vestibular model, see section 6.5), or related dynamics (e.g., the lamprey model,
see section 8.5).

More specifically, we can gain insights about the eye-position integrator itself from
examining this model. For instance, the example circuits we presented earlier assume pop-
ulations of neurons with evenly distributed neuron thresholds. However, as mentioned in
section 2.3.1, the eye-position integrator has thresholds distributed such that they are con-
centrated on the contralateral side. From what we have said about the effect of represen-
tation on integration, this suggests that, for the same number of neurons, there is a pref-
erential encoding of eye position when the eyes are straight ahead. This is because more
neurons are active at this position (zero), giving a better estimate of values near zero (see
figure 8.11b). This means that the dynamics should be more stable near zero than for eye
positions near either extreme, as is found to be the case in the real system (Hess et al.
1985).

The fact that the thresholds of integrator neurons, in both the goldfish and human
systems, tend to be concentrated contralaterally raises a second point; the importance of
the opponency (i.e., on/off) configuration. Suppose, as some models do (Seung et al. 2000),
that the integrator consists only of tuning curves with positive slopes. In this case, for values
near the extreme left of the range, there are very few neurons firing at very low firing rates.
Given the large fluctuations in dendritic currents due to neural spiking, which are especially

TLFeBOOK

Dynamic transformations 243

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (s)
x

a) b)

time (s)

Figure 8.12
Networks approximating the neural integrator in a) humans and b) goldfish. The figures show integrator behavior
at a variety of eye positions. In this model, we have tuned the gain slightly lower than unity in order to have
centripetal drift at all eye positions. The average time constants are a) 20.1 s (N=1000) and b) 10.3 s (N=30).

prominent at low spike rates, we would expect any estimate of the encoded eye position to
be extremely poor. Consequently, it would be very difficult to have stable dynamics in this
neighborhood given these fluctuations. However, if we add a second population of neurons
with negatively sloped tuning curves, then most of them will be firing at high rates at these
same eye positions. These neurons will thus counteract the difficulties involved in encoding
eye position with only a few active neurons.

Finally, the general integrator analysis we have done in the previous section deviates
from what is seen in the biological eye-position integrators. That is, the fixed points that
we (and others) have seen in such models have not been directly observed in the biological
system. Rather, in biological integrators, there tends to be centripetal drift or unilateral
drift, not a combination of centripetal and non-centripetal drift. However, because we
have formulated our model in the context of control theory, we know precisely how to
incorporate centripetal-only drift into the model. Slightly reducing the feedback gain, ��,
from unity has the desired effect. As shown in figure 8.12, this slight variation results
in networks that perform comparably to the biological systems. Here, simulations of the
human integrator and goldfish integrator are compared. In both cases, we use a population
of neurons of approximately the same size as found in the respective systems and we find
that the resulting time constants of these networks also fall within the range found for each
system (Hess et al. 1985; Seung et al. 2000).5

� Note that for the human integrator we use the LIF model, whereas for the goldfish model we use a rectified
linear model which more closely mirrors the tuning properties of neurons found in this system (Seung et al. 2000).

TLFeBOOK

244 Chapter 8

8.3 AN EXAMPLE: WORKING MEMORY

8.3.1 Introduction

As for the neural integrator example, we have already presented the information relevant
to specifying the system description and design specification for a model of lateral intra-
parietal (LIP) working memory (see 3.4). So, in this section we are concerned solely with
the dynamics of LIP working memory. We have chosen to present this model because, al-
though the transformation involved is familiar (namely, integration), this example includes
the transformation of function representations.

Recall that LIP neurons have been shown to have sustained activity during a delay
period between stimulus presentation and a ‘go’ signal. This sustained activity is typically
modeled as a sustained Gaussian ‘bump’ of neural activity across a population (Zhang
1996; Laing and Chow 2001; Hansel and Sompolinsky 1998; Camperi and Wang 1998;
Kishimoto and Amari 1979). This behavior is analogous to the neural integrator: where
the integrator ‘remembers’ scalar values over some desired range, area LIP ‘remembers’
some desired set of Gaussian-like functions. However, as discussed in chapter 3, things are
more complicated in LIP for two reasons: 1) parietal systems can store multiple targets at
the same time (Platt and Glimcher 1997); and 2) there is evidence for significant effects
of non-spatial parameters on the strength (i.e., height) of such representations (Sereno and
Maunsell 1998; Romo et al. 1999).

8.3.2 Implementation

Because there are a number of distinct issues that arise during implementation, we have
divided this section into two sub-sections. In the first, we show how to describe the
dynamics of this system in terms of the vector of coefficients of the function space (i.e.,
using a vector representation). Once we have done this, it is straightforward to apply our
previous discussion of the relation between vector and function representations. In the
second section, we present simulation results based on the model we have derived.

8.3.2.1 Dynamics of the vector representation

Recall from section 3.3 that we can define an equivalent vector representation for this
system with respect to the orthonormal basis �����:

������ �
�

�

�������� (8.25)

TLFeBOOK

Dynamic transformations 245

Thus, we can write the encoding and decoding rules for the amplitudes,�, as

����� � ��

�
�� ������� � �����

�

�
(8.26)

�� �
�
�

�������� (8.27)

In order to convert these � vectors back into their equivalent functions, we can decode
them using ����� as in (8.25).

As mentioned in section 8.3.1, the dynamics of this system should be very familiar. In
fact, we can rely on the control diagram in figure 8.6 for the neural integrator to define the
dynamics for this system as well. Thus, the vector version of (8.15) defines the dynamics,
and �� and �� are naturally generalized to be � and �� respectively. We can now proceed
very much as we did for the integrator. For expository purposes, however, we perform the
analysis here directly for spikes. Thus, we begin by writing our spike-based encoding of
the coefficients, ����, as

����� �
�
���

	��� ������

(the decoding stays the same). Recall from (8.18) that we can incorporate the higher-level
dynamics into a basic-level representation. Thus, for vector dynamics we write:

���� �

� �

��

	��� ���

�
���

�
���

Æ��� � ������ ��������

�
�
��� (8.28)

Substituting this expression into (8.26) gives

�������� � ��

�
���

	
	��� � ���

�
���

�
	��

Æ��� �	���	 �������

�
�

�

� �����
�

�
�

� ��

�
��

	��

��		��� �	�� � ��	��� ��
����� � �����

�

�
� �

where ��	 � ��

�
������

	

�
�

.

8.3.2.2 Simulation results

Figures 8.13 and 8.14 show simulation results from this model. All results are from the
same network of 1000 spiking LIF neurons with synaptic time constants of 5 ms. The
tuning curves of this network are like those found in LIP, as shown previously in figure

TLFeBOOK

246 Chapter 8

3.2. As expected, the network is able to stably encode multiple Gaussian bumps of various
heights.

Figure 8.13 shows the basic case of encoding a single bump at some location. This
behavior reproduces that of past models. Figure 8.13b displays the time course of the
estimates of the amplitudes, ����, that encode the function, ���������, which is shown
in 8.13a. The dotted lines in figure 8.13b depict the ideal behavior. The spiking model is
much noisier than this ideal, but has fixed points that very closely approximate those of the
ideal. As can be seen from 8.13a, the approximation is so close that the function ���� ��

remains very stable during the course of the simulation. Figure 8.13c shows spike rasters
for 200 of the 1000 neurons used in the model. As expected, there is a general increase in
the firing rate of neurons nearer the middle of the encoded bump.

Figure 8.14 shows how this model extends the results of past models by demonstrating
that the network can also encode and ‘remember’ multiple bumps of different heights. This
model extends past results in two distinct ways: 1) it encodes bumps at the same position
but of different heights; and 2) it encodes multiple bumps (of various combinations of
heights). Figure 8.14 combines these results by showing the performance of the model
encoding two bumps of different heights, where the leftmost bump is at the same position
as (but a different height from) that shown in figure 8.13a. Again, figure 8.13b shows that
the encoded amplitudes,�, are quite stable during the run.

Notably, increasing the synaptic time constant of the model will lengthen the time
constant of the network (as discussed in detail in the case of the neural integrator; see
section 8.2.1). Because these results are from a network with a 5 ms, AMPA-like synaptic
time constant, and some receptors (e.g., NMDA) have time constants about 20 times longer,
the stability shown here can be significantly improved by changing the relevant cellular
properties .6

We believe, given these results, that this model contributes to our understanding of
how working memory systems, like LIP can produce the behavior they do. But, there is an
important sense in which the problem we have been solving is different from that usually
posed, and addressed by all past models. Namely, the bumps we have been discussing are
not the same bumps that modelers usually worry about. Past models have been interested
in bumps of neural activation. Here, we have modeled bumps as encoded functions. At
first glance, these seem to be very different things. Neural activations can be measured
directly from neural systems, but encoded functions cannot: they have to be decoded in
order to give rise to neural activations. Nevertheless, this model displays definite ‘bumps’
of neural activity as well (see figure 8.15). Both a single bump of activation for the single
encoded bump and a double bump of activation for the double encoded bumps are evident.

� Also recall that including more neurons would lengthen the network time constant.

TLFeBOOK

Dynamic transformations 247

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

time (s)
am

pl
itu

de
0 50 100 150 200 250

-0.05

0

0.05

0.1

0.15

0.2

x(
ν)

ν

input
0.5 s
1 s

a) b)

c)

0.4 0.42 0.44 0.46 0.48 0.5

200

400

600

800

1000

time (s)

ne
ur

on
 n

um
be

r

Figure 8.13
The behavior of a network encoding a single Gaussian bump. a) The input bump and two encoded bumps at .5 s
and 1 s. b) The time course of the estimate of the amplitudes (black lines) compared to the ideal (dashed grey
lines). c) Spike rasters for two hundred of the neurons (every fifth neuron, ordered by tuning curve centers).
N=1000; ���� � � ms;� � ���� � � � � ����;���� as shown in 3.3.

The fact that these bumps of activation are approximate, rather than perfectly smooth, is
consistent with the available evidence. And, in fact, it is possible that this less perfect kind
of bump can help account for some of the variability found in the neural data. In other
words, perfectly smooth activity bumps have not been observed in neural systems, and that
fact might be explained by this kind of model.

TLFeBOOK

248 Chapter 8

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

time (s)
am

pl
itu

de
0 50 100 150 200 250

0

0.05

0.1

0.15

0.2

x(
ν)

ν

input
0.5 s
1 s

a) b)

c)

0.4 0.42 0.44 0.46 0.48 0.5

200

400

600

800

1000

time (s)

ne
ur

on
 n

um
be

r

Figure 8.14
The behavior of a network encoding a double Gaussian bump. All figures and network properties are the same as
those as in figure 8.13. Note that the leftmost bump is in the same position, but half the height of that in figure
8.13a.

8.3.3 Discussion

Our main purpose in presenting this example was to show how transformations of func-
tional representations can be captured by this framework. However, it also incorporates
novel contributions to current efforts directed at modeling areas like LIP (e.g., Laing and
Chow 2001; Camperi and Wang 1998; see Ermentrout 1998b for a review). In particular,
this network describes additional experimentally observed behavior (i.e., storing multiple

TLFeBOOK

Dynamic transformations 249

0 200 400 600 800 1000
0

10

20

30

40

50

sp
ik

es
/1

00
m

s
neuron number

0 200 400 600 800 1000
0

10

20

30

40

50

sp
ik

es
/1

00
m

s

neuron number

a) b)

Figure 8.15
Stationary bumps of neural activity. These figures show raw spike counts over the 100 ms window half way
through the simulation. They have also been slightly smoothed by a running spatial average. a) Activity bump
for the simulation in figure 8.13. b) Activity bumps for the simulation in figure 8.14. In both cases, bumps of
neural activity corresponding to the decoded bumps in figures 8.13a and 8.14a are clearly visible.

spatial locations at the same time, and storing parameterized bumps). As well, we have used
a spiking model, rather than a less realistic (though more common) rate model (see e.g.,
Hansel and Sompolinsky 1998; Kishimoto and Amari 1979). Finally, although we have not
presented an example here, we have used this approach to generate a similar model that
stably encodes two-dimensional bumps (Eliasmith and Anderson 2001).

Interestingly, such models lead to an experimental prediction. Currently, memory
experiments generally record from neurons with stimuli at the center of their receptive
fields. In these experiments, researchers always observe a decrease in firing rate during
the memory delay relative to the initial encoding of the stimulus. Notably, the standard
stimuli in these kinds of experiments is a small point of light. Such stimuli are significantly
narrower than tuning curves in the neurons thought to be encoding these bumps. Similarly,
given an input that is significantly narrower than the tuning curves of neurons in this model,
the firing rate of neurons whose receptive fields are centered on the stimuli show a decrease
in firing rate (see figure 8.16). However, the networks also include neurons whose firing
rates increase as well. Specifically, these are neurons for which the stimuli is on the edge
of its receptive field. We suspect, then, that there are neurons whose firing rates increase
during the memory delay period.

TLFeBOOK

250 Chapter 8

0 50 100 150 200 250
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x(
ν)

ν

input
0.5 s
1 s

Figure 8.16
Narrow bump evolution for the network used previously (see figures 8.13 and 8.14). We can see from this figure
that, for a narrow stimulus, neurons whose receptive field center is near the center of the bump have a decrease
in firing rate. However, it is also clear that neurons whose receptive field center is near the edge of the bump
have an increase in firing rate.

8.4 ATTRACTOR NETWORKS

8.4.1 Introduction

It should be quite obvious that the preceding bump network and the neural integrator are
two of a kind. Both are designed to dynamically ‘hold’ or ‘maintain’ a single point in
some abstract space, over an extended period of time. In fact, it is noticing this high-
level similarity, and being able to characterize the behavior of neurobiological systems at
that high-level, that paves the way for constructing a bump network whose dynamics and
representations give rise to a novel model. However, we think that these two networks only
scratch the surface. That is, we think they are only two examples from a very broad class
of networks that is fundamental to understanding many neurobiological systems. In this
section, we describe that class of networks and discuss how they can be understood using
this framework. Understanding neurobiological systems in terms of such networks is not
a novel approach in itself (see, e.g., Amit 1989; Goodridge and Touretzky 2000; Seung
1996), but a general method for integrating neurobiological plausibility and the complex
dynamics exhibited by such networks is.

TLFeBOOK

Dynamic transformations 251

A

Figure 8.17
An arbitrary state space shoing a point attractor at �. The black dot represents the current state of the system and
the grey arrow indicates is future trajectory towards �.

In the terminology of dynamic systems theory, this class of networks is called attractor
networks. This is because the state space of the network (e.g., possible eye positions in the
neural integrator, or possibly encoded functions in the bump network) can be characterized
as containing a series of dynamically ‘attractive’ points. In the simplest case, a point,�, is
said to be attractive when a system at any point in the neighborhood of � approaches �
over time. The standard analogy is to imagine that the system is a ball on a hilly surface
(the state space). When there is a large dent in the surface, the ball will tend towards the
bottom of that dent, or basin. The point at the bottom of the basin is thus a point attractor
(see figure 8.17).

There are a number of natural generalizations of a single point attractor. First, there can
be more than one attractor in the same state space. If we arrange these in particular ways,
we can get other interesting kinds of attractors. For example, if we arrange the points in
a line in the state space, we have a line attractor in which each point along the line is a
stable point. Thus, the system stays at whichever point it first reaches that lies on the line
(see figure 8.18a). This, in fact, describes the behavior of the neural integrator; once the
integrator reaches some eye position, for any possible eye position, it stays there (Seung
1996). As we have been at pains to point out, however, the line attractor in the neural
integrator model is not ideal, but rather approximate;7 that is why it drifts over time. This
means that the model has many, though not infinite, points aligned along a line in neural
state space, with minimal curvature between them (see figure 8.18b).

� Note that, in the face of noise, a true line attractor and a sufficiently good approximation are indistinguishable.

TLFeBOOK

252 Chapter 8

a) b)

Figure 8.18
a) A line attractor. b) An approximate line attractor. Note that the degree of curvature is proportional to how long
it will take the system to traverse the graph. By analogy, a ball rolls more slowly down a shallow incline than a
steep one.

To construct another kind of attractor network, we can arrange the fixed points in a
circle, giving what is known as a ring attractor. A ring attractor is just like a line attractor
whose end points have been joined. This kind of attractor is a natural way to describe
systems that can encode and hold positions over a repeating axis (e.g., directional heading
in hippocampus; see Zhang 1996). Just as with a line attractor, each point in the ring is a
stable point that the system does not move from unless perturbed (see figure 8.19).

In general, the terminology and formalism of attractor networks is very useful for both
qualitative and quantitative descriptions of systems that evolve over time. More specifi-
cally, there are good reasons to adopt this terminology for neural systems. This is largely
because ‘persistent activity’ in neurons has long been observed in the brain. Persistent ac-
tivity is sustained firing that is generally started by some external stimulation, but then
continues after the stimulation itself ceases. Hebb (1949) first proposed that persistent
activity could be identified with short-term memory. However, it was not until 40 years
later that Amit (1989), following work on attractors in artificial neural networks (Hopfield
1982), suggested that such persistent neural activity could be identified with dynamical
attractors of a recurrent biological network. If Amit’s suggestion is right, then attractor dy-
namics are ubiquitous in neural systems because 1) local recurrence is a common feature
of cortical circuits (Douglas et al. 1995) and 2) persistent neural activity has been recorded
from a large variety of both cortical and subcortical areas. Cortical areas with persistent
activity include motor, premotor, posterior parietal, prefrontal, frontal, hippocampal, and
inferotemporal cortex. Subcortical areas include the basal ganglia, midbrain, superior col-
liculus, and brainstem. Furthermore, persistent activity has been observed in mammals as
well as various non-mammalian vertebrates. Let us briefly consider two specific examples
in more detail.

TLFeBOOK

Dynamic transformations 253

Figure 8.19
A ring attractor. This is like the line attractor, with the endpoints joined. It is a natural model for the head
direction system in the hippocampus (Zhang 1996).

In the case of the neural integrator, there is excellent evidence that recurrent properties
of a somewhat localized network are largely responsible for the observed persistent activity
(Askay et al. 2001; Askay et al. 2000; Seung et al. 2000; Seung 1996). For example,
Askay et al. (2001) have shown that persistent activity in the in vivo integrator is not
sensitive to stimulation of individual neurons that are part of the integrator network. Thus,
sustained firing seems to be mainly a property of the organization of the entire network
that is not derivative of the properties of individual cells, such as plateau potentials.
As well, stimulation studies have shown that perturbing eye position can be affected by
stimulating areas thought to be part of the recurrent attractor network (Yokota et al. 1992),
but not by stimulating downstream, oculomotor neurons (Robinson 1968).8 Thus, the
neural integrator is a good candidate for a neurobiological system that can be described
as a recurrent, line attractor network: it is stable against certain kinds of perturbations;
it can stably store many different eye positions; and it has this property on the basis of
network-level organization.

There is also evidence that the ring attractor is a good description of neural dynamics
in certain cortical and sub-cortical areas. Since the early 1980s, there has been an ongoing
experimental and theoretical study of what is known as the ‘head-direction system’ in
mammalian hippocampus and nearby thalamic areas (Ranck Jr. 1984; Taube et al. 1990a;
Taube et al. 1990b; Rolls and O’Mara 1995; Chen et al. 1994; Touretzky and Redish 1996;
Goodridge and Touretzky 2000). By far the majority of these studies have been based

� For a good review of the relevant evidence, see Moschovakis (1997).

TLFeBOOK

254 Chapter 8

on navigation in the rat (although see Rolls and O’Mara 1995). In the rat, these cells act
like a neural gyroscope, always indicating the current head direction, even in the dark
(McNaughton et al. 1991). Many computational neuroscientists have found the affinity
between the observed neural dynamics and those of the ring attractor compelling. To the
best of our knowledge, all current models take part of the head direction system to have
ring attractor dynamics (see Zhang 1996; Goodridge and Touretzky 2000; Touretzky and
Redish 1996; Skaggs et al. 1995).

Given the compelling success and biological plausbility of attractor models of both the
neural integrator and the head-direction system, it is clear that attractor dynamics are useful
for characterizing some neurobiological systems.9 However, by far the majority of the work
on attractors in neurobiology has focused on simple line and ring attractors. In the next few
sections, we argue that attractor dynamics can be used to understand a far wider variety
of neurobiological systems. As well, we show how the approach we are presenting can
support this kind of generalization. More specifically, we generalize attractors dynamics in
two ways: 1) by generalizing representation and 2) by generalizing dynamics.

8.4.2 Generalizing representation

Both the head-direction model and horizontal neural integrator model operate on scalar rep-
resentations, �. In the head-direction ring attractor, �, ranges between 0 and 360 degrees,
and in the horizontal neural integrator, it ranges between about ��� degrees. Of course,
both head direction and eye position are better described as (at least) two-dimensional
vectors that account for vertical motion as well. In the neural integrator, it is well known
that vertical eye position is encoded in much the same manner, though somewhat indepen-
dently (Moschovakis 1997). This suggests that a reasonable model of the more complete,
2-dimensional integrator can be built out of two systems modeled after the horizontal in-
tegrator alone. However, there are instances when such higher-dimensional integrators are
not simply a combination of many, independent one-dimensional integrators. A good ex-
ample of this is the bump network in section 8.3. In this network, we represent the functions
as high-dimensional vectors, where each neuron had a different, non-axial preferred direc-
tion vector in this space. So, in this case, the dimensions are not independently encoded.

These examples show how changing the dimensionality of the representations can
change the kind of attractor being implemented. For instance, the 2-dimensional integrator
implements a plane attractor, rather than a line attractor (see figure 8.20). Given the fact
that we can write the dynamics of these simple sorts of attractors as �� � �, and we know
how to represent � for any arbitrary dimension, we can straightforwardly build models

� As a result, the Cold Spring Harbor Symposium on Persistent Neural Activity, organized by D. Tank and S.
Seung, in October 2000 drew a large number of experimental and theoretical neuroscientists interested in pursuing
this approach.

TLFeBOOK

Dynamic transformations 255

Figure 8.20
An approximate plane attractor. This is a natural model for a more comprehensive head-direction or neural
integrator system.

of ‘hyperplanes’ of any dimension. This could very well be useful for building models
of either motor or perceptual systems that operate on time scales much longer than those
of individual neurons (as in the case of the neural integrator and the short-term memory
systems). Given how common persistent activity is across neurobiological systems that
operate in very different state spaces, such models could be quite common.

Moving from scalars to vectors only generalizes over the first two stages of the
representational hierarchy we identified earlier (see section 3.1). Next in the hierarchy are
functions. Of course, the bump model implements an attractor network using functional
representations. But, as we have shown, the problem of implementing attractor networks
for functions is no more difficult than for vectors. In our bump model, we used a 20-
dimensional vector space in which we constructed an arbitrarily-shaped attractor. That
is, we did not have a hyperplane attractor because only some of those 20-dimensional
vectors—those that were the amplitudes for Gaussian-like functions—were made stable.
So, through the techniques used in our models we have shown how to construct arbitrary
attractors in arbitrarily high dimensional vector spaces (including function spaces). It is the
generality of our characterization of both representations and transformations that makes
this possible. The utility of this characterization is demonstrated by the ability of the
resulting networks to model behaviors that have not otherwise been captured.

Furthermore, we have explored ways to help us better understand the nature of neural
attractors. As noted earlier, our talk of attractor networks is shorthand for constructing
neural approximations to these attractors. Since understanding the approximation that a
representation has to what it represents (i.e., ����� �����, and the effects of noise), has been
central to our framework, it should not be surprising that the framework can prove useful in
characterizing approximate attractors. Figure 8.8 is one way of showing, in a dynamically

TLFeBOOK

256 Chapter 8

relevant way, how good the approximation is. In the discussion surrounding that figure, we
noted that every other crossing point would be dynamically stable. Since, in section 7.4,
we introduced tools to help us determine how many crossing points there would be in such
a network (i.e., the ‘representational capacity’), we can determine how many stable points
there are in a given attractor network.

In general, the work we did in chapter 7 on the goodness of neural representation
is informative about the dynamics of attractor networks. For instance, given that the
central conclusion of those discussions was that heterogeneity was important to good
representation, we should suspect that heterogeneity is important for stable dynamics
as well. This is shown to be the case in figure 8.21. In this figure, the heterogeneous
population performs better than either the population comprised of identical neurons or
of shifted neurons. The population of identical neurons always has only one fixed point
(zero), except in the case of four neurons, where there are fixed points at each of the
extremum.10 For this population, although the RMS error is continuously improving,
the dynamic properties are consistently poor, and stay so for any number of neurons in
the population. In contrast, both the heterogeneous and shifted populations continue to
improve their approximation to a line attractor as the number of neurons is increased.
However, in all cases the heterogeneous population performs as well or better than the
shifted population because there are more degrees of freedom for the optimization to take
advantage of when determining the decoding weights. Specifically, the gain of different
neurons is different in the heterogeneous case, but they are all the same in the shifted case.
So, the heterogeneous population tiles the input space more completely and can thus be
used to construct a better approximation to a line, which results in a better approximation
to a line attractor (i.e., improved drift velocity).

8.4.3 Generalizing dynamics

As previously noted, there are a wide variety of attractors. So far, we have discussed point,
line, and ring attractors. However, this list is by no means exhaustive. In fact, each of these
attractors has very simple dynamics, i.e., �� � �. We can think of this as being a very
simplified version of the state equations discussed in section 8.1:

�� � ������

�� This occurs because reducing the RMS error as the number of neurons increases means balancing the
significant nonlinearities near the neuron thresholds with the contributions near the maximum firing rates of
the contralateral neurons. When there are only a few neurons (2 or 4), this cannot be done very effectively so
the nonlinearities dominate, resulting in large RMS error and poor estimates near the extremes. As the number
of neurons increases, RMS goes down as a better balance is achieved. The temporary, ‘extra’ fixed points at the
extremum are due to the progressive improvement in the estimate during the ‘settling’ of this balancing. They
are, in effect, accidental.

TLFeBOOK

Dynamic transformations 257

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

number of neurons

nu
m

be
r

of
 fi

xe
d

po
in

ts

heterogeneous
shifted
identical

Figure 8.21
The number of stable fixed points as a function of the number of neurons for the nearly identical, shifted, and
heterogeneous populations of neurons. The heterogeneous population has the most stable dynamics over a range
of population sizes.

where� and � are both zero. Of course, we could allow� to be equal to some constant.
If we did, then our system would no longer have stable dynamics, it would either increase
or decrease exponentially, depending on the sign of �. However, there are other kinds of
stable dynamics that can be achieved if we pick� properly. For example we could choose

� �

�
� � �

�� �

�
� �

In this case, we will have implemented a simple harmonic oscillator at frequency � (the
amplitude of the oscillations depends on the initial conditions).

This introduces another, more complex class of attractors: cyclic (or periodic) attrac-
tors. Unlike the attractors we have discussed so far, the ‘ball’ analogy fails us in under-
standing cyclic attractors. This is because we would have to imagine a ball that sat in a
circular trough and always went downhill, but never descended. However, this picture does
get the idea across that a cyclic attractor is, rather than a single state, a sequence of states
that the system tends to repeat over time (see figure 8.22). That is, regardless of starting
position, the system tends to settle into a repetitive, dynamic pattern.

TLFeBOOK

258 Chapter 8

a) b)

Figure 8.22
A cyclic attractor. The thick line shows a cyclic attractor and the grey lines indicate possible trajectories of the
system with this attractor in the state space. Figure a) includes the state space topology as with previous
attractors. Figure b) is a top down view, which is a more standard way to diagram this kind of dynamics.

In fact, the simple harmonic oscillator does not describe a single cyclic attractor.
Rather, it describes a plane of infinitely many concentric cyclic attractors. So, just as the
line attractor is a set of infinitely many point attractors, so the oscillator attractor is a set of
infinitely many cyclic attractors. As well, just as we can control the stable point of the
line attractor by adjusting ����, so we can control the cycle (i.e., amplitude) at which
the oscillator attractor operates by adjusting ����. One notable difference between the
oscillator and the line attractor is that the oscillator also includes the variable � which
controls the speed with which the system traverses the attractor. There is no analogous
variable (since the attractor pattern is static) in the line or ring attractors.

So, what use is such a network for understanding neurobiology? Just as the line
attractor maps on to the stable behavior of eye positions, so the oscillator attractor maps
naturally on to many repetitive behaviors, like swimming, walking, and chewing. These
kinds of motions have the same qualitative dynamics as cyclic attractors. In section 8.5, we
show that cyclic attractors provide a good way of understanding swimming behavior in the
lamprey eel.

8.4.4 Discussion

In the preceding discussion, we gave examples of particular neurobiological systems that
can be modeled as attractor networks. However, this kind of mapping of one kind of
attractor dynamics onto ‘whole’, independent systems is purely expository. For instance,
the otolith network discussed in section 6.5 clearly incorporates an integrator, but is more
than just an integrator. So, attractor networks can often be considered just one part of a

TLFeBOOK

Dynamic transformations 259

larger neurobiological system performing a more complex function. Still, analyzing these
networks on their own helps us to both understand and model more complex systems.

We suspect that attractor networks are, in fact, very likely to be part of more complex
systems because they have a number of important computational properties. Given our
past discussion, the stability of these networks is their most apparent property. Dynamic
stability is important for a number of reasons. First, it provides a kind of short-term memory
that can aid in the processing of complex problems. Second, it allows the system to react
to environmental changes on multiple time scales. In particular, stability permits systems
to act on longer time scales than it might otherwise, which is important for certain kinds of
behaviors such as prediction, navigation, hunting, etc. Third, stability can make the system
more robust; i.e., more resistant to undesirable perturbations. For instance, such networks
are good at noise reduction (see, e.g., Pouget et al. 1998). Because these networks are
constructed so as to have only a certain set of stable states, random perturbations to nearby
states quickly dissipate to a stable state. If, for example, we give the bump network a ‘noisy
bump’ as an input signal, in a few time steps it settles to the nearest (i.e., most similar)
bump that lies along the trajectory joining stable bump points. This is because the state
space has been constructed so that the gradients are lowest near the stable points. Thus the
steeper gradients far away from the stable points ensure a quick ‘relaxation’ to more stable
states. As well, if a stable bump is perturbed by randomly changing the firing rates of a few
neurons, the effects are minimal because such perturbations move the bump to a nearby,
but less stable point in the state space, which quickly relaxes back to the original state.
These behaviors make attractor networks effective for filtering out noise in any particular
band because we can define the set of functions that are to be part of the attractor network
in such a way as to exclude any functions we deem undesirable (e.g., those with high
frequencies). As well, the same mechanisms that support noise reduction make attractor
networks suitable for categorization tasks, as has been emphasized by Hopfield (1982).

To conclude, we note that we have not completely generalized attractor dynamics. For
example, we did not discuss either the torus or chaotic attractors. There is no reason that
this framework could not be used to examine these classes of attractors as well. With
the introduction of these new kinds of attractors comes different possible computational
strategies. A number of researchers have examined the computational role that these more
complex kinds of dynamics might play in neurobiological systems (see, e.g., Skarda and
Freeman 1987; King 1991). Furthermore, we have not discussed the possibility of the
attractors themselves being dynamic. That is, the possibility of constructing attractors ‘on-
the-fly’ to perform some function. For instance, if we want to robustly reach towards some
target, one way of accomplishing this task is to tailor the limb state space to have a point
attractor at exactly that point. Again, integration of our approach with control theory should
help to construct plausible neurobiological models with these kinds of properties.

TLFeBOOK

260 Chapter 8

8.5 AN EXAMPLE: LAMPREY LOCOMOTION

8.5.1 Introduction

To conclude this chapter, we present a model that draws on and extends many of the central
themes we have presented to this point, including control theory, function representation,
and attractor dynamics. More than simply being an example of the application of these
ideas, however, we think that modeling lamprey locomotion makes an important method-
ological point as well.

Lamprey swimming has been subject to intense experimental and theoretical scrutiny
for well over two decades (Cohen et al. 1982; Grillner et al. 1991). This is because
the isolated lamprey spinal cord makes an excellent experimental platform, and because
the exhibited behavior is amenable to current theoretical tools. Specifically, the isolated
cord, even relatively small portions, exhibits oscillatory bursting activity when bathed
in excitatory amino acids. This ‘fictive swimming’ resembles the activity seen in the
whole swimming lamprey, so this preparation is ideal for performing tests that are directly
relevant to whole animal behavior. Furthermore, the activity of each short portion of spinal
cord is itself well-modeled by a simple biphasic oscillator. The entire cord can thus be
modeled as a chain of biphasic oscillators (Cohen et al. 1982; Kopell and Ermentrout
1988). Because there are mathematical tools available for analyzing this kind of system,
the theoretical analysis has been useful for guiding experiments and making predictions,
undoubtedly providing a good example of the successful interaction between theory and
experiment (Marder et al. 1997).

In addition, finding isolated groups of neurons that independently exhibit such rhyth-
mic patterns fits well with the now ubiquitous idea that central pattern generators (CPGs)
underly much of motor behavior (Selverston 1980). A CPG is a group of neurons that can
produce rhythmic patterns without sensory input, just as seen in the lamprey. So, the spinal
cord is typically thought of as a series of local CPGs connected in series, and analyzed as
such (Grillner et al. 1991; Lansner et al. 1997; Kopell and Ermentrout 1988). Given this
way of understanding lamprey motor behavior, the standard methodology is what is often
called ‘bottom-up’. That is, small functional units (i.e., local CPGs) are identified, their
properties characterized in great detail, and then they are connected together in various
ways to emulate some more complex behavior (i.e., lamprey swimming). As successful as
this approach has been, we think that it has some central limitations that our framework
can help address. In particular, because our framework provides a means of characterizing
a system at many levels at once, it can help integrate ‘top-down’ data with this kind of
‘bottom-up’ approach. In other words, we do not want to offer a replacement for the CPG
methodology, but an extension that will help us constrain models from the ‘top’ and the
‘bottom’.

TLFeBOOK

Dynamic transformations 261

The limitations of the purely bottom-up approach have not gone unnoticed by those
building these models. For example, Marder et al. (1997) note that networks comprised of
chains of coupled oscillators in no way guarantee oscillations and often produce synchrony:
a deadly result for an organism. As well, Wannier et al. (1998) have noted that it is difficult
to control the direction and frequency of the oscillations arising from such networks.
Because we have a means of choosing both the representation and the higher-level control
structures in our model, both of these kinds of difficulties can be avoided from the start, as
we discuss below. Furthermore, the kinds of simplifications that modelers make in order to
map a chain of biphasic oscillators onto the lamprey nervous system are different that
those we tend to make. For example, such models generally assume that the coupling
between neighboring oscillators is both highly localized and discrete (Wilson 1999b, p.
212). However, this is known not to be the case for the lamprey spinal cord. As well, the
weights used to drive the network are ‘hand-picked’ to produce the desired behavior. Using
our approach, connection weights are determined analytically and approximate very well
the pattern of connectivity observed in the lamprey.

Before presenting the example, it is essential to emphasize that we take our approach
to be complimentary to the typical CPG approach. That is, both top-down and bottom-up
analyses of such systems are essential for a complete understanding of the system. Our
point is that having a framework that allows both kinds of data to inform the construction
of such models should be preferred over a ‘one-sided’ approach.

8.5.2 System description

The lamprey family consists of about 17 species in North America. These eel-like fish
range in size from approximately 10–60 cm when full grown. They sport a long single
or double dorsal fin that joins a caudal fin at the tail (Becker 1983). Phylogenetically
ancient, lamprey are often characterized as the simplest vertebrate, suggesting that they are
both experimentally accessible and relevant for understanding more complex organisms.
As well, their main mode of movement, an undulatory swimming, is fairly simple to
characterize mathematically. In the remainder of this section, we highlight some of the
central constraints on a good model of lamprey locomotion before identifying the relevant
representation and considering how to provide a mathematical description of the system’s
behavior.

Some of the central features of lamprey neurophysiology and behavior are (see Wilson
1999b; Lansner et al. 1997; Grillner et al. 1991; Marder et al. 1997):

1. the spinal cord is continuous, but made up of about 100 segments;

2. connectivity is mostly local, but spans several segments;

3. connectivity is asymmetric;

TLFeBOOK

262 Chapter 8

4. individual neurons code muscle tension over small regions;

5. during swimming, neural firing on one side of the lamprey oscillates in counter-phase
with a similar population on the other side (i.e., biphasic oscillation is observed);

6. the length of the lamprey is equal to about 1 period of the swimming wave;

7. the inter-segmental phase lag is independent of swimming frequency (i.e., 6. is true
regardless of swimming speed); and

8. the lamprey can swim between about .25 and 10 Hz forwards, and can swim backwards.

These constraints are all met by our model. Some of these constraints give us important
hints regarding what kinds of representations and dynamics are in this system. For instance,
neurons in the cord seem to only code muscle tensions over small regions, so we can
assume a local Gaussian-like tuning curve for neurons in the cord:

����� �� � ��

�
��

�
������� ��� ��

�
�

� 	�

�
�

where � ��� �� is the tension in the muscles along the length, �, at time �. The encoding
functions, ������, should be spaced approximately equally, and close together along the
length of the lamprey. Furthermore, we need to ensure that the frequency of swimming,

, can be controlled and that there is always one period of swimming wave evident
in the lamprey’s body position. The remaining constraints will be important during the
implementation stage.

We now need to describe how the represented variable, � ��� ��, relates to the observed
lamprey behavior. As mentioned, the lamprey produces a traveling wave along its length
when swimming. An equation describing this kind of wave is (see figure 8.23)

���� �� � � ����
��
��� (8.29)

We can solve this equation directly and compare it to the motion of the swimming lamprey.
Doing so shows that it is a good description of lamprey locomotion. This, then, provides a
reasonable high-level characterization of the observed behavior of the system, one which
we can use to constrain our neural-level model.

In order to relate this high-level description to the firing of neurons in the spinal cord,
we need to describe how this network controls the muscles along the length of the lamprey
so as to result in an undulatory motion. To do this, we can invoke Newton’s second law
of motion: � � ��. In the case of the lamprey, we know the displacement over time
(and thus the acceleration) of the system, and can use this information to determine what
forces are needed to give rise to the observed displacement. Because the lamprey swims
in a liquid, the forces that arise are due to the resistance of the liquid to the movement of
the lamprey’s body. As a result, fluid dynamics can help us get an expression for the forces
that arise given the observed displacement.

TLFeBOOK

Dynamic transformations 263

Figure 8.23
Lamprey swimming motion and direct solution (grey line) of equation (8.29). The lamprey was photographed
every 0.09 s during normal swimming. The equation provides a good approximation to the lamprey swimming,
although the amplitude of the lamprey wave varies from head to tail (being smaller at the head), unlike the
equation solution. (Adapted from Gray (1933) c� The Company of Biologists Ltd., reproduced with permission)

In general, the normal force resulting from moving an object through a liquid is a
function of velocity. The simplest such function is

����� �� � � ��

� ��� ������� 	���

where � is the viscosity of the liquid (water in this case), and ����� �� is the normal force at
position � at time �. We use this expression even though it truly only holds in the regime of
low Reynold’s numbers (i.e., for ‘creeping’ or ‘Stokes’ flow). While this expression does
not capture the exact force that would be experienced by a lamprey, it serves to keep the
problem simple.11

�� A much better expression for the normal force is �� � ��� ��� where �� is the coefficient of drag (this
is a function of the Reynold’s number). In the regime of active normal velocities (�� � ��� m/s), �� is
approximately constant. Following the procedure outlined below, this results in an expression for the tensions
of � ��	
� � �

�

�
��	�
�
��� � �

�
� � �

�
� ��	�
�
� 	���
���

�
which makes the remaining derivation more

difficult, though still tenable. However, even this expression assumes a static flow velocity. To generate an even
more accurate model, oscillatory flow should be used to calculate the normal force (Sumer and Fredsøe 1997).

TLFeBOOK

264 Chapter 8

x

Fz(z,t)

Fn(z,t)

z

θ

Figure 8.24
Components of the force generated by lamprey swimming. � ���� �� is the propelling force in the � direction
and ����� �� is the force normal to the lamprey’s body at �.

To determine the force contributing to the forward motion of the lamprey, we can find
the component of the normal force acting along the � axis (see figure 8.24):12

� ���� �� � ��� � � ����� ��

� ����� ��
����� ��

��

� ��	�
� �����
�� ����

We now need to to relate these forces to the contractions of muscles along the lamprey’s
body. To do so, we use the simple model of lamprey mechanics shown in figure 8.25. As
shown in appendix F.2.1, we can solve for the tensions needed to perform the requisite
swimming. This results in the expression

 ��� �� � ������
�� ���� ����
���� (8.30)

where � � ����
�

, � � ��
	

, 	 � 	 is the wave amplitude, � � 	 is the normalized viscosity
coefficient, � � 	 is the ratio of intersegmental and vertebrae length, � � 	 is the length
of the lamprey, and
 is the swimming frequency.

We have now mathematically defined the transformations and representations relevant
for understanding the system we are modeling. Notice that this equation defines a whole
set of possible swimming behaviors that are parameterized by
. In other words, this
expression describes lamprey locomotion at any speed (forwards or backwards), which
can be controlled by varying
.

8.5.3 Design specification

As usual, we must now specify the noise, range and precision relevant to these represen-
tations. Again, because we are interested in the representation of functions, this step is

�� This approximation holds since ��� � � �	
���� �� � ��

��
, where � is the angle between the force vectors.

TLFeBOOK

Dynamic transformations 265

Tn-1
+

Tn
+

Tn+1
+

Tn+1
-

Tn
-

Tn-1
-

Fn+1Fn

x

z

nn

l2

l1

n

Figure 8.25
A simple model of lamprey mechanics used to relate muscle tension, � ��� ��, to the forces, � ��� ��, generated
during swimming. Here the body has been discretized into � segments, where the distance between the segments
is ��� and the width of the segment is ��� .

broken into two parts; identifying the function space, and specifying constraints on the
neurons themselves.

To begin, we define a representation of the dynamic pattern of tensions in terms of the
coefficients ����� and the orthonormal spatial harmonic functions �����:

� ��� ���� � �
�
�� �

�
�

���
�������� ��	�
���� ������� ����
����

�
	 (8.31)

We can find the appropriate coefficients by forcing the difference between
� ��� �� and
� ��� �� to be zero (see appendix F.2.2). As a result, we find that ����� � � ��	�
��,
����� � � ����
��, ����� � ��	�
��, and for � �
� ����� � �. This is a representation
in a higher-level orthogonal space of the ensemble of functions we want to be able to
generate. We can specify the domain of the functions, � ��� ���� because we know that the
lamprey is of length � so � � ��� �� and clearly � � �. Finally, the frequency parameter
defining the� space can range between about -2 Hz (backwards) and 10 Hz (a fast swim).
This completes the design specification in the orthonormal space.

As usual, we take the neuronal noise to have a variance of 0.1. However, there is no
good evidence as to how precise the tension in each segment along � is encoded. So, we
simply make a (presumably conservative) assumption of 200 neurons per segment. We
have now specified the range and precision of our encoding for both the higher level and
basic representations.

8.5.4 Implementation

In order to implement the dynamics of lamprey swimming using the representation de-
fined above, we need to make our dynamical description amenable to this representation.
Employing the standard control theory form discussed in section 8.1, we can write the

TLFeBOOK

266 Chapter 8

high-level state-space equation as

�� ��������� (8.32)

where� are the amplitudes in our orthonormal space,�� is the dynamics matrix,�� is
the input matrix, and� is the input, in this case a startup signal.

However, we are clearly interested not only in implementing these dynamics, but in
implementing them using a neural representation. As a result of using such a representa-
tion, there are many unforeseen sources of error (from noise, spikes, etc.). The dynamics
we define in the orthogonal space should be robust to such errors. To ensure that this is the
case, we can enforce the constraint that, over time, the error goes towards zero despite any
perturbations. To do so, let us write the error

� �
�
�� ��� ��� �� ��� ����

�
���

� (8.33)

where � ��� �� is defined by (8.30) and �� ��� �� is defined by (8.31). Solving (8.33) results
in the expression (see appendix F.2.2)

� �

�
	

��� � ��
������ �

	

�
������ ����

�

�

�
�� ���

��
�

�
�� ���

�
������

��
�
�
���

��

�����

�
�

� (8.34)

To ensure that this error goes to zero over time, each of the terms in this expression must
also go to zero. The third term suggests that we need to damp the sum of �� and �� over
time to keep the error small. Together with the fourth term, it also suggests that we must
enforce the constraint �� � ��� � �
������. As well, we can see that the first and
second terms together identify an oscillator since

�� � � ��
����

�� � �
�������

As can be shown (see appendix F.2.3), these dynamics can be written in standard control
theory form as

��� � ����

��� � ���

or,

�� ����

TLFeBOOK

Dynamic transformations 267

where

� �

�
� � �

�� �

�
� �

This, of course, is the matrix that defines a cyclic attractor (see section 8.4.3). So, not
surprisingly, the lamprey can be thought of as implementing cyclic attractor dynamics.
Viewing the lamprey’s behavior in this way demonstrates otherwise obscure similarities
that this system has to LIP and the neural integrator. It is because we have a framework
that can integrate ‘top-down’ considerations that such connections become evident. These
connections can prove useful because they can give us insight into what kinds of perturba-
tions, representational constraints, etc. are important for characterizing a novel system.

In the specific case of the lamprey model, the oscillator matrix alone will not ensure
that the constraints we previously identified are enforced. So, we need to explicitly include
the term

�������

�
�

��
� ��

We can now include a row and column of zeros in� to enforce this constraint. However,
our matrix is now in a different coordinate system than our original variables (one which
includes half the sum of �� and �� as an axis). Thus we must perform a coordinate
transformation back to the original space. Doing so gives (see appendix F.2 section F.2.4)

�� � �
��
��

�

�
����

� � �

�� � �

� �� �

�
���� � (8.35)

where� is the coordinate transformation matrix. Thus,�� is the matrix that implements
the desired dynamics and enforces the constraints in our original space.

However, this matrix does not ensure robustness to errors in representation of the
components�. In particular, according to this matrix,

��� � ���

�
�
�� �	
���� � � �	
����

�
�

which evaluates to zero only if our representations of �� and �� are perfect. If they are not
perfect, then this derivative is non-zero and a rapidly increasing error is introduced. Thus,
we need to explicitly damp this term so it goes to zero even in the face of small errors

TLFeBOOK

268 Chapter 8

in our representation. To do this, we construct a damping matrix,�����, with damping
terms, ��� � � :

����� �

�
����

��� � ���

� � �

��� � ���

�
���� �

Similarly, the final term in (8.34) tells us that we must damp the higher-order terms in
the orthogonal representation. Intuitively, this is because the neural representation is quite
local along the length of the lamprey, thereby introducing high frequency components not
included in the orthogonal representation. As a result, we need to ensure that these high
frequency components are damped out of the dynamics. We can do this by introducing a
second damping term, �� � � and applying it to any higher frequency amplitudes that
may be introduced. We can determine how many higher frequency amplitudes to damp out
by noting the width of the tuning curves of neurons found along the length of the lamprey.
We need only damp those amplitudes that might be introduced by tuning curves of this
width.

We can combine these damping terms in a single matrix, increasing the dimensionality
of the original matrix and including the �� term along the diagonal. This matrix then
damps all sources of error introduced by our representation:

����� �

�
�����������

��� � ��� � �

� � � � �

��� � ��� � �

� � � �� �

� � � �
. . .

�
�����������

�

We have now effectively defined the dynamics matrix,��, so let us turn to the input
matrix,�� . This matrix is essential for starting the swimming motion, and could also be
used to increase or decrease the amplitude of the swimming wave. For convenience, we
have chosen startup dynamics defined by the startup matrix�� :

�� �

�
����

�

�
� �

�

�

� � �

�

�

�
�

�

�

�
���� �

TLFeBOOK

Dynamic transformations 269

Substituting this matrix into (8.32) and allowing� � � shows that the resulting equation
is �� � �, giving an exponential startup while satisfying the constraints imposed by (8.34).

Putting these matrices together, we can create a set of dynamical equations that result
in the desired behavior:

�� �������� � ��� ��������������� ���� (8.36)

where the function ��� � ��� is a step function that goes to � at � � � and goes to zero
at � � ��, controlling the application of the startup matrix. This completes a high-level
control theoretic characterization of the system. Note that this system is guaranteed to be
stable, to oscillate as expected, and its frequency can be controlled through manipulation
of �. Changing � can be incorporated by allowing�� to be time-varying, as in the neural
integrator (see section 8.2.1).

In previous examples, we often embed this kind of high-level characterization directly
into a neural representation. However, in this case, let us introduce a level of representation
that is intermediate between this high-level description and the neural-level description. In
other words, we use two levels in the representational hierarchy defined by table 3.2. In
particular, we can define the function representation in terms of a scalar representation.
This is natural to do in this case for two reasons. First, the lamprey itself is composed of
a series of about 100 segments, so considering each of those segments as representing the
local tension reflects the physiology. Second, because running the model may be highly
computationally demanding at the level of single spiking neurons, it is easier to explore
some of the model’s behaviors at an intermediate, and less computationally demanding,
level. A simple choice for this intermediate level representation is to use one Gaussian
encoding function for each segment. This is especially useful because it is so closely related
to the eventual neural level representation. We can then proceed as usual:

� ��� �� �
�

�

����������� (8.37)

where we can find the decoding functions by minimizing the error as before. The ����� is
a scalar that can be thought of as the ‘segment activity’, defined by

����� �
�
	������ ��� ��

�
	
� (8.38)

Together, (8.37) and (8.38) form an overcomplete representation of � ��� ��.
To use this representation, while preserving the higher-level dynamics, we can con-

struct a projection operator between the higher-order orthogonal space and this space. This

TLFeBOOK

270 Chapter 8

operator effectively allows us to move between these spaces (see appendix F.2 section
F.2.5):

� �
�
���
�
��

�

Next, we take advantage of � to transform the dynamical equations for the Fourier
amplitudes, �, given by (8.36), to dynamical equations in the intermediate space, � (see
appendix F.2 section F.2.5):

�� ��������� (8.39)

where

�� � ������

�� � �������

We can now simulate the lamprey’s swimming in the intermediate space using this equa-
tion. Not surprisingly, the lamprey swims as expected.

Now, however, we would like to include neurons in our model. Because we have
defined the intermediate representation encoding functions as a series of Gaussians (one for
each segment) along the length of the lamprey, we can choose which of those segments we
wish to represent using neurons. In other words, we can simulate some of the segments
at the intermediate level and some of the segments at the neural level. Being able to
mix degrees of neurobiological realism in a single simulation can prove extremely useful,
especially for computationally intensive simulations.

In the case of the lamprey, we allow the neurons in a segment to represent what
we earlier called the segment activity (see figure 8.26). In other words, we construct
populations of LIF neurons to represent ����� in equation (8.37) for some set of segments,
�. This essentially assumes that each neuron in a population has the same encoding function
for tension, ���, although their tuning curves will be quite different.13 More explicitly, we
can write

����� �
�
�

�������

����� � ��

�
���������� � 	����

�

�� Alternatively, we could suppose that all neurons have different encoding functions, spaced randomly using
an even distribution between the previous segment, and the next segment. This results in tuning curves more like
those seen in the lamprey and behaves the same as the model discussed here. We assume all encoding functions
are the same for simplicity.

TLFeBOOK

Dynamic transformations 271

w MI

ai(t)

bj (t) bj (t)
left right

Figure 8.26
Model connectivity and the various levels of representation. Shown are the high-level control signals, � and
�� , segment level representations, �����, and individual neuron representation, �����. The ����� represent the
����� with respect to their basis, the ����� represent � ��� �� with respect to their basis and � parameterizes
� ��� �� at the highest level of description.

where ��� � �� are the encoding weights for the segment activity. If we replace these
encoders with ��� for the segment, we then find the tuning curves for the tension. Thus, we
can relate all three levels of representation quite directly using this characterization.

Again the simulation behaves as expected. Now, however, we can look at the firing
profiles of particular neurons to see if they match what is known from the neurophysiology.
As figure 8.27 shows, the behavior over both the population and at the level of individual
neurons matches what is seen in lamprey experiments.

8.5.5 Discussion

This model meets each of the constraints listed in section 8.5.2, although we have not dis-
cussed all of them in detail. However, the main purpose of our model is not simply to meet
such constraints, but to do so while employing a top-down methodology. Clearly, some of
the considerations employed while developing this model are justified by ‘bottom-up’ data
(e.g., the choice of Gaussians as encoders for the intermediate representation). As a result,
this model shows how we can be sensitive to both kinds of considerations concurrently.
Having a principled means of integrating bottom-up and top-down constraints is essential
for building complex models and testing hypotheses about neural function.

TLFeBOOK

272 Chapter 8

0 10 20 30 40
60

80

100

120

140

160

180

time (s)

fir
in

g
ra

te
 (

hz
)

0 10 20 30 40
0

100

200

300

400

time (s)
fir

in
g

ra
te

 (
hz

)

left side
right side

left side
right side

a) b)

Figure 8.27
Neuron firing rates during startup and swimming. a) Mean firing rate as a function of time for the LIF
populations encoding left and right tensions in the middle segment. b) Examples of single neuron example firing
rates for LIF neurons taken from the same populations as in a). Note that this kind of oscillatory firing reflects
that seen in the lamprey and in biphasic oscillator models.

While the bottom-up approach has resulted in more detailed models than the one
presented here (see e.g., Ekekberg and Grillner 1999; Wadden et al. 1997), their intrinsic
strengths and weaknesses are different. For instance, in bottom-up models, controlling the
frequency of swimming is difficult and seldom accounts for the full range of lamprey
swimming frequencies. As well, the control signal for backwards swimming is quite
different from that for forward swimming (i.e., a bias signal must be switched from the
head to the tail of the simulation). Our top-down approach, in contrast, makes control of
both direction and frequency a simple matter; the sign of � determines the direction and the
magnitude of � determines the frequency. As discussed in detail for the neural integrator
model, elements of the dynamics matrix, including �, can be controlled by an independent
signal. Thus, forward and backward swimming are simply a result of a switch in sign of
the control variable � (i.e., positive and negative respectively) which does not result in a
radically different kind of signal. Furthermore, there is significant concern regarding the
stability of oscillator models (Marder et al. 1997). But, in the case of the above model,
we have guaranteed stability by placing constraints on the allowable representation at the
higher level (i.e., damping higher-order terms in the Fourier representation). Being able
to include such high-level constraints in a principled manner becomes more important the
more complex our models become.

This model also demonstrates a number of other techniques that become important
as the complexity of our models increase. For instance, we showed a means of using the
representational hierarchy to build progressively more detailed models of lamprey locomo-

TLFeBOOK

Dynamic transformations 273

tion. Employing intermediate representations have a number of benefits. First, they result
in significant computational savings, while highlighting novel properties of the lower-level
network (e.g., interactions and coupling between neighboring segments). Second, interme-
diate representations make the connection between the higher-level characterization and
the basic-level network more explicit, simplifying some derivations. And finally, well-
chosen intermediate representations permit simulation of different parts of the network
at different levels of detail simultaneously (e.g., segment and neural levels).

Beyond these methodological and practical points lies a deeper, by now familiar,
theoretical message. This is that the methodology, techniques, and theory employed in
building this simulation are general. Thus, some of the more abstract properties of this
model, like the fact that it implements a cyclic attractor, not only become evident, but
suggest a broader view of neurobiological systems. The payoff in terms of specific models
like the lamprey, is that our understanding of controlling systems of this kind can now be
applied directly to this neurobiological system. The real lamprey, of course, has a wide
variety of swimming behavior that we have not addressed. However, using this framework,
high-level analyses of the control of cyclic attractors can be applied for generating and
testing hypotheses about how the lamprey controls its swimming to produce such behavior.
The payoff in terms of understanding neurobiological systems more generally is that what
we learn about lamprey behavior may be carried over to other, less familiar systems.

8.6 SUMMARY

At the beginning of the chapter, we set out to integrate what we had previously learned
about neural transformation and representation with a general characterization of dynam-
ics. Because control theory is well-established, very general, and appropriate for under-
standing both linear and nonlinear dynamic systems, we used it as a general means of
introducing dynamics into the models we had developed to this point. To do so, we related
the standard state space description of linear systems to one that accounted for intrinsic
neural dynamics. This allowed us to revisit and precisely quantify the principles of neural
engineering we had laid out in chapter 1, and to identify a general form for a generic neural
subsystem.

The remainder of the chapter was largely taken up by different applications of this
characterization. We began by revisiting the neural integrator. We demonstrated how to
understand this system as a simple control structure, and how to extend the basic system
to allow for the control of various matrix elements. This showed that our characterization
of ‘neural’ control theory can be used to describe time-varying and nonlinear systems. We
then turned to the working memory system in LIP. There we showed how to understand the

TLFeBOOK

274 Chapter 8

dynamics of function representation, and how work on the integrator naturally generalized
to this kind of model. We demonstrated that our approach could help derive a novel model
able to account for phenomena not yet addressed by computational models.

We then discussed how the kinds of dynamics seen in both the integrator and the
working memory system suggested a more general means of characterizing dynamics via
the tools of dynamic systems theory. We noted that recent interest in attractor networks
has been significant, but that there is not currently an approach for unifying the various
kinds of attractor networks. We suggested that generalizations of both the representations
and dynamics seen in contemporary models are naturally understood in terms of our
framework. As well, such generalizations are a powerful way to characterize the behavior
of many neural systems and subsystems.

Finally, we presented a fairly complex model that both exhibited a kind of attractor
network we had not yet considered, and highlighted some strengths of this approach. In
particular, the lamprey model demonstrated how relying on multiple levels of the represen-
tational hierarchy in a single model can be a useful technique. And, more importantly, this
model showed that the framework can help us integrate both top-down and bottom-up in-
formation about a system. Being able to rely on a high-level characterization of a system’s
behavior when building a model can introduce important constraints that might be missed,
or difficult to satisfy, by focusing on only low-level data.

In sum, the breadth of neurobiologically plausible models considered in this chapter
provides good support to our central claim that the three principles of engineering are
useful, data-driven, quantitative and can help unify our understanding of neurobiological
systems (see section 1.6).

TLFeBOOK

9 Statistical inference and learning

In each of the previous chapters, we have presented both theoretical discussions and their
applications to specific neurobiological systems. In this chapter, in contrast, we present
theoretical discussions and their applications to simple, ‘toy’ problems. While we think it
is preferable to include specific biological examples, we also believe that it is valuable to
explore some more theoretical ideas that are likely to be of use in understanding systems
we have not yet modeled in detail. As a result, this chapter is the most speculative in
the book, but it is nevertheless important because the issues it addresses are, we argue
below, central to a broad understanding of neurobiological function. In other words, we
think that any approach purporting to be a theory of neurobiological systems must have
something to say about both statistical inference and learning. Both of these topics address
how neural systems incorporate their particular environmental history to usefully inform
future responses—something neurobiological systems are supremely adept at doing.

9.1 STATISTICAL INFERENCE AND NEUROBIOLOGICAL SYSTEMS

Over two thousand years ago, Aristotle devised the first logical system in his treatise
called the Organon (literally, ‘instrument’). His purpose was to identify the theoretical
instrument that we can use to know things about the world. He suggested that language
and thought, on the one hand, and reality, on the other, were isomorphic. Therefore, he
took the rules of his logic to govern both of those domains. He did such a convincing
job of determining these rules, that it took nearly two thousand years until significant
alternatives were proposed. Currently, there are many alternatives to Aristotle’s original
formulation, but perhaps the approach which deviates the most is the one that rejects
language-like structures as fundamental; namely, probability theory. Rather than consider
the truth and falsity of sentences, probability theory considers the likelihood of events or
states of the world.1 Because we are interested in neurobiological systems in general—
nearly all of which do not have significant linguistic abilities, but all of which must reason
about states of the physical world—it is reasonable to suspect that probability theory is the
more appropriate tool for understanding such systems.

Unlike the certainty which Aristotle assumed, natural systems most often confront
partial, noisy, uncertain information that they must use to make decisions; failure to use
this information, no matter how degraded, may mean certain death. Again, probability

� Of course, probability theory has been applied to language-like structures. For instance, when probabilities
are considered to be degrees of belief in propositions. However, this is neither historically nor theoretically the
foundational case.

TLFeBOOK

276 Chapter 9

theory and statistical inference naturally deal with cases in which information is partial.
Furthermore, probability theory describes how to incorporate multiple uncertain sources
of information to get a more certain result. And, similarly, it describes how to update a
current ‘take’ on the world given novel information; this, of course, is learning. In general,
then, probability theory is the best available quantitative tool for describing the kinds of
reasoning evident in neurobiological systems.

A number of researchers have developed sophisticated probabilistic formalisms for
modeling cognitive function (e.g., in computer vision; see Yuille and Clark 1993; Hallinan
et al. 1999), and for modeling neurobiological function as statistical inference (Amit and
Geman 1999; Knill and Richards 1996). One of the more general approaches to statistical
modeling is known as pattern theory (Grenander 1981; Mumford 1996). The main purpose
of this approach is to generate general models of complex, real-world patterns—like those
encountered by biological systems.

Pattern theory incorporates another general approach, Bayesian inference, for describ-
ing pattern analysis and recognition. In our terminology, Bayesian inference defines trans-
formations that are useful for working with the complex representations defined in pattern
theory. In fact, Bayesian inference has been studied extensively in its application to reason-
ing about random scalar variables (Pearl 1988).2 And, there is significant literature relating
this general theory to particular algorithms and approaches in neural networks (see Jordan
and Sejnowski 2001 for a review).

The preceding considerations all speak to the need for characterizing high-level sta-
tistical transformations. However, there are also basic-level considerations that suggest
an interesting correspondence between neural architecture and the mechanisms needed to
perform statistical inference. To see this correspondence, we must characterize these rep-
resentations and transformations explicitly.

To begin, we know that all the information about a relation between any two random
variables, � and �, is captured by their joint distribution, ������.3 Probability theory
tells us how to write this joint distribution in terms of a relation between the individual
distributions, ���� and ����:4

������ � ���������� (9.1)

� ����������� (9.2)

� Such variables are the values of particular attributes of the underlying generators of patterns in pattern theory.
� The function ���� is referred to as a probability density function (PDF). It can be thought of as relating the
values of a continuous random variable to the likelihood each value has of occurring. A PDF is a continuous
version of the more familiar normalized histogram. The PDF of a random variable, �, describes the probability
that � lies between any two values; i.e., � �� � � � �� �

�
�

�
���� ��.

� Note that Bayes’ rule consists of equating the two right hand sides of the following equations and solving for
either ���� or ���� as needed.

TLFeBOOK

Statistical inference and learning 277

Furthermore, probability theory tells us how to determine the probability density function
(PDF) for either parameter alone by ‘marginalizing’ (i.e., integrating) the joint distribution:

���� �

�
������ �� (9.3)

���� �

�
������ ��� (9.4)

In a neurobiological context, each of these PDFs would be represented in a neural
population. In the context of vision, for instance, we can think of ���� as representing how
likely each image is in the environment. Of course, this estimate can only be usefully made
in the context of some evidence, or data, provided by the environment. This data could
be the image falling on the retina that is corrupted by noise. We would then construct the
conditional PDF, ������, that corresponds to the probability density function for the true
image given the measured image, �.

In analyzing images, it is generally useful to extract certain properties of the image that
are not directly captured by the image falling on the retina (i.e., �), such as objects in the
visual field, optic flow fields, etc. To extract these properties, various transformations must
be performed. Letting the variable � correspond to such properties, and generalizing (9.1),
the probability density function for the variable � can be determined as a weighted average
of the conditional ������:

������ �

�
������������ ��� (9.5)

Equation (9.5) tells us, for instance, how to determine the probability of the existence of all
possible objects in the field of view given the input image, �. While this particular example
is clearly oversimplified, and, as we show, probably impossible to implement, it serves to
demonstrate the potential power of this kind of formulation. Notably, equation (9.5) is
simply a linear transform, or projection of ������ into the new space ����. Nevertheless, it
includes the transformations we have talked about to this point, i.e., � � ����, as a subset.
This can be seen by forming the conditional5

������ � Æ�� � ������ (9.6)

and solving (9.5).
Importantly, (9.5) frees us from the assumption of Gaussian statistics. For example,

it allows multi-modal distributions in ���� and ���� (see section 9.2). As well, the con-
ditional connecting the two spaces, ������, can also be multi-modal, allowing unimodal

� A slightly blurred version, ������ � ��
���

�
�������������� , is nearly as simple and begins to take

advantage of the extra power of this statistical formulation.

TLFeBOOK

278 Chapter 9

inputs to support multiple hypotheses. As a result, being able to implement transformations
defined by (9.5) results in computationally powerful systems. This is demonstrated by the
many successes of artificial neural network (ANN) models, which can implement precisely
these transformations. It should come as no surprise that real neurobiological networks are
also ideally suited to implementing equation (9.5).

To see how, notice that ������ is simply a function parameterized by the variables �
(just as ������ is parameterized by �; see chapter 3). Hence we can create ensembles of
neurons to encode ������ and ������ as

����� � ��

�
��

�
������������

�
�

� �����
�

�
	���� � ��

�
��

�
������������

�
�

� �����
�

�

 (9.7)

with the corresponding decoding rules

������� �
�
�

����������

������� �
�
�

�����	����� (9.8)

Using equation (9.5) to define the transformation between these two function ensembles,
we find that the neuronal variables are related by

	���� � ��

�
��

�
������������������

�
���

� �����
�

�

� ��

�
	��

������������

�
�

����������

�
���

� �����
�

�

� ��

��
�

�������� � �����
�

�

 (9.9)

where

��� � ��

�
�����������������

�
���

� (9.10)

Within this framework, equations (9.9) and (9.10) tell us how to implement simple feed-
forward statistical inference in a neurobiologically plausible network. In particular, the
connection weights between neurons in these networks can be understood as the projec-
tion of the encoding functions of the output neurons, ������, on the conditional, ������,
weighted by the decoding function, �����, of each input neuron.

TLFeBOOK

Statistical inference and learning 279

Examining these equations more closely reveals a number of important consequences.
First, statistical inference in high-dimensional spaces requires estimating high-dimensional
integrals. That is, information from many sources must be ‘added up’. Because of the high
degree of convergence on each neuron in typical neural networks, such networks are ideally
suited for performing these kinds of transformations. Given the previous considerations
regarding the importance of such inference, in some ways this is not at all surprising.

Second, the form of these equations is identical to those for a simple feed-forward
ANN. Furthermore, given our past analysis of neurobiological representation, we can
see that there is no particular advantage gained by introducing the nonlinearity �� ���

(especially on the higher-level variables). The nonlinearity is simply due to the nature of
the representation found in neurobiologically plausible networks. Perhaps the nonlinearity
is more the result of an implementational constraint on low-power, low-precision physical
devices like neurons.

Third, this formulation of statistical inference using PDFs represented by a set of basis
functions is more general than one that assumes Gaussian statistics. This is because the
variables in this more general formulation (i.e., ��) are all treated in the same manner. In
contrast, when using Gaussian statistics, the mean and covariance matrices are modified
by different sets of rules.

And finally, (9.5) can be understood by taking the conditional ������ to be a ‘look-up
table’ (LUT), that specifies the value of � for every value of �. When viewed in this way,
the limitations of (9.5) become clear—every possible consequence given the input � must
be pre-computed (i.e., embedded in ���). This is why we referred to our previous example
in the visual system as oversimplified; that kind of simple feed-forward formulation of
the problem would require astronomically high amounts of resources to represent ������.
More importantly, the conditional, ������, would have to relate every possible image (a
high-dimensional space) to every possible object (another very high-dimensional space).
As a result, the addition of one new object (i.e., increasing the dimension of the object
space by one) requires enough resources to define its relation to every possible image—
this problem is commonly called the ‘curse of dimensionality.’

One way to begin to address this problem is to recognize that it is often possible
to divide such high-dimensional spaces into statistically independent subspaces. Let us
suppose that � can be so divided into ���� and ����. Then, the joint density ���� �� can be
written as ��������. Now, the transformation for finding the PDF for � given those for �
and � becomes

���������� �

�
������ ���������������� �� ��� (9.11)

TLFeBOOK

280 Chapter 9

An implementation of (9.11) in a neural network has the form

����� � ��

��
��

���������������� � �����
�

�
� (9.12)

where

���� �
�
������	����� ������������

�
�����

 (9.13)

Equation (9.11) defines a much richer class of inference than that supported by (9.5).
In fact, there are a number of possible interpretations of (9.11) in a neurobiological context.
Most generally, we can think of the variables � dynamically changing the connection
weights between � and � such that the inference between the latter two spaces is carried
out in the context defined by the � space. But, notice that (9.5) does not make a distinction
between which space is providing the context and which is being modulated. This is what
gives rise to different interpretations. Thus � and � could represent evidence from two-
different modalities such as vision and audition, in which case the circuit is still feed-
forward. Alternatively, � could represent variables in a higher order (‘top-down’) model
and � could provide the feed-forward (‘bottom-up’) evidence. A more specific possibility
is that the � variables determine the location where covert attention is directed, and � is a
visual image, resulting in an attention-like, context dependent processing of the evidence—
in this case the transformation defines a shifter circuit (Anderson and Van Essen 1987;
Olshausen et al. 1993).

The powerful set of transformations that results from the generalization of equation
(9.5) to (9.11) does not come for free, however. Most noticeably, (9.12) requires multi-
plicative (i.e., nonlinear) interactions between the activities of the � and � populations. Of
course, these could be implemented using intermediate neurons as described in section 6.3.
However, it would be much more efficient to put the nonlinear interactions into the den-
dritic trees of neurons. The ubiquitous need for performing this kind of context dependent
statistical inference is one more reason that we might expect to find such nonlinearities.
Others have made similar suggestions. Kawato (1995), while modeling the cerebellum,
has similarly argued that such nonlinearities are essential. As a result, Schweighofer et al.
(1998) have implemented models in which the dendritic trees of Purkinje cells are com-
posed of approximately 50 subunits that act as simple feed-forward neurons described by
(9.9).

So, both at higher levels and the neural level, neurobiological systems have an
affinity—and a need—for processing statistical information. In the remainder of this sec-
tion we show how the theory of Bayesian inference can be incorporated into our frame-
work by considering some simple examples. Although this discussion focuses on single

TLFeBOOK

Statistical inference and learning 281

random variables, the same techniques are appropriate for more complex representations,
as usual. That is, although the examples provided are simple, they demonstrate how all of
the essential features of pattern theory and Bayesian inference can be incorporated into
neurobiological simulations.

9.2 AN EXAMPLE: INTERPRETING AMBIGUOUS INPUT

Because the natural environment is often filled with irrelevant or partial information, there
is good reason to expect that phenomena like object recognition do not depend solely on
information extracted from sensory signals. Rather, many processes must depend critically
on the system’s assumptions about the structure of the environment. In other words,
‘top-down’ information is essential for the successful performance of many tasks. In the
context of object recognition, such a view directly contrasts with the classical view of
recognition being performed in a strictly feed-forward or ‘bottom-up’ manner (Marr 1982).
However, it has become clear, both functionally and anatomically, that top-down effects
are common. Functionally, top-down psychological effects in vision have been extensively
observed (Gregory 1997).6 Anatomically, it is clear that there are massive reciprocal
feedback projections from later to earlier visual areas in the primate (Van Essen et al.
1992). Cavanagh (1991) has argued that top-down influences are essential for successful
processing of heavily degraded signals—such signals seem to be the rule rather than the
exception in natural settings.

As discussed earlier, statistical inference formalizes just this kind of reasoning, so let
us apply it to a ‘toy’ characterization of a problem faced by animals. Suppose an animal is
interested in determining the location of an object in the external world. Since the actual
location is a matter of some uncertainty, we can describe the animal’s final ‘guess’ as to
where the object is as a probability density function, ����. This guess will be partly based
on information provided by the sensory system, ������. This PDF can be understood as the
sensory system’s assignment of the probability that the object is at each location, �, given
the noisy measurements, �. Let us suppose for this example that, under certain conditions,
this guess leads to a bimodal distribution that equally emphasizes two different locations
(see figure 9.1).

So, given only information from the sensory system, the final guess, captured by ����,
would be the same as the best guess from the sensory system, since ������ incorporates
all of the information available about the position of the object. However, if there is also
a top-down ‘model’ of what positions to expect, then using information from that model

� One of the most striking is our inability to see concave faces as anything but convex from about a meter or
more away.

TLFeBOOK

282 Chapter 9

may bias ���� towards one of the two modes in ������. We can again consider such top-
down information as a PDF, ������. This PDF captures the biased a priori information
about how likely the object is to be at any given location in space, �, before any new data,
�, is known. This PDF is determined by the parameters, �, which we can think of as
summarizing past experience with object positions. The information in ������ can thus be
used to disambiguate the information available solely from the sensory system (see figure
9.1a; Barber 1999).

We have now set up a toy problem that includes bottom-up information, ������, top-
down information, ������, and a final guess about the location of some external object,
��������.In order to determine what final guess should be determined for some particular
������ and ������, we can look at the relevant joint distribution, ���� �� ������, which
captures all of the relations between ������, ��������, and ������.

Given how we have set up the example, we assume that the input data, �, and
the internal model parameters, �, are independent, which means that ���� ������ �

������������. Therefore, we can express �������� just as we did in the more general
case in (9.11) as

�������� �

��
������ �������������� �� ��� (9.14)

From this expression it is clear that we need to know, ������ ��, the conditional prob-
ability that the object is in some location given the top-down and bottom-up information.
If there was reason to think that either the top-down or bottom-up information was more
reliable, we could use our definition of this PDF to capture that property of the system.
In the absence of any such reason, as in this case, we are free to choose this conditional
probability. So, we presume that ������ �� is

������ �� �
�

�
���	�� � ��� �
�

�����
�

�
��������������������� (9.15)

This conditional emphasizes those places in the multi-modal distribution (i.e., ������)
where the data and model agree, and de-emphasizes those places where they significantly
disagree. Notably, this conditional would not work very well with Gaussian statistics, but
we have more freedom to choose the conditional when working with general PDFs.

We have now expressed a high-level formulation of the problem of how we should
use previous knowledge to interpret ambiguous sensory data. Recall that this is the same
as describing context-sensitive reasoning, where the context is captured by the top-down
information, or combining independent sensory inputs, ������� and �������. The network
to implement this high-level formulation can be found as previously described for the more
general case (see section 9.1).

TLFeBOOK

Statistical inference and learning 283

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

x

pr
ob

ab
ili

ty

p(x)
p(z)
p(y)

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

x

pr
ob

ab
ili

ty

p(x)
p(z)
p(y)

a)

b)

Figure 9.1
Basic statistical inference for position disambiguation. The estimate given the data, ������, the estimate given
the model, ������, and final guess, ��������, for the position of an object are shown in both graphs. a) The
solution found by solving equation (9.14) directly. b) The solution found using a network of 200 LIF neurons in
each of the three populations. The latter is an imperfect, but very good reproduction of the first.

As shown in figure 9.1, simulating this network shows that it can be used to disam-
biguate the bottom-up sensory information given a top-down model of where the object is
expected to be under these circumstances, as expected.

This model does not include the dynamics we would expect to be involved both in in-
tegrating bottom-up and top-down information, and in determining the model parameters,
�. We consider this improvement in the next example.

9.3 AN EXAMPLE: PARAMETER ESTIMATION

The previous example assumed that there had already been a reasonably good top-down
model, parameterized by�, constructed before we attempted to disambiguate the bottom-
up information. Of course, the question arises as to where such a model comes from.
Ideally, we want a model that is generated based on the statistics of the environment the
animal finds itself in. In other words, if the top-down model is to be of any use, it must
reflect the structure of the animal’s environment.

TLFeBOOK

284 Chapter 9

In order to generate such a model, we can again use statistical inference. In this
section, we present a toy parameter estimation problem to show how a neural system can
extract the relevant parameters governing a probability distribution of some property in the
environment. Suppose that the system receives a stream of values, ��, each of which can
be thought of as a ‘measurement’ of the underlying statistical process that is giving rise to
these values.7

In this example we assume that the set of values ��� � � � � �� are generated by a
Gaussian process with a mean �� and variance �� that are fixed for a finite period of time.
The purpose of the neural system is to determine estimates of the mean and variance from
the measurements �� signal. Of course, if the mean and variance were truly static, there
would be no need for any kind of dynamic statistical inference mechanism. So, we can
think of the mean and variance as slowly changing or as being ‘reset’ occasionally. A more
sophisticated system, such as the Kalman filter, would model the actual dynamics of the
mean and variance (see section 9.4).

To begin, let us define the conditional probability of obtaining the value of � given ��

and � as a Gaussian:

������� �� �
��
����

������������� � (9.16)

We now assume that the mean, ��, and variance, ��, themselves are drawn from a broad
distribution, ������ ��, whose precise form is not critical. We can express the marginal for
�, ����, as

���� �

��
������� �������� �� ��� ��� (9.17)

which will also be very broad. We now suppose that a pair of values �� and � have been
drawn from ������ �� and are used to generate a signal, ��� � � � � �� , by a random Gaussian
process.

Our goal is thus to design a network that represents a PDF over �� and � that starts with
the prior, ������ ��, and is updated appropriately as the signal arrives. We can define the
representation of such a population as

	����� � � � � ��� �
�

�
��

�
������� ������� ����� � � � � ���

�
����

�

������ ����� � � � ��� �
�
�

	����� � � � � ��������� ���

� This can easily be thought of as the discretization of a continuous signal ����. The discretization makes the
analysis simpler.

TLFeBOOK

Statistical inference and learning 285

To simplify the notation we subsequently use ������ and ����� ����� to indicate the relevant
encoding and decoding.

Because the measurements of the true signal are subject to uncertainty, we take the
signal values, ��, to be the mean of a Gaussian PDF, whose variance, ���� , is determined
by the amount of noise in the measurement. Since only the mean, ��, will change, we write
this as the conditional, �������, that is represented by a neural population, where

������ � ��

�
��

�
�	�����������

�
�
�
����

�

�
�������� �

�
�

	����������

define the encoding and decoding.
These two representations can be related through an update rule that tells us how the

density ����� ����� should be modified given the next data point ����; namely,

����� ����� � � � ����� �

�
����� ������������� ��

�

�
������� ��

����
��������� �� ����� �����

�

�
������� ����������� �� ����� ������ (9.18)

where we assume ���� is very broad and hence approximated as a constant whose value
can be computed using (9.17). The coupling weights can be found in the usual fashion:

��� � ��

�
�	����� ��������� ��	����	����� ��

�
�	��	

� (9.19)

We can now write the firing rates of the �� population at time �� � as

�������� � ��

��
��

����������������� �
����
�

�
�

Note that this same derivation holds regardless of our explicit restrictions on the shape
of ������� or ����� �����. That is, the derivation is general enough such that they need not
be Gaussians. This is true despite the Gaussian form for the conditional probability which
relates the ������� representation with the ����� ����� representation, i.e., (9.16).

Figure 9.2, shows an example time slice of the results of simulating this network using
100 LIF neurons in each population. Though not evident here, as more data is presented
to the network, the estimate of the mean and variance, ����� �����, becomes narrower.
Eventually, the narrowness of the estimate, that is, the certainty of the best guess regarding

TLFeBOOK

286 Chapter 9

-2 0 2
0

0.02

0.04

0.06

0.08

0.1

x

ρ(
x)

-2 0 2

0.5

1

1.5

2

σ
-2 0 2

0.5

1

1.5

2

σ

-2 0 2

0.5

1

1.5

2

σ

a) b)

c) d)

input
estimate

x

xx

Figure 9.2
Comparison of parameter estimation with and without neural representations. a) The decoded estimate and the
original input, �������. b) The decoded estimate of �� and � with 100 LIF neurons in each population, �� and
�� , shown as a contour plot. c) The estimate of �� and � computed using (9.18) directly; d) The estimate of �� and
� using the representation in b).

the true values of �� and � of the underlying process, is limited by the goodness of the neural
representation in the �� population. This again demonstrates the importance of accounting
for resource constraints when modeling transformations in neurobiological systems.

There are a number of ways that this model could be made more sophisticated. As
mentioned, we assume that the process is stationary (i.e., � and �� are not changing over
time). There is a well-established theory on how to generate optimal estimates of non-
stationary stochastic processes as well (see, e.g., DeWeese and Zador 1998). However,
neither the transformations nor the representations are novel, so these more sophisticated
models could be implemented using this framework.

TLFeBOOK

Statistical inference and learning 287

However, this is just one of many ways to predict an unknown process under uncer-
tainty. We have taken an essentially Bayesian approach, but such approaches are closely al-
lied to others, like Kalman filtering and information optimization. They all have in common
a search for an optimal means of updating a current estimate in light of new information.
To make this alliance more explicit, we now turn to an examination of Kalman filtering, an
area of study that comes directly from the development of modern control theory.

9.4 AN EXAMPLE: KALMAN FILTERING

R. E. Kalman was a central figure in the development of modern control theory. His most
influential contribution now bears his name: the Kalman filter (Kalman 1960). The Kalman
filter is a least-squares optimal means of estimating the value of unknown state variables
in a control system based on a series of noisy and distorted measurements of those state
variables; this should be a familiar problem (see section 9.3). The implementation of the
Kalman filter is recursive, so only the current measurements and most recent estimate must
be stored in order for it to successfully perform. As a result, the filter is constantly updating
various filter parameters, i.e., it is dynamic. This kind of filtering is often called adaptive
filtering.

The flexibility and relative simplicity of the Kalman filter have resulted in its being
widely applied by engineers. It has been successfully applied to problems that demand
prediction and control of stochastic processes, such as navigation, surveying, tracking,
demographic estimation, and image processing (Lev 1997). Many of these problems seem
much like those neurobiological systems are interested in solving; i.e., problems that
involve determining the underlying state of some process given only noisy measurements
of its result. So, perhaps it is not surprising that some recent papers have suggested that
parts of the brain act like a Kalman filter. In particular, both visual areas (Rao and Ballard
1997; Rao and Ballard 1999) and the hippocampus (Bousquet et al. 1998), have been
compared to, and modeled as, a Kalman filter.

Because the Kalman filter combines ideas from both statistical inference and control
theory, and because it has recently been used to make hypotheses about the functioning
of various neural systems, it is an appropriate structure to discuss under our framework.
Interestingly, using this approach we find that the hypothesis offered by Rao and Ballard
(1997) regarding the functional structure of early visual areas is problematic. As a result,
we present an alternate hypothesis, but one that is also based on the Kalman filter. In the
next section, we briefly discuss two versions of the Kalman filter and how they can be
modeled using our approach. We then discuss the implications of each of these versions
for understanding early visual areas.

TLFeBOOK

288 Chapter 9

9.4.1 Two versions of the Kalman filter

Essentially, the Kalman filter relies on two independent sets of information to determine the
best estimate of some unknown quantity at each moment in time. One set of information,
�, comes from the current, noisy measurement of the output of the system with the state
variables, �. The second set comes from the current estimate of those state variables, ��.
The unknown quantity to be determined is the value of the state variables at the next instant
in time ��������.

The Kalman filter that we consider here is the simple case in which the variance of both
the internal model and the measurements is assumed to be static. Usually, the dynamics of
these variables are described separately because the internal model will be a poor one at
startup (i.e., have large variance), which improves significantly over time. However, we are
considering only the steady state case.

We now assume, as is usually done, that the quantities of interest are related by linear
systems under Gaussian noise. As a result, the measurements are given by

���� � ����� � ���

where � describes the constant distortion introduced to the state variables, ����, and ��

describes the noise. The evolution of the state variables is given by

��� ���� � ����� � ���

where � is the internal dynamics matrix (assumed to match that of the system generating
����), and �� describes the noise.8 This noise term is used to take into account both the
Gaussian noise and any differences that might exist between the internal model and the
true dynamics of the system.

Given the current estimate of the state variables �����, and a new set of measurements
��� ����, the estimate of the state variables at the next time step is9

�������� � ���
�
������

��
�

�
��������

��
�

�
� (9.20)

where

� �

�
�

��
�

�
��

��
�

�
�

� For simplicity, we have left out the input term,�����, though it can again be included with minor modification
to the remaining derivation.

� Assume ������������ � �

�
�

�����
����

�

��
�

�

��
��������

�

��
�

�
where ���� indicates ��� � ���. The

maximum likelihood for ���� is found by differentiating this equation and setting it to zero, which leads to this
result.

TLFeBOOK

Statistical inference and learning 289

The expression in (9.20) is a simple Kalman filter. Note that this is a weighted average of
the two estimates of �, where the weight is proportional to their reliability (as determined
by the relevant variance). More generally, the terms in this expression consist of the
appropriate correlation matrices describing the correlations between each element of the
state and measurement vectors. Again, we have simplified from the general case for clarity,
but the remaining derivation can proceed without this simplification.

This expression may not be familiar, as the Kalman filter is usually written in the
following ‘prediction-correction’ form

���� ���� � ������ �
����

���
��������� ��������� � (9.21)

where

�������� � ��������

As some algebraic manipulation shows, these two forms of the Kalman filter are equivalent.
Figure 9.3 shows systems diagrams for these two different implementations.

Because our means of translating standard control structures to neural ones depends
on a continuous time description, we need to convert (9.20) and (9.21) to the continuous
domain. Doing so gives

������

��
� ���

�
�

���
����� �

�

���
����

�
� (9.22)

and

������

��
� ������ �

����

���
������ (9.23)

where ����� � ���� � �����.
To construct a neural implementation of these dynamics, we first need to define the

representation of the relevant variables. For both versions of the filter we need to represent
� and �:

����� � ��

�
��

�
��
�

� �
�
�
� 	����

�

�

� �
�
�

��� ������

and

���� � ��

�
��

�
����

�
�
� 	����

�

�

� �
�
�

�
�

�
�����

TLFeBOOK

290 Chapter 9

y(t+∆t) x(t+∆t)
z-1P-1C

σy2

A

σx2

^

y(t+∆t) x(t+∆t)
z-1P-1C

σy2

^

C

y(t)^

A

a)

b)

-

Figure 9.3
Systems diagrams for two ways of implementing a Kalman filter. a) A less familiar form of the Kalman filter
(see equation (9.22)). b) The standard prediction-correction form of the Kalman filter (see equation (9.23)). The
�
�� indicates accumulation, i.e., discrete-time integration.

In addition, for the prediction-correction version we also need to represent ��:

������ � ��

�
��

�
��
��

� ��
�
�
� �����

�

�

�� �
�
�

�
��

� �������

Considering first the version, (9.22), we can write the soma currents, �����, of the �����
neurons as

����� � ��

�
��
�

� �
��

�
�

���
����� �

�

���
����

�	
�

� �����
�

�
�
��

	��������� �
�
	

	�	
	��� � �����
� �

TLFeBOOK

Statistical inference and learning 291

where the recurrent coupling weights are ���� �

�
��
��
�

�
��� �

��
�

�
�
��

�
�

, and the feed-

forward coupling weights are ��� �

�
��
��
�

� �
�� �

��
�

�
�
�

�
�

. This circuit is thus very similar

in structure to the neural integrator plus an input term.
Considering the prediction-correction version captured by (9.23) instead, we would

write the soma currents as

����� � ��

�
��
�

������� �
����

���
�����

�
�

� �����
�

�
�
��

���������� �
�
	

��	�	��� � �����
� �

where the recurrent coupling weights are ���� �
�
��
��
�

���
�
��

�
�

, and the feed-forward

coupling weights are ��� �
�
��
��
�

� �
�� �

��
�

�
��

	

�
�

.

9.4.2 Discussion

The prediction-correction form of the Kalman filter has been proposed as a useful way of
understanding visual processing (Rao and Ballard 1997; Rao and Ballard 1999). However,
there are both general and vision-specific reasons to suppose that the less familiar form
described by (9.22) is more suitable for implementation in neurobiological systems.

Generally speaking, the prediction-correction circuit described by (9.23) and shown
in figure 9.3b is more complex than the less familiar circuit, having both more intercon-
nections and demanding more representations. More importantly, the prediction-correction
circuit is more likely to be unstable under imperfect representation. To see why, suppose
that the dynamics matrix is unity (i.e., � � �), so the input is static. Under these condi-
tions, the recurrent connections, ���� , for the ����� population must implement a higher-
order circuit that has positive feedback with unity gain. Such a circuit is on the verge of
instability as any slight variation that causes the feedback to go higher than unity will cause
an exponential increase in the value of the state variables. In contrast, the feedback in the
less familiar version is ���

��
�

, which is less than unity and hence stable even under similar
perturbations. Put another way, the circuit in figure 9.3a only filters the input signal, while
the circuit in figure 9.3b is attempting to integrate the difference between the input and the
predicted input. Not only is precise integration notoriously difficult to achieve, but taking
the difference will make any error relatively more significant in the computed quantity.

Before turning to specific concerns regarding the application of the prediction-
correction Kalman filter to understanding the early visual system, let us first describe how
the Kalman filter applies to visual processing. To begin, let us presume that the images

TLFeBOOK

292 Chapter 9

P-1
Φn(r)

σy2

A

σx2

^

a)

b)

I(r,t)xn(t) xn(t)
h(t)

P-1Φn
σy2

^

Φn(r)

I(r,t)
^

A

-

Φn(r)

ηy

xn(t)
h(t)

I(r,t)xn(t) Φn(r)

ηy

Figure 9.4
Application of the Kalman filter to understanding early visual processing. a) The less familiar version. b) The
prediction-correction version. The left side of both diagrams indicates the process whose state variables are
being predicted by the filter. The signal �� is noise. Everything to the right of that signal is presumed to be part
of the neurobiological system. The transfer function ���� incorporates the synaptic dynamics.

falling on the retina, ���� ��, are generated by some underlying process whose statistics
are governed by the well-known inverse frequency (i.e., ���) power spectrum for natural
images (Field 1996). We can write the representation of the image as

���� �� �
�

�

�����������

where � is the retinal coordinate vector and ����� are wavelet-like basis functions (see,
e.g., Olshausen and Field 1996). The state variables of this process, �����, are to be
estimated by the Kalman filter. The neurons in the superficial layers of V1 are presumed to
be the locus of computation for the estimates of these variables. This description of visual
processing is diagrammed for both versions of the Kalman filter in figure 9.4.

TLFeBOOK

Statistical inference and learning 293

This description of visual processing is useful, but more so in the less familiar version
than in the prediction-correction version. In addition to the issues of stability discussed
earlier, there are two reasons that the less familiar version should be preferred. First, the
less familiar version makes it clearer how the context-sensitive reliability of the data, ����,
and the model, �����, can be controlled. For instance, if the image is moving rapidly or
unpredictably, the evidence generated by the model can quickly become unreliable, so the
system should more heavily rely on the data. This would be accounted for by increasing ��

�

and decreasing ��

�
. Given our past discussions, we can be confident that this kind of control

can be implemented in a neural system, with good precision. In contrast, the weighting of
the model evidence in the standard form is buried in the top-down estimate of the image,
����� ��, making it difficult to vary independently. Furthermore, as mentioned earlier, any
errors in this reconstruction will be amplified when taking the difference between it and
the actual image data. As a result, it is unclear how to implement an accurate relative
weighting of top-down and bottom-up information.

Second, the less familiar form requires minimal feedback that could be accounted for
by the recurrent connections within layers 2/3 of the primary visual cortex. In contrast,
the standard form requires the predictive feedback from later processing to be fed all the
way back to the earliest visual areas, including the thalamic LGN. This latter architecture
is proposed by Rao and Ballard (1997) (see especially figure 2 and Rao and Ballard 1999
figure 1a). However, the supposition that a complete reconstruction of the visual image
is carried by V1 back-projections to LGN (and back-projections from higher visual areas
to V1) is unwarranted. For one, this architecture requires the same channel capacity for
the feed-forward and feedback connections just for the image data. Since various control
signals and other information are presumably carried along this same channel, this is not a
perspicacious use of that resource. As well, ensuring proper timing of the feedback (given
the variable nature of neuronal processing and transmission delays) would be an extremely
difficult and perhaps insurmountable task. Given the comparative simplicity of the less
familiar implementation, supposing that complete reconstructions of ���� �� are marshaled
around within the visual system is not justified.

9.5 LEARNING

Both statistical inference and learning use past information to affect future performance.
Nevertheless, learning has received much more attention than statistical inference, in a
neurobiological context. Presumably, this is because learning, in the form of connection
weight changes, is much easier to observe and measure in a neural system than is statistical
inference, which does not rely on changing weights. As a result, there are decades old

TLFeBOOK

294 Chapter 9

learning rules for neurobiological systems, most famously Hebbian learning, and there
continues to be active research into the nature of learning in neural systems (Bienenstock
et al. 1982; Abbott and Nelson 2000). In order to make contact with the large body of
literature on learning, in this section we discuss the relation between learning and this
framework.

At first glance, it is not clear what role there could be for learning given our approach.
After all, we always find the connection weights analytically (given various assumptions
about encoding, etc.). Since the purpose of learning rules is to find these same weights,
what role or relevance can learning have? We think there are at least three ways our
approach relates to work on learning in neurobiology: 1) learning can help fine-tune models
generated with our approach; 2) we can compare and contrast learned with analytically
found weights to see if they are the same or different, possibly giving us insight into
the nature of learning; and 3) examining the role of learning helps highlight both new
challenges for, and the inherent strengths of, this approach.

As regards 1), the weights found using the techniques presented in the part two of
this book are typically based on rate model approximations to spiking neurons. How
accurate such approximations are depends on the spiking model being used. While there is
significant leeway in the framework for making the rate model approximations more or less
accurate, there will always be some degree of inaccuracy in the approximation. Thus, the
connection weights found using the framework are probably best considered to be good
first guesses at a set of weights that perform the desired function. Learning can thus be
used to subsequently fine-tune these weights. This would be particularly true in cases like
the neural integrator, where there is evidence that an explicit error signal is available to the
system for updating subsequent behavior (Robinson 1981).

In the next two sections we consider in more detail the remaining ways that learning
can be related to this framework.

9.5.1 Learning a communication channel

One of the simplest networks that we have discussed so far is the communication channel
(see section 6.1.1). In this network, one population, �����, drives another population, �����,
with no transformation taking place between them. Thus, the purpose of the network is to
simply communicate the signal, �, in the original population to the subsequent one; i.e., we
want ����� to represent just what ����� does. A natural way to formalize this is to note that
maximizing the variance of the receiving population allows it to carry the most information
it can about incoming signals. If it carries exactly the same information as is available from
the sending population, we have a communication channel. To maximize the variance, we

TLFeBOOK

Statistical inference and learning 295

need to maximize

� �
�

�

�

�

��
������ ������

���
�
� (9.24)

Noting that ����� � ��

��
� �������� � �����

�

�
as usual, and taking the derivative of (9.24)

with respect to ��� gives

	�

Æ���

�
	�� �
�

	

�����

�
����� � ������

�
�

where
 �
�

� �������� � �����
� . The �� term in this expression indicates that we need

to take into account the rate of change of the activity of the neuron for input �. Rather
than performing this derivative explicitly, however, we can replace it with the simpler term
������ � 	� which evaluates to 1 when the neuron is active and 0 when it is not. This
does not affect the final results of learning, although it can slightly slow down the learning
process. The mean of the ����� activity, ������, can be found by keeping a running mean,
i.e., �����

 � 	
� � �� � �������

� � �����

�. We can now use the standard ‘delta rule’
approach to write the learning rule explicitly:

���� � ��
	�

Æ���

(9.25)

� �� ������ � 	������
�
����� � ������

�
� (9.26)

where � is the learning rate. Note that this is a typical Hebbian learning rule. That is, it is
a local learning rule that will construct the expected representation in the �� population.

Running this simulation with 200 LIF neurons in each population and starting with
random coupling weights, we see that the ����� population does indeed learn to represent
the signal in ����� quite well (see figure 9.5).

Given these weights and our previous analyses, it is natural to ask if we can decompose
them into their encoding and decoding components. Recall that the general form of the
weights we find is

��� �
����

or, in matrix form,

� � ����

In the communication channel, the encoding weights are simply ��. Given the learned
weights, ����	
, and the encoding weight vector, ��, we can try to find the decoders, �.
However, because the encoding weight vector is not a square matrix, we must take the

TLFeBOOK

296 Chapter 9

-1 -0.5 0 0.5 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

er
ro

r

a
i
 population

b
j
 after learning

b
j
 before learning

Figure 9.5
Learning to represent the signal in �����. The error in the ����� population representation of � given random
weights is quite high, whereas the error after learning is comparable to that in the original population. The signal
used to train the network was white noise over the range of �.

pseudo-inverse (that is, use SVD) to find the decoders. As a result, the weight matrix we
reconstruct using these extracted decoders, ������, is different than the original learned
matrix (compare figures 9.6a and 9.6c).

However, the reconstructed matrix is equally good at preserving the information in the
incoming signal (see figure 9.6d). This suggests that performing this kind of decomposition
may be useful for analyzing the often mysterious results of employing a learning rule
in a given network. In other words, using this framework makes it possible to take a
set of weights generated in any particular way and then derive a set of decoders given
encoding assumptions. These decoders can then be used to determine what function those
weights compute (given the encoding assumptions). So, we can use this approach to make
a principled guess at the function of a set of learned weights.

Furthermore, we can compare these matrices based on learning with the matrix we
originally found in section 6.1.1. This matrix, ������	
�, was found analytically using now
familiar techniques (see figure 6.1.1b). While this matrix is again different from either
the learned or reconstructed matrix, it too does an excellent job (slightly better, in fact) of
preserving the original representation (see figure 9.6d). The fact that these three matrices all

TLFeBOOK

Statistical inference and learning 297

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

neuron number

ne
ur

on
 n

um
be

r

a) b)

c) d)

-1 -0.5 0 0.5 1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x

er
ro

r

0.5

a
i
 population

b
j
 learned ω

b
j
 reconstructed ω

b
j
 analytic ω

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

neuron number
ne

ur
on

 n
um

be
r

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

neuron number

ne
ur

on
 n

um
be

r

Figure 9.6
Comparison of weights and linear decoding errors. a) Shows the learned weights using the rule in (9.26),
������. b) Shows the analytically determined weights from our previous characterization of the communication
channel, ��������	 (see section 6.1.1). c) Shows the reconstruction of the weight matrix using the decoders
found by decomposing the learned weight matrix, ���	
�. d) Shows the linear decoding errors for each of these
weight matrices, as well as that for the original �� population. Note that the errors are all of similar magnitude,
with the �� and analytic weights slightly better. By comparing this graph to that in figure 9.5 it is clear that all of
these matrices are better than random weights (note the change in scale). As well, comparison of a)-c) makes
clear that these connection weight matrices share a certain amount of structure, as discussed in the text.

perform similarly emphasizes that there are many solutions to problems like constructing a
communication channel, given the high-dimensionality of weight space. However, looking
at the commonalities amongst these three solutions also provides us with some clues as
to what properties of the weights may be essential for a good communication channel. In
particular, all of these approaches find a solution that divides the population about equally
into ‘on’ and ‘off’ neurons. And, the pattern of connectivity is similar in that oppositely
tuned neurons tend to have negative weights and the strength of positive weights depends

TLFeBOOK

298 Chapter 9

on the similarity of the neurons’ tuning curves. So, there is a general structure to these
matrices that becomes apparent and understandable once we have a variety of tools for
both analyzing and synthesizing weight matrices.

9.5.2 Learning from learning

The literature on learning in neural systems is enormous. The considerations in section
9.5.1 merely scratch the surface of the subject. Nevertheless, we can learn a number of
important lessons; both supportive of, and challenging for, this framework. First, let us
consider some of the inherent strengths highlighted by this discussion. Because this frame-
work is essentially analytic, it can help us gain new insights regarding standard learning
rules. We can apply such rules and then analyze the resulting weight matrices in a way that
may give us a new or better functional characterization, as in the case of the communi-
cation channel. In addition, given the representational hierarchy, derived from our unified
approach to understanding various kinds of representation, we can be confident that such
rules and analyses will generalize to systems trafficking in more complex representations.
Presumably, this is true both for analyzing the static transformations in a network, as we
have done above, and for learning dynamic transformations. For instance, to learn an at-
tractor, regardless of the complexity of the representation, we should be able to minimize
the energy that enforces ��� � �, i.e.,

�� �
�

�

�
������� ��������	

�

�
�

�

though this remains to be seen. Furthermore, because we have a general means of incor-
porating input signals and transformations via control theory, accounting for learning in
systems with explicit error signals, like the neural integrator, should be straightforward.
Finally, and most importantly, this approach gives us a means of constructing complex,
functional systems, independent of learning. This is essential for modeling complex sys-
tems because, at the moment, it is not clear how to learn many of the complex behaviors
exhibited by neurobiological systems. Such considerations do not make this approach a
competitor to a learning-based approach, but rather show ways in which both can con-
tribute to our understanding of complex neural systems.

These same considerations raise the first challenge to our framework: can we generate
learning rules that give rise to the systems we construct analytically? The superficial answer
is ‘yes’, as the communication channel shows. But, for more complex transformations
and more complex control structures, it is not clear what the answer will be. Notice
that minimizing the variance between two populations, as we did in section 9.5.1, only
constrains one degree of freedom in the network’s representations. However, if we want to
learn arbitrary transformations, we will need to constrain multiple degrees of freedom. To

TLFeBOOK

Statistical inference and learning 299

see why, suppose that we have a population, ��, from which we can encode the lower-order
polynomials, ��. We can thus find decoders, �����

� , such that

��� �
�

�

������
����
� �

Suppose we want to compute some function, ����, such that

���� �

��

�

���
��

We know we can compute this function in some �� population using the connection weights

��� � ���
�

����
����
� as we have in the past.

But notice that these weights are now a function of the coefficients ��. This means
that any learning rule must be able to adjust the weights by systemmatically varying these
	 degrees of freedom independently. Furthermore, there needs to be a mechanism such
that the desired values for the �� are applied consistently across the population. But,
to remain biologically plausible we have to impose these constraints using local learning
rules. Applying such global constraints does not mean local rules are impossible to derive,
just that they need to be highly sophisticated. In particular, they need to be controlled
by a set of 	 -dimensional signals in a neurobiologically plausible way. These important
challenges currently remain unresolved.

A second important issue that learning highlights is that of the ambiguity of connection
weights. Because our framework analyzes weights as the projection between encoding
and decoding vectors, and because projections of different sets of encoding and decoding
vectors can result in the same matrix, there is no isolated ‘right’ decomposition of a weight
matrix. This ambiguity can only be overcome in the context of a larger understanding of
the system in which the weights are found. As in the case of the communication channel,
finding the decoders for a system depends on our assumptions about the encoders. In
order for these assumptions to be reasonable ones, and constrained in some way, they
need to be made in the context of a larger system. So, just as justifying claims about
what is represented by a system depend on the coherence of our overall story about brain
function (see section 1.2), so does justifying claims about what functions the weights
instantiate. This parallel should not be surprising since representations and transformations
are characterized in similar ways. The challenge lies in determining methods that are better
able to extract all of the structure of a weight matrix consistent with this approach. While
the kind of analysis performed in section 9.5.1 is a beginning, figure 9.6 suggests that
alternate analyses may be better.

TLFeBOOK

300 Chapter 9

A final challenge lies in trying to find ways to use the framework itself to generate
novel learning rules. While this approach seems useful for analyzing the results of typical
learning rules (like the Hebbian rule), it would be very useful to be able to have a means of
determining plausible learning rules that would give rise to the kinds of high-level structure
that the framework can build into models. It is a challenge, in other words, to not only
build complex models like those we have discussed in the book, but to also explain how
they may have come about given the kinds of synaptic changes observed in neurobiological
systems. In general, the preceding challenges can be summarized by noting that we have
not provided a systematic way to relate learning to this approach. Admittedly we have not
explored learning in much detail, and thus it remains an intriguing avenue for future study.

9.6 SUMMARY

We began this chapter by noting that, unlike previous chapters, it would be rife with spec-
ulation and simple examples. We began by arguing that, in general, statistical inference is
essential for explaining the behavior of animals in a noisy, uncertain world. We then out-
lined some notable affinities that neurobiological systems have for being able to implement
just the kinds of transformations needed to support complex statistical inference.

We demonstrated how our approach could account for the relevant kinds of transfor-
mations by considering statistical inference in three contexts. First, we presented a simple
example of the integration of top-down and bottom up information. Second, we demon-
strated how the top-down model in the first example could be dynamically generated on
the basis of uncertain data. Third, we discussed a similar dynamic model, the Kalman filter,
which was derived in the context of control theory and is thus a natural one to apply using
our framework. Furthermore, the Kalman filter has recently received attention in a neuro-
biological context. We examined one such context, its application to the visual system, and
described how a less common version of the filter is more biologically plausible that the
more common prediction-correction version.

We then turned to the closely related topic of learning, and presented some preliminary
analyses that relate learning to this framework. We showed how, for a simple communi-
cation channel, we could analyze the results of a typical Hebbian learning rule. While we
suggested that being able to construct and analyze weights using this framework could be
useful in understanding such learning rules, we also suggested that it remains unclear if
there can be a more principled relation between learning and this approach. We concluded
that integrating learning and this approach is an area ripe for future study.

TLFeBOOK

A Appendix:
Chapter 2 derivations

A.1 DETERMINING OPTIMAL DECODING WEIGHTS

In section 2.1.2, we discuss the importance of being able to solve for the optimal decoding
weights given the error function

� �
�

�

�
�

��

�
��

��
�

�������

��
��� (A.1)

To do so, we can take the derivative of (A.1) with respect to �� as follows:

Æ�

Æ��

� �

�

�

�
�

��

�

�
��� ��

�

�������

�
� ����� ��

� �

�
�

��

������ �� �

�
�

��

��
�

������������ ��� (A.2)

Setting the derivative to zero and finding the minimum over all � gives�
�

��

������ �� �

��
�

	�
�

��

���������� ��

�� � (A.3)

which can be written using matrix-vector notation as

� � ��� (A.4)

Solving for � gives

� � �
���� (A.5)

where

��� � �������������

�� � ��������� �

As mentioned in the text, the notation ���� indicates integration over the range of �. Or,
equivalently, we can write

�� �

��
�

����� �� �

TLFeBOOK

302 Appendix A

This page intentionally left blank

TLFeBOOK

B Appendix:
Chapter 4 derivations

B.1 OPPONENCY AND LINEARITY

To get a sense of why the opponency arrangement provides for more linear responses,
consider the task of trying to approximate a linear input/output function with nonlinear
neuron response functions. Let ���� be a standard LIF response function. We can write
down the Taylor series expansion of this function as follows:

���� � ���� � ��
���� �

�
�
�

�����

��
� � � � �

The error of this nonlinear approximation to the linear input/output function will be equal
to the sum of all the nonlinear terms in this series (i.e., everything other than ����). Now
suppose that we attempt to approximate the same linear function with two ‘mirror image’
LIF neurons, ���� and �����. The Taylor expansion of ����� is

����� � ����� ��
���� �

�
�
�

�����

��
� � � � �

If we take the approximation of our linear function to be the difference between these two
nonlinear neurons, then the error in the approximation will be equal to the Taylor series
terms remaining in that difference:

����� ����� � ������� � � � � �

Notice that all of the even distortion terms cancel and that only the odd ones remain. If we
attempted to approximate the linear response function with two complimentary neurons
(i.e., neurons whose firing rate both increase in �), this cancellation would not occur. Thus
the opponency approximation is significantly more linear than either two complimentary
neurons or one of the opponency neurons on its own. This is because the distortions of the
opponency neurons act to cancel each other out only when they are used together.

B.2 LEAKY INTEGRATE-AND-FIRE MODEL DERIVATIONS

Some useful insights can be gained into what the LIF model is doing by considering a
means of solving equation (B.1):

�� ���

��
� �

�

���
�� ���� �� ���	� � (B.1)

TLFeBOOK

304 Appendix B

Recall that �
��

� ��. This factor is the membrane time constant, and it controls the
speed with which the membrane potential approaches the steady state value, �� ���� (for
constant input). If ��� is large, the change in voltage (i.e., �� ������) will be small since it
is proportional to ����� . We assume that the initial conditions are � ��� � � for simplicity.

To begin, then, we can presume in advance that we want a solution in the form of

� ��� � 	 ���
����
��

� (B.2)

where 	 ��� is some arbitrary function of time. We can assume that the solution will take
this form because (B.1) is of a familiar form itself. Namely, it consists of a derivative of
some function, � ���, equal to that function times a constant (whose solution is typically
�
��), plus some other arbitrary function of time, �� ���� (for a more detailed discussion
in a biophysical context, see Wilson 1999b, chp. 2).

We can now substitute equation (B.2) into equation (B.1) to obtain

�

��

�
	 ���
����

��
�
� �

�

���

�
	 ���
����

��

� �� ����
�

Applying the product rule gives

�	 ���

��

����

��

�
�
����

��

��
	 ��� � �

�

���
	 ���
����

��

�
�

���
�� ����

Knowing that �	
��

�� � �
��, canceling equal terms on both sides, and rearranging gives

�	 ���

��
�

�� ����

���

���

��

Integrating both sides, we obtain

	 ��� �
�

���

� �

�

�
������� ��������

where �� is a ‘dummy’ variable that ranges over all times between � � � and now. We can
now substitute this expression for 	 ��� into equation (B.2), which gives

� ��� �
�

���

� �

�

������������� �������
 (B.3)

Equation (B.3) is a standard convolution integral. By examining this integral, we can
get a good sense of what the LIF neuron does. In effect, this equation says that the voltage
right now (at �) depends on all past current input, �� ����, where each input is weighted
by a function that exponentially decays as that input gets further away (in the past) from
the current time. This provides a useful qualitative way to think about the behavior of LIF
neurons.

TLFeBOOK

Chapter 4 derivations 305

We can now evaluate the integral in equation (B.3), to provide the standard solution to
the differential equation describing the LIF neuron. In doing so, we must assume that the
input current, �� , is constant:

� ��� �
�

���

� �

�

������������������

Substituting variables and letting 	 � ���� ���
��� , we have

� ��� �
�

���

� �

�

��������	�

Evaluating the integral gives

� ��� � ���������������
����
�

� ���
�
�� �����

��
�
�

This solution is physiologically unrealistic but it is a reasonable approximation, espe-
cially since we do not know a general form for �� ���. As well, this mirrors quite well how
physiologists find the firing rate curves for real neurons (i.e., by introducing a constant
pulse current). Fortunately, it is not difficult to implement (B.3) in computer simulations,
so the dynamics are better preserved in practise.

B.3 OPTIMAL FILTER ANALYSIS WITH A SLIDING WINDOW

Our goal in this section is to find the optimal linear filter, ����, for encoding an ensemble
of signals, ������. We begin by forming the error between our linear estimates and the
original signals:

 �
�
������� � ��������

�
�
���

(B.4)

�

����������
	
	�

�	���� �	
����

�
��

���

(B.5)

�
�
������� � ���� ���������

�
����

� (B.6)

where �	 � ��, and ������ is the combined response of a pair of complimentary neurons.
As discussed in section 4.3.3, it is more appropriate to solve this problem in the frequency

TLFeBOOK

306 Appendix B

domain. Thus, by Parseval’s theorem we can write

� �

�
�

��
�������� �����������

�

�
���

� (B.7)

Recalling that our ensemble of signals is written as

���	�� �
�
�

�����
����	 (B.8)

the Fourier transform of the ensemble is

���	�� �

�
���	������� �� (B.9)

�
�
�

����

�
���������� �� (B.10)

�
�
�

����Æ�� � ���� (B.11)

So we can write the error for each frequency channel as

����� �

�
�

��
�
���� � �������������

�

�
�

� (B.12)

As noted in the text, ���
�

is a high dimensional integral over all the amplitudes, i.e.,

�
����
�

�

��
� � �

�

���

�
�

��
������
��
� � � � �
���� (B.13)

There is no analytical solution, so we must instead do a Monte Carlo estimate. Letting �

denote particular choices of our amplitudes,�, we write the error as

� �
�

��

�
�

�

�

� 	

�

�������� � ���� ���������� �� (B.14)

�
�

��

�
�

�
�

�
����� � �����������
���

�
� (B.15)

The length of each trial, �, need only be a few times longer than the ‘memory’
of the neuron, which in the case of the leaky integrate and fire neuron is �
� . This is
because the effects of past voltage states fall off exponentially with time (see section 4.1.2),
and so become lost in the noise after a few time constants, �
� , have passed. Even in
more complex cellular models, it is generally possible to identify a reasonable value for
�. Whichever time constant (e.g., that of the synaptic conductances, ion channels, etc.)

TLFeBOOK

Chapter 4 derivations 307

dominates the overall voltage decay at the soma, � need only be a few times longer than
it. This is because trials separated by � can be assumed to be statistically independent.

This kind of analysis has been shown to work well in many experimental preparations.
However, running many short term simulations of size � can be expensive and severely
hampered by start up transients. For this reason, researchers have developed a means
of windowing longer trials of length � with windows of length �� that still allows the
extraction of the optimal filter. This idea is discussed in detail by (Rieke et al. 1997). The
procedure they suggest uses a square, or box-shaped, window (Rieke et al. 1997, p. 165):

� ��� ��� �

��
�

�� �� ��� ��� � ����

	�
��
����

�

spaced by some �� to ensure statistically independent samples. Assuming that the process
is ergodic, a long enough run will provide sufficient examples such that the estimated error
(B.14) will approximate the mean square error under all possible signal conditions.

However, as we discuss shortly, there are some difficulties with using this kind of
window. For this reason, we have developed a means of finding the filter using a sliding
Gaussian window, � ��� ���:

� ��� ��� � ������������
�

��� (B.16)

where �� � �. We let �� take on the all values between 0 and � , since this allows the sum
over the examples to be replaced by an integral over ��. The argument from ergodicity still
holds since sliding the window oversamples exactly the same data set. All of the available
statistically independent samples in a trial will be taken in an unbiased manner since each
is equally oversampled. In the time domain, the averaged windowed error becomes:

� �
�

� �

� �

�

� �

�

�� ��� ��� ��	�������
�
��� (B.17)

where

�	����� � 	������ ���� �������� (B.18)

and the� are the amplitudes generated for the long trial. Technically, the integrals should
be taken over the range between � ��� and � � ���, to avoid introducing errors at the
end points. However, this introduces unnecessary complexities in the analysis, and, in any
case, these errors are small for � � ��. We can now show that the error can be written as
a convolution of the power of the Fourier transform of the window function � ��� with the

TLFeBOOK

308 Appendix B

power of the Fourier transform of �������:

����� �
�

�

�
�

�

�� ��� ���������� ��

�

�
�� ��� ��� �������� ��

�

���
� �� � ������

������������

� ��� � ��������
�����

��������� ���������

�

���
���

����
��

���� �� � ���� ��� � ������������ ���������

Taking the integral over ��, and using the fact that

�

�

�
���

����
��

��� ��� � Æ��� � ����	

we get

� �
�

�

�
����� ��� (B.19)

�

��
�� �� � ��������������� �����
 (B.20)

Essentially, (B.20) shows that we can replace averaging over trials in the time domain by a
convolution in the frequency domain, which locally averages the extra frequency channels
introduced by the long runtime. This smoothing reduces the number of degrees of freedom
needed to compute the optimal filter, which is desirable (as we discuss in section 4.3.3).

We can now see what advantage the Gaussian window has over using a box window.
Note that the Fourier transform of a box window is a sync function in the frequency domain
(which has ringing out to high frequencies). Any loss of these high frequency components
is likely to be reflected in our estimate, introducing spurious errors. In order to minimize
the effects of these errors, we would have to average over longer run times and have more
examples. In contrast, the Fourier transform of a Gaussian is another Gaussian, which
is a well-localized low pass filter (guaranteeing a reduction in the number of degrees of
freedom without spurious errors). In other words, the continuous Gaussian filtering allows
us to make better use of the data available because the estimation process itself does not
introduce possible sources of error.

TLFeBOOK

Chapter 4 derivations 309

We now take the functional derivative of equation (B.20) with respect to ����� to find
an expression for the optimal filter:

���� �
�����������

��
��������

�

�
�

� (B.21)

where ���
�

is the convolution with the window to emphasize that this providing an
approximation to the average over the stochastic variables,�.

The residual error obtained by substituting (B.21) into (B.20) is

������������ �
�
������

�

�
�

�
������������

�
���

��������
�

�
�

� (B.22)

This error will be equal to zero only if there are no inter-harmonic distortions generating
spurious power at that frequency.

It is worth noting that the filter, ����, not only adjusts for the difference in gain, but
also for any shift in phase. In a sense, it automatically adjusts for any propagation delays
and phase distortions created by the spike generation process so long as the width of the
Gaussian window is large enough to accommodate them. It is again worth emphasizing that
the difference between this and previous methods for finding ���� is the way the average
over� is carried out.

B.4 INFORMATION TRANSMISSION OF LINEAR ESTIMATORS FOR

NONLINEAR SYSTEMS

The problem of understanding information transmission through spiking neurons is a
specific case of a more general problem. Recall that we are interested in finding an optimal
linear estimator, �, that will give us an estimate, �	, of the original signal, 	, given the
response of the neurons, ��	�. Of course, we can let the neuron response in our particular
problem be the response of any nonlinear ‘black box’ system. In this appendix, we derive
a general expression for the information transmission through such a nonlinear black box
given a linear decoding.

We begin by assuming that the signal is drawn from a Gaussian distribution with a
mean of zero and variance
	. A linear estimate of the original signal given the response
is given by

�	 � ���	�� (B.23)

where � is the linear decoder. The average error in our reconstruction can be found by

TLFeBOOK

310 Appendix B

taking the difference between our estimate and the original signal over all possible signals,
which gives the mean squared error (MSE)

��� �
�
��� ����

�
�
�

�
��� �������

�
�
� (B.24)

In order to find the optimal decoder, we want to minimize this error, and thus set the
derivative of (B.24) to zero and solve for �. This gives

� �
�� � �����

�

�������
�

� (B.25)

We can now re-write the error in terms of the optimal decoder:

��� �
�
��

�
�

� ��
�
�����

�
�

�
�
��

�
�

�
�� ������

�

�

�������
�

� (B.26)

When we use the optimal decoder, our expression for the the MSE captures the error that
is introduced simply by the fact that we are trying to decode a nonlinear system with a
linear decoder. In a sense, this is error that we cannot explain, i.e., the error that we cannot
remove from our chosen estimation process, no matter what linear decoder we use.

In order to determine the information that is transmitted under this decoding, we can
use the following standard expression for the amount of information transmitted by a
channel:

��	
 �
�

�

�

�
�� � ����	 (B.27)

where ��� is the signal-to-noise ratio of the channel. In our case, we do not have any
noise, but we do have an analogous quantity, the unexplained variance. This is the variance
that comes from our unexplained error, i.e., �����

�
. The signal, or explained variance,

is the variance of our estimate:
�
���

�
�

� ��
�
�����

�
�

�
�� � �����

�

�

�������
�

� (B.28)

Thus, the ��� is given by

��� �

�
���

�
�

�����
�

�
�� � �����

�

�

����
�
�������

�
� �� � ������

�

� (B.29)

TLFeBOOK

Chapter 4 derivations 311

So, we can write the �� � ���� factor in equation (B.27) in several different ways:

�� � ���� �

�
��
�
�

�
�����

�
�

����
�
�������

�
� �� ������

�

�

(B.30)

�

�
��
�
�

����
�
�

���������
�

�������
�

(B.31)

�

�
�����

�
�

�������
�
�

���������
�

����
�

� (B.32)

Since � �
�

�
�������, we can rewrite this in terms of the � coefficients and

substitute it into (B.27) to give

��	
���� �
�

�
�

�

�
���

�
�������

�
�
��

�������
�
�
�

�
����������������

��
�

������������
�

	

� (B.33)

�
�

�
�

�

�
���

�
���������

�
�
��

���������
�
�
�

�
����������������

��
�

��������
��
�

	

� � (B.34)

The information rate, in bits/s, is thus

�� �
�

�

��

��

�
�

Info�����

TLFeBOOK

312 Appendix B

This page intentionally left blank

TLFeBOOK

C Appendix:
Chapter 5 derivations

C.1 RESIDUAL FLUCTUATIONS DUE TO SPIKE TRAINS

In this appendix we show how to determine the variance introduced into the representation
of a scalar, �, through the filtering of spike trains. We first determine the fluctations that
result when � is held at a constant value. We then derive an approximation that shows that
on average these fluctuations are similar to the effects of random Gaussian noise.

Let us characterize the postsynaptic activity as

����� �� �
�

�

�� ��� ������ � ���� � (C.1)

where ��� is the time of the first spike, or the phase of the spike train relative to some fixed
clock. We noted that these ��� are random variables that can take on any value between �

and ����� with equal probability, and are statistically independent across neurons, where
����� is the interspike interval for neuron � given the value �. Note that even though the
value of � is constant, the estimate of � will not be. It is given by

����� �
�

�

����� ��� (C.2)

As done in Rieke et al. (1997), we take the mean activity of each neuron to be

	���� � ������ ���� (C.3)

�
�

�

�

�
�

�

�� ��� ������ � ���� �� (C.4)

�
�����

(C.5)

�
�	�
� (C.6)

where����� is the number of spikes observed during the time period
 . The approximation
above is due to the presence of the ��� phase variables, which can cause the spike count to
vary by ��. As a result, the approximation becomes quite precise when
 is long.

Equation (C.6) shows that the time average of the postsynaptic activity can be identified
with the rate model of the neuron whose spikes gave rise to that activity. So, the mean value
of the estimate of ����� is given by

�������
�
�
�
�

��	����� (C.7)

TLFeBOOK

314 Appendix C

We would now like to estimate the variance of the fluctuations about this mean value,
i.e.,

������� �
�
������� �������

�
�
�
�
�

�

Expanding this expression, we have

��
����� �

�

�

� �

�

������� �������
�
�
�
��

�

�
�

�

� �

�

��
�

��

��
�

�� ��� 	����� � �����
����

�	�
��

���

�

Averaging over the variables, ��� , causes the cross terms in this expression to vanish. This
is because averaging over randomly started spike trains is just like averaging over time;
i.e., ��

�

�� ��� 	������ �����
����

���

� 	�

So, we can simply sum the variance for each neuron to determine the total variance of
our estimate. Therefore,

��
����� �

�
�

�

�
�

��
�

�
�

�

��
�

�� ��� 	����� � ����

	
��

�

�� ���������� ����

	
�
�� ��� ��

���

�

For each neuron we can write�
�

�

� �

�

�
�

�� ��� 	������ ����
�
�

�� ���������� ���� ��

���

�
�����

�

�
�

� �

�

����
������

� ����������
�

�
�����

�

�
�

� ��������

�
����
�
�

� �������� �

TLFeBOOK

Chapter 5 derivations 315

where, for each � in the sum over �, we set �� � �� ������� ��� and

����� �

� �

��

���������� �����

Therefore,

	������ �
�

�

�� �����

��
�

�� �������� � �����

�
� (C.8)

As shown in the main text, in the limit where the filter time constant ���� is long
compared to the interspike intervals (i.e., so the filtered spikes overlap one another) we
find �

�

�� ��������� ������ (C.9)

This means that the fluctuations in ����� caused by the spikes become small, as expected.
Conversely, when ����
 �����, then�

�

�� �������� � ����� � ������� (C.10)

where � depends on the functional form for the filter.
For the simple filter

���� �

��
�

�
����

�������� ��	 � � �

� ��	 �
 �
(C.11)

we find that

���� �

�����
���� ������ �

As a result,

��
����

����� �

����

�

� ��	
�

�

�

where � � ������. So, for a fixed value of �, the contribution to the fluctuation 	��
 by
each neuron can be found using (C.8) to be

�� �����

��
�

�� ��������� �����

�

TLFeBOOK

316 Appendix C

� ��
�

�

�
�
��������

�
�

�� ������
�

�
�

�
�

�

�����

��
(C.12)

� ��
�

�

�����

�
�

��
�

�����
�

���
�

�����
�

���	�

�
� (C.13)

In the limit where there are many spikes per filter time constant, i.e., �����

���������� � �, the fluctuations go to the constant value of �
����

���

 �����	
��
���

. However,

when the filter ��	� is given a finite rise time at 	
 � (unlike the filter expressed by (C.11))
this factor goes to a maximum value of about �����	

��
���

and then to zero as the firing rate

increases to infinity (i.e., as �� � �).
We can average this fluctuation factor over � and over the neural population, to find an

approximation to the variance of the error due to spiking fluctations of

	
��
��
����

�
��

�

�
�
�

���	

�����

�
�

��
� � (C.14)

In the models presented elsewhere in the book, we set the signal to noise level of the
neurons to 10:1 when they are at their maximum firing rate, ����, over the range of �.
This leads to

����� � ���������
�
�
�

��
� � ���������

��
� (C.15)

Comparing
	
��
��
���� with
�����, we see that they have the same functional
dependence on the neuron number
 and the decoding factors �� (recall that

�
� �

�
� �

�
�

).
The contributions from the spikes and from other sources of noise become approximately
equal when

���� � ������� (C.16)

Roughly, the two are the same when the mean interspike interval is about equal to the
synaptic filter time constant.

This result suggests that because neural systems use ensembles of spiking neurons to
transmit analog signals, there is a built in level of fluctuation in the value being transmitted
that cannot be avoided. To the extent that these fluctuations cannot be distinquished from
other sources of noise, it does not make sense to have individual neurons with a higher
signal to noise ratio than is set by this limit. In other words, if signals are going to be
transmitted by a population of spiking neurons, then it does not help to use neurons that
operate with a noise level much above a few bits per spike, as seems to be the case (see
section 4.4.2).

TLFeBOOK

D Appendix:
Chapter 6 derivations

D.1 COINCIDENCE DETECTION

From section 6.3.1, we begin with

���������� �
�

���

����� ��������� �����

We suppose that the filters ���� are narrow Gaussians and write this multiplication as

���������� �
�

���

���������
�����

��������������

(D.1)

�
�

���

����������
���������������

� (D.2)

We now focus on re-writing the term in the square brackets,�
��� ����

� � ��� ����
�
�

� ��� � �� ���� � ���� � ���� � ����	

into which we substitute

���� � ���� �
���� � ����

�

�
�

���� � ����
�

�
	

which gives

�
��� ����

� � ��� ����
�
�

� ��� � �� ���� � ���� �
���� � ����

�

�
�

���� � ����
�

�

� �

�
�� � � ���� � ���� �

���� � ����
�

�

�
�

���� � ����
�

�

� �

��
��

��� � ���

�

��
�
�

���� � ����
�

�
�

Substituting this back into (D.2) gives the desired result:

���������� �
�
���

�
�

�
�
�
��

�������

�

��
� �
�
����������

�
����

�
�
���

�
��

�
��

�������

�

��
����

��
�
�
��������������

�

TLFeBOOK

318 Appendix D

This page intentionally left blank

TLFeBOOK

E Appendix:
Chapter 7 derivations

E.1 PRACTICAL CONSIDERATIONS FOR FINDING LINEAR DECODERS FOR

� AND ����

We have a good sense of the kinds of functions that can be computed with the population in
figure 7.4. Namely, lower-order polynomials and their linear combinations are transforma-
tions that are easily supported by this population. Knowing this has important theoretical
and practical consequences. From a theoretical standpoint, since we know that we can con-
struct polynomial approximations to arbitrary functions, and that the arbitrary functions we
can approximate with lower-order polynomials will be better supported by our population.
In practice, we can use this knowledge to write very efficient code.

In particular, we show in this section that the two high-dimensional (i.e., � � �)
integrals required to determine the optimal decoding vectors for a population of neurons
that represent a �-dimensional vector space can be reduced to 1 and 2 dimensions.
This is important because it allows for the computationally efficient simulation of high-
dimensional problems with large numbers of neurons (i.e., � � �� and �������� � ���

or more).1

Let the neurons �� encode the vector � as usual:

����� � ��

�
��

�
����

�
�
� ���	��

�
� (E.1)

To keep the notation compact, we will use ����� � �������� in place of equation (E.1).
The optimal linear decoding vectors are found by computing the quantities

	
���
� �

�

�

������ 	�

�� �

�

�

���������� 	�� (E.2)

where the integrals are taken over the volume of the �-dimensional hypersphere ��. The
decoding vectors are then given by

�� �
�
�

��
�� 	

���
� � (E.3)

where

�� �
�� �
�

Æ�� � (E.4)

� For one- and two-dimensional problems, these integrals can be computed efficiently in the usual manner.

TLFeBOOK

320 Appendix E

The superscript on �
���
�

indicates that these are the first moments of the neuronal ac-
tivites. The first moments are used to define the representational decoders, ��

. We subse-
quently show how to compute other moments that can be used to find the transformational
decoders used in estimating functions of �.

First, let us consider the first moment in more detail. The first moment along the
direction of the encoding vector ��

�
is given by

�� �

� �

��

�
��������

�������� ��������

�

� �

��

���������������� ���

� ��� � ��

� �

��

��� ����
���

� �������� ���� (E.5)

�� is the component along the first axis and �������� is the volume of a��� hypersphere
of radius

�
�� ���. The volume of a �-dimensional hypersphere of radius � is equal to

������, where

���� �
����

�
�
�
� 	 �

� � (E.6)

���� is the well-known ‘gamma function’ whose definition can be found in a table of
mathematical functions.2 The integrals for all first order moments ����

� � �
���
��� 	 � � ��

���
��

are then given by

�
���
�� � �

���
�

��	 (E.7)

where

�� are the components of the encoding vector ���. Thus, for any dimension of
vector, we need only compute the 1-dimensional integral in (E.5).

Simiarly, the integrals for the ��� can reduced to 2 dimensions by aligning the first axis
along the direction of the first encoding vector ��� and the second axis along a direction
perpendicular to ��� and lying in the plane defined by the two encoding vectors ��� and ��� .
The integrals then become

��� � ��� � ��

� �

��

� �
����

�

�

�
����

�

��� ��� � ����
���

� ������ (E.8)

�� ��� �
������ 	 �� ��������� ������	 (E.9)

� Note that ���� �� �, if� is an integer.

TLFeBOOK

Chapter 7 derivations 321

where

�������� �
�
����

�
�

�������� �
�

	� ���������� (E.10)

where
�
����

�
�

is the dot product of the two encoding vectors.
These computations can be sped up considerably by using the following modification.

First we note that the lower limit to integral over �� starts at ������� , where ��
�
������ � �

is the point along the encoding vector where the neuron starts firing. Sorting the neurons
from the largest to smallest values of ������� ensures that the integrations are carried out
over the neuron with the smallest range of nonzero values. Then we can set ��� � ���
because the � matrix is symmetric by definition.

As mentioned earlier, additional moments are required for decoding estimates of
functions from the neuron activities; i.e., for determining the transformational decoders.
The zeroth-order moment is readily computed as the 1-dimensional integral

���
� �

�
	�

����� ��

� ��� � 	�

� �

��

�	� ����
���

� ��
��� ���� (E.11)

The second order moments,

���

�� �

�
	�

�
������� ��	 (E.12)

in principle require computing many integrals, but in fact it is only necessary to compute
2 for each neuron. The reason is that the neuronal activities are completely symmetrical
about the axis of the encoding vector ���. Thus, in a coordinate system with the first axis
aligned along this encoding direction, the moment matrix is diagonal and all of the terms
except the first are identical.

The first moment is thus given by

���
����� �

�
	�

�������� ��

� ��� � 	�

� �

��

�
	� ���

������
�
��������� ���	 (E.13)

TLFeBOOK

322 Appendix E

and the trace of the moment matrix,
�

�
�

���
���

, by

�
���
�� �

�
��

��������� ��

� ��� � ������

� �

��

�
�� ���

������ �
������ ���� (E.14)

where

���� �
�
�

�
���	��

���� � ��	��
� ���� � ��	��

���� � 	�	���

�

 (E.15)

The weights ��� for decoding the bilinear function

���� �
�
���

������

���� �
�
�

��� ����� (E.16)

are given by

��� �
�
�

���
��

�
trace�������

�� �
�
���

����
��
������

���
����� ��

���
�� �

�
� (E.17)

where

��� � ��� � ��
	Æ��
 (E.18)

Additionally, only two moments for each neuron are required for third order functions.
However, higher-order functions demand ever increasing numbers of moments. These
techniques have proven very useful for computing nonlinear functions of high-dimensional
vectors, as in the vestibular system example (see section 6.5).

Finally, it is often useful to introduce a weighting function to these derivations, that
puts more emphasis on the mean square decoding error at the origin. This kind of strategy
seems to have been adopted by some neurobiological systems, like the neural integrator
(see, e.g., figure 5.2). So, let us introduce the weighting function

� ��� � ��� �������� �� (E.19)

with � � �. This function has its maximum at � � � and goes to zero on the surface of
the hypersphere. Fortunately, the only modification needed to the integrals given above is

TLFeBOOK

Chapter 7 derivations 323

to change � to � � �. For example,

�� � ��� � �� ��

�
�

��

��� ����
������

�
��������� ���

��� � ��� � �� 	�

� �

��

� �
����

�

�

�
����

�

��� ��� � ����
������

�
�������

�� ������� � ������� ������	

E.2 FINDING THE USEFUL REPRESENTATIONAL SPACE

In this appendix, we show how to relate the noise and singular values of the neuron
response function matrix, �, to find the useful representational space. Here we concentrate
on the case of vectors, but the same derivation applies to scalars and functions with slight
notational modifications. To begin, we write our estimate as

� �
�

�

������

�
�

�

����� (E.20)

where

����� �
�

�

����
��

�� �
�

�

����	 (E.21)

For simplicity, we will write �� in place of �����, though it is important to keep in
mind that these are a function of �. Note that the � vectors are orthogonal:

������
�

�

��
�

��
����
�
�

��
����

�
�

�
�
���

��
�� �
����
�����
�

(E.22)

�
�
�����

��
��
����
�� (E.23)

�
�
�

Æ��Æ����

� Æ����	 (E.24)

TLFeBOOK

324 Appendix E

In (E.22) we see the expression for �, to which we apply SVD. The results of the SVD are
expressed in terms of � because of the symmetry of the � matrix. Substituting this result
gives (E.23) which can be simplified to (E.24). Notably, (E.24) shows that the �� are a
non-normalized set of orthogonal functions. This result will be useful for simplifying the
following derivations.

From (2.9), in chapter 2, it is clear that the error with noise can be written in the vector
case as

� �

��
��

�
�

������ � �����

���
���

�

��
��

�
�

�������

��
� ���

�
�

��

�

�
�

� (E.25)

We can now use our expression from (E.20) and (E.21) in (E.25) to give

� �

��
��

�
�

����

��
� ���

�
���

��Æ����

�
�

�

��
��

�
�

����

��
� ���

�
���

��

�
�

��������

�
�

�

��
��

�
�

����

��
� ���

�
�

��

�

�
�

� (E.26)

We minimize this error by taking the derivative of (E.26) and setting it to zero to get
an expression for the optimal � functions under noise:

��

���

�

�
�

�
��

�
�

����

�
����� � ������

�
�

� � �� ������ � �

��
�

������

�
�

� ������

�����
�

� 	��� � �����

�� �
�����

�

	� � ���
� (E.27)

We can use this expression to determine what the residual error will be (i.e., the
expected error using these � functions). This analysis needs to be done under noisy

TLFeBOOK

Chapter 7 derivations 325

conditions. So it will be useful to determine the effects of noise on the orthogonality of
our � functions:

������� � ������ ������ � �������
���

�

��
�

��� ������ � ���
�
�

��� ������ � ���

�
���

�
�
���

������ ������������
�
�

��
���

����������

�
�

(E.28)

�
�
�����

�������������� � Æ���
�

� (E.29)

�
�
�

Æ��Æ���� � Æ���
�

�

� Æ����� � ����� (E.30)

As can be seen from (E.30), the functions remain orthogonal, although they are scaled by
the variance of the noise along with the singular values. We can now determine the residual
error as follows:

�� �
�
��� ���

�

�
���

�

��
��

�
�

����

���
���

�
�
�
�
	
���

� 	

�
�

�
�

����

�
���

�

��
�

����

��

���

�

Substituting the expression in (E.27) for �� gives

�� �
�
�
�
	
���

� 	

�
�

�
�

��
������
�� � ���

�
���

�

��
�

��
������
�� � ���

��

���

�
�
�
�
	
�

� 	
�
�

�����
�

�

�� � ���
�
�
�

��� � ����
�����

�

�

�� � ���

��
�

�
�
�
	
�

�
�
�

�����
�

�

�� � ���
�

TLFeBOOK

326 Appendix E

So the �th element in the sum determines by how much the �th basis function helps
reduce the error. Essentially, the singular values, �� act to normalize the contribution from
the related basis function ��. However, as the noise grows relative to that normalization
factor, the normalization will become inappropriate and the �� will contribute too much or
too little to the reconstruction. So, as mentioned in the main text, this expression provides
a good way to determine which basis functions are the important ones since those with
singular values �� � ��

�
will not be usefully contributing to the representation.

TLFeBOOK

F Appendix:
Chapter 8 derivations

F.1 SYNAPTIC DYNAMICS DOMINATE NEURAL DYNAMICS

To see that synaptic dynamics generally dominate neural dynamics, consider the expression
for � ��� that we derived in section 4.1.2:

� ��� � ���

�
�� �

������
�
�

In general, ��� � � � � for small values of �, so we can approximate the factor in the
brackets as �

��� . Given that ��� � �	, we know

� ��� �
��

	
�� (F.1)

So, for an input current, �� , which is over the threshold, the time it takes the neuron to
reach threshold, �
 , is

�
 � ���
	

��
� (F.2)

Notably, (F.2) does not depend on the membrane resistance, �. In fact, this equation holds
true for changing input current as well, as long as the change in current is small over �
 .
However, when the neuron is operating near threshold, these assumptions will be poor ones.
Nevertheless, supposing that neurons tend not to spend most of their time near threshold,
and knowing that the capacitance of neural membranes tends to lie within a small range,
(F.2) suggests that differences in the �	 time constant of neurons will not greatly affect
the dynamic properties of a neural system. Furthermore, because the input current, �� , is
coming from the synapses, and because it is the only real variable quantity in (F.1), it will
be the dynamics of the synapses that dominates this kind of system. This same basic point
has been made by Knight (1972), and more recently by Dayan and Abbott (2001).

F.2 DERIVATIONS FOR THE LAMPREY MODEL

F.2.1 Determining muscle tension

To relate the tensions,
 to the normal forces �	, we balance torques about the point �
(see figures 8.24 and 8.25). In particular, we know that the forces created by the muscle
tensions will be equal and opposite to those created by the resistance of the water. Thus we

TLFeBOOK

328 Appendix F

can write the following two expressions, whose difference is the total torque around �:

���
�

��� � ����
�
�
� ��

�
� ��

��� � ��
����

���� � ����
�
��� � ��

�
� ��

�
� ��

�����

Letting � � ��
��

, we can form the difference, giving

����
��� � ��

� � � ����
� � ���� � ��

��� � ����� � ��
��� � ������

� ��� � ���� � �����

where �� � ��
� ���� is the total tension at � from muscles on both sides of the lamprey’s

body.
Now notice that letting

��

��
�

�� � ����

�� ��� ��
� 	�

we find the second derivative as

�	

��
�

	� �	���

�� ��� ��

�

�������
������� �

���������
�����������

�� ��� ��

� ��� � ������ ����� � �����

� �� � ����� � �����

So, we can write

�

��

��
� �

��

�
� ���
� �	
����
���

We find � by integrating:

� ��� �� �
����

�	
����
�� ������ ��������

The boundary conditions for this expression are

� ��� �� � � ��� �� � ��

because there can be no torque at the head and tail. Letting � � ����
�

, we find that

����� � �� �	
�����

TLFeBOOK

Chapter 8 derivations 329

and

����� �
�

�
��������� ������� �����

We also know that � � ��
�

, because the lamprey swims in such a way that one period of
the wave is present over its length, no matter the speed. Therefore,

����� �
�

�
��������� ������� ����

� ��

As a result, the tension needed to produce the observed swimming is given by

	 �
� �� � ��������� ��
���� ��������� (F.3)

We can further simplify by allowing
 � � � � � � � 	 in their respective units,
which is fine so long as we do not need to know the actual tensions produced (i.e., we just
need the relative magnitudes).

F.2.2 Error

As mentioned in the text, we need to solve the error

� �

��
	 �
� ���
	 �
� ��

���
���

� (F.4)

To do this, we take as our two expressions

	 �
� �� � ��������� ��
���� �������� (F.5)

� ��������� �����
�� ������� �����
�� ��������� (F.6)

and

	 �
� �
�� � �
�
�� �

��

����������� �������
� ������� �������
�
�
� (F.7)

To make our derivation clearer, let us define

�
�

�� �

��
���

�������� �������
� ������� �������
��

As well, we leave out the constant �, which simply carries through the derivation.

TLFeBOOK

330 Appendix F

We now explicitly write the difference between our representation and the desired
function, which gives

� � ��� ���������� � ������� ���������� ������� � ������� �������

��� ��������
�

�

��

���
���

	 ��� �������� ����� ��������������� ���� � �������������������

�
�
�

��

�

���
���

�

Performing the square and averaging over � gives

� 	

�
�������� ����

�
�

�
�������� ����

� �

�
������������

�

�

�

�
���

��

� �

�

�
���

��

�

�
�

� (F.8)

This follows since all of the �����	�� and �����	�� terms are orthogonal, so the cross
terms cancel. As well, note that

�
��������

�
�
	
�
��������

�
�
	 �

�
. From (F.8) we can

see that in order for the error to be zero, we want �� 	 � �������, �� 	 � �������,
�� 	 �������, and �� 	 � for higher terms.

We can proceed further with an analysis of the error to determine precisely how
the dynamics of these coefficients need to be constrained. We notice that the first two
coefficients form an oscillator. However, it is not clear how the third coefficient contributes
to the behavior of the oscillator. Noting that �� 	 ���, we suspect that the third term
does not contribute significantly. To ensure this, we focus for a moment on the first and
third terms in (F.8), to determine their relation. Performing the square on these terms gives

�
�������� � ��� ������� ���

�
�

�
����������� ������� �

�
��

�

�
�

	

�

�
�������� � ���� ���� ������� ���

�
�

�
��

�

�
�

	

�

�
��� � ��������� �

	
�� ���

�

�

�

	
�� ���

�
� �������

��
�

TLFeBOOK

Chapter 8 derivations 331

resulting in a final error of

� �

�
�

�
��� � ��������� �

�

�
��� � �	
������ �

�
�� ���

�

��

�

�
�� ���

�
� �	
����

��
�
�
���

��

�
���

�
�

� (F.9)

This expression makes it clear that over time we must ensure that �� � ��� �

� �	
����, in order to minimize the error. As well, the higher order terms must be damped
to zero. We can also see that �� and �� form an oscillator which comprises the central
dynamics of the swimming lamprey.

F.2.3 Oscillator dynamics

We begin with the standard oscillator equation,

�� � ��� �

�� � �����

which intuitively says that the acceleration of an oscillating body is proportional but
directed opposite to the displacement of the body. This is precisely what we see in a
pendulum, for example. Each time, and no matter which direction a pendulum crosses the
vertical plane, there is an acceleration (usually gravity) pulling in the opposite direction.
We can now define the variables

�� � ��

�� � ���

which gives

��� � �� � ���� � ����

��� � � �� � ����

Therefore, the position of the oscillating body at any time is given by ��	� � �. We can
now write these equations in matrix form to give

�� �

�
�
 �

��

�
	�� (F.10)

TLFeBOOK

332 Appendix F

A solution for � is

�� � � �������

�� � � ��������

so

	�� � �� �������

	�� � � ��������

which we also find by doing the matrix multiplication in (F.10), as expected. Our first two
coefficients in the orthogonal expression for the lamprey locomotion are precisely �� and
��. This shows that they implement an oscillator that can be expressed by an equation of
the form of (F.10).

F.2.4 Coordinate changes with matrices

Coordinate changes are useful for transforming some linear transformation or vector to a
convenient coordinate system. In fact, any linear transform is a coordinate change, so this
kind of operation is ubiquitous. We begin with an oscillator defined by

	�� � ����

	�� � ���

�������

�
�

��
�
�

and

	�� �����

where

� �

�
����

 �

��

�
���� �

In order to transform this matrix to the space of our original variables, we need first to
relate the two coordinate systems. Thus, we write

�
� � ��

TLFeBOOK

Chapter 8 derivations 333

�
����

��

��

�����

�

�
���� �

�
����

� � �

� � �

�

�
� �

�

�
����

�
����

��

��

��

�
���� �

Now we can express the oscillator in our original coordinates by noting that

��� � ��
�

� �� � ���

�
��
� �� � �

��
���

�� � �
��
����

Thus, the transformation matrix for the oscillator in our original coordinates is

�� � �
��
��

�

�
����

� � �

�� � �

� �� �

�
���� �

F.2.5 Projection matrices

To construct and use projection matrices for moving between the orthogonal and interme-
diate spaces, let us first recall our two representations of the tension,

� ��� �� � ��

and

� � ��� ��� ���

We can now substitute the expression for � ��� �� into the expression for � and simplify to
get an expression for the orthogonal coefficients in terms of the intermediate ones:

� � �����
���

�
��

� � �

� � ���

where � �
�
���

�
��

is a pseudo-inverse (i.e., using SVD).

TLFeBOOK

334 Appendix F

Substituting this expression for � into our dynamical equation, and recalling that
� � � during startup gives

�� � �������

��� � ���������

�� � �
��
������

��
�����

Therefore,

�� ��������� (F.11)

where

�� � �
��
���

�� � �
��
����

TLFeBOOK

References

Abbott, L. F. (1994). Decoding neuronal firing and modelling neural networks.
Quarterly Review of Biophysics 27, 291–331.
Abbott, L. F. and S. B. Nelson (2000). Synaptic plasticity: Taming the beast. Nature
Neuroscience 3, 1178–1183.
Adelson, E. and J. Bergen (1985). Spatiotemporal energy models for the perception of
motion. Journal of the Optical Society of America A2, 284–299.
Adrian, E. D. (1928). The basis of sensation: The action of the sense organs. New York,
NY: Norton.
Amit, D. J. (1989). Modeling brain function: The world of attractor neural networks.
New York, NY: Cambridge University Press.
Amit, Y. and D. Geman (1999). A computational model for visual selection. Neural
Computation 11, 1691–1715.
Andersen, R. A., L. H. Snyder, D. C. Bradley, and J. Xing (1997). Multimodal
representation of space in the posterior parietal cortex and its use in planning movements.
Annual Review of Neuroscience 20, 303–330.
Anderson, C. H., Q. Huang, and J. Clark (2000). Harmonic analysis of spiking neuronal
pairs. Neurocomputing 32–33, 279–284.
Anderson, C. H. and D. C. Van Essen (1987). Shifter circuits: A computational strategy
for directed visual attention and other dynamic neural processes. Proceedings of the
National Academy of Sciences USA 84, 6297–6301.
Angelaki, D. E. and J. D. Dickman (2000). Spatiotemporal processing of linear
acceleration: Primary afferent and central vestibular neuron responses. Journal of
Neurophysiology 84, 2113–2132.
Angelaki, D. E., M. Q. McHenry, J. D. Dickman, S. D. Newlands, and B. J. M. Hess
(1999). Computation of inertial motion: neural strategies to resolve ambiguous otolith
information. Journal of Neuroscience 19, 316–327.
Arbib, M. (1995). Background. In M. Arbib (Ed.), The handbook of brain theory and
neural networks. Cambridge, MA: MIT Press.
Arnold, D. B. and D. A. Robinson (1991). A learning network model of the neural
integrator of the oculomotor system. Biological Cybernetics 64, 447–454.
Arvanitaki, A. (1938). Les variations graduées de la polarisation des systèmes
excitables. Paris: Univ. Lyons, Hermann et cie.
Askay, E., R. Baker, H. S. Seung, R. Baker, and D. Tank (2000). Anatomy and discharge
properties of pre-motor neurons in the goldfish medulla that have eye-position signals
during fixations. Journal of Neurophysiology 84, 1035–1049.
Askay, E., G. Gamkrelidze, H. S. Seung, R. Baker, and D. Tank (2001). In vivo
intracellular recording and perturbation of persistent activity in a neural integrator.
Nature Neuroscience 4, 184–193.
Avoli, M., G. G. C. Hwa, J.-C. Lacaille, A. Olivier, and J.-G. Villemure (1994).
Electrophysiological and repetitive firing properties of neurons in the superficial/middle
layers of the human neocortex maintained in vitro. Experimental Brain Research 98,
135–144.

TLFeBOOK

336 References

Baddeley, R. (1996). An efficient code in V1? Nature 381, 560–561.
Bair, W. and C. Koch (1995). Precision and reliability of neocortical spike trains in the
behaving monkey. In The Neurobiology of Computation: Proceedings of the 3rd
Computation and Neural Systems Conference. Kluwer Academic Press.
Barber, M. J. (1999). Studies in neural networks: Neural belief networks and synapse
elimination. PhD dissertation, Washington University in St. Louis, Department of
Physics.
Bechtel, W. and R. C. Richardson (1993). Discovering complexity: Decomposition and
localization as strategies in scientific research. Princeton, NJ: Princeton University Press.
Becker, G. C. (1983). Fishes of Wisconsin. Madison, WI: University of Wisconsin Press.
Berry II, M. J. and M. Meister (in press). Firing events: Fundamental symbols in the
neural code of retinal ganglion cells? In Computational Neuroscience: Trends in
Research 2000, New York, NY. Plenum Press.
Bialek, W. and F. Rieke (1992). Reliability and information transmission in spiking
neurons. Trends in Neuroscience 1, 428–434.
Bialek, W., F. Rieke, R. R. de Ruyter van Steveninck, and D. Warland (1991). Reading a
neural code. Science 252, 1854–1857.
Bialek, W. and A. Zee (1990). Coding and computation with neural spike trains. Journal
of Statistical Physics 59, 103–115.
Bickle, J., C. Worley, and M. Bernstein (2000). Vector subtraction implemented neurally:
A neurocomputational model of sequential cognitive and conscious processing.
Counsciousness and Cognition 9, 117–144.
Bienenstock, E., L. N. Cooper, and P. Munro (1982). On the development of neuron
selectivity: Orientation specificity and binocular interaction in visual cortex. Journal of
Neuroscience 2, 32–48.
Bousquet, O., K. Balakrishnan, and V. Honavar (1998). Is the hippocampus a kalman
filter? In Pacific Symposium on Biocomputing, River Edge, NJ, pp. 655–666. World
Scientific.
Bower, J. M. and D. Beeman (Eds.) (1995). The book of Genesis: Exploring realistic
neural models with the GEneral NEural SImulation System. Santa Clara, CA:
Springer-Verlag.
Brödel, M., P. D. Malone, S. R. Guild, and S. J. Crowe (1946). Three unpublished
drawings of the anatomy of the human ear. Philadelphia: Saunders.
Bugmann, G. (1991). Summation and multiplication: Two distinct operation domains of
leaky integrate-and-fire neurons. Network 2, 489–509.
Buracas, G. T., A. M. Zador, M. R. DeWeese, and T. D. Albright (1998). Efficient
discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex.
Neuron 20, 959–969.
Büttner-Ennever, J. A. (1999). A review of otolith pathways to brainstem and cerebellum.
Annals of New York Academy of Science 871, 51–64.
Camperi, M. and X. J. Wang (1998). A model of visuospatial working memory in

TLFeBOOK

References 337

prefrontal cortex: recurrent network and cellular bistability. Journal of Computational
Neuroscience 5, 383–405.
Cavanagh, P. (1991). What’s up in top-down processing? In A. Gorea (Ed.),
Representations of vision: Trends and tacit assumptions in vision research. Cambridge,
UK: Cambridge University Press.
Chen, L. L., L. H. Lin, C. A. Barnes, and B. L. McNaughton (1994). Head-direction cells
in the rat posterior cortex. II. contributions of visual and ideothetic information to the
directional firing. Experimental Brain Research 101, 24–34.
Chen, L. W., K. K. L. Yung, and Y. S. Chan (2000). Co-localization of NMDA receptors
and AMPA receptors in neurons. Brain Research 884, 87–97.
Churchland, P. S. and T. J. Sejnowski (1992). The computational brain. Cambridge, MA:
MIT Press.
Cohen, A. H., P. J. Holmes, and R. H. Rand (1982). The nature of the coupling between
segmental oscillators of the lamprey spinal generator for locomotion. Journal of
Mathematical Biology 13, 345–369.
Colby, C. L. and M. E. Goldberg (1999). Space and attention in parietal cortex. Annual
Review of Neuroscience 22, 319–349.
Connors, B. W. and M. J. Gutnick (1990). Intrinsic firing patterns of diverse neocortical
neurons. Trends in Neuroscience 13, 99–104.
Crick, F. and C. Koch (1998). Consciousness and neuroscience. Cerbral Cortex 8,
97–107.
Curthoys, I. S. and C. H. Markham (1971). Convergence of labyrinthine influences on
units in the vestibular nuclei of the cat. I: Natural stimulation. Brain Research 35,
469–490.
Davson, H. (1990). Physiology of the eye (5th ed.). New York, NY: Pergamon Press.
Dayan, P. and L. F. Abbott (2001). Theoretical neuroscience: Computational and
mathematical modeling of neural systems. Cambridge, MA: MIT Press.
de Nó, R. L. and G. Condouris (1959). Decremental conduction in peripheral nerves:
Integration of stimuli in the neuron. Proceedings of the National Academy of Science
USA 45, 592–617.
de ruyter van Steveninck, R. R. and W. Bialek (1988). Real-time performance of a
movement-sensitive neuron in the blowfly visual system: coding and information transfer
in short spike sequences. Proceedings of the Royal Society of London, Series B 234,
379–414.
de ruyter van Steveninck, R. R., G. D. Lewen, S. P. Strong, R. Koberle, and W. Bialek
(1997). Reproducibility and variability in neural spike trains. Science 275, 1805–1808.
Deco, G. and B. Schurmann (1998). The coding of information by spiking neurons: an
analytical study. Network: Computational Neural Systems 9, 303–317.
Delgado-Garcia, J. M., P. P. Vidal, C. Gomez, and A. Berthoz (1989). A
neurophysiological study of prepositus hypoglossi neurons projecting to oculomotor and
preoculomotor nuclei in the alert cat. Neuroscience 29, 291–307.

TLFeBOOK

338 References

Desimone, R. (1991). Face-selective cells in the temporal cortex of monkeys. Journal of
Cognitive Neuroscience 3, 1–8.
DeWeese, M. and A. Zador (1998). Asymmetric dynamics in optimal variance
adaptation. Neural Computation 10, 1179–1202.
Douglas, R., M. Mahowald, and C. Mead (1995). Neuromorphic analogue VLSI. Annual
Review of Neuroscience 18, 255–281.
Douglas, R. J., C. Koch, M. Mahowald, K. A. C. Martin, and H. H. Suarez (1995).
Recurrent excitation in neocortical circuits. Science 269, 981–985.
Durbin, R. and D. Rumelhart (1989). Product units: A computationally powerful and
biologically plausible extension to backpropagation networks. Neural Computation 1,
133–142.
Einstein, A. (1945). The meaning of relativity. Princeton, NJ: Princeton University Press.
Ekekberg, O. and S. Grillner (1999). Simulations of neuromuscular control in lamprey
swimming. Philosophical Transactions of the Royal Society of London B 354, 895–902.
Eliasmith, C. (2000). How neurons mean: A neurocomputational theory of
representational content. PhD dissertation, Washington University in St. Louis,
Department of Philosophy.
Eliasmith, C. (2001). Is the brain analog or digital?: The solution and its consequences
for cognitive science. Cognitive Science Quarterly 1, 147–170.
Eliasmith, C. and C. H. Anderson (2001). Beyond bumps: Spiking networks that store
sets of functions. Neurocomputing 38, 581–586.
Eliasmith, C., M. B. Westover, and C. H. Anderson (2002). A general framework for
neurobiological modeling: An application to the vestibular system. Neurocomputing 46,
1071–1076.
Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony.
Neural Computation 8, 979–1001.
Ermentrout, G. B. (1998a). Linearization of f-i curves by adaptation. Neural
Computation 10, 1721–1729.
Ermentrout, G. B. (1998b). Neural networks as spatio-temporal pattern-forming systems.
Reports on progress in physics 61, 353–430.
Ermentrout, G. B. and N. Kopell (1986). Parabolic bursting in an excitable system
coupled with a slow oscillation. SIAM Journal of Applied Mathematics 15, 215–237.
Felleman, D. J. and D. C. V. Essen (1991). Distributed hierarchical processing in primate
visual cortex. Cerebral Cortex 1, 1–47.
Fernández, C. and J. M. Goldberg (1976a). Physiology of peripheral neurons innervating
otolith organs of the squirrel monkey. I: Response to static tilts and to long-duration
centrifugal force. Journal of Neurophysiology 39, 970–984.
Fernández, C. and J. M. Goldberg (1976b). Physiology of peripheral neurons innervating
otolith organs of the squirrel monkey. II: Directional selectivity and force-response
relations. Journal of Neurophysiology 39, 985–995.
Fernández, C. and J. M. Goldberg (1976c). Physiology of peripheral neurons innervating

TLFeBOOK

References 339

otolith organs of the squirrel monkey. III: Response dynamics. Journal of
Neurophysiology 39, 996–1008.
Field, D. J. (1996). Relations between the statistics of natural images and the response
properties of cortical cells. Journal of the Optical Society of America, A 4, 2379–2394.
Fitzhugh, R. (1958). A statistical analyzer for optic nerve messages. Journal of General
Physiology 41, 675–692.
FitzHugh, R. (1961). Impulses and physiological states in models of nerve membrane.
Biophysics Journal 1, 445–466.
Fodor, J. and Z. Pylyshyn (1988). Connectionism and cognitive science: A critical
analysis. Behavioral and Brain Sciences 28, 3–71.
Freeman, W. J. (1987). Nonlinear neural dynamics in olfaction as a model for cognition.
In E. Basar (Ed.), Dynamics of sensory and cognitive processing in the brain. Berlin:
Springer-Verlag.
Fukushima, K., C. R. S. Kaneko, and A. F. Fuchs (1992). The neuronal substrate of
integration in the oculomotor system. Progress in Neurobiology 39, 609–639.
Fukushima, K., S. Miyake, and T. Ito (1983). Neocognitron: A neural network model for
a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man, and
Cybernetics SMC-13, 826–834.
Gelder, T. V. (1995). What might cognition be, if not computation? Journal of
Philosophy 91, 345–381.
Georgopoulos, A. P., J. F. Kalasaka, M. D. Crutcher, R. Caminiti, and J. T. Massey
(1984). The representation of movement direction in the motor cortex: Single cell and
population studies. In G. M. Edelman, W. E. Gail, and W. M. Cowan (Eds.), Dynamic
aspects of neocortical function. Neurosciences Research Foundation.
Georgopoulos, A. P., J. T. Lurito, M. Petrides, A. Schwartz, and J. T. Massey (1989).
Mental rotation of the neuronal population vector. Science 243, 234–236.
Georgopoulos, A. P., A. Schwartz, and R. E. Kettner (1986). Neuronal population coding
of movement direction. Science 233, 1416–1419.
Georgopoulos, A. P., M. Taira, and A. Lukashin (1993). Cognitive neurophysiology of
the motor cortex. Science 260, 47–52.
Gilbert, C. D. and T. N. Wiesel (1990). The influence of contextual stimuli on the
orientation of selectivity of cells in primary visual cortex of the cat. Vision Research 30,
1689–1701.
Giles, C. L. and T. Maxwell (1987). Learning, invariance, and generalization in
high-order neural networks. Applied Optics 26, 4972–4978.
Gnadt, J. W. and R. A. Andersen (1988). Memory related motor planning activity in
posterior parietal cortex of macaque. Experimental Brain Research 70, 216–220.
Goldberg, M. E. and C. B. Bruce (1990). Primate frontal eye fields III: Maintenance of a
spatially accurate saccade signal. Journal of Neurophysiology 64, 489–508.
Goodridge, J. P. and D. S. Touretzky (2000). Modeling attractor deformation in the
rodent head-direction system. Journal of Neurophysiology 83, 3402–3410.

TLFeBOOK

340 References

Gould, J. (1975). Honey bee communication: The dance-language controversy.
Rockefeller University, Ph.D. thesis.
Goyal, V. K., J. Kovacevic, and J. A. Kelner (2001). Quantized frame expansions with
erasures. Journal of Applied and Computational Harmonic Analysis 10, 203–233.
Goyal, V. K., M. Vetterli, and N. T. Thao (1998). Quantized overcomplete expansions in
�
�: Analysis, synthesis and algorithms. IEEE Transactions on Information Theory 44,

16–31.
Grandin, T. and M. J. Deesing (1998). Behavioral genetics and animal science. In
T. Grandin (Ed.), Genetics and the behavior of domestic animals. San Diego, CA:
Academic Press.
Gray, J. (1933). The movement of fish with special reference to the eel. Journal of
Experimental Biology 10, 88–104.
Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical
Transactions Royal Society of London B 352, 1121–1128.
Grenander, U. (1976-1981). Lectures in pattern theory I, II, and III: Pattern analysis,
pattern synthesis, and regular structures. New York, NY: Springer-Verlag.
Grillner, S., P. Wallén, L. Brodin, and A. Lansner (1991). The neuronal network
generating locomotor behavior in lamprey: Circuitry, transmitters, membrane properties,
and simulation. Annual Review of Neuroscience 14, 169–199.
Guedry, F. E. (1974). Psychophysics of vestibular sensation. In F. E. Guedry (Ed.),
Handbook of sensory physiology: The vestibular system, Volume 2. Berlin: Springer.
Gutkin, B. S. and G. B. Ermentrout (1998a). Dynamics of membrane excitability
determine interspike interval variability: A link between spike generation mechanisms
and cortical spike train statistics. Neural Computation 10, 1047–1065.
Gutkin, B. S. and G. B. Ermentrout (1998b). Theta-neuron, a 1-dimensional spiking
model that reproduces in vitro and in vivo spiking characteristics of cortical neurons. In
M. Holcombe and R. Paton (Eds.), Information processing in cells and tissues. New York:
Plenum Press.
Gutnick, M. J. and W. E. Crill (1995). The cortical neuron as an electrophysiological
unit. In M. J. Gutnick and I. Moody (Eds.), The cortical neuron. New York, NY: Oxford
University Press.
Hakimian, S., C. H. Anderson, and T. W. Thach (1999). A PDF model of populations of
purkinje cells. Neurocomputing 26, 169–175.
Hallinan, P. W., G. Gordon, A. L. Yuille, P. Giblin, and D. Mumford (1999). Two- and
three-dimensional patterns of the face. Natick, MA: A. K. Peters.
Hammerstrom, D. (1995). Digital VLSI for neural networks. In M. Arbib (Ed.), The
handbook of brain theory and neural networks. Cambridge, MA: MIT Press.
Hansel, D. and H. Sompolinsky (1998). Modeling feature selectivity in local cortical
circuits. In C. Koch and I. Segev (Eds.), Methods in neuronal modeling. Cambridge, MA:
MIT Press.
Hardcastle, V. (1997). Consciousness and the neurobiology of perceptual binding.

TLFeBOOK

References 341

Seminars in Neuroscience 17, 163–170.
Hebb, D. O. (1949). The organization of behavior. New York, NY: Wiley.
Henneman, E. and L. Mendell (1981). Functional organization of motoneuron pool and
its inputs. In V. B. Brooks (Ed.), Handbook of physiology: The nervous system,
Volume 2. Bethesda, MD: American Physiological Society.
Hess, B. J. and D. E. Angelaki (1997). Inertial vestibular coding of motion: concepts and
evidence. Current Opinion in Neurobiology 7, 860–866.
Hess, K., H. Reisine, and M. Dürsteler (1985). Normal eye drift and saccadic drift
correction in darkness. Neuro-ophthalmology 5, 247–252.
Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a
non-medulated axon. Journal of Physiology (London) 107, 165–181.
Hodgkin, A. L. and A. Huxley (1952). A quantitative description of membrane current
and its application to conduction and excitation in nerves. Journal of Physiology
(London) 117, 500–544.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences 79, 2554–2558.
Hoppensteadt, F. and E. Izhikevich (in press). Canonical neural models. In M. Arbib
(Ed.), The handbook of brain theory and neural networks (Second ed.). Cambridge, MA:
MIT Press.
Hoppensteadt, F. C. and E. M. Izhikevich (1997). Weakly connected neural networks.
New York, NY: Springer-Verlag.
Hubel, D. H. and T. N. Wiesel (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. Journal of Physiology (London) 160,
106–154.
Jack, J. J. B., D. Noble, and R. W. Tsien (1975). Electric current flow in excitable cells.
Oxford, UK: Oxford University Press.
Johnston, D. and S. M. Wu (1995). Foundations of cellular neurophysiology. Cambridge,
MA: MIT Press.
Jordan, M. I. and T. J. Sejnowski (2001). Graphical models: Foundations of neural
computation. Cambridge, MA: MIT Press.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME Journal of Basic Engineering 82, 35–45.
Kang, S. M. and Y. Leblebici (1996). CMOS digital integrated circuits: Analysis and
design. New York, NY: McGraw-Hill.
Kawato, M. (1995). Cerebellum and motor control. In M. Arbib (Ed.), The handbook of
brain theory and neural networks. Cambridge, MA: MIT Press.
Kelly, J. P. (1991). The sense of balance. In E. R. Kandel, J. H. Schwartz, and T. M.
Jessel (Eds.), Principles of neural science. Elsevier.
King, C. C. (1991). Fractal and chaotic dynamics in nervous systems. Progress in
Neurobiology 36, 279–308.
Kiper, D., R. Karl, and J. Movshon (1996). Coritcal oscillatory responses do not affect

TLFeBOOK

342 References

visual segmentation. Vision Research 36, 539–544.
Kishimoto, K. and S. Amari (1979). Existence and stability of local excitations in
homogeneous neural fields. Journal of Mathematical Biology 7, 303–318.
Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of
General Physiology 59, 734–766.
Knill, D. and W. Richards (1996). Perception as Bayesian inference. Cambridge, UK:
Cambridge University Press.
Koch, C. (1999). Biophysics of computation: Information processing in single neurons.
New York, NY: Oxford University Press.
Koch, C. and T. Poggio (1992). Multiplying with synapses and neurons. In T. McKenna,
J. Davis, and S. F. Zornetzer (Eds.), Single neuron computation. Boston, MA: Academic
Press.
Koch, C., T. Poggio, and V. Torre (1983). Nonlinear interactions in a dendritic tree:
Localization, timing and role of information processing. Proceedings of the National
Academy of Sciences USA 80, 2799–2802.
Koch, C. and I. Segev (2001). The role of single neurons in information processing.
Nature Neuroscience Supplement 3, 1171–1177.
Kopell, N. and G. B. Ermentrout (1988). Coupled oscillators and the design of central
pattern generators. Mathematical Biosciences 90, 87–109.
Küpfmüller, K. and F. Jenik (1961). Über die nachrichtenverarbeitung in der nervenzelle.
Kybernetik 1, 1–6.
Laing, C. R. and C. C. Chow (2001). Stationary bumps in networks of spiking neurons.
Neural Computation 13, 1473–1494.
Lansner, A., O. Ekeberg, and S. Grillner (1997). Realistic modeling of burst generation
and swimming in lamprey. In P. Stein, S. Grillner, A. Selverston, and D. Stuart (Eds.),
Neurons, networks, and motor behavior. Cambridge, MA: MIT Press.
Lass, Y. and M. Abeles (1975). Transmission of information by the axon. I: Noise and
memory in the myelinated nerve fiber of the frog. Biological Cybernetics 19, 61–67.
Lee, C., W. H. Rohrer, and D. L. Sparks (1988). Population coding of saccadic eye
movements by neurons in the superior colliculus. Nature 332, 357–360.
Lee, D. D., B. Y. Reis, H. S. Seung, and D. W. Tank (1997). Nonlinear network models of
the oculomotor integrator. In J. M. Bower (Ed.), Computational neuroscience: Trends in
research 1997. New York: Plenum Press.
Lev, L. J. (1997). The kalman filter: Navigation’s integration workhorse. GPS World 8,
65–71.
Lewis, F. L. (1992). Applied optimal control and estimation. New York, NY:
Prentice-Hall.
Llinás, R. and M. Sugimori (1980). Electrophysiological properties of in vitro purkinje
cell somata in mammalian cerebellar slices. Journal of Physiology 305, 171–195.
MacKay, D. and W. S. McCulloch (1952). The limiting information capacity of a
neuronal link. Bulletin of Mathematical Biophysics 14, 127–135.

TLFeBOOK

References 343

Mainen, Z. F. and T. J. Sejnowksi (1995). Reliability of spike timing in neocortical
neurons. Science 268, 1503–1506.
Marder, E., N. Kopell, and K. Sigvardt (1997). How computation aids in understanding
biological networks. In P. Stein, S. Grillner, A. Selverston, and D. Stuart (Eds.), Neurons,
networks, and motor behavior. Cambridge, MA: MIT Press.
Marr, D. (1982). Vision. San Francisco, CA: W. H. Freeman.
Martin, J. H. (1991). Coding and processing of sensory information. In E. R. Kandel,
J. H. Schwartz, and T. M. Jessel (Eds.), Principles of neural science. Elsevier.
Mayne, R. A. (1974). A systems concept of the vestibular organs. In H. H. Kornhuber
(Ed.), Handbook of sensory physiology: The vestibular system. New York, NY: Springer.
Mazzoni, P., R. M. Bracewell, S. Barash, and R. A. Andersen (1996). Spatially tuned
auditory responses in area LIP of macaques performing delayed memory saccades to
acoustic targets. Journal of Neurophysiology 75, 1233–1241.
McAdams, C. J. and J. Maunsell (1999). Effects of attention on orientation-tuning
functions of single neurons in macaque cortical area v4. Journal of Neuroscience 19,
431–441.
McCormick, D. A., B. W. Connors, J. W. Lighthall, and D. A. Prince (1985).
Comparative electrophysiology of pyramidal and sparsely spiny stellate neuron. Journal
of Neurophysiology 54, 782–806.
McGrew, W. C. (1992). Chimpanzee material culture: Implications for human evolution.
Cambridge, UK: Cambridge University Press.
McKenna, T., J. Davis, and S. F. Zornetzer (Eds.) (1992). Single neuron computation.
Boston, MA: Academic Press.
McNaughton, B. L., L. L. Chen, and E. J. Markus (1991). "dead reckoning", landmark
learning, and the sense of direction: A neurophysiological and computational hypothesis.
Journal of Cognitive Neuroscience 3, 190–202.
Mead, C. (1990). Neuromorphic electronic systems. Proceedings of IEEE 78,
1629–1636.
Mechler, F. and D. L. Ringach (2002). On the classification of simple and complex cells.
Vision Research 42, 1017–1033.
Mel, B. (1994). Information processing in dendritic trees. Neural Computation 6,
1031–1085.
Mel, B. (1999). Why have dendrites? a computational perspective. In G. Stuart,
N. Spruston, and M. Häusser (Eds.), Dendrites. New York, NY: Oxford University Press.
Merfeld, D. M., L. Zupan, and R. J. Peterka (1999). Humans use internal models to
estimate gravity and linear acceleration. Nature 398, 615–618.
Miller, J., G. A. Jacobs, and F. Theunissen (1991). Representation of sensory information
in the cricket cercal sensory system. I: Response properties of the primary interneurons.
Journal of Neurophysiology 66, 1680–1703.
Moran, D. W. and A. B. Schwartz (1999). Motor cortical representation of speed and
direction during reaching. Journal of Neurophysiology 82, 2676–2692.

TLFeBOOK

344 References

Morris, C. and H. Lecar (1981). Voltage oscillations in the barnacle giant muscle fiber.
Biophysics Journal 35, 193–213.
Moschovakis, A. K. (1997). The neural integrators of the mammalian saccadic system.
Frontiers of Bioscience 2, D552–D577.
Mumford, D. (1996). Pattern theory: A unifying perspective. In D. C. Knill and
W. Richards (Eds.), Perception as Bayesian inference. Cambridge, UK: Cambridge
University Press.
Nelson, M. and J. Rinzel (1995). The hodgkin-huxley model. In J. M. Bower and
D. Beeman (Eds.), The book of Genesis: Exploring realistic neural models with the
GEneral NEural SImulation System. Santa Clara, CA: Springer-Verlag.
Nenadic, Z., C. H. Anderson, and B. Ghosh (2000). Control of arm movement using a
population of neurons. In J. Bower (Ed.), Computational neuroscience: Trends in
research 2000. Elsevier Press.
Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University
Press.
Nowlan, S. J. and T. J. Sejnowski (1993). Filter selection model for generating visual
motion signals. In S. Hanson, J. Cowan, and L. Giles (Eds.), Advances in neural
information processing systems 5. San Monteo, CA: Morgan Kaufmann.
Ohzawa, I., G. DeAngelis, and R. Freeman (1990). Seteroscopic depth discrimination in
the visual cortex: Neurons ideally suited as disparity detectors. Science 279, 1037–1041.
Olshausen, B. (2000). Sparse coding of time-varying natural images. In P. Pajunen and
J. Karhunen (Eds.), Proceedings of Second International Workshop on Independent
Component Analysis and Blind Signal Separation (ICA2000), pp. 603–608.
Olshausen, B. A., C. H. Anderson, and D. C. Van Essen (1993). A neurobiological model
of visual attention and invariant pattern recognition based on dynamic routing of
information. The Journal of Neuroscience 13, 4700–4719.
Olshausen, B. A. and D. J. Field (1996). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature 381, 607–609.
O’Neill, W. E. and N. Suga (1982). Encoding of target range information and its
representation in the auditory cortex of the mustache bat. Journal of Neuroscience 2,
17–31.
Optican, L. M. and B. J. Richmond (1987). Temporal encoding of two-dimensional
patterns by single units in primate primary visual cortex III: Information theoretic
analysis. Journal of Neurophysiology 57, 162–178.
Paige, G. D. and D. L. Tomko (1991). Eye movement responses to linear head motion in
the squirrel monkey. I: Basic characteristics. Journal of Neurophysiology 65, 1170–1182.
Paradiso, M. A. (1988). A theory for the use of visual orientation information which
exploits the columnar structure of striate cortex. Biological Cybernetics 58, 35–49.
Partridge, L. (1966). A possible source of nerve signal distortion arising in pulse rate
encoding of signals. Journal of Theoretical Biology 11, 257–281.
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible

TLFeBOOK

References 345

inference. Palo Alto, CA: Morgan Kaufmann.
Peterhans, E. and R. von der Heydt (1989). Mechanisms of contour perception in monkey
visual cortex II: contours bridging gaps. Journal of Neuroscience 9, 1749–1763.
Platt, M. L. and G. W. Glimcher (1997). Responses of intraparietal neurons to saccadic
targets and visual distractors. Journal of Neurophysiology 78, 1574–1589.
Platt, M. L. and G. W. Glimcher (1998). Response fields of intraparietal neurons
quantified with multiple saccadic targets. Experimental Brain Research 121, 65–75.
Poggio, T. (1981). A theory of synaptic interactions. In T. Poggio and V. Torre (Eds.),
Theoretical approaches in neurobiology. Cambridge, MA: MIT Press.
Poggio, T. (1990). A theory of how the brain might work. Cold Spring Harbor
Symposium on Quantitative Biology 55, 899–910.
Pouget, A., S. A. Fisher, and T. J. Sejnowski (1993). Egocentric spatial representation in
early vision. Journal of Cognitive Neuroscience 5, 150–161.
Pouget, A. and T. J. Sejnowski (1997). Spatial transformations in the parietal cortex using
basis functions. Journal of Cognitive Neuroscience 9, 222–237.
Pouget, A., K. Zhang, S. Deneve, and P. E. Latham (1998). Statistically efficient
estimation using population coding. Neural Computation 10, 373–401.
Rall, W. and I. Segev (1987). Functional possibilities for synapses on dendrites and
dendritic spines. In G. Edelman, W. Gall, and W. Cowan (Eds.), Synaptic function. New
York, NY: Wiley.
Ranck Jr., J. B. (1984). Head-direction cells in the deep cell layers of dorsal
presubiculum in freely moving rats. Society of Neuroscience Abstracts 10, 599.
Rao, R. P. N. and D. H. Ballard (1997). Dynamic model of visual recognition predicts
neural response properties in the visual cortex. Neural Computation 9, 721–763.
Rao, R. P. N. and D. H. Ballard (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nature
Neuroscience 2, 79–87.
Redish, A. D. (1999). Beyond the cognitive map. Cambridge, MA: MIT Press.
Reza, F. M. (1961). An introduction to information theory. McGraw-Hill Electrical and
Electronic Engineering Series. New York, NY: McGraw-Hill.
Richmond, B. J. and L. M. Optican (1990). Temporal encoding of two-dimensional
patterns by single units in primate primary visual cortex II: Information transmission.
Journal of Neurophysiology 64, 370–380.
Rieke, F., D. Warland, R. R. de Ruyter van Steveninick, and W. Bialek (1997). Spikes:
Exploring the neural code. Cambridge, MA: MIT Press.
Rinzel, J. (1985). Excitation dynamics: Insights from simplified membrane models.
Federation Proceedings 44, 2944–2946.
Rinzel, J. and G. B. Ermentrout (1989). Analysis of neural excitability and oscillations.
In C. Koch and I. Segev (Eds.), Methods in neuronal modeling. Cambridge, MA: MIT
Press.
Robinson, D. A. (1968). A note on the oculomotor pathway. Experimental Neurology 22,

TLFeBOOK

346 References

130–132.
Robinson, D. A. (1981). Control of eye movements. In V. B. Brooks (Ed.), Handbook of
physiology: The nervous system, Volume 2. Bethesda, MD: American Physiological
Society.
Robinson, D. A. (1989). Integrating with neurons. Annual Review of Neuroscience 12,
33–45.
Roddey, J. C. and G. A. Jacobs (1996). Information theoretical analysis of dynamical
encoding by filiform mechanoreceptors in the cricket cercal system. Journal of
Neurophysiology 75, 1365–1376.
Rolls, E. T. and S. M. O’Mara (1995). View-responsive neurons in the primate
hippocampal complex. Hippocampus 5, 409–424.
Romo, R., C. D. Brody, A. Hernández, and L. Lemus (1999). Neuronal correlates of
parametric working memory in the prefrontal cortex. Nature 399, 470–473.
Rose, R. M. and J. L. Hindmarsh (1989). The assembly of ionic currents in a thalamic
neuron I: The three-dimensional model. The Proceedings of the Royal Society London,
Series B 237, 267–288.
Rosenblueth, A., N. Wiener, and J. Bigelow (1943). Behavior, purpose, and teleology.
Philosophy of Science 10, 18–24.
Rush, M. E. and J. Rinzel (1994). Analysis of bursting in a thalamic neuron model.
Biological Cybernetics 71, 281–291.
Salinas, E. and L. F. Abbott (1994). Vector reconstruction from firing rates. Journal of
Computational Neuroscience 1, 89–107.
Salinas, E. and L. F. Abbott (1996). A model of multiplicative neural responses in
parietal cortex. Proceedings of the National Academy of Sciences USA 93, 11956–11961.
Sawdai, D. and D. Pavlidis (1999). InP-based complementary HBT amplifiers for use in
communication systems. Solid State Electronics 43, 1507–1512.
Schwartz, A. B. (1994). Direct cortical representation of drawing. Science 265, 540–542.
Schweighofer, N., J. Spoelstra, M. A. Arbib, and M. Kawato (1998). Role of the
cerebellum in reaching movements II: A neural model of the intermediate cerebellum.
European Journal of Neuroscience 10, 95–105.
Schwindt, P. and W. Crill (1998). Synaptically evoked dendritic action potentials in rat
neocortical pyramidal neurons. Journal of Neurophysiology 79, 2432–2446.
Searles, E. J. and C. D. Barnes (1977). Ipsilateral utricular and semicircular canal
interactions from electrical stimulation of individual vestibular nerve branches recorded in
the descending medial longitudinal fasciculus. Brain Research 125, 23–36.
Segundo, J. P., G. P. Moore, L. J. Sensaas, and T. H. Bullock (1963). Sensitivity of
neurones in aplysia to temporal pattern of arriving impulses. Journal of Experimental
Biology 40, 643–667.
Selverston, A. I. (1980). Are central pattern generators understandable? Behavioral and
Brain Sciences 3, 535–571.
Sereno, A. B. and J. H. R. Maunsell (1998). Shape selectivity in primate lateral

TLFeBOOK

References 347

intraparietal cortex. Natuer 395, 500–503.
Seung, H. S. (1996). How the brain keeps the eyes still. Proceedings of the National
Academy of Sciences, USA 93, 13339–13344.
Seung, H. S., D. Lee, B. Reis, and D. Tank (2000). Stability of the memory of eye
position in a recurrent network of conductance-based model neurons. Neuron 26,
259–271.
Seung, H. S. and H. Sompolinsky (1993). Simple models of reading neuronal population
codes. Proceedings of the National Academy of Science, USA 90, 10740–10753.
Shadlen, M. and W. Newsome (1994). Noise, neural codes and cortical organization.
Current Opinion in Neurobiology 4, 569–579.
Shadlen, M. and W. Newsome (1995). Is there a signal in the noise? Current Opinion in
Neurobiology 5, 248–250.
Shamma, S. (1989). Spatial and temporal processing in central auditory networks. In
C. Koch and I. Segev (Eds.), Methods in neuronal modeling. Cambridge, MA: MIT Press.
Shevelev, I. A. (1998). Second-order features extraction in the cat visual cortex: selective
and invariant sensitivity of neurons to the shape and orientation of crosses and corners.
Biosystems 48, 195–204.
Shevelev, I. A., K. U. Jirmann, G. A. Sharaev, and U. T. Eysel (1998). Contribution of
GABAergic inhibition to sensitivity to cross-like figures in striate cortex. Neuroreport 9,
3153–3157.
Shields, F. C. (1968). Elementary linear algebra. New York, NY: Worth Publishers.
Skaggs, W. E., J. J. Knierim, H. S. Kudrimoti, and B. L. McNaughton (1995). A model of
the neural basis of the rat’s sense of direction. In Advances in Neural Information
Processing Systems 7, pp. 173–180. Cambridge, MA: MIT Press.
Skarda, C. J. and W. J. Freeman (1987). How brains make chaos in order to make sense
of the world. Behavioral and Brain Sciences 10, 161–195.
Snippe, H. P. and J. J. Koenderink (1992). Information in channel-coded systems:
correlated receivers. Biological Cybernetics 66, 543–551.
Snyder, L. (1999). This way up: Illusions and internal models in the vestibular system.
Nature Neuroscience 2, 396–398.
Snyder, L. H., A. P. Batista, and R. A. Andersen (1997). Coding of intention in the
posterior parietal cortex. Nature 386, 167–170.
Softky, W. (1995). Simple codes versus efficient codes. Current Opinion in
Neurobiology 5, 239–247.
Softky, W. and C. Koch (1993). The highly irregular firing of cortical cells is inconsistent
with the temporal integration of random EPSPs. Journal of Neuroscience 13, 334–350.
Softky, W. and C. Koch (1995). Single-cell models. In M. Arbib (Ed.), The handbook of
brain theory and neural networks. Cambridge, MA: MIT Press.
Spoendlin, H. H. (1966). The ultrastructure of the vestibular sense organ. In R. J.
Wolfson (Ed.), The vestibular system and its diseases. Philadelphia: University of
Pennsylvanina Press.

TLFeBOOK

348 References

Stevens, C. F. (1994). What form should a cortical theory take? In C. Koch and J. L.
Davis (Eds.), Large-scale neuronal theories of the brain. Cambridge, MA: MIT Press.
Stevens, C. F. (2000). Models are common; good theories are scarce. Nature
Neuroscience 3, 1177.
Stevens, C. F. and Y. Wang (1994). Changes in reliability of synaptic function as a
mechanism for plasticity. Nature 371, 704–707.
Stevens, C. F. and A. M. Zador (1995). Neural coding: The enigma of the brain. Current
Biology 5, 1370–1371.
Stevens, C. F. and A. M. Zador (1998). Input synchrony and the irregular firing of
cortical neurons. Nature Neuroscience 1, 210–217.
Stevens, C. F. and Z. Zador (1996). Information through a spiking neuron. In Advances
in Neural Information Processing Systems 8. Cambridge, MA: MIT Press.
Sumer, B. M. and J. Fredsøe (1997). Hydrodynamics around cylindrical structures.
Freemont, CA: World Scientific.
Tal, D. and E. L. Schwartz (1997). Computing with the leaky integrate-and-fire neuron:
Logarithmic computation and multiplication. Neural Computation 9, 305–318.
Taube, J. S., R. U. Muller, and J. B. Ranck Jr. (1990a). Head-direction cells recorded
from the postsubiculum in freely moving rats. I. description and quantitative analysis.
Journal of Neuroscience 10, 420–435.
Taube, J. S., R. U. Muller, and J. B. Ranck Jr. (1990b). Head-direction cells recorded
from the postsubiculum in freely moving rats. II. effects of environmental manipulations.
Journal of Neuroscience 10, 436–447.
Telford, L., S. H. Seidman, and G. D. Paige (1997). Dynamics of squirrel monkey linear
vestibuloocular reflex and interactions with fixation distance. Journal of
Neurophysiology 78, 1775–1790.
Thomson, A. M. and J. Deuchars (1997). Synaptic interactions in neocortical local
circuits: dual intracellular recordings in vitro. Cerebral Cortex 7, 510–522.
Todorov, E. (2000). Direct cortical control of muscle activation in voluntary arm
movements: A model. Nature Neuroscience 3, 391–398.
Torre, V. and T. Poggio (1978). A synaptic mechanism possibly underlying directional
selectivity to motion. Proceedings of the Royal Society of London, B 202, 409–416.
Touretzky, D. S. and A. D. Redish (1996). Theory of rodent navigation based on
interacting representations of space. Hippocampus 6, 247–270.
Tovee, M. J., E. T. Rolls, A. Treves, and R. P. Bellis (1993). Information encoding and
the responses of single neurons in the primate temporal visual cortex. Journal of
Neurophysiology 70, 640–654.
Van Essen, D. C. and C. H. Anderson (1995). Information processing strategies and
pathways in the primate visual system. In S. F. Zornetzer, J. L. Davis, C. Lau, and
T. McKenna (Eds.), An introduction to neural and electronic networks. Academic Press.
Van Essen, D. C., C. H. Anderson, and D. J. Felleman (1992). Information processing in
the primate visual system: An integrated systems perspective. Science 255, 419–423.

TLFeBOOK

References 349

van Gelder, T. and R. Port (1995). It’s about time: An overview of the dynamic approach
to cognition. In R. Port and T. van Gelder (Eds.), Mind as motion: Explorations in the
dynamics of cognition. Cambridge, MA: MIT Press.
von der Heydt, R., E. Peterhans, and M. Dursteler (1991). Grating cells in monkey visual
cortex: Coding texture? In B. Blum (Ed.), Channels in the visual nervous system:
Neurophysiology, psychophysics, and models. London: Freund.
Wadden, T., J. Hellgren, A. Lansner, and S. Grillner (1997). Intersegmental coordination
in the lamprey: Simulations using a network model without segmental boundaries.
Biological Cybernetics 76, 1–9.
Wannier, T., T. G. Deliagina, G. N. Orlovsky, and S. Grillner (1998). Differential effects
of the reticulospinal system on locomotion in lamprey. Journal of Neurophysiology 80,
103–112.
Watanabe, S. (1965). Karhunen-Loève expansion and factor analysis: Theoretical
remarks and applications. In Transactions of the Fourth Prague Conference on
Information Theory, Statistical Decision Functions, and Random Processes, pp. 635–660.
Watson, R. A. (1995). Representational ideas: From Plato to Patricia Churchland. New
York, NY: Kluwer Academic Publishers.
Wehmeier, U., D. Dong, C. Koch, and D. C. Van Essen (1989). Modeling the mammalian
visual system. In C. Koch and I. Segev (Eds.), Methods in neuronal modeling.
Cambridge, MA: MIT Press.
Weiner, N. (1948). Cybernetics: or control and communication in the animal and the
machine. Cambridge, MA: MIT Press.
Wessel, R., C. Koch, and F. Gabbiani (1996). Coding of time-varying electric filed
amplitude modulations in a wave-type electric fish. Journal of Neurophysiology 75,
2280–2293.
Westover, M. B., C. Eliasmith, and C. H. Anderson (2002). Linearly decodable functions
from neural population codes. Neurocomputing 45, 691–696.
Wilson, H. R. (1999a). Simplified dynamics of human and mammalian neocortical
neurons. Journal of Theoretical Biology 200, 375–388.
Wilson, H. R. (1999b). Spikes, decisions, and actions: dynamical foundations of
neuroscience. New York, NY: Oxford University Press.
Wilson, V. J. and G. M. Jones (1979). Mammalian vestibular physiology. New York, NY:
Plenum Press.
Wolpert, D. M. and M. Kawato (1998). Multiple paired forward and inverse models for
motor control. Neural Networks 11, 1317–1329.
Yokota, J., H. Reisine, and B. Cohen (1992). Nystagmus induced by electrical
stimulation of the vestibular and prepositus hypoglossi nuclei in the monkey: evidence for
site of induction of velocity storage. Experimental Brain Research 92, 123–138.
Yuille, A. L. and J. J. Clark (1993). Bayesian models, deformable templates and
competitive priors. In L. Harris and M. Jenkins (Eds.), Spatial vision in humans and
robots. Cambridge, UK: Cambridge University Press.

TLFeBOOK

350 References

Zador, A., B. Claiborne, and T. Brown (1992). Nonlinear pattern separation in single
hippocampal neurons with active dendritic membrane. In J. Moody, S. Hanson, and
R. Lippmann (Eds.), Advances in neural information processing systems 4. San Monteo,
CA: Morgan Kaufmann.
Zador, A. M. (1998). Impact of synaptic unreliability on the information transmitted by
spiking neurons. Journal of Neurophysiology 79, 1219–1229.
Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the
head-direction cell ensemble: A theory. Journal of Neuroscience 16, 2112–2126.
Zipser, D. and R. A. Andersen (1988). A back-propagation programmed network that
simulates response properties of a subset of posterior parietal neurons. Nature 331,
679–684.

TLFeBOOK

Index

A-current, see current, A-current
adaptation

in conductance model, see neurons, Wilson model
neuron

in LIF neuron, see leaky integrate-and-fire neuron
regular spiking cell, 116

adaptive filtering, see control theory, Kalman filter
alphabets

and coding, 6, see also neural codes
neural activity as, 7
physical properties as, 7, 29

AMPA receptors, 179, 246
analog-to-digital converter, 30

representation in, 31
Aristotle, 275
arm movement, 52–56, see also vector, representation
artificial neural network, 158, 279

hidden layer analysis, 158
attractor networks, 250–254, see also dynamic sys-

tems theory
and noise reduction, 259
computational properties of, 259

basic representation, see representation, basic
basis functions, 2, 17, see also functions, representa-

tion
compared to basis vectors, 191
Fourier basis, 191, 204
Legendre basis, 201
of possible transformations, 198
orthonormal, 65

basis vectors, 185–191, see also vector, representation
and neurobiological representation, 191
biorthogonal, 191
Cartesian, 186
complete versus overcomplete, 190
defined, 186
non-orthogonal, 187
orthogonal, 187
overcomplete, 186
spanning a space, 186

Bayes, 276, see also statistical inference
biorthogonal basis, see basis vectors
biphasic oscillators, see also lamprey, biphasic oscil-

lator models of

cerebellum, 280
cognitive science, 219
coincidence detection, 155, see also transformations,

nonlinear
communication channel, 143

learning, 294
communication theory, see also information theory
communications theory, 1, 6, 8
computation, see transformations

connection weights
analytically determining, 145
and dynamics, 228, 235
biasing functions, 161
dynamically changing, 280
for cross product, 175
for nonlinear transformations, 158
for population-temporal representation, 146
for vector transformations, 152
forcing positive, 166
learning, see learning
negative, 160–167
standard problems with, 161

control theory, 2, 220
adapted to neurobiology, 18
and statistical inference, 287
classical, 220
internal description, 221
Kalman filter, 287–293

applied to vision, 291
prediction-correction form, 289
stability of, 291
system diagram, 290

matrices defined, 221
modern, 220
neural, 222–230

basic level description, 225
generic subsystem, 228
higher-level description, 226
Kalman filter, 289
neural integrator, 233
working memory, 245

nonlinear, 18, 222, 240
state equations, 221
time invariant, 221
time-varying, 240

correlation time, see leaky integrate-and-fire neuron
CPG, see also lamprey, and central pattern generators
current

A-current, 119
driving, 35
neuron bias, 35
potassium, 83, 116, 119, 124
sodium, 83, 124
soma, 35, see also neurons, biophysics of

curse of dimensionality, 279
cybernetics, 220

decoding, 6, see also representation
and connection weights, 17
linear binary, 32, 33
linear temporal, 92–105
nonlinear, 112
nonlinear versus linear, 16
optimal

TLFeBOOK

352 Index

observability of, 17
without noise, 37

population-temporal, 131
representational, 9, 13
temporal, 92, 103, see also temporal representation

plausibility, 113
transformational, 13, 158, 176, see also transfor-

mations
with basis vectors, 187, see also vectors, represen-

tation
with PSCs, 113, 115
with temporal filters, 98

Deiters’ nucleus, 172
seealsovestibular system, 350

delta function
as neural spike, 82, 92
to define tuning curves, 68

dendrites, 10
and subunits, 160
nonlinear, 154, 156, 159
synaptic dynamics, 223, 230

design specification
description of, 21
example, 46, 54, 74, 174, 264

dot product, 51n, 186
dynamic systems theory, 250, see also attractor net-

works
and control theory, 258
and recurrent networks, 252
and single neurons, 120, 124
and subnetworks, 258
chaotic attractor, 259
cyclic attractor, 267
line attractor, 252, see also neural integrator
plane attractor, 254
point attractor, 237, 251
ring attractor, 253, 257

dynamics, see also control theory
higher-level, 15
importance of, 219

Einstein, 168
encoding, 6, see also representation

and connection weights, 17
binary, 31, 32
temporal, 92
with basis vectors, 187

eye position, see also neural integrator
drift, 232
horizontal, 36, 44–49, 136–139, 232–243

Fourier basis, see basis functions
Fourier decomposition, 65, see also basis functions
function

decoding, 69
optimal linear, 68

design specification for, 75
encoding, 66
probability density function representation, 278
representation, 63–69

defining, 65
distinguishing from vector, 72
encoding function, 66
examples, 72
in LIP, 74
multi-modal, 79
population-temporal, 138
probability density functions, 278
relation to vectors, 69–72, 245
summary, 80

transformations, 200
functions

decoding, see also transformations
defining sets of, 64
sets of

coefficients, 70
estimating coefficients, 71
for temporal coding, 99
Monte Carlo estimates, 71

�, 38
decomposition of, 192–196
with noise, 43

ganglion
retinal, 7

head-direction system, 253
heterogeneity, 210–216

and dynamics, 257
and experiments, 12
and representational capacity, 213
and representational usefulness, 215
and supported transformations, 216
importance of, 210, 216

higher-level representation, see representation, higher-
level

hippocampus, 253

implementation
description of, 21
example, 47, 55, 58, 77, 136, 175, 233, 244, 265

information capacity, see neurons, information capac-
ity of

information theory, 2, 110, see also neurons, informa-
tion capacity of

interneurons, 161

jitter, see also noise

TLFeBOOK

Index 353

and correlation times, 108
and temporal code, 133
in neural transmission, 41

Kalman filter, see control theory, Kalman filter
Kirchoff, 85

labyrinths, 169, see also vestibular system
lamprey, 260–273

and central pattern generators, 260
and control theory, 261, 265, 272
and traveling waves, 262
as a cyclic attractor, 267
biphasic oscillator models of, 260, 261
connectivity, 271
dynamic tensions in, 265
fluid dynamics and, 263
integrating top-down and bottom-up data, 260
locomotion, 260
mechanics of, 265
neurophysiology and behavior of, 261
simulating at multiple levels, 270
top-down and bottom-up data, 271

Laplace transform, 223
large-scale models

lamprey, 260
vestibular system, 168
working memory, 244

lateral intraparietal cortex, 64, 72, 244, see also work-
ing memory

anatomy and physiology of, 73
function of, 73
neuron tuning curves in, 74

leaky integrate-and-fire neuron, 81–89
and correlation times, 109
as an RC circuit, 84
decoding spikes from, 107
derivation of, 83
effects of parameter changes, 87
implausibility, 88
information transmission in, 105–115
optimal temporal decoders, 105
plausibility, 82, 88
power in spike train, 108
rate equation derivation, 86
rate model, 36
voltage equation, 85
voltage trace, 82
with adaptation, 116

decoding, 119
information capacity, 118

learning, 293–300
analyzing weights from, 295
as fine tuning, 294

challenges posed by, 298
compared to analysis, 297
Hebbian, 294, 295
limitations, 14
the communication channel, 294
versus analysis, 14

Legendre basis, see basis functions
LIF neuron, see leaky integrate-and-fire neuron
linear systems theory, 219, see also control theory
look-up table, 279

MatLab simulation package, xvii, 12n, 19
mean square error

and SVD, 195
and transformational decoders, 158
decreases as ��� , 47, 190
due to noise, 43
for temporal decoding, 100
matrix-vector notation, 192
minimizing, 38
residual, 209
static, 43

decreases as ���� , 48
with noise, 42
without noise, 37

modern control theory, see control theory
modularization, 151, 173
motor cortex, see arm movement
MSE, see mean square error
multiple level simulations, see lamprey

negative weights, see connection weights, negative
neural codes, see also representation

not choosing between, 91
population, 11–13
rate, 7, 89, 108
synchrony, 7
timing, 7, 90, 108

neural control theory, see control theory, neural
neural engineering

addendum to principles of, 16, 18
defined, 1–3
first principle of, 15, 16, 39, 230
methodology, 15, 19–23

summary of, 22
principles of, 15–19, 230–231
second principle of, 15, 17, 231
third principle of, 15, 18, 231

neural integrator, 36, 44, 136, 232–243, see also eye
position

and cellular properties, 241
and network properties, 240
as a line attractor, 253
block diagram, 233

TLFeBOOK

354 Index

controlling dynamics of, 239
drift velocity of, 237
dynamics of, 238
effective time constant of, 235
goldfish, 19, 243
human, 243
input/output transfer function, 49

neurobiological systems
as representing, 4–13
theory of, 23–25

neurons
adaptation, see adaptation
affinity for performing statistical inference, 279
and inhibition, 161
and noise, see noise
and transistors, 11, 30, 33, 39, 40
as devices, 9–11, 41
biophysics of, 10, 34
canonical models, 115, 122
cell membrane, 83
classes of, 119, 124
conductance model, 123
diversity, 1, 2
heterogeneity of, see heterogeneity
Hodgkin-Huxley, 123
identifying tuning curve of, 66
information capacity of, 10, 19, 40, 109–115

adapting LIF model, 118
conductance model, 125
LIF neuron, 112
LIF neuron with PSCs, 113, 115
model summary, 127
neurobiological examples, 110
per frequency channel, 111
�-neuron model, 122

inhibition, 166
memory in, 10
pairs, 94–96, 242

and linearity, 95
examples, 94

persistent activity in, 252, see also working mem-
ory

populations of, 11, see also population representa-
tion

power consumption, 41
precision of, 10, see also neurons, information ca-

pacity of
Purkinje cells, 280
regular spiking, 116
reliability, 41
response function defined, 34
�-neuron model, 118
tuning curve defined, 34
various models of, 115–126

Wilson neuron model, 123
neuroscience

and dynamics, 219
and representation, 5
central problem of, 5
explanations in, 5
interplay of experiment and theory, 180
theoretical, xiii
theory for, 24

Newton, 24, 29, 262
NMDA receptors, 179, 246
noise, 18, 40–44, 47, 55, 132, 208–210, 275, 284, 313
nonlinear control, see control theory, nonlinear
nuclei prepositus hypoglossi, 36, 44, 232, see also

neural integrator
neuron tuning curve, 36
population tuning, 38

opponency in neurons, see neurons, pairs
orthogonal basis, see basis vectors
otolith, 168, 169, see also vestibular system
overcomplete basis, see basis vectors

pairs of neurons, see neurons, pairs
pattern theory, 276, see also statistical inference
PCA, see principle components analysis
PDF, see statistical inference, probability density

function
population representation, 12, 33–44

function, see function
relation to temporal representation, 131
scalar, see scalar
vector, see vector

population-temporal filter, 131
population-temporal representation, 11, 129–132

and noise, 132–136
and PSCs, 132, 137
decoding, 140
encoding, 139
finding optimal filters, 132
Monte Carlo estimates, 132
of functions, 138

postsynaptic current, see temporal representation
potassium current, see current, potassium
primary visual cortex, 291

orientation tuning, 66
tuning curve, 67

principle components analysis, 192, 201
probability density function, see statistical inference,

probability density function
probability theory, 275, see also statistical inference
PSC, see postsynaptic current
pseudo-inverse, 209
push-pull amplifiers, 94

TLFeBOOK

Index 355

refractory period
absolute, 83–85, 88, 105
relative, 121

representation
analysis, 185, 206–210
and codes, 6

analogy, 9
differences, 8

and explanation, 4, 5
and noise, 209, see also noise
and use, 6, 180, 182
basic, 48, 62, 225
capacity, 207, 213
discovering, 8, 180
distributed, 33
engineered, 30–33
goodness of, 206

and dynamics, 236, 237
and heterogeneity, 210

higher-level, 48, 62, 225
importance of, 29
improves as ��� , 47–48
in digital computers, 30
in neuroscience, 6
mixing levels of, 234
Morse code, 6
neurobiological, 4, 33, see also population-temporal

representation
matrix-vector notation, 192
with noise, 42

overcomplete, 190, 269, see also basis vectors
population, see population representation
population-temporal, see also population-temporal

representation
precision of, 44, see also noise
quantifying usefulness, 208, 215
relation, 5, 181, 189
seeming arbitrariness of, 8, 180
temporal, 81, see also temporal representation
utility of, 4

representational hierarchy, 13, 61–63
definition of levels, 80
multiple levels, 269
table of, 63
usefulness of, 62

rostral medial vestibular nucleus, 36, 45, see also
vestibular system

saccular macula, 169
saddle-node bifurcation, 120, see also dynamic sys-

tems theory
sampling densities, 2
scalar

encoding magnitude, 30

magnitude and unit, 29
neuron tuning curve, 36
representation, 29, 42–44

summary, 80
semicircular canals, 57, 168, 169, see also vestibular

system
biophysics of, 57

shifter circuit, 280
singular value decomposition, 78, 194
singular values, 194

and importance, 197
and noise, 209
and vector transformations, 204
cutoff value, 209
Gaussian versus linear populations, 205

sodium current, see current, sodium
span, see basis vectors
stationarity, 99
statistical inference, 275–281

and dynamics, 284
and neural architectures, 279
and the Kalman filter, 287–293
bottom-up evidence, 280
conditional distribution, 277
disambiguating evidence, 281, 283
feed-forward, 278
feedback architectures, 280
joint distribution, 276
marginal, 277
multi-modal distributions, 277
non-stationary, 286
parameter estimation, 283–287
probability density function, 277
top-down evidence, 280

SVD, see singular value decomposition
system description

description of, 19
example, 44, 53, 57, 73, 169

temporal representation, 89–105
and correlation times, 102, 107
and encoding functions, 104
and neuron pairs, 96, 100
and noise, 133
and optimal filters, 102
and windowing data, 101
as linear filtering, 104
combining rate and timing codes, 91
debate concerning, 89
decoding, 97, 103

plausibility, 113
with PSCs, 113, 115

defining signal ensembles, 99
encoding, 92

TLFeBOOK

356 Index

encoding and decoding process, 93
optimal filter, 106
optimal filter compared to PSC, 106
relation to population representation, 131
residual error, 102

top-down and bottom-up data
integrating, see lamprey

transformations, 13–15
addition, 148
analysis, 185, 196–205

and noise, 200
and dynamics, 14
and modularization, 150
and representation, 13
and SVD, 196
basis of

ordering, 197
in communication channel, 143
in neurobiology, 143
linear, 143–152
nonlinear, 153–160

as cellular property, 155, 156
as network property, 157
cross product, 173
examples, 153
in neurobiology, 17

orthogonal basis of, 198
polynomial, 201
supported by Gaussian tuning curves, 204
supported by linear tuning curves, 200
utility of, 4
vector

analysis, 202
linear, 151

translational vestibular ocular reflex, 177

utricular macula, 169

vector
decoding, 52

optimal linear, 53
optimal versus non-optimal, 56
preferred direction, 53

defined, 185
encoding, 51
neuron tuning curve, 52

cosine, 52, 53
preferred direction, 51
relation to functions, 69–72
representation, 49–56, see also basis vectors

equivalent, 62
examples, 49
orthogonal versus overcomplete, 59
summary, 80

with LIF neurons, 51
representation in vestibular system, 169
space defined, 186

vesicle unreliability, 41
vestibular system, 57–59, 168–182

working memory, 72–79, 244–249, see also lateral
intraparietal cortex

and activity bumps, 249
and decoded bumps, 248
increase in firing rate during, 250
multiple targets, 72, 244, 248
parametric, 73, 244, 248

TLFeBOOK

	Neural.Engineering.Computation.Representation.And.Dynamics.In.Neurobiological.Systems
	Cover

	Contents
	Preface
	Using this book as a course text
	Acknowledgments
	1: Of neurons and engineers
	I: REPRESENTATION
	2: Representation in populations of neurons
	3: Extending population representation
	4: Temporal representation in spiking neurons
	5: Population-temporal representation

	II:
 TRANSFORMATION
	6: Feed-forward transformations
	7: Analyzing representation and transformation
	8: Dynamic transformations
	9: Statistical inference and learning

	A:
 Appendix: Chapter 2 derivations
	B: Appendix:
Chapter 4 derivations
	C: Appendix:
Chapter 5 derivations
	D: Appendix:
Chapter 6 derivations
	E:
Appendix:
Chapter 7 derivations
	F: Appendix:
Chapter 8 derivations
	References
	Index

