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From the Series Editor

Over the last 20 years, optical science and engineering has emerged as a discipline
in its own right. This has occurred with the realization that we are dealing with
an integrated body of knowledge that has resulted in optical science, engineering,
and technology becoming an enabling discipline that can be applied to a variety of
scientific, industrial, commercial, and military problems to produce operating devices
and hardware systems. This book series is a testament to the truth of the preceding
statement.

Quality control and the testing have become essential tools in modern industry
and modern laboratory processes. Optical methods of measurement have provided
many of the essential techniques of current practice. This current volume on Optical
Methods of Measurement emphasizes wholefield measurement methods as opposed
to point measurement, that is, sensing a field all at once and then mapping that field
for the parameter or parameters under consideration as contrasted to building up
that field information by a time series of point-by-point determinations. The initial
output of these wholefield systems of measurement is often a fringe pattern that is
then processed. The required fringes are formed by direct interferometry, holographic
interferometry, phase-shifting methods, heterodyning, speckle pattern interferometry,
and moiré techniques.

The methods described here are applicable to many measurement scenarios,
although the examples focus on modern experimental mechanics. Since this volume
covers the variety of techniques available and their range of applicability together
with their sensitivity and accuracy as determined by the underlying principle, the
reader will find these pages an excellent practice guide of wholefield measurement
as well as a desk reference volume.

Brian J. Thompson
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Preface

Many good ideas originated from several of my professional colleagues that have
considerably improved the book. I would like to thank Prof. Osten from Stuttgart
University and Professors Hinsch and Helmers from the University of Oldenburg for
providing numerous contributions to the contents of the book. I owe a great deal to my
colleagues Prof. M. P. Kothiyal, Prof. Chandra Shakher, and Dr. N. Krishna Mohan
for their help and support at various stages.

Since the phenomenon of interference is central to many techniques of measure-
ment, I have introduced a chapter on “Optical Interference.” There have been several
additions like the non-diffracting beam and singular beam with their metrological
applications. Bibliography and additional reading have been expanded. The book
contains references to 103 books, 827 journal papers, and 130 figures.

Revision of this book was originally slated for late 2005; however, administrative
responsibilities prevented this. It is only through the persistent efforts by the staff
of Taylor & Francis that the revision finally materialized. I would therefore like to
express my sincere thanks to Jessica Vakili and Catherine Giacari for keeping my
interest in the book alive.

Rajpal S. Sirohi
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Preface to First Edition

Optical techniques of measurement are among the most sensitive known today. In
addition, they are noncontact, noninvasive, and fast. In recent years, the use of optical
techniques for measurement have dramatically increased, and applications range from
determining the topography of landscapes to checking the roughness of polished
surfaces.

Any of the characteristics of a light wave—amplitude, phase, length, frequency,
polarization, and direction of propagation—can be modulated by the measurand. On
demodulation, the value of the measurand at a spatial point and at a particular time
instant can be obtained. Optical methods can effect measurement at discrete points
or over the wholefield with extremely fine spatial resolution. For many applications,
wholefield measurements are preferred.

This book contains a wealth of information on wholefield measurement methods,
particularly those employed frequently on modern experimental mechanics since the
variable that is normally monitored is displacement. Thus, the methods can be used to
determine surface deformation, strains, and stresses. By extension, they can be applied
in the nondestructive evaluation of components. There is no doubt that the methods
described are applicable to other fields as well, such as the determination of surface
contours and surface roughness. With the appropriate setup, these wholefield optical
methods can be used to obtain material properties and temperature and pressure gradi-
ents. Throughout the book, emphasis is placed on the physics of the techniques, with
demonstrative examples of how they can be applied to tackle particular measurement
problems.

Any optical technique has to involve a light source, beam-handling optics, a detec-
tor, and a data-handling system. In many of the wholefield measurement techniques,
a laser is the source of light. Since much information on lasers is available, this aspect
is not discussed in the book. Instead, we have included an introductory chapter on the
concept of waves and associated phenomena. The propagation of waves is discussed
in Chapter 2.

Chapter 3 deals with current phase evaluation techniques, since almost all the
techniques described here display the information in the form of a fringe pattern.
This fringe pattern is evaluated to a high degree of accuracy using currently avail-
able methods to extract the information of interest. The various detectors available
for recording wholefield information are described in Chapter 4. Thus the first four
chapters provide the background for the rest of the book.

Chapter 5 is on holographic interferometry. A number of techniques have been
included to give readers a good idea of how various applications may be handled.

xxiii
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xxiv Preface

The speckle phenomenon, although a bane of holographers, has emerged as a very
good measurement technique. Several techniques are now available to measure the
in-plane and out-of-plane displacement components, tilts, or slopes. In Chapter 6,
these techniques are contrasted with those based on holographic interferometry, with
discussion on their relative advantages and areas of applicability. In recent times,
electronic detection in conjunction with phase evaluation methods has been increas-
ingly used. This makes all these speckle techniques almost real-time approaches, and
they have consequently attracted more attention from industry. Chapter 6 includes
descriptions of various measurement techniques in speckle metrology.

Photoelasticity is another wholefield measurement technique that has existed for
some time. Experiments are conducted on transparent models that become birefrin-
gent when subjected to load. Unlike holographic interferometry and speckle-based
methods, which measure displacement or strain, photoelasticity gives the stress dis-
tribution directly. Photoelasticity, including the technique of holophotoelasticy, is
covered in Chapter 7.

The moiré technique, along with the Talbot phenomenon, is a powerful mea-
surement technique and covers a very wide range of sensitivity. Chapter 8 presents
various techniques, spanning the measurement range from geometrical moiré with
low-frequency diffraction gratings.

The book has evolved as a result of the authors’ involvement with research and
teaching of these techniques for more than two decades. It puts together the major
wholefield methods of measurement in one text, and, therefore should be useful to
students taking a graduate course in optical experimental mechanics and to experi-
mentalists who are interested in investigating the techniques available and the physics
behind them. It will also serve as a useful reference for researchers in the field.

We acknowledge the strong support given by Professor Brian J. Thompson and
the excellent work of the staff of Marcel Dekker, Inc. This book would not have been
possible without the constant support and encouragement of our wives, Vijayalaxmi
Sirohi and Chau Swee Har, and our families, to whom we express our deepest thanks.

Rajpal S. Sirohi
Fook Siong Chau



“DK4217_C000.tex” — page xxv[#25] 15/5/2009 10:56

Author

R. S. Sirohi, Ph.D. is presently the vice chancellor
of Amity University, Rajasthan, India. Prior to this,
he was the vice chancellor of Barkatullah University,
Bhopal, and director, Indian Institute of Technology
Delhi, Delhi. He has also served at the Indian Institute
of Science, Bangalore and in various capacities at the
Indian Institute of Technology Madras, Chennai.

He holds a postgraduate degree in applied optics and
a Ph.D. in physics from IIT Delhi, India.

Prof. Sirohi worked in Germany as a Humboldt
Fellow and Awardee. He was senior research associate
at Case Western Reserve University, Cleveland, Ohio,

and associate professor at the Rose Hulman Institute of Technology, Terre Haute
Indiana. He was an ICTP (International Center for Theoretical Physics, Trieste, Italy)
visiting scholar to the Institute forAdvanced Studies, University of Malaya, Malaysia,
and visiting professor at the National University of Singapore. Currently he is an ICTP
visiting scientist to University of Namibia.

Dr. Sirohi is a Fellow of several important academies in India and abroad including
the Indian National Academy of Engineering, National Academy of Sciences, Optical
Society of America, Optical Society of India, SPIE (The International Society for
Optical Engineering) and honorary fellow of ISTE (Indian Society for Technical
Education) and Metrology Society of India. He is a member of several other scientific
societies, and founding member of the India Laser Association. He was also the chair
for SPIE-INDIA Chapter, which he established with cooperation from SPIE in 1995
at IIT Madras. He was invited as a JSPS (Japan Society for the Promotion of Science)
Fellow to Japan. He was a member of the Education Committee of SPIE.

Dr. Sirohi has received the following awards from various organizations: Humboldt
Research Award (1995) by the Alexander von Humboldt Foundation, Germany;
Galileo Galilei Award of International Commission for Optics (1995); Amita De
MemorialAward of the Optical Society of India (1998); 13th Khwarizmi International
Award, IROST (Iranian Research Organisation for Science and Technology) (2000);
Albert Einstein Silver Medal, UNESCO (2000); Dr. Y.T. Thathachari Prestigious
Award for Science by Thathachari Foundation, Mysore (2001); Pt. Jawaharlal
Nehru Award in Engineering & Technology (2000) by the MP Council of Science and
Technology; Giant’s Gaurav Samman (2001); NAFEN’s Annual Corporate Excel-
lence Award (2001); NRDC Technology Invention Award (2003); Sir C.V. Raman

xxv



“DK4217_C000.tex” — page xxvi[#26] 15/5/2009 10:56

xxvi Author

Award: Physical Sciences (2002) by UGC; Padma Shri, a National Civilian Award
(2004); Sir C.V. Raman Birth CentenaryAward (2005) by the Indian Science Congress
Association, Kolkata; Inducted into Order of Holo-Knights during the International
Conference Fringe 05 held at Stuttgart, Germany, 2005; Centenarian Seva Ratna
Award (2004) by The Centenarian Trust, Chennai; Instrument Society of India Award
(2007); and the Lifetime Achievement Award (2007) by the Optical Society of
India. SPIE—The International Society for Optical Engineering—has bestowed on
him the SPIE Gabor Award 2009 for his work on holography, speckle metrology,
interferometry, and confocal microscopy.

Dr. Sirohi was the president of the Optical Society of India during 1994–1996.
He was also president of the Instrument Society of India during 2003–2006 and
reelected for another term beginning 2008. He is on the international advisory board
of the Journal of Modern Optics, UK, on the editorial boards of the Journal of Optics
(India) and Optik (Germany). Currently, he is associate editor of the international
journal Optical Engineering and regional editor of the Journal of Holography and
Speckle. He was also guest editor for the journals Optics and Lasers in Engineering
and Optical Engineering.

Dr. Sirohi has 438 papers to his credit with 240 published in national and
international journals, 60 in proceedings of the conferences and 140 presented in con-
ferences. He has authored/co-authored/edited thirteen books including five Milestones
for SPIE, was principal coordinator for 26 projects sponsored by government fund-
ing agencies and industries, and supervised 24 Ph.D., 7 M.S. and numerous B.Tech.,
M.Sc. and M.Tech. theses.

Dr. Sirohi’s research areas are optical metrology, optical instrumentation, holog-
raphy and speckle phenomenon.



“DK4217_C001.tex” — page 1[#1] 14/5/2009 20:04

1 Waves and Beams

Optics pertains to the generation, amplification, propagation, detection, modification,
and modulation of light. Light is considered a very tiny portion of the electromagnetic
spectrum responsible for vision. In short, optics is science, technology, and engi-
neering with light. Measurement techniques based on light fall into the subject of
optical metrology. Thus, optical metrology comprises varieties of measurement tech-
niques, including dimensional measurements, measurement of process variables, and
measurement of electrical quantities such as current and voltages.

Optical methods are noncontact and noninvasive. Indeed, the light does interact
with the measurand, but does not influence its value in the majority of cases, and hence
such measurements are termed noncontact. Further, information about the whole
object can be obtained simultaneously, thereby giving optical methods the capability
of wholefield measurement. The measurements are not influenced by electromagnetic
fields. Further, light wavelength is a measurement stick in length metrology, and
hence high accuracy in measurement of length/displacement is attained. Some of
these attributes make optical methods indispensable for several different kinds of
measurements.

1.1 THE WAVE EQUATION

Light is an electromagnetic wave, and therefore satisfies the wave equation

∇2E(r, t) − 1

c2

∂2E(r, t)

∂t2
= 0 (1.1)

where E(r, t) is the instantaneous electric field of the light wave and c is the velocity
of light. [The instantaneous magnetic field of the wave, B(r, t), satisfies a similar
equation.] Equation 1.1 is a vector wave equation. We are interested in those of its
solutions that represent monochromatic waves, that is,

E(r, t) = E(r) exp(−iωt) (1.2)

where E(r) is the amplitude and ω is the circular frequency of the wave. Substituting
Equation 1.2 into Equation 1.1 leads to

∇2E(r) + k2E(r) = 0 (1.3)

1
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where k2 = ω2/c2. This is the well-known Helmholtz equation. A solution of the
Helmholtz equation for E(r) will provide a monochromatic solution of the wave
equation.

1.2 PLANE WAVES

There are several solutions of the wave equation; one of these is of the form

E(r) = E0 exp(ik · r) (1.4)

This represents a plane wave, which has constant amplitude E0 and is of infinite cross-
section. A plane monochromatic wave spans the whole of space for all times, and is a
mathematical idealization. A real plane wave, called a collimated wave, is limited in
its transverse dimensions. The limitation may be imposed by optical elements/systems
or by physical stops. This restriction on the transverse dimensions of the wave leads
to the phenomenon of diffraction, which is discussed in more detail in Chapter 3.
A plane wave is shown schematically in Figure 1.1a.

1.3 SPHERICAL WAVES

Another solution of Equation 1.3 is

E(r) = A

r
exp(ik · r) (1.5)

where A is a constant representing the amplitude of the wave at unit distance. This
solution represents a spherical wave.A plane wave propagates in a particular direction,
whereas a spherical wave is not unidirectional. A quadratic approximation to the
spherical wave, in rectangular Cartesian coordinates, is

E(x, y, z) = A

z
exp(ikz) exp

[
ik

2z
(x2 + y2)

]
(1.6)

This represents the amplitude at any point (x, y, z) on a plane distant z from a point
source. This expression is very often used when discussing propagation through opti-
cal systems. A collimated wave is obtained by placing a point source (source size
diffraction-limited) at the focal point of a lens. This is, in fact, a truncated plane
wave. A spherical wave emanates from a point source, or it may converge to a point.
Diverging and converging spherical waves are shown schematically in Figure 1.1b.

1.4 CYLINDRICAL WAVES

Often, a fine slit is illuminated by a broad source. The waves emanating from such
line sources are called cylindrical waves. The surfaces of constant phase, far away
from the source, are cylindrical. A cylindrical lens placed in a collimated beam will
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FIGURE 1.1 (a) Plane wave. (b) Diverging and converging spherical waves. (c) Cylindrical
wave. (Figure 1.1c from E. Hecht and A. Zajac, Optics, Addison-Wesley, Reading, MA, 1974.
With permission.)

generate a cylindrical wave that would converge to a line focus. The amplitude of a
cylindrical wave, far from the narrow slit, can be written as

E(r) = A√
r

exp(ik · r) (1.7)

A cylindrical wave is shown schematically in Figure 1.1c.

1.5 WAVES AS INFORMATION CARRIERS

Light is used for sensing a variety of parameters, and its domain of applications is so
vast that it pervades all branches of science, engineering, and technology, biomedi-
cine, agriculture, etc. Devices that use light for sensing, measurement, and control are
termed optical sensors. Optical sensing is generally noncontact and noninvasive, and
provides very accurate measurements. In many cases, accuracy can be varied over a
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wide range. In these sensors, an optical wave is an information sensor and carrier of
information.

Any one of the following characteristics of a wave can be modulated by the
measured property (the measurand):

• Amplitude or intensity
• Phase
• Polarization
• Frequency
• Direction of propagation

However, the detected quantity is always intensity, as the detectors cannot follow the
optical frequency. The measured property modifies the characteristics of the wave
in such a way that, on demodulation, a change in intensity results. This change in
intensity is related to the measured property. In some measurements, the wave intensity
is modulated directly, and hence no demodulation is used before detection.

1.5.1 AMPLITUDE/INTENSITY-BASED SENSORS

There are many sensors that measure the change in intensity immediately after the
wave propagates through the region of interest. The measurand changes the intensity
or attenuates the wave—the simplest case being measurement of opacity or density.
In another application, rotation of the plane of polarization of linearly polarized light
is measured by invoking Malus’s law. The refractive index of a dielectric medium
is obtained by monitoring reflected light when a p-polarized wave is incident on the
dielectric–air interface. Measurement of absorption coefficients using Beer’s law and
measurement of very high reflectivities of surfaces are other examples. Fiber-optic
sensors based on attenuation are used for force/pressure measurement, displacement
measurement, etc. The measurement process may lead to absolute measurements or
relative measurements as the need arises.

1.5.2 SENSORS BASED ON PHASE MEASUREMENT

A variety of measurements are performed using phase measurement over a range of
accuracies. A light wave can be modulated, and the phase of the modulated wave
with respect to a certain reference can be measured to extract information about
the measurand. Alternatively, the phase of the light wave itself can be measured.
Phase can be influenced by distance, refractive index, and wavelength of the source.
A variety of phase measuring instruments, generally known as interferometers, are
available that have accuracies from nanometers to millimeters. Interferometers can
also measure derivatives of displacement or, in general, of a measurand. Hetero-
dyne interferometry is used for measuring distance, absolute distance, and very
high velocities, among other things. Interferometry can also be performed on real
objects without surface treatment, and their response to external perturbations can
be monitored.
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1.5.3 SENSORS BASED ON POLARIZATION

Malus’s law, optical activity, the stress-optic law, Faraday rotation, and so on, all
based on changes of polarization by the measurand, have been exploited for the
measurement of a number of quantities. Current flowing in a wire is measured using
Faraday rotation, and electrically induced birefringence is used for measuring voltage,
thereby measurement of power is accomplished with ease. Force is measured using
the stress-optic law. Measurement of the angle of rotation of the plane of polarization
can be done by application of Malus’s law.

1.5.4 SENSORS BASED ON FREQUENCY MEASUREMENT

Reflection of light from a moving object results in a shift in the frequency (Doppler
shift) of the reflected light. This frequency shift, known as the Doppler shift, is directly
related to the velocity of the object. It is measured by heterodyning the received signal
with the unshifted light signal. Heterodyne interferometry is used to measure displace-
ment. The Hewlett-Packard interferometer, a commercial instrument, is based on this
principle. Flow measurement also utilizes measurements of Doppler shift. Laser–
Doppler anemometers/velocimeters (LDA/LDV) are common instruments used to
measure all three components of the velocity vector simultaneously. Turbulence
can also be monitored with an LDA. Measurement of velocities has also been per-
formed routinely by measuring Doppler shift. However, for very high velocities, the
Doppler shift becomes very large, and hence unmanageable by electronics. Using
Doppler interferometry, in which Doppler-shifted light is fed into an interferometer,
a low-frequency signal is obtained, and this is then related to the velocity.

1.5.5 SENSORS BASED ON CHANGE OF DIRECTION

Optical pointers are devices based on change of direction, and can be used to monitor
a number of variables, such as displacement, pressure, and temperature. Wholefield
optical techniques utilizing this effect include shadowgraphy, schlieren photography,
and speckle photography.

Sensing can be performed at a point or over the wholefield. Interferometry, which
converts phase variations into intensity variations, is in general a wholefield technique.
Interference phenomena is discussed in detail in Chapter 2.

1.6 THE LASER BEAM

A laser beam propagates as a nearly unidirectional wave with little divergence and with
finite cross-section. Let us now seek a solution of the Helmholtz equation (Equation
1.3) that represents such a beam. We therefore write a solution in the form

E(r) = E0(r) exp(ikz) (1.8)

This solution differs from a plane wave propagating along the z-direction in that
its amplitude E0(r) is not constant. Further, the solution should represent a beam,
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that is it should be unidirectional and of finite cross-section. The variations of E0(r)
and ∂E0(r)/∂z over a distance of the order of the wavelength along z-direction are
assumed to be negligible. This implies that the field varies approximately as eikz over
a distance of a few wavelengths. When the field E0(r) satisfies these conditions, the
Helmholtz equation takes the form

∇2
TE0 + 2ik

∂E0

∂z
= 0 (1.9)

where ∇2
T is the transverse Laplacian. Equation 1.9 is known as the paraxial wave

equation, and is a consequence of the weak factorization represented by Equation 1.8
and other assumptions mentioned earlier.

1.7 THE GAUSSIAN BEAM

The intensity distribution in a beam from a laser oscillating in the TEM00 mode is
given by

I(r) = I0 exp(−2r2/w2) (1.10)

where r = (x2 + y2)1/2. The intensity I(r) drops to 1/e2 of the value of the peak
intensity I0 at a distance r = w. The parameter w is called the spot size of the beam.
w depends on the z-coordinate. The intensity profile is Gaussian; hence the beam
is called a Gaussian beam. Such a beam maintains its profile as it propagates. The
Gaussian beam has a very special place in optics, and is often used for measurement.

The solution of Equation 1.9 that represents the Gaussian beam can be written as

E(r, z) = A
exp[−r2/w2(z)]

[1 + (λz/πw2
0)

2]1/2
exp

[
ikr2

2R(z)

]
exp

[
−i tan−1

(
λz

πw2
0

)]
exp(ikz)

= A
w0

w(z)
exp

[
− r2

w2(z)

]
exp

[
ikr2

2R(z)

]
exp

[
−i tan−1

(
λz

πw2
0

)]
exp(ikz)

= A
w0

w(z)
exp

{
−r2

[
1

w2(z)
− ik

2R(z)

]}
exp[i(kz − ϕ)]

(1.11)

where A and w0 are constants and ϕ = tan−1(λz/w2
0). The constant w0 is called the

beam waist size and w(z) is called the spot size. We introduce another constant, called
the Rayleigh range z0, which is related to the beam waist size by z0 = πw2

0/λ. The
radius of curvature R(z) and spot size w(z) of the beam at an arbitrary z-plane are
given by

R(z) = z

⎡
⎣1 +

(
πw2

0

λz

)2
⎤
⎦ = z

[
1 +

(
z0

z

)2
]

(1.12a)
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w(z) = w0

⎡
⎣1 +

(
λz

πw2
0

)2
⎤
⎦

1/2

= w0

[
1 +

(
z

z0

)2
]1/2

(1.12b)

The amplitude of the wave is expressed as

A
w0

w(z)
exp

[
− r2

w2(z)

]
(1.13)

The amplitude decreases as exp[−r2/w2(z)] (Gaussian beam). The spot size w(z)
increases as the beam propagates, and consequently the amplitude on axis decreases.
In other words, the Gaussian distribution flattens. The spot size w(z) at very large
distances is

w(z)

∣∣∣∣
z→∞

= λz

πw0
(1.14)

The half divergence angle θ is obtained as

θ = dw

dz
= λ

πw0
(1.15)

The exponential factor exp[ikr2/2R(z)] in Equation 1.11 is the radial phase factor, with
R(z) as the radius of curvature of the beam. At large distances, that is, z � z0, R(z) →
z, the beam appears to originate at z = 0. However, the wavefront is plane at the
z = 0 plane. In general, a z = constant plane is not an equiphasal plane. The second
exponential factor in Equation 1.11 represents the dependence on the propagation
phase, which comprises the phase of a plane wave, kz, and Guoy’s phase ϕ. These can
be summarized for near-field and far-field situations as follows. For the near field

• Phase fronts are nearly planar (collimated beam).
• The beam radius is nearly constant.
• The wave is a plane wave with Gaussian envelope.
• For z � z0, w(z) → w0, R(z) → ∞, and tan−1(z/z0) = 0.
• There is no radial phase variation if R → ∞.

For the far field

• The curvature increases linearly with z.
• The beam radius increases linearly with z.
• For z � z0, ω(z) = λz/πω0, R(z) = z, and tan−1(z/z0) ≈ π/2.

Figure 1.2 shows the variation of the amplitude as the beam propagates.
The intensity distribution in a Gaussian beam is

I(r, z) = |A|2 w2
0

w2(z)
exp

[
− 2r2

w2(z)

]
(1.16)
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FIGURE 1.2 A Gaussian beam.

On the beam axis (r = 0), the intensity varies with distance z as follows:

I(0, z) = I0
w2

0

w2(z)
= I0

1 + (z/z0)2
(1.17)

It has its peak value I0 at z = 0, and keeps decreasing with increasing z. The value
drops to 50% of the peak value at z = ±z0.

1.8 ABCD MATRIX APPLIED TO GAUSSIAN BEAMS

The propagation of a ray through optical elements under the paraxial approximation
(linear optics) can be described by 2 × 2 matrices. The height of the output ray and
its slope are related to the input ray and its slope through a 2 × 2 matrix characteristic
of the optical element. This is described by

[
r2
r′

2

]
=
[

A B
C D

] [
r1
r′

1

]
(1.18)

or

r2 = Ar1 + Br′
1

r′
2 = Cr1 + Dr′

1

where r2 and r′
2 are the height and slope of the output ray. Consider a ray emanating

from a point source, the wavefront being spherical. Its radius of curvature R2(= r2/r′
2)

at the output side is related to the radius of curvature at the input side as follows:

R2 = r2

r′
2

= Ar1 + Br′
1

Cr1 + Dr′
1

= AR1 + B

CR1 + D
. (1.19)

The propagation of a spherical wave can easily be handled by this approach. It is
also known that the propagation of Gaussian beams can also be described by these
matrices. Since in any measurement process, a lens is an important component of the
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experimental setup, we shall discuss how the propagation of a Gaussian beam through
a lens can be handled by a 2 × 2 matrix.

ABCD matrices for free space and many optical elements are given in standard
textbooks. For a thin lens of focal length f , the matrix is

[
1 0

−f −1 1

]

The amplitude of a Gaussian beam as described by Equation 1.11 can be rewritten as

E(r, z) = A(z) exp[i(kz − ϕ)] exp

(
i
k

2

)
(x2 + y2)

[
1

R(z)
− iλ

πω2(z)

]
(1.20)

This expression is similar to the paraxial approximation to the spherical wave,
with the radius of curvature R replaced by a complex Gaussian wave parameter q,
given by

1

q
= 1

R
− iλ

πω2
(1.21)

A Gaussian beam is described completely by w, R, and λ. These are contained in the
complex parameter q, which transforms as follows:

q2 = Aq1 + B

Cq1 + D
. (1.22)

The proof of this equality is rather tedious, but, in analogy with the case of a spherical
wave, we may accept that it is correct. We shall now study the propagation of a
Gaussian beam through free space and then through a lens.

1.8.1 PROPAGATION IN FREE SPACE

The ABCD matrix for free space is

[
1 z
0 1

]
, where z is the propagation distance.

Therefore, q2 = q1 + z. In order to study the propagation of a Gaussian beam in free
space, we will assume that the beam waist lies at z = 0 where the spot size and radius of
curvature are w0 and R0 = ∞, respectively. At this plane, q0 = iπw2

0/λ; the complex
parameter at the waist is purely imaginary. Therefore, the complex parameter at any
plane distant z from the beam waist is q(z) = q0 + z. Thus,

1

q(z)
= 1

R(z)
− iλ

πw2(z)
= 1

q0 + z
= 1

z + iπw2
0

λ

= z

z +
(

πw2
0

λ

)2 −
i
πw2

0

λ

z2 +
(

πw2
0

λ

)2
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It can be seen that although the Gaussian parameter q was purely imaginary at
the beam waist, it has now become complex at any plane z and has both real and
imaginary components. On equating real and imaginary parts, we obtain, after some
simplification,

R(z) = z

⎡
⎣1 +

(
πw2

0

λz

)2
⎤
⎦ (1.23a)

w(z) = w0

⎡
⎣1 +

(
λz

πw2
0

)2
⎤
⎦

1/2

(1.23b)

These are the same expressions for the radius of curvature and spot size as were
obtained earlier.

1.8.2 PROPAGATION THROUGH A THIN LENS

Consider a Gaussian beam incident on a thin lens of focal length f . We will assume
that the beam waists w1 and w2 of the incident and transmitted beams lie at distances
d1 and d2 from the lens, respectively, as shown in Figure 1.3. The ABCD matrix for
the light to propagate from the plane at d1 to the plane at d2 is given by

[
A B
C D

]
=
[

1 d2
0 1

] [
1 0

−f −1 1

] [
1 d1
0 1

]
=

⎡
⎢⎢⎣

1 − d2

f
d1 + d2 − d1d2

f

−1

f
1 − d1

f

⎤
⎥⎥⎦

(1.24)

Using the relation given in Equation 1.22, we obtain

q2 = Aq1 + B

Cq1 + D
=

(
1 − d2

f

)
q1 +

(
d1 + d2 − d1d2

f

)
(

−1

f

)
q1 +

(
1 − d1

f

) (1.25)

d1 d2

w2w1

FIGURE 1.3 Propagation of a Gaussian beam through a lens.
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The complex parameter q1 is purely imaginary at the beam waist, and hence q1 =
iπw2

1/λ. Therefore, q2 can be expressed as follows:

q2 =

(
1 − d2

f

) (
iπw2

1/λ
)+
(

d1 + d2 − d1d2

f

)
(

−1

f

) (
iπw2

1/λ
)+

(
1 − d1

f

)

Alternatively,

1

q2
=

(
−1

f

) (
iπw2

1/λ
)+

(
1 − d1

f

)
(

1 − d2

f

)(
iπw2

1/λ
)+
(

d1 + d2 − d1d2

f

) = 1

R2
− iλ

πw2
2

(1.26)

Equating real and imaginary parts, we obtain

1

R2
= ( f − d1)

[
(d1 + d2) f − d1d2

]− ( f − d2)
(
πw2

1/λ
)2

[
(d1 + d2) f − d1d2

]2 + ( f − d2)
2(πw2

1/λ
)2 (1.27a)

λ

πw2
2

= πw2
1

λ

f 2

[
(d1 + d2) f − d1d2

]2 + ( f − d2)
2(πw2

1/λ
)2 (1.27b)

We now consider that the beam waist lies at a distance d2, implying that w2 is purely
imaginary, and hence R2 = ∞. This occurs when

( f − d1)
[
(d1 + d2) f − d1d2

]− ( f − d2)
(
πw2

1/λ
)2 = 0

In order to determine the location of the beam waist, we solve this equation for d2
as follows:

d2 = f + [d1f (d1−f )/z2
1

]
1 + [(d1 − f )/z1

]2 (1.28a)

where z1 = πw2
1/λ.

From Equation 1.27b, we obtain

w2
2

w2
1

= ( f /z1)
2

1 + [(d1 − f )/z1
]2 = d2 − f

d1 − f
(1.28b)

As a special case, when the beam waist w1 lies at the lens plane, that is, d1 = 0,
Equations 1.28a and 1.28b can be expressed as

d2 = f

1 + ( f /z1)2
(1.29a)

w2

w1
= f /z1

[1 + ( f /z1)2]1/2
(1.29b)
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1.8.3 MODE MATCHING

We assume that the beam waists lie at distances d1 and d2 from the lens. At the beam
waists, the complex parameters are purely imaginary, and hence q1 = iπw2

1/λ and
q2 = iπw2

2/λ. Then Equation 1.26 can be rewritten as follows:

iπw2
2

λ
=

(
1 − d2

f

) (
iπw2

1/λ
)+ f

(
d1 + d2 − d1d2

f

)
(

−1

f

) (
iπw2

1/λ
)+

(
1 − d1

f

) (1.26a)

On equating real and imaginary parts, we obtain

(d1 − f )(d2 − f ) = f 2 − f 2
g (1.30a)

d2 − f

d1 − f
= w2

2

w2
1

(1.30b)

where fg = πw1w2/λ is defined by the products of the waists. The right-hand side of
Equation 1.30b is always positive, and hence d1 − f and d2 − f have to be either both
positive or both negative. Hence, (d1 − f )(d2 − f ) is always positive, and so f > fg.
From Equations 1.30a and 1.30b, we can obtain the following two relations:

d1 = f ± w1

w2
( f 2 − f 2

g )1/2 (1.31a)

d2 = f ± w2

w1
( f 2 − f 2

g )1/2 (1.31b)

Propagation of a Gaussian beam in the presence of other optical elements can be
studied in a similar way.

1.9 NONDIFFRACTING BEAMS—BESSEL BEAMS

There is a class of beams that propagate over a certain distance without diffraction.
These beams can be generated using either axicons or holograms.

Diffractionless solutions of the Helmholtz wave equation in the form of Bessel
functions constitute Bessel beams. A Bessel beam propagates over a considerable
distance without diffraction. It also has a “healing” property in that it exhibits self-
reconstruction after encountering an obstacle. A true Bessel beam, being unbounded,
cannot be created. However, there are several practical ways to create a beam that is a
close approximation to a true Bessel beam, including diffraction at an annular aperture,
focusing by an axicon, and the use of diffractive elements (holograms). Figure 1.4
shows a schematic for producing Bessel beam using an axicon. A Gaussian beam is
incident on the axicon, which produces two plane waves in conical geometry. These
plane waves interfere to compensate for the spread of the beam. A Bessel beam exists
in the region of interference.
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Gaussian
beam

Axicon Bessel
beam

FIGURE 1.4 Generation of a Bessel beam with an axicon.

On the other hand, a hologram with transmittance function t(ρ, φ) can generate
Bessel beams. The transmittance function is given by

t(ρ, φ) =
{

A(φ) exp(−2πiρ/ρ0), ρ ≤ D

0, ρ > D
(1.32)

where D is the size of the hologram. The diffraction pattern of the Bessel beam
shows a very strong central spot surrounded by large number of rings. The rings can
be suppressed. However, the intensity in the central spot is weaker than that of a
Gaussian beam of comparable size.

Only first-order Bessel beams can be generated with an axicon, while a hologram
generates beams of several orders.

Because of several interesting properties of Bessel beams, they find applications
in several areas of optical research, such as optical trapping and micromanipulation.

1.10 SINGULAR BEAMS

An optical beam possessing isolated zero-amplitude points with indeterminate phase
and helical phase structure is called a singular beam; such points are called singular
points. Both real and imaginary parts of the complex amplitude are simultaneously
zero at a singular point. A helical phase front of the singular beam is described by the
wave field exp(ilϕ), where l is the topological charge. The value of the topological
charge of the vortex field determines the total phase that the wavefront accumulates
in one complete rotation around the singular point. The sign of l determines the sense
of helicity of the singular beam. The phase gradient of a wave field with phase sin-
gularity is nonconservative in nature. The line integral of the phase gradient over any
closed path surrounding the point of singularity is nonzero, that is,

∮ ∇φ · dl = m2π.
At an isolated point where a phase singularity occurs, the phase is uncertain and
the amplitude is zero, thereby creating an intensity null at the point of singularity.
The intensity profile of a phase-singular beam with unit topological charge (l = 1) is
shown in Figure 1.5. It is now well established that such beams possess orbital angular
momentum equal to l� per photon, where � is Planck’s constant divided by 2π.
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FIGURE 1.5 Intensity profile of a phase-singular beam with topological charge l = 1.
(Courtesy of D. P. Ghai.)

According to terminology introduced by Nye and Berry, wavefront dislocation in
a monochromatic wave can be divided into three main categories: (i) screw disloca-
tion; (ii) edge dislocation; and (iii) mixed screw edge dislocation. Screw dislocation,
also called optical vortex, is the most common type of phase defect. The equiphase
surfaces of an optical field exhibiting screw dislocation are helicoids or groups of
helicoids, nested around the dislocation axis. One round trip on the continuous sur-
face around the dislocation axis will lead to the next coil with a pitch lλ, where l
is the topological charge and λ is the wavelength of operation. Today, “screw-type
wavefront dislocation” has become synonymous with “phase singularity.” The laser
TEM∗

01 mode, also called the doughnut mode, is the most common example of a
screw dislocation of topological charge ±1.

Properties of vortices have been studied in both linear and nonlinear regimes. It has
been shown that a unit-charge optical vortex is structurally stable. On the other hand,
multiple-charge optical vortices are structurally unstable. Optical vortices with the
same topological charge rotate about each other on propagation, with the rotation rate
depending on the inverse square of the separation between the two vortices. In contrast,
vortices with equal magnitude but opposite polarity of their topological charges drift
away from each other. Vortices with small cores, called vortex filaments, exhibit fluid-
like rotation similar to vortices in liquids. An optical vortex propagating in a nonlinear
medium generates a soliton. The optical vortex soliton is a three-dimensional, robust
spatial structure that propagates without changing its size. Optical vortex solitons are
formed in a self-defocusing medium when the effects of diffraction are offset by the
refractive index variations in the nonlinear medium.

One of the possible solutions of the wave equation, as suggested by Nye and
Berry, is

E (r, φ, z, t) ∝
(

r|l| exp(ilφ + ikz − iwt)
r−|l| exp(ilφ + ikz − iwt)

)
(1.33)

where E (r, φ, z, t) is the complex amplitude of a monochromatic light wave with
frequency w and wavelength λ propagating along the z axis, and k = 2π/λ is the



“DK4217_C001.tex” — page 15[#15] 14/5/2009 20:04

Waves and Beams 15

propagation vector. Both solutions have azimuthal phase dependence. As the wave
propagates, the equiphase surfaces (wavefront) trace a helicoid given by

lφ + kz = constant (1.34)

After one round trip of the wavefront around the z axis, there is a continuous transition
into the next wavefront sheet, separated by lλ, which results in a continuous helicoidal
wave surface. The sign of the topological charge is positive or negative, depending
upon whether the wave surface has right- or left-handed helicity.

The solutions given by Equation 1.33 do not describe a real wave, because of
the radial dependence of the wave amplitude. Therefore, it is necessary to take an
appropriate wave as the host beam. We may consider, for example, a phase-singular
beam embedded in a Gaussian beam. Using the paraxial approximation to the scalar
wave equation,

1

r

∂

∂r

(
r
∂E

∂r

)
1

r2
+ 1

r2

∂2E

∂r2
+ 2ik

∂E

∂z
= 0 (1.35)

we obtain the solution of a vortex Gaussian envelope as

E (r, φ, z) = E0

(
r

w0

)l
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2
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⎡
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1

4
k2w4

0

z2 +
(

1

2
kw2

0

)2

⎤
⎥⎥⎥⎦ exp[iΦ(r, φ, z)] (1.36)

where E0 is the real amplitude and w0 is the beam waist. The phase Φ is given by

Φ(r, φ, z) = (|l| + 1) tan−1

⎛
⎜⎝ z

1

2
kw2

0

⎞
⎟⎠− kr2

2z + k2w2
0/2z

− lφ − kz (1.37)

Optical vortices find many applications in interferometry, such as in the study
of fractally rough surfaces, beam collimation testing, optical vortex metrology, and
microscopy. An optical vortex interferometer employing three-wave interference
can be used for tilt and displacement measurement, wavefront reconstruction, 3D
scanning, and super-resolution microscopy. Spiral interferometry, where a spiral
phase element is used as a spatial filter, removes the ambiguity between elevation
and depression in the surface height of a test object. Lateral shear interferome-
ters have been used to study gradients of phase-singular beams. It has been shown
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that shearograms do not represent true phase gradients when vortices are presents
in the optical fields. However, lateral shear interferometry is a potential technique
for the detection of both an isolated vortex and randomly distributed vortices in a
speckle field. It is a simple, robust, and self-referencing technique, which is insensi-
tive to vibrations. Unlike the existing interferometric techniques of vortex detection,
it does not require any high-quality plane or spherical reference wavefront to form an
interference pattern.

Vortex generation using interferometric methods is based on the superposition of
linearly varying phase distributions in the plane of observation that arise from interfer-
ence of three, four, or more plane or spherical waves. Interferometric techniques have
been used universally to study the vortex structure of singular beams in both linear and
nonlinear media. Depending on whether a plane or a spherical wave interferes with
the singular beam, fork-type (bifurcation of fringes at the vortex points) or spiral-type
fringes are observed in the interference pattern, as shown in Figure 1.6. Fork fringes,
which are a signature of optical vortices, give information about both the magnitude
and the sign of the topological charge.

Important methods of vortex generation make use of wedge plates, spatial light
modulators, laser-etched mirrors, and adaptive mirrors. Most common techniques use
interference of three or four plane waves for generating vortex arrays. Computer-
generated holograms (CGHs) are now widely used for the generation of phase-
singular beams. Spiral phase plates (SPPs) have been used for the generation of
phase singularities for millimeter waves. A random distribution of optical vortices is
also observed in the speckle field resulting from laser light scattered from a diffuse
surface or transmitted through a multimode fiber. There is a finite possibility of the
presence of an optical vortex in any given patch of a laser speckle field. On average,
there is one vortex per speckle. There is little probability of the presence of optical
vortices of topological charge greater than one in a speckle field.

The magnitude and sign of the topological charge of the vortex beam can be
determined from the interference pattern of the beam with a plane or a spherical
reference wave. The interference of a vortex beam of finite curvature with a spherical
reference wave gives spiral fringes. The number of fringes originating from the center

(a) (b)

FIGURE 1.6 Simulated interferograms between (a) a tilted plane wave and singular beam;
(b) a spherical wave and a singular beam of topological charge l = 1. (Courtesy of D. P. Ghai.)
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equals the magnitude of the topological charge of the vortex beam. The circulation of
the fringes depends upon the sign of the topological charge and the relation between
the radius of curvature of the vortex and the reference wave.

Referring to Equation 1.37, the transverse phase dependence of the vortex beam
is given by

Φ(r, φ) = − kr2

2R(z)
− lφ (1.38)

where R (z) is the radius of curvature of the phase-singular beam. The condition for
fringe maxima in the interference pattern is

cos

[
− kr2

2R(z)
+ kr2

2R(0)
− lφ

]
= 1 (1.39)

that is, (
kr2 R(z) − R(0)

2R(z)R(0)
− lφ

)
= 2πl (1.40)

When the radius of curvature of the reference beam is larger than that of the vortex
beam, that is, R0 > R(z), clockwise rotation of fringes corresponds to a positive
value of the topological charge and anticlockwise rotation to a negative value. For
R0 < R(z), clockwise rotation corresponds to a negative value of the topological
charge and anticlockwise rotation to a positive value. When R0 = R(z), instead of
spiral fringes, cross-type fringes are observed.
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2.1 INTRODUCTION

Light waves are electromagnetic waves. They can be spherical, cylindrical, or plane,
as has been explained in Chapter 1. By modulating wave properties such as ampli-
tude, phase, and polarization, it is possible for light waves to carry information. In a
homogenous, isotropic medium, there is usually no interaction between the wave and
the medium. However, at very high intensities, some nonlinear effects begin to come
into play. Our interest for now is to study the superposition of two or more waves. If the
waves are traveling in the same direction, they will have a very large region of super-
position. In contrast, if the angle between their directions of propagation is large, the
region of superposition will be small. As the angle between the two waves increases,
the region of superposition continues to decrease, and reaches a minimum when they
propagate at right angles to each other. As the angle is further increased, the region
of superposition also increases, reaching a maximum when they are antipropagating.

Let us consider the superposition of two coherent monochromatic waves. The
amplitude distribution of these waves can be written as follows:

E1(x, y, z; t) = E01(x, y, z) exp[i(ωt + k1 · r + δ1)] (2.1)

E2(x, y, z; t) = E02(x, y, z) exp[i(ωt + k2 · r + δ2)] (2.2)

The total amplitude is the sum of the amplitudes of the individual waves. This can be
expressed as follows:

E(x, y, z; t) = E1(x, y, z; t) + E2(x, y, z; t) (2.3)

The intensity distribution at a point (x, y, z) can be obtained as follows:

I(x, y, z) = 〈E(x, y, z; t) · E(x, y, z; t)〉
= E2

01 + E2
02 + 2E01 · E02 cos[(k2 − k1) · r + φ] (2.4)

Here (k2 − k1) · r + φ is the phase difference between the waves and φ = δ2 − δ1 is
the initial phase difference, which can be set equal to zero. It is seen that the intensity
at a point depends on the phase difference between the waves. There does exist a
varying intensity distribution in space, which is a consequence of superposition and

19
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hence interference of waves. When taken on a plane, this intensity pattern is known
as an interference pattern. In standard books on optics, the conditions for obtaining a
stationary interference pattern are as follows:

1. Waves must be monochromatic and of the same frequency.
2. They must be coherent.
3. They should enclose a small angle between them.
4. They must have the same state of polarization.

These conditions were stated at a time when fast detectors were not available and
to realize a monochromatic wave was extremely difficult. It is therefore worth com-
menting that interference does take place when two monochromatic waves of slightly
different frequencies are superposed. However, this interference pattern is not sta-
tionary but moving: heterodyne interferometry is an example. In order to observe
interference, the waves should have time-independent phases. In the light regime,
therefore, these waves are derived from the same source either by amplitude division
or wavefront division. This is an important condition for observing a stable interfer-
ence pattern. It is not necessary that these waves enclose a small angle between them.
Previously, when the observations were made visually with the naked eye or under low
magnification, the fringe width had to be large to be resolved. However, with the avail-
ability of high-resolution recording media, an interference pattern can be recorded
even between oppositely traveling waves (with the enclosed angle approaching 180◦).
Further interference between two linearly polarized waves is observed except when
they are orthogonally polarized, albeit with reduced contrast.

2.2 GENERATION OF COHERENT WAVES

There are only two methods that are currently used for obtaining two or more coherent
beams from the parent beam: (1) division of wavefront and (2) division of amplitude.

2.2.1 INTERFERENCE BY DIVISION OF WAVEFRONT

Two or more portions of the parent wavefront are created and then superposed to
obtain an interference pattern. Simple devices such as the Fresnel biprism, the Fres-
nel bi-mirror, and the split lens sample the incident wavefront and superpose the
sampled portions in space, where the interference pattern is observed. This is the
well-known two-beam interference. A simple method that has recently been used
employs an aperture plate, and samples two or more portions of the wavefront. If the
sampling aperture is very fine, diffraction will result in the superposition of waves at
some distance from the aperture plane. The Smartt interferometer and the Rayleigh
interferometer are examples of interference by wavefront division. The use of mul-
tiple apertures such as a grating gives rise to multiple-beam interference based on
wavefront division.

2.2.2 INTERFERENCE BY DIVISION OF AMPLITUDE

A wave incident on a plane parallel or wedge plate is split into a transmitted and a
reflected wave, which can be superposed by judicious application of mirrors, resulting



“DK4217_C002.tex” — page 21[#3] 14/5/2009 21:08

Optical Interference 21

in various kinds of interferometers. Michelson and Mach–Zehnder interferometers
are two well-known examples. All polarization-based interferometers use division of
amplitude. The Fabry–Perot interferometer, the Fabry–Perot etalon, and the Lummer–
Gerchke plate are examples of multiple-beam interference by division of amplitude.

2.3 INTERFERENCE BETWEEN TWO PLANE
MONOCHROMATIC WAVES

As seen from Equation 2.4, the intensity distribution in the interference pattern when
two monochromatic plane waves are propagating in the directions of propagation
vectors k1 and k2, respectively, is given by

I(x, y, z) = E2
01 + E2

02 + 2E01 · E02 cos[(k2 − k1) · r + φ] (2.5)

This equation can also be written as

I(x, y, z) = I1 + I2 + 2E01 · E02 cos[(k2 − k1) · r + φ] (2.6)

where I1 and I2 are the intensities of the individual beams. It is thus seen that the
resultant intensity varies in space as the phase changes. This variation in inten-
sity is a consequence of the interference between two beams. The intensity will be
maximum wherever the argument of the cosine function takes values equal to 2mπ

(m = 0, 1, 2, . . .) and will be minimum wherever the phase difference is (2m + 1)π.
The loci of constant phase 2mπ or (2m + 1)π are bright or dark fringes, respec-
tively. The phase difference between two bright fringes or dark fringes is always 2π.
Following Michelson, we define the contrast of the fringes as follows:

C = Imax − Imin

Imax + Imin
= 2E01 · E02

I1 + I2
(2.7)

It can be seen that there are no fringes when the contrast is zero. This can occur when
the two light beams are orthogonally polarized. The fringes are always formed, albeit
with low contrast, if the two beams are not in the same state of polarization. Assuming
the beams to be in the same state of polarization, the contrast is given by

C = 2
√

I1I2

I1 + I2
=

2
√

I1
I2

1 + I1
I2

(2.8)

Fringes of appreciable contrast are formed even if the beams differ considerably in
intensity.

Assuming the plane waves to be confined to the (x, z) plane as shown in Figure 2.1,
the phase difference is given by

δ = [(k2 − k1) · r + φ] = 2π

λ
2x sin θ
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FIGURE 2.1 Interference pattern between two plane waves.

where we have taken φ = 0. Here the beams are symmetric with respect to the z axis,
making an angle θ with the axis. It is thus seen that straight-line fringes are formed
that run parallel to the z axis, with spacing x̄ = λ/(2 sin θ). The fringes have a larger
width for smaller enclosed angles.

2.3.1 YOUNG’S DOUBLE-SLIT EXPERIMENT

This is a basic experiment to explain the phenomenon of interference. Radiation
from an extremely narrow slit illuminates a pair of slits situated on a plane a distance
p from the plane of the first slit. The slits are parallel to each other. A cylindrical
wave from the first slit is incident on the pair of slits, which thus sample the wave at
two places. The incident wave is diffracted by each slit of the pair, and the interference
pattern between the diffracted waves is observed at a plane a distance z from the plane
of the pair of slits, as shown in Figure 2.2. The amplitude distribution at an observation
point P on the screen is given by

I(x, z) = 2I0s sinc2
(

1

2
kb sin θ

)
[1 + cos(ka sin θ)] (2.9)

P

P

z

x

r1

r2
a

b

z

FIGURE 2.2 Young’s double-slit experiment.
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(a) (b)

(c)

Diffraction
at single slit

Interference
pattern due to
double slit

Interference
pattern

FIGURE 2.3 (a) Diffraction pattern of a single slit. (b) Interference pattern due to a double
slit. (c) Interference pattern as observed in Young’s double-slit experiment (with diffraction
envelope shown).

where I0s sinc2(kb sin θ/2) is the intensity distribution on the observation plane due
to a single slit and ka sin θ is the phase difference between two beams diffracted by
the pair of slits. It can be seen that the intensity distribution in the fringe pattern is
governed by the diffraction pattern of a single slit, and the fringe spacing is governed
by the slit separation. This is shown in Figure 2.3.

Let us now broaden the illuminating slit, thereby decreasing the region of coher-
ence. The width of the region of coherence can be calculated by invoking the van
Cittert–Zernike theorem.

Another interesting interferometer based on the division of wavefronts is the
Michelson stellar interferometer, which was devised to measure the angular sizes
of distant stars. A schematic of the Michelson stellar interferometer is shown in
Figure 2.4.

The combination of mirrors M3 and M1 samples a portion of the wavefront from
a distant source and directs it to one of the apertures, while the other mirror com-
bination M4 and M2 samples another portion of the same wavefront and directs it

P

z

z

M3

M1

M2

M4

r2

r1

FIGURE 2.4 Michelson stellar interferometer for angular size measurement.
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to the other aperture. Diffraction takes place at these apertures, and an interference
pattern is observed at the observation plane. In the Michelson stellar interferometer,
this arrangement is placed in front of the lens of a telescope, and the interference
pattern is observed at the focal plane.

In this arrangement, the width of the interference fringes is governed by the sep-
aration between the pair of apertures, and the intensity distribution is governed by
diffraction at the individual apertures. For a broad source, the visibility of the fringes
depends on the separation between the mirrors M3 and M4. This is also the case when
a binary object is considered.

2.3.2 MICHELSON INTERFEROMETER

The Michelson interferometer consists of a pair of mirrors M1 and M2, a beam-
splitter BS, and a compensating plate CP identical to the BS, as shown in Figure 2.5.
Light from a source S is divided into two parts by amplitude division at the beam-
splitter. The beams usually travel in orthogonal directions and are reflected back to
the beam-splitter, where they recombine to form an interference pattern. Reflection
at BS produces a virtual image M′

2 of the mirror M2. The interference pattern observed
is therefore the same as would be observed in an air layer bounded by M1 and M′

2.
With a monochromatic source, there is no need to introduce the compensating

plate CP. It is required, however, when a quasi-monochromatic source is used, to
compensate for dispersion in glass. It is also interesting to note that nonlocalized

M1

M2
′

BS

CP

S

O

M2

FIGURE 2.5 Michelson interferometer.



“DK4217_C002.tex” — page 25[#7] 14/5/2009 21:08

Optical Interference 25

fringes are formed when a monochromatic point source is used. These fringes can be
circular or straight-line, depending on the alignment.

With an extended monochromatic source, circular fringes localized at infinity are
formed when M1 and M′

2 are parallel. If M1 and M′
2 enclose a small angle and are

very close to each other (a thin air wedge), then fringes of equal thickness are formed
that run parallel to the apex of the wedge and are localized in the wedge itself.

2.4 MULTIPLE-BEAM INTERFERENCE

Multiple-beam interference can be observed either with division of wavefront or
with division of amplitude. There are, however, two important differences:

1. Beams of equal amplitudes participate in multiple-beam interference by divi-
sion of wavefront, while the amplitude of successive beams continues to
decrease when division of amplitude is used.

2. The number of beams participating in interference is finite owing to the finite
size of the elements generating multiple beams by division of wavefront, and
hence coherence effects due to the finite size of the source may also come
into play. The number of beams participating in interference can be infinite
when division of amplitude is employed.

Except for these differences, the theory of fringe formation is the same.

2.4.1 MULTIPLE-BEAM INTERFERENCE: DIVISION OF WAVEFRONT

An obvious example of the generation of multiple beams is a grating. Let us consider
a grating that has Nequispaced slits. Let the slit width be b and let the period of the
slits be p. An incident beam is diffracted by each slit. We consider beams propagating
in the direction θ as shown in Figure 2.6.

The total amplitude at any point on the observation screen in the direction θ is
obtained by the summation of the amplitudes from each slit along with the appropriate
phase differences:

A = a + aeiδ + ae2iδ + · · · + aei(N−1)δ (2.10)

p

b

θ

FIGURE 2.6 Diffraction at a grating: multiple-beam interference by division of wavefront.
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where δ = kp sin θ is the phase difference between two waves diffracted in the
direction θ by two consecutive slits and a is the amplitude of the diffracted wave
from any slit. The intensity distribution is obtained by summing this series of N terms
as follows:

I = AA∗ = a2
sin2 1

2
Nδ

sin2 1

2
δ

(2.11)

Substituting for a2 = I0s sinc2(kb sin θ/2) as the intensity distribution due to a single
slit, the intensity distribution in the interference pattern due to the grating is

I = I0s sinc2
(

1

2
kb sin θ

) sin2 1

2
Nδ

sin2 1

2
δ

(2.12)

The first term is due to diffraction at the single slit and the second is due to interfer-
ence. For a Ronchi grating, 2b = p (the transparent and opaque parts are equal), the
intensity distribution is given by

I = I0s

4

sin2 1

2
Nδ

cos2 1

4
δ

The principal maxima are formed wherever δ = 2mπ. Figure 2.7 shows the intensity
distribution due to N = 10 slits. It can be seen that the positions of the principal
maxima remain the same as would be obtained with a two-beam interference, but their
width narrows considerably. In addition to the principal maxima, there are secondary
maxima in between two consecutive principal maxima. With an increasing number
of slits, the intensity of the secondary maxima falls off.

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6 7 8 9 10

N = 20

N = 10

FIGURE 2.7 Intensity distribution in the diffraction pattern of a grating with N = 10 and 20.
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2.4.2 MULTIPLE-BEAM INTERFERENCE: DIVISION OF AMPLITUDE

Consider a plane parallel plate of a dielectric material of refractive index μ and
thickness d in air, as shown in Figure 2.8. A plane monochromatic wave of amplitude
a is incident at an angle θ1. A ray belonging to this wave, as shown in Figure 2.8, gives
rise to a series of reflected and transmitted rays owing to multiple reflections. Let the
complex reflection and transmission coefficients for the rays incident from the side of
the surrounding medium on the two surface of the plate be r1, t1 and r2, t2, respectively,
and let those for the rays incident from the plate side be r′

1, t′1 and r′
2, t′2, respectively.

The amplitudes of the waves reflected back into the first medium and transmitted
are given in Figure 2.8. The phase difference between any two consecutives rays is
given by

δ = 4π

λ
μd cos θ2 (2.13)

It is obvious that we can observe an interference pattern in both reflection and trans-
mission. If the angle of incidence is very small and the plate is fairly large, an infinite
number of beams take part in the interference.

2.4.2.1 Interference Pattern in Transmission

The resultant amplitude when all the beams in transmission are superposed is
given by

At(δ) = at1t′2e−iδ/2(1 + r′
1r′

2e−iδ + r′2
1 r′2

2 e−i2δ + r′3
1 r′3

2 e−i3δ + · · · ) (2.14)

The infinite series can be summed to yield

At(δ) = at1t′2e−iδ/2

1 − r′
1r′

2e−iδ
(2.15)

a ar1

at1t2¢r1¢
2r2¢

2e–i5d/2 at1t2¢r1¢
3r2¢

3e–i7d/2at1t2¢r1¢r2¢e
–i3d/2

at1t1¢r1¢
2r2¢

3e–i 3dat1t1¢r2¢e
–id at1t1¢r1¢r2¢

2e–i2d

at1t2¢e
–id/2
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d
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m

FIGURE 2.8 Multiple-beam formation in a plane parallel plate.
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The intensity distribution in transmission is then given by

I(δ) = Iin
T1T2

1 + R1R2 − 2
√

R1R2 cos(δ + ψ1 + ψ2)
(2.16)

where T1 = |t1|2, T2 = |t′2|2, and R1 = |r′
1|2, R2 = |r′

2|2 are the transmittances and
reflectances of the two surfaces of the plate; ψ1 and ψ2 are the phases acquired
by the wave on reflection; and Iin = |a|2 is the intensity of the incident wave. In the
special case when the surrounding medium is the same on both sides of the plate (as
here, where it is assumed that the plate is in air), R1 = R2 = R, T1 = T2 = T , and
ψ1 + ψ2 = 0 or 2π. Therefore, the intensity distribution in the interference pattern
in transmission takes the form

It(δ) = Iin
T2

1 + R2 − 2R cos δ

= Iin
T2

(1 − R)2 + 4R sin2 1

2
δ

(2.17)

This is the well-known Airy formula. The maximum intensity in the interference
pattern occurs when sin 1

2δ = 0. The maximum intensity is given by Imax = IinT2/

(I − R)2. Similarly, the minimum intensity occurs when sin 1
2δ = 1. The minimum

intensity is given by Imin = IinT2/(I + R)2. The intensity distribution can now be
expressed in terms of Imax as follows:

It(δ) = Imax

1 + 4R

(1 − R)2
sin2 1

2
δ

(2.18)

Figure 2.9 shows a plot of the intensity distribution for two values of R. This dis-
tribution does not display any secondary maxima, completely in contrast with that
obtained in a multiple-beam interference by division of wavefront.
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FIGURE 2.9 Intensity distribution in transmission due to multiple-beam interference.
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2.4.2.2 Interference Pattern in Reflection

The resultant amplitude in reflection is obtained by the summation of the amplitudes
of all the reflected waves as follows:

Ar(δ) = ar1 + at1t′1r′
2e−iδ(1 + r′

1r′
2e−iδ + r′2

1 r′2
2 e−i2δ + · · · )

= ar1 + at1t′1r′
2e−iδ

1 − r′
1r′

2e−iδ

(2.19)

Using the Stokes relations r1 = −r′
1 and r2

1 + t1t′1 = 1, the above relation can be
expressed as follows:

Ar(δ) = a
−r′

1 + r′
2e−iδ

1 − r′
1r′

2e−iδ
(2.20)

The intensity distribution in the interference pattern in reflection, when the plate is in
air, is thus given by

Ir(δ) = Iin
2R(1 − cos δ)

1 + R2 − 2R cos δ

= Iin

4R

(1 − R)2
sin2 1

2
δ

1 + 4R

(1 − R)2
sin2 1

2
δ

(2.21)

The intensity maxima occur when sin 1
2δ = 1. The intensity distribution is comple-

mentary to the intensity distribution in transmission.

2.5 INTERFEROMETRY

Interferometry is a technique of measurement that employs the interference of light
waves, and the devices using this technique are known as interferometers. These use
an arrangement to generate two beams, one of which acts as a reference and the other
is a test beam. The test beam gathers information about the process to be measured
or monitored. These two beams are later combined to produce an interference pattern
that arises from the acquired phase difference. Interferometers based on division
of amplitude use beam-splitters for splitting the beam into two and later combining
them for interference. Ingenuity lies in designing beam-splitters and beam-combiners.
The interference pattern is either recorded on a photographic plate or sensed by
a photodetector or array-detector device. Currently charge-coupled device (CCD)
arrays are used along with phase-shifting to display the desired information such as
surface profile, height variation, and refractive index variation. Observation of the
fringe pattern is completely hidden in the process.

Two-beam interferometers using division of wavefront have been used for the
determination of the refractive index (Rayleigh interferometer), determination of the
angular size of distant objects (Michelson stellar interferometer), deformation studies
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(speckle interferometers), and so on. Interferometers based on division of ampli-
tude are used for the determination of wavelength (Michelson interferometer), the
testing of optical components (Twyman–Green interferometer, Zygo interferometer,
Wyco interferometer, and shear interferometers), the study of microscopic objects
(Mirau interferometer), the study of birefringent objects (polarization interferome-
ters), distance measurement (modified Michelson interferometer), and so on. The
Michelson interferometer is also used in spectroscopy, particularly in the infrared
region, and offers Fellgett’s advantage. The Michelson–Morley experiment, which
used a Michelson interferometer to show the absence of the ether, played a great part
in the advancement of science. Gratings are also used as beam-splitters and beam-
combiners. Because of their dispersive nature, they are used in the construction of
achromatic interferometers.

Multiple-beam interferometers are essentially dispersive, and find applications in
spectroscopy. They offer high sensitivity.

2.5.1 DUAL-WAVELENGTH INTERFEROMETRY

The interferometer is illuminated simultaneously with two monochromatic waves of
wavelengths λ1 and λ2. Each wave produces its own interference pattern. The two
interference patterns produce a moiré, which is characterized by a synthetic wave-
length λs. If the path difference variation is large, thereby producing an interference
pattern with narrow fringes, then only the pattern due to the synthetic wavelength will
be visible. Under the assumption that the two wavelengths are very close to each other
and the waves are of equal amplitude, the intensity distribution can be expressed as
follows:

Itw = I0(a + b cos δ1 + b cos δ2)

= I0

{
a + 2b cos

[
1

2
(δ1 + δ2)

]
cos

[
1

2
(δ1 − δ2)

]} (2.22)

where a and b are constants and the phase differences δ1 and δ2 are given by

δ1 = 2π

λ1
Δ, δ2 = 2π

λ2
Δ

Δ is the optical path difference and is assumed to be constant for the two wavelengths
under consideration. The second term in the intensity distribution has a modulation
term; the argument of the cosine function can be expressed as

δ1 − δ2

2
= π

(
1

λ1
− 1

λ2

)
Δ = π

λs
Δ (2.23)

The synthetic wavelength λs is thus given by

λs = λ1λ2

|λ1 − λ2| (2.24)
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Dual-wavelength interferometry has been used to measure large distances with
high accuracy. Phase-shifting can be incorporated in dual-wavelength interfer-
ometry. There are several other techniques, such as dual-wavelength sinusoidal
phase-modulating interferometry, dual-wavelength phase-locked interferometry, and
dual-wavelength heterodyne interferometry.

2.5.2 WHITE LIGHT INTERFEROMETRY

Each wavelength in white light produces an interference pattern, which adds up on
an intensity basis at any point on the observation plane. The fringe width of these
patterns is different. However, at a point on the observation plane where the two
interfering beams corresponding to each wavelength have zero phase difference, the
interference results in a bright fringe. At this point, all wavelengths in white light
will interfere constructively, thereby producing a white fringe. As one moves away
from this point, thereby increasing the path difference, an interference color fringe
corresponding to the shortest wavelength is seen first, followed by color fringes of
increasing wavelengths. With increasing path difference, these colors become less
and less saturated, and finally the interference pattern is lost. Figure 2.10 shows the
intensity distribution in an interference pattern of white light.

White light interferometry has been used to measure thicknesses and air-gaps
between two dielectric interfaces. The problem of 2π phase ambiguity can also be
overcome by using white light interferometry and scanning the object in depth when
the object profile is to be obtained. Instead of scanning the object, spectrally resolved
interferometry can be used for profiling.

2.5.3 HETERODYNE INTERFEROMETRY

Let us consider the interference between two waves of slightly different frequen-
cies traveling along the same direction. (In dual-wavelength interferometry, the two
wavelengths are such that their frequency difference is in the terahertz region, which
the optical detector cannot follow, while in heterodyne interferometry, the frequency

FIGURE 2.10 White light interferogram.
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difference is in megahertz, which the detector can follow.) The two real waves can be
described by

E1(t) = a1 cos(2πiν1t + δ1)

E2(t) = a2 cos(2πiν2t + δ2)

where ν1, ν2 are the frequencies and δ1, δ2 are the phases of the two waves. These
two waves are superposed on a square-law detector. The resultant amplitude on the
detector is thus the sum of the two; that is,

E(t) = E1(t) + E2(t)

The output current i(t) of the detector is proportional to |E(t)|2. Hence,

i(t) ∝ a2
1 cos2(2πiν1t + δ1) + a2

2 cos2(2πiν2t + δ2)

+ 2a1a2 cos(2πiν1t + δ1) cos(2πiν2t + δ2)

= 1

2
(a2

1 + a2
2) + 1

2
[a2

1 cos 2(2πiν1t + δ1) + a2
2 cos 2(2πiν2t + δ2)]

+ a1a2 cos[2πi(ν1 + ν2)t + δ1 + δ2] + a1a2 cos[2πi(ν1 − ν2)t + δ1 − δ2]
(2.25)

The expression for the output current contains oscillatory components at frequencies
2ν1, 2ν2 , and ν1 + ν2 that are too high for the detector to follow, and thus the terms
containing these frequencies are averaged to zero. The output current is then given by

i(t) = 1

2
(a2

1 + a2
2) + a1a2 cos[2πi(ν1 − ν2)t + δ1 − δ2] (2.26)

The output current thus consists of a DC component and an oscillating component
at the beat frequency ν1 − ν2. The beat frequency usually lies in the radiofrequency
range, and hence can be observed. Thus superposition of two waves of slightly differ-
ent frequencies on a square-law detector results in a moving interference pattern; the
number of fringes passing any point on the detector in unit time is equal to the beat
frequency. Obviously, the size of the detector must be much smaller than the fringe
width for the beat frequency to be observed. The phase of the moving interference
pattern is determined by the phase difference between the two waves. The phase can
be measured electronically with respect to a reference signal derived either from a
second detector or from the source deriving the modulator. Heterodyne interferom-
etry is usually performed with a frequency-stabilized single-mode laser and offers
extremely high sensitivity at the cost of system complexity.

2.5.4 SHEAR INTERFEROMETRY

In shear interferometry, interference between a wave and its sheared version is
observed. A sheared wave can be obtained by lateral shear, rotational shear, radial
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(a) (b)

FIGURE 2.11 Multiple-beam shear interferograms: (a) at collimation; (b) off collimation.

shear, folding shear, or inversion shear. Shear interferometers have certain advantages.
They do not require a reference wave for comparison. Both waves travel along the
same path, and thus the interferometer is less susceptible to vibrations and thermal
fluctuations. However, the interpretation of shear fringes is more tedious than that of
fringes obtained with a Michelson or Twyman–Green interferometer. Fringes repre-
sent the gradient of path difference in the direction of shear. Fringe interferometry has
found applications where one is interested in slope and curvature measurements rather
than in displacement alone. Multiple-beam shear interferometry using a coated shear
plate has been used for collimation testing. It can be shown that strong satellite fringes
are seen in transmission when the beam is not collimated, as shown in Figure 2.11.

2.5.5 POLARIZATION INTERFEROMETERS

These are basically used to study birefringent specimens. A polarizer is used to
polarize the incident collimated beam, which passes through a birefringent mate-
rial. The polarized beam then splits into ordinary and extraordinary beams, which
travel through the same object but cannot interfere, because they are in orthogonal
polarization states. These beams are brought to interfere by another polarizer. Some
of these interferometers are described in Chapter 8.

There is another class of polarization interferometers, which use beam-splitters
and beam-combiners such as a Savart plate or a Wollaston prism made of birefringent
material. Since the two beams generated in the beam-splitter have a very small sepa-
ration, these constitute shear interferometers. Figure 2.12 shows a polarization shear
interferometer using Savart plates as a beam-splitter (S1) and a beam-combiner (S2).
These are two identical plates of birefringent material cut from a uniaxial crystal,
either from calcite or quartz, with the optic axis at approximately 45◦ to the entrance
and exit faces and put together with their principal sections crossed. A polarizer P1 is
placed before the Savart plate and oriented such as to produce a ray linearly polarized
at 45◦. A ray from the polarizer P1 is split into an e-ray and an o-ray in the first plate.
Since the principal sections of the two plates are orthogonal, the e-ray in the first plate
becomes an o-ray in the second plate, while the o-ray in the first plate becomes an
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FIGURE 2.12 Polarization interferometer using Savart plates.

e-ray in the second plate. These rays emerge parallel to each other but have a linear
shear (displacement) given by

Δsa = √
2d
∣∣∣(n2

e − n2
o)

∣∣∣ (n2
e + n2

o) (2.27)

where d is the thickness of the plate and ne and no are the extraordinary and ordinary
refractive indices of the uniaxial crystal. These two rays are combined using another
Savart plate. Since the two rays are orthogonally polarized, another polarizer P2 is used
to make them interfere. The interference pattern consists of equally spaced straight
fringes localized at infinity. The object is placed in the beam, and its refractive index
and thickness variations introduce phase variations, which distort the fringes.

A Savart plate introduces linear shear in a collimated beam. Usually, the incident
beam has a small divergence. Savart plates can be modified to accept wider fields.
However, with a spherical beam, linear shear can be introduced by a Wollaston prism.

2.5.6 INTERFERENCE MICROSCOPY

In order to study small objects, it is necessary to magnify them. The response of
micromechanical components to an external agency can be studied under magnifica-
tion. Therefore, microinterferometers, particularly Michelson interferometers, have
been built that can be placed in front of a microscope objective. Obviously, one
requires microscope objectives with long working distances. The Mirau interferom-
eter employs a very compact optical system that can be incorporated in a microscope
objective. It is more compact than the micro-Michelson interferometer and fully
compensated. Figure 2.13 shows a schematic view of the Mirau interferometer. Light
from the illuminator through the microscope objective illuminates the object. The
beam from the illuminator is split into two parts by the beam-splitter. One part illumi-
nates the object, while the other is directed toward a reference surface. On reflection
from the reference surface as well as from the object, the beams combine at the
beam-splitter, which directs these beams to the microscope objective. An interference
pattern is thus observed between the reference beam and the object beam. The pattern
represents the path variations on the surface of the object. White light can be used with
a Mirau interferometer. Phase-shifting is introduced by mounting the beam-splitter
on PZT (lead zirconate titanate).
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FIGURE 2.13 The Mirau interferometer.

Shearing interferometry can also be carried out under high magnification. The
Nomarski interferometer is commonly used within a microscope, as shown in Figure
2.14. It uses two modified Wollaston prisms as a beam-splitter and a beam-combiner.
The modified Wollaston prism offers the wider field of view that is required in
microscopy. The angular shear γ between the two rays exiting from the Wollaston
prism is given by

γ = 2 |(ne − no)| sin θ (2.28)

where θ is the angle of either wedge forming the Wollaston prism. The Nomarski
interferometer can be employed in two distinctly different modes. With an isolated
microscopic object, it is convenient to use a lateral shear that is larger than the dimen-
sions of the object. Two images of the object are then seen, covered with fringes
that contour the phase changes due to the object. Often, the Nomarski interferometer
is used with smaller shear than the dimensions of a microscopic object. The inter-
ference pattern then shows the phase gradients. This mode of operation is known as
differential interference contrast (DIC) microscopy. The Nomarski interferometer can

P1 W1 Condenser Object Objective W1 P2

FIGURE 2.14 The Nomarski interferometer.
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also be used with white light; the phase changes are then decoded as color changes.
Biological objects, usually phase objects, can also be studied using microscopes.

2.5.7 DOPPLER INTERFEROMETRY

An intense beam from a laser is expanded by a beam-expander and is directed onto
a moving object. The light reflected/scattered from the moving object is redirected
and then collimated before being fed into a Michelson interferometer as shown in
Figure 2.15. The arms of the interferometer contain two 4f arrangements, but the
focal lengths of the lenses in the two arms are different. This introduces a net path
difference.

The light from a moving object is Doppler-shifted. The Doppler-shifted light
illuminates the interferometer. For a retro-reflected beam, the Doppler shift Δλ is
given by

Δλ = 2v

c
λ

where v is the velocity of the object and c is the velocity of light. For objects moving
with a speed of about 1 km/s, the Doppler-shift can be in tens of gigahertz, which is
difficult to follow, and, to overcome this problem and reveal the time history of an
object’s motion, Doppler interferometers have been developed.

If the object is moving with constant velocity, the wavelength of the incident
radiation remains constant, and hence the path difference between two beams in
the interferometer is constant with time; the interference pattern remains stationary.
However, if the object is accelerating, there is a change in phase difference, which is
given by

dδ = −2π

λ2
dλΔ = −δ

2v

c
(2.29)

Detector 

Detector 

Laser

FIGURE 2.15 Michelson interferometer for observing the velocity history of a projectile.
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FIGURE 2.16 Variation of intensity with time in a Doppler interferometer.

The change in phase is directly proportional to the path difference Δ, which depends
on the difference in the arm lengths of the interferometer. Further phase change is
directly proportional to the speed of the object. If the interferometer is aligned for
a single broad fringe in the field, the change of phase will result in a variation of
intensity. Therefore, a detector will show a variation of intensity with time. The inter-
ference is governed by the equation dδ = 2mπ, where m is the order of the fringe. This
gives m = (2v/λc)Δ. A full cycle change (m = 1) occurs when the velocity changes
by λc/2Δ. A larger path difference between two arms thus gives higher sensitivity.
Figure 2.16 shows an example of the variation of intensity with time. Usually, an
event may occur only over a fraction of second. Therefore, a Doppler-shift of tens of
gigahertz is converted into tens of hertz.

2.5.8 FIBER-OPTIC INTERFEROMETERS

Two-beam interferometers can be easily constructed using optical fibers. Michelson
and Fizeau interferometers have been realized. Electronic speckle pattern interferom-
etry and its shear variant have been performed using optical fibers. A laser Doppler
velocimetry setup can also be easily assembled.

The building blocks of fiber-optic interferometers are single-mode fibers, birefrin-
gent fibers, fiber couplers, fiber polarization elements, and micro-optics. Single-mode
fibers allow only a single mode to propagate, and therefore a smooth wavefront is
obtained at the output end. Very long path differences are achieved with fiber interfer-
ometers, and therefore they are inherently suited for certain measurements requiring
high sensitivity. The fibers are compatible with optoelectronic devices such as semi-
conductor lasers and detectors. These interferometers have found applications as
sensors with distributed sensing elements.

Figure 2.17 shows a fiber-optic Doppler velocimeter arrangement for measuring
fluid velocities. Radiation from a semiconductor laser is coupled to a single-mode
fiber. Part of the radiation is extracted into a second fiber by a directional coupler,
thereby creating two beams. Graded-index rod lenses are attached to the fiber ends to
obtain collimated beams. The fiber ends can be separated by a desired amount, and
a large lens focuses the beams in the sample volume. An interference pattern is thus
generated there. The beams can be aligned such that the interference fringes in the
sample volume run perpendicular to the direction of flow. Alternatively, these beams
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FIGURE 2.17 Fiber-optic Doppler velocimetry.

can be separated by any amount in space by simply displacing the fiber ends. The
fiber ends can be imaged in the sample volume by individual lenses, and can be super-
posed by manipulating them. An interference pattern can thus be created in a small
volume, with the fringe running normal to the direction of flow. The scattered light
from the interference volume is collected and sent to a photodiode through a multi-
mode fiber. The Doppler signal from the photodiode is analyzed by an RF spectrum
analyzer. A frequency offset for direction determination can be introduced between
the beams by using a piezoelectric phase-shifter, driven by a sawtooth waveform,
in one arm.

2.5.9 PHASE-CONJUGATION INTERFEROMETERS

Interference between a signal wave or a test wave and its phase-conjugated ver-
sion is observed in phase-conjugation interferometers. The phase-conjugated wave is
realized by four-wave mixing in a nonlinear crystal such as BaTiO3. The phase-
conjugated wave carries phase variations of opposite signs and travels in the opposite
direction to the signal or test wave. For example, a diverging wave emanating from
a point source, when phase-conjugated, will become a converging wave and will
converge to the same point source.

Since interference between the test wave and the phase-conjugated wave is
observed in phase-conjugation interferometers, there is no need to have a reference

BaTiO3

M1

Pump beam

M2

FIGURE 2.18 Phase-conjugated Michelson interferometer for collimation testing.
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FIGURE 2.19 Interferograms (a) inside, (b) at, and (c) outside the collimation position.

wave, and the interference pattern exhibits twice the sensitivity. Phase-conjugate inter-
ferometers are robust and are less influenced by thermal and vibration effects than
other interferometers.

Michelson, Twyman–Green, and Mach–Zehnder interferometers have been real-
ized using phase-conjugate mirrors. We describe here an interferometer that is used
for testing collimation. Figure 2.18 shows a schematic view of the interferometer. M1
is a double mirror enclosing an angle close to 180◦. A BaTiO3 crystal is used for gen-
erating a phase-conjugated beam by four-wave mixing. At collimation, straight-line
fringes are observed in both fields, while with a converging or diverging wave from
the collimator, curved fringes with curvatures reversed in each field are observed.
These interferograms are shown in Figure 2.19. The technique is self-referencing and
allows sensitivity to be increased fourfold.
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3 Diffraction

In an isotropic medium, a monochromatic wave propagates with its characteristic
speed. For plane and spherical waves, if the phase front is known at time t = t1,
its location at a later time is obtained easily by multiplying the elapsed time by the
velocity in the medium. The wave remains either plane or spherical. Mathematically,
we can find the amplitude at any point by solving the Helmholtz equation (Equation
1.3). However, when the wavefront is restricted in its lateral dimension, diffraction
of light takes place. Diffraction problems are rather complex in nature, and analytical
solutions exist for only a few of them. The Kirchhoff theory of diffraction, although
afflicted with inconsistency in the boundary conditions, yields predictions that are in
close agreement with experiments.

The term “diffraction” has been conveniently described by Sommerfeld as “any
deviation of light rays from rectilinear paths that cannot be interpreted as reflection or
refraction.” It is often stated in a different form as “bending of rays near the corners.”
Grimaldi first observed the presence of bands in the geometrical shadow region of an
object. A satisfactory explanation of this observation was given by Huygens by intro-
ducing the concept of secondary sources on the wavefront at any instant and obtaining
the subsequent wavefront as an envelope of the secondary waves. Fresnel improved
upon the ideas of Huygens, and the theory is known as the Huygens–Fresnel theory
of diffraction.

This theory was placed on firmer mathematical ground by Kirchhoff, who devel-
oped his mathematical theory using two assumptions about the boundary values of
the light incident on the surface of an obstacle placed in its path of propagation.
This theory is known as Fresnel–Kirchhoff diffraction theory. It was found that the
two assumptions of Fresnel–Kirchhoff theory are mutually inconsistent. The theory,
however, yields results that are in surprisingly good agreement with experiments in
most situations. Sommerfeld modified Kirchhoff’s theory by eliminating one of the
assumptions, and the resulting theory is known as Rayleigh–Sommerfeld diffraction
theory. Needless to say, there have been subsequent workers who have introduced
several refinements to the diffraction theories.

3.1 FRESNEL DIFFRACTION

Let u(xo, yo) be the field distribution at an aperture lying on the (xo, yo) plane located
at z = 0. Under small-angle diffraction, the field at any point P(x, y) (assumed to be

43
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FIGURE 3.1 Diffraction at an aperture.

near the optical axis) on a plane a distance z from the obstacle or aperture plane can
be expressed using Fresnel–Kirchhoff diffraction theory (Figure 3.1) as follows:

u(x, y) = 1

iλz

∫∫
u(xo, yo)e

ikr dxo dyo (3.1)

where the integral is over the area S of the aperture, and k = 2π/λ is the propagation
vector of the light. We can expand r in the phase term in a Taylor series as follows:

r = z + (x − xo)
2 + ( y − yo)

2

2z
− [(x − xo)

2 + ( y − yo)
2]2

8z3
+ · · · (3.2)

If we impose the condition that

[(x − xo)
2 + ( y − yo)

2]2/8z3 � λ (3.3)

then we are in the Fresnel diffraction region. The Fresnel region may extend from
very near the aperture to infinity. The condition 3.3 implies that the path variation at
the point P(x, y) as the point S(xo, yo) spans the whole area S is much less than one
wavelength. The amplitude u(x, y) in the Fresnel region is given by

u(x, y) = eikz

iλz

∫∫
s

u(xo, yo) exp

{
ik

2z
[(x − xo)

2 + ( y − yo)
2]
}

dxo dyo (3.4)

Since we are invariably in the Fresnel region in most of the situations in optics,
Equation 3.4 will be used frequently.

3.2 FRAUNHOFER DIFFRACTION

A more stringent constraint may be placed on the distance z and/or on the size of the
obstacle or aperture by setting

x2
o + y2

o

2z
� λ. (3.5)
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This is the far-field condition, and when this condition is met, we are in the Fraunhofer
region. The amplitude u(x, y) is then given by

u(x, y) = eikz

iλz
exp

[
ik

2z
(x2 + y2)

] ∫∫
s

u(xo, yo) exp

[
− ik

z
(xxo + yyo)

]
dxo dyo (3.6)

Let us consider the illumination of the aperture by a plane wave of amplitude A. The
transmittance function t(xo, yo) of the aperture may be defined as

t(xo, yo) = u(xo, yo)/A

Therefore, the field u(x, y) may be expressed as

u(x, y) = Aeikz

iλz
exp

[
ik

2z
(x2 + y2)

] ∫ ∞

−∞

∫ ∞

−∞
t(xo, yo) exp

[
− ik

z
(xxo + yyo)

]
dxo dyo

= Aeikz

iλz
exp

[
ik

2z
(x2 + y2)

] ∫ ∞

−∞

∫ ∞

−∞
t(xo, yo) exp

[−2πi(μxo + νyo)
]

dxo dyo

(3.7)

The limits of integration have been changed to ±∞, since t(xo, yo) is nonzero within
the opening and zero outside. It can be seen seen that u(x, y) can be expressed as the
Fourier transform of the transmittance function. The Fourier transform is evaluated
at the spatial frequencies μ = x/λz and ν = y/λz.

3.3 ACTION OF A LENS

A plane wave incident on a lens is transformed to a converging/diverging spherical
wave; a converging spherical wave will come to a focus. Therefore, a lens may be
described by a transmittance function τ(xL, yL), which is represented as

τ(xL, yL) = exp(iφ0) exp

[
± ik

2f
(x2

L + y2
L)

]
for x2

L + y2
L ≤ R2 (3.8)

where ϕ0 is a constant phase, (k/2f )(x2
L + y2

L) is a quadratic approximation to the
phase of a spherical wave, and 2R is the diameter of the lens aperture. The minus sign
corresponds to a positive lens. The lens is assumed to be perfectly transparent; that
is, it does not introduce any attenuation. If a mask is placed in front of the lens, its
transmittance function is obtained by multiplying the transmittance of the mask by
that of the lens.

3.4 IMAGE FORMATION AND FOURIER TRANSFORMATION
BY A LENS

We consider the geometry shown in Figure 3.2. A transparency of amplitude transmit-
tance t(xo, yo) is illuminated by a diverging spherical wave emanating from a point



“DK4217_C003.tex” — page 46[#4] 14/5/2009 16:46

46 Optical Methods of Measurement

S

y

z
x

P(x, y)
p(xL, yL)t(xo, yo)

So

d2do d1

FIGURE 3.2 Imaging and Fourier transformation by a lens.

source So. We wish to obtain the amplitude distribution at a plane a distance d2 from
the lens. This is done by invoking Fresnel–Kirchhoff diffraction theory twice in suc-
cession: first at the transparency plane and then at the lens plane. The amplitude at
any point P(x, y) on the observation plane is expressed as

u(x, y) = −Aeik(do+d1+d2)

λ2dod1d2
exp

[
ik(x2 + y2)

2d2

]

×
∫∫∫∫

p(xL, yL) exp

[
ik(x2

L + y2
L)

2

(
1

d1
+ 1

d2
− 1

f

)]

× t(xo, yo) exp

[
ik(x2

o + y2
o)

2

(
1

do
+ 1

d1

)]

× exp

{
−ik

[
xL

(
xo

d1
+ x

d2

)
+ yL

(
yo

d1
+ y

d2

)]}
dxo dyo dxL dyL (3.9)

where we have introduced the lens pupil function

p(xL, yL) =
{

1 for (x2
L + y2

L)1/2 ≤ R

0 otherwise

The limits of integration on the lens plane are therefore taken as ±∞. Writing
1/ε = 1/d1 + 1/d2 − 1/f , we evaluate the integral over the lens plane in Equation 3.9
assuming p(xL, yL) = 1 over the infinite plane.This holds valid provided that the entire
diffracted field from the transparency has been accepted by the lens. In other words,
there is no diffraction at the lens aperture. On substitution of the result thus obtained,
we can obtain the amplitude u(x, y) as

u(x, y) = −Aeik(do+d1+d2)

λdod1d2
ε(1 + i)2 exp

[
ik(x2 + y2)

2d2

(
1 − ε

d2

)]
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×
∫∫

t(xo, yo) exp

[
ik(x2

o + y2
o)

2

(
1

do
+ 1

d1
− ε

d2
1

)]

× exp

[
− ikε(xxo + yyo)

d1d2

]
dxo dyo (3.10)

We now examine both Equation 3.9 and Equation 3.10 to see under what conditions
the (x, y) plane is an image plane or a Fourier transform plane of the (xo, yo) plane.

3.4.1 IMAGE FORMATION

It is known in geometrical optics that an image is formed when the imaging condition
1/d1 + 1/d2 − 1/f = 0 is satisfied. We invoke this condition and see whether the
amplitude distribution at the (x, y) plane is functionally similar to that existing at the
(xo, yo) plane. We begin with Equation 3.9, and invoke the imaging condition to give

u(x, y) = −Aeik(do+d1+d2)

λ2dod1d2
exp

[
ik(x2 + y2)

2d2

]

×
∫∫∫∫

p(xL, yL)t(xo, yo) exp

[
ik(x2

o + y2
o)

2

(
1

do
+ 1

d1

)]

× exp

{
−ik

[
xL

(
xo

d1
+ x

d2

)
+ yL

(
yo

d1
+ y

d2

)]}
dxo dyo dxLdyL (3.11)

We evaluate the integral over the lens plane assuming no diffraction. We thus obtain

u(x, y) = −Aeik(do+d1+d2)

doM
exp

[
ik(x2 + y2)

2d2

]

× exp

[
ik(x2 + y2)

2M2

(
1

do
+ 1

d1

)]
t
(
− x

M
, − y

M

)

= C

M
t
(
− x

M
, − y

M

)
(3.12)

where M(= d2/d1) is the magnification of the system and C is a complex constant. The
amplitude u(x, y) at the observation plane is identical to that of the input transparency,
except for the magnification. Hence, an image of the transparency is formed on the
plane that satisfies the condition 1/d1 + 1/d2 = 1/f .

3.4.2 FOURIER TRANSFORMATION

If the quadratic term within the integral in Equation 3.10 is zero, then the amplitude
u(x, y) is a two-dimensional Fourier transform of the function t(xo, yo) multiplied by
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a quadratic phase factor, provided that the limits of integration extend from −∞ to
∞. For the quadratic term to vanish, the following condition should be satisfied:

1

do
+ 1

d1
− ε

d2
1

= 0 (3.13)

This condition is satisfied when do = ∞ and d2 = f , because then ε = d1. Thus, the
Fourier transform of the transparency t(xo, yo) illuminated by a collimated beam is
observed at the back focal plane of the lens. It should be noted that the lens does not
take the Fourier transform. The Fourier transform is extracted by propagation, and
the lens merely brings it from the far field to the back focal plane.

The amplitude u(x, y) when the transparency is illuminated by a collimated beam
of amplitude Ap is given by

u(x, y) = −Ap

λf
eik(d1+f )(1 + i)2 exp

[
ik

2f
(x2 + y2)

(
1 − d1

f

)]

×
∫∫

t(xo, yo) exp

[
− ik

2f
(xxo + yyo)

]
dxo dyo (3.14)

The position-dependant quadratic phase term in front of the integral sign will also
vanish if the transparency is placed at the front focal plane of the lens. The amplitude
is then given by

u(x, y) = uo

∫∫
t(xo, yo) exp

[
− ik

2f
(xxo + yyo)

]
dxo dyo (3.15)

where u0 is a complex constant. Here u(x, y) represents the pure Fourier transform of
the function t(xo, yo).

We thus arrive at the following conclusions:

1. The Fourier transform of a transparency illuminated by a collimated beam
is obtained at the back focal plane of a lens. However, it includes a variable
quadratic phase factor.

2. The pure Fourier transform (without the quadratic phase factor) is obtained
when the transparency is placed at the front focal plane of the lens.

We have considered the very specific case of plane-wave illumination of the trans-
parency. It can be shown that when the transparency is illuminated by a spherical wave,
the Fourier transform is still obtained, but at a plane other than the focal plane. As
mentioned earlier, the Fourier transform is obtained when Equation 3.13 is satisfied.
This equation can also be written as follows:

1

do
+ 1

d1
− ε

d2
1

= d2f + f (d1 + do) − d2(d1 + do)

d2(d2 + f + d1f − d1d2)
= 0 (3.16)
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Equation 3.16 is satisfied when

1

do + d1
+ 1

d2
− 1

f
= 0 (3.17)

This equation implies that the Fourier transform of an input is obtained at a plane
that is conjugate to the point source plane. Indeed, the pure Fourier transform with
non-unit scale factor is obtained when a transparency placed at the front focal plane
is illuminated by a diverging spherical wave. It is also possible to obtain the Fourier
transform with many other configurations.

3.5 OPTICAL FILTERING

The availability of the Fourier transform at a physical plane allows us to modify it
using a transparency or a mask called a filter. In general, the Fourier transform of an
object is complex; that is, it has both amplitude and phase. A filter should therefore
act upon both the amplitude and phase of the transform; such a filter has complex
transmittance. In some cases, certain frequencies from the spectrum are filtered out,
which is achieved by a blocking filter. Experiments of Abbé and also of Porter for
the verification of Abbé’s theory of microscope imaging are beautiful examples of
optical filtering. Figure 3.3 shows a schematic view of an optical filtering set-up.
This is the well-known 4f processor. The filter, either as a mask or a transparency,
is placed at the filter plane, where the Fourier transform of the input is displayed.
A further Fourier transformation yields a filtered image. The technique is used to
process images blurred by motion or corrupted by aberrations of the imaging system.
One of the most common applications of optical filtering is to clean a laser beam
using a tiny pinhole at the focus of a microscope objective. Such an arrangement of a
microscope objective with a tiny pinhole at its focal plane is known as a spatial filter.

Phase-contrast microscopy exploits optical filtering in which the zeroth order is
phase-advanced or phase-retarded by π/2, thereby converting phase variation in a
phase object into intensity variations. The schlieren technique used in aerodynamics
and combustion science to visualize a refractive index gradient is another example of
optical filtering. The Foucault knife-edge test for examining the figure of a mirror is
yet another example of Fourier filtering. One of the most commonly used techniques
to clean a laser beam is spatial filtering, which filters out all Fourier components that

Input plane Filter plane Output plane

 f f f f

FIGURE 3.3 4f arrangement for optical filtering.
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make the beam dirty.A special mask can be used at the aperture stop in an imaging lens
to alter its transfer function, and hence selectively filter the band of frequencies for
image formation. Optical filtering is used in data processing, image processing, and
pattern recognition. Theta modulation and frequency modulation are used to encode
an object so that certain features can be extracted by optical filtering.

3.6 OPTICAL COMPONENTS IN OPTICAL METROLOGY

Optical components can be classified as reflective, refractive, or diffractive.

3.6.1 REFLECTIVE OPTICAL COMPONENTS

Plane mirrors, spherical mirrors, parabolic mirrors, and ellipsoidal mirrors all fall
into the reflective category. Mirrors are used for imaging. A plane mirror, although
often used simply for changing the direction of light beam, can also be considered
an imaging element that always forms a virtual image free from aberrations. On the
other hand, a spherical mirror forms both a real and a virtual image: a convex mirror
always forms a reduced virtual image, while a concave mirror can form both real
and virtual images of an object, depending on the object’s position and the focal
length of the mirror. Mirror imaging is free from chromatic aberrations, but suffers
from achromatic aberrations. A parabolic mirror is usually used as the primary in a
telescope, while ellipsoidal mirrors are used in laser cavities.

Mirrors are usually metallic-coated. Silver, gold, chromium, and aluminum are
among the metals used as reflective coatings. The reflectivity can be altered by deposit-
ing a dielectric layer on a metallic coating; an example is enhanced aluminum coating.
Alternatively, a mirror can be coated with multiple layers of dielectric materials to
provide the desired reflectivity.

3.6.2 REFRACTIVE OPTICAL COMPONENTS

Refractive optics includes both imaging and nonimaging optics. Lenses are used for
imaging: a concave lens always forms a virtual image, while a convex lens can form
both real and virtual images, depending on the object’s position and the focal length
of the lens. Lens imaging suffers from both achromatic and chromatic aberrations.
A shape factor is used to reduce the achromatic aberrations of a single lens. A lens
designer performs the task of designing a lens with optimized aberrations, bearing in
mind both cost and ease of production. These lenses have several elements, including
diffractive elements in special lenses.

In theory, we assume that a lens is free from aberrations and of infinite size so that
diffraction effects can also be neglected. In practice, assuming a lens to be well
designed and theoretically free from aberrations, it still suffers from diffraction
because of its finite size. A point object at infinity is not imaged as a point even
by an aberration-free lens, but rather as a distribution known as the Airy distribution.

The intensity distribution in the image of point source at infinity is given by
[2J1(x)/x]2, where the argument x of the Bessel function J1(x) depends on the
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FIGURE 3.4 Diffraction at a lens of circular aperture. (a) Photograph of the intensity distri-
bution at the focus when a plane wave is incident on it. (b) Intensity distribution.

f -number of the lens, the magnification, and the wavelength of light. This distri-
bution is plotted in Figure 3.4b. Figure 3.4a shows a photograph of an Airy pattern.
It can be seen that the image of a point source is not a point but a distribution, which
consists of a central disk, called the Airy disk, within which most of the intensity is
contained, surrounded by circular rings of decreasing intensity. The radius of the Airy
disk is 1.22λf /2a, where 2a is the lens aperture and f is the focal length of the lens.
The Airy disk defines the size of the image of a point source. It should be kept in mind
that if the beam incident on the lens has a diameter smaller than the lens aperture,
then 2a in the expression for the disk radius must be replaced by the beam diameter.
The intensity distribution in the diffraction pattern outside the Airy disk is governed
by the shape and size of the aperture.

If we carry out an analysis in the spatial frequency domain, the lens is considered to
be a low-pass filter. The frequency response can be modified by apodization: the use of
an appropriate aperture mask on the lens alters its frequency response dramatically.
As an obvious example, the use of an annular aperture in a telescope enhances its
angular resolution. Similar arguments apply when imaging by mirrors is considered.

Prisms function as both reflective and refractive components. When used as dis-
persive elements in spectrographs and monochromators, prisms function purely as
refractive components. However, when used for bending and splitting of beam, they
use both refraction and reflection. As an example, we consider a right-angle prism,
which can be used to bend rays by 90◦ or by 180◦, as shown in Figure 3.5.

When employed as in Figure 3.5b as a reflector, a prism can be used to introduce
lateral shear. It may be observed that the beam bending is by total internal reflection.
For deviating beams at other angles, special prisms are designed in which there can
be metallic reflection. A Dove prism is used for image rotation. In interferometry,
a corner cube is used as a reflector in place of a mirror owing to its insensitivity to
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(a) (b)

FIGURE 3.5 Right-angle prisms used to bend a beam by (a) 90◦ and (b) 180◦.

angular misalignment. Two cemented right-angle prisms with dielectric or metallic
coatings on the hypotenuse faces form a beam-splitter. The entrance and exit faces
have antireflective coatings. A dielectric coating on the diagonal surface can be so
designed that a cube beam-splitter also functions as a polarization beam-splitter. In
many interferometers, plane-parallel plates are used both as beam-splitters and as
beam-combiners. One of the surfaces has an antireflective coating. Plane-parallel
plates with uncoated surfaces have been used as shear elements in shear interfero-
metry. Sometimes, wedge plates are used as beam-splitters and beam-combiners, and
also as shear elements.

Some optical elements are constructed from anisotropic materials such as calcite
and quartz. Savart and half-shade plates are examples of such elements, as are Nichol,
Wollaston, Rochon, and Senarmont prisms. These elements are used in polarization
interferometers, polarimeters, and ellipsometers.

3.6.3 DIFFRACTIVE OPTICAL COMPONENTS

A grating is an example of a diffractive optical element. In general, optical ele-
ments that utilize diffraction for their functions are classed as diffractive optical
elements (DOEs). Computer-generated holograms (CGHs) and holographic optical
elements (HOEs) also fall into this category. Their main advantages are flexibility in
size, shape, layout, and choice of materials. They can carry out multiple functions
simultaneously, for example bending and focusing of a beam. They are easy to inte-
grate with the rest of the system. DOEs offer the advantages of reduction in system
size, weight, and cost. Because of their many advantages, considerable effort has
gone into designing and fabricating efficient DOEs. DOEs can be produced using a
conventional holographic method. However, most such components are formed by
either a laser or an electron-beam writing system on an appropriate substrate. Mass
production is by hot embossing or ultraviolet embossing, or by injection molding.
These elements can also be fabricated using diamond turning.

DOEs can be used as lenses, beam-splitters, polarization elements, or phase-
shifters in optical systems. A zone plate is an excellent example of a diffractive
lens that produces multiple foci. However, using multiple phase steps or a con-
tinuous phase profile, diffractive lenses with efficiency approaching 100% can be
realized. Gratings can be designed that split the incident beam into two beams of equal
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intensity, functioning as a conventional beam-splitter. Alternatively, it can yield two
beams of equal intensity in reflection as shown in Figure 3.6. These beams are
then combined by another DOE, thereby making a very compact Mach–Zehnder
interferometer.

A polarizer has been realized in a photoresist on a glass plate in which a deep binary
grating is written. In fact, diffractive elements with submicrometer pitch exhibit strong
polarization dependence. An interesting application of DOEs is in phase-shifting
interferometry. For studying transient events, spatial phase-shifting is used such that
three or four phase-shifted data are available from a single interferogram. This may be
done by using multiple detectors or a spatial carrier with a single detector. A DOE has
also been produced in such a way that when placed in a reference arm, it provides four
90◦ phase-shifted reference wavefronts. Thereby, four phase-shifted interferograms
are obtained simultaneously, from which the phase at each pixel is obtained using a
four-step algorithm.

Gratings (linear, circular, spiral, or concave) are dispersive elements, and hence
are used mainly in spectrometers, spectrophotometers, and similar instrumements.
When used with monochromatic radiation, gratings are useful elements in metrology.
A low-frequency grating is used in moiré metrology. High-accuracy measurements
are performed with gratings of fine pitch. A grating is usually defined as a periodic
arrangement of slits (opaque and transparent regions). A collimated beam incident on
a grating is diffracted into a number of orders. When a grating of pitch d is illuminated
normally by a monochromatic beam of wavelength λ, the mth diffraction order is in
the direction θm such that

d sin θm = mλ for m = 0, ±1, ±2, ±3, . . . (3.18)

DOE1

DOE2

M1

M3

M2

M4

Object

FIGURE 3.6 Mach–Zehnder interferometer using diffractive optical elements.
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Such a grating will generate a large number of orders (m ≤ d/λ, since θm ≤ π/2).
Assuming small-angle diffraction (i.e., diffraction from a coarse grating) and
diffraction in the first order, we obtain

θ = λ

d
or

1

d
= θ

λ
(3.19)

Suppose a lens of focal length f is placed behind the grating, then this order will
be focused to a spot such that x = λf /d, or 1/d = x/λf , where x is the distance of the
spot from the optical axis. The grating is assumed to be oriented such that its grating
elements are perpendicular to the x axis. We define the spatial frequency μ of the
grating as the inverse of the period d:

μ = 1

d
= x

λf
(3.20)

It is expressed as lines per millimeter (lines/mm). Thus, the spatial frequency μ and
off-axis distance x are linearly related for a coarse grating. In fact, the spatial frequency
is defined as μ = (sin θ)/λ. It is thus obvious that a sinusoidal grating of frequency
μ will generate only three orders: m = 0, 1, −1.

A real grating can be represented as a summation of sinusoidal gratings whose fre-
quencies are integral multiples of the fundamental. When such a grating is illuminated
normally by a collimated beam propagating in the z direction, a large number of spots
are formed on either side of the z axis: symmetric pairs correspond to a particular
frequency in the grating.

If a grating of pitch p is inclined with respect to the x axis as shown in Figure 3.7,
then its spatial frequencies μ and ν along the x and y directions are μ = 1/dx and

dy p

y

x

dx

FIGURE 3.7 An inclined linear grating.
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ν = 1/dy, such that

ρ2 = 1

p2
= 1

d2
x

+ 1

d2
y

(3.21)

where ρ is the spatial frequency of the grating. That is, ρ2 = μ2 + ν2. Diffrac-
tion at the inclined sinusoidal grating again results in the formation of three
diffraction orders, which will lie on neither the x nor the y axis. It can be shown
that the diffraction spots always lie on a line parallel to the grating vector.

3.6.3.1 Sinusoidal Grating

Interference between two inclined plane waves of equal amplitude generates an
interference pattern in which the intensity distribution is of the form

I(x) = 2I0[1 + cos(2πx/dx)] (3.22)

where dx is the grating pitch and I0 is the intensity of each beam. We associate a
spatial frequency μ, which is the reciprocal of dx; that is, μ = 1/dx. Thus, we can
express the intensity distribution as

I(x) = 2I0[1 + cos(2πμx)] (3.23)

Assuming an ideal recording material that maps the incident intensity distribution
before exposure to the amplitude transmittance after exposure, the amplitude
transmittance of the grating record is given by

t(x) = 0.5[1 + cos(2πμx)] (3.24)

The factor 0.5 appears owing to the fact that the transmittance varies between 0 and 1.
Let a unit-amplitude plane wave be incident normally on the grating. The amplitude
just behind the grating is

a(x) = 0.5(1 + cos 2πμx) = 0.5(1 + 0.5e2πiμx + 0.5e−2πiμx) (3.25)

This represents a combination of three plane waves: one wave propagating along the
axis and other two propagating inclined to the axis. A lens placed behind the grating
will focus these plane waves to three diffraction spots, each spot corresponding to a
plane wave. These spots lie on the x axis in this particular case. If the transmittance
function of the grating is other than sinusoidal, a large number of diffraction spots
are formed.

Let us now recall the grating equation when a plane wave is incident normally;
that is,

dx sin θm = mλ

In the first order m = 1, and assuming small-angle diffraction, so that sin θ ≈ θ, we
obtain

1

dx
= μ = θ

λ
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FIGURE 3.8 Diffraction at a sinusoidal grating.

From Figure 3.8, θ = xf /f , and hence μ = xf /λf . Thus, the position of the spot is
directly proportional to the frequency of the grating. This implies that diffraction at a
sinusoidal grating generates three diffraction orders: the zeroth order lies on the optical
axis and the first orders lie off-axis, with their displacements being proportional to
the spatial frequency of the grating. These orders lie on a line parallel to the grating
vector (2π/dx); the grating vector is oriented perpendicular to the grating elements.
If the grating is rotated in its plane, these orders also rotate by the same angle.

A real grating generates many spots. These can easily be observed by shining
an unexpanded laser beam onto the grating and observing the diffracted orders on a
screen placed some distance away. This is due to the fact that the grating transmittance
differs significantly from a sinusoidal profile. Since a grating is defined as a periodic
structure of transparent and opaque parts, it gives rise to an infinite number of orders,
subject to the condition that the diffraction angle θ ≤ π/2. It should be remembered
that the linear relationship between spatial frequency and distance is valid only for
low-angle diffraction or for coarse gratings.

3.6.4 PHASE GRATING

A phase grating has a periodic phase variation—it does not attenuate the beam. It can be
realized either by thickness changes or refractive index changes or by a combination.
One of the simplest methods is to record an interference pattern on a photographic
emulsion and then bleach it. Assuming that the phase variation is linearly related
to the intensity distribution, the transmittance of a sinusoidal phase grating can be
expressed as

t(x) = exp(iφ0) exp[iφm cos(2πμ0x)] (3.26)

where φ0 and φm are the constant phase and phase modulation, and μ0 is the spatial
frequency of the grating. This transmittance can be expressed as a Fourier–Bessel
series. This implies that when such a grating is illuminated by a collimated beam,
an infinite number of orders are produced, unlike the three orders from an ampli-
tude sinusoidal grating. The phase grating, therefore, is intrinsically nonlinear. The
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intensity distribution in the various orders can be controlled by groove shape and
modulation, and also by the frequency.

3.6.5 DIFFRACTION EFFICIENCY

Gratings can be either amplitude or phase gratings. The diffraction efficiency of an
amplitude grating having a sinusoidal profile of the form t(x) = 0.5 + 0.5 sin(2πμx)
has a maximum value of 6.25%. However, if the profile is binary, the diffraction
efficiency in first order is 10.2%. It will also produce a large number of orders. If the
widths of the opaque and transparent parts are equal, then the even orders are missing.
For a sinusoidal phase grating, the maximum diffraction efficiency is 33.9%; for a
binary phase grating, it is 40.6%. If the grating is blazed, it may have 100% diffraction
efficiency in the desired order. Thick phase gratings have high diffraction efficiencies,
approaching 100%.

3.7 RESOLVING POWER OF OPTICAL SYSTEMS

Assume a point source emitting monochromatic spherical waves. An image of the
point source can be obtained by following the procedure outlined in Section 3.4. The
intensity distribution in the image of a point source is proportional to the square of
the Fourier transform of the aperture function of an aberration-free imaging lens. As
already mentioned, for a lens with circular aperture, the intensity distribution of the
image of a point source is an Airy distribution, proportional to [2J1(x)/x]2. The image
of a point source is not a point but a distribution, and hence two closely separated
point sources can be seen distinctly in the image if they are adequately separated. The
ability to see them distinctly depends on the resolving power of the imaging lens.

Resolving power is important for both imaging and dispersive instruments. In one
case, one wants to know how close two objects could be seen as distinct; in the other,
one wants to know how close two spectral lines could be seen as distinct. In both cases,
the ability to see distinctly is governed by diffraction. In case of imaging, an imaging
system intercepts only a part of the spherical waves emanating from a point source,
thereby losing a certain amount of information. This results in an Airy distribution,
with a central maximum surrounded by circular rings with decreasing intensity. For
objects of the same intensity, it is easier to find a criterion of resolution. According to
Rayleigh, two objects are just resolved when the intensity maximum of one coincides
with the first intensity minimum of the other. The resulting intensity distribution
shows two humps with a central minimum, as shown in Figure 3.9. The intensity of
the central minimum in the case of a square aperture is 81% of the maximum. In
practice, several resolution criteria have been proposed, but the most commonly used
criterion is that due to Rayleigh.

However, in the case of two objects with one very much brighter than the other,
it becomes extremely difficult to apply the Rayleigh criterion. Further, there are sit-
uations when the intensity distribution does not exhibit any secondary maxima. In
such cases, the Rayleigh criterion states that two objects are just resolved when the
intensity of the central minimum is 81% of the maximum.
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FIGURE 3.9 Rayleigh resolution criterion: maximum of first point image falls over the
minimum of the second point image.

The Airy intensity distribution may be called an “instrumental function” of the
imaging devices. Similarly, in the case of a grating used for spectral analysis, the

intensity distribution is governed by sin2
(

1
2 Nδ

)
/sin2

(
1
2δ
)

, where δ is the phase

difference between two consecutive rays. This is the instrumental function, which
governs the resolution. An interferometer may therefore be described in terms of an
instrumental function; a common situation where this arises is in Fourier-transform
spectroscopy.
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4 Phase-Evaluation
Methods

Phase distribution is encoded in an intensity distribution as a result of interference
phenomena, and is displayed in the form of an interference pattern. Phase distribu-
tion should therefore be retrievable from the interference pattern. Phase difference
is related to parameters of interest such as the figure of a surface, height varia-
tions, and refractive index variations, which can be extracted from measurements
of phase difference.

We employ interference phenomena in classical interferometry, in holographic
interferometry, and in speckle interferometry to convert the phase of a wave of interest
into an intensity distribution. Even in moiré methods, the desired information can be
cast into the form of an intensity distribution. The fringes in an interference pattern
are loci of constant phase difference. Earlier methods of extracting phase information,
and consequently the related parameters of interest, were very laborious and time-
consuming and suffered from the inherent inaccuracies of evaluation procedures. With
the availability of desktop computers with enormous computational and processing
power and CCD array detectors, many automatic fringe evaluation procedures have
been developed.

There are many methods of phase evaluation. A comparison of these methods with
respect to several parameters is presented in Table 4.1.

It should be noted that complexity and cost increase with increasing resolution.
We will now discuss these methods in detail. During the course of this discussion,
the significance of some of the parameters and characteristics of the various methods
will become obvious.

4.1 INTERFERENCE EQUATION

Interference between two waves of the same frequency results in an intensity
distribution of the form

I(x, y) = I0(x, y)[1 + V(x, y) cos δ(x, y)] (4.1)

where I0(x, y) is the low-frequency background, often called the DC background,
V(x, y) is the fringe visibility (or modulation), and δ(x, y) is the phase difference
between the two waves, which is to be determined. Here (x, y) are the coordinates of a
point, or of a pixel on an observation plane. The intensity distribution may be degraded

59
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TABLE 4.1
Comparison of Some Important Methods of Phase Evaluation
in Terms of Selected Parameters

Method

Fringe Phase-Stepping Fourier Temporal
Parameter Skeletonization and Phase-Shifting Transform Heterodyning

Number of interferograms
to be reconstructed

1 Minimum 3 1 (2) 1 per detection
point

Resolution λ 1–1/10 1/10–1/100 1/10–1/30 1/100–1/1000
Evaluation between

intensity extrema
No Yes Yes Yes

Inherent noise
suppression

Partially Yes No (Yes) Partially

Automatic sign detection No Yes No (Yes) Yes
Necessary experimental

manipulation
No Phase-shift No

(Phase-shift)
Frequency

Experimental effort Low High Low Extremely high
Sensitivity to external

influences
Low Moderate Low Extremely high

Interaction by the
operator

Possible Not possible Possible Not possible

Speed of evaluation Low High Low Extremely low
Cost Moderate High Moderate Very high

by several factors, such as speckle noise, spurious fringe noise, and electronic noise.
However, when all of these factors are included, the intensity distribution may still
be expressed in the form

I(x, y) = a(x, y) + b(x, y) cos δ(x, y) (4.2)

This equation has three unknowns: a(x, y), b(x, y), and δ(x, y). We are mostly inter-
ested in obtaining δ(x, y), and hence will discuss the methods of phase evaluation only.

4.2 FRINGE SKELETONIZATION

The fringe skeletonization methods are computerized forms of the former manual
fringe counting methods. The fringe pattern is received on a CCD detector. It is
assumed that a local extremum of the intensity distribution corresponds to a maximum
or minimum of the cosine function. (However, this requirement is not met by fringe
patterns obtained in speckle photography.) The interference phase at pixels where
an intensity maximum or minimum is detected is an even or odd integer multiple
of π. The fringe skeletonization method seeks maxima or minima of an intensity
distribution. The positions of maxima or minima in the fringe pattern are determined
within several pixels. The method is thus similar to the manual method of locating the



“DK4217_C004.tex” — page 61[#3] 14/5/2009 20:30

Phase-Evaluation Methods 61

fringe maxima or minima, but is performed much more rapidly and with relatively
high accuracy. Sign ambiguity is still not resolved.

Methods of fringe skeletonization can be divided into those based on fringe tracking
and those related to segmentation. Both techniques require careful preprocessing to
minimize speckle noise through low-pass filtering and to correct for uneven brightness
distribution in the background illumination.

4.3 TEMPORAL HETERODYNING

In temporal heterodyning, a small frequency difference Δω/2π = (ω1 − ω2)/2π,
which is less than 100 kHz, is introduced between the two interfering waves. The
local intensity of the interference pattern then varies sinusoidally at the beat frequency
Δω/2π. The intensity distribution can be expressed as

I(x, y; t) = a(x, y) + b(x, y) cos[Δωt + δ(x, y)] (4.3)

There is no stationary stable interference pattern of the type familiar in interfer-
ometry; instead, the intensity at each point (x, y) varies sinusoidally at the beat
frequency, and the interference phase at that point is transformed into the phase
of the beat frequency signal. There is no way to measure the phase of this beat
signal. However, as is obvious, the intensity at all points varies with the beat fre-
quency, but the phases are different, being equal to the values of the interference
phases at these points. As the beat frequency is sufficiently low, the phase difference
between two points can be measured with very high accuracy independently of a(x, y)
and b(x, y) by using two photodetectors and an electronic phase-meter. In this way,
both the interpolation problem and the sign ambiguity of classical interferometry
are solved. The method requires special equipment such as acousto-optic modulators
for frequency shift and a phase-meter. The image (interference pattern) is scanned
mechanically by photodetectors to measure the phase difference: one detector is fixed
and the other is scanned, thereby measuring the interference phase with respect to
the fixed photodetector. The measurement speed is low (typically 1 s per point), but
the accuracy (typically λ/1000) and spatial resolution (>106 resolvable points) are
extremely high.

In double-exposure holographic interferometry, the two interfering waves are
released simultaneously from the hologram, and hence temporal heterodyning cannot
be applied for phase evaluation. On the other hand, if a two-reference-wave set-up is
used such that each state of the object is recorded with one of the waves as a reference
wave, this technique can be implemented (see Chapter 6). In practice, two acousto-
optic modulators in cascade are placed in the path of one of the reference waves. These
modulators introduce frequency shifts of opposite signs. During recording, both mod-
ulators are driven at the same frequency, say, at 40 MHz, and hence the net frequency
shift is zero. The initial and final states of the object are recorded sequentially with
one reference wave at a time. The reconstruction, however, is performed with both
reference waves simultaneously, with one modulator driven at 40 MHz and the other
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at 40.1 MHz. Therefore, the reference waves are of different frequencies, with a fre-
quency difference of 100 kHz, resulting in an interference pattern that oscillates at
that frequency.

One way to evaluate the interference pattern is to keep one detector fixed at
the reference point while the other is scanned over the image. In this way, the phase
difference is measured with respect to the phase of the reference point. The phase
differences are stored, arranged, and displayed. Instead of two detectors, one could
use an array of three, four, or five detectors to scan the whole image. In this way, the
phase differences δδx and δδy between adjacent points along the x and y directions
with known separations are measured. Numerical integration of recorded and stored
phase differences gives the interference phase distribution.

4.4 PHASE-SAMPLING EVALUATION: QUASI-HETERODYNING

According to Equation 4.2, the intensity distribution in an interference pattern has
three unknowns: a(x, y), b(x, y), and δ(x, y). Therefore, if three intensity values at
each point are available, we could set up three equations and solve them for the
unknowns. These three intensity values are obtained by changing the phase of the
reference wave. For the sake of generality, we set up n equations.

Two different approaches are available for quasi-heterodyning phase measurement:
the phase-step method and the phase shift method. In the phase-step method, the
local intensity In(x, y) in the interference pattern is sampled at fixed phases αn of the
reference wave; that is,

In(x, y) = a(x, y) + b(x, y) cos[δ(x, y) + αn] for n = 1, 2, 3, . . . , N(n > 3) (4.4)

As mentioned earlier, at least three intensity measurements, I1, I2, I3, must be
carried out to determine all the three unknowns.

In the phase-shifting or integrating bucket method, which is intended primarily for
use with CCD detectors on which optical power is integrated by the detector, the phase
of the reference wave is varied linearly and the sampled intensity is integrated over
the phase interval Δα from αn − Δα/2 to αn + Δα/2. The intensity In(x, y) sampled
at a pixel at (x, y) is given by

In(x, y) = 1

Δα

∫ αn+Δα/2

αn−Δα/2

{
a(x, y) + b(x, y) cos

[
δ(x, y) + α(t)

]}
dα(t)

= a(x, y) + sinc(Δα/2) b(x, y) cos
[
δ(x, y) + αn

]
(4.5)

This expression is equivalent to that of the phase-shifting method, the only dif-
ference being that the modulation b(x, y) is multiplied by sinc(Δα/2); there is
a reduction in the contrast of fringes by sinc(Δα/2). In this sense, the phase-
shifting method is equivalent to the phase-stepping method, and the names are used
synonymously. Furthermore, for data processing, both methods are handled in an
identical manner.
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4.5 PHASE-SHIFTING METHOD

For the solution of the nonlinear system of equations, we use the Gauss least-square
approach and rewrite the intensity distribution as

In(x, y) = a(x, y) + b(x, y) cos[δ(x, y) + αn] = a + u cos αn + v sin αn (4.6)

where u(x, y) = b(x, y) cos δ(x, y) and v(x, y) = −b(x, y) sin δ(x, y). We obtain a, u,
and v by minimizing the errors; that is, the sum of the quadratic errors,

N∑
n=1

[
In(x, y) − (a + u cos αn + v sin αn)

]2

is minimized. Taking partial derivatives of this function with respect to a, u, and v

and then equating these derivatives to zero gives a linear system of three equations:
⎛
⎜⎝

N
∑

cos αn
∑

sin αn∑
cos αn

∑
cos2 αn

∑
sin αn cos αn∑

sin αn
∑
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∑

sin2 αn

⎞
⎟⎠
⎛
⎜⎝

a

u

v

⎞
⎟⎠ =

⎛
⎜⎝

∑
In∑

In cos αn∑
In sin αn

⎞
⎟⎠ (4.7)

This system is to be solved pointwise. We thus obtain

a(x, y) = 1

N

N∑
n=1

In (4.8a)

b(x, y) =
√(∑

In cos αn
)2 + (∑ In sin αn

)2
N

(4.8b)

tan δ(x, y) = −v

u
= −

∑
In sin αn∑
In cos αn

(4.8c)

The interference phase is computed modulo 2π. Many algorithms have been men-
tioned in the literature. Some of these algorithms, derived from the interference
equation, using three, four, up to eight steps, are presented in Table 4.2.

4.6 PHASE-SHIFTING WITH UNKNOWN
BUT CONSTANT PHASE-STEP

There is a method known as the Carré method, which utilizes four phase-shifted
intensity distributions; the phase-step need not be known, but must remain constant
during phase-shifting. The four intensity distributions are expressed as

I1(x, y) = a(x, y) + b(x, y) cos
[
δ(x, y) − 3α

]
(4.9a)

I2(x, y) = a(x, y) + b(x, y) cos
[
δ(x, y) − α

]
(4.9b)

I3(x, y) = a(x, y) + b(x, y) cos
[
δ(x, y) + α

]
(4.9c)

I4(x, y) = a(x, y) + b(x, y) cos
[
δ(x, y) + 3α

]
(4.9d)
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TABLE 4.2
Some Algorithms Derived from the Interference Equation

N Phase-Step αn Expression for tan δ(x , y)

3 60◦ (0◦, 60◦, 120◦)
2I1 − 3I2 + I3√

3 (I2 − I3)

3 90◦ (0◦, 90◦, 180◦)
I1 − 2I2 + I3

I1 − I3

3 120◦ (0◦, 120◦, 240◦)

√
3 (I3 − I2)

2I1 − I2 − I3

4 90◦ (0◦, 90◦, 180◦, 270◦)
I4 − I2
I1 − I3

4 60◦ (0◦, 60◦, 120◦, 180◦)
5 (I1 − I2 − I3 + I4)√
3 (2I1 + I2 − I3 − 2I4)

5 90◦ (0◦, 90◦, 180◦, 270◦, 360◦)
7 (I4 − I2)

4I1 − I2 − 6I3 − I4 + 4I5

6 90◦ (0◦, 90◦, 180◦, 270◦, 360◦,
450◦)

I1 − I2 − 6I3 + 6I4 + I5 − I6
4(I2 − I3 − I4 + I5)

7 90◦ (0◦, 90◦, 180◦, 270◦, 360◦,
450◦, 540◦)

−I1 + 7I3 − 7I5 + I7
−4I2 + 8I4 − 4I6

8 90◦ (0◦, 90◦, 180◦, 270◦, 360◦,
450◦, 540◦, 630◦)

−I1 − 5I2 + 11I3 + 15I4 − 15I5 − 11I6 + 5I7 + I8
I1 − 5I2 − 11I3 + 15I4 + 15I5 − 11I6 − 5I7 + I8

For the sake of simplicity, the phase step is taken to be 2α. There are four unknowns,
namely a(x, y), b(x, y), δ(x, y), and 2α, and hence it should be possible to obtain the
values of all four from the four equations. However, we present the expressions only
for the phase-step and interference phase:

tan2 α = 3(I2 − I3) − (I1 − I4)

(I2 − I3) + (I1 − I4)
(4.10a)

tan δ(x, y) = (I2 − I3) + (I1 − I4)

(I2 + I3) − (I1 + I4)
tan α (4.10b)

These two equations are combined to yield the interference phase from the measured
intensity values as follows:

tan δ(x, y) =
√[

3(I2 − I3) − (I1 − I4)
] [

(I2 − I3) + (I1 − I4)
]

(I2 + I3) − (I1 + I4)
(4.11)

An improvement over the Carré method is realized by calculating the value of
the phase-step over the whole pixel format, and then taking the average value for
calculation. Constancy of the phase-step is also easily checked. The phase-step 2α is
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obtained from the expression

cos 2α = (I1 − I2) + (I3 − I4)

2(I2 − I3)
(4.12)

By assumption, the phase-step 2α must be constant over all the pixels. However, we
take an average value, which smoothes out any fluctuations. The interference phase
is then obtained as

tan δ(x, y) = (I3 − I2) + (I1 − I3) cos ᾱ1 + (I2 − I1) cos 2ᾱ1

(I1 − I3) sin ᾱ1 + (I2 − I1) sin 2ᾱ1
(4.13a)

tan δ(x, y) = (I4 − I3) + (I2 − I4) cos ᾱ1 + (I3 − I2) cos 2ᾱ1

(I2 − I4) sin ᾱ1 + (I3 − I2) sin 2ᾱ1
(4.13b)

where 2ᾱ1 is the average value of the phase-step 2α, averaged over all the pixels.
The 2π steps of the interference phase distribution modulo 2π occur at different
points in the image. This information can be used in the subsequent demodulation by
considering the continuous phase variation of the two terms at each pixel.

There is another interesting algorithm, which also utilizes four intensity distribu-
tions but can be used for the evaluation of a very noisy interferogram. We consider an
intensity distribution in the image of an object being studied using speckle techniques.
The intensity distribution is expressed as

I(x, y) = a(x, y) + b(x, y) cos(φo − φR), (4.14)

where φo and φR are the phases of the speckled object wave and the reference wave;
the phase difference φ = φo − φR is random. We capture four frames, the intensity
distributions being expressed as

I1(x, y) = a(x, y) + b(x, y) cos(φ − π/2) (4.15a)

I2(x, y) = a(x, y) + b(x, y) cos φ (4.15b)

I3(x, y) = a(x, y) + b(x, y) cos
[
φ + δ(x, y)

]
(4.15c)

I4(x, y) = a(x, y) + b(x, y) cos
[
φ + δ(x, y) + π/2

]
(4.15d)

Here δ(x, y) is the phase introduced by deformation and is to be determined. From
these equations, we obtain

I3 − I2 = −2b sin(φ + δ/2) sin(δ/2) (4.16a)

I4 − I1 = −2b sin(φ + δ/2) cos(δ/2) (4.16b)

From Equations 4.16a and 4.16b, the deformation phase is obtained easily as

tan
δ(x, y)

2
= I3 − I2

I4 − I1
(4.17)
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The phase is obtained modulo 2π, as in other algorithms. However, the phase shift
has to be exactly π/2.

All of the algorithms listed in Table 4.2 and utilizing a 90◦ phase shift require the
phase-step to be exactly 90◦; otherwise, errors are introduced. Simulation studies have
indicated that the magnitude of errors continues to decrease with increasing number
of phase-steps. An eight-step phase shift algorithm is practically immune to phase
shift errors.

Phase-shifting methods are commonly used in all kinds of interferometers. The
phase shift is usually introduced by calibrated PZT shifters attached to a mirror. This
mechanical means of shifting the phase is quite common and convenient to use. There
are various other methods, which rely on polarization and refractive index changes
of the medium by an electrical field, and so on.

Advantages of the phase-shifting technique are (i) almost real-time processing of
interferograms, (ii) removal of sign ambiguity, (iii) insensitivity to source intensity
fluctuations, (iv) good accuracy even in areas of very low fringe visibility, (v) high
measurement accuracy and repeatability, and (vi) applicability to holographic interfer-
ometry, speckle interferometry, moiré methods, and so on. Further, we can calculate
the visibility and background intensity from the measured intensity values.

4.7 SPATIAL PHASE-SHIFTING

Temporal phase-shifting as described above requires stability of the interference pat-
tern over the period of phase-shifting. However, in situations where a transient event
is being studied or where the environment is highly turbulent, the results from tem-
poral phase-shifting could be erroneous. To overcome this problem, the phase-shifted
interferograms can be captured simultaneously using multiple CCD array detectors
and appropriate splitting schemes. Recently, a pixelated array interferometer has also
been developed that captures four phase-shifted interferograms simultaneously. All of
these schemes, however, add to the cost and complexity of the system. Another solu-
tion is to use spatial phase-shifting. This requires an appropriate carrier. The intensity
distribution in the interferogram can be expressed as

I(x, y) = a(x, y) + b(x, y) cos
[
2πf0x + φ(x, y)

]
(4.18)

where f0 is the spatial carrier along the x direction. The spatial carrier is chosen
such that it has either three or four pixels on the adjacent fringes to apply three-step
or four-step algorithms. There are several ways to generate the carrier frequency. The
simplest is to tilt the reference beam appropriately. Polarization coding and gratings
are also frequently used. We describe a procedure that is used in speckle metrology
(Chapter 7).

We consider the experimental set-up shown in Figure 4.1. This arrangement is
employed for the measurement of the in-plane displacement component.

The aperture separation is chosen such that the fringe width is equal to the width
of three pixels of the CCD camera for the 120◦ phase shift algorithm, and to the width
of four pixels for the 90◦ phase shift algorithm, as shown in Figure 4.2. The average
speckle size is nearly equal to the fringe width. The intensity distribution I(xn, y) at
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FIGURE 4.1 Measurement of in-plane component using spatial phase-shifting.

the nth pixel along the x direction is given by

I(xn, y) = a(xn, y) + b(xn, y)sinc

(
Φ

2

)
cos
[
φ(xn, y) + nβ + C

]
, n = 1, 2, 3, . . . , N

(4.19)

where φ(xn, y) is the phase to be measured,

β = 2π

λ

d

v
dp

is the phase change from one pixel to the next (which is separated by dp along the x
direction),

Φ = 2π

λ

d

v
dt

(b)(a) speckle speckle 

FIGURE 4.2 (a) 120◦ spatial phase-shifting. (b) 90◦ spatial phase-shifting.
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is the phase shift angle over which the pixel of width dt integrates the intensity, C is
a constant phase offset, and N is the number of pixels in a row. Owing to object
deformation, the initial phase φ1(xn, y) changes to φ2(xn, y) = φ1(xn, y) + δ(xn, y). If
φ1(xn, y) and φ2(xn, y) are measured, the phase difference δ(xn, y) can be obtained.
In order to calculate φn = φ(xn, y), we need at least three adjacent values of I(xn, y).
If these values are picked up at 120◦ phase intervals, then the phase φn is given by

φn = tan−1
(√

3
In−1 − In+1

2In − In−1 − In+1

)
mod π (4.20)

In+m = a + b sinc

(
Φ

2

)
cos

[
φn + 2π

λ

d

v
dp(n + m)

]
,

n = 2, 3, . . . , N − 1; m = −1, 0, +1 (4.21)

The constant C has been dropped from Equation 4.21. It may be seen that in spatial
phase-shifting, the modified phase

ψn = φn + 2π

λ

d

v
dpn mod π

rather than the speckle phase φn mod π, is reconstructed. Therefore, the phase offset

2π

λ

d

v
dpn

must be subtracted in a later step.

4.8 METHODS OF PHASE-SHIFTING

A number of methods for phase shifting have been proposed in the literature. They
usually introduce phase shifts sequentially. Some methods have also been adopted for
simultaneous phase-shifts, and thus are useful for studying dynamical events. These
methods include

• PZT-mounted mirror
• Tilt of a glass plate between exposures
• Rotation of the phase-plate in a polarization phase-shifter
• Motion of a diffraction grating
• Use of a computer-generated hologram (CGH) written on a spatial light

modulator
• Special methods

4.8.1 PZT-MOUNTED MIRROR

In an interferometric configuration, one of the mirrors is mounted on lead zirconate
titanate (PZT), which can be actuated by applying a voltage. In a Michelson interfero-
meter, a shift of the mirror by λ/8 will introduce a phase shift of π/2 (λ/4 in path
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(b)
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FIGURE 4.3 Phase-shifting by a PZT-driven mirror: (a) Michelson interferometer configu-
ration; (b) Mach–Zehnder interferometer configuration.

change). Of course, any amount of phase shift can be introduced by a PZT-mounted
mirror. In a Mach–Zehnder interferometer, the mirrors are inclined at 45◦, and hence
the mirror has to be shifted by

√
2λ/16 to introduce a phase shift of π/2. Figure 4.3

shows schematic representations of phase-shifting in Michelson and Mach–Zehnder
interferometers. PZT-mounted mirrors can be used in any interferometric set-up, but
the magnitude of the shift of mirror has to be calculated for each configuration. Care
should be taken to avoid overshoot and hysteresis.

4.8.2 TILT OF GLASS PLATE

A glass plate of constant thickness and refractive index is introduced in the reference
arm of the interferometer. The plate is tilted by an appropriate angle to introduce
a required phase shift, as shown in Figure 4.4. It may be noted that the tilt also
results in a lateral shift of the beam, although this is negligibly small. When a plate
of refractive index μ, and uniform thickness t is placed normally to the beam, it
introduces a path change (μ − 1)t. When it is inclined such that the incident beam
strikes it at an angle i, the plate introduces a path difference μt cos r − t cos i, where
r is the angle of refraction in the plate. Tilt of the plate by an angle i thus introduces
a net path difference μt(1 − cos r) − t(1 − cos i). The plate is therefore tilted by an

i

FIGURE 4.4 Phase-shifting by tilt of a plane parallel plate.
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appropriate angle between exposures to introduce the desired phase step. This method
is applicable only with collimated illumination.

4.8.3 ROTATION OF POLARIZATION COMPONENT

Polarization components such as half-wave plates (HWPs), quarter-wave plates
(QWPs), and polarizers have been used as phase-shifters in phase-shifting interfer-
ometry by rotating them in the path of the interfering beams. Different configurations
of polarization-component phase-shifters have been used for phase-shifting, depend-
ing on their location in the interferometer. Possible locations are the input end, the
output end, or one of the arms of the interferometer. Figure 4.5 shows configurations
of phase-shifters at different locations in an interferometer.

Figure 4.5a shows a phase-shifter for the input end. It consists of a rotating half-
wave plate followed by a quarter-wave plate fixed at an angle of 45◦. The way in which
polarization phase-shifters work can be understood with the help of the Jones calculus.
The input to the interferometer is linearly polarized at 0◦. The polarized light after the
quarter-wave plate (QWP) Q is split by a polarization beam-splitter (PBS) into two
orthogonal linearly polarized beams. The QWPs Q1 and Q2 serve to rotate the plane
of polarization of the incoming beam by 90◦, so that both the beams proceed towards
the polarizer P oriented at 45◦, which takes a component from each beam to produce
an interference pattern. A rotation of the half-wave plate (HWP) H shifts the phase
of the interference pattern. The shift of the phase is four times the angle of rotation
of the HWP.

A phase-shifter for the output end is shown in Figure 4.5b. It consists of a quarter-
wave plate at 45◦ followed by a rotating polarizer. Figure 4.5c shows a phase-shifter
for use in one of the arms of an interferometer. The phase-shifter consists of a fixed
quarter-wave plate and a rotating quarter-wave plate. A rotating polarizer P (Figure
4.5b) and a rotating QWP Q3 (Figure 4.5c) will produce phase modulation at twice
the rotation angle.

The intensity distribution is measured at different orientations of the rotating polar-
ization component. A high degree of accuracy can be achieved by mounting the
rotating component on a precision-divided circle with incremental or coded position
information suitable for electronic processing.

Polarization interferometers for phase-shifting as discussed above can also be
used with liquid crystals, which can provide variable retardation. Likewise, an electro-
optic effect can also be used to produce a variable phase shift in a polarization
interferometer. Polarization components have also been employed successfully in
white-light phase-shifting interferometry.

In a variant of the method in which the polarizer is rotated, with the right circularly
polarized and left circularly polarized beams passing through a polarizer inclined at
an angle α, a phase change of 2α is introduced. Therefore, using a CGH together
with polarizers oriented at 0◦, 45◦, 90◦, and 135◦, phase shifts of π/2, π, 3π/2 and
2π are introduced simultaneously. Using micro-optics that function as polarizers,
WYCO has introduced a system known as a pixellated phase-shifter. This intro-
duces π/2, π, 3π/2, and 2π phase shifts in the four quadrants, thereby achieving
simultaneous phase-shifting.
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FIGURE 4.5 Schematic diagrams of polarization phase-shifters for use (a) at the input, (b)
at the output, and (c) in the reference arm of an interferometer. PBS, polarizing beam-splitter;
M1, M2, mirrors; P, fixed polarizer, Q, Q1, Q2, fixed quarter-wave plates; H, rotating half-wave
plate; Q3, rotating quarter-wave plate; Prot , rotating polarizer.
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FIGURE 4.6 Phase-shifting by translation of a grating.

4.8.4 MOTION OF A DIFFRACTION GRATING

A diffraction grating produces several orders; the first-order beam is used for phase-
shifting. Translation of the grating in its plane by its pitch p introduces a phase change
of 2π in the diffracted first-order beam. Therefore, the grating is translated by p/4
and the frame is captured (Figure 4.6). Successive frames are captured by translating
the grating by p/4 steps. Alternatively the grating is moved at a constant velocity v,
and the frame is captured at instants Np/4v, where N = 1, 2, 3, and 4 for a four-step
algorithm with π/2 step.

4.8.5 USE OF A CGH WRITTEN ON A SPATIAL LIGHT MODULATOR

A phase shift of π/2 can be introduced using a CGH written on a spatial light mod-
ulator. A CGH of a known wavefront, usually a plane wavefront, is written using
a phase-detour method. If each cell of the CGH is divided into four elements, and
these elements are filled in according to the phase at that cell, then their shift by one
element will introduce a global shift of π/2. Thus, the filled elements over the whole
CGH are shifted by one element each after successive frames, to introduce sequential
phase shifts of 0, π/2, π, and 3π/2.

4.8.6 SPECIAL METHODS

Common-path interferometers are used for optical testing, because to their insen-
sitivity to vibrations and refractive index changes over the optical path. Since both
test and reference beams traverse the same path, it is difficult to separate reference
and test beams for phase-shifting. A clever arrangement has been suggested using
a birefringent scatter-plate. There have also been some modifications of the Smartt
point-diffraction interferometer.

4.9 FOURIER TRANSFORM METHOD

The Fourier transform method is used in two ways: (i) without a spatial frequency
carrier and (ii) with a spatial frequency carrier added to it (spatial heterodyning). We
will first describe the Fourier transform method without a spatial carrier. We again
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express the intensity distribution in the interference pattern as

I(x, y) = a(x, y) + b(x, y) cos δ(x, y)

With the cosine function written in complex exponentials, that is,

2 cos δ(x, y) = eiδ(x,y) + e−iδ(x,y)

the intensity distribution can be expressed as

I(x, y) = a(x, y) + 2b(x, y)eiδ(x,y) + 2b(x, y)e−iδ(x,y)

= a(x, y) + c(x, y) + c∗(x, y) (4.22)

where c(x, y) and c∗(x, y) are now complex functions. We take the Fourier transform
of this distribution, yielding

I(μ, ν) = A(μ, ν) + C(μ, ν) + C∗(−μ, −ν) (4.23)

with μ and ν being the spatial frequencies. Since the intensity distribution I(x, y) is
a real-valued function in the spatial domain, its Fourier transform is Hermitian in the
frequency domain; that is,

I(μ, ν) = I∗(−μ, −ν) (4.24)

The real part of I(μ, ν) is even and the imaginary part is odd. The amplitude distribu-
tion |I(μ, ν)|1/2 is point-symmetric with respect to the DC term I(0, 0). Now it can be
seen that A(μ, ν) contains the zero peak I(0, 0) and the low-frequency content due to
slow variation of the background. C(μ, ν) and C∗(−μ, −ν) carry the same informa-
tion, but with sign ambiguity. By bandpass filtering in the spatial frequency domain,
A(μ, ν) and one of the terms C(μ, ν) or C∗(−μ, −ν) is filtered out. The remaining
spectrum C∗(−μ, −ν) or C(μ, ν) is not Hermitian, so the inverse Fourier transform
gives complex c(x, y) with nonvanishing real and imaginary parts. The interference
phase δ(x, y) is obtained as follows:

δ(x, y) = tan−1 Im{c(x, y)}
Re{c(x, y)} (4.25)

where Re{ } and Im{ } represent real and imaginary parts, respectively.

4.10 SPATIAL HETERODYNING

In spatial heterodyning, a carrier frequency is added to the interference pattern.
The spatial frequency is chosen higher than the maximum frequency content in
a(x, y), b(x, y), and δ(x, y). The intensity distribution in the interference pattern can
then be expressed as

I(x, y) = a(x, y) + b(x, y) cos[δ(x, y) + 2πf 0x]
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where f0 is the spatial carrier frequency along the x direction. In interferometry,
the carrier is usually added by tilting the reference mirror. There are other ways
of introducing the carrier in holographic interferometry, speckle interferometry, and
electronic speckle pattern interferometry. The Fourier transform of this expression
can be expressed as

I(μ, ν) = A(μ, ν) + C(μ − f0, ν) + C∗(−μ − f0, −ν) (4.26)

Since the spatial carrier frequency is chosen higher than the maximum fre-
quency content in a(x, y), b(x, y), and δ(x, y), the spectra A(μ, ν), C(μ − f0, ν), and
C∗(−μ − f0, −ν) are separated. The spectrum A(μ, ν) is centered on μ = 0, ν = 0
and carries the information about the background. The spectra C(μ − f0, ν) and
C∗(−μ − f0, −ν) are placed at μ = f0, ν = 0, and μ = −f0, ν = 0, that is, symmet-
rically about the DC term. If, by means of an appropriate bandpass filter, A(μ, ν)
and C∗(−μ − f0, −ν) are eliminated and subsequently C(μ − f0, ν) is shifted by f0
towards the origin, thereby removing the carrier, we can obtain c(x, y) by inverse
Fourier transformation. The interference phase is then obtained from the real and
imaginary parts of c(x, y).

If, instead of C(μ, ν), the inverse transform of C∗(−μ, −ν) is taken, this results
in −δ(x, y). The sign ambiguity is always present when a single interferogram is
evaluated. Information about the sign of the phase is obtained when an additional
phase-shifted interferogram is available. Let us now write down the expressions for the
intensity distributions in the two interferograms, with one of them phase-stepped by α:

I1(x, y) = a(x, y) + b(x, y) cos δ(x, y)

I2(x, y) = a(x, y) + b(x, y) cos[δ(x, y) + α]
Theoretically, the value of α must be in the range 0 < α < π; in practice, a value in
the range π/3 < α < 2π/3 is recommended. If this condition is fulfilled, the exact
value of α need not be known. Again, we can express these intensity distributions in
terms of complex exponentials and then take the Fourier transforms as described ear-
lier. After bandpass filtering and taking the inverse Fourier transforms of the spectra
belonging to each intensity distribution, we obtain

c1(x, y) = 2b(x, y)eiδ(x,y)

c2(x, y) = 2b(x, y)e−i[δ(x,y)+α]

The phase step α is calculated pointwise from the expression

α(x, y) = tan−1 Re{c1(x, y)}Im{c2(x, y)} − Im{c1(x, y)}Re{c2(x, y)}
Re{c1(x, y)}Re{c2(x, y)} + Im{c1(x, y)}Im{c2(x, y)} (4.27)

The knowledge of α(x, y) is used for determination of the sign-corrected interference
phase distribution δ(x, y) from the expression

δ(x, y) = sign{α(x, y)} tan−1 Im{c1(x, y)}
Re{c1(x, y)} (4.28)

The phase is unwrapped as usual.
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25. M. Kujawińska, L. Salbut, and K. Patorski, 3-channel phase-stepped system for moiré
interferometry, Appl. Opt., 30, 1633–1637, 1991.

26. J. Kato, I.Yamaguchi, and S. Kuwashima, Real-time fringe analysis based on electronic
moiré and its applications, In Fringe’93 (ed.W. Jüptner andW. Osten), 66–71,Akademie
Verlag, Berlin, 1993.

27. J. M. Huntley and H. Saldner, Temporal phase-unwrapping algorithm for automated
interferogram analysis, Appl. Opt., 32, 3047–3052, 1993.

28. C. Joenathan, Phase-measuring interferometry: New methods and error analysis, Appl.
Opt., 33, 4147–4155, 1994.

29. G. Jin, N. Bao, and P. S. Chung, Applications of a novel phase shift method using a
computer-controlled mechanism, Opt. Eng., 33, 2733–2737, 1994.

30. S. Yoshida, R. W. Suprapedi, E. T. Astuti, and A. Kusnowo, Phase evaluation for elec-
tronic speckle-pattern interferometry deformation analyses, Opt. Lett., 20, 755–757,
1995.

31. S. Suja Helen, M. P. Kothiyal, and R. S. Sirohi, Achromatic phase-shifting by a rotating
polarizer, Opt. Commun., 154, 249–254, 1998.

32. B. V. Dorrío and J. L. Fernández, Phase-evaluation methods in wholefield optical
measurement techniques, Meas. Sci. Technol., 10, R33–R55, 1999.

33. S. Suja Helen, M. P. Kothiyal, and R. S. Sirohi, Phase shifting by a rotating polarizer
in white light interferometry for surface profiling, J. Mod. Opt., 46, 993–1001, 1999.

34. H. Zhang, M. J. Lalor, and D. R. Burton, Robust accurate seven-sample phase-shifting
algorithm insensitive to nonlinear phase shift error and second-harmonic distortion: A
comparative study, Opt. Eng., 38, 1524–1533, 1999.

35. S. Suja Helen, M. P. Kothiyal, and R. S. Sirohi, White light interferometry with
polarization phase-shifter at the input of the interferometer, J. Mod. Opt., 47, 1137–1145,
2000.

36. J. H. Massig and J. Heppner, Fringe-Pattern Analysis with High Accuracy by Use of the
Fourier-Transform Method: Theory and Experimental Tests, Appl. Opt., 40, 2081–2088,
2001.



“DK4217_C004.tex” — page 77[#19] 14/5/2009 20:30

Phase-Evaluation Methods 77

37. M.Afifi,A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, Paul wavelet-
based algorithm for optical phase distribution evaluation, Opt. Commun., 211, 47–51,
2002.

38. M. B. North-Morris, J. VanDelden and J.C. Wyant, Phase-shifting birefringent scatter-
plate interferometer, Appl. Opt., 41, 668–677, 2002.

39. K. Kadooka, K. Kunoo, N. Uda, K. Ono, and T. Nagayasu, Strain analysis for moiré
interferometry using the two-dimensional continuous wavelet transform, Exp. Mech.,
43, 45–51, 2003.

40. C.-S. Guo, Z.-Y. Rong, H.-T. Wang, Y. Wang, and L. Z. Cai, Phase-shifting with
computer-generated holograms written on a spatial light modulator, Appl. Opt., 42,
6875–6879, 2003.

41. J. Novak, Five-step phase-shifting algorithms with unknown values of phase shift, Optik,
114, 63–68, 2003.

42. Y. Fu, C. J. Tay, C. Quan, and H. Miao, Wavelet analysis of speckle patterns with a
temporal carrier, Appl. Opt., 44, 959–965, 2005.

43. J. Millerd, N. Brock, J. Hayes, B. Kimbrough, M. Novak, M. North-Morris, and J. C.
Wyant, Modern approaches in phase measuring metrology, Proc. SPIE, 5856, 1–22,
2005.

44. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, Spiral interferogram analysis,
J. Opt. Soc. Am. A, 23, 1400–1409, 2006.

45. B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, Cyclic-path digital speckle shear pattern
interferometer: Use of polarization phase-shifting method, Opt. Eng., 45, 105604, 2006.

46. K. Patorski andA. Styk, Interferogram intensity modulation calculations using temporal
phase shifting: Error analysis, Opt. Eng., 45, 085602, 2006.

47. S. K. Debnath and M. P. Kothiyal, Experimental study of the phase shift miscalibra-
tion error in phase-shifting interferometry: Use of a spectrally resolved white-light
interferometer, Appl. Opt., 46, 5103–5109, 2007.

48. Y. Fu, G. Pedrini, and W. Osten, Vibration measurement by temporal Fourier analyses
of a digital hologram sequence, Appl. Opt., 46, 5719–5727, 2007.

49. L. R. Watkins, Phase recovery from fringe patterns using the continuous wavelet
transform, Opt. Lasers Eng., 45, 298–303, 2007.

50. Y. H. Huang, S. P. Ng, L. Liu, Y. S. Chen, and M. Y. Y. Hung, Shearographic phase
retrieval using one single specklegram: A clustering approach, Opt. Eng., 47, 054301,
2008.



“DK4217_C004.tex” — page 78[#20] 14/5/2009 20:30



“DK4217_C005.tex” — page 79[#1] 15/5/2009 10:58

5 Detectors and
Recording Materials

Detection in optical measurement is a very important step in the measurement process.
A detector converts incident optical energy into electrical energy, which is then mea-
sured. Many physical effects have been used to detect optical radiation, for example,
photo-excitation and photo-emission, the photoresistive effect, and the photothermal
effect. Detectors based on the photo-excitation or photo-emission of electrons are by
far the most sensitive and provide the highest performance. These detectors are, how-
ever, small-area detectors, measuring/sampling optical energy over a very small area.
In the techniques and methods described in this book, large-area or image detec-
tors are employed except in heterodyne holographic interferometry. These include
photographic plates, photochromics, thermoplastics, photorefractive crystals, and
charge-coupled device/complementary metal-oxide semiconductor (CCD)/(CMOS)
arrays, among others. CCD arrays, which are now used frequently, consist of an array
of small-area (pixel) detectors based on photo-excitation. We therefore first discuss
the use of semiconductor devices as detectors, then photomultiplier tubes (PMTs),
and finally image detectors.

A variety of detectors are used to detect or measure optical signals. Photodetectors
fall into two general categories: thermal detectors and quantum detectors. In thermal
detectors, the incident thermal energy is converted to heat, which in turn may cause
a rise in temperature and a corresponding measurable change in resistance, electro-
motive force (emf), and so on. These detectors are not used in the techniques described
in this book, and hence will not be discussed here. Examples of quantum detectors are
PMTs, semiconductor photodiodes, photoconductors, and phototransistors. In such
detectors, the incident optical energy, that is, the photons, cause the emission of
electrons in PMTs or the generation of electron-hole pairs in diodes. A resistance
change is directly produced in photoconductors by absorption of photons.

5.1 DETECTOR CHARACTERISTICS

Detectors are compared by the use of several defined parameters. These are (i)
responsivity R, (ii) detectivity D or D*, (iii) noise equivalent power (NEP), (iv)
noise, (v) spectral response, and (vi) frequency response. The responsivity is the
ratio of the output signal (in amperes or volts) to the incident intensity, and is

79
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measured in μA/(mW/cm2). For photodiodes, the quantum efficiency, which is the
number of electron-hole pairs per incident photon, is sometimes given. Responsivity
is proportional to quantum efficiency. The detectivity is the ratio of the responsivity
to the noise current (voltage) produced by the detector. This, therefore, is the signal-
to-noise ratio (SNR) divided by intensity. A parameter that is often used is D*, which
includes the dependence on noise frequency bandwidth Δf and detector area A, and
is connected to the detectivity through the relation

D∗ = D(AΔf )1/2 (5.1)

NEP is the reciprocal of D. It is thus the light intensity required to produce an SNR
of 1. There are several sources of noise, including Johnson (thermal) noise, shot
noise, and generation–recombination noise. In all of these cases, the noise current is
proportional to (Δf )1/2. Spectral response refers to the variation of responsivity as
a function of wavelength. Finally, the frequency response of a detector refers to its
ability to respond to a chopped or modulated beam. Most solid state detectors behave
like low-pass filters, with the responsivity being given by

R = R0
1(

1 + ω2τ2
)1/2

(5.2)

where R0 is the responsivity at zero frequency, f = ω/2π is the frequency of
modulation, and τ is the time constant. The cut-off frequency fc = (2πτ)−1, where
R = R0/

√
2.

5.2 DETECTORS

The incident photon creates an electron-hole pair in semiconductor devices and
causes the release of an electron in a PMT. There is thus a frequency below which
the detector does not respond to optical energy. The frequency ν of the radiation must
be greater than the threshold frequency νth, where hνth = Eg, Eg being the band gap
in a semiconductor or the work function of the cathode material in a PMT, and h is
Planck’s constant.

5.2.1 PHOTOCONDUCTORS

Photoconductor detectors are of two types: intrinsic and extrinsic. In an intrin-
sic semiconductor, an incident photon, on absorption, excites an electron from the
valence band to the conduction band. This requires that the photon energy hν � Eg,
where Eg is the band gap. The cut-off wavelength λc is given by

λc(μm) = 1.24/Eg(eV) (5.3)

By choosing an appropriate Eg, the spectral response of the detector can be tailored.
In fact, absorption of photons results in the generation of both excess electrons
and holes, which are free to conduct under an applied electric field. The excess
conductivity is called the intrinsic photoconductivity.
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When the incident photons excite the electrons from donor levels to the conduction
band or holes from acceptor levels to the valence band, the excess conductivity is
called the extrinsic photoconductivity. In this case, excitation creates only one type of
excess carriers—electrons or holes—by ionizing a donor or an acceptor, respectively.
The spectral response is determined by the donor or the acceptor energies. For donor
excitation, the cut-off wavelength is given by

λc = 1.24

Ec − Ed
(5.4)

where Ec and Ed are the energies of the conduction band and the donor level, respec-
tively. Since Ec − Ed or Ea − Ev (where Ea and Ev are the energies of the acceptor
level and the valence band, respectively) is much smaller than Eg, these detectors are
sensitive in the long-wavelength infrared region.

When a beam of light of intensity I and frequency ν is incident on a photoconductor
detector, the rate of generation of carriers can be expressed as follows:

G = η
I

hν
(5.5)

where η is the quantum efficiency. The photocurrent i generated in the external
circuit is

i = η
e

hν

(
τ0

τd

)
I (5.6)

where τ0 is the lifetime of the carriers, τd is the transit time (the time required by the
carriers to traverse the device), and the factor τ0/τd is interpreted as photoconductive
gain. It can be seen that the photocurrent is proportional to the light intensity.

Photoconductors exhibit a memory effect; that is, at a given illumination, the
photoconductor may have several resistance values, depending on the previous history
of illumination. These devices are not stable, and hence are not suited for precise and
accurate measurements. These are, however, inexpensive, simple, bulky, and durable
devices.

5.2.2 PHOTODIODES

The commonly known photodiodes include the simple p–n junction diode, the p–i–n
diode, and the avalanche diode. The fabrication and operation of photodiodes are
based on p–n technology. A p–n junction is formed by bringing p-type and n-type
materials together. The dominant charge carriers in n-type and p-type semiconductors
are electrons and holes, respectively. At the instant when the materials are joined
together, there is an almost infinite concentration gradient across the junction for both
the electrons and the holes (Figure 5.1a). Consequently, the electrons and holes diffuse
in opposite directions. The diffusion process, however, does not continue indefinitely,
since a potential barrier is developed that opposes the diffusion. For every free electron
leaving an n-type region, an immobile positive charge is left behind. The amount of
positive charge increases as the number of departing electrons increases. Similarly,
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FIGURE 5.1 p–n junctions: (a) just formed; (b) at equilibrium.

as the holes depart from the p-type region, immobile negative charges build up in
the p-type region. The mobile electrons and holes combine and neutralize each other,
forming a region on both sides of the junction where there are no free charge carriers.
This region is called the depletion region and acts as an insulator owing to the absence
of free carriers. The immobile charges of opposite polarity generate a barrier voltage,
which opposes further diffusion (Figure 5.1b). The barrier voltage depends on the
semiconductor material. Its value for silicon is 0.7 V. The junction appears like a
capacitor, that is, with a nonconductive material separating the two conductors.

When forward bias is applied to the junction, it opposes the barrier voltage, thereby
reducing the thickness of the depletion region and increasing the junction capacitance.
When the bias reaches the barrier voltage, the depletion region is eliminated and the
junction becomes conductive. When the reverse bias is applied, the depletion region
is widened, the junction capacitance is reduced, and the junction stays nonconductive.
The reverse-bias junction, however, can conduct current when free carriers are intro-
duced into it. These free carriers can be introduced by incident radiation. When the
radiation falls in the depletion region or within the diffusion length around it, electron-
hole pairs are created. The electrons (as minority carriers in the p-type region) will
drift toward the depletion region, cross it, and hence contribute to the external cur-
rent. Similarly, holes created by photo-absorption in the n-type region will drift in the
opposite direction, and will contribute to the current. However, within the depletion
region, the electron-hole pairs will be separated, and electrons and holes will drift
from each other in opposite directions; thus, both will contribute to the current flow.

If we consider only the photons absorbed within the diffusion length to the deple-
tion region and neglect the recombination of the generated electron-hole pairs, the
photocurrent I is given by

i = eη
I

hν
(5.7)

In a p–n junction diode, most of the applied bias voltage appears across the depletion
region. Thus, only those pairs formed within the region or capable of diffusion into
this region can be influenced by the externally applied field and contribute to the
external current.

Figure 5.2 shows a schematic of a simple p–n junction diode. A heavily doped
p-type material and lightly doped n-type material form the p–n junction. Because of
different doping levels, the depletion region extends deeper into the n-type material.
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FIGURE 5.2 Schematic of a p–n junction diode.

At the bottom of the diode there is usually a region of n+-type material, which is the
substrate. The substrate terminates at the bottom electrical contact. The top electrical
contact is fused to the p-type semiconductor. An insulating layer of silicon dioxide is
provided, as shown in Figure 5.2.

The energy gap of most semiconductors is of the order of 1 eV, which corresponds
to an optical wavelength of about 1 μm. Thus, photodiodes can respond to light
in the spectral range from ultraviolet to near-infrared. However, the penetration of
the photons through the various regions depends on the frequency of the incident
radiation. Ultraviolet radiation is strongly absorbed at the surface, while infrared
radiation can penetrate deep into the structure. In a Schottky photodiode, the p–n
junction is replaced by a metal semiconductor junction. A thin layer (<10 nm) of
gold is deposited on the n-type semiconductor. This layer is almost transparent and
forms the metal–semiconductor junction. A schematic of a Schottky diode is shown in
Figure 5.3. Since the depletion region commences right at the semiconductor surface,
Schottky photodiodes have superior ultraviolet response.

n

n+

SiO2 layer

Semi-insulating region 

Contact
Heavily doped n-substrate

n-type region

Transparent gold layer 

Contact

FIGURE 5.3 Schematic of a Schottky diode.
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Since the minority carriers may have to travel some distance—up to the diffusion
length before being transported across the p–n junction—the response of a p–n
junction diode is relatively slow. This is a particularly serious drawback in some
semiconducting materials such as silicon in which the depletion region is small com-
pared to the diffusion length. This drawback is overcome by utilizing a p–i–n structure.
The thickness of the depletion region can be controlled by doping. In a p–i–n diode,
an intrinsic region, which has a very high resistivity, is sandwiched between the p- and
n-regions. Figure 5.4a shows the microstructure of a p–i–n diode. The diode is usually
operated with a reverse-bias voltage. This expands the depletion region. Furthermore,
the voltage drop occurs mostly across the intrinsic layer (Figure 5.4b). When a photon
whose energy exceeds the threshold value enters the intrinsic region, electron-hole
pairs are created. Under the action of the applied electric field, the photogenerated
electrons and holes are swept swiftly toward n- and p-type regions, respectively, and
create a signal current. Figure 5.4c shows a cross-section of a typical p–i–n diode.
The avalanche photodiode is a junction diode with an internal gain mechanism.

5.2.3 PHOTOMULTIPLIER TUBE

The photomultiplier tube (PMT) is one of the most sensitive optical detectors: a
photon flux as low as one photon per second can be detected. Many PMT designs
exist. Figure 5.5 shows a cross-section of a commonly used PMT. It consists of a
cathode, a series of dynodes, and an anode in a squirrel cage. A photon of frequency ν

incident on the cathode ejects an electron, provided that hν > φ, where φ is the work
function of the cathode material. A variety of photocathodes cover the spectral range
from 0.1 to 11 μm. Figure 5.6 shows the responsivities and quantum efficiencies of
some photocathode materials.

The series of dynodes constitutes a low-noise amplifier. These dynodes are at
progressively higher positive potential. A photoelectron emitted from the cathode is
accelerated toward the first dynode. Secondary electrons are ejected as a result of
the collision of the photoelectron with the dynode surface. This is the first stage of
amplification. These secondary electrons are accelerated toward the more positive
dynode, and the process is repeated. The amplified electron beam is collected by the
anode. The multiplication of electrons at each dynode or the electron gain A depends
on the dynode material and the potential difference between the dynodes. The total
gain G of the PMT is given by

G = An (5.8)

where n is the number of dynodes. The typical gain is around 106. PMTs are extremely
fast and sensitive, but are expensive and require sophisticated associated electronics.
These tubes are influenced by stray magnetic fields. However, there are PMT designs
that are not affected by magnetic fields.

5.3 IMAGE DETECTORS

The detectors discussed so far are single-element detectors. In many applications,
such as electronic speckle pattern interferometry (ESPI) and robotic vision, spatially
varying information—say an image—is to be recorded. This is achieved by area
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FIGURE 5.4 (a) Microstructure of a p–i–n diode. (b) Variation of electric field with distance.
(c) Schematic of a p–i–n photodiode.
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FIGURE 5.5 Cross-section of a squirrel-cage PMT.

array detectors. It is also possible to record an image with a linear array detector by
scanning. There are three mechanisms at play in imaging with detector arrays. First,
the image is intercepted by the elements of the array and converted to an electrical
charge distribution, which is proportional to the intensity in the image. Second, the
charges are read out as elements of an image while retaining correlation with the
position on the array where each charge was generated. Finally, the image information
is displayed or stored.

Area or focal plane arrays could be based on a single detector, but this would
require many wires and processing electronics. The concept of a CCD makes the
retrieval of detector signals easy and eliminates the need for a maze of wires. A CCD
in its simplest form is a closely spaced array of metal-insulator–semiconductor (MIS)
capacitors. The most important is the metal-oxide–semiconductor (MOS) capacitor,
made from silicon and silicon dioxide as the insulator. This can be made monolithic.
The basic structure of a CCD is a shift register formed by an array of closely spaced
potential-well capacitors. A potential-well capacitor is shown schematically in Figure
5.7a. A thin layer of silicon dioxide is grown on a silicon substrate. A transparent
electrode is then deposited over the silicon dioxide as a gate, to form a tiny capacitor.
When a positive potential is applied to the electrode, a depletion region or an electrical
potential is created in the silicon substrate directly beneath the gate. Electron-hole
pairs are generated on absorption of incident light. The free electrons generated in the
vicinity of the capacitor are stored and integrated in the potential well. The number
of electrons (charge) in the well is a measure of the incident light intensity. In a
CCD, the charge is generated by the incident photons, and is passed between spatial
locations and detected at the edge of the CCD. The charge position in the MOS
array of capacitors is controlled electrostatically by voltage levels. With appropriate
application of these voltage levels and their relative phases, the capacitor can be
used to store and transfer the charge packet across the semiconductor substrate in a
controlled manner.
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FIGURE 5.6 Responsivity and quantum efficiency of some common cathode materials. (From
Uiga, E., Optoelectronics, Prentice Hall, Englewood Cliffs, NJ, 1995. With permission.)

Figure 5.7b illustrates the principle of charge transfer through the propagation
of potential wells in a three-phase clocking layout. In phase φ1, gates G1 and G4
are turned on, while all other gates are turned off. Hence, electrons are collected in
wells W1 and W4. In phase φ2, gates G1, G2, G4, and G5 are turned on. Therefore,
wells W1 and W2, and W4 and W5 merge into wider wells. In phase φ3, gates G1
and G4 are turned off, while G2 and G5 are left on. The electrons stored earlier in
W1 are now shifted to W2. Similarly, the electrons stored in W4 are now shifted
to W5. By repeating this process, all charge packets will be transferred to the edge
of the CCD, where they are read by external electronics. Area detector arrays with
pixels in numbers of 256 × 256 to 4096 × 4096 are available. The center-to-center
distances of the pixels range from 10 to 40 μm, but most commonly used devices
have a pixel separation of 12.7 μm. A dynamic range of 1000 to 1 is quite common.
The sensitivity of video-rate CCD cameras is of the order of 10−8 W/cm2, which
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FIGURE 5.7 (a) Structure of a CCD pixel. (b) Mechanism of charge transfer in a three-phase
clocking layout.

corresponds to about 0.05 lux. CCD cameras are available with exposure times as
small as 1/10,000 second, achieved by electronic shuttering, and an SNR of 50 dB.

CMOS sensors are interesting alternatives to CCD sensors in optical metrology.
CMOS sensors are relatively cheap and have lower power consumption. Other phys-
ical characteristics include random access, which allows fast readout of a small area
of interest, and physical layout, which enables active electronic components to be
located on each pixel and prevents blooming. CMOS sensors also have disadvan-
tages, including lower sensitivity due to a smaller fill factor, higher temporal noise,
higher pattern noise, higher dark current, and a nonlinear characteristic curve.

As a rule, the pixels in CCD sensors are built from MOS capacitors in which
the electrons generated by photon absorption during the exposure are stored. The
maximum number of electrons that can be stored in a pixel is the full-well capacity.
In interline transfer (IT) and frame transfer (FT) sensors, the electrons are shifted into
separate storage cells at the end of each exposure time. After this shifting, the next
image can be exposed. During this exposure, the charge in the storage cells is shifted
pixel by pixel into the sense node (readout node), where it is converted into the output
voltage.

In CMOS sensors, the single pixels are built from photodiodes. Electronic compo-
nents such as storage cells, transistors for addressing, and amplifiers can be assigned
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to every pixel. This is why such sensors are called active pixel sensors (APS). There
are two types: integrating and nonintegrating sensors. Nonintegrating sensors pro-
vide a pixel signal that depends on the instantaneous current in the photodiode (direct
readout sensor). Owing to their nonlinear current-to-voltage conversion, these sensors
usually have a logarithmic characteristic curve. In integrating sensors, the depletion-
layer capacity of the photodiode is usually used for charge storage. The characteristic
curve of such sensors is slightly nonlinear.

For integrating sensors with a rolling shutter, the exposure and the readout of the
single lines occur sequentially. In integrating sensors with a global shutter, each pixel
has its own storage cell. All pixels are exposed at the same time, and at the end of the
exposure time the charges in all pixels are shifted simultaneously into storage cells.
Afterwards, the storage cells are read out sequentially. Owing to the random access
to individual pixels, it is possible to read out a region of interest (ROI) of the whole
sensor. High frame rates can thereby be achieved for small ROIs.

The recording of a dynamic process, such as the measurement of time-dependent
deformations with ESPI, requires a camera with a suitable frame rate and the pos-
sibility of simultaneous exposure of all pixels. Therefore, only IT and FT sensors
are suitable for CCD cameras, and only integrating sensors with a global shutter are
suitable in the case of CMOS cameras.

5.3.1 TIME-DELAY AND INTEGRATION MODE OF OPERATION

Conventional CCD cameras are restricted to working with stationary objects. Object
motion during exposure blurs the image. Time-delay and integration (TDI) is a special
mode of CCD cameras, which provides a solution to the blurring problem. In the TDI
mode, the charges collected from each row of detectors are shifted to the neighboring
sites at a fixed time interval. As an example, consider four detectors operating in TDI
mode as shown in Figure 5.8. The object is in motion, and at time t1, its image is
formed on the first detector, which creates a charge packet.At time t2, the image moves
to the second detector. Simultaneously, the pixel clock moves the charge packet to the
well under the second detector. Here, the image creates an additional charge, which
is added to the charge shifted from the first detector. Similarly, at time t3, the image
moves to the third detector and creates a charge. Simultaneously, the charge from the
second detector is moved to the well of the third detector. The charge thus increases
linearly with the number N of detectors in TDI. Therefore, the signal increases with
N . The noise also increases, but as

√
N , and hence the SNR increases as

√
N . The

well capacity limits the maximum number of TDI elements that can be used. As is
obvious, the charge packet must always be in synchronism with the image for the
camera to work in TDI mode. The mismatch between the image scan rate and clock
rate can adversely smear the output.

5.4 RECORDING MATERIALS

We will now discuss the materials that record the image, that is, the intensity distri-
bution. The recording is required either to keep a permanent record or to provide an
input for measurement and processing. Photographic emulsions are by far the most
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FIGURE 5.8 TDI mode of operation.

sensitive and widely used recording medium both for photography and for holography.
Several other recording media have been developed; these are listed in Table 5.1.
We will discuss some characteristics of these media.

5.4.1 PHOTOGRAPHIC FILMS AND PLATES

A photographic film/plate consists of silver halide grains distributed uniformly in a
gelatin matrix deposited in a thin layer on a transparent substrate: either a glass plate
or an acetate film. When the photographic emulsion is exposed to light, the silver
halide grains absorb optical energy and undergo a complex physical change; that is, a
latent image is formed. The exposed film is then developed. The development converts
the halide grains that have absorbed sufficient optical energy into metallic silver. The
film is then fixed, which removes the unexposed silver halide grains while leaving the
metallic silver. The silver grains are largely opaque at the optical frequency. Therefore,
the processed film will exhibit spatial variation of opacity depending on the density
of the silver grains in each region of the transparency.
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Photographic emulsions (silver halides) are widely used for photography (inco-
herent recording) and holography (coherent recording). They are sensitive over a
wide spectral range and also offer a very wide resolution range and good dynamic
response. An apparent drawback of photographic materials is that they require wet
development and fixing processing, followed by drying. However, the development
process provides a gain of the order of a million, which amplifies the latent image
formed during the exposure.

It was mentioned earlier that the spatial variation of light intensity incident on a
photo-emulsion is converted into the variation of density of metallic silver grains;
consequently, its transmission becomes spatially variable. The transmission function
τ is related to the photographic density D, the density of the metallic silver grains per
unit area, by

D = − log τ (5.9)

The transmission function τ is defined by

τ(x, y) = It(x, y)

Ii(x, y)
(5.10)

where It(x, y) and Ii(x, y) are the transmitted and incident intensities, respectively.
The reflection losses at the interfaces are ignored. The transmission is averaged over
a very tiny area around the point (x, y).

One of the most commonly used descriptions of the photosensitivity of a pho-
tographic film is the Hurter–Driffield (H&D) curve. This is a plot of the density D
versus the logarithm of the exposure E. The exposure E is defined as the energy per
unit area incident on the film and is given by E = IT , where I is the incident intensity
and T is the exposure time. Figure 5.9 illustrates a typical H&D curve for a photo-
graphic negative. If the exposure is below a certain level, the density is independent
of exposure. This minimum density is usually referred to as gross fog. In the “toe” of
the curve, the density begins to increase with log E. There follows a region where the
density increases linearly with the logarithm of the exposure; this is the linear region
of the curve, and the slope of this linear region is referred to as the film gamma γ.
Finally, the curve saturates in a region called the “shoulder.” There is no change in
density with the logarithm of the exposure after the “shoulder.” However, with very
large exposures, solarization takes place.

The linear region of the H&D curve is generally used in conventional photography.
A film with a large value of γ is called a high-contrast film, while a film with low γ is
a low-contrast film. The γ of the film also depends on the development time and the
developer. It is thus possible to obtain a prescribed value of γ by a judicious choice
of film, developer, and development time.

Since the emulsion is usually used in the linear portion of the H&D curve, the
density D when the film is given an exposure E can be expressed as

D = γn log E − D0 = γn log(IT) − D0 (5.11)

where the subscript n means that a negative film is being used and D0 is the intercept.
Equation 5.11 can be written in terms of the transmission function τn of the negative
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FIGURE 5.9 The Hurter–Driffield curve.

film as

τn = KnI−γn (5.12)

where Kn = 10D0 T−γn is a positive constant. Equation 5.12 relates the incident inten-
sity to the transmission function of the film after development. It can be seen that the
transmission is a highly nonlinear function of the incident intensity for any positive
value of γn. In many applications, it is required to have either a linear or a power-law
relationship. This, however, requires a two-step process. In the first step, a nega-
tive transparency is made in the usual fashion, which will have a gamma γn1. The
transmission of this negative transparency is given by

τn1 = Kn1I−γn1 (5.13)

In the second step, the negative transparency is illuminated by a uniform intensity I0
and the light transmitted is used to expose a second film, which will have a gamma
γn2. This results in a positive transparency with transmission τp, given by

τp = Kn2(I0τn1)
−γn2 = Kn2I−γn2

o K−γn2
n1 Iγn1γn2 = Kp Iγp (5.14)

where Kp is another positive constant and γp = γn1γn2 is the overall gamma of the
two-step process. Evidently, a positive transparency does provide a linear mapping
of intensity when the overall gamma is unity.

When photographic emulsions are used for holography or, in general, for coherent
optical systems, the H&D curve is never used. Instead, the plot of amplitude trans-
mittance t(x, y) versus exposure E is used. The amplitude transmittance is usually
complex, since film introduces both amplitude and phase variations to the incident
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FIGURE 5.10 Plots of amplitude transmittance |t| versus exposure E for several holographic
emulsions.

plane wave. However, if the film is used in a liquid gate, the phase variations can
be eliminated. The amplitude transmittance then is given by the square root of the
transmission function; that is, |t(x, y)| = +√τ(x, y). Typical plots of |t(x, y)| versus E
for several holographic emulsions are shown in Figure 5.10. Holographic recording
is generally carried out in the linear region of the |t(x, y)| versus E curve.

Since formation of the latent image does not cause any changes in the optical
properties during exposure, it is possible to record several holograms in the same
photographic emulsion without any interaction between them. The information can
be recorded in the form of either transmittance variations or phase variations. For
recording in the form of phase variations, the amplitude holograms are bleached.
Bleaching converts the metallic silver grains back to transparent silver halide crys-
tals. Also, holographic information can be recorded in the volume, provided that the
emulsion is sufficiently thick and has enough resolution.

5.4.2 DICHROMATED GELATIN

Dichromated gelatin is, in some respects, an ideal recording material for volume phase
holograms, since it has large refractive index modulation capability, high resolution,
and low absorption and scattering. The gelatin layer can be deposited on a glass plate
and sensitized. Alternatively, the photographic plates can be fixed, rinsed, and sensi-
tized. Ammonium, sodium, and potassium dichromates have been used as sensitizers.
Most often, ammonium dichromate is used for sensitization. Sensitized gelatin thus
obtained is called dichromated gelatin. Dichromated gelatin exhibits sensitivity in the
wavelength range 250–520 nm. The sensitivity at 514 nm is about a fifth of that at
448 nm. Gelatin can also be sensitized at the red wavelength of a He–Ne laser by the
addition of methyl blue dye.

The exposure causes crosslinking between gelatin chains and alters swelling prop-
erties and solubility. Treatment with warm water dissolves the unexposed gelatin
and thereby forms a surface relief pattern. However, much better holograms can be
obtained if the gelatin film is processed to obtain a modulation of the refractive index.
During processing, rapid dehydration of the gelatin film is carried out in an isopropanol
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bath at an elevated temperature. This creates a very large number of small vacuoles
in the gelatin layer, and hence modulates the refractive index. It is also suggested that
the formation of complexes of a chromium(III) compound, gelatin, and isopropanol
in the hardened areas is also partly responsible for the refractive index modulation.
Phase holograms in gelatin are very efficient, directing more than 90% of the incident
light into the useful image.

5.4.3 PHOTORESISTS

Photoresists are organic materials that are sensitive in the ultraviolet and blue regions.
They are all relatively slow, and thus require very long exposure. Usually, a thin layer
(about 1 μm) is obtained either by spin coating or spray coating on the substrate. This
layer is then baked at around 75◦C. On exposure, one of three processes takes place:
formation of an organic acid, photo-crosslinking, or photopolymerization.

There are two types of photoresists: negative and positive. In negative photoresists,
the unexposed regions are removed during development, while in positive photore-
sists, the exposed regions are removed during development. A surface relief recording
is thus obtained. A grating recorded on a photoresist can be blazed by ion bombard-
ment. Blazed grating can also be recorded by optical means. Relief recording offers
the advantage of replication using thermoplastics.

When exposure is made in a negative photoresist from the air–film side, the layer
close to the substrate is the last to photolyze. This layer will be simply dissolved
away during development, since it has not photolyzed fully. This nonadhesion of
negative photoresists in holographic recording is a serious problem. To overcome this
problem, the photoresist is exposed from the substrate–film side so as to photolyze the
resist better at the substrate–film interface. On the other hand, positive photoresists
do not have this problem, and hence are preferred. One of the most widely used
positive photoresists is the Shipley AZ-1350. The recording can be done at the 458
nm wavelength of an Ar+ laser or at the 442 nm of a He–Cd laser.

5.4.4 PHOTOPOLYMERS

Photopolymers are also organic materials. Photopolymers for use in holography can
be in the form of either a liquid layer enclosed between glass plates or a dry layer.
Exposure causes photopolymerization or crosslinking of the monomer, resulting in
refractive index modulation, which may or may not be accompanied by surface relief.
Photopolymers are more sensitive than photoresists, and hence require moderate expo-
sure. They also possess the advantage of dry and rapid processing. Thick polymer
materials such as poly-methyl methacrylate (PMMA) and cellulose acetate butyrate
(CAB) are excellent candidates for volume holography, since the refractive index
change on exposure can be as large as 10−3. Two photopolymers are commercially
available: the Polaroid DMP 128 and the Du Pont OmniDex. The Polaroid DMP
128 uses dye-sensitized photopolymerization of a vinyl monomer incorporated in a
polymer matrix, which is coated on a glass or plastic substrate. Coated plates or films
can be exposed with blue, green, and red light. Du Pont OmniDex film consists of a
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polyester base coated with a photopolymer, and is used for contact copying of master
holograms with UV radiation.

The response of photopolymers is band-limited because of the limitation imposed
by the diffusion length of the monomer at the lower end of the response curve and
the length of the polymer at the higher end.

5.4.5 THERMOPLASTICS

A thermoplastic is a multilayer structure having a substrate coated with a conduct-
ing layer, a photoconductor layer, and a thermoplastic layer. A photoconductor that
works well is the polymer poly-N-vinylcarbazole (PVK) to which is added a small
amount of the electron donor 2,4,7-trinitro-9-fluorenone (TNF). The thermoplastic is
a natural tree resin, Staybelite. The thermoplastics for holographic recording combine
the advantages of high sensitivity and resolution, dry and nearly instantaneous in situ
development, erasability, and high readout efficiency.

The recording process involves a number of steps. First, a uniform electrostatic
charge is established on the surface of the thermoplastic in the dark by means of
a corona discharge assembly. The charge is capacitively divided between the pho-
toconductor and the thermoplastic layers. In the second step, the thermoplastic is
exposed; the exposure causes the photoconductor to discharge its voltage at the illu-
minated regions. This does not cause any variation in the charge distribution on the
thermoplastic layer; the electric field in the thermoplastic layer remains unchanged.
In the third step, the surface is charged again by the corona discharge assembly. In
this process, the charge is added at the exposed regions. Therefore, an electric field
distribution, which forms a latent image, is now established. In the fourth step, the
thermoplastic is heated to its softening point, thereby developing the latent image.
The thermoplastic layer undergoes local deformation as a result of the varying electric
field across it, becoming thinner wherever the field is higher (the illuminated regions)
and thicker in the unexposed areas. Rapid cooling to room temperature freezes the
deformation; the recording is now in the form of a surface relief. The recording is
stable at room temperature, but can be erased by heating the thermoplastic to a temper-
ature higher than that used for development. At the elevated temperature, the surface
tension evens out the thickness variations and hence erases the recording. This is
the fifth step—the erasure step. Figure 5.11 shows the whole recording process. The
thermoplastic can be reused several hundred times. The response of these devices is
band-limited, depending on the thickness of the thermoplastic and other factors.

5.4.6 PHOTOCHROMICS

Materials that undergo a reversible color change on exposure are called photochromic
materials. Photochroism occurs in a variety of materials, both organic and inorganic.
Organic photochromics have a limited life and are prone to fatigue. However, organic
films of spiropyran derivatives have been used for hologram recording in darkening
mode at 633 nm. Inorganic photochromics are either crystals or glasses doped with
selected impurities: photochroism is due to a reversible charge transfer between two
species of electron traps. Recording in silver halide photochromic glasses has been
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FIGURE 5.11 The record–erase cycle for a thermoplastic material.

done in darkening mode at 488 nm and in bleaching mode at 633 nm. Doped crystals
of CaF2 and SrO2 have been used in bleaching mode at 633 nm. The sensitivity of
photochromics is very low, because the reaction occurs at a molecular level. For
the same reason, they are essentially grain-free and have resolution in excess of
3000 lines/mm. Inorganic photochromics have large thicknesses, and hence a number
of holograms can be recorded in them. They do not require any processing, and
can be reused almost indefinitely. In spite of all these advantages, these materials
have limited applications, owing to their low diffraction efficiency (<0.02) and low
sensitivity.

5.4.7 FERROELECTRIC CRYSTALS

Certain ferroelectric crystals, such as lithium niobate (LiNbO3), lithium tantalate
(LiTaO3), barium titanate (BaTiO3), and strontium barium niobate (SBN), exhibit
small changes in refractive index when exposed to intense light. The photo-induced
refractive index change can be reversed by an application of heat and light. The
mechanism of recording in these crystals is as follows: exposure to light frees trapped
electrons, which then migrate through the crystal lattice and are again trapped in
adjacent unexposed or low-intensity regions. The migration usually occurs through
diffusion or an internal photovoltaic effect. This produces a spatially varying net
space-charge distribution and a corresponding electric field distribution. The elec-
tric field modulates the refractive index through the electro-optic effect and creates
a volume phase grating. These are real-time recording materials; the records are sta-
ble, since the charges are bound to the localized traps. The recording can, however,
be erased by illuminating it with a light beam of wavelength that can release the
trapped electrons.
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Lithium niobate crystals—particularly Fe-doped—have been used for holographic
interferometry and data storage. The recording is fixed by temperature. The disad-
vantage of lithium niobate is that it is rather slow. Higher sensitivity is obtained
with photoconductive electro-optic crystals such as bismuth silicon oxide (BSO) and
bismuth germanium oxide (BGO) by the application of an external electric field.
These crystals are available in the form of thin slices several centimeters in diameter.
Barium titanate crystal is used in holographic interferometry and speckle photogra-
phy because of its very slow response. Recordings can be made over a very wide
spectral range.
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6 Holographic
Interferometry

6.1 INTRODUCTION

Holography was born out of the very challenging technological problem of improving
the resolution of the electron microscope, which was limited by the spherical aberra-
tion of the electron lenses. Gabor therefore invented a two-step process, the first step
involving recording without the lenses and the second step being reconstruction. The
technique was demonstrated with microscopic objects and with spatially and tempo-
rally filtered radiation from a mercury lamp. This was necessary, since high-resolution
recording materials and coherent sources were not available at that time.

After its invention in 1948, holography remained practically dormant until the
arrival of the laser, since a long-coherence-length source was needed to record a
hologram of an object. Earlier recordings of three-dimensional (3D) objects were
made on Kodak 649F plates, with very impressive results. Holography, therefore, came
to be known as 3D photography. It, however, is more than ordinary 3D photography,
since it provides 3D views with changing perspectives.

Holography records the complex amplitude of a wave coming from an object (the
object wave), rather than the intensity distribution in the image, as is the case in
photography. Holography literally means “total recording,” that is, recording of both
the phase and the amplitude of a wave. The detectors in the optical regime respond
to the intensity (energy) of the wave, and hence phase information is to be converted
into intensity variations. This is accomplished by interferometry. A reference wave is
added to the object wave at the recording plane. The recording is done on a variety of
media, including photographic emulsions, photopolymers, and thermoplastics. The
record is called a hologram. The hologram is like a window with a memory. Different
perspectives of the scene are seen through different portions of the hologram. In
addition to recording holograms of 3D objects, several new applications of holography
have emerged, holographic interferometry being one of these.

Holographic interferometry (HI) has emerged as a technique of unparalleled
applications, since it provides interferometric comparison of real objects or events
separated in time and space. Various kinds of HI have been developed: real-time,
double-exposure, time-average, etc. Further, it can be performed with one reference
wave, two reference waves, and so on. These reference waves can be of the same

101
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or different wavelengths. The reference wave can come from the same side of the
hologram as the object wave or from the other side. HI can be performed with a
continuous-wave laser or a pulsed laser. The record can be made on a photographic
emulsion, a thermoplastic, a photopolymer, a charge-coupled device (CCD), or other
media. Digital holography provides for comparison of objects situated at different
locations. Small objects can be studied for their responses to external agency. The
possibilities are endless, and so are the applications. This chapter presents some of
these applications, along with the relevant theoretical background.

6.2 HOLOGRAM RECORDING

An object is illuminated by a wave from a laser, and the diffracted field is received
on a recording plate lying in the (x, y) plane. A reference wave is added to this field
at the recording plane, as shown in Figure 6.1a. The diffracted field from the object
constitutes the object wave, which is represented by O(x, y) = O0(x, y) exp[iφo(x, y)],
where O0(x, y) is the amplitude of the object wave and φo(x, y) is its phase. The
complex amplitude R(x, y) of the reference wave at the recording plane is expressed

 Laser
Shutter BS ND
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MO2
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CollimatorObject 

Holo-plate 
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FIGURE 6.1 (a) Recording of a hologram. (b) Its reconstruction.



“DK4217_C006.tex” — page 103[#3] 14/5/2009 21:08

Holographic Interferometry 103

as R(x, y) = R exp(2πiνRy), where νR is the spatial frequency of the wave. We have
taken a plane wave incident at an angle θ with the z axis as a reference wave; hence,
νR = (sin θ)/λ. These waves are derived from the same wave (source), and hence are
coherent with each other. The total amplitude at the recording plane is

A(x, y) = O(x, y) + R(x, y) (6.1)

Therefore, the intensity distribution I(x, y) on the recording plane is given by

I(x, y) = O2
0(x, y) + R2 + 2O0(x, y)R cos[2πνRy − φo(x, y)] (6.2)

It can thus be seen that both the amplitude O0(x, y) variations and the phase φo(x, y)
variations have been converted into intensity variations, to which the recording mate-
rial responds. We assume that the recording material is a photographic emulsion,
say, a holographic plate or a film. The intensity is recorded over an appropriate time
period T , resulting in an exposure variation E(x, y) = I(x, y)T . After development,
the plate/film is called a hologram. On the hologram, the exposure variation is con-
verted into density variation or amplitude transmittance variation. The amplitude
transmittance is complex, since the hologram introduces both amplitude and the phase
variations—the latter as a result of thickness variations. The phase variations can be
eliminated if the hologram is placed in a liquid gate. Further, if the phase variations
are shared between two wavefronts, they are not seen when these wavefronts inter-
fere. We assume here, however, that the amplitude transmittance of the hologram is
proportional to the exposure incident during recording. Under this assumption, the
amplitude transmittance t(x, y) of the hologram is expressed as

t(x, y) = t0 − βE(x, y) (6.3)

where β is a constant dependent on processing parameters, exposure, and so on.

6.3 RECONSTRUCTION

This hologram is placed back in the same position held during recording, and is
illuminated by the reference wave. The field just behind the hologram is given by

t(x, y)R(x, y) = t′0R(x, y) − βTR(x, y){O2
0(x, y)

+ 2Oo(x, y)R cos[2πνRy − φo(x, y)]} (6.4)

where t′0 = t0 − βTR2 is the modified DC transmittance. Equation 6.4 can also be
written as

t(x, y)R(x, y) = t′0R(x, y) − βTR(x, y)[O2
0(x, y)

+ O(x, y)R*(x, y) + O*(x, y)R(x, y)] (6.5)

where ∗ signifies the complex conjugate. It can be seen that there are four waves
just behind the hologram, of which the wave t′0R(x, y) is the uniformly attenuated
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reference wave. The second wave, −βTR(x, y)O2
0(x, y), also propagates in the direc-

tion of the reference wave. Owing to the slow spatial variation of O2
0(x, y), there

is a diffracted field around the direction of the reference wave. The third wave,
−βTR2O(x, y), is the original object wave multiplied by a constant, −βTR2. This
wave propagates in the direction of the object wave and has all the attributes of the
object wave, except that its spatial dimensions are restricted by the size of the holo-
gram. The negative sign signifies that a phase change of π has taken place owing
to the wet development process. The fourth wave, −βTR2(x, y)O*(x, y), represents
a conjugate wave, which propagates in a different direction. This wave can also be
written as −βTR2O(x, y) exp[2πi2νRy − φo(x, y)]; the phase of the reference wave
is modulated by that of the object wave, but it essentially travels in the direction φ,
where sin φ = 2 sin θ. Figure 6.1b shows that several waves are generated during the
reconstruction step.

The recording and reconstruction geometries just described are the off-axis holog-
raphy geometries due to Leith and Upatnieks. However, the reference beam can be
added axially to the object beam. This is in-line holography or Gabor holography.
In-line holography has applications in particle size measurements, etc.

6.4 CHOICE OF ANGLE OF REFERENCE WAVE

One of the shortcomings of Gabor holography is that all the diffracted waves propagate
in the same direction. These waves are angularly separated if the reference wave
is added at an angle during the recording of the hologram. The question is, how
large should the angle be? In fact, the off-axis reference wave acts as a carrier of
object information. It also results in very fine interference fringes, into which object
information is coded. The fringe frequency is given by (sin θ)/λ, where θ is the
mean angle between the reference and object waves. The recording medium should
be capable of resolving this fringe frequency. Further, as has been described earlier,
the various waves are angularly separated by nearly θ for small angles. However, a
restriction is placed on θ by the simple condition that the spectra of the various waves
should not overlap. If the bandwidth of the object wave is νo, then it is easily seen from
Figure 6.2 that the spectra will be just separated when 3νo = νR. This immediately
gives the smallest angle θmin as θmin = sin−1(3λνo). For angles smaller than θmin,
the various diffracted beams will overlap.

0 2no nR + nonR

FIGURE 6.2 Fourier transform of the transmittance of a hologram.
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FIGURE 6.3 Amplitude transmittance |t| versus exposure E curve for a typical photographic
emulsion.

6.5 CHOICE OF REFERENCE WAVE INTENSITY

It has been tacitly assumed above that the amplitude transmittance of the hologram
is proportional to the exposure. This is valid only when one operates over a very
small portion of the t–E curve, which is shown in Figure 6.3. In order to meet this
condition, the reference wave should be 3–10 times stronger than the object wave. If
this condition is not met, then nonlinearities will begin to play a role, and higher-order
images will be produced.

6.6 TYPES OF HOLOGRAMS

Holograms are classified in a variety of ways. Table 6.1 summarizes these.

6.7 DIFFRACTION EFFICIENCY

Diffraction efficiency is a measure of the amount of light that goes into forming the
useful image when the hologram is illuminated by the reference wave. It is calculated
for the ideal situation of interference between plane waves. For a thin amplitude
transmission hologram, the maximum diffraction efficiency is 6.25%. This value can
be improved by bleaching; that is, the amplitude hologram is converted into a phase
hologram. It can then reach up to 33.6% for a thin phase transmission hologram. The
diffraction efficiency for a thick phase hologram can approach 100%: essentially,
then, the entire incident light is utilized for image formation and there is only one
diffraction order.

6.8 EXPERIMENTAL ARRANGEMENT

The experimental arrangement (Figure 6.1a) consists of a laser, a beam-splitter, beam-
expanding optics, and the recording medium. We describe these in detail.
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TABLE 6.1
Classification of Hologram Types

Properties Hologram Types

Transmission function Amplitude
Phase

Region of diffraction Fresnel
Fraunhofer
Fourier
Image plane

Recording geometry On-axis/Gabor/in-line
Off-axis/Leith–Upatnieks/carrier-frequency
Reflection/Denisyuk

Exposure Single-exposure/real-time/live-fringe
Double-exposure/lapsed-time/frozen-fringe
Multiple-exposure
Time-averaged

Emulsion thickness/Q-parameter Thin
Thick

Reconstruction Monochromatic-light
White-light

Recording configuration Transmission
Reflection
Rainbow
Digital

Object type Transmission-object/phase-object
Transmission-objects—diffuse illumination
Opaque-object

6.8.1 LASERS

There are a large number of lasers from which to choose. Some of these are described
below:

• Ruby laser. This is a pulsed laser with a pulse width of the order of 10 ns. Its
coherence length can be greater than 2 m when it is used with an etalon, and
it can deliver more than 1 J in a single pulse. Lasers for HI have dual-pulse
facilities, with variable pulse separation for dynamical studies.

• Argon–ion laser. This is a continuous-wave laser with output exceeding
5 W. It gives a multiline output, and hence a dispersion prism is mounted to
select a line. Further, an intercavity etalon increases the coherence length
to a usable length for studying moderate-sized objects. It can be used with
photoresisst and thermoplastics as recording media.

• He–Ne laser. This is the most commonly used laser for holography and HI,
with a power output in the range 25–35 mW. The coherence length is greater
than 20 cm.
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• Nd :YAG semiconductor pumped, first-harmonic green. This laser is finding
acceptance for holography. It offers a very long coherence length, with
continuous-wave operation. The output ranges from 40 to 150 mW.

• He–Cd laser. This is a continuous-wave laser with output in the range
40–150 mW. It is suitable for recording on photoresists. Both blue and
ultraviolet lines are usable for holography.

• Semiconductor or diode lasers (LDs). These can be run in both continuous-
wave and pulsed modes. Continuous-wave lasers are preferred for hologra-
phy, but are not very common. They require temperature and current stability.
They can output up to 500 mW in continuous-wave mode.

6.8.2 BEAM-SPLITTERS

Usually, an unexpanded laser beam is split into two or more beams. For this, a glass
plate (preferably a wedge plate) serves as a good beam-splitter. However, when an
expanded collimated beam is to be split, a cube beam-splitter or a plane parallel plate
splitter with one side antireflection-coated is recommended. Pellicle beam-splitters
are also used. In some cases, polarization optics (Wollaston prisms) are employed as
beam-splitters.

6.8.3 BEAM-EXPANDERS

With high-power lasers, a suitable concave or negative lens is used for beam expansion;
otherwise, a microscope objective 5×, 10×, 20×, 40× (45×), or 60× (63×) can be
used. As a result of dust particles on the optical surfaces, the beam is usually dirty;
that is, it has circular rings, specks, etc. It can be cleaned by placing a pinhole at the
focus of the microscope objective. The arrangement is known as spatial filtering. The
pinhole size must be matched with the microscope objective. An achromatic lens is
placed in the beam such that the pinhole is at its focus. This results in an expanded
collimated beam—hence the name “beam-expander.”

6.8.4 OBJECT-ILLUMINATION BEAM

For small objects, collimated-beam illumination is preferred as the propagation vector
of the illumination beam is the same over the whole surface. For large objects, a
spherical diverging wave is used. If the object is cylindrical in shape, a cylindrical
diverging wave is preferred. Objects must be located in the coherence volume. Special
recording geometries that relax the coherence requirement may be used.

6.8.5 REFERENCE BEAM

Either a diverging spherical wave or a plane wave can be used as a reference wave.
However, if the hologram is to be reconstructed at a later time, or at a different location,
the use of a plane wave is recommended. The beam is overexpanded to make it uniform
over the hologram plane. The reference-beam intensity must be 3–10 times stronger
than the object-beam intensity at the hologram plane for linear recording.
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6.8.6 ANGLE BETWEEN OBJECT AND REFERENCE BEAMS

The object wave is a diffuse wave. Therefore, the angle between the object wave and
the reference wave (even when the latter is a plane wave) will vary over the recording
plane. However, we take the mean angle. The fringe frequency on the recording plane
will be approximately (sin θ)/λ, where θ is the mean angle between the reference wave
and the object wave incident nearly normally on the recording plane. The recording
medium should be able to resolve this fringe structure. Too large an angle puts a
higher demand on the resolution. A small angle, on reconstruction, may not result in
separation of the beams. Therefore, the mean angle between the object wave and the
reference wave has to be chosen judiciously.

6.9 HOLOGRAPHIC RECORDING MATERIALS

A variety of recording materials are available. They have been described in Chapter 5.
The choice is made based on wavelength sensitivity, resolution, sensitivity, and other
properties.

6.10 HOLOGRAPHIC INTERFEROMETRY

HI is used to compare two waves from real objects by the process of interference.
These two waves are usually from an initial unstressed state and a final stressed
state of an object. It is, however, assumed that the microstructure of the surface
does not change as a result of loading: the two comparison waves differ owing to
path-difference changes rather than microstructural changes. HI can be performed in
a variety of ways. The most common methods are real-time, double-exposure, and
time-averaged. Several novel configurations have been developed, depending on the
application and also to exploit the strengths of HI. They are discussed at appropriate
places below.

6.10.1 REAL-TIME HI

A hologram of the object is recorded, processed, and placed back in the experimental
set-up at exactly the same location that it occupied during recording. Reconstruc-
tion of the hologram by the reference wave generates a replica of the original object
wave, which propagates in the direction of the original wave. This wave is, however,
phase-shifted by π owing to wet photographic development. Since the object wave
is also present, it will undergo diffraction on passage through the hologram: a wave
transmitted by the DC transmittance of the hologram will propagate in the original
direction. Therefore, there are two waves: one released from the hologram by inter-
action of the reference wave and the other transmitted by the DC transmittance of the
hologram. These waves are identical in all respects except for a phase change of π,
and hence produce a dark field on interference. If the object is now loaded, the object
wave carries the deformation phase, and hence an interference pattern is observed.
This pattern changes in real time with the change in load. One can therefore monitor
the response of the object to an external loading agency continuously until the fringes
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become too fine to be resolved. The technique is also known as single-exposure or
live-fringe HI.

Mathematically, we can explain the procedure by writing—the transmittance of
the single-exposure hologram as

t(x, y) = t′0 − βT
{
O2

0(x, y) + 2O0(x, y)R cos[2πνRy − φo(x, y)]} (6.6)

where t′0 = t0 − βTR2, with t′0 being a constant. Interrogation by the reference wave
R(x, y) releases the object wave, which is now given by −βTR2O(x, y), while the
directly transmitted object wave is written as [t′0 − βTO2

0(x, y)]O(x, y)eiδ, where δ

is the phase change introduced by the deformation. Interference between these two
waves results in an intensity distribution that can be expressed as

I =
(
βTR2

)2
O2

0

[
1 +

(
t0 − βTR2 − βTO2

0

)2
(
βTR2

)2 − 2
(
t0 − βTR2 − βTO2

0

)
βTR2

cos δ

]

(6.7)

Assuming βTR2 � βTO2
0, which is usually true, Equation 6.7 can be rewritten as

I = I0

[
1 +

(
t0 − βTR2

)2
(
βTR2

)2 − 2
(
t0 − βTR2

)
βTR2

cos δ

]
(6.8)

Dark fringes are formed wherever δ = 2mπ, m being an integer. The contrast η of
the fringes is given by

η = 2βTR2(t0 − βTR2)

(βTR2)2 + (t0 − βTR2)2

It can be seen that the contrast of the fringes can be controlled by the reference-wave
intensity during reconstruction. In general, the contrast is less than unity, but, by
appropriate increase of the reference-wave intensity, it is possible to achieve unit-
contrast fringes. For example, if the bias transmittance t0 is equal to 2βTR2, then a
unit-contrast fringe pattern results.

6.10.2 DOUBLE-EXPOSURE HI

Here, both exposures, belonging to the initial and final states of the object, are recorded
sequentially on the same photographic plate. The total exposure recorded can be
expressed as

βT [I1(x, y) + I2(x, y)] (6.9)

The transmittance of the hologram is given by

t(x, y) = t′′0 − βT{2O2
o(x, y) + [O(x, y) + O(x, y)eiδ]R∗(x, y) + [O∗(x, y)

+ O∗(x, y)e−iδ]R(x, y)} (6.10)
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Defect 

FIGURE 6.4 Double-exposure interferogram of a pipe with a defect.

where t′′0 = t0 − 2βTR2. When the double-exposure hologram is reconstructed, both
object waves are released simultaneously, and interfere to produce a unit-contrast
fringe pattern characteristic of the deformation. The intensity distribution in the fringe
pattern is

I = 2(βTR2)2O2
0(1 + cos δ) = I0(1 + cos δ) (6.11)

Bright fringes are formed wherever δ = 2mπ, m being an integer. The technique is
also known as frozen-fringe or lapsed-time HI. It may be noted that only two states of
the object are being compared by this technique. Figure 6.4 shows a double-exposure
interferogram of a pipe with a defect. The pipe was loaded by an application of
hydraulic pressure between exposures. It can be seen that the defect is a region of
thinner wall thickness. Table 6.2 gives a comparison between real-time and double-
exposure HI.

6.10.3 TIME-AVERAGE HI

Time-average HI is utilized for the study of vibrating bodies such as musical instru-
ments. As the name suggests, the recording is carried out over a time period that is
several times the period of vibration. Since an object vibrating sinusoidally spends
most of the time at the locations of maximum displacement, a recording of such
a vibrating object is equivalent to a double-exposure record. However, the intensity
distribution in the reconstruction is modified considerably owing to the time of excur-
sion between these extreme positions. To study this phenomenon, we can write for
the instantaneous intensity on the recording plane,

I(x, y; t) = O2
o(x, y) + R2 + O*(x, y; t)R(x, y) + O(x, y; t)R*(x, y) (6.12)

where the object wave O(x, y; t) is expressed as

O(x, y; t) = O0eiφo(x,y)eiδ(x,y;t) (6.13)

The phase δ(x, y; t) represents the phase change introduced by the vibration. If the
body is vibrating with amplitude A(x, y) at a frequency ω and is illuminated and
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TABLE 6.2
Comparison of Single- and Double-Exposure HI

Single-Exposure HI Double-Exposure HI

Monitors/compares different states of the
object (due to loading) with the initial
state over a range determined by usable
fringe density and speckle noise.

Compares only the final state with the
initial state.

In situ processing is recommended;
otherwise the hologram has to be
repositioned very accurately. Once the
experimental set-up is disturbed, the
hologram cannot be used for
comparison.

Hologram can be reconstructed at leisure,
even at a different location.

Fringe contrast is poor, but can be
improved.

Unit-contrast fringe pattern is obtained,
since the diffraction efficiency is equally
shared by the two beams.

Bright fringes are formed when
δ = (2m + 1)π. A phase change of π

takes place owing to wet photographic
development.

Bright fringes are formed when δ = 2mπ.

Usually performed to obtain the correct
parameters for double-exposure HI.

Usually used for quantitative evaluation.

observed along directions making angles θ1 and θ2 with the local normal, then the
phase difference δ can be written as

δ(x, y; t) = 2π

λ
A(x, y) (cos θ1 + cos θ2) sin ωt (6.14)

The intensity distribution given by Equation 6.12 is recorded over a period T much
longer than the period of vibration; that is, it is recorded over a large number of
vibration cycles. The average intensity recorded over the period T is

I(x, y) = 1

T

∫ T

0
I(x, y; t) dt (6.15)

This record, on development, is called a time-average hologram, and the procedure is
known as time-average HI. The hologram is reconstructed with the reference wave.
Since, on reconstruction, the various waves generated are separable, we consider only
the amplitude of the desired wave, that is,

a(x, y) = −βTR2 1

T

∫ T

0
O(x, y; t) dt

= −βTR2O(x, y)
1

T

∫ T

0
e(2πi/λ)A(x,y)(cos θ1+cos θ2) sin ωt dt (6.16)
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The time integral T−1
∫ T

0 e(2πi/λ)A(x,y)(cos θ1+cos θ2) sin ωt dt is called the characteris-
tic function of the sinusoidal vibration, and is denoted by MT . Thus, the intensity
distribution in the reconstructed image is given by

Irec(x, y) = a(x, y)a∗(x, y) = β2T2R4O2
0|MT |2 (6.17)

The characteristic function has been generalized for various types of motion
(Table 6.3). The characteristic function for sinusoidal motion with phase difference
δ(x, y; t) as described by Equation 6.14 can be obtained analytically. It is given by

MT = 1

T

∫ T

0
e(2πi/λ)A(x,y)(cos θ1+cos θ2) sin ωt dt = J0

(
2π

λ
A(x, y)(cos θ1 + cos θ2)

)

(6.18)

where J0(x) is the Bessel function of zeroth order and first kind. The intensity
distribution in the reconstructed image will be

Irec(x, y) = I0(x, y)

[
J0

(
2π

λ
A(x, y)(cos θ1 + cos θ2)

)]2

(6.19)

The variation of [J0(x)]2 with the argument x is shown in Figure 6.5. It can be seen
that the reconstructed image is modulated by the function [J0(x)]2. Thus, the image is

TABLE 6.3
Characteristic Function |M(t)|2
HI Type Displacement |M(t )|2

Real-time Static (L) 1 + c2 − 2c cos(k · L)

Harmonic of amplitude A(x, y) 1 + c2 − 2cJ0(k · A)

Real-time with reference fringes Harmonic 1 + c2 − 2c cos(k · L)J0(k · A)

Real-time stroboscopic Harmonic: pulses at ωt = π/2 and 3π/2 1 + c2 − 2c cos(2k · A)

Double-exposure Static (L) cos2(k · L/2)

Double-exposure stroboscopic Harmonic: pulses at ωt = π/2 and 3π/2 cos2(k · A)

Time-average Harmonic, of amplitude A(x, y) [J0(k · A)]2
Constant velocity Lr = vT sinc2(k · Lr/2)

Constant acceleration from rest
C2
(√

k · A
)

+ S2
(√

k · A
)

(2/π) (k · A)

Time-average Irrationally related modes J0(k · A1)J0(k · A2)

Temporally frequency-translated Harmonic motion [Jm(k · A)]2
Amplitude-modulated reference wave

fr(t) = ei(ωt−Δ) [Jm(k · A)]2 cos2 Δ

Phase-modulated reference wave
fr(t) = eiMR sin ωt [Jm(k · A − MR)]2

Note: c is the contrast, and C and S are Fresnel cosine and sine integrals.
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FIGURE 6.5 [J0(x)]2 distribution, which defines the intensity distribution in time-averaged
HI fringes for a sinusoidally vibrating object.

covered by the fringes. Figure 6.6 shows the time-average interferogram of an edge-
clamped diaphragm vibrating in the second-harmonic mode. The zero intensity in the
image occurs at the zeros of the function [J0(x)]2. It can also be seen that the intensity
is maximum at the stationary region (A(x, y) = 0), and decreases to zero when

2π

λ
A(x, y)(cos θ1 + cos θ2) = 2.4048 (6.20)

This gives the amplitude of vibration at the first zero of the Bessel function. Assuming
illumination and observation directions along the normal to the surface of the object,

FIGURE 6.6 Time-averaged interferogram of an edge-clamped diaphragm vibrating in
second-harmonic mode. (From J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill,
New York, 1968. With permission.)
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the amplitudes at the first and successive zeros of the Bessel function are given by

A(x, y) = λ

4π
× 2.4048, (6.21a)

= λ

4π
× 5.5200, (6.21b)

= λ

4π
× 8.6537, (6.21c)

= λ

4π
× 11.7915 (6.21d)

Since the intensity falls off rapidly, high amplitudes of vibration are difficult to
monitor by this technique. In brief, time-average HI gives the vibration map (phase of
the vibration is lost) over a range of frequencies; that is, the amplitude of the vibration
can be measured.

Let us consider a simple example of a cantilever as shown in Figure 6.7. It is
illuminated normally and observed in the same direction. We assume illumination by
the red radiation of a He–Ne laser. The amplitude of vibration can be expressed as

z(x, t) = z(x) sin ωt (6.22)

The intensity distribution in the image is given by

Irec(x, y) = I0(x, y)

[
J0

(
4π

λ
A(x, y)

)]2

(6.23)

The fringes run parallel to each other, and, for higher amplitudes, are almost
equidistant. Dark fringes are located where the amplitudes of vibration are 0.12,
0.28, 0.44, 0.59 μm, . . . .

k1

k2

z(x) sin wt

z

x

FIGURE 6.7 Vibrating cantilever and simulated fringe pattern as obtained by time-
averaged HI.
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6.10.4 REAL-TIME, TIME-AVERAGE HI

In this technique, a single-exposure record of a stationary object is first made. After
development, the hologram is precisely relocated. The object is now set in vibration
and viewed through the hologram. Interference between the wave reconstructed from
the hologram and the directed transmitted wave from the vibrating object will yield an
intensity distribution that is proportional to [1 − J0(x)]2, where x = (4π/λ)A(x, y).
Thus, the nodal points on the object appear dark. The contrast of this fringe pattern is
very low. While observing the real-time pattern, the laser beam can be chopped at the
frequency of vibration. The method is then equivalent to the real-time HI for static
objects. The fringes correspond to the displacement between the initial position and
the position when the laser beam illuminates the object. By varying the time at which
the light pulse illuminates the object during its vibration cycle, the displacement at
different phases of vibration can be mapped.

6.11 FRINGE FORMATION AND MEASUREMENT
OF DISPLACEMENT VECTOR

We have mentioned that object deformation causes a phase change between the two
waves, at least one of which is derived from the hologram. This phase change is
responsible for the formation of the fringe pattern. In this section, we address two
issues:

• How is the phase change related to the deformation vector?
• Where are the fringes really localized?

Let us consider a point P on the object surface. Owing to loading, this point
moves to a different location P′. The vector distance PP′ is the deformation vector d.
We consider the geometry as shown in Figure 6.8 to calculate the phase difference
introduced by the deformation. The phase difference δ at the observation point O is
given by

δ = k1 · r1 + k2 · r2 − (k1 + Δk1) · r′
1 − (k2 + Δk2) · r′

2 (6.24)

We can express r′
1 and r′

2 as

r1 + d = r′
1 (6.25a)

r′
2 + d = r2 (6.25b)

Substituting for r′
1 and r′

2, we obtain

δ = k1 · r1 + k2 · r2 − (k1 + Δk1) · (r1 + d) − (k2 + Δk2) · (r2 − d)

= k1 · r1 + k2 · r2 − k1 · r1 − Δk1 · r1 − k1 · d

− Δk1 · d − k2 · r2 + k2 · d + Δk2 · d − Δk2 · r2

= (k2 − k1) · d (6.26)
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FIGURE 6.8 Calculation of the phase difference.

This expression has been obtained under the experimental conditions where the
displacement vector is of the order of a few micrometers and the distances r1 and
r2 involved could be from a few tens of centimetres to metres. When this is taken
into account, the vectors r1 and r2 are perpendicular to Δk1 and Δk2, respectively,
and hence their product terms are automatically zero, while the remaining two terms,
Δk1 · d and Δk2 · d, which represent second-order contributions, are also neglected.

This expression tells us when and how the fringe pattern is formed; it does not tell
us where it actually is formed. The situation is quite different from that encountered
in classical interferometry. In HI, the fringes are normally localized not on the object
surface but on a surface in space. This surface is known as the surface of localiza-
tion. Knowledge of the location of the surface of localization helps in determining
the deformation vector. In fact, the surface of localization depends on several factors,
including the deformation vector. Several theories have been presented in the litera-
ture. Needless to say, it is necessary to know about fringe localization in detail before
any quantitative evaluation is carried out.

6.12 LOADING OF THE OBJECT

Since HI sees only the change in the state of the object, the object must be subjected to
external agency to change its state. This can be performed by any one of the following
methods:

• Mechanical loading
• Thermal loading
• Pressure/vacuum loading
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• Vibratory or acoustic loading
• Impact loading

The most commonly used method is mechanical loading, in which the object is sub-
jected to either compressive or tensile forces. If the dynamic response needs to be
studied, it is subjected to either vibratory or impact loading. In holographic non-
destructive testing (HNDT), it is essential to use the appropriate kind of loading.
For example, debonds are easily seen when pressure or vacuum stressing is applied.
Table 6.4 gives some areas of application of the five types of loading.

6.13 MEASUREMENT OF VERY SMALL VIBRATION AMPLITUDES

It has been shown that the first minimum of intensity in time-average HI occurs when
A(x, y) = (λ/4π)2.4048. This is valid only when the directions of illumination and
observation are along the surface normal. For illumination from a He–Ne laser (λ =
632.8 nm), the amplitude of vibration A(x, y) corresponds to 0.12 μm. Even smaller
amplitudes of vibration can be monitored by observing the variation of intensity
between the maximum and first zero of the Bessel function.

6.14 MEASUREMENT OF LARGE VIBRATION AMPLITUDES

6.14.1 FREQUENCY MODULATION OF REFERENCE WAVE

The frequency of the reference wave is shifted by nω, where n is an integer and ω

is the frequency of vibration, and a time-average hologram is recorded in the normal
way. The recorded intensity distribution is given by

I(x, y) = 1

T

∫ T

0
[O2

0 + R2
0 + OR∗ + O∗R] dt (6.27)

where the object wave and the reference wave are written explicitly as

O(x, y; t) = O0 ei[�t+φo(x,y)+δ(x,y;t] (6.28a)

R(x, y; t) = R0 ei[(�−nω)t+φR] (6.28b)

Further, assuming that the object is vibrating sinusoidally with an amplitude
A(x, y), we can write for the phase difference δ(x, y; t)

δ(x, y; t) = 2π

λ
(cos θ1 + cos θ2)A(x, y) sin ωt

= 2π

λ
2A(x, y) sin ωt

when the directions of illumination and observation are along the surface normal.
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TABLE 6.4
Some Applications of Holographic Testing

Loading/Problem Detected Items Tested

Mechanical Loading
Cracks Bolt holes in steel channels, concrete, rocket nozzle liners, welded metal

plates, turbine blades, glass
Debonds Honeycomb panels, propellant liners
Fatigue damage Composite materials
Deformation Radial deformation in carbon cylinders and tubes

Pneumatic Loading
Cracks Welded joints, aluminum shells, bonded cylinders, ceramic heat exchanger

tubes
Debonds/delaminations Composite panels and tubes, honeycomb structures, bonded cylinders,

tires, rocket launch tubes, rocket nozzle liners
Weld defects Welded plastic pipes, honeycomb panels
Weakness (thinness) Aluminum cylinders, pressure vessels, tubes, composite tubes
Structural flaws Composite domes
Soldered joints Medical implant devices
Bad brazes Silicon pressure sensors

Thermal Loading
Cracks Glass/ceramic tubes, train wheels, turbofan blades
Debonds Aircraft wing assemblies, honeycomb structures, laminate structures,

rocket motor casings, rocket nozzle liners, rocket propellant liners, tires,
bonded structures

Delaminations Antique paintings
Various defects Circuit boards and electronic modules

Vibrational Loading
Cracks Train wheels, ceramic bars
Debonds Turbine blades, rocket propellant liners, sheet metal sandwich structures,

laminate structures, honeycomb structures, fiberglass-reinforced plastics,
helicopter rotors, ceramics bonded to composite plates, brake disks,
adhesive joints, metallic interfaces, elastomer

Strength CRTs

Impulse Loading
Cracks Steel plates, wing plank splices, turbine blades
Debonds Foam insulation
Voids and thin areas Aluminum plates

Since the various terms in the expression for the recorded intensity are separable,
we pick up the term of interest as

1

T

∫ T

0
OR∗ dt = O0eiφo R0e−iφR

1

T

∫ T

0
e(4πi/λ)A sin ωte−inωt dt

= O0R0ei(φo−φR) 1

T

n′=∞∑
n′=−∞

Jn′
(

4π

λ
A

)∫ T

0
ein′ωte−inωt dt (6.29)
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The integral will vanish for all values of n′ except n′ = n. Thus, the amplitude
distribution, on reconstruction, becomes proportional to Jn(4πA/λ). The intensity
distribution is then given by

I(x, y) = I0J2
n

(
4π

λ
A

)
(6.30)

Unlike the case of time-average HI, fringes of nearly equal intensity are formed, and
hence large vibration amplitudes can be measured.

6.14.2 PHASE MODULATION OF REFERENCE BEAM

The mirror in the reference arm is mounted on PZT, which is excited by a voltage signal
at the frequency of vibration. The amplitude of the reference wave at the recording
plane is

R(x, y) = R0 eiφR eiδR (6.31)

where

δR = 2π

λ
2AR sin(ωt − Δ)

with AR and Δ representing the amplitude and phase of the reference mirror vibration.
The object wave is expressed as

O(x, y) = O0 eiφo(x,y)eiδ (6.32)

where

δ = 2π

λ
2A(x, y) sin ωt

is the phase difference introduced by object vibration. It should be noted that the
modulation in the reference wave is phase-shifted by Δ, which may be varied exper-
imentally. A time-average hologram is now recorded. Again, we consider only the
term of interest in the expression for the amplitude transmittance, and express the
amplitude of the reconstructed wave as proportional to

1

T

∫ T

0
OR∗ dt = O0R0 ei(φo−φR) 1

T

∫ T

0
e(4πi/λ)[A sin ωt−AR sin(ωt−Δ)] dt

= O0R0 ei(φo−φR)J0

(
4π

λ
(A2 + A2

R − 2AAR cos Δ)1/2
)

(6.33)

The intensity distribution in the reconstructed image is given by

I(x, y) = I0

[
J0

(
4π

λ
(A2 + A2

R − 2AAR cos Δ)1/2
)]2

(6.34)
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As a special case, when the phase of modulation Δ of the reference wave is zero, the
intensity distribution is given by

I(x, y) = I0

[
J0

(
4π

λ
(A − AR)

)]2

(6.35)

Thus, control of the amplitude of the reference mirror vibration can be used to
measure large vibration amplitudes. The zero-order fringe (the brightest maximum)
will be formed at those regions where the vibration amplitude of the reference mirror
matches that of the object. In this way, it is possible to extend the measurable range
considerably, in practice up to about 10 μm. By varying the phase of the reference
mirror, it is also possible to trace out areas of the object vibrating in the same phase
as that of the mirror, thereby mapping the phase distribution of the object vibration.

6.15 STROBOSCOPIC ILLUMINATION/STROBOSCOPIC HI

The object is illuminated by laser pulses whose duration is much shorter than the
period of vibration. The recorded hologram is thus like a double-exposure hologram.
Let the first record be made when the object is in a state of vibration 1 and the second
when the object is in state 2, as shown in Figure 6.9. The double-exposure hologram
will display fringes corresponding to the displacement A between these two vibration
states. By varying the pulse separation, holograms for different displacements can be
recorded.

Alternatively, pulse separation may be adjusted to correspond to one-quarter of the
time period, and double-exposure holograms may be recorded at various phases of
the vibration cycle. The advantage of stroboscopic HI is that fringes of unit contrast,
similar to those in double-exposure HI, are formed. In addition, the use of pulse
illumination does not require vibration isolation of the holographic set-up.
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FIGURE 6.9 Stroboscopic HI of a vibrating object: (a) displacement of sinusoidally vibrating
object; (b) pulse illumination.
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6.16 SPECIAL TECHNIQUES IN HOLOGRAPHIC
INTERFEROMETRY

6.16.1 TWO-REFERENCE-BEAM HI

In the discussion of the phase-shift method of evaluation of the phase in an interfero-
gram, it was mentioned that an additional phase is introduced that is independent of
the phase to be measured. In real-time HI, this is provided by shifting the phase of
the reference wave during reconstruction. However, it is not possible to achieve this
in double-exposure HI, since the reconstruction of both the recorded waves is done
with a single reference beam.

In order to have independent access to the two reconstructed waves, and introduce
the desired phase difference between them, a holographic set-up with two reference
waves is required (Figure 6.10a). The first exposure of a double-exposure hologram
is performed with the object in its initial state and with the reference wave R1 (the
reference wave R2 is blocked). The object is loaded, and the second exposure is made
with the reference wave R2 (the reference wave R1 is blocked). The reconstruction of

 Laser
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Object

Holo-plate
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M2

R1 R2

 Laser
Shutter BS ND
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Object

Holo-plate

q

M2

Wedge

R1
R2

(a)

(b)

FIGURE 6.10 (a) Schematic of two-reference-wave HI. (b) Two-reference-wave HI with
close waves.
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the hologram is accomplished with both reference waves R1 and R2 simultaneously
to generate the interference pattern between the initial and final states of the object:
the interference pattern may be varied by changing one of the reference waves while
leaving the other unaffected. Mathematically, the procedure is described as follows.

In the first exposure, an intensity distribution I1(x, y) is recorded, where

I1(x, y) = O2
0 + R2

10 + OR∗
1 + O∗R1 (6.36)

The intensity distribution recorded in the second exposure is given by

I2(x, y) = O2
0 + R2

20 + O′R∗
2 + O′∗R2 (6.37)

where O′(x, y) = O(x, y)eiδ(x,y) is the object wave from the deformed state of the
object. The total exposure is T(I1 + I2), and the amplitude transmittance t(x, y) of the
doubly-exposed hologram is

t(x, y) = t0 − βT(I1 + I2) (6.38)

This hologram is illuminated by both reference waves. Therefore, the amplitude of
the waves just behind the hologram is (R1 + R2)t(x, y). This hologram generates a
multiplicity of images, which may or may not overlap. However, R1R∗

1O and R2R∗
2O′

overlap completely and give rise to interference fringes. Other undesired images can
be separated from this interference pattern if the angle between the two reference
waves is made very large. Generally, the two reference waves are taken on the same
side of the object normal and have mutual angular separation much larger than the
angular size of the object.

Although the desired images are separated by the large angular separation between
the reference waves, the arrangement is highly sensitive to misalignment of the holo-
gram during repositioning and also to any wavelength change between hologram
recording and reconstruction. Assuming that the reference waves are plane waves
propagating in directions given by propagation vectors k and k′, the additional phase
difference Δφ at any point rH on the hologram due to misalignment and wavelength
change is

Δφ(rH) = [(k − k′) × ω] · rH + Δλ

λ
(k − k′) · rH (6.39)

where ω = (Δξ, Δη, Δχ) is the rotation vector for small rotations Δξ, Δη, Δχ of
the hologram about the x, y, and z axes, and Δλ is the wavelength change between
recording and reconstruction. It can be seen that the additional phase change Δφ will
be small if k − k′ is small, that is, if the two reference waves propagate in nearly the
same direction. The price to be paid for this is a reduction in fringe contrast, since all of
the reconstructed waves will now overlap. A schematic of an arrangement to produce
two close reference waves is shown in Figure 6.10b. This set-up reduces the influence
of misalignment errors and wavelength-change error. In fact, if the recording and
reconstruction are done at the same wavelength, there is no error due to wavelength
change. However, if the recording is done with a pulsed laser and the reconstruction
with a continuous-wave laser, the error due to wavelength change cannot be removed,
but can be reduced using the above experimental arrangement.
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6.16.2 SANDWICH HI

HI records phase difference no matter what the source of this difference. However,
when using HI for studying strains in an object, the main interest is in measuring
local deformations on the object surface. Depending on the loading conditions, the
object very often undergoes rigid-body movements (translations and tilts), and these
are commonly much greater in magnitude than the local deformations. These rigid-
body deformations may be too large to be measured by HI, or they may completely
mask the local deformations of interest. Therefore, there is considerable interest in
exploring techniques that can compensate for the influence of rigid-body movements.
Fringe-control techniques have been developed, but they are applicable only with real-
time HI. Sandwich HI offers an attractive alternative for compensating for rigid-body
movements.

As the name suggests, the recording is done on two holographic plates H1 and
H2, which form a sandwich as shown in Figure 6.11a. We assume a plane reference
wave. The initial state of the object is recorded on H1 (H2 is replaced by a dummy)
and the final state on H2. A ray from an object point P hits plate H1 at B and plate H2
at A. Because of this geometry, an additional path difference AB − BD is recorded.
From Figure 6.11a,AB = s/cos α and BD = AB cos(α + β), where s is the separation
between the plates of the sandwich and α and β are the angles shown in Figure 6.11a.
Therefore, the path difference AB − BD is equal to

s

cos α
[1 − cos (α + β)]

In other words, if only the initial state of the object is recorded on both the plates, the
reconstruction will give a fringe-free image of the object. However, the path difference
AB − BD can be varied by tilting the sandwich, resulting in the appearance of a fringe
pattern.

We will now see how much change is introduced in the path difference by the tilt
of the sandwich. Let us assume that the sandwich is tilted by a small angle φ so that
the reference beam now makes an angle of β′ with the normal to the sandwich as
shown in Figure 6.11b. The corresponding points on the tilted sandwich are denoted
by A1 and B1. The reconstructed rays from A1 and B1 are shown by the dotted lines.
The path difference between these rays is r cos φ − r cos(α + β′), with β′ = β − φ

and r = s/ cos α. Therefore, the net path difference is

r[cos φ − cos(α + β′) − 1 + cos(α + β)]
≈ rφ sin(α + β) = sφ tan(α + β) (6.40)

It can be seen that the path difference change due to the tilt of the sandwich is
proportional to φ.

Let us now assume that the object is tilted by a small angle Δξ as shown in
Figure 11c as a result of loading. This introduces an additional path equal to 2xΔξ.
For this tilt to be compensated, we must have

2xΔξ = sφ tan(α + β) (6.41)
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FIGURE 6.11 Sandwich HI. (a) Recording of a sandwich hologram. (b) Influence of the tilt
of the sandwich. (c) Sandwich HI with an object tilted between exposures.
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When the angles α and β are small and are also taken equal to each other (i.e.,
α = β), Equation 6.41 becomes

2xΔξ = 2αsφ (6.42)

But the angle α can be expressed as α = x/z, where z is the distance between the
sandwich hologram and the object plane. Therefore,

φ = z

s
Δξ (6.43)

A tilt of the sandwich hologram of magnitude φ will fully compensate for a tilt of
the object of magnitude Δξ.

In order to fully utilize the strength of sandwich HI, a reference surface is placed
by the side of the actual object—the reference surface should be free from fringes
on reconstruction. However, when the fringe pattern on the object is compensated, a
linear fringe pattern appears on the reference surface, which is used to determine the
tilt given to the sandwich hologram. Alternatively, the reference surface is so placed
that it is unaffected by loading but is influenced by bodily tilts and translations. Then,
on reconstruction, the reference surface will also carry a fringe pattern, which should
be fully compensated in order to obtain the correct deformation map of the object.

6.16.3 REFLECTION HI

Another method to eliminate the contributions of rigid-body movements and tilts to the
measured phase difference is to clamp the holographic plate to the object under study
as shown in Figure 6.12a. The photographic plate, with its emulsion side facing the

H
(a)

(b)

Laser 

Laser 

Object

FIGURE 6.12 (a) Recording of a hologram in reflection HI. (b) Its reconstruction.
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object, is illuminated by a plane wave at normal incidence. In the first pass through the
plate, this wave acts as a reference wave, and the light scattered from the object forms
the object wave. Therefore, a reflection hologram is recorded within the emulsion as
interference planes between the incident wave and the one scattered by the object. The
recording is made on a thick emulsion, say of about 10 μm thickness: Agfa-Gevaert
8E75 plates are suitable for recording with He–Ne lasers.

For interferometric comparison, two exposures with the object loaded in-between
are made. The hologram is reconstructed with the laser light as shown in Figure 6.12b.
As a result of emulsion shrinkage, reconstruction is possible only at a suitable shorter
wavelength. Otherwise, the emulsion is swelled to its original thickness by soaking
it in an aqueous solution of triethanolamine, (CH2OHCH2)3N, followed by slow and
careful drying in air to observe the fringe pattern at the recording wavelength.

The resulting hologram is insensitive to rigid-body translations parallel and per-
pendicular to the direction of illumination if plane-wave illumination is used during
recording. Also, in-plane rotation has no influence in this case. This is because either
no path difference or a constant path difference is introduced. However, additional
fringes may be introduced if the rigid-body rotation is around an axis perpendicular to
the direction of illumination and if the object and the holographic plate are separated
as shown in Figure 6.13. We take a point P on the object, and consider recording, say,
at point H of the hologram. Owing to the rotation, the hologram–object combination
takes a new position, that is, P moves to P′ as the object rotates, and H moves to H′ as
the plate rotates along with the object. In the first exposure, the optical path recorded

H¢

H

P¢

Object

Hologram

Axis

P

M

I

f

b

FIGURE 6.13 Calculation of path change when the hologram–object combination is rotated.
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is IP + PH, and in the second recording, the path is MP′ + P′H′. The optical path dif-
ference Δ is IP + PH − MP′ − P′H′. But PH = P′H′. Therefore, the path difference
Δ is IP − MP′ = PH cos β − P′H′ cos(β + φ), where β is the direction of observation
and φ is the angle of rotation. This may be rewritten as

Δ = PH[cos β − cos(β + φ)] = PH cos β

[
1 − cos(β + φ)

cos β

]

= zp

[
1 − cos β − φ sin β

cos β

]
, since φ � 1

= zpφ tan β (6.44)

where zp is the distance between the object and the holographic plate. It can be seen
that this path difference yields additional fringes. However, no additional fringes are
introduced (i.e., Δ = 0 for φ �= 0) when (i) zp = 0 and/or (ii) β = 0. Thus, placing
the holographic plate in contact with the object eliminates the influence of rotation
about an axis perpendicular to the illumination beam.

6.17 EXTENDING THE SENSITIVITY OF HI

6.17.1 HETERODYNE HI

It has been shown that the fringe separation usually corresponds to λ/2 in path differ-
ence. With phase-shifting techniques, deformations as small as λ/30 can be measured.
If even smaller deformations are to be monitored, other means must be explored. Het-
erodyne HI is one such technique, being capable of giving a resolution of λ/1000.
This is, however, achieved at the expense of a more complicated experimental set-up
and slower data acquisition.

Figure 6.14 shows an experimental arrangement: it is a two-reference-wave geom-
etry. One of the reference waves passes through two acousto-optical (AO) modulators.
The first exposure is made with the reference beam R1 (R2 being blocked), and the
second exposure, after the object has been loaded, is made with the reference wave
R2 (R1 being blocked). Both exposures are made at the same wavelength, with the
AO modulators turned off. The reconstruction is done with both reference waves;
the AO modulators are turned on so that the wavelengths of the two reference waves
are different. As an example, one AO modulator modulates the beam at 40 MHz; the
frequency of the light wave diffracted in the first order is thus shifted by 40 MHz. This
then passes through the second AO modulator, which modulates it at 40.08 MHz. We
now consider diffraction in −1 diffraction order, to cancel the deviation of the beam
and obtain a light wave that is frequency-shifted by 80 kHz (= 40.08 − 40.0 MHz).
Thus, the two reference waves are now frequency-shifted by 80 kHz.

As has been pointed out earlier, a multiplicity of images are produced in two-
reference-wave HI. However, we consider only terms of interest in the amplitude
transmittance of the hologram, that is, OR∗

1 + O′R∗
2, where reference waves R1 and
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FIGURE 6.14 Schematic of heterodyne HI.

R2 have the same frequency. We write the reference and object waves explicitly as

R1 = R01 ei(ω1t+φR1) (6.45a)

R2 = R02 ei(ω1t+φR2) (6.45b)

O = O0(x, y) ei(ω1t+φo) (6.45c)

O′ = O eiδ(x,y,z) (6.45d)

During reconstruction, R1 = R01ei(ω1t+φR1) and R2 = R′
2, where R′

2 = R02ei(ω2t+φR2),
with ω2 = ω1 ± Δω, Δω being the frequency shift introduced by theAO modulators.
Again considering just the terms of interest, the amplitude in the reconstructed image
is proportional to

(R1 + R′
2)(OR∗

1 + O′R∗
2)

and we obtain the intensity distribution in the image as

∣∣OR1R∗
1 + O′R′

2R∗
2

∣∣2 = a(x, y) + b(x, y) cos[δ(x, y) + Δωt] (6.46)

where the various appropriate terms have been absorbed into a(x, y) and b(x, y). If
the intensity at a point (x, y) is observed, then it is found to vary sinusoidally with
time. The interference phase that is to be measured introduces a phase shift in this
signal. Unfortunately, the phase δ(x, y) + Δωt carries no information. However, from
the phase difference of the oscillating intensities at two different points, one obtains

Δδ(x1, y1 : x2, y2) = [δ(x1, y1) + Δωt] − [δ(x2, y2) + Δωt] = δ(x1, y1) − δ(x2, y2)

The phase difference Δδ, which is the difference between the interference phases at
two points, can be measured with a very high degree of accuracy using an electronic
phasemeter.



“DK4217_C006.tex” — page 129[#29] 14/5/2009 21:08

Holographic Interferometry 129

There are two ways to perform temporal heterodyne evaluation. In one approach,
the phase difference is measured by keeping one detector fixed to a reference point and
scanning the image with another detector. In this way, the phase difference modulo 2π

with respect to the phase at the reference point is measured. The interference phase
difference can be summed from point to point to yield the phase distribution along a
line or a plane. In the second method, the real image is scanned using a pair, triplet,
quadruplet, or quintuplet of photodetectors with known separation, and the phase
differences are then measured. In practice, the detector consists of a photodiode to
which a fiber is pigtailed. The other end of the fiber scans the real image.

Heterodyne HI cannot be implemented as real-time HI, because of the extremely
high stability requirement of the experimental set-up and also of the surrounding
environment.

6.18 HOLOGRAPHIC CONTOURING/SHAPE MEASUREMENT

For complete stress analysis, it is necessary to know the shape of the object under
study. Three techniques that can be used to obtain the shape of an object are as follows:

• Change of wavelength between exposures—the dual-wavelength method
• Change of refractive index of the medium surrounding the object between

exposures—the dual-refractive-index method
• Change of direction of the illumination beam between exposures—the dual-

illumination method

6.18.1 DUAL-WAVELENGTH METHOD

We will describe the dual-wavelength method in detail. The technique requires that
a holographic recording of the object be made on the same plate with two slightly
different wavelengths λ1 and λ2. The processed plate, the hologram, is then illumi-
nated with the reference wave at wavelength λ1, so that the original object wave is
reconstructed at λ1 together with the distorted reconstruction of the object recorded
at wavelength λ2.

The waves from the original reconstruction and the distorted reconstruction inter-
fere to yield a fringe pattern that is related to the shape of the object. In order to
understand how this method works, we again go through the mathematics of record-
ing and reconstruction. In the first exposure, we record an intensity distribution
proportional to

O2
0 + R2

01 + O1R∗
1 + O∗

1R1

The intensity recorded in the second exposure is proportional to

O2
0 + R2

02 + O2R∗
2 + O∗

2R2
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where the object and reference waves are defined as

O1 = O0 eik1·r = O0 exp

(
2πi

λ1
zo

)
exp

[
2πi

2λ1zo
(x − xo)

2
]

(6.47a)

O2 = O0 eik2·r = O0 exp(ik2zo) exp

[
k2i

2zo
(x − xo)

2
]

(6.47b)

R1 = R0 eik1x sin θ (6.47c)

R2 = R0 eik2x sin θ (6.47d)

For reconstruction, the hologram is illuminated with a reference wave at wave-
length λ1. Therefore, considering the terms of interest, the amplitude distribution in
the virtual image is proportional to

R1
(
O1R∗

1 + O2R∗
2

) = O1R2
0 + O2R2

0eix sin θ(k1−k2) (6.48)

The term eix sin θ(k1−k2) represents a different direction of propagation of the object
wave O2. This phase term will be zero provided that the angle of the reference beam
R2, before the second exposure, is adjusted such that k1 sin θ = k2 sin φ, where φ is
the angle that the reference beam R2 makes with the optical axis. Then, the amplitude
distribution can be rewritten proportional to

R2
oOo

{
1 + ei(k2−k1)zo exp

[
i(k2 − k1)

2zo
(x − xo)

2
]}

The phase term
k2 − k1

2zo
(x − xo)

2

is very small, since x � zo and xo � zo, and hence the amplitude distribution in the
reconstructed virtual image is

R2
0O0(1 + ei(k2−k1)zo)

The intensity distribution in the image can therefore be written as

I = Io{1 + cos[(k2 − k1)zo]} = Io

{[
1 + cos

2π|λ1 − λ2|
λ1λ2

zo

]}
(6.49)

Bright fringes are formed wherever

2π |λ1 − λ2|
λ1λ2

zo(x, y) = 2mπ

or

zo(x, y) = mλ1λ2

|λ1 − λ2| (6.50)
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FIGURE 6.15 Fringes over a spherical surface obtained with dual-wavelength HI.

The contour interval is Δzo = λ1λ2/|λ1 − λ2|. Essentially, the method produces
interference planes perpendicular to the z axis and with a separation of λ1λ2/|λ1 −
λ2|. The sensitivity of the contour fringes can be varied from 1 μm to several millime-
ters using two suitable wavelengths. Figure 6.15 is an interferogram of an object taken
with two wavelengths. The object is a spherical surface, and hence the intersection
by parallel planes yields circular contour lines.

6.18.2 DUAL-REFRACTIVE-INDEX METHOD

Similar results are obtained when double-exposure HI is performed with a change in
the refractive index of the medium surrounding the object. The object is placed in an
enclosure with a transparent window, and the first exposure is made. The refractive
index of the medium surrounding the object is changed, and then the second exposure
is made on the same plate. The refractive index can be easily changed when, say, the
water medium around the object is replaced by a mixture of water and alcohol. The
hologram, when viewed, displays the object covered with interference planes.

If the vacuum wavelength of the recording light is λ0, then the wavelength in a
medium of refractive index n1 is λ1 = λ0/n1, and in the other medium of refractive
index n2 it is λ2 = λ0/n2. Essentially, this is two-wavelength HI, and the contour
interval is given by

Δzo(x, y) = λ1λ2

|λ1 − λ2| = λ2
0/n1n2∣∣∣∣λ0

n1
− λ0

n2

∣∣∣∣
= λ0

|n2 − n1| (6.51)
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There is no need to correct for the angle of the reference wave prior to the second
exposure as was done in two-wavelength HI. The contour interval can be varied by a
suitable choice of the media surrounding the object.

6.18.3 DUAL-ILLUMINATION METHOD

The dual-illumination method is frequently used for contouring, because of its sim-
plicity. A collimated beam illuminates the object at an angle θ with the optical axis,
and a real-time hologram is recorded in the usual way. On reconstruction, a dark field
is observed. Now, if the illumination beam is tilted by a small angle Δθ a system of
equispaced interference planes intersects the object. These planes run parallel to the
bisector of the angle Δθ. The contour interval Δzo(x, y) is given by

Δzo(x, y) = λ

sin θ sin Δθ
≈ λ

sin θ

1

Δθ
(6.52)

Usually, the interference planes do not intersect the object perpendicular to the line
of sight. Large objects are illuminated by a spherical wave from a point source that
is translated laterally to produce the interference surfaces. Double-exposure HI can
also be performed for contouring by shifting the point source between exposures.

6.19 HOLOGRAPHIC PHOTOELASTICITY

This section deals with the application of holographic interferometry to the study of
photo-elastic models. The technique is described in detail in Chapter 8.

6.20 DIGITAL HOLOGRAPHY

6.20.1 RECORDING

Instead of using photographic emulsions or other recording media, a CCD is used as
recording medium and the information is stored electronically. The reconstruction is
performed numerically on the electronically stored data. The advantages of recording
on CCD are that the hologram is recorded at video frequency and no chemical or
physical process for development is necessary. CCD cameras, however, have resolu-
tions of order 100 lines/mm, which is at least one order of magnitude smaller than
that of the photographic emulsions commonly used in holography. For this reason, the
maximum admissible angle between the object and the reference waves is about 1◦.

Let us assume that the CCD contains N × N pixels of sizes Δx and Δy along the x
and y directions. Assuming that the adjacent pixels have no space between them and
no overlap, Δx and Δy are also pixel center distances. In digital holography, a Fresnel
hologram is generated on the CCD target by the superposition of an object wave and
a reference wave. The hologram is digitized, quantized, and stored in the memory
of the image-processing system. Figure 6.16 shows schematics of the arrangements
for recording a digital hologram. A plane reference wave is assumed for simplicity.
The reconstruction is performed numerically. However, according to the sampling
theorem, only spatial frequencies less than μmax along the x direction and νmax along



“DK4217_C006.tex” — page 133[#33] 14/5/2009 21:08

Holographic Interferometry 133

(a)

Object CCD

(b)

Image

Lens
Object

CCD

FIGURE 6.16 Schematic of arrangements for recording a digital hologram of (a) a small
object and (b) a large object.

the y direction can be reliably reconstructed, where μmax = (2Δx)−1 and νmax =
(2Δy)−1. This sets the maximum allowable angle between the object wave and the
reference wave. The angle θ in the (x, z) plane can be written as θ = sin−1(λμmax).As
a numerical example, consider a CCD of 1024 × 1024 pixels, each 6.8 μm × 6.8 μm
in size, and illumination of the object by a He–Ne laser beam at 0.633 μm. The
maximum allowable angle is 2.67◦. Therefore, an object placed at a distance of 1 m
from the CCD must be smaller than 4.3 cm along the x direction. Larger objects either
have to be placed further away from the CCD plane or have their apparent size reduced
by a lens.

6.20.2 RECONSTRUCTION

The reconstruction of the hologram is done by illuminating it with a plane reference
wave. The amplitude in the real image can be expressed as

A(ξ, η) = iR

λz
exp

[
− iπ

λz
(ξ2 + η2)

]

×
∫ ∞

−∞

∫ ∞

−∞
t(x, y) exp

[
− iπ

λz
(x2 + y2)

]
exp

[
2πi

λz
(xξ + yη)

]
dx dy

(6.53)

where R is the amplitude of the reference wave. This equation is valid under the
Fresnel approximation, namely,

z3 � π

4λ

[
(x − ξ)2 + ( y − η)2

]2

where z is the distance between the object and the hologram, and hence between the
hologram and the real image.
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Since the data is available in digital form, Equation 6.53 can be written as

A(m, n) = iR

λz
exp

[
− iπ

λz

(
m2Δξ2 + n2Δη2

)]

×
N−1∑
k=0

N−1∑
l=0

t(k, l) exp

[
− iπ

λz
(k2Δx2 + l2Δy2)

]
exp

[
2πi

(
km

N
+ ln

N

)]

(6.54)

with m = 0, 1, 2, . . . , N − 1; n = 0, 1, 2, . . . , N − 1. Here t(k, l) is an matrix of N × N
(pixels in CCD) data that describes the digitally sampled amplitude transmittance of
the hologram; Δx, Δy, and Δξ, Δη are the pixel sizes in the hologram plane and the
plane of the real image, respectively. The amplitude distribution in the real image is
obtained as the inverse Fourier transform of the product consisting of the hologram
transmittance t(k, l) multiplied by an exponential factor that contains a quadratic
phase factor. The Fourier transform is performed by a fast Fourier transform (FFT)
algorithm. The amplitude A(ξ, η) in the reconstructed image is a complex function,
and hence the intensity and the phase are computed at each pixel. The intensity I(m, n)

Hologram t2(k, l)
(final state)

Hologram t1(k, l)
(initial state)

Addition t1(k, l) + t2(k, l)
(double exposure) 

Phase     f2(m, n) 

= tan–1 Im{A2(m, n)}
Re{A2(m, n)}

Phase     f1(m, n) 

= tan–1 Im{A1(m, n)}
Re{A1(m, n)}

Numerical
Fresnel transformation
A1(m, n) =    {t1(k, l)} 

Numerical
Fresnel transformation
A2(m, n) =    {t2(k, l)} 

Numerical
Fresnel transformation

A(m, n) =    (t1 + t2)

Intensity distribution
I(m, n) = ÁA(m, n)Á2

Interference phase
determination

I(m, n) → d(m, n) 

Interference phase
d(m, n) = f2(m, n)–f2(m, n)  

Interference phase
d(m, n) 

FIGURE 6.17 Procedures for obtaining digital holographic interferograms.
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and the phase φ(m, n) are determined as follows:

I(m, n) = |A(m, n)|2 = Re{A(m, n)}2 + Im{A(m, n)}2 (6.55a)

φ(m, n) = tan−1 Im{A(m, n)}
Re{A(m, n)} , with value −π to π (6.55b)

As a consequence of surface roughness, the phase φ(m, n) varies randomly. In digital
holography, only the intensity variation on the object is of interest, and hence several
calculations, such as that of iR/λz, the phase φ(m, n), and the exponential term
e−(iπ/λz)(m2Δξ2+n2Δη2) are not carried out.

6.21 DIGITAL HOLOGRAPHIC INTERFEROMETRY

Comparison of states of the object due to loading can be performed by digital
holographic interferometry in a manner similar to that of double-exposure HI. Two
holograms with amplitude transmittances t1(x, y) and t2(x, y) belonging to the two
states of the object are digitally recorded and stored. During reconstruction, there are
two procedures that can be used to obtain the interferogram representing the change
in the state of the object. In the first procedure, the transmittances of both holograms
are added pixel by pixel and the Fresnel transform is taken. This reconstructs the

FIGURE 6.18 Numerically reconstructed phase of (a) an undeformed object and (b) a
deformed object, and (c) phase difference between (a) and (b) producing an interferogram.
(From U. Schnars, T. M. Kreis, and W. P. O. Jüptner, Opt. Eng., 35, 977–982, 1996. With
permission.)
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sum of the two amplitudes. When the intensity distribution is calculated, it exhibits a
cosine variation characteristic of the interference between the two waves. This inter-
ference pattern can be evaluated by any of the well-known procedures. In the second
method, the holograms are reconstructed individually, and their phases φ1(m, n) and
φ2(m, n) are calculated pixel-wise. Although φ1(m, n) and φ2(m, n) are random func-
tions, their difference δ(m, n) = φ2(m, n) − φ1(m, n)] is deterministic, and gives the
phase change due to loading. The phase change δ(m, n) is calculated as

δ(m, n) =
{

φ2(m, n) − φ1(m, n) for φ2(m, n) ≥ φ1(m, n)

φ2(m, n) − φ1(m, n) + 2π for φ2(m, n) < φ1(m, n)
(6.56)

These two approaches are summarized in Figure 6.17. Figures 6.18a and 6.18b
show the numerically reconstructed phase of an undeformed and a deformed
object, respectively, and Figure 6.18c shows the difference between these two as
an interferogram.

Since digital HI can handle only small objects, it has potential applications in the
testing and characterization of microsystems. Comparison of remote objects and also
their responses to external agencies can be done conveniently with digital holography.
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7 Speckle Metrology

7.1 THE SPECKLE PHENOMENON

Illumination of a diffuse object by coherent light produces a grainy structure in space.
This grainy light distribution is known as a speckle pattern. It arises as a result of self-
interference of numerous waves from scattering centers on the surface of the diffuse
object, as shown in Figure 7.1: the amplitudes and phases of these scattered waves are
random variables. We assume that (i) the amplitude and phase of each scattered wave
are statistically independent variables, and also independent of the amplitudes and the
phases of all other waves, and (ii) the phases of these waves are uniformly distributed
between −π and π. Such a speckle pattern is fully developed. The resultant complex
amplitude u(x, y) = u(x, y)eiφ is given by

u(x, y)eiφ = 1√
N

N∑
k=1

uk = 1√
N

N∑
k=1

akeiφk (7.1)

where ak and φk are the amplitude and phase of the wave from the kth scatterer. For
such a speckle pattern, the complex amplitude of the resultant u(x, y) obeys Gaussian
statistics.

The probability density function p(I) of speckle intensity is given by

p(I) = e−I/Ī

Ī
(7.2)

where Ī is the average intensity. This gives the probability that the intensity at a point
in the speckle pattern will have the value I . The probability density function in the
speckle pattern follows a negative exponential law. The most probable intensity value
is zero. A measure of the contrast in the speckle pattern is the ratio c = σ/Ī , where σ

is the standard deviation of the speckle intensity. The contrast in the fully developed
linearly polarized speckle pattern is unity.

7.2 AVERAGE SPECKLE SIZE

The grains or the speckles in the pattern are not well defined but have a structure.
However, we can associate with the speckle an average size. We consider two cases.
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FIGURE 7.1 Formation of a speckle pattern.

7.2.1 OBJECTIVE SPECKLE PATTERN

It was pointed out earlier that a speckle pattern is formed in space when a diffuse
object is illuminated by a coherent wave. This pattern, resulting from free-space
propagation, is termed an objective speckle pattern. The speckle size in an objective
speckle pattern is given by

σob = λz

D
(7.3)

where D is the size of the illuminated area of the object and z is the distance between the
object and the observation plane (Figure 7.2a). The size is governed by the interference
between the waves from the extreme scattering points on the object. The relationship
is the same as that expected from Young’s double-slit experiment, the slits being at
the extreme positions in the illuminated area. The speckle size increases linearly with
the separation between the object and the observation plane.

7.2.2 SUBJECTIVE SPECKLE PATTERN

A speckle pattern formed at the image plane of a lens is called a subjective speckle
pattern. This arises owing to interference of waves from several scattering centers
in the resolution element (area) of the lens: in the image of this resolution area,
the randomly dephased impulse response functions are added, resulting in a speckle.
Therefore, the speckle size is governed by the well-knownAiry formula. The diameter
of the Airy disk is given approximately by

σs ≈ λb

D′ (7.4)

where D′ is the diameter of the lens and b is the image distance (Figure 7.2b). Here
again, the speckle size is determined by the maximum aperture of the lens. The
objective speckle pattern immediately in front of the lens is transmitted through it
and appears on the other side of the lens. The speckles at the periphery of this pattern
determine the speckle size at the image plane. By introducing the f -number of the
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FIGURE 7.2 (a) Objective speckle pattern. (b) Subjective speckle pattern.

lens, F# = f /D′, where f is the focal length of the lens, the average speckle size can
be expressed as

σs = (1 + m)λF# (7.5)

Here we have introduced the magnification of the lens, m = b/a = (b − f )/f . It can
thus be seen that the speckle size can be controlled by (i) the magnification m, and (ii)
the F# of the lens. Control of speckle size by F# is often used in speckle metrology
to match the speckle size with the pixel size of charge-coupled device (CCD) array
detectors.

7.3 SUPERPOSITION OF SPECKLE PATTERNS

Speckle patterns can be added on either an amplitude basis or an intensity basis. An
example of the addition of speckle patterns on an amplitude basis arises in shear
speckle interferometry, where the two speckle patterns are shifted and then super-
posed. In such a speckle pattern, the statistics of the resultant speckle pattern remains
unchanged. However, when the speckle patterns are added on an intensity basis—for
example, when two speckle records are made on the same plate—the speckle statistics
is completely modified and is governed by the correlation coefficient.
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7.4 SPECKLE PATTERN AND OBJECT SURFACE
CHARACTERISTICS

In the explanation of a fully developed linearly polarized speckle pattern, it must be
stressed that the phases are uniformly distributed between −π and π and that there
are large number of scatterers participating in speckle formation. This results in a
unit-contrast speckle pattern. However, if the surface is smoother than is necessary to
satisfy this condition, the speckle contrast decreases. The speckle contrast depends on
surface roughness and coherence of light. In fact, speckle contrast has been employed
to measure surface roughness over a large range using both monochromatic and
polychromatic illumination.

7.5 SPECKLE PATTERN AND SURFACE MOTION

7.5.1 LINEAR MOTION IN THE PLANE OF THE SURFACE

Let us assume a translucent object that is translated by a distance d in its own plane:
the objective speckle pattern also translates by the same magnitude in the same direc-
tion (Figure 7.3a). However, the structure of the speckle pattern begins to change
(i.e., decorrelation sets in) when some of the scattering centers go out of the illumi-
nation beam. For the subjective speckle pattern, the speckle motion is in the direction
opposite to that of the object and its magnitude is md, where m is the magnification
(Figure 7.3b).

7.5.2 OUT-OF-PLANE DISPLACEMENT

Let us consider that a speckle is formed at a position P(r,0), as shown in Figure 7.4a.
This speckle is due to the superposition of all the waves from the object. When the
object translates axially by a small distance ε, all of these waves are phase-shifted by
nearly the same amount. If this phase shift is a multiple of 2π, then a similar state
of speckle will exist at the point P′(r − Δr, 0); that is, the speckle will have shifted

d
d

(a)

md

d
(b)

FIGURE 7.3 In-plane displacement: (a) objective speckle pattern; (b) subjective speckle
pattern.
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FIGURE 7.4 Out-of-plane displacement: (a) objective speckle pattern; (b) subjective speckle
pattern.

radially by Δr. We therefore have

r

z
= r − Δr

z − ε

or

|Δr| = ε
r

z
(7.6)

A similar situation holds for a subjective speckle pattern, as shown in Figure 7.4b.
We therefore obtain

a

a − ε
= r

r + Δr

or

|Δr| = ε
r

a
(7.7)

where a is the object distance. Thus, for axial translation of the object, the speckle
pattern shifts radially—it either expands or contracts, depending on the direction of
the shift of the object. It may be noticed that the radial movement of the speckle
pattern requires a rather large out-of-plane displacement of the object owing to the
presence of the r/z or r/a factor, which is very small.

7.5.3 TILT OF THE OBJECT

Let the object be illuminated in a direction that makes an angle α with the z axis (taken
in the direction of the surface local normal) and let the speckle pattern be observed
at a point P in the direction making an angle β, as shown in Figure 7.5a. When the
object is tilted by a small angle Δφ, the speckle pattern shifts to a new position,
which is shifted angularly by Δψ, where Δψ = (1 + cos α/ cos β)Δφ. Only for the



“DK4217_C007.tex” — page 154[#6] 14/5/2009 20:42

154 Optical Methods of Measurement

P'

P

(a)
Df

Df

Dy

a

b

FT plane

(b)

FIGURE 7.5 Motion of the speckle due to the tilt of the object: (a) at a far plane (objective
speckle pattern); (b) at the FT plane.

case of normal illumination and observation directions (very small angles α and β)

is the angular shift of the speckle pattern twice the tilt of the object. The situation
is quite different when we consider the subjective speckle pattern. In fact, there is
no shift at the image plane due to the tilt of the object. Between the image plane
and the focal plane [or Fourier-transform (FT) plane], speckle shift is due to both
in-plane and tilt contributions. At the FT plane, the speckle pattern does not shift
owing to in-plane translation, but shifts by Δxf = f Δφ when the object is tilted by
Δφ (Figure 7.5b). When the object is illuminated by a divergent wave, one can find
a plane that is sensitive only to the in-plane motion and another plane sensitive to
tilt alone.

It can thus be seen that a speckle pattern undergoes changes when the object is
either translated or tilted. However, for deformation measurement, we are interested
in measuring changes/shifts at various points of an object, and hence we employ only
the subjective speckle pattern. In this way, a correspondence between the object and
the image points is maintained. In other words, the local changes in the object cause
changes locally in the speckle pattern rather than over the whole speckle pattern plane.
The changes in a speckle pattern due to object deformation are (i) positional changes
accompanied by irradiance changes and decorrelation and (ii) phase changes, which
are made visible by adding a specular reference wave or speckled reference wave at
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the image plane. Often, both changes occur simultaneously, but one may dominate
over the other.

The speckle methods used for deformation measurement and vibration analysis
can be placed in the following four categories:

• Speckle photography
• Speckle interferometry
• Speckle shear interferometry
• Electronic speckle pattern interferometry (ESPI) and shear ESPI.

The first three of these methods employ a photographic medium, photorefractive
crystals, and so on for recording; the ESPI methods employ electronic detection.
Correlation, as in speckle photography, can also be accomplished digitally.

7.6 SPECKLE PHOTOGRAPHY

The object may be illuminated obliquely or normally. We make an image of the
object, as shown in Figure 7.6a, on a photographic plate capable of resolving the
speckle pattern, and the first exposure is recorded. The object is then loaded, and
another record of the displaced speckle pattern is made on the same plate. In this way,
we have recorded two speckle patterns, one of them translated locally by d. We need
to find out d at various locations on the plate, and then generate the deformation map.
It was pointed out earlier that the speckle displacement has poor sensitivity for axial
(out-of-plane) displacements. Hence, speckle photography is used mostly to measure
in-plane displacements and in-plane vibration amplitudes.

Let us first examine the specklegram (negative film or plate) realized by making a
single exposure. The intensity recorded is given by I(x, y) = |u(x, y)|2. The amplitude
transmittance of this negative (specklegram) is expressed as

t(x, y) = t0 − βTI(x, y) (7.8)

where t0 is the bias transmittance, β is a constant, and T is the exposure time. As
the speckle pattern consists of a grainy structure, each grain being identified by a
δ-function, the intensity I(x, y) can also be expressed as

I(x, y) =
∫∫

I(x′, y′)δ(x − x′, y − y′) dx′dy′ (7.9)

When this specklegram is placed in a set-up as shown in Figure 7.6b, and illuminated
by a parallel beam of light, the amplitude transmitted is given by u0(x, y)t(x, y), where
u0(x, y) is the amplitude of the illuminating plane wave. The specklegram will diffract
the light over a reasonably large cone, depending on the speckle size.

We collect this diffracted light with a lens and make an observation at the back focal
plane of the lens. Essentially, we are taking the Fourier transform of the amplitude
transmittance t(x, y) of the speckle record. The amplitude at the FT plane, assuming



“DK4217_C007.tex” — page 156[#8] 14/5/2009 20:42

156 Optical Methods of Measurement

(a) 
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Specklegram(b) 

(c) (d)

FIGURE 7.6 Speckle photography: (a) bodily in-plane displacement; (b) set-up to observe
diffracted filed from the specklegram at the focal plane of a lens; (c) halo from a single-exposure
specklegram; (d) fringes in the halo from a double-exposure specklegram.

a unit-amplitude illumination wave, is given by

U(μ, ν) =
∫∫

t(x, y) e−2πi(μx+νy)dx dy

=
∫∫

t0 e−2πi(μx+νy)dx dy − βT
∫∫

I(x, y)e−2πi(μx+νy)dx dy

= t0δ(μ, ν) − βT�[I(x, y)] (7.10)

where �[ ] signifies the Fourier transform. The intensity distribution at the FT plane,
|U(μ, ν)|2, consists of a strong central peak and a light distribution around called the
halo. This is shown in Figure 7.6c; the central portion is blocked while recording the
halo. The halo contains a range of spatial frequencies between 0 and 1/σs, where σs is
the average size in the subjective speckle pattern. The diameter of the halo is 2f λ/σs.
The halo distribution is given by the autocorrelation of the aperture function of the
imaging lens. A physical insight into the formation of the halo can be obtained if we
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consider a specklegram as having a large number of sinusoidal gratings of continu-
ously varying pitch and random orientations. When the specklegram is illuminated,
these gratings diffract the beam in various directions, forming the halo at the back
focal plane of the lens.

Let us now consider a double-exposure specklegram. In the first exposure, an
intensity distribution I1(x, y) is recorded. The object is then deformed, and the second
exposure I2(x, y) is recorded on the same plate. Owing to the deformation, the speckle
pattern shifts locally. Therefore, the intensity distribution I2(x, y) can be expressed as

I2(x, y) =
∫∫

I(x′, y′)δ(x + dx − x′, y + dy − y′) dx′dy′ (7.11)

where dx and dy are the components of d along the x and y directions respectively.
The total intensity recorded is

It(x, y) = I1(x, y) + I2(x, y)

=
∫∫

I(x′, y′)
[
δ(x − x′, y − y′) + δ(x + dx − x′, y + dy − y′)

]
dx′dy′

(7.12)

Again, if this double-exposure specklegram is illuminated by a collimated beam, then
one obtains, at the focal plane of the lens, a central order and the superposition of halos
belonging to the initial and the final states of the object. The amplitude transmittance
of the double-exposure specklegram is given by

t(x, y) = t0 − βT [I1(x, y) + I2(x, y)] (7.13)

The amplitude at the FT plane is given by

�[t(x, y) = t0δ(μ, ν) − βT�[I1(x, y) + I2(x, y)] (7.14)

For simplicity, we now confine ourselves to one dimension, and hence write the total
intensity as

It(x) =
∫∫

I(x′)
[
δ(x − x′) + δ(x + dx − x′)

]
dx′dy′ (7.15)

which is the convolution of I(x) with δ(x) + δ(x + dx). Therefore,

�[It(x)] = �[I1(x, y) + I2(x, y)] = �[I(x)]�[δ(x) + δ(x + dx)] (7.16)

The Fourier transform of δ(x) is a plane wave propagating on-axis, and that of
δ(x + dx) is also a plane wave propagating inclined with the axis; that is,

�[δ(x) + δ(x + dx)] =
∫

δ(x)e−2πiμx dx +
∫

δ(x + dx)e
−2πiμx dx

= c + ce2πiμdx (7.17)
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where c is a constant, being the Fourier transform of a δ-function.The spatial frequency
μ is defined as μ = xf/f λ, with xf being the x coordinate on the FT plane and f the
focal length of the lens. Suppressing the central order, we can write the intensity
distribution in the FT plane (in the halo) as

I(μ) ∝ 2β2T2c2(1 + cos 2πμdx) = I0(μ) cos2 πμdx (7.18)

It is therefore seen that the halo, given by I0(μ), is modulated by the cos2(πμdx) term.
In other words, a fringe pattern appears in the halo. Figure 7.6d shows the fringe pattern
in the halo. This fringe pattern is similar to theYoung’s double-aperture fringe pattern.
Therefore the fringes are termed Young’s fringes. In the cos2(πμdx) term, there are
two variables, namely μ, (the coordinate along the x axis) and dx, which is a function
of local coordinates if the deformation is not constant over the whole specklegram. For
constant dx , the interpretation is simple and straightforward: the halo distribution is
modulated by the cosinusoidal fringes, whose spacing is Δxf = f λ/dx . Therefore, the
magnitude of dx may be obtained from the fringe width measurement. The direction
of the displacement dx is always along the normal to the fringes. However, if dx is
not constant, then each value of dx will produce its own fringe pattern, which on
superposition may completely wash out this intensity variation. In such a situation,
the specklegram is interrogated with a narrow or unexpanded laser beam to extract
displacement information from each region of interrogation. The displacement in the
region of interrogation should be constant.

7.7 METHODS OF EVALUATION

A double-exposure specklegram contains two shifted speckle patterns, and this shift is
to be determined at a number of locations on the specklegram in order to generate the
deformation map. It was remarked earlier that Young’s-type fringes are formed when
the specklegram is illuminated by a narrow beam. These fringes give the direction and
magnitude of the displacement at a point. The process of extracting the information
from a specklegram is called filtering. The filtering is done both at the plane of the
specklegram and at its FT plane. These methods are called pointwise filtering and
wholefield filtering.

Another method of filtering, usually applicable to out-of-plane displacement mea-
surement, is known as Fourier filtering. It can also be used in other cases; the fringes
are generally localized on the specklegram.

7.7.1 POINTWISE FILTERING

It was mentioned earlier that if the displacement of the speckles is nonuniform, no
fringe pattern may be formed at the FT plane when the whole specklegram is illumi-
nated. However, it is safe to assume that the speckle movement over a very small region
of the image (specklegram) is uniform. Therefore, if the double-exposure speckle-
gram is illuminated by a narrow (unexpanded) beam and the observation is made at
a plane sufficiently far away (far field), as shown in Figure 7.7a, then a system of
Young’s fringes will be formed. The fringes always run perpendicular to the direction
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FIGURE 7.7 (a) Pointwise filtering arrangement. (b) Wholefield filtering arrangement.
(c) Fourier filtering arrangement. (d) Path difference from a speckle pair.

of displacement, and the fringe width p̄ is inversely proportional to the displacement;
that is, p̄ = λz/|d|. Thus, both the direction and magnitude of the displacement at
each interrogation region on the specklegram are obtained. The sign ambiguity is still
not resolved. It can be resolved by giving a linear known displacement to the photo-
graphic plate before the second exposure. By obtaining the magnitude and direction
of the displacement at a large number of points on the specklegram, a displacement
map on the specklegram is generated, which is then translated to the object surface
through the magnification of the imaging system.
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The contrast of the Young’s fringes is influenced by several factors, the most
important of which are nonuniform displacement and missing speckle pairs in the
region of illumination. Further, it must be kept in mind that the halo distribution is
nonuniform and the background intensity may not be constant. Therefore, theYoung’s
fringes do not have unit contrast and the positions of their maxima and minima are
shifted. This shift introduces errors in the calculation of the displacement. Methods
have been developed to correct for this.

7.7.2 WHOLEFIELD FILTERING

We consider an arrangement shown in Figure 7.7b. This is a 4f configuration. The
filtering is carried out at the FT plane by an aperture. The image of the specklegram
is formed at unit magnification on the output plane by the light allowed through the
filtering aperture. The image contains the fringes that represent constant in-plane
displacements in the direction of the filtering aperture. In order to understand the
working of the wholefield filtering technique, let us place an aperture of appropriate
size at a position xf along the x direction. All of the identical pair scatterers (speckles)
on the specklegram will diffract light in phase in the direction of the filtering aperture
if their separation is such that the waves diffracted by these point scatterers have a
path difference of integral multiples of λ; that is,

dx sin θ = mλ, m = 0, ±1, ±2, ±3, . . . (7.19)

where dx is the x component of the displacement vector and sin θ = xf/f . Thus, we
obtain

dx = mλf /xf (7.20a)

These areas therefore appear bright in the image, forming bright fringes that are loci
of constant dx. Similarly, when the filtering aperture is placed at yf along the y axis,
we obtain dy:

dy = m′λf /yf (7.20b)

These fringes are loci of constant dy. In other words, the fringes represent the contours
of constant in-plane displacement components, which are separated by incremental
displacements Δdx and Δdy, where

Δdx = λf /xf (7.21a)

Δdy = λf /yf (7.21b)

This is a wholefield method: the fringes are formed over the whole object surface.
In order to obtain dx and dy, we need to know m and m′, and hence regions on the
object where no displacement has taken place. It can also be seen that the sensitivity
of the method is variable, being maximum when the filtering aperture is placed at the
periphery of the diffraction halo; the increase in sensitivity follows the decrease in
the available light for image formation.
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7.7.3 FOURIER FILTERING: MEASUREMENT OF OUT-OF-PLANE DISPLACEMENT

It has been shown that a longitudinal or axial displacement ε of the object results in a
radial displacement of the speckle pattern, Δr = εr/z. The displacement magnitude
ε is obtained by Fourier filtering. The specklegram is illuminated by a parallel beam,
as shown in Figure 7.7c, and an aperture is placed on the optical axis for filtering. A
lens placed just behind the aperture images the specklegram at the observation plane.
All of these point pairs (identical scatterers) will diffract the incident light in phase
at the filtering plane if Δr sin θ = mλ, where sin θ = r/z1 and λ is the wavelength of
light used for filtering (Figure 7.7c). Thus,

Δr sin θ = (εr/z)(r/z1) = mλ

or

εr2/zz1 = mλ (7.22)

This indicates that a circular fringe pattern is observed at the observation plane. The
displacement ε is obtained by measuring the radii of fringes of different orders as
follows:

ε = nλzz1

r2
m+n − r2

m

(7.23)

where rm+n and rm are the radii of the (m + n)th- and mth-order circular fringes,
respectively.

7.8 SPECKLE PHOTOGRAPHY WITH VIBRATING
OBJECTS: IN-PLANE VIBRATION

Let us consider an object that is executing an in-plane vibration with amplitude A(x, y).
The object is imaged on a photographic plate. Owing to the in-plane vibration, a
speckle stretches to a line of length 2A(x, y)m, where m is the magnification. As
mentioned earlier, a sinusoidally vibrating object spends more time at the positions
of maximum displacements. Therefore, the speckle line has a nonuniform brightness
distribution. However, if the recording is made on a high-contrast photographic plate,
the speckle line will have a uniform density after development. We therefore assume
that the speckles are uniformly elongated to 2A(x, y)m. When such a specklegram
(time-average recording) is pointwise-filtered, the halo distribution is modulated by
sinc2(2μmA). The zeros of this function occur where

2μmA = n for n = 0, ±1, ±2, ±3, . . .

or

A(x, y) = nλz/2mxfn (7.24)

where xfn is the position of the nth fringe. From this expression, the amplitude of
vibration at any location on the specklegram can be found.



“DK4217_C007.tex” — page 162[#14] 14/5/2009 20:42

162 Optical Methods of Measurement

In fact, when an object vibrates, the speckles on the regions that are moving smear
out and the contrast of the speckles is reduced. The nodal regions where there is
no movement have unit contrast. Therefore, one observes a low-contrast vibration
mode pattern, with the nodal lines appearing dark. A visual speckle interferometer
was proposed by Burch and later modified by Stetson. This interferometer uses a
reference beam to visualize out-of-plane vibration amplitudes.

7.9 SENSITIVITY OF SPECKLE PHOTOGRAPHY

The halo size is governed by the speckle size, which, in turn, is governed by the
F# of the imaging lens. For the speckle displacement to be measurable, at least one
fringe should be formed within a halo. In other words, the fringe width must be equal
to or less than the halo diameter. Indeed, one fringe will be formed within the halo
when the speckle shifts by an amount equal to its average size. This probably is the
lower limit of the displacement that speckle photography can sense. The upper limit
is also set by the speckle size. When the fringe width becomes equal to the speckle
size, the fringes will not be discernible. In fact, one must choose a fringe width of
approximately 10 times the speckle size for it to be discernible. This therefore sets an
upper limit for speckle displacement measurement. For wholefield filtering, similar
limits apply. The quality of fringes in wholefield filtering is considerably poorer than
in pointwise filtering.

One of the serious drawbacks of speckle photography is that the positions of the
maxima of the fringes in the fringe pattern are shifted owing to nonuniform halo
distribution. The same is true for the minima positions when some background is
present. This effect introduces errors in the measured values of the displacements.
Methods are available to correct for these errors.

7.10 PARTICLE IMAGE VELOCIMETRY

Speckle photography of seeded flows carried out with pulsed lasers or scanned laser
beams provides information about the flow (spatial variation of the velocity of flow—
in fact the velocity of seeds). The technique is known as particle image velocimetry
(PIV). First, a record is made with a short-duration laser pulse so that the motion is
frozen, and then the second exposure is made a short time later. The seeds (particles)
will have moved during this time to new locations depending on their velocities. The
double-exposure record is pointwise-filtered to generate the velocity map.

7.11 WHITE-LIGHT SPECKLE PHOTOGRAPHY

Most objects are good candidates for white-light speckle photography, since the sur-
face structure is quite adequate for this. However, this property is enhanced by coating
the surface with a retro-reflective paint. The images of the embedded glass balls in
retro-reflective paint act as speckles. Deformation studies can therefore be carried
out using white-light speckles based on principles similar to those applied to laser
speckles.
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7.12 SHEAR SPECKLE PHOTOGRAPHY

It is obvious that speckle photography is essentially a tool to measure in-plane dis-
placement or the in-plane component of deformation, since it has very low sensitivity
to the out-of-plane component. It is also used to measure bodily tilts. A stress analyst
is often interested in strain rather than displacement. Strain is obtained from displace-
ment data by numerical differentiation, which is error-prone. However, strain can be
obtained by optical differentiation, that is, by obtaining displacement values at two
closely separated points. With a double-exposure specklegram, this can be achieved
by interrogating it with two parallel-displaced narrow beams. Each beam produces
Young’s-type fringes in the diffraction halo, and the superposition of the two patterns,
from each illumination beam, will generate a moiré pattern, from which strain can be
calculated (Chapter 9). Alternatively, two states of the object can be recorded on two
separate films/plates. During filtering, one plate is displaced with respect to the other,
to introduce shear. Again, a moiré pattern is formed, from which strain is calculated.
Both of these techniques provide a variable shear by varying the beam separation or
specklegram displacement.

When two narrow beams are used for illumination, the diffraction halos are spatially
displaced. For low-angle diffraction, the overlap region may be very small, to provide a
meaningful moiré pattern. On the other hand, when two double-exposure films/plates
are used, the underlying assumption that the object has been identically loaded for
each double-exposure record may be difficult to realize. It is therefore desirable to
record a single-shear double-exposure specklegram. For this purpose, a pair of wedge
plates is used in front of the imaging lens: each wedge plate carries a sheet polarizer.
The transmission axes of the polarizers are crossed. The object is illuminated either
with circularly polarized light or with linearly polarized light with its azimuth at 45◦
to the polarizer axis. A double-exposure record, with object loaded in between, can
be recorded. Interrogation of such a record with a narrow beam will generate a moiré
pattern. The drawback of this method is that it has a fixed shear determined by the
wedge angles. In addition, theYoung’s fringes have a nonuniform intensity, are noisy,

FIGURE 7.8 Moiré pattern due to superposition of two Young’s fringe patterns.
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and are few in number, and hence the moiré fringes are of poor contrast. Figure 7.8
shows a moiré pattern obtained using such an arrangement.

7.13 SPECKLE INTERFEROMETRY

The speckle phenomenon itself is essentially an interference phenomenon. However,
when a reference beam is added to the speckle pattern to code its phase, the technique
is then termed speckle interferometry. Speckle interferometry was first applied to
measure in-plane displacement by Leendertz. The sensitivity of the measurement
could be increased over that of speckle photography, which was limited by the speckle
size. The basic theory was borrowed from holographic interferometry, since the phase
difference introduced by deformation is governed by the same equation, namely,
δ = (k2 − k1) · d. When the object is illuminated with two beams with directions
symmetric with respect to the object normal (also the optical axis) and observation
is made along the optical axis, the arrangement generates fringes that are contours of
constant in-plane displacement. The fringes are called correlation fringes—the reason
for this name will become obvious in later sections.

The schematic of the set-up to measure in-plane displacement is shown in
Figure 7.9. The object is illuminated by two plane waves incident symmetrically
at angles θ and −θ with respect to the optical axis. An image of the object is made
on the recording material, say a photographic plate. The object is deformed, and a
second exposure is made on the same plate. This double-exposure record, on filter-
ing, generates fringes representing the in-plane component along the x direction. The
whole process can be explained mathematically as follows.

Let us consider that the object is illuminated by unit-amplitude plane waves, which
are represented by eikxsin θ and e−ikx sin θ at the plane of the object. The net amplitude
of the waves at the plane of the object is eikxsin θ + e−ikxsin θ. Let the scattering process
from the object be represented by �(x, y), which is a complex function and includes
the surface characteristics. Thus, the field on the object surface just after scattering is

�(x, y)(eikxsin θ + e−ikxsin θ)

–q
z

x

z q

FIGURE 7.9 Configuration for in-plane displacement measurement.
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The amplitude at the image plane is obtained through the superposition integral;
that is,

u(xi, yi) =
∫∫

�(x, y)(eikxsin θ + e−ikxsin θ)h(xi − mx, yi − my) dx dy

= a1(xi, yi)e
iφ1(xi, yi) + a2(xi, yi)e

iφ2(xi, yi) (7.25)

where h(x, y) is the impulse function and m is the magnification of the imaging
lens. a1(xi, yi), φ1(xi, yi), a2(xi, yi), φ2(xi, yi) are the amplitudes and phases of the
speckled waves at the image plane due to each of the illuminating waves. When
the object is displaced by dx in the x direction, the amplitude in the image may be
written as

u′(xi, yi) =
∫∫

�(x + dx, y)(eik(x+dx)sin θ + e−ik(x+dx)sin θ)h(xi − mx, yi − my) dx dy

= a1(xi, yi)e
iφ1(xi, yi) eikdxsin θ + a2(xi, yi)e

iφ2(xi, yi)e−ikdx sin θ (7.26)

This equation has been derived under the tacit assumption that �(x + dx, y) =
�(x, y). This assumption implies that there is no speckle displacement at the object
surface due to the motion and that the surface characteristics do not change over a
distance dx. In fact, there is a speckle displacement, but we assume that it is much
smaller than the speckle size.

Now, we can write the intensities recorded in the two exposures as

I1(xi, yi) = a2
1 + a2

2 + 2a1a2 cos(φ1 − φ2) = a2
1 + a2

2 + 2a1a2 cos φ (7.27a)

I2(xi, yi) = a2
1 + a2

2 + 2a1a2 cos(φ + 2kdx sin θ) (7.27b)

For subsequent analyses of the various techniques, we will be writing the intensity
distribution in the second exposure as

I2(xi, yi) = a2
1 + a2

2 + 2a1a2 cos(φ + δ) (7.28)

where δ is the phase introduced by the deformation. In this case,

δ = 2kdx sin θ = 4π

λ
dx sin θ

Later, we will use different arguments to prove that δ is indeed equal to 2kdx sin θ for
the experimental configuration shown in Figure 7.9. For the present, we mention that
φ1, φ2, a1, a2 are random variables, since �(x, y) is a random variable. Therefore,
φ = φ1 − φ2 is also a random variable.

The total intensity recorded will be

I1 + I2 = 2a2
1 + 2a2

2 + 4a1a2 cos(φ + δ/2) cos(δ/2) (7.29)
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In fact, examination of Equations 7.27a and 7.28 for I1 and I2 reveals that when
δ = 2mπ, the equations are identical—the speckles in the two exposures are fully cor-
related.When δ = (2m + 1)π, the speckles are uncorrelated.This correlation provides
the basis for fringe formation.

It should be noted that the contrast of the fringes is very poor in this arrangement,
mainly because of the very strong granular bias term 2(a2

1 + a2
2). We will discuss

other arrangements in which this bias term has been isolated, thereby improving
the contrast of the fringes. First, let us prove that the phase change δ due to an in-
plane displacement dx is indeed given by 2kdx sin θ. The phase change δ due to a
displacement d can be expressed as

δ = δ2 − δ1 = (k2 − k1) · d − (k2 − k′
1) · d = (k′

1 − k1) · d (7.30)

where d = dxi + dyj + dzk, and k′
1 and k1 are the propagation vectors of the illumi-

nation beams. The equation for the phase difference δ2 = (k2 − k1) · d was derived
in Chapter 5, and is also applicable to speckle interferometry. From the geometry of
the experimental configuration of Figure 7.9, k′

1 and k1 are expressed as

k′
1 = 2π

λ
(sin θi − cos θk) (7.31a)

k1 = 2π

λ
(− sin θi − cos θk) (7.31b)

Thus, the vector k′
1 − k1 = (2π/λ)2 sin θi lies in the plane of the object. Hence,

δ = (k′
1 − k1) · d =

(
2π

λ
2 sin θi

)
· (dxi + dyj + dzk) = 2π

λ
2dx sin θ

The phase δ is thus governed by the in-plane component dx of the displacement d.
Bright fringes are formed when

2π

λ
2dx sin θ = 2mπ

Therefore,

dx = mλ

2 sinθ
(7.32)

The arrangement is sensitive only to the in-plane component of displacement
lying in the plane of the illumination beams. Consecutive in-plane fringes differ by
λ/(2 sin θ). Obviously, the sensitivity can be varied over a very wide range from 0 toλ/2
per fringe by varying the interbeam angle. Furthermore, this particular arrangement
has the following features:

• As can be seen from the theoretical analysis, the contribution of the out-of-
plane displacement component dz has been fully compensated for collimated
illumination. This is due to the fact that both waves suffer equal phase
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changes arising from out-of-plane displacement, and hence the net phase
change is zero.

• The arrangement is not sensitive to the y component dy. However, dy can be
measured by rotating the experimental arrangement through 90◦.

• It offers variable sensitivity.

The disadvantage is that the fringes obtained are of low contrast.

7.14 CORRELATION COEFFICIENT IN SPECKLE
INTERFEROMETRY

The correlation coefficient of two random variables X and Y is defined by

ρXY = 〈XY〉 − 〈X〉〈Y〉
σXσY

(7.33)

where σ2
X = 〈X2〉 − 〈X〉2, σ2

Y = 〈Y2〉 − 〈Y〉2, and the angular brackets indicate the
ensemble average. If X and Y are uncorrelated, then 〈XY〉 = 〈X〉〈Y〉 and the correlation
coefficient is zero, as expected. The correlation coefficient of the random variables
I1(xi, yi) and I2(xi, yi), the intensities recorded in the first and second exposures, is
given by

ρ(δ) = 〈I1I2〉 − 〈I1〉〈I2〉
[〈I2

1 〉 − 〈I1〉2]1/2[〈I2
2 〉 − 〈I2〉2]1/2

(7.34)

where the intensities I1 and I2 are expressed as follows:

I1(x, y) = a2
1 + a2

2 + 2a1a2 cos φ = i1 + i2 + 2
√

i1i2 cos φ (7.35a)

I2(x, y) = i1 + i2 + 2
√

i1i2 cos(φ + δ) (7.35b)

In these expressions, the intensities i1 and i2 refer to the intensities at the image plane
due to individual illuminating beams. Equation 7.34 for the correlation coefficient is
evaluated by noting the following:

• The intensities i1, i2, and the phase φ are independent random variables, and
hence can be averaged separately.

• 〈cos φ〉 = 〈cos(φ + δ)〉 = 0
• 〈i21〉 = 2〈i1〉2, and.

When the intensity values I1 and I2 are substituted into Equation 7.34 for the
correlation coefficient and the averages are taken, we obtain

ρ(δ) = 〈i21〉 + 〈i22〉 + 2〈i1〉〈i2〉 cos δ

(〈i1〉 + 〈i2〉)2 (7.36)

The correlation coefficient depends on the intensities of the beams and the phase
introduced by deformation. If we assume that 〈i1〉 = r〈i2〉, that is, one beam is r
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times stronger than the other, the correlation coefficient takes the simpler form

ρ(δ) = 1 + r2 + 2r cos δ

(1 + r)2
(7.37)

This has a maximum value of unity when δ = 2mπ and a minimum value of
(1 − r)2/(1 + r)2, when δ = (2m + 1)π. The minimum value will be zero when
r = 1, that is, when the average intensities of the beams are equal. The correlation
coefficient then varies between 0 and 1 as the value of δ varies over the record. This sit-
uation is completely at variance with holographic interferometry, where the reference
beam is taken as being stronger than the object beam.

7.15 OUT-OF-PLANE SPECKLE INTERFEROMETER

An interferometer for measuring out-of-plane displacement is shown in Figure 7.10.
This is a Michelson interferometer in which one of the mirrors has been replaced by
the object under study. It therefore has a reference wave that is smooth or specular.
The lens L2 makes an image of the object at the recording plane. The record consists
of an interference pattern between the smooth reference wave and the speckle field
in the image of the object. The second exposure is recorded on the same plate after
the object has been loaded. This double-exposure specklegram (interferogram), when
filtered, yields fringes that are contours of constant out-of-plane displacement. As
before, the intensity distribution in the first exposure is

I1(xi, yi) = a2
1 + r2

0 + 2a1r0 cos(φ1 − φr) = a2
1 + r2

0 + 2a1r0 cos φ (7.38)

 k2 k1

L2

FIGURE 7.10 Configuration for out-of-plane displacement measurement.
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where a1, φ1, φ are random variables. The second exposure records the intensity
distribution given by

I2(xi, yi) = a2
1 + r2

0 + 2a1r0 cos(φ + δ) (7.39)

where the phase difference δ, introduced by the deformation, is given by

δ = (k2 − k1) · d = 2π

λ
2dz

The phase difference depends only on the out-of-plane displacement component dz.
Bright fringes are formed wherever

2π

λ
2dz = 2mπ

or

dz = mλ/2 (7.40)

Thus, consecutive fringes are separated by out-of-plane displacements of λ/2.
Again, the fringes are of low contrast. However, it may be noted that, as a con-
sequence of the imaging geometry and customized configurations, only one of the
components of deformation is sensed, unlike in holographic interferometry, where
the phase difference δ introduced by deformation is invariably dependent on all three
components. Further, the correlation fringes are localized at the plane of the speck-
legram, unlike in holographic interferometry, where the fringe pattern is localized in
space in general.

7.16 IN-PLANE MEASUREMENT: DUFFY’S METHOD

In the method due to Leendertz described earlier, the object is illuminated symmetri-
cally with respect to the surface normal, and observation is made along the bisector
of the angle enclosed by the illuminating beams. This method, which is also called
the dual-illumination, single-observation-direction method, has very high sensitivity
but yields poor-contrast fringes.

It is also possible to illuminate the object along one direction and make an obser-
vation along two different directions symmetric with respect to the optical axis, which
is also along the local normal to the object. This method is due to Duffy, and was
developed in the context of moiré gauging. It is also known as the single-illumination,
dual-observation-direction method. Figure 7.11a shows a schematic of the experimen-
tal arrangement. The object is illuminated at an angle θ, and a two-aperture mask is
placed in front of the lens. The apertures enclose an angle of 2α at the object distance.
The lens makes an image of the object via each aperture—these images are perfectly
superposed.

Each wave passing through the aperture generates a speckled image with a speckle
size λb/D, where D is the aperture size. These waves are superposed obliquely, and
hence each speckle is modulated by a fringe pattern when recorded. The fringe spacing
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FIGURE 7.11 (a) Duffy’s two-aperture arrangement. (b) Modulation of a speckle.

in the speckle is λb/p, where p is the separation between the two apertures. This is
shown in Figure 7.11b. When the object is deformed, these fringes shift in the speckle.
When the deformation is such that a fringe moves by one period or a multiple thereof,
it is then exactly superposed on the earlier recorded position: the fringe contrast is
then high. The region will diffract strongly on filtering, and hence these areas will
appear bright. On the other hand, if the deformation is such that the fringe pattern
moves by half a fringe width or an odd multiple of a half-period, the new pattern will
fall midway in the earlier recorded pattern, resulting in almost complete washout of
the fringe pattern. These regions will not diffract, or will diffract poorly, and hence
will appear dark on filtering. Therefore, bright and dark fringes correspond to regions
where the displacement is an integral multiple of λb/p = λ/(2 sin α) and an odd
integral multiple of λb/2p, respectively.

We write the amplitudes of the waves via each aperture as

a11 = a0 eiφ11 (7.41a)

a12 = a0 ei(φ12+2πβx) (7.41b)
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where β = p/λb is the spatial frequency of the fringe pattern in the speckle pattern.
The intensity recorded in the first exposure is

I1(x, y) = |a11 + a12|2 = a2
0 + a2

0 + 2a2
0 cos(φ1 + 2πβx), φ1 = φ12 − φ11 (7.42)

Similarly, when the object is loaded, the waves, acquire additional phase changes δ1
and δ2, respectively; that is, they can be expressed as

a21 = a0 ei(φ11+δ1) (7.43a)

a22 = a0 ei(φ12+2πβx+δ2) (7.43b)

The intensity distribution recorded in the second exposure is then

I2(x, y) = |a21 + a22|2 = a2
0 + a2

0 + 2a2
0 cos(φ1 + 2πβx + δ) (7.44)

where δ = δ2 − δ1 is the phase difference introduced by the deformation. The
specklegram is now ascribed a transmittance t(x, y), given by

t(x, y) = t0 − βT(I1 + I2) (7.45)

where β is a constant and T the exposure time. Information about the deformation is
extracted by filtering.

7.17 FILTERING

The specklegram is placed in a set-up as shown in Figure 7.12 and is illuminated by
a collimated beam, say, a unit-amplitude wave. The field at the FT plane is �[t(x, y)].
This consists of a halo distribution with a very strong central peak, as shown in the
figure. Owing to the grating-like structure in each speckle, the halo distribution is
modified: it has a central halo (zero order) and ±1-order halos. The zero order arises
as a consequence of the terms a2

0 + a2
0, which do not carry any information. Since

the speckle size is now larger, owing to the smaller apertures used for imaging, the
halo size (zero-order halo) shrinks. The filtering is done by choosing any one of the
first-order halos. A fringe pattern of almost unit contrast is obtained, since the halo
(zero order), which carries no information, has been isolated.

7.17.1 FRINGE FORMATION

The phase differences δ2 and δ1, due to the deformation, experienced by the waves
passing through the apertures can be expressed as

δ2 = (k′
2 − k1) · d

δ1 = (k2 − k1) · d

Hence, the phase difference δ = δ2 − δ1 is given by

δ = (k′
2 − k2) · d (7.46)
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Specklegram Output

Halo distribution

FIGURE 7.12 Wholefield filtering of a specklegram recorded with Duffy’s arrangement.

This phase difference generates an interference pattern. Since the illumination and
observation beams lie in the (x, z) plane, the wave vectors k′

2 and k2 can be
expressed as

k′
2 = 2π

λ
(sin αi + cos αk)

k2 = 2π

λ
(−sin αi + cos αk)

Thus,

δ = (k′
2 − k2) · d = 2π

λ
2dx sin α

Bright fringes are formed wherever

2π

λ
2dx sin α = 2mπ

or

dx = mλ

2 sin α
(7.47)

This result is similar to that obtained earlier for the Leendertz method, except that the
angle θ is replaced by the angle α. Obviously, α cannot take very large values—the
magnitude of α is determined by the lens aperture or by F#. Therefore, the method has
intrinsically poor sensitivity.At the same time, the speckle size is very large compared
with that in the Leendertz method, and hence the range of in-plane displacement
measurement is large. The method yields high-contrast fringes owing to the removal
of the unwanted speckled field by the grating-like structure formed during recording.

It is indeed very simple and easy to extend Duffy’s method to measure both
components of the in-plane displacement simultaneously. We describe here two con-
figurations. In one, an aperture configuration as shown in Figure 7.13a is used.
The apertures are located at the four corners of a square. In another configuration,
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FIGURE 7.13 (a, b) Aperture configurations. (c, d) Corresponding halo distributions.

shown in Figure 7.13b, only three apertures are used: these apertures lie on the ver-
tices of a right-angled triangle. The corresponding halo distributions at the FT plane
are shown in Figure 7.13c and 7.13d, respectively.

Filtering through the halos indicated as dx or dy yields the component dx or dy. It is
thus seen that both components, either with the same sensitivity (when the apertures
are placed at equal distances along the x and y directions) or with different sensitivities
(when the aperture separations are different) can be obtained from a single double-
exposure specklegram.

Leendertz’s and Duffy’s methods can be combined: the object is illuminated by
symmetric collimated beams and the specklegram is recorded using an apertured
lens. This combination extends the range and sensitivity of in-plane displacement
measurement from a small value dictated by Leendertz’s method to a large value
governed by Duffy’s method. On filtering the double-exposure specklegram, both
systems of fringes are observed simultaneously.

7.18 OUT-OF-PLANE DISPLACEMENT MEASUREMENT

A schematic of a configuration to measure the out-of-plane component of deformation
is shown in Figure 7.14. The object is illuminated by collimated beam at an angle θ.
A two-aperture mask is placed in front of the imaging lens. One of the apertures carries
a ground-glass plate, which is illuminated by the unexpanded laser beam to generate
a diffuse reference wave. The object is imaged via the other aperture. At the image
plane, an interference pattern between the diffuse reference wave and the speckled
object image is recorded. This constitutes the first exposure. The object is loaded, and



“DK4217_C007.tex” — page 174[#26] 14/5/2009 20:42

174 Optical Methods of Measurement

k1

k2

x

z

q

FIGURE 7.14 Configuration for out-of-plane displacement measurement when θ = 0.

the second exposure is made on the same plate. This constitutes a double-exposure
specklegram.

On filtering via one of the first-order halos, a fringe pattern depicting contours
of constant out-of-plane displacement is obtained. This can be seen as follows. The
phase difference δ due to deformation is again given by

δ = (k2 − k1) · d

where

k2 = 2π

λ
k, k1 = 2π

λ
(−sin θi + cos θk)

Therefore,

δ = 2π

λ
[sin θ dx + (1 + cos θ)dz] (7.48)

The arrangement senses both components, dx and dz. However, when the object is
illuminated normally (i.e., θ = 0), the phase difference δ = (2π/λ)2dz. The phase
difference depends only on the out-of-plane component. Bright fringes are formed
wherever

2π

λ
2dz = 2mπ

or

dz = mλ/2 (7.49)

Consecutive bright fringes are separated by λ/2 in out-of-plane displacement changes.

7.19 SIMULTANEOUS MEASUREMENT OF OUT-OF-PLANE
AND IN-PLANE DISPLACEMENT COMPONENTS

By a judicious choice of aperture configuration, it is possible to obtain in-plane
and out-of-plane displacement components from a single double-exposure speckle-
gram. One such aperture configuration, along with the halo distribution, is shown
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FIGURE 7.15 Simultaneous measurement of in-plane and out-of-plane displacement com-
ponents: (a) aperture configuration; (b) halo distribution.

in Figure 7.15. It can be seen that the halo AB or AB−1 yields the y component of
the in-plane displacement, and the halo BC1 or BC−1 yields the x component. The
halos BG or BG−1, or AG1 or AG−1, or CG1 or CG−1 yield the z component. Obvi-
ously, all three components of the displacement vector can be retrieved from a single
double-exposure specklegram. In fact, redundancy is built into the arrangement.

7.20 OTHER POSSIBILITIES FOR APERTURING THE LENS

In addition to obtaining all components of the deformation vector from a single
double-exposure specklegram, aperturing can be used to multiplex the information
record; that is, several states of the object can be stored and the information retrieved
from the specklegram. The multiplexing can be done in two ways: (i) frequency
modulation, where the apertures are shifted laterally on the lens after each exposure;
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(ii) θ-multiplexing (modulation), where the apertures are shifted angularly. These
methods can also be combined. The amount of information that can be recorded
and retrieved depends on lens size, aperture size, the spatial frequency content of
the object, and the dynamic range of the recording material. In some experiments,
in addition to measurement of displacement components, slope information is also
recorded and retrieved later.

7.21 DUFFY’S ARRANGEMENT: ENHANCED SENSITIVITY

The sensitivity of Duffy’s arrangement is limited by lens aperture. This limitation,
however, can be overcome by modification of the recording set-up, as shown in
Figure 7.16. The object is illuminated normally, and is observed along two symmetric
directions: the beams are folded and directed to a pair of mirrors and then onto a
two-aperture mask in front of the lens. The image of the object is thus made via these
folded paths.

In this arrangement, the speckle size is governed by the aperture diameter (as in
the case with the other methods); the fringe frequency is determined by the aperture
separation; and the sensitivity is governed by the angle θ, which can be varied over a
large range, and is not restricted by the lens aperture.

The phase difference δ is given by

δ = δ2 − δ1 = δ = (k2 − k1) · d − (k′
2 − k1) · d

= (k2 − k′
2) · d = 2π

λ
2dx sin θ (7.50)

The in-plane fringes are extracted by filtering using one of the first-order halos. The
technique introduces perspective errors, and also shear when large objects are studied
at larger angles. The perspective error, however, can be reduced using a pair of prisms
to decrease the convergence.

k′2

k1

k2

x

z

–θ
θ

FIGURE 7.16 Configuration for in-plane measurement with enhanced sensitivity.
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7.22 SPECKLE INTERFEROMETRY—SHAPE
MEASUREMENT/CONTOURING

The following methods are available for contouring using speckle interferometry:

• Change of direction of the illumination beam between exposures
• Change of wavelength between exposures: dual-wavelength technique
• Change of refractive index of the surrounding medium between exposures:

dual-refractive-index technique
• Rotation of the object between exposures in an in-plane sensitive configu-

ration

These methods will be discussed in Section 7.28, where we present a technique that
allows the contour fringes to be obtained in real time.

7.23 SPECKLE SHEAR INTERFEROMETRY

So far, we have discussed techniques that measure the displacement components
only. As mentioned earlier, a stress analyst is usually interested in strains rather than
displacements. The strain is obtained by fitting the displacement data numerically and
then differentiating it. This procedure could lead to large errors. Therefore, methods
have been investigated that can yield fringe patterns representing the derivatives of the
displacement. This is achieved with speckle shear interferometry. Since all speckle
techniques for displacement measurement use subjective speckles (i.e., image plane
recordings), we restrict ourselves to shear at the image plane. The shear methods are
grouped under the five categories listed in Table 7.1.

7.23.1 THE MEANING OF SHEAR

Shear essentially means shift. When an object is imaged via two identical paths,
as in a two-aperture arrangement, the images are perfectly superposed; there is no
shear, even though there are two images. Since the imaging is via two independent
paths, the two images can be manipulated independently. In linear shear, one image is

TABLE 7.1
Shear Methods Used in Speckle Interferometry

Shear Types Phase Difference Leading to Fringe
Formation

Lateral shear or linear shear δ(x + Δx, y + Δy) − δ(x, y)
Rotational shear δ(r, θ + Δθ) − δ(r, θ)

Radial shear δ(r ± Δr, θ) − δ(r, θ)
Inversion shear δ(x, y) − δ(−x, −y)
Folding shear δ(x, y) − δ(−x, y): folding about y axis

δ(x, y) − δ(x, −y): folding about x axis
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laterally shifted in any desired direction by an appropriate amount. In interferometry,
one image acts as a reference for the other, and hence there is no need to supply an
additional reference wave. With shear, we compare the response of an object to the
external agencies at any point with that of a shifted point.

In rotational shear, one image is rotated, usually about the optical axis, by a small
angle with respect to the other image. In radial shear, one image is either radially
contracted or radially expanded with respect to the other image. The inversion shear
allows a point at (x, y) to be compared with another point at (−x, −y). This is equiv-
alent to a rotational shear of π. In folding shear, a point is compared with its mirror
image: the image may be taken about the y axis or the x axis.

7.24 METHODS OF SHEARING

One of the most commonly used methods of shearing employs the Michelson inter-
ferometer, where the object is seen via two independent paths, OABAD and OACAD,
as shown in Figure 7.17a. When the mirrors M1 and M2 are normal to each other, and
at equal distances from A, the two images are perfectly superposed. Tilting one of
the mirrors, as shown, displaces one image in the direction of the arrow: the images

q
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FIGURE 7.17 Shearing with (a) a Michelson interferometer and (b) Duffy’s arrangement
with a wedge.
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are linearly separated. A detailed analysis of this arrangement reveals that a large
spherical aberration is introduced owing to the use of a beam-splitting cube as the
beams travel in glass a distance of three times the size of the cube.

–a
k2

k'2

k1 b
x

z

Shear 

(a)

k2

k'2

k1x

z

(b)

k2

k'2

k1 b
x

z

Dove prism rotated by Df/2

Image rotated
by Df

(c)

k2

k'2

k1 b
x

z

Image rotated
by 180°

Dove prism rotated by 90°

(d)

q a

–a

–a

q

q

a

a

–a

q
a

FIGURE 7.18 Shearing methods for (a) lateral shear, (b) radial shear, (c) rotational shear,
and (d) inversion shear.
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All of the shear methods described in Table 7.1 can be conveniently implemented
when an aperture mask is placed in front of an imaging lens. For linear shear, a pair of
plane parallel plates, wedges (Figure 7.17b), or a biprism have been used. Shearing
has also been done with gratings. If the imaging lens is cut into two halves that can
be translated in the lens own plane or along the axis, it makes an excellent shearing
device: both functions of shearing and imaging are performed by the same device.
In fact, a diffractive optical element can be designed that performs both functions of
imaging and shearing. Figure 7.18 shows the schematics of introducing various shear
types using an aperture mask and additional optical components.

We now present two configurations based on the Michelson interferometer that
can be used to introduce both lateral shear and folding shear. Figure 7.19a shows a
conventional arrangement except that the mirrors are replaced by right-angled prisms.
Lateral shear is introduced by translation of one of the prisms. The configuration
shown in Figure 7.19b is used for folding shear. It uses only one right-angled prism.
Depending on the orientation of the prism, folding about the x or the y axis can be
achieved.

7.25 THEORY OF SPECKLE SHEAR INTERFEROMETRY

As pointed out earlier, in shear interferometry, a point on the object is imaged as
two points or two points on the object are imaged as a single point. One therefore
obtains either object plane shear or image plane shear: these are related through the
magnification of the imaging lens.

Let a1 and a2 be the amplitudes at any point on the image plane due to two
points (xo, yo) and (xo + Δxo, yo + Δyo) at the object plane. The intensity distribution
recorded at the image plane is given by

I1(x, y) = a2
1 + a2

2 + 2a1a2 cos φ, φ = φ2 − φ1 (7.51a)

After the object has been loaded, the deformation vectors at the two points are rep-
resented by d(xo, yo) and d(xo + Δxo, yo + Δyo), respectively. Therefore, the waves
from these two points arrive at the image point with a phase difference δ = δ2 − δ1.
The intensity distribution in the second exposure can therefore be expressed as

I2(x, y) = a2
1 + a2

2 + 2a1a2 cos(φ + δ), δ = δ2 − δ1 (7.51b)

Lateral shear
Folding shear

(a) (b)

FIGURE 7.19 Michelson interferometer for (a) lateral shear and (b) folding shear.
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The total intensity recorded is I1(x, y) + I2(x, y), and hence the amplitude transmit-
tance of the double-exposure specklegram is

t(x, y) = t0 − βT [I1(x, y) + I2(x, y)] (7.52)

On filtering, a fringe pattern is obtained representing the derivatives of the displace-
ment components, as will be shown later.

7.26 FRINGE FORMATION

7.26.1 THE MICHELSON INTERFEROMETER

The phase difference δ can be expressed, assuming shear only along the x direction
(Figure 7.17a), as

δ = (k2 − k1) · d(xo + Δxo, yo)(k2 − k1) · d(xo, yo)

≈ (k2 − k1) · ∂d
∂x

Δxo

(7.53)

Now, substituting

k2 = 2π

λ
k, k1 = 2π

λ
(− sin θi − cos θk)

into Equation 7.53, we obtain

δ ≈ 2π

λ

[
sin θ

∂dx

∂x
+ (1 + cos θ)

∂dz

∂x

]
Δxo (7.54)

Bright fringes are formed wherever

sin θ
∂dx

∂x
+ (1 + cos θ)

∂dz

∂x
= mλ

Δxo
, m = 0, ±1, ±2, ±3, . . . (7.55)

The fringe pattern has contributions from both the strain ∂dx/∂x and the slope ∂dz/∂x.
However, when the object is illuminated normally (i.e., θ = 0), the fringe pattern
represents a partial x-slope pattern only; that is,

∂dz

∂x
= mλ

2Δxo
(7.56)

The fringe pattern corresponding to partial y-slope ∂dz/∂y is obtained when a shear
is applied along the y direction.
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7.26.2 THE APERTURED LENS ARRANGEMENT

The phase difference δ can again be expressed, assuming shear only along the x
direction (Figure 7.17b), as

δ = (k2 − k1) · d(xo + Δxo, yo) − (k′
2 − k1) · d(xo, yo)

≈ (k2 − k1) · d(xo, yo) + (k2 − k1) · ∂d
∂x

Δxo − (k′
2 − k1) · d(xo, yo)

≈ (k2 − k′
2) · d(xo, yo) + (k2 − k1) · ∂d

∂x
Δxo

δ ≈ 2π

λ
2dx sin α + 2π

λ

[
sin θ

∂dx

∂x
+ (1 + cos θ)

∂dz

∂x

]
Δxo (7.57)

Comparison with the expression for the Michelson interferometer reveals that there
is an in-plane component-dependent term in addition to the usual expression. This
term arises owing to the two apertures separated by a distance—an arrangement
that has been shown to be inherently sensitive to the in-plane component. An inter-
esting aspect of aperturing of a lens, as has been pointed out earlier, is its ability
to measure simultaneously in-plane and out-of-plane displacement components and
their derivatives. Figure 7.20 shows photographs of out-of-plane displacement, partial

(a)

(b) (c)

FIGURE 7.20 Interferograms from a double-exposure specklegram: (a) out-of-plane dis-
placement fringe pattern; (b) partial x-slope fringe pattern; (c) partial y-slope fringe pattern.
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FIGURE 7.21 An experimental arrangement in shear interferometry that is insensitive to
in-plane displacement.

x-slope, and partial y-slope fringe patterns of a defective pipe obtained from the same
double-exposure specklegram.

7.27 SHEAR INTERFEROMETRY WITHOUT INFLUENCE
OF THE IN-PLANE COMPONENT

It has been shown earlier that shear interferometry performed with an aperture mask
in front of the imaging lens always yields a fringe pattern that is due to the combined
effect of the in-plane displacement component and the derivatives of the displace-
ment. At the same time, it is desirable to have an aperture mask for obtaining
high-contrast fringe patterns. In order to retain this advantage and eliminate the in-
plane displacement-component sensitivity, the configuration is modified as shown in
Figure 7.21.

The object is illuminated normally and viewed axially. The object beam is divided
and arranged to pass through the apertures to form the two images. Shear is introduced
by placing a wedge plate in front of an aperture. It could just as well be introduced
by tilting any one of the mirrors M1, M2, or M3. The mirror combination M2, M3
compensates for any extra path difference. Fringe formation is now governed by

∂dz

∂x
= mλ

2Δxo
(7.58)

This arrangement gives a pure partial x-slope fringe pattern.

7.28 ELECTRONIC SPECKLE PATTERN INTERFEROMETRY

The speckle size in speckle interferometry can be controlled by the F# of the imaging
lens. Further, the size can be doubled by adding a reference beam axially. It is thus
possible to use electronic detectors, which have limited resolution, for recording
instead of photographic emulsions. The use of electronic detectors avoids the messy
wet development process. Further, the processing is done at video rates, making the
technique almost real-time. Photographic emulsions, as mentioned earlier, integrate
the light intensity falling on them. In speckle techniques with photographic recording,
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the two exposures were added in succession, and then techniques were developed to
remove the undesired DC component. In electronic detection, the two exposures are
handled independently, and subtraction removes the DC component. Phase-shifting
techniques are easily incorporated, and hence deformation maps can be presented
almost in real-time. The availability of fast PCs and high-density CCD detectors
makes the technique of electronic detection very attractive. In fact, electronic speckle
pattern interferometry (ESPI) is an alternative to holographic interferometry, and
perhaps will replace it in industrial environments.

It might be argued that all of the techniques discussed under speckle interferometry
and speckle shear interferometry can be adopted simply by replacing the recording
medium by an electronic detector. However, this is not the case, since the resolution of
electronic detectors is limited to the range of 50–100 lines/mm, and hence to speckle
sizes in the range of 10–20 μm are desired.

7.28.1 OUT-OF-PLANE DISPLACEMENT MEASUREMENT

Figure 7.22 shows one of several configurations used for measuring the out-of-plane
component. The reference beam is added axially such that it appears to emerge from
the center of the exit pupil of the imaging lens. The speckle size is matched with the
pixel size by controlling the lens aperture. The intensities of both the object and the
reference beams at the CCD plane are adjusted to be equal. The first frame is stored
in the frame-grabber, and the second frame, captured after loading of the object, is
subtracted pixel by pixel. The difference signal is rectified and then sent to the monitor
to display the fringe pattern.

This procedure can be described mathematically as follows. The intensity recorded
in the first frame is given by

I1(x, y) = a2
1(x, y) + a2

2(x, y) + 2a1(x, y)a2(x, y) cos φ, φ = φ2 − φ1 (7.59a)

where we have taken a speckled reference wave. The output of the detector is assumed
to be proportional to the intensity incident on it. The intensity recorded in the second

Aperture
Lens

BS

CCD

Reference

Object

x
zy

PZT

FIGURE 7.22 A configuration for electronic speckle pattern interferometry (ESPI). BS,
beam-splitter.
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frame is

I2(x, y) = a2
1(x, y) + a2

2(x, y) + 2a1(x, y)a2(x, y) cos(φ + δ) (7.59b)

where the phase difference δ introduced by deformation is given by δ = (k2 − k1) · d.
The subtracted signal I2 − I1 will generate a voltage signal ΔV as follows:

ΔV ∝ I2 − I1 = 2a1(x, y)a2(x, y)[cos(φ + δ) − cos φ]

= 4a1(x, y)a2(x, y) sin

(
φ + δ

2

)
sin

δ

2
(7.60)

The brightness on the monitor will be proportional to the voltage signal ΔV (difference
signal) from the detector, and hence

B = 4℘a1(x, y)a2(x, y) sin

(
φ + δ

2

)
sin

δ

2
(7.61)

where ℘ is the constant of proportionality. As δ varies, sin(δ/2) will vary between
−1 and 1. The negative values of sin(δ/2) will appear dark on the monitor, resulting
in loss of signal. This loss is avoided by rectifying the signal before it is sent to the
monitor. The brightness B is thus given bys

B = 4℘a1(x, y)a2(x, y)

∣∣∣∣sin

(
φ + δ

2

)
sin

δ

2

∣∣∣∣ (7.62)

The brightness will be zero when δ/2 = mπ, that is, δ = 2mπ, with m =
0, ±1, ±2, . . . . This means that the speckle regions in the speckle pattern that are
correlated will appear dark. This is due to the difference operation. Also as a result of
this operation, undesirable terms are eliminated. Phase-shifting is easily incorporated
by reflecting the reference wave from a PZT-mounted mirror.

7.28.2 IN-PLANE DISPLACEMENT MEASUREMENT

In-plane displacement can be measured using the arrangement due to Leendertz.
The sensitivity can be varied by changing the interbeam angle. Unfortunately, the
configurations based on aperturing the lens do not work in ESPI, because the fringe
pattern generated by the pair of apertures is not resolved by the CCD camera.

7.28.3 VIBRATION ANALYSIS

ESPI is an excellent tool for studying vibration modes of an object. It can be used
to measure extremely small, moderate, and large vibration amplitudes. The arrange-
ment used is the one suited for out-of-plane displacement measurement. The object
is excited acoustically or by directly attaching PZT that is run through a function
generator, thereby scanning a large frequency range over which the response of the
object can be studied. Since the video rates are very slow compared with the resonance
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frequencies, the pattern observed on the monitor represents time-average fringes. The
intensity distribution is given by

[
J0

(
4π

λ
A(x, y)

)]2

where A(x, y) is the amplitude of vibration. However, when the reference wave is also
modulated at the frequency of object excitation, the intensity distribution in the fringe
pattern can be expressed as

I(x, y) ∝
[

J0

(
4π

λ

{
[A(x, y)]2 + a2

r − 2A(x, y)ar cos(φ − φr)
}1/2

)]2

(7.63)

where ar and φr are the amplitude and phase of the reference mirror. Obviously,
when the object and reference mirror vibrate in phase, the intensity distribution is
proportional to [

J0

(
4π

λ
[A(x, y) − ar]

)]2

The zero-order fringe now occurs where A(x, y) = ar . Therefore, large amplitudes
of vibration can be measured. However, if very small vibration amplitudes are to
be measured, the frequency of reference-wave modulation is taken slightly different
to that of the object vibration, but still within the video frequency. Because of this,
the phase of the reference wave varies with time. The intensity distribution is now
proportional to

[
J0

(
4π

λ

{[
A(x, y)

]2 + a2
r − 2A(x, y)ar cos [φ − φr(t)]

}1/2
)]2

Since the phase φr(t) varies with time, the argument of the Bessel function varies
between A(x, y) + ar and A(x, y) − ar, and hence the intensity on the monitor will
fluctuate. However, if A(x, y) = 0, then the argument of the Bessel function remains
constant and there is no fluctuation or flicker. Only at those locations where the
flicker occurs will the amplitude of vibration be nonzero, thereby allowing very small
vibration amplitudes to be detected.

7.28.4 MEASUREMENT ON SMALL OBJECTS

EPSI has been used for studying the performance of a variety of objects, ranging
in size from large to small. However, there is considerable interest in evaluating
the performance of small size objects particularly microelectromechanical systems
(MEMS) in real time. MEMS are the result of the integration of mechanical ele-
ments, sensors, actuators, and electronics on a common silicon substrate through
microfabrication technology. They are used in a number of fields, including telecom-
munications, computers, aerospace, automobiles, biomedical, and micro-optics. ESPI
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for the inspection and characterization of MEMS should not alter the integrity or the
mechanical behavior of the devices. Since MEMS have an overall size up to few
millimeters, a high-spatial-resolution measuring system is required; that is, a long-
working-distance microscope with a combination of different magnification objective
lenses is incorporated in ESPI. A schematic of a configuration for microscopic ESPI
is shown in Figure 7.23a. Instead of a normal camera lens for imaging, a long-
working-distance microscope is used for imaging on the CCD array. Phase-shifting
is accomplished by a PZT-driven mirror. The MEMS device chosen for study in this
example is a pressure transducer. The diaphragm is normally etched out in silicon; the
deflection of the diaphragm due to application of pressure is measured using Wheat-
stone circuitry. However, the deflection profile can be measured using ESPI. ESPI is,
in fact, used to calibrate the pressure transducer. Figure 7.23b–d show the results of
measurement when pressure is applied to the sensor in between two frames captured
by a CCD array camera. Figure 7.23e shows the deflection profile of the pressure
sensor.

7.28.5 SHEAR ESPI MEASUREMENT

Again, only the Michelson-interferometer-based shear configurations can be used
in ESPI. Other methods of shearing, such as aperture masks with wedges, produce
fringes in speckles that are too fine to be resolved by a CCD detector. As mentioned
earlier, the fringe pattern carries information about the derivatives of the in-plane and
out-of-plane components. This can be seen from the expression

δ ≈ 2π

λ

[
sin θ

∂dx

∂x
+ (1 + cos θ)

∂dz

∂x

]
Δxo

where θ is the angle that the illumination beam makes with the z axis. Obviously, pure
partial slope fringes are obtained when θ = 0.

When an in-plane-sensitive configuration is used and shear ESPI is performed, it is
possible to obtain both strain and partial slope fringe patterns. Assuming illumination
by one beam at a time, we can express the phase difference introduced by deformation
in a shear ESPI set-up as

δ1 ≈ 2π

λ

[
sin θ

∂dx

∂x
+ (1 + cos θ)

∂dz

∂x

]
Δxo

δ2 ≈ 2π

λ

[
− sin θ

∂dx

∂x
+ (1 + cos θ)

∂dz

∂x

]
Δxo

Obviously, when we subtract these two expressions, we obtain strain fringes, and if
we add them, we obtain partial slope fringes.

7.29 CONTOURING IN ESPI

All of the contouring methods discussed in Chapter 6 (Section 6.1.8) can be easily
incorporated in ESPI. We give a brief account of these methods and show how they
can be adopted in ESPI.
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FIGURE 7.23 (a) Schematic of an ESPI system for studying small objects. (b) Correla-
tion fringes. (c) Unwrapped fringes. (d) Wrapped phase. (e) Deflection profile of the sensor.
(Courtesy of Dr N. Krishna Mohan, IIT Madras.)

7.29.1 CHANGE OF DIRECTION OF ILLUMINATION

The object is illuminated by a diverging wave from a point source and the usual ESPI
set-up is used. The first frame is grabbed and stored. The illumination point source
is shifted laterally slightly so as to change the direction of illumination. The second
frame captured is now subtracted from the stored frame, and the contour fringes are
displayed on the monitor. The contour interval is given by

λL

2 sin θΔs
= λ

2 sin θΔφ
(7.64)
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where Δs is the lateral shift of the point source that causes an angular shift of Δφ and
L is the distance between the point source and object plane.

7.29.2 CHANGE OF WAVELENGTH

The dual-wavelength method requires two sources of slightly different wavelength or
a single source that can be tuned. Two frames are grabbed and subtracted, each frame
with one of the wavelengths of light. The true depth contours separated by Δz are
generated by this method, where the separation Δz is given by

Δz = λeff/2 = λ1λ2

2 |λ1 − λ2| (7.65)

where λeff is the effective (synthetic) wavelength.

7.29.3 CHANGE OF MEDIUM SURROUNDING THE OBJECT

Here, the medium surrounding the object is changed between exposures. Subtraction
yields true depth contours. In fact, the method is equivalent to the dual-wavelength
method, since the wavelength in the medium changes when its refractive index is
changed. We can thus arrive at the same result by writing the wavelength in terms of
the refractive index and the vacuum wavelength. The contour interval Δz is given by

Δz = λ

2 |n1 − n2| = λ

2Δn
(7.66)

Heres, Δn is the change in refractive index when one medium is replaced by the other.

7.29.4 TILT OF THE OBJECT

This is a new contouring method, and is applicable to speckle interferometry only. In
this method, an in-plane sensitive configuration is used, that is, Leendertz’s configu-
ration. The object is rotated by a small amount between exposures. This converts the
depth information, due to rotation, into an in-plane displacement to which the set-up
is sensitive. The depth contour interval Δz is given by

Δz = λ

2 sin θ sin Δφ
≈ λ

2 sin θΔφ
(7.67)

where 2θ is the interbeam angle of the illumination waves and Δφ is the angle of
rotation. Several modifications of this technique have been published.

7.30 SPECIAL TECHNIQUES

7.30.1 USE OF RETRO-REFLECTIVE PAINT

One of the features of speckle techniques is that they can be performed with sur-
faces without any treatment. However, treatment of the surfaces does help in several
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FIGURE 7.24 In-plane displacement measurement with enhanced sensitivity.

cases: for example, coating a dark surface with white paint improves the contrast of
fringes. However, when a retro-reflective paint is used, it is possible to essentially
enhance the sensitivity of in-plane measurement by a factor of two. The sensitivity
remains practically unchanged for out-of-plane displacement measurements. Fig-
ure 7.24 shows a schematic of the experimental arrangement to measure the in-plane
displacement component.

It can easily be shown that the phase change introduced due to deformation can
be written as

δ = 2π

λ
4dx sin θ

This shows that the sensitivity is enhanced by a factor of two. It can be seen that this
arrangement can also be used for shear ESPI. The shear is introduced by tilting one
of the mirrors. The phase difference introduced is given by

δ2 ≈ 2π

λ

[
4dx sin θ + 2

(
sin θ

∂dx

∂x
+ cos θ

∂dz

∂x

)
Δxo

]
(7.68)

It can be seen that there is increased sensitivity for the in-plane derivative but almost
no change of sensitivity for the out-of-plane displacement derivative.

7.31 SPATIAL PHASE-SHIFTING

It has been pointed out that if the object wave changes during the time interval required
for temporal phase shifting, the results of such a measurement are likely to be grossly
erroneous. In such a situation, one uses spatial phase-shifting where the information
is extracted from a single interferogram. This requires the presence of carrier fringes.
Fortunately, these can easily be introduced in Duffy’s set-up. The fringe period can
also be varied. Moreover, it has been shown that the sensitivity of Duffy’s config-
uration can also be increased. Therefore, this arrangement is best suited for spatial
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phase-shifting. It has been used to carry out spatial phase-shifting for measuring
in-plane displacement, out-of-plane displacement, and shear measurement, as well as
for contouring.
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8 Photoelasticity

So far, we have described techniques that are based on interference or diffraction of
light, and even on the geometrical theory of light. The phenomena of interference and
diffraction are manifestations of wave nature, and hence are not peculiar to light alone.
On the other hand, light falls in a very small portion of a very wide electromagnetic
spectrum. Electromagnetic waves are transverse waves: the electric and magnetic
field vectors are orthogonal and vibrate perpendicular to the direction of propagation
in free space or in an isotropic medium. In fact, the electric field vector E, magnetic
field vector B, and propagation vector form an orthogonal triplet. Photo effects, such
as vision and recording of images on a photographic emulsion, are attributable to E,
and hence when dealing with light, we shall be concerned only with this field vector
and not with B.

Let us consider a plane wave propagating along the z direction, with the electric
vector confined to the ( y, z) plane. The tip of the electric vector describes a line
in the ( y, z) plane as the wave propagates. The ( y, z) plane is called the plane of
vibration and the (x, z) plane the plane of polarization. Such a wave is called a plane
polarized wave. The light emitted by an incandescent lamp or a fluorescent tube is not
plane polarized, since the waves emitted by the source, although plane polarized, are
randomly oriented. Such a wave is called unpolarized or natural light. We can obtain
polarized light from unpolarized light. This will be discussed in Section 8.4.

8.1 SUPERPOSITION OF TWO-PLANE POLARIZED WAVES

Let us consider two orthogonally polarized plane waves propagating in the z direction:
in one wave, the E vector is vibrating along the y direction and the other along the x
direction. These waves are described as follows:

Ey(z; t) = E0y cos
(
ωt − kz + δy

)
(8.1)

Ex(z; t) = E0x cos(ωt − kz + δx) (8.2)

where δy and δx are the phases of the waves. These waves satisfy the wave equation.
Owing to the superposition principle, the sum of the waves will also satisfy the wave
equation. In general, a wave will have both x and y components and can be written as

E(z; t) = iEx(z; t) + jEy(z; t) (8.3)

201
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We wish to find out what track the tip of the electric vector traces when the waves
are superposed. To do this, we introduce a variable τ = ωt − kz and express the plane
waves as

Ey(z; t) = E0y
(
cos τ cos δy − sin τ sin δy

)
Ex(z; t) = E0x (cos τ cos δx − sin τ sin δx)

From these equations, we obtain

Ey

E0y
sin δx − Ex

E0x
sin δy = cos τ sin

(
δx − δy

)
(8.4a)

Ey

E0y
cos δx − Ex

E0x
cos δy = sin τ sin

(
δx − δy

)
(8.4b)

Squaring both the left-hand and right-hand sides of Equations 8.4a,b and summing
them, we obtain

(
Ey

E0y

)2

+
(

Ex

E0x

)2

− 2
Ey

E0y

Ex

E0x
cos δ = sin2 δ (8.5)

where δ = δx − δy. This equation represents an ellipse. The ellipse is inscribed in a
rectangle of sides 2E0y and 2E0x that are parallel to the y and x axes, respectively.
Hence, in the general case of the propagation of a monochromatic wave, the tip of its
electric vector traces out an ellipse in any z plane. Such a wave is called elliptically
polarized. Since it is a propagating wave, the tip of the E vector traces out a spiral.
The tip of the E vector can rotate either clockwise or anticlockwise in the plane. These
cases are termed right-hand polarization (the E vector rotates clockwise when facing
the source of light) and left-hand polarization (the E vector rotates anticlockwise
when facing the source), respectively.

It can be shown that the direction of rotation is governed by the sign of the
phase difference δ. Let us consider a moment of time t0 when ωt0 − kz + δy = 0.
At this moment, Ey = E0y and Ex = Ex0 cos(δx − δy) = Ex0 cos δ and dEx/dt =
−ωEx0 sin δ. The rate of change of Ex, dEx/dt, is negative when 0 < δ < π and
positive when π < δ < 2π. Obviously, the former case corresponds to the right-hand
polarized wave and the latter to the left-hand polarized wave.

There are two special cases of elliptical polarization, which are known as plane or
linear polarization and circular polarization. Various polarization states of light are
shown in Figure 8.1.

8.2 LINEAR POLARIZATION

When the phase difference between the two waves is a multiple of π, we obtain a
linearly polarized wave. When both waves are in phase (i.e., δ = 2mπ, with m =
0, 1, 2), the E vector traces a line in the first and third quadrants. When they are in
antiphase (i.e., δ = (2m + 1)π), the E vector traces a line in the second and fourth
quadrants.
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FIGURE 8.1 Polarization states of a sinusoidal electromagnetic wave for different values of
δ: (a) elliptical; (b) linear; (c) circular; (d) elliptical.

8.3 CIRCULAR POLARIZATION

When the phase difference between the two waves is an odd multiple of π/2 [i.e.,
δ = (2m + 1)π/2], the wave is elliptically polarized, but its major and minor axes
are now aligned parallel to the x and y axes. However, if the amplitudes of the two
waves are equal, then it becomes a circularly polarized wave. It is right-hand circu-
larly polarized if the phase difference is π/2, 5π/2, 9π/2, . . . and left-hand circularly
polarized when δ = 3π/2, 7π/2, 11π/2, . . . . Therefore, two conditions must be met
to obtain circularly polarized light: the phase difference must be an odd multiple of
π/2 and the amplitudes of the waves must be equal.

8.4 PRODUCTION OF POLARIZED LIGHT

Natural light is unpolarized, with the E vector taking all possible orientations ran-
domly. We can, however, resolve the E-vector orientations into two components:
one oscillating in the plane of incidence (p-polarized) and the other orthogonal to this
(s-polarized). The amplitudes of these components at any instant are equal. It can also
be seen that, in general, it is possible to obtain elliptically polarized wave by intro-
ducing a phase difference between the orthogonally polarized components. However,
most often a linearly polarized wave is required. Fortunately, there are a number
of ways to obtain a linearly polarized wave from natural light. These methods are
based on

1. Reflection at a dielectric interface
2. Refraction at a dielectric interface
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3. Double refraction
4. Dichroism
5. Scattering

Of these, the first four methods are used for making practical polarizers—the devices
that produce linearly polarized light wave from natural light.

8.4.1 REFLECTION

When a beam of light is incident on the air–dielectric interface at an angle of incidence
θB, called the Brewster angle, the reflected beam is linearly polarized: the E vector
oscillates in the plane perpendicular to the plane of incidence. This is also called a
p-polarized beam. The transmitted beam is partially polarized. The Brewster angle
θB is governed by the refractive index n of the dielectric medium. For reflection at an
air-dielectric interface, it is given by the relation

tan θB = n

It may be noted that reflection at θB at an air–dielectric interface fixes the direc-
tion of vibration of the electric vector in the reflected beam, and hence is used for
calibration of polarizers, among other things.

8.4.2 REFRACTION

As mentioned earlier, when the light is incident at the angle θB, the reflected beam
is p-polarized and the transmitted beam is partially polarized. The transmitted beam
has less of a p-component, since some of this has been removed by reflection at
the angle θB. However, if several successive reflections are allowed at a number of
plane parallel plates aligned at θB, most of the p-polarized light will be removed by
reflection, and the transmitted beam is then s-polarized. Such a polarizer is known as
a pile-of-plates polarizer. This polarizer is often used with high-power lasers.

8.4.3 DOUBLE REFRACTION

There is a class of crystals in which an incident beam is decomposed into two linearly
orthogonally polarized beams inside the crystal. The structure of the crystal supports
two orthogonally polarized beams. These are anisotropic crystals. In such crystals,
there is a direction along which there is no decomposition. This is known as the
optic axis. Some crystals have only one optic axis, and are called uniaxial crystals;
others have two optic axes, and are called biaxial crystals. From the point of view
of polarizers or other polarization components, uniaxial crystals are of importance,
and hence we will discuss them in more detail. Two well-known examples of uniaxial
crystals are calcite and quartz.

Let us consider a plate of a uniaxial crystal on which a beam of light is obliquely
incident. This beam is decomposed into two orthogonally polarized beams inside
the plate. One beam obeys Snell’s law of refraction, and is called the ordinary beam
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FIGURE 8.2 A Glan–Thompson polarizer.

(o-beam); the other beam does not obey this law, and is called the extra-ordinary
beam (e-beam). The refractive index no of the o-beam is independent of the direction
of propagation, whereas that of the e-beam, ne, varies with this direction, taking
extreme values in a direction orthogonal to the optic axis. If no > ne, the crystal is
a negative uniaxial crystal: calcite is one such crystal (no = 1.658 and ne = 1.486
for the yellow sodium wavelength). The quartz crystal is a positive uniaxial crystal,
since ne > no (no = 1.544 and ne = 1.553). The optic axis is a slow axis in calcite,
and the axis orthogonal to this is a fast axis. The E vector in the o-beam oscillates
in a plane that is perpendicular to the principal section of the crystal. The principal
section contains the optic axis and the direction of propagation. The E vector of the
e-beam lies in the principal plane.

Since there are two linearly polarized beams inside the crystal, it is easy to obtain
a linearly polarized beam by eliminating one of these beams. Fortunately, owing
to the angle-dependent refractive index of the e-beam and the availability of media
of refractive index intermediate to no and ne, it is possible to remove the o-beam
by total internal reflection in a calcite crystal. One of the early devices based on
this principle is the Nicol prism. Its more versatile companion is a Glan–Thompson
prism, which is shown in Figure 8.2. It has two halves, cemented by Canada balsam.
When an unpolarized beam is incident on the polarizer, the outgoing light beam is
linearly polarized. However, a linearly polarized beam will be completely blocked if
the transmission axis of the polarizer is orthogonal to the beam. Polarizers obtained
from anisotropic crystals are generally small, but have very high extinction ratios.
Such polarizers are not generally used for photo-elastic work, which requires large
polarizers, since photo-elastic models are usually moderately large.

8.4.3.1 Phase Plates

Besides obtaining polarizers from these crystals, we can also obtain phase plates.
These produce a fixed but wavelength-dependent phase difference between the two
components. Let us consider a plane parallel plate of a uniaxial crystal with the optic
axis lying in the surface of the plate.A linearly polarized beam is incident normally on
this plate. This beam is decomposed into two beams, which propagate with different
velocities along the slow and fast axes of the plate. Let the refractive indices along
these axes be no and ne, respectively. A plate of thickness d will introduce a path dif-
ference |(no − ne)|d between the two waves. Therefore, any required path difference
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can be introduced between two waves by an appropriate choice of plate thickness of
a given anisotropic crystal.

8.4.3.2 Quarter-Wave Plate

In a quarter-wave plate, the plate thickness d is chosen so as to introduce a path
difference of λ/4 or an odd multiple thereof, that is, (2m + 1)λ/4, where m is an
integer. In other words, such a plate introduces a phase difference of a quarter-wave.
Therefore,

d = 2m + 1

|no − ne|
λ

4

For a half-wave plate, the path difference introduced is λ/2 or (2m + 1)λ/2.
A quarter-wave plate is used to convert a linearly polarized beam into a circularly

polarized beam. It is oriented such that the E vector of the incident beam makes
an angle of 45◦ with either the fast or the slow axis of the quarter-wave plate. The
components in the plate are then of equal amplitude, and the plate introduces a path
difference of λ/4 between these components. The outgoing beam is thus circularly
polarized. The handedness of circular polarization can be changed by rotating the
plate by 90◦ about the axis of the optical beam.

8.4.3.3 Half-Wave Plate

A half-wave plate, on the other hand, rotates the plane of a linearly polarized beam.
For example, if a beam of linearly polarized light with its azimuth 45◦ is incident on
a half-wave plate, its azimuth is rotated by 90◦. In other words, the beam emerges
still linearly polarized, but the orientation of the E vector is rotated by 90◦.

8.4.3.4 Compensators

Phase plates are devices that introduce fixed phase differences. In some applications, it
is necessary either to introduce a path difference that could be varied or to compensate
for a path difference. This is achieved by compensators. There are two well-known
compensators: the Babinet and the Soleil–Babinet compensators. The Babinet com-
pensator consists of two wedge plates with their optic axes orthogonal to each other,
as shown in Figure 8.3a. The role of the o- and e-beams changes when the beams pass
from one wedge to the other. The path difference introduced by the compensator is
given by |no − ne|[d2( y) − d1( y)], where d2( y) and d1( y) are the thicknesses of the
two wedge plates at any position (0, y). Obviously, the path difference varies along
the y direction on the wedge plate.

If a constant path difference between the two beams is required, the Soleil–Babinet
compensator (Figure 8.3b) is used. This again consists of two elements: one is a plate
and the other is a combination of two identical wedge plates forming a plane parallel
plate. The optic axes in the plate and the wedge combination are orthogonal. The
thickness of the plate formed as a result of the wedge combination is varied by sliding
one wedge over the other. Thus, the thickness difference d2 − d1 remains constant
over the whole surface, where d2 and d1 are the thicknesses of the plate and the wedge
combination, respectively.
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FIGURE 8.3 (a) Babinet compensator. (b) Soleil–Babinet compensator.

8.4.4 DICHROISM

There are anisotropic crystals that are characterized by different absorption coeffi-
cients with respect to o- and e-beams. For example, a tourmaline crystal strongly
absorbs an o-beam. Therefore, we can obtain an e-polarized beam when a beam of
natural light passes through a sufficiently thick plate of this crystal. Very large polar-
izers based on selective absorption are available as sheets, and are known as sheet
polarizers or Polaroids. These are the ones often used in photo-elastic work.

8.4.5 SCATTERING

Light scattered by particles is partially polarized. However, polarizers based on
scattering are not used in practice.

8.5 MALUS’S LAW

Consider a linearly polarized light beam incident on a polarizer. The E vector of
the beam makes an angle θ with the transmission axis of the polarizer. The beam
is resolved into two components, one parallel to the transmission axis and the other
perpendicular to it. The component perpendicular to the transmission axis is blocked.
Therefore, the amplitude of the light transmitted by the polarizer is E(θ) = E0 cos θ.
Hence, the intensity of the transmitted light is given by I(θ) = I0 cos2 θ, where I0 is
the intensity of the incident beam. This is a statement of Malus’s law. It can be seen
that a polarizer could also be used as an attenuator in the beam.

8.6 THE STRESS-OPTIC LAW

The phenomenon of double refraction or optical anisotropy may also occur in certain
isotropic materials, such as glass and plastics, when subjected to stress or strain. This
condition is temporary, and disappears when the stress is removed. This phenomenon
was first observed by Brewster, and forms the basis of photoelasticity. In photoe-
lasticity, models of objects are cast or fabricated from isotropic materials, and are
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then subjected to stress. The stress produces physical deformations that completely
alter the initial isotropic character of the material. We can then characterize the mate-
rial with three principal refractive indices, which are along the principal axes of
the stress.

The relationship between the principal indices of refraction ni of a temporary
birefringent material and the principal stresses σi were formulated by Maxwell, and
are given by

n1 − n0 = C1σ1 + C2(σ2 + σ3) (8.6a)

n2 − n0 = C1σ2 + C2(σ3 + σ1) (8.6b)

n3 − n0 = C1σ3 + C2(σ1 + σ2) (8.6c)

where n0 is the refractive index of the unstressed (isotropic) material and C1, C2 are
constants depending on the material.

For materials under general triaxial stress, the stress-optic law is expressed as

n1 − n2 = C(σ1 − σ2) (8.7a)

n2 − n3 = C(σ2 − σ3) (8.7b)

n1 − n3 = C(σ1 − σ3) (8.7c)

where C = C1 − C2 is the stress-optic coefficient of the photo-elastic material.
Let us now consider a plate of isotropic material. This could be subjected to either

(a) a uniaxial state of stress or (b) a biaxial state of stress. In the first case, σ2 = σ3
= 0, and hence n2 = n3. The stress-optic law takes the very simple form

n1 − n2 = Cσ1 (8.8)

The plate behaves like a uniaxial crystal. When the plate is subjected to a biaxial state
of stress (i.e., σ3 = 0), the stress-optic law takes the form

n1 − n2 = C(σ1 − σ2) (8.9a)

n2 − n3 = Cσ2 (8.9b)

n1 − n3 = Cσ1 (8.9c)

The plate behaves like a biaxial crystal.
Now let us assume that a beam of linearly polarized light of wavelengthλ is incident

normally on a plate of photo-elastic material of thickness d. Within the plate, there
are two linearly polarized beams, one vibrating in the (x, z) plane and the other in the
( y, z) plane. While traversing the plate, these two waves acquire a phase difference,
the value of which at the exit surface is given by

δ = 2π

λ
|n1 − n2| d = 2πC

λ
(σ1 − σ2) d (8.10)
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The phase change δ depends linearly on the difference of the principal stresses, on
the thickness of the plate, and inversely on the wavelength of light used. If the beam
strikes the plate at an angle θ, the phase difference is given by

δ = 2πC

λ

(
σ1 − σ2 cos2 θ

)
d sec θ (8.11)

In photo-elastic practice, it is more convenient to write Equation 8.10 in the form

σ1 − σ2 = mfσ
d

(8.12)

where m = δ/2π is the fringe order and fσ = λ/C is the material fringe value for a
given wavelength of light. This relationship is known as the stress-optic law.

The principal stress difference σ1 − σ2, in a two-dimensional model, can be deter-
mined by measuring the fringe order m, if the material fringe value fσ of the material
is known or obtained by calibration. The fringe order at each point in the photo-elastic
model can be measured by observing the model in a polariscope.

At this juncture, it should be mentioned that a plate of thickness d and refrac-
tive index n0 introduces a phase delay of k(n0 − 1)d; k = 2π/λ. When the plate is
stressed, the linearly polarized components travel with different speeds and acquire
phase delays k(n1 − 1)d1 and k(n2 − 1)d1, where d1 is the thickness of the stressed
plate and is related to the thickness d of the unstressed plate by

d1 = d�1 − ν
E (σ1 + σ2)� (8.13)

where E and ν are the Young’s modulus and Poisson’s ratio of the material.
This change in thickness, d1 − d, is very important in interferometry and also in
holophotoelasticity.

8.7 THE STRAIN-OPTIC LAW

The stress-strain relationships for a material exhibiting perfectly linear elastic
behavior under a two-dimensional state of stress are:

ε1 = 1

E
(σ1 − νσ2) (8.14a)

ε2 = 1

E
(σ2 − νσ1) (8.14b)

From Equations 8.14a,b, the difference between the principal stresses is

σ1 − σ2 = E

1 + ν
(ε1 − ε2) (8.15)

Substituting this into the stress-optic law, we obtain

ε1 − ε2 = mfε
d

(8.16)



“DK4217_C008.tex” — page 210[#10] 14/5/2009 20:44

210 Optical Methods of Measurement

where fε = fσ(1 + ν)/E is the material fringe value in terms of strain. The relation-
ship given in Equation 8.16 is known as the strain-optic law in photoelasticity.

8.8 METHODS OF ANALYSIS

The optical system most often used for stress analysis is a polariscope. It takes a
variety of forms, depending on the end use. However, in general, a polariscope consists
of a light source, a device to produce polarized light called a polarizer, a model, and
a second polarizer called an analyzer. In addition, it may contain a set of lenses,
quarter-wave plates, and photographic or recording equipment. We will discuss the
optical systems of plane polariscopes and circular polariscopes.

8.8.1 PLANE POLARISCOPE

The plane polariscope consists of a light source, a light filter, collimating optics
to provide a collimated beam, a polarizer, an analyzer, a lens and photographic
equipment as shown in Figure 8.4. The model is placed between the polarizer and the
analyzer. The polarizer and the analyzer are crossed, thus producing a dark field.

Let the transmission axis of the polarizer be along the y direction. The amplitude
of the wave just behind the polarizer is given by

Ey(z; t) = E0y cos(ωt − kz)

where k = 2π/λ. The field incident on the model is also given by this expression,
except that z refers to the plane of the model. Let us also assume that one of the
principal stress directions makes an angle α with the transmission direction of the
polarizer (i.e., the y axis). The incident field just at the entrance face of the model splits
into two components that are orthogonally polarized and vibrate in the planes of σ1
and σ2. The amplitudes of these components are E0y cos α and E0y sin α, respectively.

y

z 
x

x
E0y

Polarizer Analyzer 

Observation
plane

a
s1s2

FIGURE 8.4 Schematic of a plane polariscope.
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The amplitudes of these components at the exit face of the model are

E1(z; t) = E0y cos α cos[ωt − kz − k(n1 − 1)d] = E0y cos α cos
(
ωt − kz + δy

)
(8.17a)

E2(z; t) = E0y sin α cos[ωt − kz − k(n2 − 1)d] = E0y sin α cos
(
ωt − kz + δy − δ

)
(8.17b)

The model introduces a phase difference

δ = 2π

λ
(n1 − n2)d = 2π

fσ
(σ1 − σ2)d

between these components. The analyzer resolves these components further into
components along and perpendicular to its direction of transmission, which is along
the x direction. The components along the direction of transmission are allowed
through, and produce a photo-elastic pattern, while those in the orthogonal direction
are blocked. The net transmitted amplitude is

E1 sin α − E2 cos α = E0y

2
sin 2α

[
cos
(
ωt − kz + δy

)− cos
(
ωt − kz + δy − δ

)]

= E0y sin 2α sin

(
δ

2

)
sin

(
ωt − kz + δy − δ

2

)
(8.18)

This also represents a wave of amplitude E0y sin 2α sin(δ/2) propagating along the z
direction. The intensity of this wave is therefore

I = E2
0y sin2 2α sin2

(
δ

2

)
= I0 sin2 2α sin2

[
π(σ1 − σ2)d

fσ

]
(8.19)

The intensity of the transmitted beam is governed by α, the orientation of the prin-
cipal stress direction with respect to the polarizer’s transmission axis, and the phase
retardation δ. The transmitted intensity will be zero when sin 2α sin(δ/2) = 0. In other
words, the transmitted intensity is zero when either sin 2α = 0 or sin(δ/2) = 0. When
sin 2α = 0, the angle α = 0 or π/2. In either case, one of the principal stress directions
is aligned with the polarizer’s transmission axis. Therefore, these dark fringes give
the directions of the principal stresses at any point on the model, and are known as
isoclinics or isoclinic fringes.

When sin(δ/2) = 0, δ = 2mπ, or

σ1 − σ2 = mfσ
d

(8.20)

The transmitted intensity is zero when σ1 − σ2 is an integral multiple of fσ/d. There-
fore, the fringes are loci of constant σ1 − σ2, and are referred to as isochromatics.
The adjacent isochromatics differ by fσ/d. When white light is used for illumination
of the model, these fringes are colored; each color corresponds to a constant value of
σ1 − σ2, hence the name isochromatics.
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It can be seen that both the isoclinics and the isochromatics appear simultaneously
in a plane polariscope. It is desirable to separate these fringe patterns. A circular
polariscope performs this function and provides only isochromatics.

The isoclinics are the loci of points at which the directions of the principal stresses
are parallel to the transmission axes of the polarizer and the analyzer. The isoclinic
pattern is independent of the magnitude of the load applied to the model and the
material fringe value. When white light is used for illumination, the isoclinics appear
dark in contrast to the isochromatics, which, with the exception of the zero-order
fringe, are colored. In regions where the directions of the principal stresses do not
vary greatly from point to point, the isoclinics appear as wide diffuse bands. The
isoclinics do not intersect each other except at an isotropic point, which is a point where
the principal stresses are equal in magnitude and sign, that is, σ1 − σ2 = 0. Further,
at a point on a shear-free boundary where the stress parallel to the boundary has a
maximum or a minimum value, the isoclinic intersects the boundary orthogonally.

8.8.2 CIRCULAR POLARISCOPE

It can be seen that the isoclinics appear because a linearly polarized light wave is
incident on the model. They will disappear if the light incident on the model is
circularly polarized. Therefore, a circular polarizer, which is a combination of a linear
polarizer and a quarter-wave plate at 45◦ azimuth, is required. Further, to analyze this
light, we also need a circular analyzer. Therefore, a circular polariscope consists of
a light source, collimating optics, a polarizer, two quarter-wave plates, an analyzer,
and recording optics, as shown in Figure 8.5.

The model is placed between the two quarter-wave plates. Since these plates are
designed with slow and fast axes, they can be arranged in two ways, namely with axes
parallel or with axes crossed. Similarly, the transmission axes of the polarizer and the
analyzer can be parallel or crossed. Therefore, there are four ways of assembling a
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FIGURE 8.5 Schematic of a circular polariscope: P, polarizer; Q1, Q2, quarter-wave plates;
M, model; A, analyzer; for other symbols, see text.
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TABLE 8.1
Four Configurations of a Circular Polariscope

Polarizer and Quarter-Wave
Configuration Analyzer Axes Plate Axes Field

1 Parallel Parallel Dark
2 Parallel Crossed Dark
3 Crossed Parallel Bright
4 Crossed Crossed Bright

circular polariscope: two of these configurations give a dark field and the remaining
two a bright field at the output, as shown in Table 8.1.

We now consider a configuration that has the analyzer and the polarizer crossed
and the quarter-wave plates in parallel, resulting in a bright-field output.

Let the transmission axis of the polarizer be along the y direction. The field
transmitted by the polarizer is given by

Ey(z; t) = E0y cos(ωt − kz)

This field is split into two components, which propagate along the fast and slow axes
of the quarter-wave plate. The field at the exit face of the first quarter-wave plate is

E1(z; t) = E0y√
2

cos
[
ωt − kz − k(n′ − 1)d′] = E0y√

2
cos(ωt − kz + ψ1) (8.21a)

E2(z; t) = E0y√
2

cos
[
ωt − kz − k(n′′ − 1)d ′]

= E0y√
2

cos
(
ωt − kz + ψ1 − π

2

)
= E0y√

2
sin(ωt − kz + ψ1) (8.21b)

where the phase difference π/2, introduced by the quarter-wave plate of thickness d′,
is expressed as

2π

λ
(n′′ − n′)d′ = π

2

and

ψ1 = −2π

λ
(n′ − 1)d′

This indicates that n′ corresponds to the fast axis of the quarter-wave plate. This
field is now incident on the model, and hence becomes further decomposed along
the directions of the principal stresses. We assume that one of the principal stress
directions makes an angle α with the polarizer’s transmission axis (i.e., with the
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y axis). The field at the entrance face of the model as decomposed along the σ1 and
σ2 directions is now given by

Eσ1(z; t) = E0y√
2

cos
(π

4
− α
)

cos(ωt − kz + ψ1)

+ E0y√
2

sin
(π

4
− α
)

sin(ωt − kz + ψ1)

= E0y√
2

cos
(
ωt − kz + ψ1 − π

4
+ α
)

= E0y√
2

cos τ (8.22a)

Eσ2(z; t) = −E0y√
2

sin
(π

4
− α
)

cos(ωt − kz + ψ1)

+ E0y√
2

cos
(π

4
− α
)

sin(ωt − kz + ψ1)

= E0y√
2

sin
(
ωt − kz + ψ1 − π

4
+ α
)

= E0y√
2

sin τ (8.22b)

The field amplitudes at the exit face of the model are given by

Eσ1(z; t) = E0y√
2

cos(τ + ψ2) (8.23a)

Eσ2(z; t) = E0y√
2

sin(τ + ψ2 + δ) (8.23b)

where

ψ2 = −2π

λ
(n1 − 1)d

δ = 2π

λ
(n1 − n2) d

We now decompose these fields along the axes of the second quarter-wave plate,
which are inclined at 45◦ and −45◦ to the y axis. These are given by

E′
1(z; t) = E0y√

2
cos
(π

4
− α
)

cos(τ + ψ2) − E0y√
2

sin
(π

4
− α
)

sin(τ + ψ2 + δ)

(8.24a)

E′
2(z; t) = E0y√

2
sin
(π

4
− α
)

cos(τ + ψ2) + E0y√
2

cos
(π

4
− α
)

sin(τ + ψ2 + δ)

(8.24b)
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We now assume that both quarter-wave plates are aligned in parallel; that is, their fast
and slow axes are parallel. The field at the exit face of the second plate is

E′
1(z; t) = E0y√

2
cos
(π

4
− α
)

cos(τ + ψ2 + ψ1)

− E0y√
2

sin
(π

4
− α
)

sin(τ + ψ2 + δ + ψ1) (8.25a)

E′
2(z; t) = E0y√

2
sin
(π

4
− α
)

cos
(
τ + ψ2 + ψ1 − π

2

)

+ E0y√
2

cos
(π

4
− α
)

sin
(
τ + ψ2 + δ + ψ1 − π

2

)

= E0y√
2

sin
(π

4
− α
)

sin(τ + ψ2 + ψ1)

− E0y√
2

cos
(π

4
− α
)

cos(τ + ψ2 + δ + ψ1) (8.25b)

Since the analyzer is crossed, it takes the components along the x direction. Therefore,
the amplitude of the transmitted wave is given by

E′
1(z; t) = E0y

2

[
cos
(π

4
− α
)

cos(τ + ψ2 + ψ1)

− sin
(π

4
− α
)

sin(τ + ψ2 + δ + ψ1) − sin
(π

4
− α
)

sin(τ + ψ2 + ψ1)

+ cos
(π

4
− α
)

cos(τ + ψ2 + δ + ψ1)

]
(8.26)

Equation 8.26 can be rewritten as

E′(z; t) = E0y

2

[
cos
(
τ + ψ2 + ψ1 + π

4
− α
)

+ cos
(
τ + ψ2 + δ + ψ1 + π

4
− α
)]

= E0y cos

(
δ

2

)
cos

(
τ + ψ2 + δ

2
+ ψ1 + π

4
− α

)
(8.27)

Again, this represents a wave with an amplitude E0y cos(δ/2). Therefore, the trans-
mitted intensity is given by

I = I0 cos2(δ/2) (8.28)

When there is no stress distribution, δ = 0, and the transmitted intensity is maximum
and uniform. This therefore represents a bright-field configuration. It can be seen that
when the quarter-wave plates are crossed, the field exiting from the second plate is
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(a) (b)

FIGURE 8.6 Isochromatics in (a) a dark field and (b) a bright field.

given by

E′
1(z; t) = E0y√

2
cos
(π

4
− α
)

cos
(
τ + ψ2 + ψ1 − π

2

)

− E0y√
2

sin
(π

4
− α
)

sin
(
τ + ψ2 + δ + ψ1 − π

2

)
(8.29a)

E′
2(z; t) = E0y√

2
sin
(π

4
− α
)

cos(τ + ψ2 + ψ1)

+ E0y√
2

cos
(π

4
− α
)

sin(τ + ψ2 + δ + ψ1) (8.29b)

The intensity transmitted by the polarizer is now given by

I = I0 sin2(δ/2) (8.30)

This represents a dark field, since the intensity is zero when there is no stress distribu-
tion on the model. Equations 8.28 and 8.30 show that the intensity of light emerging
from the analyzer in a circular polariscope is a function of the difference of principal
stresses σ1 − σ2 only. The isoclinics have been eliminated.

In a dark-field configuration, the dark fringes occur wherever δ = 2mπ (m =
0, 1, 2, . . .), and they correspond to the integer isochromatic fringe order m =
0, 1, 2, 3, . . . , respectively. An example of this fringe pattern is shown in Figure
8.6a. However, for a bright-field configuration, the dark fringes are obtained when
δ = (2m + 1)π. These corresponds to isochromatic fringes of half order, that is,
m = 1

2 , 3
2 , 5

2 , . . . . An example of a light-field fringe pattern is shown in Figure 8.6b.

8.9 EVALUATION PROCEDURE

Directions of principal stresses at any point in the model are determined using a plane
polariscope. The polarizer and analyzer are rotated about the optical axis until the
isoclinic passes through the point of interest. The inclination of the transmission axis
gives the principal stress direction. The principal stress difference σ1 − σ2 in the dark
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field is given by

σ1 − σ2 = m
fσ
d

(8.31a)

and that in the bright field by

σ1 − σ2 =
(

m + 1

2

)
fσ
d

(8.31b)

Therefore, the material fringe value fσ must be known before σ1 − σ2 can be calcu-
lated. fσ is obtained by calibration. A circular disk of the same photo-elastic material
and thickness is used as a model, and is diametrically loaded. The fringe order in the
center of the disk is measured, and fσ is calculated using the formula

fσ = 8F d

nπD
(8.32)

where F is the applied force, D is the diameter of the disk, and n is the measured
fringe order at the center of the disk. There are other calibration methods that use
tensile loading or bending.

The principal stress difference σ1 − σ2 in an arbitrary model is then found by using
this value of the material fringe value and the order m of the isochromatics. However,
the order m is to be counted from m = 0, which is normally not known. It can easily
be found, if it exists in the model, by using white-light illumination, since m = 0
is an achromatic fringe whereas the higher-order fringes are colored. Therefore, a
polariscope is usually equipped with both white-light and monochromatic sources:
the white-light source for locating the zero-order isochromatic and the monochromatic
source for counting the higher-order isochromatics. If the principal stress difference
is desired at a point where neither a bright isochromatic nor a dark isochromatic
passes, some method of measuring fractional fringe order must be implemented.
There are methods to measure fractional fringe orders, which are discussed in the
next section.

8.10 MEASUREMENT OF FRACTIONAL FRINGE ORDER

The methods described here assume that the directions of the principal stresses are
known. In one method, a Babinet or a Soleil–Babinet compensator is used. The princi-
pal axes of the compensator are aligned along the directions of the principal stresses.
An additional phase difference can then be introduced to shift the dark isochromatics
to the point of interest, and this additional phase shift is read from the compensator.
Another method makes use of a quarter-wave plate for compensation, and is known
as Tardy’s method.

8.10.1 TARDY’S METHOD

This makes use of a plane polariscope in dark-field configuration, where the intensity
distribution is given by I = I0 sin2 2α sin2(δ/2). The observation field contains both
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FIGURE 8.7 Tardy’s method of compensation.

the isochromatics and the isoclinics. Let us now assume that we wish to measure the
fractional isochromatics order at a point P, as shown in Figure 8.7. Since this is a
dark-field configuration, the integral isochromatic orders correspond to dark fringes,
and in order to work with the dark fringes, we need to make the region at and around
the point P bright. For this purpose, the polarizer–analyzer combination is rotated
by 45◦ so that their transmission axes make angles of 45◦ with the directions of
the principal stresses. The intensity distribution is now given by I = I0 sin2(δ/2). A
quarter-wave plate is now inserted between the model and the analyzer in such a way
that its principal axes are parallel to the transmission axes of the polarizer and the
analyzer. We can now shift the isochromatics by rotation of the analyzer by an angle
that is related to the phase shift. In order to understand the working of this principle,
we proceed as follows.

We express the amplitude of the wave transmitted by the polarizer as

Ep = E0p cos(ωt − kz) (8.33)

Since the polarizer–analyzer combination has its transmission axes at 45◦ to the
principal stress directions in the model, this field is resolved along these directions.
The components of the field at the exit face of the model are then expressed as

Eσ1 = E0p√
2

cos[ωt − kz − k(n1 − 1)d] = E0p√
2

cos(ωt − kz + ψ1) (8.34a)

Eσ2 = E0p√
2

cos[ωt − kz − k(n2 − 1)d] = E0p√
2

cos(ωt − kz + ψ1 + δ) (8.34b)
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where δ = k(n1 − n2)d. The field transmitted by the analyzer, which is crossed to the
polarizer, is

EA = Eσ2√
2

− Eσ1√
2

= E0p

2
[cos(ωt − kz + ψ1 + δ) − cos(ωt − kz + ψ1)]

= E0p

2
2 sin

(
δ

2

)
sin

(
ωt − kz + ψ1 + δ

2

)
(8.35)

As mentioned earlier, this describes a wave of amplitude E0p sin(δ/2), and hence
the intensity of the transmitted light is given by I = I0 sin2(δ/2), as expected.
We now introduce a quarter-wave plate after the model and align its axes parallel
to the transmission axes of the polarizer and the analyzer. The field components
along the fast and slow axes of the quarter-wave plate are

Ef = Eσ2√
2

+ Eσ1√
2

(8.36a)

Es = Eσ2√
2

− Eσ1√
2

(8.36b)

The field components after passage through the quarter-wave plate can be
expressed as

Ef = E0p

2

{
cos
[
ωt − kz + ψ1 − k(n′

1 − 1)d ′]

+ cos
[
ωt − kz + ψ1 + δ − k(n′

1 − 1)d′] }

= E0p

2
[cos τ + cos(τ + δ)] (8.37a)

where τ = ωt − kz + ψ1 − k(n′
1 − 1)d′ and

Es = E0p

2

{
cos
[
ωt − kz + ψ1 + δ − k(n′

2 − 1)d′ ]

− cos
[
ωt − kz + ψ1 − k(n′

2 − 1)d′] }

= E0p

2

[
cos
(
τ + δ − π

2

)
− cos

(
τ − π

2

)]
= E0p

2
[sin(τ + δ) − sin τ] (8.37b)

where

k
(
n′

2 − n′
1

)
d′ = π

2

The analyzer will transmit only the Es component. However, if the analyzer is rotated
by an angle χ from this position, then the components of the field along the trans-
mission axis of the analyzer are Es cos χ + Ef sin χ. After substitution of Es and Ef ,
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and a little trigonometry, we obtain the amplitude of the wave transmitted through the
analyzer as

EA = E0p sin

(
χ + δ

2

)
cos

(
τ + δ

2

)
(8.38)

This represents a wave with an amplitude E0p sin
(
χ + δ

/
2
)
. Therefore, the intensity

of the wave is given by I = I0 sin2(χ + δ
/

2
)
. For the mth isochromatic, δ = 2mπ,

and hence the intensity at this location must be I = I0 sin2 χ, which is evidently
zero when χ = 0. Further, the intensity at the same location will also be zero when
χ = π, but then the mth isochromatic will have moved to the (m + 1)th isochromatic.
In other words, a rotation of the analyzer by π shifts the isochromatics by one order.
Therefore, if the analyzer is rotated by an angle χp to shift the isochromatics to the
point P, then the fractional order at that point must be χp/π.

8.11 PHASE-SHIFTING

Phase-shifting is a technique for the automatic evaluation of phase maps from the
intensity data, and has been described in detail in Chapter 4. However, it assumes a
special significance in photoelasticity, since both beams participating in interference
travel along the same path and the phase of one cannot be changed independently of
other, as has been done for the other interferometric methods. We therefore present
methods of phase-shifting in photoelasticity.

8.11.1 ISOCLINICS COMPUTATION

For this purpose, a bright-field plane polariscope is used. The transmitted intensity in
this configuration is given by

I = I0 − I0 sin2 2α sin2
(

δ

2

)
= I0

[
1 − sin2

(
δ

2

)
(1 − cos2 2α)

]

= I0

[
1 − 1

2
sin2

(
δ

2

)
(1 − cos 4α)

]
= IB + V cos 4α (8.39)

When the whole polariscope is rotated by an angle β, the intensity transmitted can be
expressed as

I = IB + V cos 4(α − β) (8.40)

Both IB and V depend on the value of the isochromatic parameter, and consequently
on the wavelength of light used. However, the isoclinic parameter does not depend
on the wavelength. The phase of the isoclinics is obtained using a four-step algorithm
with the intensity data obtained at βi = (i − 1)π/8, with i = 1, . . . , 4, and the relation

tan 4α = I4 − I2

I3 − I1
(8.41)

The phase of the isoclinics is obtained from this relation, except at regions where the
modulation V is very small. Since V depend on δ, the low-modulation areas depend on
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the wavelength. If monochromatic light is used, there may be several areas where the
value of δ makes the modulation unusable. This problem, however, can be overcome
by using a white-light source, since the low-modulation areas corresponding to a
given wavelength will be high-modulation areas for another wavelength. Hence, the
modulation is kept high enough for use, except at the zero-order fringe, where the
modulation is obviously zero.

8.11.2 COMPUTATION OF ISOCHROMATICS

As can be seen from Tardy’s method of compensation, the isochromatic fringe at a
point can be shifted by rotation of the analyzer from the crossed position: a rotation of
π shifts the isochromatic by one order. This provides a nice method of phase-shifting,
but it suffers from drawbacks: the principal axes must be known beforehand and the
isochromatics are calculated for a fixed value of the isoclinic parameter. The phase
of the isochromatics can be obtained pixel by pixel by taking intensity data at four
positions of the analyzer, say, at 0◦, 45◦, 90◦, and 135◦.

We now present a method that is free from these shortcomings. It takes intensity
data at several orientations of a circular polariscope. We present in Table 8.2 the
configurations, along with the corresponding expressions for the transmitted intensity.

From the eight transmitted intensity data, the phase of the isochromatic pattern is
computed at each pixel using the relation

tanδ = (I1 − I2)cos2α+(I5 − I6)sin2α

1

2
[(I4 − I3) + (I8 − I7)]

(8.42)

TABLE 8.2
Polariscope Configurations and the Corresponding
Transmitted Intensities

No. Polariscope Configuration Transmitted Intensity

1 Pπ/2Qπ/4Qπ/4Aπ/4 I1 = I0

2
(1 + cos 2α sin δ)

2 Pπ/2Qπ/4Q−π/4Aπ/4 I2 = I0

2
(1 − cos 2α sin δ)

3 Pπ/2Qπ/4Q−π/4A0 I3 = I0

2
(1 − cos δ)

4 Pπ/2Qπ/4Qπ/4A0 I4 = I0

2
(1 + cos δ)

5 P−π/4Qπ/2Qπ/2A0 I5 = I0

2
(1 + sin 2α sin δ)

6 P−π/4Qπ/2Q0Aπ/2 I6 = I0

2
(1 − sin 2α sin δ)

7 P−π/4Qπ/2Q0Aπ/4 I7 = I0

2
(1 − cos δ)

8 P−π/4Qπ/2Qπ/2Aπ/4 I8 = I0

2
(1 + cos δ)
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It can be seen that I3 and I4 are theoretically equal to I7 and I8, respectively. However,
in practice, owing to polariscope imperfections, they may differ, and hence all four
values are used in the algorithm.

The Fourier transform method can also be used for phase evaluation. The carrier
fringe pattern is introduced by a birefringent wedge plate of an appropriate wedge
angle. Usually, a carrier frequency of 3–5 lines/mm is adequate. The plate is placed
close to the model.

8.12 BIREFRINGENT COATING METHOD: REFLECTION
POLARISCOPE

The use of a birefringent coating on the surface of an object extends photoelasticity
to the measurement of surface strains on opaque objects and eliminates the need to
make models. In this method, a thin layer of a birefringent material is bonded onto
the surface of the object. Assuming the adhesion to be good, the displacements on
the surface of the object on loading are transferred to the coating, which induces
birefringence in the latter. The strain-induced birefringence is observed in reflection.
In order to obtain good reflected intensity, either the surface of the object is polished
to make it naturally reflecting or some reflective particles are added to the cement
that bonds the birefringent coating to the surface of the object. Figure 8.8 shows a
schematic of a reflection polariscope used with birefringent coatings.

Such an instrument can be used either as a plane polariscope or a circular polar-
iscope. The isochromatics obtained with a circular polariscope give the difference
between the principal stresses in the coating, that is,

(σ1 − σ2)c = m
fσc

2d
(8.43)

where d is the thickness and fσc the fringe value of the coating. Since the light travels
through nearly the same region twice, the effective thickness is 2d. The principal
strains are related to the principal stresses through Hooke’s law. We thus obtain the

Birefringent 
coating

Specimen

SFP

A

Q1

Q2

FIGURE 8.8 Schematic of a reflection polariscope.
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difference of the principal strains as

ε1 − ε2 = 1 + νc

Ec
(σ1 − σ2)c (8.44)

where Ec and νc are the elastic constants of the birefringent coating material. Similarly,
we can express the difference of principal strains at the surface of the object as

ε1 − ε2 = 1 + νo

Eo
(σ1 − σ2)o (8.45)

Assuming that the strains in the coating and at the surface of the object are same, we
have

(σ1 − σ2)o = Eo

Ec

1 + νc

1 + νo
(σ1 − σ2)c (8.46)

Separation of stresses in the coating is accomplished by the oblique incidence
method. Hence, the principal strains in the coating are calculated. Having obtained
these, the principal stresses at the surface of the object are obtained from the following
equations:

σ1o = Eo

1 − ν2
o

(ε1 + νoε2) (8.47a)

σ2o = Eo

1 − ν2
o

(ε2 + νoε1) (8.47b)

The analysis is based on the assumption that the strains in the coating and at the
surface of the object are the same.

8.13 HOLOPHOTOELASTICITY

Separation of stresses requires that σ1, σ2, or σ1 + σ2 be known in addition to σ1 − σ2
obtained from photoelasticity. The sum of the principal stresses is obtained interfero-
metrically, for example by using a Mach–Zehnder interferometer. On the other hand,
holophotoelasticity provides fringe patterns belonging to σ1 − σ2 and σ1 + σ2 simul-
taneously, thereby effecting easy separation of stresses. However, the method requires
coherent light for illumination. Here, we use holography to record the waves transmit-
ted through the model and later reconstruct this record to extract the information. We
can indeed use the technique in two ways. In one method, we obtain only isochromat-
ics, and hence the method is equivalent to a circular polariscope; it also provides the
flexibility of leisurely evaluation of the fringe pattern. In the other method, both the
isochromatic and isopachic fringe patterns are obtained. This method, which requires
two exposures, is termed double-exposure holophotoelasticity, while the first method
is a single-exposure method.
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8.13.1 SINGLE-EXPOSURE HOLOPHOTOELASTICITY

The experimental arrangement is shown in Figure 8.9. The model is already stressed,
and hence is birefringent. The light from a laser is generally polarized with its E vector
vibrating in the vertical plane when the beam propagates in the horizontal plane. The
beam is expanded and collimated. In the case where the laser output is randomly
polarized, a polarizer is used, followed by a quarter-wave plate oriented at 45◦. In
brief, the model is illuminated by a circularly polarized wave. The reference wave is
also circularly polarized and of the same handedness, so that both components are
interferometrically recorded.

The components of the wave just after the model can be expressed as

Eσ1(z; t) = E0y√
2

cos(τ + ψ2) (8.48a)

Eσ2(z; t) = E0y√
2

sin(τ + ψ2 + δ) (8.48b)

Consistent with the treatment presented in Chapter 6, we write these components as

Eσ1(z; t) = Re

{
E0y√

2
ei(τ1+ψ2)

}
(8.49a)

Eσ2(z; t) = Re

{
E0y√

2
ei (τ1+ψ2+π/2+δ)

}
(8.49b)

with

ψ2 = −2π

λ
(n1 − 1)d1, δ = 2π

λ
(n1 − n2)d1

Holo-plateModel

P

Q

QP

FIGURE 8.9 An experimental arrangement for single-exposure holophotoelasticity.
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and τ1 does not have any time dependence—which has been ignored since a
monochromatic wave is used for illumination—and d1 is the thickness of the stressed
model.As usual, Re{ } denotes the real part. Similarly, the reference wave components
are written as

Er1 = Re
{
are

iφr
}

(8.50a)

Er2 = Re
{

are
i(φr+π/2)

}
(8.50b)

Since these components are orthogonally polarized, they will interfere with the
respective components—essentially, we record two holograms. The recorded intensity
is given by

I = ∣∣Eσ1 + Er1

∣∣2 + ∣∣Eσ2 + Er2

∣∣2 (8.51)

This record, on processing, is a hologram.Assuming linear recording and illumination
with a reference beam that releases two beams, these beams interfere and generate an
intensity distribution of the type

I = I ′
0

∣∣∣ei(τ1+ψ2)+ei(τ1+ψ2+δ)
∣∣∣2 = I0 (1 + cos δ) (8.52)

This is the intensity distribution as obtained in a bright-field circular polariscope. It
may be noted that a quarter-wave plate–analyzer combination is not placed behind
the model during recording. The state of polarization in the reference wave serves
the function of this assembly. If the state of polarization in the reference wave is
orthogonal to that in the object wave from the model, that is, the reference wave is
of opposite handedness, then the isochromatics pattern corresponding to a dark-field
circular polariscope will be obtained.

8.13.2 DOUBLE-EXPOSURE HOLOPHOTOELASTICITY

The experimental arrangement is similar to that shown in Figure 8.9. The model is
illuminated by a circularly polarized wave, and another circularly polarized wave of
the same handedness is used as a reference wave. The first exposure is made with the
model unstressed and the second exposure with the model stressed. During the first
exposure, the model is isotropic. However, to be consistent with our earlier treatment,
we write the amplitudes of the object and reference waves recorded during the first
exposure as

E1(z; t) = Re

{
E0y√

2
ei (τ1+ψ0)

}
(8.53a)

E2(z; t) = Re

{
E0y√

2
ei (τ1+ψ0+π/2)

}
(8.53b)

with

ψ0 = −2π

λ
(n0 − 1)d
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and

Er1 = Re
{
are

i φr
}

(8.50a)

Er2 = Re
{

are
i (φr+π/2)

}
(8.50b)

In the second exposure, we record two waves from the stressed model. These waves
are represented as

Eσ1(z; t) = Re

{
E0y√

2
ei (τ1+ψ2)

}
(8.54a)

Eσ2(z; t) = Re

{
E0y√

2
ei (τ1+ψ2+π/2+δ)

}
(8.54b)

with

ψ2 = −2π

λ
(n1 − 1)d1, δ = 2π

λ
(n1 − n2)d1.

The reference waves are the same as those used in the first exposure. As explained
earlier, we record two holograms in the second exposure. The total intensity recorded
can be written as

I = ∣∣E1+Er1

∣∣2 + ∣∣E2+Er2

∣∣2 + ∣∣Eσ1+Er1

∣∣2 + ∣∣Eσ2+Er2

∣∣2 (8.55)

The amplitudes of the waves of interest, on reconstruction of the double-exposure
hologram, are proportional to

2ei(τ1+ψ0) + ei (τ1+ψ2) + ei (τ1+ψ2+δ) (8.56)

These three waves interfere to generate a system of isochromatic (σ1 − σ2) and
isopachic (σ1 + σ2) fringe patterns. The intensity distribution in the interferogram
is given by

I = I0

{
1 + 2 cos

(
2ψ2 + δ − 2ψ0

2

)
cos

δ

2
+ cos2 δ

2

}
(8.57)

Before proceeding further, we need to know what 2ψ2 + δ − 2ψ0 represents.
Substituting for ψ2, δ, and ψ0, we obtain

2ψ2 + δ − 2ψ0 = −2π

λ
[2(n1 − 1)d1 − (n1 − n2)d1 − 2(n0 − 1)d]

= −2π

λ
[(n1 + n2)d1 − 2n0d − 2Δd]

= −2π

λ
[(n1 − n0)d+(n2 − n0)d+(n1 + n2)Δd − 2Δd] (8.58)
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Assuming the birefringence to be small, so that n1 + n2 can be replaced by 2n0,
substituting for n1 − n0 and n2 − n0, and using Equation 8.13, we obtain

2ψ2 + δ − 2ψ0 = −2π

λ

[
(C1 + C2)(σ1 + σ2)d − 2(n0 − 1)

ν

E
(σ1 + σ2)d

]

= −2π

λ

{[
(C1 + C2) − 2(n0 − 1)

ν

E

]
(σ1 + σ2)d

}

= −2π

λ

[
(C′

1 + C′
2)(σ1 + σ2)d

] = 2π

λ
C′(σ1 + σ2)d (8.59)

It is thus seen that the argument of the cosine in the second term in Equation 8.57
depends only on the sum of the principal stresses, and hence generates an isopachic
fringe pattern. We can rewrite Equation 8.57 as

I = I0

{
1 + 2 cos

[π
λ

C′(σ1 + σ2)d
]

cos
[π
λ

C(σ1 − σ2)d
]

+ cos2
[π
λ

C(σ1 − σ2)d
]}

(8.60)

It can be seen that the second term in Equation 8.60 contains information about the
isopachics, and the second and third terms contain information about the isochromat-
ics. Figure 8.10 shows an interferogram depicting both types of fringes. We will now
examine Equation 8.60 and study the formation of isochromatics and isopachics.

Since we are using a bright-field configuration, the dark isochromatics will occur
when

π

λ
C(σ1 − σ2)d = (2n+1)

π

2
, with n an integer (8.61)

FIGURE 8.10 Interferogram showing both the isochromatics (broad fringes) and isopachics.
Note the phase shift of π when the isopachics cross an isochromatic.
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However, the intensity of the dark isochromatics is not zero but I0. The bright
isochromatics occur when (π/λ)C(σ1 − σ2)d = nπ, and the intensity in the bright
isochromatics is given by

I= 2I0

{
1 + (−1)n cos

[π
λ

C′(σ1 + σ2)d
]}

(8.62)

The intensity of the bright isochromatics is modulated by isopachics. Let us first
consider a bright isochromatics of even order, whose intensity is given by

I= 2I0

{
1 + cos

[π
λ

C′(σ1 + σ2)d
]}

(8.63)

The intensity in the bright isochromatics will be zero whenever

π

λ
C′(σ1 + σ2)d = (2K+1)π, with K = 0, 1, 2, 3 (8.64)

The integer K gives the order of the isopachic. When this condition is satisfied, the
isochromatics will have zero intensity. Therefore, the isopachics modulate the bright
isochromatics. Let us now see what happens to the next-order bright isochromatic.
Obviously, the intensity distribution in this isochromatic will be

I = 2I0

{
1 − cos

[π
λ

C′(σ1 + σ2)d
]}

(8.65)

Dark
isopachics

Dark
isochromatics

k

k + 1k + 1

k

k – 1k – 1

k + 1/2k + 1/2

k – 1/2k – 1/2

FIGURE 8.11 Simplified combined isochromatic and isopachic pattern.
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Substituting the condition for the K th dark isopachic in this equation, gives a maxi-
mum intensity of 4I0. This shows that the K th isopachic has changed by one half-order
in going over from one bright isochromatic to the next. This interpretation is sim-
ple, and remains valid when the two families of fringes are nearly perpendicular,
as shown in Figure 8.11. In the other extreme case, where the isochromatics and
isopachics are parallel to each other, this analysis breaks down. It is therefore advis-
able to use some method to separate out these two fringe patterns. The influence of
birefringence can be eliminated by passing the beam twice through the model and
a Faraday rotator, thereby eliminating the isochromatic pattern. For the model, one
can also use materials such as poly-methyl methacrylate (PMMA), which has almost
no or very little birefringence. For such a model, only the isopachic pattern will be
observed. Holophotoelasticity can also be performed in real time, which offers certain
advantages.

8.14 THREE-DIMENSIONAL PHOTOELASTICITY

Photo-elastic methods, thus far described, cannot be used for investigations of objects
under a three-dimensional state of stress. When a polarized wave propagates through
such an object, assumed to be transparent, it integrates the polarization changes over
the distance of travel. The integrated optical effect is so complex that it is impossible
to analyze it or relate it to the stresses that produced it. There are, however, several
methods for such investigations. Of these, we discuss two, namely the frozen-stress
method and the scattered-light method. The former is restricted in its application to
static cases of loading by external forces.

8.14.1 THE FROZEN-STRESS METHOD

The frozen-stress method is possibly the most powerful method of experimen-
tal stress analysis. It takes advantage of the multiphase nature of plastics used as
model materials. The procedure for stress freezing consists of heating the model
to a temperature slightly above the critical temperature and then cooling it slowly
to room temperature, typically at less than 2◦C/h under the desired loading con-
dition. The load may be applied to the model either before or after reaching the
critical temperature. Extreme care is taken to ensure that the model is subjected
to correct loading, since spurious stresses due to bending and gravitational load
may be induced as a result of the low rigidity of the model material at the critical
temperature.

After the model has been cooled to room temperature, the elastic deformation
responsible for the optical anisotropy is permanently locked. The model is now cut
into thin slices for examination under the polariscope. The optical anisotropy is nor-
mally not disturbed during slicing if the operation is carried out at high speeds
and under coolant conditions. Of two methods of data collection and interpreta-
tion from these slices—sub-slicing and oblique incidence—the latter is the more
practical.
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Unpolarized beam

y

z

x
P

FIGURE 8.12 Scattering of unpolarized beam by a scatterer at P.

8.14.2 SCATTERED-LIGHT PHOTOELASTICITY

When a beam of light passes through a medium containing fine particles dispersed in
the volume, part of the beam is scattered. The intensity of the scattered light, when the
particles are much smaller than the wavelength of light, varies as ω4, where ω is the
circular frequency of the light waves. This phenomenon was investigated by Rayleigh
in detail and is called Rayleigh scattering. The most beautiful observations of red
sunset and blue sky are due to scattering from gaseous molecules in the atmosphere.
Further, the light from the blue sky is partially linearly polarized. In some observation
directions, the scattered light is linearly polarized.

Consider a scattering center located at a point P, as shown in Figure 8.12. Let the
incident light be unpolarized light, which can be resolved into two orthogonal linearly
polarized components with random phases. The incident component vibrating in the
( y, z) plane, when absorbed, will set the particle (rather the electrons in the particle)
vibrating along the y direction. The re-radiated wave will have zero amplitude along
the y direction. On the other hand, if the particle is oscillating along the x direction, the
re-radiated wave will have zero amplitude in that direction. Thus, when the observation
direction lies along the y direction in the (x, y) plane passing through the point P, the
scattered wave will be plane polarized. The particle acts as a polarizer.

Let us now assume that the incident wave is linearly polarized, with the E vector
vibrating in the ( y, z) plane. The electrons in the particle will oscillate along the y
direction. The re-radiated wave will have zero amplitude when observed along the
y axis. The particle thus acts as an analyzer. This picture is equivalent to placing
a polarizer and an analyzer anywhere in the model. Therefore, stress information
can be obtained without freezing the stress and slicing the model. The scattered-
light method therefore provides a nondestructive means of optical slicing in three
dimensions.

8.15 EXAMINATION OF THE STRESSED MODEL IN
SCATTERED LIGHT

8.15.1 UNPOLARIZED INCIDENT LIGHT

Let us consider a stressed model in the path of a narrow beam of unpolarized light. We
assume that there are a large number of scatterers in the model. Let us now consider
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the light scattered by a scatterer at point P inside the model when the observation
direction is perpendicular to the incident beam. The scattered light is resolved into
components along the directions of principal stresses σ2 and σ3, as shown in Figure
8.13. In traversing a distance PQ in the model, these two orthogonally polarized
components acquire a phase difference. If an analyzer is placed in the observation
path, the transmitted intensity will depend on the phase difference acquired. Since
the incident beam is unpolarized, there is no influence of the transverse distance AP
in the model. Assume that the transmitted intensity is zero for a certain location P of
the scatterer; this occurs when the phase difference is a multiple of 2π. As the beam
is moved to illuminate another scatterer at point P′ in the same plane along the line
of sight, the transmitted intensity will undergo cyclic variation between minima and
maxima, depending on the additional phase acquired when traversing the distance
PP′. It is, however, assumed that the directions of the principal stresses σ2 and σ3 do
not change over the distance PP′.

Let m1 and m2 be the fringe orders when the light scattered from scatterers at
points P and P′ is analyzed. Then

x1(σ2 − σ3) = m1 f (8.66a)

x2(σ2 − σ3) = m2 f (8.66b)

where x1 = PQ and x2 = P′Q. Therefore, we obtain

σ2 − σ3 = dm

dx
f (8.67)

The principal stress difference at any point along the observation direction is
proportional to the gradient of the fringe order.

Analyzer

σ2
σ3

QB

P′ P

y
x

z

A

FIGURE 8.13 Stressed model: illumination by an unpolarized beam and observation through
an analyzer.
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8.15.2 LINEARLY POLARIZED INCIDENT BEAM

We now consider another situation of a linearly polarized beam incident on the model,
as shown in Figure 8.14. We assume for the sake of simplicity that the principal stress
directions are along the x and y axes. The transmission axis of the polarizer makes
an angle α with the x axis. The incident wave of amplitude E0 is resolved along the x
and y directions. These linearly polarized components travel with different velocities
in the model, and hence pick up a phase difference δ. Thus, at any plane normal to
the direction of propagation, the state of polarization of the wave in general will be
elliptical. It can be expressed as

E2
x

E2
0 cos2 α

+ E2
y

E2
0 sin2 α

− 2ExEy

E2
0 cos α sin α

cos δ = sin2 δ (8.68)

where Ex and Ey are the components along the x and y directions, respectively. The
major axis of the ellipse makes an angle ψ with the x axis, where

tan 2ψ = tan 2α cos δ (8.69)

When δ = 2pπ, p = 0, ±1, ±2, ±3, ±4, . . . , the state of polarization of the wave is
linear, with orientation ψ = ±α. For positive values of the integer p, the state of
polarization of the wave at any plane is the same as that of the incident wave. In
general, a scatterer at point P in any plane is excited by an elliptically polarized wave.
In scattered-light photoelasticity, we are looking in the model normal to the direction
of propagation; that is, the observation is confined to the plane of the elliptically
polarized light. If the observation is made in the direction along the major axis of
the ellipse, the amplitude of the re-radiated wave received by the observer will be
proportional to the magnitude of the minor axis of the ellipse, and hence a minimum.
On the other hand, if the observation direction coincides with the minor axis, the
intensity will be a maximum.

As the beam propagates in the stressed model, the ellipse just described contin-
ues to rotate as the phase difference changes. Therefore, the observation made in the
scattered light normal to the direction of the incident beam will show a variation in
intensity along the length of the model in the direction of the incident beam. There is no

s2 

a

s1 

Direction of
observation  

Q

P

x

y

z

FIGURE 8.14 Stressed model: illumination by a linearly polarized beam.
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FIGURE 8.15 (a) Scattered-light pattern of a disk under radial compression. (b) Schematic
showing the directions of illumination and observation. (From L. S. Srinath, Scattered Light
Photoelasticity, Tata McGraw-Hill, New Delhi, 1983. With permission.)

influence of birefringence in the model on traverse through distance PQ. Figure 8.15
shows a scattered-light stress pattern of a disk under radial compression. The direc-
tions of the incident beam and that of the scattered light are also shown in Figure 8.15.

Owing to the weak intensity of the scattered light, an intense incident beam is
used. This beam is generated by a high-pressure mercury lamp with suitable colli-
mating optics. The laser is an attractive alternative, since the beam can then be used
without optics. The model is placed in a tank containing an index-matching liquid to
avoid refraction and polarization changes at the model surfaces. To facilitate proper
adjustments, the model in the tank is mounted on a stage capable of translational and
rotational movement.
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9 The Moiré Phenomenon

9.1 INTRODUCTION

When two periodic patterns are superposed, a moiré pattern is formed. This is in
fact a very common phenomenon. Moiré patterns are formed by periodic struc-
tures of lines or stripes. In general, the superposed patterns should have opaque
and transparent regions. Although moiré patterns can be observed with superposition
of periodic objects of nearly the same periodicity, the most commonly used objects
are linear gratings with equal opaque and transparent regions, often called Ronchi
gratings. Sometimes, circular gratings with equal opaque and transparent regions are
used. The moiré phenomenon is a mechanical effect, and the formation of moiré
fringes is best explained by mechanical superposition of the gratings. However, when
the period of these periodic structures is very fine, diffraction effects play a very
significant role.

The fringes formed in holographic interferometry (HI) can be considered as a moiré
pattern between the primary grating structures belonging to the initial and final states
of the object. These primary grating structures are a result of interference between
the object wave and the reference wave. Two-wavelength interferometric fringes are
also moiré fringes. In general, the moiré pattern can be regarded as a mathematical
solution to the interference of two periodic functions. Holo-diagram, a tool developed
by Abramson to deal with several issues in HI, is a beautiful device to study fringe
formation and fringe control using the moiré phenomenon.

We can explain the moiré phenomenon either using the indicial equation or by the
superposition of two sinusoidal gratings. We will follow both approaches, beginning
with the indicial equation.

9.2 THE MOIRÉ FRINGE PATTERN BETWEEN TWO
LINEAR GRATINGS

Let us consider a line grating with lines running parallel to the y axis and having
period b (Figure 9.1a). This grating is described as follows:

x = mb (9.1)

where the various lines in the grating are identified by the index m, which takes values
0, ±1, ±2, ±3, . . . . A second grating of period a is inclined at an angle θ with the
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y axis as shown in Figure 9.1b. The lines in this grating are represented by

y = x cot θ − na/sin θ (9.2)

where a/sinθ is the intercept with the y axis and the index n takes values 0, ±1, ±2,
±3, . . . , and hence identifies various lines in the grating. On superposing the two line
gratings, the moiré fringe pattern formed is governed by the indicial equation

m ± n = p (9.3)

where p is another integer that takes values 0, ±1, ±2, ±3, . . . . The plus sign in the
indicial equation generates a sum moiré pattern, which usually has high frequency,
and the minus sign generates difference moiré fringes, which are the moiré patterns
that are most frequently used and observed. We will be using the difference moiré
pattern unless mentioned otherwise. We obtain the equation of the moiré fringes by
eliminating m and n from Equations 9.1 through 9.3 as

y = x(b cos θ − a)

b sin θ
+ pa

sin θ
(9.4)

This is shown in Figure 9.1c. Equation 9.4 can be written in a more familiar form like
Equation 9.2 as

y = x cot φ + pd

sin φ
(9.5)

This implies that the moiré pattern is a grating of period d that is inclined at an angle
φ with the y axis, where

d = ab(
a2 + b2 − 2ab cos θ

)1/2
(9.6a)

sin φ = sin θ
b(

a2 + b2 − 2ab cos θ
)1/2 = d

a
sin θ (9.6b)

It is interesting to study moiré patterns for the following two situations:

(a) (b) (c) 

FIGURE 9.1 (a) Vertical grating. (b) Inclined grating. (c) Moiré pattern as a result of
superposition.
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9.2.1 a �= b BUT θ = 0

This is a well-known situation of pitch mismatch: the moiré fringes run parallel to
the grating lines. The moiré fringe spacing is given by d = ab/|a − b|. Here a − b
represents the pitch mismatch. If the gratings are of nearly the same pitch, a ≈ b, then
d = a2/|a − b|. Figures 9.2a and 9.2b show gratings of pitches a and b, respectively,
with grating elements parallel to the y axis. The moiré fringes due to pitch mismatch
are shown in Figure 9.2c. Physically, the moiré spacing is the distance over which
pitch mismatch accumulates to the pitch of the grating itself. When the gratings are
of equal period, the moiré spacing is infinite. This arrangement is therefore called the
infinite fringe mode.

9.2.2 a = b BUT θ �= 0

This is referred to as an angular mismatch between two identical gratings. This results
in moiré pattern formation with a period d = a/[2 sin(θ/2)] and orientation with the
y axis given by φ = π/2 + θ/2. In fact, the moiré fringes run parallel to the bisector
of the larger enclosed angle between the gratings.

Moiré fringe formation is easily appreciated when we work in the Fourier domain.
In the Fourier domain, a sinusoidal grating of finite size generates three spectra (spots):
the spots lie on a line that passes through the origin and is perpendicular to the
grating elements. This is due to the fact that the spectrum of a real grating (intensity
grating) is centrosymmetric. We need therefore consider only one half of the spectrum.
The spots lie on a line that is perpendicular to the grating elements (lines), and the
distance between two consecutive spots is proportional to the frequency of the grating.
The second grating also generates a spectrum, which is rotated by an angle equal to the
angle between the two gratings. When two gratings are superposed, the difference Δr
between the two spots (Figure 9.3) generates a grating. If Δr lies within the visibility
circle (a spectrum lying in this circle will generate a grating that can be seen by the
unaided eye), a moiré pattern is formed: the pitch of the moiré fringes is inversely
proportional to the length Δr and the orientation is normal to it. Obviously, when
two gratings of equal period are superposed with an angular mismatch, a moiré fringe
pattern is formed with fringes running parallel to the bisector of the angle between
these gratings and with spacing inversely proportional to the angular mismatch.

(a) (b) (c) 

FIGURE 9.2 (a) Vertical grating. (b) Another vertical grating with a different pitch. (c) Moiré
pattern as a result of pitch mismatch.
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Dr

FIGURE 9.3 Spectra of two inclined sinusoidal gratings.

9.3 THE MOIRÉ FRINGE PATTERN BETWEEN A LINEAR
GRATING AND A CIRCULAR GRATING

As mentioned earlier, moiré fringes are produced by the superposition of periodic
structures. The superposition of a linear grating with a circular grating is of some
academic interest: we consider moiré formation by two such gratings. We take a linear
grating of period b with its elements running parallel to the y axis. It is represented,
as in Equation 9.1, by

x = mb for m = 0, ±1, ±2, ±3, . . .

A circular grating of period a is centered at the origin of the coordinate system, and
hence can be represented as

x2 + y2 = a2n2 for n = 0, ±1, ±2, ±3, . . . (9.7)

The indicial equation is m ± n = p. Therefore, the moiré pattern for m − n = p is
given by

x

b
−
(
x2 + y2

)1/2

a
= p

or

x2 + y2

a2
= p2 + x2

b2
− 2xp

b
(9.8)

This expression can be rewritten as

x2
(

1

a2
− 1

b2

)
+ y2

b2
+ 2

x

b
p − p2 = 0 (9.9)

Equation 9.9 represents a hyperbola, ellipse, or parabola, depending on the relative
grating periods. The moiré pattern for a = b is shown in Figure 9.4, which shows
parabolic moiré fringes. The Fourier transform (FT) of a circular grating lies on a
circle; hence an overlap of a linear grating with a circular grating produces a moiré
that has a very wide FT spectrum.
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FIGURE 9.4 Moiré pattern between a linear grating and a circular grating.

9.4 MOIRÉ BETWEEN SINUSOIDAL GRATINGS

So far, we have looked into the process of moiré formation using line gratings. Such
gratings are seldom used in practice. One normally uses gratings that are binary, since
they are very easy to produce. However, when high-frequency gratings are used, they
are generally fabricated interferometrically, and hence have a sinusoidal profile. Even
binary gratings can be Fourier-decomposed into sinusoidal components, however, so
it is instructive to see how the moiré pattern of sinusoidal gratings is formed.

Sinusoidal gratings can be recorded either on the same film or on two separate
films, which are then overlapped, as was done with line gratings. We examine these
two situations separately. Let us consider a grating defined by a transmittance function
t1(x):

t1(x) = t0

(
1 − M cos

2π

b
x

)
= t0(1 − M cos 2πμ0x) (9.10)

where t0 is the bias transmission, M is the modulation, b is the period, and μ0 is the
spatial frequency of the grating. The grating elements run parallel to the y axis. When
M = 1, the grating has unit contrast and its transmission function lies between 0 and
2t0. Let us now take another sinusoidal grating that is inclined with respect to the first
grating. Its transmission function t2(x, y) is expressed as

t2(x, y) = t0

[
1 − M cos

2π

a
(x cos θ − y sin θ)

]
= t0

[
1 − M cos 2π(μx − νy)

]

(9.11)
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The grating is inclined at an angle θ with the y axis and has a period a. Its spatial
frequencies along the xand y directions are μ and ν, respectively, such that a−2 =
μ2 + ν2. Further, the gratings are assumed to have the same modulation.

When the gratings are exposed on the same transparency, the transmission function
of the positive transparency, with proper processing, can be taken as being proportional
to the sum of the two transmission functions:

t(x, y) ∝ t1(x) + t2(x, y)

= 2t0{1 − M cos π[(μ + μ0)x − νy] cos π[(μ − μ0)x − νy]} (9.12)

This transmission function corresponds to a grating that is modulated by a low-
frequency grating (i.e., the moiré pattern). Bright moiré fringes are formed when

cos π[(μ − μ0)x − νy] = −1

or

(μ − μ0)x − νy = 2m + 1 (9.13)

where m is an integer. Similarly, dark moiré fringes are formed when

cos π[(μ − μ0)x − νy] = 1, or (μ − μ0)x − νy = 2m

The moiré fringes are inclined at an angle φ with the y axis such that

cot φ = μ − μ0

ν
= cos θ − a/b

sin θ
(9.14)

When a = b, we have

cot φ = cos θ − 1

sin θ
(9.15)

The period of the moiré pattern is also obtained as

d =
[

1

(μ − μ0)
2

+ 1

ν2

]1/2

= ab(
a2 + b2 − 2ab cos θ

)1/2
(9.16)

These are the same formulae that were obtained for line gratings.
When the gratings are recorded on separate films and the moiré pattern due to

their overlap is observed, the transmission function is obtained by multiplication of
their respective transmission functions: t(x, y) = t1(x)t2(x, y). The moiré pattern is
then obtained following the procedure explained earlier.
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9.5 MOIRÉ BETWEEN REFERENCE AND DEFORMED GRATINGS

When the moiré phenomenon is used for metrology, one of the gratings is mounted
on the object that is subjected to deformation. Therefore, one then observes the moiré
pattern from the deformed grating and the reference grating (undeformed grating).
One can also obtain a moiré pattern between two deformed gratings (i.e., when two
deformed states of the object are compared). It is thus instructive to study moiré for-
mation from deformed and undeformed gratings and learn how to extract information
about the deformation from the moiré pattern.

The deformation is represented by a function f (x, y), which is assumed to be slowly
varying. The deformed grating can be expressed as

x + f (x, y) = mb for m = 0, ±1, ±2, ±3, ±4, . . . (9.17a)

This grating is superposed on a reference grating represented by

x = nb for n = 0, ±1, ±2, ±3, ±4, . . . (9.17b)

This results in a moiré pattern represented by

f (x, y) = pb for p = 0, ±1, ±2, ±3, ±4, . . . (9.18)

The moiré fringes represent a contour map of f (x, y) with period b. Here, the elements
in both the gratings run parallel to the y axis with the deformed grating exhibiting slow
variation. We can also obtain moiré between the deformed grating and a reference
grating that is oriented at an angle θwith the y axis.That is, the gratings are expressed as

x + f (x, y) = mb

and

y = x cot θ − nb

sin θ
(9.19)

The moiré pattern, when the grating is inclined by a small angle such that cos θ ≈ 1
and sin θ ≈ θ is given by

y + f (x, y)

θ
= p

b

θ
(9.20)

This describes a moiré grating with the period and distortion function magnified by
a factor 1/θ.

When two distorted gratings are superposed, the moiré pattern gives the difference
between the two distortion functions. This difference can also be magnified when the
finite-fringe mode of moiré formation is used.

The derivative of the distortion function is obtained by observing the moiré pattern
from the deformed grating and its displaced replica. For example, let us consider the
deformed grating represented as in Equation 9.17a:

x + f (x, y) = mb
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Its replica has been displaced along the x direction by Δx, and hence is represented by

x + Δx + f (x + Δx, y) = nb (9.21)

When these gratings are superposed, the moiré pattern is given by

Δx + f (x + Δx, y) − f (x, y) = pb (9.22)

In the limit when the lateral shift Δx is small, we obtain

Δx + ∂f (x, y)

∂x
Δx = pb (9.23)

The first term is a constant, and just represents a shift of the moiré pattern. The
moiré pattern thus displays the partial x derivative of the distortion function f (x, y).
As mentioned earlier, the moiré effect can be magnified by 1/θ using the finite-
fringe mode.

Pitch mismatch between the gratings can also be used to magnify the effect of
distortion. As an example, we consider a distorted grating and a reference grating
given by

x + f (x, y) = mb

and

x = na (9.24)

The moiré pattern is given by

x + a

|a − b| f (x, y) = ab

|a − b| p (9.25)

The period of the moiré pattern is ab/|a − b| and the distortion function has been
magnified by a/|a − b|.

9.6 MOIRÉ PATTERN WITH DEFORMED SINUSOIDAL
GRATING

The transmission function of a deformed sinusoidal grating is given by

t1(x, y) = A0 + A1 cos

{
2π

b

[
x − f (x, y)

]}
(9.26)

where A0 and A1 are constants specifying the bias transmission and the modulation of
the grating and f (x, y) represents the distortion of the grating. The reference grating,
oriented at an angle θ, is represented by

t2(x, y) = B0 + B1 cos

[
2π

a
(x cos θ − y sin θ)

]
(9.27)

where B0 and B1 are constants.
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9.6.1 MULTIPLICATIVE MOIRÉ PATTERN

Moiré fringes are formed when the angle θ is small, the deformation f (x, y) varies
slowly in space, and the periods of the two gratings are nearly equal; in general,
a = Nb, where N is an integer. The transmission function for multiplicative moiré is
the product of the transmission functions of the gratings:

t(x, y) = t1(x, y) t2(x, y) = A0B0 + A1B0 cos

{
2π

b

[
x − f (x, y)

]}

+ A0B1 cos

[
2π

a
(x cos θ − y sin θ)

]

+ A1B1 cos
2π

b

[
x − f (x, y)

]
cos

[
2π

a
(x cos θ − y sin θ)

]
(9.28)

For simplicity, the contrasts of the gratings are assumed to be same (i.e., A0 = B0 and
A1 = B1). Then,

t(x, y) = A2
0 + A1A0 cos

{
2π

b

[
x − f (x, y)

]}+ A0A1 cos

[
2π

a
(x cos θ − y sin θ)

]

+ A2
1

2

{
cos

{
2π

[
x

(
1

b
+ cos θ

a

)
− y

sin θ

a
− f (x, y)

b

]}

+ cos

{
2π

[
x

(
1

b
− cos θ

a

)
+ y

sin θ

a
− f (x, y)

b

]}}
(9.29)

In Equation 9.29, the first term is a DC term; the second, third, and fourth terms are
the carriers; and the fifth term represents the moiré pattern. Moiré fringes are formed
wherever

x

(
1

b
− cos θ

a

)
+ y

sin θ

a
− f (x, y)

b
= p (9.30)

The moiré fringes are deformed straight lines as a result of f (x, y), the local
deformation being f (x, y)/θ when θ is small.

9.6.2 ADDITIVE MOIRÉ PATTERN

An additive moiré pattern is obtained when the transmission functions of the individual
gratings are added. Therefore, the transmission function, assuming gratings of the
same modulation, is given by

t(x, y) = t1(x, y) + t2(x, y) = 2A0 + A1 cos

{
2π

b

[
x − f (x, y)

]}

+ A1 cos

[
2π

a
(x cos θ − y sin θ)

]
(9.31)
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This can be written as

t(x, y) = 2A0 + 2A1 cos

{
π

[
x

(
1

b
+ cos θ

a

)
− sin θ

a
− f (x, y)

b

]}

× cos

{
π

[
x

(
1

b
− cos θ

a

)
+ sin θ

a
− f (x, y)

b

]}
(9.32)

The second cosine term represents the moiré pattern, which modulates the carrier
grating. Owing to the cosine variation of the moiré term, the phase of the carrier
changes intrinsically at the crossover point. The visibility of the moiré pattern is
generally poor, and imaging optics are required to resolve the carrier grating.

9.7 CONTRAST IMPROVEMENT OF THE ADDITIVE
MOIRÉ PATTERN

It has been mentioned that the contrast of the additive moiré pattern is poor. In order
to observe the fringe pattern, it is necessary either to resolve the carrier grating or
to use nonlinear recording. Alternately, one could use an FT processor to filter out
the required information. The transparency t(x, y) is placed at the input of the FT
processor, and the spectrum, which consists of the zero order and two first orders,
is observed at the filter plane. Either of the first orders is filtered out and used for
imaging. The intensity distribution at the output plane is proportional to

A2
1 cos2

{
π

[
x

(
1

b
− cos θ

a

)
+ sin θ

a
− f (x, y)

b

]}

= 1

2
A2

1

{
1 + cos

{
2π

[
x

(
1

b
− cos θ

a

)
+ sin θ

a
− f (x, y)

b

]}}
(9.33)

This represents a unit-contrast moiré pattern.

9.8 MOIRÉ PHENOMENON FOR MEASUREMENT

The moiré phenomenon has been used extensively for the measurement of length and
angle. It has also been applied to the study of deformation of objects and also for
shape measurement. We will now investigate how to employ this tool in the area of
experimental solid mechanics.

9.9 MEASUREMENT OF IN-PLANE DISPLACEMENT

9.9.1 REFERENCE AND MEASUREMENT GRATINGS OF EQUAL PITCH

AND ALIGNED PARALLEL TO EACH OTHER

A measurement grating is bonded to the object, and the reference grating is aligned
parallel to it. In-plane displacement in the direction of the grating vector (the direction
normal to the grating elements) causes the period of the bonded grating to change
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from b to a. The moiré fringes formed will have a period d = ab/|a − b|. The normal
strain ε as measured by the moiré method is |a − b|/a. Therefore, ε = b/d: the ratio
of the grating period to that of the moiré pattern. At this juncture, it should be noted
that the moiré method measures the Lagrangian (engineering) strain. However, if the
deformation is small, the Lagrangian and Eulerian strains are practically equal.

The shear strain is obtained likewise: the measurement grating (the grating bonded
on the object), as a result of shear, is inclined at an angle θ with the reference grating,
resulting in the formation of a moiré pattern. Moiré fringes are formed wherever

x(1 − cos θ) + y sin θ = pb (9.34)

The period d of the moiré fringes for very small rotation is b/θ. In fact, the shear
strain, when the rotation is small and also when strains are small, is equal to θ. Thus,
the shear strain γ is given by

γ = b/d (9.35)

The shear strain is also obtained as the ratio of the grating pitch to that of the moiré.
This is valid for the homogeneous normal strain and simple shear strain.

9.9.2 TWO-DIMENSIONAL IN-PLANE DISPLACEMENT MEASUREMENT

The analysis of the moiré pattern becomes quite easy when it is recognized that the
moiré fringes are the contours of the constant displacement component—the so-called
isothetics. The zero-order moiré fringe runs through regions where the periods of
the reference and measurement gratings are equal (i.e., the displacement component
is zero). Similarly, the N th-order moiré fringe runs through the regions where the
displacement component is N times the period of the grating. If the reference grating
has its grating vector along the x direction, the moiré fringes represent loci of constant u
displacement (i.e., u = Na). If the v component of the displacement is to be measured,
both the reference grating and the measurement grating are aligned to have their
grating vectors along the y direction. The moiré fringes are now the loci of constant
v component, and hence v = N ′a, where N ′ is the moiré fringe order. To obtain
both u and v components simultaneously, a cross grating may be used. The u and v

components are isolated by optical filtering.
Let us consider an example where the moiré pattern is obtained when both the

reference and measurement gratings are aligned with their grating vectors along the
x direction. The moiré pattern then represents the u displacement component. Since
strain is a derivative of the displacement, absolute displacement measurement is not
necessary. Hence, it is not necessary to assign the absolute fringe order to the moiré
fringes; instead, the orders are assigned arbitrarily. However, it should be kept in
mind that the increasing orders represent tensile strain and the decreasing orders
compressive strain. For the sake of analysis, the moiré fringes are assigned orders 8,
7, 6, 5, 4 in the moiré pattern shown in Figure 9.5. We now wish to obtain the strain
at a point A. Through A, a line parallel to the x axis is drawn, and a displacement
curve (the moiré fringe order versus the position on the object) is drawn as shown in
Figure 9.5: this curve represents the u displacement on the line over the object. We
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FIGURE 9.5 In-plane displacement and normal strain measurement from the moiré pattern.

now draw the tangent at the point A. The slope of the tangent at this point gives the
normal strain along the x direction. That is,

tan θ = ∂N

∂x
= 1

a

∂u

∂x

or

∂u

∂x
= εx = a

∂N

∂x
(9.36)

In fact, the strain field along this line on the object can be obtained from this curve. If
another line parallel to the y axis but passing through A is drawn and the displacement
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curve plotted as shown in Figure 9.5, we can obtain

∂u

∂y
= a

∂N

∂y

at point A. Similarly, we can obtain

∂v

∂y
= εy = a

∂N ′

∂y

from the v family of displacement fringes obtained by conducting the experiment
with the gratings aligned with their grating vectors parallel to the y axis. Also, we
obtain the quantity

a
∂N ′

∂x

The shear strain γxy is then calculated from

γxy = a

(
∂N

∂y
+ ∂N ′

∂x

)
(9.37)

Thus, both the normal strains and the shear strain can be obtained from the moiré
phenomenon. However, it is very clear from this analysis that the following two factors
are very important: first, correct assignment of the fringe orders to the moiré fringes;
second, accurate generation of the displacement curve.Assignment of the fringe orders
is not trivial, and requires considerable effort and knowledge. The rules of topography
of continuous surfaces govern the order of fringes. Adjacent fringes differ by plus or
minus one fringe order, except in zones of local fringe maxima or minima, where they
can have equal fringe orders. Local maxima and minima are usually distinguished
by closed loops or intersecting fringes; in topography, such contours represent hills
and saddle-like features, respectively. Fringes of unequal orders cannot intersect. The
fringe order at any point is unique and independent of the path of the fringe count used
to reach that point. A fringe can be assigned any number, since absolute displacement
information is not required for strain measurement. Relative displacement can be
determined using an arbitrary datum.

For generating the displacement curve accurately, one needs a large number of
data points, and so methods have been found to increase the number of moiré fringes,
and hence the data points, for the same loading conditions. This can be accomplished
by (i) pitch mismatch, (ii) angular mismatch, or (iii) their combination.

The strains can also be obtained by shearing: the moiré patterns representing the
displacement fringes are sheared to obtain the fringes corresponding to the strain.

9.9.3 HIGH-SENSITIVITY IN-PLANE DISPLACEMENT MEASUREMENT

The sensitivity of in-plane displacement measurement depends on the period of the
grating. In moiré work, low-frequency gratings are usually employed, and the anal-
ysis is based on geometrical optics. However, with fine-period gratings, although
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FIGURE 9.6 High-sensitivity in-plane measurement set-up: mirrors M5, M6, M7, and M8
generate two beams in the ( y, z) plane.

the sensitivity is increased, diffraction effects are prominent, and consequently quasi-
monochromatic, spatially coherent light needs to be used. Indeed, with laser radiation,
in-plane displacement measurements with a very high degree of accuracy can be made.
A cross grating, say 1200 lines/mm in either direction, recorded holographically and
aluminum-coated for reflection, is bonded onto the surface under test. The use of
high-density gratings puts a limitation on the size of the object that can be examined.
The grating is illuminated by four collimated beams, as shown in Figure 9.6. Two
beams lie in the (x, z) plane and two in the ( y, z) plane, and make angles such that
first-order diffracted beams propagate along the z axis. These beams, on interference,
generate fringe patterns characteristic of the u and v families of the displacement.

To understand the working of the technique, let us consider a one-dimensional
grating with its grating vector along the x direction. The grating is recorded holo-
graphically by interference between two plane waves, one propagating along the z
axis and the other making an angle θ with this but lying in the (x, z) plane. The
period of the grating is b, or its spatial frequency μ = (sin θ)/λ (i.e., b sin θ = λ).
This grating is bonded onto the surface of the object. When the grating is illuminated
normally by a collimated beam, the first-order diffracted beams make angles of θ and
−θ with the normal to the grating. Let us assume that the object is loaded, resulting
in distortions in the grating period. Let the modified spatial frequency be μ(x). The
grating is illuminated symmetrically at angles of θ and −θ by two plane waves that
can be represented by Re2πiμx and Re−2πiμx, where R is the amplitude of the wave.
These plane waves will be diffracted by the grating, and the diffracted field can be
expressed as

R
(

e2πiμx + e−2πiμx
) 1

2
{1 + cos[2πμ(x)x]} (9.38)
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Collecting terms of interest (i.e., those terms representing waves that propagate along
the z axis), we obtain

1

4
R
(

e2πi[μ−μ(x)]x + e−2πi[μ−μ(x)]x
)

(9.39)

The intensity distribution in the image is

I(x) = 1

4
R2 cos2{2π[μ − μ(x)]x} (9.40)

This represents a moiré pattern. The moiré fringe width is

d = 1

2

aa(x)

|a − a(x)| = 1

2
Na (9.41)

where a(x) is the period of the deformed grating and N is the order of the moiré
fringe. It should be noted that the sensitivity of the method is twice as large as would
be obtained with the same grating using the conventional method. This is due to the
fact that the deformed grating in +1 and −1 diffraction orders is being compared.
This increase in sensitivity by a factor of two has been explained by Post as being
due to moiré formation between a grating on the test surface and a virtual grating of
twice the frequency formed by interference between the two beams, thus providing
a multiplicative factor of two. Use of higher diffraction orders results in increased
fringe multiplication.

An arrangement to measure u and v components of the displacement simultane-
ously uses a high-frequency cross grating bonded onto the surface of the object. The
grating is illuminated simultaneously and symmetrically along the x and y direc-
tions to generate four beams travelling axially. The moiré fringes representing u and
v displacement components are then obtained by interference of these four beams.
Figure 9.7 shows the u and v families of fringes for an electronic component that
was heated to show the influence of heat (generated internally during operation) on
the packaging. A cross grating with 1200 lines/mm is transferred to the face of the
electronic component and He–Ne laser light is used for illumination.

9.10 MEASUREMENT OF OUT-OF-PLANE COMPONENT
AND CONTOURING

The Moiré technique is well suited for the measurement of in-plane displacement
components: the sensitivity is controlled by the period of the grating. Further, the
techniques used for moiré formation are either pitch mismatch or angular mismatch.
Therefore, moiré formation when measuring out-of-plane displacement will also be
governed by these techniques. Consequently, the moiré method is not as sensitive for
out-of-plane measurement as for in-plane measurement. Out-of-plane displacement
and surface topography can be measured by the shadow moiré method or the projection
moiré method.

We will discuss these methods in detail.
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FIGURE 9.7 Interferograms showing (a) u-displacement,and (b) v-displacement fringes at
the face of an electronic component when energized. (Courtesy of Fu Yu, National University
of Singapore.)

9.10.1 THE SHADOW MOIRÉ METHOD

As the name suggests, the moiré pattern is formed between the grating and its shadow
on the object. The shadow grating will be distorted by the object topography, and
hence moiré fringes from the distorted and reference gratings are observed.

9.10.1.1 Parallel Illumination and Parallel Observation

Figure 9.8 shows an arrangement for shadow moiré that relies on parallel illumination
and observation; a reference grating is placed on the object. Without loss of generality,
we may assume that the pointA on the object surface is in contact with the grating. The
grating is illuminated by a collimated beam incident at an angle α with the normal
to the grating surface (i.e., the z axis). It is viewed from infinity at an angle β. It
is obvious that the grating elements contained in a distance AB occupy a distance
AD on the object surface. The elements on AD will form a moiré pattern with the
grating elements contained in distance AC. Let us assume that AB and AC have p
and q grating elements, respectively. Therefore, AB = pa, and AC = qa = pb. From
geometry, BC = AC − AB = (q − p)a = Na for N = 0, ±1, ±2, . . .; N is the order
of the moiré fringes.

Therefore, we may write

z(x, y)(tan α + tan β) = Na

or

z(x, y) = Na

tan α + tan β
(9.42)

where z(x, y) is the depth as measured from the grating. This is the governing equation
of this method. It can be seen that the moiré fringes are contours of equal depth mea-
sured from the grating. If the viewing is along the normal to the grating (i.e., β = 0),
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FIGURE 9.8 Schematic for shadow moiré.

then z(x, y) = Na/ tan α. Alternatively, the grating may be illuminated normally and
viewed obliquely. Then z(x, y) = Na/ tan β. The assumption that the viewing is done
with a collimated beam is not always valid. However, when the object under study is
small and the camera is placed sufficiently far away, this requirement is nearly met,
although the method is thus not suited for large objects.

9.10.1.2 Spherical-Wave Illumination and Camera at Finite Distance

The assumption made earlier that both the source and the camera are at infinity limits
the application of the method to the study of small objects. However, when divergent
illumination is used, larger objects can be studied. In general, the source and the
camera may be located at different distances from the reference grating. However, a
special case where the source and the camera are at equal distances from the grating
is of considerable practical importance, and hence is discussed here in detail.

Let the point source S and the camera be at a distance L from the grating surface
and let their separation be P, as shown in Figure 9.9. The object is illuminated by
a divergent wave from a point source. As before, the number of grating elements p
contained in AB on the grating are projected onto AD on the object surface. These
elements interact with the q elements in AC, thus producing a moiré pattern.

If we assume that an N th-order moiré fringe is observed at the point D, then

BC = AC − AB = (q − p)a = Na (9.43)

But BC = z(x, y)(tan α′ + tan β′), where z(x, y) is the depth of the point D from the
grating. Therefore, we obtain

z(x, y) = Na

tan α′ + tan β′ (9.44)

Here, α′ and β′ vary over the surface of the grating or over the surface of the object.
From Figure 9.9, we have tan α′ = x/[L + z(x, y)] and tan β′ = (P − x)/[L + z(x, y)].
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FIGURE 9.9 Shadow moiré method with point source illumination and point receiving.

Substituting these expressions into Equation 9.44, we obtain

z(x, y) = Na
x

L + z
+ P − x

L + z

= Na
L + z(x, y)

P

Rearranging, we obtain

z(x, y) = NaL

P − Na
= Na

P

L
− Na

L

(9.45)

The ratio P/L is called the base-to-height ratio. This is an extremely simple formula.
In fact, it is this simplicity that makes this technique attractive over the one in which
the source and the camera are placed at different distances from the grating. The
distance Δz(x, y) between adjacent moiré fringes (i.e., ΔN = 1) is

Δz(x, y) =La

P

(
1 + z

L

)2
(9.46)

It can be seen that the fringe spacing is not constant, but increases with depth. Since
z(x, y)/L � 1, then the fringe spacing is constant and is given by Δz(x, y) = La/P.
The moiré fringes then represent true depth contours.

Although the method is applicable to the study of large objects, it is essential to
correct for perspective error. This error arises because the actual coordinates (x, y) of



“DK4217_C009.tex” — page 257[#19] 14/5/2009 20:31

The Moiré Phenomenon 257

a point appear as (xa, ya). From Figure 9.9, the actual coordinates (x, y) and apparent
coordinates (xa, ya) are related by

xa − x

z(x, y)
= P − xa

L

or

x = xa − z

L
(P − xa) = xa

(
1 + z

L

)
− zP

L
(9.47a)

Similarly,

y = ya

(
1 + z

L

)
− zP

L
(9.47b)

Using this arrangement, the shadow moiré method can be applied to the study
(obviously limited by the size of the grating) of very large structures.

Since the fringe spacing is not constant over the object depth, the sensitivity of the
method may not be adequate to map out surfaces that are strongly curved or very steep.
Therefore, the use of a composite grating has been suggested. The composite grating
consists of two parallel superposed gratings with two discretely different periods.
This thus provides two sensitivities.

One of the problems of the shadow moiré method is that the moiré fringes do not
localize on the surface of the object. Also, the contrast of the fringes is not constant.
Fringes of maximum contrast are obtained when the surface under test is nearly flat.
The moiré fringes become fuzzy when objects of steep curvature are examined. As
a precaution, objects with steep curvature should be placed as close to the grating as
possible, and the depth of field of the photographic objective should be large enough
to focus the grating and its shadow simultaneously.

9.10.2 AUTOMATIC SHAPE DETERMINATION

When the distance between the grating and the object surface changes, the moiré
fringes shift. From the direction of the shift—which can differ locally—information
about the local surface gradient can be obtained. In one approach to automatic surface
determination, a grating placed on the object is illuminated obliquely, and a moiré
pattern is recorded as shown in Figure 9.10. A number of moiré patterns are recorded
by shifting the grating axially. The phase of the moiré fringes is calculated using
well-known phase-shift techniques. The object topography is then calculated using
the appropriate expression.

9.10.3 PROJECTION MOIRÉ

There are several differences between the shadow moiré and projection moiré tech-
niques. In projection moiré, a higher-frequency grating is used, and the grating is
projected on the object surface and is re-imaged on a reference grating that is identi-
cal to the projection grating and aligned parallel to it. The moiré fringes are formed
at the plane of the reference grating. The projection moiré method also provides a
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certain flexibility that is not possible in the shadow moiré method. We will examine
the projection moiré method in the following two cases:

• The optical axes of the projection and imaging (observation) systems are
parallel.

• The optical axes are inclined with each other.

Referring to Figure 9.11, a grating G1 of period b is imaged on a reference plane, where
its period is Mb, M being the magnification of the projection system. If the object
surface is plane and located on this reference plane, the projected grating will have a
constant period. This grating is re-imaged on the reference grating G2. Assuming the
projection and imaging systems to be identical, the pitch of the imaged grating will
be equal to that of G2 and the grating elements will lie parallel to each other owing
to their initial alignment. Hence, no moiré pattern will be formed. However, if the
surface is curved, the projection grating on the surface will have a varying period, and
hence a moiré pattern is formed. We can examine this in exactly the same manner as
applied to shadow moiré; that is, the grating of period Mb at the reference plane is
illuminated by a spherical wave from the exit pupil of the projection lens.As described
in the shadow moiré method, we can write

z(x, y) = NMb

tan α′ + tan β′ = NMb
L + z(x, y)

P
(9.48)

Equation 9.48, on rearranging, becomes

z(x, y) = NMbL

P − NMb
(9.49)
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FIGURE 9.11 Projection moiré method.

Writing the magnification of the imaging system as M = (L − f )/f , where f is the
focal length, we obtain

z(x, y) = NbL(L − f )

fP − Nb(L − f )
(9.50)

Here, z(x, y) corresponds to the depth of the object at the point where the N th-order
moiré fringe is formed. It can be seen that the moiré fringe spacing is not constant.
However, when Mb � P, the moiré fringes are equally spaced.

The disadvantage of this method is that only very small objects can be studied.
However, large objects also can be studied when the optical axes of the projection
system and the imaging system are inclined, as shown in Figure 9.12. The grating
can be imaged on the reference plane where the Scheimpflug condition is satisfied.
However, the magnification is not constant, and consequently the period of the grating
on the reference plane varies. This problem can be solved by using a special grating
whose period remains constant on projection at the reference plane.

The technique can be used for the comparison of two objects if, instead of the
reference grating, a photographic record of the projected grating is made first with
one object and then with the object replaced by another object. The records can
be made on the same film (additive moiré) or on two separate films (multiplicative
moiré). Likewise, one can study out-of-plane deformation of the object by recording
gratings corresponding to two states of the object.

As should be obvious, the grating plays a very important role: the sensitivity
depends on the grating period. Therefore, several gratings may be required to maintain
accuracy over a steeply curved surface. Further, for phase-shifting, the grating needs
to be shifted. The use of programmed LCD panels for generating gratings of variable
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FIGURE 9.12 Projection moiré method with oblique incidence and observation.

period, with a sinusoidal or binary transmission function, and arbitrarily inclined,
makes automatic shape determination considerably more convenient.

9.10.4 LIGHT-LINE PROJECTION WITH TDI MODE OF OPERATION

OF CCD CAMERA

If depth determination of an object is to be carried out over the whole 360◦, then
several measurements are needed. These measurements are made by changing the
viewing and projection directions. An alternative approach is to unwrap the object
surface. This is particularly straightforward if the object has axial symmetry. The
object is placed on a turntable with its axis coinciding with the axis of rotation. A
beam of light in the form of a line is projected on the surface, as shown in Figure
9.13a. An image is made on a CCD camera; the image of the projected line will be
smeared out owing to rotational motion. On the other hand, if the laser is operated in
the pulse mode and the camera in TDI (time-delay and integration) mode, then the
object surface will be unwrapped and it will be covered with equidistant lines. The
line width will be governed by the width of the projected line and the line separation
by the pulse rate. If the object departs from axial symmetry, the pitch of the grating
will not be uniform, but will vary, depending on the magnitude of departure from the
nominal cylindrical surface.

Let us consider a section of the object, as shown in Figure 9.13b. It is illuminated
at an angle θ with the optical axis. The dashed line is the nominal circular section and
the solid line represents the surface of the object at that section. The point B on the
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FIGURE 9.13 TDI mode of a CCD camera: (a) line scan of an object; (b) calculation of the
shift of the line due to out-of-plane displacement; (c) unwrapped image of a cylindrical object
with a dent; (d) moiré pattern showing the dented region. (Courtesy of Dr. M. R. Sajan.)

surface is imaged at B′, which would also be the image of the point C if the object
were not deformed. Further, if the object were not deformed, the point A would be
imaged on the axis as A′ instead of the point B illuminated now. Therefore, the image
of the line on the object will be distorted. From the figure, we have AC = BC tan θ.
The out-of-plane displacement d is BC. Thus d = AC cot θ. Figure 9.13c shows a
distorted image on the unwrapped object. This distortion is seen vividly when a
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moiré is formed with an internally generated electronic grating, as shown in Figure
9.13d. The moiré condition, as before, is AC = Np, where p is the grating pitch.
Therefore, d = Np cot θ. The out-of-plane displacement is obtained from the moiré
pattern. Phase-shifting can easily be introduced by a shift of the laser diode.

If the pulse width is larger than the scanning time for one column of detectors,
the bright line will be smeared. Hence, the pulse width is determined accord-
ing to the selected scanning frequency. For example, for a scanning frequency of
50,000 lines/min, that is, a scanning time T = 1.2 ms/line, the suggested pulse width
should be less than 10% of T , that is, 0.12 ms. Figure 9.13c was obtained with a
TDI camera with 192 pixels per column (line) and has 165 lines. In the TDI mode,
the charge of each pixel on a line is added to itself as it moves from one end of the
detector to the other. There is thus a time delay from the moment a line of pixels is
first illuminated to the instant when it is read into the buffer, and the charge of the
pixel is integrated over 165 lines.

9.10.5 COHERENT PROJECTION METHOD

So far, we have discussed projection moiré methods in which a grating is projected on
the object surface, and its image is formed by another optical system on an identical
grating. The illumination is incoherent and the method requires two physical gratings.
However, it is possible to create a grating structure on the object by interference
between two coherent waves. We shall consider two distinct situations: one where two
plane (collimated) waves interfere, generating equidistant equiphasal plane surfaces
in space, and the other where interference between two spherical waves is used to
generate interference surfaces (hyperboloidal surfaces).

9.10.5.1 Interference between Two Collimated Beams

There are several ways of generating two inclined collimated beams. Let us consider
two plane waves, as shown in Figure 9.14, which enclose a small angle Δθ between
them. Assuming the amplitudes of these waves to be equal, the total amplitude u(x, y)
at the (x, z) plane can be written as

u(x, y) = e(2π/λ)i[x sin(θ − Δθ/2) + z cos(θ − Δθ/2)] + e(2π/λ)i[x sin(θ + Δθ/2) + z cos(θ + Δθ/2)]

(9.51)

where θ represents the mean direction. When such an amplitude distribution is
recorded, the intensity distribution in the record is

I = I0

{
1 + cos

[
2π

λ

(
2 sin

Δθ

2

)
(x cos θ + z sin θ)

]}

= I0

{
1 + cos

[
2π

a
(x cos θ + z sin θ)

]}
(9.52)

where a = λ/[2 sin(Δθ/2)]. Thus, a grating of period a is formed on the object
surface. The period of the grating along the x direction is a/cos θ and that along the z
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FIGURE 9.14 Coherent projection method.

direction is a/sin θ. This grating is photographed normally. If the object surface is a
plane lying in the (x, y) plane, then the grating period is ax = a/cos θ, and the period
in the photographic record is Max , where M is the magnification.

In order to visualize the moiré formation, we note that, in collimated illumination,
the fringe width along the x direction remains unchanged, irrespective of the depth
of the object. However, there is an in-plane shift that varies linearly with depth. So,
if the object depth changes by Δz, the x shift is Δz tan θ. If this shift is equal to the
grating period ax, then a moiré fringe is formed. The moiré fringe interval is thus
governed by ax = Δz tan θ = a/cos θ. This leads to Δz = a/sin θ. In other words, a
moiré fringe is formed wherever the object depth changes by a/sin θ. This is thus a
neat method of measuring out-of-plane displacement.

We again have the possibilities of either additive moiré or multiplicative moiré. The
first exposure is made with the object in its initial state and the second exposure when
it is deformed. The moiré pattern gives the out-of-plane displacement. Alternatively, a
reference record can be made of the grating on a reference plane, and the second record
made with dual illumination of the object surface. This way, the surface topography
can be obtained. The requirement is that the grating period be resolved. Therefore,
the interbeam angle should be only a few degrees: this will give a grating structure of
about 100 lines/mm, which can be resolved by a good imaging system. Obviously,
the size of the object that can be studied depends on the size of the collimated beams,
which is limited by the collimator optics.

9.10.5.2 Interference between Two Spherical Waves

In order to cover large objects, interference between diverging waves is utilized. One
simple method employs a single-mode 50 : 50 fiber-optic beam-splitter (coupler).
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The laser beam is coupled to one port of the coupler, and the beam is equally divided
into two output ports. The separation between the output fibers can be adjusted to
achieve the desired fringe width. Unfortunately, the surfaces of constant intensity in
the interference pattern are not plane surfaces but hyperboloids. The period of the
grating on the reference plane thus varies, but can be calculated given the coordinates
of the point sources. This method can therefore be used with large objects.

9.10.6 MEASUREMENT OF VIBRATION AMPLITUDES

Both the shadow moiré and projection moiré methods can be used to measure the
amplitude of vibration. We use the method described earlier in which two plane
waves are superposed on the object surface. A record of this will be a grating on
the surface of the object, with intensity distribution given by Equation 9.52. Let us
now assume that the object surface executes simple harmonic motion of amplitude
w(x, y) at frequency ω. We can express this as

z = z0 + w(x, y) sin ωt (9.53)

where z0 represents the static position of the surface. Owing to surface motion, the
phases of the two interfering beams at the surface will change with time; consequently,
the instantaneous intensity distribution in the record will be

I(x, t) = I0

{
1 + cos

[
2π

a

[
x cos θ + (z0 + w(x, y) sin ωt) sin θ

]]}
(9.54)

This intensity distribution is integrated over a period T much longer than the period
of vibration 2π/ω; that is,

I(x) = 1

T

∫ T

0
I(x, t)dt = I0

{
1 + J0

(
2π

a
w(x, y) sin θ

)
cos

[
2π

a
(x cos θ + z0 sin θ)

]}

(9.55)

where J0(x) is the Bessel function of zero order. This again represents a grating with
modulation given by the Bessel function. Information about the vibration amplitude
w(x, y) can be extracted from this record by optical filtering. We assume that the
record has an amplitude transmittance proportional to the intensity distribution.
The record is placed at the input plane of a FT processor, and one of the first
orders is allowed for image formation. The intensity distribution at the output plane
is proportional to

[
J0

(
2π

a
w(x, y) sin θ

)]2

(9.56)

The intensity distribution exhibits maxima and minima. The amplitude of vibration
is obtained as explained for time-average HI in Chapter 6.
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9.10.7 REFLECTION MOIRÉ METHOD

Unlike the shadow moiré and projection moiré methods, the reflection moiré method
yields information about slope and curvature. In the problem of flexure of thin plates,
the second derivatives of the deflection are related to the bending moments and twist.
The deflection data obtained from shadow moiré or projection moiré need to be
differentiated twice in order to obtain curvature, resulting in inaccuracies. Therefore, it
is necessary to obtain slope or curvature data so that either only a single differentiation
need be performed or differentiation is eliminated altogether. The reflection moiré
method serves this purpose. The only disadvantage is that the specimen has to be
specular.

Figure 9.15 shows a schematic of the experimental set-up for reflection moiré,
also known as Ligtenberg’s arrangement. The object is an edge-clamped plate. The
surface of the plate is mirror-like so that a virtual image of the reference grating is
formed. Consider a ray from a point D on the grating that, after reflection from point
P on the object, meets a point I at the image plane, as shown in Figure 9.15. In other
words, point I is the image of point D as formed by reflection on the plate surface.
When the plate is deformed, point P moves to point P′. If the local slope is φ, then
point I now receives the ray from point E: the image of point E is formed at I again.
In reality, an image of the grating as seen on reflection from the plate is recorded.
This image itself may contain distortions due to nonflatness of the plate surface. It
can be shown that, owing to self-healing, these distortions do not influence moiré
formation. After the plate is deformed (loaded), the image is again recorded on the
same photographic film/plate. Owing to loading, the grating image will be further
distorted, thus forming a moiré pattern.

Following the arguments presented earlier, a grating AE, after loading, is super-
posed on another grating AD, leading to moiré formation due to pitch mismatch. Let
there be p grating elements in AE and q elements in AD. If the N th-order moiré fringe
appears at point I, then

ED = AE − AD = pb − qb = ( p − q)b = Nb (9.57)

A

P

P

E

C

D

I

L

x

L'

P'

2f

q

q

FIGURE 9.15 Reflection moiré: Ligtenberg’s arrangement.
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But

ED = EC − CD = L tan(θ + 2φ) − L tan θ

= L
tan θ + tan 2φ

1 − tan θ tan 2φ
− L tan θ

Assuming φ to be very small, which is usually the case, we write tan 2φ ≈ 2φ.
Therefore,

ED = L
2φ(1 + tan2 θ)

1 − 2φ tan θ
= Nb (9.58)

Further, 2φ tan θ � 1, and, writing the partial x slope φ = ∂w/∂x, we have

∂w

∂x
= Nb

2L(1 + tan2 θ)
= Nb

2L

(
1 + x2

L′2

) (9.59)

The slope depends on the value of x. In order to eliminate the dependence of ∂w/∂x on
x, a curved grating is used. However, Ligtenberg’s method utilizing curved gratings
also suffers from several disadvantages: the large dimensions of the curved surface
gratings, the necessity of using gratings of low spatial frequency to obtain a moiré
pattern of good contrast, and the limitation to static loading problems and to models
of relatively large flexures. The disadvantages of Ligtenberg’s method are largely
removed by the Rieder–Ritter arrangement. A cross-grating is used so that ∂w/∂x
and ∂w/∂y are recorded simultaneously. These can be separated by optical filtering.

Further, as with other moiré methods, the sensitivity is dependent on the grating
period. It is therefore desirable to have an arrangement in which the grating period
can be varied easily. Figure 9.16 shows an arrangement where a grating is projected
onto a ground-glass screen. The projected grating is imaged using the Rieder–Ritter
arrangement. The pitch of the grating can be varied by changing the magnification
during projection of the grating.

Several other arrangements have been suggested to obtain slope and curvature.
A diffraction grating is placed at or near the focal plane of the imaging lens. The
diffraction grating produces sheared fields. Double exposure, before and after plate
loading, is performed. In another interesting arrangement, an inclined plane parallel
plate is placed near the focal plane of the imaging lens. The image is recorded in
reflection: two reflected beams, which are sheared, produce a grating in the image
plane. Loading of the plate deforms this grating. Therefore, double-exposure record-
ing, before and after plate loading, results in the formation of a moiré pattern that is due
to the slope variation. When two plates are used in tandem and properly aligned such
that three sheared beams participate in interference, curvature fringes are obtained.

These methods are coherent methods requiring laser radiation. The permissible size
of the object depends on the collimating optics, and hence these methods are limited to
small to moderate size objects. As mentioned earlier, the surface of the plate (object)
need not be optically flat. The departure from flatness causes some distortions in the
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FIGURE 9.16 Reflection moiré: grating with variable pitch.

grating. However, the moiré phenomenon has a self-healing property, and thereby
these distortions cancel out, and the moiré fringes are due alone to the deformation
of the plate caused by loading.

9.11 SLOPE DETERMINATION FOR DYNAMIC EVENTS

So far, we have described methods that are applicable only to static problems. Pulse
illumination is frequently used for the examination of dynamic processes. Grating
images corresponding to successive states of the object are recorded. However, it is
necessary to record the reference grating each time as well, in order to generate the
moiré pattern. This makes these methods rather troublesome to apply to the study of
dynamic events.

Several methods have been developed whereby the images of the reference grating
and the deformed grating from the surface under investigation are recorded simulta-
neously. In one such arrangement (Figure 9.17), the beam splitter provides two paths
for the imaging. One image is formed by reflection from the object surface T and
the other image is formed by reflection from a mirror surface M. Therefore, both
images of the grating can be recorded in a single exposure (pulse illumination), and
hence an additive moiré pattern can be observed for the various states of the object.
This arrangement, however, does not exploit the healing property of the moiré phe-
nomenon. Since, in general, the object surface in its initial state and the mirror surface
are not identical, the grating formed by reflection from the object surface will carry
some distortions, which will show up as moiré fringes even for the unloaded state of
the object. In other words, an initial fringe-free field is not obtained. This problem is
solved in the arrangement shown in Figure 9.18. The grating G1 is a replica of the
image formed by reflection from the object surface. Therefore, the images of gratings
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FIGURE 9.17 Arrangement for slope measurement.
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FIGURE 9.18 Modified arrangement for slope measurement.

G1 and G2 will be identical, and an initial fringe-free field is obtained. However, for
each object surface, a new grating G1 has to be produced and aligned.

9.12 CURVATURE DETERMINATION FOR DYNAMIC EVENTS

The arrangements shown in Figures 9.17 and 9.18 can be modified to provide for
additional shear by incorporating a Mach–Zehnder interferometer. Figure 9.19 shows
this arrangement. The images are sheared by the tilt given to one of the mirrors.
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FIGURE 9.19 Arrangement for curvature measurement.

9.13 SURFACE TOPOGRAPHY WITH REFLECTION
MOIRÉ METHOD

The methods described for slope and curvature measurements exploit the imaging of
a reference grating when the separation between the grating and the object surface is
large. However, when the reference grating is placed very close to the object surface,
the moiré pattern is formed between the reference grating and its image. Under certain
conditions, the moiré fringes are loci of constant depth. To explain the formation of
the moiré pattern, we consider the arrangement shown in Figure 9.20.

Grating G1 (which essentially is an image of G2) is viewed through grating G2.
Let the gratings G1 and G2 be described by

x = mb

x = na

z

x 

G2

E(x, 0)

D(x1, 0)

(xc, zc)

B(0, –d )

C(xi, –d )

x = naxi = mb 

G1

A(0, 0)

FIGURE 9.20 Surface topography via reflection moiré.
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respectively, where m and n are integers and the gratings have different periods b
and a respectively. The camera is located at the position (xc, zc). The x coordinate of
any point projected from grating G1 to grating G2 is obtained from

xc − x

zc
= xc − mb

zc + d

or

x = bzc

zc + d
m + d

zc + d
xc (9.60)

Using the indicial equation m − n = p, we obtain an equation for the moiré pattern:

x = abzc

(a − b)zc + ad
p + ad

(a − b)zc + ad
xc (9.61)

In general, d is a function of x and y: d(x, y). Let us now consider another experimental
arrangement (Figure 9.21): a grating is placed on a reflecting surface, and an image
of the grating is formed by reflection. Owing to imaging, both the period and the
separation of the image grating will vary spatially. The moiré pattern is observed as
a result of interaction of the image grating with the reference grating.

We now assume that the reflecting surface departs very little from the plane surface
and that the reference grating is in contact with the surface. Then, it is safe to assume
that the periods of both the reference and the image gratings are equal: a = b. The

Grating
(xc, zc)x 

z

Virtual or image
grating

Illumination

Reflecting surface

FIGURE 9.21 Reflection moiré for contouring.
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moiré pattern is then described by

x = azc

d(x, y)
p + xc (9.62)

Since d(x, y) is the separation between the two gratings, the depth z(x, y) of the surface
from the reference grating will be half of it: z(x, y) = d(x, y)/2. Therefore, we write

z(x, y) = azc

2(x − xc)
p (9.63)

Further, if the area to be examined is very small and the illumination source is far
away obliquely, then

z(x, y) = − azc

2xc
p (9.64)

The moiré fringes now represent true depth contours.
We now apply this technique to study moiré pattern formation when the grating is

placed on a spherical surface of radius curvature R. Let us assume that the reference
grating is placed at z = 0. The equation of the spherical surface is

x2 + y2 + z2 + 2z R = 0 (9.65)

The distance z(x, y) between the grating and the surface for large R is

z = −x2 + y2

2R

Substituting for z(x, y), the equation of the moiré pattern is now given by

x2 + y2 = azcR

xc
p (9.66)

The moiré fringes are circles of radii
√

(azcR/xc) p. The radii vary as
√

p, as in a
Fresnel zone plate. Figures 9.22a and 9.22b show photographs of such moiré patterns
taken by placing gratings of 200 lines/inch and 500 lines/inch, respectively, on a
concave mirror surface.

9.14 TALBOT PHENOMENON

When a periodic object is illuminated by a coherent monochromatic beam, its image
is formed at specific planes called the self-image planes or Talbot planes. The effect
was first observed by Talbot in 1836 and its theory was worked out by Rayleigh in
1881. Self-imaging is due to diffraction and can be observed with periodic objects
that satisfy the Montgomery condition. A linear (1D) grating is one such object. For a
1D grating of spatial frequency μ, illuminated by a collimated beam of wavelength λ,
the self-image planes are equidistant and are located at distances N/μ2λ from the
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FIGURE 9.22 Contour maps of a spherical surface: (a) with a grating of 200 lines/inch;
(b) with a grating of 500 lines/inch.

object, where N = 0, 1, 2, 3, . . . gives the order of the Talbot planes. In other words,
the transverse periodicity of the object manifests itself as longitudinal periodicity.
The imaging is called self-imaging because no imaging devices are used. A two-
dimensional (cross) grating with the same spatial frequency μ in both directions also
self-images at the planes located at N/μ2λ from the grating.

9.14.1 TALBOT EFFECT IN COLLIMATED ILLUMINATION

To explain Talbot imaging, let us consider a 1D grating whose transmittance is given by

t(x) = 1

2
(1 + cos 2πμx)

This grating is placed at the plane z = 0 and is illuminated by a collimated beam of
amplitude A, as shown in Figure 9.23. The amplitude of the wave just behind the
grating (z = 0 plane) will be given by

u(x, z = 0) = 1

2
A(1 + cos 2πμx) (9.67)

Using the Fresnel diffraction approach, the amplitude at any plane z is obtained as

u(x1, z) = A

2
eikz
(

1 + e−iππ2λz cos 2πμx1

)
(9.68)

Talbot images
Grating

Collimated
illumination zT

zc

FIGURE 9.23 Formation of Talbot images in collimated illumination.
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The amplitude distribution at any plane z will be identical to the grating transmit-
tance function, except for a constant multiplicative phase factor, if e−iππ2λz = 1.
This condition is satisfied when

πμ2λ = 2Nπ for N = 0, 1, 2, 3, . . . (9.69)

The planes at which this condition is satisfied are the Talbot planes. However, when
N takes half-integer values, we still obtain the transmittance function of a sinusoidal
grating, but it is phase-shifted by π. Thus, the Talbot planes are separated by zT =
1/μ2λ. In the case of collimated illumination, the Talbot planes are equispaced.

9.14.2 CUT-OFF DISTANCE

The Talbot images are formed as a result of constructive interference among the
diffracted waves at successive Talbot planes. For an infinite grating illuminated by an
infinitely large beam, the various diffracted waves will continue to overlap, irrespec-
tive of distance, thus producing an infinite number of Talbot images. In a practical
situation, both the grating and the beam are of finite dimensions. Therefore, the
diffracted waves will cease to overlap after a certain distance; consequently, no Tal-
bot images are formed after this distance. Let us consider a grating of linear dimension
D and spatial frequency μ illuminated by a beam of size D. The cut-off distance zc
is defined as the distance from the grating over which the first-order diffracted beam
deviates by half the beam size. This is given by zc = D/2μλ.

9.14.3 TALBOT EFFECT IN NONCOLLIMATED ILLUMINATION

Let us assume that a point source is placed at (0, 0) and that the grating is at the plane
z = R. The grating is illuminated by a divergent spherical wave from the point source.
The amplitude of the wave just behind the grating is

u(x, R) = A

2R
eikR ei(k/2R)x2

(1 + cos 2πμx) (9.70)

This is valid under the paraxial approximation. Using the Fresnel diffraction
approximation, the amplitude at a plane distant z from the grating is

u(x1, R + z) = A

2(R + z)
eik(R+z) exp

[
i

k

2(R + z)
x2

1

]

×
[

1 + exp

(
−iπ

Rz

R + z
μ2λ

)
cos

(
2πμ

R

R + z
x1

)]
(9.71)

This expression represents a transmittance function of the grating of spatial frequency
μ′ = μR/(R + z), provided that

exp

(
−iπ

Rz

R + z
μ2λ

)
= 1
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This yields the self-image planes distances (zT )s as

(zT )s = 2N

μ2λ − 2N

R

for N = 1, 2, 3, (9.72)

The spacing between successive Talbot planes increases with the order N . The period
of the grating also increases as if it were geometrically projected. Similarly, when the
grating is illuminated by a convergent spherical wave, the successive Talbot planes
come closer and the spatial frequency increases. This is valid until some distance
from the point of convergence.

9.14.4 TALBOT EFFECT FOR MEASUREMENT

Instead of using a projection system for projecting a grating on the object surface for
either shadow moiré or projection moiré work, the projection can be done without a
lens but using the Talbot effect. This, however, necessitates the use of laser radiation.
The additive moiré method can then be applied to measure out-of-plane deformation.
The shape of the object can also be obtained by imaging the Talbot grating on another
identical grating.

When a grating of higher frequency is used, several Talbot planes may intersect
the object surface. A moiré pattern of high contrast will be formed at the Talbot
planes. Therefore, objects of large depth can be topographically examined using this
technique.

9.14.4.1 Temperature Measurement

Several optical methods, such as holographic interferometry, moiré deflectometry,
schlieren photography, and laser speckle photography, have been used for the mea-
surement of flame temperature. These are noncontact methods. Talbot interferometry
with a circular grating has been proposed as another method of temperature profiling
of flames. Two identical circular gratings (containing equispaced concentric circles)
are used in the experiment. They are aligned with their centers collinear with the beam
direction and are placed such that the second grating lies on the Talbot image of the
first grating. The flame is placed between the two gratings. For a centrosymmetric
flame, the center of the flame lies on the line joining the centers of the gratings. In
such a case, the rays bend away from the center: the Talbot image of the circular
grating takes an elliptical shape, which forms a moiré pattern with the second grat-
ing. The angle of deflection is calculated from the moiré pattern. Using the inverse
Abel transform, the change in refractive index, (n − n0)/n0, is obtained, where n and
n0 are the refractive indices at a point in the flame and of the ambient atmosphere,
respectively. This value is then used to calculate the temperature using the formula

T = T0(
n − n0

n0

)(
3PA + 2RT0

3PA

)
+ 1
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where T0 is the temperature at the ambient condition for which the refractive index
is n0, P is the pressure, R is the gas constant, and A is the molar refractivity of air at
the wavelength of the light used in the experiment. Temperatures measured at various
locations in the flame with Talbot interferometry and with thermocouples are in good
agreement.

The sensitivity of the method depends nonlinearly on the pitch of the circular
grating.

9.14.4.2 Measurement of the Focal Length of a Lens and the Long
Radius of Curvature of a Surface

Talbot interferometry has been used for measuring the focal length of a positive lens
and power variations for a multifocus lens. It is a convenient technique to the measure
radii of curvature of shallower concave surfaces.
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interferometry, 167–168
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with, 246–248
Detection in optical measurement, 79–98.
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Detection in optical measurement
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Metal-oxide–semiconductor (MOS)
capacitor, 86

photoconductors, 80–81
extrinsic, 80
intrinsic, 80
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photomultiplier tube (PMT), 79, 84
time-delay and integration (TDI) mode of

operation, 89
DIC. See Differential interference contrast
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Diffraction, 43–58
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diffractive optical components (DOEs),
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efficiency, 57

holographic interferometry, 105
Fraunhofer diffraction, 44–45
Fresnel diffraction, 43–44
grating, motion of, 72
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interferometry, 135–136
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DOEs. See Diffractive optical components
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Double refraction, 204–207

Babinet compensators, 206–207
compensators, 206–207
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extra-ordinary beam (e-beam), 204
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ordinary beam, 204
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scattering, 207
Soleil–Babinet compensators, 206–207
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Dual-illumination,

single-observation-direction
method, 169

Dual-illumination method, in HI, 132
Dual-refractive-index method, in HI,

131–132
Dual-wavelength interferometry, 30–31
Dual-wavelength method, in HI, 129–131
Duffy’s method, 169–171, 176
Dynamic events

curvature determination for, 268–269
slope determination for, 267–268

Edge dislocation, 14
Efficiency, diffraction, 57
Electronic speckle pattern interferometry
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direction of illumination, change of,
188–189

medium surrounding the object,
change of, 189

object tilt, 189
wavelength, change of, 189
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measurement on small objects, 186–187
out-of-plane displacement measurement,

184–185
shear ESPI measurement, 187
vibration analysis, 185–186

ESPI. See Electronic speckle pattern
interferometry (ESPI)

Experimental arrangement, holographic
interferometry, 105–108

Extra-ordinary beam (e-beam), 205
Extrinsic photoconductivity, 80–81
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Fast Fourier transform (FFT) algorithm, 134
Ferroelectric crystals, 97–98

Strontium barium niobate (SBN), 97
FFT. See Fast Fourier transform (FFT)

algorithm
Fiber-optic Doppler velocimetry, 38
Fiber-optic interferometers, 37–38
Filtering, speckle metrology, 158, 171–173
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Fizeau interferometers, 37
Foucault knife-edge test, 49
Fourier–Bessel series, 56
Fourier filtering, 159

out-of-plane displacement,
measurement, 161

Fourier transform method, 45–49,
72–73, 134

Fractional fringe order, measurement,
217–220

Frame transfer (FT) sensors, 88
Fraunhofer diffraction, 44–45
Frequency measurement, sensors

based on, 5
Fresnel approximation, 133
Fresnel diffraction, 43–44
Fresnel–Kirchhoff diffraction theory, 44
Fringe formation, 171–173, 181–183. See

also under Speckle metrology
in HI, 115–116

Fringe interferometry, 33
Fringe skeletonization, 60–61
Frozen-stress method, 229–230
FT. See Frame transfer (FT) sensors

Gabor holography, 104
Gaussian beams, 6–8

ABCD matrix applied to, 8–12
mode matching, 12
propagation in free space, 9–10
propagation through a thin lens,

10–11
Gaussian parameter, 10
Gelatin, as recording material, 94–95

dichromated gelatin, 94–95
Glan–Thompson polarizer, 205
Gratings, 30, 53

blazed grating, 95
inclined linear grating, 54
phase grating, 56–57
sinusoidal grating, 55–56

Guoy’s phase, 7

Half divergence angle, 7
Half-wave plates (HWPs), 70, 206
He–Cd laser, 107
He–Ne laser, 106, 114
Helmholtz equation, 2, 6
Heterodyne interferometry, 4, 31–32

heterodyne HI, 127–129
HI. See Holographic interferometry (HI)
HNDT. See Holographic nondestructive

testing (HNDT)

HOEs. See Holographic optical elements
(HOEs)

Holographic interferometry (HI)/Holograms,
31–32, 101–136. See also Digital
Holography; Lasers

beam-expanders, 107
beam-splitters, 107
contouring/shape measurement, 129–132

dual-illumination method, 132
dual-refractive-index method, 131–132
dual-wavelength method, 129–131

diffraction efficiency, 105
displacement vector, measurement,

115–116
double-exposure HI, 109–110
experimental arrangement, 105–108
Fast Fourier transform (FFT)

algorithm, 134
fringe formation, 115–116
heterodyne HI, 127–129
hologram recording, 102–103
large vibration amplitudes, measurement,

117–120
frequency modulation of reference

wave, 117–119
phase modulation of reference beam,

119–120
object loading, 116–117
object-illumination beam, 107
photoelasticity, 132
real-time HI, 108–109, 115
reconstruction, 103–104
recording materials, 108
reference beam, 107
reference wave angle, choice

of, 104–105
reference wave intensity, choice

of, 105
reflection HI, 125–127
sandwich HI, 123–125
sensitivity, extending, 127–129
single- and double-exposure HI,

comparison, 111
stroboscopic illumination/stroboscopic

HI, 120
time-average HI, 110–114, 115
two-reference-beam HI, 121–122
types, 105, 106
very small vibration amplitudes,

measurement, 117
Holographic nondestructive testing

(HNDT), 117
Holographic optical elements (HOEs), 52
Holography (coherent recording), 91–92
Holography, recording media for, 91
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Holophotoelasticity, 223–229
double-exposure holophotoelasticity, 223,

225–229
single-exposure method, 223–225

Hurter–Driffield (H&D) curve, 92–93
Hyperboloidal surface, 262

Image detectors, 84–89
Image formation by lens, 45–49
In-plane displacement measurement,

248–253
high-sensitivity, 251–253
in speckle metrology, 174–175
two-dimensional, 249–251

Inclined grating, 240
Information carriers, waves as, 3–5

amplitude/intensity-based sensors, 4
Inorganic photochromics, 96
Interference equation, 59–60
Interferometry/Interferometers, 4, 29–39.

See also Holographic interferometry;
Optical Interference

differential interference contrast (DIC)
microscopy, 35

Doppler interferometry, 36–37
dual-wavelength, 30–31
fiber-optic interferometers, 37–38
heterodyne, 31–32
interference microscopy, 34–36
Mirau interferometer, 34–35
multiple-beam shear, 33
phase-conjugation interferometers, 38–39
polarization, 33–34
shear, 32–33
shearing, 35
two-beam, 29
white light, 31

Interferogram, 254
u-displacement fringes, 254
v-displacement fringes, 254

Interline transfer (IT) sensors, 88
Intrinsic photoconductivity, 80–81
Isochromatics, 211

in a bright field, 216
computation, 221–222
in a dark field, 216

Isoclinics, 212
computation, 220–221

IT. See Interline transfer (IT) sensors

Lagrangian strain, 249
Lasers, 106–107

Argon–ion laser, 106
He–Cd laser, 107

He–Ne laser, 106
laser beam, 5–6
Laser–Doppler anemometers/velocimeters

(LDA/LDV), 5
Nd :YAG semiconductor pumped,

first-harmonic green, 107
Ruby laser, 106
semiconductor or diode lasers (LDs), 107

Lateral shear interferometry, 15–16
Lead zirconate titanate (PZT)-mounted

mirror, 68–69
Leendertz’s methods, 173
Lens

action of, 45
Fourier transformation by, 45–49
image formation by, 45–49

Light-line projection with TDI mode of
operation of CCD camera, 260–262

Ligtenberg’s arrangement, 265–266
Linear gratings, Moiré fringe pattern

between, 239–242
Linear polarization, 202–203
Linearly polarized incident beam, 232–233
Line gratings, 243
Lithium niobate (LiNbO3), 97
Lithium tantalate (LiTaO3), 97
Lummer–Gerchke plate, 21

Mach–Zehnder interferometer, 69, 223
using DOEs, 53

Malus’s law, 4–5, 207
MEMS. See Microelectromechanical

systems (MEMS)
Metal-insulator–semiconductor (MIS)

capacitors, 86
Metal-oxide–semiconductor (MOS)

capacitor, 86
Michelson interferometers, 24–25, 37
Michelson stellar interferometer, 23–24, 29
Microelectromechanical systems

(MEMS), 186
Micro-Michelson interferometer, 34
Microscopy, interference, 34–36
Mirau interferometer, 30, 34–35
Mirrors, 50
MIS. See Metal-insulator–semiconductor

(MIS) capacitors
Mixed screw edge, dislocation 14
Mode matching, Gaussian beams, 12
Modified Michelson interferometer, 30
Moiré phenomenon, 239–275. See also

Shadow moiré method
a = b but θ �= 0, 241
a �= b but θ = 0, 241
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additive moiré pattern, 247–248
automatic shape determination, 257
coherent projection method, 262–264
contouring, measurement, 253–267
with deformed sinusoidal

grating, 246–248
dynamic events

curvature determination for, 268–269
slope determination for, 267–268

fringe pattern between a linear grating and
a circular grating, 242–243

fringe pattern between two linear gratings,
239–242

high-sensitivity in-plane displacement
measurement, 251–253

in-plane displacement, measurement,
248–253

light-line projection with TDI mode of
operation of CCD camera, 260–262

for measurement, 248
multiplicative moiré pattern, 247
out-of-plane component, measurement,

253–267
projection moiré, 257–260
between reference and deformed gratings,

245–246
reflection moiré method, 265–267

surface topography with, 269–271
between sinusoidal gratings, 243–244
Talbot phenomenon, 271–275

cut-off distance, 273
two-dimensional in-plane displacement

measurement, 249–251
vibration amplitudes, measurement, 264

Monochromatic waves
dislocation in, 14

edge, 14
mixed screw edge, 14
screw, 14

interference between two, 21–25
MOS. See Metal–oxide–semiconductor

(MOS) capacitor
Multiple-beam interference, 25–29

division of amplitude, 27–28
division of wavefront, 25–26
in reflection, 29
in transmission, 27–28

Multiple-beam shear interferometry, 33
Multiple-charge optical vortices, 14
Multiplicative moiré pattern, 247

Nd :YAG semiconductor pumped,
first-harmonic green, 107

Nicol prism, 205

Nomarski interferometer, 35
Noncollimated illumination, Talbot effect

in, 273–274
Nondiffracting beams, Bessel

beams, 12–13
Nye and Berry terminology, 14

Object-illumination beam, 107
Objective speckle pattern, 150
Optic axis, 204
Optical filtering, 49–50

4f arrangement for, 49
Optical interference, 19–39

between two plane monochromatic
waves, 21–25

conditions for obtaining, 20
Michelson interferometer, 23–25
multiple-beam interference, 25–29
Young’s double-slit experiment, 22–24

Optical metrology, 1
components in, 50–57

reflective, 50
refractive, 50–52

diffractive optical components, 52–56
Optical pointers, 5
Optical sensing, 3
Optical vortex interferometer, 15
Ordinary beam, 204
Organic photochromics, 96
Out-of-plane component, moiré

measurement, 253–267
Out-of-plane displacement measurement in

speckle metrology, 173–174
Out-of-plane speckle interferometer,

168–169

Particle image velocimetry (PIV), 162
Path difference from a speckle pair, 159
PBS. See Polarization beam-splitter (PBS)
Phase-conjugation interferometers,

38–39
Phase-contrast microscopy, 49
Phase-evaluation methods, 59–74

double-exposure holographic
interferometry, 61

fringe skeletonization, 60–61
interference equation, 59–60
phase-shifting with unknown but constant

phase-step, 63–66
quasi-heterodyning, 62
spatial heterodyning, 73–74
spatial phase-shifting, 66–68
temporal heterodyning, 61–62

Phase gratings, 56–57
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Phase measurement, sensors based on, 4
Phase plates, 205–206
Phase shifting evaluation methods, 62–66,

68–72, 220–222
half-wave plates (HWPs), 70
motion of a diffraction grating, 72
Polarization beam-splitter (PBS), 70
PZT-mounted mirror, 68–69
quarter-wave plates (QWPs), 70, 206
rotation of polarization component, 70–72
tilt of glass plate, 69–70
use of CGH, 72

Photochromics, 96–97
inorganic, 96
organic, 96

Photoconductor detectors, 80–81
Photodiodes, 81–84

avalanche diode, 81
p–i–n photodiode, 85
p–n technology, 81
Schottky photodiodes, 83
simple p–n junction diode, 81

Photoelasticity, 201–233. See also Malus’s
law; Polarized light

analysis methods, 210–216
birefringent coating method, 222–223
circular polarization, 203
evaluation procedure, 216–217
fractional fringe order, measurement,

217–220
holographic, 132
holophotoelasticity, 223–229
linear polarization, 202–203
Mach–Zehnder interferometer, 223
phase-shifting, 220–222
plane polarized waves, superposition,

201–202
scattered-light photoelasticity, 230
strain-optic law, 209–210
stressed model examination in scattered

light, 230–233
stress-optic law, 207–209
Tardy’s method, 217–220
three-dimensional photoelasticity,

229–230
Photographic emulsions (silver halides), 92
Photographic film/plate, 90–94
Photography (incoherent recording), 91–92

recording media for, 91
Photography, speckle, 155–158
Photomultiplier tube (PMT), 79, 84
Photopolymers, 95–96
Photoresists, 95

negative photoresists, 95
positive photoresists, 95

Pitch mismatch, 251
PIV. See Particle image velocimetry (PIV)
Plane polariscope, 210–212
Plane polarized waves, superposition,

201–202
Plane waves, 2–3
PMT. See Photomultiplier tube (PMT)
p–n technology, 81–83
Pointwise filtering, 158–160

Fourier filtering, 159
out-of-plane displacement,

measurement, 161
path difference from a speckle pair, 159
wholefield filtering arrangement, 159–160

Polarization
circular polarization, 203
linear polarization, 202–203
sensors based on, 5

Polarization beam-splitter (PBS), 70
Polarization interferometers, 30, 33–34, 70
Polarization phase-shifters, 71
Polarized light, production, 203–207

double refraction, 204–207
reflection, 204
refraction, 204

Poly-methyl methacrylate (PMMA), 95
Poly-N-vinylcarbazole (PVK), 96
Prisms, 51

Dove prism, 51
Projection moiré method, 257–260
Propagation distance, 9
Propagation in free space, Gaussian beams,

9–10
Propagation through a thin lens, Gaussian

beams, 10–11
PZT. See Lead zirconate titanate (PZT)

Quarter-wave plates (QWPs), 70, 206
Quasi-heterodyning, 62

phase shift method, 62, 63
phase-step method, 62

Rayleigh criterion, resolving power, 57
Rayleigh interferometer, 20, 29
Rayleigh range, 6
Rayleigh scattering, 230
Real-time HI, 108–109, 115
Recording materials in optical measurement,

89–98
dichromated gelatin, 94–95
ferroelectric crystals, 97–98
holographic recording materials, 108
photochromics, 96–97
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photographic emulsions (silver
halides), 92

photographic film/plate, 90–94
photopolymers, 95–96
photoresists, 95
Poly-methyl methacrylate (PMMA), 95
Poly-N-vinylcarbazole (PVK), 96
recording media for photography and

holography, 91
thermoplastics, 96
2,4,7-Trinitro-9-fluorenone (TNF), 96

Reference and deformed gratings, moiré
between, 245–246

Reference beam, 107
Reference wave, 225–226

angle, choice of, 104–105
intensity, choice of, 105

Reflection, 204
interference pattern in, 29

Reflection HI, 125–127
Reflection moiré method, 265–267

surface topography with, 269–271
Reflection polariscope, 222–223
Refraction, 204
Resolving power of optical systems, 57–58

Airy intensity distribution, 58
Rayleigh criterion, 57–58

Retro-reflective paint, 189–190
Rieder–Ritter arrangement, 266
Ronchi gratings, 239
Ruby laser, 106

Sandwich HI, 123–125
Savart plates, 33–34
Scattered light method, 230
Scattered-light photoelasticity, 230

stressed model examination in, 230–233
linearly polarized incident beam,

232–233
unpolarized incident light, 230–231

Scattering, 207
Schottky photodiodes, 83
Screw dislocation, 14
Self-imaging, 271
Semiconductor or diode lasers (LDs), 107
Sensors

amplitude/intensity-based sensors, 4
based on change of direction, 5
based on frequency measurement, 5
based on phase measurement, 4
based on polarization, 5

Shadow moiré method, 254–257
parallel illumination and parallel

observation, 254–255

spherical-wave illumination and camera at
finite distance, 255–257

Shear ESPI measurement, 187
Shear interferometry, 30, 32–33
Shear methods used in speckle

interferometry, 177–180
Duffy’s arrangement, 178
inversion shear, 179
lateral shear, 179
meaning of shear, 177–178
Michelson interferometer, 178
radial shear, 179
rotational shear, 179
theory of, 180–181

Shear speckle photography, 163–164
Shearing interferometry, 35
Single-exposure HI, 111
Single-exposure specklegram, 156
Single-exposure holophotoelasticity, 223,

224–225
Single-illumination,

dual-observation-direction
method, 169

Singular beams, 13–17. See also
Monochromatic waves

Sinusoidal grating, 55–56
moiré between, 243–244

Smartt interferometer, 20
Snell’s law of refraction, 204
Soleil–Babinet compensators, 206–207
Spatial heterodyning, 73–74
Spatial phase-shifting, 66–68, 190–191

90◦, 67
120◦, 67

Speckle interferometry, 30, 164–167
correlation coefficient in, 167–168
out-of-plane, 168–169

Speckle metrology, 149–191. See also
Electronic speckle pattern
interferometry; Shear methods

aperturing the lens, 175–176
average speckle size, 149–151

objective speckle pattern, 150
subjective speckle pattern, 150–151

Duffy’s arrangement, 176
evaluation methods, 158–161

pointwise filtering, 158–160
filtering, 171–173

fringe formation, 171–173
Leendertz’s methods, 173

fringe formation, 181–183
apertured lens arrangement, 182–183
Michelson interferometer, 181

in-plane displacement components,
174–175
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Speckle metrology (Continued)
in-plane measurement, 169–171
out-of-plane displacement measurement,

173–174
particle image velocimetry (PIV), 162
retro-reflective paint use, 189–190
shape measurement/contouring, 177
shear speckle photography, 163–164
spatial phase-shifting, 190–191
speckle phenomenon, 149
speckle photography

sensitivity of, 162
with vibrating objects, 161–162

speckle photography, 155–158
white-light speckle photography, 162
without influence of in-plane

component, 183
Speckle pattern, formation of, 150
Speckle pattern and surface motion, 152–155

linear motion in plane of the surface, 152
object tilt, 153–155
out-of-plane displacement, 152–153

Spherical waves, 2
converging, 3
diverging, 3

Spiral interferometry, 15
Spiral phase plates (SPPs), 16
Spot size, 6
SPPs. See Spiral phase plates (SPPs)
Staybelite, 96
Stokes relations, 29
Strain-optic law, 209–210
Stressed model examination in scattered

light, 230–233
Stress-optic law, 207–209
Stroboscopic illumination/stroboscopic

HI, 120
Strontium barium niobate (SBN), 97
Subjective speckle pattern, 150–151

superposition, 151

Talbot phenomenon, 271–275
cut-off distance, 273
for measurement, 274–275
in collimated illumination, 272–273
in noncollimated illumination, 273–274
temperature measurement, 274–275

Tardy’s method, 217–220
TDI. See Time-delay and integration (TDI)

Temperature measurement, Talbot
phenomenon, 274–275

Temporal heterodyning, 61–62
Temporal phase-shifting, 66
Thermoplastics, 96

record-erase cycle for, 97
Three-dimensional photoelasticity, 229–230

frozen-stress method, 229–230
Time-average HI, 110–114, 115
Time-delay and integration (TDI), 89
Topological charge, 13
Transmission, interference pattern in, 27–28
Transmittance function, 243
Triethanolamine, 126
2,4,7-Trinitro-9-fluorenone (TNF), 96
Two-beam interferometers, 37
Two-reference-beam HI, 121–122
Twyman–Green interferometer, 30

Unpolarized incident light, 230–231

van Cittert–Zernike theorem, 23
Vertical grating, 240
Vibration amplitudes, measurement, 264
Vibration analysis, electronic speckle pattern

interferometry, 185–186
Vortex filaments, 14
Vortices/Vortex generation, 14–16

Wave equation, 1–2
Wavefront, interference by division of, 20
Waves, 1–17

as information carriers, 3–5
cylindrical waves, 2–3
plane waves, 2
spherical waves, 2

White light interferometry, 31
White-light speckle photography, 162
Wholefield filtering arrangement, 159–160
Wollaston prism, 33–35
Wyco interferometer, 30

Young’s double-slit experiment, 22–24

Zero-order fringe, 120
Zygo interferometer, 30
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