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INTRODUCTION

Notwithstanding its title, the reader will not find in this book a systematic
account of this huge subject. Certain classical aspects have been passed by,
and the true title ought to be ““Various questions of elementary combina-
torial analysis”. For instance, we only touch upon the subject of graphs
and configurations, but there exists a very extensive and good literature
on this subject. For this we refer the reader to the bibliography at the end
of the volume.

The true beginnings of combinatorial analysis (also called combina-
tory analysis) coincide with the beginnings of probability theory in the
17th century. For about two centuries it vanished as an autonomous sub-
ject. But the advance of statistics, with an ever-increasing demand for
configurations as well as the advent and development of computers, have,
beyond doubt, contributed to reinstating this subject after such a long
period of negligence.

For a long time the aim of combinatorial analysis was to count the
different ways of arranging objects under given circumstances. Hence,
many of the traditional problems of analysis or geometry which are con-
character. Today, combinatorial analysis is also relevant to problems of
existence, estimation and structuration, like all other parts of mathema-
tics, but exclusively for finite sets.

My idea is here to take the uninitiated reader along a path strewn with
particular problems, and I can very well amagine that this journey may
jolt a student who is used to easy generalizations, especially when only
some of the questions I treat can be extended at all, and difficult or un-
solved extensions at that, too. Meanwhile, the treatise remains firmly
elementary and almost no mathematics of advanced college level will be
necessary.

At the end of each chapter I provide statements in the form of exercises
that serve as supplementary material, and I have indicated with a star those
that seem most difficult. In this respect, I have attempted to write down
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these 219 questions with their answers, so they can be consulted as a kind
of compendium.

The first items I should quote and recommend from the bibliography are
~ the three great classical treatises of Netto, MacMahon and Riordan. The
bibliographical references, all between brackets, indicate the author’s
. name and the year of publication. Thus, [Abel, 1826] refers, in the
- bibliography of articles, to the paper by Abel, published in 1826, Books are

indicated by a star, So, for instance, [*Riordan, 1968] refers, in the biblio-

graphy of books, to the book by Riordan, published in 1968. Suffixes a, b,
" ¢, distinguish, for the same author, different articles that appeared in the
' same year.

- Each chapter is virtually independent of. the others, except of the

first; but the use of the index will make it easy to consult each part of the

book separately.

I have taken the opportunity in this English edition to correct some

printing errors and to improve certain points, taking into account the

suggestions which several readers kindly communicated to me and to

whom I feel indebted and most grateful.

()
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SYMBOLS AND ABBREVIATIONS

set of k-arrangements of N
partial Bell polynomials

set of complex numbers
expectation of random variable X’
generating function

denotes, throughout the book, a finite set with n elements, |[N|=n

set of integers >0

probability of event 4

set of subsets of N

set of nonemepty subsets of N

set of subsets of N containing k elements

= AU B, understanding that A" B=0

set of real numbers

random variable

set of all integers 20

difference operator

indicates beginning and end of the proof of a theorem
equals by definition

the set {1, 2, 3,..., n} of the first n positive integers
nfactorial=the product i.2.3..... n
=x(x-1)...(x~k+1)
=x(x+1)...(x+k-1)

the greatest integer less than or equal to x
the nearest integer to x

binomial coefficient = (1), /k!

Stirling number of the first kind

Stirling number of the second kind

number of elements of set N

bound variable, with dot underneath
complement of subset A

coefficient of t"in the formal series f

set of all x with property 2

set of maps of M into N




CHAPTER I

VOCABULARY OF COMBINATORIAL ANALYSIS

In this chapter we define the language we will use and we introduce those
elementary concepts which will be referred to throughout the book. As
much as possible, the chosen notations will not be new; we will use only
those that actually occur in publications. We will not be afraid to use
two different symbols for the same thing, as one may be preferable to
the other, depending on circumstances. Thus, for example, 4 and (A4
both denote the complement of A, A ~ B and 4B stand for the intersec-
tion of A and B, etc. For the rest, it seems desirable to avoid taking
positions and to obtain the flexibility which is necessary to be able to
read different authors.

1.1. SUBSETS OF A SET; OPERATIONS

In the following we suppose the reader to be familiar with the rudiments
of set theory, in the naive sense, as they are taught in any introductory
mathematics course. This section just defines the notations.

N, Z, R, C denote the set of the non-negative integers including zero,
fhp sat of all intecerg <ﬂ ﬂ'\p cet of fhp rpnl nnmhprc nnr‘ fhp cet of the

oS VL Ler LN pVIS v sl Ui (R 3803003 43 HELVR 1o A0 ) B 6 § L)

complex numbers, respectively.

We will sometimes use the following logicual abbreviations: 3 (=there
exists at least one), V (=for all), = (=implies), <= (=if), < (=if and
only if).

When a set Q and one of its elements @ is given, we write “weQ”
and we say “w is element of Q" or also “w belongs to Q" or “w in 2.
Let IT be the subset of elements w of Q that have a certain property
2P, I1 =Q, then we denote this by:

[1a] n:={wlweQ, 27},

and we say this as follows: “[] equals by definition the set of elements
w of Q satisfying °°. When the list of elements a, b, c, ..., [ that constitute
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together II, is known, then we also write:
II:={a,b,c,...,1}.

If N is a finite set, |[N| denotes the number of its elements. Hence
IN|=card N=cardinal of N, also denoted by N.

B(N) is the set of all subsets of N, including the empty set; P'(N)
denotes the set of all nonempty subsets, or combinations, or blocks, of N;
hence, when A is a subset of N, we will denote this by A<N or by
AeP(N), as we like. For 4, B subsets of N, A4, Bc N we recall that

AnB:={xlxe4,xeB},
AuB:={xlxed or xeB},

(the or is not exclusive) which are the intersection and the union of A and

B. It sometimes will happen somewhere that we write 4B instead of
AnB, for reasons of economy. (See, for example, Chapter IV.) For each
Jamily F of subsets of N, F:=(4,),;, we denote:

N A= {x1Viel, xed}, U 4,:={x13iel,xe4}.

el rel
The (set theoretic) difference of two subsets 4 and B of N is defined by:
[1b] ANB:={xlxe4,x¢B).

The complement of A(<N) is the subset N\ A4 of N, also denoted by A,
or (A, or QyA. The operation which assigns to A4 the set 4 is called

complemeniaiion. Cleariy:
[1c] AN\B=4nB.

B(N) is made into a Boolean algebra by the operations U, n and (.
Such a structure consists of a certain set M (here=PB (N )) with two oper-
ations v and A (here v =u, A =n), and a map of M into itself: a— g
(here A~ A=( A) such that for all a, b, c, ...e M, we have:

[1d] (1) (avb)ve=av (bve),
(1) (@anb) Ac=an (bnc) (associativity of v and A )-
(Ilf) avb=bva,
(IV) anb=bAa (commutativity of v and A ).

(V) There exists a (unique) neutral element denoted by 0, for
viav0=0va=a.
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(V1) There exists a (unique) neutral element denoted by 1, for
Aranl=1laa=a. o .
(VII) an (bvc)=(aab)v (anc) (distributivity of A with
respect to V). o .
(VIID) av (bac)=(avd)a(avc) (distributivity of v with
respect to A). )

(IX) Each aeM has a complement denoted by d such that

and=0,ava=1.

The most important interrelations between the operations W N G
are the following:

DEMORGAN FORMULAS. Lef (A,),e; and (B)xex be two families of N,
A,cN, B,cN, 1el, xeK. Then:

el O(Y 4)=(C4)
i G(0) 40 = U C4)
el (U)o (UB)= U (4nB)

el (,x)eIxK
A BK = n (Al v BK)'
(ih] (;Oz )V (KOK ) @y elxK

A system & of N is a nonempty (unordered) set of blocks of N,. w;thc;u;
iti ; - is a system consisting of k&
repetition (L P (P'(N))); a k-system is 2 sys g

blocks.
1.2. PRODUCT SETS

Let be given m finite sets N;, 1<i<m, and recall that the product set
[li<1 N, or Cartesian product of the N, is the set of the m-tuples ( y):.=
=(Y1» Y25 ---» Ym), Where y;e N, for all i=1, 2,...,m. The I?roduct ':set is
also denoted by Ny XN, x -+ x N, or by N\N,N;5... N, if there 12 r;o
danger for confusion. We call y, the projection of (») on N;, denoted by

r(») .
ff !J(\;:)= N,=--=N, =N, the product set is also denoted by N™; the
diagonal A of N™ is hence the set of the m-tuples such that y, =y, =" =Ypm:

TuEOREM. The number of elements of the product set of a finite number
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of finite sets satisfies:

[2a] ‘:131 Nyl ='l=_I1 INil = IN4].IN,] ... [N,

M In fact, the number of m-tuples (V15 Y25 .., ¥) is equal to the product
of the nymber of possible choices for y; in N,, which is | ¥y, by the number
of pf)SSlble choices of y, in N,, which is |N,], etc., by the number of
possible choices of y,, in N,,, which is |N,,|, because these choices can be
done independently from each other. i

b"afample. What is the number d(n) of factors of n, with prime decompo-
sition 7=p{'p3"...pi*? To choose any factor p3'p3.. p¥* of n is the same as
to choose the sequence (8, 5,,..., 8) of exponents such that 5,e4,:=
={0, 1,20}, i=1,2,...,k Then, d(n)=|d,xA,x ...'xA |=
=|A1l-|A2|...|Akl=(al+l)(oc2+1)...(ock+l). ‘

1.3. MaPrs

Let & (M, N) or N™ be the set of the mappings f of M into N: to each
xe-M, Jf associates a ye N, the image of x by f, denoted by y=f(x). We
write often f: M N instead of feF (M, N). As M and N are ﬂnite
m=|M!, n=|N/|, we can number the elements of M, solet M={x,, x,,... ’
x},,}l.vlt is cl(ear that giving £ is equivalent to giving a list of m el,em,ent;
of IV, say (y1,¥s,...s V), Written in a certai i i

allowed. By giving theml)ist we mean t;::utlhzrtd;,r ?:l (ilhzltiﬁl;;ietcl)tfw):m
I<i<m:y;=f(x;). In other words, giving f is equivalent to giving a;
n.z-tup.le eN"™, also called an m-selection. In this way we find the jus-
tification for the notation N* for § (M, N). Taking [2a] into account
we also have proved the following. ’

THEOREM A. The number of maps of M into N is given by
Bal 1T (M, N)l = IN¥| = |N|™,

For each subset 4 < M, we denote:
~ [3b] f(A):={f(x)1 xed}.

| In this. way a map is defined from (M) into B (N), which is called the
extension of f to the set of subsets of M. This is also denoted by f.

VOCABULARY OF COMBINATORIAL ANALYSIS S

For all ye N, the subset of M:
3] o= {x1f(x) =1}

which may be empty, is called the pre-image or inverse image of y by f.

THEOREM B. The number of subsets of M, the empty set included, is given by:

[3d] I1P@ni=2"

B Let N be the set with two elements 0 and 1. We identify a subset
A< M with the mapping f from M into N defined by: f (x)=1 for xe4,
and f (x)=0 otherwise (f is often called the characteristic function). In
this way we have established a one-to-one correspondence between the
sets P(M) and N, hence, by [3a], P(M) has the same number of
elements as N™, which is |N[1M! =241,

For computing u,,=|B(M)|, we can also remark that there are just
as many subsets of M that do not contain a given point x as there are
subsets containing it, namely u,_, in both cases. Hence u,=u, 1+
+u,,_,=2u,_y, which combined with u,=1 gives u,=2" indeed. W

We recall that fe N™ is called injective (or is said to be an injection) if
the images of two different elements are different: x; #x, =>f (x;)# f (x2);
f is called surjective (or is said to be a surjection) if every element of N
is image of some element in M: YyeN, IxeM, f(x)=y; finally f is called
bijective (or is said to be a bijection) if f is surjective as well as injective;
in the last case the inverse or reciprocal of f, denoted by f ~1, is defined
by y=f ~*(x), if and only if x=f(y), where xe M, yeN.

To count a certain finite set E, in other words, to determine the size,
consists in principle of constructing a bijection of E onto another set F,
whose number of elements is known already; then |E}=|F|.

ExXAMPLE. Let E be the set of all subsets of N with even size, and F
the set of the others (with odd size). We can choose xe N and build a
bijection f of E into F as follows: f (4)=Au{x} or A\{x} according to
x¢ A or xeA. Thus, |[E|=[F[=()|B(N)|=2""". (See also p. 13.)

1.4. ARRANGEMENTS, PERMUTATIONS

From now we denote for each integer k> 1:

[4a] [k]:={1,2,..., k}=the set of the first k integers >1.
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DEFINITION A. A k-arrangement o of a set N, 1 <k <n= |N|, is an injective
map o from [k] into N (formerly called ‘variation’). We will denote the set
- of k-arrangements of N by U, (N).

Gfi;l\i’ng such an « is hence equivalent to giving first a subset of k elements
of N:

B=o([k]) = {«(1), 2 (2),..., a ()},
and secondly a numbering from 1 to k of the elements of B, so finally, a
totally ordered subset of k elements of N, which will often be called a

k-arrar.xgement of N too (not quite correct, but quite convenient).
We introduce now the following notations:

[4v] n!:=_f[i=l.2.3.....n, if n>21; 0:=1.

k

4 - . _nl

[4c] () i1=_[1(n ’+1)—m
=n(n—1)..(n—k+1), if k>1;m):=1.

k

[4d] =] (n+i-1) =(~n—i_~1)—!

. i=1 (n—1)
=nn+1)...(n+k—1), if k=>1;ng:=1.

e

nl is called n factorial; (n), is sometimes called falling factorial n (of
order k), and {n), is sometimes called rising factorial n (of order k), or
also the Pochhammer symbol. So, (n),=(1>,=n!, mp=(n+k—-1),
(n)i={n—k+1),, etc. These notations are not vet fixed well. The use cf"
(n)x in the sense indicated, is inspired by formula [5a] (p. 8) that as-

sociates the symbols (n), and (Z) with each other in a symmetrical way,

both using pa.rentheses. The symbol {n), that we introduce here for lack
of any b_etter 1s not standard, and if often written (n), in texts on hyper-
geometric series. For the reader familiar with the I' function:

[4e] nl=r(n+1), @@=CE+1)(n-—k+1),
W =T (n+k)I (n).
Besides, for complex z (and k integer >0), (z), and {z), still make sense:

[4f] (2hi=z(z=1)..(z—k+1), (2):=1
[4g] (i=2(z+1)...(z+k—-1), (2Do:=1,

~J
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and hence they can be considered as polynomials of degree k in the in-
determinate z. :

THEOREM A. The number of k-arrangements of N, 1 <k<n=|N|, equals:
[4h] ULV =@)=n@m—-1)...(n—k+1).

B There are evidently n choices possible for the image (1) of 1 (€[]);

after the choice of (1) is made, there are left only (n— 1) possibilities for

«(2), because « is injective, so «(2)#a(1); similarly, there are left for

a(3) only (n—2) possible choices, because «(3)#«(2) and a(3)#a (1),

etc.; finally, for a(k) there are just (n—k+ 1) possible choices left. The

number of a is hence equal to the product of all these numbers of choices.
is is equal to nl(n—1) (14_.2)...(,4._,15.{_ 1)_ ]

Th
LIS 10 Vjudr WU redr LY AU

Note. If k>n, then (n),=0, and [4h] is still valid.

DEFINITION B. A permutation of a set N is a bijective map of N onto itself.
We denote the set of permutations of N by G(N).

THEOREM B. The number of permutations of N, |N|=n>1, equals n!

B One can argue as in the proof of Theorem. A above. One may also
observe that there is a bijection between G(N) and A, (N). W

1.5. COMRINATIONS (WITHOUT REPETITIONS) OR BLOCKS

DesiNtTioN A. 4 k-combination B, or k-block, of a finite set N is a
nonemply subset of k elements of N: B&N, 1<k=|B|<n=|N|. If one
does not know in advance whether k > 1, one says rather k-subset of N (k=0).
We denote the set of k-subsets of N by B, (N).

A k-block is also called a combination of k to k of the n elements of N.
Pair and 2-block are synonymous; similarly, triple or triad and 3-block, etc.
Next we show three other ways to specify a k-subset of N, [N|=n.

THEOREM A. There exists a bijection between B, (N) and the set of func-
tions N — {0, 1}, for which the sum of the values equals k, Y ene(y)=k.

TuEOREM B. There exists a bijection between 3, (N ) and the set of solu-
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tions of the equation x, + x, + -+ x, = k, for which all x; equal 0 or 1.

THEOREM C. Giving a Be B, (N) is equivalent to giving a distribution of k

indistinguishable balls in n distinct boxes, each box containing at most one
ball.

M For Theorem A it is sufficient to define for each Be P (N) the

characteristic function 9= by ¢ (y)=1if ye B and =0 otherwise. For
Theorem B we number the elements of N from 1 to 5, N= {20 Yareos Vb
for each Be P, (N) we define x;=x,(B) by x,=1 if y,e B and =0 other-
wise. Finally, for Theorem C each box is associated with a point yeN;
to every BeB,(N) we associate the following distribution: the box

associated with y contains a ball if ye B and no ball if y¢ B. &
THEOREM D. The number of k-subsets of N, 0< k<n=|N|, denoted by

" equals:
k) a1

[5a] (Z):='$k(N)I(—i—)(~Z3—k=”(n_ 1)"'("hk,,_,t9

k!
_ n! _ n
T kl(n—k) \n—k)

We will adopt the notation (Z), used almost in this form by Euler, and

fixed by Raabe, with the exclusion of all other notations, as this notation
is used in the great majority of the present literature, and its use is even so
still increasing. This symbol has all the qualities of a good notation:
economical (no new letters introduced), expressive (it is very close in

n
appearance to the explicit value (73"?), typical (no risk of being confused
with others), and beautiful. In certain cases, one might prefer (a, b) in-

stead of (a:b) (see pp. 27 and 28), so that (a, b)=(b, a) is perfectly

symmetric in @ and b. We recall anyway the ‘French’ notation Ck, and
the “English’ notation "C,.

e e e e
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e prove equality (x); the others are immediate consequences. If
I,=\3I, (5)0/0!:11 [4b, c] (p. 6), and [P (N)|=1 because .s]f‘k(N) con-
tains only the empty subset of N. Let us suppose k>1. With ever}; ar-
rangement ae, (N), we associate B='f(cx)={oc(1), oc(2),h..., o;(c)}lel
e P (N) (p- 7). fis a map from N, (N) into P, (N) such that for a
Be B, (N) we have:

[sbl /(B =KL,
since there are k! possible numberings of B (=the num?er of k-arrange-
ments of B). Now the set of pre-images f ~1(B), wh1chyare mutuatlllxy
disjoint, covers P, (N) entirely as B runs through U, (N-)1 Hence, the
number of elements of W, (N) equals the sum of all |f (B)I., where
Be R, (N), which is [Sc (x)]. Hence, by [4h] (p. 7) for equality (),

oA iV AN

and by [5b] for (x#x):
(5] IS ST )= kR

hence | R (N =(n)/k!. W

The argument we just have used is sometimes called the ‘shepherd’s
principle’i for counting the number of sheep in a flock, just count the
legs and divide by 4.

n . . . .
he i i al coelflicients.
DeFmNTIoN B, The mtogcrs( k) are called binomial

We will see the justification of this name on p. 12.

n

Demnition C. The double sequence <k> which is defined by | 5a] for (n, ki
e N (and equal 10 0 for k> n) will be defined from now on also for (x,y)eC
in the following way:
x) l (x?" if xeC, yeN

L= y )
g \0 if xeC, yéN

where (x);:=x(x—1)...(x—k-+1) for any keN, (x)o=1.
We will constantly use this convention in the sequel.

sal
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t’IjHEOREM E. The binomial coefficients satisfy the following recurrence relu-
ions: |

[5¢] (,’j)=(;j§)+(”;l); kon>1.

If n is replaced by a real or complex number z (z can also play the role of

an indeterminate variable), then [ Se, f, h] still hold, and we have instead of
[5g], for each integer s=0:

b (53)=()+ (3 ) () (5

n [5e, ] can be verified by substituting the values [5a, d] for the binom-
ial coeflicients; [5g'], hence [Sg], follows by applying [5e] to each of

the terms of the sum > 5., (z:i:z) followed by the evident si
tion. For [5h], an analogous method works (a generalization is found at
the end of Exercise 30, p. 169).

As an example, we will also give combinatorial proofs of [5e, f. g].

Fo.r [Se], let us choose a point xe N, [Nl=n, and let & and 7 re-
spectlvc.aly be the system of k-blocks of N that contain or not contain
respectively the point x. Clearly, NJ =9, so:

5] B =191+ 17

s to exaCtl one B € A X nan lel
\{ }’ ( \{ ) a

B 1= N = ().
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Also, T =P, (N—{x}); hence:
/ \

s =" .

Finally, [5i, j, k] imply [Se]. (n)

For [51], let us take the interpretation of k)3 the number of distri-

butions of balls in boxes (Theorem C, p. 8). We form all the (Z)
distributions successively. Then we need in total k(;) balls. The n boxes

¥

play a symmetric role, so every box receives ( l/ll).k(,,) times a ball.

1
4
Now, every distribution that gives a ball to a given box, corresponds to
exactly one distribution of (k—1) balls in the remaining (n—1) boxes.

n—1\. n n—1
These are (k B 1) in number, so as result we find that (k/n) (k) = (k— 1) .

For [5g], we number the elements of N, N:={x{,%3,..., X,}. We put
fori=1,2,...:
L= {BIBeP(N); X1, Xp,-.0s Xi-1 € B3 x;€B}.
Evidently, each Be B, (N) belongs to exactly one &, i€[n]. So:

(5] (Z) — IS+ 1T+

Now, every Be & corresponds to exactly one:

Ci= B \U{x;} € Bro s (NN {X1s X250 Xi})

Hence:
s 190 = By Y\ x5 = (1 )

3md wa s22 thae [3m 1T imely [Se]. W
Pascal triangle (or arithmetical triangle) is the name for the infinite

table, which is obtained by placing each number (Z) at the intersection

of the n-th row and the k-th column, k, >0 (Figure 1). The numerical
computation of the first values can be quickly done, by using [Se} and

0
the initial values (2) =0, except for <O>= 1.

Each recurrence‘ relation [5e, f, g] can be advantageously visualized by
a diagram (Figures 2a, b, ¢): in every Pascal triangle represented by the
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k|l o 1 2 3 4 5 §
n
0 1.0 o 0 0 0 o
1 1t 1 o0 o o o o
2 t 2 1 6 0 o o
3 1 @——@ 1 0 o0 o
4 1 4 6 4 1 o ¢
5 t 5 1 10 5 1t ¢

shaded area, the heavy dots represent the

n

\nn,‘i‘ (st fha s oo

J such uiat the corre-
spondi - .

ponding (k) are related by a linear recurrence relation (that is, with

k k

(@) ) ©
Fig. 2.

coefficients that are possibly not constant with respect to 5 and A
) Aoy WAL aLopllL WO FTodnda i, oas,

for example [5f]). Diagrams 2a, b, c are said to be of the second, first and
(n—k+ 1)—sF orde'r, respectively, as their associated recurrence relations.
A table of binomial coefficients is presented on p. 306.

1.6. BINOMIAL IDENTITY

THeorem A. (Newton binomial formula, or binomial identity). If x and y

are commuting elements (<>xy=yx) of a ri
= a ring, then we have for cach in-
teger n>0: g .

[6a] (x+y)= éo (;:) e

— n n— H _
-x"+<1)x 1y+<’2)x" S R

VOCABULARY OF COMBINATORIAL ANALYSIS 13

Note. If the ring does not have an identity, we must interpret x°y" and
x"y® as y” and x”, respectively. We can also consider [6a] as an identity
between polynomials of the indeterminates x and y.

B Let us examine the coeflicients ¢, , of the expansion of:
[,6b] (x + },)’7 = Ptpz Pu = Z Ck,[xk}'yl9
k, 1
Pi=x+y, ie[n].
The term x*y' is obtained by choosing k of the n factors P, ie[n], in the
sense that one multiplies the terms ‘x” of these factors by the terms ‘)’

of the remaining (n— k) factors. So I=n—k. Hence the coeflicient ¢,:=
= ¢4, y—x €quals the number of different choices of the & factors P; among

PERY

the n, hence equals (Z) (Theorem D, p. 8). W

For instance, if x=y=1, then we have Zk(;;) =2" and thus we find
again the result of p. 5: the total number of subsets of N equals 2".
If x=—1, p=1 we obtain ¥, (—1)* (Z):(), in other words: in N there
are just as many ‘even’ as ‘odd” subsets (see also p. 5).

Now we evaluate the n-th power of the difference operator.

TusoreMm B. Ler A be the difference operator, which assigns to every func-
tion fe AR, defined on the real numbers, and with values in a ring A, the
function g = Af, which is defined by g (x)=f (x+1)~f (x), xeR. For each
integer n=2, we define A":=A(4""'f), and we denote A’f (x) instead
of (A"f) (x). Then we have:

[6c] Af(x)= kio(—— 1y * <Z) fx+k), n=0,1,2,....

W Let E be the franslation operator defined by Ef (x):=f (x+1), and I
the identity operator, If=f. Clearly, A=E—1I. Now E and / commute in
the ring of operators acting on A®. Hence, defining EX=E(EF )=

= E(E(E*"%))=-, we have, by [6a]:
r=(E-1y= 3 -y
k=0
(since I"™* =T, from which [6c] follows, as EM(x)=f(x+k). 1
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In the case of a sequence u,,, meN, [6¢] implics:

n " " n
[6d] 4 um=k;0(—~l) k(k) Uppa s s

- 2, 4
where du,,=u,,,,~u,, 4 Up=A(Att,) =1ty 3214, + 10, cle. A, >0,
for all m, means that w,, is increasing, A1, >0 for all m, means that
u,, is convex.
If A operates on one of the variables of a function of several variables,
one can place a dot over the variable concerned to indicate this. So we
write:

[6e] Af (@, v)i= f(u+1,0) ~ f(u,v),
Adf(u, 0):= f(u, v+ 1) = /(u, v).

Examples. (1) 4*0" means the value of A*%" in the point x==0, and
then [6c] gives:

s a0 =3 -y (Sa-y,

which are, up to a coefficient k!, the Stirling numbers of the second kind
(cf. p. 204).

. 1 k>,
(2) A" =(-1) (-;5——55—— (by induction).
v ktn

Wa nitna .
rTYuvwvite a

-~ m_ e L .t e . -
e ioHowing mieresting artthmetcal property of binomial
coeflicients:

THEOREM C. For each prime number p, we have:

[6g] (,f) = 0(mod p), except <(’)’> - <I’> ~1.

In other words:
[6g] (1+x)"=1+x" (modp),

which means that these two polynomials have the same eoefficients in 7./p7,
(Exercise 17, p. 78 gives many other arithmetical properties of the hinomial
coeflicients).
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M As (;)>=- (‘lp‘)k is an integer, k! divides (p)=p(p— 1) -1, and it is
e i ! 4
relatively prime with respect to pif I <k <p—1:henceitdivides (p— 1),

according to the theorem of Gauss. Thus, (p—1),-,/klis an integer /1> 0,

hence <[,>?'=]"'IE()(IH()(J 7). B

1.7. COMBINATIONS WITH REPETITIONS

DEFINITION. A p-combination with repetition 7, or unordered p-selection.
or p-CR of a finite set N, is a list of p elements, all taken from N, repeti-
tions alloved. but the order in the list not taken into account. We denote
the set of p-CR of N by Q,(N).

st of , W, (

For example, {a. b, a, b, b} and {b, b, b, a,a} are identical 5-CR of
{a. b, ¢}, Vach k-block of N can be considered as a k-CR of N.

TuroreM A. There exists a bijection between ,(N ) and the set of func-
tions s Nv->N for which the sum of the values p equals Y ent ().

Throrem B, There is a bijection between $3,(N) and the set of integer
solutions, consisting of integers =0, of the equation:

[ 7a] Xy, 4k x, =

.

Each solution of {7a] is aiso calied
(sce Bxercise 23, p. 123).

., . " . P S
compaostion ()_/ poinio i MOGHdanay

Turortm C. To cach Te$Q,(N) corresponds exacily one distribution of p

indistinguishable balls into n distinet hoxes.

I'he reasonine is the same as for Theorems A, B, and C, on p. 7.

L. - . N
M For Thenrem A, define for each 7eQ,(N) the function =1, €N
hy (1) —the number of times that y appears in 7. For Theorem B,
Ne= ey ¥} ond x; 1=y, (1), For Theorem C identify each point

reNwith a box. M

Yoporrm VY. The number of p-CR of a finite set N |N|=n>=1,p=0 cquals
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\
L P A .
the binomial coefficient “with repetition ( ) defined by:
\ 7
\

[7b] 19, (V)] = <;:>: <n>, _ (n +p- l) —(pn 1),

p! P

B We give two proofs of this theorem.

(I) We partition the set of solutions of [ 7a] (we denote the number of
these solutions by 7'(#, p)) into two kinds. First, the solutions with v, =0
there are evidently 7'(n—1, p) of them. Next, the solutions for which
xy 2 15 if for these we put x) =x,—~1 (=0), these solutions correspond
each to exactly one solution of x} -+ x5+ - 45, = p— [, of which there are
T(n, p—1). Finally,

[7¢] T, p)=Tm—1,p)+T(n p-1).

To this relation we stilf must add the following initial conditions, whieh
follow from [ 7a]:

[7d] T(n,0)=1, T{l.py=1.
Now the double sequence 7'(n, p) is completely determined. A< a maticr
.
of fact, the sequence W(n, p):—f(” b ) evidently satisfics the recnr-
])

rence relation [7c] as well as the ‘boundary condition” | 7d]. Hence
T(n, p)=W(n,p).

(1) We represent the 17 boxes y, 15, ..., y, of Theorem C in a row, side
by side. We number the separations between the boxes by ¢, ¢, .., ¢, 4.
going from left to right (Figure 3). Let now N:={1,. r...... v} be the
set of these boxes and let Z:=[n+p—1]={1,2,. .. ntp-11. Now we
define the map f from Q,(N) into R, _, (7} as follows: with every distri-
bution of balls associated with 7eQ,, (N ), we associate the (17 -1 )-hlock

P

L,L l; ;’" - '_,l{ ,J
Rt

12345678 910111213

Fig.3. n—5 p-9.
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R{(T)ol 7:

"

B fp (e 0 () ey 1))
where gp{e)—1 stands for the nunther of separations and balls 1o the

left of the eeparation ¢, Cleatly, [ is bijective: hence the result. W

, . . . o Y Z7AN .

Fhe binomial coelfictent “with repelition . olso ealled a fignred
])

munher, can evidently be expressed as a function of the ‘symmetrical

1o .
binomial coeflicients™ (a1, /v)'~(' ,‘ )«.\f p. 8: we ohtain:
2

\
./”\ e Aopy-Apen - )
\r/

Fyoanple. We want to deteriming the pumber of monomials in the maost
general polypomial ' ol degree & and i indeterminates 1. 7,, ..., 1,.
Forn=1. P =ay tad b4 or®and there are (k-1-1) monomials. In the
peneral ease we obseyve that the list of exponents o, o4 . of 8 monomial
At cortesponds (o a solufion with non-negative integers ;> (0,
of the ineqgualitv o, oy 14w 0k Thisis again egrivalent with a <olu-
ioninnonnepatiseintegersol oy Loyt ey b h eNieln | ]

L (b 1) h -1 etk
Saby] 7a, b lthe mumber of solitionsisegual ((‘( A/\' >< I3 )
which is the number we sought for. (See also Fxercise 18, p. 79.)

Some propertics of the binomial coefficients with repetition’. Let us put,

hle v

acin [Sdlp 9 for any varic

I A e R U R SR R O LY
</> k ) Kl k! ‘

L X o i
I'hen we have properfics for <,> very analogous to those of ‘Theorem
. . 5
Eop. 10 For example:

SN N e
].‘ bt A‘A
e G )
. N\ X /x4 Xl k=17 x O
l7"l </\> B /\ x/\' ‘> o /;'_ </& - |>
/.\' A4 1 fo/x
To T X
el ()N <,>

The proofs, all very casy, are left to the reader.
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Abelian words. One can also give a more abstract definition of the
concept of combination with repetitions, which is important to know.
Let X be a nonempty set, the alphabet : we denote the set of finite sequences
S of elements of X (also called letters) by X*. We denote f=(x; rerr=
=(X;,» Xi;» .-+, X;,), Where r is a variable integer >1. Such a sequence f

*is also called an r-arrangement with repetition of X. Hence, when ¥["]
has the meaning given on p. 4, and when we make the convention to
let the empty set @, denoted by 1, also belong to X*, then we have:

= (1) o (Y 2.

The sequence f=(xy,, xy,,..., x;,) will be identified with the monomial
or word x;,x,,... x; . In this form, the integer r is called the degree of the
monomial or the length of the word f. By definition, the length of 1 is 0.
In the case Xis finite, X : ={x, x,,..., x,}, we can denote by a; the number
of times that the letter x; occurs in the word f, a;>0, ie[n]; in that case
we often say that f has the specification (a,, a,, as, ..., a,). For example,
for X:={x, y}, ¥1°1 consists of the following 8 words: xxx, xxy, xyx,
yXx, Xyy, yxy, yyx, yyy. These can also be written: x3, x%y, xyx, yx?,
xy?, yxy, y*x, y. The specifications are then (3, 0) (2, 1), (2, 1), (2, 1)
(1, 2), (1, 2), (1, 2), (O, 3), respectively.

The set X* is equipped with an associative composition law, the product
by juxtaposition, which associates with two words f=x, x;,... x; and
g=x;X; ... X;,, the product word fg=x, x,,... x_, ., where x, —x, if
t<r, and x;,=x;,_, if t>r. One also says that fg is the concatenation of
S and g. This composition law is associative, and has the empty word 1
as unit element. In this way X* becomes a monoid (that is to say a set
with an associative multiplication, and a unit element), which is called
the free monoid generated by X. Furthermore, when we denote the set of
words of length n by XI"), we identify X!'? with X, so X = X*.

We introduce an equivalence relation on X*, by defining two words f
and g to be equivalent if and only if they consist of the same letters, up
to order, but with the same number of repetitions. The equivalence class
that contains f, is called the abelian class of f, or also the abelian word f.
There is a one-to-one correspondence between the abelian classes and
the maps ¥ from X into N that are everywhere zero except for a finite
number of points. In fact, if we index the set E of the ye X where y (»)>0,
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in such a way that E={y, ¥3,... yi}, then we can bijectively associate
with  the abelian class of the word:

A= - daban - W
¥ (yy)times ¥ (y;)times ¥ (y;)times

If X is finite, X =N, it is clear that an abelian word is just a combina-
tion with repetitions, of N (Definition, p. 15).

The set of abelian words ¥* can also be made into a monoid, when we
consider it as a part of N*; this last set is equipped with the usual addition
of functions . In this way we define the free abelian monoid generated
by X.

OM WALK
1.8. SUBSETS OF [/1], RANDOM WALK

.

Let N be a finite totally ordered set (Definition D, p. 59), with n ele-
ments, which we identify with [n] :={1,2,..., n}. We are going to give
several interpretations to the specification of a subset p=[n], of cardinal
p(=1P|). We introduce moreover:

q:=1P|=|GP|=n—p.
(1) To give a P<[n] is equivalent to giving an integer-valued se-
quence x(¢), defined by:
' +1 if teP, .
[8a] x(t)—x(t—l);{_1 i 1gp’ te[n], x(0):=0.

[N

One can represent x () by a broken line, which is straight between the
points with coordinates (¢, x(¢)). Thus, Figure 4 represents the x(t)
associated with the block:

[8b] P={3,567,8,10,11,12} =[12].

Fig. 4.
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Evidently, p+g=n and x(n)=(x(n)—x(n—1))+-+(x(2)—x(1))+
+x(1)=p—q; hence:

[8c] p=1(@+x(n), qg=31(n—x().

This way of determining P<[n] suggests a process, if we imagine that
t represents successive instants 1, 2,..., n.

(2) Giving P<[n] is also equivalent to giving the results of a game of
.heads or tails, played with »# throws of a coin, if we agree that

x(t) — x(t — 1) = 1 <> the t-th throw is tails (te[n]).

The numbers p, g of [8c] are then the numbers of tails and heads ob-
tained in the course of the game, respectively. Because of this interpreta-
tion, the sequence x(z) is often called random walk: it translates the
(stochastic) movements by jumps of +1 of a moving point on the x-axis,
whose motion occurs only at the times 7=1, 2,... n (a kind of Brownian
movement on a line).

Giving Pc[n] is also equivalent to giving the successive resuits of
drawing balls from a vase, which contains p black and ¢ white balls, and
agreeing that x(¢)—x(¢—1)=1<> the ¢-th ball drawn is black (sre[n]).

(3) One often prefers in combinatorial analysis to represent P<=[n] by
a polygonal line € which joins the origin (0, 0) with the point B with
coordinates (p, g) such that the horizontal sides, having lengths one and

nalon Anllad Lauieaus doa] nbamm AR~ A b blhim cantsnbn A~ o mend blan vrmbiand
CHIOW wALIVAL 1BUT WLUTILUG OICIJJ, UUILUDPUIIU AV RS FL9s PUIIILB vi 11, allu LHy yoluval

sides correspond to the points of the complement of p. Thus, Figure 5
represents the subset p defined by [8b]. Such a polygonal line may be
called ‘minimal path’ joining O to B (of length n=p+gq). (In fact, there
does not exist a shorter path of length less than », which joins O to B,

Fig. 5.
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consisting of unit length straight sections bounded by points with integer
coordinates.)

(4) Finally, giving P<=[n]is also equivalent to giving a word f with two
letters @ and b, of length n, where the letter @ occurs p times, and the letter
b occurs g times, p=|P| (see p. 18). Thus, the word representing P of
[8b] is bbabaaaabaaa.

Now we treat two examples of enumerations in [n].

TheorReM A. ([Gergonne, 1812], [Muir, 1901]). Let f,(n, p) be the number
of p-blocks P<[n] with the following property: between two arbitrary
points of P are at least [(>0) points of [n] which do not belong to P. Then:

a1 s = (" 07D,

W Let P be {i,,is.... 0,}, 1<iy <i<+<i,<n and yo=i—i_y—1,
yyi=i—1, y,41:=n—1i, Giving Pisequivalent to giving a solution with
integers y; of:

[8e] ntystet Yyt Yo =n—p

=l if 2<k<p, y1 and y ., =0.

We put z:=y,—1 if 2<k<p, and z,:=y;, z,41:=Yp4+;. Then 2,20,
for every ie[p + 1] and [8¢] is equivalent to:

[8f] Zi+ z3+ ot 2+ 2y =n—p—(p—1)1,

. fn—(p—DI\ . . - e 4 e e
which has\ \p g )solutlons, by Theorems B and D, of pp.i5.

Observe that /= —1 recovers [7b] p. 16...!

(For other problems concerning the blocks of [#], the reader is referred
to [*David, Barton, 1962], pp. 85-101, [ Abramson, 1964, 1965], [Abram-
son, Moser, 1960, 1969], [Church, Gould, 1967], [Kaplansky, 1943,
1945], [(René) Lagrange, 1963], [Mood, 1940].)

THEOREM B (of André). Let p and q be integers, such that 1<p<q,p+q=n.
The number of minimal paths joining O with the point M (p, q) (in the sense
of (3) on p. 20) that do not have any point in common with the line x=y,

except the point O, is ‘_1%1_’ <n> In other words, if there is a ballot, for
q+p\p
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which candidates & and 2 receive p and q votes respectively (so 2 is elected),
then the probability that candidate 2 has constantly the majority during the
counting of the votes is equal to (q—p)/(q+p).

This is the famous ballot problem, formulated by [Bertrand, 1887]; we
give the elegant solution of [André, 1887]. Désiré André, born Lyon,
1840, died Paris, 1917, devoted most of his scientific activity to combina-
torial analysis. A list and a summary of his principal works are found
in [*André, 1910]. See also Exercises 11 and 13 pp. 258 and 260.

M We first formulate the principle of reflection, which essentially is due
to André. Let be given a line D parallel to the line x=y, and two points
A, Blying on the same side of D (for instance above, as in Figure 6). The
number of minimal paths (the adjective minimal will be omitted in the
sequel) joining 4 with B that intersect or touch D, is equal to the number

Fig. 6.

of paths joining B with the point A4’ which lies symmetric to 4 with
respect to D. Infact, when 7stands for the first point that @ has in common
with D, going from A to B, we can let the path ¥ =(4, I, B) correspond
to the path €"=(A’, I, B), which is just the same as & between 7 and B,
but with the part A'J just equal to the image by reflection with respect to
D of the part A of €.

Now let C(4, B) be the set of paths joining A4 (x4, y,) with B(xg, y5),
0<x,<x3, 0<y,<yz Clearly, the number of paths joining 4 with B
equals:

(6] IC(, B = (F TSI,

Xp— X4
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because giving a path is equivalent to choosing a set of (x3—x,4) horizontal
segments among (xp+yp—X4—y4) Places (the duration of the walk).
Let us call a suitable path one that satisfies the hypotheses of Theorem
B. The number of suitable paths, which is the number of paths joining
W (0, 1) with B(p, g) without intersecting the line x=y, is hence, by the
principle of reflection equal to |C(W, B)|—|C(V, B)| (Figure 7); which
means, by [8g], equal to (p +g— l)_(p ;z; 1), hence the result, after
simplifications. '
A B(pq)

.....

A 4

v(1,0)

Fig, 7.

The probabilistic interpretation supposes that every path eC(0, B) is
equally probable, so that the probability we look for is the quotient of
the number of suitable paths (which we found already), and the total

number of paths joining O with B, which is |C(O, B)| =( tl) we find that
\P/

the probability is (7 — p)/(g+ p), as announced. Every step represents a vote,
the horizontal ones being for 2 and the vertical ones for 2. B For
other problems related to the problem of the ballot, see [Carlitz, Riordan,
1964], [*Feller, 1968, I}, p. 67-97, [Goodman, Narayana, 1967}, [Guil-
baud, Rosenstiehl, 1960], [Kreweras, 1965, 1966a}, [Narayana, 1965,
19671, [Riordan, 1964], [Sen, 1964], [*Spitzer, 1964], and especially
(*Takdcs, 1967). The reader should also solve Exercises 20-22 on pp.
81-83.

1.9. SUBSETS OF Z/nZ
Let N be a finite set of n points placed on a circle with equal distances

between two adjoining points. We identify this set with the set of residue
classes modulo n, denoted by [7i]:
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[9a] N=[A]l=Z/nz={0,173,..,1n—1}.

Figure 8 represents the block P={2, 3,5,6,7, 8,11, 12, 13}e[T6], with
which we can associate the circular word bbaabaaaabbaaabb, where the
i-th term equals a or b according to whether /eP or ¢ P, 0<i<n—1.

We show now an example of enumeration in [#].

Fig. 8.

Tueorem ([Kaplansky, 1943]). Let g,(n, p) be the number of p-blocks
Pc[#] with the following property: between any two points v and w of P
(that means on each of the two open arcs vw of the circle on which we think

[#] situated) there are at least 1(>0) points of [ii] that do not belong to
P, Then:

ronl ol o\
L7Vl Yi\n, p)=

n  (n—pl\
n—pl\ A

B When & stands for the set of the P<[#] that satisfy the condition
mentioned in the theorem, [/]:={0, 1,..., l—_l}, then we let:

Lp={plpest,pn[ll=1i}, i=0,1,2,..,1-1.
A*:={PVPest, P n[I]=0}.

/* and the &7, evidently partition &7 into /41 disjoint subsets. Hence:

-1

el ainp) =1/l = |/ + ¥ 1.

Now, choosing Pes#, is equivalent to choosing on the straight interval
[i+1+1,i4142,...,i+n—I—1]thep—1-block P':= P\ {i} withn— 2/~ 1
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elements. Hence, by Theorem A (p. 21), we have:
[9d] (| = filn=21—1,p—1), 0<i<gI~-1.

Similarly, choosing Pe.«/* is equivalent to choosing it on the straight
interval [/+1, I+2,..., n—1] with n—1 elements. Hence:

[9e]1 " =fi(n—1p).

Finally, [9c, d, €] imply, by [8d] (p. 21) for the equality (*), and with
simplifications for (*x): '

a(np)=lfi(n=21-1L,p-1)+ fi(n—=1p)=
—pl—1 —pl —pl
L) () (),
\ P—* / \ P/ n—pi\ P

It would be interesting to give a combinatorial significance of g,(n, p)
for 1<0. Also see Exercise 40, p. 173.

1.10. DIVISIONS AND PARTITIONS OF A SET;
MULTINOMIAL IDENTITY

DEFINITION A. Let # be a finite (ordered) sequence of subsets, distinct
or not, empty or not, of a set N:

M= (Ay, Ayy s Ay), Aie N, ie[m], m>=1.
We say that A is a division of N (confusion with partition ( Definition C,
p. 30) should be avoided), or m-division if we want to specify of how
many subsets it consists, if the union of the A;, ie[m] is N, and if these A;
are mutually disjoint. We denote:
[108] N=A4,+A4,++A, or N=3} A4,
i=1

1

(notation of [*Neveu, 19647, p. 3) as one wishes.

For example, with N={a, b, c, d, e}, A;:=0, A,:={b,d}, A;3:=0, A4:=
={a, c, e}, the ordered set #:=(A,, A, 43, 4,) is a 4-division of N.
For each division, the nonempty subsets are evidently different and mutu-
ally disjoint, and between their cardinalities the following relation exists:

[106]  INI= 3 140 = 1du] + Aol oo 14l
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Many identities are only the consequence of [10b]: one counts a set
in two different ways, which gives a combinatorial proof of the identity
which is to be examined.

Examples. (1) Let E be the set of nonempty subsets of 4:={1, 2,...,
m+-1}, and let us call E;( < E) the set of subsets of A for which the greatest
element is j(>1). Evidently, E=Y 72| E;. Now, |E|=2""1—1and |E,|=
=271 (the number of subsets of {1,2,...,j—~1}). Then, by using [10b]
we obtain: 2"*!1—1=142+42%+...4+2™ More generally, for any in-

tegers x, y, m=1, we could prove by a strictly combinatorial argument
the well-known identity:

m+1 _  m+1

x y =(x_y)(xm+xm‘1y+xm—2y2+.__).

(2) Let Z=X+7Y be a division of the set Z, x:=|X[>0, y:=|Y|>0.
We denote E for the set of all A< Z such that |4|=n (E=9,(Z)), and E,
for the set of all BeE such that |[BnX|=k. Clearly, E=)};_, E,. Now,

X+
from |E| =( " Y ) and |E,| =(;:) (ni k) follows the Vandermonde con-
volution (see p. 44):

n

(x:y)=2(1t>(nfk>'

k=0

. (3) With Z=X+Y once again, let E be the set of functions f from [#]
inio Z, and Iet E, consist of all f such that | f ' (X)|=k. We have

E=Y3.0 E, |[E|=(x+y)", |E|= (Z) x*y"~k_ Therefore

Gy = > ().

(4) By considering E, the set of functions f from {x, y, z} into [n+1] =
={1,2,3,...,n+1} such that f(x)< f(z), f(y)< f (z), and the following
subsets: (i) E:={f1f(z)=k+1}, (ii) 4:={fVf (x)=F (»)}, (iii) B:=
={S1f)<f O} ) C:={f1f(x)>F(y)}, we find E=}}_, E=
=A+B+C,ie., with [10b]: |E|=3"_, k2=(”;1)+<"§1)+<";1)
=}n(n+1) (2n+1). (See also p. 155 and Exercise 4, p. 220.)
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THEOREM A. Let (a4, a,, ..., a,) be a sequence of m integers >0 such that:
a +a,++a,=n, mz=1, n=0,

then the number of divisions M ;= (A, Ay, ..., Ay) of N, IN|=n, such that

|4;| =a;, ie[m], also called (ay, a,, ..., a,)-divisions, is equal to (note that

0!=1):

[10c]

n!

n
e gnd can be denoted by ( )
ala,!...a,! Ay, Ay eeny Ay

or, even better, by:
[10c']  (ay, ass...) Q).

Until recently one said that .# was a permutation with repetition of a,
elements of N, a, elements of N, etc. Notation [10c’] which we introduce
here and whose virtues we wish to recommend now, is not standard yet,
but seems to become more and more in use. Anyway, it has the qualities
of a good notation (cf. p. 8) and it is hard to imagine a simpler one.
Moreover, it has the advantage over [10c] of being coherent with the
classical notation of the binomial coefficients. In fact, if we use [10c] for

. . . . n n
the case of binomial coefficients, we get the notation (k n— k) for (k>’

which is undesirable. On the contrary, it seems good to extend the usual
x

notation for the binomial coefficients in the case of ( X

), with x a real or

complex variable, by the following notation:

S TRPRT L LI TY
Cx(x=D) (=2 (x—ky =k ==k 4 1)
) AR :

because in this case, for @, +a,+--- +a,,=n, we have in our notation:

(ag, az, ... a,,)=< " >=< " ):etc.,
a, as,..., 4, A3, 3500y Ay

which harmonizes perfectly with the binomial and multinomial notations.
(This fair notation can be found in the Repertorium by [*Pascal, 1910},

I, p. 51.)
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M As .# is ordered, giving .# means first giving 4,, then A,, then
A;, then A4, etc. Now the number of possible choices for 4, =N, |[N|=n,

n
|4;|=a,, equals (al>, by [5a] (p. 8). Such a choice being made, the
number of possible choices for 4, c N\ 4, IN\4,|=n—a,, |4;|=a,, is
n—a .
< a 1), etc. The required number (of the possible .#) hence is equal to:

2
n) n—a, n—day ——a,_;
a; az a, ’

which is equal to [10c] after simplification. [l
' The notation {10a] suggests us to write U— ¥ instead of U\ V, as
in [1b] (p. 2), if V< U. In other words, for three subsets U, ¥, W of N:
[i6d] W=U-VeoU=V+WeW=U\V and VcU.
The following notation also originates from [10a]:
[10e] A, +4,+ -+ A4 cNeAd,u-UdcN and
AinA;=0, 1<i<j<l.

THEOREM B (multinomial identity). If x| x,,..., X,, are commuting ele-
men(;s of aring (<>x,x;=x;x,, 1<i<j<m), then we have for all integers
nz0:

[1o0f] (i x,)" =(Xg 4 Xy + oo x,)" =

\i=j
= (a5, Gy, vy 8, XPXP .. X0

the last summation takes place over all m-tuples (ay, a,, ..., m) Of positive
or zero integers a,;>0 such that a, +a,+ - +a,=n.

Because of this,

DEFINITION B. The numbers:

(a,+a, +-+a,)! n!
aglayl...a,!

are called multinomial coefficients.

(ay, az ..., a,) =

a;layl...a,!’

For n, m fixed, the number of multinomial coefficients equals the number
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of solutions of a, + -+« +a,,=n, which is <n+r:— 1), by Theorems B and

D (p. 15). A table of the multinomial coeflicients can be found on p. 309.

W We argue as in the proof of Theorem A (p. 12). Let:
[log] (x1+x2 +"'+xm)"=P1P2...P,,

- Z cal,ag, ...,a,,.xl X2 .- x:nm,
with P;:=x, +x,+ - +Xx,, the summation taking place over all systems
of integers (a,, a,,..., a,) that occur as exponents of the terms on the
right-hand side of [10g]. Obtaining x{'x%"... x5 in the expansion of the
product P, P, ... is equivalent to giving a division of the set {Pi, Psy.... P}
into subsets 4,, 4,, ..., 4,, such that |4;|=a,, ie[m]. This we do with the
understanding that this division corresponds to multiplying the ‘x;’ of
the a, factors P,c A4, by the ‘x,” of the a, factors P,e4,, etc. (if a;=0,
then one just multiplies by 1). Hence, on one hand:

[10h] ay+ay+-+a,=n, aeN, ie[m];
on the other hand, the number of terms x3'x%’..., where the a; are fixed
such that [10h] holds, is equal to (ay, @3, .., @,), by [10c]. W

Thus, (X;+Xy4 - +Xu)2 =Y k=1 X5+2 Y 1<icj<m Xi¥;5 because the
solutions of @, ++--+a,,=2 are of the form: (I) ,=2, a,=0 if i#k, in
which case [10c]=1; (II) ¢y=a;=1if i#j, a,=0 if I#1, j, in which case
[10c]=2. In the same manner, (x,+X;+-) =Y} +3Y X} +
FOY X X% (Xt Xyt ) =YX +4 Yxx3 46 Yaixd+12 Yxxxi +
+24 ¥'x,x,%,%;. Moreover, the number of Y'’s in the expansion of
(X1 +X3+--)" is exactly p(n), the number of partitions of n, p. 94. (See
also Exercise 28, p. 126, and Exercise 9, p. 158.) Multinomial coefficients
enjoy congruence properties, analogous to [6g, g'] p. 14, the proof being
very similar:

THeoREM C. For any prime number p and 4, +a,+as+---=p, we have

(ay, a3, a3, ...) = 0 (mod p),

except (p, 0,0, ...)=(0, 2,0, ...)=--=1.
In other words, for variables x(, x5, ..., Xp,

(g + % ook X ) = X3+ x5 ook X




30 ADVANCED COMBINATORICS

DerFINITION C. A non-ordered (finite) set P of p blocks of N (=p-system
of N, cf. p. 3), Z<P'(N), is called a partition of N, or p-partition if
one wants 1o specify the number of its blocks, if the union of all blocks of
P equals N, and if these blocks are mutually disjoint.
Hence in a partition, as opposed to a division (1) no “subset’ is empty; (2)
the ‘subsets’ are not labelled.

Similar to [10a], we denote for such a partition, in order to express
the fact that B, B'e #= BnB'=0:

N= Y B, VBe?, |Bl>1.
Begp

Evidently there is a bijection between the set of equivalence relations of
N ranrd the set of partitions of N: we just associate with every equivalence
relation & the partition whose blocks are the equivalence classes of &.

THE.OREM D. Let f beamap of M into N, fe N™. The set of the nonempty
pre-images f ~! (_}’); YEN (p. 5) constitutes a partition of M, which is

........... & pLd Ty 4w

called the partition induced by f on M.

This is evident. It follows in particular, for each fe N™ that:

[0 M| = yZN FARE) B

1.11. BOUND VARIABLES

Itis well known that a finite sum of n terms X1, X35 ..., X, real numbers
or, more generally, in a ring, is denoted by x, 4+ x,+--- 4 x, (such a way
of writing, of course, does not mean at all that n>3), or even better:

[11a] Z Xy -
k=1

We: generalize this notation. Let m be an integer > 1, and fareal-valued
function (or, more generally, with values in a ring) defined for all points
(=m-tuples) c:=(cy, ¢3,..., ¢,,) of a product set:

[11b] E:=E, x E, x--x E,,.

(Frequently we will have E,=E,=--. =E,=N.) If f is only defined on
Q(<E), it will be extended to the whole of E by 0, in most cases. Let us
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consider a finite set I'c E. The expression S, denoted in any of the fol-
lowing four ways:
1] ($=)% £ =Teer £)
= Yy Fers €asmens C)

(€1,€2, .y €m) el

= Z(c:,cz. ceey cm)el‘f (cl’ Cay--vs Cm),

equals by definition the finite sum of the values of f in each point ¢ of I,
which is called the summation set. If TnE=0, we give S the value 0.

[11d]  EMPTY SUM CONVENTION: ) .o f (¢):=0.

Sometimes we qualify S by saying that it is a multiple sum of order m.
For m=1, 2, 3,..., one says usually simple, double or triple sum.

It is clear that the value [11c] of S is completely determined by I and
1. Thus, S does not depend on ¢=(cy, ¢z, ... C,), €ven though it occurs in
formula [11c]. For this reason, the letters ¢ or (¢y, ¢3,..., ¢n) are called
bound variables of the summation (dummy or dead are also used synon-
ymously for bound). It is useful to note the analogy with the notation
I={%f (x) dx of the integral, in which x is also a bound (real) variable,
while I only depends on a, b and f.

Usually, the summation set I' is defined by a certain number of condi-
tions or restrictions, €,, %, ..., €; on the ¢, ¢;,..., C,,; these conditions

will just be translated by saying that the point ¢ belongs to the subsets

Iy, I's,..., ;. We will therefore write any of the following:

[113] (S =) € z < f(C) = Z‘ﬁ,?z, s €1 f(C)

2 62y 000

= Z f(C) = Zcermrznmr\n f(c)

celnl'z2n--n
For example, [11f] is equivalent with [11a]:
[11f] S ox of Yicken Xk
1<ksn
If the expression for the €; is not very simple, it is better to avoid
writing it underneath or on the side of the summation sign Y, but following
it. In that case one uses a phrase like “the summation takes place over all

¢ such that ...”.
Quite often one needs some letters different from ¢y, ¢, ..., 52y di,d,,...,
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in the detailed description of the conditions €. It is important to distin-
guish these from the bound variables, especially in the case that we wish
to use notation [11e]. Therefore we introduce the

[11g] DOT CONVENTION: every letter with a dot underneath stands for
a bound variable.

Of course, we do not have to dot every bound variable: in [L1f], for
example, there is but one possible interpretation. We must try to limit
the dots to the cases where there is possible danger of confusion or am-
biguity (examples follow). Furthermore, each variable needs only to be
pointed once, and not every time it appears in the conditions %,, %, ....
In general, however, we are not at all embarrassed by excesses, as far as
this is concerned. The use of dois under the bound variables is imposed
upon us by our total and absolute rejection of the notation by repeated
Y. signs (which is still commonly used), for any multiple sum of order m
(Theorem B below).

Before demonstrating the preceding by examples, we still put the

[I1h] NONNEGATIVE INTEGER CONVENTION: in the sequel of this book
each bound variable will represent an integer >0 unless stated
otherwise.

Now we give the following results:

THEOREM A (associativity). For all partitions P:=(I'y, [y,..., ') of T,
'=ri+r,+:+r,, we have:

(1] s:= 3 7@= T (T 1)

1<isSs cely

THEOREM B (analogue of the Fubini theorem for multiple integrals) :

[115] Z ey, €)= Z ( Z fleys c2))

(c1,c2) € Ey X E2 creE1 ca€Ey

= Y (X flenca))

c2eEr cyeE;

[11k] y [ ey, ¢35 ¢3) =

(c1,c2,¢c3)e Ey X Ea % Ejy

= Z ( Z S ey, cay 03))

c1eEy {c2,c3)eEa%XEs

Z (Z (Z f(01,62,03)))—etc.

cteE; c3eE; c3€ek;
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(For the number of possible ‘Fubini formulas’ see Exercise 20 on p. 228.)
Examples. (1) To calculate, for n>0 integer, the double sum:

S:= Y cc.

Sitga=n
We get, if we reduce it to a simple sum:

S= Y e¢(n—c)=n Y o~ c3

0%¢cy<n 0<ci€n 0<ci<n
nin+1) n(n+1)(2n+1)=n(n2—])
- 2 6 6

(See also Exercise 28 on p. 85 for a generalization.)
(1Y) To calculate, for a and b complex, a, b, ab+ 1 and n an integer >0,

the double sum:

S:= Y d*
O<h<kSn
We can do this as follows, where we use Theorem B for the equality (x):
n+l bh
@ o b*) = at—
S osz@‘%n (a hsEI_cSn ) 0$Z{|<n b-1
nt+ 1
= b a' — o (ab)
b—1o0<ksn b —1 o<fsn

bn+1(an+1 1) (ab)n+1_1 .
T(-1)(a-1) T (-1 (ab-1)

We could also have started with S=Y¢<x<a (6" Yo<p<x @°)-

(111) For any finite set N, |N|=n, to calculate the double sum:
S:= Y |AnBl.

4. <N

(The summation is taken over all pairs of subsets (A, B)e B(N)x PB(N).)
By Theorem B, we get for S:

T (T nB)= 3 ( 5 (2 1AnB).

ASN BeN AN 0<i<|Al 14nBl=i

Now it is easy to see, that the number of subsets B(cN ) such that
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|AnB|=i, where 4 is fixed, equals (l;ﬂ) .2"~ 141 which is the number of
i-subsets of A4 times the number of subsets of N — A. Hence, as Y i_,i (a)

- . l
=a2°"! (which results from taking the derivative of the polynomial
L+xe=se  (9) 4 N
(I+x)*=37.0 ;) *'» and substituting 1 for x), which we use for equal-
ity (»), we get for S:

on=l4] i(l/“l)) ) n—A] jAl-1 _
4;1\1( o<izlal \ I 4§N 2l B

=2n~1AZ IAI =2n'—1.n2n-1 — n4n—1.
4N

More symmetrically, we could have said also:

S= % ( 40 B)= 3 31K =
K<N

K<N 4nB=K

(Furthermore, Y [4,0-+:n A, | =n2%®=1 where Ay, 4y,..., 4,=N.)

In certain cases, we can immediately lower the order of a summation
by applying Theorems A4 and B:

THEOREM C. If f (cy, €3, 010y Cm) =11 (€1 €2y ey h)-S2 (Chitse-es Cm)s
O0<h<m, then:

[111] y

(c1) €2y verp Cm) € Eg X o0 X Eyy

(¥ G

(1) weycn) €Eg X - X
fZ (ch+1’ seey cm))-
Ey

x ( ¥

(Che1y iy Cm) € Eppq Xoee X

f(cb Cayeeny Cm) =

Particularly:

[11m] y

g1(c1)e . ogm(cn) =

(€14 eees Cm) € Eg X oo X Epy

=(01§E‘ g1(c1)).( X ga(ca))e...o( 2. Im(Cn))-

c2€Ey cm€ Em
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It will be noticed that this theorem bears some analogy to the theorem
on double integrals: if 4=[a, b]x[c,d] then [, f(x)g(y)dxdy=
=(faf (x) dx) (fc 9 (») d).

Clearly, everything that has been said in this section about the notation
of finite sums, can be repeated, with the necessary changes, for any ex-
pression in which addition is replaced by an internal associative and com-
mutative composition law in the range of f. Thus, we denote:

[T =x. forthe product x;x;...%,;

1sksn

|J 4, fortheunion A; U d,uuUAd,;
1<sks<n

(\ A, fortheintersection A; N A, NN A,.
1<k<n

Conventions [11g, h] still hold for [], U, M, but [11d] (p. 31) is
replaced by [11n, o, p]:

[11n] EMPTY PRODUCT CONVENTION: [[ccnf(c):=1.
[110] EMPTY UNION CONVENTION: | J, (o 4 (c): =0y, where A(c)=N.

[11p] EMPTY INTERSECTION CONVENTION: (),co A(c):=N, where
A(c)eN.

Example. Compute, for n integer >1, the double product:

P:= ] a"b.

p+a<n
We can work this out as follows, using [5g] on p. 10 for (*):

P=T1 (I @)= J] (I &%)

0<k<n ptg=k 0<k<n O<psk

k+1

= 1II (ak(k+1)/2.bk(k+1)/2)= T1 (ab) 2
0<k<n 0<E<n

£ (k1 n+2
=(ab)o<1_csn( 2 )(j‘-:)(ab)( 3

More generally, it can be found without difficulty that the [-th
order product []aj'a3*--- af', where p;+p,+---+p,<n, has the value

. l+n
(al,az, ...,a‘)q with q:(l—i—- 1) .
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1.12. FORMAL SERIES

(I) General remarks

The concept of formal power series is a generalization of polynomial.
We think the best is to sketch here the outlines of the theory, following
Bourbaki ([*Bourbaki, Algébre, chap. 4, 5, 1959], p. 52-69; see also
[*Dubreil (P. and M.-L.), 1964], p. 124-31, [*Lang, 1965], p. 146,
[*Zariski, Samuel, II, 1960], p. 129); we will refer to this author for
proofs and more details.

In this section, each small Greek letter represents a finite sequence of k
integers >0, where k is an integer > 1, which is given once and for all.
Such a sequence is sometimes also called a multi-index. Thus, if we write
k:=N™_in which [k]:={1,2,..., k}, then aek means that a = (otg, gy -,
o), where a,eN.

We may denote:

[12a] al:i=ola,!... 0!,
lof := oty + oy +-o- 4 04,

A
[122]  coi=Chpay, .o o= 15 5,

We will consider the case of formal series in k variables over a field
C (often C=R or C).

DEFINITION A. A formal power series f in k indeterminates (or variables)
tyy tay.esey by over Cis a formal expression of the following type:

[126] f=f(O)=S(tptr o i)=Y g A"
= Yy a L o
£1582 i Z 0
where a,=a,, ., .. the coefficients of f, form a multiple series of order
k with values in C. Each expression at*=a,, ,, . th'...tf%is called
a monomial of f. As the g, u,, ..., w, are bound variables, they can have a
dot underneath. We denote C[[ty, t,,..., t,]], or even better C,[[t]],
which is called the set of formal series f.

S is a polynomial if all coefficients except a finite number of them equal
zero, which is usually formulated by saying “almost all a, are zero”. In
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simple cases we sometimes avoid to write [12b] by using an ellipsis mark,
three consecutive periods, especially if there is only one indeterminate.
For example:
f=l4t+ 4 =Y eR[[{]]=R[[]].
nz0

Every power series in several variables, which is convergent in a certain
polydisc, can be interpreted as a formal series. Conversely, with every
formal series in several indeterminates can be associated with a power
series that perhaps converges in the point 0 only. The following expansions:

t"

12 =) —

[ C] exp n>o n!
t'l
[12d] log(1+1):=Y (=17~
=1 h

[12¢] L+ := “;0 (;) =3 (x), ;t;' (xeC)

nz0

U
[12¢] (-0 :=) (— x> (=1 =Y (x, - % <x>t"
nzo \ 7 nz0 n! .30 \"

can be as well considered as functions in their radius of convergence as
well as certain formal series, which are called respectively: formal ex-
ponential series, formal logarithm, formal binomial series (of the tst and
2nd form). Moreover, for [12e"] we have also, if x is an integer >1:
(1 —t)"‘=Zx>o(nj:1 1
interpreted as series in two indeterminates ¢ and x.

From now on, in the sequel of this book, each power series must be con-
sidered as a formal series, unless explicitly stated otherwise.

As in the case of polynomials, C,[[#]] becomes an integral domain,
if we provide it with addition and multiplication as follows: for every
f=Y a,t* and g=} b,t" where pek:

)t". Furthermore, the series [ 12e, '] canalso be

[120] f+4g9:= %c,,t“, where ¢,:=a,+b,
Be

[12¢] f9:=13 dut",
ne
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where
d“ = dl‘h'-ﬂl‘k = Z a”bl = Z aul,...,ukbh,...,lka
xt+i=u

the last summation taken over all sequences of integers >0, (x,...,
Hys Ay oes A) SUCh that se, +4, =py, ..., 3, + A =1, (hence we have (g, +1)
... (1, +1) terms in the last summation).

The homogeneous part of f of degree m is the formal polynomial:

[12h] ﬂ..)l-—‘lz alf= Y a0t

ul=n Bt tpe=n

The constant term of f is ag=f,,, also denoted by f(0). The order
of f (which we suppose different from the series 0, all whose coefficients
equal zero), is the smallest integer n>0, such that S #0. For example,
o (1t +(t1;)* + - )=2. Clearly, w ( fg) = (f ) +w(g). The series 1 is the
series all whose terms are zero except the constant term, which equals 1.
For example, by [12¢, '], we have formally:

A+t (+) " =1,

which results from the same property for the associated convergent ex-
pansions.

(IX) Summable families of formal series
Let (fi)e be a family of formal series of C;[[¢]] (often L=N or N*),

DErFINITION B. A4 family (f})ieL is called summable, if for each sequence
uek, the coefficient a;, » of t* in fi equals O for almost all leI” (except a
Jfinite number, see p. 36). The sum g=) ¢ b,t* of this family is then
defined by: '

[12i]  b,:= the coefficient of t* in the finite sum Y. f,, where leL,

and o ( f)<lp).
We denote g =Y ;.. f;.

For L=N, (f,)is evidently summable if and only if the order o (f;) tends
to infinity, when / tends to infinity.
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We give two examples. (1) The family

.o I+ 1) (a2 +1) __
Soni= 2 1 i3 =
g1, 4220

Ii(ur +1) (p2+1) _
=3 WY 63 =
pe=0 #2220

= (1—4)7 (1- )™

is summable, (/;, I;)eN2. If in the definition of f,, , the exponents
Iy (z,+1) and 1, (u, + 1) are replaced by /;u; and Ly, then the family is
not summable anymore. (2) The family f,, of homogeneous parts of f,
[12h], is summable, and f=) .0 f(»)- Moreover, we have the ‘Cauchy
product’ form for the series A, which is the product of f and g:

[12] h=fg<hg= OZ Jidm-n-

<i<n

THEOREM A (associativity). Let be given a summable family of formal
series, ( f))1e > with sum g, and (L;);; a division (p. 25), possibly infinite,
of L, L=Y ;.1 Ly, then every subfamily (fi)icr is summable with sum

gi:'—"ZleL‘ fi, and we have g(:=ZleLfl)=Ziel gi

TueOREM B (products). Let (f,)1c1 and (g m)mem be two summable families.
Then the family (figm)a, mye Lx m 15 summable, and we have Ymerxy fildm=

= (ZIELfI) . (ZmeMgm)'

The generalization io a finite product is evident.
(I11) Multiplicable families of formal series

DerINITION C. A family of formal series ( f));cy, is called multiplicable if
for almost all (p. 38) leL, firstly the constant term of f; equals 1, sec-
ondly the coefficient a;,, of t, in f; equals 0, for each sequence pek such
that |u|>1. The product g=>", ¢ b,t* of this family is then defined by:

[12k]  b,:=the coefficient of t* in the finite product [ | f,, where I€L,
and o (fi—f,(0))<Iul.

We del’IOfe g=HlELfl'

For L =N, (f;) is multiplicable if the order w ( f;—f;(0)) tends to infinity,
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when / tends to infinity. For example, f;: = (1 +#,2,) is multiplicable. Every
finite family is evidently multiplicable, and we get back definition [12g]
for the product. Explicitly, for one single variable ¢ and one sequence ( f;)

of formal series, i=1, 2, ...,f,:=z,,>0 a; ,t", we have, if we write out the
bound variables #n; completely in (*):

2 LAY T ame) -

21 \m20

— nytnytees
= Y a0t =
n1,n2,,..20

n
Y ¢ ( ) P P, ),
nz0 nitnatee=n

where the last summation makes sense, because it contains only a finite
number of terms (cf. Definition C). (On this subject, see also p. 130.)

]

(IV) Substitution (also called composition) of formal series

THEOREM C. Let (g,)iep; be p formal series e C,[[t]] without constant
terms: w(g,)=1. We can ‘substitute’ g, for u;, ie[p], into every formal
series f=Y, sauteC,[[u]]. In this way we obtain a new formal series,
called the composition of f and g, and denoted f (g,, g5, ..., 9,) or fog,
which belongs again to C,[[t]]. By definition, fog equals the sum of the
summable familya,,, . (91)"...(g,)", where p= (s, 1, ..., t,)€6( = L).

For example, using [12c, d], it can be verified that

log(expt)=t, exp{log(l+1t)}=1+¢.

Now we want to find the formal expansion of A:=(1+1,+t,++
+1,)*eR,[[¢]]. Applying Theorem C, with f:=(1+u)*eR,[[u]], g:=
=ty +ty+--+1,€R,[[t]], we get by using [12e] (p. 37) for equality
(») and [10f] (p. 28) for (*x):

12 5 (=3,

nz0

(*%) x n!
™y ) D
030 (\1/ vt Fog=n vyl v, !
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which gives after simplifications:

[12m] (L+tj+t 4 1) =

Vi V2 vq
v () M
= vitvyteetvg -
Vi VgZ 0 VI!VZ!...VQ!
t“ X Vi V2 v,
(]
=ZA(X)M'_;= z (v v v tl tz ...tq ’
veq vi Vipees¥g 20 15 V2y:+05 Vg

with the notation [10c"] (p. 27).
Similarly, we obtain:

[12m] (1—t, —t,——t) " =
= Z <x>v1 +vz+---+vq'

Viges¥q 20 v1! Vz! ...vq!

r x £ g
=Y Opm= X by oy ) TG
veq VI vva,..,vq20 15 V25000 Vg

using an evident extension of the notations [7b] (p. 16) and [10c"]

(p. 27). ‘
We can also establish, using multinomial coefficients (v): = (v(, V2, -5 Vg)
of [10c”] (p. 27), the corresponding expansions for log:

(_ 1)v1+-'-+vq~1 x

Vi, vV2 Vg
(.1

log(1+t; +t, ++1)=

vityzt e tyg>1

(vl’ VZ""’ vq) LVe V2 LV
e 471y ...lq
vl + v2 +"'+ vq

5 oy,

HES vl

(—v) r.

MESEL

ti

—log(1 —ty —ty == — 1) =

(V) Transformations of formal series

With every formal series f=Y ,»0 @,t" in one indeterminate f, we can
associate the formal derivative, denoted by:

[12n] Df=df(t)= Y ona "t =Y (n+1)agat

dt W50 750
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and also the formal primitive:

tn+l

t
120 Pf = u)du= .
[(26] Pf=[fG)du= $ a2
0
All the usual properties hold: DPf=f, D(fg)=(Df).g+f.(Dg), etc.
The iterates of these operations can easily be found. For the derivation
we have:

D'f=3 (n)at" "= Y (m+1)10m,
nzk mz0
and for the primitivation we have:

tn+k

Pf=5%

a, ————— =
nso  (n+ 1),
t
" (t—x)t
= Ay m—— = | ———— f(x)dx.
.,.;k ) =1y /™)
0
These concepts can be generalized without difficulties to more inde-
terminates. For example, for f=) ¢ a,t” and aek, we define:

ag ozt tag

12 Pfe=e— —
[12p] f 6 ot ot St t)

D YRR ( 7) WY (% T S b DO ot
ViresVZ0

We mention here also the transformation that associates to every double

series f (X, )= m,n>0 @m,» X"¥" its diagonal series ¢(t)=Y ,5q  u".-

When f (x, y) converges, we have ([Hautus, Klarner, 1971]):
t\dz

2l o=y [ 7(=t)%.

|z}=2
where ¢ and |¢] are sufficiently small, so that f (x, y) is regular for |x] <e
and |y|<|t]/e. In general, it is tantamount to saying that the circle |z|=¢
contains all the poles of f (z, ¢/z) that tend to 0 when ¢ tends to 0. For
instance, for f (x, y) =3, , (m, n) x"y"=(1—x—y) !, where the (m, n)=

m+n N Lo . .
=( m ) are the binomial coefficients in the symmetrical notation (p. 8),
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the diagonal q:(t):}:nao(z:)t" equals the residue of (1 —z—1/z)"1z7!

inthe point z= (1 — (1 —4¢)"/?)/2,in other words (1 —4¢)~/2), This result
is of course well-known (see Exercise 22 (1), p. 81).

(VI) Formal Laurent series

These series are written analogously to the preceding, [12b] (p. 36),
but here the indices and the exponents y,, u,, ..., ¢ can take all integer
values 20, with the condition that the coefficients a,,, ... ,, that contain
at least one index <0, are almost all zero. For example:

(1) With one single indeterminate #: (241> +.--) ! =(£2(1~¢)~1)"!
=t 271

(2) With two indeterminates 7, and 1,1 ) £§'15%, py <p,<2p;+10,

where the integers p,, u, can be negative as well as positive or zero.
All the preceding: operations, summable families, derivation, etc., can
be easily done for such series.

(VII) Formal series in ‘noncommutative’ indeterminates ([ Schiitzenberger,
19617) '

Let X* stand for the free monoid generated by X (see p. 18) and let
fiu>a, be a map from X* into a certain ring 4 (u is a word over X).
If we write f as a formal series: f:=) , .z @, then the set A¥ of these
maps f becomes an algebra, called the monoid algebra X* if, for g:=
=) sexe bty We put f+g:=3, 2o (@, +b,) pand fg:=) , 5. c,u, where
c,=2. a,b,, the finite summation being taken over all pairs (%, 1) of
words such that 4 =y, in the sense of the juxtaposition product of p. 18.
If X is finite and if one considers the Abelian words of X, then the ordinary
formal series studied above are found back again.

1.13. GENERATING FUNCTIONS (abbreviated GF)

(I) Simple sequences

DEFINITION. Let be given a real or complex sequence (in this book actually
often consisting of positive integers with a combinatorial meaning), then
we call ordinary GF, exponential GF, and more generally, GF according
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to €., of the sequence a,, the following three formal series ®, ¥ and &,
respectively, where , is a fixed given sequence:

t"
[13a] &(t):= ) a,f*, P(1):= —, @ = "
( ) n;O ( ) ngo i n! ’ ? (t) ' ng:o ‘Qnant '

The most interesting case is that where (at least) one of the entire series
[13a] has a positive nonzero radius of convergence R, and converges
for |t|<R to a composition of elementary known functions; in this
case the properties of these functions can be used to give new information
about the a,. (For a detailed study of the relation between a, and their
GF, the reader is referred to any work on difference calculus; for example
[*Jordan (Ch.), 1947] or [*Milne-Thomson, 1933].)

Example A. a,,:=(:>, where xeR or C. Then di(t)=z,,>0<x> "=
n

=3 20 (X)ut"n!=(1+1)*, which converges for |t| <1 (if te C one chooses
the valu? of @(¢) that equals 1 for £=0). If we compare the coefficients
of £"/n! in the first and the last member of equalities [13b]:

[13b] Z (x+y) — —(1 P =1+t (L+1) =

-(z, @ ;) (5,007)

we obtain the Vandermonde convolution, in two forms:

I (RN

0<k<n

ol ("37) =2 () (70

(see also p. 26). Similarly, one shows, using 3,5 o(x), (1"/n!)= (I—2)"*:

[13d]  <x+ p,

2 (0)-on

0<k=<n

301 (730)= 50 ()

novwT)

3
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Example B. Fibonacci numbers. These are integers F, defined by:
[13¢] F,=F,.+F,,, n=2; Fo=F,=1.
We want to find the ordinary GF, @=),5,F,":
P=141t+Y (Four +F,op)t"=1+1d+ 0.

nzz

Comparing the first and the last member of these equalities we obtain:

1
13€ ¢ = Ff'= ——.
(3t ,,;0 N

If we decompose this rational function into partial fractions, putting the
roots of 1 —¢—1?=0 equal to —o, —f5, we get:

1 B o
[13¢] di:ﬁ (l—ﬁt_l—at)=

Hence, identifying the coefﬁcients of t"in [13f, g]:

n take also as initial conditions Fy;=0, F,=1 [*Hardy, Wright,
1965], p 148 in which case ®=t(1—t~—*)"! and F,=(B"—a")/\/5.)
Here we ﬁnd the golden ratio, f=1.61803... of the Renaissance architects.

-\
D
3

3]

Q

s+

=1
—-
o
e

n]O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fal1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
n | 16 17 18 19 20 21 22 23 24 25

Fn | 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393

Moreover, if we let || x|| denote the integer closest to x (x not supposed
to be half-integral), then [13h] shows easily that F,=[|"*'//5|.

The Fibonacci numbers have a simple combinatorial meaning: F,;, is
the number of subsets of [n]={1, 2,..., n} such that no two elements are
adjacent (Subsets with 0 or 1 element are convenient). In fact, according

pfoo‘js/
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to [8d] (p. 21), the number F,, of such subsets equals ), 7+l —Qp
Hence, it follows that F,,, =Z<p:11’)+z<";P > =F_(+F, (by [5e],
p. 10) and Fy=F, =1. Thus, the sequences F, and F, coincide, because they
satisfy the same defining recurrence relation. (See also Exercise 13, p. 76,
and Exercise 31, p. 86.) It can also be shown that the number G, of subsets
of [7] (p. 24) such that any two points are not adjacent, equals F,+F,_,
(subset ¢ is convenient), in other words G,=a"+p", G,=G,_,+G,_,
and ) 5 oGut"=(t+2t2)(1—1~1%)"1.

n O 1t 2 3 4 5 6 7 8 9 10 11 12
Go [0 1 3 4 7 11 18 29 47 76 123 199 322

More generally, defining (1—z—¢**)"1:=Y F(n,1)¢", it can be
proved that F(n+1, I) is the number of subsets B< [1n] such that any two
elements of B are always separated by at least /(>0) elements of (jB.
For subsets B[] with the same property, the number is G(n, /)
where (t+ (I+1) ') (1—z—1"1) "1 =Y oG (n, 1) ™.

(II) Multiple sequences

The concept of GF can be immediately generalized to multiple sequences.
We explain the case of double sequences. The three most used GF are
the following formal series:

t" k
¢(t)u):= Z a, kt"uk’ q](t’u):= z a”k_,_ll‘_"
mk=0 nikzo  ntkl
t'l
O(tu):= Y a,,— u*,
n k20 n!

the last one, @, being especially used in the case of a triangular sequence
(<>a,,,=0, if not 0<k <n). We now investigate the double sequence of

. . . n
binomial coefficients, a,,,k:=( ), as an example:

k

0= 20 5ol 6))

(1 +u) —{1—t(1+u)}“

nz0

RQLOY

i
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which converges if [¢(1+u)|<1.

O u)= 3 (”) ;t:i w3 2(1+u)"=exp{:(1+u)}.

n k=0 k

" u (”t) T
rw= 2, ()nw! o per () (=)

(ut)
- expt).l,(2/ut
kﬁhméw'(p)“J)
where I, (z): =Y 5 0(z/2)** (k ')~ 2 is the modified Bessel function of order
0; because this function is complicated, ¥ (¢, u) is not considered very
interesting.

(1i1) General remarks on generating functions

We return to the case of a simple sequence a,,.
(1) If the power series f(z)=1 .5 @,2" converges for all complex z
(<>f () is an entire function), then the Cauchy integral theorem gives:

: . 1 -n—1
[13]] a,= §;IJ f(@@)z dz,

where the integral is taken over a simple curve enclosing the origin, and
oriented counterclockwise. Usually, when f (z) is ‘clementary’, [13i] can
very well be used for estimating a, for great n by the Laplace method or
the saddlepoint method (see, for instance, [*De Bruijn, 1961]). In the
case that the radius of convergence of f (z) is finite, a Darboux type
method can be used (see p. 277).

(2) Of course one can associate with the sequence still others than
those of [13a]. For example:

n!

[13]] @)=} a

n20  n+1
1] A@)= ¥ gy
nz1 1 t

[0 NO=T

nz0

which are called respectively ‘factorial GF’ (mostly studied by [*Norlund,
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1924]), ‘Lambert GF’ (see Exercise 16, p. 161), and ‘Newton GF’ (see
Exercise 6, p. 221).

(3) Among the several GF defined in [13a, j, k, 1] are all kinds of rela-
tions that allow us to pass from one to the other. We cite for example:

&(1/z)=z [§ e"*¥(¢) dt (called the Laplace-Carson transform of ¥),
Q(2)= Jo ¥ 1o(1—1)dr.

1.14. L1ST OF THE PRINCIPAL GENERATING FUNCTIONS

() Bernoulli and Euler numbers and polynomials

Bernoulli numbers B,, Euler numbers E,, Bernoulli polynomials B,(x)
and Euler polynomials E,(x) are defined by:

t t te” r
14a] -——:=Y B, -, = v
[14a] d—1 ,.;o " nl e —1 ";)B,,(x)n!

2¢ 1 " 2e' £
———— T e I E ——— —
e¥+1 cht z e +1 2:()E"(x)n!'

n""
n20 n: n

[14b]

(Many generalizations have been suggested). Bernoulli numbers, denoted
by b, in Bourbaki, are sometimes also defined by:

te—1)"1=1-4t+ i (= D B*)(2k) !
k=1

Each B, is then >0, and equals (—1)**! B,, as a function of our Ber-
noulli numbers.

Their most important properties are:

[14c] B,=B,(0), E,=2"E,(})

[14d] B4y =Ep-1=0, for k=1,2,3,..

[14¢]  B,(x)=nB,-,(x), E,(x) = nE,_, (x)

[14f] B,(x+1)—B,(x)=nx""1,
E,(x+1)+E,(x)=2x"

4g] B =3 () B,

(05 (-2)

S
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[14h] B,(1=x)=(=1)B,(x), E,(1 =x)=(=1)"Ey(x).

For instance, [ 14d] follows from the fact that the functions #(e'— 1) 7' —
—B,—B;t and (cht)™! are even; [14¢] follows from the fact that, for
d:=te'*(e'—1)"!, we have 09[0x=1®, etc. (For a table of B, and E,,
see [*Abramovitz, Stegun, 1964], p. 810, for n<60, and [Knuth, Buck-
holtz, 1967] for n<250 and n<120. Applications are found in Exercises
36 and 37, pp. 88 and 89.) The first values of B, and E, are:

n_|o 1 2 4 6 8 10 12
s |1 L L1 15 el
2 6 30 42 30 66 2730
En |1 0 -1 5 —61 1385 —50521 2702765
n 14 16 18 20
B, 7 3617 43867 174611
6 510 798 330
En |—199360981 19391512145 — 2404879675441 370371188237525

(For more information about this subject, see, for instance, [ *Campbell,
1966], [*Jordan, 1947], [*Nielsen, 1906].)
We may also define Genocchi numbers G, by:

2t "
—— =t(l—thy)= ) G,—.
e€+1 ( 2) n; "n!
Then we have G,=Gs5=G,=-=0 and G,,=2(1-22")B,,=
=2mE,,,_,(0), which shows their close relationship with the Bernoulli
numbers (used in Exercise 36, p. 89 for ‘computing’ B,).

oL

n]t1 24 6 8 10 12 14 16 18 20
Gn |1l —1 1 -3 17 —155 2073 —38227 929569 —28820619 1109652905

(1) Some sequences of ‘orthogonal” polynomials

(Their most complete study is made by [*Szegd, 1967].)
We list their GF:

[14i]  The Chebishev polynomials of the first kind T,(x):
1 —1x

B =Y T(x)1".

L—2tx+ 2 5,

A6
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[14j]]  The Chebishev polynomials of the second kind U,(x):

! > U,(x) .

1—2tx +1¢2 .—nzo
After some manipulations this implies:

sin(n+1) @

14Kk =T, : ,
[14k]  cosngp =T, (cos ) o

= U, (cos ¢).
[14]]  The Legendre polynomials P,(x):
——#——_____ =Y P,(x)f".
J1-2tx+1 #50
[14m] The Gegenbauer polynomials C¥ (x):
Q=-2tx+3)"%= Y CP(x)r,

nz0

where aeC; hence C{'/¥=P,, C{"=U,). (These are also called ultra-
spherical polynomials. See Exercise 35, p. 87.)

[14n] The Hermite polynomials H,(x):
tn

exp(— 2 +2tx):= Y. H,(x)—.
nz0 n!

[140] The Laguerre polynomials L (x):

() “exp—— Y LO(x)" (xeC).

nz0

(II) Stirling numbers

The Stirling numbers of the first kind s (n, k) and of the second kind S (n, k)
can be defined by the following double GF:

"

[4p] (L+0f:i=1+ Y s(n,k);t;!u"

1<k<n

[14q] exp{u(¢ —1)}:=1+ T S(nk) ;’1_' o

1<k<n
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Because these numbers are very important in combinatorial analysis,
we will make a special study of them in Chapter V.
The double GF in their definition can be avoided, if we observe that:

(L+1t) =exp{ulog(l + 1)} =Y uk‘ﬂif_‘)=>

k>0 k!
(TGRS e
exp{u(e—1)} = z u* (e ;’l) =
g U DRI

(IV) Eulerian numbers

The Eulerian numbers A4 (n, k) (not to be confused with Euler numbers
E,, p. 48) are generated as follows:

1—u "o,
[14] At u):= T 1+ 5 A(n k) - u 1

It is easily verified that:
ou ou
(ll—uz)é‘; +(tu—1)é; +9«[=0,

from which follows, if we put the coefficient of 4*~*#"/n! in this partial
differential equation equal to 0, the following recurrence relation:

[14u] A(n+1,k)=(n—k+2)A(n, k—1)+kA(n k),
nz20, k22,

with initial conditions: 4 (n, 1)=1 for n20 and A (0, k)=0 if k>2. An-
other GF, denoted by U, is sometimes easier to handle:

[14v] AU (tu):=U (tu,l)—1+u{‘ll(t u)—1} =

1—u
=1 A k) —uf = ——
+1 e ( )n!u PR

N
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(A combinatorial interpretation and a table of 4 (», k) is given on p. 243.)

1.15. BRACKETING PROBLEMS
We will treat in some detail these famous examples of the use of GF.

(I) Catalan problem

Consider a product P of n numbers Xy, X,,... X, in this order, P= X, X; ...
X,. We want to determine the number of different ways of putting brackets
in this product, each way corresponding to a computation of the product
by successive multiplications of precisely two numbers each time ([ Cata-
lan, 1838]). Thus, a,=1, a;=2 and ¢, =5, according to the following list
of bracketings:

[15a] (X1X2)(X3X4)a {(X1X2)X3}X4’ (X (X.X3)} Xo
X {(X2X3) X} X ({X2(X3Xa)}

One could also suppose that the sequence, or word, S:=X,, X,--, X,
is taken from a set with a multiplicatively written composition law, which
is neither associative nor commutative; then g, is the number of correct
ways of putting brackets, also called well-bracketed words, in S. One can
also reason from a single element X € E, and observe that a, is the number
of ways we can interpret a product all whose » factors equal X in E. For
n=4 we get then for the list in [15a] the following:

[1s6] x2.X%, (X2.X)X, (X.X)X, X(X*.X), X(X.X%).

Notations [15a, b] become quickly clumsy and difficult to handle, but
we observe that any nonassociative product also can be represented by
a bifurcating tree. Figure 9 (corresponding to n=4) shows what we
mean. The height of the tree is the number of levels above the root R (it

S RRX TN A
i vavamiavs 3
R
(X, X)Xy X) {0 X)) %, X {06 X00]
x2x? (x.xHx X(x.x%)
{on X)X, X6 xx)
X)X X(x2x)
Fig. 9.
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is 2 for the first tree, and 3 for the four others). There are n—2 nodes, or
bifurcations different from R. ’
.We try to find a recurrence relation between the a,. The last multi-
plication, which ends the product of all factors X, 1» X3,... X, in this order
operates on a product of the first k letters and a product of the last n—k’
letters, for some k such that 1<k<n—1. The first k letters can be
.bracketed in ¢, different ways, and the (n— k) last ones can be bracketed
in different ways. Thus we get, collecting all possibilities as & ranges over

[n—1]:
[15¢]  a,= Z A a, g nxz2.

1<k<n—1

We put:
[lsd] (10:=0, a1:'-=1.

Let now A (r) be the GF of the a,. Then we get, using [15¢] for equality
(*) and [15d] for (#«) and Theorem B of p. 39 for (xx»):
A=A(t):= Y a"=t+ Y a,"

nz0 nz2

iy 2 Y aa,y)

n2z2 1sksn-1

&%
LI Z a,.a,,t"“‘
Bk>0

U (Y @) (Y af) =1+ W
hz0 k>0

=W -A+1=0, AW0)=0
FEON(1) =3 (1 ~ /1 — 41).
In the implication (x##x), we have considered U as a function of 1, hence
as solution of the preceding quadratic equation. The expansion of the

root with [12e] (p. 37) gives us then the required value of a,, which is
often called the Catalan number:

[15¢] a,,=-1! 2n—2 '
n\n—1

llJ 12345 6 7 8 9 10 11 12 13 14 15 16 17

We list the first few values of a,:

anl 1125 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670
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Let us finally mention two other representations of Catalan bracketings.
(1) Triangulations of a convex polyon (see also Exercise 8, p. 74). The
following example clearly explains the rule:

(6 XXX Xa)

(X, Xo) X)Xy

(X X X300,

XX X)X,

Xy (Xl X3 X4)

(2) Majority paths (from André, p. 22). Every path joins 4(0, 2) to
B(n~—2, n) with the following convention: any opening bracket ( signifies
a vertical step and any letter different from X, _, and X, a horizontal step.

B8 8 8 8 8
-
AE A A A A

OGXNX) (6K, (406X XX X5)Xa)  Xa(Xa(Xs Xa)

[T

Using Theorem B (p. 21), with p=n—2, g=n, we easily obtain [15¢].

(II) Wedderburn-Etherington commutative bracketing problem

([Wedderburn, 1922], [Etherington, 1937], [Harary, Prins, 1959]. For
another aspect of this problem, see [Melzak, 1968].)

We suppose E this time to be commutative, and we call the number of
interpretations of X" in the sense of [15b] (p. 52) now b,. Thus b,=1
and by =1, because X>. X=X.X? b, =2, because (X2. X) X=(X.X?) X =
=X(X.X*)=X(X2.X). If one prefers, one can also consider b, as the
number of binary trees, two trees being considered identical if and only
if one can be transformed into the other by reflections with respect to
the vertical axes through the nodes. Thus, Figure 10 shows that bs=3:

Fig. 10.
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We obtain again a recurrence relation, this time again by inspecting
the last multiplication performed, but now it depends on whether n is
odd or even:

byp1 =bybyy_y+ byby, 3+ 4 b,_1b,; p=2.

b,+1
b2p=b1b2p_1+b2b2p__2 +"'+ bp—lbp+1+< p2 ); P?l.

This can also be written, when we put by:=0, b,:=1, b,:=1, b, =0 for
x¢N, as follows:

by= ) bb;+1b,, +%(bn/z)2, nz2l,
0<i<j<n
i+j=n
B(t):=Y bt"=t+ Y t"( Y bb)+
nz0 nz2 0<i<j<n
i+j=n
(1)
+4 Zz Dot + % Z,Z (bu2)* 1"
Now: N
=Y bt =3(Y bttt -3 bH*)
: i>izo0 i,iz0 iz0
i
| =1(B* ()~ T, bi™).
iz0
Hence:

| B(t)=t+31B* (1) + 1B (Y.

This is a functional equation, which can be simplified by putting Z (¢)=
=1-B(t)=1-),5b,t"; then we get:

[15(]  @(2) =20+ (1) 6/(}7(/

é?\\///;ﬁt |1t 23456 7 8 9 10 11 12 13 14 15 16 17

(2?\ [1 11236 11 23 46 98 207 451 983 2179 4850 10905 24631
19 20 21 22 23 24 235 26

| 56011 127912 293547 676157 1563372 3626149 8436379 19680277 46026618

W
8@7 For a method giving an asymptotic equivalent, see [Otter, 1948]; after a

computation due to Bender, b,~0.31877662...(2.48325354---)"n " /2,
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(III) Generalized bracketing problem of Schrider ([Schroder, 1870])

We return to the noncommutative case, and we compute the number c,
of bracketings of X, X,, -+, X,, where we allow this time in each bracket
an arbitrary number of adjacent factors. For example, for n=4, we must
extend the list of [15a] by the following of Figure 11: (thus c¢,=11)

v oV N ¥

X1 X2 X3 X, X ( Xy X3 Xa) Xy { Xz X3) X,
(X Xy X)X, (X X)X X,,

Fig. 11.

X, X, (X, X,)

For a recurrence relation we consider again the last multiplication: this
time there are not just two factors to be multiplied, but /(>2), of which
1, factors consist of one letter, /, of two letters, etc. Hence:

[15¢] L+ ++1L_,+1,=1,
ll +212 + et (n— 1) ln—l + nl,,= n,

with I, =0, because />2. Now, there are I!/(/;!/,!...1,!) different ways
to arrange these / factors of the last operation, because the choice of a
particular sequence of these / factors just means giving a (I, /,,..., [,)-
division of [/] (cf. p. 27). Hence:

Cp = ——-—l'-—— iz, n=2, =0

St AT AT AR
where the summation takes place over the I, [,,...
122 (=>n>2). Thus:

Ci=Y ct"=t+ Y c,t

nz0 nz2
(g + 1+
ﬁz;'— (i) (cyt2)" ..

=1,

such that [15g] and

=t+

!l+!z+...)2

SR () (e
152 (40t -—ll 'l l..

(gz
=Y (et P+ ) =t4+ Y C=t+
_1;2(1 2 ) x>Xz: 1-C

=22C2-(1+1)C€+t=0, €(0)=0.
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Hence, when we consider €(¢) as a function of ¢, we get:

C)y=3(1 +1t—/1—6t+1%).
If we expand the root (1+u)!/2, u=
get by using [12m] (p. 41):

—6t+12, and rearrange the ", we

1.3.....(2n —2v - 3)

3n—2v2—v—2‘
vi(n—2v)!

[15h] e= 3 (=1)

0<y<(n/2)

In fact, the ¢, can be computed more quickly if we have a linear re-
currence relation for them. Such a recurrence relation always exists for
the Taylor coefficients of any algebraic function ([Comtet, 1964]), the
coefficients being polynomials in ». In the case of €(¢), which is clearly
algebraic, we get, with the necessary simplifications:

[151] (n—l)c,,H=3(2n—1)c,,—(n—2)c,,_1,

nz2; ¢ =c¢=1.

123 4 5 6 7 8 9 10 11 12 13

14

1 1 3 11 45 197 903 4279 20793 103049 518859 2646723 13648869 71039373

15 16 17 18 19 20
372693519 1968801519 10463578353 55909013009 300159426963 1618362158587
21 22 23 24 25

1.16. RELATIONS

DEFINITION A. An m-ary relation R between m(=2) sets Ny, N,,..., N,
isa (possibly empty) subset of the product set Ny X Ny x +++ X N,,,. An m-tuple
(X1s X2,°+5 Xp) is said to satisfy R, if and only if (x, x5,..., x,,) €R. If
N;=N,=---=N,=N, then R is called an m-ary relation on N, Rc N™.

The case that is most interesting for us, is the case of the binary (m=2)
relations on N, Re N2 In this case we denote uRv [or not uRv] if
(u, v)eR [or if (u, v)¢R]. For N finite, a good visualization of R is
obtained by numbering the elements of N, N:={x,, x,,..., x,} and then

cn| 8759309660445 47574827600981 259215937709463 1416461675464871 7760733824437545




58 ADVANCED COMBINATORICS

make a rectangular lattice consisting of n vertical lines V;, each corre-
sponding to an x;€ N, ie[n] and n horizontal lines H, each corresponding
as well to an x;eN (in Figure 12, n=7). The points of the intersections
of V; and H; represent the points of N 2, and each point of R is indicated
by a little dot e. For instance, in Figure 12, x,Rxs, not x¢Rx. The points
(x;, x;), ie[n] are the points on the diagonal A (see p. 3). The lattice
representation thus introduced can also be applied to any relation between
two sets N; and N,, if we think of N, as the ‘abscissa’, and of N, as the
‘ordinate’.

Another representation, called matrix representation of Rc N, x
x N,, |N,|=ny, |N,|=n,, consists of associating with this relation an
n, x n, matrix of 0 and 1, defined by ;, ;=1if (x;, x;)eR and 0 otherwise,
called the incidence matrix of R.

V, VUV Ve Vs Ve Y,

X4 H,
Xg He
X Hs
X4 H,
X3 Hy
X3 Ha
X, Hy

Xy X X5 X4 Xg Xg X,

Fig. 12,

DEFINITION B. Let R be a binary relation on N, R N2. (1) The reciprocal
or inverse relation of R, denoted R~ is defined by xR~ 'y<>yRx (the
lattice image of R™" is hence obtained from the lattice image of R, by re-
fection with respect to the diagonal 4). (I1) R is called total or complete,
if and only if forall (x, y)e N* xRy or yRx(<>RUR ™' =N?2). A relation
which is not total, is called partial. (111) R is called reflexive, if and only
if for all xe N, xRx (<>A4<R). R is antireflexive if and only if for all xe N,
not xRx (<> dnR=0).(IV) R is called symmetric if and only if xRy =>yRx
(>R =R"1). Risantisymmetric or proper, if and only if (xRy, yRx)=
=>x=y(<>RAR"1c4). (V) R is called transitive if and only if
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(xRy,yRz)=>xNRz. (VI) For xeN, the first section, or vertical section of
R along x is the subset {x I R of N consisting of the yeN such that xRy.
Similarly, the second section, or horizontal section {R [ y>, YEN is the set
of xeN satisfying xRy. If R is symmetric, then {x | R>=CR | xy. (VIII)
The first projection of R on N, denoted by pryR equals {x | xeN, IyeN,
xNy}. Similarly, the second projection is pr,R:={y | yeN, IxeN, xRy}.

Finally, we recall the two most important binary relations.

DEeriNITION C. An equivalence relation R on N is a binary relation, that
is reflexive, symmetric and transitive. Then we say that x and y are equiv-
alent, ifand only if xRy. The section (x | R)=<R | x) is called equivalence
class of x: this is the set of y that are equivalent to x.

The number w (n) of equivalence relations on N, |N|=n, in other words,
the number of partitions of N will be extensively studied (see p. 204).

DeriNITION D. An order relation R on N is a binary relation on N, which
is reflexive, antisymmetric, and transitive. Often x <y is written instead of
xRy. A set is said to be ordered, if it has been provided with an order
relation; if, moreover, for all x, yeN, x<y or y=x, then the set is called
totally ordered. The section (x| Ry ={v | x<v} is called the set of upper
bounds of x and the section (R | y>=<ul u<y} is called the set of lower
bounds of y. For x, yeN the segment [x, y] is the set of ze N such that
X<z<y. x<y means x<y and x+#y. A chain with k vertices (and length
k—1) connecting x, ye N is a finite set z,, 2, ..., z, such that x=z, <z, <---
. <z,=y. A lattice is an ordered set N such that for each pair (x, y) of
elements of N there exist: (1) an element beN, often denoted by xv y,
which is the smallest element of the set of upper bounds for both x and y
(also called least upper bound), in the sense that x<b, y<b and x<v,
y<v=b<v; (2) an element ac N, often denoted by x A y, the largest lower
bound of both x and y (also called greatest lower bound), in the sense that
asx,a<yand usx, usy=u<a.

The number d, of the order relations on N, [N|=n, equals the number of
T,-topologies of N ([*Birkhoff, 1967, p. 117]) and the existence of a
simple explicit formula seems completely impossible; even asymptotic
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estimates for d, when n — co turns out-to be a very difficult combinatorial
problem ([Comtet, 1966], [Harary, 1967], [ Kleitman, Rotschild, 1970],
[(J.) Wright, 1972]. See also Exercise 25, p. 229).

The following is the list of known values of d, and the numbers
dy of the nonisomorphic order relations (two relations are called isomor-
phic if one can be changed into the other by simply rearranging the
numbering of the elements of N. The value d, due to [Erné, 1974]).

AN

NN

7 [1 2 3 4 5 6 7 8 5
de |1 3 19 219 4231 130023 6129859 431723379 44511042511

d*» |1 2 5 16 63 318 2045

Actually, we can introduce the numbers D(n, k) of (labelled) order
relations of which the longest chain has k vertices (of course, d,=

=2.4D(n, k)):

nfk | 1 2 3 4 5 6 7 8
1 |1

2 |1 2

3|1 12 6

4 |1 86 108 24

s |1 840 2310 960 120

6 |1 11642 65700 42960 9000 720

7 |1 227892 2583126 2510760 712320 90720 5040

8 |1 6285806 142259628 199424904 71243760 11481120 987840 40320

N
(;{& 1.17. GRAPHS

Though we do not want to study graphs, we will sometimes use a little
of the language of graph theory, hence this and the next section. We
have to make a choice among the various current names of certain con-
cepts, since in this field, the terminology is not yet completely standardized.
Actually, this situation has some advantages, as it compels each publica-
tion on this subject to define its terms carefully. Any book on graphs
can be used as a first introduction to graph theory. (For example [ *Berge,
1958], [*Busacker, Saaty, 1965], [*Fiedler, 1964], [*Flament, 1965],
[*Ford, Fulkerson, 1967], [*Harary, 1967a, b], [*Harary, Norman,
Cartwright, 1965], [*Kaufman, 1968a, b], [*Konig, 1936], [*Moon,
1968], [*Ore, 1962, 1963, 1967], [*Pellet, 1968], [*Ringel, 1959],
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[*Sainte-Lagiie, 1926], [ *Sheshu, Reed, 19617, [*Tutte, 1966], and par-
ticularly, in the viewpoint adopted here, the attractive book by [*Harary,
1969].)

Let N be a finite set. We recall that a pair B of N is a 2-block of N
(=2-combination, or subset of two elements, p. 7); BeB, (N).

DErINITION A. A graph (over N) is a pair (N, %), in which % is a set
(possibly empty) of pairs of N, 9B, (N). The elements of N are called
the nodes or vertices of the graph, and the pairs (€9) are called edges of
the graph. One often says ““the graph 9" rather than ““the graph (N, %)”,
when the set N is given once and for all.

THEOREM A. Giving a graph % on N is equivalent to giving a binary relation
J on N, # N2, which is symmetric and antireflexive, called incidence
relation associated with 9.

W Define # by xfy<>{x,y}c% R

A convenient plane representation of a graph consists in drawing the
nodes as points and the edges as straight or curved segments, and ignoring
their intersections. Figure 13 represents N:={a, b, c,..., k, I} and ¢:=
;:{{a’ b}, {ba C}, {C, d}’ {caf}’ {d: e}s {da g}» {ey k}a {e’ f}’ {f, g}, {fu]};
{h, i}}.

Fig. 13.

DEFINITION B. Let (=P, (N)) be a graph over N. (1) An edge con-
taining a node x(eN) is called incident with x, and 9 (x) designates the
set of these edges. The number |9 (x)| of edges incident with x, also denoted
by 6(x), is called the degree of x. Two nodes x and y are called adjacent,
if {x, y}e9. Similarly, two edges are called adjacent if they have a node
in common. A node is called an end point or terminal node, if its degree
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equals 1; the edge adjacent to x (which is unique) is also called terminal.
Anisolated node is one with degree 0. (II) (N', ') is a subgraph of (N, 9) if
N'cN,9c¥9,9<P,(N’'); it is called a complete subgraph (or a
clique), with support N' if 9'=P,(N’). An independent set L(<N) in
a graph 9 is a set such that P, (LY 9 =9, hence is a complete subgraph
of the complementary graph, which is the graph G:=,(N)~%. (III)
A path or chain connecting a and b(eN) is a sequence of adjacent
edges {ay, x1}, {Xg Xa}s00es {X1=1, b}; this path {a, Xy, X3,..., X1, b}
is said to have length / (multiple points may occur, as in the case of the
path {j, f,c,d,e, f,g} of Figure 13). 4 cycle or circuit is a closed
path. (For instance, {c, f, g,d, ¢} in Figure 13.) An Euler circuit is a
circuit in which all edges of ¥ occur precisely once. A Hamiltonian
circuit is a circuit that passes exactly once through every node. (IV) A graphis
called connected if every two nodes are connected by at least one path.
(V) A tree is a connected acyclic (=without cycles) graph. The distance
between two points in a tree is the number of the edges in the (unique) path
Jjoining a with b (no repetitions of edges allowed to occur in this path).

We indicate now a way to draw a tree 7 of N. We choose a node x, (e V).
From x, we trace the edges connecting x, with the adjacent nodes (those
who have distance 1 to x,), say x; i, Xy,,,.... We arrange these on a
horizontal line (Figure 14). From these points, we trace the edges that
connect them with the points situated at distance 2 from x, (hence ad-
jacent to x, ; and not equal to x;), etc. A tree in which such a special

y
2
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point x,, the root, has been chosen, is also called rooted tree. The preceding
construction proves Figure 14.

THEOREM B. Each tree has at least two endpoints, and for n=3, at least
two terminal edges.

Another characterization of trees is:

THEOREM C. Any two of the following three conditions (1), (2) and (3)
imply the third, and moreover, imply that the graph % over N, |N|=n is
atree: (1) % is connected; (2) ¥ is acyclic; (3) 9 has (n—1) edges.

| (1), (2)=(3). In other words, by Definition B (V), any tree with n
vertices has n—1 edges. This is true for n=2. We prove the statement by
complete induction, and we suppose it to be true for all trees having up
to (n—1) edges. In a tree ¢ with n nodes, we cut off one of the terminal
nodes and its incident edge. The new graph obtained in this way is evi-
dently a tree, hence it contains (n—1) nodes, so |%’'| =n—2 according to
the induction hypothesis; hence |{%|=n—1.

(1), (3)=>(2). We reason by reductio ad absurdum. Suppose that there
exists (N, #), |N|=n, |%|=n—1, which is connected, and with at least
one cycle €. We break the cycle ¢ by omitting one edge. Thus we obtain
a new graph (N, %), still connected, with |%,|=n—2. We repeat this
operation until there are no cycles left, so we have a connected acyclic
graph (N, %), with n—1—1i edges, for some i> 1, which contradicts the
statement that (1), (2) imply (3).

(2), (3)=(1). If not, there exists (N, ¢), |[N|=n, |¢|=n—1, with two
nodes a, be N not connected by a path of 4. If we connect @ and b by a
new edge {a, b}, we obtain a new graph (N, ¢,), which is still acyclic,
with |4,]=n. Repeating this procedure, we finally obtain a connected
acyclic graph (N, ;) with n—1+i edges, for some i>1, which again
contradicts that (1), (2) imply (3). W

Let us now prove the famous Cayley theorem ([ Cayley, 1889]).

THEOREM D. The number of trees over N, |N|=n, equals n"~ 2.

There are many proofs of this theorem. One kind, of constructive type,
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establishes a bijection between the set of trees over [#] and the set [#]t" ™!
of (n—2)-tuples of [n], (xy, X3,..., X,—2), X;€[n]. ([Foata, Fuchs, 1970],
[Neville, 1953, [Priifer, 1918], and, for a generalization to k-trees, [ Foata,
1971]. See also p. 71.) Others follow the path of obtaining the various
enumerations suggested by the problem. ([Clarke, 1958], [ Dziobek, 1917],
[Katz, 1955], [Mallows, Riordan, 1968], [Moon, 1963, 1967a, b],
[Riordan, 1957a, 1960, 1965, 1966], [Rényi, 1959].) We give here the
proof of Moon, which is of the second type.

THEOREM E. Let T=T(N; d,, d,, ..., d,) be the set of trees over N:=
1={%1, X3, ..., X,} whose node x; has degree d,(>1), ie[n], where
dy+dy+ - +d,=2(n—1). Then:

[17a] T (n;dy, da .o dy)i=T(N;dy, day ..., d,)l
=y~ l,dy—1,...,d, — 1).

(We use here the notation for the muitinomial coefficients introduced in

[10c¢'], p. 27.)

Itis clear that T(n; d,, d,...)=0if d, +d, +--- #2(n—1), because every
tree over N has (n—1) edges (Theorem C., p. 63). We first prove three
lemmas,

LEMMA A. Let integers b;>1, ie[s], be given such that 3 ;_, b;=m. Then:
[170] (bys..., by) = k; (by, by ...y b —1,..., by).

(So, this formula is a generalization of the binomial relation (b, ¢)=
=(b-1, c)+(b, c~1), [5¢] p. 10.)

M Let be given a set M, |M|=m. The left-hand member of [17b]
enumerates the set p of divisions Z=(B,, B,, ..., B;) of M, where |B;|=
=b,, ie[s] (p. 27). Now we choose an xe M and we put p,={Z | ZPep,
x€B,}; then [17b] follows from the fact that:

p= Z pk’ ka[z(b19 bz,..., bk—l,..., bs)' .

1<kSs

Then the next lemma follows immediately:
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LEMMA B. Let be given integers a; >0, je[t] such that ) ;-\ a;=m. Then:

t
[t7c] (a3, 4a5,...,a,) = -21 (ay, az,..,a;—1,..., a,),
. J=

where the summation is taken over all j such that a;> 1. (If not, then the
multinomial coefficient under the summation sign equals 0 by definition.
Compare with [ Tauber, 1963])

Now we return to [17a], and we suppose that:
[l7d] d1>d2>> d”.
This amounts to changing the numbering of the x;,.

LemMma C. Summing over the i such that d,z2, the following holds,

[17e]  T(mdydy..od)y= 3> Tn—1;dq,....di—1,..,d, ).
idiz2
W It follows from [17d] and from Theorem B that d,=1. Let T,:=
1={J7 17 €T, x, adjacent to x;}. Hence i<n—1 and d;>2. Now
we have the division T=)_ T;, where we sum over all i such that d;>2.
Hence [17¢], if we observe that

Tl =1T(N —{x,};dy,...di— 1, ....dp-1)l. W

Proof of Theorem E. We prove formula [ 17a] by induction. It is clearly
true for n=3. Suppose true for n— | and smaller. Then, with [17¢] and the
induction hypotheses for equality (x), d,=1 for (*x) and [17c] for (x*x):

T(n;dy, dy, ..., d,) =
B Y @ =1, d =2, dyy — 1)

i,di22

(t—f) z (dl"],-..,di_Z,'-"dn—1)(*2*)[1721]' .

i,di=2
THEOREM F. The number L(n, k) of trees 7 over N such that a given node,
say x,, has degree k, equals:

[17f]  L(mk)= (Z - f) (n—1)y*1,
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B We have, using [17a] for equality (), and ¢;:=d;,—1, ie[n—1] for
(++), and [10f] (p. 28) for (s*+):
L(n k)® ¥ (dy—1,.sdy_y — 1,k —1)
ditetdny1=2n—-2~k

(x%)

crteeten—y=n—k-1

n—2
= CpsCayeeey Cy
(k— 1) €‘+...+£,=,._k-1( Lo )

(%) (Z: i-) (n—1y"*! m

(Cl, CZ, cesy C"_l, k - 1)

Proof of Theorem D. By Theorem F, the total number of trees over
N equals:

L(n k)= 5 Y (Z : i) (n— 1)1

k>1 k<n—1

=+ (=12 =n,

To finish this section on graphs, we discuss the Hasse diagram of an
order relation over N. This graph is obtained by joining @ and b if and
only if a<b and a<c<b=>c=a or c=b (<>b covers a). In this case b is
placed over a. For example, Figure 15 is the Hasse diagram of the order
relation < on N={a, b, ¢, d, ¢, f, g, h, i, j} defined by a<b, a<d, b<c,
d<e,d<f, e<c, f<c, g<i, g<h. If one wants to avoid, in this diagram,
the difficulty of putting every point on different heights, then one must
orient the edges; in this case one obtains a fransitive digraph, as in
Figure 16.

c
e i h f
A ;
d g J2
a
Fig. 15.
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1.18. DIGRAPHS; FUNCTIONS FROM A FINITE SET INTO ITSELF

(I) Digraphs in general

We call a 2-arrangement (x, y) of N an ordered pair, that is a pair in
which we distinguish a first element, (x, y)e?, (N), (see p. 6).

DErFINITION A. A digraph (N, 2) or directed graph (over N) is a pair, is
such that 9 is a (possibly empty) set of ordered pairs from N, D<=U, (N ).
The elements of N are then called the nodes or vertices of the digraph, and
the ordered pairs are called the arcs. One often says “‘digraph 2, rather
than “digraph (N, 2)", in case the set N is given once and for all.

Most of the concepts introduced in the previous section have their anal-
ogue in digraphs. For instance, the outdegree of x (€ N'), denoted by od(x)
is the number of arcs leaving x; the indegree, denoted by id(x) is the
number of arcs entering x. An oriented cycle is a cycle on which the
orientation of the arcs is such that of two consecutive arcs always the
first one is entering their common node, and the other is leaving it (or
vice versa). Other definitions are adapted in the same manner.

THEOREM A. Giving a digraph @ over N is equivalent to giving an anti-
reflexive binary relation J on N, §< N2, called the incidence relation of 2.

W Define I by: xJy<(x,y)e2 W

There is again a plane representation, analogous the one introduced
on p. 61, but with arrows added. Figure 17 shows a digraph and its
associated relation. If the relation was not antireflexive, we had to in-
troduce loops into the digraph. But digraphs with loops permitted and
relations are the same.

d
c —& i)
b ——®
. J
T
a b ¢ d




68 ADVANCED COMBINATORICS

(IT) Tournaments

DEFINITION B. 4 tournament (over N) is a digraph 2 such that every pair
{x1, x;3€PB(N) is connected by precisely one arc. If the arc x;x; belongs
10 2, we say that x; dominates x;. The score s; of x; is the number of nodes
X, that are dominated by x,. Usually, the nodes (e N) of D are numbered
in such a way that:

[18a] (0<) si<s;<<5, (Sm—1).

The n-tuple (s, s3, ..., 5,)€N" is then called the score vector of 9.

The relation # (the incidence relation on N) associated with 9 is hence
total, antireflexive and antisymmetric. Figure 18 represents a tournament
in which sy =5,=1, 5;=5,=2.

X4

X4 X2

Fig. 18.

THEOREM B. A4 sequence (sy, 5y, ..., s,) of integers such that [18a] holds,
is a score vector if and only if:

[18b] I; 5 = (;’)

k
[18] Forall ke[n], Y s> (’;)
i=1
B We only show that the condition is necessary. (For sufficiency, see
the beautiful book by [*Moon, 1968] on tournaments, or the papers by
[Landau, 1953] or [Ryser, 1964]. The reader is also referred to [*André,
1900] and [André, 1898-1900].) For all xeN let o (x) be the set of
arcs issuing from x, |4 (x;)|=s;; [18b] follows then from considering the
cardinalities in the division ) ;- ; 7 (x,)=2. On the other hand, for all
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K< N, the set of <§> arcs whose two nodes belong to X, clearly is con-

tained in ), x & (x); hence [18c], by considering the cardinalities of the
sets involved. W

(IIL) Maps of a finite set into itself

DEerINITION C. A digraph over N is called functional if the outdegree of
every node equals 0 or 1: VxeN, od(x)<1.

There exists a bijection between the set N¥ of maps ¢ of N into itself and
the set of such digraphs %. In fact, we may associate & with ¢ by
(x, y)eD <> (x)=y, y#x. In this case 2 is called the ‘functional digraph
associated with ¢’. Figure 19 corresponds to a ¢e[22]122.

20
3q Y, 18 021
B 12 ‘SI:)"”
19 o019
2
4 1 161
22 7 10
(o]

14 9 6 13
Fig. 19.

The map ¢ will be a permutation if, moreover, for all xeN, id(x)<1.

THEOREM C. The relation & on N defined by: xéy<>dpeN, 3qeN such
that ¢ (x)=¢%(x) is an equivalence relation. The restriction of ¢ to each
class of & has for associated digraph an oriented cycle, to which (possibly)
some trees are attached. Such a digraph is sometimes called an “excycle’
(Weaver).

The classes of & are the connected components of 2. In the case of
Figure 19, there are 5 excycles. In this way each map @eN" can be
decomposed into a product of disjoint excycles, this result being analogous
to the decomposition of a permutation into cyclic permutations. (For
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other properties of NV see, for example, [ Dénes, 1966, 1968], [Harary,
1959b], [ Hedrlin, 1963}, [Read, 19617, [Riordan, 1962a], [Schiitzenberger,
1968]. For the ‘probabilistic’ aspect see [Katz, 1955], [Purdom, Williams,
1968)].)

DEFINITION D. 4 map ¢eN" is called acyclic if each of its excycles is a
rooted tree. In other words, giving ¢ is equivalent to giving a rooted forest
over N, i.e. a covering of N by disjoint rooted trees.

For instance, the map ¢ of Figure 19 is not acyclic, but the following is:
Y (i):=i+1 for ie[21] and ¢ (22):=22.

THEOREM D. The number of acyclic maps of N into itself, that is, the
number of rooted forests over N, |N|=n, equals (n+1)"1.

M We adjoin a point x to the set N, and we let P:={x}UN; |P|=n+1.
Each tree T over P becomes a rooted forest if we chop off the branches
issuing from x. We call this rooted forest ¢ (T'). Its roots are just the nodes
adjacent to x in 7. This map establishes, evidently, a bijection between
the rooted forests over N and the trees over P, hence by Theorem D
(the Cayley theorem) (p. 63), |[P|?!~2=(n+1)""1. M

THEOREM E. The number of acyclic maps of N into itself, with exactly k

n—1 n—k
roots, equals (k— l) n""F,

M As before, by joining a (n+1)-th point x to each root, we get a tree
with n+1 nodes, in which x has degree k. Then apply [17f] (p. 65).

(IV) Coding functions of a finite set ([Foata, 1970]).

After labeling, we can work with the set [n]:={1, 2, 3,..., n}. Let us ex-
plain how to represent any map f of [#] into itself, that is to say any
Junction fe[n]'"), by a word x=x(f) in the noncommutative indeter-
minates (or letters) x,, x,,..., X,, where each x, is identified with the
element (or label) ie[n].

Every cycle of f (p. 69) supplies letters of a word, whose first letter,
or label, is its greatest element, the other letters following in the opposite
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direction of the arrows. For example, the cycle (5—21—11-5) of
Figure 19 gives x,,x5X;,. Now, juxtaposing from left to right the preceding
words by increasing labels, we get a word w, which represents the cyclic
part of f. Here, wo = XX 0X13X21X sX11X22X2X7X X 4. Considering then the
first leaf (terminal node x of the digraph, such that idx=0, odx=1, with
the smallest label), we construct a word w, which is the path joining this
leaf to wy, leaf excluded, root included, but written from root to leaf.
Here the first leaf being 3, we have w, = x,x4. The same operation applied
to the second leaf (here 4) with the path joining it to wow, gives a word
w, (here x,,). The third leaf (12) would introduce w3=x4x, and so on.
Finally, we define x=x(f) :=wow w,w;.... Here, x=x6X19X13X3;X5X1
X22X3X7X0X14X2XgX22X6X 1 Xg X1 7X6X 1 7X19X 7. Of course, no leaf is re-
resented in ¥, and the first repetition in ¥ ends the cyclic part of f. So,
it could be easily shown that x establishes a bijection between [n]'") and
the set [#]* of words with » letters (or n-arrangements, p. 18) on the
alphabet {x{, X5,..., X,}.

To train the reader to code and decode, the following examples are
given. (1) If f is the identity, then x=x,x,...x,. ) f (1)=1,1(2)=f (3)=
=..=f(n)=1; x=x}. (3) fis circular: f(1)=2, f(2)=3, f(3)=4,...,
fn=D=n, f(n)=1; x=X,Xu_y... %%, (4) f(1)=1, fR)=1, f(3)=2,
F@)=3,..., f(n)=n—1; x=x1x%3...%,-1. (5) f())=f(m+1)=1,
F@)=f (m+2)=2,..., f(m)=f (2m)=m; x=(X;X,...x,)%. (6) f(1)=
FQ)=1fB)=f(m+1)=2,f(4)=F (m+2)=3,..., f(m)=f (2m—2)=
m—1,f(2m—1)=f(2m); x=xix3...x%.

Instead of ¥=x(f), it could be useful to introduce the Abelian word
t=t(f), that is ¥ in which letters x,, x,, ... are replaced by commutative
variables 7, f,,.... So, in the case of Figure 19, we get t(f)=1,¢5t5t%

2, 2 3
totgtol Yol11l1al1al 172218 22-

(V) Enumerator of a subset of [n]™

Given Ec[n]™™, it would be worthwhile to consider the enumerator of
E, that is the (commutative) polynomial 7 =7 p=3 ;. t(f). Let us
give a few examples. (1) If E=[n]™"), then I =(t; +t,+---+1,)" (2)
If E is the set of functions of [n] for which 1, 2, 3,..., k are fixed points,
then 7 =t,1,... h(ty+ 1+ +1,)" % (3) If E is the set of acyclic func-
tions whose fixed points (roots) are 1, 2, 3,..., k, then F =(t,1,... t,)
(t 41+ 1) (L + 1+ +1,)""* L Of course, T g(1, 1, 1,...)=|E|
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So, the three preceding examples allow us to obtain (again) the numbers (1)
n” of functions of [n], (2) n"~* of functions with k given fixed points, 3
k.n""*"1 of trees with k given roots (especially Cayley if k =1). Similarly,
the coefficient of {5 ... in I (1, 15, ...) is the number of feE
such that x(f ) has o, occurrences of n,, &, occurrences of 1n,, etc.

For any division of E, E=E,+E, +---, we have T =T g+ T g+
obviously. Finally, let us consider a division of [n], [n]=3 A, aznd a
family of sets E; of functions, E;<[#]™}, having the following property:
every feE; acts on A; only, ie. feE,;=Vx¢A,, f(x)=x. Then the set
E=E\E,E;... of all functions which can be factorized =h0f05... (in
the sense of the composition of functions, here commutative), where
Ji€Ey, f,€E,, ... is such that T g =T g T gy

SUPPLEMENT AND EXERCISES

(As far as possible we follow the order of the sections. )

1. n points in a plane. Let N be a set of n points or nodes in the plane
such that no three among them are collinear. Moreover, we supposé that
each pair among the(;) straight lines connecting each pair of points is
intersecting, and also no three among these lines have a point in common
other than one of the given nodes. Show that these ’; lines intersect

each other in }n(n—1) (n~2) (n—3) points different from those in
&, and that they divide the plane into § (n—1) (n®—5n2+ 18n~38)
(connected) regions, including 7 (r— 1) unbounded regions.

*2. Partitions by lines, planes, hyperplanes. (1) Let be given n lines in the
plalee, each two of them having a point in common but no three of them
haYmg a point in common. These lines divide the plane into 4 (n*+n+2)
regions. [Hint: Show that the number a, which is asked satisfies the
relation @,=a,_,+n, a;=2.] (2) More generally, n hyperplanes in RF,

in general position, determine a(n, k) ‘regions’, with a (n, k)=Y%_ o(’f) =
I

n n—k— n—j— 1 —
=2"_yn 4! 2’( fc ); the number of bounded regions is (nk 1).

VOCABULARY OF COMBINATORIAL ANALYSIS 73

(3) For a system 2 of n lines, satisfying the conditions of (1), let a, ,(2)
be the number of regions with k sides in 2. Clearly, Y%, a, (%)=
y(n®+n+2) and Yio; ka, , (2)=2n%. It is an open problem to find some
lower and upper bounds for a, ,(Z), or even better, the values taken by
a, (2). (For more information about this problem see [*Griinbaum,
1967], pp. 390-410, and [*Griinbaum, 1972].)

3. Circles. n circles divide the plane into at most n* —~n+ 2 regions. The
(g) circles that are the circumscribed circles of all triangles whose vertices

lie in a given set N of n points (in general position) in the plane, intersect
each other in »'5 (n)s (2n— 1) points different from those of N.

4, Spheres. n spheres divide the 3-dimensional space into at most
n(n?—3n+8)/3 regions; n great circles divide the surface of a sphere into
at most n? —n+2 regions. More generally, n hyperspheres divide R* into

at most (” ; l) +35 0(’;) regions.

5. Convex polyhedra. F, V, E stand for the number of faces, vertices and
edges of a convex polyhedron. To show the famous Euler formula F+ V=
= E+2 [ Hint: For any open polyhedral surface the formula F+ V=E+1
can be shown to hold by induction on the number of faces] ([*Griinbaum,
1967] gives a thorough treatment of polyfopes in arbitrary dimension d,
with an abundance of bibliography and of open problems. See also
[*Klee, 1966].)

6. Inscribed and escribed spheres of a tetrahedron. Let be given a tetra-
hedron T, and let A4,, A,, A3, A, be the areas of its four faces. To show
that the number of spheres which are tangent to all four planes that
contain the faces of 7' (inscribed and escribed) is equal to 8—s, where s
is the number of equalities satisfied by A4, 4,, 43, 44, the equalities being
taken from A, +A,=A;+A,, Aj+Az;=A,+A,, Aj+A,=A,+4;
(hence 0<s<3). If possible, generalize to higher dimensions. (See
[Vaughan, Gabai, 1967] and [Gerber, 1972].)

7, Triangles with integer sides. (1) The number of non-congruent tri-
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angles with integer sides and given perimeter n equals [45 (n*+3n+21+
+ (—1)"7! 3n)] ([x] denotes here the largest integer smaller or equal to
x, also called the integral part of x). (2) The number of triangles that can be
constructed with n segments of lengths 1,2, ..., n equals %5 {1+ (—1)"} +

+% (n+1)+}(”;2) +%("*3+3),

8. Some enumeration problems related to convex polygons. Let A,, A

4, be the n vertices of a convex polygon P in the plane. We call lc}ia;;é;}
of P, any segment 4,4, which is not a side of P, We suppose that any
three diagonals have no common point, except a vertex. (1) Show that

the diagonals i in () interi i
g intersect each other in 4 interior points of the polygon,

ar.1d in % n(n—3) (n—4) (n—5) exterior points. (2) The sides and the
diagonals divide the interior of P into 3; (n—1) (1—2) (n®>=3n+ 12)
convex regions (in the case of Figure 20, we have 11 such regions)
and the whole plane into §(n*— 6n>+23n” — 26n + 8) regions. ’
(3) The number d, of ways to cut up the polygon 2 into (n—2) triangles
by means of n—3 nonintersecting diagonals (triangulations of P) equals

(i=1)"(*""#), the Catalan numb i i
n_2 ) alan number a,.; of p. 53; so, this number is

th.at of well-bracketed words with (n—1) letters. (The heavy lines in
Figure 20 give an example of such a triangulation.) [Hint: Choose a
fixed side, say 4,4, ; from each triangulation, remove the triangle with
4,4, as side; then two triangulated polygons are left; hence d =dyd, ,+
+dyd,_,4 -+ +d,_.d,; then check the formula, or use [ISC"] of p'."513.]

E

A
VR
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Moreover, 2(n—3) d,=n(dyd,_;+dody_2+ -+ d,-1d;). [Hint: Use the
two triangulated polygons on each side of each of the 2(n--3) diagonal

vectors ZZ] ([Guy, 1967a]. Very interesting generalizations of the
concept of triangulation are found in the papers by Brown, Mullin and
Tutte cited in the bibliography.) Finally, there are n2"~ 5 triangulations
in which each triangle has at least one side which is side of P, nz=4.
(4) There are (11(’:1: i’) < di 1> ways of decomposing P into d subsets
with @— 1 diagonals that do not intersect in the interior of the polygon
([Prouhet, 1866]). (5) There are /; ()5 (n*+ 18n*+43n+60) triangles in
the interior of P such that every side is side or diagonal of P. (6) Suppose
n even. The number of graphs with n/2 edges that intersect each other

outside of the polygon, equals (n+1)~ t (’:721) (in Figure 21 the 5 graphs

corresponding to n=6 are pictured). (See [*Yaglom, 19647 1, p. 14.) (7)
The number of broken open lines without self-intersections (= the number

/NGRS

of piecewise linear homeomorphic images of the segment [0, 1] contained
in the union of P with its diagonals) whose vertices are vertices of P,
equals n2" "’ (In Figure 20, BCAED is an example of such a line.)

([(Camille) Jordan, 1920].)

9. The total number of arrangements of a set with n elements. This number
P,i=Y0o (n), satisfies P,=nP,_;+1, nzl, Py:=1 and P,=n!x
S k=p(1/k!). Hence P, equals the integer closest to e.n!. Moreover, we
have as GF: Y50 Put"/nl=e"(1 —t)" .

10. ‘Binomial’ expansions of an integer. Let k be an integer >1. With
every integer n>1 is associated exactly one sequence of integers b, such

that n=(bl’)+(b2)+ +<b") and 0<b, <b, <---<b,. There also exists

2 k Ck+k
+ t I

2
0<¢ <cy<--<c¢, such that n= (C‘rl)+(62; >+
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11. Greatest common divisor of several integers. Let N:={a,, a,, ..., a,}

n

be a set of n integers > 1. Let P, be the product of the ( ) LCM’s of all

k
the k-blocks of N; show that the GCD of N equals P,PyP;.../[P,P,P;....

12. Partial sums of the binomial expansion. Show that for 0<<k<n—1:

a+b

k
=Zo (':) a" "'t =(n—k) (Z) f *fa+b—1t)*ds
b afb
n un-—k—l
=(n—k +by |
( )<k> (a ) f (l + u)n+1 du
0
(See also Exercise 2, (2), p. 72).

13. Transversals of the Pascal triangle. Show that (g) + <n—1— 1) + (n ; 2)

+-+=F,, the Fibonacci number (see p. 45) and Zk$n(’1;k) Xk =

=(B""'~A4"*')(B—A4)~!, where 4, B= (1 +./1+4x)/2. More generally,
let u, v, w be integers such that v>0, w>1, u<w and let:

n +
a,=a,(u,v,w):= (v>+(z+;)+(:::22::)+’
tD A b Sl
Z a,,t"= (1 t)

w30 (1 - t)w — tw—u'
([*Riordan, 1958], p. 40. See also Exercise 26, p. 84.)

then

Fig. 22.

14. The number of binomial coefficients. For each set E of integers >0,
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EcN, and every real number x>0 we put E(x):=En[0, x]. Let £ be
n

k
(one may even suppose that k <n/2). Show that |E(x)| =\/2x+o(\/x).

[Hint:letE: = {(Z) In> 2k} ;then E= ;s 2 By s hence: |E, (x)| S |E(x)|<

the set of values of ( ), where k and » are variables with 2<k<n—2

S|E, (xX)|+ Y>3 E (x)[]). (For a generalization to multinomial coeffi-
cients, see [Erdds, Niven, 1954].)]

15. Generalization of <Z > =0(modp) to multinomial coefficients ([ André,

1873]). Let M:={a,, a, ..., d,} (cN*) be a set of integers =1, not
pecessarily distinct. For n:=a, +a,+ -+ +d,, Theorem A (p. 27) shows
that the number n!/(a, la, !... a,!) is always an integer. This property
can be refined as follows. We put, for each integer d>2, M(d):=
={x 1 xeM,d divides x} and we let y(M):=maxy;,|M(d)|. Clearly,

0<y(M)<m, and y(M )=m if the a; are not relatively prime, y(M)=1
if each two among q; are relatively prime, and y(M)=0 if the q; equal 1.
Show then that the number {n—(m—7y(M))}!/(a, la; !... a,!) is always
an integer (for n prime and m=2 we recover Theorem C, p. 14).

16. Polynomial coefficients ([André, 1875], [Montel, 1942]). This is the
name we give to the coefficients of f(t)=(1+z+22+-+1971) 1=},

. . , 2
x}cq t*, for q arbitrary integer >0, and complex x. Evidently, (xk ) =

() 0 (1) 035 e e

[Hint: f=(1—-t9)*(1—1)"*]. (2) If x=n is an integer >0, then

k

(n, q) is the number of k-combinations of [#] having less than q repeti-
. . . . n
tions. Generalize the most important properties of the ( ) to these com-

k
binatorial coefficients: arithmetical triangle, recurrence relations, con-
gruences, etc., and prove the formula

, 2 [™2 fsingop\"
(n q) — JT (Slllg?) CcOSs (n (q — 1) — 2k) §D) dq) .
k o sin @

Using this integral representation, find the asymptotic equivalent
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oo W
(i) gy e

Here are the first values of trinomial coefficients (n;c3>=<"— L, 3>+

n—1,3 -1,3 .
+( k—1 >+(n k )(See also Exercise 19, p. 163):

mnEfo 1 2 3 4 5 6 7 8 9 10 11 12
0 1 . )
1 {11 1 SR
211 2 3 2 1

3013 6 7 6 3 1

411 4 10 16 19 16 10 4 1

5|1 5 15 30 45 51 45 30 15 5 1

6 |1 6 21 50 9 126 141 126 9 50 20 6 1
7 {1 7 28 77 161 266 357 393 357 266 161 77 28
8 |1 8 36 112 266 504 784 1016 1107 1016 784 504 266

L . 4 n—1,4 n—1,4
and of quad [ coeffi ™Y ? AN
quadrinomial coe c1ents< k ) ( 3 )+ +( ‘ )

*17. Arithmetic of binomial coefficients. In the following we denote the
GCD of a and b by (g, b); c | d means ‘c divides d, p stands for an

arbitrary prime number, and =means congruence modulo this p. (1) ( n) =

=[n/p], the integral part of n/p. (2) (pZI)EO, (pzl)s(—l)",

(";2)5(_1)" e+ 1) (P;3)E(_1)k <"‘2“2) (Lucas).

(3) If (k,n)=1, then n| (Z) (generalization of [6g], p. 14). (4) Let
1<k <p® and let a be the exponent of p in k: p° | k, p**1fk; then p*—°

mki0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 Ay b es W
1111 1 1 \\\f’!ﬁ?% !
2 {12 3 4 3 2 1 ‘

3013 6 10 12 12 10 6 3 1

4 {1 410 20 31 40 44 40 31 20 10 4 1

5 (1 5 15 35 65 101 135 155 155 135 101 65 35

6 |1 6 21 56 120 216 336 456 546 580 546 456 336

7 {1 7 28 84 203 413 728 1128 1554 1918 2128 2128 1918

8 |1 8 36 120 322 728 1428 2472 3823 5328 6728 7728 8092
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divides (p:) and p*~*! does not divide <p:) [(Cartier, 1970]). (5) If

(k,n)=(k,n—1)=1, thenn(n—1)| (Z) If (k+1, n+1)=(k+2, n+1)
=(k+2,n+2)=1, then (k+1) (k+2) | (Z) (Cesaro). For all m and n,

minl(m+n)!| (2m)!(2n)! (6) All (Z), n fixed, 0<k<n, are odd if and

Z) does not

equal any power of a prime number ([Hering, 1968], [Stahl, 1969]).
[ Hint: The exponent of p in n! equals [n/p]+[n/p*]1+[n/p*]+--.] (8)
Let @ and b be integers 0, written base p as follows: ag+a,p+a,p*+ -

and by+bp+byp>+--. Then (2 )=(%) (1) (?2)---. ([Lucas, 1878].
b)=\b,/) \b,/ \b,

See also [ Fine, 1947],[Carlitz, 1963b, 1967],[Howard, 1971, 1973]). [ Hint:
By [62], p. 14, (1+x)"=14+x, hence (1+x)*=(1+x)%(1+x")"

only if n=2/—1. (7) For 2<k<n-2, the coefficient <

(14 x7")%-...](9) The largest exponent of p in (a-;—b) equals the number
of carry overs in the addition of a and b base p (Kummer). (10) If

p=5, (pr :11> =1 (modp?®)(Wolstenholme) and, more generally, (I;p “1l>
=k — 1 (modp®) (Guérin). Many results mentioned here can be generalized

to multinomial coefficients with the methods given by [Letac, 1972]. (10)
n+1 n
2°" always divides <22,, )—(2,,2_1) (Fjeldstad).

18. Maps from [k] into [n]. (1) The number of strictly increasing maps
of [k] into [n] equals <Z> (2) The number of increasing maps (but not
necessarily strictly increasing) of {k] into [n] equals <Z>=(n+:— 1).
(3) The number of strictly increasing maps ¢ from [k] into [#] such that
x and @(x) are simultaneous odd or even for all xe[k], equals <Z>,

where g is the largest integer <(n+k)/2 (the so-called Terquem prob-
lem; for a generalization see [Moser, Abramson, 1969], [*Netto, 1927],
p. 313). (4) Compute the number of convex functions of [k] into [n].
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19. Sequences or ‘runs’. These are the names for intervals S={i,i+1,...;

i+s—1} contained in a given Ac[n] such that ScA and i—1¢4,

i+s5¢ A. Let g(A4) be the number of runs of 4. Then, the number of a-blocs

Acn] with r runs (|4]=a, p(4)=r) equals <‘;_—_i) (’1_‘:+1>. For

the circular a-blocks with r runs, Ac[A], p. 24, the number is
n (n— a-1

—( )( ) More generally, compute the number of divisions

n—a\ r r—1

A+ Ay +--+ A, =[n], where |4,|=a, are fixed integers >1, ie[c] and

for which Y5 ¢(4;)=".

*20. Generalizations of the ballot problem (Theorem B, p. 21.) (1) Let
D, q, r be integers =1, with g=rp. Show that the number of ‘minimal
paths’ of p. 20, joining O with the point B(p, ) such that each point

M(x, y) satisfies y>rx (instead of y>x in Theorem B), equals -

X

q
X (p ; q). (Forrreal >0, see [ Takdcs, 1962]).[ Hint: The formula evidently

holds for the points B(p, q) such that p=0 or g=rp; show next that if it
holds for (p—1, q) and (p, g—1), then it holds for (p, g) as well.] (2) If
in the preceding problem, the condition y>rx is replaced by y>rx, then
g+1-rp (p +q

+1 4
P be the probability that a path € of N joining O with the point B(p,, p,,
«+» Pg) is such that each of its points M (x,, x5, ..., X,) satisfies x, <x, <
<-+-<x, (integers p, satisfy 0<p,< <p,--- <p,). Then:

Ps
P= 1——= )
1ssnst<a< p,+t—s)

([*MacMahon, 1915], p. 133. See also [Narayana, 1959].)

the number of paths becomes ) (3) More generally, let

21. Minimal paths with diagonal steps ([Goodman, Narayana, 1967],
[Moser, Zayachkowski, 1963], [Stocks, 1967]). We generalize the concept
of minimal path (p. 20) by allowing also diagonal steps. Figure 23 shows
a path with 4 horizontal steps, 3 vertical steps, and 2 diagonal steps. (1)
(g9—p)/(g+p—d) is the probability that.a minimal path with d diagonal
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steps joining O with (p, g) satisfies x <y (exceptin O). (2) The total number
D(p, g) of paths (of the preceding type) going from O to (p, q) is called

Delannoy number. 1t equals Y, <Z) (‘D +Z_d> or also ) ,2° (5) <3)

We have D(p, q)=D(p,q—1)+D(p—-1,9—1)+D(p—1, q). Hence, we
get the following table of the first values of D(p, ¢):

apl0 1 2 3 4 5 6
. Toyr 1 i 1 1 1 1
L P11 3 5 7 9 11 13 A
AT 2l s 13 25 41 61 85— Ty
‘ 317 25 e 129 231 3717 ¢, 00
a1 9 41 129 32 681 12897 )7 4!
511 11 6l 231 681 1683 3653 -/ =7
611 13 8 377 1289 3653 8989

The GF Y., ,50D(p, q) x"»% is (1 —x—y—xp)~! and the diagonal series
Y50 D(n, n)t" equals (1—6¢+12)"1/2, (3) The total number of paths
joining O with (n, n), and diagonals allowed, is P,(3), where P, is the
Legendre polynomial [141] (p. 50). (4) Let g, be the number of paths with
the property of (3) and satisfying x <y (except at the ends). Then (n+2) x
Xqni2=302n+1)¢q,,,—(n—-1)4q,, q,=1, g,=2. Thus show that g,=2c,
for n=>2, where ¢, is the number of generalized bracketings (see p. 56).

*22. Minimal paths and the diagonal; Chung-Feller theorem. In the follow-
ing ‘path’ will mean ‘minimal path’ in the sense of p. 20. (1) The number
of paths joining the origin O with (n, n) equals u,:= (2:) Furthermore,

Y nso tnt"=(1—41)""/2, (2) The number of paths starting at the origin
0, and of length 2n and such that x# y, except in O, also equals u,. [ Hint:
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Use Theorem B, p. 21.] (3) The number of paths joining O with (n, n)

1
and such that x#y (except at the ends) equals f,:= (2_n_f) (2”) -

=u,/(2n—1)=(2/n).u,_;, n=1. Compute Y5, f,¢". (4) The number
of paths starting at the origin O, of length 2», and with exactly r points

(different from O) on the diagonal x=y is equal to 2’(2’1"_ r). Solve an

analogous problem for the paths joining the origin O with (p, q). (5) 4,
and f, are defined as in (1), (2) and (3); show that u,=fu,_, +fyu, ., +
+ -+ fug, n21. (6) Let b, , be the number of paths of length 2n with
the property that 2k segments (of the total 2n) lie above the diagonal
x=y, 0<k<n (in Figure 24, n=8, k=4). Let the abscissa of the first
passage of the diagonal (different from O) be called r(>1) (so, in Figure
24, r=3). Show that:
2bn.k = Z f;-bn—r,k—r + Z frbn—r,k'

1<r<k 1<r<n-k

3
B
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t 1 ¥ [l !
H v
TR ONS DU 00 S
mdmmgnnd. mbae
' T H T t
-_l__‘;’___- 3 __1___:
! T
| ooy
B R, Lo LR TEEE B
i \ ! !
) . H :- i
1, ' v 1 '
i ok [ Salnir el el
-l ' ' 1
o 1 ] I [ X
Fig. 24.

(7) Use this to show by induction (on ) that b, "=“k”n~k=<2kk> g

x (Z"_ik) ([Chung, Feller, 1949]., [*Feller, 1, 1968], p. 83). (8) Let

¢, be the number of paths of length 2# joining O with (n, n) such that
2k segments lie above the diagonal. Let r be as in (6) the abscissa of first
passage of the diagonal. Show that ¢, , does not depend on k, and that it

equals c,,:=1/(n+l).u,,=l/(n+1).(2nn>, a Catalan number of p. 53.
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([Chung, Feller, 1949], [*Feller, I, 1968], p. 94. See also [Narayana,
1967], [Poupard, 1967].) [Hint: The ¢, , satisfy the same recurrence
relation as the b, ; in (6). Then replace the f, by (2/r).u,_y, (3); change
the variable in the second summation, r:=n+1—r. The value of ¢, can
then inductively be verified.]

23. Multiplication table of the factorial polynomials. We consider the poly-
nomials (x),, m=0, 1, 2,..., [4f] p. 6; then the product (x),,(x), can be
expressed as a linear combination of these polynomials, and actually

equals Y, (1;(1) (Z) KY(X)mtn-r» where k<min(m,n). [Hint: Use
(U4t +u+tu)*=(1+1)* (1+u)* with [12m] p. 41.] Same problem for

. X X
the polynomials (m)’ {x>, and <m>'

24. Formal series and difference operator A. (1) With the notations of
[6e] (p. 14) show that )., A%(x")t"nl=e”(e’—1)* and that
Y aso AX(x") 1"l =™ (x— 1)k (2) If f=Y .50 fyt"/n!, then, with the
notations of pp. 13 and 41:

N k [k
£ @it ¥ ()
m20 m: h=0 h
(3) If fZanoantn’ then ZnBO(Akan) t”+k=(l_t)kf(t) and
Ynzo(dag) t"=(1+ )7 f (1(1+1)7").
25. Harmonic triangle and Leibniz numbers. Let us define the

Leibniz numbers by £(n, k)=(n+1)'1<z>'1=(k+1)“1(;;1})‘1_—_-
=ki{(n+1)n(n—1)--(n—k+1)} "' if 0<k<n, and &(n, k)=0 in the

other cases. The first values are:

201 30-t 201 51
301 60-1 60-1 301 6-1

mk | 0 1 2 3 4 5
0}1-1
1121 2-1
23 6-1 34
3|41 121 121 41
4|57
5671

Of course, £(x,k) could be defined for any real number
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x¢{-1,0,1,2,..., k—1} by the same manner. This “harmonic” .triang%e
of numbers has properties very similar to those of the ‘arithmetic
triangle’ (of binomial coefficients p. 12). (1) For k?l, L, k)+
+8(n, k~1)=8(n—1,k=1) and 37_, L(m, kk)=53(1—hl, k—1)—
+8(n,k~1). S0, Yo, 2(n k)=L(-1,k-1). (2)2,,=0£—l) L(n,h)=
=L(n+1,0)+(—~1)*L(n+1,k+1). (3) A (n ) =(—1)*L(n+k—1,k).
(4) The following GF holds: Y )
—~log((1 —t) (1 — ut
n+1_ k __ .
o}kzsnﬁ(n’k)t “= 1+u(l—1)

S0, T £(n k) u*=Y121((1+u))i) (1 +u)7 )1 7" and gpi=Y s
8, k) 1"t =Y (—DF i (1) T (1= 1) (—log (1 -7)) (See
Exercise 15, p.294). (5) Let I(n, k) be the ‘inverse’ of £(n, k); in other
words: b,=Y £(n, k) ay<>a,=), 1(n, k) b, (see p. 143). Then I(:r, k)=
=c(n—k) (k+1)!/n!, where A+ 1042124 ) =250 c(n)t‘, c(0),
c(D), c(2),...=1, =1, =1, =3, —13, =TI, —461,...(see Exercise 16,
p. 294).

26. Multisection of series. Let f be a formal series with complex coefli-
cients, f=f (t)=Y n>0 a,t" and w:=exp(2ni/v) a v-th root of unity, v an
integer >0. Then for each integer u, O0<u<v:

1v~1 — .
At + Ay T Ay g 0T = - kZO o™ f (0'1).

For example: (g>+(;)+(Z)+...=(’;)+(§)+<';)+...=2n—1, <g>+
+(;)+(Z)+---=§ (@"+2 cos (nm/3)), (r]')+<2)+<2)+=
4(2"+2 cos (nn/3)), (’11) + (Z) + (f;) 4o =4(2"+2 cos(n—~2) n/3),

(”)+<”)+(g>+...=-} (2"+2 cos(n+2) =n/3), and, more generally,
2

| (Vo (7 )+ 7)o

! v\z (2 cosj %)n cos(j(n -~ 2u) 7;)

Uj:()

(More in [*Riordan, 1968], p. 131. Cf. Exercise 13, p. 76.)
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27. p-bracketings. Instead of computing the products of the factors pair
by pair, as on p. 52, we take now p at a time, but still adjacent. We keep
p fixed >2. Then the number a, , of these p-bracketings (a,, ,=a, as

defined on p. 52) satisfies @, ,—y,+1,,=(1/k) <klz’]>,k>l, and a, , is

zero if n is not of the form k(p—1)+1. [Hint: t=y—y®, where
Yi=Yuzo a,,pt", then use Lagrange formula, p. 148.]

28. A multiple sum. We sum over all systems of integers Ciy Cayenny G20
such that ¢; +c,+ - +c,=n; show that a,:=) ¢;c, - ¢, =n(n*—12)...
e (n?—(k=1)2)/Qk — 1)) [Hint: Y050 ayt"=(Tpso mt™).]

29. Hurwitz series. A formal series f=),., f,t"/n! is called a Hurwitz
series if all of its coefficients are integers (€Z). When $) stands for the
set of all such series, show the following properties: (1) feH=-Df and
Pfe$ (D and P, the differentiation and primitivation operators are
defined on p. 41). (2) £, g€ §=/+4, f—4, fge$. (3) f, 4, go=+ 1=
=fg7'e9. (4) fe9, fo=0=>Y meN, f™/mle$. (5) f, 9€9H, go=0=
=foge$), where fog is the composition of g with f (p. 40). (6) fe$9,
So=0=f" e€$, where « is any integer Z0 and f<* is the «-th iterate of
S (p. 145), with the condition f; = 41 if @<0. (7) Let us consider

x*
f:f(x’y)_k,lzaoﬁ,lk! “5
a two-variable Hurwitz series, where the Taylor coefficients [« 1areintegers
(eZ).1ff5,0=0and f;, ;= + 1, then the implicit formal series y=o¢(x)=
=) ,>1 @,x"/n! such that f (x, ¢ (x))=0is also an Hurwitz series: every
¢n€Z (see [Comtet, 1968, 1974] and p. 153).

*30. Hadamard product. The Hadamard product ({Hadamard, 1893]; see
also [Benzaghou, 1968]) of two formal series fi= wso @yX", g:=
=Y ,50 b,x" is defined by fOg:=Y,50a,b,x". (1) The set of all formal
series with complex coefficients is an algebra for the operations + and O.
(2) Now we suppose that f(¢) and g (¢) are convergent in a neighbourhood
of 0, teC. Then:

von0=5, [r00 () -Cor@(})
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where the integration contour goes around the origin in such a way that
f(2) is analytic on the interior, and g(#/z) is analytic on the exterior, ¢
fixed and small. The symbol (,o means ‘coefficient of the constant term in
the Laurent series’. (Compare [12¢], p. 42.) (3) If fand g are expansions
of rational fractions, then fOg is too. Thus, for f:=(x*—sx+p)~1, p#0,
we have fOf=(p+x) (p—x)"1(p*—x(s*—2p)+x?)"!. More generally,
compute f " in this case. (4) If f is rational, and g is algebraic, then fOg
is algebraic ([Jungen, 19317, [Schiitzenberger, 1962]) (5) If f and g
satisfy a differential equation with polynomial coefficients, then fOg
does.

*31. Powers of the Fibonacci numbers. Let &, (t):=Y 5o Fit"= o(1))°"
with the F, p. 45 and the preceding exercise. Then:

1-2t-22 + ) D, (1)=1—1.

[Use that F,=(p"*'—a«"*')/\/5.] More genecrally determine explicitly
and inductively the sequence @, (¢). ([Riordan, 1962b], [Carlitz, 1962c],
[Horadam, 1965].)

32. Integers generated by cht/cost. We define the Salié’s integers S,, by:

cht £2n

p()i=—= 3 S2n@1')—!_'

cost nz0

We want to show that S,, is divisible by 2". More precisely, there exist
integers S3, such that

[#a] SZn = 2”5’2" s
[86] Sy =(— )@ (mod4).

([Carlitz, 1959, 1965c], [Gandhi, Singh, 1966]. We give the method of
[Salié, 1963].) (1) The expansion (chtu)/cost:=Y S8,,(u)t*"/(2n)!
defines polynomials S,,(u) such that S,,=Sy,(l), satisfying u*"=
—af2n u n
=Zh(—l)" h<2h) Sz;,(u). (2) Thus (1+u2) =20<,<,‘/2(—1)1(21>X

x22'8,,_2,(u). (3) Hence, by inversion, S,,(u)=Y 412" 2C(n, h)x
X (14+u?)""#*! where the C(n, h)are integers. (4) Moreover, C(n, 1)=1,
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C(n 2)= (’21), C(n,3)= (g) (n; 1) - (Z) (5) [#a] then follows from (3),

with u=1. (6) Hence, by (3), S3,=) n=y 2"7'C(n, ), so [#b] follows.
k (7) Show that S2n=zk(§]t>.|E2k|; E, is an Euler number (p. 48).

O\
~

7

PN~
"o—"2n_ |0 2 4 4 8 10 12 14 16
S | 1 1 3 19 217 3961 105963 3908059 190065457

33. Generating function of min. ([Carlitz, 1962a], where the GF of
max (ny, ny, ..., i) is also found.) Show that:

Y min (1, ny, ..., 1) 115 1 =
Ny, Az ey ez 1

lltz cee tk

T=-1)A—-t)...(1—-t)(A—tyt,... 1)

*34. Expansion of a rational fraction. Let R be the set of rational fractions
with complex coefficients in one indeterminate ¢:feR if and only if
f=P(t)/Q(t) where P and Q are polynomials, Q(0)#0. Show the
equivalence of the following four definitions: (1) R ‘is’ the set of sums
W(z)=Y g.yek b (1—Biz) "™, where b; ., preC, n; , integers >1,
and E a finite subset of N2 (2) M ‘is’ the set of formal series ) 5, 2,¢"
whose coefficients satisfy a linear recurrence with constant coefficients
;1 Y im0 €y =0, n=14. (3) R ‘is’ the set of formal series whose coeffi-
cients are of the form a,=)-, 4;(n) B;", n=n,, where the A4; are
polynomials, and the ;0. (4) R is the set of formal series f=) 5, a,t"
such that for each series there exist two integers d and g for which
HEV(f)=0 for all integers j>0, where H{“(f) are the Hankel
determinants of f:

a, Qnt1 - Quag—-1

H® (f):= An+t Qntz-e- Qi
" : .
Quvk~1 Aprk-e Apyog-2

35. Explicit values of the Chebishev, Legendre and Gegenbauer polynomials.
Use (1—1x) (1=2tx+1?)'=(1—tx) (1+£3)"(1—-2tx(1+¢2)~ 1)1
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(p. 50) to show that T,(x)=(1/2) Y o<men2(—1)"(n—m—1)!

{m!(n—2m)t}~*- (2x)"~*™ (compare Exercise 1, p. 155). Similarly,
calculate the polynomials U,(x) and C;(x) (from which P,(x) can be
obtained).

Finally, establish the following expressions with determinants of order n:

cos @ 1 0 0
1 2 cos ¢ 1 0
T,(cos ¢) = cos np = 0 1 2 cos g P
0 0 1 2 cos ¢!
i 1
U,(cosp) = poank LT (n e =
sin ¢
2cos@ i 0 0
11 2cos@ 1 0
10 1 2 cos @ 1
0 0 1 2 cos ¢:

.............................................

36. Miscellaneous Taylor coefficients using Bernoulli numbers. Use
thx=(e?*—1) (e*+1) " 1=1-2(e*>*—1)"1+4(e**—1)"!, and [l4a]
(p. 48) to show that thx= Zm>1 Bz,,,22"‘(22"‘ 1) x*~1/(2m)!. From
this, obtain: tgx=x+1x3+ x5 +4%x"+582:x7 4 11382 x1 .. =
=Y m>1 Bom(— 1)"'“22"'(22"' 1) xm= 1/(2m)! (See also Exercise 11 of
p. 258.) Complex variables methods can be used to show that the radius
of convergence of the preceding series equals =/2.

cotgx = x" 1 — Ix — JLox® ~ 52ox® — ploex’ —
2m_2m—1
=x 14+ VY B, (=15 "
m;l n (= 1) (2m)!
(sinx)™' =x"' +Ex+ 335 %’ + 70 X° + godvoeX +oo
x2m-1
—1 m+ 1 2m
=X B,.(—1 25" = 2) e,
mg an (=1 (Zm)!

Use this to obtain log(cosx) =35 (=1)" B,,2*" ' (2*"—1) x*"
m(2m)! and log((sin (x)/x)=Y 51 (= 1)"Byn2?™ ' x>™/m (2m)!.
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Put now {(s)=Y),5, n~° with s> 1. Use either the Fourier expansion

: ® Cos2nanx
B =2(— 1)1 (2k)! e
2 (x) ( ) (2k) ";1 (2’1n)2k

or the expansion in rational functions

cotgt =1/t + Yo, 2t(* — n®m?)™!
to show, by [14c] (p. 48), that
LQk) = @m~ ) [By| or Z £ (2k) t* = 4 — int cotg mt
20k it cotgmt.

Thus, {(2)=nr?/6, {(4)=n*/90, {(6)=nC/945, {(8)=nr"/9450.

Use this and Exercise 11, p. 258, ([ Chowla, Hartung, 1972]) to obtain
an explicit formula for the Bernoulli numbers, with only a simple sum
(p. 31) and [x], the greatest integer <x:
1+ [e,] 22 —1)(2n)! ¥ 1

- ——, where ¢@,= ———5—— .
2(2211 _ 1) ¢ 22n 1n2n kgl an

By, = (_ ])"—_l

(Compare with Exercise 4, p. 220.) Finally, prove that

1 —1 274/3 ) 1‘ 77:7[\/3 ) 1 =n2 1 __17714
n>1 (3" 27 7 azin) 97 azin2@M) 18 a3y 3240

37. Using the Euler numbers. We put B(s)=Y,5o(—1)"(2n+1)7%,
with s> 0. Then, by [14c] (p. 48), and using either the Fourier expansion

® sin(2n + 1) nx

Ey(x) = 4(—1)*(2k)! Z s (Gn + Do)

or the expansion into rational functions

® (=1 (2n+1)

3

cht hZod +(2n+ 1) 2’
show that
( / )2k+1
e+ 1) =0

Thus, f(1)=n/4, f(3)=n>/32, /3(5)=57r5/1536.
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38. Sums of powers of binomial coefficients. For any real number z, let us

denote B(n,r):=Yr-o (Z)’ Evidently, B(n,0)=n+1, B(n, 1)=2"

B(n,2)= (2:> (p. 154). (1) Prove the following recurrences: n*B(n, 3)=

=(Tn*=Tn+2) B(n—1,3)+8(n~1)*B(n—2,3) and n’*B(n,4)=
2(2n—1) (3n*-3n+1) B(n—1,4)+(4n—3) (4n—4) (4n—5) B(n—2, 4)
([Franel, 1895]). (2) More generally, for every integer r >0, the function

f,(t):=Y, (Z)’t"= (1+¢)°" is algebraic and B(n, r) (r fixed) satisfies a

linear recurrence of which the coefficients are polynomials in n. [ Hint: (4)
Exercise 30 p. 85, and [Comtet, 1964].] (3) For any real number >0,

we have B(f,2):=);%, (£)2=22”n‘”21"(,3+1/2)/F(/3+ 1). (4) For
any r>0, we have ([*Pdlya, Szegd, I], p. 42) the asymptotic result:

2rn 2 (r—1)/2
B(n,r ~\—/~(~) , n—>o.
r\nn

39. Transitive closure of a binary relation. For two relations R and & on
N, the transitive product Ro S is defined by x(R-S) y<>IzeN, xRz,

zSy. The transitive closure R of a relation R is the ‘smallest’ transitive
relation containing R (=the intersection of transitive relations containing

). Show that R=RURRUR-RoR U ...

40. Forests and introductions. We consider a graph ¢ over E (possibly
infinite), which is a forest. In other words, there exist trees (4;, &),
(45, #5)...such that E=4,+ 4, +- and ¥=of  + &, + -

(1) Show that E can be divided into two subsets ¥ and W, E V+ W
such that P, (V)=¥% and P,(W)<=Z (Z means the complementary
graph of ¢, p. 62). [Hint: Choose x;€4;, then divide 4, into V;+ W,
where ¥ is the set of xed; whose distance to x; is even (p. 62); then
take Vi=V,uV,u--.]

(2) In any meeting of citizens of a city X, the number of necessary
introductions is less than the number of people present at that meeting,
Show that the population of X can be divided into two classes, such that
in each of these two classes all people know each other.
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41. The pigeon-hole principle. (1) If (n+1) objects are distributed over
n containers, then one container at least contains at least 2 objects. More
generally, let € be a system of m subsets (not necessarily distinct) of
N, |N|=n, |€|=m, such that 3 5_,|B]=w. Then a sufficient condition
for b points of N to be h times covered by €, is w=(h—1)n+(b—1)x
X{(m—h+1)+1. (2) Let N be a set of n(>1) objects, not necessarily
distinct. For one of the two following is the case: (I) (a+ 1) objects are
identical; (11) (a+1) are distinct.

42. Filter bases. This is the name for a system & of N, ¥ < P'(N), such
that for 4, Be % there exists a Ce & such that C—= A n B. The number of

filter bases of N, |N|=n, equals Y 12} (Z) 2%“~1 and this is asymptotically
equal to n2%"7" 7! for n— o0, ([Comtet, 1966}).

43. Idempotents of & (N ) and forests of height <h. Let (N ) be the set of
maps of a finite set N into itself, F(N)=N¥, |N|=n; &(N) is also the
symmetric semigroup (or monoid) of N. A map feF(N) is called
idempotent if and only if for all xe N, f( f(x))=f(x). (1)fis idempotent if
and only if the restriction of f to its image f (N) is the identity. (2) The

number 1(n) of idempotent maps equals ZLI(Z) k"~* ([Harris,
Scheenfeld, 1967], [ Tainiter, 1968]).

5-“”?;:[1 2 3 4 5 6 7 8 9 10

) | 1 3 10 41 196 1057 6322 41393 293608 2237921

(3) Observe that 1+3,5 1(n) z"/nl=exp(ze®). Use this to give an
asymptotic estimate of 1(n). (Hint: Use the saddle point method ([*De
Bruijn, 1961], p. 77). (4) Let F(n, h) be the number of forests (p. 70)
such that the height of every rooted tree is <h (p. 70). Show that
F(n, 1)=1(n). Compute F(n, h) ([Riordan, 1968a]).

44. Finite geometries. Let S be a projective space of dimension n over a
Jfinite field K(=the Galois field GF(g)) of g=p" elements, where p is a
prime number. One often writes that S is a PG(n, q). E is the vector
space from which § is obtained; dim E=n+1. (1) The number of non-
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zero vectors of E is ¢"*1—1; use this to show that the number of points

of Sequals (¢"** ~1)/(g—1). (2) The number of sets of k+ | independent

points (obtained from (k+1) independent vectors of E) equals
k+1

q( 2) (¢"**=1) (¢"=1)---(g" " *** =1) (g—1)"*"*. (3) Deduce that the

number of projective varieties of dimension & in S equals:

(qn+l _ 1) (qn _ 1)"'((]”_“-‘ . 1)
@' -1 -10-@-1) °

(For other analogous formulas, see [*Vajda, 1967a, b]. Compare also
Exercise 11, p. 118.)

*45, Bipartite trees. Let a bipartition of a set P be given, M+ N=P
such that m=|M|>=1,n=|N}>1. Show that the number of trees over P
such that each of (m+n—1) edges of such a tree connects a point of M
with a point of N, equals m"~'»™~*. (On this subject, see [Austin, 1960],
[*Berge, 1968], p. 91, [Glicksman, 1963], [Raney, 1964], [Scoins, 1962],
and especially [ Knuth, 1968].)

46. Binomial determinants. We recall the notation (g, b)=(a:b>

(cf. p. 8). The following determinants of order r, taken from the table
of binomial coeflicients satisfy:
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(a, b) (a, b+ 1)
(a +'1, b) (a+1,'b+1)

(a,b+r—1)
(@+1L,b+r—-1)

(a+r.—— 1,b) (a+;~_.1,b+1)...(a+r—1,'b+r-—1) -
=(a, bYy(a+1,b)--(a+r— 1, b)
(0,5) (1, b)--(r—1,b)

Generalize this to determinants extracted from the table of binomial
coefficients with row or column indices in arithmetic progression. (See
[Zeipel, 1865] and [*Netto, 1927], p. 256.)

*47. Equal binomial coefficients. Determine all solutions in positive in-

v y 10 16 14
tegers u, v, x, f = . E ; = = =
Jod " y o (u) (x) xamples <3) (2> 120, (6)
=( 5>=3003.




CHAPTER 11

PARTITIONS OF INTEGERS

The concept of partition of integers belongs to number theory as well as
to combinatorial analysis. This theory was established at the end of the
18-th century by Euler. (A detailed account of the results up to ca. 1900
is found in [*Dickson, II, 1919], pp. 101-64.) Its importance was enhanced
by [Hardy, Ramanujan, 1918] and [Rademacher, 1937a, b, 1938, 1940,
1943] giving rise to generalizations, which have not been exhausted
yet. We will treat here only a few elementary (combinatorial and alge-
braical ) aspects. For further reading we refer to [*Hardy, Wright, 1965],
[*MacMahon, 1915-16], [Andrews, 1970, 1972b], [*Andrews, 1971],
[Gupta, 1970], [Sylvester, 1884, 1886] (or Collected Mathematical
Papers, Vol. 4, 1-83), and, for the beautiful asymptotic problems, to
[*Ayoub, 1963] and [*Ostmann, 1956]. We use mostly the notations of
the tables of [*Gupta, 1962], which are the most extensive ones on this
matter.

2.1. DEFINITIONS OF PARTITIONS OF AN INTEGER nn

DEFINITION A. Let n be an integer > 1. A partition of n is a representation
of n as a sum of integers > 1, not considering the order of terms of this
sum. These terms are called summands, or parts, of the partition.

We list all partitions of the integers 1 through 5:1; 2=1+1;3=2+1=
=14+141; 4=3+1=2+2=2414+1=1+14141; 5=441=342=
=341+1=242+1=24+1414+1=14+14+1+1-+1.

It is important to distinguish clearly between a partition of a set (p. 30)
and a partition of an integer. But in the first case as well as in the second
case, the order of the blocks and the order of the summands respectively does
not play a role, and no block is empty, just like no summand equals zero.

Let p(n) be the number of partitions of n, and let P (n, m) be the number
of partitions of n into m summands. Thus, by the preceding list, p(1)=1,
p(2)=2, p(3)=3, p(4)=5, p(5)=7 and P(5,1)=P(5, 4)=P(5,5)=1,
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P(5,2)=0(5,3)=2. Clearly, p(n)=Yr_, P(n, m) and, since the order
of the summands does not matter, we have: '

DEerINITION B. Each partition of n into m summands can be considered as
a solution with integers y, 21, ie[m], (the summands of the partition) of:

a]  pi+ytdpu=n, p>yz2y,21.

With such a partition, we can associate a minimal increasing path (in
the sense of p. 20) starting from (0, 1), with m horizontal steps and
with area contained under its graph equal to n. Figure 24’ clarifies this
idea for the partition 1+3+3+5 of 12. But the interpretation related to
Ferrers diagram (p. 100) will turn out to be more rewarding.

Fig. 24'.

THEOREM A. Giving a partition of n, in other words, giving a solution of
[1a], is equivalent to giving a solution with integers x,>0 (the number of
summands equal to i) of:

[1b] Xy +2%y -+ nx,=n (alsodenoted byx; +2x, 4= n).

If the partition has m summands, we must add to [1b] the following
condition:

[1c] Xy + Xy 4+ x,=m (alsodenotedbyx, + x, +---= n).

B Evident. B If (x,,, x;,,...) are the nonzero x; in [1b], we call the
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corresponding partition ““the partition with specification i3' i3”...”", omit-
ting the exponents x, which equal 1. Written in this way, the partitions of 5
become 5, 14, 23, 123, 122, 132, 1°.

We write p(n, m) for the number of partitions of » with at most m
summands, or also ‘distribution function’ of the number of partitions of
n with respect to the number of summands, p(n, m)=) i~ P(n, k),
P(n, m)=p(n, m)~p(n, m—1). (The analogy with a stochastic distribu-
tion function will be noted.)

THEOREM B. If m>n>1, then p(n, m)=p(n), and for n>m>2:

[1d] p(@,m=p(n,m=1)+pn—-m,m); p(n 1)=1, p(0,m):=1.
M p(n, m) is the number of solutions of [1b] that satisfy x; +x, +---<m
also. So we divide the set of solutions into two parts: first the solu-
tions of [1b] that also satisfy x, +x,+ - <m—1; there are p(n, m—1)
of these; then the solutions of [1b] which also satisfy x; +x,+---=m;
these are just the solutions of x,+2x3+-=n—m and x,+x3+--<m
(since x, >0); hence there are p(n—m, m) of these. W

The following table shows the first values of p (n, m) (boldface printed:
p(n)). (See also [*Gupta, 1962], n<400, m<50. For a table of p(n, m)
and p(n) see p. 307.)

mun |0 1 2 3 4 5 6 7 8 9

111 1 1 1 1 1 1 1 1 1

2101 1 2 2 3 3 4 4 5 5

341 1 2 3 4 5 7 8 10 12

e 411 1 2 3 5 6 9 11 15 18

/ 511 i 2 3 5 7 10 13 18 23

5, “ W 61 1 2 3 5 7 11 14 20 26
._ LA AR 1 2 3 5 7 11 15 21 28
1) 81 1 2 3 5 7 11 15 22 29
Vo9l 1 2 3 5 7 11 15 22 30

2.2. GENERATING FUNCTIONS OF p(i1) AND P(n, m)

THEOREM A. The generating function of the number p(n) of partitions of
n equals: : '
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[2a]  &():=1+ ;p(n) =Tl (-1 =

1
(-9 =-A =)

M The family of formal series u;:=(1—¢)"'=1+¢+1>+-.. is indeed

multiplicable, since o (u;— 1)=1i (cf. p. 39). If we let x; stand for integers
=0, we obtain;

o] TLA-O" =TT+ + )=

iz i1

— H < Z tix;) — Z tx1+2xz+--~,
iz1

x; 20 X1y X2, ... 20

and this proves that the coefficient of " in [2b] is just the number of
solutions of [1b] p. 95, hence p(n). W

One could prove that @(¢), written in the form [2a] as a series or as an
infinite product, is convergent for J¢]<1.

For given integer n, the actual computation of p(n) by [2a] is evidently
performed by just considering the finite product [ 7., (1—¢%)".

THEOREM B. The generating function of the number P(n,m) of the
partitions of n into m summands equals:

[2c]  @(u):=1+ Y P(m) "= H—u)'=

1<m<n
<

B 1
(w1 —u?) (1 = ub) .

M As in the preceding proof, we have:

LA IL-u = (3w =

izl izl \y20
Z: X1+ 2x3+ .-
Padl 2 uxl+xz+ .

X1, X2, ...20

Hence indeed the coeflicient of 1"4™ in [2d] equals the number of solutions
of [1b,c] (p. 95). M
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2.3. CONDITIONAL PARTITIONS

More generally, let p(n | 2., #,) be the number of partitions of n such
that the number of summands has the property &, and the value of
each summand has the property £,; we indicate by a star » the absence
of a condition (notations from [*Ayoub, 1963], p. 193). Thus, p (1, m)=
=p(n| <m,*), P(n,m)=p(n | m, %). We also denote the number of
partitions of n, that satisfy 2, and £, in the sense above, and whose
summands are all unequal, by q(n | 2,, 2,). Thus, q(n | *, <r)is the
number of partitions of # into inequal summands, that are all <r.

THEOREM A. Let:
[3a] E@u):= Y pn|m S)rum

n,m20

then:

[3v] X p(r|sN=E@1I)

nz0

[3¢] Y p(n|even, )" =3{E 1)+ E(,-1)}
Bd] T p(n|odd &) =4{E( )= E(t— D}

n20

[3¢] Y., p(n| <m, L)t = (L —u) ' E(t,u).

n,mz20

Analogous inequalities hold when everywhere in [3a, b, c,d, e] if p is re-
placed by q.

M [3b] follows from p(n|* F)=Y,» p(n|m &); [3] from
p(n]even, #)=Y o p(n|2m, &); [3d] from p(n | odd, &)=
=Y msoP(n| 2m+1,);[3e]fromp (n| <m, #)=Yi=op(n |1, ). M

THEOREM B. Let U be an infinite matrix consisting of 0 and 1,
U=[oy, ], i=1, j=0, a; ;=0 or 1. Denoting by p(n | m, W) the number of
partitions of n into m summands such that the number of summands equal
to i, equals one of the integers j=>0 for which o; j=1. Then we have:

B Y p(|murem=T] (z a,.,,uxt‘x).

n,m20 izl \x20

where the (bound) variable x takes only integer values.

PARTITIONS OF INTEGERS 99

B The number of partitions of the indicated kind is equal to the number
of solutions with integer x;>0, i=1, 2,..., of:

[3¢] %y +2x; +-=n, X+ xp+=m,
xie{jljzoaai,j=1} (Qai,x;=1)~

Now, the right-hand member of [3f] can be written:

I1 ( y ai,x‘u"‘t"“) -
i1 x20

= ) g% U

X1y X2y 0o Z

mibxboe it 2n b
which proves that the coeflicient of «™¢" is just equal to the number of
solutions of [3g]. W

For example, if o, o=, =1 and o ;=0 if j>2, then we have
p(n| m, W)=Q(n, m)=the number of partitions of n into m inequal

! summands; hence, by [3f]:

[3h] ¥(tu):=1+ ZIQ(n, m)t"u"'=‘]>—[l (1 + uf’).

n,mz

Similarly, with ¢(n)=the number of partitions of » into inequal sum-
mands=3}", >, Q(n, m), we obtain with [3b, h]:

[3i] Y, 1)=1+ Zlq(n)t"=l>_[1 (1+1).

OC/Here are a few values of ¢g(n):

{7\0 n||

With the same method, or otherwise, we get also:

[3i] 1+ Y plm<hrum= [ (1—u)™?

7 89 10 11 12 13 14 15 16 17 18 19 20 21 22
5

6
4 6 8 10 12 15 18 22 27 32 38 46 54 64 76 89

n,m=1 1$§Sl
[(3k] 1+ Y q|m<g<Deu™= [] (1+uf).
n,mz1 1<Li<l

2.4, FERRERS DIAGRAMS

A convenient and instructive representation of a partition of » into sum-
mands y; such that [ 1a] p. 95 consists of a figure having m horizontal rows
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of points (the lines), the bottom one having y; points, the next to bottom
one having y, points, etc., in such a way that the initial points of every line
are all on one vertical line; hence the number of points on every vertical
line or column decreases going from left to right. Such a figure, the
Ferrers diagram (or relation), clearly determines a unique partition of
n. For example, Figure 25 shows the diagram of the partition 6+5+5+
+24+241 of 21. If one considers the columns from left to right, the

N

.
o---o
®---0
0---@---@.cc0---0
0--@--@-arg---0

- @---8---@---8--4

Fig. 25.

number of points in these will constitute another partition of n, with
summands z,, 2, ..., which is called the conjugate partition of the partition
with summands ,, , .... In the case of the figure shown, the conjugate
partition is 6+5+3+3+3+1. Certain properties of a partition
$1+y,+ -+ have an immediate translation into terms of the conjugate
partition. Thus we bhave:

THEOREM A. The number of partitions of n into at most (or exactly) m
summands is equal to the number of partitions of n into summands that are
all <m (or whose maximum is m), in other words, the number of partitions
of n+m whose maximum summand equals m.

THEOREM B. The number of partitions of n into unequal odd summands
equals the number of ‘self-conjugate’ partitions of n (that is, whose dia-

gram is symmetric with respect to the line x=y).

M Theorem A is evident. For Theorem B, we associate with every
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partition (2z,—1)+(2z,—1)+---=n, where z,>z,> ..., the partition
whose diagram is obtained by ‘folding’ the rows of the original diagram
in the middle, so they form the sides of isosceles straight-angled triangles,
and fitting them then one by one, beginning with the largest, into each
other. For instance, Figure 26 corresponds to 11 +7+341 -5 6+5+4+
+4+24+1. A

4

s e
. * ¢ e
e i b

——— P
[ TEEN TN PERN SRR SINP O S ® @@ @eane Y
[ JECOY JUSEY TEPI FDINY FRRIP PRI SO PRI Sy ;4.. ) Y
Fig. 26.

THEOREM C. Let qo(n) (or q,(n)) be the number of partitions of n into
an even (or odd) number of inequal summands. Then:

- -
[4a] qo(n) ~q,(n) = (- i n_»ﬁz“

0 otherwise.

(This theorem is due to Euler; the proof given here is due to [Franklin,
1881]. See also the paper by [ Andrews, 1972a] which applies the Franklin
type technique to various other problems.)

B Let gqy=qo(n) (or q,=q,(n)) be the set of Ferrers diagrams of the
partitions of 7 into an even (or odd) number of unequal summands. For
each diagram D (Figure 27a) we denote the ‘northernmost’ horizontal
line of D by n=nu(D) (quite possibly [n]=1); we denote by e=e(D)
the ‘easternmost’ line that makes an angle of 45° with the horizontal
direction (|e[>1). Now we define D'=¢ (D) as the diagram which is
obtained by sliding n down to the east, if |n|<|e| (Figure 27a) or by
transporting e to the north, if [n}> |e| (Figure 27b). This transformation
¢ is defined in qouq,, except if [nnej=1, with |n]=le| (Figure 28a)
or with [n|=|e|+1 (Figure 28b). Let a, and b, (or a, and b,) be the
set of Deqq (or q,) corresponding to the case of Figures 28a and b.
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12 ¢

(a) (b)

Fig. 27.

s 8 0 0 0 0 0 0 o0,
=

" :::\.'\ ’ SN
p 3
(a) (b)
Fig. 28.

Clearly ¢ is a bijection of qo— (a,+b,) onto g, —(a, +by). Thus:

[4b]  qo(n) — 41 () = laol — lqs| = Iaol + Ibo| — |a;] — [by| :=
:=a0+bo_a1_bl.

Now, in the case of Figure 28a, n is of the form k+ (k+ 1)+ -+ (2k—1)=
=(3k2—k)/2, while in the case of Figure 28b, n=(k+1)+(k+2)+
+ -+ +2k=(3k?+k)/2, with k:=|e|=the number of summands of D.
Hence a,, by, a;, b, equal 0 except a, (or a;)=1, if n=3k*—k)/2 and
k even (or odd), and b, (or b,)=1, if n=(3k*+k)/2 and k even (or odd).
This implies [4a] if we substitute these values into [4b]. I

The concept of a Ferrers diagram can be generalized easily to higher
dimensions. We call a d-dimensional partition of n, for d>2, any set F
containing »n points with integer coordinates >1 in the euclidean space
R* that satisfies the condition that (a,, a,,..., ;)€ F implies that all
points (x,, x,,..., X4), Where 1<x;<a; with ie[d], also belong to F.
Let p,(n) be the number of these sets F. Clearly p, (n)=p(n). A beautiful
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result of MacMahon states ([ *MacMahon, II, 1916], p. 171):

R WNOTES|
but the proof is very difficult ([Chaundy, 1931, 1932]). No other simple
GF for d>4 is known. ([Atkin, Bratley, Macdonald, Mackay, 1967].

See also [ Gordon, Houten, 1968], [*Stanley, 1972], [Stanley, 1971a, b],
[ Wright, 1965a].)

2.5. SPECIAL IDENTITIES; ‘FORMAL’ AND
‘COMBINATORIAL’ PROOFS

First we prove two typical identities, which may serve as sample of many
others.

THEOREM A. The formal series introduced in [2a, c] (p. 97) also satisfy:

[5a] o(1)=1 +n; p(n)t" (=:H (1 - ti)_l)

n 21
,,.2;‘1 -0 -2)..(1-1
[5b] P(t,uy=1+ Y P(n,m)u" <= n (1- uti)"l)

1<msn izl

m. m

tu
R e gL

In the literature, often t=g and u=x (in honour of the elliptic functions);
hence the name of ‘g-identity’, often given to this kind of identity. (See
also Exercise 11, p. 118).

W Formal proof (also called ‘algebraic’ proof). We expand @ (¢, u) in
to a formal series in u:

[5c]  @(Lu)= Y Cu™,  C,=Cn(t).

The evident functional relation @(t, tu)=(1—1tu)®(t, u), which is
satisfied by &(t, u) =11, o(1 —ut’)™!, gives, when [ 5c] is substituted intoiit:
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[5d] Y Ctu"=(1—t) )y Cu".
nz0 nz0
If we compare the coefficients of u” of both members of [5d], we get
t"C,=C,—tC,_,; hence:
[5e]} C i C e C
[+] = —— g I e gy e
L D e Y R N
t'l

T (A=) (=) (1)

which, by [5c], proves [5b]. By putting u=1 we get [5a].

Combinatorial proof. As an example we prove [5a]. By [3i] (p. 99),
the coefficient of #* in {(1—¢) (1—22)---(1—¢'}~" equals p(k | *,<I),
which is the number of partitions of k into summands smaller or equal to
1, here denoted by s(k,!). Hence, for proving [5a], we just have to
verify that the coefficients of #” on both sides are equal; this means that
we must prove that:

[5t] p(m)=s(n~1,1)+s(n—2,2)+-.

By Theorem A (p. 98) s(k, /) equals the number 7(k+/, /) of partitions
of k+1 whose largest summand equals /. So [5f] is equivalent to p ()=
=7#(n, 1)+F(n, 2)+ -+ and this last equality follows from the division of
the set of partitions of n according to the value of the largest summand. W

TueorReM B. (Sometimes called ‘pentagonal theorem’ of Euler). We have
the following identity [5g] between formal series and the recurrence
relation [5h] between the p(n):

[5e] ma- )=% (- l)ktk(3k+1)/2
iz1 KeZ

Y + 3 (1) (fFOR1I2 4 L3R+ /2y

(58] p@=p(n—1)+p(n—2)—pn—>5)—=

-3 o f(aAOD)

k=1

ea{n-EEEED)
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M Formal proof. Use the Jacobi identity, which is Theorem D below,
and Exercise 14 (1) (p. 119).

Combinatorial proof. By using [3h] for (x*), and the notations of
Theorem C (p. 101), for (x#*), we get:

M- 2a-0""1+ 5 (g0)-a )},

izl
and thus [5g (*)] follows from [4a]. For [5h], substitute [5g] into [5i]
(which is equivalent to [2a], p. 97):

[si] {[/11 (1= t")}.{l + ¥ () z"} ~1,

and by observing that the coefficient of ¢” (n>1) of the left-hand member

equals 0, we obtain the result. il

TueoreM C. The number of partitions of n into m unequal summands
. m+1

equals the number of partitions of n—( +

2
(that is, into summands which are all <m, by Theorem A, p. 100):

(51 QGnm)=p(n- (’” 7Hem)

=p<n-<m;1> *,<m>.

B Formal proof. This is carried out by a method analogous to the
method used in the formal demonstration of Theorem A (p. 103), but
this time the functional relation ¥ (f, u)= (1 + ) ¥ (¢, tu) is used. We get:

[5k] Y(@tuw=1+ Y Qum)tu"=T1] (1 +u)=
1<m<n iz1
m+1
umt( 2 )

,,,};:1 (- —-)--1-1

) into at most m summands

=1+

m+1
Hence, Q(n, m) equals the coefficient of =2 in {(1=t) A —12)--
«o(1=1™)3}~1, which is p(n—(nl;l) | * <m), because of [3j] p. 99,

hence equal to p (n— (m;— l), m), by Theorem A (p. 100).
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Combinatorial proof. The number of solutions of

[s1] Vit Yat+tYu=n, y1>p>>p,21

is evidently equal to Q(n,m). We put z:=y, —y,—1,..., 2, ;=
=ym—l__ym_l’ zm:=ym_1' Hence ym=l+zm9 ym—1:2+zm—l+
+Zpy.ony Yy =M+2zy +2,+--- +2,,. Then equation [51]is equivalent to:

[Sm] z;+2z, +--+ mz,,,=n—<m;—1>, 2,20, ie[m].

Now, the number of solutions of [Sm] is clearly equal to the number of

.. m+1\ . . .
partitions of n-—( ;_ ) into summands not exceeding m, in other

m+1

words, p(n-( 2 ), m), by Theorem A (p. 100). W

THEOREM D. (Jacobi identity):

[51'1] iI;Io {(1 _ t2i+2) (1 + t2i+1u) (1 + t2i+1u—1)} — Z tnlun

neZ

Both sides of [ Sn] have a generalized formal series in u, with positive and
negative exponents: the theory of such series is easily developed, as on
p. 43. We give here the ‘formal’ proof of [Andrews, 1965]. A beautiful
‘combinatorial’ proof is found in [Wright, 1965b]. See also [*Hermite],
Oeuvres, Vol. I1, pp. 155-56, and [Stolarsky, 1969].)

M We replace tu by u in [5k], and t by —u in [5b]. Then we get:

| O
el L A+a= 2 = —a-»

iy=1 _ (- 1)y’
el L0+ = L e u—mma—a

It follows (justifications at the end) that:
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H (1 +t2i“u)=
20
- tnzu" 2 l:[o (1 _ t2n+2+21)
— — tn nlJZ _ =
I e e WP ML | NP
jz0
= Lt JT (L= et =
0(1 ) iz0
iz
Ckx%) 1 Z o Z (- 1) gm2+m+ 2mn
O i T S (RO B (|
jz0
(_:__; l 2 (_ 1)m (tu—l)m z t(m+n)2um+n
(1—t2j+2)m>o (1—12)"'(1—tzm)nsz

EY

e
o

(*** 1 2j+1,, ~1 ! 2
1__[ 2'1—;2) {jl;[o (1 + 77 )} -n;zl u

iz0

(*)  In[50] replace ¢ by 2 and u by tu.

(**) All the terms of the summation that have negative nonzero n, are
zero, because a factor 0 occurs in the product, namely when
Jj=—n—1.

(*#+*) In [50], replace ¢ by t* and u by —¢2"*2,

<::> Interchange of summations.
(::*) In [5p], replace # by t* and u by tu™'. W

The natural setting for identities such as [5n] is actually the theory of
elliptic functions, which is of an altogether fascinating beauty. (See,
among others, [Alder, 19697, [Andrews, 1970, 1972b], and [*Bellman,
1961].) We mention here, pro memori, the famous Rogers-Ramanujan
identities (for a simple proof, see [ Dobbie, 1962]):

tﬂ
L VNN e e oy o B

2

1
= "1;11 YT
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tn(n+ 1)

1+,,§1 Q-0 =) (1=t

1
= H (1 _ t5n—2) (1 _ t5n—3)'

nz1

(See also Exercises 9, 10, 11 and 12, p. 117.)

2.6. PARTITIONS WITH FORBIDDEN SUMMANDS ; DENUMERANTS

Now we consider partitions of n whose summands are taken (repetitions
allowed) from a sequence of integers (a):=(ay, a3,...), 1<a;<ay<--.
As in Theorem A (p. 95), giving such a partition is equivalent to giving
a solution of

[6a] a;x, + dyx, + azx; +---=n, x;integer>0.

In other words, the matrix U= [a; ;] (p. 98) is such that a; ;=1 for
ie(a), for all j>0, and «; ;=0 otherwise, except that o; o=1. From
Theorem B (p. 98) (or by direct computation) it follows immediately
that:

THEOREM A. The generating function of the number D(n;(a))=
=D(n; a,, ay,...) of solutions of [6a)], called the denumerant of n with
respect to the sequence (a), equals:

[6b] D) =1+ ";1 D(n;(a) "= 11;[1 1-)t.

For (a)={1, 2, 3,...}, we find back [2a] of p. 97.

For example, in the money changing problem, one has as many coins of
5, 10, 20 and 50 centimes as one needs. In how many ways can one make
with these a given amount of, say, 5 francs? (1 franc= 100 centimes). This
is equivalent to finding the number of integer solutions of 5x; +10x, +
+20x5 4+ 50x,, =500, or equivalently, of x, +2x,+4x;+10x,=100. The
solution is hence D(100; 1, 2, 4, 10), which is 2691 (see p. 113).

Another example: it is immediately clear, by [5b] p. 103 and [6b] that

[6b7 D(n;1,2,3,..k)=P(n+kk)=0(n+k(k+1)2k).

We investigate the case of a finite sequence (a):=(a ay,..., @),
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I<ay<a,<--<a(sa;=0, if I>k). The GF [6b] is then a rational
fraction:

[66] Dy ()= 1+ 3 Dl @)= T[ (1= )"

A first method for computing the denumerant D(n;(a)) is provided
by a decomposition of the rational fraction [6b"] into partial fractions.
For instance:

1
Dy, (1) = (1= 1) (1=1)

_l 1 + 1 . 2
A\l 4t T—t (1—1)

=;{Z (=y+ Yy r+2Y (n+1)t"},

nz0 nz0 nz0

which gives as coefficient of ¢":
[6c] D(n;1,2)=4{2n+3+ (- 1)"}.

Similarly, for Dy , 3 ()={(1—1)(1—22)(1—13)}"' we have two
decompositions. (The first one, called the first type, is a decomposition
into ordinary partial fractions; the second one is called the second type
or Herschellian type. See [ Herschel, 1818].)

1 1
6l Dazw=gazptaa—pt
17 1 2+t
+72(1 —1) +8(1 + 1) +9(1 rETO
1 1 1 1

Se(i— Taq = A=A T 3a Ay

We denote the periodic sequence with period T (integer >1), that is
equal to d; for n=i (mod T), i=0, 1,..., T—1, by: (dy, dy,..., dr_) crT,
(cr for circulator; this notation is from Herschel). If, moreover,
for each divisor S of T, 1<S<T, we have dy+dp,s+dgiast+---
+dper_s=0 for all R=0,1,2,...,8—1, then we rather denote the
above sequence by (dy, dy,...,dr_,) perT, (per stands for prime cir-
culator, the notation is due to Cayley). The expansion of [6d] into a
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power series gives then the following two forms for D(n;1,2,3):

n n 47
—+ = 1,-Dper2, +-(2,—-1,— 1) per3,
[6¢] 12+2+72+8( Ypor2, + 5 ( )

[6e] 1—2(n +1)(n+5)+ (1, 0)er2, + (1, 0,0)cr3,.

For each x(eR) such that (x—1) is not integer, we put:

[6f] |x]|: = the integer closest to x.
By [6¢c] we find:
2n+3
[631 'D(n;1,2):= 4 .
A similar formula using ||...] for D(n; 1,2, 3) can be found as it

follows. We transform [6e’] by grouping first the two cr’s, then replacing
(n+1) (n+5) by (n+3)*—
D(n;1,2,3)=15{(n+1)(n+5)+(7,0,3,4,3,0) cr6,}
=L{(n+3?+(3,-4,-1,0,—1,—4)cr6,}.
' Now, ¢(n):=75(3, —4, —1,0, —1, —4)cr6,, a sequence of period 6,
satisfies [ (n)| <{% =% <3. Hence,
[6g] D(n;1,2,3) = lIz(n+3)1.
This way of writing by means of [|---|| is not unique. In the same way one
will find for D(n;1,2,3) slightly more complicated formulas
I (r2+6n+T), lIfz(n+2) (n+4)| and [[#7(n*+6n+10]. The first
values of D(n)=D(n; 1, 2, 3) are:

5\W n |123

D |1 23

8 9 10 11 12 13 14 15 16 17 18 19 20
10 12 14 16 19 21 24 27 30 33 37 40 4

4 567
4 578

The following is a second method for computing the denumerant.

THeoREM B. ([Bell, 1943]). Let A be the least common multiple of the
integers (ay, @z, ..., @), 1<a, <a,<::-<ay. For every integer B such that
0< B<A—1, and every integer m >0, we have:
[6h] D(Am + B;ay, a, ..., a,) = D(4Am + B; (a)) = -
=D(Am + B)=06(m)=co+cym +--+ gym’
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where the c;, i+1€[k], are constants independent of m, and where the
denumerant &(m) is as defined as in Theorem A (p. 108).

M Let o be the complex number such that o*=1, arga=2n/4; then we
put, with D(n):=D(n; a,,..., a,):
[6i] Ai=ay; je[k]; P@):= T[] (1-).
1</jsk
The roots of P(¢)=0 are hence of the form «™%, where m;+1€[a;] and

Jjelk]. Let e5(=1),¢,,&,,..., &, be the (r+1) different values of these
roots:

[6i] P(t)=<1 _E_to)"(l "Jj)(l _5)

where ey=1, ¢;#¢; for i#j, and k+nj+ny,+-+n,=a, +a,+-- +a.
Necessarily, ny, n,...<k, because every root of t*—1=0 is simple, so
a multiple root of order s of P(#)=0 must come from s different factors
(1 —1%7),Ie[s], where s < k. Now we decompose therational fraction 1/P(¢)
into partial fractions, using [6j]: there exist complex constants C.o
(zero if n,<v<k) such that:

[6k] D)= %} ¥ Cu (1 - 1>_0.

1<p<k

Identifying in [6k] the coefficients of 1", calculated by using the expansion
of (1-T)~" in the right-hand member (see [12e"], p. 37), we obtain:
[e1] D(n)y= ) cC,, gvé e .
0<usr !
1<i<k

If we put n=Am+ B in [61], we get by using e)'=1:

[em] o(m)= Z P (m)( Y C,,',,s,,"B>,
1svsk O<us<r
where the polynomial P,(m)=<{v),/(n')=<{n+1),_,/(v—-1)! is the
product of (v—1) factors of the first degree in m (because n=Am+ B),
and hence of degree (v—1) (<k—1); [6h] follows. W
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The polynomial & (m), of degree (k— 1) in m, is known by [6h], when
the values &(m;) are known in k different points m,, ie[k]. For this, we
can use either the determinant [6n], of order (k+1), which eliminates
the constants c;, (j+ 1)e[k], from [6h]:

sm) 1 m m?..m!
k—1

s(my) 1 my mi..mf ~0

1

[6n]

8 (m,‘) 1 mk m,f m',i_

or the Lagrange interpolation formula:
[60]  6(m)= i1 8(m:)m,

where
= (m—=my)(m—m_y)(m—m ) (m— my)
F (my = my) e (my — my_g) (my — myy ) e (mg — my)

Particularly, for m=i, ie[k], [60] becomes:

w1 sm=("7") 2, () o0

1<isk
.

For example, to calculate D(n; 1,2, 4):=D(n) by means of [6p], one
may use the first values of D (n) (computed from D(n; 1, 2), [6c]):

n|456 78
Dw|4 4 6 6 9

9 10 11 12 13 14 15
9 12 12 16 16 20 20

This gives D(4m)=D(dm+1)=(m+1)? D(4m+2)=D(4m+3)=
=(m+1) (m+2). It is then verified that:

[6a] D(n:1,2,4)={(n+2) (n+5)+ (= 1)"n}/i6].

We now show, by two examples, an efficient practical use of Theorem
B, without decomposition of rational fractions into partial fractions,
which works particularly well if the LCM A4 of (a;, a;, a3, ...) is not large.
We abbreviate x,=(1—")"! and we use a point (for saving place) to
denote the center of symmetry of any reciprocal polynomial. (Examples:
Tt 24 =Lt 240205, 1+ 24 = 1+ 204202 +17),

PARTITIONS OF INTEGERS 113

(1) We return to D(n; 1,2, 3), [6d] (p. 109). We have
Do, 3()=xsxpx3=(1+1) X3xy=(1+1) (1 +£2414)* (1 +1) x2
(L1420 430 44 4 5154414567 40) T (m+2) 167

) .
Hence, identifying the coefficients in the first and last member, we get:
m+2
D(om+B; 1,2, 3)=a< 5 )+/3<m;-1)+y<';>, where, for B=0, 1, 2,
3,4, 5,.we have a=1,1,2,3,4,5, f=4,54,3,2,1, y=1,0,0,0,0,0,
respectively.

(2) Similarly, we compute D(n;1,2,4,10), used p. 108. We have
:Dl'2,4‘,0(t)2=2x1x2x4x,0=(1 1) xixgxio=(141) (1412)? xix, 0=
(L) (T+H12) (L1341 24 210)3 (1447°) (1-220)"* = (1 +1)

(1 4+ 202+ 41%+ 615+ 9%+ 13110 4 18112 + 24114 4 31116 1 30718 1
45170 4 52622 4 571244 63120+ 671 28+ 691304 69732 . 2150 4 £62) x

m+3
xZ( 3 >t2°"'.HenceD(20m+2b+(0orl); 1,24, 10)=a(n1;-3>+

m-2 m+1 m
+[i< 3 >+y< 3 >+5(3), where, for b=0,1,2,...,9, we have:

a=1, 2, 4,6,9, 13, 18, 24, 31, 39, B=45 52, 57, 63, 67, 69, 69, 67,
63,57,7y=>52,45,39,31,24,18,13,9,6,4,5=2, 1, 0,0, ..., 0, respectively.
Let us now give a more precise version of Theorem B (p. 110):

TueoreM C. Supposing each pair (a;, a;) relatively prime, we have:

k=1

[6r]  D(nmay,ay..,a):=D(n)=Y dn' +
j=o
+ Vo, (n) 4+ Vi, (n),

where each V, (n) is a per of period aj, j=1,2,..., k. So, D(n) is a poly-
nomial of degree k—1 in n, plus a sequence V4 (n):=V, (n)+-+V, (n),
withperiod A=LCM (ay, ..., a,). Moreover, denoting Sy :=a, +d, +as + -,
S,=ar+ai+ai+-, -, P=aqaa,a,... a, the following formulas hold:

- , d - St
(k—=1)!P 2ok -2)1p’

_ =S o, Si=SiS,
24(k —3)!p’ “E T 48 (k- 4)1P

[6s] dy—y

k-3
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B Let us write ;=P (¢) for any polynomial whose degree is <i. The
theory of fractional decomposition implies:

1

D)= n‘:‘oD(n) £= -y - ") =
1 =
B (1 = t)k (1 +t+ 24+ t'”_l) (1 +t4+ 12 +...+taz—1)
= Bi-1 By -2 PBar-2

] — + — +
T A N T A ik e = TV CE R ¥ s

_ SBk—l s’]3111--1 “Baz—l

= + 4
(1-—t)"+1—t“‘ 1—12

So, we obtain [6r], and the relations P, _;(1)=PB,,-,(1)=---=0
involving the numerators of the preceding line imply the pcr condition
(concerning the sum of values which must be equal to 0, p. 109). The
standard methods for determining PB,_, give [6s]. B (For many other
explicit formulas, see [Glaisher, 1909], [Sylvester, 1882].)

As an example, let us calculate D(n; 3, 5, 7):=D(n). Here, Sy =3+5+
+7=15, S,=3%+5%4+7%=83, P=3.5.7=105. So, with [6r, s]:

[6t] D(n)= ~z“}—o”2 +fgn + 3 + [x4, %2, x3] +

+ [X4, x5, Tery xB] + [x99 [EXTY xlS],

where [x,, x,, x;] abbreviates (x;, x,, X3) pcr3,, etc. Now, it is easy to
compute D(0), D(1), D(2),..., D(11)=1,0,0,1,0, 1,1, 1, 1, 1, 2, 1
by carrying out (1—£%)"1 (1—=2%)"1 (1=1")"'= (1+13+1%+1%)x
x(1+15+11°) (1+¢") (up to degree 11) or by using the recurrence
D(n)=D(n—3)+D(n—5)+D(n—7)—D(n—8)— D(n—10)— D(n—12)+
+D(n~15). If we insert these values of D(n) in [6t], we must
solve the following linear system of 15 equations with unknowns
Xgs Xg,-.., Xy5 (the three last ones are the pcr condition, p. 109):
X1+ X, +x9=241/315, Xy X5+ X10=—98/315, x5+ x¢+x(y = —125/315,
Xy + X, +x1,=160/315, X, 4+ Xxg+x,3=— 188/315, X3+ X4+ X14=
=91/315, x;+Xs+x,5=52/315, Xy+Xs+xo=10/315,  x3+x;+
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+x10=—35/315, x;+xg+x,;=—83/315, x,+x,+x,,=181/315, x;+
+xs+x3= 188315, x; +x,F x3=x4+ X5+ FXg=Xxg+ -+ +x;5=0.
Solving this linear system, we find: (xy, X, ..., X;5)=(70,—35, —35;
126, —63,0,0, —63; 45,0, —90, 90, —90, 0, 45)/315=(2/9, —1/9, —1/9;
2/5,—-1/5,0,0,—1/5;1/7,0,—-2/7,2/7, —2/7,0,1/7}. For example, 1000 =1
(mod3), 1000=0 (mod5), 1000=6 (mod7); thus, D(1000)=10%/210+
+10°/14+74/315+x, (= ~ 1/9) + x4 (=2/5)+x, 5 (=1/7)=4834. Here,
the use of a sum of 3 Cayley’s perrequires only 34+ 5+ 7 —3==12 unknowns
to find, whereas the use of one Herschel’s cr would require 105 unknowns,
this number being the length 3.5.7 of the oscillating term in D (n).

SUPPLEMENT AND EXERCISES

L. Recurrence relation for P(n, m). If P(n, m) stands for the number of
partitions of the integer » into m summands (p. 94 and table p. 307),
show that P(n, m)=P(n~—1, m—1)+P(n—m, m), and that, for m>n/2,
P(n, m)=p(n—m). [Hint: Distinguish, in [1b, c], p. 95, the solutions
with x; =0 from those with x,>1.]

2. Recurrence relation for Q(n, m). As in the preceding exercise, prove
that the number O (n, m) of partitions of the integer n into m different
summands satisfies: Q (n, m)=Q(n—m, m)+ Q(n—m, m—1). Hence the
first values of Q(n, m) and g(n)=Y,, Q(n, m):

am) 11223456810 1215 18 22 27 32 38 46 54 64 76 89 104 122 142 165 192 222 256 296
m\n| 12345678910 111213141516 1718 19202122 23 24 25 26 27 28 29 30
tftttrgeter Pt 011ttt 11
2 1122334 4556677889 91010 11 11 12 12 13 13 14 14

C 3| __—— 1123 45 7 810121416 1921242730 33 37 40 44 48 52 56 61

[ o 11235 69111518232734 39 47 54 64 72 84 94 108
S| a0 & 112357101318 23 30 37 47 57 0 84
6| S /’/4’(/& 11 2 3 5 711 14 20 26
7 [P (,/ It o2

3. Convexity of p(n). The number p* (n) of partitions of n into summands
all > equals p(n)—p(n—1) and this is an increasing function of n.
Deduce that the sequence p (n) (= the number of partitions of n) is convex,
in other words, that A%p(n)=p(n+2)~2p(n+1)+p(n)=0. More
generally, 4*p(n)>0 for all k> 1.
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4. Some values of P(n, m) and Q(n, m). For shortness, we write the se-
quence (dg, dy,..., dr—y) et T, of p. 109 as [do, dy, ..., dr_1. P(n, m) (or
Q(n, m)) is the number of partitions of n into m arbitrary (or unequal)

m .
summands (see p. 99). Use P(n, m)=Q(n+(2), m) (which can be

proved combinatorially), and hence Q (1, m)=P(n— (’;), m) to show:
P(n,2)=(1/4)(2n -1 +[1,-1])
Q(n, 2)=(1/4)(2n ~ 3~ 1, ~ 1])
P(n,3)=(1/72) (60> =7 —9[1,— 1] +8[2,~1,—1])

Q(n, 3) = (1/72) (6n* — 36n + 47+ 9[1, — 1] +
+8[2,—-1,—1])

P(n, 4)=(1/288) (2n* + 61" = 9n — 13 + (9n + 9) x
x [1, — 1] =32[1, — 1,0] + 36[1,0,— 1,0])

Q(n, 4) = (1/288) (2n® — 30n” + 1351 — 175 + (9n — 45) x
x [1,—1]—32[1,-1,0] = 36[1,0, — 1,0]).

*5, Upper and lower bounds for P(n, m). Show that P (n, m) and Q (n, m),

as defined on p. 94 and 99, satisfy:
1 (n~1
Q(n,m)< — (m 3 1) < P(n,m).

m!

1+1 .
Use the fact that Q (n, m)=p (n—(” 5 ), m), [5j] p. 105, to prove that

1 (n+ (") ~1 Nl n—1
P(n,m)< — ( ’ and P(n, m) o

= m! m— m~1

for n— oo and m=0(n'/?). ([Erdés, Lehmer, 1941], [Gupta, 1942],
[Rieger, 1959], [Wright, 1961].)

6. The size of the smallest summand is given. Let a(n, m) be the number

of partitions of n such that the smallest summand equals 7. Then:

Y a(n,m)t"=1"{(1 - My (L=t

n20
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and ,
an a(mm)=a(n—m, m)+a(n+1,m+ 1),

h
where a(n,1)=p(n-1).

a(m,n)=1,

7. Odd summands. Let p; (n) be the number of partitions of n into summands
which are all odd, then we have ),.op;(n)¢"={(1—1) (1-1°)x
x(1—1%)---}7%, and p, (n)=gq(n) (the number of partitions into unequal
summands, p. 99). Prove this by formal methods and by combinatorial
methods.

8. The summands are bounded in number and size. Let p (n | <m, <I) be
the number of partitions of # into at most m summands all </. Show that:

]
A(tu)y:= 3 pr|<m<Dru" =] (1 —uf)™*.
nmz0 i=0
Use a method analogous to that on p. 98 to show that:
I_tl+l l_ll+2 l__tl-Hn
Awy=t14 y AoEDA=ED) i
m>1 (1—t)(1-—t)"-(l—tm)

" (1 . tl+1) (1 — t'+2)"'(1 . tl+m)
nzop(nlgm,Sl)t Bl (I_t)(l"-tz)"'(l—tm)

Deduce:

9. The factorial number system. For all m>1 we have:
(L) (L4 2 4 122 (L 4™ g2 gy gromty
=14t 422483 e gm I

[#int: This is equivalent to 11142204+ +n.nl=(n+1)!—1, which
can be proved either by induction or by a combinatorial interpretation.]
Use this to prove:

Iy &'=@-n7,

iz1 0<K<]

and, for every integer x>0, the existence of a unique sequence of integers
x; such that

X=x;. 1 +x,.2 +-+,

where 0<x;</, i=1, 2, 3,.... (See also Exercise 4, p. 255.)
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10. With the binary number system. (1) For all m>1, we have:

2m+i—g

A+ut)(+u?) (1 +ut?)= T  uPOr

n=0

Here, D(n) stands for the number of ones in the binary (=base 2)
representation of n. Consequently (generalization in [Ostrowski, 1929]):

n (1 +ut?)= Y uPor,

nz0

(2) Also prove t(1—1)"'=Y 50 25 2 (1 +2 %)~ ! ([Teixeira, 1904]).

11. g-binomial coefficients. Let 0<qg<1. We introduce

I-gA-g ...l =g

(E

(1-g*
-0 ~g*h)...a =g
= (1-q)f

(@GN =N =&xp =L&xPy =

— o )=
()1 =1.

The g-binomial coefficients are defined by

((x)) _(@% _(1- (=g (=g
)@ -at-g)n (-4

R e T
They tend to the ordinary binomial coefficients when g — 1.
orve e ()01 () |
(D) (5 (G- @)
@ TE=b0+a0)=Sim0 ((}))

H:;s(l—xq')-1=zk>o<<;>> *

(Observe the analogies with the expansions of (1+x)" and (1—x)7"...).
For n— oo, we recover [5k] (p. 105) and [5b] (p. 103). (3) b,=Y -0

pe—
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((Z)) 2, =Y o(—1)* q@((z)) by. (Compare [6a, ¢], p. 143)

(This is a very large subject, and we only touch upon it. For a completely
updated presentation, see [Goldman, Rota, 1970].)

12. Prime numbers. To every integer n>1, n=pi'p3... as prime factor
decomposition, we associate the number w(n):=o;+ay+-, w(1):=0.
Thus, o (3500) = (22.53.7)=2+-34 1 =6. Then, for all complex numbers
s and ¢, such that Res>1, and |#[{<1, the following equality between
Junctions of s and ¢ holds:

n(-5 -5

P nzo0 N

Here, in the infinite product, p runs through the set of all prime numbers
(for r=1, this is the famous factorization of the Riemann zeta function
{(s):=) 5y n". See also Exercise 16, p. 162).

13. Durfee square identity for . p(n) t". Prove the identity:

1 t
(=Di-m-r- " -y’
t* 1
B e B (e (RO (Y LA
[Hint: Put d(t,u):={(1—tu) (1—t2u)--}"'=Y C,(t) v" []r-:
(1=t*u)™'=3" C,(1) u™F, (1, u); observe that & (¢, tu)=(1~tu) d(t, u)
and F,(t, tu)=(1—tu) {F,(t, u)+t™ " uF, (1, u)}; obtain C,(¢).]

14. Some applications of the Jacobi identity. If we replace t by t* and
u by +¢*in the Jacobi identity, [5n] (p. 106), k and / integers >0, prove:

TT (1 4+ (2vRty (4 4 2RFRSLy (g 2hid2Kyy Y e

20 ne?

I—I {(1 . t2ki+k—l) (] _ t2ki+k+l) (1 - t2ki+2k)} Z ( k"2+1"
i20

1) Use this to prove the Euler identity, [5 104), by putting
&1 \P-
k=%, 1=1.
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1"!) {(1 _ tSH-l) (1 - t5i+4) (1 - t5i+5)} — Z (__ l)n tn(5n+3)/2 .
iz neZ

@) k=4, I1=4:
;1;10 (1= 5*2) (1 = 5743 (1 = 1544} = "ezz (= 1) S0,
@) If k=1, I=0:
[ = (== 5 (-1
T+ (-2 = Y .

20 neZ

15. Use of the function || x|, the integer closest to x. With the notation of
[6f] (p. 110), we have, in addition to [6g, q]:
D(n;1,2,5)=[I(n+4)*/20] ;
D(n;1,2,7) = ||(n+3) (n+T7)/28] ;
D(n;1,3,5) = l(n +3) (n + 6)/30]
D(n;1,3,7) = ||(n+3) (n + 8)/42l ;
D(n;1,5,7) = ||(n* + 13n + 36)/70] ;
D(n;1,2,3,5)=(n+3)(2n+9) (n + 9)/360| =
= [|(n + 2) (n + 8) (21 + 13)/360] ;
P(n,2)=Q(n+1,2)=(2n - 1)/4];
P(n,3)=Q(n+3,3)=n"[12];
P(n,4) = Q(n+6,4) = |n*(n + 3)/144] for n even,
and =|(n—1)*(n+5)/144 for nodd

(For plenty of other such formulas, see [Popoviciu, 1953]).

16. Infinite power series as an infinite product. To any sequence
(ay, a5, as, ...), let us associate (b, by, b3, ...) such that

F@:=1+ Y at"=T1] (1 +5,t").

nzl1

(1) We have a,=Y b{'b3b%5 ..., where &, &;, €3,... =0 or 1, and ¢ +2¢,+
+333+"‘=n. SO, al=b1, a2=b2, a3=b3 +b1b2, a4=b4+blb3,

T A 3 AV
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as=bs+bb,y+b,bs,.... Evidently, by=b,=---=1 implies a,,=q(m), the
number of partitions of » into unequal summands (p. 99). (2) Con-
versely, calculate b, as a polynomial in ay, a,,.... So, by=a,, b,=a,,
by=ay—aa,, b,=a,~aa,+aai, bs=as—(asa,+aya,)+(aza+
+a3ay)— ayai, be=dg—(asa;+a,a,)+(aqai +a30,a,)— (a;a; +ajal) +
+a,a1, by=a;—(asa, +asa,+a,a;) +(asa} +2a,a,a, + dia, + aya3)—
—(a4a; +3a30,d} + a3ay) +(asat +-2a3a)) —a,ds, ... If aj=a,=---=1,
then b,=0, except byx=1. (3) When f(t)=e"", prove the following
property: (b,=1/n)<>(n is prime) ([ Kolberg, 1960]).

17. Three summations of denumerants. Verify the following summation
formulas ([*Pdlya, Szegd, I, 1926], p. 3, Exercises 22, 23,24): Y ..,
D(n—i; 140, 2+i)=n+1; Y50 D(n=2i—1; 1+i,2+i)=n+2~d(n),
where d(n)is the number of divisors of n. [ Hint: Use Exercise 16, p. 162];
Yzt D(Qi+ 1)y n—i%;i%, (i+1)%)=n.

18. Integer points. (1) The number of points (x,, X,,..., x,)€Z", with
integer coordinates, x;€Z, such that |x,|+ |x,|+---+|x,] <p, p integer
>0, equals: }7_, 2""(’;) (nl-)— i> ([*Polya, Szegd, 1, 1926], p. 4,
Exercise 29). (2) The number of solutions with integers x;> 1, ie[n], that
satisfy (1<) x; <x, € -€x,, X, $k+1, x,<k+2,..., x,<k+n, equals
<k Jf”) (k+1)/(k-+n+1). ((*Whitworth, 1901], p. 115-16, [Barbenson,

1965,], [Carlitz, Roselle, Scoville, 1971].)

*19. Rational points in a polyhedron ([Ehrhart, 1967]). We denote the
set of points in R? whose coordinates are multiples of 1/n by G'*. The
problem of the denumerants ([6b"] p. 109), which can also be written
a, (x,/n)+a,(x,/n)+---a(x,/n)=1, is hence equivalent to finding the
number 7(n) of points of G lying in the hyperplane part defined by
a X, +a, X+ +a X, =1, X\, X,,..., X, 20, whose k vertices are the
points A, =(1/a;,0,0,...), A,=(0, 1/a,, 0,...), etc. More generally, let #
be a polyhedral region of RY whose vertices are A,, A,,..., 4,, with
rational coordinates; each face may or may not belong to #. For each
vertex 4;, let a; be the LCM of the denominators of A4;. Then we denote
the number of points in Z~G® by I(n); we put 1(0):=1. (1) There
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exists a polynomial P(¢) of degree less than ). g, such that

P (1) P (1)
F):=Y [(mt'= p— " =7
n=z0 I:I (1 _ tﬂl) I_.[(t)

[Hint: First treat the case of a simplex.] For example, if & is the open
polygon in R? whose vertices are 4,=(0,0), 4,(1,0), A;=(}, %),
A,=(0,1), we have a;=a,=a,=1, a;=6. Hence ),»oI(n)t"=
=P(t) (1—t)"3(1-1%)"", deg P<8. (2) The rational fraction #(¢) can
be simplified so that the exponent of the factor (1—¢) in the denominator
is <d+ 1. For the preceding example we then get # (¢)=P, (1) (1—1)" 2 x
x (1—1°)"! and P, (¢) can be determined by 1(0), I(1), 1(2),..., {(7)=
=1,0,0,1,3,6,9,13, 18, respectively, which we obtain by direct
inspection. Hence P, (¢)=1-2t+1%+¢3+1*+¢>—1%+3t7. From this,
it follows that I(n)=|n(Sn—14)/12||+1. [Hint: Use the asymptotic
order of I(n) when n— 00.] (3) Use the preceding to prove the following
values of I(n) which are the solutions with integers x, y,...€Z of certain
relations. (1) x+2y+3z+u=3n, x+y=n, Xx,y,zuz0=I(n)=
n+2 n+3

( 3 ) +( 3 ) (2) x+y<3nf4, x—y<3n/d, —x[2<y<2x=>1(n)=
= (9n*+18—1%n(7,4,1,10) cr4,|l. (3) 4x+6y+3nz<12n, x,y,2>0
=I(n)=[{21n?+6(—1)"}/8] —=n {17+ (—1)"}/4+2.

20. Concerning ordinals. Let f(n) be the number of integer solutions
x;(=0) of the system 1<x, <x,<---<x,, x;<2', ie[n] (hence x,=1).
([Peddicord, 1962], [Carlitz, Roselle, Scoville, 1971]; in fact, in this
problem are counted the sets o of n elements such that xco if xeq, in
the sense of the axiomatic set theory; cf. [*Krivine, 1969], p. 25.) (1)
Let F(n, k) stand for the number of solutions such that x,=k, F(n, k)=0
if k<norif k2" f(n)=Y, F(n, k). Show that:

[a] f(n+1)=F(@m+1,2"
6]  Fnk)=Y Fln—1,0).

i<k
(2) Let @(t,u):=Y, i F(n, k) t"u*, @ (1):=) 050 F(n, k)" Then
By (1)=(1+1) (1), 0<j<2* [Use [].] (3) Defining ¥, by
@ (t)=1*** P, (¢), obtain from (2) a recurrence relation for the ¥,
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hence for the f (n) (via [a]), n==3, 4,...:
2n__2 n—2 n__Ajt+1
f(n+1)=<n_l)—}:f(j+1)<2 2. )
i=1

n—j

C
qf}/n |1

9 2 3 4 5 6 7 8 9 10
S |1 1 2 9 8 1802 75598 6421599 1097780312 376516036188

*21. The number of score vectors of a tournament. (Defined on p. 68.
See [Bent, Narayana, 1964] and [*Moon, 1968], p. 66.) We want to
determine the number of solutions with integers s, of:

[a] 1<s; <5, < <5, <n—1

[B] 81+ 85, +“'+Sk2(]2€), ke[n-1] ‘
[v] sy + 5, +---+s,,=(;’>.

Let [#,1]" be the number of solutions of [, g, d]:
[8] S1Hsy otk s, =1,  s,=t.
Hence [#,7]'=1 for t=/ and =0 if not. (1) We have fr, ]"=Y,

ne n
- [, 1-1]""". (2) Hence s(n)=Y,[z, (2)]". (3) Compute from this the

first few values. (There is no exact formula for s(n) and there is a con-

<t

g}’ jecture that the ratio s(+1)/s(n) increases towards 4.)
9°\6 “n L 2 3 4 5 6 1 8 9 10 1 12
s(ny |1 1 2 4 9 22 59 167 490 1486 4639 14805

22. Relatively prime summands. The number R, (n) of integer solutions
?ciZ t of x; +x,+ - +x,=n such that these integers are relatively prime,
is such that ([Gould, 1964a]. See also Exercise 16 (5), p. 161):

" *

Z Ry (n) — =

DI il (i 2

23. Compositions. (1) A composition of the integer n into m summands, or
m-composition, is any solution x= (x,, X, ..., x,,) of X, + X, + - +x,,=n
with integer x;>1, ie[m] (the order of the summands counts!); €, (1)
stands for the set of m-compositions of n. Show that C(n, m): =|G,, (n)|=
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=(%_%) has the following GF: Y, , C(n,my"u"=tu{l—t(1+u)} "
(2) More generally, the number C(n, m; A) of solutions of Y., x,;=n,
where for all ie[m], x;€4:={a,, a,, a;...}, | <a;<a, <--, is such that:
1+ Y Clnm Ay = {1 —u(™+ 1247,
nzmz1
In how many ways can one put stamps to a total value of 30 cents on an
envelope, if one has stamps of 5, 10 and 20 cents, which are glued in a
single row onto the envelope (so the order of the stamps counts!).
[Answer: 18.] More generally, for 5n cents (instead of 30, where n=6)
and using notation [6f] on p. 110, the number of ways becomes:
10,609367...(1,754878...)"|l...! (3) Returning to (1), we endow G, (n)
with an order relation by putting, for x=(x, x,..., x,,) and x'=(x},

’ Y.
Xy enes Xeg) .

k
x<x' wVke[m], Y x<)Y x.
i=1 i=1

Show that @, (n) becomes a distributive lattice in this way. (4) For
each xeG,(n) let %:={vlveC,(n), v<x}, then ) .., ml¥I=(1/n)
() (m~ 1) ([Narayana, 1955]).

24. Denumerants with multi-indexes. For vectors (n)=(ny, n,...,m;) (or
multi-indexes, p. 36), a partition theory can be developed analogous to
that given in this chapter. See for instance [*MacMahon, 11, 1916], p. 54
and [Blakley, 1964a]. Let & be the system of k equations:

ai’ 1x1 + ai, 2x2 + ai. 3X3 + S n,, iE[k] N

where the g, ; are integers such that 1<a; ; <a; ,<d; 3<---. Show that
the number D((n); (a)) of solutions of & in integers x;>0 has for GF:

y D((n), (a)) 115 ... 7<= [] <1 - f'[ t;-'”>—1.

ny,n2, ., k=0 iz i=1

*25. Counting magic squares. Let Q(n, r) be the number of arrays (or
matrices) of integers @; ;>0, 1<i, j<n, such that Y i_,a; ;=3 1a; ;=7

for all i,j. (1) @(1,r)=1, O, r)=r+1, Q(3,r)=(r;2>+3<r:3>’

0@, r)=<’;3)+20(’§4)+152(’;’5)+352<’;6>. More generally,

Q(n,r) is a polynomial with degree (n—1)> with respect to r. (2)
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n\?

Q@ D=n!, O(n, 2)=4;" Y (2n—2a)la! (a>

X oy !oczloc3!><<a na (18)*>(12)*, where a;+2a;+303=3n, and
2> 43

2% Q(n,3)=36""x

the multinomial coefficient is denoted as in [10c"] p. 27. (3) Let
a,=Q(n,2), then ¥ . oa,"(n!) 2=e?(1—1t)"Y? and a,=n%a,_,—

n - .
—(n—1) 5 | @-2. Moreover, a,=n!2 tn/214 . where the A, are integers.

([Anand, Dumir, Gupta, 1966], [Békéssy, 1972], [Carlitz, 1966b],
[Ehrhart, 1973], [Mano, 1961], [Stanley, 1973]. Compare p. 235.)

! | ! . ’ . g ‘
Nl S B Yo R
> n 0 1 2 3 4 5 6 7 8
N A |1 1 3 7 41 207 2249 14501 216273
2 L& ~ Qn 1 1 3 21 282 6210 202410 9135630 545007960
o C
2

e
_ ’( . (4)Letb,=Q(n,3)and ¢ (x) :=3 450 (3k)! (k1) ™2 x*; then ) b,t"(n!) 2=
b =P (1—1/2)'@((1/36) (1—1/2)"*).Use this to obtain for b, a linear
&( ' recurrence relation of the 6-th order with coeflicients that are poly-

nomials in . . 5{{

N
wn o 1 2 37 4 5 4 7 8
\;\;."\; by | 1 1 4// 55 2008 153940 20933840 4662857360 1579060246400
7 prau S\oome ,\’—F fb()?’

¥26. Standard tableaux. Each Ferrers diagram representing a certain
partition of n can be considered in the obvious way as a ‘descending
wall’ M, or ‘profile’. Figure 29 represents the wall associated with the
diagram of Figure 25 (p. 100). The ‘stone’ (4, j) is the one with ‘abscissa’
i and ‘ordinate’ j. We are interested in the number v(M) of different
ways in which M can be built up by piling stones one by one on top
of each other, in such a way that at every stage the already constructed
part is a ‘descending wall’. Figure 30 gives a permissible numbering of
the stones, thereby defining a so-called ‘standard’ tableau, also called
Young tableau. For a given wall M we write on each stone (i, /) the
number of stones situated above and to the right of it, itself included.
The table of numbers z(i, j), obtained in this way, is represented in
Figure 31. Hence the number of standard tableaux v(M), equals
n{[ 1. emz (i, )} 1. (We refer to [Kreweras, 1965, 1966a, b, 1967] for
a study and a very complete bibliography of the problem, as well as for a
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- - .

1,6 18 1

1,5{2,5 102 3|

1,4l24] M 9 [17 al2

1,312,3[3.3[4,3]5.3 5 (1516|1920 S EIEE

1,2[2,2{3,2]4.2[5,2 al6|e]i2]rs afl7falai2

Y X EX1 X1 X X vlafs]s]nn]  [u]efs]s]a ]
Fig. 29. Fig. 30. Fig. 31.

generalization to the case that part of the wall, say M’, already exists,

that is, it will be incorporated into M. See also [*Berge, 1968], pp. 49-59.
We remark that the generalization to higher dimensions, in the sense of
p. 103, is still an open problem.)

27. Perfect partitions. A perfect partition of an integer n>1, is one that
‘contains’ precisely one partition of each integer less than n. In other
words, if we consider the partition as a solution of x, +2x,+.--=n, we
call it perfect if for each integer /< n there exists a single solution of
t,+2t,+--=I, where 0<1,<x,, i=1, 2,.... So a perfect partition rep-
resents a set of weights such that each weight of / grams, 1 </<n, can
be realized in exactly one way.

Show that the number of perfect partitions of n equals the number of
ordered factorisations of n-1, omitting unit factors. Thus, for n=7,
we have 8=4.2=2.4=22.2, hence there are 4 perfect partitions, 17,
1°4, 12°, 124.

28. Sums of multinomial coefficients. Let us write A(n) for the sum
of the multinomial coefficients which occur in the expansion of
(X1 4%+ +x,)" For example since (x;+x,++x,)°=Y x+
+3Y xx74+6 Y x.x;x; (see p. 29) we have A(3)=1+3+6=10. Prove
that " N

Y A(m) "

5 nl t 12 £
0 n (1 B _> (1 B _4_) (1 B —”_> ”
1! 21! 3!

and study other properties of these numbers.

n |1 2 3 4 5 6 7 8 9 10
A(m) |1 3 10 47 246 1602 11481 95503 871030 8879558

CHAPTER 111
IDENTITIES AND EXPANSIONS

This chapter is basicaily devoted to various results on formal series. The
relation with counting problems is clear: for a sequence of integers with
combinatorial meaning, the existence of a ‘simple’ formula is most
frequently equivalent with the existence of a ‘simple’ generating function.

3.1. EXPANSION OF A PRODUCT OF SUMS; ABEL IDENTITY

The following notations slightly generalize the binomial and multinomial
identities of pp. 12 and 28.

THEOREM A. Let R be a relation between two finite sets M and N
(ReMx N, |M|=m, |N|=n), Figure 32, and let u(x,y) be a double
sequence defined on N and with values in a ring A (mostly A=R or C).
If<{x [ R> stands for the first section (p. 59) of R by x, then we have:

[ta] I ¥ uxy= ¢§vM xI;[Mu{x,(p(x)}.

xeM _ye(xl?!)
(x, p(x)) e R

The summation in the second member of [la] is taken over all maps
¢ of M into N, whose ‘graphical representation’ is a subset of R.

Nu-...

Y @eenad]

Fig. 32.

M Let us suppose that the projection of R onto M is just equal to M,
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because if not, then both members of [1a] equal zero. We number the
elements of M and N, M:={x, Xs,..., X}, N:={p1, V2o, Yu}. If
R=MxN, then the first member of [la] can be written as [[iL,
Y G=1u4(x; y;). This is a product of m sums: The choice of a term
in each of the m factors gives one term of the expansion, and two different
choices give rise to two differently written terms. Now, any such choice is
just a map ¢ from M into N; hence [la]. If R#M x N, then u(x, y)
can be extended to the whole of M x N by defining u(x, y):=0 for
(x,y)¢ R. Then we can apply the preceding result, observing that the ¢
whose graph is not contained in R give a contribution zero to the second
member of [1a]. M

Using [1a], the binomial and multinomial identities can easily be
recovered.

We now show a deep generalization of the binomial identity.

THEOREM B. (Abel identity [Abel, 1826]). For all x,y,z we have:

[1b] (+yy=1Y (Z) x(x —kz) ' (y + kz)" 7",

k=0

(Ina commutative ring, for instance. But [ 1b] also can be considered as an
identity in the ring of polynomials in three indeterminates x, y, z.) For
z=0 we recover the binomial identity [6a] (p. 12).

B First proof (Lucas). We introduce the Abel polynomials
[1c]  a(x 2):i=x(x—kz)* Yk! for k=1, ap:=1.

We have, successively,

a%ak(x, 2y = {(x = k2)*"' + (k — 1) x(x — kz) "} k! =

=ak_1(X"‘Z, Z)
2

0
S 4% 2) =~ (x— 2, 2) = Q5 (x - 22, 2)
Ox 0x

a]
[1d] Pl (% 2) = ap_;(x — jz, 2).
X
Now, for fixed z, the a,(x, z) form a basis of the set of polynomials in x,
because their degree equals k(=0, 1, 2,...). Hence, every polynomial
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P (x) can be uniquely expressed in the form P (x) = Aoa9 + 4,0, + 40, + -+,
where the 4; only depend on z. Now, with [1d] for (*):
i

. d’ 0
Po)(x)=(_1;jp(x) =;,1k i £+ A0y (x = jz, 2) 4

which gives ;=P (jz), by putting x=jz. So finally, for every poly-
nomial P (x) we have:

[le] P(x)= k;) a.(x, z) PY (kz),

from which [1b] follows by putting P (x)=(x+y)". W
We still observe that if we apply [le] to P (x)=a,(x+y, z), then we
get the convolution

] a(+2n2=Y 0l tl).

See also [Hurwitz, 1902], [Jensen, 1902], [Kaucky, 1968], [*Riordan,
1968], p. 18-27, [Robertson, 1962], and [Sali¢, 1951], who gives a large
bibliography.

W Second proof (Frangon). All the notions of p. 71 concerning the
Foata coding of [#]!"? will be supposed known. Let Ec [n+2]1"*?! be
the set of functions of [n+2]:={1,2,..,nn+1,n+2} such that
elements (n+1) and (n+2) are fixed points. S0, T g=1,4 11,42 Qi o)
Now, consider for any set x<[n] the set E (x)c E of functions whose
excycle containing the element (n+1) has 4, : =%+ {n+ 1} as set of nodes.
Obviously, the factorization E(x)=EE, holds, where E, is the set of
acyclic functions acting on A; with the root (n+1) only, and E, is the
set of functions acting on [+ 2]\ 4, and having the element (n+2) as a
fixed point. Then

T 500=T 5T g, =the 1 (tnss+ Liex 1) 7 tnsz (tnsz+ Ligs ;)" .
But we have the division E=Y, < E(%). Therefore, 7 x=) rca17 5oy

In other words, after cancelling 7, ¢,45:

[x] -1
(tl Ftytett,) = E tn+1<tn+1 + 2 ti) X

xc[n} iex
v H

X (t,,+2 +Y t,-)"""'.

i
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Now, put t,, =X, ly42=y~—n,t;=t,=+-=t,= —z to obtain [1b] after
collecting the » such that |x|=k. W

Of course, considering more than 2 fixed points, or other sets of func-
tions, would give interesting other results (see Exercise 20, p. 163).

The following is an equivalent formulation of the Abel identity [1b],
which generalizes [le].

THEOREM C. For any formal series (hence for each polynomial) f(t), we
have:
t(t —ku)?
[tel f(O=Y —7—
k>0 k!

where u is a new indeterminate, and f® the k-th derivative of f.
(For a study of the convergence of [lg], #, ueC, see [Halphen, 1881,
1882], [Pincherle, 1904].)

For u=0, we find back the ordinary (formal) Taylor formula.

f(k) (ku) ,

M In fact, we have, with [1b] p. 128, x+—¢, yi—>0, zi—u for (x):
(*)

f0)i= 3 af'=% {a;(;;) t(t—ku)"“(ku)""‘}:

nz0 nz0

-y {‘—(’—"‘—)— Y () a..(kU)""‘}=QED- -

k>0 k! %30

3.2. PRODUCT OF FORMAL SERIES; LEIBNIZ FORMULA

The series used in this chapter will be always formal Taylor series. By
definition, such a series is written as follows (for the meaning of the
abbreviated notations x, k, etc., see p. 36):

(2] S=fO=fltntrat)= T S

t’l‘l t’2¢2 t;:k
= Z f*l,xz,...,x e e T

- . .
Ky K2y ooy X 20 %1! x2! %k!

The f, are called Taylor coefficients of f.

THEOREM A (Leibniz formula). Let f and g be two formal series, with
Taylor coefficients f, and g,, x, Aek, and let h be the product series,
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h=fg. Then, the Taylor coefficients h, of h can be expressed as follows:
[2b] By =Py, oy =

Joers 52, s 69 a1, A2, e A
1A eyt Aot 2! *1a %2 k7 A1y 42 e

where the summation takes place over all systems of integers xy, %,, ...,
Hys A.] y /{2, ey A’k Such that”l +).1 =y, g +A.2 = Hay ey xk"*‘).k:'uk. Inother
words:

u 2
[2¢] hm, e Z ( 1) (xk) Sos oy s, s pic=sc>
Ky eres Xic k

Hy
or, in abbreviated notation:

!
[(2d]  h= ). /9

,.,+.;_=,‘ J{! /1'

M It suflices to apply definition [12g] (p. 37) of the product fg. W
Formula [2d] can immediately be generalized to a product & of r

formal series fiyy, feays s Serys B=1li=1 fciy- S0
u!
[2¢] A=} ACIS A Jes,aqay oo Sy acess
where the summation is extended over systems of multi-indices
A{i>ek, ie[r] such that:

[2f] A +AC2) +--+ A = .
We observe, by [2f ] and Theorems B and D (p. 15), that the summation

of [2€] contains [}~ (u,-+r1- l) terms which is the number of solu-
tions of [2f]. = )

Actually, the exact formula [2b] allows us to calculate effectively the
(partial) derivatives of a product of two functions. For each function
F (x)=F (x4, X3, ..., X;) defined in a neighbourhood of a=(a,, a,, ..., a;)€
eR¥ and of class C® in this point, and for any x={(x,, %,,..., %;)€k,
we put:

6"“
el fi= oo

0x”* |x=a

am Foeet oy

= a_x;lq L .ax:; F(xh vy Xk)i(xl, s XY= (@1 oery G5
.f(O) = f‘0.0, s O L= F(al9"', ak)
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and let:
t)‘
[Zh] f"=Ta(F)= Z fx“"
xek ®:
be the formal Taylor series associated with the function Fin a.

THEOREM B. Let the two functions F and G be of class C* in a(eR¥),
and let H:=F.G. Between the three formal series [2i]: f:=1,(F),
g:=1,(G), h:=1,(H), there exists the relation h=fg in the sense of the
product of formal series ([12g], p. 37).

B This is a well-known property of functions of class C® in a point. W
(See, for example, [*Valiron, I, 1958], p. 235.)

THEOREM C. Let r(>2) functions Fyy=F (x), i€[r], xeR¥, be given,
all of class C® in aeR*, and let fy:=1,(Fey)ie[r] fini=Yaeta

Sy, acirt P ALi Y be their associated formal Taylor series (cf. [2h]). Then,
the successive derivatives h, of the function H : = Ili=1 F¢i, inaare given by
formula [2e] (and particularly by [2b, ¢, d] if r=2).

W This is an immediate consequence of Theorems A and B. W
In this way we recover for the product H(x)=F(x)G(x) of two
functions of one variable the usual Leibniz formula:

(5 ha= 3 (7) itner

where e d'F (x)
S

etc., fo:=f (), ... Similarly, for the product H(x)=Fy (X).... Fy (x) Of

r functions we get:

[2i] B =3, (l<1>, m’ 1(,.)) SFasacay e o Sem i

where:

d'OF . (x
l(i>( ) , ie[r].
dx ® x=a
Remark and example. All we said before can be summed up in the
following rule: The derivative f,, ,.  :=0"*"""F(x, x,,...)[0x{'0x3 ...
of a certain function F=F(x,, X,,...) in the point (x,, X,,...) is the coef-

IAY ++ I =m, fayaa =
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Sficient of Yt ... [n\ny\... in the expansion of f=f(t,1;,...):=
i=F(x,+1,, X3+1,,...) by any known method.

For example, if F=(x,+x3)" (x3+x,)" (x;+x,)%, where a;, a,, d,
are fixed real numbers, we find by abbreviating &, : =x, + x;, & 1 =X3+ X,
£y i=x,+x;!

F= {1 t) =+ 12+ x5+ 13)" %
X (X34 t3+ %3+ 1) (xy + 1t + %, + 1) =

t,  t\" t5 45 \* t, 5\
=Fl1+2+2) [1+2+2) (1+2+2),
( & fl) ( &, fz) ( ¢3 €3>

that we can expand by [12m] (p. 41) (be aware of the multinomial no-
tation, [10c"], p. 271):

a a a
-7 2 i) (i) (i)
f kz,qu?O <k29 k3 ka’ kl kla k2

k3, k'1 20 tk1+k'|tkz+k'ztk3+k'3
ki, k220 1 2 - '3

x B R gl PR gk ¥

Finally, taking the coeflicient of t{'t5%¢% [n,1n,!n3!, we obtain:

a"|+nz+n3F
f;'l Mty T AT R R T A L Z <”1> n2> <n3) <
»n2, X Oxy OXY kS PYAVEAVS

ky<nmy
k3<nj3

(al)n3+kz——k3(a2)m +k3—k1(a3)n2+kl—k2 '
x €n3+k2—k35n1+k3—k1 ynytky—kz .
1 2 <3

3.3. BELL POLYNOMIALS

DEFRINITION, The (exponential) partial Bell polynomials are the polyno-
mials B, =B, (X1, X2,..., Xp_y4y) in an infinite number of variables
X1, X2, ..., defined by the formal double series expansion:

tm t'l
3a =9 (tu):=ex m— = B,,—u=
(3] (yimesp(s T )= % B

n k=20
"
k
=1+ Z ﬁ Z uBn,k(xl’xZ"--)
nz1 1 (k=1
or, what amounts to the same, by the series expansion:

, 1 tm k tn
[33] <Z xm;‘i) = Z Bn,k;l'i, k=0,1,2,....

k' \m>1 n>k
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The (exponential) complete Bell polynomials Y,=Y,(x,, x5,..., x,) are
defined by:
m tn

t
[3b] @@ D) =exp| ¥ xp— =14+ Y. (x4, X3...) —,
mz1  m! nm1 n!
in other words:

[3¢] Y,=3 B,,, Yo:=1.
k=1

([Bell, 1934], [Carlitz, 1961, 1962b, 1964, 1966a], [Frucht, 1965a, b,
1966a], [Frucht, Rota, 1965], [Kaucky, 1965].)

THEOREM A. The partial Bell polynomials have integral coefficients, are
homogeneous of degree k, and of weight n; their exact expression is:

[3d] By i (X105 X250 00 Xpop 1) =
n!

R (07 (21 ..

C1,.C3

X1 xZ P

where the summation takes place over all integers ¢y, ¢,, ¢3,++- 20, such
that:

[3e] ¢y +2¢,+3¢;+--=n,
Cl +CZ+C3 +"‘=k.

It follows that B, ; contains P(n, k) monomials, where P(n, k) stands
for the number of partitions of n into k summands, [1b, c] (p. 95).

M We use the definition of the exponential series (p. 37) for relation
(*), and the multinomial identity [10f] (p. 28) for (xx):

3] o(Lu) 2 ¥ Z‘T(Z X, .rfni!)kz

k20 mz21

(%) u k!
Wy L) oy _E Lo
k20 k! €l+€2+"'=k CI!CZ!"‘

t cq t2 c2
Xl Xy — X9 — N
uc; +Cz+"'tcx+2£z+-~- ot e
= X1 X2 eeeen

el zocgl eyl (1) (21)2..
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Hence [3d] follows, if we take in [3f] the coefficient of (1"u*)/(n!). To
see that the coefficients of B, , are integral, it suffices to observe that
(n1)/{11)** (21)°2...} is the number of divisions of [n] into ¢; 1-parts,
¢, 2-parts, etc., since ¢;+2c,+---=n (p. 27); hence (n!)/{c,!c,!...
L (ID)T(21)°2.} is the number of unordered divisions (or partitions of
the set [n], when omitting every ‘empty part’ corresponding to any
¢;=0), where the numbering of equal parts has been removed. Finally,
B, i (abx,ab’x,,ab’x;,...)=a"b"B, ;(x,, X3, X3,...)follows from[3d, e].

WehaveBo,o=l,BM:xl,Bzyl=x2,B2’2=xf,B3,1=x3,B3,2=3x1x2,
B, ;=x},...,B, ,=x,,B, ,=x}. A table of the B, ,, k<n<12, is found
onp.307. N

TueoreM B. The following are particular values of the B, ,:

[3g] B..(1,1,1,...) =S(nk)
(Stirling number of the second kind, p. 50)

k—1)k!

[3i] B, (0L, 1520 ) =|s(n k)| =s(n, k)
(signless Stirling number of the first kind, p. 50)

- n—1\n!
[3h] B,,(1,2,3)..)= ( ) (Lah number, p. 156)

[3'] B,:(1,2,3,..) = (Z) k"% (idempotent number, p. 91)

M For[3g], we put x; =x,=---=1in[3a]; we obtain P =exp {u(c’— 1)},
so we get indeed the Stirling numbers of the second kind S(n, k), [14q]
(p. 50). For [3h], with x,,=m! in [3a], we get:

[3i] O =exp(u ¥, t)=exp{tu(l —1)"'}

mz=1

k Kk k+1 k

tu” .. " u
-y -0t ¥

W&o k! wiFo Kl

<kes

hence the result follows when we identify the coefficients of u*¢"/n! in
the first and last member of [3j]. For [3i], ®=exp{u ) ns, t"/m}=
=exp{—ulog(l—1t)}=(1—1¢)"* which is the generating function of the
absolute values of the numbers s(n, k), [14p] (p. 50). Finally, [3i']
results from @ =exp(ute’) here. (See Exercise 43, p. 91.) H
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The following relations can be proved easily (n>1):

n—1 .
[3k] kB, = Z (7) b S ; T

I=k-1

x n
[31] Bn,k(xls X2, ) = Z ( > xlan—l,k-l (0, X25 X3, )

Ld n! Xy X
l 2 3
; (n— k) Saate ’<2 3’ )

, Xy X n!
[31] Bn,k (52" ’;’ ~~-) = (an)' Bn+k,k(09 X2, X3, )

p Xg+1 Xg+2 n!

[31 ] Bn.k<(:+1)s (:+2) > (n + qk)'Bn+qk.k X ("0,0’xq+1’x4+2"‘)
q q

2a

n n—j
[31]1] Bn,n—a(xl’ X2 s ) Z (1) Xy JBj,j-a(Os X325 X3, )

2a n! n—j Xy X3
= '“—.h"xl Ba.j-a Sl T
j=a+1 (n—j).a. 2°3

[3n] B, . (x; +x},x;, +x5,...) =

n
= 3 (V)Bv,,,(xl,xz,...)B,,_v,k-,.(x;,x;,...)
x<k,v<n

Ay

[32] B,:(0,0,..,0,%;,,0,..)=0, except Bj ;= E(#(IE)TY‘ x'}.

Remark. The B, ;, as given by [3a,a’], will give a simple way of
writing the Taylor coefficients (= successive derivatives) of the formal
series that we now are going to study. Meanwhile, if one works with
ordinary coefficients, as on pp. 36-43, it is better to use the polynomials
B,,. (still with integral coefficients), defined by [30, 0] instead of
[3a, a’] (and tabulated on p. 309):

k

o] B=d(tu)imexplu T xut™) = T Byuleiy ) 0L
mz1 kSr: .
3] (X o= T B,
!l?k l!!?l

that we call ordinary, in contrast to the B, , already introduced, that we
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called exponential. More generally, just as in the case of the GF, [13a]
(p. 44), let Q,, Q,, ... be a reference sequence, £2,=1, Q,+#0, given once
and for all; the Bell polynomials with respect to 2, By =By . (x, X3, ...)
are defined as follows:

Br]  A(Y Q") = Y Bl.Qt
mz1 nzk

(2,=1/n! in the exponential’ case, and €,=1 in the ordinary case).
Bl 1—x1s Bz 1 = Xa, Bz 2=x%; Bs 1= X3, Bg 2=20305! X1X2, B3 3=
=x3;.... Meanwhile, it should be perfectly clear, once and for all, that
the polynomials B,... which occur in the sequel of this book always mean
the exponential Bell polynomials ([3d] p. 134), unless explicitly stated
otherwise.

3.4. SUBSTITUTION OF ONE FORMAL SERIES INTO ANOTHER;
FORMULA OF FAA DI BRUNO

THEOREM A (Faa di Bruno formula). ([Faa di Bruno, 1855, 1857]. See
also [*Bertrand, 1864] I, p. 138, [Cesaro, 1885], [Dederick, 1926],
[Frangais, 1815], [Marchand, 1886], [Teixeira, 1880], [Wall, 1938].)
Let f and g be two formal (Taylor) series:

u* t .
[43] f:= Z f;z_—s g:= Z gm_’ Wlth gO=0a
¥>o0 k! m!

mz0

and let h be the formal (Taylor) series of the composition of g by f.
(Theorem C, p. 40):

[4b] & Zh -—fg /gl

Hence, the coefficients l1,, are given by the following expression:
[40] hO=fOs hn= Z ﬁcBn.k(gb G2s ey gnwk+1)3

1<k<n

where the B,  are the exponential Bell polynomials ([3d] p. 134).

B By definition [4b] of h, it is clear that the A, are linear combinations
of the f:

[4d] hn= Z An,kﬁn

1<k<n
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and that the 4, ; onlydependong,, g,,.... Nowthese 4, , are determined
by choosing for f (#) the special formal series f * (u): =exp (au), where a is
a new indeterminate. Then:

. O K

Jk T o f =a.
Bu" u=0

Hence, by [3a] (p. 133), for (x), and by [4d] for (xx):

[4<]

tm
R ORT

m!

* "
=1+ ) B,:(9192-) al a

1<k<n

x¥)

- x 0 3 *
[4g] = h, i 1 +n>1 {;1, Y An,kjk}

t'l
=1+ A, — d*,
1<k<n 0!
from which it follows that 4, ,=B, , by identifying the last members
of [4f] and [4g]. W
So, we find (see p. 307): hy=f1g9:, ho=f19:+/29%, h3=figs+
+32919:+/39%, ha=f19a+/2 (49195 +393) + 63939, + fagt, ... -
By the Faa di Bruno formula we can effectively calculate the successive
derivatives of a function of a function.

THEOREM B. Let two functions F(y) and G (x) of a real variable be given,
G(x) of class C* in x=a, and F(y) of class C* in y=b=G(a), and let
H(x):=(F-G) (x)=F[G(x)]. If we put:
d"G d"H
4h = e s = —_ ) hn =
S dx* s
90:=G(a), fo:=F(b)=ho:=H(a)=F[G(a)],

d*F

and we define the associated formal Taylor series:
g(@:= ¥ gn"l(mY),  f(u)= 3 ful(kD),
h(t)= ). ht"/(n),
nz0
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then we have formally: h=fog. (Be careful! For g, the summation begins
at m=1, so there is no constant term.)

W If the Taylor expansions are convergent for @ and ¢ real, |f| <R, then

we have: H(a+1)=h(1)=F(b+g (1))=Y x»0feg*(1)/(k})=(fog) (¢). If
there is no convergence, then operate with expansions of f and g con-
sidered as asymptotic expansions. il

THEOREM C. Notations and hypotheses as in Theorem B for the functions
F, G, H, H=FoG.Then the n-thorder derivative of Hin x=a, nz1, equals:
) d"H i
[4i] by o= = Z kan,k(gi’ G2 Gnokt1)s
k=1

n
dx x=a

where the B, , are given explicitly by [3d].

B Apply Theorems A and B. W

Example. What is the n-th derivative of F(x)=x°"? (x>0 and a is any
fixed real number #0). We can make the same observation as on p. 133.
So, we must expand f () :=F(x+1) as a power series in #. Now, after a
few manipulations:

)=+ 07 =

= F(x).exp(at logx).exp(ax (1 + ;) log(l + J:))

Let us introduce the integers b(n, k) such that
1 T
i ((L+T)log(1+T)):= 3 b(n, k)~’~1-~i, 5(0,0):=1
i nzk .

It is easy to verify: b(n+1,k)=nb(n—1,k—1)+b(n, k—1)+(k—n)x
x b(n, k), hence the following table for b(n, k):

n\k | 1 2 3 4 5 6 7 8§ 9 10
2 1 1 o ON—
3 —1 3 1 \
4 2 —1 6 1
5 —6 0 5 10 1
6 24 4 -15 25 15 1
7 --120 —28 49 —35 70 21 1
8 720 188 —196 49 0 154 28 1
9 —5040 —1368 944 0 -231 252 294 36 1
10 40320 11016 ~ —5340 820 1365 —987 1050 510 45 1
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Moreover, b(n, k)=Y, ( ) k'~*s(n, 1) with the Stirling numbers s(n, /)
of p. 50.
Returning to f (), we get consequently:

Foy=F y (e

j>0,15$m

.b(m, k (ax).

(=)
)

m!
Finally, collecting the coefficients of #"/n! in f(r) and abbreviating

A:=logx, £ :=(ax)"*, we obtain the following formula for the n-th
derivative:

& (x " s
o= (;;c" )= a"x** Z {(7;) A hgo b(n —j.,n—h _]) (fh}.

i=0

For instance, fy=a*x** {14+ 6£— &> +283 +4A(1 +3E—E2)+6A2 (1 + &) +
+443+24).

3.5. LOGARITHMIC AND POTENTIAL POLYNOMIALS

The following are three examples of applications of the Fai di Bruno
formula.

THEOREM A (successive derivatives of logG). The logarithmic poly-
nomials L, defined by:

t" 12
[5a] log<Z 9n >=log<1 + g1t + g, §7+...)
nz0 - H

- T Lo (=1,

nzi !

which are expressions for the n-th derivative of log[G(x)] in the point
x=a, equal (for the notation, cf. [3d] p. 134 and [4h] p. 138):

[Sb] Ln=Ln(gl’ gz""’ gn)
=1§< (=Y (k = 1)IB, (91, 92, ---)- (Lo =0)

B Use [4c, i] with F(y):=logy, b=1, fi=(-1)*""(k—1)! W
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From [5a, b] the following expansion is easily deduced:
2

[5¢] log(go +git+g, >=10gg0 +

+ Z Z _l)kﬂl(k—1)!gaan,k(glsg2,"')}'

n>1 "' 1<k<n

2!

where g,>0. A table of logarithmic polynomials is given on p. 308. (On
this subject, see also [Bouwkamp, De Bruijn, 1969].)

THEOREM B (successive derivatives of G*). The potential polynomials P
defined for each complex number r by:

r tZ r
561 (S ant) =(1autont
n=0 ! 2!

t
=1+ Y PO

nz1 n!

(go 1)

which are expressions for the n-th derivative of [G(x)]" in the point x=a,
equal (notations as in [3d] p. 134, and [4h] p. 138):

[5¢] PO =P gy, dsers d1)
Z (r)k n,k(gl, gz,...). (Pg‘)=1)

1<k<n
M Use [4c,i] with F(y):=y", b=1,f,=(r),. W
From [5d, €] we obtain easily the expansion:

t2 r
5] (go+g1i+gz§"+ > =

—go+n21“ {1 "(")k g:)_an,k(gn g2s--)}.
where g, >0 for r an arbitrary real or complex number, g,#0 for r an
arbitrary integer, and g, arbitrary for r an integer >0. When g,=0 in
[5f], and r is an integer >0, then we find back [3a’] (p. 133), and when
r is integer <0, we get the following Laurent series, whose expansion
is given by [5d] (g, #0):

12 r gz t 93 t2 r
5 t ] = D1+ .=+ - +es
[Se] (gl +922! ) (94 )( 29, 11 391 Y
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Finally, by [31”], one may show that for all integers / and >0, we have

tq q+1 -1
— + —_— +... -
(g“q! Fart (G5 1)1 )

@) 1 e (21 @)D,
=~(—é—17-ﬁm§0t jsmm“)—lem+qj’j(0,0,...,0,gq+],gq+2,...).

qtimes

THEOREM C. For any complex number r, we have:

.1 n .
Sh P = n+r —1¥ ('>P(J).
[sh] B {,115&(),+j1n

In other words, for G(x)eC® in the point a, go=G (a)=1:
da n—+r .1 n d" :
= -1y — (" G’
X x=a r( n ) 1$§$n ( ) r +] <]>dx" (X)

d ”
W Let g=1+) .5, g,t"/(n!); then we get

[5] ~= G~ (x)

xX=a

[51 ¢ =1+ X B "o={l4(g—-1)}"=
n21 n!

=k;0<‘;€’> (g — 1F.

Now ¢* divides (g—1)*=(g,2+9g,t*/2+---)*; hence, by virtue of [5j],
P{™" equals the coefficient of #"/(n!) in:

é:o <_kr) o-1y= osz';ssn <—kr) (ﬁ) CRVR

— k P
e 53O
0<j§lg$n k J\J -1

= (- 1Y Py,

0<j<n

Hence

A
Py
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where, using [7g] (p. 17), for ():

_ r+k—1 k)_(r+j~1> <r+k—-1 _
y~j<z’.‘:<”( k >(] - J j<k<n k“j h
() <r +j - 1) (r + n) _r (n + r) (n) -
J n—j/ r+j\ n A
3.6, INVERSION FORMULAS AND MATRIX CALCULUS

We just treat two examples and for the rest we refer to [*Riordan, 1968],
pp. 43-127, for a very extensive study of the subject.
(1) Binomial coefficients

Let two sequences be given, consisting, for instance of real numbers
(more generally, in a commutative ring with identity) such that:
n

[6a] S = <k) G nz=0.
0<k<n

We want to express g, as a function of the f,.
The simplest method consists of observing that [6a] means that:

[6b] F=PG,

where F, G are matrices consisting of a single (infinite) column, and P
the (infinite triangular) Pascal matrix:

Jo do 1
L fi 9 . L1
[6¢] F:= G:= , P:= {2 1

fHl g2
We take for F and G special matrices such that f,=y", g,=x"; in this

case we get, by [6a],y=1+x. Hencex"=(y—1)"=>"7_, (Z) (= 1)k
consequently:

1
~1
[6d] P"=[[(—1)”"‘(Z):”" = 1 -2 1
k20 3 -3 1
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So, P~1 is the same as P, except that signs — appear in a chessboard
pattern. (Because P is triangular, [6d] also holds, if the matrices are
cut off at the n-th line, and thus turned into finite matrices.) Finally, if
we take into account that G=P™'F:

6] o= % (-0 (}) 4

0<k<n

(I1) Stirling numbers

We now show that the matrix s:=[s(n, k)], x>0 consisting of the
Stirling numbers of the first kind, is the inverse of the matrix S:=
=[S(n, k)], x>0 Of the Stirling numbers of the second kind; this means,
like in the preceding case of the binomial coefficients:

[6f] ﬁ.=§5(n,k)gk¢gn=§S(n,k)ﬁ‘-

Now, using [14s] (p. 51) for (x), and using the notation:
= Z fmtm/’n!9 g .= Z gnt"/n!’

weget: " e
[6z] f=f(t)—m20—(ZS(m,k)gk)—
R B R

Putting u:=e'— 1, let r=log(l +u). Then [6g] gives, with [14r] (p. 51)
for (xx):

[6h] g =g(u)=/(og(l+u)= 3 f
=W s(n,k);)=n;0;!{;s(n,km},

kz0 nz0

log" (1 + u)

which proves [6f], if we identify the coefficients of u"/n! of the first and
the last member of [6h].
3.7. FRACTIONARY ITERATES OF FORMAL SERIES

The Faa di Bruno formula, [4c] (p. 137), with f =g, gives the coefficients
or derivatives of fo f, and more generally, it also gives the coefficients of
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the iterate of order o of the formal series f (when f,=0, « integer >1),
denoted by f <, and defined as follows:

[7a] SV =f S P =fofse [ = fofTD.

We now want to define the iterate (analytical or fractionary) of order
of f, also denoted by f <*’, for any o from the field of the coeflicients of f;
in the case we consider, this will be the field of the complex numbers
(this constitutes no serious loss of generality). In this section every formal
series f is supposed to be of the form:
[7b]  f=% @0,
nz1
where Q,, Q,, ... is a reference sequence, given once and for all, Q, =1,
Q,#0 (p. 44); in this way we treat at the same time the case of ‘ordinary’
coeflicients of f («>Q,=1), and the case of ‘Taylor coefficients’
(«Q,=1/n!).
With every series f we associate the infinite lower iteration matrix
(with respect to Q):
B,, 0 0 ..
[7c] B=B(f):=|By; By, 0 .|,
B3, 1 B3 2 B3, 3

where B, =By (/15 fs,...) is the Bell polynomial with respect to
([3p"] p. 137), defined as follows:

k __ n
[7d] Q=Y B, 2.1

nzk

Thus, the matrix of the binomial coefficients is the iteration matrix for

f=t(1-1)"1, Q,=1, and the matrix of the Stirling numbers of the second

kind S(n, k) is the iteration matrix for f=e'—1, Q,=1/nl.

THEOREM A. For three sequences f, g, h (written as in [1b]) h=fog is
equivalent to the matrix equality:

[7e]  B(#)=B(9).B(/).

([Jabotinski, 1947, 1949, 1963]. If we transpose the matrices, we get
h=fog<='B(h)="B(f). 'B(g), which looks better. However, the classical
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combinatorial matrices, as the binomial and the Stirling matrices, are
most frequently denoted as lower triangular matrices, hence our choice.)

B For each integer k1, we have, with [7d] for (*):

(11 Y Boalhy, by ) Q0=

[ 241

Lot =0 @) L Buelfi S ) ' =

LY B,i(91 92 ) B (fis far ) AL

nzizk

from which [7e] follows if we collect the coefficient of Q,¢" at both ‘ends’
of [7f]. M

If we consider in [7¢] the first column of B (%) only, we obtain again
the formula of Fad di Bruno ([4i] p. 139), if we take Q,=1/nl. More
generally, if we have « series f;5, f(2y, -, f(ay, then [7e] gives the matrix
equality B(feyo o fezyofery) =B(fi1y) B(fe25) .- B(f(oy)- In other
words, if we consider again the first column only, we obtain a generalized
Fad di Bruno formula for the n-th derivative of the composite of
functions (again, we must take £,=1/n!). Similarly, B(f¢)=(B(f))"
for all integers o> 1, which leads to an explicit formula for integral order
iterates ([Tambs, 1927]).

Now we suppose that the coeflicient of ¢ in f equals 1, f; =1; shortwise,
we say that f is unitary. Furthermore, we assign values to B*=(B(f))",
o complex, in the following way: denoting the unit matrix by I, and
putting #Z:=B—I (which is B with all I’s on the diagonal erased), we
define:

[7g] B'=0+%y=Y (“) .
izo \J
In other words, between the coefficients of B% denoted by B ( is the
row number and k is the column number), and the coefficients of B,
denoted by [#°],, s, the following relation holds:

o] B2= % (9

1<j<n-k \J
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by which the matrix B* can actually be computed. For all a, o', the reader
will verify the matrix equalities:

[71] BaBa’ — Ba+a’ — Ba’Ba, (Ba)a’ — Baa’ — (Ba’)a .

DEeFINITION. For each complex number o, the a-th order fractionary
iterate ‘™ of the unitary series f is the unitary series, whose iteration
matrix is B*. In other words, f < : =Y w51 S ¥0Q,1", where the coefficients
£ 52 have the following expression, using by, j:=[%],,1, n=2:

7 P =BR= ¥ (j)b nz2, f=1.
<jsn-

Series f<*, thus defined, does not depend on the reference sequence Q,.

Evidently, f¢° is the ‘identity’ series, f <°”(t)=t. In the case of ‘Taylor
coefficients’, Q,=1/n!, we obtain, by computing the powers %/, the
following first values for the iteration polynomials b,,, ;:

by 1 =falbs1=/s, b32=3f71bs1=fy, by,=1001+3f>,
ba 3 =18/31bs,1=fs, s 2=15f 0+ 10f7 +25f7f;, bs 3=
= 1301713 + 7517, bs, 4 = 180/3 1 b6, 5 = f5, bs,» =2112fs +
+ 3513 S0+ 60f7 S0 + T0/5 /2 + 1515 f3, be, 5 = 270/3 fu + 350/, /5 +

o+ 106515 f3 + 1805, e, 4 =2310f5f3 + 1935f5, D, s =2700f; 1

b7, 1= f7a b7,2 = 28fzf6 + 56f3fs + 35f42 + 126f22f5 + 350f2f3f4 +
+70f3 + 105/ /7 + 10513 1, by 3= 50417 fs + 16101, f3fy +
350f3 4 3255/ fu + 5T05£2f2 + 4935 /5 f5 + 31515, by, 4 = 6300
Fofa + 119002 fF + 424201} f5 + 13545£F, b, s = 548101, f; +
+59535/7, by ¢ =56700/5 1.

From these values we obtain immediately, by [7j], the expressions for
the first derivatives f * of the iterate f <. For example, the fractionary
iterate of f(f)=e'—1=Y 5, 1"[n! is £ () =1+ 5, [i1"[n!, where

- o
=3y (]) b, ; for n>2; the first few values of b, ; are:
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0

NV 2 3 4 5 6 7%
\\94' . 2 1 Q
O\) AN %
\Q "\(%}9- 4 |1 13 18
A 5 150 205 180
h 6 1 201 1865 4245 2700
7 1 875 16674 74165 114345 56700
8 1 4138 155477 1208830 3394790 3919860 1587600

Evidently, the alternating row sums Y 721 (—1)? b, ; equal (—1)""!x
x (n—=1)1, since f <17 ()=log (1 +1).

- THEOREM B. For all complex numbers «, o, the fractionary iterates of the
unitary series f satisfy:
[7k] f(a)of(a’) — f(z+a') = f(a'> of<“>;
(f)@ = f@@ = ()@,

B This follows immediately from [7i]. W

3.8. INVERSION FORMULA OF LAGRANGE

For every formal series f=) ,-, a,t", we denote the derivative by f* or
DY, or df/dt; let furthermore:

[8a] Cen f:= a, = the coefficient of (" in f.
Supposing @, =0, a, %0, we are going to compute the coefficients
of the reciprocal series, which is:
=3 e,

nz1

al™ v

such that fof <~1?=f<"Pof=¢ (inversion problem for formal series).

THEOREM A. (inversion formula of Lagrange). With the notation [8a],
we have, for all integers k, 1 <k<n:

[8b]  Co(f< D)= ';1 Coner <f f’ )>

([Lagrange, 1770]. See also [Lagrange, Legendre (Biirmann), 1799]: The
formal demonstration given here is due to [Henrici, 1964]. There is an
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immense literature on this problem, and we mention only [Blakley,
1964a, b, ¢], [Brun, 1955], [Good, 1960, 1965], [*Grobner, 1960]
p. 50-68, [Percus, 1964], [Raney, 1960, 1964], [Sack, 1965a, b, 1966],
[Stieltjes, 1885], [Tyrrell, 1962].) In (8b), (f/t)™" means evidently
ar"(L+(azfay) t+ (asfag) t2 4 )"

B According to Theorem A (p. 145), all we need to prove is that the
product of the matrix whose n-th row--£-th column coefficient is the right-
hand member of [8b], by the matrix whose n-th row—k-th column
coefficient is (. f* (this is the matrix B(f), with respect to Q,.=1,
[7c], p. 145), equals the identity matrix I. Now, the coefficient on the
n-throw and k-th column, say n, ;, of this product matrix, is by defi-
nition equal to:

e 3 {6 (1) 0]

So we only have to prove that m, =1 for n=k and =0 for n#k. For
this, we observe that IG i f*=( 1 (tD(f*))=kCa(&f* ' f*). Hence, with
[12g] (p. 37) for (#):

k
M= T G (107 Caltf* 1)) =
(i)’; C'" (f/t)—n tfk~1f: — :C‘” (tn+ If-n+k—1fl)’

which implies immediately that 7, a=1, for n=1,2,.... For n>k, on
the other hand, we have:

__k f-~n+k
=, G {tD (— n +“k)}’

where the series following the differentiation sign D is now a Laurent
series (p. 43). In the derivative of such a series terms #~! cannot occur,
so indeed 7, ,=0. W

Here are other forms of the Lagrange formula [8b].

TuroreM B. With notations as above, and u:=f <~V (t) we have for any
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Jormal series ®:

(] eW=2©)+ 3 = C,n,cp'()(f .(’))—"

or, if one likes that more:

[8c] nCm @ (S V(1) = Com-1 &' (1) (f )>_"

W Let &(v):=),0 @,v"; it suffices to show [8c] for v*; but this is
just[8b]. W

THEOREM C. Let y=y,+xF(y) determine y as a series in x, with constant
term y,. Then:

n n—1

(8] 20)=800)+ T i 55m GO0 F00)).

B Writing y=y,+u, we get x=u(F(y,+u))”*:=f (4). Then apply [8¢],
with t=x, @(u)=E(yo+u). B

THEOREM D. ([Hermite, 18911]). With notations as above andu=f<"V (1),
we have for all formal series ¥

t¥(u) FON™"
uf'(u)_ngotctnw()< ) ’
in other words:

o O o g ()
7 e pid=Ce v (50)

M If we take the derivative of [8c] with respect to #, then, using
t=f(u), du/dt=1/f"(u), we get:
du _? (u) < )"""
8e %’ = "G ' (¢ .

So we only need to substitute ¥ (u):=u®’(u)/f (1) into [8¢]. H

[8d]

TueoreM E. The Taylor coefficients of the formal series f <™V =Y .,
f$7V"n), which is the reciprocal of J =Y nz1 ful"[n! can be expressed
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as function of the Taylor coefficients f, of f in the following manner:

f2 f3 .>

[ = };(—n)kfi""nn w(Z 2

[82] Z —1) fl—"_kBk+n—-1,k(0a Sas f35-42)

with f{™ =1[f,, and with B, | the exponential Bell polynomials. ([3d],
p. 134. For this problem see also [Bodewadt, 1942], [ Kamber, 1946],
[Ostrowski, 1957] and [*1966], p. 235, [*Riordan, 1968}, pp. 148 and
177.)

B [8f] is an immediate consequence of [8b], with k=1, where the
right-hand member is expressed by means of [5f] (p. 141); then [8g]
follows from [31'] (p. 136). M

The first values of £ are: £ = f7 1 f5 P =— f73 4,1
f< V= fi f3 +3f7 fz 1 f4<_1> = f1—5f4 + 10f1—6f2f3 -
— 15T RNVFED = = 7O s+ ST T (15 fufa + 10£3) = 10517 2 f3 7 +
+ 1057V & == [T fo + f1 PQRUfsf2 + 3505 15) —
— [P (101 f7 + 28017 £,) — 1260/ 1O fo f7 + 945 fT MV N T =
— 7% + [P (2816 fs + 5615 S5 + 3500) = fi O (3181 7 +
12601, f3 /2 +28013) + fi 11 (31501, /3 + 63007 f7) — 11325712 £ f3
+ 10395f1 13f6 | f< D= f1_9fs + f1—10 (36f7f2 + 84f6f3 +
+ 1265 13) = fi M (630ff3 + 252015 /3 /5 + 15T5 1L f + 21001, f7) +
+ f12(6930 5 f7 + 34650, 13 f5 + 15400/2f,) — 1 2 (519751, /3 +
+ 1386001215) + 2702707 24 £, f5 — 1351357 1 £ 1.

To check this table, observe that the coefficient of (—1)* f7 "~k when
fi=fo=-=1,is exactly S, (k+n—1, k) of p. 222.

THEOREM F. Let a be an integer >1. For f(t)=t(1=) .5 x,t*"[m}),
we have f<™ P (1) =1(14+Y w51 Yt |m!), where

[8h]  yu= kZ:I (am + K)oy By k(%15 X35--.).

W Apply [8b] (p. 148). W
Formula [8h] could save time and place. For example, if we want to
invert f(t)=(1/2) (sht cost+cht sint)=t(1+ s (—4)"*"/(4m+1)1),
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up to ¢'3, we need the B, ; up to n=12 by [8f], and only up to n=3 by
[8h]. So, f< P (f)=t—15/30+1°/22680—1'3/97297200+ - ([Zycz-
kowski, 1965]). »

THEOREM G. We have the following formula, using only coefficients of
powers of f(t) with positive integral exponents (f (f)=ayt+ayt*+---,
a, #0):
. - m—k\ " (=1 -k
81 n N t , = k ( ) ( . ) X
w1 e =k (") 5 (1
X a;"_"Ctn—k-rj(f(t))].

M Use [8b] (p. 148) and [5h] (p. 142). W

Remark. The correspondence between a formal series and its iteration
matrix was already used when we inverted the Stirling matrix S (p. 144):
we took the inverse function of f (¢): =¢'— 1, whose iteration matrix was
S (with respect to 2,=1/n!)

Applications

(I) The most classical example is undoubtedly that of computing the
coefficients of the inverse function f <~1?(z) for the case f(¢)=te™". By
[8b] (p. 148), k=1, we get:

1 te”™\7" 1 1wt
(—1>=— - PO = - n—1 "t='v.— —_ .

Cl"‘f nCt l( : ) nCt € n (n—l)!

Hence f<"V(r)=Y,5, n" *t"/n!. (See also Exercise 18, p. 163.)
(I1) For given fixed complex z, what is the ‘value’ of the series

F(1):=Y n50 (r;z) t"? Since
F(t)= Y t"Cm(1+1)",

we can apply [8d] with f (£):=¢(1+¢)"" and ¥ (f)=1. After simplifica-
tions, we obtain F(r)=(1+u) {l—(z—1)u} ", where u:=f<""(¢) is
the reciprocal of f (¢). (For z=2 we find back (1) of Exercise 22, p. 81.)

(IIL) Calculate the n-th derivative of an implicit function. We consider a
Taylor formal expansion in two variables: f (X, y)=3 ., fn, nX™y"/(m!n!),
where fo,0=0, fo,#0. Therefore, f(x,¥y)=Y,5: @.(x)y"/n!, with
©u0(X)=2 50 S, nx"/m!. We want to find a formal series y=Y 5 y,x"/n!
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such that f (x, y)=0 (the problem of ‘implicit functions’). For that, we
solve ) 51 ¢,y"[nl= — ¢, by the Lagrange formula, where the variable is
— @, the unknown function is y, all the ¢, @,, @s,... being temporarily
considered as constants, and collect afterwards the terms in x"/n! in the
expression of y just found, where @o=¢,(x), ¢, =¢,(x), etc. Putting
a:=f, o,b=—(fo,1)" ', wefind ([Comtet, 1968], [ David, 1887], [ Goursat,
19047, [Sack, 1966, [ Teixeira, 1904], [Worontzoff, 1894]and p. 175): y, =
=ab (this is the well-known formula y'= —f[f;) Vy, =b( f,, 0 +2abf; , +
+”2b2f0,2) Vys=0{f3,0+3bf 0f1,1+3abfs, +ab? (6f§ 1H3f5.000,2)+
3@, 298Dy fo, 2+ @Yo, 3+30°0 0, 2} N ya=b{fs,0+
+b(dfs,0f1,1+ 65,0 02,1)+b* (122,011, +3f3, 0 fo,2) +4abfs,; +ab® x
x (12,0 f1,2+ 2411 f2,1+ 43,0 fo,2) +ab® Q41,1 +36f2,0 f1.1 fo,2) +
+6a?b%f, , +a*b>(36f, 1 f1, 2+ 18f2,1 fo, 2+ 6f2,0 fo,3)+a*b* (1211, 1
% fo,2+18f3, of(z). 2)+4‘13b3f1,3+‘13b4(24f0,2f1,2+ 16f1,1 fo,3)+
+60a°b° f; 1 f3 4 a*bif o, 4 +10a*D%fo 5 fo. 5+ 15a%6° £5 5} )

(IV) Solve the equation y=x+x?y**!, where p and ¢ are integers >0.
We have x=y(1—x7y")=f (). So, with [8b] p. 148, y=> .5 bx",
where b,=b, (x)=(1/1) G -1 (1 —xPt?)~". Therefore,

1 kq + k) k(p+q)
)= x e x , x| <1.
) kgo kq +1 < k .

(V) Let us give another proof of Abel formula ([1b] p. 128). For that,
take f(t)=te*, ®(t)=e*" in [8c]. Then P(u)=e"=1+) 5, (t"k)x
% 0 -1 (xe) (€¥) " *=Y i 5ot* x(x—kz)*"!/k! Now, multiply the pre-
ceding by ", replace ¢ by t=f (u)=ue*", and take coeflicient of u"/n!.

3.9. FINITE SUMMATION FORMULAS

Now we want, in the simplest cases, to express a sum A:=) - a(k) by
means of an explicit (or closed) formula, called a summation formula,
that is an expression in which the summation sign ), does not occur
anymore (neither little dots!). "

Example 1. Show that A:=Y ., (k)———Z". In fact, A=(1+1)", be-
cause of the binomial formula.

n k n k
Example 2. Compute A,(x):=),k (k) x*. We have ), (k) xk=

=(1-+x)". Taking the derivative, we get ), k (Z) x*l=n(l+x)""L
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Hence 4,(x)=nx(1+x)""". Particularly, 4,(1)=) k (Z) =n2""" and
A (=)= (~1)k (Z)=o, except 4; (—1)=1.
2
Example 3. Compute A:=)Y i_o (Z) . Observe that A=) }_, (Z) X
X (nf k)’ which means that A equals the coefficient of ¢" in the product

of (1+¢)" with itself:

(See Exercise 38, p. 90.) More generally, we have the convolution
identity of Vandermonde:

o1 FG)GZ5) () e

which follows from p. 26 or [13c] on p. 44, or also, as before, from:

(Z) = ka(l + t)" = C‘k (1 + t)"' (1 + l)"_'”.

In other cases, A=A(n)=);_, a(k) and a summation formula ex-
presses now that A=)7., b(!), where b(/) is another sequence. If
m<n, we save making additions in this way. More generally, a summation
formula is an equality between two expressions, one of which contains
one or more summations. A summation formula is interesting if it
establishes a connection between expressions which are built up from
known or tabulated expressions.

Example 4. Use the Bernoulli polynomials ([14a], p. 48), to compute
for each integer r 20:

[9v] Z=Z(nr):= Y K=1+42+-+1n".

1<k<n

For this we consider the formal series:
L(®):= Y {Z(@mr) ey,
rz0
We get, by [14a] (p. 48), for (x):
t"
O] A=t T K- { (_—}=t
rz0 r! i1<ks<n (2

1<k<n

(=]
~
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te(n+1)r _ er e(n+l)t t
e —1 éf—1 é—1

v

r t
2Y -B@n+1)- Y —-B,—1t.
vzo v! v!

v20 V.

Hence, by identification of the coefficient of ¢"*!/r! in the first and last
member of [9c], we get, by [14g] (p. 48), for (x+), r>1 (Z(n, 0)=n):

4] 2 r)= s (B (1 1) = Bra} =

1
w ! ¢ Bk'<r-;€_1> (n 4 1y H1F,

r+1o<esr

Thus we find, by the table on p. 49 (a table of the Z(n, r), r<10, n<100
is found in [*Abramovitz, Stegun, 1964], pp. 813-17; see also [Catlitz,
Riordan, 1963], Exercise 4, p. 220 and Exercise 31, p. 169):

Z(n,1)=n(n+1)/2,

Z(n,2)=n(n+1)(2n+1)/6,

Z(n,3)=n*(n+1)"/4,

Z(n,4)=n(n+1)(2n+1)(3n* + 3n—1)/30,
Z(n,5)=n"(n+1)*(2n* + 21— 1)/12,
Z(n,6)=n(n+1)(2n+1)(3n* + 6n°> — 3n + 1)/42,
Z(n,7)=n*(n+1)> 3n* + 61> — n*> — 4n + 2)/24.
Z(n,8)=n(n+1) (2n+1) (5n°+ 151> + 5n* — 151 —n% 4+ 9n—3)/90
As additional properties of Z(n, r), we have:

(N Z(n,r)=rf Z(v,r—1)dv+Bn
(2) Z(n,2) divides Z(n, 2k) and Z(n, 3) divides Z(n, 2k+1),
k=1
SUPPLEMENT AND EXERCISES

1. Two relatives of the binomial identity. Show that:

= 3 (T @ )

1<k<n n




Or,ﬂf

9””‘\/
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(-1

x"+ )y =
0<k<n/2 n—k

(") ot ey
[Hint: Induction. See also Exercise 35, p. 87 and p. 198.]

@numbem ([*Riordan, 1958], p. 43). These are the numbers
=(—1)"( 1) n!/k! which appeared in [3h] (p. 135), exp {rux

x(1—t)"}= 1+Zl<k<,, Lo(—0)ydnl. (1) Lyyy o=—(n+k) L, .—

nk | 1 2 3 4 5 6 7 8 10
1 -1

2 2 1

3 -6 —6 -1

4 24 36 12 1

5 —120 —240 ~120 —20 -1

6 720 1800 1200 300 30 1

7 —5040  —15120  —12600  —4200 —630 —42 —1

8 40320 141120 141120 58800 11760 1176 56 1

9 [—362880 —1451520 —1693440 —846720 —211680 —28224 2016 72 —1
10 | 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1

~Lp 1o (2) (=x)a=(=1)"<xDp=2%=0 (¥)i Lu- (3) ay=Y L, by is
equivalent to b,=) L, ,a,. (4) L, =Y (—1)s(n,j) S(j, k), where
s(n, j)and S(J, k) are the Stirling numbers of the first and second kind.

3. Bell, potential and logarithmic polynomials. (1) Show that k!B, =

=Lrk (I:) (=1)""PY. Which property of derivatives does this for-

mula give when combined with the Faa di Bruno formula of p. 1377
(2) Uselog(1+g)=Y,5,(—1)"'r"'g", where g: =Y ., g,t"/n! to show
thatL,=>7_, (= 1)~ ~1P,®), Translate this formula in terms of deriv-
atives. Similarly, with s(J, k), the Stirling number of the first kind:

C.. log(;+g)=§s(l k).C

4. PO as a function of a single Bell polynomial when r is integer. 1f r

IDENTITIES AND EXPANSIONS 157

is a positive integer, show that:

R n+r\!
P’(')_—:( . > B,.,.(1,294,395...).

[Hint: We get (14g,2+ 9,12 /214 Y =1 7" (t4+2g,£2/214 3g,£3/31 4 .- ),
by [5g]. p. 141.]

5. Determinantal expressions. (1) Let fi=Y .., a,t" a;#0, and g=
=Y sobu"=f"" Then b,=(~ I)"ag"'ldet[c,,j]], where ¢; ;=
1=a;_ 41, 1<, j<n; a,:=0 for k<0. (This gives a determinantal
expression for P{™ ). (2) The Faa di Bruno formula ([4i] p. 139) can be
restated operationally in the following form ([Ivanoff, 1958]), using the

Pascal triangle of dimension n, with an upper diagonal of —1:

gD -1 0 0
g.D gD -1 0 ...
h,=lg.D 2g,D g, —~1..f,

gsD 39D 3g,D gD ..

where D¥f:= f,. For example,

g.b -1

h, =
27 |g.D g:D

/= (gﬁDz +92D>f =gifs + 9201

6. Successive derivatives of F(logx) and F(e*). Expressed as a function of
the Stirling numbers of the first kind s(n, k) and of the second kind
S(n, k) we have:

d" "
i F(logx)=x"" Z s(n, k) F* (logx)
k=1
i T = X S0 k) PO ()
Moreover, for y=xx,... x,, we have
O"F (y) "

Y S(n k) yTIF®(y).
axl aX2 oo 6)6,, k;l (n ) y (y)

7. Successive derivatives of F(x"). Let o be a real constant and F(x) a
function of class C* in the point x=a(>0). Using the notations of [4h]
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(p. 138), and the Faa di Bruno formula [4i] of p. 139, show that the
n-th derivative of H(x):=F(x*) in the point x=a equals 4,=) 7.,
[id®*7"Z,, (@), where the Z, ,(«) are generated by ((1+7)*—1)"/k!=
=Z.,,>,‘Z,,,k(a)T"/n! (See Exercise 21, p. 163.)

Deduce the well-known formulas:
nl/fn—1
Z, (- D)=(-1)V—

i (B 20—k -1\ 1

nl/ k -
Z"’k(2)=l—c‘i(n_k> 22k n.

8. Expansions of the coordinates with respect to the Frenet-Serret trihedron
interms of arclength. Let ¢ =g (s) be thecurvature of a planecurve M= M (s)
asa function of thelength s of the arc with origin M (0) (intrinsicequation).

=0

Weintroduce the Frenet-Serrettrihedron (M (0), Z ;), wheret =dM, /ds |

- - ——— - -
en=dt/ds| ,=o, >0, and M(0) M(s)=xt+yn, x=Y ns, X,s"/n!, y=
=Zn>l ynsn/n!' PUtting kadkg/dskl s=0» QO=Q(O), Bn,k=Bn,k(QO1 le
02,---), we have:
Xn+1 =§, (Bn, an— B, 4h+2)9
Yne1 = ; (Bn. an+1 — By, 4h+3)'

For example, x; =1,x, =0, x;= — 0}, x4 = — 3000y, X5 = — 4000, — 30%,...,
Y1=0, ¥2=00, ¥3=01, Y4=02—00, ¥5=03— 60501, ...

* Find similar formulas for a space curve with respect to the curvature
¢=g(s) and the torsion t=1(s).

9. Symmetric functions. A symmetric function, abbreviated SF, is a poly-
nomial P(x,, X, ..., x,) in the n variables x,, x,,..., x,, with coefficients
in a field X (often =R or C), and which is invariant under any permuta-
tion of the variables: for any oeS(n), P(xy, X3, ... X,)=P(X,(1)s .-+

Xy(my)- A monomial symmetric function (abbreviated MSF) is a symmetric
function of the form:

f=Y xI'x2 . x{ also denoted by Y@ xx$2... x%,

W
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where the g, are given integers such that g,>¢,>--- >¢,> 1, and where
the above summation takes place over all v-arrangements (iy, ,,..., i)
of [n] such that the corresponding monomials (in the summation) are
all distinct. Thus 3@ xix,x3=x]x,%x3 +x3x,%3 + x3x,x,. The MSF o,
and s5,, 6;=). " x,%,... x;, 5,:= ™ x{, are called ‘elementary SF’ and
the ‘sum of r-th powers SF’, respectively. (1) Every SF is a linear com-
bination of MSF (detailed tables in [*David, Kendall, Barton, 1966]).
Particularly (x,+x,+:--+x,)" is a linear combination of MSF; in this
summation occur p(w) such MSF, which is the number of partitions of
w(pp. 94 and 126). (2) The o, have for GF: P(t):=} -0 0i¢'=]]}-1
(1+x;t). 3) s,=(—=1y""(r—1)!L,(0y, 2! 6, 3! 03,...). [Hint: Use
logP(t)=)1=1 log(14+x;t)=3 5. (= 1) 7} (t'/r) 5,.] (4) 0;=Y(s,, — 1!
55, 2153, — 3154, )il

10. Bell polynomials and partitions. From identity [5b] (p. 103) follows
after replacing tu by u:

(U—u)Q —t) (1 —Pu)} =
=1+ k;[ uk{(l _ t) (1 _ 12)._. (1 _ tk)}_l )

If we put x,:=(1—25)"1%, and use 14,5, ' x,%; ... xy=exp{— Ym0
log(1—¢"u)}, show that k!x;x,... x, =Y, (x;, 11X, 21x3,...). For ex-
ample: 2x,x, =X, +x2, 4x3x, =x, +x3 +2x3, 8x, %] =4x3 + x5+ x] +2x3,
12x1x2x3=4x3+3x2+3xf+2xf. Obtain from this the (Herschel) ex-
pansions of {(1—1) (1—22)} "L {(1—1)2(1—=e2)} L, {(1—1) (1=£3)*}74,
{(1—t) (1=t%) (1—£3)}7*. To which generalization of the notion of
denumerant do the second and third example correspond?

Finally, give formulas and recurrences for the D’Arcais numbers 4 (1, k)
defined by ((1—¢) (1—¢2) (1—1)...)7"=Y4<n A(n, k) u*t"[n} ([D’Ar-
cais, 1913]), of which the first values are: =

m\k 1 2 3 4 5 6 7 8
1 1
2 3 1
3 8 9 1
4 42 59 18 1
5 144 450 215 30 1
6 1440 3394 2475 565 45 1
7 5760 30912 28294 9345 1225 63 1
8 | 75600 293292 340116 147889 27720 2338 84 1
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11. Characteristic numbers for a random variable. Let be given a proba-
bility space (2, «, P) and a real random variable X :Q+>R (abbreviated
RYV) with distribution function F(x):=P(X<x). Let u, (or p,) be the
central (or noncentral) moments of X: p,:=E(X")=[%x"dF(x), p,=
=E(X—pu)", where p=p; =E(X) is the expectation of X(then u,=0).
We define furthermore for X the variance p,=E(X—p)? (also denoted
by varX) and the standard deviation D (X ):=\/\7arX ; the GF of the
moments:

()= 1+ 3 urinl =E(¥);
nz1
the generating function of the central moments:

PE(1) =14 Y ut"n! =E(* ) = "W (1);
nz2

and the GF of the cumulants »,:

() :=1log¥ (t) = ). x,0"[n!.
nz1
If the RV is discrete (<X (Q)<=N), p,=P(X=k), then we have the GF
of the probabilities: g (u): =Y o pit*; hence g (e') =Y (¢), logg (e')=7(¢).

n ’ ’ h ’
(1) ”n=z (k) (_ l)k Au'k”n—k’ ”n=z <k) “k Hn-x Where 0<’f<"5 Ho=

=po:=1Q2)pun=Y (%1, %3,...) 1a=Y, (0, %3, 3, ...), 3¢, =L, (1,13, ...)=
=L, (0, s, u3,...). (3) Let X;, X, X3,... be independent Bernoulli RV’s
with the same distribution law, P(X;=0):=¢, P(X;=1):=p, p, ¢=0,
p+q=1. Then E(X;+X,+ -+ X, )= (n)ep*S(, k). (4) Let X be a
Poisson RV, p,:=P(X=k):=e *A*/k! (A>0 is called the parameter of
X). Then p,=Y,S(n, k) 2%, py=p,=ps=2, py=A+322, ps=2+104%
Ue=A+25A2+154%,....

12. Factorial moments of a RV. With the notations of Exercise 11, we
define for each discrete RV, p,: =P (X=k), the factorial moments: yi,,=
=y (X): =24 Pk KDy (K)m=k(k—1)...(k—m+1), p. 6, m=1, 2,
3,.... Show that p=>,s(m k) p, pn=>.S(m, k) pg, and that
g(L+1)=2 mz0 Hmt"Im!.

13. Random formal series. Let X, X,,... be Bernoulli random variables
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with the same distribution function, P(X;=1)=p, P(X;=0)=1-p,
O<p<l. Let Vi, V,,..., Wi, W,,... be the RV defined by exp(X,?+
+ Xyt )= 14 Vg4Vt +- and (I1-Xt—-X,t2— ) i=1+
Wt+ Wyt +... where r>0 is given. Show that the expectations E(V,)
and E(W,) tend to infinity with n.

*14. Distribution of a sum of uniformly distributed RV. Let X, X,,..., X,
be independent symmetrical RV with uniform distribution function. In
other words, there exist ¢,>0, v=1, 2,..., n such that |X,|<«,, and, for
xe[—a,, o,], P(X,<x)=(a,+x)/(2a,). Determine the distribution func-
tion of Si=X,+X,+---+X,, in other words P(S<x)(]Ostrowski,
19521).

15. A formula of Halphen ([ Halphen, 1879]). Use [8b] (p. 148) or some
other way, to show that:

e (= )

where F)(1/x) stands for the n-th derivative of F taken in the point 1/x.
Thus (d"/dx") (x"~! logx)=(n—1)!/x, (d"/dx") (x" logx)=n! (logx+ 1+
+3+-+1/n), (d"dx") (x" 7! e!/*)=(—1)"e'/* x~""!. More generally:

o] - () T

*16. Lambert series and the Mibius function. Let f (t):=) 5, a,t", and
g(t)=> ns>1 aut"(1—1")"", which is called the Lambert GF of the sequence
a, (1) We have g(1)=Y,,5; f(t™). (2) Defining the Mdbius function
(=sequence) pu(n) by t=3 5, p(n)t"(1—1")"", show that b,=3 4, a,,
and that @,=) 4, 1(d) b, 4 (the notation a|n means d divides n). (3)
p(1)=1; furthermore, for n=p7'p3* ... pi, where the p, are distinct prime
factors of n, we have pu(n)=(—1)* if all «; equal 1 (such numbers n are
called squarefree), and u(n)=0 in the other cases. It follows that u(n)
is multiplicative, in the sense that when a and b are relatively prime, then

u(ab)=p(a) u(b)-

n 2 34 56 7 891011 12 13 141516 17 18 19 20
uwyt =1 -1 0-11-1001-10 -1 1106 —~10 —10
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Show that #+22 42 4154 =) o u@m+1) 2" 1 (124 1)"1, (4)
Let d(n) be the number of divisors of », in other words the number
of solutions with integers x and y>1 of the equation xy=n. Then
Taz1 (1) 1" =Y 0py " (1=1") 7 =05 17 (1427) (1=17) 1. (5) If ()
is the indicator function of Euler, [6¢] p. 193, then we have (1 —¢)"2=
Yaz1@ (@) " (1—1")"t  Moreover, Y., @(n) "(1+1") '=¢(1+12)
(1=13)"2=Y 50 @(2m+1) 21 (1 —*m+2)~1_(6) Also prove:

Zl (_ l)n—l t"(l _ tn)—l —_ Z t"(l + I")_l

S we-erte g ra e
5 o e s ey

Zl (/) (1—)"1 =Y log{(1 - ~1).
n> nz1

(A generalization of Lambert series is found in [Touchard, 1960].) (7)
Let r(n) be the number of solutions of n=x%+y* with integers x, y 20
(representation of n as sum of two squares). Thus, r(0)=1, r(1)=4, be-
cause 1= (£1)*+02=02+(+1)?, r(5)=8, because 5= (+2)?+(£1)*=
=(£1)*+(%2)> Then:

z r(n)t"=4 ; (= 1)t i - 1)1,

n2z1
(8) With the notations of (3) and w,:=a, +a,+ -+,

(2 tﬂ — 2
ngl(—l) 1- z

nz1

(See also Exercise 12, p. 119). (9) Finally prove

;o t(é’))‘ -y

nzo 1 —

@r+ 1)
t2n+l .

17. Ordinary Bell polynomials with rational variables. Let all a,, be
rational, 4,,€Q, and let the numbers c, be defined formally by g(x):=
i=eXP(Ymz1 GmX™)=2 nz0 C,X". A necessary and sufficient condition
that all numbers ¢, are rational integers, c,eZ, is that for all k>1, we
have Z.,Eﬂ rau(s)=0(modk). (See [Carlitz, 1958b, 1968b], [ Dieudonné,

e e e et e
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1957].) [ Hint: The c, are integers if and only if the b, defined inductively
by g (x):=]]ms1(1—x™)"", are all integers. Consider then logg(x), and
expand ka,= —) ,,mb,. Then apply the Mobius inversion formula

(2) of Exercise 16].

18. With the Lagrange formula. (1) Deduce from x=yexp(—y) that
exp(ay) =1+ ,>; a(a+n)""" x"/n! and (1—y)~! exp(ay)=

Y aso(n+a)" x"[n!. (2) Supposing f (1) =t +ayt> +ast>+--- (a,=1), prove
that, for every complex number «, with k<n:

g (1O)

n+o t

Consa (S22 (1))

19. Middle trinomial coefficients. These are a,= (1 +1+12)" (p. 77):

n lo 1 2 3 4 5 6 7 8 9 10 11
an |1 1 3 7 19 51 141 393 1107 3139 8953 25653

(1) The integer a, is the number of distributions of indistinguishable
balls into n different boxes, each box containing at most 2 balls. (2)
(n+1)a,s,=n+1)a,+3na,_;. (3) Yusoant"=(1-2t-3¢%)"12 (4)
Using the notation [6f] (p. 110) Y7_¢ a;a,_;=[3""1/4]. (5) For n— oo,
we have the asymptotic equivalent a,,~3"\/ 3/(4nn). (6) For each
prime number p, then a,=1(mod p) holds.

20. Hurwitz identity (| Hurwitz, 1902]). Considering the set E of acyclic
functions of [n+2] whose set of roots is {n+1, n-+2}, prove, by an
argument similar to that of p. 129:

x+y)(x+y+zi+z+tz,) =
=Y x(x+ e,z +-te,z,) Ty (p + Eyzy 4ot
4ot énzn)an+.-.+én—1 ,
where the summation is over all 2" choices of ¢,,..., ¢, independently
taking the values 0 and 1, and &;:=1—¢; Generalize for more than

2 roots.

21. Expansions related o 1— (1 —at)*. (1) When k and ! are given
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integers > 1, express the Taylor coefficients of f:=((1+x)'/'—1)* in the
point x=0 by an exact formula of rank (I—2). (as defined on p. 216.
Such a formula is apparently only useful if k>1.) [Hint: Putting
yi=(1+x)"'—1, we have x=(y+1)'—1 and f=y*; hence [8d] (p. 150)
can be applied.] (2) For any real number u,

(1 + \/Tzu>‘" _ (1 ~ \g’:&i)" _

2
—14u Y (u+2n—l>t.

a5 1 n—1 n

(3) Using Hermite’s formula ([8d] p. 150), prove that for any «:

()1 e

22. Three special triangular matrices. (Obviously, the three following
computations of infinite lower triangular matrices give the same result if
the matrices are truncated at the n-th row and column, so that they become
square n x n matrices.) We let u(n, k) denote the coefficient on the n-th
row and the k-th column of the matrix M, and we let u‘® (1, k) denote
the corresponding coefficient in the matrix M* (in the sense of [7g]
n
p. 146). (1) Let u(n, k):=<nfz> for 0<k<n and :=0 otherwise.
(That is the coefficient of (—1)*x*/k! in the Laguerre polynomial L (x)

of p. 50.) Then u<~¥(n, k)=(—1)""‘<fl J_“Z) [Hint: Straightforward
verification, or the method of GF, p. 144.] (2) Let u(n, k):=<Z) Kk

for I <k<nand :=0otherwise. Then <=1 (n, k)=(— 1)""‘(k* i) n"k

[Hint: [8b], p. 148. See also Exercise 43, p. 91] (3) Let f(t)=
=Y m>o0dn!™ We put u(n, k):=a,_, for 0<k<n and :=0 otherwise.
Then p (n, k)=b, .., for 0<k<n and :=0 otherwise, where the b,, are
defined by f*(¢)=3 >0 bmt™

23. “Inversion’ of some polynomials. B,(x), P,(x) and H,(x) denote the
Bernoulli ([14a] p. 48), the Legendre ([141] p. 50), and the Hermite
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([14n] p. 50) polynomials, respectively. Show that:

=3 <Z> (n—k+1)"' By (x)

X"=n127" Y Qn—4k+ 1) {k!'<3ur) " Paoai (%)

0<k<n(2

X"=n127" Y {kV(n—2k) 1}V H, 5 (x).
0<k<n/2

It is somewhat more difficult to invert the Gegenbauer and Laguerre

polynomials of p. 50. [ Hint: Lagrange formula.]

24. Coverings of a finite set. A covering & of N, |N|=n, is an unordered
system of blocks of N, Z<B’'(P’'(N)), whose union equals N:
(Usea B=N. The number r, of coverings of N equals ) ,(—1)*x

x(Z) 2L b =1 py=5, ra=109, r,=32297, rs=2147321017.

[Hint: |?B’(€]3’(N)|=22""—1=Z,((Z) r,, and [6a,e], p. 143.] Also

compute the number r, ,, of coverings with m blocks, |%|=m, and the
number ry” of coverings with b-blocks (Be#=>|B|=b). ([Comtet,
1966]. See also Exercise 40, p. 303.)

25. Regular chains ([Schroder, 1870]). Let a be an integer =2, and
N a finite set, |N|=n. We ‘chain’ now « elements of N together in a
a-block A (=N). Let N, be the set, whose (n—a+1) elements are the
(n—a) elements of N\ 4, and the block 4;. Then we chain again a
elements of N, together into a block A4,, from which we obtain a new
set N,, etc. We want now to compute the total number of such chains,
called regular chains, not taking the order of the chaining into account.
Show first that:

1 n!
Cp = — e 1€y v Gy
LT T S I
ki, k2, cikaZ 1
where ¢5:=0, ¢,=1, c;=c3=-=c¢,-,=0, ¢,=1. [Hint: Consider the

a-blocks in existence just before the last chaining operation, in the
case they are of size kj, k,,...,k,] Obtain from this €=C(r):=




x:}

L
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1=Y 40 Cut "[n!=1+E%a!, and also obtain the value of c, by applying
the inversion formula of Lagrange.

26. The number of connected graphs ([Ridell, Uhlenbeck, 1953], [Gilbert,
1956b]). A connected graph over N, [N|=n, is a graph such that any
two of its points are connected by at least one path (Definition B, p. 62).
Let t(n, k) be the total number of graphs with » nodes and k edges, and
y(n, k) the number of those among them that are connected. Clearly,

k
the set of all ze N ‘connected’ to y by at least one path. Now we choose
xeN, and let M :=N\ {x}. Giving a graph on N is equivalent to giving
the trace ¥ of C(x) on M(C(x)={x}+V), and to giving, moreover, a
graph on M\ V; show that:

t(nk)= Y (nzl)y(v+1,w)1(n—l—v,k——w).

v, w20

n
t(n, k)=<(2)>. The connected component C(y) of a vertex yeN is

Deduce from this:

n

% (k)

n k>0

log{l + Z a+ u)(';) ~ '}

More generally, let 7, (n, k) be the number of graphs with n vertices and
k edges such that each connected component has the property 2, and
let y4(n, k) be the number of those among them that, moreover, are
connected. Then:

r "
Y ys(n, k)-u"=log{1 + Y 1 (m, )t ———}
n k>0 n Iym m!

27. Generating functions and computation of integrals ([Comtet, 1967]).
(1) Let J,:=[5? (4% cos?p+B2sin2p) ™ dp. Then 3,5, "=
=t (5> (4% cos® o+ B? sin* o —1) " dop=(mt[2){ (4> —1) (B> —1)} "2,
By expanding this last function into a power series, deduce that
i1 = {2" I AB.m} Y 4, ATZBT2mY 25 where the coefficients

B () () (3

Ay, s*(2m+3) (@mt1,5-1Fms1,s)— 4(’"+1)2 Ay, 5—1-
values of the q,, , are:

) sa%fy the recurrence relation
The first few

n
.
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I amijo 1 2 3 4 s 6 7 8 9
o 0 P 1 3 15 105 945 10395 135135 2027025 34459425

3 w1 1 2 9 60 525 5670 72765 1081080 18243225
(\( 2 3 9 54 450 4725 59535 873180 14594580
3 15 60 450 4500 55125 793800 13097700

4 105 525 4725 55125 771750 12502350

(2) Compute

f {(x*+a®) (x* + b*)}"™dx and T {;I:Ix (x* + af)}""’ dx

(3) Compute A,:={3/? (logsin® ¢ cos’ ¢)"dp, where o and p are =0
([Chaudhuri, 1967]). [Hmt

n/2
tn
Y Ay = f sin* ¢.cos” @ .dg =

n=0 n:

0

_Lr(( +an)2) L ((1 + Br)/2)
2 Ir(t+(a+p)t2) ]

(4) Compute I(p, g)=[5 (logx)’(1+x*)"9dx, where p and q are

positive integers. [Hint: ) .50, 4511(p, g) u*t®[p!=1 [§ x' (1 + x*—u) "' dx,

to be associated with the well-known result [ x*~!(x+1)7!dx=

=n(sinna)~'.]

28. A multiple series. Let S be the convergent series of order k defined by
2Aeics . epey+ey+--+¢,)} !, where the summation is taken over
all systems of integers ¢, c,,..., ¢, which are all>1 and relatively prime.
Then S=k! (AMM 73 (1966) 1025).

29. Expansion of (arcsint)". Use the Cauchy formulas:

sinux = u Z (- 1) (W =1 (u* - 3%)..
RO
cosux:ng0 (= 1) u? (u? = 22) (u® — 4?) ..
sin®" x

o (U — (2n —2)? (2n)!
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where x=arcsin? has to be substituted ([ Teixeira, 1896]). Use the same
formulas to prove:

—u ¥ (= 1) @ =2)...(u* = (20)))

cosx n30 (2n + 1)

cosux
— __ln 2_12 2___32 .
o % (1Y = 1) (7 - 3)

2n+1

sinux sin x

(U = (21— 1)? )-(2 =

30. Some summation formulas and interesting combinatorial identities.

"k 1
YR Ty i eyt

., (- 1) (n—k) 2 H =41

ok ) =(2n - ( 1) (see Exercise 12, p. 225);
@) (@) -0

(1) kt (k> =‘=il It

O(L)-c

/A M

(8]

M= a

=
]

M= iD=
~
[y
s
Eol

x
fl
-

=
~~
|
-

i=o

y min(m,n)=4N(N+1)(3M - N +1);
1SP<M, 1<p<N

Y max (m, n) = 4N (N? — 1) + $MN (M + 1);
1<pSM, 1<p<N

R‘

Ed

[

<

TN
bl o
SN W‘

!'=(n+1)! — 1, and its generalization (of Gould):

" (l‘L) (e kY - %) =
o =(n11)p((‘n§;#>p_l;
26 <=5 () () e

D= s
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k X n—k(x—1 —x

%0655 00

z": {—x\ (=D —x)~kfx—1 -

i=o n—i) n(n—l) k n—k—-1/’
([Andersen, 1953]). Finally, all the &, &,, £5,... being #0, let us write

<;>§:=x(x—fl)(zl—;‘zﬂ)g(x—é,ﬂ), (g)gzzl.

Then, we have (see [5h], p. 10):

éo (=1 (JJC): = %ﬂ (k:' 1)5

The reader will find in [*Gould, 1972] plenty of very fine results and
sources concerning binomial identities.

31. Sum of the r-th powers of the terms of an arithmetic progression.
Let S,:=Yr., {a+(k-—1)b}". By a method analogous to that used on
p. 154, find the value of S, as a function of the Bernoulli numbers. One
can also establish the recurrence relation (a+nb)*'=da"*'+

s (r+l) b'S, 41, where Sy:=n. [Hint: Consider Y i_(a+kb)™**

and expand then (a+kb) "' ={b+ (a+(k—1) b)}"** using the binomial
identity.] As examples, for #,:=1%+3*+5*+...+(2n—1)%, we find:

t,=n> 12=<2n;-1>’ t;=n*(2n%*-1).

32. Four trigonometric summation formulas ([Hofmann, 1959]). For r
integer =1, we have:

k‘; sin*kx =2"%¥"! {(2,1 +1) <2r) L
s Z - 1) ( 2 )sin[k(gn+1)x]};

sinkx

kgﬁ sin®*lhx =277 Z (- {(2r +kl) x
sin (2k + 1) (n+1)x/2.sin(2k + 1) nx[2]
X >

sin (2k + 1) x/2
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Y coshkx=—4427%"1 {(2n +1) (2:> +
k=1

"o/ 2r \sin[k(2n+ 1) x]
2
* k; (" - k) sinkx
Yocos* T lkx=—44271 Y r+ 1y
k=1 k=0 r—k
sin(2k+1) 2n+ 1) x/2
sin(2k + 1) x/2

b

33. On the roots of ax=tgx. For computing the root x which lies
between nn and (n+1) n, insert x=nn+n/2—u, |u|<n/2, in ax=tgx.
Then, t:=(an(n+1%))"'=(tgu) (1+autgu) ':=f(u), which can be
(formally) inverted by the Lagrange formula: u=f<"1’(¢). Returning
to x, the following purely asymptotic expansion holds:

2m+1 m
~ . - _‘lm—k(j ,k k}
xx(n+i)n m§0(2m+1)!!{k§0( ) (m )a}
where the C(m, k), closely related to arctangent numbers (p. 260),
satisfy:
@Qm~1)2mQ2m+1)

C(m, k)= dCm—~Lk~-1)+C(m—1,k)}.
(. k) (2m—k)(2m—k+1){ ( ) }
Here is a table of the C(m, k): kg)\
N
m\k 0 1 2 3 4 5 % 6 7

0 1
1 1 3
2 3 20 30
3 15 161 525 525
4 105 1584 8232 17640 13230
5 945 18579 134970 457380 727650 436590
6 10395 253812 2395364% 11294140 28243215 35675640 17837820
7 | 135135 3963105 46360587 283245265 981245265 1938871935 2029052025 869593725

Of course, when a=1, x=tgx, the alternating horizontal sums
extend Euler’s result: x=(n+4)n—) 50 cut>™*/(2m+1)!!, where
t=(n(n+%))"! and :
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AN
e
m ‘0 1 2 3 4 5 6 7

em I 2 13 146

2343 48984 1263202% 38381018
(Cin» m<4, due to [*Euler, 1746 11, p. 322]).

34. About the (purely) formal series ¢(t)=3 ., n't". Let us define the
integers A(n, k) by (¢(1))*=3 45« A(n, k) 1". (1) These numbers satisfy

the following recurrence: A(n k)=A(n—1,k—1)+((n+k—1)/k)x
x A(n—1, k). [Hint: Use t*¢'=(1—1t) ¢ —1.] (2) *Also find a triangular
recurrence for the a(n, k) (}eﬁned‘by“(zp&?“ V=Y ,sra(n k)", and

verify the following tables {of course, g:A"/‘, !

S

A(n, k)
K
n\] 1 2 3 4 5 6 1 8
1 i
2 2 1
S\pw— 3 6 4 1

N,@ 4 24 16 6 1
50 120 72 30 8 1
6| 720 2 152 48 10 1
7| s040 2208 88 212 70 12 1
8 | 40320 14976 4968 1576 440 96 14 1

( a(n, k)
N ;X’ 1 2 3 4 5 6 7 8
Tl 1
2 -2 1
3 2 —4 1
4 —4 8 —6 1
5 —4 —16 18 —8 1
6| -—48 12 —44 2 —10 1
7| 336 -9 72 —9 50 —12 1
8 | —2928 480 —216 216 180 72 14 1

(3) Prove that A A(k, k+j)=4’| a(k, k+j)|=2' (see also Exercises
14 p. 261, 15 and 16 p. 294).

35. Fermat matrices. Let F, be the n-th section of the Fermat matrix F

composed of the binomial coefficients (a, b)= (azb>, in the symmetric
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notation of p. 8, 0<a, b<n. So:

11 11 1
F0=(1), F1=<1 2), F3= 1 2 3 )
1 36
1

= 111
1 23 4
F4"13610’
1 4 10 20

Prove that F=P."P, where P is the Pascal matrix (p. 143) and "P its
transpose. (2) So, det(F,)=1 (cf. Exercise 46, p. 92) and all coeficients
of F; ! are integers: f,(i,j)=(—1)"*’ Z,g,,(;) (jl) (3) The unsigned
coefficients C,(i,/):=|f,(i, /) satisfy: C,(,j)=Cn-((i—1,j—1)+
C,p_1(i=1,/)+Cyy (i, j= 1)+ Cy_y (i, ), With C, (i, j): =0 if i<0 or j <O,
except C,(—1, —1):=1

2 1 3 31
C, = (1), c1=(1 1), G ={(35 2),
1 21

4 6 4 1 5 10 10 5
C,=|i614 11 3|, C,=|10 30 35 19
4 11: 10 3| |10 i35

1 3 31 5 19, 27 17

!
4
10 33 46 27 6
4
1 4 6 41

k+1
J(k+2), .., and ¥, ; Co(i, ) =(4"*1 = 1)/3.

@ €k, 0=C,0.0=(; 1 1), el 0= (41 }) @+ 1) (r+1)=1)

*36. Simple and double summations. Prove the equality ([Carlitz, 1968a]):

§+J;l_¢=n (i Tj> (j _‘J- k) (k;'- i) - osgsn <le>

37. Two multiple summations. (1) The summation Y (x,x, ... x;)”", taken
over all systems of integers x;>1, ie[l] such that x,+x,+--+x,=n,
equals (/!/n!)s(n, 1), where s(n,I) is the Stirling number of the first
kind, [5d] (p. 213). (2) The summation Y (x7+x5+---+x}):=a;, (),
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taken over all systems of integers x;>0, such that x; +x,+---+x;=p,

equals | Y-, k!S(n k) (l:{)_;]), where S (n, k)is the Stirling number

of the second kind, [14s] (p. 51). [ Hint: Consider Y > ¢ a;, ,(p) t7.]

38. The formula of Li Jen-Shu (see, for instance, [ Kaucky, 1964]).
5 (k>2 <n + 2k —j> _ <n + k>2
0<i<k \J 2k N\ k :

39. A formula of Riordan ([Riordan, 1962a], [Gould, 1963a]).

- (”;1) WUk 1) =

0<k<n

.

40. A formula of Gould. 1f we put 4,(a, b):=a(a+bk)™ <a—|;€bk>’ then
we have:
S Au(a b) Ayoy(a, b) = Ay (a + @, ).
o0<k<n
([Gould, Kaucky, 1966], and for a ‘combinatorial’ proof, [Blackwell,
Dubins, 1966]. We already met similar numbers in [9b], p. 24.)

*41, The ‘Master Theorem’ of MacMahon. Thea, , r, se[n] being
constants (complex, for instance), let us consider the » linear forms:

n
X,:= Y a,x, re[n]
s=1

The ‘Master Theorem’ asserts that the coefficient of the monomial x"
x72..., x™ (where m,, m,,..., m, are integers >0) in the polynomial xH
X™ . X™ is equal to the coefficient of the same monomial in D™,
where D is the determinant:

[ —ayxy —dgpXy . = Q1x%y
D . - a“xz 1 - a22x2 “ae - aznxz
= Any Xy — ApaXp - 1~ annxn

In other words, if the identity matrix is denoted 1, if 4 is [a,, ], sernyr
if the column matrix of the x;ie[n], is X, if the diagonal matrix
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of the x; is X, then we have (with the notation [8a], p. 148):
Cx’,"lx'z"z e Xpn ]._I (AX);"‘ =Cx'{‘lx'z"2 Loxptn {det (I - XA)} - .
i=1

([*MacMahon, I, 1915], p. 93. See [Foata, 1964, 1965], [*Cartier,
Foata, 1969], pp. 54-60, for a noncommutative generalization, [Good,
1962], from whom we borrow the proof, and [Wilf, 1968b].) [Hint:
Put Y,=1+X,, then the required coefficient is equal to the coefficient
of xTt... xpmin YT'... Y™, hence, by the Cauchy theorem:

Ym.Lym
(2mi)” ff fmjl m"+1d1...dx,,,

where the integration contours are circles around the origin. Then perform
the change of variable w,:=x,/Y,, re[n], whose Jacobian causes D to
appear. ]

42. Dixon formula. This famous identity can be stated as follows:

2m N 2"n 3 . (3m)!
S =cn (m)*

This is a special case (a=b=c=m) of:
b+c\fc+a\fa+b) (a+b+c)
S:=) (—-1) et
‘z,:( b (b+s)<c+s><a+s) alb!c!
[Hint: Observe that S=(—1)"""*( sscperazsn(y—2)"*(z—x)"*x
x(x—y)°*®?, and apply then the ‘Master Theorem’ of Exercise 41.]
([Dixon, 1891]. See also [*De Bruijn, 1961], p. 72, [*Cartier, Foata,

1969], [Good, 1962], [Gould, 1959], [Kolberg 1957], [Nanjundiah,
1958], [Toscano, 1963].)

43, A beautiful identity concerning the exponential. Show that:

CXP{Z m™ f—}—1+ Y (m+1)yt "~

m21 nzt

44. The number of terms in the derivatives of implicit functions ([ Comtet,
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1974]). The number a(n) of different monomials Af7; f3:;, ... in
the expression of y,= @™ (x), where f (x, y)=0 (see p. 153) is such that

= C 1
= S i AZ267

with E: =N2\{(0, 0), (0, 1)}. The first values of a(n) are:

|123 4 5 6 7 8 9 10 11 12 13 14 15
a(n) | 13 9 24 61 145 333 732 1565 3247 6583 13047 25379 48477 91159

45. Some expansions related to the derivatives of the gamma function. In
the sequel, we write y=0,577... for the Euler constant, { (s)zz,@, n-s
(see Exercise 36, p. 88) ,{(s, @)=Y n>o(@+m)™% x,=(—1)* (k—1)! {(k),
and y, for the Bell polynomial, [3c] p. 134. (1) We have:

() =1 +0)=exp{—yt+{(2)*)2~{(3) /3 +-}.

Consequently,

F(")(])zyn(—‘)’axb X3,...)= e—x'log"x'dx

Ot——y, 8

(2) Hence,
1 1n+ 1

T Z == ¥y ('Ya — X3, 7 X3, )

r (t) nso !

(3) Find similar expansions for I'(a-+t) using {(s, a).




CHAPTER 1V

SIEVE FORMULAS

This chapter solves the following problem: let be given a system
(4y, A,..., A,) of p subsets of a set N, whose mutual relations are some-
how known, compute the cardinal of each subset of N that can be formed
by taking intersections and unions of the given subsets or their comple-
ments.

In the sequel, we will denote the intersection of 4 and B by AB as
well as by 4N B, similarly the complement of 4 by 4 of (4. Each
subset of [p]:={1,2,...,p} will be denoted by a lower case Greek
letter.

4.1. NUMBER OF ELEMENTS OF A UNION OR INTERSECTION
We want to generalize the following formula:
[1a] |JA v B| =|A} + |B| — |4B|, AB:=AnB,

where A, B are subsets of N, and that follows (notations [10a], p. 25,
and [10d], p. 28) from:

AUB=A+(B—AB)=|4d U B|=|4] + |B— AB| =
= |4| + |B| — |4B].

The interpretation of [1a] in Figure 33 is intuitively clear,

Fig. 33.

THEOREM A (Sieve formula, or inclusion-exclusion principle). Let s¢ be
a p-system of N, in other words a sequence of p subsets A, A,,..., A, of

SIEVE FORMULAS 177

N, among which some may be empty or coinciding with each other. Then:

[1b] [Ay VAU uA4l= ) |A4]- y 14;, ALl +

1<i<p 1<ii<ia<p

+ Z IAixAizAial -t (_ l)p—l IA1A2 vee API .

1<i1<iz<i3<p
(Formula [1b] is also known as formula of [Da Silva, 1854], [Sylvester,
1883]: it holds whether A is finite or not.)
First, we indicate two other ways, [1d, f], to write [1b]:
(1) Using Exercise 9 (p. 158) for (x) and introducing
[1c] S,:= 5 |43, A, ... A;] LY P 14,4, ... 4,],

1€iy<iz<.-<ix<p
formula [1b] becomes:

[1d] |4, ud, U d,)= (=1)F1s, =

1<k<p

=S1 —S2 +S3 '_"'+ ("" l)p—l Sp.

(2) Let x be a subset of [p]:={1,2,..., p}, x=[p]. We introduce
the following notations:

[1e] A= 4, Ag=4,=N, UAa,=9.
iex “ied ie@
Formula [1b] becomes (with B’'[p]:=P’([p])=the set of blocks=the
set of nonempty subsets of [ p]):

[1f] A0, uudl= Y (=11 4,].
*eP'[p]

W We argue by induction on p. Because of [la] for equality (x),
we get:

[1g] I U Al=14,,, v (U 4)l

1<iSp+1 1<i<p
)
=|A4ps1l + | U 4l-1 U (Ap+1Ai)|,
1<i<p 1€i<p

where, if [If] is supposed to hold, we have (using the notation
Poalp]:={xlx=[p], [x1>2}):

h] 1 U 4al= Y 4+ ¥ (-1)"7'4,)

1<i<p 1<isp zeP>20p]
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fel—1
(1] | (4,414 = > (=) A,.
1<isp {(p+1}exePlpl

Substituting [1h, i] into [1g] gives then:

pt+t p+1

U Al=Y 4+ ¥ ()M hial=
=1 i=1

xePxalpt+1]

= Y ("4 m

xsPWp+1]

THEOREM B. Conditions and notations as in Theorem A; for Sq:=|N|,
N being finite, we have:
(5]  Mddy A= T (-4l =
(

€ Plp]
~1)*S, =S, — Sy +-+ (= 1)"S,.

- 0<k<p
B Follows from |4, 4, ...|=| (4, ud, - )|=IN|—|4; v A4, U] and
from [1d,f]. W

B Two examples

(1) The ‘sieve of Eratosthenes’. Let p,(=2), p2(=3), p3(=5),..., be
the increasing sequence of prime numbers, and let 7 (x) stand for the
number of prime numbers that are <x, for x real >0. Let 4, bg the set
of the multiples of p,; that belong to N:={2, 3,...,n}. If qe/i'lf'i2 o Ay
where k:=mn(,/n), then this means that each prime factor of g is larger
than p,; hence g is a prime number such that Jn<g<n. .Thus
|4, 4, ... A)=n(n)—n(/n). Onthe other hand, for 1 <, <iz<---<.z,<k,
the fact that r belongs to 4; A4,, ... 4, means that r(<n) is a multiple of
Pi PPy hence |4, Ay, ... Ayl =E(n/(py,pi, - Pi,)), where E(x) means
the largest integer <x, called the integral part of x, and also denoted by
[x]. So we obtain as result, by [1j] (and with |[N|=n—1):

[k] =) -n(n)=@-1)— ¥ E<_’1>+

1<i<k \Di

( n ) ( 1)"E( n >
+ E et (= —
1<§§§z€k Pi\Pi, D1P2--- Pk
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This formula allows us to compute theoretically (n) if we know all
prime numbers <./n.

(2) Chromatic Polynomials. Let % < P, [n] bea graph on the set (of nodes)
[n]={1,2,...,n},and let A be an integer >0. The chromatic polynomial of &
is the number Py () of ways to colour the nodes in 4 (or fewer) colors such
that two adjacent nodes have different colours. Indeed, any colouringis a
map of [n] into [A], say fe[A]'"), such that {i, j}e@ = f(i)#f (}).
For instance, if ¥={{l,2},{2,3},{3,4},..., {n—1, n}}, we find
Py (A)=2(A—1)""" by successively choosing the colours of the nodes
{1}, {2}, {3},.... In the same manner, if ¥=,[n], we find P, (A)=
=(4)s=4(4—1)...(A=n+1). Evidently, Pg(0)=Pq(1)=0. Let us prove
that Py (1) is always a polynomial in A. For each edge E;e¥%, 1<i<g:=

=|9| s(;), let 4, [A]™ be the set of colourings which give the same

colour to the two nodes of E;. Then, with [1j], Py(1)=|4,4,... 4,|=
= 27— (A LA+ ] o)+ (A Ao+ LA A+ [ Ay A+ )
Now, |d|=|A,|=-=A""",|4,4,|=|A4,A5|=+-=2""2, and any other
[4;,A4;,... A, ], k>3, is a polynomial in A with degree <n—2, as can
be seen easily. Consequently, Pg(A)=A"—gA" '+a,A" 2 —q,A" 3+
+eo+(—=1)""'a,_ A, where the a; are integers, which all can be
proven to be >0.

The following pretty results are worth-while: (1) if the graph  has
connected components %, %,,..., then Py, =Py,..... (I) ¥ is a tree
if and only if Py(4)=A(4—1)""'. (II) If & is a polygon (i.e. circuit),
then Py (A)=(A—1)"+(—=1)"(A—1). (IV) If & is the complete bipartite
graph with parts M and N (i.e. {x, y}e@<>xeM, yeN), then Py(1)=
=D %, 1S (m, k) S(m, 1) (A)er; (see p. 204). (V) If  is connected, then
Py(2)<A(A—1)""" for every integer 10. (VI) The smallest number r
such that 2" has a nonzero coefficient in Py (1) is the number of components
of ¥. (See, for instance, the introductory survey of [Read, 1968].)
Finally, let us mention as still unsolved problems :(I) the character-
izalion of chromatic polynomials; (II) the unimodality (p. 269) of the
coefficients 1, g, a,, a3, ay, ...; (111) the condition for two graphs to have
the same chromatic polynomial.

DEFINITION. A spsten (A, A,,..., A,) of subsets of N is called inter-
changeable if and only if the cardinality of any intersection of k
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arbitrary subsets among them depends only on k, for all ke[p].

THeOREM C. Let be given an interchangeable system of subsets of N, say
(Ays A3, ..., Ap); then we have:

[11] |4y U Ay VU A

plait = (5) 14:al +

+(5) sl =

(— l)k—1 P [A[k]l
1<ks<p k :

[im] |4, d;...4,] = Nl - <11’) [A,] + (g) |4, A,| — -
- = () M-

0<ks<p

This is an immediate consequence of the definition of interchangeable
systems and of [1b,j].

4.2. THE ‘PROBLEME DES RENCONTRES’

DEFINITION. A permutation ( Definition B, p.7) ¢ of N, |N|=n, is called
a derangement, if it does not have a fixed point, or rencontre, or co-
incidence, in the sense that for all xeN, o (x)+# x.

For example, the permutation o, : =
while o,:= (ab cde)

dbace
([*Montmort, 1708]) consists of computing the number d(n) of derange-
ments of N, n=|N|. .

cedab
has 2. The famous ‘probléme des rencontres’

bed ..
(a ¢ e> does not have a coincidence,

THEOREM A. The number d(n) of derangements of N, n=|N|, equals:

D] de)= % (-1

sksn
.

=n!(1——1;+_1__...+("1)">

12! n!
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or also, for n=1, the integer closest to nle™!:
[22] d(n)=|n'e” Y

(Because of [24], Chrystal has suggested the name » antifactorial for
d(n), and the notation nj).

M If we identify N with [n]:={l,2,..., n}, we denote the set of per-
mutations of [#] by S[n], and the subset of S[n] consisting of per-
mutations ¢ such that ¢(i)=i, ie[n], by S;=G,[n], and the set of
derangements of [n] by D[n]. Clearly S[n]=D[n]+J!~; S, Hence,
by Theorem B (p. 7), for (*):

[26] LSl =dm)+] U &
. 1<i<n
Now the G, G,,... &, are interchangeable (Definition p. 179), since
givinga 0e©;,S,,... §, is equivalent to giving one of the permutations
of [n}—{i1, i5,..., ix}, whose total number is (n—k)! (i, <iy<-<iy).
Thus, [2a] follows from [11] applied to || J;~, S| in [2b]. Finally, for
[2a"], use in () the well-known inequality that relates the rest of an
alternating series to the first neglected term:
00 (__ l)q
oo
‘q=n+ 1 q:
| 1
el = g
(n+1)! n4+1

Inte ™t — d(n)] = a! @

I |

In particular, [2a] shows that lim,.,, {d(n)/n!}=1/e. The way the
number e intrudes here into a combinatorial problem has strongly
appealed to the imagination of the geometers of the 18-th century. In
more colourful terms, if the guests to a party leave their hats on hooks
in the cloakroom, and grab at good luck a hat when leaving, then the
probability that nobody gets back his own hat is (approximately) 1/e.

Another method of computing d(n) consists of observing that the
set Gy [11] of permutations of [n] for which K(< [r]) is the set of fixed
points, has for cardinality d(n—|K|). So:

Sl = L Glil= 1 (% Gln).

K<in
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Hence n!=|S[n]l=>%=0 (Z) d(n—k)=Y p=0 (Z) d(h), from which
[2a] follows by the inversion formula [6a, €] (p. 143).

THEOREM B. The number d(n) of derangements of [n] has for generating
Junction:

[2¢] 9(t):="§od(n)—’%=e"‘(l—t)_‘.

M In fact, using [2a] for () and h=n—k for (*+):

neon? 5e(2.50)

nz0

h+k
t

@ L - o(sSh) -

THEOREM C. The number d(n) of derangements of [ n] satisfies the following
recurrence relations:

[2d] d@E+D)=@E+1)dm)+ (10",

[2d] d@+1)=n{d(@n)+d(n—-1)}.
B Taking the derivative of e '=(1—1)2, we get —e™* P _94
+(1—-t) 2" —(1-1) 2, and then we equate coefficients in (x) to
obtain [2d], and in (*) to obtain [2d"] (combinatorial proofs are also

o Ueasy to find!).
A\

L? n|o 5 6 71 8 9 10 11 12
1 44 265 1854 14833 133496 1334961 14684570 176214841

We discuss now a natural generalization of the ‘probléme des rencontres’.
A (k x n)-latin rectangle will be any rectangular matrix with k rows and
n columns consisting of integers € [#], and such that all integers occurring
in any one given row or column are all different (k<n). We suppose that
the first row is {1, 2, 3,..., n} in this order (and we say that the rectangle
is reduced then). We give an example of a (3 x 5) latin rectangle:
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1 23 45
3145 2},
5312 4

The number K, of (reduced latin) (3 x n)-rectangles satisfies several
recurrence relations (see, for instance, [Jacob, 1930], [Kerawala, 1941],
[*Riordan, 1958], p. 204) and today there are asymptotic expansions
known for it ([*Riordan, 1958], p. 209). The first values are (taken from
tables of Kerawala, n<<15):

é%b n_ |3 4 5 6 7 8
Ko |2 24 552 21280 1073760 70299264

)(\

" No known recurrence relations exist for the number L(n, k) of
(k x n)-rectangles, k>4, but a nice asymptotic formula is known
([Erdés, Kaplansky, 1946], [Kerawala, 1947a], [ Yamamoto, 1951]):

L(n, k)~ (n!)t exp(—(lg)), for k<n'37* and £>0 arbitrary. As far as

the number of latin n-squares (nx n-rectangles) is concerned, only the
first 8 values are known precisely; if /, stands for the number of normalized
latin squares (first row and column consist of {1, 2,..., n}, in this order)
then we have:

%0/

l2 3 4 5 6 7 8
6\/ [T 1 4 56 9408 16942080 535281401856

(1; being due to [Norton, 1939], [Sade, 1948b, 1951] and /5 to [Wells,
1967], [J. W. Brown, 1968]). Estimates for /, when n— oo seems to be
an extremely difficult combinatorial problem.

4.3, THE ‘PROBLEME DES MENAGES®

This is the following problem: What is the number of possible ways one
can arrange n married couples ( =ménages) around a table such that men
and women alternate, but no woman sits next to her husband. (Posed,
solved and popularized by [*Lucas, 1891]. See also [Cayley, 1878a, b];
[Moser, 1967] gives an interesting generalization.)

We suppose the wives already placed around the table (2.n! pos-
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Fig. 34.

sibilities). We number them 1, 2,..., n in the ordinary (counterclockwise)
direction, starting from one of them: E,, E,, ..., E, (Figure 34, n=6).
We assign to every husband the number of his wife: M, M,, ..., M,, and
to every empty seat the number of the wife to the right: S,, S, ..., S,.
The problem consists of counting the number of possible admissible
assignments of seats to husbands. Such an assignment is tantamount to
giving a permutation o of [n]={l, 2, ..., n}, where o (i) stands for the seat
number assigned to husband M, ie[n]. This number should satisfy:

[3a] o6(i)#i, o(i)#i+1 for ie[n—1],

o(n)#n, o(n)#1.
Let u(n) be the number of permutations such that [3a] holds; this is
usually called the ‘reduced number of ménages’. The total number p* (n)
of placements of ménages is hence equal to 2.n!u(n), if we take into
account the 2.n! possibilities of arranging the wives. We concentrate now
on computing p(n). The main idea consists of connecting this problem
with the theorem on p. 24. To carry this out, we put:

[3b] Ay = {01 a(i) =i}, ie[n];
Ayi={oo()=i+1}, ie[n—1];
Ayyi={oto(n)=1}.

Clearly, by [3a, b] for (x), and [1j] (p. 178), for (»*):
Bl w@E N A Y ()4,

1<is2n B<=l2n]

Now, [4gl:=[(i¢p4il is evidently equal to 0 if f contains two con-
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secutive elements of the ‘circle’ (1,2, 3,...,2n, 1). In the opposite case,
| 4! equals (n—|pB])! and, according to the Theorem on p. 24, such f
happen g, (2n, k) times; hence:

B = 3 (= 1 (0= K)! 1 (2 ).

Finally, we obtain:

THEOREM. The number p(n) of reduced solutions to the ‘ménages’ problem,
defined above, equals:

[Bd] = 3 (=1

osk<n 2n—k

2n (2"]: k) (n = k)!.

This beautiful formula (due to [Touchard, 1953]) is perhaps not the best
for the actual computation of the pu(n): several recurrence relations
for more efficient computations are known. (See [*Riordan, 1958],
pp. 195-201, [Carlitz, 1952a, 1954a], [Gilbert, 1956a], [Kaplansky,
Riordan, 1946], [ Kerawala, 1947b], [Riordan, 1952a], [Schdbe, 1943,
19617, [Touchard, 1943].) The first values of u(n) (taken from the
tables of [Moser, Wyman, 1958a], n<65), are:

n |2 3 4 5 6 7 8 9
um |0 1 2 13 80 579 4738 43387

n | 10 11 12 13 14
/)/\ u(n) | 439792 4890741 59216642 775596313 10927434464

‘Q\Ck 4.4, BOOLEAN ALGEBRA GENERATED BY A SYSTEM

OF SUBSETS

Let .«/:=(A,, A,,..., 4,) be a system of subsets of a set N, 4, N, ie[p],
among which there may be identical or empty subsets.

DeriNITION A. The Boolean algebra (of subsets) generated by s,
denoted by b (), is the set of subsets of 7 that can be obtained by means
of a finite number of the set operations: union, intersection and complementa-
tion. Each of the elements of b (<7 ) will be called Boolean function generated
by .

It can be immediately verified that, for the operations n, U and
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W—(W,b(«) is actually a Boolean algebra in the sense of p. 2.
The following are two examples of Boolean functions generated by
(A4, 4,, A3) (we recall that the notation ST means SN T):

[4a] fi=(A414;) 0 d;, fr=4,0 (4, U 4;) A4;.

As for polynomials, it is sometimes very interesting to interpret any
Boolean function feb (/) as a purely formal expression of the ‘variables’
(A4, Az,..., A4,) and to introduce an equivalence relation on the set of
these expressions by putting f~g when g can be obtained from f by the
rules of computation in any Boolean algebra (see p. 2). For example,
f:=04,004,~g:=0(4,n4,) is true, but fi=A; 4, ~g:=A,U A, is
not true.

DEFINITION B. The complete products of &/ are the 27 Boolean functions
of the form (see notation [1e], p. 177):

[4b] A.4;= (,ﬂ A) (N 4;), where x<[p].

The set of complete products is called b (/).

For instance, the 8 complete products of &/ =(4,, 4,, 4;) are:

[4c] AAzAs, AjA Ay, A A A5, AA,A,,
AIAIZA-S’ JIAZA-39 A-IA—ZA3’ 1‘1-1/1-2’4-3'

DEeriNITION C. The conjunctions of & are the 2° Boolean functions of
the form:

[4d] A,:=() 4,, where Ac([p].
ek

The set of conjunctions can be denoted by ¢(/).

For instance, the 8 conjunctions of &/ =(4,, 4,, 3) are N, 4, A,, A3,
A4 A2a A2A3’ A3A1’ A A2A3

THEOREM A. Each Boolean function has a unique representation as a
union of complete products (up to order). Hence (with the notation Y, of
[10a] of p. 25 for the disjoint union):

[4e] VSfeb(¥), 34 cd(H) suchthatf Y M.

Meust
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We say in this case that f is put in the canonical disjunctive form.

From this theorem it follows that there are 2% different (non equivalent)
Boolean functions in b (/). We give a sketch of proof of the theorem.

W (1) The proposition is evidently true for all A,es, because
Ai:ZiegC[p]AxA'i'

(2) 1t f, geb(7) are brought into the canonical disjunctive form, then
Sfug can be brought into canonical form too, because for f=U Be «B,
g=UcesC, where 4, ¥/ =d (), we have fug= UpeuosD.

(3) Similarly, for
foo=(UBn(U O U @o= U b,

e, Cen Dedink
by means of [1g] (p. 3), for ().
(4) Finally, for the passage to the complement, we have:

f=CU = N E= U c
Be .t Ced(d)~ M
with [1e] (p. 3), for (#x).
(1), (2), (3), (4) make it hence possible to reduce any feb (=) step by
step. W
By way of example, we show the reduction of the functions [4a]:

fi=A 4, v A'a = (AIAZAS v A1A2/i'3) v
U (414,45 U Ay Ay A3 v A A, A5 v A1 AL AS)
= Ay Ay U A A Ay U A Aydy 0 A Ay A, U A, A4,
—AAA,+AA/T + A A, A,

fa= (A Uf‘z)Aa —_A_xu{(A1UA2)UA‘3}
=A1UA2UA3=C(A1A2A3)=A1A2A3+A-1A2A3+
+ Ay Ay A5 + A Ay Ay + A Ay Ay + A AR As + A A A,

We have already met, on pp. 25 and 28, in the set P(N) of subsets
of N, the operations + and —, whose definition we recall now. For
A, B, C, Dc N, we put:

[4f] C=A+B<C=AuUB, AnB=90
[4g] D=A-B<A=B+D<D=A\B,BcA.
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It follows then for the cardinalities:
[4h] |A+B|=|A4|+|Bl, |4A—B|=|A4]~|B|
and for the rules of computation:

(4] (1) (A+B)+C=A4+(B+C).

() A+B=B+A.

(1) A+0=0+A4=A4.

(IV) A+d=N.

(V) A(B+C)=A4B+ AC.

(V) A-0=A.

(VII) A(B-—C)=AB— AC. '

(VIII) A— (B—-C)=(A— B)+ C (provided the two pairs
of brackets make sense according to [4g]).

THEOREM B. The cardinal number | f| of every Boolean function feb(s/)
can be expressed as a linear combination with integer coefficients 0, of
the cardinals of the conjunctions of </

[4] Vfeb(%), 3I{,lb,...L}<cZ,
3{C1,C2,...,C,}CC(M), lfl=1< LICH.

<i<r

B According to [4e], it suffices to prove [4j] for each complete product
M, because |f|=YjreulM|; this fact is proved in the following
theorem. W

TueoreMm C. Let Beb () be a subset of N which is the intersection of
some A; and A;:

[4k] Bz(iﬂ A).(N 4;), where A+pc([p].
€A jep
Then, the cardinal |B| can be computed by performing successively the
following operations:
(1) Replace in [4k] the A; by 1—A;.
(2) Expand the new form, thus obtained, of [4k] into a polynomial in
the variables A,, A;, i€, jep, the N being considered as product operation.
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(3) Replace every monomial by its cardinal number and replace the
monomial 1 (if it occurs) by n(=|N}).

We illustrate this rule by computing the cardinal of PO R:

PORYP(1-0)(1 =R)D P~ PO — PR+ POR

@ \|P| — |PQ| - |PR| + |PQR| = |POR].

B We use |[VW|=|V|—|VW]|; this formula is evident. Then we put

Vi=(MNicadiand Wi=; ., A;. Then|B|=|VW|=|V|—=V(U;eu 4;)l=
=|V|=1Uj e, V4;l. In other words, by [1b]:

IBl=1VI- X IVAl+ ¥

jen {i1, J2} e Baln)

So, in example [4a], f;=(4;4,43UA,A,A3)0A3=A4,4,4;3+ 4;,

hence |fi|=n—|A4s|+|4,4,45]. Similarly, f,=4, {(4,V4,) 45}=

=A4,{(4,4,) A;}=A,A,A4;; hence, with the example POR above,

| fol =143l =141 43| = |A2 43| +|A Ay A45],  or | fl=n—|4s|+14,4;5]+
+|A,A3] —{AA345|. (On this section see also [*Loéve, 1963], p. 44.)

[VA; Al — etc. B

4.5. THE METHOD OF RENYI FOR LINEAR INEQUALITIES

DEfFINITION A. Let f be a (set) function mapping a certain Boolean
algebra of subsets of N, say B, onto a set of real numbers =0, fe[0, )2,
We say that { is a measure on (N, #), and we denote feIN~IN(N, #) if
and only if f is additive, in the sense that for each pair (3, B,) of disjoint
subsets of N(«>B,+ B, <N), belonging to #, we have:

[5a] S (By + By)=f(By)+ f(B2).
The triple (N, %, f ) is then called a measure space.

(So 4 is a system of subsets of N, containing § and N, and closed under
the operations of complementation, finite union and finite intersection,

[1d], p. 2.)
Hence, for each measure f, we have f(9)=0, and for all pairwise
disjoint By, B,, ..., Bje#:

s8] /(3 B)=3. 7 (B).
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DEFINITION B. The measure space (N, &, f) is said to be a probability
space, if f(N)=1. In this case f is called a probability measure, or
probability, and will often be denoted by P. Each set BeZ is called an
event. N is the certain event, mostly denoted Q. Each point weQ is called a
sample.

DerFNITION C. An atom of the Boolean algebra b(sf) generated by
o =(Ay, A, ..., A,) (Definition A, p. 185) is a nonempty complete product
(Definition B, p. 186). We denote the set of atoms of b(</) by a(+/).

THEOREM A. A probability measure f on a () is completely determined
by the values (=0) of f on each atom Cea(s7) (the set of values of f on the
atoms is only subject to the restriction Y ccq ) f(C)=1).

M This follows from the fact that a(s) is a partition of N, and that
every subset Beb (%) is a union of disjoint atoms (Theorem A, p. 186). W

THEOREM B. Let s/ =(A,, A3,..., A,) be a system of subsets of N,
A;<=N, ie[p], and let IN be the set of measures on the Boolean algebra
b (=) generated by sf. Let IN* be the subset of M consisting of the
measures g which are zero on all atoms C of a (/) except one, C,, called
supporting atom, for which g (C,)=1. Here, C, runs through a (/). Then
for every sequence of I real numbers say (by, b,, ..., b;), and every sequence
of | subsets taken from b(«7), say (B,, B,, ..., B,), the following conditions
[5¢] and [5d] are equivalent:

[5c] Forall fedt,
[5d] Forall geIR*,

'b,(f(B,()>0.

l bg(B,)=0.

1

A

k<

[

<k<

([Rényi, 1958] and [*, 1966], pp. 30-33. See also [Galambos, 1966].
For a generalization to certain quadratic and cubic, etc., inequalities, see
[Galambos, Rényi, 1968].)

B The fact that [5c] implies [5d] follows from the fact that * c9R.
Conversely, let geMt*, so there exists a Cyea (/) such that:

[5¢] g(Co)=1, and ¢g(C)=0 if Cea(s), C#C,.
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Now, according to [5d], with a:=a(s) for short, [5b] for (x), a
permutation of the summation order for (xx) and [5e] for (++#):
0< ) bg(B) = Y b (CZB C)

1sk<l 1€k<l C
(Cea)

Ly bnl3 e

1<k<I

FLOU WL b

Cea Coc< By
1<ks! :

Because the measure geIN* is arbitrary, it follows that for each atom
C(=C, from above), we have:

[5] T b>0.

CCB‘f

Let us now consider [5c]. We can compute by the same way, now using

[5f] for (*):
s bkf(Bk) = bk{ Z f(C)}
k<l 1<kt (qcceik)
=T rO{F b)>0. m

THeoreM C. Notations as in Theorem B. The conditions [5c] and [5d]
remain equivalent if all ‘>0’ signs are simultaneous replaced by ‘<0’ or
by ‘=0,

B In the first case, replace the sequence (by, b,,..., by) of Theorem B by
(~by, —b,..., —b;). In the second case, observe that x=0<>x>0 and
x<0. N

Examples of applications of Rényi’s method follow now.

4.6. POINCARE FORMULA

The method of the preceding section will enable us to show very quickly
various equalities and inequalities concerning measures f associated
with a finite system (4,, 4,,..., 4;) of subsets of N.

With every measure f on (N, b(«)) (Definition A, pp. 185 and
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189) and every integer ke[ p] we aséociate, as in [1c], p. 177 (using the
notation [le], p. 177, for (x)):

[63] Sk=sk("a{)=Sk(f’d)=Z(p)f(A1Az--~Ak)3=
= )y f( A4, 4)2 Y 1(4)

1S§k<§2<---<§kSp % € Plpl

So:=f(N).

THEOREM. For every measure felt(N, b(o7)), where o/ =(A,, A,,..., A,),
A, N, ie[p], the S, being defined by [6a], we have:

[6b] f(4,04,004)2 ¥ (-7 (4=

x€P'[p]
@ ¥ (—1)s,
1<ksp
(6] f(di4,...4,)= %{1(—1)'”'f(A,,)=0<;< (- 1)S,.

In the case that f is a probability, [6b] is often called the ‘Poincaré
SJormula’. If f stands for the cardinal, f (B)=|B|, we obtain [1b, c, d],
p. 177.

W [6c] follows from the application of [6b] to f(4;4,...)=
=f(C(4ua,0 ~)=f(N)—f(4, 04,0 ). Equality [6b(o)]
follows from collecting in the above summation all terms with x, |%|=k.
Proving [6b(o)] is equivalent to proving it for all geIR* =IN* (N, b (),
according to Theorem B (p. 190). When C, denotes the supporting atom
of g, we let A(< [ p]) be the set of indices i such that Cy= 4; and I: =|4. If
A=9, all terms of [6b] are zero. If /> 1, the first member g (4, w4, U-)
of [6b] equals 1. On the other hand:

1 if xca
[6d]  g(4)=g() 4)=

0 otherwise.

The second member of [6b] is hence equal to 1, too, since with [6d]

for (*):
S (EDMTg(a)E ¥ (- =
xePpl xe P (D) ;
=1§<,(—1)k‘1(k)=1—(1—1)’=1. |

Z
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Example: Euler function. For any integer n >1, let ®=&(n) be the
set of positive integers x which do not exceed #, and relatively prime with
respect to n, 1 <x<n, GCD (x, n)=1. The number ¢ (n)=|®| is called
the Euler function of n and we are going to compute it now. Let the
decomposition of n into prime factors be n=pi'p?2... p¥ and let M; be
the set of multiples of p; which are smaller than or equal to n. Clearly,
¢=M M,... M,. Hence, for each measure f on [n], we get by [6c]:
F@)=f([n)-Xf (M )+Y D f (M M,)—---. First we take for f the
cardinal number function. Then f([n])=n, f(M)=n/p, f(M:M;)=
=n[p;p;,..., from which we obtain, after an evident factorization:

[6¢] <p(n)=n(1—~;;><",j;)"(“;,)'

1f we had defined f by f(X)=) , . x X, where X < [n], then we would have
found f(M)=pi+2p;+--+(lp:) pr=n’[2p;+n[2, f(M;M;)=pp;+
+2pipj+-+(nlpip;) pipj=n"2pipj+nf2,...; hence, after simplifica-
tions: f ()=, cox=(n/2) @ (n). Here is a table for ¢ (n):

n 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

om) |1 1 2 2 4 2 6 4 6 4 10 4 12 6 8

n |16 17 18 19 20 21 22 23 24 25 26 27 28
om) | 8 16 6 18 8 12 10 22 8 20 12 18 12

4.7. BONFERRONI INEQUALITIES

DEFINITION. Let R be an alternating sum of a, >0, ke[r]:

[73] R= Z (___ I)IJ"I ap=a1_az+"‘+(— l)r_la,.
t<p<r
We say that [Ta] satisfies the alternaling inequalities, if and only if
(= D*{R+ Y=y (—1)" a,} >0 for all ke[r]. In other words:

[7b] R<a,, Rz a, - a,, R<a;—a;+as,....
THEOREM ([Bonferroni, 1936]). Let the S, be defined by [6a] (p. 192),
then for all measures fe M (N, b(7)), the sum Y £ (—1)*7'S,, introduced

in [6b] (p. 192), satisfies the alternating inequalities. Hence, for each
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ke[p], we have:
[7c] (1) {f(41ud,u-UA4,)+ (- 1)"S,}=0.
1<h<k
Quite similarly, with [6c], we have
[7¢] (D) {f(4id,.... 4,) + (- 1)*s,} = 0.
0<h<k

Particularly, for f (W)=|W|= the cardinal of W, we obtain (cf. [Ic],
p. 177):

[7d] 4, U 4, € |4l (Boole inequality
P

1<i<p
4, uvdl= Y 14l— ) |AAj, ete,
1<isp 1<isjs<p

and the analogous inequalities in the case that f=P is a probability.

B According to Theorem B (p. 190) it suffices to prove [7c] for an
arbitrary measure geI*. Let 1 have the sense given in the proof of
the Theorem, on p. 192, then the first member of [7c] is evidently equal
to 0 if A=0. Otherwise, we get, with I:=]A|>1, and [6d] (p. 192, where
x is replaced by #) for (x):

(—1)"Su(9)

=g(4 u-ud)+ 3 (-1)"g(4,)

neP gilrl

Qi+ T (-4,

neF gD

1= () )-rr () n

Now, by applying the Taylor formula of order k in x=0 to the function
(1—-x)', k<I-1, we get for all xeR, 0<0(x)<1:

[7¢] (1—x)'=1—<i)x+...+(_1)k @ oy

g(4, u Ay, UV Ad,)+
1

N

(= 1) (ki1> (1 — x0(x)) 1.
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If we put x=1in [7e], we find (~1)ka=<k+I—1) (1-0(1))y* 120,
in other words, [7c] for all geIt*. W

4.8, FORMULAS OF CH. JORDAN

TuroreM A ([Charles Jordan, 1926, 1927, 1934, 1939]). Let N,(#)
stand for the set of points of N that are covered by exactly r subsets of
the system o =(Ay, A,,....,A,), then we have for every measure

FeM(N, b(H)):
8a] (V)= 3 (*U'""’(lxl)f(fix)

xeP,lrl r

k
— __lk—r S,
2 (s

where the Sy are defined by [6a]. Moreover, [8a] satisfies the alternating
inequalities.

For r=0 we have a formula analogous to [6¢c] (p. 192).

W We use Theorem B (p. 190) once more. For all geI)t*, with support-
ing atom C, contained in the A, such that iei(< (p]), /:=|Al, we have
evidently:

[8b] g(N,(#)=0 if r#l, and =1 if r=1

Now the second member of [8a], with f replaced by g, and [6d] (p. 192)
for (), can be written:

5, o ()oa-
¥eD3,0r) <(2 5 (_l)lnl—'<|’:|)g(f1x)

xePx, (D)

L ()6
~()ze ()=

I
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which is indeed equal to [8b]. The alternating inequalities for [8a]
follow from the fact that they hold for ) ,(— 1)""( I’;_i), according to

[7e] (p. 194). W (The interested reader is referred to [*Fréchet, 1940,
1943], as well as to [Takdcs, 1967], which has a very extensive bibliog-
raphy.)

We can prove by a similar method:

THEOREM B. Let N (&) stand for the set of points of N that are covered
by at least r subsets of 4, then we have:

8] fWs(@)= % (0M(M )um

xeP>,0r]

- 3 (il i)s

r<l¢<p

with the alternating inequalities.

4.9. PERMANENTS

DerNITION. Let B:=[b; licrmy, jeim be @ rectangular matrix with m
rows and n columns, m<n, with coefficients b;; in a commutative ring Q.
The permanent of B, denoted by per B, equals, by definition:

[9a] perB= Z by, a1yb2, a(2) -+ Orm, a(my 5

€ Umlnl

where the summation is taken over all m-arrangements of [n] (p. 6).
(For the main properties and an extensive bibliography see [Marcus,
Minc, 1965].)

For example, per (2 3 1)=2.0+5.3+2.4+5.1+3.4+O.1=4O.

504
Hence there are (1),, terms in the summation [9a]. If m=n, the terms
of per(B) are, up to sign, those of det(B), and for the permanent there
are properties similar to those of the determinants; however, per (AB)+#
# per (A4).per(B), in general.
For each matrix 4:=[a;, Jic (01, jerap @i, ;€2 let w(4) be the product
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of the p sums of elements of each row of 4:
P 9
[9b] w(A) = H Z a; ;s
i=1j=1

fmd for every subset A= [q] let 4 (1) be the matrix obtained by keeping
in A precisely those columns whose index belongs to A. For example, if

1323
A=(_2 1 o)’ then w(4)=9x3=27 and A({1,3})=<_; f)

THEOREM (Ryser formula, [*Ryser, p. 26]). With the above notations, and
w(B(0))=0, per(B) is also equal to:

N Sl () IO

that is 1o say

Bd Y wBW)- ( m*ﬁ S wBM)+

deRlnl M J dePm-_in
m-1 [ B — 1
+oo 4 (— 1) Y w(B(A).
) B—M] 2ePitn
Particularly, for a square matrix, m=n,

[9e] perB = 1;{ ] (= 1) MwBQ) =
=Y (=17 ¥ w(B().

leln] AePyin]

n We.use [8a], p. 195. The role of Nis played here by the set of maps
of [m] into [n], so N=[n]!"} (caution! |N|=n™), with as system
A =(A,, A,,...)

(o  Avc={pteeln]™; Ijelml 0 (j)=i}, ieln].

Now we suppose first that all b, ; are real nonnegative. We define the
measure | for each subset X< [#]'™1 by:

(%] f(X):= Z 7 (¢), where f(g):= ﬁ b, o0y -

Now ¢ is injective (e, []) if and only if the image of [m] under ¢ has
cardinality m, in other words, peN,,(«¢) in the notation of Theorem A
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(p. 195). Hence, by [9g]:

[9h]  perB=f(Nn(s)).
To this expression we will apply now [8a] (p.195). Let x:=
={iy, i3, ..., i} =[n]. Then we have:
FlA):= 2 biewbre@ = X biembaem s
?EA(lAtr-- q.:eg
where § stands for the set of maps of [m] into [n]—x. Hence, by
Theorem A (p. 127), and the notation of [9b]:

(90 S (4)=w(B([n] - ).
Then [9¢] follows by putting A:=[n]~2x in [9i] and [8a] (p. 195). Since

[9c] is true for all b; ;20, it is also true in a commutative ring, since the
term-by-term expansion [9a] is the same in both cases. W (For other
expressions of per B, see [*Cartier, Foata, 1969], p. 76, [Crapo, 1968],
[Wilf, 1968a, b]).

If perB can be directly computed, then [9a] gives, together with
{9¢c, d, e], a ‘remarkable’ identity. For example, when B is the square
matrix of order n consisting entirely of 1, b; ;=1, then clearly per B=n!;

hence by [9e]: n!=Y 7., (—-1)""! (’;) I". Thus we find back the evident
property S(n, n)=1 for the Stirling numbers ([1b] p. 204). If we take

next b; ;=2/"*, we find 2(2)n! =Y (—1)""PW j" where 1<j<2"—1,and
where D ( j) stands for the number of digits 1 in the binary form (=base 2)
of j. Finally, if all b; equal O, except b, =b, ,=--=b, ,=x and
by a=b, 3=+=b,_ ,=b, =y, we find, using [9b] (p. 24):

wey= B0 () e e,

k<n/2 n—k

to be compared with Exercise 1, p. 155.

SUPPLEMENT AND EXERCISES

1. Variegated words. Using 2 letters a,, 2 letters a,, ..., 2 letters a,, how
many words of length 2» can be formed.in which no two identical letters
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are adjacent? (For instance, for n=3, the word asa,a;a,asa,.) [Hint:
When A4; stands for the set of words in which the two letters a; are
adjacent, then the required number is equal to {4,4,... 4,/.] Now
generalize. (Cf. Exercise 1, p. 219, and Exercise 21 (3), p. 265.)

2. Sums of the type of the Euler function. If in the following the summation
is taken over all integers x < n which are prime relatively to n, n=p4'p%...

..pr, then show that Y x*=(n?/3)em)+(=1)Y(3)p;... p,o(n).
Generalize to Y, x°.

3. Jordan function. This is the following double sequence:

J(n):=n* g (1-p",

p is a prime number, and where p [ n means ‘p divides n’. It is a general-
ization of the Euler function (J6e] p. 193) J, (n)=¢(n). For any integer
k=1, show that Ji(n) is equal to the number of (k+1)-tuples
(x> x2,..., Xy, n) of integers x;e[n], ie[k], whose GCD equals 1. Show
that 5, Ji(d)=n" and deduce from this the Lambert GF (Exercise

16, p. 161) Y 5y Ji(n) " (1—1") "' =A,(¢) (1 — )%, where the 4,(¢)
are the Eulerian polynomials of p. 244.

4. Other properties of the number d(n) of derangements. (1) We have
d(n)=4"70!, A being the difference operator (p. 13). (2) f:=) d(n) "
satisfies the differential equation (£2+12) 1" +(t?—1) f+ 1=0. Use this
to prove: f=—t"texp(—t~") [exp(t™!) (t+3)"t dr,... formally. (3)
The number d,(n) of permutations of [n] with k fixed points (GF, p. 231)
has as: Y, 150 dy(n) vt /nt=(1—1)"" exp(—1(1 —u)).

*S8. Other properties of the reduced ménages numbers p(n). (1) The
following recurrence relation holds: (n—2) u(n)=n(n—-2) p(n—1)+
+nu(n—2)+4(—1)""" ([*Lucas, 1891], p. 495). (2) When 7 tends to

infinity, p(n)~nle~2 (3) n!'=Y%_g (2:) pn—k), 1(0):=1, p(1)=-1

(Riordan). (4) p(n)=lne™ Y (—1)(n—k—1)k!], where 0<k<
< (n—1)/2, with the notation [6f] (p. 110) (Schobe). (5) Y ,»3 pt(n) t"=
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=(2=1)t *exp(—t—t"1) [ t2(t+1) 2 exp(¢t+¢t~1)ds,...  formally
([Cayley, 1878b]).

6. Random integers. Repetitions being allowed, n integers >1 are
independently drawn at random, say w,, ®,,..., o, What is the
probability that the product 7,:=w,®, ... @, has last digit (the number
of units, hence) equal to 5? More generally, compute the probability
that a given integer k> 1 divides =,

7. Knock-out tournaments. A set of 2' players of equal strength is at
random arranged into 2°~! disjoint pairs. They play one round, and
2'~! are eliminated. The same operation is repeated with the remaining
2'~! players, until a champion remains after the #-th round. Show that
the probability that a player takes part in exactly i rounds equals 2~ for
1gigt—1and27**!if i=t. ([Narayana, 1968], and [Narayana, Zidek,
1968] for other results and generalizations. See also [*André, 1900].)

8. A determinant. Let A beasquare matrix of order n, A:=[a; ;];, je
where the g, ; belong to a commutative ring 2. For each subset x < [n],
let D(x) be the determinant of the matrix that is obtained by deleting
from A all rows and columns whose index does not belong to x,
D(9):=1. Then, for x,, x,...€£:

al,l‘l‘xl al.z ves al'n
s, a,,+x, .. ay,, |= g:[:]{D(x)l;[x,.}.
. x<n i¢x
a1 Qp, 2 cee lyp + X,

9. Inversion of the Jordan formula. In [8a] (p. 195) we put T,: = f (N, (%)),
T,=Y  (=1)*" <’:> Si. Now show that S,=)", (I:) Ty

10. Inequalities satisfied by the S,. Show that the S,, as defined by [6a]
(p. 192), satisfy the Fréchet inequalities ([*Fréchet, 1940]):

of)esf). s
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and the Gumbel inequalities, ke[ p—1]:

o) =5l =1(E) =i E2)

11. The number of systems of distinct representatives. lLet Z#:=
=(By, By,..., B,) be a system of not necessarily distinct blocks of
[}, Bic[n]:={1,2,...,n}, I<m<n, and let B=[b,, ;] be the incidence
matrix of 4 defined by b; ;=1 if je B, and =0 otherwise, ie[m], je[n].
Show that the number of systems of distinct representatives (Exercise 32,
p. 300) of & equals per(B).

12. Permanent of a stochastic matrix. Let A:=[a; ;]| be a nxn square
double stochastic matrix. This means:

n n
a;,;20, '21 a,;=1, .21 a,;=1, ijeln].
J= 1=

Let n boxes contain each a ball. At a certain moment, each ball jumps
out of its box, and falls back into a random box (perhaps the same) such
that the ball from box i goes to box j with a probability of a; ;, i, je[n].
Then, per A represents the probability that after the transfer there still
is one ball in each box.

13. The number of permutations with forbidden positions. Let I stand for
the n xn unit matrix, and let J be the nx»n matrix, all whose entries
equal 1. Then show that per(J—1I)=d(n), the number of derangements
of [n] (p. 180). Use this to obtain (by [9¢] p. 197):

d(n) = ;: (1) (’:) (n—r) (n—r—1)".

More generally, let B be a relation in [n], B<[n]x[n], and let
S (1) be the set of permutations ¢ of [n] such that (i, o(i))eB. Let
also B=[b; ;] be the n x n square matrix such that b; ;=1 for (i,/)e B,
and =0 otherwise. Then |Gy [1]|=per (B). (There is in [*Riordan, 1958],
pp. 163-237, a very complete treatise on this subject. See also [Foata,
Schiitzenberger, 1970].)

14. Vector spaces. Let A, A,,... be finite dimensional vector subspaces
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with dimensions 4 (4,), 4 (4,),.... Wedenote 4,4, for A; n A,. Then (1)
6(Ay+A;)=06(A4,)+6(A4;)—0(4;4,), where A +A, stands for the
subspace spanned by A4;UA,. (2) 6(Aj+A,+A3)<6(4;)+6(4,)+
+06(A;)—06(A2A43)—6(As4,)—6(A,4,)+35(A4,4,43). (3) This inequal-
ity cannot be generalized to more than three subspaces; but we always
have: 6 (A A4,... A,)<6(X =1 4:)<) =1 6(4).

*15. MJbius function. Let P be a partially ordered set, in other words,
there is an order relation < given on P (Definition D, p. 59). Moreover,
P is supposed to be locally finite, in the sense that each segment [x,y]:=
:= {ul x<u<y} is finite. 4 stands for the set of functions f (x, y), x, yeP,
real-valued, which are zero if x§y (<> not x<y). (1) We define the
(convolution) product 4 of f by g, denoted by h= fxg, by:
h(x,»):= Y f(xu)g(u,y).
x€y<y
Show that with this multiplication, 4 becomes a group, with unit element
6 defined by 6(x,y):=1 for x=y, and :=0 otherwise. (2) The zeta
Junction { of P is such that {(x, y):=1if x<y and :=0 otherwise. The
inverse u of {, which satisfies u*{={*u=34, is called the Mdbius function
of P. If we suppose that P has a universal lower bound denoted by 0,
verify the following ‘M&bius inversion formula’ for f, geA:
[¥1  9(0)= ,Zx fO)«f(x)= ygx g () u(y,x).

(3) Let P:={1,2,3,...} be ordered by divisibility: x<y <>x|y<x
divides y. Show that u(x)=1; u(x,y)=(—1)* if x divides y and the
quotient equals p,p, ... p;, where the prime numbers p; are all different;
#(x, y)=0 in the other case. Hence u(x, y)=ji(y | x), where ji(n) is the
ordinary arithmetical Mbius function (Exercise 16, p. 161). What does
the inversion formula (¥) give us in this case? (4) We order the set
P:=P(N) of subsets of a finite set N by inclusion. Then u(x, y)=
=(-1)"=1=if x< y <> (x < y). What does (#) give in this case? (5) Let
P now stand for the set of partitions of a finite set N ordered as in
Exercise 3 (p. 220). Then, for x<y with y={B,, B,,..., B}, B, + B, +
+-+-+By=N, we have p(x, y)=(—D)* P (n, — 1)1 (n,— 1)!... (m,— 1),
where n; is the number of blocks of x contained in B,, ie[k]. (This
formula is due to [Schiitzenberger, 1954]. For a recent study of all
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these questions see [ Rota, 1964b] and [*Cartier, Foata, 1969], pp. 18-23.
See also [Weisner, 1935], [Frucht, Rota, 1963], [Crapo, 1966, 1968],
[Smith, 1967, 1969].)

*16. Jordan and Bonferroni formulas in more variables. Let Ay, A,..., 4,
and By, B,, ..., B, be subsets of N, and let N, ; be the set of points of N
belonging to r sets 4; and to S sets B;. For each measure f on N, we put
Si,1=2.f(4,B;) where xeP,[p] and ieP,[q], with notation [le]
of p. 177.

O =3 5 e ()()s

t=r+s it j=t

(2) With a notation analogous to that of Theorem B (p. 196):

s = 25 e (12 (0 s

t=r+sitj=t

(3) With respect to the first summations in (1) and (2) the alternating
inequalities hold ([ Meyer, 1969]).
(4) Generalize to more than two systems of subsets of N.

*17. A beautiful determinant. Let (i,j) be the GCD of the integers i
and j, and let ¢ (k) be the Euler function (p. 193). Show that:

1,10 (1,2) .. (1,n)
@D @2 . @n)=01)e@).oM)

(m1) (m2) .. (nn)
([Smith, 1875], [Catalan, 1878]).
More generally, if we replace in the preceding every (i,j) by (i,j),
then the determinant equals []i-, J,(k), where J,(k) is the Jordan
function of Exercise 3 (p. 199).




CHAPTER V
STIRLING NUMBERS

Let us give a survey of the three most frequently occurring notations:
numbers of the first kind=s(r, k) (Riordan, and also this book, ...}=S5,
(Jordan, Mitrinovié,...)=(—1)""*S,(n—1,n—k) (Gould, Hagen,...):
numbers of the second kind=S(n, k)=Ck=S5, (k, n—k).

5.1. STIRLING NUMBERS OF THE SECOND KIND S(n, k)
AND PARTITIONS OF SETS

DEFINITION A. The number S(n, k) of k-partitions (partitions in k blocks,
Definition C, p. 30) is called Stirling number of the second kind. Hence
S(n, k)>0 for 1 <k<nand

[1a] S(n,k)=0 if 1<n<k.

We put S(0,0)=1 and S(0, k)=0 for k>1.

In other words, S(n, k) is the number of equivalence relations with k
classes on N. It is also the number of distributions of » distinct balls into
k indistinguishable boxes (the order of the boxes does not count) such that
no box is empty.

On p. 206 we will prove that the S(n, k) are indeed the number pre-
viously introduced on p. 50.

THEOREM A. The Stirling number of the second kind S(n, k) equals:

[1b] S(n,k)@l Zk(—l)j(l;>(k—j)"=

k! o<Gs

1 : 1
Y (=) <i‘) PO A0 (1<k<n),

k! << k!

[1c] and the formula is still true for k>n(=S(n, k)=0, [la]).

B For the proof of [1b, (x)] we apply the sieve method of p. 177. Let
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E be the set of maps of N into [k]:={l, 2, ..., k} and let F be the subset
of E consisting of the surjective maps:

[d] B9k,  F'D=kS(nk),
(°) follows from [3a] (p. 4) and (ec) from the fact that any feF corre-
sponds to precisely one partition of N, namely the partition consisting
of the k pre-images f~' (i), ie[k] (p. 30), together with a numbering
of this partition. Let now B; be the set of feE that do not have i in
their image: VxeN, f (x) #i. Evidently F=B,B,... B, and for the infer-
changeable system of the B; (p. 179), we have |B; B+ B, |=|BB,--
Byl =|[j+1,j+2, k]"|. Hence, by [1m] (p. 180), for (§):

[1e] kK'S(n k)= |F|=|BB,..|=

k k
L - (1) 1B, + (2) |B,B;| = CQFD.

As far as [1b(xx)] is concerned, this is formula [6f] (p. 14). Finally,
if n<k, then |F| is clearly equal to 0 and the sieve formula can still be
applied, hence [1c]. W

Thus we find S(n,1)=1, S(n,2)=2"""-1,5#n3)=(3"""+1)/2—
2"~ ... Another way to prove [Ib] would be to observe that any
map f(eE) is surjective from N onto I:=f(N). So, putting u,: =k!S(n, k),

n k
l)kI:IEI=k = Z u|,|=0<z<k<_)u,-,

160k !

[1e] which gives u, (consequently S(n, k)) by the inversion formula
[6e] p. 144.

DEFINITION B. A partition & of a set N is said to be of type
[el=lcys €2y .-, €], where the integers ¢;=0 satisfy ¢, +2¢y+ - +nc,=
=n(=|N|), if and only if & has c;i-blocks, ie[n](So we have
et e+ te,=|S)).

THEOREM B. The number of partitions of type [c] is equal to
mf{e eyt (1)1 (2N} -

B Giving such a partition is equivalent to first giving a division of N into
¢, 1-blocks, ¢, 2-blocks, ... ; of these there are z=n!/(1!)"'(2!1)>...}, [10c]
(p. 27); and to consequently erasing the numbering of blocks with equal
size; so we must divide the number z by ¢,!c,!... W
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5.2. GENERATING FUNCTIONS FOR S(n, k)

The following theorem shows that the Stirling numbers defined in [1b]
are indeed the numbers which were introduced for the first time in

[14s] (p. 51).

THEOREM A. The Stirling numbers of the second kind S(n, k), have as
‘vertical’ GF:

"1
[2a] @)= % S(mk)— = (1),
. nxk n! k!
where n>k can be replaced by n>0), and for ‘double’ GF:

[26] @@ u)i= Y S(n k);t:—'u"

nkz0

=1+ 2 _ Sk

= exp {u (¢ — 1)} .
M Using [1a] (p. 204) for (x), and [1b] for (**):

o, (1) ¢ 20 S (n, k) ;’ﬁ

1 Ak t
(k%) .
g Y (Y (k-
iz )(J>( o
Oigik

-2 e () 2S5

= a2 (Yeveri=ge-

klo<i<x \J

Similarly, with [2a] for (##x):

di(t,u)-kZ{ Y S(n k) }

n>k

o "(e - 1)k = exp{u(¢ — 1)}.
k=20 k‘
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THEOREM B. The S(n, k) have for ‘horizontal’ GF (which is often taken
as definition of the S(n, k)):

[2c]  x"= ) S(mk)(xk

0<k<n

where (x), :=x(x—1) - (x—k+1), (xX)g:=1.

W ldentify the coeflicients of #"/n! in the first and last member of:

tn
;0 xn n" =el‘x={1 +(et_ 1)}x=
*) (e 1) (%)
= X
k?O( )k o<k<n

where (x) follows from [12¢] (p. 37), and (*+) from [2a]. W

GRS

TueoReM C. The S(n, k) have the following rational GF:

[2d]  @ui=) S(mk)u"=

n2k
k
u

Ty (1= 20) (1= ku)
(According to [1a], n=k can be replaced by n>0.)

M 1If we decompose the rational fraction ¢, into partial fractions, we
obtain equality (), and for (*x) we use [1b]. Then we get:

_ u* * (-1 1
e (1—u)--(t —ku) osjsx k' \Jj/1—(k—j)u

"ok {(:k'l : (ﬁ) T (k-iy u"}

;o { k! o<§1:<k (-1’ (J> (k _j)n}

o Z S(n, k)u".

THeOREM D. The following explicit formula holds:
[2¢] S(n, k)= y 19022 ke

c1teat -tex=n—k
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In other words, the Stirling number of the second kind S(n, k) is the sum
of all products of n—k not necessarily distinct integers from [k]=

" : i) such products).

={1,2,..., k} (there are (k

For instance, S(5,2)=13+1%22+1.22+2%=15. Thus the numbers
S (n, k) are the symmetric monomial functions of degree (n— k) of the first
k integers (Exercise 9, p. 158). This is the same thing as expanding
(142+---+k)""* by the multinomial theorem and afterwards suppress-
ing every multinomial coefficient. (This procedure applied to
(@, +a,+ - +a,)" gives the so-called Wronski alepis.)

B After expanding @,, [2d], identify the coefficients of u"~* of the
first and last member of:

o= TL (=)= I ¥ ju-

1sjsk 1€k ¢y20

= Y (17, kjuertertie. g

€13 €2 s §k 20

5.3. RECURRENCE RELATIONS BETWEEN THE S(n, k)

THEOREM A. The Stirling numbers of the second kind S(n, k) satisfy the
‘triangular’ recurrence relation:

[3a] S(mky=S(n—-1,k—1)+kS(n—-1,k), nk=1;
S(n,0)=S(0,k)=0, except S(0,0)=1.
This is a quick tool for computing the first values of S(n, k) (see table
on p. 310).

W We give two proofs of [3a].
(1) Analytical. Equate the coefficients of (x), in the first and last
members of [3b]:

[3b] ;S(n,k)(x),‘=x"=x.x"“1=x;S(n—1,h)(x),,
= ; S(n—1, B) {(x)p+1 + A (x)},

since the (x), form an independent system of vectors in the linear space
of polynomial functions.
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(2) Combinatorial. We return to Definition A (p. 204) of the S(n, k).
Let xe N be a fixed point, and let M:=N—{x}, |N|=n>2. We partition
the set s=s(N, k) of the k-partitions of N into s’ and s”, §', is the set of
partitions in which the block {x} occurs, and s"=s~s’. For all Les, let
(L):={BAMI Be.?, BnM=0} be the trace of & on M. If Fes’,
t(Y)es(M, k—1), and we see clearly that t is bijective; hence |s'|=
=ls(M,k—1)|=S(n—1,k—1). If Les", 1(S)es(M, k), and for each
partition 7 es(M, k), |t~ ()| equals the number of possible choices
of joining x to one of the blocks of 77, which is k; hence |s"| =k|s (M, k)| =
=kS(n—1, k). Finally, [3a] follows from [s|={s'|+[s"|. W

THEOREM B. The S(n, k) satisfy the ‘vertical’ recurrence relations:

3¢] Smk= Y ("7])S(l,k-1).

k—-1<[<n~1

[3d] S(nk)y= Y SU-1,k-1)k"""

ksi<n

M For [3c], we differentiate [2a] (p. 206) with respect to ¢, and we
identify the coefficients of #*~/(n~—1)! in the first and last member of:

I+m

S S k) e =% g S(k—1)"
n’ et —— - = s —
50 (=) dr e ,,,Z;o ( )l!m!'

For [3d], use [2d] (p. 207):
Zk S(n, k) u" = @y = u(l —ku)—l Py =
' =Y S(-1Lk=0)k"'"" m

L,m>20

TueoreM C. The S(n, k) satisfy the ‘horizontal’ recurrence relations:

[Be] Smk)= Y (=1)Y<k+1);S(n+Lk+j+1)

O<J$n—k
where (yji=x(x4+ 1) (x+j—1), (xde 1= 1.
] KIS K) =k — 3 (k) S (n ).
=1

W Itsuffices, by [3a], to replace S(n+1, k+j+1) of [3e] by S(n, k+j)+
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+(k+j+1) S(n, k+j+1), and then to expand: after simplification
only S(n, k) is left. For [3f], this is formula [le], p. 205.

5.4. THE NUMBER w@(n) OF PARTITIONS OR EQUIVALENCE
RELATIONS OF A SET WITH n ELEMENTS

The number @ (n) of all partitions of a set N, often called exponential
number or Bell number ([Becker, Riordan, 1948], [Touchard, 1956])
apparently equals, by Definition A (p. 204):

[4a] w(n)= Z S(n, k), nzl.

1<k<n

So it is also equal to the number of equivalence relations on N.
THEOREM A. The numbers w(n) have the following GF:

[4b] Y w(n):—l’%=exp(e'—-1), w(0):=1.

n20

They satisfy the recurrence relations ([Aitken, 1933]):
[4c] w(n+1)= "o (h), n>0,
oshsn h :

and they can be given in the form of a convergent series ([Dobinski, 1877]).

B2

TrlY >1, [6f] p. 110
;oh! e;,;o h! (” [ ]p )

[4d] w(n) = Ee ]

B Taking into account [4a], the first member of [4b] equals @(, 1),
then, by [2b] (p. 206) the result follows.

For [4c], as for [3a], there are two ways again. Analytically, identify
the coefficients of ¢"/n! in d&(t, 1)/dt=€'®(t,1). Combinatorially, let
s(P) be the set of all partitions of P, |P|=n+1 and let xeP be a fixed
point, N:=P—{x}, |[N|=n. For Kc N, let s¢(p) be the set of partitions
of P such that the block containing x is {x} U K. Then we have evidently
a bijection between s(N—K) and si (P). Hence, by virtue of the division
$(P)=Y x<nsx(P) and by passage to the cardinals, we have:
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o+ D) =@ = T Is(P)= T (V- K)l =

= S AL 0=k = 5 (Hot-b.

o0sk<n |[K|=k <k<n

Ak

Finally, for [4d], we identify the coeflicients of z"/n! in the first and last

member of [4e] in which the series are power series converging for each
complex number ¢:

" 1 1 ek‘ 1 1 k"t
[4e w(n) - =- N = - -
! n;O ( )n! eexp(e) e :‘/:‘ e ; kl,;o n

We are leaving [4d] (x) to the reader as a gift. W

See [Rota, 1964a] and its bibliography. (For the asymptotic study of
w(n) see [Moser, Wyman, 1955b], [Binet, Szekeres, 1957], and [*De
Bruijn, 1961], pp. 102-8. See also Exercise 23, p. 296.) A table of w(n) is
found on p. 310.

We show now a method of computation of the w(n) without using
the S(n, k).

Tueorem B. ([Aitken, 1933]). In the sense of p. 14 we have:
w(n)=A4"o(i).

M In fact, by [6c] (p. 13) (here, x=1) for (x), and by [4c] (p. 210)

for (#) we have:

o2 3 (=17 (F) e 1)
L) (5)e0- £ ot am,

A =g =1 (," k) ()=

=0n(l=ty (1 =07 =Cp,(1 -1yt =
=0, except A(mym)=1, QED. W

where

More generally, the same method enables to prove that the polynomials

¥):=Y %~y S(n k) x* satisfy xS,(x)=4"S;(x) (@(n)=S,(1)). In
practice, the computation of the w(n) by way of this property proceeds
as in the table shown. One goes from left to right, upward under an
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angle of 45°, starting from the table obtained for w(n—1). Then, after
having arrived at the value of @ (»), it is brought down to the bottom of
the first column, and one starts again. In the table is shown the computa-
tion of w(6), starting from the table obtained by computing @ (5): 52+
+15=67, 67+20=87, etc....

@{n)
dwin)
22wln)
23win)
24w in)

4%w(n)

4%w(n)

5.5. STIRLING NUMBERS OF THE FIRST KIND s(n, k)
AND THEIR GENERATING FUNCTIONS

We have already met two definitions of the Stirling numbers of the first
kind s(n, k):
(1) The s(n, k) have for ‘double’ GF ([14p], p. 50):

[5a] ¥(u)= Y s(n,k)%u"

n k=0

=1+ Y _’1{ Y, s(n k)ut}=(1+1),

nz1 N 1<k

or for ‘vertical’ GF ([14r], p. 51):

[5b] ()= s(n, k)’t;!:ki!log"(l +1);

nzk

hence s(n, k)=0 if not 1<k <n except s(0,0)=1. ' '
(2) The infinite (lower) triangular matrix of the s(n, k) is the inverse
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of the matrix of the S(n, k), [6f] (p. 144):
[5c] Is(n, k)] =[S (n k)] ".

The s(n, k) are not all positive, their sign is given by: [s(n, k)|=
=(—1)*""s(n, k), which follows from [5a], if one replaces 1, u by —7, —u.
On p. 235 we will give the combinatorial interpretation of [s(n, k)], the
unsigned or absolute Stirling number of the first kind, which may be
denoted by s(n, k):

[5d]  s(mk):=I|s(m k)| = (= )" "s(n k).

THEOREM A. The s(n, k) have for ‘horizontal’ GF (this is often taken as
definition of the s(n, k)):

[5e] (X)a= Y s(nk)x*,

0<k<n

[5]] Ou= Y s(n k)x~,

0<k<n
where (X)g=x(x=1)(x—n+1), (x)p=x(x+1)(x+n—1), (x)o=
=<x>0=1.

B It suffices, by [12e, e’} (p. 37) to identify the coefficients of ¢"/n! in:

t P
’k —xk= 1 * = —
o PR = = 3
" s "
Snk) ¥ =(=07= 3 oy W

nk

v

0

THEOREM B. The s(n, k) have for ‘horizontal’ GF:

[5e] Y,(u)= Y smk)u"*=

= Efk_@;) (1- 214)‘..(] — (n— 1)14)
[h]  Wu(—uw)= Y s(nk)u*=

1<k<n

=(U+u)(L+2u)(L+(n—1)u).
M Replace x by u™! in [5e, f], and simplify. W

TueoreM C. Thes(n+ 1, k+ 1), for n fixed and variable k, are the elemen-
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tary symmetric functions of the first n integers. In other words, for
I=1,2,...n:

[51] s(n+1l,n+1-1)= > Pgig ... iy

1€i <iz<--<i1<n
Differently formulated, the unsigned Stirling number of the first kind
s(n, k) appears here as the sum of all products of n—k different integers

taken from [n—1]={1,2,...,n—1}. (There are < ) such products.)

n—1

k—1

For instance, s(6,2)=5(6,2)=1.2.34+123.5+1.24.5+1.34.5+
+2.3.4.5=274.

B This is clear from [5h], or if one prefers:

[si (1) (x+2)(x+n)= s(n+ 1, k+1)x*

k<n

[5k] (A+w)(1+2u)(1+nm)= Y s(n+ln+i-0Du’. W

o<i<n

(For generalizations, see [Toscano, 19397, [Storchi, 1948].)

A

5.6. RECURRENCE RELATIONS BETWEEN THE s(n, k)

THEOREM A. The Stirling numbers of the first kind s(n, k) satisfy the
‘triangular’ recurrence relation:

[6a] s(mk)=s(n—Lk—-1)—(n—-1)s(rn—1k), nk=>1;
5(n,0)=5(0,k)=0, except s(0,0)=1.

For the unsigned numbers, this can be written
[6a] s(mk)=s(n—1,k—1)+(n—-1)s(n~1k).

This is a means for a quick computation of the first values of the
s(n, k) (see table on p. 310 and Exercise 16, p. 226); particularly:

[6b] s 1) = (=1 (=11,
s(n,n—1)= —(’21), s(n,n)=1.
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M Equate the coefficients of x* in the first and last member of [6c]:
[6¢] }; s(n k) x* = (x), = {x = (n = 1)} (x),_, =
={x—-(m-1)}Ys(r—1,hx". =
h

THEOREM B. The s(n, k) satisfy the ‘vertical’ recurrence relations:

[6d] ks(mk)= Y (—1)"-'-1(”>s(z,k—1),

k-1<7<n—1 l

[6e] s+ lk+1)= Y (=1 (I+1)(I+2)(n)s(l, k)

k<l<n

A

.

B For [6d], equate the coeflicients of u*~!t"/n! in 0¥/ou= ¥ log(1+1),
[5a] (p. 212). For [6€], use in an analogous way oPfot=u(l+t)™'v. m

THEOREM C. The s(n, k) satisfy the ‘horizontal’ recurrence relations
([Lagrange, 1771]):

(6] (-5 % (- 1) (ki 1>s(n, )

[6g] s(mk)= Y s+ 1L1+1)d*",

k<I<n

M For [6f], equate the coefficients of x* in the expressions to the right
of (x) and (xx):

x(x— 1)n=les(n, D(x—1)
250D () = ) )

(%) N i .
=2s(m)XM ~n Y s(nj)x’.
J J

For [6g], equate the coefficients of u" *in ¥,_ (= {1 —(n—1)u} 'y,
[5g] (p-213). W

Figure 35 shows the diagrams of the recurrence relations established
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in the preceding section. (See p. 12. Analogous diagrams hold evidently
as well for the recurrence relations of pp. 208 and 209.)

5.7. THE VALUES OF s(n, k)

According to [1b] (p. 204) the Stirling number of the second kind
S (n, k) can be expressed as a single summation of elementary terms, that
is, which are themselves products and quotients of factorials and powers.
There does not exist an analogous formula for the numbers of the first
kind, the ‘shortest formula’ [7a, a’] below being a double summation of
elementary terms. Shortwise, we will say that S(n, k) is of rank one and
that s(n, k) is of rank two.

THEOREM A. ([Schidmilch 1852]). The “exact’ value of s(n, k) is:

ST T R CR] (A | e LGRS0

o<hSn~k

R (n—1+h\( 2n—k \(h—=jy*"
' _ - j+h \" L
(7] 0S_j<§.l;$n—k( 1 (]) (n—k+ h) <n—-k—h) h! )

B We use the Lagrange formula (p. 148). Let f(¢):=¢'—1 and its
inverse function f<~1’(t)=log(l+17). We get, by [5b] (p. 212), for
(1), [8b] (p. 148), for (II), [5h] (p. 142), for (1I1) and [2a] (p. 206), for
(IV): t -n

k! k ¢ —1
= s(n, k)2 Cpmlogh(1 + t)(-l—l-)—'; C,n-k( )

n! t

k  [2n—k\" 2k 1 [n—k e — 1\

any B

="— ""1 —_— n-k

n n( n )hgo( )n+h< h >G¢ < t )
- n—k 1 ~k\NMS(n—k+hh

(g)k <2nn k) ;.Z:o(_ l)h (n ) (n i );

n+h\ h (n—1k+ h)!
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hence [7a] fol.lows after simplifications. If we substitute the exact value
[1b] (p. 204) into [7a], we obtain [7a].

For small values of k, [7a, a’] is i
' , s s perhaps less convenient t -
sion [7b] below. e than expres

THEOREM B. We have:

n

(6] s+t k+1) =;€;Yk(cn(1),- 114,(2), 21 4, (3),...),

where Y, stands for the Bell polynomial (complete exponential, [3b, ¢}
(p. 134), tabulated on p. 307) and ¢, ():=2"1-1j"% ,

M In fact, by [5§] (p. 214) for (x):
;5(11 +Lk+1)x*Enr(1 + x)(l + g)(l + f)
n

=nlexp{), log(l +xj~*)}
i=1

=n! exp{zn: Z (- 1)’_1 xss-—lj~s}

Jj=1s21

= n!exp {S; (=171 xS ()},

and then we apply definition [3c] (p. 307) of the Y,. W
(There is an analogous formula for each elementary symmetric function

Exercise 9, (4) p. 158. See also Exercises 16, p. 226, and 9, p. 293.)
Thus:

1
S(ll+1,2)=n!(1 +k+...+1 =nl'H
2 n ne
where H, denotes the harmonic number.

!
s(n+1, 3)=2— {Hf, —(1 +2—15+---+i2>}
n

nt( 1 1
s(n+1,4)=--1<H; —3H,,(1 Fos b )+
6 2 n?

1 1
+2(1+:—Z§ +eee ’?)}
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5.8. CONGRUENCE PROBLEMS

It is interesting to know in advance or to .discover some congruences
in any table of a sequence of combinatorigl integers. Thns is a rapid way
of checking computations, and an attractive connection bc?tween Com-
binatorial Analysis and Number Theory. We show two typical examples

in this matter.
Let two polynomials be given:

fx)=Yax*, gkx)= ; bx*
k .

with integer coefficients, a,, b,€Z. We often write, when a,=b, (modm)
for all k:

[8a] f(x)=g(x) (modm)
and we say ‘f congruent g modulom’.
THEOREM A. (Lagrange). For each prime p, we have in the sense of [8a]:

[8b] (x),:=x(x=1)(x—p+1)=x"—x (mod p).
In other words, the Stirling numbers of the first kind satisfy:

[8c] s(p,k)=0 (modp),
except s(p, p)=1, and (Wilson theorem)

[8d] s(p1)=(p—-1)!=-1 (modp).
B For p fixed, we argue by induction, on k decreasing from p—1. By [6b]
(p. 214),for (+), and Theorem C(p. 15) for (#x),[8c] is true when k=p—1:

s(p,p—1)= __(g)(*;)o (modp). Now, by [6f] (p. 215):

- 1
B9 G-Rseh= 3 07 (L ).

+i<i<p

Assume that [8c] is true, thus, s(p,/)=0 (modp)( for B3<) k+1<
<J<p—1. Then, [8¢] implies, by Theorem C (p. 14) for (*):

~ks(p, k)= (—-1)"" (k P 1) s(p, p)20 (modp),

from which [8c] follows, since 2<k<p—2.
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For [8d], [6f] (p. 215) gives in the case that k=1, by [8c]: (p—1)x
x s(p, 1)=1 (modp); hence, since s(p, 1)=(—1)>""(p—1)!, [6b]:

I=(p-1)(p-Di=pl=(p-1)=—(p-1)!
(modp) M

(For generalizations see [Bell, 1937], [Touchard, 1956], [Carlitz,
1965a, b].)

CONSEQUENCE (Fermat theorem). For all integers az0, and each prime
number p,

[8f] a”=a (modp).

Put x=q in [8b], then (a),=0 (modp), because, among p consecutive
integers, at least one is a multiple of p.

THEOREM B. For each prime number p, the Stirling nunibers of the second
kind satisfy:

[8g] S(p,k)=0 (modp), except S(p,1)=S(p,p)=1.

B Infact, by [1b] (p. 205), for (x), [8f] for (*+), and Example 2 (p. 153),
for (+xx), we have for k>2:
(k%)

k'S (p, k)(i’lz (- 1)"“(?) "= ;(— 1)"*‘({,‘) i "2,

Thus p divides k!S(p, k), hence S(p, k) ,when k<p—1, because then p
is relatively prime with respect to k!

Note. One can prove this also by induction, using [3f], p. 209, as in the
proof of Theorem A.

SUPPLEMENT AND EXERCISES

L. Banners and chromatic polynomials. (1) Show that the number d (n, k)
of banners with n vertical bands and k colours, two adjacent bands of
different colour, equals k!S(n—1, k~1). (2) Moreover, for every free
7 over N, |[N{=n, d(n, k) is also the number of colourings of the n nodes
with & colours such that two adjacent nodes have a different colour.
(Compare with Exercise I, p. 198.) (3) More generally, considering a
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graph ¢ with n nodes and introducing the number d(¥, k) of colourings
of these nodes with k colours, having the preceding property, show that
the chromatic polynomial (of p. 179) satisfies: Py(A)=D k- d(¥, k) x

X (2) *(4) What is the number of checkerboards of dimensions (m x 1)

with k colours? (Two squares with a side in common must be coloured
differently.)

2. Lie derivative and operational calculus. Let (1) be a formal series. We
define the operator AD (Lie derivative) by (AD) f:=ADf=4f’, where D
is the usual derivation (p. 41). Similarly, (DA)f:=Df )=+
(1) (tD)*=Y%., S(n, 1) #'D' and (Dt)"=Y]-o S(n+1,1+1)1'D". (2)
(eth)n=enbt Z;l=l 5(", I) bn—‘D'. (3) (ta+1D)"=t"a Z;'=1 Pn,l(a) tlDl’
where S5 P, t"nt=(1/I1) {(1—at)7"/*—1)}.(4) Find an explicit for-
mula for (AD)" and (DA)" ([Comtet, 1973]). (5) The following result of
Pourchet shows that this problem is closely connected with the Faa
di Bruno formula:
ay da’ dx
(A (%) (—i;) f(x)= e f(x(w)), where In =Mx), x=x(w).

Apply this method to prove: (xlogx.D)"=)s<i<nsS(n 1) S k)
(logx)'x*D*.

3. The lattice of the partitions of a set. Let be given two partitions &, 7
of a set N. Then we say that & is finer than J or that & is a sub-
partition of 7, denoted by S <7, if and only if each block of & is
contained in a block of . Show that this order relation on the set of
partitions of N makes it into a lattice (Definition D, p. 59).

4. Bernoulli and Stirling numbers and sums of powers. We write the GF
of the Bernoulli numbers B, [14a] (p. 48), in the form:

" t log{l + (¢! — 1)}
) yaio Lo lelirEenl)

nso n!

Show that B,=Y7.o (—1)*k!S(n, k)/(k-+1). Use this to obtain the
value of B,, expressed as a double sum. Show also, by substituting
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ur=e'—1 into [#], that Y, s(n, k) By=(—1)"n!/(n+1). Verify the
RS . .

formula B,=Y;(~1)! <j+1) Z(j, m)/(j+1), where Z(j, n)=1"+2"+

4:~-+j" ([Bergmann, 1967] and p. 155. See also [Gould, 1972] which

gives other explicit formulas for the Bernoullj numbers). Show that

2 =34 =15+ 1.9) (1),

S. A transformation of formal series. For each integer k> 1, let T, « be the
transformation of formal series defined by: J=Yns0at"—T, f=
=Ynzon'a,t". (1) Show that T,f=Y%_, S(k, h) "D'f (D is the
differentiation operator, p. 41). (2) Deduce from this the value of
Y nz0 1*t" in the form of a rational fraction, and also that of Do nkem.
(3) Furthermore, with the Eulerian numbers A4 (k, k) (pp. 51 and 242)
we have @, (¢):=(1~e)*" 1% o n*e"=Yk_| A(k, h) t*. [Hint: Apply
[14v] (p. 51) to Yuso Pu(t) u*/k1] (4) Express Y ason*t"n! in the
form of a product of e with a polynomial. (5) Solve analogous problems
for ) nson*Cad,t"n! (and Y4_,), where o is a complex number. (6)
Study the transformation T, ., with ¢ a given integer >0, such that
77k, [4 f: =Zn?0 (n+c)"a,,t".

6. The Taylor-Newton formula. For each polynomial P(x) we have
(4 is the difference operator defined on p. 13):
(x —a)
P — k — X
(x) k;) T 4P (a) = (I + 4)* P(0).
More generally, let be given a sequence og, oy, ,,... of different complex
.numbers, S a formal series (with complex coefficients) and 7, x two
mdet’ermmates. We put (x),=(x—ao) (x—a;)+(x—0,_) and (a;),=
=[Ti=0,j#x (ax—2;) for k<I. Prove then the multiplication formula:
" f{ta;

Fg= T @, 3 LD,

nz0 i=0 (06,-),.

Use this to recover the formulas of Exercise 29 (p. 167).

7. Associated Stirling numbers of the second kind. For r integer >1, let
S, (n, k) be the number of partitions of the set N, |N|=n, into k blocks,
all of cardinality >r. We call this number the r-associated Stirling number




222 ADVANCED COMBINATORICS

of the second kind. In particular, S, (n, k)=S(n, k). Then we have the

GF:
tn tr tr+1
k__= J— vee
"'éo S, (n,k)u = exp{u (r!+(r+ 1)!+ )},

and the ‘triangular’ recurrence relations:

S,(n+1,k)=kS,.(n, k)+(rj 1) S,(n—=r+1,k~1).

Moreover, S,(n, k)=0 (mod1.3.5...(2k—1)) and, for I>1, (—1)!
=Y t=1(—1)"S; (I+m, m). The first values of S, (n, k) are: ’
Y "l

'\X(Nﬂ‘ll"f‘»@ Ao < ;&‘j\m r_ADdonss
11

o

k\n|2 3 4 5 6 7 8 9 10 12
1 {1 1 1 1 1 1 1 1 1 1 1
2 3 10 25 56 119 246 501 1012 2035
3 15 105 490 1918 6825 22935 74316
4 105 1260 9450 56980 302995
5 945 17325 190575
6 10395

n\k 13 14 15 16 17 18
1 1 1 1 1 1 1
2 4082 8177 16368 32751 65518 131053
3 235092 731731 2252341 6879678 20900922 63259533
4 | 1487200 6914908 30950020 134779645 575156036 2417578670
S | 1636635 12122110 81431350 510880370 3049616570 17539336815
6 | 270270 4099095 47507460 466876410 4104160060 33309926650
7 135135 4729725 94594500 1422280860 17892864990
8 2027025 91891800 2343240900
9 34459425

Let P,(t)=Y 2o t*/k!. Use the S,(n, k) to expand (P,(¢))", P,(t). P, (u)
and log(P,(1)).

8. Distributions of balls in boxes. The number of distributions of » balls
into k boxes equals: (1) k" if all balls and all boxes are different;

k—1Y\.
k!S(n, k) if no box is allowed to be empty. (2) (n +n ) if the balls are
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indistinguishable, and all the boxes different; Z_:
box is allowed to be empty (Theorem C., p. 15). (3) Suppose the
boxes are all different, and the balls of equal size, but painted in different
colours. Balls of the same colour are supposed to be not distinguishable.
In this way we define a partition of the set N of balls. If there are in this

partition ¢; i-blocks, i=1, 2, 3,..., then the number of distributions is
KNUYk+ I\ k+2
equal to (l) < ; > ( ; )“..., ¢y +2c;,++=n [use (2)]. (4) What

do we get for all the preceding answers when the boxes and balls are
put in rows? (For all these problems, see especially [*MacMahon,
1915-16]. Good information is also found in [*Riordan, 1958], pp.
90-106.)

if, moreover, no

9. Return to the Bell polynomials. Application to rational fractions. The
exponential partial Bell polynomials B, , are a generalization of the
Stirling numbers, because B, 4(1,1,...)=8(n, k), [3g] (p. 135). (1) Let
dy, d,,... be integers >0. Show that B, ,(a,,q,...) equals the number
of partitions of N, |[N|=n, into k blocks, the i-blocks being painted with
colours taken from a stock 4;, given in advance, and with @; colours in
the stock A4,, i=1,2,3,.... (It is not compulsory to use all colours of
each stock!) (2) We denote the value of the n-th derivative in the point
x=a of F(x) [or G(x)] by f, [or g,]; fo, 90=F(a), G(a). Suppose that
x=a is a multiple root of order k of G(x)=0, and that F(x)/G(x) has
the singular part Z',‘,=1 7,(x—a)””?. Show that the coefficients ¥, equal:

Z (“ 1)jj!k!fk—p—tB <9k+1 Ir+2 )

osjdice-p 11k = p = D1gl™ THI\(T) (57)

(For k=1 we recover y= fo/g, =F(a)/G’(a), that is the residue of F/G
when x=a is a simple pole.) (3) Now take F and G to be polynomials,
G=[]i-1(x—a;)*, with all different a,. Express the Yp,: by an ‘exact’
Jormula of rank <n-2.

10. The Schroder problem. ([Schroder, 1870]. See also [Carlitz, Riordan,
1955], [Comtet, 1970], [Knddel, 1951]). Let N be a finite set, |N|=n, and
let us use the name ‘Schroder system’ for any system (of blocks of N)
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& =P’ (N) such that: (o) Every 1-block of N belongs to it: B, (N)= S
(B) N does not belong to it: N¢#. (y) B, B'e¥=BcB or B'=B or
Bn B =0. We denote the family of all Schroder systems of N by
s(N), and the problem is now to compute its cardinal s,:=|s(N)I. (1)
Let the number k; of maximal i-blocks be fixed, ie[n—1]. (Maximal
block is a block contained in no other.) Then we have:

[a] ki+2k,++(n—1)k,_y=n,
and the number of the corresponding S es(N) equals: nlskt sk
()@Y (k)T (ky!) 5 sy i =1 (2) Observe that the condition
[a] is equivalent to the two conditions k, +2k,+--- +nk,=n, k;+k,+
+ .-+ +k,>2. Show that the GF y:=),5, s, "/n! satisfies:

[aa] e¢—2y—14+1t=0,

(3) We have s, =Y 425 S, (n+k, k+1), codiagonal sums of the associated
Stirling numbers of Exercise 7(p. 221). So, s4=1410+15=26. Hence
the table of values: \)\(040

£\

n |1 2 3 4 5 6 7 8 9 10
& |11 4 26 236 2752 39208 660032 12818912 282137824

(4) s,=1 (modp), for p prime. (5) 5,= s, 27" *S(n+k—1, k) (style
Dobinski). (6) Explicitly,

. = 5 (= 1)+ <n+l—-1)(k_j)"+,(_1
"_1$j+1$lg$l,<n—1 k! j/\n+k-1

(7) Asymptotically,

1 JA (n—1) d
Sy N~ _(n ) 1+ Y Sp, n-owo,
2 nn A" iz1 n

where A=21log2—1=0.386294... and d, are polynomials in A: d,=
=(9—A4)/24, d,=(225—-904 + 47)/192, ....
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11. Congruences of the (Bell) number of partition w(n). Let p be a prime
number. Modulo p, we have w(p)=2, w(p+1)=3 and, more generally,
w(p'+h)=vo(h)+o(h+1). Modulo p* we have w(2p)—2w(p+1)—
—2w(p)+p+5=0 ([Touchard, 1956]).

12. Generalization of 2(Z>2=(2:) Let P, (z)=)i-0k" (Z)Zz""‘,

where r is integer >0. Use Exercise 5 (1) (p. 221) to show that

P, (2)= ‘q[: S(r, q) (n), Cem-a (1 4 2t)" (1 4 1)1,

Thus,
A, r)i=P, ()=Y2_o k" Z 2=Y,8(r, q) (n)q<2”"‘1).

n
Particularly, A4(n, 0)= (2:), A(n, 1)=(2n—-1) (212 :?), A, 2)=

=n? (22:3 An, 3)=n (";" ‘) (2::3 Similarly,
PYCN (k) = e, SIS G@ D) ( - ‘1) (‘j)

13. A ‘universal’ generating function. The following solves, for partitions
of a set, a problem analogous to the problem for partitions of integers,
which is solved by Theorem B (p. 98). Let U be an infinite matrix
consisting of Oand 1, A=[o; ;],i>1,/20,a; ;=0o0r 1. Let s(n| k, A) be
the number of partitions of a set N into k blocks such that the number of
blocks of size (=cardinal number) i equals to one of the integers j>0
for which «; ;=1. Then we have the ‘universal’ GF:

" o ;[ YV
s(n|k, Ayu* = Sty ).
n,kZZO (n] ) n! 531{1';0 j! i

In particular we obtain the following table of GF, where * means no
condition’ (#=1 provides the ‘total’ GF):
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Number Size of ‘Total’ GF

of blocks each block of blocks’ '
* * exp(u(et — 1)) exp(et — 1)

* odd exp(u shr) exp(sht)

* even exp(u(chz —1)) exp(cht—1)
odd * sh(u(et — 1)) sh(et — 1)
even * ch(u(et —1)) ch(et — 1)

odd odd sh(u sht) sh(sht)

odd even sh(u(chr—1)) sh(cht—1)
even odd ch(usht) ch(sht)

even even ch(u(cht—1)) ch(cht—1)

14. ‘Stackings’ of x. Let f,(x) be the sequence of functions defined by
fi=x, fr=x% ..., fi=x"""1, 1>2. Determine and study the coefficients of
the expansion f,(x)=Y.,, 40 @ (P, ) x” log?x. (See also p. 139.)

*15. The number of ‘connected’ n-relations. Let p and g be two integers
>1. A relation &/ <[p]x[q] is called ‘comnected’ if pr, s/ =[p],
&/ =[q] (p. 59), and if any two points of &/ can be connected by a
polygonal path with unit sides in horizontal or vertical direction, all
whose vertices are in . We say also that & is (p x g)-animal. Thus, in
Figure 36, (I) is an animal, but (II) is not. Compute or estimate the

(1) (1)

Fig. 36.

number A4 (n; p, q) of the A such that |4|=n, also called ‘n-ominos’ (This
term is taken from [*Golomb, 1966]. For an approach to this problem,
see [Kreweras, 1969] and [Read, 1962a]). Analogous question for
dimension d>3, A< [py] % [p2]% - x [p4]-

16. Values of S(n,n—a) and s(n,n—a). (1) We have
2a
S(n,n—a)= ; > (n) S2(j,j—a),

=a+1\/J

S, as defined in Exercise 7 (p. 221). Thus, S(n, n)=1,
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S, n— 1)=(”), S(m, n—2)=<”)+3 (") = (”) (3n—5),
stn-r-{210(2)15(2) -1 (2) 2056y s

have s(n,n—a)=Y 12,4+, '; 55 (j, j—a), where the s, are defined by

Y on k82 (n, k) t"u¥[nl=e""(1+1)" (Exercise 7, p. 256; Exercise 20, p. 295).
Thus, s(n,n)=1, s(n,n—1)= ~<;), s(n,n—2)=2 (;) +3 (Z) =%x

(’;) Gn—1), s(n,n—3)=—6 (Z)—zo <Z)—15 (Z): ~%<Z)x

x(n—1)n, s(n,n—4)=75 ’57 (152 —30n*+5n+2). (Other ‘exact’
formulas in [Mitrinovi¢, 1960, 1961, 1962], See also Exercise 9, p. 293.)

17. Stirling numbers and Vandermonde determinants. The value of the
unsigned number of the first kind s (n+1, k) is the quotient of the
n-th order determinant obtained by omitting the k-th column of the
matrix

t 11 1

1 2 2° 2"
1 3 3 3",
1 n n? n

by 112!...(n—1)!. The number of the second kind S(m, k) can be
expressed using a determinant of order k:

t 11 .1 1 1
1 2 2% .. 23 e ogpn
k!S(mk)=t 3 3 .. 33 372 3%,

18. Generalized Bernoulli numbers. These are the numbers B{” defined
for every complex number 7:

t \ t"
=Y B —.
(et - 1) "Z:o " n’.
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Evidently B{" = B,, [14a] (p. 48). Show (with[5h] p. 142) that B =3"_,

(- 1)’(’;11) B{™. Moreover, for all pairs of integers (n, p) such
-1

pn I s(p,p—n). Besides, B"=

that 0<n<p—1 we have B =

Py (3, 4,...), by [5d] (p. 141); B =1, BY= —r[2, BY =15 r(3r—1),
By’=—}%r?(r—1),.... Finally, determine an ‘exact’ formula of mini-
mal rank for B (p. 216).

19. Diagonal differences. Show that A*/S(k, k+j)=A4%s(k, k+j)=
—1.3.5.....(25j=1).

20. The number of ‘Fubini formulas’. Let a,, be the number of possible
ways to write the Fubini formula ([111] p. 34) for a summation of
integration of order m. Evidently, a,=1, a,=3, a;=13, because

Zcx s €2, €3 =Z¢1 (262. ca)=2c2 (Zcx, c;) =Zc3 (Zc:, cz) =Zcz. 3 (ch ) =
=Zc1, c3 (Zc'z) =ZC1 . C2 (an) =Zc1 (Zcz (ch)) =Zc1 (Zc; (Zcz))=
=Zcz (Z‘-‘l (ZCJ))=Z¢2 (an (201)) Zch (Zcx (Zt’z)) ::an (ZCz (Zcx ))

Show that @,,=) s—; k!S(m, k) and that ) ,.> o a,t™/m!= (2~e‘)‘1.(7\\0\\

m |1 2 3 4 5 6 7 8 9 10
am |1 3 13 75 541 4683 47293 545835 7087261 102247563

Moreover, a,=), A(n, k) 2*7*, as a function of the Eulerian numbers
of p. 51 or 242, and a,,= [|m!(In2)"™~*27*|| (notation [6f], p. 110).

21. A beautiful determinant. Let s be the unsigned Stirling numbers of the
first kind (p. 213). Then,

s(n+1,1) s(n+1,2)...s(n+1,k)
s(n+2,1) s(n+2,2)...6(n+2,k) = (n!)".

s(n+k,1) s(n+2,k)...s(n+kk)

*22. Inversion of y*¢® and y log?y in a neighbourhood of infinity ([ Comtet,
1970]). The equations y%e’=x and ylogfy=x, where o and f are
constants 20, have solutions y=¢&,(x) and y=¥,(x) that tend to
infinity for x tending to infinity. Then, with L, :=logx and L,:=log logx,
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we have:
nt+1 m
_ n L
(Da(x)=L,~aL2+Z{( an) Y, s(non—m+1)24,
A1 Ly w=1 m!
(- /3 (= L)
q]ﬂ(x)—" {1 + Z Z ,2 Qn,rn(ﬂ) ’
L n>1 m=1 m!
1—m+k—1

the polynomial @, ,,(B) being Y 7, (’ > s(n, n—m+k) B~

n—m
*23. Congruences of the Stirling numbers. Let p be prime. We denote ‘a
divides & by a | b. (1) p* | s(p, 2h) for 2<2h<p—3 and p>5 (Nielsen).
Particularly, the numerator of the harmonic number H,_ ,=1+1+

+ 44+ (1/(p—1)) is divisible by p*. (2) p| S(p+1, k) for 3<k<p
and p | (S(p+1,2)—1).

24. An asymptotic expansion for the sum of factorials. 1f n— oo, we have:

t 1 2 5
Zk'~1+2»—~ -1+ e T i T s
n n n n

n!i=o kz0 ¥

25. The number of topologies on a set of n elements. This number ¢,
equals Y, S(n, k) d,, the d, being the number of order relations defined
on p. 60 ([Comtet, 1966]).

2 3 4 5 6 7 8 9
th |1 4 29 355 6942 209527 9535341 642779354 63260289423

1o .-
Zp\/ww\‘

s T e




CHAPTER VI

PERMUTATIONS

6.1. THE SYMMETRIC GROUP

We recall that a permutation ¢ of a finite set N, |[N|=n, is a bijection of N
onto itself.

Actually, as N is finite, we could as well have said ‘surjection’ or ‘in-
jection’ instead of ‘bijection’.

A permutation o can be represented by writing the elements of the set
N on a top row, and then underneath each element its image under the
mapping o. Thus (‘:ijzg ‘;’,
¢, dye f,g9}, o(@)=c, a(b)=a, o(c)=e, a(d)=d, o(e)=b, a(f)=g,
o(g)=/. .

Another way of representing o consists of associating with it a digraph
2 (p. 67), where it is understood that an arc Xy is drawn if and only if
y=a(x), y#x. Figure 37 corresponds in this way with the above per-
mutation.

represents a €& (N), where N:={aq, b,

9 ~
p .
e
a d ~
f fol .
b
c b 9 a
g
p4 abcdefyg
Fig. 37. Fig. 38.

One can also represent ¢ by a relational lattice, as on p. 58. Then
Figure 38 corresponds with the permutation of Figure 37. Clearly a
binary relation on N is associated with a permutation in this way if and
only if all its horizontal and vertical sections have one element.

Finally, ¢ can be represented by a square matrix, say B=[b,, ;], defined
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by b; ;=1 if j=0(i), and b, ;=0 otherwise. Such a matrix is called a
permutation matrix.

We denote the group of permutations of N (with composition of maps
as operation) by & (N). This group is also called the symmetric group of
N. The unit element of this group is the identity permutation, denoted
by e:VxeN, e(x)=x. Evidently, |S(N)|=n! (p. 7).

We recall some notions about permutations ceG(N).

The orbit of x(eN) for a permutation o is the subset of N consisting
of the points x, a(x), 6%(x), ..., ¥ 7! (x), where k, the length of the orbit,
is the smallest integer >1 such that o*(x)=x. If k=1, o(x)=ux, then x
is a fixed point of & (See p. 180).

Let x,, x,,..., X, be k different points of N, 1<k<n. The ¢pcle y=
=(xy, X3, ..., Xy) is the following permutation: y (x,)=x,, y(x,)=x,,...,
Y (Xk-1)=X4, 7(x,)=x; and y(x)=xif x5 x,. We say that y has length k
(also denoted by |y]) and has the set (xy, x,,..., x,) for domain (or orbit).
Evidently, there are (11),/k cycles of length k because each cycle (x,, x,, ...,
x,) is given by any one of the following k-arrangements: (x,, X, ..., X;)
(X2, X350y X X1), (Xg X4y .-, X4 1), and only by these.

A circular permutation is a cycle of length n (=[N|). So there are
(n)s/n=(n—1)! such permutations. A transposition t is a cycle of length
2: in other words, there exist two points @ and b, a#b, such that t(a)=b,

’

t(h)=a. There are exactly g transpositions of N.

We recall that each permutation can be written as a product of cycles,
with disjoint domains, this decomposition being unique up to order. For
example, the permutation of p. 230 can be written as (a, ¢, e,b) ( f, g) (d)=
=(a, ¢, e, b) (f, g) (the cycles of length 1 are often omitted). Similarly,
£=(x,) (x;)-++ (x,). Currently, the cycles in the sense of graphs (p. 62) and
cycles in the sense of permutations will be identified, as in Figure 37. Eacht
cycle is product of transpositions; in fact, (x;)=(x,, x,) (x, x,) and
(%15 X250y X)) = (1, X;) (%4, Xg—1)--+(x1, X;) for k>2. Hence, this holds
for each permutation, because they are products of cycles.

It follows that the set T=T(N) of transpositions of N, |T| =<;>, gen-

erates the group S (N). In fact, S (N ) can be generated by a much smaller
set of transpositions. To make this more precise, let us associate with
every set of transpositions U< the graph g(U) defined as follows:
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{x,y} is an edge of g(U) if and only if the transposition (x, y)ell.

THEOREM. A set N (c=X) of (n—1) transpositions of N generates S(N)
- if and only if g (W) is a tree (Definition B, p. 62).

_ W If g (U)is a tree over N, then for all a, be N, a#b there exists a unique
~ path x,(=a), X3,..., x;(=b) such that {x; x;4,} is an edge of g();
" hence the transposition (x;, x;+1)€l, ie[k—1]. Now it is easily verified
that the transposition (a, b) can be factored as follows in the group
S(N):

(a, b) = (%1, xi) = (Xp—1, %) (Xk-25 X—g) o (X1, X2) %

X (%25 X3)* (Xe-25 Xp—1) (K- Xy).

Thus, as each (g, b)eX is generated by U, S(N) is too (cf. p. 231).

Now we suppose conversely that U generates S(N), but that g (1) is
not a tree. Because g (1) has (n—1) edges, there exist @ and b not con-
nected by a path (Theorem C, p. 63); this implies that the transposition
(a, b) is not equal to any product of transpositions belonging to U, etc. I
(For other properties related to representing a set of permutations by a
graph, see [Dénes, 1959], [Eden, Schiitzenberger, 1962], [Eden, 1967],
and [*Berge, 1968], pp. 117-23.)

For two decompositions into a product of transpositions of a given
permutation, 6=¢; @, ... 9,=Y; Y ... {/,, the numbers s and ¢ have the
same parity. This can be quickly seen by observing first that the product
7o of the transposition 7= (a, b) and a permutation ¢ with k cycles isa
permutation with k+1 cycles if @ and b are in the same orbit, and with
k—1 cycles if a and b are in different orbits of o. Hence it follows that
@4 @3... 0, and Y, ¥, ... ¥, have a number of cycles equal to 1+ 1+1+
441, (s—1)times +1,and 1 £ 1414+ 1, (1—1) times £ 1, respect-
ively. The equality of these two numbers implies the above-mentioned
property. (This is the proof by [Cauchy, 1815]. See also [*Serret, 1866],
IL, p. 248.)

A permutation is called even (respectively odd) if it can be decomposed
into an even (respectively odd) numbers of transpositions. Suppose o=
=7;72-.+ 75 & product of k cycles. The parity of g is equivalent to the
parity of the integer n—k (=Y.(|y;l—1)) because of the decomposition
of each cycle of length [ into /—1 transpositions (see above). Thus, a
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permutation is even (respectively odd) if it has an even (respectively odd)
number of cycles of even length.

The sign x (o) of a permutation o is defined by x(¢)= +1 (—I respect-
ively) if o is even (respectively odd). From the decomposition into trans-
positions it follows immediately that for each two permutations ¢ and ¢':

x(00") = z(0) x(o")-
The alternating subgroup of & (V) consists of the even permutations of N.
The order of a permutation o is the smallest integer k=1 such that

o*=¢. This is clearly the LCM of the system of integers consisting of
lengths of the cycles occurring in the decomposition of ¢.

6.2. COUNTING PROBLEMS RELATED TO DECOMPOSITION
IN CYCLES; RETURN TO STIRLING NUMBERS OF
THE FIRST KIND

DEFINITION. Let ¢y, C,, ..., C, be integers =0 such that:
[2a] ¢y +2¢c, 4+ ne,=n.

A permutation 6 S(N), |[N|=n is said to be of type [c]=[cy, €3,... ¢4]
if its decomposition into disjoint cycles contains exactly c; cycles of length
i,i=1,2,3,..., n. In other words, the partition of N given by the orbits of
g is of type ¢y, ¢;,...]| (Definition B, p. 205).

THEOREM A. A permutation ceS(N) of type [c] is even (or odd) if and
only if ¢c;+c4+cg+ -+ is even (or odd).

M We have already seen this on p. 231. W

THEOREM B. The number of permutations of type [c]={c,, ¢,...] equals:

- n!
2b N0, Cpy.nn) = — 0l=i%=1
[20] plnics caenr) cilet. gt 192 o™ (01 )

M Giving such a permutation of type [c] is equivalent to giving first a
division of N into the ¢; orbits of length i of the permutation, with i=1,
2, 3,...; then to erasing for all i the order on the set of ¢; orbits of length i,
and finally to equipping each orbit with a cyclic permutation of its own.
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Thus: ! |

P(mep e00n) = AN (272 eyl eyl

x {2 = 1) {(3 - D=,

which gives [2b] after cancellations. W

THEOREM C. Let p(n, k; ¢y, C3,...) be the number of permutations of N,
|N|=n, of type [c,, c,,...], whose total number of orbits (=number of
cycles in the decomposition) equals k, ¢, +c,+--=k. Then we have the
following GF in an infinite number of variables t, u, x, X, ...

[2¢c] O =D(t,u; Xyy Xgy.00) 1=

t

. k €1,.C2

= Z p(n’k’ Cl! CZ’-~-)u 'XIIX2 vee
nk,cq,02,...20 n.

12 13
= exp{u (xlt + X, ) + X, 3 +>}

M In fact, p(n, k; ¢, ¢35...)=p(n; €1y €35.-)  f c,+cz-k---=k and
€1+2¢5++++=n; if not, p(n, k; ¢y, ¢,,...)=0. Hence, by [2b]:
n‘ tcl+2cz+~--

c1teateee c1..C2
P = (ol 195 u BRI x{'x5%...
€1y €2y 40 20 cl-CZ.... oo .

1 o 1 {2 2
cx,cz,z...zo C_;_! (tuxl) : ;2—1 (5 uxz)
N o ti
]._I Z (_g_t_/l)-———’:xi)—— = H €Xp (—.' ux,) = QED. n
C‘. )

iz1 20 izl 1

il

THEOREM D. The number of permutations of N with k orbits (whose decom-
position has k cycles) equals the unsigned Stirling number of the first kind
s(n, k).

B The required number, say a(n, k), equals the sum of the p(n, k; ¢;,
¢3,...), taken over all systems of integersc, c,, ... suchthat¢; + ¢, + - =k
and ¢, +2c, +---=n. Hence, by [2c]:

t
Y a(nk)—ut=0(tu;1,1,1,...)
n

n k20
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o9
= exp{u (t + 5 + 3 +>}
=exp{—ulog(l —t)} =1 -1)"".
Hence a(n, k)=5(n, k) by [5a,d] (p. 212). W

6.3. MULTIPERMUTATIONS

We show now an immediate generalization of the concept of permutation,
suggested by the matrix notation of p. 230. For each integer k>0, a
relation N will be called a k-permutation (of [#]) when all vertical sec-
tions and all horizontal sections all have k elements. Let P(n, k) be the
number of these relations. Evidently, P(n, k)=0 if k>n, and otherwise
P(n, k)=P(n,n—k). We have P(n,0)=P(n,n)=1 and we recover the
ordinary permutations for k=1: P(n, 1)=P(n, n—1)=n!

THEOREM A, Let ky, kqy ..., kyand 1, 1,,..., 1, be 2n integers, all =0. The
number of relations R such that the i-th vertical section has k; elements,
and the j-th horizontal section has 1; elements, is given by the following
coefficient:

[3a] Py ki DBy oI = Cu';l weeulinplt L vln il_[[] (1 +uw;).
Eggn

Jjeln]

M It suffices to expand the product in [3a], and to observe that the coeffi-
cient under consideration is the number of solutions with x; ;=0 or 1
of the system of 2n equations:

n n
Z xi’j=ki, ie[n], 2 xi,j=lj’ je[n],
j=1 i=1
in other words, the number of relations we want to find. W
We now investigate the number P (n, 2) of bipermutations, short nota-
tion P,.

THEOREM B. We have:

[36] P,— 41 2—:0 (= 1 (21 — 20)! a! (Z)z 2,
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t e
B FO=F P =

[3d] P,= (;’) (2P,-1 + (n— 1) P,_3).

B By [3&],1)": sz... un’vx’---vnzn(l +uivj)= Guxz..."nz(zi<.i uiuf)n = (%)n X
X C’u}...un2 {(ul +ee +un)2 - (uf +oe +uﬁ)}" = (%)" Cul2 --un? Z:=0 (— 1)1 x

x(:) (24 ul P g+ )20 =(1) Yoo (1) (Z) (1)q %
(2n—24)!/2""*=QED. The GF [3c] follows then from the explicit for-
mula [3b]. As for the recurrence relation [3d], this follows from the
differential equation 2(1—1¢) f'=1f. M

By Theorem A, one can deduce for P(n, k) more and more complicated
formulas. For instance,

P(n3)= T (= 1) Gy + ap)! X

36” qy+az+az=n
x oyt oyt (ay, oy, 0as)® 1872 127,
from which one may deduce a linear recurrence relation for P(n, 3) with
coeflicients that are polynomials in n. There is little known about P (n, k)
except the asymptotic result P(n, k)~ (kn)!(k!)~2" e~ *~D*2 for fixed
k and n— oo ([Everett, Stein, 1971]). The first values of P(n, k) are:

A\ J

n\k|O 1 2 J\(\ 3 5 6 7

0 |1 N %” N /\}9/ |

1|1 1 0 PN |

2 |1 2 1 [ARN i

3 |1 6 6 N !

4 |1 24 90 24 1 1

5 41 120 2040 2040 120 1 ;

6 |1 720 67950 297200 67950 720 1 P

7 |1 5040 3110940 6893800 68938800 3110940 5040 &W ’7
\(@L (g orb

/:\t‘ {

6.4. INVERSIONS OF A PERMUTATION OF [n] Ax |

In Sections 6.4 and 6.5 we study the permutations of a fotally ordered set
N, which will be identified with [n]:= {1, 2, ..., n}. We make the following
abbreviations:

[4a]  &[n]:=6([n]),  Beln]:=Bu([n]).
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It is often convenient to represent a permutation e [n] by a polygon
whose sides are segments 4;, 4;,,, ie[n—1] such that 4, has i for ‘ab-
scissa’ and o (7) for ‘ordinate’. The heavy line in Figure 39 represents the
polygon of 6e & [7], defined by the cycle (1, 3, 5,2), in the sense of p. 231;
hence, the points 4, 6, 7 are fixed points.

—
4

. N W A o N
—

/
T

1.2 3 456 6 7
Fig. 39.

DEFINITION. An inversion of a permutation 6€S [n] is a pair (i, j) such
that 1 <i<j<n and o (i)> o (j). In this case we say that ¢ has an inversion
in (i, j).
Hence, in the associated polygon, an inversion ‘is’ a segment 4;4;,
1 <i<j<n, with negative slope. The permutation which is represented
in Figure 39 induces 5 inversions, whose corresponding segments are
indicated by thin lines.

Let I, be the number of inversions of 6€@[n]. Clearly, 0<I,<(;),

with I,=0<Vie[n], o(i)=iand I,=(;)¢>Vie[n], o(i)=n—i+1.
TheOREM A. The sign y () (see p. 233) of a permutation a€G [n] equals
(=)=

W We abbreviate g(a):=(—1)™ and [n],:=B, [n]. Then:

a (i) —a(j)

{i, jyelnl2 i—j

()=

Hence, for « and fe@[n], we obtain by change of variable i":=fi (i),
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J'i=B(j)in (»):

W@ st 1 DO
o wB@)-(60) B0 - BO)
wietsa B —B() i—j
@ [ 0= B() = 1)
w.yemn P =i wpemn i—J
=q(a).q(B).

Moreover, the number of inversions I, of a transposition 7:=(a, b),
which interchanges a and b, 1 <a<b <n, can be read off from the polygon
of 7, and it equals 2(b—a)—1, hence g(t)=—1. Thus, if we write an
arbitrary 6eG [n] as a product of transpositions, it follows, with [4b]
for (+) and p. 233 for (#x) that:

(- =4() =4t .. 1)
2a(0) () a(w) = (-1 Pr(). m

THEOREM B. The number b(n, k) of permutations of [n] with k inversions
satisfies the recurrence relations ([ Bourget, 1871]):

[4c] b(n k)= Y b(n-1,j) if n>=1;

0,k—n+1€j<

b(n,0)=1; b(0,k)=0 if k>1.

M Letb(n, k) be the set of permutations of [#] that induce k inversions,
b(n, k)=|b(n, k)|, and let b;(n, k) be the set of the aeb(n, k) such that
6(1)=i, ie[n]. Then we have the division:

[4d]  b(mk)= ) bi(nk).

1<isn

Let f be the map of b;(n, k) into b(n—1, k—i+ 1) defined by:

el r@={0r ) DS et

It is clear that fis a bijection. Hence, if we use the convention:

[4f]  b(u,0)=0, if v<O0 orif u><‘2‘>,
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we get, by passing to the cardinalities in [4d]:

el bk = ¥ Imki= Y ba—1k—i+1),

1<isn 1sjsn

in other words, we just obtain [4c], if we do not use the convention [4f]
and if we change the summation variable to j:=k—i+1. W

TueoreM C. ([Muir, 1898]). The numbers b(n, k) have as GF:

[4h] &,():= Y b(mku= [ -—-=

o<k<(3)

= +u)(l+u+u?)(1 Futu ot ut),

M Using [4c] for (x) and putting i:=k—j+1 for (x+), we get:

AOLSWROWLICES )

0<k<\2

Wy (- ,)
1<7<n

0<j<("3")

=(Y v ¥  bn—-Ljw)

1sisn os;s(”;l)

=(l4+u+-+u"") o, (u),

from which [4h] easily follows. M

THEOREM D. The numbers b(n, k) satisfy the following relations:
M b(mk)=b(nk—-1)+b(n-1,k), if k<n.
(2)
() Y b(n, k) =n!.
k=0

(3)
) ¥ (-1 b(nk)=0.
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(IV)  b(nk)=b (n, (;) - k).
(2)
V) L kb(mk)=} ('2’) nt =3I, ([Henry, 18817).

M (1) From [4h] follows (1—u) ®,=(1—u") ,_,, where the coefficients
of u* must be identified. (II) Put u=1 in [4h]. (1I1) Put u=—1 in [4h].
(V) Observe that the polynomial ¢,(u) is reciprocal. (V) Put u=1 in
do,/du. R

N.B. Find also combinatorial proofs of Theorem D!

Q/AW .
Table of b(n, k) =b(n, ( ’2’) mk) W

n\k|O 1 2 3 4 5 6 7 8 9
1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1
5 1 4 9 15 20 22 20 15 9 4
6 1 5 14 29 49 n 90 101 101 90
7 1 6 20 49 98 169 259 359 455 531
8 1 7 27 76 174 343 602 961 1415 1940
9 1 8 35 111 285 628 1230 2191 3606 5545
10 1 9 4 155 440 1068 2298 4489 8095 13640
n\ k| 10 1 12 13 14 15 16
5 1
6 71 49 29 14 5 1
7 573 573 531 455 359 259 169
8 2493 3017 3450 3736 3836 3736 3450
9 8031 11021 14395 17957 21450 24584 27073
10 21670 32683 47043 64889 86054 110010 135853

([*David, Kendall, Barton, 1966], p. 241, for n<16.)

6.5. PERMUTATIONS BY NUMBER OF RISES;
EULERIAN NUMBERS

DEFINITION. A permutation ¢ €& [n] induces a rise [or a fall] in ie[n—1]

ifo(i)<a(i+1) [oro(i)>0(i+1)].
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: e
, 717

. AN
; /1 ]
1 II\E W
N V—
’ |

Fig. 40.

Thus, in Figure 40 the 5 rises [4 falls] of a permutation of [10] are in-
dicated by a heavy [thin] line.

Let A, be the number of rises of ¢, in other words, the number of sides
with positive slope of the associated polygon. Clearly, 0< 4, <n—1, and
A,=0<Vie[n], 6(i)=n—i+1, and 4,=n—1<Vie[n], o(i)=i. More-
over, the number of falls of ¢ is evidently equal to:

[5a] n—1-—4

a-

THEOREM A. The number a(n, k) of permutations of [n] with k rises satis-
fies the following recurrence relations:

[Sb] a(mk)y=(n—-Kk)an—1L,k—-1)+(k+1)a(n—-1,k)

Jor n, k> 1, witha(n,0)=1 for n20, and a(0, k)=0 for k=1.

W Let a(n, k) be the set of permutations of [#] that induce k rises. The
number a(n, k)=|a(n, k)| is also the number of permutations of [n] that
induce k falls, which can be seen by associating with ce S[n] the per-
mutation i>o (n—i+1). Hence:

[5¢] a(mk)=a(mn—k—1).

Now we define the map g of a(n, k) into G[n—1] by:
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o0 -s0mr0-{, ) 5T

1

T )
1=0=1(n) n 1 o-1n) n 1 o~iln) n 1 n=c~1(n)
(a) (b) © @

Fig. 41.

It is clear that o’ea(n—1, k) in the case of Figures 4la; b, and that
o’ea(n—1, k—1) in the case of Figures 4lc, d.

Conversely, if ¢’ea(n—1, k), some reflection shows that |g~!(¢')| =
=the number of rises of ¢’ (see Figure 41b)+1 (see Figure 4la)=k+1;
if o'ea(n—1, k—1) we have, similarly, with [5a] for (x): |g ™! (¢")| =the
number of falls of ¢’ (see Figure 41c)+- 1 (see Figure 41d)E {(n—1)—1—
—(k—1)}+1=n—k. Hence:

la(mk)l= ¥ g7 () + 2. )lg“(a')l

g'ea(n—1,k) g'ea(n—1,k—1

=(k+1)]ja(n—Lk)i+(n—k)la(n—1,k—1)| W

THEOREM B. Let A (n, k) denote the Eulerian number (introduced in [14t],
p. 51) then we have:

[3e] a(mk—-1D)=A(n)PAmn-k+1).

M In fact, if we put A(n, k):=a(n, k—1), then the recurrence relation
[5b] becomes exactly [14u] (p. 51), where A (n, k) is replaced by A (n, k),
including the initial conditions. Hence A (n, k)= A (n, k). Equality [5¢] (*)
follows then from [5¢]. W

Evidently, ) . 4 (n, k)=n! and, by [5b],

[5¢ Amk)=(m—-k+1)A(n—-1,k—-1)+kA(n—1,k).
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Table of Eulerian numbers A (n, k)

k|1 2 3 4 5 6 7 8 9
i1

2 |1 1

301 4 1 C )K\

411 1 n 1

511 26 66 26 1

6 |1 57 302 302 57 1

7 |1 120 191 2416 1191 120 1

8 |1 247 4293 15619 15619 4293 247 1

9 |1 502 14608 88234 156190 88234 14608 502 1
10 | 11013 47840 455192 1310354 1310354 455192 47840 1013
11 | 12036 152637 2203488 9738114 15724248 9738114 2203488 152637
12 | 1 4083 478271 10187685 66318474 162512286 162512286 66318474 10187685

([*David, Kendall, Barton, 1966], p. 260, n<16.)

THeOREM C. The Eulerian numbers A (n, k) have the value:

(551  A(mk)= 3 (—1)f("+‘)<k—j>".

0<j<k J

M Use the GF [14v] of p. 51, and equate the coefficients in the first and
last member of [5g] of u*t"/n!:

n

[58] 1+ Y A(n,k)%u":

1<k<n

1—u
1—ud@™ ™

- r
= (1 — ”),Z ety Z = tnul(l _ u)n+l —

20 Lnzo B:
"f(n+1 "
=y (_I)hﬁ( i )u"“t. [

hI,nz0

If k>n, then A(n, k)=0, and [5f7] implies an interesting identity in that
case.

THEOREM D. The Eulerian numbers A(n, k) satisfy:

[5h] x"= ¥ A(n,k)(x+::_1>.

1<k<n

([ Worpitzky, 1883]. For other properties and generalizations see [ Abram-




244 ADVANCED COMBINATORICS

son, Moser, 1967], [André, 1906], [Carlitz, 1952b, 1959, 1960a, 1963a],
[Carlitz, Riordan, 1953], [Carlitz, Roselle, Scoville, 1966], [Cesaro,
1886], [Dillon, Roselle, 1968], [ Foata, 1967], [ Frobenius, 1910], [Pous-
sin, 1968], [Roselle, 1968], [Schrutka, 1941], [Shanks, 1951], [Tomi¢,
1960], [Toscano, 1965]. [*Foata, Schiitzenberger, 1970] contains a very
exhaustive and completely new treatment of this subject.)

B As identity [5h] is polynomial in x, of degree », it suffices to verify
it for x=0, 1, 2,..., n, which comes down to ‘inverting’ [5f] in the sense
of p. 143. By [5f], for (x), we get (cf. Exercise 5 (3), p. 221):

Z A(n, k) tk(;) 2 (__ 1)k-i<Z + 11) =

- _

0<i<k

AL ARSI E
=(1 —t)"+'1 y it

iz0

Hence Y ;5o i"t'=(1—1)""""Y%_, A(n, k) t*, in other words we have

for the coefficientof t': i"=) , A(n, k) (n+1-—k), hence [5h] with x=i
and [5e] (). W "

We now introduce the Eulerian polynomials A, (u):=Y, A(n, k) u*;
Ag(u)=1, A4, (u)=u, Ay (u)=u+u* A;(u)=u+4u*+u>,.... Taking [14v]
p. 51 into account for [5i], and [14t] p. 51 for [5j], we have the follow-
ing GF:

. t" (L —u)
BT LA g

. A, (u) 1" 1—-u
L] 1+n;1 u nl £OTD_y’

A,(u) 1 1-u
(u=1Yn!" &—u’

[k X
nz0 U
the last one, [5k], follows from [5i], where ¢ is replaced by #/(u—1).

THEOREM E (Frobenius). The Eulerian polynomials are equal to:

[51] A,(u)=u i: k!'S(n k) (u— l)n—k
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[5m] =

k

i

KIS(n+1,k+1)(u—1)*,

B By [5k] for (+): o0 A, (u) 17 (11 (u— 1)) 2 (1 — (' 1) (u— 1)) "
=Yoo (€= DH(u=1)". Hence Ay(w)=u Yy (1) pnjuy(e'— 1),
in other words, [5I]. Then [5m] follows, if we replace u(u—1)""*in
[51] by (u—1)"**"*4 (u—1)""* and if we use [3a] of p. 208. W

The historical origin of the Eulerian polynomials is the following sum-
mation formula:

TueOREM F. For each integer n20, the power series with coefficients ‘n-th
powers’ equals:

[5n] Z " = A, (u)

150 (t—uy*tt”

M See the proof of Theorem D above. (Cf. Exercise 5, p. 221.) m
Examples. For n=0, 1, 2, 3 we get respectively:

ltut+u*+u’+..= 1
1—u

u+ 2u? + 3u® + 4yt +-..=_"_2
T=n)
2
w222 + 3%% 4 4%t g AHY
(=)

u+2%2 + 3%+ 4%t = t_li‘h_lz_ﬂ_a

(1—u)*
t .

The above-mentioned GF of the Eulerian numbers, namely
- "o 1—u
[50] A(t,u)=14+ Y A(nmk) - u*'=—

1<k<p n! fe _y
- r 1 —u
(5p] A (Lu)= Al k) b= —— ,
0<k<n n! 1 —uett™™

have the disadvantage of being asymmetric. Everything becomes easier
if we introduce the symmetric Eulerian numbers A (I, m) defined by:

[5a]  A(.m)=A(l+m+1,m+1).
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The table of these is obtained from the table on p. 243 by sliding all
columns upward:

IN\m|o 1 2 3
o |t 1 1 1
1 {1 4 11 2
2 |1 11 66 302
3 |1 26 302 2416

THEOREM G ([ Carlitz, 1969]). We have the following GF:

. xlym & — &
5 A l; = *
5] l.mZ?O {1, m) (I+m+1) xe’— ye*

W In fact, by [5p] for (), the left-hand member of [5r] equals: ¥, .50
A(+m+1, m+1) Xy [(+m+DI=(1)y) Ywzo,nsme1d (1, m+1)x

x (/x)"*1 x"n! L(1/y) (= 14U, (», y/x)), providing the second mem-
ber of [5r] after simplifications. W

The following is a generalization of the problem of the rises, often
called the ‘problem of Simon Newcomb’. Instead of permuting the set
[n], one permutes a set P, |P|=p, consisting of ¢, numbers 1, ¢, numbers
2,..., ¢, numbers n, ¢;+c¢,+c3+--+c¢,=p, and we want to find the
number of permutations with k — 1 rises. ([Kreweras, 1965, 1966b, 1967],
[*Riordan, 1958], p. 216; cf. Exercise 21, p. 265.) In more concrete
terms, one draws from a set of 52 playing cards all cards, one by one,
stacking them on piles in such a way that one starts a new pile each time
a card appears that is ‘higher’ than its predecessor. In how many ways
can one obtain k—1 piles? (here ¢;=c,=++=¢;3=4).

6.6. GROUPS OF PERMUTATIONS; CYCLE INDICATOR
POLYNOMIAL; BURNSIDE THEOREM

DEerINITION A. A group ® of permutations of a finite set N is a subgroup
of the group S (N) of all permutations of N. We denote < GS(N). |®]
is called the order of ®, and |N| its degree.

Thus, the alternating group is a permutation group of N, of order n!/2.
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For each permutation e & (N ), N=n, we denote:
[6a] c¢i(¢):= the number of orbits of length i of ¢, ie [n],

and, for each group of permutations S<&(N) and each sequence
(1, €3,..., ¢,) of integers >0 such that ¢, +2¢c,+ - =n we denote, with
the definition on p. 233:

{ob] O ey, ca0ees ) i={aloe®, aisoftype [cy,cy Q)

DEFINITION B. 7he cycleindicator polynomial Z (x)of a group of permuta-
tions & of N, & <GS (N), also denoted by Z(®, x) or by Z (xy, x5, ..., X,))
is by definition (cf. [6a, b]):

1
[6c]  Z(x):= i X1 GHO  xCnl®)
ge®
1
[6d] = l—(ﬁ—l Y16 (cy, €y -y el x{'x3 ... x5,

where the last summation takes place over all integers ¢;=0 such that
¢ +2¢c, 4 =n=|N|.

The fact that the expressions [6¢] and [6d] are equal follows from [6b].
The polynomial Z (x) has at most p (n) terms ([ 1b], p.95) and the weight
isn: Z(Axy, A%X5,...)=A"Z(x,, X3, ...). The following are a few examples.
(1) If ® consists of the identity permutation e only, then Z (x)=x".
(2) If =& (N) (the symmetric group of N), we get, by [2b] (p. 233),
applied to the form [6d] of Z(x), and also, by [3b, c] (p. 134) for (x):

] Z(- ¥ (3 (’;)

c1+2¢2+=n Z‘Fcz' 1
(3) Let N be the set of the 6 faces of a cube, N:= {4, B,C, D, E, F}
(Figure 42), and let ® be the group of permutations of N induced by the
rotations of the cube. For instance, a rotation of +7/2 (around the axis,
ABCDEF

in Figure 42a gives the permutation 6= ( BCDAE F) for which we have,

(%
=)Y,,(x1, l!xz, 2!X3,--.).




248 ADVANCED COMBINATORICS

by [6a]: ¢;(0)=2, c;(0)=¢3(0)=0, cs(0)=1, ¢5(¢)=cs(c)=0, hence
the monomial 5% xix, in Z(x). There are 6 kinds of rotations, which
can be described by Figures 42a, b, c, namely, a rotation of /2 or n or
3r/2 around a line joining the centers of opposite faces (Figure 42a),

N j—z‘,om,or%‘ W3 2% o 45
ik 4 ; Y\.D T
il b
: 0
(a) (b) ©
Fig. 42.

a rotation of = around a line joining the centers of opposite edges (Figure
42b) and rotations of 2n/3 or 4n/3 around a line joining opposite vertices
(Figure 42c). Making up the list of permutations of each kind, we finally
find, by [6c]:

[6f1  Z(x) =% (xS + 3xx} + 6xfx, + 6x3 + 8x3).

DEfINITION C. The stabilizer of x (€ N) with respect to & {<S(N)), de-
noted by @ (x), is the set of permutations o€ ® for which o (x)=x.

It is clear that G (x) is a subgroup of ®.

DEfINITION D. For & <G (N), the orbit of x(eN) under ®, denoted by
x®, is the set of all yeN for which there exists ce® such that y=o(x).

H
In particular, the orbit of x under the subgroup (o) generated by o,

o={e, 6,0%,...} is just x={x, o (x), 6> (x),...} (see p. 231). For x#x’
either x®=x"® or x® N x'®=0. The set Q or all (different) orbits is hence
a partition of N, N=) 5. qo.

THEOREM A (on the siabilizer). For every xeN and every group H <G,

the order of & equals the product of the order of the stabilizer ® (x) by
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the size of the orbit x®:
[6g] (® (x)[.[x% = B].

In other words, denoting by Q the set of orbits, Y .o w=N:
[6h] xewel = |6 (x)]. o] =|0].

B It is clear that for each permutation ae®:
[6i] le® (x)] = |6 (x)I,
where a® (x):={afil fe G (x)} is aleft coset of the subgroup G (x) of G.

Fig. 43.

For each p of the orbit of x, yex®:=w (Figure 43) we choose one
single permutation a=0,e® such that y=u(x), and we consider the
map f:yr>o, 0 (x). It is easily verified that f is a bijection of @ into the set
of left cosets of ® (x). All these cosets have the same number of elements,
[6i], and since they constitute together a partition of ®, we get: | (5| =the
number of elements in every class x the number of classes=|® (x)|. |w|. 1

THEOREM B (Burnside-Frobenius). Let Q stand for the set of orbits of 6.
Then we have:

: i
[6i] 12 = i 2. INo(a)l,

ge8
where Ny (o) is the set of fixed points of 6.

M Let £ be the set of pairs (x, 6), 0 ® such that ¢ (x)=x. Clearly, we

have the following divisions:

[6k] E= d;ﬁ {(x,0)lo(x)=x}= ng {(x,0)Vo(x)=x}.
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Now, for fixed o, |{(x, 0,1 a(x)=x}{=|{x1 xeN, o (x)=x}|=|Nqy (o)
and for fixed x, {{x, o)lo(x)=x}=]|{c1oe®, o(x)=x}=|G(x).
"Hence, by passing to the cardinals in [6k], and with [6h] for (x):

o El= T N = T 6= X (3 16 ()]

0eN xew

16
@y (Z '_'>= T 161 =1016]. m
tyeﬁ J.cewlwl @e

6.7. THEOREM OF POLYA
(1) An example

In order to clarify the aim of this section consider the following problem.
In how many ways can one paint the six faces on a cube in at most c colours,
it being understood that two colourings will not be distinguished if they can
be transformed into each other by a rotation of the cube. In the last case
the colourings are called equivalent. The class of colourings that are all
equivalent to a given one, is called a model or a configuration. For example,
in the case of two colours, white and blue, ¢=2, the colourings {blue: E, F,
white: the rest} and {blue: 4, C} are equivalent (Figure 44), but these
two are not equivalent to the colouring {blue: 4, B}. Direct counting
shows that there are only 10 models for all possible 2°=64 possible
colourings. Figure 45 shows the 6 models corresponding with at most
3 blue faces (blue=hatched), the 4 remaining models can be obtained
from the set of models with at most 2 blue faces, by interchanging the
colours white and blue.

L~
A
Fig. 44.
59 @ i @ O
Fig. 45.
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(IT) Statement of the problem

Let D and R be two finite sets, |D|=d, |R|=r, and let  be a group of
permutations of D. F=R" is the set of maps of D into R, and § is the
partition of F consisting of the ~ equivalence classes on F defined by:

[7a] f~geFae®, g=f(a),
which means: VxeD, g (x)=f (2(x)).

This is an equivalence indeed, because (I) f=f (e), (1) g=f (a)=f=

=g (™), (1) g=f(a), h=g(B)=>h=h («f). Each class fe is called
a model.

Let also 4 be a commutative ring, and w a map from R into A, called
weight. We define the weight of feF by:

6] W(N):= IT w(f(x)),

xeb
and the inventory of each subset F' F, denoted by W (F’), by:
[7¢] W(F):= 3 W(f).

rew

It is easy to see, by [7a, b], that:
(7] f~g=W()=W(9);

thus we can define the weight V() of a model fe§ by:
[7e] W(f):=W(f), where fef
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(f is an arbitrary representative of the equivalence class f). Like in [7c],
the inventory W (') of each F' = is defined as follows:

7f] WEF)= 3, B).

The problem now is to compute U (F).

In the case of example (1), D is the set of the faces of the cube, R is the
set with two elements, ‘blue’ and ‘white’. The weight function w is defined
by w (blue)=¢, w (white)=u; 4 is the ring of polynomials in two variables
t,u. ® is the group of permutations of the faces of the cube, which we
studied already on p. 248; F is the set of colourings of the fixed cube,
and § is the set of models of colourings. If W( f )=¢"u* this means, by
[7b], that the colouring f is of type (p, ) in the sense that f contains p
blue faces and g white faces, p+¢=6. Hence, we have:

[7g] WF)= Eﬁ W (f) = qu v(p, @) P u' =P (t,u),

where v(p, ¢) is the number of models of type (p, g). The rotal number
of models is then equal to:
[7n] X v(p,g)=P(1,1).
P4

(III) Theorem of Pélya. ([Pdlya, 1937], and in other form [Redfield,
1927]. We follow the exposition of [De Bruijn, 1964].) Let Z(x, X3, ...,
x,) be the cycle indicator polynomial of the group of permutations ® of
D([6¢c, d], p. 246), then we have for the value of the inventory of §:

[7i] W(F):= Z W(F)
—Z(yEZRW(y) Z w? (). Z:R w! (),

where B, w, §, 1, R are defined in the previous section.

B Let F, be the set of the feF for which W(f)=_¢. It appears that we can
consider & as a group of permutations of F, (the verification is easy),
when we define o (f ), for 0€®, feF,, by:

17 VxeD, a(f)(x)= f(o(x)).
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It follows that the conditions of Theorem B (p. 249) are satisfied, if we
take N instead of F,, and if we change Ny (o) into:

[7k] Fe(o):={fVfe¥,, of =f}

(here qf:f means that VaeD, f (o(a))=f (a)). The number of models
(:mbxts)fwhose weightis ¢, feFy, is hence equal to (using [6j], p. 249):

[7U l(ﬂ Z ng (0),

Thus, by [71] for (*), and by [7k] for (x+):
m - (*)
B L0y (e 2 |F¢<a>x)
|® S (T RO T (8 o).

6e® LeAd IG)'I,,E(5 af=f

In other words, if #=(B,, B,, ..., B,) is the partition of D consisting of
the orbits of o (in the sense of Definition D, p. 248), the last summation
of [7m] can be taken over all f that are constant on each of these blocks
B;e#. Giving such a function f is hence equivalent to giving a map g
of # into R, ge R®. Under these circumstances, choose b,eB,, ie[k],
and then apply Theorem A (p. 248) in (*) to obtain the expansion of a
product of sums:

3 W= T ] w0
of=f of=f xeD
= 2, IL o oo

2, I wa ™
=2 I % (o)™

ByeR

Thus we recognize the term of Z(x,, x,,..., x,) corresponding with the
permutation o, [6¢] (p. 247). In this term, x, should be replaced by
YyerW(¥), x; by Y, » w?(p), etc. Hence [7i] using [7m (**)]
(LV) Application to the cube

We return to the cube of (1) with at most 2 colours. With the weight w
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as defined on p. 252, we have ), _xw* (¥)=1*+u*; hence by [6f] (p. 248)
and [7g,i]:
[70] P(tu)=2{(t+u)+3(+u)(+u’)*+6(t+u) x
x (t* +u*)+ 6 (> +u?)’ +8(F +u®)’}
=15 4 5u + 20%% + 2633 + 2620 + 1P + ub.

For instance, by [7g], the number of colourings with 4 blue faces and
two white faces is equal to the coefficient of #*1* in [70], hence 2. More
generally, if there are ¢ colours, then we have in [7i] Y . w*(¥)=1{+

+ 3+ 41}, where 1,1, ..., 1. are ¢ variables. Hence, by notation of
Exercise 9 (p. 158), for the monomial symmetric functions:

[7p] P(tl! tasees tc)='zli-_{(t1 it 4t tc)6+
+3(ty 4t (G ) ) =
(€) (c) (c) 5 () .
=Y 6 +Y 5 +2Y (542 titts +
(<) (c) (¢) ()
+2Y 88 +3Y 485 +5Y it + 6, (11315 +
(c) (¢) (©)
+ 7Y 10,8505 + 15 Y tytat5tat5 + 30 titat5t,t 5t
For instance, there are 15 models of the cube that use 5 given colours
for the faces (hence one colour is used twice). The total number v, of
models of cubes with at most ¢ colours is obtained by putting ¢, =t,=
=...=t,=11in | 7p]. Then we obtain, after simplifications:

¢ c c c c
= 0
v, c+8(2)+30<3)+62(4)+75<5>+3 (6)’
v, =10, v3=57, v,=234, etc
For other applications of the theorem of Pdlya, see Exercises 16-20
(pp. 262-265). (Some references to the theorem of Redfield-Pdlya: [De

Bruijn, 1959, 1963, 1964, 1967], [ Foulkes, 1963, 1966], [*Harary, 1967],
[Read, 1968], [Riordan 1957b], [Sheehan, 1967].)

SUPPLEMENT AND EXERCISES

1. Cauchy identity. Show that ¥ {c,!c,!... 1922..}7'=1, where the
summation is taken over all sequences of integers c;>0 such that

cy+2cy+--=n.
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2. Return to the permutations with a given number of inversions. Deter-
mine an explicit formula of minimal rank for the number &(n, k) of
permutations of [n] with k inversions (cf. p. 237): b(n, 1)=n—1,b(n,2)=

=<g> ~ Lo (,3)=(1/30n(*=7),b (0,4)=(1/4)n(n+1)(n? +n—14), ...
[Hint: [4h], p. 239, and the ‘pentagonal’ theorem of Euler, [5g], p. 104.]

3. S[n] and S(N) as metric spaces. (1) The expression d(x, f):=
I=MaXy ¢ i<, 2(i)—= (i), where o and 8 are permutations of [n]:--
={l1,2,..., n}, defines a distance on the set S[n] of all permutations of
[#]. Let @(n, r) be the number of elements of an arbitrary ball of radius
r, in other words, the number of permutations ¢ such that d(e, o)<r,
where & stands for the identity permutation. Then, ®(n, 1)=F,, the
Fibonacci number (p. 45). Moreover, ¢(n,2)=2d(n—1,2)+2¢
(n—3,2)—®(n—5,2) ([Lagrange (R.), 1962a], [Mendelsohn, 1961]).
More generally, the computation of ¢ (n, ) is essentially the computation
of a permanent (Exercise 13, p. 201.). Between two elements of o, f one
can define also another distance function, namely the number of
inversions of af~'. (2). For each permutation aeS[N7], N finite, let
N () be the set of the mobile points of a. Show that d(x, f):=|N(xf)|
defines a distance on &(N). How many points are there in the ball
{a 1 d(e, x)<k}? Cf. p. 180.

4. Labelling S[n] by inversions. For every permutation ¢e&[n] and
every integer ke[n], let x,=x, (o) be the number of integers j<k such
that the pair (j, k+1) is an inversion (o (j)= o (k+1)). Evidently x, <k.
So we can associate with o the integer x=x(0)=x;+2!x,+31x3+-+
+{n—1)!x,_; <n!'—1. Conversely, using the factorial representation of
integers (Exercise 9, p. 117), show that each x, 0<x<n!—1 is the label
of a single permutation ¢; how to determine this permutation? [Ex-

ample: (i § 2 g f g) has for label 1.11+1.31+4.4!+4.51=>583.]

*5. S(N) as a lattice. We associate with every permutation €S (N)
the subset E (o)< P, [#] consisting of the pairs {i,j} which are not in-
verted: i<j=0(i)<o(j). Show that 6 <o’ if E(c)< E(c") endows S [n]
with a lattice structure ([Guilbaud, Rosenstiehl, 1960]).
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6. Conditional permutations. Let a, be a sequence of integers | <a; <
<a,<ay<--- and let 3(n, k; a, a,,...) be the number of permutations
of N, n=|N|, with k orbits, such that each has a number of elements
equal to one of the a;. Then ([Gruder, 1953]):

t'l tal ta2
Y 3(n, ks ay,a,,...) - ut = exp{u (v— +— +)}
n, k n:

More generally, prove a theorem analogous to Theorem B (p. 98) for
permutations.

1. Derangements by number of orbits. Let d(n, k) be the number of
derangements of N, |[N|=n, with k orbits (p. 231), or permutations with
k cycles of length >2. (1) We have the following GF: e” "™ (1—t)" "=
=1+ 1<u<n d(n, k) t"u*/n!.  [Hint: Use [2b], p. 233.]  Hence,

Y (—1)¥"1d(n, k)=n—1. (2) The following recurrence relation holds:
din+1,k)=n{d(n, k)+d(n—1,k—1)}, d(0,0)=1. ([Appell, 1830],
[Carlitz, 1958a], [Tricomi, 1951] and Exercises 11 (p. 293) and 20
(p- 295) about the associated Stirling numbers of the first kind, s, (n, k)=
=(=1)""*d(n, k).) (3) For k=2, and p prime, we have d(p, k)=0
(mod p(p—1)). (4) For all integers J, Y,,(= )" d(I4+m, m)=(—1)". (5)
Similarly, ), (—1)"d({+m, m)/(I+m—1)=0. (6) We have d(2k, k)=
=13.5...(2k—1); d(2k+1,k)=1- (2k+ 1)1 {(k=1)125}"": d(2k +2, k)

11k — 1 A s

(FAL o+ EN1QY In1 11 Able g
= {4k +5)/18; (2k+2)!1(k—1}:z.; . table of the

(.. LY o
ayi, Ky is

iven Now: v Qe (3B
g 6\”’/“?‘ o s)\v"@
k\n |2 3 4 5 6 7 8 9 10
1 |1 2 6 24 120 720 5040 40320 362880
2 3 20 130 924 7308 64224 623376
3 15 210 2380 26432 303660
4 105 2520 44100
5 945
k\n| 1 12 13 14 15
1 3628800 39916800 479001600 6227020800 87178291200
2 | 6636960 76998240 967524480 13096736640 190060335360
3 3678840 47324376 647536032 9418945536 145410580224
4 705320 11098780 177331440 2920525608 49952862960
5 34650 866250 18858840 389449060 7934927000
6 10395 540540 18288270 520059540
7 135135 9459450

¥

S
wor F AT
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(7) Show that the number d,(n, k) of permutations of N that have k
orbits, all of length >r, satisfies the recurrence relation d,(n+1, k)=
=nd,(n, k)+(n),-1d,(n—r+1,k—1). N.B.: dy(n, k)=s(n, k), dy(n, k)=
=d(n, k). Cf. Exercise 7, p. 221, and Exercise 20, p. 295.)

8. The d(n, k) above are used in the asymptotic expansion of Z,(n)=1°"+
4284 0" Let [r,q]:=e"*(1—e %) 777!, aeC, Rea>0. Then:
Z, ()= Yy Can¥,
k=0
where C, =Y d(q,q—k) A(q, r) (—a)* *[r, q]/q!, a double finite sum-
mation where k<q<2k, r<gq, and where the A(q,r) are the Eulerian

numbers of p. 000. Thus, Co=[0, 0]=(1—e"*)"!, C; = —(«/2) ([1, 2] +
+[2,2]),....

9. The number of solutions of 6™=¢ in S(N). Let T, be the number of
permutations €S (N ), |N| =n, such that 6% =¢ (=the identity permuta-
tion). Such a permutation, or involution (or selfconjugate permutation of
Muir) has a cycle decomposition consisting of transpositions only. Deduce
the following relations: T,=T,_;+(n—1) T,_,, Ty=T;:=1, and \/ng
<T,/T,-</n+1.Finally, Y50 T,t"/n!=exp(z+12/2). Show then that
T,=n!} (i1 j!27)7" where the summation takes place over the pairs (7, /)

such that i+ 2j=n. More generally, iet T'(n, k) be the number of solutions
of 6*=¢, 6€S (V) (hence 1,=T(n,2); show that ) -7 (n, k) t"/n!=
=exp {).4;1°/d}, where the last summation is taken over all divisors d

of k. (See [Chowla, Herstein, Moore, 1952], [Chowla, Herstein, Scott,
1952], [Jacobstahl, 1949], [Moser, Wyman, 1955a], [Nicolas, 1969].)
Use this to obtain the recurrence relation T(n+l,k)=24|k(n)d_1x
xT(n—d+1, k) and the first values of T'(n, k):

. (j EV=a
%(/ n | 1 2 3 4 5 6 7
§ 11 i 1 i 1 i 1
2 |1 2 1 2 1 2 1
3 |1 4 3 4 1 6 1
4 |1 10 9 16 1 13 1
5 11 26 21 56 25 66 1
6 |1 76 81 256 145 396 1
7 |1 232 351 1072 505 2052 71
Al ~
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10. Permutations with ordered orbits; outstanding elements ([Sade, 1955]).
For each subset 4 < [n], we denote by i(A4) the smallest integer € A, called
the initial integer of A. Let ¢ be a permutation of [n], €S [n], whose
orbits are numbered, say , (), Q,(0),..., (o), Y=, Q,;()=[n], such
that i (2, (0))<i(Q,(0)) < <i(2(0)), 1<I<n. (1) Let F(n, k) be the
number of ¢e S[n] such that nef, (a). Show that

F(n, k)y=(mn—-2)F(n—1, k)+F(n—1,k—1), F(n, 1)=4n!, F(n, n)=1.

Make a complete study of this double sequence F(n, k). (Find its GF,
establish recurrence relations, etc.)

o

@ML ‘) n\k| 1 2 3 4 5.6
1] 1
2 |1 1
3| 3 2 1
4| 12 7 4 1
5| 60 33 19 7 1
6 130 192 100 47 11

(2) Let g(n, k, c) be the number of permutations of [n] whose k-th orbit
has c elements. Then g(n, k, ¢)=(n—1)g(n—1,k, c)+g(n—1,k~1,¢).
(3) An outstanding element j(e[n] (of oe S(n) is, by definition, an
element such that ¢(j)>a (i) for all i<j. We make the convention of
calling 1 outstanding too. Show that the number of permutations of [n]
with & outstanding elements equals s(n, k) ([Rényi, 1962]).

11. Alternating permutations of André, Euler numbers and tangent numbers.
(For an exhaustive study of this problem, see [ André, 1879a, 1881, 1883a,
1894, 1895], and [Entringer, 1966] for a reformulation. The expressions
we find for (cost)™! and tgt give a combinatorial interpretation of the
Euler and Bernoulli numbers, [14a,b], p. 48, and Exercise 36, p. 88.)

We will call a permutation €@ [n] alternating if and only if the (n—1)
differences 0 (2)—0o (1), 6(3)—0(2),..., 6(n)—a(n—1) have alternating

igns. For exampl 1234 d 1234y 1t ti but 1234
signs. o ple 1324 an 3241 are alternating, bu 3214

and (; 34 1) are not. We put dy=4,=4,=1 and we let 24, be the

number of alternating permutations of [n], n>>3. Show that 24,,,=

=Y%-0 (Z) AyA,_, and that Y 5o A" nt=1g(n/4+1/2). Use this to

PERMUTATIONS 259

btain: -
ORI e 4, 2(2m)! = (cos )™t
nz0

Y Ape 220+ D! = tgt.

n20

Hence 4,,=|E,,|, where E,, is the Euler number (p. 48), and the 4,,,,,
often called tangent numbers, have the following first values ([Knuth,
Buckholtz, 1967], for m<120; see also [Estanave, 1902], [Schlémilch,
1857], [Schwatt, 19317, Toscano, 1936].):

and

m_ |1 3 5 7 9 11 13
Am | 1 2 16 272 7936 353792 22368256
m__| 15 17 19 21

An | 1903757312 209865342976 29088885112832 4951498053124096

With Exercise 36, p. 88, and p. 49, 4,,_,=(—1)""! B,,4"(4"—1)/2n=
=4""11G,,|/n. Also prove the following explicit values:

i 2k N opimke
Azn=X1sjspen(= D" (k—j)12 j2+-1,

A2n+1=21<!'S{c$n(— i+ (szj> (k+1)2m 241,

Moreover, as a function of the Eulerian polynomials A,(u) of p. 244,
the tangent number 4,,,, equals 4,,,,(—1).

Finally, it may be valuable to introduce other tangent numbers T(n., k)
such that (tg*)/k!=Y 5, T(n, k) t"/n}, in order to compute the 4,,,, =
=T(2n+1,1). In fact, we have T(n+1,k)=T(n k—1)+k(k+1)x
x T'(n, k+1), hence the first values of T'(n, k):

mk | 1 2 3 4 5 6 7 8 9 10 11
; 1 . Waj\/p[%f:&y
3 2 1
4 8 1
5 16 20 1
6 136 40 1
7 272 616 70 1
8 3968 2016 112 1
9 7936 28160 5376 168 1

10 176896 135680 12432 240 1

11 353792 1805056 508640 25872 330 1

?&\%’\/
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Find a formula of rank 2 for T'(n, k). Of course, these numbers are
inverses (p. 143) of the arctangent numbers t (n, k) defined by (arctgr)*/k!=
=Y u>x t(n, k) £"[n), for which holds t(n+1,k)=t(n, k—1)—n(n—1)x
x t(n—1, k), the first values being:

n\k | 1 2 3 4 5 6 7 8 9 10
1 1 S
2 1 Y\)K/W\WF@;M‘ v
3 -2 1 C ){0' <
4 —8 1
5 24 -20 1
6 184 —40 1
7 -720 784 —70 1
8 —8448 2464 —~112 1
9 40320 —52352 6384 —168 1

10 648576 —229760 14448 —240

11 —3628800 5360256 —804320 29568 —330

*12. The number of terms of a symmetric determinant. (1) Let be given
two permutations «, €S (n), IN|=n. Show that the following relation
is an equivalence relation: “‘if y is a cycle of o (or B), thenyory ™ 'isa
cycle of B (or ). (2) The number of equivalence classes of type [¢;, ¢5, -..]
equals n!{c,!c,!... 1 2¢2.. 2% e4*}~1 (3} The total number a, of

between the numbers of ‘even’ classes and ‘odd’ classes, denoted by a,,

satisfies Y,5 o)t "/n! = (1+1)"/? exp(t/2—~1%/4). (Cf. [3g], p. 277.) (5) It
follows that a,,;=(n+1) a,,——(;) a,_, and @, =—(n—1) a,’,—(;) X

X d,,. (6) Show that the numbers p, and g, of ‘positive’ and ‘negative’
terms of a symmetric determinant of order » satisfy p,+q,=a,, p,—q,=
=a,. (7) Treat all the preceding questions for the case of ‘derangements’,
in which case the determinant of (6) is supposed to have only 0 on the
main diagonal. ([*Pélya, Szegd, 11, 1926], p. 110, Exercises 45-46.)

*13, Permutations by number of ‘sequences’. (For many other properties,
see [André, 1898].) Let o be a permutation of [n], ce& [n]. A sequence
of length I1(>2) of ¢ is a maximal interval of integers [i,i+/—1]=
={i,i+1,...,i+I~1} on which ¢ is monotonic. The sequence is called
intermediary or left or right according to whether 1<i, i+/—1<n or
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i=1ori+l—1=n. A peak of ¢ is a maximum with respect to o. The peak
(in i) is called intermediary or left or right, when 1 <i<n or 6(i—1)<
<o(i)>o(i+1) or i=1, a(1)>0(2) or i=n, o (n—1)<o(n), respec-
tively. Let P (n, 5) be the set of permutations of [#] with s sequences, and
fet P, ;:=|P(n,s)|. Using the map g, introduced in [5d] (p. 242) from
P(n, s)intoP(n—1,5)+P(n—1,5s—1)+P(n—1, s~2),as well as the nota-
tions given above, show that P, ;=sP, | 42P, ; ;. +(n—5)P,_4 >
For all n>2k-+4, 1%P, (+3*P, 3+5*P, s+...=2"P, ,+4*P, ,+---.
Finally, 3, P, wi*t"(nl = (1 +u) " {(1~u) (1 —sin(v+1 cosv))— 1}, where
u:=sinv.

n\s | 1 2 3 7 8 9
2 (2 T o
312 4
412 12 10
sl2 28 58 32
612 60 236 300 122
712 124 836 1852 1682 544
8 {2 252 2766 9576 14622 10332 2770
9 |2 508 8814 45096 103326 119964 69298 15872
10 |2 1020 27472 201060 650892 1106820 1034992 505500 101042

Evidently, P, ,_, =24, (Exercise 11, p. 258.) For each sequence Q=
=(q(, G3,--» qn-1) Of =1, let us denote the number of permutations
oeSn] such that g;=sg(o{j+1)~ea{(j}), je[#—1], by [£]. Giving @
is evidently equivalent to giving the indices k,,k,, ..., k, of ihe ¢, ihat are

equal to —1 (r<n—1). We use the convention ky:=0 and k,, :=n.

Show that:

| @] = det

{

() ()

kr+1

ko

) (

kr+1
ky

([Niven, 19687, [De Bruijn, 1970.])

() ()

)

AN
(i)
k,
(&)

14. Pernutations of [n] by number of components. To every 6eS [n] we
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associate the division [n]=1I,+1I,+---+1I, where the components I, of o
are the smallest intervals such that ¢(1,)=1,, h=1, 2,..., k. For example,
o= ; f ; 2 2 g) has the three components {1, 2, 3}, {4}, {5, 6}, and
theidentity s has ncomponents. A permutation is said to be indecomposable
if ithasone component;soiso,if o (k) =n—k+ 1. We denote by C(n, k) the
number of permutations with & components. Introducing the Euler for-
mal series e(t):=) ,5, n!t" (see also Exercise 34, p. 171), we have the
GF: 1(t):=) 01 C(n, 1) "=1—(e(t))"" and Y5, C(n, k) "=(1(r))~
Find a simple recurrence for C(n, k). [Hint: Use t%¢'=(1—t)e—1
(Exercise 16, p. 294).] Here are the first values of C(n, k):

m\k 1 2 3 4 5 6 7 8 9 10
1 ,

; 1 1 N oo~

3 3 2 1

4 13 7 3 1

5 7 32 12 4 1

6 461 177 58 18 5 1

7 447 1142 327 9 25 6 1

8 | 20093 8411 2109 531 135 33 7 |

o | 273343 69692 15366 3440 800 188 42 8 1

10 | 2820325 642581 125316 24892 526 1146 252 52 9 1

SCEAS
15. Cayley representation of afinite group. Let N be a finite multiplicatively
written group, n=|N|. With every ae N we associate the permutation o,
of N defined by g,x=ax, xeN. Let ® be the group of these permutations,
called the Cayley representation of the group N. Show that ® is isomorphic
to N («>6,0,=0,,)and that Z(G; x,, x,,...)=(1/n) L.v(d) (x,)"*, where

of elements a(eN) with order d.

16. Cube and octahedron. (1) Let N be the set of the 8 vertices of a cube,
and let ® be the group of permutations of N induced by the rotations of
this cube. Then the cycle indicator polynomial Z(x) equals 5 (x%+
+9x3 +6x2 +8x3x2). Prove that if N is the set of the 12 edges, we have
Z(x)=+4% (x1243x546x3+6x3x24+8x%). (2) Show that there are only
three different ways to distribute three red balls, two black balls and one
white ball over the vertices of a regular octahedron in euclidean three-

&
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dimensional space. The octahedron is supposed to be freely movable.
Generalize to ¢ colours, as on p. 254.

17. Colourings of a roulette. (1) Let ® be the cyclic group of order n.
Show that Z(®; xy, x5,...)=(1/n) Yazb xSin Where (k, n) is the GCD
of k and n. (2) Use this to obtain:
Z(®; xy, xz,-..) = (1/n) ‘; ¢ (d) (xa)™,

where ¢ (d) is the Euler function (p. 193), and d|n means ‘d divides n’.
(3) Now consider a roulette. This is a disc freely rotating around its axis,
and divided into n equal sectors. Show that the number of ways to paint
the sectors of the roulette into < p coloursequals (1/n) Y, ,¢ (d)p™“. (Two

ways which can be transformed into each other by a rotation are consi-
dered equal. [Jablonski, 1892].)

18. Necklaces with two colours. Let N be the set of n vertices of a regular
polygon, n=|N|. Let be given a blue beads and (n—«) red beads, 0<a<n.
On each vertex a bead is placed, thus obtaining a necklace. Let P be the
number of different necklaces. Two necklaces that can be transformed
into each other by rotation, or reflection with respect to a diameter, or
both, are not distinguished from each other. Then we have Pl=1, P?=
= [n/2], Py =n*/12 if n=0 (mod6) or (n*—1)/12 if n= 41 (mod6) or
(n*—4)[i2 if n=+2 (mod6) or (n*+3)/i2 if n=3 (mod6). Compute
P, and generalize. ([Durrande, 1816], [Gilbert, Riordan, 19617, [La-
grange, R., 1962b], [ Moreau, 1872], *Riordan, 1958], p. 162, [ Titsworth,
1964].)

*19. The number of unlabeled graphs. Two graphs ¢ and ¢’ over N are
called equivalent, or isomaorphic if there exists a permutation ¢ of N, which
induces a map from the set of edges of % onto the set of edges of Z'. In
other words, 36eS(N), {x, y}e¥ «{o(x), 6(y)}e¥’. Each equivalence
class, thus obtained, is called an unlabeled graph, abbreviated UG (graphs
as we have seen on p. 61 are called labeled graphs, to distinguish them
from the UG; their vertices are distinguishable). For instance, there are
three UG’s with 4 nodes and 3 edges: ¢9,, 9,, 9, (9, is equivalent to
@,) (see Figure 47).
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o1 1 «l/ o7 «]\]

Fig. 47.

From now on, N=[n]={1, 2,..., n}. With each 0eG (1] we associate
the permutation ¢ of P, [n] defined for each pair {x, y} by 6 {x, y}:=
={a(x), o (»)}. The set of the & forms together the ‘group of pairs’, de-
noted by S®[n] (<& (P,[#]), which has a cycle indicator polynomial
Z(©&P[n]; xy, x3,...), denoted by Z,(x,, x,,...). (1) Show that the
number g, , of UG satisfies ) ; g, ,x*=Z,(1+x, 14+x% 14+x3,..).
(2) For 6e&[n] of type {c;, c3,...], let [, [ey, ¢;,...] be the number of
k-orbits (in P, [r]) of 8. Then, Z,(xy, x,,...) equals:

1 n!

n! c1+2¢c2%=n CI! 6‘2! 1“2"...

! 5 €2y aee C1s €2y vun
XIIEC! c2 ]lezz.[rl c2 ]

(3) Show that [, [cy, ca5---5 Coll=Can+(cif2) (k— 1+ Ck[2))+ (1/2k) x
x Y ije,(c;—~d;;), where [i, j] is the LCM of i and j, d; ; the Kronecker
symbol, and (x> =1x, if x is an integer, and =0 otherwise, the summation
being taken over all (i, j) such that 1 <i<j<n and [i, j]=k. (This theo-
rem, in this form, is due to [Oberschelp, 1967]. Counting unlabeled
graphs and digraphs is done in the fundamental paper by [Pélya, 1937],
and also in [Harary] and [Read], among others.) Thus, Z,=x;, 7,=
= (1/31) (x3 +3x,0, +2x3), Z, = (1/41) (x5 +-9x3 x3 4 8x3 + 6x,%,), ... The
first values of g, , are:

k|1 2 3 4 5 6 7 8 9 10
2 |1
3 |1 1 1
4 |1 2 3 2 1 1
5|1 2 4 6 6 6 4 2 1 1
6 |1 2 5 9 15 21 24 24 21 15
7 11 2 5 10 21 41 65 97 131 148
8 |1 2 5 11 24 56 115 221 402 663

*20. The number of unlabeled m-graphs. Let us call any system of m-blocks
(p.7) of N an m-graph of N. In particular, an ordinary graph is a
2-graph. Let g{™ be the total number of unlabeled m-graphs (in the sense
of the previous exercise). Then, for fixed m, when n— 0
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Ji s _<,21>2“ (1 +o(1))(.

Nl
B

(my _ =
Yn

([ Oberschelp, 1968]; see also [*Carnap, 19507], [Davis, 1953], [Misek,
1963, 1964], Pdlya, 1940]).

*21. Rearrangements. This is a geveralization of as well a permutation
and a minimal path (p. 20). Let X:= {x,, x,,..., x,} be a finite set with n
elements. A rearrangement of X, (abbreviated RA) is a word of X (p. 18).
More precisely, a (¢, ¢,,..., ¢,)-RA of X, say f, is a word in which the

C1,C2

letter x; occurs ¢, times, ¢; 20, ie[n]. We say also ‘RA of x§'x5... x{",
or ‘word of specification (cy, ¢5, ..., ¢,)’, and we denote fe X(cy, ¢, ..., C,).
For instance, for X:={q, b, ¢} the RA fi:=baabcbccch and f,:=
:=caaaccaare of specification (2,4, 4) and (4, 0, 3), respectively. For
¢, =cy=-=c,=1, we get back the permutations of X. A RA can be rep-
resented as a minimal path in the euclidean R”, which describes a process
of counting ballots for an election with n candidates. The word f; is shown
in Figure 48. (1) The number of (¢, ¢s,..., ¢,)-RA equals (¢, c,, ..., ¢,)
(p- 27). (2) A sequence of fe¥X(cy, ¢,,..., ¢,) is 2 maximal row of con-
secutive x; in f, ie[n]. For instance, f; has 7 sequences. What is the

Fig. 48.

number of the feX(c,, ¢,,...) having s sequences ([*David, Barton,
1962], p. 119)7(3) Compute fy, ..., 1,(¢15 C25--., €,), Which is the number
of the (¢y, ¢5,-.., ¢,)-RA such that between two letters x; there are at least
I, other letters. (A generalization of [8d], p. 21, and Exercise 1, p. 198.)
(4) If X=[n], then we can consider f as a map {rom [p], pr=c;+c,+

-
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+ -+ +¢, into [#] such that for all ie[n], |f~1(i)|=c; (Figure 49 shows
J1=2112323332). Aninversionof fisa pair (i, j)such that | <i <j< p
and f(i)> f(j) (f; has 7 inversions). Show that the number

bey, €35eees o3 k) Of (¢4, €5yeney ,)-RA of [n] with & inversions, ¢,

1 23 4 5 6 7 8 9 10
Fig. 49.

€3,-.. 21, has for GF Y;b(cy, c,...; k)u* the following rational fraction:

I=uw)(d —u?)--- (1 —u)
[I- (= ") TIo (= ™) [T (U =)
(For ¢, =c,=---=1, we recover [4h], p. 239.) (5) We call the sum T(f)
of the indices je[p—1] such that f(j)>f(j+1) (fis a (¢, €3, ..., ¢,)-RA
of [n]) the index of f. So the index is the sum of the j where there is a
descent (or fall). Show that the number of RA for which 7(f)=k equals
b(cy, ¢35...3 k). ([MacMahon, 1913, 1916] gives a proof using the GF;
[Foata, 1968] and [*Cartier, Foata, 1969] give a ‘bijective’ proof.) (6)
An ascent (or rise) of a (cq, ¢,...)-RA of [n], £, is an index i such that
f@E)<f(@i+1). Compute the number A(cy, c,,..., ¢,; k) of the RA with
(k—1) ascents. (These numbers are a generalization of the Eulerian num-

bers [ 5¢], p. 242. They give the solution to the problem of Simon Newcomb
(p. 246).)

*22. Folding a strip of stamps. Given a strip of n stamps labelled !, 2,..., n
from left to right, the problem is to determine the number A(r) of ways
this strip can be folded along the perforations to that the stamps are piled
one on top of each other without destroying the continuity of the strip. It
is supposed that stamp labelled 1 has its front side facing the top of the
pile and its left edge on the left as we look down on the pile. So A(1)=1,
A(2)=2, and A4(3)=6 as it is shown by the following figures:

A/ AV NN
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If n>2, prove that A(n)=2na(n), where a(n) is a positive integer. Here

are the known values of a(n): = 55 :7LC,

n {2345 6 7 8 9 10 1 12 13 14 15 16
am |1 1 2 5 12 33 87 252 703 2105 6099 18689 55639 173423 526937

n | 17 18 19 20 21 22 23

n | 24 25 26 27 28
a(n) | 5382512216 17547919924 56335234064 184596351277 596362337295

(Up to 10: [Touchard, 1950, 1952]; up to 12: [Sade, 1949a]; up to 16:
[Koehler, 1968]; up to 28: [Lunnon, 1973].)

*23. An explicit and combinatorial Stirling expansion for the gamma func-
tion of large argument. Using the Watson lemma for Laplace transforms,

show that
*\* [2n c
rx)~(~- \/~ 1+ Y &), 0,
( ) (e> x< qgl xq) =

where the coeflicients

2

=

[y 4320 + 2K, K)
T 2R g k)

C. =
g

ag

k

use the number dy(m, k) of permutations of [m] with k orbits all >3
(See Exercise 7 p. 256). The first values of ¢, are (for <20, see [Wrench,
1968]): )

g | 1 2 3 4 5 6 7
11 139 571 163879 5246819 534703531
‘0] 12 288 51840 2488320 209018880 75246796800 902961561600




CHAPTER VII

EXAMPLES OF INEQUALITIES AND ESTIMATES

In the preceding chapters we have established explicit formulas for
counting sets. The sets we wanted to count were of the following type:
a finite set N with n elements is given, and then we studied sets of com-
binatorial objects bound to N that satisfied some additional conditions.
If these conditions are not simple, then the explicit formula is usually not
simple either, difficult to obtain, and little efficient. It can often be re-
placed advantageously by upper and lower bounds. Evidently, the closer
these bounds fit, the better.

In most of the cases we want to determine conditions in the form of
inequalities between certain parameters (integers) that guarantee the
existence or non-existence of configurations between these parameters,
The search for such inequalities has the charm of challenging problems,
since there is no general rule for obtaining this kind of results.

In this chapter we give also an example of the use of probabilistic lan-
guage, and, moreover, an asymptotic expansion of the most easy kind.

7.1. CONVEXITY AND UNIMODALITY
OF COMBINATORIAL SEQUENCES

Just as in the case of functions of a real variable, it is interesting to know
the global behaviour of combinatorial sequences of integers v, : monotony,
convexity, extrema; this is a fertile source of inequalities, which are par-
ticularly useful in estimates.

In this respect we recall some definitions.

I. Arealsequencev,, k=0, 1,2,...,is called convex on aninterval [a, b]
(containing at least 3 consecutive integers) when:

[1a] 0. <3y +vsy), kela+1,6-1].

It is called concave on [a, b] if, in [1a], < is replaced by >. In the case
where the inequalities are strict for all k, v, is called strictly convex or
strictly concave. [1a] is equivalent to A%v,:=v,4,—20,,;+v, >0 for all
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kela, b—2] (p. 13). The polygonal representation of v, has hence the

form of Figures 50a or b. For instance, v,: =<Z: , m fixed =2, is strictly

m m m m—2

Uy Ug
Convex Concave

(a) (b)
Fig. 50.

11. Arealsequencewv,, k=0,1,2,...,is called unimodal if there exist two
integers @ and b such that:

[1b] &

k15 Vgt SV =Vpuy =" =0p > Uppy;

Figure 51a represents the polygon of a unimodal sequence in the case of a
plateau (<>a <b) with 4 points, and Figure 51b shows the case of a peak
(«<a=>b).

a b alz b
@ (b)

Fig. 51.
. n . .
For instance, vk:=<k>, n fixed >2, is unimodal on [0, n] with a peak

in k=4n if n is even, and with a plateau in k=(n+1)/2 if n is odd.
IH. A real sequence v,=0, k=0,1,2,..., is called logarithmically
convex in [a, b] if:

v 2 —
= - I 3 .
[1c] Ui € Up_ Ukt kela+1,b—1]
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It is called logarithmically concave if, in [ 1¢c], < is everywhere replaced by
= . In the case that the inequalities are strict for all k, v, is called strictly
logarithmically convex (or concave).

The terminology adopted here originates from the fact that [Ic] is
equivalent to saying that w,:=logy, is convex.

THEOREM A. Each sequence v, (>0) which is logarithmically concave on
its interval of definition, say [a, b], is there either nondecreasing or non-
increasing or unimodal. Moreover, in the last case, if vy is strictly logarith-
mically concave, then v, has either a peak or a plateau with 2 points.

B v7>0,_ V4, can be written as v,/v,_, >0,,,/t;, Which proves that
Zi: =0/t -, is decreasing on [a+ 1, b], where a and b are supposed to be
integers without loss of generality. If z,>1 (or z,,,<1), v, is increasing
(or decreasing) on [a, b]. If z,,, >1 and z,<1, v, is evidently unimodal.
In the last case, if z, decreases strictly, then there is at most one value of k
such that z,=1, which gives then a plateau of 2 points. I

THEOREM B. If the generating polynomial:

[1d] P(x)i= Y wvx*, v,#0,

o<k<p
of a finite sequence v,(>0), 0<k < p, has only real roots (<0), then:

k p—-k+1

le 02> .0 —_—
[] k k1k+1k_1 p—k

, ke[2,p—1]

(this is one form of the Newton inequalities, [*Hardy, Pélya, Littlewood,
1952], p. 104); hence v, is unimodal, either with a peak or with a plateau
of 2 points.

M Let us first suppose that all the v, >0. Applying the theorem of Rolle,
the polynomial Q(x, y)=3"F_, v,.x*»?~* has only roots with real y/x, so
the polynomials dQ/dx and 0Q/dy also have this property; inductively we
find then that this is true for all 8°*°Q/0x%dy®, a+b<p—1. This holds
particularly for the second-degree polynomial 8P~2Q/dx*~1gyP~ k-1,
whose discrimant is consequently >0, hence [ 1e]. Now, if there does exist

an / such that v;=0, 0</< p—1, then all the roots of P(x)=0 are zero,
since these are numbers <0 whose (p—/)-th elementary symmetric func-
tion is zero; so finally, v,=0, 0k < p—1, hence [1e] follows again. W

Now we have a powerful tool for proving unimodality of certain com-
binatorial sequences.

THeOREM C. The sequence of the absolute values of the Stirling numbers of
the first kind, s(n, k), n fixed (=3), k variable (<n) is unimodal, with a
peak or plateau of 2 points.

In fact, only the peak exists, [ Erdos, 1953]; for estimates of its abscissa,
see [Hammersley, 1951], [Moser, Wyman, 1958b].)

M In fact, the ‘horizontal’ polynomial ([5f], p. 213) Y,s(n, k) x*=
=x(x+1)---(x+n—1) has only real roots, and we can apply Theorem.
B. N

THEOREM D. The sequence S(n, k) of the Stirling numbers of the second
kind, n fixed (23), k variable (<n), is unimodal with a peak or plateau of
2 points. ([ Harper, 1967], [Lieb, 1968]. See also [Bach, 1968], [ Dobson,
1968], [Dobson, Rennie, 1969], [Harborth, 1968], [Kanold, 1968a, b],
[Wegner, 1970], and Exercise 23, p. 296.)

M We know ([2b], p. 206) that the P,=P,(x):=) ko S(n, k)x* satisfy:

@ = P(t, x):= n;o P,(x) ;1—' =exp{x (e — 1)}.

Now x® + xd®[dx — d®P/0t = 0. Hence:

dx

dPn-—l
[1f] Py=x(Po_ +—""1), n>1.

Put H,:=e*P,; [1f] gives then H,=xdH,_,/dx. Applying the theorem of
Rolle repeatedly shows the roots of H, to be all <0, hence also the roots
of P, are <0, as they are the same. Then apply Theorem B again. W

7.2. SPERNER SYSTEMS

DEFINITION. A system & of distinct blocks of a finite set N, <P’ (N),
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is called a Sperner system, if for any two blocks, one is not contained in the
other. In other words, if s(N) is the family of these systems:

(£es(N))< ((B,B'e¥)= (B¢ B and B ¢ B)).

THEOREM [Sperner, 1928]. The maximum number of blocks of a Sperner
n

[#/2]

W For all #es(N), we will prove with [Lubell, 1966]:

system equals , where [x] is the largest integer <Xx.

s 3 e
(

Bes n
|B|

This will imply the theorem, because <Z)<( ) for all k[0, n},

[n/2]

1 1 191

LN e Ny
"’”(an“y(w/ﬂ) )

n
[n/2]
reached by the Sperner system B, ,;(V). We now prove |2a]. We
introduce the name chain for a system € = {C,, C,, ..., C;} of N, <’ (N)
such that C,cC,<-.-=C;, with strict inclusions. A chain is called
maximal if it has a maximal number of blocks, namely #. Let ¢(N ) be the
family of maximal chains of N. A maximal chain is evidently completely
determined by the permutation (x,, x5, ..., x,) of N, given by: x;:=C|,
X3:=C,—Cy,..., X,:=C,—C, ;. Hence |¢(N)|=n!l. Now we observe
that a given system & is a Sperner system if and only if each chain
¥ cc(N) satisfies |€ n | =0 or 1. Let ¢, be the family of chains ¥ec(N)
such that |[€ n &|=1. We define the map ¢ from ¢, into & by ¢(%):=the
unique block Be® n.%. Of course ¢ is sutjective, and for all Be¥,
e~ (B)|=|B|!(n—|B|). It follows that:

[2b]  leol = BZy lo™' (B)| = B;y IB| ! (n— |B|)!.

hence:

From this we get, using [2a], IVK( > This maximum value is
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It now suflices to combine |c [ < |e(N )| =n! with [2b] to obtain [2a]. M

The number s(n)=[s(N )| of Sperner systems (unordered systems with-
out repetition, in the sense of p. 3) is just, up to 2 units, the number of
elements of a free distributive lattice with n generators, or, the number of
monotone increasing Boolean functions with n variables. Since [Dede-
kind, 1897] numerous efforts have been made to compute or estimate this
number [Agnew, 1961], [Gilbert, 19547, [Riviére, 1968], [ Yamamoto,
1954]. Actually, the known values are:

{4 :: { IL _..,[,,J_, 2 _,_3 tik 5 »767 __z‘
;/ Csm |14 18 166 7579 7828352 2414682040996

(5(5) due to [Church, 1940], s(6) due to [Ward, 1946], s(7) due to
[Church, 1965]). The following upper and lower bounds hold:

2([71/2]) < 5(11) < 3([11/2])

([Hansel, 1967]) and also the asymptotic equivalent 10g25(11)~<["’;21)

([Kleitman, 1969], [Shapiro, 1970]). Various extensions of the Sperner
theorem have been suggested ([Chao-Ko, Erdds, Rado, 19617, [Hilton,

Milner, 1967], [Katona, 1966, 1968], [Kleitman, 1968b], [Meshalkin,
1963], [Milner, 1968]).

7.3. ASYMPTOTIC STUDY OF THE NUMBER OF REGULAR GRAPHS OF
ORDER TWO ON N

(1) Graphical and geometrical formulation of the problem

A regular graph of order r (integer >0) is a graph on N, |N|=#n, such
that there are r edges adjacent to every node xeN. Let G(n, r) be the
number of these graphs. Evidently G(n, 0)=1. For computing G(n, 1),
observe that giving a regular graph of order 1 is equivalent to giving a
partition of N into disjoint pairs (the edges). Hence G(2m+1, 1)=0 and
G(2m, 1)=(2m)!/(2"m!). We investigate now G(n, 2)=g,. First, we give
a geometric interpretation to these numbers ([*Whitworth, 1901], p. 269,
Exercise 160).

Let be given a set 4 of n straight lines in the plane, 6,, §,,..., §,, lying
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in general position (no two among them are parallel, and no three among

them are concurrent). Let P be the set of their points of intersection,
n . .

| P} =(2). We call any set of # points from P such that any three different

points are not collinear, a cloud. An example is shown in Figure 52, for

Fig. 52.

the case n=4, {a, b, d, e}. Let ¥(4) stand for the set of clouds of 4, then
we have:

[3a] Ne¥9(4)«NcP; |Nj=n; ({a,b,c}cP,
ded)={a, b, c}¢4d.

Giving a cloud is hence equivalent to giving a regular graph of order 2:
it suffices to identify the lines &,, 85, ..., d, with the nodes x, x,,..., x,
of N, and each point of intersection ;" d; with the edge {x;, X}

For example, with 3 points, we can get only 1 cloud; with 4 points, we
have 3 clouds, since the clouds in {8,, §,, 83, 6,} (Figure 52) are the sets
{a,b,d, e}, {a,c,d, f}{b,c e f} The problem is to determine the
number g,=|9(4)| of clouds of A.

(1) A recurrencerelation ([Robinson, 1951,1952], [ Carlitz, 1954b, 1960b]).

Let now M:={a,, a;,..., d,_,} be a cloud of I' := {8y, 85,..., 6, }. It is
clear, by [3a], that every straight line §;, ie [n— 1], contains exactly two
points of M. Now we add an n-th line J,, so we obtain 4:=
:={8;,03,..-»0,-1,8,}. We consider then an arbitrary point a; of M, which
belongs to 2 lines, say 5, and 5, (or I'), that intersect 3, in the points u and v.
(Figure 53). It is easily seen that N:={a;,da, ..., @1, Gi415-0s Gays Uy v}
is a cloud of A. Thus, if we let a; run through the set a,, a;,..., d,_1, W€
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Sk "
5, Sn
Fig. 53. Fig. 54.
85 .
84 /
v
&5 A .
d %
b u
5, \
8

Fig. 55.

associate with every cloud Me%(I') a set &(M) of (n—1) clouds of 4:

[3b] d(M)cg(4), | PM)=n-1.

On the other hand, each cloud Ne%(4) obtained in the preceding way
(Figure 54) is obtained in one way only:

[3c] M,M'e4(I), M#M =>o(M)nd(M')#0.

But in this way ¥(4) is not completely obtained, because there exist
singular clouds N of A that do not belong to any @ (M), for instance, the
cloud shown in Figure 55. Let . be the set of singular clouds of 4. Giving
a cloud €.¥° is evidently equivalent to giving a pair {u, v} among the
(n—1) points of §,,, and to giving a cloud on the (n —3) lines &, that do not
pass through {u, v}. Hence:

(4] 1] =g s (”; ‘).
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Now, according to [3c] we have the division:
GM)=( ) eM)+7;
M e %(D)

this gives, after passing to the cardinalities (using [3b] for (x)):

=g ()= Mezm (@ (M)} + 151 =

X (n - 1) |2+ 7).
Finally, by [3d]:

[3e] g..=(n—1)g,._1+(n;1)gn—3, %\C/
n23; goi=1, g1=g,1=0. 6\\ ~
RO

n jO0 1 2 3 4 S5 6 7 8 9 10 i1

gn |1 0 0 1 3 12 170 465 3507 30016 286884 3026655

n 12 13 14 15 16

gn | 34944085 438263364 5933502822 86248951243 1339751921865

(II1) A generating function
Using [3e] for (»), we get:

«M
[3

t.':
(31 g(i=Y gu=1+} gu—
nz0 N3 nz3

n!

(*) n—'l t’i
=1+Z(n—1)gn— +Z( )gn—3n!'

nz3

Taking the derivative of [3f] with respect to #:
n—2 t2 Vi 3

9'(‘)=‘"§.3 In-1 (3 2 z)v ,,Z‘g In=3 n =3
=tg'(t)+%g(t)-

Thus, considering g(z) as a function defined in a certain interval (to be
specified later), we obtain the differential equation g’(¢)/g(t)=1/2(1 —1),
which gives, by integration on {—1,+1) and exponentiation, and ob-
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serving that g(0)=g,=1: of \‘k/’
£+ 2f

Be 9= 3= s =) N T
PRV NEAEE

(IV) The asymptotic expansion

We will use the ‘method of Darboux’ ([Darboux, 1878]) which is stated
below. No proof will be given.

THEOREM. Let g(z)=3",»0,2"/n! be a function of the complex variable z,
regular for |z{< 1, and with a finite number | of singularities on the unit
circle |z} =1, say €', &'®1, ..., e'*. We suppose that in a neighbourhood of
each of these singularities €', g(z) has an expansion of the following form:
[3h] g(z)= Y ”"(1 — ze it pell],
rz0 :
where the a, are complex numbers, and all b, >0. The branch chosen for
each bracketed expression is that which is equal to | for z=0. Under these
circumstances, g, has the following asymptotic expansion (n— «):

Bl g= Y { Y a+pb), (e ™)} + 0.

0<p<ig 1<ks!

(g) is the smallest integer >max, <4<,b; '(g—Re (0;)—1), and

O (n™ “nt) means a sequence v, such that v,{(n~‘nl) is bounded jor n— .

it is important to observe that formally the asymptotic expansion [3i] of
d., up to the O term, can be obtained by gathering for each singularity
e'% the coefficient of z"/n! in [3h].

We apply this theorem to the function g(z), defined by [3g]; the only
singufarity is in z=1. The expansion [31] can be obtained using the
Hermite polynomials H,(x), [14n] (p. 50). Thus, if we put u:=1-—z:

2
u H,(1)
N=e 3 W2 explu— - |=e 3y~ 112 AT
7() P 4 D;O 27p!

__e—3/4(u~l/2+u1/2+%u3/2 5/2 I )

Hence, by [3i], where I=1, &'?=1, c},‘)=c,=Hl,(l)/2”p!, a=—1}, b=1,

-
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&(q)=g—1 for all integers g>1, we get the asymptotic expansion of g,,:

[3i] ga=e" 3" :;Zo {%172 (=1 (p- %),,} +0(nln"%, noow.

Taking into account the Stirling formula n!=n"e"~ "\/ 2nn (1+0(n™)),
[3i] gives us, if we take only the first term (g=1):
go=e ¥ 2. "e {1+ 0(n ) ~e T J2 0 e,

(V) A direct computation
We could have determined g, directly, by an argument analogous to that
on p. 235. It is the number of symmetric and antireflexive relations on
[#] such that each section has 2 elements. Hence:

gh = G (ns 2) = Cwlzwz2 cee Wp2 H

1<€i<j<n
RS

(I +ww))

from which follows, after some computations:
(__ l)az+ﬁ1

ag+2a3+py=n %4 !“2!ﬁ1!

x (2a,)! (22 + B;)! % (”)'

L3

1
=G(n,2) =~
gn (n ) 2n

(which leads to the GF [3g] and conversely).

(VI) The generai case

The explicit computation of G(n, r) (p. 273) can also be done by:
G (fl, r) = Cwl"w;" e WaT H

1<i<j<n
A

(1 + ww;),

but the formulas become very quickly extremely complicated. Thus,
G(2m+1,3)=0 and
(___ I)Gz"’ﬂt
G(2m,3)=% 22a1+2ax+ 2az+ f—myar ¥ 2a3—m x
(2m)! (2a, )!
agtaytog! Bl (ay + o3 — m)!’

where a; + 20, + 303+ By =3m and «; +o32>m. The first values of G(n, r)
are:

EXAMPLES OF INEQUALITIES AND ESTIMATES 279

mr |0 1 2 3 4 5 6 7
o 1 i

thj 2 1 1

3 1 0 1
L 4 11 3 3 1

5 1 0 12 0 1

6 1 15 70 70 15 1

7 1 0 465 0 465 0 1

8 i 105 3507 19355 19355 3507 N 105 1

.
\l\
7.4. RANDOM PERMUTATIONS c;\‘»

We take for probability space (2, %, P) the following: Q=G[n] (the set
of all permutations of [n]={l, 2,..., n}), #="P(S[n]) (the set of ali sub-
sets of ©[n]), and for probability measure P that for which all permuta-
tions have equal probability:
1 1]

[4a] we@[n]-—-:»P(w)=;zi; AcGln]=>P(4)= -

(Definitions A and B, p. 189; we observe that the probabilistic termin-
ology used in this section is defined in Exercise 11, p. 160).

We are now interested in the sequence of RV (random variables) y,:
Q> N defined by:

Fanl C =C () —t
Cola)—t

1451 C, he number of orbits of ©

According to Theorem D (p. 234) and to [4a] above for (*), we obtain
the following distribution for the C,:

x5 (n, k)

[4c] pa(k):=P(C,=k) e

where the s(n, k) are the unsigned Stirling numbers of the first kind. Con-
sequently, the GF of the probabilities of C, becomes, using [5f], p. 213,
for (x#):
s(n k)
[4d] gy =gc,(u)= ; pa (k) u* = ; *(;'—— ut =

1
iy julu+ De(ut+n-1),
n!
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from which we obtain the GF of the cumulants of C,:

[4]  r()=loglo(@)} = ¥ log(l i 1).

<ign 1

We expand [4e] using [2a] (p. 206) for (o); then we obtain:

I g—' =r(= 3 {,‘; (“:“1,'): <er: 1)}

© (__ )1—1 "
= L (=Dt Y S(m 1) —¢.
1<i<n i > m!

and by identifying the coefficients of t™/m! in [4f].
THEOREM A. The cumulants of the RV C, defined by [4b] equal:

[4g] K = K (Cn) = Z {(— 1)1—1 (l - ])! S(m’ l) Cn(l)} ’

1<{<m
where S(m, 1) is the Stirling number of the second kind and

[4h] L= Y —_1;=I+1

ni
i<isn i 2

1
+"‘+"i.
n

Thus, by passing to the moments:
wy =E(C,) =, ={,(1);
[4i] Hy =varC, =D?(C,) = x, = {, (1) — (,(2).

For studying the behaviour of the limit of C,, we state the central linit
theorem (in very general form due to [Lindeberg, 1922]; see, for instance,
[*Renyi, 1966], p. 412-21, for a proof):

THEOREM B. Let X, ; be a double sequence of RV, defined for neN and
(1<) i<k,, where k, are given integers >0. We suppose that the variables
X, i, n fixed, i variable, ie[k,), are independent, which is formula-
ted by saying ‘the X, ; are row-independent’. If we define new RV S, and
Y, :by:
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Xn i E (Xn i)
4 Sn::= ){ni’ }} Pv= - )

[ J] 1 <i<ky ' ’ D(S")
with, for distributions function of Y, ;:

[4k] G"‘i(}") L= P(Yn,i < y),
then the condition [41] (of Lindeberg):

[41] Ve>0, lim Y y*dG, (y)=0

n—=+ow 1<i<k,
Tyl

implies [4m] (central limit theorem):
x

[4m] "121; p{“i%‘.(iffﬂ < x} =d(x):= L J e "2 dt.

e o]

The conclusion [4m] still holds when E(S,) and D(S,) are replaced by
equivalent ones, when n— oo.

The role of the RV S, will be played by C,, [4b], for our application.
Thus, we have to interpret C, as a sum [4j]. To do this, we define the
sequence X, ; of row-independent RV, 1<i<n, by:

[4n] P(X,,=1)=1/i, P(X,, =0)=1=1]i.
The GF of the probabilities of the X, ; equai gy, (uj={i—1 tu)fu
Thus we get, by {4d] for (*), and by the row-independence for (*x}
(k) (k%)
ge,(u) = 1fil< x,,, () = gz, , (1),

<isn

1)

from which foilows:

[40] C,= Y X.i-

1<i<n

Furthermore, we show that condition [41] is satisfied by the X, ;. Because
of [4i]: i1
D2 (Cn) = Z ;2

> —
2<{<n 2&fn i+ 2 4

>logn—1—

-
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Hence:

1
I-; 1

i

C e e —
\/logn-2 \/logn—z

which, for n sufficiently large, implies |Y, ;j<e, in other words,

fis1>¢ ¥ 4G, (¥)=0, for all ie[n]; hence [41] follows. Finally, we use
E(S,)~logn and D(S,,)~\/logn to obtain by [4m]:

-1
llmP{ og” x}=(D(x).
n—co \/logn

In other words ([*Feller I, 1968], p. 258): “The number of permutations

Xn,i - E(Xn, i)

lYn,i|= D(C,,)

a< B, equals approximately n!{®(f)— &(x)}.”

We give, rapidly, another example of RV associated with random per-
mutations. We will deal with /,=1I,(w), the number of inversions of the
permutation w (p. 237). The GF of the probabilities is ([4h], p. 239):

1 1—u

4 @ =
[4p] 1y n!1s4~<,. 1—u

1+ul+u+u® ldu+u+Fu"!

.
LT >

: 2 2
J ot

= log1+1t+%— +-

1<j<n g( 2 32! )

117
- log(1+-t+_.—
12;@ °g< Tttt )
By [5a] (p. 140) follows: s,=Y 7= L,(j/2,j%/3,...) —nL,(1/2, 1/3,...).
Hence p) =E(I,)=1x,=n(n—1)/4 (cf. p. 160), p, =D*(I,)=x,=n(n-1)
(2n+5)/72; in other words E(1,) ~n*/4, D(1,) ~n*/*/6.

The factorization [4p] suggests that we define the row-independent
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RV X, ; by P(X, ;=k)=1/i, where (k+1)e[/], and then we prove easily
that the Lindeberg condition [41] is satisfied. Thus:

lim P{ n/4<x}=d§(x).

5o o0 3/2/6

In other words: “The number of permutations whose number of inver-
sions lies between n?/4+an*?/6 and n?/4+ pu3/?/6, a<p, equals ap-
proximately n!{®(B)— ®(a)}.”” ([*Feller, I, 1968], p. 257. For many other
problems of random permutations, see [ Gontcharoff, 1944] and [Shepp,
Lloyd, 1966].

7.5. THEOREM OF RAMSEY

The Ramsey theorem generalizes the ‘Dirichlet pigeon-hole principle’:
If n+1 objects are distributed over » pigeon holes, at least one pigeon
hole contains at least two objects. It introduces a sequence of numbers
whose computation and estimation are still among the most fascinating
problems of combinatorial analysis.

(1) Statement of the ‘bicolour theorem’ and definition of the Ramsey
numbers p(b; p, q)

DEFINITION. Let three integers be given, b, p, q, | <b<p, q. A finite set
N oie nnlln,l Ramsoy- {h n n\ if forall divicione (¥ 2\ AFf Q) (AT jnta £

ol y \u, PrY) y s 2 Lo veortirio (25 0y Uy b\LY } nic iwe
subseis, % + P =P(N), (p. 25)at ieast one of ine joliowing two siatements
is frue:

[5a] There exists a P such that PeB,(N), P, (P)c=?
[5b] There exists a Q such that Qe P, (N), R, (Q)c 2.

Now we can state the ‘bicolour’ theorem of Ramsey. 1t is called the
‘bicolour” theorem, because a division into two subsets % + 2 is equivalent
to colouring each block BeB,(N) in one of two given colours, say,
carmine and dove-gray.

THEOREM. There exists a triple sequence p(b; p, q) of integers >0, called
bicolour b-ary Ramsey numbers (multicolour numbers will be investigated
in Exercise 26, p. 298), which is characterized by the following property
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[5¢] concerning an arbitrary finite set N:
[5c] N isRamsey-(b; p,q)=<=IN|=p(b;p,q).
Moreover:
[5d]  p;pa)<i+p{b—1;p(b;p=1,9),p(b;p, g~ 1)}.

([Ramsey, 1930]. Our exposition is an adaptation of [*Ryser, 1963],
pp. 38-46.)

(1) Some special values of p(b; p, q)

First, it is clear that the roles of p, € and ¢, 2 are symmetric; so:
[s¢]  p(bsp,q)=p(b;4,p)-
We also show:

(51 p(p9)=p+q-1, 1<p,q.

B Let N be a finite set, such that |N|=n>p+g—1. Suppose a division
of B, (N )= Ninto two subsets ¥ + P = N is given. Then we have [%| 4 | 2| =
=n>p+q—1, hence |€|>p or |2|>q. If |€| > p, there exists a Pe P ,(N)
such that PB,(P)(=P)c¥; if |2|>q, there exists likewise a Qe P (N)
such that B,(Q)(=Q)<=2. Thus, N is Ramsey-(1; p, q) if nzp+g—1.

Canvarcaly iFINlnL a1 in athar warde i f INl—n<nla_.) wa
Lonversery, i (N <p--g—i, 1 oIner Worgs, 1 (N =g P-4 -2 We

only have io choose a division inio iwo subseis ¥+ Z = N such that | =
=p—1, [2|=q—1 to see that N cannot be Ramsey-(1; p, g).
Finally, we prove:

[5g] p(b;b,9)=4q (=p(b;q,b)), b<q.

M We first prove that each finite set N such that n=|N}{>g¢q is Ramsey-
(b; p, q)- For a division into two subsets €+ 2 =P,(N) there are two
cases:

(I) €+#90. Then choose Pe%; hence |P|=p=>b wich implies hence
evidently P,(P)={P}<¥.

(II) €=0.Then 2= P,(N). Now,n=|N|>4. Hence B (N ) is not emp-
ty, and we can choose Q there. Necessarily | Q| =g and B,(Q)=B,(N)=2.

Conversely, if |[N|<g, in other words, if |N|=n<g-—1, it suffices to
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choose the division into two subsets € +2=,(N) such that €=0 to
see (by P,(N)=0) that N cannot be Ramsey-(b; b,q). M
Taking into account [ 3e, f, g] we suppose from now on that:

[5h] l<b<pq.

(1) Choice of the induction for p(b; p, q)

Let R(h) be the table of the values of the double sequence p(b; p, q),
P, =1, b fixed > |, extended by p(b; p, ¢)=0if not 1 <b<p, g. We know
already R(1), according to [5f]. To prove the existence of p(b;p, q),
I<e<b—1, we suppose the existence of all the tables R(c) where b is fixed
>2 (<>existence of all the p(c; p, q), with c<b—1, p, q), as well as the
existence of:

[5i]  p'i=p(b;p—1,q) and ¢ :=p(b;p,q—1)

in the table R(b). From these induction hypotheses we will deduce now
the existence of p(b; p, ¢), and simultaneously also:

[5i] p(b;pg)<1+p(b—-1;p,49),

in other words [5d], because of [5i].

+ T8 30 amanivalant + ving thot avary
L LJ L U 15 L

17N -
\4¥ J ] 10 Lv{uivaivi

saiisfles:
[5k] n=|NI21+p(b-1;p,q)

is Ramsey-(b; p, q) (p’, ¢’ defined in [5i]).
Let N be such that [Sk] holds, and choose xe N, and let M:=N~—{x};
then, by [5k]:

[511  IMl=n-12p(b-1;p,q).

Now we associate with the division €+ 2 =B ,(N) the division €'+ 2'=
=P,_,(M), defined by:
[5m] @ :={C\{x}1Ce¥}, 2 :={D\{x}1DeP}.

According to [51], M is Ramsey-(b—1; p’, q'), which implies for €’ and
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2’ that at least one of the following two statements is true:

[Sn]  There exists an X such that XeP, (M), B,_,(X)<=¥".
[So]  There exists an ¥ such that Y eP, (M), B, ,(¥)c=Z".

We suppose now that we are in the case [5n]. Because |X|=p':=
p(b; p—1, q), the set X is Ramsey-(b; p—1, q); hence, we have for the
division " + 92" = P,(X), defined by

[5p] € :=%¢nB,(X), 2":=92nP,(X),
at least one of the following two possibilities:

[54] There exists a P’ such that P'e%P,_;(X), B, (P)c?".
[5r] There exists a Q such that Qe P, (X), B, (Q) = 2".

In the case [5r], evidently Qe B,(N), because X< N; hence B,(Q)=2,
since 2" =9, [5p]. So we have proved [5b].

In the case [5q], we will show that the set P:=P'u {x} satisfies [5a]
indeed, in other words, that P,(P)c=%. We put:

[55]1  Xo:={BIBeB,(P), x¢B},
= {B1 Be B, (P), xeB}.

Hence:
[58]  Pu(P)=% + X,.

We have X, =% this follows from: (1) X, < B, (P ") by definition [5s] of
Xo; (2) Bo(P")=%", [5q]; (3) 6" =%, [5p]. Similarly X, =&, because all
KcX, are of the form K=H + {x}, where HeP,_(P’), [5s]; now,
because of [5q], By-1(P')=B,-,(X); hence, by [5n], B,_,(P")=F";
consequently, by [5m, s], K<¥. Finally, [5t] implies B,(P)=%, in
other words [5a].

A similar argument, mutatis mutandis, is carried out in the case [50].

For the computation and the properties of the Ramsey numbers, we
refer to several authors who have worked on this problem ([ Erdds, 1947,
1957-58, 1964], [Giraud, 1968a, b, 1969a, b], [Graver, Yackel, 1966,
1968], [Greenwood, Gleason, 1955], [Kalbfleisch, 1965, 1966, 1967a, b,
1968], [Krieger, 1968], [Walker, 1968], [ Yackel, 1972], [Zndm, 1967}).
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7.6. BINARY (BICOLOUR) RAMSEY NUMBERS

In this section we deal with the numbers p(2; p, q), [5¢] (p. 284), which
we will denote in the sequel by p(p, ¢), 2< p, g. We give a new definition
of these numbers in terms of graph theory (p. 61).

Giving a division into two sets ¥ + 2= ,(N) is equivalent to giving a
graph ¢ on N, if we make the convention that =% and 2=%=
=P, (N)—¥%. This is also equivalent to painting the edges of the complete
graph B ,(N) in blue and white colours, that is, painting blue the edges
in %, and white the edges in 2. This explains why the numbers p(2; p, ¢)=
= p(p, q) are called bicolour numbers.

Fig. 56.

With every graph & on N, we associate the following two numbers:
(1) The number ¢(%¥ ), which is equal to the maximum number of elements
nninla viheovanh n(‘(ﬂ () tha numhar (@) nqunl mavimim

of a complete subgraph of ¥ ; (2) the number i(¥), equal to the maximum
number of elemenis of independent sets & (i.e. compiete subgraphs of ).
Let now be given two integers p, ¢>0. We say that ¢ is a (p, q)-graph if
c(%)<p and i(%)<gq. This means that ¢ [or 4] does not contain a
complete subgraph of p elements [or ¢ elements]. Hence, the negation
of [5¢] (p. 284) can be written:

[6a] thereexistsa (p, ¢)-graph ¥ <= P, (N) == NI +1<p(p,q),

and the problem becomes that of constructing (p, q)-graphs with the
largest number of vertices, thus providing a constructive procedure for
obtaining lower bounds for the Ramsey numbers p(p, q).

We will illustrate this with the computation of p(3, 3). Inequality [5d]
(p. 284) combined with [5f] (b=2) gives:

[6b]  p(p.g)<p(pg—1)+p(p—1,9).
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This gives, together with p(2, 3)=p(3, 2)=3 and [5¢]:
[6c] p(3,3)<6.

On the other hand, the graph ¢ of Figure 56 over N, |[N|=35, whose edges
are indicated by full lines, does not contain any triangle (=complete sub-
graph of 3 elements); the complementary graph neither does (¥ is in-
dicated by dotted lines). Hence, by [6a]:

[6d] p(3,3)>6.

Together, [6c, d] imply p(3, 3)=6.

Below the first values of p(p, ¢) that are either known or for which
bounds are known. The table should be completed by symmetry (cf.
[5e], p. 284). For p(3, 8), for instance, 27-30 means 27< p(3, 8)<30.

P2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10
3 6 9 14 18 23 27-30 36-37 39-44
4 18 25-28 34-44 ?-66 ?7-94 ?-129 7-170
5 38-55 51-94 ?7-156 7-242 ?-364 7-521
6 102-169 7-322 7-544 7-887 ?-1371
7 110-586 ?-1131 ?-1974 ?-3255

7.7. SQUARES IN RELATIONS

Let M be a finite set and a an integer, 1 Kag<m=|M|. Determine the
smallest integer £=1(m, a), such that each k-relation R on M, RcM?
(=M x M), |R|=k>1, contains at least one a*-square ([Zarankiewicz,
1951]). This is a product set of the form 44'=Ax A’, where A, A’ < M,
|A|=]4’|=a. In other words, when ¥=%(a) is the set of a*-squares
of M?:

[7a] k> f(m, a) < YRe P, (M?),
©3(4, A)eP,(M)?, AA <R,

where B, (M)?*:=P (M) x B,(M). Evidently a? <E<m?.

We transform [7a] by introducing for each a®>-square 44'€% the set
of r(4A") of the k-relations on M that contain 44’. Hence [7a] is equiv-
alent with: :
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[7b] k=¥t(m, a)= P (M?) = U r(A, A").
(4, 4’) e Pa(M)?

This will provide us with a lower bound for f.
THEOREM A. There exists a constant ¢, =c,(a)>0 independent of m such
that:

[7¢] t(m, a) > cym?* .m™%°,

M In fact, [7b] implies, by [7d] (p. 194):
[7d] 1W< ¥ e (4,4

(4, 4") e Pa(M)?
Now:

o= ). moenn=(7)

Hence [7b] becomes, by [7d, €]:

’”2 ) m 2 nlz"‘az
[7f] k;f(n1,a)=>(k><(a) (k——az)'

We weaken () by using: (1) (x)<>(x%); (2) (m),<m" for (xxx); (3)
,mz,/k<(ln2 —])/(k-—l) for (****);

2\ a2 20,2 AV (2 o2
[7e] (i O (m*—=1)-(m 2a + 1)
k(k—1)-(k—a®+1)

k
(":) (m>2 (*Z*) m2
S TN
a (at)?

Hence, by [7f, g]:
kstma)= (") <™ ks (@) m? w2
= s = | —- —— D> al MmUY s
. @y e m

which is [7c]. W

THEOREM B. There exists a constant ¢, =c,(a)>0 independent of m such
that:

[7h] f(m,a) < cym®>.m™ 1,
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B Let Re P(M?). We put M =[m]}:={1,2,..., m} and

[7i] rii=KR ]j)l (hence .; ri=k),

where (R|j> means the second section of R by j(see Figure 57).
Clearly N contains a a?-square, if there exists an a-block A(<=M)
which is contained in at least a of the subsets (R|j> of M, je[m]. Now,
according to an argument analogous to the ‘pigeon-hole principle’ (p. 91),
this happens as soon as:

7] j‘; (21) >(a—1) (':) (= k > T(m, )).

We now must majorize k as good as possible, using [7i, j]. (For a more
precise statement; see [Zndm, 1963, 1965], [Guy, Zndm, 1968].) By

. x . Ce
convexity of the function (a for xza (its second derivative is always

positive: d2(x),/dx? =2(x),Y 0<i<j<a-1{(x—)(x—)} ') and the related
Jensen inequality, we obtain, using [7i] for (*):

ritrytectr,
r

[7k] (d>m "
1<jsm \4

a

D m (k{zm) >m g(f/-"lal—*——'— a)“'

i
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Consequently, by ('Z) <m®[a! for (xx):

[71]

k ) a a
m ((k/m) — a) o (4 — 1)'_"_©
a!l a!

sk>am+(@a—=1)"".m*>.m " = k>¥(m,a).

Hence f(m, a)<am+ (a—1)""m* .m~"%, which implies [7h]. M
The following is a table of the known values of ¥(m, a). (See all the
quoted papers by Guy and Zndm, and Exercise 29, p. 300.)

am |2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 |4 7 10 13 17 22 25 30 35 40 46 53 57 61 -
9 14 21 27 34 43 50 61 ? ? .
16 23 ? ? ?
25 34 ? ?
NN

v AW

It has been proved that f(m, 2)~m*2, m— oo ([Culik, 1956], [Hyltén-
Cavallius, 1958}, [Kovari, S6s, Turdn, 1954}, [Reiman, 1958], [W. G.
Brown, 1966]), but no asymptotic expression is known for ¥(m, a), a >3,
fixed, m — co0. A conjecture is that there exist constants c¢(a)>0 such that

t(m, a) ~ c(a) m*m="'"

SUPPLEMENT AND EXERCISES

1. Vertical convexity of Stirling numbers and Bell numbers. (for a general-
ization of these properties see [ Comtet, 1972]). (1) Show that for fixed k,
the sequence S(n, k) is convex, n>k. Same question for s(n, k). (2) The
sequence of numbers w(n) of partitions of a set with » elements (p. 210)
is convex.

2n\.
2. Subsequences of the Pascal triangle. The sequence u,: =( :) is convex.

Does 4*u,>0 for k>3 also hold? Analogous questions for (2'1: c) and

bn . .
<an)’ a, b, c integer, | <a<b. For a and b integers =1, and n— o0, we
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have:

((a + b) n) (a + b)n(a+b)+l/2 1

an aan+1/2bbn+l/2 \/i;t-;’l'

_[Use the Stirling formula nl~ (n/e)"\/ 2nn.]

3. Unimodality of the Eulerian numbers. Show that the Eulerian poly-
nomials A,(u) (p. 244) form a Sturm sequence, that is, A,(u) has n real
roots ( <0), separated by the roots of A,_,(u). [Hint: Use the recurtence
relation 4,(u)=(u—u?)A4,_, (u)+nuA,_,(u).] Use this to prove that the
sequence A(n, k), for fixed n, is unimodal.

4. Minimum of a partition of integers function. With every partition
(3)=(y1s Y25---> ¥m) of n into m summands y,+y,+-+y,=n, y3 =

>y, 2y, =1,we associate W(y):=) /., };ci)

fixed, the minimum of W(y) occurs for a partition (y) that satisfies
yi—y;<1 for all (i, j) such that 1 <i<j<m.

Then, for m,n k

5, The most agglomerated system. Let N be a set, and & a system of N
consisting of k (distinct) blocks all with b(>1) elements, € P, (P,(N)).
Then M:=\Jz s B has for minimal number of elements the smallest

\
integer m such that kg(";), (b, k fixed).

6. Partition into unequal blocks. The maximum number of blocks of a
partition of N, |[N|=n, into blocks with a/l different numbers of elements

equals the largest integer <(1/2)(—1+ \/ 8n+1 )-

o —1\, .-
7. Bounds for S(n, k). The inequalities k" k< S(n, k)S(Z_ 1>k" ,

follow from [2e] (p. 207). Improve these bounds for the Stirling numbers
of the second kind.

8. The number of k-Sperner systems. The number s(n, k) of Sperner
systems with k blocks of N, |N|=n, satisfies s(n, 2)=(1/2!) (4" —2.3"+2"),
s(n, 3)=(1/31) (8"—6.6"+6.5"+3.4"—=6.3"+2.2"), (n, 4)=(1/4!) (16"~
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—12.12"4+24.10"+4.9"— 18.8"+6.7"—36.6"+ 36.5"+ 11.4" - 22.3" +6.2")
([Hillman, 1955]). *Determine for s(n, k) an explicit formula of minimal
rank.

9. Asymptotic expansion of the Stirling numbers. (For a detailed study of
this matter, see [ Moser, Wyman, 1958b, c].) We suppose k and a fixed,
and n- oo. (1) S(n, k)~k"[k!. [Hint: [1d], p. 194, and [1b], p. 204.] (2)
s(n+1, k+ 1)~ (! fk!)loghn. Moreover, [7b] (p. 217) gives a complete
asymptotic expansion.

*10. Alike binomial coefficients (ABC). These are integers of the form
n'(a! b)~ ', where n,a,b are integers too, such that a+b>n. Every
binomial is evidently ABC. Show the existence of a universal constant
¢ >0 such that a+b<n+c logn for each ABC ([ Erdos, 1968]).

*11. Around a definition of e. 1t is well known that ¢(¢):=(1—1¢)""" ap-
proaches e if ¢ tends to 0. More precisely, (t)=e(1+) 5, A(n)t")=
=Y ,»0a(n)t", where the rational numbers A(1), A(2),... equal 1/2, 11/24,
7/16, 2447/5760, 959/2304, 238043/580608, 67223/165888, ..., and where
a(n)=eA(n) has an asymptotic expansion:

1 P,(logn

*12. Inverting the harmonic numbers. Let us consider a strictly increasing
real sequence f(n), nza, b=f(a), f()=oo. For any real number x>5,
we write <7 '’(x) for the largest integer n<x. For example, if f(1)=n,
we find f<~1’(x) = [x], the integral part of x. (1) For the harmonic sequence
JM)=1+2"1+371 4. +n"! and for any x>2, we have f< P(x)=
=[e*77—(1/2)~(3/2)(¢*"* — 1) '] or the same integer plus one ([ Comtet,
1967], [Boas, Wrench, 1971]. y=0.5772... is the Euler constant). (2)
More generally, calculate f<~>(x), where f(n)=1+2""+3"5+---+n"%,
s<L

*13. Cauchy numbers (or integral of the rising and falling factorials). (See
[Liénard, 1946], [ Nystrom, 1930], [ Wachs, 1947]). Let us consider the




Y

!

Lu»(?’)a —Zk (mD)F (n)id, il (k+ 1), b, Zk 1 (n)kbn Wl (k+1).
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Cauchy numbers of the first type a,:={o(x), dx and of the second type
by =[s<xd,dx. (1) Y agt"nt=t(log(l+1))7%, 3 b,t"[n!=(—1)x
x ((l—t) log(1—1))"% (2) a,=Y s s(n, k)/(k+1), b,=Ys(n, k)/(k+1).

n |0 1 2 3 4 5 6 7 8 9
1 11 19 9 863 1375 33953 57281 3250433
an |1 5 =% 4 “% /A7) 8 2 % 20 132
b.’)[’)
1 5 9 251 475 19087 36799 1070017 2082753 134211265 ,Q)\{ AP
b )1 53 4 0 17 W 24 90 20 132 i

(4) When n— oo, we have a,/n!~(—1)""'n"!(logn)"? and b,/n!~
~(logn)~"'.

14. Representations of zero as a sum of different summands between n and
—n. Let A(n) be the number of solutions of Y ;- _, kx,=0, where x,
equals O or 1. Then, when n— oo, A(n)~3'2g~1/222"*1y=3/2 ([Van
Lint, 1967], [Entringer, 1968]).

15. Sum of the inverses of binomial and multinomial coefficients. The

ny_ —n—
sequence [,:=) p_o <k) Lequals (n+1)27" 'Y 4E1 2%k. (For a prob-

abilistic remark, see [*Letac, 1970], p. 14). It satisfies the recurrence 2/, =
=((n+1)/2n)I,_,+2 and has the following (divergent) asymptotic ex-
pansion: I,/2x1+) 50 bn "', where the integers b, have as GF:

Zp?Obpzp/p!=(2—ez)—2' \-»- SN Md))gluk .

3 4 5 6 ,
44 308 2612 25988 296564{2816548 56667412 862584068

R\ A
"
1,(x):=Ylm0 ( ) whm (4 DL+ 0))" Z"“

L+ XA +x) k(1 +x) %% and (1+(1/x)L(x)=+1/n),_,(x)+
+x"+x71

p |0
b

12
» |1 2 8

¥

DY

In the same way,

*16. The coefficients of (3 n!t")™! ([Comtet, 1972]). Let ¢(z) be the

Wr}ff'

L /*:;D

w%

o " 3
D
2

\;

h

&
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purely formalseries ), o nlt". We define the coefficients f(n) by (e(r)) ' =
=1=Y .5, f(n)t". (1) The f(n) are positive integers such that f(p+1) =
= 1(modp) for p prime. (2) We have the following asymptotic expansion
Fm)t 1=y 51 Auf(n)=1-2/n—1/(n),—4/(n);~ ..., where A,=
=f(k)+(k—2)f(k—1), k =2. (3) The sequence f(n)/n! (Which tends to
1) is increasing for n>>2 and concave for n>4. MOU\J/QM

n |1 2 3 4 5 6 7 8 9 10
fy 11 1 3 13 1 461 3447 29093 273343 2829325

(Cf. Exercise 14, p. 261 and Exercise 15, p. 294.)

*17. Sum of the logarithins of the binomial coefficients. (1) Show that

m,ﬁw{n‘zzzsolog(Z)}=l/2. (2) More generally, for all integers
p>1, we have lim,,_,m{rsz::olog(ﬁZ)}=p/2. ([Gould, 1964b], and
for a generalization, [Carlitz, 1966¢], [Hayes, 1966].)

*18. Examples of applications of the method of Darboux (p. 277). Deter-
mine the asymptotic expansions for the Bernoulli and Euler numbers
(p. 48), the ¢, (p. 56).

*19. r-orbits of a random permutation. In the probability space defined
on p. 279, for each integer > I, we introduce the RV C, , equal to the
number of r-orbits of @. Show that the GF for its probabilities equals
Yo<p<nl—1)'r7 11 Deduce that, for r fixed, and n tending to o, C, ,

‘tends’ to a Poisson RV with parameter 1/r.

*20. The number of orbits in a random derangement. We define the
associated Stirling numbers of the first kind s,(n, k) by Y., & s5(n, k)t"u*/n!
=e¢ "(1+¢)". (1) The number d(n, k) of derangements of N, [N|=n,
with k orbits (p. 231, and Exercise 7, p. 256) equals |s,(n, k)|. (2) The
polynomials P, (u): =Y, d(n, k)u* have all different and nonpositive roots
([ Tricomi, 1951], [Carlitz, 1958a]). (3) We consider the ‘random’ de-
rangements @ of N (for which we must specify the probability space!?),
and the RV A4, = A, (w)=the number of orbits of w. Study the asymptotic
properties of the d(n, k), analogous to those of s(n, k) (pp. 279-283).
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*21. Random partitions of integers. We consider all partitions @ of n
equally probable, P(w):=(p(n))™'. We let S, be the RV equal to the
number of summands of w. Hence P(S,=m)=P(n, m)/p(n) (p. 94).
Show that E(S,)=(p(n)) 'Y ;- d(r)p(n—r), where d(r) is the number
of divisors of r. [ Hint: Take the derivative with respect to u, [2c] (p. 97),
put u=1, and use Exercise 16 (4), p. 161.] (For estimates of the first three
moments, see [ Lutra, 1958], and for the abscissa of the ‘peak’, [ Szekeres,
1953].)

*22. Random tournaments. We define a random tournament (cf. p. 68)
J =7 (w) over N, |N|=n, by making random choices for each pair

{xi» x;€P(N), the arcs x; x; and x; x; being equiprobable, and
the (;) choices independent. (1) Let C,=C,(w) be the number of
3-cycles of 7 (w) (for example, {x,, x,, x3}, Figure 18, p. 68, is a 3-cycle.
ShowthatE(C,)= (1/4)(;),var C,=(3/16) (g) [Hint: Deﬁne(’;) random
variables X ; 4, {1, , k}e P3[n], by X; ; ,:=11if {x;, x;, x,} is the sup-
port of a 3-cycle, and : =0 otherwise; observe then that E(X; ; ,)=1/4.]
(2) More generally, let C, be the number of k-cycles of 7, then we have

E(C,,)=(Z)(k—l)!2"‘ and varC,=0(n**"?) when n— 0. (A deep

study and a vast bibliography on random tournaments are found in
[*Moon, 1968].)

*23. Random partitions of a set, mode of S(n, k). With every finite set
N, |N|=n, we associate the probability space (2, Z, P), where Q is the
set of partitions of N, #:=P(R), and P(w)=1/|Q|=1/w(n) (p. 210) for
each partition weQ. We are now interested in the study of the RV
B, = B,(w), the number of blocks of w. (1) P(B,=k)=S(n, k)/w(n), where
S(n, k) is the Stirling number of the second kind (p. 204). The GF of the
probabilities is hence equal to P,(u)/w(n), where P,(u):=>, S(n, k)u*.
(2) The moments u,, (not central) of B, equal:

w (n) i<j<k<m
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(3) Using Theorem D (p. 271) we have P, (u)=[]}-,(u+a;), where
0<a <a,<--<a, and defining the row-independent RV X, ; by
P(X, =0)=a(l+a,)"", P(X, ;=1)=(1+a,)"", show that B,=), X, ;.
(4) We have the following asymptotic result ([Moser, Wyman, 1955b],
[Binet, Szekeres, 1957], [*De Bruijn, 1961], p. 107 (saddlepoint method
applied to [4b], p. 210); cf. Exercise 22, p. 228; see also [Haigh, 1972])
for ReR=n- o0

w(n)~(R+1)"exp{n(R+R ' ~1)—1}.

This allows us to verify condition ([41], p. 281) of Lindeberg and to apply
the central limit theorem. Deduce from this an estimate for sup,S(n, k)
and for the corresponding ‘abscissa’ (the ‘mode’) k= y(n)~n/logn ([Har-
per, 1967], [Kanold, 1968a, b}, and especially [Wegner, 1970]). (5)
Determine a complete asymptotic expansion for X(n), n— co. [ Hint: Start
from [1b], p. 204.]

*24, Random words. Let X:={x, x,,..., x,,} be a finite set, or alphabet,
|X|=n. At every epoch =1, 2, 3, ..., we choose at random a letter from
X, each letter having the probability 1/n, and the choices at different
moments are independent. In this way we obtain an infinite random word
£, and the section consisting of the first ¢ letters is called f(¢). In the sequel
of this text, T=T(Z) is the RV which equals the first epoch that a certain
event = concerning [ occurs. (1) Birthdays. Z is the event “‘one of the
letters of f(¢) has appeared k times”. Put expju=1-+u-+u?/2!+---+u'[l},
and show that:

o

B(7) = [ {expeo ()} e dr.

0

Use this to obtain, for fixed k, E(T)~ (k)" (1 +1/k) - n'~"*for n— oo
([Klamkin, Newman, 1967]). (So, for n=365, k=2, one needs in average
23 guests to a party, to find that two of them have the same birthday,
which may be surprising.) (2) The matchboxes of Banach. A certain
mathematician always carries two matchboxes with him. Both contain
initially & matches. Each time he wants a match, he draws a box at
random. Certainly a moment will come that he draws an empty box. Let
R be the RV equal to the number of matches left in the other box. Show
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that P(R= r)=<2kk— ')2‘2“’ and that E(R)=(2k+ 1)2‘2"( I
~2,/kjn—1 ([*Feller, 1968], I, p. 238, [Kaucky, 1962]). Also compute
the moments E(R™), m=2, 3,.... (3) Picture collector. Z is how the event
*‘each letter has appeared k times” in f(¢). Then E(T)=n logn+(k—1)n
log logn+n(y—log(k—1)!)+o(n) when n— co. y is the Euler constant.
([Newman, Shepp, 1960], [Erdds, Rényi, 1961]). (Thus, when every bar
of chocolate goes together with a picture, one must buy in average n logn
of these bars in order to obtain the complete collection of different
pictures used by the manufacturer.) (4) The monkey typist. Let g be a
word of length /and Z the event “‘the last / letters of f(¢) form the word g™°.
If the [ letters of g are different, 1</<n, then E(T)=I+n". In the
general case the ‘periods’ of g play a role ([Solov’ev, 1966]).

2%\
k

*25. Similarly loaded dice. (1) Show that it is not possible to load simi-
larly two dice in such a way that the total score will be an equidistributed
RV (on the values 2, 3,..., 11, 12.) [Hint: In the contrary case, use the
GF of the probabilities to show the existence of x,, x4, ..., X5 such that
(xot + X824 o 4+ x5t P =K(t2 413+ + 11 +112)....] (2) The follow-
ing is a more difficult question (see [Clements, 1968]) suggested by the
preceding. Let x=(x,, x;, ..., X,,)e R"** and r an integer >1. We define
the c,(x) by: (xo+x 2+ +x ™Y =Y"" c(x)" and put M(x):=
:=maxc,(x) for 0<n<rm. Compute min M(x) on the set of all x such
that xo, x,..., x,20 and xo+x,+---+x,=1. (3) Answer these two
questions when the two dice may be independently loaded.

*26. Multicolour Ramsey numbers. Let be given integers b, p;, pa.--., Px
such that 1<b<py,ps,....,p,- A finite set N is called Ramsey-
(b; Py, P2s..., pi) if and only if, for all k-divisions €,,%,,..., €, of
B(N), B(N)=%F,+%€,+---+%F,, there exists an integer ie[k] and a
block Pe P, (N) such that P,(P)<=F,. (1) Show by induction on k, the
existence of k-color b-ary Ramsey numbers, denoted by p(b; py, P2y .-y Pi)
and satisfying:

N is Ramsey-(b; p1, P2, ---» Pi) <> IN| = p(b; prs P2y s 1)

(2) Moreover, show that p(1;py, pay..., Px) =Py +Pr+ +p—k+1
([*Ryser, 1963], p. 39, and [*Dembowski, 1965], p. 29). We note:
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p(2;3,3,3)=17, p(2;3, 3,4)=30, p(2; 4, 4,4)=80, p(2;5, 5, 5)=200,
p(2;3,3,3,3,3)=102, p(2;3,3,3,3,3,3)=278. (3) As an application
of (1) show that for every integer k>1 there exists an integer B(k) with
the following property: when n> B(k), each k-division (4,, 4,, ..., 4;)
of [n], A, + Ay + -+ + A, =1[n], is such that one of the subsets 4; contains
three numbers of the form x, y, x+ y. [Hint: For n=p(2;3,3,..., 3),
where the number 3 occurs k times, apply (1) to the division €, +%,+
+ ...+, =P,[n] defined by: {a, b}e¥ ;«>a—beA,]

*27. Convex polygons whose vertices form a subset of a given point set of
the plane ([Erdos, Szekeres, 1935], explained in [*Ryser, 1963], p. 43,
and [*Dembowski, 1965], p. 30). Let N be a finite set of points in the
plane such that no three among them are collinear, N is general, for
short. An m-gon extracted from N will be the following: a closed poly-
gonal line &, not necessarily convex, whose vertices are different and
belong to N. Such a polygon & is considered as a set of pairs of N (its
sides), Z<=B,(N). (1) From every general set A, | A]=35, we can extract a
convex quadrilateral. (2) Let M be a general set, |M|>4, such that for
each Q= M, |Q|=4, one of the three quadrilaterals whose vertex set is Q,
is convex. Then, there exists a convex m-gon extracted from M, [M|=m.
[ Hint: If not, the convex hull of M would be spanned by less than m
points, consequently there would exist a Q whose three quadrilaterals are
not convex.] (3) Deduce from (1, 2) the following theorem: For every
integer m>0 there exists an integer f(m) such that from every finite
general set containing at least f(m) points of the plane, a convex m-gon
can be extracted. [ Hint: We have f(3)=3, f(4)=5; for m>35, apply the
theorem on p. 283, p»m, ¢ 5, € + D ="P4(N ), where % is the set of the
0, 10|=4, such that one of 3 extracted quadrilaterals is convex.]

28. Monotonic subsets of a sequence. Let X be a set of real numbers >0,
Xi={x;, x5, x3,...}, 0<x; <x,<x3<---. For all integers h, k=1, we
put r(h, k):=(h—1)(k—1)+1. Let N be a subset with n elements of X,
NcX, |[N|=n, and let ¢ be a map of N into R. We first suppose that
n=r(h, k). Show that there exists either a subset Hc= N, H=|h|, on which
the restriction of ¢ is increasing (not necessarily strictly), or a subset
K< N, |K|=k, on which ¢ is decreasing (not necessarily strictly). [ Hint:
Argue by induction on k=2, and fixed h. For AcN, |[A|=r(h, k)1,
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IN|=r(h,k+1), apply the induction hypothesis to each of the sets
M, :=Av{z}, where z runs through N — A4.] If n< r(h, k), the property
does not hold.

29, Zarankiewicz numbers. The numbers I(m, a) defined on p. 288 satisfy
¥(a, a)=a? and ¥(a+1,a)=(a+1)*~2.

*30. Complete subgraphs in graphs with sufficiently high degrees. A
necessary and sufficient condition that every graph @ of N, |N|=n, all of
its degrees exceeding or equalling k¥ (VxeN, |%(x)| =k, p. 61), contains
a complete subgraph with p nodes is k>n(p—2)/(p—1) ([Turdn, 1941],
[Zarankiewicz, 1947]).

*31. Maximum of a certain quadratic form ([Motzkin, Straus, 19657). Let
E be the set of vectors x=(x;, x,,..., x,)€éR" whose real coordinates x;
satisfy x,20, ie[n], and x;+x,+---+x,=1. (1) Let F(x) denote the
quadratic form ) e Xi%; (for instance Fiy=x,x,+X,%3+x3%,).
Show that max, F(x)=(1—1/n)/2. (2) More generally, let G be a graph
over [n]={1,2,...,n} (p. 61) and Fg(x)=) ; jee*ix;. Show that
max,, ;Fu(E) equals (1 —1/k)/2, where k is the maximum number of nodes
of complete subgraphs contained in ® (p. 62), in other words, the maxi-
mum vajue of ihe inumber of clements of sets H < [n] such that B,(H )= 6.
[Hint: If K:={i, i,,..., i} is the set of nodes of a complete subgraph of
®, then a lower bound for max Fg(x) is given by the value of Fg(x) for
x;=1/kif je Kand =0 otherwise. For the other inequality, use induction;
first observe that the maximum occurs in an interior point of E.]

*32. Systems of distinct representatives. Let &”:={B,, B,,..., B,} be a
system of blocks, not necessarily different from N, B;= N, ie[m]. A block
M ={x;,x5,...,x,} <N is called a system of distinct representatives,
abbreviated SDR, if and only if x;eB; for all ie[m]. A necessary and
sufficient condition that % admits a SDR is that for every subsystem
&< we have|(Jp. Bl =|F"|. (The preceding statement, due to [Hall
(P.), 1935], answers in patticular the ‘marriage problem’: m boys know
a certain number of girls; under what conditions can each boy marry a
girl he knows already? (One girl may be acquainted with several boys!....)
See also [Halmos, Vaughan, 1950], [Mirsky, Perfect, 1966], [Mirsky,
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1967}, [Rado, 1967].) [Hint: Argue by complete induction on m, using
critical subsystems 4 <.% in the sense that || gz.sB|=|7|. If no sub-
system is critical, take one point xeB,, and remove it from each of the
blocks B,, Bs,... (if it occurs there). Thus we obtain a new system
B,, B, ..., B,,, which can be handled by the induction hypothesis. If there
exists a critical system, then there exists a largest integer k such that (after
changing the indices) | By U B, U -+- U B,|=k(<m) and then we can choose
a SDR for By, B,,..., B;, say 4,. Then we show next that the system
Cii1s Cita5--., where C;1= B\ A,, also satisfies the induction hypothesis,
so has also a SDR, say 4,. Hence the required SDR is 44U 4,.] Deduce
from this that every latin k x n rectangle (p. 182), 1<k<n—1, can be
extended into a (k+ 1) x n-rectangle by adding one row.

33. Agglutinating systems. A system & of blocks of N, S<P'(N),
{N|=n, is called agglutinating if any two of them are not disjoint. Show
that the number {& of blocks of such a system is [ess than or equal to
2"7!, and that this number is a least upper bound. [ Hint: Let &* be the
system of complements of the blocks of &, then we have, in the sense of
[10e] (p. 28), S+ FL*<=B(N)] *Let, more generally, &, F,,...,F,
be k agglutinating systems of N, then ||} & i<2"—2""* ([Katona,
19641, [Kleitman, 1966, 1968a]).

34. A weighing probiem. Leibe given ii{>2) coins, all of the same weight,
except one, which is a little lighter. Show that the minimum number of
weighings which must be performed to discover the counterfeit coin
equals the smallest integer >log,n, where z=log, y<>y=3" (the scale
used only allows the comparison of weights) (For this subject see [ Cairns,
1963}, [Erdos, Rényi, 1963].).

35. The number of groups of order n. Let g(n) be the number of finite not
isomorphic groups G of order n, |G|=n. (1) Use the Cayley table (=the
multiplication table) of G to show that g(n)<n™. (2) The Cayley table of
G is completely known if we know it for S x G only, where S is a system
of generators of G. (3) Let S be a minimal system of generators (<> there
does not exist a system of generators with a smaller number of elements).
Show that 2'SI<n. Deduce that g(n)<n"'*®2", where log,n means the
Jogarithm with base 2 of n. ([Gallagher, 1967]. The following table of
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g (n) is taken from [*Coxeter, Moser, 1965], p. 134. See also [ Newman

a
1967], [James, Connor, 1969].) 9/,:. S
m |1 23 45 6 7 8 910 11 1213 14 15 1617
gy |1 131 2 1 2 1 5 2 2 1 5 1 2 1 14 1

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

g |5 1 5 2 2 1 15 2 2 5 4 1 4 1 sl

36. 4 minimax inequality. Let a, ;, ic[m], je[n] be mn real numbers.
Then min;max ;a;;>max ;min;a;;. (For extensions, see [Schiitzenberger,
1957].)

*37. Two examples of extremal problems in [n] ([Klamkin, Newman,
1969]). (1) Let & be a system of k pairs of [n], & ={A4,, 4,,..., A,},
A;<[n), |[4;]=2, all disjoint, and such that the k integers Y .. ,.x, ie[k],
are all different and smaller than n. Then the largest possible value for &,
denoted by ¢(n), satisfies (2n/5)—3<p(n)<(2n—-3)/5. (2) Let & be a
system of k triples of [n], & ={4,, A,,..., 4}, A;=[n], 14,]=3, all dis-
joint, and such that for all ie[k], ) .4 x=n. Then the largest possible
value for k, denoted by Y (n), satisfies y (n) ~ (2/9)n, forn — co. (The reader
will find in [*Erdés, 1963] a large number of difficult and extremely
interesting combinatory problems concerning arithmetical extremal prob-
loms. )

)

110,

*38. Multiple points on a polygonal contour. Let A,, A,, ..., A, be points
in the plane, n>2, and let I' be the polygonal contour whose sides are
Ay Ay, AyAy, .., Ay, A, A A A multiple point of I'is any point, different
from the 4;, through which pass at least two sides of I'. Show that the
number s, of these multiple points satisfies s,<(1/2)n(n—4)+1 for n
even, and 5,<(1/2)n(n—3) for n odd. These inequalities cannot be im-
proved ([Bergmann, 19697; see also [Jordan (Camille), 1920]).

*39. Separating systems. A separating system (or Kolmogoroff system or
T, system) of N is any system % < B’(N) such that for all x and yeN,
x#y, there exists either an A such that xede, y¢ A, or a B such that
yeBe¥, x¢ B (not exclusive or). Compute or estimate the number of
separating systems of N, |N|=n.
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*40. Multicoverings. An l-multicovering of N is any system & < B'(V)
such that each xe N is contained in exactly / blocks of &#; (the blocks are
all different). Compute and estimate the number of I-coverings of N, |N|=n
([Comtet, 1968b], [Baroti, 1970], [¥Rényi, 1971, p. 30]). Here are the
first values of C,(n, k), the number of bicoverings of N with k blocks, and
Cy(n): =3, Cy(n, k), the total number of bicoverings:

mk | 3 4 5 6 7 8 9 10 | Ce(w)

2 1 1
3 4 4 8
4 13 39 25 3 80
5 40 280 472 256 40 1088
6 121 P\/ 1815 6185 7255 3306 535 15 19232
7 364 '31 1284 70700 149660 131876 51640 8456 420 | 424400

RO éemen S

41. At most l-overlapping systems. These are systems & of N, consisting of
k blocks, & < P, (N ), such that forany 4 and B, 4 # B, we have |4 n B| < 1.
If ¢(n, k) is the largest possible number of blocks of such a system .,
show that ¢(n, k)~n*/k(k—1), for n—oo ([Erdds, Hanani, 1963],
[Schonheim, 1966]).

*42. Geometries. A geometry (or linear system) of N is a system
S < P’(N) whose blocks, called lines, satisfy the following two condi-
tions: (1) Each pair A= N, | 4] =2, is contained in precisely one line; (2)
each line contains at least two points. The following are the known values
of g(n), which is the number of geometries of N, |N|=n, and the numbers
g*(n), which are the number of nonisomorphic ones:

=y ]
n |1 2 3 4 5 6 7 8 9
gy |1 1 2 6 32 353 8390 436399 50468754
g |1 1 2 35 10 24 69 384

ST,
Compute and estimate g(n) and g*(n) (for n>10, we have 2" <g*(n)<
<g(n)<2(3), these inequalities and their numerical values being due to

[Doyen, 1967].)

*43, Steiner triple systems. A Steiner triple system over N or simply a
‘triple system’, is a set & of triples of N, &€ P ;(N), such that every pair
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of elements of N is contained in exactly one triple. In the sense of the
previous exercise, this is a ‘geometry” in which every line has three points.
We suppose N finite, |[N]|=n. (1) A necessary and sufficient condition for
the existence of a triple system is that n is of the form 6k+1 or 6k+3.
(2) Let s(n) denote the number of triple systems (of N), and s*(n) the
number of nonisomorphic ones. The known values are:

n 1 3 7 9 13 15
s(n) 1 1 30 840 1197504000
s*m) |1 1 1 1 "2 80

Compute and estimate s(n) and s*(n), where n= 1 or 3 (mod6). (See
[Doyen, Valette, 1971].)

-y
60281712691200 7

FUNDAMENTAL NUMERICAL TABLES

Factorials with their prime factor decomposition

6
121
2432

£1n0n
JIUTY

11 24000

258 52016

6204 48401

1 55112 10043

40 32914 61126

1088 88694 50418
30488 83446 11713

8 84176 19937 39701
265 25285 98121 91058

8

130
2092
35568
40237
64510
90200

nAYLY
FaLii

72777
73888
73323
33098
60563
35216
86050
95454
63630

I= 1l=1
2= 21=2
6= 31=23
24= 41=233

120= 51=2335
720= 61=21325
5040 = 7!=24.325.7
40320 = 8!=27.325.7
3 62880= 9!=273457
36 28800 = 10! —28.31,52.7
399 16800 = 11!-—28.3452.7.11
4790 01600 = 12! =21035527.11
62270 20800 = 13! =-210,35,52.7.11.13
71782 91200 = 14! =211,35,52.72,11.13
76743 68000 = 15! =211,36,53,72,11.13
27898 88000 == 16! =215,36,5%,72.11.13
74280 96000 = 17! = 215,36,53.72,11.13.17
37057 28000 = 18! —216.38,5372,11.13.17
04088 32000 = 19! =-216.38,53,72,11.13.17.19
81766 40000 = 20! = 215,38,5472.11.13.17.19

17N0A  ANNNN 211 A18 120 £47211 172 1710
LIUTY QUUUY ~— L8] == L7, 07,07 77, 11,031 1.17

76076 80000 = 22! =219.39,5473.112,13.17.19

49766 40000 = 23! - 219,39.54,73,112.13.17.19.23
94393 60000 = 24! = 222,310,54,73,112,13.17.19.23
59840 00000 = 25! = 222,310,56.73,112,13.17.19.23
55840 00000 = 26! = 223,310,56,73,112,132.17.19.23
07680 00000 = 27! = 223,313,56,73,112.132.17.19.23
15040 00000 = 28! — 225,313,56,74,112,132,17,19.23
36160 00000 = 29! = 225,313,56.74,1J2,132,17.19.23.29
84800 00000 = 30! = 228,3'4,57,74.112,132.17.19.23.29
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4 378.1522, Bg,s=36.172, Bo,o~1° I Byo,1 = 103, Bo, 2= 10.1'91 +-45.218!

4 120.3172 4 210.4161 + 126.5%,  Bio, 8 =45.12814-360.132171 + 84013316 + 630.226
4 1260.184251 - 2520223151 -+ 1575.214% + 2100.3%4, By, 4= 120,137 4 1260.122161
4 2520.123151 -+ 3780.11225 4 1575.124% + 12600.11213141 4 3150.2341 4 2800.1133
463002232, Bio, s = 210,146 - 2520.182151 +- 4200.133141 - 9450.122241
4+12600.122132 - 12600.1312331 + 945.25, Bio, ¢ = 252.1551  3150.142141 + 2100.1432
+ 12600.182231 - 4725.1224,  Byo, 7 =210.1841 2520.152131 4- 3150.1423,
Bio, s = 120,173 -+ 630.1822, B1o, s = 45.152%, Buo,10 = 110§ Byy,1 =111, By, 2= 111110
4-55.2191 4 165.3181 + 330.4171 4 462.5'61, Bu,s= 55.1291 4 495,112181 - 1320, 113171
-+ 990.2271 -+ 2310.114161 -} 4620.21316* -+ 1386.1152 + 6930.214151 4 4620.3251

4+ 5775.3148, Biy, 4= 165.1381 1 1980.12237! 4 4620.123161 + 6930.112261 -+ 6930.124151
4 27720.11213152 4- 6930.2851 + 17325112142 - 23 100.113241 - 34650.223141

-+ 15400.2138, Bii, 5= 330.1471 4 4620.18216! -+ 9240,133151 -+ 20790.122251 4 5775.1342
4 69300,12213141 + 34650,112341 + 15400,1238 - 69330,112832 4- 173252431,

B, e=462.156% + 6930.142251 4 11550.143142 4 34650.132241 4 46200.132132

-+ 69300.123331 - 10395.1125, By, 7 =462.185! + 6930.152141 - 4620.1532

4 34650,142231 4+ 17325,1824, By, 5=330.174! + 4620.18213) 4 6930.1523,

By, == 165.1831 4-990.1722, By 10+=55.1°21, Byu= 1111 Bip1 =12,

Bis, s =12.13111 4 66.21101 4 220.3191 - 4954181 - 792.5171 4 462.6%, Big, 3= 66.1210t
+ 660.112191 - 1980,113181 - 1485.228! + 3960.114171 - 7920.213171 4- 5544,11516%

-+ 13860.214161 4 9240.3261 -+ 8316.2152 4 27720.314151 + 5775.43, Bz, 4=220.1391
+2970.1%2181 - 7920.123171 4- 11880.112271 4 13860.124161 4- 55440.11213161

+ 13860.2%6! -+ 8316.1252 +- 83160.11214251 +- 55440.113251 4- 83160.223151

+ 69300.113142 4 51975.2242 + 138600.21324* - 15400.34, Big, 5 =495.148!

+ 7920.132171 - 18480.183261 - 41580.122261 - 27720.1 34151 4 166320.,12213151

4 83160.112851 + 103950,122142 4 138600.123241 - 415800.11223141 |- 51975.2441

- 184800.112138 + 138600.2%3%, Bia, 6 = 792.1571 + 13860.142161 + 27720.143151

- 83160.132851 4- 17325.1442 4 277200.1321314! - 207900.12234% 4- 61600.1333
4-415800.122232 4+ 207900.112431 + 10395.28, Big,7= 924.186 -+ 16632.152151,
4-27720.153141 4 103950,14224% -+ 138600.142132 277200.132331 4 62370,1228

Big, s =792.1751 + 13860.162141 - 9240.1832 - 83160.152231 3- 51975.1%24,

Big, o = 495.1841 4 7920.17213* - 13860.1623, Bia, 10 = 220.1931 4- 1485.1822,

Bisg,11 =66.1102, Bya,1z=11%1

» The letter x occurring in [3d] (p. 134) has not been written here to save space. Thus,
Bs, 3 = 10.1231 4 15.1122 should read Bs, s = 10x1%x3 + 15x1x2.

Logarithmic polynomials

Li=111La=21—121Lg=3 —32113 +2.13 | Ly =41 — 4341 4 122112 - 6,14
—3.28 1 Ly = 5! — 54111 — 10,312 4 20,3112 4- 30,2211 — 60.21% +- 24.15 Y Lo = 6!

— 6,511 —15.4121 - 30.4112 — 10.32 4- 120.312111 — 120.3118 4 30,23 — 270.2%1%
+360.2114 — 120,18 1 Ly = 72 — 7.611% — 21,5121 — 35.4131 + 42,5112 + 210.412'12

+ 140,381 4 210.3122 — 210.4118 — 1260.312:12 — 630.2311 840,314 4-2520.2213
—2520.2115 4+ 720.17 | L g = 81 — 8.7111  28.6121 — 56.5131 — 35,42 4- 56.611%
+336.512111 -+ 560.413113 + 420.4122 4 560,322} — 336.5113 — 2520.412112 — 1680.3212
— 5040,312811 — 630,24 4+ 1680.4114 4- 13440.312113 +- 10080.2312 — 6720.311°
—25200.2214 + 20160.2116 — 5040.18 |
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Partial ordinary Bell polynomials B, ¢ (x1, xe,...)
Bii=111By,1=24, Bo,a=12 1 By,1 =3, Bya=2.121, By, 3 =17 | Ba,1 = 4%,
By p=2.1131 422, Bi,a=3.1221, By, s =141 Bs,1 =5, Bs, 5 =2.1341 1 2.2131
Bs,=3.1231 - 3.1122, Bs,a =4.12", B5,5 =15 1 Bs,1 =61, By 2 = 2,115 4+ 2.2141 . 32,
Bo,a = 3.1241 4 6.112131 - 29, B, 4 =4.193 + 6.1222, Bs,5=5.1421, B, 6 =16 |
B7,1 =74, By,2 =2.116! +2.2151 + 23141, By, 5=3.1251 - 6,112141 - 3,1132 43,2231,
By 4= 4130 4 12122131 - 4.1123, By, 5 = 5.1431 + 10,1222, By, 6= 6.152%, By, =171
Bg,1 =81, Bs,2=2.1171 42,2161 4 2.315! + 42, By, 5 = 3,126 -+ 6.112151 4 6,113141
+3.2241 +3.2132, By, 4 = 4.1351 4 12.122141 46,1232 - 12.112231 4 24, By ; = 5.1441
+20.182131 10,1223, By, ¢ = 6.1531 15,1422, By, o = 7.1621, Bg,5 =18 1 By 1 = 9,
By,» =2.1381 - 2.2171 - 2.3161 + 2.415%, Bo, 5 = 3.1271 4 6.112161 + 6.113151 + 3.1142
+3.2250 4 6.213141 + 33, By, 4 = 4.136! + 12.122151 4 12123141 4 12.112241 -12,132132
+4.2331, By, 5 = 5.1451 1 20,132141 + 10.1332 4 30.122231 - 5.1124, By, ¢ = 6,141
+30.142131 201923, By, 7 = 7.1631 + 211522, By, 5 =8.1721, B, 5 =1° I Byo,, = 101,
Bio,3 =2.1191 4 2.2181 - 2.3171 4- 24161 + 52, Big 3 =3.1281 4- 6.112171 - 6, 113161
+6.124151 +-3.2261 4. 6.213151 - 3.2142 4 3.3241, By, ¢ = 4.1371 + 12.122161 + 12.123151
+6.1242  12.112251 4 24, 11213141 + 4,1133 -1 4.2341 4 6.2232, By, 5 = 5.1461 + 20.132151
+20.133441 4- 30.122241 4- 30.122132 4- 20,112831 425, Byo, ¢ = 6.1551 4 30.142141
+15.1432 4- 60.132231 4 15,1229, Buo, 7 =7.1843 4 42.152131 4+ 35.1428, B0, 0 = 8.1731
+28.1622, Bio,0 =9.1521, Big,10=1101 ’

(a1 +as+...+am)!
aylas! - am!
The bold-face numbers indicate the values of #=a; +az + --- +an. For saving place,
we write (13) instead of (1, 1, 1), (3221) instead of (3, 2, 2, 1), etc....

2:Q=LU=213:03)=12D=3;(13)=614:D=1; 31) =4, (29 =6;
(212 =12; (19 =24 1 5: (5) =1; (41) =5, (32) = 10; (31%) =20, (221) = 30;

213) =60; (15) =120 1 6: (6) = 1; (51) =6, (42) == 15, (32) =20; (412) =30, (321)=60,
(2%) =90; (313 = 120, (2212) = 180; (214) =360; (18) =720 L 7: (7) =1; (61) =7,

(52) =21, (43) = 35; (512) = 42, (421) = 105, (3%1) = 140, (32%) = 210; (412 =210,
(3212) = 420, (231) = 630; (314) = 840, (2213) = 1260; (215) = 2520; (1) = 5040 |

8: (8)=1; (71) =8, (62) =28, (53) = 56, (42) =70; (61?) = 56, (521) = 168,

(431) = 280, (422) = 420, (322) = 560; (51%) =336, (421?) = 840, (3212) = 1120,

(3221) = 1680, (2%) = 2520; (41%) == 1680, (3213) = 3360, (2312) = 5040; (315) = 6720,
(2%14) = 10080; (21%) = 20160; (18) =40320 1 9: (9)=1; (81) =9, (72) = 36, (63) = 84,
(54) = 126; (71%) =72, (621) = 252, (531) = 504, (421) = 630, (522) =756, (432) = 1260,
(3%) = 1680; (613) = 504, (5212) = 1512, (431%) = 2520, (4221) = 3780, (3221) = 5040,
(323) =7560; (514) = 3024, (4213) = 7560, (3213) = 10080, (32212) = 15120,

(2%1) = 22680; (415) = 15120, (3214) = 30240, (2813) = 45360; (31%) = 60480,

(221%) = 90720; (217) = 181440; (1%) = 362880 | 10: (10) = 1; (91) = 10, (82) = 45,

(73) = 120, (64) = 210, (52) =252; (81%) =90, (721) = 360, (631) = 840, (541) = 1260,
(622) = 1260, (532) = 2520, (422) = 3150, (43%) = 4200; (713) = 720, (6212) = 2520,
(5312) = 5040, (4212) = 6300, (5221) = 7560, (4321) = 12600, (331) = 16800,

(42%) = 18900, (3222) = 25200; (61%) = 5040, (5213) = 15120, {4313) = 25200,

(422£2) = 37800, (32212) = 50400, (3231) = 75600, (25) == 113400; (515) = 30240,

(421%) = 75600, (3214) = 100800, (32213) = 151200, (2412) == 226800; (41) = 151200,
(3215) = 302400, (2214) =453600; (317) = 604800, (2218) = 907200; (218) = 1814400;
(119) =~ 3628800 1

Multinomial coefficients (a1, as, ..., @m) =
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Stirling numbers of the first kind s(n, k)
AT 1 2 3 4 5 6 7 ] 9 i0 il 2 3 14 15
1 1
2 —1 1
3 2 —3 1
4 —6 1 —6 1
[ 24 —50 35 —10 1
6 —120 274 —225 85 —15 1
7 720 —1764 1624 —735 175 —21 1
8 —5040 13068 —13132 6769 —1960 32 : 28 1
9 40320 —109584 118124 —67284 22449 —4536 546 —136 1
10 -—362880 1026576 —1172700 723680 —269325 63273 ‘ —-9450 870 45 1
11 3628800 —10628640 12753576 — 8409500 3416930 —902055 ‘ 157773 18150 1320 55 §
12 — 39916800 120543840 — 150917976 105258076 45995730 13339535 i 2637558 357423 —132670 1925 —66 1
13 479001600 — 1486442880 1931559552 — 1414014888 657206836  —206070150 : 44990231 6926634 149463 55770 2717 —18 .
14 | —6227020800 19802759040 —26596717056 20313753096 —9957703756 3336118786 ,; 790943153 135036473 16669653 14784473 —01001 3731 —o .
15 87178291200 —283465647360 392156797824  —310989260400 159721605680 — 56663366760 ! 14409322028  — 2681453775 163411615 37312275 2749747  —143325 5005 —105 1
‘

For a table of the s(n, k), k<n< 60, see [Mitrinovi¢ (D. S. and R. 8.), 1960a, b, 1961] and for several extensions [Mitrinovié (D. S. and R. S.), 1962, 1963a, b, 1964, 1965, 1966]

Stirling numbers of the second kind S(n, k) and exponential numbers w(n) = XxS(n, k)
w(m) || n\k |1 2 3 4 5 6

7 8 9 1
1 e |1 0 11 12 13 14 15
2 2 |1 1 i
5 3 |1 3 1 |
15 4 |1 7 6 1 !
52 s (1 15 25 10 1 !’
203 6 11 3 90 65 15 1 ,
877 7 |1 63 301 350 140 21 i 1
4140 g |1 127 966 1701 1050 266 28 i
21147 9 |1 255 3025 7770 6951 2646 462 36 1
115975 10 {1 511 9330 34105 42525 22827 5880 150 45 1
678570 11 |1 1023 28501 145750 246730 179487 63987 11880 1155 55 1
4213597 12 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1
27644437 13 1 4095 261625 2532530 7508501 9321312 5715424 1899612 359502 39325 2431 78 1
190899322 14 1 8191 788970 10391745 40075035 63436373 49329280 20912320 5135130 752752 66066 3367 91 1
1382958545 15 |1 16383 2375101 42355950 210766920 420693273 408741333 216627840 67128490 12662650 1479478 106470 4550 105 1

For a table of S(n, k)l'c<_n< 27, see [Miksa, 1956}, and for o(n), r‘t<74 [Levine, Dalton, 1962).
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(The letter ¢ indicates a numerical table)

Abel identity 128
abelian class 18
- word 18
abbreviations XI
acyclic graph 62
- map 70
additive functions 189
adjacent edges 61
—nodes 61
agglutinating system 301
aleph, Wronski 208
algebra, Boolean 185
alike binomial coefficients 293
alphabet 18, 297
alternating group 233
- inequalities 195
- permultations 259¢
André 21, 258
animal 226
antireflexive relation 58
arc 67
arcsin 167
arctangent numbers 260r¢
arithmetic of binomial coefficients 78
arithmetical triangle 11, 76, 291
arrangement 6, 75
associated Stirling numbers 222¢, 2561,
205
atom, supporting 190
axiomatic set theory 122, 123¢

ballot 21, 80
Banach matchbox problem 297
banner 219
Bell numbers 210, 291, 307¢
- polynomials 133, 156, 159, 162,
223,307t
Bernoulli numbers 48, 49¢, 88, 154, 220,
258
— —, generalized 227
- polynomials 48, 164

- random variable 160
bicolour Ramsey numbers 283, 287,
282t
bijection, bijective map 5
binary Ramsey numbers 287, 288¢
- relation 58
— tree 54
binomial coefficient 9, 75, 93, 293, 3061
g-binomial coefficients 118
binomial coefficients,
- sums of inverses of 294
— sums of logarithms of 295
~ sums of powers 90
- expansions 75
- identities 12, 76, 127, 155
~ series (1 4-7)* 37
binomium formula 12
birthday problem 297
block 2,7
Bonferroni inequalities 193, 203
Boole, inequalities of 194
Boolean algebra 2, 185
-~ function 185
bound or dummy variable 30
bracketing 52, 55¢, 57¢, 85
-, commutative 54
-, generalized (Schroder) 56, 57¢
Bruno (formula of Faa di) 137
Burnside formula 149

canonical disjunctive form 187
cardinal 2
Carlitz 246
Cartesian product 3
Catalan numbers 53, 53¢, 74, 82
~ problem 52
Cauchy 39, 167, 254
-~ numbers 293, 294¢
Cayley formula 63
- representation 262
central fimit theorem 281
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— moments 169
certain event 190
characteristic function (in set theory) 5
—numbers of a random variable 160
Chebyshev polynomials 49, 87
chromatic polynomial 179
Chung-Feller theorem 80
circles in the plane 73
circuit in graph 62
circular permutation 231
- word 24
circulator 109
-, prime 109
clique 62
closest integer 110
cloud 274, 276t
coding, Foata 70
coefficient of formal series 36
coincidence of a permutation 180
collector of pictures 297
combination 2, 7
— with repetition 15
commutative bracketing 54
complement 2
complementary graph 62
complementation 2
complete product 186
complete subgraph 62
component of permutation 261, 262¢
m-composition (partitions) 123
composition of functions 40, 139, 145
concatenation 18
concave sequence 268
conditional partitions of an integer 98,
991, 205
- —of a set 225
-~ permutations 256
congruences 218, 225, 229
configuration 250
conjugate partitions 100
conjunction 186
connected component 69
— graph 62, 166, 167¢
- relation 226
constant term 38
convex polygon 74
- polyhedron 73, 297
- sequence 14, 114, 268
convolution 44, 154, 227

covering 165

cr=circulator 109

cube 250, 262

cumulant 160

cycle in a graph 62
- indicator polynomial 247, 264
-, permutation 231

Darboux method 277, 295
D’Arcais numbers 159¢
decomposition into cycles (permuta-
tions) 231
Dedekind 273
degree of a free monomial 18
- of a group of permutations 246
- of a node in a graph 61
Delannoy numbers 80
Demorgan formulas 3
denumerant 108, 159°
- with multi-indexes 124
derangement 180, 182¢, 199, 201, 256¢
—, random 295
derivation, formal 41
derivative, n-th — of a composition of
functions 138
derivative, n-th — of a product of func-
tions 132
derivatives of gamma function 173
derivatives of implicit functions 175¢
determinants 200, 203, 260
diagonal of a product 3, 58
— series 42, 81
- steps in a path 80
diagram, Ferrers 100
- of a recurrence relation 12
dice, loaded 298
difference, set-theoretic 2
- operator 13, 83
digraph = directed graph 67
disjunctive canonical form 187
distance on a tree 62
distribution 8, 15, 222
- function of a random variable 160
division 25
Dixon formula 174
Dobinski 210
dot convention 32
dummy or bound variable 30
Durfee square identity 119

INDEX 339

empty products and sums 31, 35
edge of a graph 61
endpoint (in a graph) 61
enumerator of a set of functions 71
equal binomial coefficients 93
equivalence relation 59
- class 59
Eratosthenes, sieve of {78
Euler function 162, 1931, 199, 203
- numbers, polynomials 48, 49¢, 89,
258
- circuit 62
Eulerian numbers 51, 243¢
Eulerian polynomials 199, 244, 259, 292
even permutation 232
event 190
excycle 69
expt 37
expectation of a random variable 160
exponential numbers 210, 291, 310¢

Faa di Bruno, formula of 137

factorial moments of a random variable
160

factorial 6, 305¢
-, falling and rising 83

factorization, ordered 126

fall 241

family, multiplicable - of formal series
39
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Feller 80
Fermat matrices 171
Ferrers diagram 99
Fibonacei numbers 45¢, 86
figured number 17
filter basis 91
finest partition 220
finite geometry 303¢
fixed point of a permutation 180, 231
Foata coding 70
folding stamps 267¢
forbidden positions, permutations with
201
forbidden summands (partitions) 108
forest 70, 90, 91¢
formal derivation 41
— primitivation 42
— series 36
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fraction, rational 87, 109, 223
~ integrals of 167
fractionary iterates 144
—of et—1 148¢
Fréchet inequality 200
Frenet-Serret trihedron 158
Frobenius 249
Fubini formula 228
—, theorem of 32
function, Boolean 185
—, generating 43
-, exponential and ordinary gener-
ating 44
-, symmetric 158, 214
functional digraph 191, 69
functions, composition of 40, 138, 145
— of a finite set 69, 79

gamma function, derivatives of 173
— —, stirling expansion 267
Gegenbauer polynomials 50, 87
generating function 43
generalized bracketing 56, 57¢
Genocchi numbers 49¢
geometry, finite 91, 303¢
Gould formula 173
graph 60
-, complementary 62
-, directed or oriented 67
graph (m —) 264
graphs, labeled and uniabeied 263, 264¢
-, regular 273, 279¢
group, alternating 233
— of given order 302¢
— of permutations 246
-, symmetric 231
Gumbel inequalities 201

Hadamard product 85
Halphen 161
Hamiltonian circuit 62
Hankel determinant 87
harmonic numbers 217
Hasse diagram 67
height of a tree 52
Herschellian type 109
Hermite formula 150, 164
— polynomials 164, 50, 277
homogeneous parts 38
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horizontal recurrence relations 209,
215

Hurwitz identity 163
— series 85

idempotent map 91¢

— number 135
identity, binomial 12, 127, 76, 155

—, Jacobi 106, 119

—, multinomial 28, 127

— permutations 230

-, Rogers-Ramanujan 107
image 4

~, inverse 5
implicit, derivative of an - function 175¢
incidence matrix 58, 201
incident edge 61
inclusion and exclusion principle 176
in-degree, out-degree 68
independent set 62
indeterminates in a formal series 36
indicator polynomial 247, 264
inequalities, linear — in probabilities 190
inequality of Bonferroni 193, 203

- of Boole 194

— of Fréchet 200

— of Gumbel 201

— Newton 278
injection 5
injective map 5
integral part of x 178
interchangeable system 179
inventory 251
inverse image 5

—map 5

— of a formal series 148, 151¢

— of some polynomials 164
inversion formula of Lagrange 148, 163
inversions in a permutation 236, 240¢
inversion of a matrix 143, 164
involution 257
isomorphic graphs 263
iterate, fractionary 144
iteration polynomials 147¢

Jacobi identity 106, 119

Jordan formula 195, 200, 203
— function 199, 203

juxtaposition, product by 18

Kaplansky 24
knock-out tournament 200
Kolmogoroff system 302

labeled graphs 263, 264¢
Lagrange congruence 218
—, inversion formula of 148, 163
Laguerre polynomials 50
Lah numbers 135, 156¢
Lambert series 48, 161
latin square and rectangle 183¢
lattice 59
—, free distributive 273
— of partitions of a set 202, 220
— of permutations 255
— representation 58
Laurent series 43
Legendre polynomials 50, 87, 164
Leibniz formula 130
Leibniz numbers 83¢
letter of a word 18
Lie derivation 220
Li Jen-Shu formula 173
Lindeberg 281, 297
linear system 304
lines in the plane 72
loaded dice 299
log (1 +1) 37
logarithmic polynomials 140, 156, 308¢
logarithmically concave or convex 269
lower bounds, set of 59

MacMahon X
MacMahon Master Theorem 173
magic squares 124, 125¢
map 5, 70

—, reciprocal or inverse 5

—, surjective 5
maps of a finite set into itself 69
marriage problem 300
matchbox problem of Banach 297
matrix, incidence 58, 201

— of a permutation 230

— of a relation 58

-, random 201
measure 189
‘ménages’ problem 183, 185¢, 199
minimal path 20, 80, 81
minimax 302

Mobius formula 161, 202
- function 161
model 250, 252
moment of random variable 160
money-change problem 108
monkey typist 297
monoid, free 18
monomial, symmetric ~ function 158
monotone subsequence 299
multicovering 303¢
multi-index 36, 124
multinomial coeflicient 28, 77
sums of — 126
sums of inverses of - 294
- identity 28, 127
multiplicable family 39
multiplicative function 161
multisection of series 84

Netto X
necklaces 263
Newcomb 246, 266
Newton 48, 270
binomium formula of — 12
-, formula of Taylor 221
nodes of a graph or digraph 61, 67
nonassociative product 52

octahedron 262
odd permutations 232
omino, n- 226
operator
- D, derivation 41
-, 4 diflerence 13, 83
-, P primitivation 52
— E, translation 13
- @ —=1tD 220
orbit 248, 231
order of a formal series 38
- of a group of permutations 246
- of a permutation 233
- relation 59, 60¢
ordered factorizations 126
ordered orbits, permutations with 258¢
- set 59
ordinals 122, 123¢
out-degree 67
outstanding elements 258
overlapping system 303

INDEX 341

pair 7
parity, even or odd 232
part of a partition 94
partial relation 58
partition of an integer 961, 159, 292,
307¢
-, random 296
partitions, lattice of 202, 220
- of a set 30, 204
-, random, of a set 296
Pascal matrix 143
- triangle 11, 76, 291
path in a graph 62
—, minimal 20, 80, 81
pcr = prime circulator 109
pentagonal theorem of Euler 104
perfect partition of integers 126
permanent 196
permutation 7, 230
-, alternating 258, 259¢
—, circular 231
-, components of 261, 262¢
—, conditional 233, 256
-, cycles of 231
-, generalized 265
-, identity 231
-, parity of 232
-, peak of 261¢
-, random 279, 295
- with forbidden positions 201
- with given order 257t
- with & inversions 236, 240¢
— with repetitions 27
permutations, group of 231
pigeon-hole principle 91
planes in space 72
Poincaré formula 192
point, fixed — of a permutation 180,
231
points in the plane 72
Poisson distribution 160
Polya, theorem of 252
polygon, convex 54, 74, 299
- of a permutation 237
polygonal contour 302
polyhedron, convex 73
-, rational points ina 121
polynomial, indicator — of cycles 247,
264
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positions, permutation with forbidden
201
potential polynomials 141, 156
powers, sums of 154, 168, 169
pre-image 5, 30
prime numbers 119, 178
— circulator 109
primitivation, formal 42
probability 160, 190
- measure 190
‘probléme des ménages’ 183, 185¢, 199
‘probléme des rencontres’ 180, 182y,
199
product, empty 35
— set, cartesian 3
profile 125
projection 3, 59
proper relation 58

quadratic form 300
quadrinomial coefficients 78¢
g-identities 103

Ramanujan 107
Ramsey 283, 287, 2887, 298
random derangements 295

- formal series 160

~ partition of integers or sets 296

- permutations 279, 295

— tournament 296

- variable 160

- walk 20

- words 297
rank of a formula 216
rational fraction 87, 109, 223
rearrangement 265
reciprocal map 5

— of formal series 150, 151¢

- relation 58
rectangle, latin 182, 183¢
reflection principle 22
reflexive relation 58
regions, division into 72, 73
regular chains 165

- graphs 273, 279¢

— graphs of order 2 276t
relation 57

~, m-ary 57

~, equivalence 59

-, incidence 59

-, inverse 59

-, order 59, 60¢
‘rencontre’ 180
Rényi 189
representative, distinct 201, 300
Riordan X
rise in a permutation 240, 243¢
Rogers-Ramanujan identities 107
root of a tree 63
rooted tree 63
roots of ax = tg x, expansions for - 170¢
roulette 262
row-independent random variable 280
run 79
Ryser formula 197

Salié’s numbers 86, 87¢
sample 190
Schréder 56, 57t, 165, 223t
score, score vector 68, 123¢
section 59
m-selection 4
separating system 302
sequences 79, 260, 265
sequences, divisions of [r] 79
series, diagonal 42, 81
series, formal 36
— random formal 160
sets of n elements (axiomatic) 123¢
shepherds principle 9
sieve formulas 176
sieve of Eratosthenes 178
sign of a permutation 233
size (of a set) 5
specification 18, 265
Sperner 272, 273¢, 292
spheres in space 73
squares in relations 288, 291¢
stabilizer 248
stackings 226
stamps 124
— folding strip of - 267¢
standard tableau 125
— deviation 160
Steiner, triple-system 303, 304¢
step in a minimal path 210
Stirling expansion of gamma function
267

INDEX 343

Stirling formula 292
-~ matrices 146
- numbers 50, 135, 144, 229, 271, 291,
293, 310«
— of the first kind 212
— associated of the first kind 256¢, 295
- of the second kind 204
- associated of the second kind 222¢,
295
subgraph 62
subset 2
-, series 40, 137
summable family 38
summand in a partition of integer 94
summation, double 31
— formula 153, 168, 169
—, multiple 31

—set 31
-, simple 31, 172
—, triple 31

sums of powers of binomial coefficients
90

surjection 5

surjective maps 5

symmetric eulerian numbers 158, 214
- function 158, 214
- group 231
— monoid 90
- relation 58

system 3

PEY PR Ry SRS o~ ~
{

~ of distinct representatives 201, 300

-, Sperner 272, 273¢, 292

To-system 302
tangent numbers 258
Taylor coefficient 130
— series 130
Taylor-Newton formula 221
terminal node 61
—edge 62
terms in derivatives of implicit func-
tions 175¢
Terquem problem 79
topologies on [n] 229¢
total relation 58
tournament, 68
~, knock-out 200
-, random 296

transitive digraph 66

- relation 58, 90
transpositions 231
transversals in Pascal triangle 76
tree 62, 219

—, binary 54

-, rooted 63
triangle, Pascal 11, 76
triangles with integer sides 73
triangulation 54, 74
trinomial coefficients 78¢, 163¢
triple Steiner system 303, 304¢
m-tuple 4
type of a partition of a set 205
type of a permutation 233
typewriting monkey 297

unimodal sequence 269

unequal summands, partition with 101,
115¢

unitary series 146

upperbounds, set of 59

Vandermonde convolution 44, 154, 227
variable, bound or dummy 30
- in formal series 36
~, random 160
variance 160
variegated words 198
vector space 201
vertex of a graph 6i
vertical recurrence relations 209, 215

wall 125

Wedderburn-Etherington problem 54,
55¢

weighing problem 301

weight 251

Wilson congruence 218

word 18
- random 18, 297

Wronski aleph 208

Young 125

Zarankiewicz 288, 291¢, 300
zefa function 119, 202




