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The understanding of the structural and dynamic complexity of
mammalian brains is greatly facilitated by computer simulations.
We present here a detailed large-scale thalamocortical model
based on experimental measures in several mammalian species.
The model spans three anatomical scales. (i) It is based on global
(white-matter) thalamocortical anatomy obtained by means of
diffusion tensor imaging (DTI) of a human brain. (ii) It includes
multiple thalamic nuclei and six-layered cortical microcircuitry
based on in vitro labeling and three-dimensional reconstruction of
single neurons of cat visual cortex. (iii) It has 22 basic types of
neurons with appropriate laminar distribution of their branching
dendritic trees. The model simulates one million multicompartmen-
tal spiking neurons calibrated to reproduce known types of re-
sponses recorded in vitro in rats. It has almost half a billion
synapses with appropriate receptor kinetics, short-term plasticity,
and long-term dendritic spike-timing-dependent synaptic plasticity
(dendritic STDP). The model exhibits behavioral regimes of normal
brain activity that were not explicitly built-in but emerged spon-
taneously as the result of interactions among anatomical and
dynamic processes. We describe spontaneous activity, sensitivity
to changes in individual neurons, emergence of waves and
rhythms, and functional connectivity on different scales.

brain models � cerebral cortex � diffusion tensor imaging � oscillations �
spike-timing-dependent synaptic plasticity

The last decade has seen great progress in our understanding
of brain dynamics and underlying neuronal mechanisms.

Linking these mechanisms to behavior such as perception is
facilitated by large-scale computer simulations of anatomically
detailed models of the cerebral cortex (1–3). Although these
models have stressed microcircuitry and local dynamics, they
have not incorporated multiple cortical regions, corticocortical
connections, and synaptic plasticity. In the present article, we
describe a large-scale model of the mammalian thalamocortical
system that includes these components.

Spatiotemporal dynamics of the simulation show that some
features of normal brain activity, although not explicitly built into
the model, emerged spontaneously. The model exhibited self-
sustained activity in the absence of any external sources of input.
The behavior of the model was extremely sensitive to contributions
of individual spikes: adding or removing one spike of one neuron
completely changed the state of the entire cortex in �0.5 s. Regions
of the model brain exhibited collective waves and oscillations of
local field potentials in the delta, alpha, and beta ranges, similar to
those recorded in humans (4). Simulated fMRI signals exhibited
slow fronto-parietal anti-phase oscillations, as seen in humans (5).

The shape and connectivity of the model were determined by
diffusion tensor imaging (DTI) data for a human brain. Experi-
mental data from three species, human, cat, and rat, were incor-
porated to build other details of the model.

Model Structure. Here, we review some of the basic assumptions
used to construct the model, summarized in Figs. 1–3. A full
description is provided in supporting information (SI) Appendix.

For computational reasons, the density of neurons and synapses
per mm2 of cortical surface was necessarily reduced. Accordingly,

the model neurons have fewer synapses and less detailed dendritic
trees than those of real cortical neurons. Although we do not
explicitly model subcortical structures other than the thalamus, we
do simulate brainstem neuromodulation, including the dopaminer-
gic reward system (6, 7) and the cholinergic activating system.
Developmental changes, other than activity-dependent fine-tuning
of connectivity due to dendritic STDP, are also not modeled
explicitly.

Macroscopic Anatomy. Diffusion tensor imaging (DTI) data derived
from magnetic resonance imaging (MRI) of a human brain was
used to identify the coordinates of the cortical surface to allocate
cell bodies of model neurons at appropriate locations. Conse-
quently, the model reflects all areas of the human cortex, the folded
cortical structure with sulci and gyri. The DTI data, analyzed using
the ‘‘TensorLine’’ algorithm (8, 9), formed the white matter tracts
of the model, portions of which are illustrated in Fig. 1, that connect
individual neurons in one area with target neurons in other areas.

So that neuronal density approached that of animal cortices,
spatial scales were reduced by a factor of 4 (so the model cortex
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Fig. 1. The model’s global thalamocortical geometry and white matter
anatomy was obtained by means of diffusion tensor imaging (DTI) of a normal
human brain. In the illustration, left frontal, parietal, and a part of temporal
cortex have been cut to show a small fraction of white-matter fibers, color-
coded according to their destination.
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diameter was 40 mm), while relative distances were preserved. The
length of the fibers determined axonal conduction delays, which
were as long as 20 ms in the model. Because DTI does not presently
have sufficient resolution, small bundles of fibers in the human
brain were inevitably missed.

Microscopic Anatomy. A summary of simulated gray matter micro-
circuitry is presented in Fig. 2. It is based on the detailed recon-
struction studies of cat area 17 (visual cortex) by Binzegger et al.
(10), whose nomenclature is adapted here. Depending on the
morphology (pyramidal, spiny stellate, basket, non-basket), and the
somatic and the target layer, we distinguish eight types of excitatory
neurons [p2/3, ss4(L4), ss4(L2/3), p4, p5(L2/3), p5(L5/6), p6(L4),
p6(L5/6)] and nine types of inhibitory neurons (nb1, nb2/3, b2/3,
nb4, b4, nb5, b5, nb6, b6). See SI Appendix for a more detailed
explanation, in which we provide the matrix of intercortical con-
nectivity and a summary of the magnitudes of laminar axonal
spread. Every area of the model cortex had essentially the same
microcircuitry as shown in Fig. 2.

The model incorporates specific and nonspecific nuclei of the
thalamus, distinguishing two types of excitatory thalamocortical
neurons (TCs, TCn) and two types of thalamic inhibitory interneu-
rons (TIs, TIn) as well as the inhibitory neurons of the reticular
thalamic nucleus (RTN). Axonal arborizations and projection
patterns of thalamic neurons were all similar to those reported for
LGN (see SI Appendix).

Branching Dendritic Trees. Each neuron in the model has a somatic
compartment and a number of dendritic compartments, with at
least one apical compartment per cortical layer (if the dendritic tree

extends to that cortical layer). The exact number of dendritic
compartments for each neuron was determined dynamically (see SI
Appendix) during the initialization procedure, maintaining 40 or
fewer synapses per compartment.

In most cases, firing of an excitatory presynaptic neuron evoked
a local EPSP in the postsynaptic dendritic compartment of �10 mV
amplitude. Such dendritic EPSPs typically result in a submillivolt
EPSP at the somatic compartment because of electrotonic atten-
uation of synaptic current. Coincident firing of three or four
synapses with maximal conductances in the same compartment can
result in a local dendritic action potential (spike), which then can
propagate to the soma to evoke a spike or burst response. Similar
spikes arriving at different compartments would not be as effective
in evoking a somatic response. Conversely, somatic spikes can
back-propagate to the dendritic tree evoking dendritic spikes there.
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Fig. 2. Simplified diagram of the microcircuitry of the cortical laminar
structure (Upper) and thalamic nuclei (Lower). Neuronal and synaptic types
are as indicated. Only major pathways are shows in the figure. Complete
details are provided in SI Appendix. L1-L6 are cortical layers; wm refers to
white-matter. Arrows indicate types and directions of internal signals.
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Fig. 3. Firing patterns and short-term synaptic plasticity. (A) Comparisons of
four representative firing patterns recorded in vitro (Left columns) and sim-
ulated (Right columns) using the phenomenological model (1, 2). Different
neuronal types have different values of parameters; see SI Appendix. (B)
Comparison of short-term synaptic plasticity recorded in vitro (black noisy
curve; modified from figure 4 of ref. 16) and simulated (red smooth curve) by
the model (3).
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All such effects are modulated by background excitatory and
inhibitory synaptic activity.

Neuronal Dynamics. Spiking dynamics of each neuron and each
dendritic compartment are simulated by using the phenomenolog-
ical model proposed by Izhikevich (11), which we express here in a
dimensional form (12):

Cv̇ � k�v � vr��v � vt� � u � I [1]

u̇ � a�b�v � vr� � u� [2]

where C is the membrane capacitance, v is the membrane potential
(in mV), vr is the resting potential, vt is the instantaneous threshold
potential, u is the recovery variable (the difference of all inward and
outward voltage-gated currents), I is the dendritic and synaptic
current (in pA), and a and b are parameters. When the membrane
potential reaches the peak of the spike, i.e., v � vpeak, the model fires
a spike (action potential), and all variables are reset according to v
4 c and u4 u � d, where c and d are model parameters. Notice
that vpeak (typically ��50 mV) is not a threshold but is a peak of
the spike. The firing threshold in the model (as in real neurons) is
not a parameter but a dynamic property that depends on the state
of the neuron.

This neuronal model differs from conductance-based Hodgkin-
Huxley-type models (13). Instead of reproducing all of the ionic
currents, the model was designed to reproduce firing responses;
compare in vitro recordings and simulations in Fig. 3A.

Different neuronal types were given different values of the
parameters in Eqs. 1 and 2; see SI Appendix. Using the nomencla-
ture of Connors and Gutnick (14), the excitatory neurons are of RS
(regular spiking) type, although some of them also exhibit burst
firings evoked by dendritic stimulation; non-basket interneurons in
layer 1 (nb1) are of LS type [late spiking (15)]; non-basket cells in
the other layers, which morphologically include double-bouquet
cells, neurogliaform cells, and Martinotti cells, are of LTS (low-
threshold spiking) type; all basket cells are of FS (fast spiking) type;
see Fig. 3.

Short-Term Synaptic Plasticity. In the model, the synaptic conduc-
tance (strength) of each synapse can be scaled down (depression)
or up (facilitation) on a short time scale (hundreds of milliseconds;
see e.g., ref. 16) by a scalar factor x. To achieve computational
efficiency, this scalar factor, different for each synapse, is modeled
by the following one-dimensional equation

ẋ � �1 � x���x, if presynaptic spike, then x 4 px . [3]

x tends to recover to the equilibrium value x 	 1 with the time
constant �x, and it is reset by each spike of the presynaptic cell to the
new value px. The parameter p � 1 decreases x and results in
short-term synaptic depression, whereas p � 1 results in short-term
synaptic facilitation, as we illustrate in Fig. 3B. Different synaptic
types have different values of p and �x, provided in SI Appendix.

The total synaptic current at each compartment is the sum of
AMPA, NMDA, GABAA and GABAB currents with standard
kinetics (see SI Appendix).

Dendritic STDP. The long-term change of conductance (weight) of
each synapse in the model is simulated according to spike-
timing-dependent plasticity (STDP): The synapse is potentiated
or depressed depending on the order of firing of the presynaptic
neuron and the corresponding (dendritic) compartment of the
postsynaptic neuron (17–20). We use equations in the form
provided by Izhikevich (21) so that the synaptic change due to
the dendritic STDP develops slowly with time with a rate
modulated by dopamine.

Because dendritic compartments can generate spikes indepen-
dently from the soma, synapses could be potentiated or depressed

even in the absence of spiking of the postsynaptic cell. All GABAer-
gic synapses in the model are nonplastic.

Computer Simulation. The program simulating the model is written
in C programming language with MPI and it is run on a Beowulf
cluster of 60 3GHz processors with 1.5 GB of RAM each. Most of
the simulations were performed with one million neurons, tens of
millions of neuronal compartments, and almost half a billion
synapses. It takes �10 min on the cluster to initialize the model, and
one minute to compute one second of simulated data using a
sub-millisecond time step.

Results of Simulations
Spontaneous Activity. If there are no spikes fired by the network at
the beginning of each simulation, there are no synaptic inputs, and
no new spikes, so the network remains completely quiet. To
jump-start the network, we introduced a few seed (random) spikes
at time t 	 0. Regardless of the number of seed spikes, the initial
strength of synaptic connections, or the size of the network (we
tested up to 10 million neurons), the network activity died out
during the first second, as we illustrate in Fig. 4.

One way to avoid the silent state of a spiking network is to
introduce spontaneous synaptic release, called miniature postsyn-
aptic potentials, mPSPs or ‘‘minis.’’ Such ‘‘minis,’’ observed both in
vitro and in vivo, are thought to feed neurons with a tonic level of
random input necessary to prevent the silent state (22, 23). During
the period of the first 30 min of model time (the first 1,800 s in the
Inset of Fig. 4) we simulated one spontaneous (Poissonian) synaptic
release per synapse per second and let synaptic plasticity modify the
ongoing connectivity. If the minis are turned off during this time,
the activity would subside, but the longer they are made to persist,
the longer the activity lingers subsequently.

From our previous studies (24, 25) we know that STDP favors
synaptic connectivity that results in polychronous activity (i.e.,
time-locked but not synchronous activity) that can reverberate
through the network. Accordingly, turning off minis at t 	 1,800 s
(Fig. 4) did not silence the network. STDP had fine-tuned the
synaptic connectivity in such a way as to allow enough interneuronal
action potentials to maintain the global activity. (The network
required �10,000 neurons to exhibit this property). We ran the
model for the next 30 min with ‘‘minis’’ off (i.e., in a noiseless
regime) and then used the final state at the end of this 1-h transient
period as the initial state for most of the subsequent simulations.
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Fig. 4. Spontaneous activity in the model. Main graph: Activity (shown as
mean firing rate in the network) dies out within the first few seconds of
simulation regardless of the number of seed spikes introduced at the begin-
ning of the simulation. (Inset) The model was simulated with a source of noisy
input (spontaneous synaptic release, or ‘‘minis’’) during the first 1,800 s; after
the source of noise was turned off, the activity persisted.
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Each Neuron Matters. Unlike the real brain, where there are many
sources of sensory input and neuronal noise, the model exhibited
self-sustained activity autonomously in a noiseless environment. To
investigate whether the activity is chaotic, we tested for the major
hallmark of chaos — the sensitivity of the system to a small
perturbation of initial conditions, i.e., the ‘‘butterfly effect’’: Can
one spike make a difference? That is, can the state of the entire
activity pattern be changed by a firing of a single neuron?

In Fig. 5 we show two traces of total electrical activity (the sum
of local-field potentials at every cortical location; see SI Appendix),
starting from the same initial conditions with the only difference
being an extra spike of one pyramidal neuron in layer 2/3 of the
frontal cortex (manually introduced). Initially, the traces look
similar, but after just a few hundred milliseconds, they diverge and
result in completely different global activity patterns.

In Fig. 5 Lower, we show the difference in the spike rastergrams.
As one can see, the extra spike triggered an avalanche of extra
spikes (blue dots) or missed spikes (red dots) that eventually spread
over the entire network and changed the activity of every neuron.

The same effect was seen if we removed a spike in the initial
conditions. We did not find any significant difference in the location
or type of neuron whose spike was added or removed; on average,
it took 400 ms for the perturbed activity trace to diverge one
standard deviation from the unperturbed one. The divergence
became stronger (faster) as the size of the network increased,
although we did not explore this dependence on the size in detail.
Similarly, the network was sensitive to the addition of a single
somatic EPSP, but it took more time for the perturbation to
propagate through the network and often an extra EPSP had no
effect on the perturbed neuron or the network.

Brain Rhythms and Waves. Firings of individual pyramidal and
non-basket interneurons in the model look Poissonian during

self-sustained spontaneous activity, typically two to three spikes per
second. Mean firing rates of basket cells, which are of FS type, were
7 Hz in layer 2/3 and 4, �20 Hz in layer 5 with fluctuations
exceeding 60 Hz, and 8 Hz in layer 6. These cells often had 20- to
25-ms interspike intervals and generated strong local gamma
rhythms (40–50 Hz), seen as fast propagating waves in SI Movie 1.
However, these rhythms had different phases at different locations.
When averaged over a centimeter-size area, they canceled each
other and were hardly seen in the power-spectrum of the global
electrical activity, consistent with the common experimental ob-
servations that gamma rhythms are weaker in EEG and MEG
recordings than in LFPs and intracranial EEGs (4).

Although not explicitly built into any type of neurons, prominent
low-frequency activity arose in the entire network (Fig. 5). Its
predominant frequencies were in the delta (1–3 Hz) and alpha (�10
Hz) ranges. The former is typical during mammalian sleep state and
the latter during human cortical idling (27).

It is known (11, 25, 26) that simple models of spiking networks
can self-organize to exhibit collective delta-, alpha-, and gamma-
frequency rhythms. What is remarkable here is that the power
spectra at different cortical locations show different predominant
rhythms, e.g., strong beta rhythm (�20 Hz) in regions correspond-
ing to motor and somatosensory areas, even though the cortical
microcircuitry at all locations in the model is the same. Thus, the
diversity of rhythms in different areas in the model must come
largely from differences in the white-matter connectivity between
and among cortical areas.

Another striking feature of the model, illustrated in Fig. 6, is that
the oscillatory activity was not uniform, but consisted of multiple
propagating waves of excitation that spontaneously appeared and
disappeared at various locations of the cortex. The waves had a
spatial extent of up to a centimeter and a speed of �0.1 m/s. These
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simulations starting from the same initial condition, except for a single spike,
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a simulation of a smaller network (100,000 neurons). Horizontal stripes cor-
respond to the activity of basket cells, which typically fire with much higher
frequency than the other neurons.

0 ms 15 ms

30 ms 45 ms

Fig. 6. Propagating waves in the model. Red (black) dots are spikes of
excitatory (inhibitory) neurons. The right hemisphere is transparent to expose
the waves inside the cortex (snapshots are from SI Movie 2).
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measures are similar to propagating neocortical waves observed in
vitro (28) and in vivo in visual cortex of anesthetized rats (29). They
are slower than those in vivo in primary motor and dorsal premotor
cortices of monkeys (30) and in turtle visual cortex (31).

Functional Connectivity. As suggested by studies of human subjects
(5), we can analyze the resting state correlations of the simulated
signals corresponding to fMRI (BOLD signals) on the slow time
scales of minutes. Following Fox et al. (5), we collect signals (see SI
Appendix) at each voxel of the cortical surface, low-pass filter them
between 0.1 and 0.01 Hz, and then correlate the results with a seed
region corresponding to posterior cingulate. Regions positively and
negatively correlated with the seed region are depicted in red and
blue, respectively, in Fig. 7. Our results resemble those seen in
experimental brain studies of human (5) and theoretical studies
(32), indicating that the resting state of the mammalian brain on this
scale consists of multiple anticorrelated functional clusters.

Discussion
One way to deepen our understanding of how synaptic and
neuronal processes interact to produce the collective behavior of
the brain is to develop large-scale, anatomically detailed models
of the mammalian brain. We started with the thalamocortical
system because it is necessary for human consciousness. Cur-
rently, we are at the stage of calibrating and further validating the
model by determining to what extent its activity is similar to that
recorded in the mammalian cortex after receipt of various input
signals.

Even in the absence of external input, the distribution of firing
rates among various types of neurons is similar to that recorded in

vivo: pyramidal neurons fire just a few spikes per second with the
lowest firing rate observed in layer 2/3, whereas basket cells fire tens
of spikes per second with the highest firing rate in layer 5 (33).
Individual neurons exhibit somatic and dendritic spikes, forward-
and back-propagation of spikes along the dendritic trees, and
spike-timing-dependent plasticity that is coupled to the dendritic
compartments rather than to the somatic spikes. The model spon-
taneously generated rhythms and propagating waves (Fig. 6) that
had frequency distributions, spatial extents, and propagation ve-
locities similar to those observed in mammalian in vivo recordings.
In a fashion similar to human data, the simulated fMRI signal
exhibited slow oscillations with multiple anticorrelated functional
clusters (Fig. 7).

The computer model allowed us to perform experiments that
are impossible (physically or ethically) to carry out with animals.
For example, we put the model into the noiseless regime to
demonstrate that it can produce self-sustained autonomous
activity. We perturbed a single spike (34, 35) in this regime (out
of millions) and showed that the network completely reorga-
nized its firing activity within half a second. It is not clear,
however, how to interpret this sensitivity in response to pertur-
bations (Fig. 5). On one hand, one could say that this sensitivity
indicates that only firing patterns in a statistical sense should be
considered, and individual spikes are too volatile. On the other
hand, one could say that this result demonstrates that every spike
of every neuron counts in shaping the state of the brain, and
hence the details of the behavior, at any particular moment. This
conclusion would be consistent with the experimental observa-
tions that microstimulation of a single tactile afferent is detect-
able in human subjects (36), and that microstimulation of single
neurons in somatosensory cortex of rats affects behavioral
responses in detection tasks (37).

After development of a detailed, more complete brain model,
one may simulate the effect of structural perturbations, such as
lesions, strokes, and tumors, on the global dynamics, and com-
pare the results with animal or human EEG/MEG data. By using
DTI of patients with Alzheimer’s disease, Parkinson’s disease, or
other neurological and psychiatric disorders, one may investigate
how the connectivity alone modifies brain dynamics. Changing
the neuronal parameters to simulate the effect of various
pharmacological agents, one may study the effect of drugs
(including addictive drugs) on the dynamics of the model to aid
design of new therapeutic strategies against neurological disor-
ders. By simulating the effect of cholinergic modulatory systems,
one may induce sleep oscillations into the model and study the
dynamics of the sleep state and its effect on synaptic plasticity,
learning, and memory. Knowing the state of every neuron and
every synapse in such a model, one may analyze the mechanisms
involved in neural computations with a view toward develop-
ment of novel computational paradigms based on how the brain
works. Finally, by reproducing the global anatomy of the human
thalamocortical system, one may eventually test various hypoth-
eses on how discriminatory perception and consciousness arise.
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We simulated a large-scale thalamocortical network consisting of one million neurons and up to one
billion synaptic connections. Parameters of the network are scaled to preserve ratios found in the mam-
malian thalamocortical system. The white matter anatomy of the model is reconstructed from human
diffusion tensor imaging (DTI) data using fiber-tracktography methods. The gray-matter anatomy con-
sists of 5 cortical layers with microcircuitry of a “generic primary sensory area” and specific, non-specific,
and reticular thalamic nuclei. The model has 12 types and numerous subtypes of neurons with multi-
compartment dendritic trees; synapses with AMPA, NMDA, GABAA, GABAB, and gap-junction kinetics;
axonal lengths and conduction delays; synaptic short-term depression and facilitation; synaptic long-term
spike-timing-dependent plasticity (STDP); and neuromodulation derived from the brainstem dopaminergic
reward system. The parameters of the model are taken from the published literature, mostly on cat area
17 and lamina A of dorsal thalamus. In some cases, a number of arbitrary but justifiable choices had to
be made.

As compared to real cortex, the model has a scaled down density of neurons and synapses per mm2

of cortical surface. Model neurons have scaled down number of synapses and impoverished dendritic trees
in comparison with real cortical neurons. Moreover, we do not model subcortical structures other than
the thalamus. We do not model developmental changes other than that reflected in activity-dependent
fine-tuning of connectivity.

Most simulations were performed with one million neurons, though a variant of the model was simulated
with 1011 neurons and almost one quadrillion synapses, which corresponds to the full size of the human
brain. Movies of the simulation are available on the first author website (http://www.izhikevich.com).

1 Anatomy

1.1 Microcircuitry

Neurons in the model are either excitatory (glutamatergic, red in Fig. 8) or inhibitory (GABAergic, blue or
green in Fig. 8). We adapt the nomenclature of [1] and distinguish the following types of cortical excitatory
neurons:

p2/3 pyramidal neurons in L2/3
ss4(L4) spiny stellate neurons in L4 that project to L4

ss4(L2/3) spiny stellate neurons in L4 that project to L2/3
p4 pyramidal neurons in L4

p5(L2/3) pyramidal neurons in L5 that project to L2/3
p5(L5/6) pyramidal neurons in L5 that project to L5/6

p6(L4) pyramidal neurons in L6 that project to L4
p6(L5/6) pyramidal neurons in L6 that project to L5/6

Pyramidal neurons exhibit regular spiking (RS) firing patterns (Connors and Gutnick 1990), but can also
exhibit chattering (CH, or fast rhythmic bursting FRB) pattern or intrinsically bursting (IB) pattern,
which we describe in detail below.

We distinguish two types of cortical GABAergic (inhibitory) interneurons

b basket interneuron, all layers
nb non-basket interneuron, all layers
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Figure 8: Simplified diagram of thalamocortical microcircuit. Only the most significant or numerous con-
nections are shown; see Fig. 9 for details. Self-synapses denote synaptic connections within the populations.
Bold lines denote pathways carrying more than 30% of synapses to a particular target.
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Basket cells have fast spiking (FS) firing patterns [2]. Non-basket interneurons morphologically include
double-bouquet cells, neurogliaform cells, and Martinotti cells [1], and they can exhibit LTS (low-threshold
spiking, [3]), LS (latent spiking), RSNP (regular spiking non-pyramidal neurons) or BSNP (burst spiking
non-pyramidal neurons) firing patterns [4, 5], and a diversity of other patterns [6], as we explain the next
section. In the model, basket interneurons in L4, L5, and L6 have axons confined within a single cortical
layer, whereas basket cells in L2/3 and non-basket interneurons may have axons spanning several layers
[7, 8].

We distinguish three thalamic nuclei with three cell types:

TCs thalamocortical relay neurons in specific nucleus
TCn thalamocortical relay neurons in non-specific nucleus
TIs thalamic interneurons in specific nucleus
TIn thalamic interneurons in non-specific nucleus

RTN GABAergic neurons in the reticular thalamic nucleus

We do not make the distinction between X and Y thalamocortical relay neurons [9]. TC and RTN cells
exhibit regular spiking or bursting patterns depending on the holding potential.

The relative distribution (percentage) of neuronal types in the model is given in the first column in
Fig. 9. It is based on the following published data: The relative number of cortical neurons in different
layers in the primary visual cortex was given by [1], Fig. 6). Consistent with earlier studies, they found that
inhibitory neurons form approximately 20% of all neurons. The relative number of basket and non-basket
cells is consistent with earlier studies (Fig. 4 of [10], Fig. 1 of 5). The relative number of neurons in the
thalamic nuclei is not known. Peters and Payne [11] report 350,000 thalamocortical fibers per 11,000,000
neurons in L4 of area 17 [1], resulting in a ratio of 1/30, which is consistent with other observations [12].
Assuming one such fiber per TC cell, we derive the number of TC cells as a fraction of L4 neurons. Winer
and Larue [13] report 20% of interneurons in LGN of rats, cats, and monkeys, but different percentages in
other nuclei. We assume here that exactly 20% of neurons in the specific and non-specific thalamic nuclei
are inhibitory interneurons. Not knowing the number of RTN neurons, we take it to be the same as the
number of TC neurons in each nucleus. Notice that the majority of neurons in the model are in L2/3, L4
and L6.

Making three-dimensional reconstructions of 39 single neurons and thalamic afferents in cat primary
visual cortex (area 17), Binzegger et al. [1] characterized the distribution of all synapses formed on each
neuronal type at each cortical layer, see Fig. 7 in their paper. The authors kindly provided us with their
data files, which were used to obtain the cortical part of the table in Fig. 9. We treat 95% of the unidentified
asymmetrical (excitatory) synapses in L1-L6 as coming from other cortical areas (corticocortical) and 5%
as coming from the non-specific thalamic nucleus. We treat the unidentified symmetrical (inhibitory)
synapses as coming from non-basket cells. Converting the absolute values into percentages, we assign
synapses in the model with the distribution in shown in the table in Fig. 9.

The table also reflects the relative distribution of synapses in the thalamus, which is based on the
numbers found in the A-laminae of the LGN of the cat. van Horn et al. [14] found that TC neurons in
LGN receive 7.1% synapses from sensory (retinal) fibers, 62% excitatory synapses from cortex (L5 and L6)
and brainstem (divided equally between the two, see Erisir et al. 1997 and 30.9% GABAergic synapses.
Thalamic interneurons receive 48.7% synapses from sensory fibers, 24.4% GABAergic synapses, and the
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Figure 9: Distribution of neuronal types and synapses in the model. Each row represents a single postsy-
naptic neuron of a certain type. Multiple compartments, if they exist, are indicated. Each element in a row
represents the percentage of synapses of a particular type to that neuron. The most significant connections
are shown in Fig. 8. Shaded regions denote plastic connections.
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rest are from cortex and brainstem. Since there are four types of cortical pyramidal neurons projecting to
thalamus, we assume that the distribution of cortico-thalamic synapses in the thalamus is proportional to
the relative distribution of the cortical neurons. We assume that RTN neurons are qualitatively similar to
TC neurons with respect to the number of brainstem synapses, cortico-thalamic synapses, etc.

Notice that the table has very few zero (empty) entries; for the sake of clarity, we depict only the most
significant or numerous connections in Fig. 8. Bold lines in the figure denote projections from p2/3 and
p6(L4) that carry the majority of synaptic input (more than 30% each) to their targets. The proportion
of thalamocortical synapses is small, but the synapses are quite strong, as we discuss in the next section.

Generalizing the interneuron circuitry of L4 of barrel somatosensory cortex of rats ([3]; Michael Beierlein
and Jay Gibson, personal communication) we assume that the connectivity of interneurons is the same in
all cortical layers: There are gap-junction (electrical) synapses among neurons of the same type at each
layer and no gap junctions between neurons belonging to different types. Landisman et al. [15] report
gap junctions among RTN neurons in mice and rats, but no chemical synapses. In contrast, [16] and [17]
report GABAergic synapses in the same neurons. We include both types of synapses in the model of the
thalamic reticular nucleus. Hughes et al. [18] report gap junctions among TC relay neurons. Since no
evidence exists of any chemical synapses among the neurons [12], only electrical synapses among TC cells
are modeled in this study.

Typical axonal arborizations of various neuronal types are illustrated in Fig. 8, lower-left. The magni-
tudes of the laminar axonal spread of cortical neurons are based on the macaque striate cortex data of [19]
and [20], which are consistent with cat area 17 data of [1]. Thalamic neurons are from [21] and reticular
neurons are from [22] and [15]. Sur et al. [23] report the diameter of cat retino-geniculate arborizations
to be 0.15 mm for X-type and 0.3 mm for Y-type, whereas [24] report slightly larger estimates. We take
the radius of sensory fibers in the model to be 0.2 mm. Murphy and Sillito [25] report the spread of L6
cortico-thalamic arborizations to be 0.5 mm with some fibers spreading as much as 1.5 mm. We assume
that the radius of thalamic arborization of all cortical axons is 0.4 mm. Jones ([12], Fig.3.9) reports the
spread of thalamocortical fibers to be around 0.4 mm for X-type and 0.8 mm for Y-type with multiple
synaptic clusters. Since we do not distinguish the types, we take the larger number and keep in mind that
there will be activity-dependent pruning.

Yellow circles in Fig. 8 with indicated radii (mm) denote the initial axonal spans used in the model.
The synaptic density decays linearly from the center of the circle to a zero value at the edge.

1.2 White Matter Anatomy (After Human DTI)

The gross anatomy of long-range corticocortical connections in the model is based on the anatomy of the
human brain obtained via anatomical MRI and DTI scans. Neuronal bodies are allocated randomly on
the cortical surface, whose coordinates were obtained from anatomical MRI. Local-circuit connectivity is
established according to Fig. 8 and table in Fig. 9. The axons that exit the gray matter and enter the
white matter are directed according to the ”TensorLine” method ([26, 27]) applied to human DTI scans;
see Fig. 1 of the main text. Once the axon re-enters the gray matter (in some distal part of the cortex), it
ramifies according to the distances in Fig. 8.

Axons of each pyramidal neuron in layer 2/3 in the model bifurcates into ipsilateral and contralateral
axons. The former are continued according to the DTI data, and the latter project to the mirror locations
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in the contralateral hemisphere. Because human hemispheres are not symmetrical, the target point for the
axon is found on the contralateral hemisphere that is closest to the mirror location of the neuron.

Each thalamocortical neuron in the non-specific thalamic nuclei projects to a random location on cortex.
The specific nuclei are assumed to have the form of two hemispheres and thalamocortical neurons there
project roughly topographically to corresponding locations in the cortex. To deliver visual, auditory, or
somatosensory signals, we stimulate corresponding neurons in the specific thalamic nuclei that project to
the visual, auditory, and somatosensory areas of the cortex.

To have a sufficiently large density of neurons per mm2 of cortical surface, we scaled down the entire
structure by a factor of 4. That is, we assumed that the cortex is 40mm wide, i.e., it can be embedded within
a sphere with diameter of 40mm. The length of the traced fibers is used to estimate the axonal conduction
delays as follows: For corticocortical connections, we assume that the axonal conduction velocity is 1m/s
for myelinated fibers and 0.1 m/s for non-myelinated fibers (28–30]. The cortex is assumed to have 1 mm
width, so a delay from layer 6 to layer 1 could be as large as 10ms. Delays via myelinated (in white matter)
and non-myelinated (in gray matter) fibers are added to find the total conduction delay. The delays from
layer 5 to thalamus are taken to be 1 ms and from layer 6 to thalamus are taken to be 20 ms. Delays from
specific thalamocortical neurons are taken to be 1 ms. Delays from non-specific thalamocortical cells are
determined according to the length of the axonal fiber. If the resulting conduction delay of any neuron
is longer than 20 ms, it is reduced to exactly 20 ms to have an efficient implementation algorithm (this
number is a parameter in the model, and it can be easily changed; we used 20ms for all our simulations).

Sensory input to the model is delivered via stimulation of the thalamocortical neurons (TCs) projecting
to the appropriate primary sensory cortex (appropriate sensory modality). In particular, to deliver auditory,
visual, or somatosensory stimulation, we inject brief pulses of current into TCs neurons in the MGN, LGN,
and VPN nuclei of thalamus.

2 Dynamics

The large-scale model consists of various types of multi-compartmental neurons with active dendrites,
synaptic transmission with AMPA, GABA, and NMDA kinetics, and short-term and long-term synaptic
plasticity with dopaminergic modulation.

2.1 Neuronal Dynamics

Spiking dynamics of each neuron (and each dendritic compartment) were simulated using the phenomeno-
logical model proposed by Izhikevich [31]. The model has only 2 equations and 4 dimensionless parameters
that could be explicitly found from neuronal resting potential, input resistance, rheobase current, and
other measurable characteristics ([32], chapter 8). We present the model in a dimensional form so that the
membrane potential is in millivolts, the current is in picoamperes and the time is in milliseconds:

Cv̇ = k(v − vr)(v − vt)− u + I (1)
u̇ = a{b(v − vr)− u} (2)

where C is the membrane capacitance, v is the membrane potential (in mV), vr is the resting potential, vt

is the instantaneous threshold potential, u is the recovery variable (the difference of all inward and outward
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voltage-gated currents), I is the dendritic and synaptic current (in pA)

I(t) = −Idendr − Isyn

as explained below, a and b are parameters. When the membrane potential reaches the peak of the spike,
i.e., v > vpeak, the model is said to fire a spike, and all variables are reset according to v ← c and u ← u+d,
where c and d are parameters. Notice that vpeak (typically around +50 mV) is not a threshold but is rather
a peak of the spike; the firing threshold in the model (as in real neurons) is not a parameter but a dynamic
property that depends on the state of the neuron.

Depending on the values of the parameters, the model could be tuned to reproduce firing dynamics of
every known cortical, thalamic, and hippocampal neuron ([32). We illustrate some of the firing patterns in
Fig. 10 using injected pusles of somatic current (see Fig. 8.17 in [32] for in vivo-like input). It is different
from the Hodgkin-Huxley-type models in the sence that it reproduces the responses, and not the ionic
currents, of biological neurons.

Each neuron has a somatic compartment and a set of dendritic compartments. The number of dendritic
compartments of a neuron in each cortical layer is at least S∗scale/M where S is the number of synapses
the neuron receives in the layer (see Fig. 9), scale= 0.05 is the scale-down factor when we simulate fewer
than 1011 neurons, and the parameter M = 40 is the maximal number of synapses per compartment.
The dendritic current at each compartment consists of the currents coming from the down (”mother”)
compartment (zero for somatic compartments) and up (”daughter”) compartments (zero for terminal
compartments)

Idendr = Gdown(V − Vdown) +
∑
up

Gup(V − Vup)

with the values of the conductances Gup and Gdown provided in Fig. 10.

2.2 Synaptic Dynamics

We model synaptic dynamics in a fashion similar to that by Izhikevich et al. [33] with the exception that
we use a simpler and more efficient model for short-term synaptic plasticity, and spike-timing-dependent
plasticity (STDP) is considered to be modulated by dopamine.

Short-Term Synaptic Plasticity. We assume that the synaptic conductance (strength) of each synapse
can be scaled down (depression) or up (facilitation) on a short time scale (hundreds of milliseconds) by
a scalar factor x. This scalar factor, different for each presynaptic cell, is modeled by the following one-
dimensional equation

ẋ = (1− x)/τx , x ← px when presynaptic neuron fires. (3)

That is, x tends to recover to the equilibrium value x = 1 with the time constant τx, and it is reset by each
spike of the presynaptic cell to the new value px. Any value p < 1 decreases x and results in short-term
synaptic depression, whereas p > 1 results in short-term synaptic facilitation, as we illustrate in Fig. 11.
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200 ms

RS cell (layer 5) RS model

LTS cell (barrel cortex) LTS model

100 ms 25 ms

FS cell (visual cortex) FS model

200 ms

LS cell (layer 1) LS model

-60
-80 mV

200 ms

TC cell (dorsal LGN) TC model
tonic mode tonic modeburst mode burst mode

morphology	 nb1 	 p23 	 b   	 nb   	 ss4  	 p4 	 p5,p6 	 TC 	 TI 	 TRN
neuronal types 	  LS 	 RS 	 FS 	 LTS   	 RS 	 RS 	 RS 	 TC 	 TI 	 TRN
parameters
C  		 20 	 100 	 20 	 100 	 100 	 100 	 100 	 200 	 20 	 40
k  		 0.3 	 3 	 1 	 1 	 3 	 3 	 3 	 1.6 	 0.5 	 0.25
vr   		 -66 	 -60 	 -55 	 -56 	 -60 	 -60 	 -60 	 -60 	 -60 	 -65
vt  		 -40 	 -50 	 -40 	 -42 	 -50 	 -50 	 -50 	 -50 	 -50 	 -45
vpeak (soma)	 30 	 50 	 25 	 40 	 50 	 50 	 50 	 40 	 20 	 0.0
vpeak (dendr)	 100 	 30 	 25 	 40 	 30 	 50 	 30 	 40 	 20 	 0.0
Gup 	  	 0.6 	 3.0 	 0.5 	 1.0 	 3.0 	 3.0 	 3.0 	 2.0 	 5.0 	 5.0
Gdown		 2.5 	 5.0 	 1.0 	 1.0 	 5.0 	 5.0 	 5.0 	 2.0 	 5.0 	 5.0
a  		 0.17 	 0.01 	 0.15 	 0.03 	 0.01 	 0.01 	 0.01 	 0.1 	 0.05 	 0.015
b  		 5* 	 5 	 8	 8* 	 5 	 5 	 5 	 15* 	 7* 	 10*
c (soma)		 -45 	 -60 	 -55 	 -50 	 -60 	 -60 	 -60 	 -60 	 -65 	 -55
c (dendr)	 -45 	 -55 	 -55 	 -50 	 -50 	 -50 	 -50 	 -60 	 -65 	 -55
d:		 100 	 400 	 200 	 20 	 400 	 400 	 400 	 10 	 50 	 50

Figure 10: Comparison between in vitro recordings of various neurons and their simulations in the large-
scale model. Different neuronal types are modeled by the same equations 1 and 2 but with different
choice of parameters. ∗: Dendritic compartments of the LS neuron are modeled as a passive compartment
v̇ = (−Idendr − Isyn)/250. For LTS neurons, the recovery variable is kept below the value of 670; that is, if
u > 670, then u = 670. For TI neurons, if u > 530, then u = 530. For TC and TRN neurons, the value b
is voltage-dependent: if v > −65, then b = 0 for TC and b = 2 for TRN.
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0

1

0
1

short-term synaptic depression short-term synaptic facilitation

x(t) x(t)
p=0.6

p=1.5

measured

simulated

neuronal types (to)   p,ss (RS)	    b (FS)		 nb (LS, LTS)

(from)

p,ss (RS) 	     tx=150, p=0.6	    tx=150, p=0.6	 tx=100, p=1.5

b (FS)		     tx=150, p=0.6	    tx=150, p=0.6

TC		     tx=150, p=0.7	    tx=200, p=0.5

x'=(1-x)/tx ,    x      px  when presynaptic neuron fires

Figure 11: Short-term synaptic depression and facilitation is modeled by the one-dimensional equation
3 with two parameters, τx and p. Top: comparison of experimentally measured (Fig. 4 from [3]) and
simulated synaptic dynamics. Bottom: values of parameters used in the large-scale model. Other synaptic
connections, e.g., from nb (LTS) cells, are assumed not to have short-term plasticity.
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Synaptic Kinetics. The total synaptic current at each compartment is simulated as

Isyn = gAMPA(v − 0) + gNMDA
[(v + 80)/60]2

1 + [(v + 80)/60]2
(v − 0)

+gGABAA
(v + 70) + gGABAB

(v + 90) + Igap

where v is the postsynaptic membrane potential, and the subscript indicates the receptor type. Each
conductance g (here we omit the subscript for the sake of clarity) has first-order linear kinetics

ġ = −g/τ

with τ =5, 150, 6, and 150 ms for the simulated AMPA, NMDA, GABAA and GABAB receptors, respec-
tively [34, 33].

The ratio of NMDA to AMPA receptors was set to be uniform at a value of 1 for all excitatory neurons.
Thus, each firing of an excitatory neuron increases gAMPA and gNMDA by xc, where c is the synaptic
conductance (synaptic weight) and x is the short-term depression/potentiation scaling factor as above.
Similarly, the value of GABAA to GABAB receptors is taken to be 1 for all inhibitory synapses.

The gap-junction (electrical synapse) current

Igap =
∑

i∈neighbors

gi(v − vi)

has conductance decaying with the distance from the neuronal soma to the neighboring neuron i. Evaluation
of the gap-junction currents is extremely costly from a computational point of view, since they need to be
evaluated pair-wise for all neurons at all time steps, and most of the results presented in the paper were
performed with gi = 0 (unless mentioned otherwise).

Dopamine-modulated dendritic STDP. The conductance (weight) of each synapse in the model is
simulated according to spike-timing-dependent plasticity (STDP): The synapse is potentiated or depressed
depending on the order of firing of the presynaptic neuron and the corresponding (dendritic or somatic)
compartment of the postsynaptic neuron (35, 36, 37, 38). We use equations in the form provided by 32
so that STDP could be modulated by dopamine. In particular, we use the parameters A+ = 1, A− = 2,
τ+ = τ− = 20 ms (see [39 or 40]) so that the depression area of the STDP function is twice as large as the
potentiation area.

Since dendritic compartments can generate spikes independently from the soma, synapses could be
potentiated or depressed even in the absence of spiking of the postsynaptic cell. We keep the synaptic
conductance within the range [0, smax], where smax is 10.0 if the presynaptic cell is of pyramidal (p) or
spiny stellate (ss) type, 20.0 if the presynaptic cell is of thalamocortical (TC) type, 6.0 if the presynaptic
cell is of basket (b) type, 4.0 if the presynaptic cell is of non-basked (nb) type, and 5.0 if the presynaptic
cell is of thalamic inhibitory (TI) or reticular thalamic nucleus (RTN) type. All GABAergic synapses in
the model are assumed to be non-plastic and their conductance is fixed at the value of 4.0. The initial
values of the glutamatergic synapses are random drawn from the uniform distribution on the interval [0, 6],
and then they evolve according to STDP.
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In most cases, firing of an excitatory presynaptic neuron can evoke a local EPSP in the dendritic
compartment of the postsynaptic cell of less than 10 mV amplitude, which typically results in submillivolt
EPSP at the somatic compartment due to the electrotonic attenuation of synaptic current. Coincident
firing of three or four synapses with the maximal conductances in the same compartment may result in a
local dendritic spike, which then could propagate to the soma and evoke a spike or burst response there.
Such spikes arriving at different compartments would not be as effective in evoking the somatic response.

3 Intracranial EEG

We assume that the intracranial EEG (iEEG) at any cortical location is the sum of all extracellular currents
generated by nearby neurons within a sphere of radius of 1.5 mm, so it is essentially the sum of local field
potentials. These currents are mostly the intracellular currents flowing across vertically aligned apical
dendrites of pyramidal cells. The basal dendrites of pyramidal cells and the dendritic trees of the other
types of neurons are not aligned; they may generate many strong currents, but the currents flow at random
directions and thereby cancel each other.

4 Simulated fMRI/BOLD

We simulate fMRI/Blood Oxygenation Level Dependent (BOLD) signal [41] at each region (voxel) as the
sum of all synaptic activity (all synaptic conductances) of all neurons within the region

ẏ = (total synaptic conductance)− y/500 .

Thus, we assume that the major source for metabolic demand in the model is the synaptic transmission.
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