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Preface to the Second Edition

The first edition of this book was used by our students in a lens design
course for several years. Taking advantage of this experience, this second
edition has been greatly improved in several aspects.

Most of the material in the original second chapter was considered
quite important and useful as a reference. However, to make an
introductory course on lens design more fluid and simple, most of the
material was transferred to the end of the book as an Appendix. In several
other sections the book was also restructured with the same objective in
mind.

Some of the modifications introduced include the clarification and a
more complete explanation of some concepts, as suggested by some readers.
Additional material was written, including additional new references to
make the book more complete and up to date. We will mention only a few
examples. Some gradient index systems are now described with greater
detail. The new wavefront representation by means of arrays of gaussians is
included. The Delano diagram section was enlarged. More details on
astigmatic surfaces with two different curvatures in orthogonal diameters
are given.

We would like to thank our friends and students who used the
previous edition of this book. They provided us with many suggestions and
pointed out a few typographical errors to improve the book.

Daniel Malacara
Zacarias Malacara
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Preface to the First Edition

This is a book on the general subject of optical design, aimed at students in
the field of geometrical optics and engineers involved in optical instrumen-
tation. Of course, this is not the first book in this field. Some classic, well-
known books are out of print however, and lack any modern topics. On the
other hand, most modern books are generally very restricted in scope and do
not cover important classic or even modern details.

Without pretending to be encyclopedic, this book tries to cover most
of the classical aspects of lens design and at the same time describes some of
the modern methods, tools, and instruments, such as contemporary
astronomical telescopes, gaussian beams, and computer lens design.

Chapter 1 introduces the reader to the fundamentals of geometrical
optics. In Chapter 2 spherical and aspherical optical surfaces and exact skew
ray tracing are considered. Chapters 3 and 4 define the basic concepts for
the first- and third-order theory of lenses while the theory of the primary
aberrations of centered optical systems is developed in Chapters 5 to 7. The
diffraction effects in optical systems and the main wave and ray methods for
lens design evaluation are described in Chapters 8, 9, and 10. Chapters 11 to
17 describe some of the main classical optical instruments and their optical
design techniques. Finally, Chapter 18 studies the computer methods for
optical lens design and evaluation.

In conclusion, not only is the basic theory treated in this book, but
many practical details for the design of some optical systems are given. We
hope that this book will be useful as a textbook for optics students, as well
as a reference book for optical scientists and engineers.

We greatly acknowledge the careful reading of the manuscript and
suggestions to improve the book by many friends and colleagues. Among
these many friends we would like to mention Prof. Raúl Casas, Manuel
Servı́n, Ricardo Flores, and several of our students. A generous number of
members of the research staff from Optical Research Associates provided a
wonderful help with many constructive criticisms and suggestions. Their
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number is large and we do not want to be unfair by just mentioning a few
names. We also acknowledge the financial support and enthusiasm of the
Centro de Investigaciones en Optica and its General Director Arquı́medes
Morales. Last, but not least, the authors greatly acknowledge the
encouragement and understanding of our families. One of the authors
(D.M.) especially thanks his sons Juan Manuel and Miguel Angel for their
help with many of the drawings and the word processing of some parts.

Daniel Malacara
Zacarias Malacara
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1
Geometrical Optics Principles

1.1 WAVE NATURE OF LIGHT AND FERMAT’S PRINCIPLE

The nature of light is one of the most difficult concepts in modern physics.
Due to its quantum nature, light has to be considered in some experiments
as an electromagnetic wave, and in some others it has to be considered as a
particle. However, in ordinary optical instruments we may just think of the
light as an electromagnetic wave with an electric field and a magnetic field,
mutually perpendicular, and both perpendicular to the path of propagation.
If the light beam is plane (linearly) polarized, the electric and the magnetic
fields have a constant fixed orientation, changing only in magnitude and
sign as the wave propagates. The electric and magnetic fields are in phase
with each other, as shown in Fig. 1.1. This is the simplest type of wave, but
we may find more complicated light beams, where the electric and magnetic
fields do not oscillate in a fixed plane. The different manners in which the
fields change direction along the light trajectory are called polarization
states. It is shown in any physical optics textbook that any polarization state
may be considered as a superposition of two mutually perpendicular plane-
polarized light beams. The type of polarization depends on the phase
difference between the two components and on their relative amplitudes as
explained in any physical optics textbook. The frequency � and the
wavelength l of this wave are related by the speed of propagation v as
follows

�� ¼ v ð1:1Þ

Light waves with different frequencies have different colors, corre-
sponding to certain wavelengths in the vacuum. In lens design the
frequencies (or corresponding wavelengths in the vacuum) for the solar
Fraunhofer lines are used to define the color of the light. These lines are
shown in the Table 1.1.
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Along the path of propagation of a light beam, the magnitude E of the
electric field may be written as

E ¼ A exp iðks� !tÞ ¼ A exp ið�� !tÞ ð1:2Þ

where A is the amplitude of the wave, k is the wavenumber, defined
by k¼ 2p/l, and ! is the angular frequency, defined by !¼ 2p�.

Table 1.1 Fraunhofer Lines and Their Corresponding

Wavelengths

Wavelength
Line in nm. Element Color

i 365.01 Hg UV
h 404.66 Hg Violet
g 435.84 Hg Blue
F 0 479.99 Cd Blue

F 486.13 H Blue
e 546.07 Hg Green
d 587.56 He Yellow

D 589.29 Na Yellow
C0 643.85 Cd Red
C 656.27 H Red

r 706.52 He Red

Figure 1.1 Electric and magnetic fields in an electromagnetic wave.
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The wavelength is represented by l and the frequency by �. In this
expression, s is the distance traveled along the light path, � is the phase
difference between the point being considered and the origin, and ��!t is
the instantaneous phase, assuming that it is zero at the origin for t¼ 0.
A wavefront in a light beam is a surface in space for which all points have
the same instantaneous phase �. Another equivalent definition given by
Kidger (2001) is that a wavefront is a surface of constant optical path
length, along the light path from a luminous point in the object. So, we may
imagine on a light wave a family of surfaces in which the disturbance
becomes a maximum at a certain time; i.e., the crests for the light waves.
These surfaces are wavefronts and the distance between two consecutive
wavefronts is the wavelength as illustrated in Fig. 1.2.

The speed of light in a vacuum is about 300,000 km/sec and it is
represented by c. In any other transparent medium, the speed v is less than c
(except in extremely rare conditions known as anomalous dispersion) and its
value depends on the medium to be considered. The refractive index n for a
material is defined as

n ¼
c

v
ð1:3Þ

For a given material, the refractive index n is a function of the light
color (wavelength in the vacuum). As a general rule, this index decreases
with increasing wavelength, as shown in Fig. 1.3 for two typical glasses. The
index of refraction increases with the wavelength only in certain small
spectral regions outside of the visible spectrum.

Figure 1.2 Light rays and wavefronts in an isotropic medium.
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The maximum sensitivity of the eye is for yellow light, with a peak at
555 nm. This is why the very common sodium doublet line D (589.3 nm) was
originally chosen as the reference to measure refractive indices for visible
light. Accuracy using this doublet, however, was found to be inconsistent.
The more stable helium line d at 587.56 nm was adopted. Table 1.2 shows
the refractive index at this wavelength for several transparent materials.

Although the formal definition of the refractive index is with respect to
the vacuum, in practice it is measured and specified with respect to the air.

Using the definition for refractive index, the time t for light to go from
a point P1 to another point P2 in an isotropic, homogeneous, or

Figure 1.3 Refractive indices of a crown and a flint glass as a function of the

wavelength.

Table 1.2 Refractive Indices for Some Optical
Materials

Material Refractive index

Vacuum 1.0000

Air 1.0003
Water 1.33
Fused silica 1.46

Plexiglass 1.49
Borosilicate crown 1.51
Ordinary crown 1.52
Canada Balsam 1.53

Light flint 1.57
Extra dense barium crown 1.62
Extra dense flint 1.72
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inhomogeneous medium is given by

t ¼
1

c

ZP2

P1

n ds ð1:4Þ

where ds2¼ dx2þ dy2þ dz2. It is convenient to define the optical path OP as

OP ¼

ZP2

P1

n ds ð1:5Þ

The direction in which a light beam propagates has been defined as a
light ray. As we will see in Chap. 8, a ray cannot be isolated due to the
phenomenon of diffraction. By using a diaphragm, we can try to isolate a
single light ray, as shown in Fig. 1.4. This turns out to be impossible since
when the aperture approaches the light wavelength, the light beam
divergence increases. This effect is larger for smaller apertures. When an
aperture or lens rim is large compared with the wavelength, the diffraction
effects become less important and then we can approach the light ray
concept with fair precision. The optics branch based on the concept of the
light ray is known as geometrical optics.

An optically transparent medium is said to be homogeneous and
isotropic if the light travels at the same speed in every direction inside the

Figure 1.4 Unsuccessful attempt to isolate a single ray of light.
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medium, independently of the orientation of the electric field (polarization),
as shown in Fig. 1.5(a). A transparent medium is anisotropic (like in
crystals) if the traveling velocity of the light is different for different
orientations of the electric field (polarization state) of the wave, even if the
traveling direction is the same, Fig. 1.5(b). Many crystals, like quartz or
calcite, are anisotropic. In these materials, even if they are homogeneous
(same refractive index for all points in the medium), depending on the
polarization orientation, either a spherical or ellipsoidal wavefront is
produced with a point light source. In this book we will consider only
isotropic media. The medium is isotropic and inhomogeneous (like in
gradient index glass to be described later or variable-density fluids) if the
light speed depends on the direction of propagation, but not on the
orientation of the electric field, Fig. 1.5(c).

Malus law—Equation (1.5) for the optical path may also be written in
differential form as

dOP

ds
¼ n ð1:6Þ

where the OP is measured along any geometrical path ds. We define the
eikonal ’ as the optical path along trajectories always perpendicular to the
wavefronts, related to the phase � by ’ ¼ �/k. The Malus law, as illustrated
in Fig. 1.6, states that in an isotropic medium, light rays are always
perpendicular to the wavefront. We may mathematically state this law by
means of the eikonal equation, which may be written as

r’
�� �� ¼ n ð1:7Þ

Figure 1.5 Wavefronts in different types of media: (a) isotropic and homogeneous;
(b) anisotropic and homogeneous; (c) isotropic and inhomogeneous.
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As stated before, the Malus law is valid in homogeneous and inhomoge-
neous media but not in anisotropic media, like some crystals.

Fermat’s Principle—This principle, which from the Malus law becomes
a natural consequence, is the basis of all geometrical optics. It can be stated
as follows:

‘‘The path traveled by a light wave from a point to another is
stationary with respect to variations of this path.’’

This is equivalent to saying that the time for the light to travel must be
either the longest or smallest time or be stationary with respect to other
trajectories. Figure 1.7 shows some examples for two cases, in which the
light must go from point P1 to P2 after being reflected in a mirror. In
inhomogeneous [Fig. 1.8(a)] or discontinuous [Fig. 1.8(b)] media there may
also be several physically possible trajectories for the light rays. In this case
the point P1 is the object and the point P2 is its image. The optical path
along all of these trajectories from the object to the image is the same. This
constant optical path is called, in Hamilton’s theory of geometrical optics,
the point characteristic of the system, because it depends only on the location
of the initial and end points, not on the particular path.

1.1.1 Gradient Index of Refraction

The refractive index of glass can be made inhomogeneous on purpose by
means of several experimental procedures. Then, we speak of a gradient
index (GRIN) of refraction (Marchand, 1978; Moore, 1995). The most

Figure 1.6 Propagation of wavefronts and light rays (eikonal).
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common procedure for fabricating gradient index optical elements is by an
ion-exchange process. They can be made out of glass, polymers, zinc
selenide/zinc sulfide, and germanium. Gradient index optical fibers have
also been made by a chemical vapor-deposition process. In nature, a
gradient index frequently appears in the hot air above a road, creating a
mirage.

The variation in the index of refraction or gradient index in a lens can
be in the direction of the optical axis. This is called an axial gradient index. It
can be in the perpendicular direction to the optical axis. This is a radial
gradient index. It can also be symmetric about a point, which is the spherical
gradient index. The spherical gradient is rarely used in optical components
mainly because they are difficult to fabricate.

Figure 1.7 Illustration of Fermat’s principle in a hollow sphere and a hollow

ellipsoid.

Figure 1.8 Optical path lengths from point P1 to point P2 are the same for any

possible path.
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Gradient index lenses are very useful in optical instruments to correct
many aberrations. Two popular examples of the use of gradient index
optical elements are single lenses corrected for spherical aberration and
imaging elements in endoscopes, as will be shown in later chapters.

1.2 REFLECTION AND REFRACTION LAWS

Reflection and refraction laws can be derived in a simple way using Fermat’s
principle, as follows.

1.2.1 Reflection Laws

The first reflection law states that the incident ray, the reflected ray, and the
normal to the reflecting surface lay on a common plane. This law can be
explained as a consequence from Fermat’s principle.

The second law states that the magnitude of the reflected angle is equal
to the magnitude of the incident angle. Consider Fig. 1.9, where a light ray
leaves from point P1 (0, y1) and reaches the point P2 (x2, y2) after a reflection
on a plane mirror at the point P(x, 0). If the refractive index is n, the optical
path from P1 to P2 is

OP ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

1

q
þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 �x Þ2 þ y2

2

q
ð1:8Þ

Figure 1.9 Derivation of the law of reflection.
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Since this optical path must be an extremum, we set the condition:

dOP

dx
¼

nxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

1

q �
nðx2 �xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð x2 �x Þ2 þ y2
2

q ¼ 0 ð1:9Þ

and from this last equation, we can easily see that

sin I ¼ � sin I0 ð1:10Þ

where the minus sign has been placed to introduce the convention that the
angles I and I0 have opposite signs because they are on opposite sides of the
normal to the surface after reflection. Hence, we conclude that I¼�I0,
which is the second reflection law.

1.2.2 Refraction Laws

The first refraction law states that the incident ray, the refracted ray, and the
refracting surface normal lie in a common plane. This law is also an
immediate consequence from Fermat’s principle.

The second refraction law, called also Snell’s Law, can be derived from
Fig. 1.10, where we can easily note that the optical path is given by

OP ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

1

q
þ n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð x2 �x Þ2 þ y2

2

q
ð1:11Þ

Figure 1.10 Derivation of the law of refraction.
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By applying Fermat’s principle, we impose the condition:

dOP

dx
¼

nxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð x2 þ y1 Þ

2
q �

n0ðx2 � xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x Þ2 þ y2

2

q ¼ 0 ð1:12Þ

where we can see that

n sin I ¼ n0 sin I0 ð1:13Þ

which is Snell’s law. This relation becomes identical to the reflection law
when the indices of refraction n and n0 have the same magnitude but
opposite sign. This fact is used to trace rays through optical systems with
mirrors.

1.2.3 Vectorial Form of Refraction Laws

Frequently, it is not simple to apply Snell’s law in three-dimensional space,
especially after many reflections and refractions, when the light rays are not
contained in a common plane. Then, it is a great advantage to use a vectorial
form of the refraction law. This form may be easily derived with the help of
Fig. 1.11. Let us define a vector S1 along the incident ray, with magnitude n,
and a vector S2 along the refracted ray, with magnitude n0. Then, Snell’s law
may be written as

S1j j sin I ¼ S2j j sin I0 ð1:14Þ

The refracted vector S2 is related to the incident vector S1 by

S2 ¼ S1 � a ð1:15Þ

On the other hand, it is easy to see that the vector a is parallel to the
vector p normal to the refracting surface, and that its magnitude is given by

aj j ¼ �

¼ ð S2j j cos I0 � S1j j cos IÞ ð1:16Þ

¼ n0 cos I0 � n cos I

Thus, the final vectorial law of refraction is given by

S2 ¼ S1 ��p ð1:17Þ
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where � is given by

� ¼ n0 cos I0 � n cos I

¼ n0
n

n0
cos I

� �2
�

n

n0

� �2
þ1

� �1=2
� n cos I ð1:18Þ

1.3 BASIC MERIDIONAL RAY TRACING EQUATIONS

A spherical refracting surface is the most common surface in optics. A plane
surface may be considered a special case of a spherical surface, with an
infinite radius of curvature. In a spherical refracting surface like the one
shown in Fig. 1.12, we define the following parameters:

1. Center of curvature: The center of an imaginary sphere that
contains the refracting surface.

2. Radius of curvature: The distance from the refracting surface to
the center of curvature.

3. Vertex: A point on the refracting surface, at the center of its free
aperture. This definition assumes that the aperture is circular and centered
and that the surface is spherical. More generally, if the surface is not
spherical but has rotationally symmetry, the vertex is the point where the

Figure 1.11 Derivation of the vectorial law of refraction.
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axis of symmetry intersects the optical surface. Even more generally, we may
say that the vertex is the local origin of coordinates to which the surface
function is referred.

4. Optical axis: An imaginary straight line passing through the center
of curvature and the vertex. For the case of nonspherical surfaces with
rotational symmetry, the optical axis is the axis of symmetry.

According to their direction, rays incident on a refractive spherical
surface are classified as follows:

1. Meridional ray: Any ray in a common plane with the optical axis,
called the meridional plane. In this case, the surface normal and the
refracted ray are also contained on the meridional plane.

2. Oblique or skew ray: Any nonmeridional ray. In this case, the ray
is not in a common plane with the optical axis.

3. Paraxial ray: A meridional or skew ray that has a small angle with
respect to the optical axis is a paraxial ray. However, in a more general way
we can say that a paraxial ray is an approximation to a real ray, obtained by
assuming valid small angle approximations.

In aberration theory, axial, tangential, and sagittal rays are also
defined. Axial rays are meridional rays originating in an object point on the
optical axis. Tangential rays are meridional rays originating in an off-axis
object point, The meridional plane that contains the object point is called
the tangential plane. On the other hand, the sagittal rays are skew rays
contained in a single plane, called the sagittal plane, perpendicular to the
tangential plane and containing the center of the entrance pupil (to be
defined later in this chapter) of the optical system. These concepts will
become more clear later when the tangential and sagittal planes are defined.
To clarify these concepts, the reader is advised to see Fig. 7.6 in Chap. 7.

Meridional rays are used to trace rays through a spherical refracting
surface. The behavior of meridional rays permits us to obtain many

Figure 1.12 Some definitions in a refractive spherical surface.
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interesting properties of optical systems. Skew rays are mathematically more
complex than meridional rays and their study is described in Appendix 4.

Figure 1.13 shows a spherical refracting surface and a meridional ray
intersecting the surface at the point P. The surface normal at P is N and the
curvature center is C.

A convention sign must be defined for all the parameters in Fig. 1.13.
Such convention has to be consistent with most textbooks and commercial
optical design programs. Unfortunately, there are many notations in books
and the most widely used departs from the old definition by Conrady (1957).
The sign convention used in this book, assuming that the light travels from
left to right, is as follows, where primed quantities are used after refraction
on the surface:

1. Radius of curvature r: Positive if the center of curvature is to the
right of the vertex and negative otherwise. The curvature c is the inverse of
the radius of curvature (c¼ 1/r).

2. Angles U and U 0: In agreement with analytic geometry, they are
positive if the slope of the meridional ray is positive and negative otherwise.
[Conrady (1957) and Kingslake (1965) use the opposite convention.]

3. Angles I and I 0: The angle of incidence I is positive if the ray
arrives at the surface from left to right, below the normal, or from right to
left above the normal. This angle is negative otherwise. The angle of
refraction I 0 is positive if the ray leaves from the surface from left to right,
above the normal, or from right to left below the normal. This angle is
negative otherwise. This sign convention is illustrated in Fig. 1.14.

4. Distances L and L0: L is the distance from the vertex of the surface
to the intersection of the meridional ray before refraction (object) with the

Figure 1.13 Meridional ray refracted at a spherical surface.
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optical axis. It is positive if this object is to the right of the vertex, and
negative if it is to the left. L0 is the distance from the vertex of the surface to
the intersection of the meridional ray after refraction (image). It is positive if
this image is to the right of the vertex, and negative if it is to the left. This
rule is valid for the light traveling from left to right, as well as for light
traveling from right to left.

5. Thickness t: Positive when the next surface in the optical system
lies to the right of the optical surface being considered and negative if it lies
to the left of it.

6. Ray height Y: It is positive if the ray crosses the optical surface
above the optical axis and negative otherwise.

7. Refractive index n: It is positive if the light travels in this medium
from left to right and negative if it travels in the opposite sense. The index of
refraction changes its sign at any reflective surface, in order to be able to use
the law of refraction on any reflection.

It is interesting to see that according to this convention, for any
particular ray, not all three parameters L, Y, and U can be positive at the
same time. Observing again Fig. 1.13, with a meridional ray and where
negative parameters are indicated with a minus sign, we can apply sine law
to the triangle PCB:

sin I

L� r
¼

� sinU

r
ð1:19Þ

Figure 1.14 Sign convention for the angles of incidence and refraction.
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and by using the same law to the triangle PCA:

sin I 0

L0 � r
¼

� sinU 0

r
ð1:20Þ

Since triangles PCB and PCA both share a common angle, and since
the sum for the internal angles in both triangles adds up to 180� it must be
true that

I�U ¼ I 0 �U 0 ð1:21Þ

and finally we write Snell’s law:

n sin I ¼ n0 sin I 0 ð1:22Þ

From these relations, parameters r, n, and n0 are fixed and known,
while L, L0, I, I 0, U, and U 0 are variables. Since we have four equations, all
remaining variables can be calculated if any two of the three parameters L,
I, U for the incident ray are specified.

An optical system is generally formed by many optical surfaces, one
after the other. We have a centered optical system when the centers of
curvature of all the surfaces lie on a common line called the optical axis. In
these systems formed by several surfaces, all parameters relating to the next
surface are represented by the subscript þ1. Then, the transfer equations are

Uþ1 ¼ U0 ð1:23Þ

nþ1 ¼ n0 ð1:24Þ

and

Lþ1 ¼ L0 � t ð1:25Þ

where t is the distance from the vertex of the surface under consideration to
the vertex of the next surface.

1.3.1 Meridional Ray Tracing by the L–U Method

The equations in the preceding section have been described by Conrady
(1957) and may be used to trace rays. This is the so-called L–U method,
because the incident as well as the refracted rays are defined by the distances
L and L0 and the angles U and U0. Although these equations are exact, they
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are never used in present practice to trace rays because they break down for
plane and low curvature surfaces, and L and L0 become infinite for rays
parallel to the optical axis.

1.3.2 Meridional Ray Tracing by the Q–U Method

An alternative ray tracing method defines the meridional ray by the angle U
and the perpendicular segment Q from the vertex of the surface to the
meridional ray, as shown in Fig. 1.15. A line from C, perpendicular to the
line Q, divides this segment into two parts. Thus, from this figure we may see
that

sin I ¼ Qcþ sinU ð1:26Þ

where the curvature c¼ 1/r has been used instead of the radius of curvature
r. Then, from the refraction law in Eq. (1.22), we have

sin I0 ¼
n

n0
sin I ð1:27Þ

and from Eq. (1.21):

U0 ¼ U� Iþ I0 ð1:28Þ

From Eq. (1.26) we may obtain an expression for Q and, placing primes on
this result, the value of Q0 is obtained as

Q0 ¼
sin I0 � sinU0

c
ð1:29Þ

Figure 1.15 Meridional ray tracing by the Q–U method.
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In order to obtain the equivalent expression when the surface is flat
(c¼ 0) we may see from Fig. 1.15 that Q¼�L sin U and for flat surfaces
tan U¼Y/L; thus, it is possible to show that an alternative expression for
flat surfaces is

Q0 ¼ Q
cosU0

cosU
ð1:30Þ

The transfer equation is, as clearly illustrated in Fig. 1.16, as

Qþ1 ¼ Q0 þ t sinU0 ð1:31Þ

1.4 GAUSSIAN OR FIRST-ORDER OPTICS

First-order optics is formed by all ray tracing relations using a paraxial ray
approximation. The location of the image for a given object position in an
optical system using first-order optics may be found by means of the so-
called Gauss formula, to be derived next. For this reason, gaussian optics is
considered to be synonymous with first-order optics.

The Gauss formula is one of the main achievements of first-order
optics and it can be derived from Eqs. (1.19) to (1.22). Before doing any
paraxial approximations, we will work with the exact equations. From Eq.
(1.19) we can obtain:

L

r
¼ 1�

sin I

sinU
¼

sinU� sin I

sinU
ð1:32Þ

Figure 1.16 Derivation of a transfer relation for ray tracing of meridional rays.
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from this we see that

r

L
¼ 1�

sin I

sin I� sinU
ð1:33Þ

and then, by multiplying both sides of this equation by n/r:

n

L
¼

n

r
�
n

r

sin I

sin I� sinU
ð1:34Þ

and similarly, using Eq. (1.20):

n0

L0
¼

n0

r
�
n0

r

sin I0

sin I0 � sinU0
ð1:35Þ

we now subtract Eq. (1.35) from Eq. (1.34) and use Snell’s law [Eq. (1.22)] to
obtain:

n0

L0
�

n

L
¼

n0 � n

r
þ
n sin I

r

1

sin I� sinU
�

1

sin I0 � sinU0

� �
ð1:36Þ

This relation is exact, but now we will develop the paraxial
approximations. A paraxial ray approximation is taken by substituting
the trigonometric functions sin U and sin I by the angles I and U in radians.
These approximations are valid without a significative loss in precision if the
angles I and U are very small. As explained before, first-order or gaussian
optics is the branch of geometrical optics that uses only paraxial rays. The
equations for first-order optics are obtained by replacing in the exact
equations the following:

sin I ) i

sin I0 ) i0

sinU ) u

sinU0 ) u0 ð1:37Þ

L ) l

L0 ) l0

obtaining from Eqs. (1.19) to (1.22):

i

l� r
¼

�u

r
ð1:38Þ

i0

l0 � r
¼

�u0

r
ð1:39Þ

�uþ i ¼ �u0 þ i0 ð1:40Þ

ni ¼ n0i0 ð1:41Þ
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and the transfer equations (1.23) and (1.25) now are

uþ1 ¼ u0 ð1:42Þ

and

lþ1 ¼ l0 � t ð1:43Þ

Variables L and L0 have been substituted by l and l0 in order to
distinguish exact values from paraxial approximations. Most of the lens and
optical systems properties can be obtained with fair precision using first-
order optics, except for monochromatic aberrations.

By approximating Eq. (1.36) for paraxial rays (first order) and using
Eq. (1.40), we obtain finally the so-called Gauss formula:

n0 � n

r
¼

n0

l0
�
n

l
ð1:44Þ

With this equation, we can obtain the distance l0 from the refracting
surface to the image, for a given l from the surface to the object. This
distance l0, so obtained, is independent of the incidence angle. From this we
can conclude that, within first-order optics limits, a point object produces a
point image.

The Gauss equation is so important that it has been obtained using
many different approaches using ray as well as wave optics. A comparison
of all these methods has been given by Greco et al. (1992).

Frequently, lens designers prefer to use a Gauss equation in terms of
the angles u and u0, instead of the distances l and l0. Then, this relation
becomes, by using the curvature c instead of the radius r:

ðn0 � nÞcy ¼ �n0u0 þ nu ð1:45Þ

where the ray height y is related to the distances l and l0 and the angles u and
u0 are

u ¼ �
y

l
ð1:46Þ

and

u0 ¼ �
y

l0
ð1:47Þ

in accordance with our sign convention. Then, the transfer equation (1.43) is
substituted by

yþ1 ¼ yþ tu0 ð1:48Þ
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1.4.1 Paraxial Ray Tracing by y–nu Method

Meridional paraxial rays may be traced through an optical system by means
of the following set of equations. They assume that the surface data (r, t, and
n) are known, as well as the initial data for the light ray. These initial data in
the y–nu method are the ray height y and the product nu of the refractive
index n by the angle u.

The ray may be traced by the following relation derived from the
Gauss equation (1.45):

½n0u0� ¼ ½nu� � ðn0 � nÞyc ð1:49Þ

with the transfer equation (1.48) written as

yþ1 ¼ yþ
t½n0u0�

n0
ð1:50Þ

If the value of the angle of incidence is wanted, it may be computed with the
formula [obtained from Eqs. (1.38) and (1.46)]:

i ¼ ycþ u ð1:51Þ

1.4.2 Delano’s Relation

An interesting relation that relates the refraction of a paraxial ray with that
of a marginal meridional ray has been found by Delano (1952). Let us
consider a paraxial and a marginal ray as in Fig. 1.17. These rays do not
necessarily originate at the same object point.

The perpendicular distances from the vertex of the optical surface to
the incident and the refracted marginal rays are Q and Q0, respectively. The
perpendicular distances from the crossings of the incident and the refracted
paraxial rays with the optical axis to the incident and refracted marginal
rays are s and s0, respectively. Thus, the marginal ray is defined by Q and U
and the paraxial ray is defined by y and u. It is easy to see that

s ¼ Qþ l sinU ð1:52Þ

Therefore, multiplying both sides of this expression by u and using
Eq. (1.46):

su ¼ Qu� y sinU ð1:53Þ
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Using Eq. (1.26), and Eq. (1.51), we obtain

snu ¼ �yn sin IþQni ð1:54Þ

and in a similar manner, we may obtain for the refracted ray:

s0n0u0 ¼ �yn0 sin I0 þQ0n0i0 ð1:55Þ

Thus, subtracting Eq. (1.55) from Eq. (1.54) and using Snell’s law [Eqs.
(1.22) and (1.41)] we finally find that

s0n0u0 ¼ snuþ ðQ0 �QÞni ð1:56Þ

This is Delano’s relation, which will be useful when studying the spherical
aberration, as will be shown later.

1.5 IMAGE FORMATION

A refracting surface, a lens or a lens system establishes a one-to-one
correspondence between a point in the object plane to a point in the image
plane, when an image is formed. An image-forming system function is to
refract (or reflect) light coming from a point in the object and send it to a
single point in the image, as shown in Fig. 1.18.

Figure 1.17 Derivation of Delano’s relation.
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An object, depending on its position with respect to the image-
formation system, can be of two types:

1. Real object: An object is real when its distance L from the optical
surface is negative; in other words, when the object is located to the left of
the optical surface, as shown in Figs. 1.19 and 1.20. Conversely, when the
light travels from the right to the left, the object is real when L is positive. A
real object may be present when a real physical object or the image formed
by another optical system is used.

2. Virtual object: An object is virtual when the distance L from the
optical surface is positive; in other words, when the object is located to the
right of the optical surface, as shown in Figs. 1.21 and 1.22. When the light
travels from the right to the left, the object is virtual when L is negative. Let
us consider another optical system located between the optical system and
its image. This new optical system will change the image position, size, and
perhaps its orientation. The image from the first optical system is the virtual
object for the second system.

Figure 1.19 Formation of a real image with a real object.

Figure 1.18 Image formation by an optical system.
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Figure 1.21 Formation of a real image with a virtual object.

Figure 1.22 Formation of a virtual image with a virtual object.

Figure 1.20 Formation of a virtual image with a real object.

© 2004 by Marcel Dekker, Inc.



As the object, the image can be both real and virtual as follows:

1. Real image: An image is real if the distance L0 for the optical
surface is positive; in other words, when the image is located to the right of
the optical surface, as shown in Figs. 1.19 and 1.21. When the light travels
from the right to the left, the image is real when L0 is negative. A real image
can be observed in either of two ways: by placing a screen where the image is
formed, or by looking directly with the eye from a large distance from the
place where the image is formed.

2. Virtual image: An image is virtual if the distance L0 for the optical
surface is negative; in other words, when the image is located to the left of
the optical surface, as shown in Figs. 1.20 and 1.22. When the light travels
from the right to the left, the image is virtual when L0 is positive. When the
rays emitted from a single point in the object are not convergent but
divergent after passing through the optical surface or system, the image is
virtual. The light beam will have an apparent diverging point, where the
virtual image is formed. These images may be observed directly with the eye,
but they may not be formed on a screen.

1.6 STOP, PUPILS, AND PRINCIPAL RAY

The refracting or reflecting surfaces in an optical system are not infinite in
size, but limited, generally to a round shape. This finite transverse extension
limits the beam of light passing through them. Let us consider a centered
optical system. If the light beam entering this system comes from a point
object on the optical axis, very likely only one of the surfaces will limit the
transverse extension of the beam, as shown in Fig. 1.23. This limiting surface
is called the stop of the system. If the stop is a diaphragm, we may think of it
as a dummy refracting surface whose refractive indices are the same before
and after the surface (diaphragm). The system stop may be at any surface. It
need not be in the middle or at one end of the system; some optical surfaces
are located before the stop and some others after it. If the stop is observed
from the entrance of the system, it will be observed through the surfaces that
precede it, changing its apparent size and position. This observed image of
the stop is called the entrance pupil. If the stop is observed from the back of
the system, it will be observed through the surfaces that are after it,
changing again its apparent size and position. This observed image of the
stop is called the exit pupil.

As shown in Fig. 1.23, of all meridional rays going from a point off-
axis on the object plane, to the point on the image plane, only one passes
through the center of the stop. This ray is the principal ray, defined as the
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ray that passes through the off-axis point object and the center of the stop.
The intersection of the extension of the segment of the principal ray in the
object space with the optical axis is the center of the entrance pupil.
Similarly, the intersection of the extension of the segment of the principal
ray in the image space with the optical axis is the center of the exit pupil.

An image of the stop can also be observed from any medium in the
optical system, not only from the object or image media. As shown in
Fig. 1.24 the real (or virtual) image of the stop is located at the point where
the principal ray (or its extension) crosses the optical axis. This image of the
stop is the pupil of that surface or medium.

All quantities referring to the principal ray are represented with a bar
on top of the symbol; for e.g., �yy is the paraxial height of the principal ray and
�uu is its paraxial angle with respect to the optical axis. By definition, the value
of �yy is equal to zero at the stop. All quantities referring to the axial rays
(meridional rays from a point object on the axis) are written without the bar.

The meridional ray heights at the pupil for the medium j are
represented by Ypj for the marginal rays or ypj for the paraxial rays. The
meridional ray heights at the entrance and exit pupils are represented by
Yentr and Yexit for the marginal rays and yentr and yexit for the paraxial rays.

Summarizing, the stop is the aperture that limits the amount of light
entering the optical system and its images are the pupils. The field stop, on
the other hand, is located on the image plane and limits the image lateral
extension, as shown in Fig. 1.23.

Figure 1.23 Definitions of principal ray, entrance pupil, and exit pupil.
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If the light beam entering the system comes from an off-axis object
point, as shown in Fig. 1.25, several surfaces may limit the transverse
extension of the beam, producing an apparent aperture with a nearly
elliptical shape. Then, the system is said to have vignetting. The vignetting
effect appears only when the angle of incidence of the beam exceeds a certain
limit. It is frequently desirable to avoid vignetting in a centered optical
system, as shown in Fig. 1.26, to avoid excessive decreasing of the
illuminance of the image at the edge of the field and to have a better control
of the image analysis during the design stage. Some times, however,
vignetting is introduced on purpose, to eliminate some aberrations difficult
to correct.

The tangential and sagittal planes, defined previously in Section 1.3,
may now be more formally defined. The tangential plane is a meridional

Figure 1.24 Location of the pupil of a surface in an optical system.

Figure 1.25 Vignetting in a lens.
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plane that contains the principal ray (also off-axis point object). The sagittal
plane is a plane perpendicular to the tangential plane, which contains the
principal ray. As we may notice, there is a single common tangential plane
for all media between two consecutive optical surfaces in a centered optical
system. However, there is a sagittal plane for each medium, because the
principal ray is refracted at each surface.

In order to trace the principal ray through an optical system we must
know its direction in the object medium. This direction must be such that
the principal ray passes through the center of the stop.

1.6.1 Telecentric Systems

A frontal telecentric system is one that has its entrance pupil placed at
infinity. Since the stop (diaphragm) is at the back focal plane, the object
must be at a finite distance to avoid forming the image on the focal plane.
Let us consider the optical system in Fig. 1.27(a) where the principal ray is
parallel to the optical axis, since the entrance pupil is at infinity. A small
defocusing by a small change in the distance from the object to the system
does not introduce any change in the magnification of the image. This
property makes these systems useful for measuring systems where small
defocusings do not introduce any errors.

A rear telecentric system has its exit pupil at infinity as in Fig. 1.27(b).
The stop is at the front focal plane. The object may be at any distance from
the system. In these systems a small defocusing by changing the distance
from the optical system to the observing screen does not change the image size.

An optical system may be simultaneously frontal and rear telecentric,
with both the object and the image at finite distances from the system. In
this case the stop is in the middle of the system, at the back focal plane of the
part of the system preceding the stop and at the front focal plane of the part
of the system after the stop, as in Fig. 1.27(c).

Figure 1.26 Stop size to avoid vignetting in a lens for a given off-axis angle.
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1.7 OPTICAL SINE THEOREM

This theorem was discovered almost simultaneously by Abbe and
Helmholtz. Before studying it let us define the auxiliary axis of an optical
surface as an imaginary straight line that passes through an off-axis point
object (for that surface) and its center of curvature. Thus, every surface in a
centered system has a different auxiliary axis. The sine theorem defines the
ratio between the image size and the degree of convergence or divergence for
the rays in the image plane. This theorem is derived with the help of
Fig. 1.28. Let us consider an object point O with height H and the auxiliary
axis. Also, let us assume that the image O0 is on the auxiliary optical axis

Figure 1.27 Telecentric lenses.
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(this is true only for sagittal rays, as will be shown), with height H0. Then, we
can see that

H0

H
¼

L0 � r

L� r
ð1:57Þ

By using now Eqs. (1.19) and (1.20) we can see that

nH sinU ¼ n0H0 sinU0 ð1:58Þ

Now, let us prove that the sagittal image S is on the auxiliary axis, by
means of Fig. 1.29. The rays T1 and T2 are two tangential rays, passing
through the upper edge and the lower edge of the entrance pupil,
respectively. These two rays converge at a point T called the tangential
focus, not necessarily at the auxiliary optical axis. Two sagittal rays S1 and
S2 are symmetrically placed with respect to the auxiliary axis and converge
at the point S called the sagittal focus. Due to the symmetry about the
auxiliary axis, the point S is on this axis.

If the field is small (small H0 compared with the radius of curvature)
the sagittal focus S approaches the point O0. Thus, we may say this relation,
known as the optical sine theorem, is strictly valid only for sagittal rays and,
for relatively small off-axis displacements of the image, so that the distance
O0S may be neglected.

Figure 1.28 Optical sine theorem.
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It is important to notice that a small field is assumed, but not a
paraxial approximation for the meridional marginal ray. This means that
the angles U and U0 may be large and the optical sine theorem is still valid.

The triple product n H sin U is said to be an optical invariant because
any optical system formed with centered refracting and/or reflecting
surfaces maintains its magnitude throughout all surfaces in the optical
system.

Since the exit pupil is an image of the entrance pupil we can apply this
theorem to these pupils and the principal ray by writing

n1Yentr sinU1 ¼ n0kYexit sinU
0
k ð1:59Þ

where Yentr and Y0
exit are the heights of the meridional ray at the entrance

end exit pupils, respectively.

1.7.1 Lagrange Invariant

The paraxial approximation of the optical sine theorem is known as the
Lagrange theorem and it is written as

� ¼ hnu ¼ h0n0u0 ð1:60Þ

where � is called the Lagrange invariant, since it has a constant value for all
optical surfaces in the optical system. The sagittal image position calculated
with the Lagrange theorem also falls on the auxiliary axis, but longitudinally
displaced (if there is spherical aberration) to the paraxial focus plane. In the

Figure 1.29 Proof that the sagittal image is located on the auxiliary axis.
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paraxial approximation there is no astigmatism, so the tangential image
must be coincident with the sagittal image at the auxiliary axis. This image
position is also known as the gaussian image. The Lagrange theorem may be
physically interpreted as an energy conservation theorem, since the amount
of light collected from the object by the optical system is directly propor-
tional to the square of the angle u. Thus, the image illuminance of an
extended object is independent of the distance from the lens to the object and
depends only on the diameter of this lens and the distance to the image.

There is an alternative form of the Lagrange invariant, useful in
aberration theory. To derive this form let us consider an optical system with
a meridional ray and the principal ray as shown in Fig. 1.30. The object
height h may be written as

h ¼ ðl� l Þu ð1:61Þ

thus, the Lagrange invariant may be written, by using Eq. (1.46) and its
equivalent for the principal ray, as

� ¼ nuuðl� l Þ

¼ nð yu� yuÞ ¼ n0ðyu0 � yu0 Þ
ð1:62Þ

This form of the invariant may also be readily obtained from the Gauss
equation (1.45) by writing it for the meridional ray as well as for the
principal ray and then taking the ratio of the two equations.

Another invariant for the magnification of the pupils can be obtained
from the paraxial approximation of Eq. (1.59) as follows:

n1Yentru1 ¼ n0k yexitu
0
k ð1:63Þ

Figure 1.30 Derivation of an alternative form of the Lagrange invariant.
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1.8 HERSCHEL INVARIANT AND IMAGE MAGNIFICATIONS

The lateral magnification of an optical system is defined as

m ¼
H0

H
ð1:64Þ

where H is the object height and H0 is the image height. Using the optical
sine theorem this magnification may be written:

m ¼
n sinU

n0 sinU0
ð1:65Þ

We see that the lateral magnification of an optical system depends on the
magnitude of convergence U0 of the axial rays from an object on the optical
axis and also on the ratio n/n0 of the indices of refraction. The paraxial
approximation of this magnification is

m ¼
h0

h
¼

nu

n0u0
ð1:66Þ

The longitudinal magnification m is defined as the ratio of a small
longitudinal displacement �l0 of the image and the corresponding
displacement �l of the object. By differentiating the Gauss equation
(1.44) we obtain

m ¼
�l0

�l
¼

n l02

n0 l2
ð1:67Þ

but using relations in Eqs. (1.46) and (1.47) we find that

m ¼
�l0

�l
¼

n u2

n0 u02
ð1:68Þ

and then, rewriting this expression:

�lnu2 ¼ �l0n0u02 ð1:69Þ

This quantity �lnu2 has a constant value for all surfaces of the system,
before and after refraction and is called the Herschel invariant. From
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relations (1.66) and (1.68) we may find that the two types of magnification
are related by

m ¼
n0

n
m2 ð1:70Þ

Thus, we may see that the lateral magnification is equal to the longitudinal
magnification only if the ratio of the indices of refraction n/n0 is equal to the
lateral magnification m.

Using the invariant in Eq. (1.63), the paraxial angular magnification M
of an optical system, defined as the ratio of the slopes of the principal ray
after and before being refracted by the optical system, can be written as

M ¼
u0k
u1

¼
n1yentr
n0kyexit

ð1:71Þ

The ratio yexit/yentr is called the pupil magnification. If the object and image
medium is air the angular magnification is equal to the ratio of the diameters
of the entrance pupil to the exit pupil, i.e., equal to the inverse of the pupil
magnification.

The optical invariants described in this chapter are not the only ones.
There are some others, like the skew invariant described by Welford (1968).

To conclude this chapter let us now study an interesting relation,
similar to an invariant, but not from surface to surface as the ones just
described. Instead, this is a quantity whose value remains constant for any
incident orientation and path of the refracted ray. This relation is easily
found from Eq. (1.40) and Snell’s law, given by Eq. (1.41), as follows:

u� u0

i
¼

u� u0

i
¼ 1�

n

n0
ð1:72Þ

Since this expression is a constant for any ray, it has the same value for the
meridional and for the principal ray. Another interpretation of this relation
is that the change in direction of the ray on refraction at the spherical
surface (u� u0) is directly proportional to the angle of incidence i.

1.9 RAY ABERRATIONS AND WAVE ABERRATIONS

We have seen at the beginning of this chapter that in an isotropic medium
the light rays are defined by the normals to the wavefront. Let us assume
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that an almost spherical wavefront converges to a point in the image. If the
wavefront is not exactly spherical, we say that the wavefront is aberrated.
Let us now consider an aberrated wavefront with deformations W(x, y) with
respect to the reference sphere, which are related to the transverse
aberrations TAx(x, y) and TAy(x, y) by

@Wðx,yÞ

@x
¼ �

TAx ðx,yÞ

rW �Wðx,yÞ
ð1:73Þ

and

@Wðx,yÞ

@y
¼ �

TAy ðx,yÞ

rW �Wðx,yÞ
ð1:74Þ

where rW is the radius of curvature of the reference sphere. These exact
expressions were derived by Rayces (1964). The plane where the transverse
aberrations are measured contains the center of curvature of the reference
sphere, as shown in Fig. 1.31. In general, the radius of curvature of the
reference sphere rW is much larger than the wave aberration W(x,y). Then,
with a great accuracy, enough for most practical purposes, we may
approximate this expression by

@Wðx,yÞ

@x
¼ �

TAx ðx,yÞ

rW
ð1:75Þ

and

@Wðx,yÞ

@y
¼ �

TAy ðx,yÞ

rW
ð1:76Þ

Figure 1.31 Relation between ray and wave aberrations.
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If the transverse aberrations are known, the wavefront deformations
may be calculated by integration of these aberrations, as follows:

Wðx,yÞ ¼ �
1

rW

Zx

0

TAx ðx,yÞ dx ð1:77Þ

and

Wðx,yÞ ¼ �
1

rW

Zx

0

TAy ðx,yÞ dy ð1:78Þ

More details on the fundamentals of geometrical optics may be found
in the book by Herzberger (1963) and in the chapters by Hopkins and
Hanau (1962) and Hopkins and Malacara (1988).
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2
Thin Lenses and Spherical Mirrors

2.1 THIN LENSES

A lens is a glass plate whose faces are spherical, concave, or convex and
almost parallel at the center. Let us consider a beam of parallel light rays
(collimated) arriving at the first lens face. If these rays converge to a point
(focus) after being refracted by the lens, the lens is convergent or positive. If
the rays diverge the lens is divergent or negative. (See Fig. 2.1.)

In the most common case, when the medium surrounding the lens is
less dense (smaller index of refraction) than the lens material, a lens thicker
at the center than at the edge is convergent, and a lens thinner at the center is
negative. A thin lens may have different shapes, as shown in Fig. 2.2.

Since the lens has two spherical surfaces (a plane surface is a spherical
one with an infinite radius of curvature), we define the optical axis as the line
that passes through the two centers of curvature. If the lens has a plane
surface, the optical axis is the line that passes through the center of
curvature of the spherical surface and is perpendicular to the plane surface.
Obviously, this axis passes through the thickest or thinnest part of the lens.

The focus of the lens is the point where the collimated beam of light
converges to, or diverges from, after being refracted by the lens. The focal
length is the distance from the thin lens to the point of convergence or
divergence, being positive for convergent lenses and negative for divergent
lenses. The power P of the lens is defined as the inverse of the focal length, as
follows:

P ¼
1

f
ð2:1Þ

A common unit for the power is the diopter, when the focal length is
expressed in meters.
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Figure 2.1 A convergent and a divergent lens: (a) convergent lens; (b) divergent

lens.

Figure 2.2 Possible shapes for thin lenses.
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To understand how a lens refracts a beam of light let us apply the
Gauss law (Eq. 1.44) to both surfaces of the lens, as in Fig. 2.3. For the first
surface we may write

n01
l01

�
n1
l1

¼
n01 � n1

r1
ð2:2Þ

and for the second surface:

n02
l02

�
n2
l2

¼
n02 � n2

r2
ð2:3Þ

Using now transfer equations (1.42) and (1.43) with the thickness t
equal to zero (l2¼ l01), and denoting the refractive index n01 ¼ n2 of the lens by
n we find, after adding both equations, that

n� n1
r1

þ
n02 � n

r2
¼

n02
l02

�
n1
l1

ð2:4Þ

where l1 is the distance from the object to the lens and l02 is the distance from
the lens to the image. The distance l1 is positive if the object is virtual and
negative if it is real. The distance l02 is positive if the image is real and
negative if it is virtual.

Given a thin lens, the left-hand side of Eq. (2.4) is a constant, so the
right-hand side must also be a constant for all positions of the object
and the image. A particular case of interest is when the object is at infinity

Figure 2.3 Ray refraction in a thin lens.
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(1/l1¼ 0) and l02 is equal to the focal length f 0, for the collimated light beam
arriving at the lens from the left side. Then, from Eq. (2.4) we obtain

n02
f 0

¼
n� n1
r1

þ
n02 � n

r2
¼

n02
l02

ð2:5Þ

If the collimated beam of light enters the thin lens traveling from right
to left, the convergence point is at the focus at the left of the lens, at a
distance f, given by

n1
f
¼

n� n1
r1

þ
n02 � n

r2
¼ �

n1
l1

ð2:6Þ

These two focal lengths for a lens with different object and image
media, which are different from the focal length when the lens is surrounded
by air, are related by

n02
f 0

¼
n1
f

ð2:7Þ

In the particular case in which the media before the lens and after the
lens is air (n1¼ n02¼ 1), the focal lengths are identical (f¼ f 0 ¼ f ) and have the
value:

1

f
¼ ðn� 1Þ

1

r1
�

1

r2

� �

¼ ðn� 1Þk ¼ ðn� 1Þðc1 � c2Þ ð2:8Þ

¼ P ¼ P1 þ P2

where k is called the total lens curvature. This is the so-called lens maker’s
formula.

2.2 FORMULAS FOR IMAGE FORMATION WITH
THIN LENSES

Some ray paths in the formation of images with a thin lens are shown in
Fig. 2.4. Notice that the ray through the center of the lens is straight only
when the media before and after the lens are the same. From Eqs. (2.5) and
(2.6) we may find a relation for the positions of the object and the image as
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1 ¼
f 0

l02
�

f

l1
ð2:9Þ

Equivalently, if we define x as the distance from the focus f to the
object, being positive if the object is to the right of this focus, as

x ¼ l1 þ f ð2:10Þ

and x0 as the distance from the focus f 0 to the image, being positive if the
image is to the right of this focus, as shown in Fig. 2.4,

x0 ¼ l02 � f 0 ð2:11Þ

we may find

xx0 ¼ �f f 0 ð2:12Þ

which is known as Newton’s formula.
If the lens is surrounded by air, from Eq. (2.9) we can write

1

f
¼

1

l02
�

1

l2

¼
1

y
u02 � u1
� �

ð2:13Þ

Figure 2.4 Image formation with a thin lens.
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or

xx0 ¼ �f 2 ð2:14Þ

The positions for the object and the image, defined by these relations,
are said to be conjugate of each other.

The paraxial lateral magnification m may be found by any of the
following relations, derived using Fig. 2.4 and Eqs. (2.7), (2.10), and (2.11):

m ¼
h0

h
¼

n1l
0
2

n02l1

¼
f

x
¼ �

x0

f 0

¼ 1�
l02
f 0

¼ 1þ
l1
f

� ��1

ð2:15Þ

2.3 NODAL POINTS OF A THIN LENS

We have mentioned before that a ray passing through the center of the thin
lens changes its direction after passing through the lens, unless the refractive
indices of the media before and after the lens are the same. It is easy to see
that the deviation of the central ray is given by

n1 sin y1 ¼ n02 sin y2 ð2:16Þ

The nodal point N of a thin lens is defined as a point on the optical
axis such that any ray entering the lens and pointing towards the nodal
point, exits the lens without changing its direction. This nodal point position
may be found from Fig. 2.3, with the condition l02 ¼�l1. As shown in
Fig. 2.5, using Eqs. (2.7) and (2.9), the distance A¼ l02 from the thin lens to
the nodal point is given by

A ¼ 1�
n1
n02

� �
f 0 ð2:17Þ

As we may expect, if the thin lens is in air the nodal point is at the
center of the lens.
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2.4 IMAGE FORMATION WITH CONVERGENT LENSES

Figure 2.6 shows the three types of images that may be formed with
convergent lenses. The image formation with convergent lenses may be
studied by plotting in a diagram the values given by Eq. (2.13), as in Fig. 2.7.

Figure 2.5 Location of the nodal point of a thin lens.

Figure 2.6 Image formation with a thin convergent lens.
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As we see, it is not possible with a convergent lens to form virtual images
with virtual objects. We may notice that when moving the object, near the
focus f1, there is a singularity. On one side of the focus the image is real and
on the other side it is virtual.

Figure 2.8 Image formation with thin divergent lenses.

Figure 2.7 Diagram for image formation with convergent lenses.
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2.5 IMAGE FORMATION WITH DIVERGENT LENSES

Figure 2.8 shows the three types of images that may be formed with
divergent lenses. The image formation with divergent lenses may be studied
in the same manner, with the diagram in Fig. 2.9. As we see, it is not possible
with a divergent lens to form virtual images with real objects. Here, when
moving a virtual object, near the focus f2, there is a singularity. On one side
of the focus the image is real and on the other side virtual. Additional details
on the subject of first-order paraxial optics may be found in Hopkins and
Hanau (1962a,b).
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Figure 2.9 Diagram for image formation with diverging lenses.
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3
Systems of Several Lenses and
Thick Lenses

3.1 FOCAL LENGTH AND POWER OF A LENS SYSTEM

The lateral magnification of a thick centered optical system in air, using the
Lagrange theorem in Eq. (1.60) and the definition of lateral magnification
for a distant object, is given by

m ¼
u1
u0k

¼
y1

l1 u
0
k

ð3:1Þ

assuming that the object and image media are the same (typically air).
The effective focal length of a thick lens or system of lenses is defined

by

F 0 ¼ �
y1
u0k

ð3:2Þ

hence, the lateral magnification with a distant object depends only on the
effective focal length F, independently of the particular lens configuration.
With this definition we may see from Fig. 3.1 that the effective focal length
is the distance from the focal plane to an imaginary plane called the
principal plane.

In general, there are two principal planes in any centered optical
system, one for each orientation of the system. In Fig. 3.1 we have
graphically defined the principal planes P1 and P2 and the effective focal
lengths F and F 0. It is interesting to notice that a system may be convergent
and have a negative effective focal length, or divergent and have a positive
effective focal length. This happens when the incident paraxial ray crosses
the optical axis an odd number of times before reaching the focus.
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Given a centered optical system, the effective focal length may be
computed with the help of the Gauss equation (1.45). Summing this
expression for a system of k surfaces we find that

�n0ku
0
k þ n1 u1 ¼

Xk
i¼1

y
n0 � n

r

� �
ð3:3Þ

then, using the definition of effective focal length, and making u1¼ 0, we
find that

P ¼
1

F 0
¼
Xk
i¼1

y

y1

n0 � n

n0kr

� �
ð3:4Þ

For the particular case of a system of thin lenses this expression
becomes

P ¼
1

F
¼
Xk
i¼1

y

y1

1

f

� �
¼
Xk
i¼1

yi
y1

Pi ð3:5Þ

where Pi is the power of the lens i. We see that the contribution to the total
power of a surface or a thin lens in a system is directly proportional to the
height y of the marginal ray on that surface or lens.

From Eq. (2.13) we can write the power of each individual lens as

Pi ¼
1

fi
¼

1

y
u0i � ui
� �

¼
1

y
�uu0i � �uui
� �

ð3:6Þ

Figure 3.1 Diagram to illustrate the principal planes and the effective focal

lengths.
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The back focal length FB and the front focal length FF are also defined
in Fig. 3.1.

3.2 IMAGE FORMATION WITH THICK LENSES OR
SYSTEMS OF LENSES

Several important relations in thick optical systems may be found with only
the definitions of effective focal length and Lagrange’s theorem. To do this
let us consider Fig. 3.2. In a first approximation, for paraxial rays we may
write

u

u0
¼

L0

L
ð3:7Þ

and with the help of Lagrange’s theorem we obtain the lateral magni-
fication as

m ¼
H0

H
¼

nL0

n0L
ð3:8Þ

This expression is analogous to Eq. (2.15) for thin lenses. From Fig.
3.2 we may obtain

�H0

H
¼

L0 � F 0

F 0
ð3:9Þ

and

�H0

H
¼

F

�L� F
ð3:10Þ

Figure 3.2 Image formation with a thick optical system.
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We now define the distances X¼LþF and X0 ¼L0 �F 0, where X0 is
positive if the image is to the right of the focus F 0 and X is positive if the
object is to the right of the focus F. Then, we find again Newton’s equation,
as for thin lenses in Eq. (2.12),

XX 0 ¼ �FF 0 ð3:11Þ

but we also may find, by equating Eqs. (3.9) and (3.10), that

1 ¼
F 0

L0
�

F

L
ð3:12Þ

and from this expression:

L0 � F 0 ¼ �
FL0

L
ð3:13Þ

which, substituted into Eqs. (3.7) and (3.8), gives

n0

F 0
¼

n

F
ð3:14Þ

The equivalent thin lens expression is Eq. (2.7). For the most common
case when the object and the image refracting media are the same, the two
focal lengths have the same value. Three possible exceptions are: (1) an
underwater camera, with the object in water and the image in air, (2) an
immersion microscope, where the object is in oil and the image in air, and
(3) the human eye, where the object is in air and the image is in the eye’s
liquid.

Using now Eqs. (3.11) and (3.13) we find that

1

F0
¼

1

L0
�

n

n0L
;

1

F
¼

n0

nL0
�

1

L
ð3:15Þ

For the most common case of object and image media being the same
we obtain

1

F
¼

1

L0
�

1

L
ð3:16Þ

whose thin lens is analogous to Eq. (3.14).
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3.3 CARDINAL POINTS

The nodal points of an optical system are two points on the optical axis,
with the property that an incident ray pointing to nodal point N1, after
refraction comes out from the optical system pointing back to the nodal
point N2, and parallel to the incident ray. Let us consider Fig. 3.3 with a
point light source S in the focal plane containing F. If rays R1 and R2 are
emitted by S, after refraction they will come out from the optical system as
rays R3 and R4, parallel to each other. The ray R2 is selected so that it points
to the nodal point N1 so, by definition of nodal points, the ray R4 will point
back to the nodal point N2, parallel to R2. Since rays R3 and R4 are parallel
to each other, the ray R3 will also be parallel to R2. The triangles SAN1 and
F2P2B are identical, hence the distances F1N1 and F2P2 are equal. Thus, we
may write

F1N1 ¼ F 0 ð3:17Þ

Then, the distance from the nodal point N1 to the principal point P1,
as shown in Fig. 3.3, is

N1P1 ¼ F� F1N1 ¼ F� F 0 ð3:18Þ

Using now Eq. (3.14), we find that

N1P1 ¼ 1�
n0

n

� �
F ð3:19Þ

and symmetrically, the distance from the nodal point N2 to the principal
plane P2 is

N2P2 ¼ 1�
n

n0

h i
F 0 ð3:20Þ

Figure 3.3 Cardinal points of a thick optical system.
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The analogous thin lens expression for these relations is Eq. (3.18). If
the object and image media are equal, the two nodal points coincide with the
principal points. In this case the focal length may be measured by rotating
the lens about a vertical axis until by trial and error the nodal point is found
(Kingslake, 1932), as shown in Fig. 3.4. Nodal points, as well as principal
points, receive the generic name of cardinal points.

An interesting consequence of the definition of nodal points is that
they are images of each other with a unit lateral magnification. Thus, if the
entrance pupil is located at the first nodal point, the exit pupil would be
located at the second nodal point position and will have the same size as the
entrance pupil.

Similarly to the nodal points, an optical system may also have in some
cases (not always) a point with the property that an incident ray directed
towards this point comes out of the system as emerging from the same point,
as shown in Fig. 3.5(a) (Malacara, 1992). The direction of the incident ray

Figure 3.5 Points with incident and refracted rays intersecting at a common point
on the optical axis.

Figure 3.4 Measurement of the effective focal lens of a thick optical system.
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and the emerging ray is not necessarily the same. Then, a converging beam
focused on this point, as shown in Fig. 3.5(b), emerges from the system
diverging from the same point, but not necessarily with the same angle of
divergence as the entering beam.

The location of these points may be found by means of Eq. (3.17) (if
the object and image media have the same refractive index), by imposing the
condition:

L0 þ T ¼ L ð3:21Þ

where T is the separation between the principal planes, so that this point is
both the object and the image, at the same location. Thus, we may see that
there are two of these points, at distances from the first principal point,
given by

L ¼
T� ½TðTþ 4F Þ �

1=2

2
ð3:22Þ

Then, since the argument of the square root has to be positive, we see
that these points exist only if

4F

T
� �1 ð3:23Þ

as in the shaded regions shown in Fig. 3.6.

3.4 IMAGE FORMATION WITH A TILTED OR
CURVED OBJECT

Let us consider a small plane object tilted with respect to the optical axis, in
front of a convergent lens system as in Fig. 3.7. To find the inclination of the

Figure 3.6 Regions for which the points illustrated in Fig. 3.5 exist.
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image plane let us begin by using Eqs. (1.66) and (1.68) to write

m2 ¼
z0

z
ð3:24Þ

From this figure we can easily see that

z

h
¼ �

L

A
ð3:25Þ

and

�
z0

h0
¼

L0

A0
ð3:26Þ

where the distances A and A0 are measured from the principal points to the
lines of intersection of the principal planes with the plane inclined object
and the plane inclined image, respectively. Using these three expressions and

Figure 3.7 Image formation with a tilted object.
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Eq. (3.8) we can find that A0 ¼A. When the imaging system is a thin lens, the
object, the image, and the lens planes intersect at a common line.

It should be pointed out that when the object and the image planes are
not parallel to each other a distortion of the image called keystone distortion
appears. Then, the image of a square object is imaged as a trapezoid.

Let us now consider the case when the object is not flat but curved as
in Fig. 3.8. Then, Eq. (3.24) for the sagittas z and z0 of the curved object and
image, respectively, remains valid. If the object and image radii of curvature
are � and �0, respectively, we can easily find that

m ¼ �
�

�0
ð3:27Þ

3.5 THICK LENSES

Thick lenses have been widely studied in the literature (Herzberger, 1944,
1952). Let us consider a thick lens, as shown in Fig. 3.9, with thickness t and
radii of curvature r1 and r2. To study this lens, let us first find the ratio of the
meridional ray heights using Eq. (3.3). If we set u1¼ 0 we find the refracted
angle u01 after the first surface:

u01 ¼ �y1
n01 � n1
n01r1

� �
ð3:28Þ

on the other hand, this angle may be written as

u01 ¼ �
y1 � y2

t
ð3:29Þ

Figure 3.8 Image formation with a curved object.
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hence, the ratio of the ray heights is

y2
y1

¼ 1�
n01 � n1
n01r1

� �
t ð3:30Þ

The effective focal length may be calculated with Eq. (3.4), obtaining

P ¼
1

F
¼

n01 � n1
n02r1

� �
þ
y2
y1

n02 � n2
n02r2

� �
ð3:31Þ

but if we substitute here Eq. (3.30) and use the relation n01 ¼ n2¼ n:

P ¼
1

F0
¼

n� n1
n02r1

� �
�

n� n02
n02r2

� �
þ
ðn� n02Þðn� n1Þ

n02nr1r2
t ð3:32Þ

This is a general expression, valid for any object and image medium. If
this medium is air, F¼F 0 and the equation reduces to

P ¼
1

F
¼ ðn� 1Þ

1

r1
�

1

r2

� �
þ
ðn� 1Þ2

nr1r2

¼ ðn� 1Þkþ
ðn� 1Þ2

n
c1c2t

ð3:33Þ

with k¼ c1� c2. Using the surface powers P1 and P2 defined in Chapter 2,
we may write

Figure 3.9 Light refraction in a thick lens.
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P ¼ P1 þP2 �P1 P2
t

n
ð3:34Þ

An interesting particular case is that of a concentric lens, for which
r1¼ r2þ t. The effective focal length becomes

P ¼
1

F 0
¼ �

ðn� 1 Þ2 t

nr1ðr1 � tÞ
ð3:35Þ

This lens has some interesting properties, as described by Rosin (1959),
that makes it quite useful in many instruments.

Returning to the general case, however, the back focal length FB of a
thick lens may now be calculated if from Fig. 3.9 we observe that for the
particular case of the lens in air:

FB ¼
y2
y1

F 0 ¼ 1�
ðn� 1Þt

nr1

� �
F ð3:36Þ

or, alternatively, we may show that

1

FB
¼ ðn� 1Þ

1

r1 � tðn� 1Þ=n
�

1

r2

� �
ð3:37Þ

It is now easy to show from Eq. (3.32) that the second principal plane
is at a distance from the second surface equal to

FB �F ¼ �
ðn� 1Þt

nr1
F ¼ �P1 F

t

n
ð3:38Þ

being positive if it is to the right of the last surface. We see that the position
of the principal plane depends on the magnitude and sign of the first radius
of curvature r1.

In an analogous manner, the front focal length FF is obtained by
replacing r1 with �r2 and r2 with �r1. Thus,

1

FF
¼ ðn� 1Þ

1

�r2 � tðn� 1Þ=n
þ

1

r1

� �
ð3:39Þ

Hence, the first principal plane is at a distance from the first surface
equal to

F� FF ¼ �
ðn� 1Þt

nr2
F ¼ P2F

t

n
ð3:40Þ
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This distance is positive if the principal plane is to the right of the first
surface.

We may easily prove that the separation T between the principal
planes in any thick lens is equal to

T ¼ 1�
FðP1 þP2 Þ

n

� �
t � n� 1ð Þ

t

n
ð3:41Þ

Thus, we see that the separation between the principal planes is almost
constant, about one-third of the lens thickness, for any lens bending, if the
lens is neither extremely thick, nor has a strong meniscus shape. The
position of the principal planes for several lens shapes is illustrated in
Fig. 3.10.

3.6 SYSTEMS OF THIN LENSES

Many optical devices may be designed using only thin lenses (Hopkins and
Hanau, 1962). Let us consider the simplest case, of a system of two thin
lenses separated by a finite distance. The effective focal length of a system of

Figure 3.10 Positions of principal planes in a thick lens, for several bendings.
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two thin lenses separated by a distance d and with focal lengths f1 and f2, as
shown in Fig. 3.11, may be found with Eq. (3.5):

P ¼
1

F
¼

1

f1
þ
y2
y1

1

f2

� �
ð3:42Þ

but from Fig. 3.11 we see that the ratio of the ray heights is

y2
y1

¼ 1�
d

f1
ð3:43Þ

Hence, the effective focal length may be obtained as

P ¼
1

F
¼

1

f1
þ

1

f2
�

d

f1 f2
ð3:44Þ

or in terms of the power of the lenses:

P ¼ P1 þP2 �P1 P2 d ð3:45Þ

Another common alternative expression is

F ¼
f1 f2

f1 þ f2 �d
ð3:46Þ

If the two thin lenses are in contact with each other, this expression
reduces to

1

F
¼

1

f1
þ

1

f2
¼ P ¼ P1 þP2 ð3:47Þ

Figure 3.11 A system of two separated thin lenses.
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The back focal length FB of this system of two thin lenses is

FB ¼
y2
y1

F ¼ 1�
d

f1

� �
F ð3:48Þ

or

1

FB
¼

1

f1 �d
þ

1

f2
ð3:49Þ

We may now compute the distance from the second lens to the
principal plane as

FB �F ¼ �
d

f1
F ¼ �P1 fd ð3:50Þ

being positive if it is to the right of the second lens. Then, the position of the
principal plane depends on the magnitude and sign of the focal length f1.

Figure 3.12 Position of the principal planes for a system of two separated thin
lenses.
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In a similar way, the front focal length may be written as

FF �F ¼ �
d

f2
F ¼ �P2 fd ð3:51Þ

The separation T between the two principal planes is then given by

T ¼ �½1� FðP1 þP2 Þ�d ð3:52Þ

The position of the principal planes for several lens combinations is
illustrated in Fig. 3.12. Many interesting properties may be noticed by a
close examination of this figure.

3.7 THE LAGRANGE INVARIANT IN A SYSTEM OF
THIN LENSES

The Lagrange invariant in a system of thin lenses may adopt two special
forms, one of them is in terms of the separation d and the heights of the
meridional and principal rays. The other form is in terms of the power P of
the lenses and the slopes of the meridional and principal rays. These two
expressions are useful in the analysis of some of the first-order properties of
systems of thin lenses. To find these expressions let us first write the already
known Lagrange invariant in Eq. (1.63) in a lens forming part of a system of
thin lenses. Assuming the lens to be in air (n¼ 1) we may write this invariant
just after refraction on this lens as

� ¼ yu0 � yu0 ð3:53Þ

The Lagrange invariant in the same space, but just before refraction at
the next lens, has the same value, and may be written as

� ¼ yþ1 uþ1 � yþ1 uþ1 ð3:54Þ

thus, using transfer relation (1.42) for both the meridional and the principal
ray, we have

ð yþ1 �yÞu0 ¼ ð yþ1 �yÞu0 ð3:55Þ

Substituting from this expression the value of the angles u0 into Eq.
(3.53) we have

� ¼
yðy� yþ1 Þ � yðy� yþ1 Þ

y� yþ1
u0 ð3:56Þ
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thus, using here Eqs. (1.47) and (1.42), we obtain

� ¼
y yþ1 � yþ1 y

l0 � lþ1
ð3:57Þ

We may see that l0 � lþ1 is the distance d between the two thin lenses;
thus, we finally obtain the Lagrange invariant as

� ¼
y yþ1 � yþ1 y

d
ð3:58Þ

which relates the heights for the meridional and principal rays at one lens in
the system with the corresponding ray heights at the next lens.

To find another form of the Lagrange invariant let us now use
Eq. (3.6) to write

u0u0 ¼ u0ðuþ PyÞ ¼ ðuþ PyÞu0 ð3:59Þ

and solving now for the power P and after some algebra we find the
following expression for the Lagrange invariant:

� ¼
uu0 � u0u

P
¼

u uþ1 � uþ1 u

P
ð3:60Þ

3.8 EFFECT OF OBJECT OR STOP SHIFTING

In this section we will study the effect of shifting the object or the stop.
There are some interesting relations between the meridional marginal ray
and the principal ray that will be useful many times in the next chapters.

3.8.1 Shifting the Stop

Let us now use Lagrange’s theorem to derive a useful relation describing the
shifting of the stop to a new position, as shown in Fig. 3.13, along the
optical axis, using paraxial approximations. A movement of the stop does
not alter the meridional ray, since the object and image remain stationary.
We assume that the stop diameter is changed (if necessary) while changing
its position, so that the angle u remains constant. The object and image sizes
also remain constant. Thus, the product hu does not change. Hence, if the
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object and index media are the same, the Lagrange invariant remains
constant with this stop shift. Then, we may write the Lagrange invariant as

� ¼ nðyu� yuÞ ¼ nðy u� � y� uÞ ð3:61Þ

and from this expression we find that

ð y� �yÞ

y
¼

ð u� �uÞ

u
ð3:62Þ

The left-hand side of this equation is invariant after refraction on the
optical surface since the values of y and �yy do not change on refraction. In the
same manner, the right-hand side is invariant after transferring from one
surface to the next, since u and �uu do not change on this transfer. Thus, since
both sides are equal, we conclude that both sides must be invariant for all
system surfaces and equal to a constant Q, given by

Q ¼
y� �y

y
ð3:63Þ

The direction of the principal ray in the object space must point to the
entrance pupil, so that the principal ray passes through the center of the

Figure 3.13 Stop shift in a thick system of lenses with ray heights at the first

surface.
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stop. In order to find this direction even if the stop is not at the first surface,
we may use this relation. The principal ray may be traced through the
system by first tracing a tentative principal ray with the stop at the first
surface (y�1 ¼ 0) and computing the value of y�s at the stop, selecting a new
value for the desired height of the principal ray (ys ¼ 0). Thus, a value of Q is
obtained at the stop. Finally, the final principal ray is traced from the point
object to a point on the first surface with coordinates (0, y1), given by

y1 ¼ �Qy1 ð3:64Þ

3.8.2 Shifting Object and Image Planes

Using again Lagrange’s theorem we may also derive a relation describing
the effect of a shifting in the object position and its corresponding shifting in
the image position. Let us assume that the object is displaced along the
optical axis, but changing its size in such a way that the principal ray
remains stationary, as shown in Fig. 3.14. The new image size is h0*. The
angle u also changes because its distance to the entrance pupil is modified.
We may see that for the object medium:

hu ¼ h�u� ð3:65Þ

Hence, if the object and image media are the same, the Lagrange
invariant remains constant with this object and image displacements. We
may then write

� ¼ nð yu� yuÞ ¼ nð y�u� y u� Þ ð3:66Þ

Figure 3.14 Object and image shifts in a thick system of lenses.
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but from this expression we find that

ð y� �yÞ

y
¼

ð u� �uÞ

u
ð3:67Þ

where we may see, as in Section 3.8.1, that the left-hand side of this equation
is invariant after refraction on the optical surface and the right-hand side is
invariant after transferring from one surface to the next. Thus, we again
conclude that both sides must be invariant for all system surfaces and equal
to a constant Q. Hence,

Q ¼
y� �y

y
ð3:68Þ

Please notice that this Q is not the same as that used in Sections 1.3.2
and 1.4.2. However, there is no possibility of confusion because they will
never be used together. This expression indicates that after the object and
image shifts, the paraxial image height y changes at every surface with
increments directly proportional to the principal ray height y. One
expression may be obtained from the other by interchanging the principal
and the meridional rays.

At the object and image planes the value of y is zero. Thus, at these
planes, after the object and image have been shifted, the value of the ratio
y/y must be equal to Q. In other words, if two planes are conjugate to each
other the value of y/y is equal at those planes.

3.9 THE DELANO y–y DIAGRAM

Delano (1963) proposed a diagram to analyze graphically an optical system
with paraxial approximations. In this diagram the values of the meridional
ray heights y and the values of the principal ray heights y at many different
planes perpendicular to the optical axis are represented. No line can pass
through the origin in this diagram, since it is impossible that the meridional
ray height be zero at the stop or pupil. In other words, the image cannot be
located at the pupil. Each point in this diagram corresponds to a plane
perpendicular to the optical axis in the optical system. The straight line
defined by corresponding to the object space is called the object ray.
Similarly, the straight line corresponding to the image space is called the
image ray.
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As illustrated in Fig. 3.15, any plane at the point A in the object space
with coordinates (y, y) is on the object ray while its conjugate plane at the
point B in the image space with coordinates (y0, y0) is on the image ray. The
line joining these two points passes through the origin since, as pointed out
in Section 3.8, y/y is equal to y0/y0. This line is called a conjugate line. Any
two conjugate points in the system can be joined by a conjugate line passing
through the origin. Thus, the slope k of this line is given by

k ¼
y

y
¼

y0

y0
ð3:69Þ

the magnification at the two conjugate planes under consideration is

m ¼
y0

y
¼

y0

y
ð3:70Þ

and Shack (1973) points out that the slope k of the conjugate line is related
to this magnification by

k ¼
nu�mn0u0

nu�mn0u0
ð3:71Þ

Figure 3.15 A y– �yy diagram with the object and image rays and some conjugate
lines.
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Some special conjugate lines are interesting to examine:

1. One of these conjugate lines is the y axis, which joins the object
and image planes. The magnification at the conjugate planes is
that of the optical system with its object and image.

2. Another conjugate line is the y axis, which joins the entrance and
exit pupils. The magnification is the magnification of the pupils.

3. The conjugate line from the origin to the point P joins the two
principal planes with magnification equal to one.

4. The back focal plane is conjugate to the plane at an infinite
distance in front of the system. The magnification for these planes
is zero. It can be proved that the conjugate line joining them has a
slope equal to the slope of the object ray. The back focal plane is
located at the intersection of this line with the image ray.

5. The front focal plane is conjugate to the plane at an infinite
distance after the system. The magnification for these planes is
infinite. It can also be proved that the conjugate line joining these
two planes has a slope equal to the slope of the image ray. The
front focal plane is located at the intersection of this line with the
object ray.

We may easily show in Fig. 3.17, with simple geometry, that the area
of the triangle FBC is equal to

Area ¼
y yþ1 � yþ1 y

2
ð3:72Þ

Thus, using Eq. (3.58), the distance d between the two thin lenses
represented at points B and C is given by

d ¼
Area

�
¼

y yþ1 � yþ1 y

�
ð3:73Þ

Figure 3.16 shows some examples of this representation. The main
properties of the y–y diagram are:

1. The polygon vertices are concave toward the origin for surfaces
with positive power and vice versa.

2. The intersection between the first and the last segments (the
object and the image rays) represents the two principal points of
the system, located at a single point in this diagram, as shown in
Fig. 3.17.

3. The area of the triangle formed by the origin and the two points
representing two consecutive lenses in this diagram is directly
proportional to the separation between these two lenses.
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Figure 3.16 Three y– �yy diagrams. (a) Optical system (scale 1:1); (b) y– �yy diagram
(scale 2:1).

Figure 3.17 A y– �yy diagram of a triplet, used to find the area of triangle ABC.
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Many first-order operations commonly applied to optical systems can
be performed in a simple manner using the y–y diagram. Next, we will
describe two of them.

A Shift of the Stop

A shift of the stop must follow relation (3.56). So, a shift of the stop moves
the vertices of this diagram along lines parallel to the y axis, with
displacements directly proportional to the height y of the meridional ray.
Then, the magnitude of this movement of the vertices, as shown in Fig. 3.18,
must be such that the angle � is the same for all points.

A Shift of the Object and Image

A shift of the object and image’s positions must follow relation (3.68). Thus,
this operation moves the vertices of the graph along lines parallel to the y
axis, but with displacements proportional to the height y of the principal
ray. As illustrated in Fig. 3.19, the angle � is the same for all points.

Many other interesting first-order properties of optical systems may be
derived from this diagram. First-order design of optical systems may be
easily performed using this diagram, as pointed out with many examples by
Shack (1973). Even complex systems like zoom lenses may be designed to
first order with this tool (Besanmatter, 1980).

Figure 3.18 Stop shift in a y– �yy diagram.
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4
Spherical Aberration

4.1 SPHERICAL ABERRATION CALCULATION

Spherical aberration is the most important of all primary aberrations,
because it affects the whole field of a lens, including the vicinity of the
optical axis (Toraldo Di Francia, 1953). The name of this aberration comes
from the fact that it is observed in most spherical surfaces, refracting or
reflecting. The aberration is due to the different focus positions for marginal
meridional and paraxial rays, as shown in Fig. 4.1. The value of this
aberration may be calculated by means of many different methods.

Before calculating this aberration let us find some expressions for the
values of the segments Q and Q0, defined in Chap. 1, since they will be used
several times in this section. From the definitions of the segments Q and Q0

given in Eqs. (1.26) and (1.29) and some trigonometric work we may
find that

Q

r
¼ sin I� sinU ¼ 2 sin

I�U

2

	 

cos

IþU

2

	 

ð4:1Þ

and

Q0

r
¼ sin I 0 � sinU0 ¼ 2 sin

I 0 �U0

2

	 

cos

I 0 þU0

2

	 

ð4:2Þ

On the other hand, the value of the segment PA from the vertex to
the intersection of the marginal ray with the optical surface, as shown in
Fig. 4.2, is given by

PA ¼ 2r sin
I�U

2

	 

¼ 2r sin

I 0 �U0

2

	 

ð4:3Þ
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thus, the values of Q and Q0 are equal to

Q ¼ rð sin I� sinUÞ ¼ PA cos
IþU

2

	 

ð4:4Þ

and

Q0 ¼ rðsin I 0 � sinU0Þ ¼ PA cos
I0 þU0

2

	 

ð4:5Þ

Let us now proceed with the calculation of the spherical aberration,
beginning with its formal definition, illustrated in Fig. 4.3. The longitudinal
spherical aberration in the image is

SphL ¼ L0 � l0 ð4:6Þ

and the longitudinal spherical aberration in the object is the aberration after
the preceding surface, given by

SphL�1 ¼ L� l ð4:7Þ

where the subscript �1 stands for this preceding surface.

Figure 4.2 Refraction of a meridional ray at a spherical surface.

Figure 4.1 Spherical aberration in a lens.
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One method to find an expression for the spherical aberration has
been described by Conrady (1957). The first step is to consider Eq. (1.36),
which may be written as

n0

L0
�

n

L
¼

n0 � n

r
þ

n sin I

rðsin I� sinU Þ
1�

sin I� sinU

sin I0 � sinU0

� �
ð4:8Þ

but from Eq. (1.33) we have

sin I

sin I� sinU
¼

L� r

L
ð4:9Þ

and using the values of Q and Q0 in Eqs. (4.4) and (4.5) we obtain

n0

L0
�

n

L
¼

n0 � n

r
þ
nðL� rÞ

rL
1�

Q

Q0

� �
ð4:10Þ

This expression is exact for any meridional ray. For paraxial rays we
have the Gauss equation:

n0

l0
�
n

l
¼

n0 � n

r
ð4:11Þ

thus, subtracting one expression from the other we have

n0
L0 � l0

L0l0
� n

L� l

Ll
¼

nðL� rÞ

rL

Q

Q0
� 1

� �
ð4:12Þ

obtaining

SphL ¼
nL0l0

n0Ll

� �
SphL�1 þ

nðL� rÞL0l0

n0rL

Q�Q0

Q0

� �
ð4:13Þ

Figure 4.3 Definition of the longitudinal spherical aberration.
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and, using Eqs. (4.4) and (4.5),

SphL ¼
nL0l0

n0Ll

� �
SphL�1 þ

nðL� rÞL0l0

n0rL

� ðcos ðIþU Þ=2� cos ðI0 þU0Þ=2Þ=cos ðI 0 þU 0Þ=2½ � ð4:14Þ

which may be further developed with the trigonometric relation:

cos�� cos� ¼ 2 sin
�þ �

2

	 

sin

�� �

2

	 

ð4:15Þ

and the value of U¼U0 þ I� I 0, to obtain the following relation in which
the difference of cosines was replaced by a product of sines.

SphL ¼
nL0l0

n0Ll

� �
SphL�1 þ

2nðL� rÞL0l0

n0rL

� ½ðsin ðIþU0Þ=2� sin ðI 0 � I Þ=2Þ=cos ðI 0 þU0Þ=2� ð4:16Þ

This expression permits us to find in a simple manner the conditions
for zero spherical aberration, as we will see later. The first term on the right-
hand side of this expression represents the transferred longitudinal spherical
aberration and the second term is the new spherical aberration introduced
by this optical surface. The factor in front of the object’s transferred
spherical aberration SphL�1 is the longitudinal magnification of the surface.

An elegant method to obtain an equivalent expression has been
proposed by Delano (1952). We begin with Delano’s expression in Eq. (1.56)
for a paraxial and a marginal ray. We assume that the marginal and the
paraxial rays originate at the same on-axis point in object space. From the
longitudinal values for the spherical aberration defined in Eqs. (4.6) and
(4.7), before and after refraction, we find (see Fig. 1.17)

SphL ¼ �
s0

sinU0
; SphL�1 ¼ �

s

sinU
ð4:17Þ

thus obtaining

SphL ¼
nu sinU

n0u0 sinU0

� �
SphL�1 �

ni

n0u0 sinU0
Q0 �Q½ � ð4:18Þ
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Using now the same expressions for PA, Q, and Q0 in Eqs. (4.3)–(4.5), we
may obtain, using again Eq. (4.15),

SphL ¼
nu sinU

n0u0 sinU0

� �
SphL�1

þ
2niPA

n0u0
ðsin ðIþU0Þ=2� sin ðI 0 � I Þ=2Þ

sinU0

� � ð4:19Þ

This expression, as well as Conrady’s in Eq. (4.16), may be applied to
an optical system formed by k centered surfaces along a common axis, with
each relation being appropriate, depending on the circumstances. For small
apertures PA approaches the meridional ray height y. Using the transfer
relations uþ¼ u0, Uþ¼U0, nþ¼ n0, we may obtain

SphLk ¼
n1 u1 sinU1

n0ku
0
k sinU

0
k

� �
SphL0

þ
Xk
j¼1

2niPA

n0ku
0
k

sin ðIþU0Þ=2� sin ðI 0 � I Þ=2

sinU0
k

� � ð4:20Þ

where the subscript 0 is for the object, the subscript k for the last surface, and
the subscript kþ 1 for the image’s surface. All variables without subscript’s
are for surface j. The factor in front of SphL0 is the longitudinal magnification
[see Eq. (1.66)] of the whole optical system. The difference between the second
term in Eq. (4.19) and the second term in Eq. (4.20) is that the longitudinal
magnification of the part of the optical system after the surface under
consideration has been added to Eq. (4.20) as a factor in the last term.

4.2 PRIMARY SPHERICAL ABERRATION

The primary spherical aberration is obtained if the aperture is large enough
to deviate from the paraxial approximation to produce spherical aberration,
but small enough to avoid high order terms. Thus, by using paraxial
approximations in Eq. (4.20), with y¼PA, the value of the primary
spherical aberration is then easily found to be

SphLk ¼
n1u

2
1

n0ku
2
k

� �
SphL0 þ

Xk
j¼1

yniðiþ u0Þði0 � iÞ

2n0ku
02
k

ð4:21Þ

where the factor in front of the spherical aberration of the object is as usual
the longitudinal magnification of the optical system. This expression may
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also be written as

SphLk ¼
n1 u

2
1

n0ku
02
k

�����
�����SphL0 þ

Xk
j¼1

SphLC ð4:22Þ

where the surface contribution SphLC to the final longitudinal spherical
aberration is given by

SphLC ¼
yniðiþ u0Þði0 � iÞ

2n0ku
02
k

¼
yðn=n0Þðn� n0Þðiþ u0Þi2

2n0ku
02
k

ð4:23Þ

An alternative way of writing this expression, eliminating all angles is

SphLC ¼
n y4 F2

2 n0k y
2
1

n

n0
� 1

� � 1

r
�
1

l

	 

n

n0
�
1

l

� �
1

r
�
1

l

	 
2

ð4:24Þ

where F is the effective focal length of the system to which the surface being
considered belongs.

Replacing y by S, (S2
¼ x2þ y2) due to the rotational symmetry of the

optical system, the longitudinal spherical aberration may also be written as

SphL ¼ a S
2 ð4:25Þ

where a is the longitudinal spherical aberration coefficient.
We have derived the longitudinal spherical aberration because its

expression will be frequently used when deriving the expressions for the
primary off-axis aberrations, but the transverse spherical aberration is more
useful and applied when actually calculating optical systems. Then, similarly
to the longitudinal spherical aberration, the transverse spherical aberration
may be written as

SphT ¼ b S
3 ð4:26Þ

where b is the transverse spherical aberration coefficient.
The value of the transverse spherical aberration is easily obtained from

the value of the longitudinal spherical aberration, by using the next relation
between the longitudinal and transverse aberrations (see Fig. 4.2):

u1 ¼ �
SphT0

SphL0
u0k ¼ �

SphTk

SphLk
ð4:27Þ
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which is valid not only for spherical aberration, but also for all other
primary aberrations, as we will see later.

It is interesting to comment at this point that the longitudinal spherical
aberration is always positive if the marginal focus is to the right of the
paraxial focus, independently of the traveling direction for the light. Thus, a
plane mirror in front of a lens, located between the lens and its focus, reverses
the traveling direction of the light, as well as the relative positions of the
marginal and paraxial foci. The sign of u0k is also changed. Then, we may see
that this flat mirror in front of the lens changes the sign of the longitudinal
spherical aberration, but not the sign of the transverse spherical aberration.

Using Eq. (4.27) we may write the transverse spherical aberration as

SphTk ¼
n1 u1
n0k u0k

� �
SphT0 þ

Xk
j¼1

SphTC ð4:28Þ

where the transverse spherical aberration contribution is

SphTC ¼
yðn=n0Þðn� n0Þðiþ u0Þ i2

2n0k u0k
ð4:29Þ

which is frequently also written as

SphTC ¼ � i2 ð4:30Þ

where

� ¼
yðn=n0Þðn� n0Þðiþ u0Þ

2n0k u0k
ð4:31Þ

Let us now plot this transverse spherical aberration contribution as a
function of the position l0 for the image, using an object with a variable
position on the optical axis, for a convex as well as for a concave optical
surface, with a given index of refraction (nd¼ 1.5168). The convergence
angle for the incident beam is variable, so that the refracted beam has a
constant angle of convergence equal to u0 ¼�0.3 radian. We obtain the
results in Fig. 4.4. We may see in this figure that there are three values
of l0 for which the spherical aberration becomes zero. These image
positions are: (1) at the vertex of the surface (l0 ¼ 0), (2) at the center of
curvature (l0 ¼ r), and (3) at a point on the optical axis such that
l0 ¼ r(nþ1)/n. We will examine this result with more detail later in this
chapter. These graphs allow us to have a rough estimation of the
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magnitude and sign of the transverse spherical aberration contributions of
each surface in a lens, if we know the position of the image with respect to
the center of curvature.

4.2.1 Spherical Aberration of a Thin Lens

The spherical aberration for the marginal ray of a lens, either thick or thin,
may be computed from Eq. (4.24), by adding the contributions for the two
surfaces. Thus, we may obtain

SphT ¼
ðn� 1Þl02
2 n2 y2

1

r1
�
nþ 1

l1

	 

1

r1
�

1

l1

	 
2

y4
1

"

�
1

r2
�
nþ 1

l02

	 

1

r2
�

1

l02

	 
2

y42

#
ð4:32Þ

If we particularize for the case of a thin lens we may obtain

SphT ¼
ðn� 1Þ	l02 y

3

2n

� ½n2 	� c1 þ ðnþ 1Þ v1�½n	� 2ðc1 � v1Þ�
�

þ nðc1 � v1 Þ
2
�

ð4:33Þ

Figure 4.4 Transverse spherical aberration contribution at a spherical surface.
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where

v1 ¼
1

l1
; c1 ¼

1

r1
; c2 ¼

1

r2
; 	 ¼ c1 � c2 ð4:34Þ

We may see that the magnitude of the spherical aberration depends on the
lens shape and also on the object and image positions. The following
expression for the spherical aberration of thin lenses was computed by
Conrady (1957) and many other authors, and may be found from the last
expression and with the help of Eq. (2.13) as

SphT ¼ �l0k y
3 G1 	

3 �G2 	
2 c1 þG3 	

2 v1 þG4	 c
2
1

�
�G5	 c1 v1 þG6 	 v

2
1

�
ð4:35Þ

where l0k ¼ f if the object is at infinity or l0k ¼ [	(n� 1)þ v1]
�1 if the object is

at a finite distance, and the functions G are

G1 ¼
n2ðn� 1Þ

2
G2 ¼

ð2nþ 1Þðn� 1Þ

2
G3 ¼

ð3nþ 1Þðn� 1Þ

2

G4 ¼
ðnþ 2Þðn� 1Þ

2n
G5 ¼

2ðn2 �1Þ

n
G6 ¼

ð3nþ 2Þðn� 1Þ

2n
ð4:36Þ

We see that the transverse spherical aberration increases with the cube of the
aperture.

We have mentioned before that for a lens with a fixed focal length the
magnitude of the spherical aberration depends on the lens shape and also on
the object position. Given an object to lens distance, the lens shape for
minimum spherical aberration may be obtained. Conversely, given a lens
shape, the object position to minimize the spherical aberration may also be
calculated.

The value of the curvature c1 for a thin lens with the minimum value of
the spherical aberration, as shown by Kingslake (1978), is given by

c1 ¼
nðnþ 1=2Þ	þ 2ðnþ 1Þv

nþ 2

¼
G2 	þ G5 v

2G4
ð4:37Þ

where v¼ 1/l is the inverse of the distance from the object to the lens. Thus,
for the special case of an object at infinity:

c1 ¼
nðnþ 1=2Þ	

nþ 2
ð4:38Þ
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The values of the transverse spherical aberration for a thin lens
with a constant 100mm focal length f is a function of the curvature c1 of the
front face. Differentiating Eq. (4.35) with respect to c1, we find that there is
a minimum value of the magnitude of this aberration for a certain value of
the front curvature c1, whose value depends on the object position.

The individual surface contributions when the object is at infinity
(collimated incident light beam) as a function of the curvature c1 of the front
surface is shown in Fig. 4.5. We notice that the minimum value of the
spherical aberration is obtained when the contributions SphTC of each
surface are almost equal. The optimum lens bending to obtain minimum
spherical aberration is nearly when the angle of incidence for the incident
ray is equal to the angle of refraction for the final refracted ray, but not
exactly equal.

The transverse spherical aberration curve, as we see, does not pass
through zero for any value of c1, even if the object distance is changed, as
shown in Fig. 4.6. However, if the thin lens is formed by two thin lenses in
contact, one positive and one negative, made with glasses of different indices
of refraction, the curve can be made to cross the c1 axis. We may see in this
figure that the magnitude of the minimum transverse spherical aberration
decreases as the incident beam becomes more convergent. We also notice
that the optimum lens bending for minimum transverse spherical aberration
is a function of the object position.

It is important to notice that the value of the spherical aberration of a
single lens whose bending has been optimized for minimum spherical aberra-
tion also depends on the refractive index. A higher refractive index is better.

Figure 4.5 Contribution of each face of a lens to the total transverse spherical
aberration of a thin lens.
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Figure 4.7 shows the transverse spherical aberration for a lens with a
focal length equal to 100mm and a diameter of 20mm, made out of Schott’s
BK7 glass (nd¼ 1.5168). This lens is made as a doublet, with two thin lenses in
contact, with focal lengths equal to 38mm and�61mm. In Fig. 4.7(a) the two
lenses are of BK7 glass. In Fig. 4.7(b) the positive lens is of BK7 glass, but the
negative component is made out of Schott’s F2 glass (nd¼ 1.6200). The
spherical aberration contributions of each component (1 and 2), as well as
that of the complete doublet, are shown here. Only when the two glasses are

Figure 4.6 Transverse spherical aberration of a thin lens versus the front curvature
for three different object positions.

Figure 4.7 Contribution of each face and total transverse spherical aberration of a
single thin lens and a thin doublet.
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different are there two solutions for zero spherical aberration. By selecting
the right glass combination the paraboloidal graph may be made to just
touch the c1 axis. Then, only one solution exists for zero spherical aberration.

4.2.2 A System of Thin Lenses

When a single lens with its spherical aberration minimized is split into two
elements so that the combination has the same power as the original lens,
the spherical aberration is greatly reduced. To illustrate this fact, following
Fischer and Mason (1987), let us consider a single lens with diameter D and
focal length F which has been optimized for minimum spherical aberration.
To split this lens into two we follow the next three steps:

1. We scale the lens by a factor of two, obtaining a lens with twice
the diameter, twice the focal length, and twice the spherical
aberration.

2. Now we reduce the diameter to the original value. The focal length
does not change, but the transverse spherical aberration is reduced
by a factor of 16, since the transverse spherical aberration grows
with the fourth power of the aperture.

3. Finally, two identical lenses are placed in contact with each other.
The combination duplicates the spherical aberration and reduces
the focal length by half to the original value. The spherical aberra-
tion is now only one-eighth of the aberration in the initial lens.

Even further improvement can be achieved if the second lens is bent to
its optimum shape with convergent light. The refractive index is a very
important variable, since the spherical aberration decreases when the
refractive index increases. Figure 4.8 shows the value of the marginal
spherical aberration as a function of the refractive index for several thin lens
systems. All systems have the same aperture (D¼ 0.333) and focal length
(F¼ 1). We can see that with three lenses and a high index of refraction the
spherical aberration becomes negative.

4.2.3 Spherical Aberration for a Plane-Parallel Plate in
Converging Light

A plane-parallel plate may be shown to displace the image by an amount
�L, depicted in Fig. 4.9, given by

�L ¼
t

n
n�

cosU

cosU0

	 

ð4:39Þ
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for paraxial rays we have

�l ¼
t

n
ðn� 1Þ ð4:40Þ

Hence, subtracting Eq. (4.39) from Eq. (4.40), the longitudinal spherical
aberration SphL is equal to

SphL ¼
t

n
1�

cosU

cosU0

	 

ð4:41Þ

with a paraxial approximation given by

SphL ¼
t u2

2 n
ð4:42Þ

Figure 4.8 Spherical aberration in a single lens and in systems of two and three

lenses.

Figure 4.9 Spherical aberration of a thick plane-parallel glass plate.
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This expression is useful for calculating the spherical aberration
introduced by the cover glass slip in microscopes. Although this cover glass
is very thin, the angle of divergence is so large that a noticeable amount of
spherical aberration is present.

4.3 ASPHERICAL SURFACES

Aspherical surfaces can have rotational symmetry or not, but the most
common are of the first type. As described in more detail in Appendix 2,
they can be mathematically represented by

Z ¼
c S2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðKþ 1Þ c2 S2

p þ A1 S
4 þA2 S

6 þA3 S
8 þA4 S

10 ð4:43Þ

Where the first term represents a conic surface with rotational
symmetry defined by its conic constant K, which is a function of the
eccentricity of the conic surface. Alternatively this expression can be
expanded as a spherical surface plus some aspheric deformation terms that
include the effect of the conic shape. Then, we may find that

Z ¼
c S2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2 S2

p þ B1 S
4 þB2 S

6 þB3 S
8 þB4 S

10 ð4:44Þ

4.4 SPHERICAL ABERRATION OF
ASPHERICAL SURFACES

An aspherical surface has an additional sagitta term given by the four
aspheric terms in Eq. (4.44). As a first approximation, we may take only
the first term. This term introduces a slope term in the surface, as shown in
Fig. 4.10, given by

dZ

dS
¼ 4B1 S

3 ¼ 4A1 þ
Kc3

2

	 

S
3 ð4:45Þ

This slope modification in the optical surface changes the slope of the
refracted meridional ray by an amount:

dU0 ¼
n� n0

n0

	 

dZ

dS
ð4:46Þ
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then, this angle change introduces a transverse spherical aberration Sphasph
term given by

dU0 ¼
SphTasph

l0
ð4:47Þ

thus, obtaining

SphTasph ¼
1

2

n� n0

n0

	 

ð8A1 þKc3Þl0 S

3 ð4:48Þ

Thus, this aberration is propagated to the final image in the optical
system with a factor given by the lateral magnification of the part of
the optical system after the aspherical optical surface. Hence, by using
Eq. (1.47) and the expression for the lateral magnification, the contribution
of this surface to the final aberration is

SphTCasph ¼ �ð8A1 þKc3Þ
n� n0

2

	 

S 4

n0k u0k

	 

ð4:49Þ

4.5 SURFACES WITHOUT SPHERICAL ABERRATION

A single optical surface may be completely free of spherical aberration
under certain circumstances. These surfaces will be described in the
following subsections.

4.5.1 Refractive Spherical Surfaces

The conditions for a single refractive optical surface to be free of spherical
aberration may be found in several ways. From Eq. (4.12) we see that this

Figure 4.10 Spherical aberration of an aspheric surface.
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aberration is absent if Q¼Q0. This is possible if (1) both Q and Q0 are equal
to zero, (2) when the object and the image coincide with the vertex of the
surface, as in Fig. 4.11(a and d), (3) when the ray enters perpendicularly to
the surface, with the object and the image at the center of curvature, as in
Fig. 4.11(b and e), and (4) when the object and the image have certain
positions such that the condition is satisfied, as in Fig. 4.11(c and f ).

From Eq. (4.16) we may see the following conditions for zero spherical
aberration: (1) L0 ¼ 0, (2) L¼ r or equivalently I¼ I 0, and (3) I 0 ¼�U. These
are the same three conditions derived from Eq. (4.12). The first two cases are
trivial and obvious, but the third case is the most interesting.

Applying the condition I¼�U0 from Eq. (4.20) to Snell’s law, we
find that

n0

n
sin I 0 ¼ � sinU0 ð4:50Þ

and using now Eq. (1.20) we find that

L0 � r ¼
n

n0
r ð4:51Þ

and

L� r ¼
n0

n
r ð4:52Þ

Figure 4.11 Three cases free of spherical aberration for a convex and a concave
surface.
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These are the positions for the image and the object, respectively, in the
configuration discovered by Abbe (1840–1905), director of the observatory
at Jena and director of research of Zeiss. The object and image positions are
called aplanatic Abbe points. There are many practical applications for
these configurations free of spherical aberration.

4.5.2 Reflective Conic Surfaces

Reflecting conic surfaces with symmetry of revolution are free of spherical
aberration if the object is placed at the proper position, depending on its
conic constant value, as shown in Section A2.1.1. A paraboloid is free of
spherical aberration if the object is at infinity, as shown in Fig. 4.12.

Ellipsoids and hyperboloids are also free of spherical aberration when
the object, real or virtual, is placed at one of the foci. These are illustrated in
Fig. 4.13, and may produce the four combinations of real and virtual objects
and images.

4.5.3 Descartes’ Ovoid

Rene Descartes found that refractive conics of revolution may also be free of
spherical aberration. Such surfaces receive the name of cartesian ovoids.
These ovoids are illustrated in Fig. 4.14, where n1 is the internal index of
refraction and n2 is the external index of refraction. Let us consider two
straight lines l1 and l2 from each focus to the ellipsoid surface, and one line l3
traced from that point, parallel to the axis. A light ray may travel along l1
and l2 for any length of l3 only if Fermat’s law is satisfied as follows:

n1 l1 þ n2 l3 ¼ constant ð4:53Þ

Figure 4.12 (a) Concave and (b) convex parabolic mirrors free of spherical
aberration.
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On the other hand, from the properties of the ellipse, if the vertical straight
line to the right is the directrix:

l2 ¼ el3 ð4:54Þ

where e is the eccentricity. Thus, we may find that

n1 l1 þ n2
l2
e
¼ constant ð4:55Þ

Figure 4.13 (a) Reflective hyperboloid and (b) reflective ellipsoid free of spherical
aberration.

Figure 4.14 Descartes’ ovoid.
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Another ellipse property is

l1 þ l2 ¼ constant ð4:56Þ

but this is possible only if

n1 ¼
n2
e

ð4:57Þ

In conclusion, if the ratio of the internal and external refractive indices
is chosen equal to a given ellipse eccentricity, there is no spherical
aberration. Of course, we may also think that given the refractive indices,
the eccentricity may be calculated. Figure 4.15 shows four possible
configurations of the cartesian ovoid. In the two last cases the ovoid
becomes a hyperboloid with rotational symmetry.

4.6 ABERRATION POLYNOMIAL FOR
SPHERICAL ABERRATION

We found in Section 4.2 expressions for third order or primary spherical
aberration. These results are valid for relatively small apertures, so that high
order terms become negligible. If this is not the case, we have to consider

Figure 4.15 Ovoids and hyperboloids free of spherical aberration: (a) solid ovoid;
(b) hollow ovoid; (c) convex hyperboloid; (d) concave hyperboloid.
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terms with higher powers of the ray height. We will use the normalized
distance:

� ¼
S

Smax
ð4:58Þ

to represent the ray height at the exit pupil, where S2
¼X2

þY2. Thus, we
may write the exact (not primary) longitudinal spherical aberration LA0 as

LA0ð�Þ ¼ a0 þ a2�
2 þ a4�

4 þ a6�
6 þ 	 	 	

¼
X1
i¼0

a2i�
2i ð4:59Þ

where the first constant term a0 represents the longitudinal displacement of
the reference paraxial focus; the second term a2�

2 is the third order or
primary longitudinal spherical aberration SphL; the third term a4�

4 is the
fifth order or secondary spherical aberration; and so on, for the rest of
the terms.

It is more convenient to express the spherical aberration by the
spherical transverse aberration TA0 instead of the longitudinal aberration
LA0, related to each other by Eq. (4.27):

u0k ¼ �
TA0ð�Þ

LA0ð�Þ
¼ �

�

rW
ð4:60Þ

where rW is the normalized radius of curvature of the reference spherical
wavefront with unit semidiameter. In general, we may write this radius of
curvature as

rW ¼
l0k � l0k
Smax

ð4:61Þ

thus, we may write

TA0ð�Þ ¼ b1�þ b3�
3 þ b5�

5 þ b7�
7 þ 	 	 	

¼
X1
i¼0

b2iþ1�
2iþ1 ð4:62Þ
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where b1� is the transverse aberration for the paraxial rays at the
observation plane, the second term b3�

3 is the primary transverse spherical
aberration SphT, and

b2iþ1 ¼
a2i
rW

ð4:63Þ

Another useful way to write this aberration polynomial is by means of the
wavefront aberration W(�), defined as

Wð�Þ ¼ c2�
2 þ c4�

4 þ c6�
6 þ c8�

8 þ 	 	 	

¼
X1
i¼0

c2iþ2 �
2iþ2 ð4:64Þ

where the coefficients ci may be easily found. These coefficients should not
be mistaken for the curvature values, used in other parts of this book.

The focus displacement �f of the observation plane with respect to the
paraxial focus (positive if moved away from the lens) is given by

�f ¼ a0 ¼ b1rW ¼ �2 c2 r
2
W ð4:65Þ

4.6.1 Caustic

In the presence of spherical aberration the light rays follow the path
illustrated in Fig. 4.16. The envelope of these rays is called the caustic
(Cornejo and Malacara, 1978). We may see several interesting foci in this
diagram: (1) the paraxial focus, (2) the position for zero wavefront deviation
at the edge of the exit pupil, (3) the caustic waist position, (4) the marginal
focus, and (5) the end of the caustic. The diagrams in Fig. 4.17 illustrate the
transverse aberration curves and the wavefront deformations for these
positions.

Assuming only the presence of primary spherical aberration and using
Eqs. (4.63) and (4.65) in Eq. (4.59), the longitudinal spherical aberration
measured at a plane with a focus shift with respect to the paraxial focus is
given by

LA0ð�Þ ¼b1rW þ b3rW�
2 ¼ b1rW þ SphLð�Þ ð4:66Þ
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The transverse spherical aberration with the same focus shift is given by

TA0ð�Þ ¼ b1 �þ b3 �
3 ¼ b1 �þ SphTð�Þ ð4:67Þ

and the wavefront deviation measured at the exit pupil, with respect to a
reference sphere with radius of curvature rW, is

Wð�Þ ¼ �
b1 �

2

2rW
�
b3 �

4

4rW
ð4:68Þ

The paraxial focus is at the plane where there is no focus shift, i.e.,
when

b1 ¼ 0 ð4:69Þ

hence, from Eq. (4.66), the distance L1 from the paraxial focus to the
marginal focus is

L1 ¼ SphLð�maxÞ ¼ � b3 rW �
2
max ð4:70Þ

which is by definition the marginal spherical aberration.
From Eq. 4.68, the axial position of the center of curvature of the

reference sphere to obtain zero wavefront deviation at the edge of the exit

Figure 4.16 Primary spherical aberration caustic.
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pupil is obtained when

Wð�maxÞ ¼ b1 þ
b3 �

2
max

2
¼ 0 ð4:71Þ

thus

b1 ¼
b3 �

2
max

2
ð4:72Þ

hence, from Eq. 4.64, the distance L2 from the paraxial focus to the position
for zero wavefront deviation at the edge is

L2 ¼ �LA0ð�maxÞ ¼
b3
2
rW �

2
max ¼

L1

2
ð4:73Þ

The caustic waist or best focus position is obtained when the maximum
zonal transverse spherical aberration is equal in magnitude but opposite in
the sign to the marginal transverse spherical aberration. Thus, the value of
�¼ �z for the maximum zonal aberration is found with the condition

dTA0ð�Þ

d�
¼ b1 þ3 b3 �

2
z ¼ 0 ð4:74Þ

Figure 4.17 Wavefront deformations and transverse spherical aberration for
several caustic planes.
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Then, to find the caustic waist we write

b1 �z þ b3 �
3
z ¼ �½b1 �max þ b3 �

3
max� ð4:75Þ

but substituting here the value of �z, given by Eq. (4.73), we have

b1 �max þ b3 �
3
max ¼ �

2 b1
3

�
b1
3 b3

� �1=2
ð4:76Þ

thus, obtaining for the distance from the paraxial focus to the caustic waist:

L3 ¼ �
3b3
4

rW�
2
max ¼

3L1

4
ð4:77Þ

Finally, to find the end of the caustic we impose the condition that the
slope of the TA(�) as a function of � plot is zero at the margin of the exit
pupil. Thus, we write

dTA0 ð�Þ

d�

� �
�¼ �max

¼ b1 þ3 b3 �
2
max ¼ 0 ð4:78Þ

thus

b1 ¼ �3b3 �
2
max ð4:79Þ

Hence, using again Eq. (4.66), the distance L4 from the paraxial focus to the
end of the caustic is

L4 ¼ �3b3 rW �
2
max ¼ 3L1 ð4:80Þ

Figure 4.17 illustrates the wavefront deformation and the transverse
aberrations for several focus positions.

4.6.2 Aberration Balancing

It has been shown in the last section how the image size may be optimized by
introducing a focus shift that places the image plane at the waist of the
caustic. This is all we can do if the lens has only primary spherical
aberration. When designing a lens, however, high-order aberrations may be
unavoidable. Then, it may be necessary to introduce some primary
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aberration in order to compensate (at least partially) the high-order
aberrations. Let us consider an example of how third- and fifth-order
spherical aberrations may be combined to improve the image. Let us assume
that fifth-order aberration is introduced, so that the longitudinal and
transverse spherical aberrations are zero for the marginal ray. Then, we may
write

LA0ð�maxÞ ¼ a2 �
2
max þ a4 �

4
max ¼ 0 ð4:81Þ

or

TA0ð�maxÞ ¼ b3 �
3
max þ b5 �

5
max ¼ 0 ð4:82Þ

With this condition, as depicted in Fig. 4.18, it may be shown that the
maximum values of these longitudinal and transverse aberrations, respec-
tively, occur for the following values of �:

�maxLA ¼
�maxffiffiffi

2
p ¼ 0:707 �max ð4:83Þ

and

�maxTA ¼

ffiffiffi
3

5

r
�max ¼ 0:775 �max ð4:84Þ

Figure 4.18 Transverse and longitudinal spherical aberration maxima when these
aberrations are zero at the edge. The wavefront shape is also shown.
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4.7 HIGH-ORDER SPHERICAL ABERRATION

The high-order spherical aberration term may appear for two reasons:

1. Because it is produced by the refractive surface at the same time as
the primary aberrations. This high-order aberration may be
computed by subtracting the primary aberration in Eq. (4.21)
from the exact aberration in Eq. (4.20).

2. Because any traveling wavefront is continuously changing its
shape along its trajectory. If we neglect diffraction effects, only the
spherical or plane wavefronts remain spherical or plane,
respectively, as they travel in space. A wavefront with only
primary spherical aberration develops high-order spherical aber-
ration as it travels.

Let us now consider in some detail this mechanism for the appearance
of high-order spherical aberration. A wavefront with only primary spherical
aberration is depicted in Fig. 4.19. It may be shown that if we define


 ¼
z

rW
ð4:85Þ

the ray heights y1 and y2 on the planes P1 and P2, respectively, are related by

y2 ¼ y1ð1� 
Þ þ TA
 ð4:86Þ

Figure 4.19 Wavefront shape change along traveling path.
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where TA is the transverse aberration. If this transverse aberration is due
only to primary spherical aberration at the plane P1, we may write the
transverse aberration as

TA ¼ a3 y
3
1 ð4:87Þ

Then, from Eqs. (4.85) and (4.86) we may approximately obtain

y1 ¼
y2

ð1� 
Þ
�


 a3

ð1� 
 Þ3
y3
2 ð4:88Þ

hence, it can be proved that the transverse aberration as a function of the
ray height on the plane P2 is approximately given by

TA ¼
a3

ð1� 
 Þ3
y3
2 �

3
 a23
ð1� 
 Þ5

y5
2 ð4:89Þ

The constant 1/(1� 
)3 in the first term is just a scaling factor due to
the smaller diameter of the wavefront. The second term is new and
represents the fifth-order spherical aberration due to the propagation of the
wavefront from plane P1 to plane P2.

4.8 SPHERICAL ABERRATION CORRECTION WITH
GRADIENT INDEX

We have shown in this chapter that if a single lens is made with
homogeneous glass the spherical aberration cannot be corrected. As
shown in Fig. 4.6, even with the optimum shape, a residual aberration
remains. If the object is at infinity, the optimum shape is nearly a plano
convex lens with its flat surface on the back. From Eq. (4.35) the residual
spherical aberration is given by

SphT ¼ �
y3

f 2ðn� 1 Þ3
G1 �G2 þG4ð Þ

¼
y3

2 f 2ðn� 1 Þ2
n2 �2nþ

2

n

	 
 ð4:90Þ

whose maximum value, at the edge of a lens with diameter D is

SphTmax ¼
D3

16 f 2ðn� 1 Þ2
n2 �2nþ

2

n

	 

ð4:91Þ
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This aberration can be corrected with only spherical surfaces using an
axial gradient index lens as described by Moore (1977). The solution is to
introduce the axial gradient with the refractive index along the optical axis
as represented by

nðzÞ ¼ N00 þN01 zþN02 z
2 þ 	 	 	 ð4:92Þ

where N00 is the refractive index at the vertex A of the first lens surface (see
Fig. 4.20). In this lens the paraxial focal length is larger than the marginal
focal length. So, to correct the spherical aberration the refractive index
has to be higher at the center of the lens than at the edge. Figure 4.20
shows a lens with an axial gradient. A good correction is obtained with a
linear approximation of expression (4.90). The gradient index on the
convex surface has a depth equal to the sagitta z0 of this surface. Thus, using
Eq. (4.92) we have

nðz0Þ ¼ n ¼ N00 þN01 z0 ð4:93Þ

With this gradient the refractive index for a ray passing through the
edge of the lens is a constant equal to n while for the ray along the optical
axis it decreases linearly from the point A to the point B, until it reaches the
value n. The net effect is that the optical path for the paraxial rays becomes
larger with the presence of the gradient index, but the marginal rays are not
affected. The optical path difference OPD introduced by the gradient index
can be shown to be

OPDðyÞ ¼ �
N1 z

2
¼ �

N1 y
4

8 f 2ðn� 1Þ
ð4:94Þ

Figure 4.20 Axial gradient lens free of spherical aberration.
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where z is the sagitta at the height y on the lens. Thus, the spherical
aberration SphT is

SphT ¼ �f
dOPD

dy
¼

N1 y
3

2fðn� 1 Þ2
ð4:95Þ

whose maximum value is, at the edge of a lens with diameter D,

SphTmax ¼
N1 D

3

16fðn� 1 Þ2
ð4:96Þ

With the proper gradient index magnitude the spherical aberration can be
corrected. Then, equating expressions (4.91) and (4.96) and assuming a
value n(z0)¼ 1.5, the change �n from the point B to the point C along the
optical axis can be shown to be given by

�n ¼ N01 z0 ¼
n2 �2nþ 2=n
� �

8ðn� 1Þ

1

ð f=D Þ
2
¼

0:15

ð f=D Þ
2

ð4:97Þ

where ( f/D) is the f number of the lens. Thus, the necessary �n for an f/4
lens is only 0.0094 while for an f/1 lens it is 0.15.
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5
Monochromatic Off-Axis
Aberrations

5.1 OBLIQUE RAYS

Spherical aberration affects the image over the whole field of view of a lens,
including the optical axis and its vicinity. There are some other image
defects or aberrations that affect only the image points off the optical axis.
The farther this point is from the optical axis, the larger the aberration is. In
this chapter we will describe these aberrations, first studied during the 1850s
by L. von Seidel. For this reason the primary or third-order aberrations are
known as Seidel aberrations.

The number of important contributors to this field is enormous. It
would be impossible here just to mention them. Probably the most complete
study of the primary optical aberrations is that of A. E. Conrady, during the
1930s. The reader of this book is strongly advised to examine the classical
references on this subject by Conrady (1957, 1960) and Kingslake (1965,
1978). The more advanced students are referred to the important work of
Buchdahl (1948, 1954, 1956, 1958a,b,c, 1959, 1960a,b,c, 1961, 1962a,b, 1965,
1970) on the high-order aberration theory. Important work on this subject
has also been performed by many other authors, like Cruickshank and Hills
(1960), Focke (1965), Herzberger and Marchand (1952, 1954), Hopkins and
Hanau (1962), Hopkins et al. (1955), and many others, as we may see in the
list of references at the end of this chapter.

In this chapter we will study the off-axis aberrations of centered
systems. These are systems that have a common optical axis, where all
centers of curvature of the optical surfaces lie on this optical axis. However,
there are some optical systems where the optical surfaces may be either tilted
or laterally shifted with respect to the optical axis, producing some
aberrations, as described by Epstein (1949) and Ruben (1964).

The study of this chapter should be complemented with an
examination of Appendix 1 at the end of the book, where most of the
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notation used in this chapter is defined. There are four off-axis
monochromatic aberrations, namely, Petzval curvature, coma, astigmatism,
and distortion. These aberrations will be studied in this chapter in some
detail. To begin this study, we must first introduce some basic concepts.

Oblique rays, also frequently called skew rays are those emitted by an
off-axis object point not contained in the meridional plane. A particular
important case of oblique rays are the sagittal rays. To obtain some under-
standing of how an oblique sagittal ray propagates let us consider Fig. 5.1.

The principal ray passes through the center of the entrance pupil with
semidiameter y and is then refracted at the optical surface. By definition, the
auxiliary axis AC passes through the off-axis object and the center of
curvature of the surface. Since the optical surface is a sphere, the system has
rotational symmetry around this auxiliary axis. If a meridional paraxial ray
is traced from the object, almost parallel to the auxiliary axis, its image is
also on the auxiliary optical axis, at the point P, as shown in Fig. 5.2. The
exit pupil is not in contact with the surface, but on its left side, so that the
principal ray A0U enters the surface at the point A0. Tangential rays, T1T

through T1, and T2T through T2, on the entrance pupil, cross the auxiliary
optical axis, but not at the point P, but B1 and B2 due to the spherical
aberration. The ray from T1 has more spherical aberration than the ray
from T2, so they cross each other at the point T. This is the tangential focus.

The two sagittal rays, S1S through S1, and S2S through S2, on the
entrance pupil, are at equal distances AS1 and AS2 from the auxiliary optical
axis so, after refraction, they cross each other at a point S on the auxiliary
optical axis.

In Figs. 5.1 and 5.2 we may identify the following reference points:

W: Paraxial axial image (gaussian)

Figure 5.1 Tangential and sagittal rays refracted on a spherical surface.
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M: Point on auxiliary axis above point W (gaussian image if the
field is flat)

P: Petzval focus

P0: Point on intersection of principal ray and Petzval surface

N: Point on principal ray above point M

S: Marginal sagittal image, on intersection of marginal sagittal
rays with auxiliary axis

R: Intersection of principal ray with auxiliary axis

Q: Point on principal ray, below point S

B1: Intersection of upper tangential ray with auxiliary axis

B2: Intersection of lower tangential ray with auxiliary axis

T: Marginal tangential focus at intersection of marginal tangential
rays

U: Point on principal ray below point T

V: Vertex of optical surface

The pointW is the paraxial image of an on-axis object (not shown in the
figure). The Petzval focus P is defined as the focus for the paraxial rays DP,
close to the auxiliary optical axis, originating from an off-axis point, in the
same plane as the on-axis object producing image W. Let us assume that the
point A0, where the light beam coming from the off-axis object point enters
the surface, shifts down over the optical surface to the pointA on the auxiliary
axis. Then, the sagittal and the tangential foci move until they fuse together in
one point at the Petzval focus. In other words, the astigmatism disappears.

Figure 5.2 Some rays and points to illustrate the formation of the primary
aberrations.
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For the principal ray, the angle  in Fig. 5.2 may be related to the
angle i 0, by means of Eq. (1.39) and taking u0 equal to  , by

�
 

r
¼

i 0

l0 � r
ð5:1Þ

and for the meridional ray, the angle u0 is related to the angle i0, using the
same expression (1.39), by

�
u0

r
¼

i 0

l0 � r
ð5:2Þ

Thus, obtaining

 ¼
i 0

i0

	 

u0 ¼

i

i

	 

u0 ð5:3Þ

where the last term is obtained using Snell’s law. On the other hand, it is
easy to see that in a first approximation we may write

 ¼ �
AA0

l0
¼

AA0

y
u0 ð5:4Þ

thus

AA0 ¼  
y

u0
¼

i

i

	 

y ð5:5Þ

This is a useful relation that we will use later.
All of the rays we have considered in Fig. 5.2 originate at an off-axis

point object and all of them cross the auxiliary optical axis at some point, as
shown in Fig. 5.3. The location of these intersections may be calculated with
the help of Eq. (4.25) for the spherical aberration, with reference to point P.
Thus, for each of the rays in Figs. 5.1 and 5.2 we may write:

1. For the principal ray:

PR ¼ aðAA0 Þ
2

ð5:6Þ

but using Eq. (5.5):

PR ¼ a y2
i

i

	 
2

¼ SphL
i

i

	 
2

ð5:7Þ
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2. For the marginal sagittal rays passing through S1 and S2:

PS ¼ aðAS2 Þ
2
¼ aðAA0 Þ

2
þaðA0 S2 Þ

2
¼ PRþ RS ð5:8Þ

thus, we may see that

RS ¼ a y2 ¼ SphL ð5:9Þ

Since RS decreases with the value of y, we may see that for the paraxial
sagittal rays passing through S0

1 and S0
2 the value of RS approaches zero.

Thus, the paraxial sagittal focus coincides with the point R.
3. For the upper marginal tangential ray, passing through T1:

PB1 ¼ aðAT1 Þ
2
¼ aðAA0 þA0 T1 Þ

2

¼ aðAA0 Þ
2
þaðA0 T1 Þ

2
þ2aðAA0Þy

¼ PRþ RSþ SB1

ð5:10Þ

4. For the lower marginal tangential ray, passing through T2:

PB2 ¼ aðAT2 Þ
2
¼ aðAA0 �A0 T2 Þ

2

¼ aðAA0 Þ
2
þaðA0 T2 Þ

2
�2aðAA0Þy

¼ PRþ RS� SB2

ð5:11Þ

Figure 5.3 Upper and side view of some rays refracted on a spherical surface.
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thus,

SB1 ¼ SB2 ¼ 2aðAA0Þy ð5:12Þ

and with Eq. (5.9):

B1 B2 ¼ 4aðAA0Þy ¼
4SphLðAA0Þ

y
ð5:13Þ

This result shows that the length of the segment B1B2 is directly
proportional to y, indicating that the position of the tangential image T in a
first approximation does not change with the value of y. In other words,
the marginal tangential focus and the paraxial tangential focus, formed
by the rays through T 0

1 and T 0
2 are at the same point T. Now, using Eq. (5.5)

we write

B1 B2 ¼ 4SphL
i

i

	 

ð5:14Þ

With this background, we may now define the primary aberrations as
follows:

Primary spherical aberration¼SphL¼RS—From Eq. (5.9) this
distance is equal to the on-axis spherical aberration for a marginal ray
with height y.

Sagittal coma¼ComaS¼SQ—This is the transverse distance from the
marginal sagittal image to the principal ray. This distance is zero for
paraxial rays. Then, this aberration is defined only for marginal rays.

Tangential coma¼ComaT¼TU—This is the transverse distance from
the marginal tangential image to the principal ray.

Sagittal longitudinal astigmatism¼AstLS¼P0R—If the pupil semi-
diameter y is reduced, the sagittal focus S approaches the point R, as shown
by Eq. (5.9). Thus, the paraxial sagittal focus is the point R. The sagittal
longitudinal astigmatism is defined as the longitudinal distance from the
paraxial sagittal focus to the Petzval surface.

Tangential longitudinal astigmatism¼AstLT¼P0T—From Eq. (5.13)
we see that the distance B1B2 increases linearly with y. Thus, we may see that
in a first approximation the marginal tangential focus T is at the same
position as the paraxial tangential focus. Then, the tangential longitudinal
astigmatism is defined as the longitudinal distance from the paraxial
tangential focus T to the Petzval surface.
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Petzval curvature¼Ptz¼MP—This is the longitudinal distance from
the Petzval focus to the ideal image point M of the off-axis object located in
the same plane as the on-axis object producing image W.

Distortion¼Dist¼MN—This is the transverse distance from the ideal
off-axis image M to the principal ray.

We see that all primary aberrations arise due to the existence of the
spherical aberration. With these results we are ready to study these
aberrations, first described by Seidel.

5.2 PETZVAL CURVATURE

To find the Petzval curvature we have to use an optical configuration
without astigmatism. We have seen before that this condition is fulfilled if
the light beam from the object is narrow and travels along the auxiliary axis.
Let us consider a spherical refracting surface as in Fig. 5.4 where we have a
spherical refractive surface with an auxiliary axis. With a very small
aperture, so that all the other primary aberrations may be neglected, the
image of point W on the optical axis is at W0. Circles C1 and C2 are
concentric with the optical surface. The incident beam is rotated about the
center of curvature to move the beam off-axis and preserve the spherical
symmetry. Then, due to this spherical symmetry about C, the image of point
A in circle C1 is A

0 in circle C2. The image of B is at point P. The distances
AB and A0P are related by the longitudinal magnification of the system, as

A0P ¼ mAB ð5:15Þ

Figure 5.4 Petzval theorem demonstration.
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Assuming now that the field is small (angle � small) we approximate
the sagitta AB by

AB ¼
h2

2ðl� rÞ
ð5:16Þ

and similarly

A0M ¼
h02

2ðl0 � rÞ
ð5:17Þ

From Fig. 5.4, the distance MP is

MP ¼ A0P� A0M ð5:18Þ

thus, using Eqs. (5.15) – (5.17) we obtain

MP ¼
h2

2ðl� rÞ
m�

h02

2ðl0 � rÞ
ð5:19Þ

but since the longitudinal magnification is given by

m ¼
n0 h02

n h2
ð5:20Þ

we may write

MP ¼
n0 h02

2nðl� rÞ
�

h02

2ðl0 � rÞ
ð5:21Þ

On the other hand, from Eqs. (1.38) – (1.41) we may find that

n0 � n

r
¼

n

l0 � r
�

n0

l� r
ð5:22Þ

obtaining

Ptz ¼ MP ¼ �
h02

2

n0 � n

nr

	 

ð5:23Þ
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This result gives the Petzval curvature, i.e., the field curvature in the
absence of astigmatism, for only one optical surface. For a centered system
of k surfaces we have to add the contributions of all surfaces. As when
studying the spherical aberration, the contribution of surface j to the final
longitudinal displacement of the image is the displacement MP multiplied
by the longitudinal magnification mj of the part of the optical system after
the surface being considered. This longitudinal magnification is

m ¼
n0kh

02
k

n0h02
ð5:24Þ

Thus, the Petzval field contribution is given by

PtzC ¼ mMP ð5:25Þ

hence

PtzC ¼ �
h02k n

0
k

2

n0 � n

nn0r

	 

ð5:26Þ

This is the sagitta of the focal surface. Then, the radius of curvature is

1

rptz
¼ �n0k

Xk
j¼1

n0 � n

nn0r

	 

ð5:27Þ

This is the Petzval theorem and the focal surface that it defines is called
the Petzval surface.

For the particular case of a thin lens, using Eq. (2.8), we may find that

1

rptz
¼ �

1

nf
¼ �

P

n
ð5:28Þ

and for a system of thin lenses, with any separation between them:

1

rptz
¼ �

Xk
i¼1

1

nf
¼ �

Xk
i¼1

Pi

ni
ð5:29Þ

Then, in a third-order approximation, the Petzval surface is spherical
and has a curvature that is directly proportional to the sum of the powers of
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the thin lenses forming the system, divided by the refractive index on the
glass. If a flat surface is used to examine the image with the on-axis image
being focused, the off-axis images will be defocused, with a degree of
defocusing (image size) growing with the square of the image height. It is
interesting to notice that the Petzval curvature does not depend on the
position of the object along the optical axis. In other words, the Petzval
curvature is the same for any pair of object–image conjugates. The
control of Petzval curvature has been described by several researchers, e.g.,
Wallin (1951).

5.3 COMA

We will now see how the coma aberration for a complete system, as well as
the surface contributions, may be calculated.

5.3.1 Offense Against the Sine Condition

Thus, let us consider an optical system, as shown in Fig. 5.5. The marginal
sagittal image is at the point S above the principal ray. The paraxial sagittal
image is on the principal ray and its height h0k is calculated with the
Lagrange theorem. The marginal sagittal image H0

Sk is calculated with the
optical sine theorem. The sagittal coma arises because the image lateral
magnification is different for the paraxial and for the marginal sagittal rays.

Figure 5.5 Formation of the coma aberration.
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Besides, due to the spherical aberration, these two images are at different
planes. The primary sagittal coma, represented by ComaS, is defined by the
lateral distance SQ from the marginal sagittal focus to the principal ray.
Thus,

ComaS ¼ SQ ¼ H 0
Sk �QM ð5:30Þ

The value of ComaS is positive when the sagittal focus is above the
principal ray. To evaluate the sagittal coma let us first define a coefficient
OSC (Offense against the sine condition) as follows:

OSC ¼
H 0

Sk

QM
� 1 ð5:31Þ

Thus, the primary sagittal coma is (assuming QM� h0k)

ComaS ¼ OSCh0k ð5:32Þ

Since OSC is a constant for a given system, an important conclusion is
that the aberration of ComaS increases linearly with the image height.

Now, the magnitude of QM is related to the paraxial image height h0k
on the paraxial focus plane by

QM ¼
L0
k � l 0k
l0k � l 0k

h0k ð5:33Þ

hence the OSC is given by

OSC ¼
l 0k � l 0k
L0
k � l 0k

" #
H 0

Sk

h0k
� 1 ð5:34Þ

If there is no coma in the object, we have hS1¼ h1, then, using the Lagrange
and optical sine theorems we may find that

OSC ¼
l0k � l 0k
L0
k � l 0k

" #
hS1 u

0
k sinU1

h1 u1 sinU
0
k

� 1 ð5:35Þ

An alternative expression is

OSC ¼
l0k � l 0k
L0
k � l 0k

" #
M

m
� 1 ¼

l 0k � l 0k
L0
k � l 0k

" #
u0k sinU1

u1 sinU
0
k

� 1 ð5:36Þ
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where m and M are the paraxial and marginal image magnifications,
respectively. In terms of the spherical aberration the OSC may be written as

OSC ¼ 1�
SphL

L0
k � l 0k

" #
M

m
� 1 ð5:37Þ

It is easy to see that when there is no spherical aberration the coma is
absent if the principal surface is not a plane but a sphere centered at the
focus. For infinite object distances the OSC may be calculated by

OSC ¼
l0k � l 0k
L0
k � l 0k

" #
FM

F
� 1 ¼

l0k � l 0k
L0
k � l 0k

" #
Yu0k

y sinU0
k

� 1 ð5:38Þ

where FM and F are the marginal (with incident ray height Y) and paraxial
(with incident ray height y) focal lengths, measured as in Fig. 5.6, along the
refracted rays.

5.3.2 Coma Contribution of Each Surface

We have derived an expression that allows us to compute the final primary
coma in an optical system. However, we do not have any information about
the coma contribution of each surface in the system. There are several
possible ways of calculating these contributions. One is by using the results
for a complete system, but taking the system as only one surface. Once
the aberration for a single surface is obtained, the contribution of

Figure 5.6 Principal surface in a system free of spherical aberration and of coma.
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this surface in a system of several surfaces is obtained by multiplication
by the magnification of the rest of the system, after the surface. The
transverse magnification is used for the transverse aberrations and the
longitudinal magnification for the longitudinal aberrations.

In Fig. 5.7 the sagittal coma for a single surface has been defined by
the distance SQ, which may be written as

ComaS ¼ SQ ¼ �RS ð5:39Þ

and by using Eq. (5.3) and the definition of the spherical aberration as
SphL¼RS:

ComaS ¼ �SphL
i

i

	 

u0 ¼ SphT

i

i

	 

ð5:40Þ

or, multiplying both sides of this expression by the transverse magnification
of the part the optical system after this surface, we have the following
contribution of the optical surface to the total coma in the system:

ComaSC ¼ SphTC
i

i

	 

ð5:41Þ

or, using Eq. (5.30):

ComaSC ¼ � i i ð5:42Þ

Figure 5.7 Some rays to illustrate the formation of the coma aberration.
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It is possible to show after some geometric considerations, as described by
Conrady (1957), from Fig. 5.2, that

ComaT ¼ 3SphT
i

i

	 

ð5:43Þ

or

ComaT ¼ 3ComaS ð5:44Þ

5.3.3 Coma in a Single Thin Lens

The primary or third-order coma aberration for any object position and lens
bending, but with the stop at the lens, may be calculated with the following
expression given by Conrady (1957):

ComaS ¼ h0k y
2 1

4
G5 k c1 �G7 k v1 �G8 c

2

	 

ð5:45Þ

where the function G5 has been defined in Chap. 4 and the functions G7 and
G8 are defined by

G7 ¼
ð2nþ 1Þðn� 1Þ

2n
;G8 ¼

nðn� 1Þ

2
ð5:46Þ

This aberration as a function of the curvature c1 is shown in Fig. 5.8. The
coma can be made equal to zero with almost the same bending that
produces the minimum spherical aberration, when the stop is in contact with
the lens. If the lens has a large spherical aberration, the coma may be
corrected only with the stop shifted with respect to the lens.

5.4 ASTIGMATISM

The primary or third-order longitudinal sagittal astigmatism, as shown in
Fig. 5.2, is the distance from the Petzval surface to the sagittal (paraxial)
surface. The longitudinal tangential astigmatism is the distance from the
Petzval surface to the tangential surface. The astigmatism is positive if the
sagittal focus is farther away from the optical surface than the Petzval focus.
Thus, the sagittal longitudinal astigmatism on a single spherical surface is
given by

AstLS ¼ P0R ’ PR ð5:47Þ
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but using Eqs. (5.7) and (5.9):

PR ¼ RS
i

i

	 
2

ð5:48Þ

Thus, the longitudinal sagittal astigmatism becomes

AstLS ¼ SphL
i

i

	 
2

ð5:49Þ

If we examine Eq. (5.3), we may easily conclude that the astigmatism
increases with the square of the angle  shown in Fig. 5.7. On the other
hand, the magnitude of this angle depends on the position of the exit pupil
and also on the image height. Given an optical system, with its stop fixed,
the angle  grows approximately linearly with the image height for small
values of  . This means that the astigmatism increases with the square of the
image height.

Now, multiplying by u0k both sides of Eq. (5.49) we obtain

AstTS ¼ SphT
i

i

	 
2

ð5:50Þ

Figure 5.8 Variation of the transverse spherical aberration and coma versus the

curvature of the front face in a thin lens.
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This is the sagittal astigmatism for a single spherical surface. The
contribution of this surface to the final astigmatism in a complete system
with several surfaces is this astigmatism multiplied by the longitudinal
magnification of the part of the optical system after this surface. Then,
multiplying both sides of Eq. (5.49) by this magnification, we have

AstLS C ¼ SphLC
i

i

	 
2

ð5:51Þ

and in an analogous manner, the contribution to the transverse sagittal
astigmatism is

AstTS C ¼ SphTC
i

i

	 
2

¼ �i 2 ð5:52Þ

The tangential astigmatism may also be found from Fig. 5.2. In a first
approximation it easy to see that

ST ¼
B1 B2

2u0
c ð5:53Þ

then, using here Eqs. (5.3) and (5.14) we find that

ST ¼ 2SphL
i

i

	 
2

ð5:54Þ

The primary tangential astigmatism P0T is then easily shown to be

AstLT ¼ 3SphL
i

i

	 
2

ð5:55Þ

In conclusion, as in the case of the coma, the primary sagittal
astigmatism and the primary tangential astigmatism are related by a factor
of three to the coma, as follows:

AstTT ¼ 3AstTS ð5:56Þ

If the object is moved on the object plane, the sagittal image moves on
the sagittal surface and the tangential image on the tangential surface. Since
the astigmatism grows with the square of the image height if the field is
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relatively small, the shape of the sagittal and tangential surfaces is almost
spherical. If by any method, e.g., moving the stop position, the magnitude of
the astigmatism is changed, then the sagittal and tangential surfaces become
closer or separate more, but keeping constant the 1:3 relation. They join
together in a single surface, which by definition is the Petzval surface.

When the beam propagates, different image shapes are generated for
different observation planes. As shown in Fig. 5.19, inside and outside of
focus the image is elliptical, but with different orientations.

5.4.1 Coddington Equations

Henry Coddington in 1829 in London derived two equations to find the
positions of the sagittal and the tangential images in a single refractive
surface. These two equations are similar to the Gauss equation and may be
considered a generalization of it. There are several possible ways to derive
these equations, but here we will present the method described by Kingslake
(1978).

Tangential Image

Let us consider Fig. 5.9 with a spherical refractive surface and two very close
meridional rays originating at object B and then refracted near the point P.
These two rays are differentially refracted and converge to the tangential
image BT. To find the position of this point of convergence we first define
the central angle �¼Uþ I and then differentiate it as follows:

d� ¼ dUþ dI ð5:57Þ

Figure 5.9 Derivation of Coddington equation for tangential rays.
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The distance from the object B to the point P is t. Then, the small segment
PQ is

PQ ¼ tdU ¼ PG cos I ¼ r cos Id�

¼ tðd� � dI Þ ¼ r cos Id�
ð5:58Þ

hence, we may write

dI ¼ 1�
r cos I

t

	 

d� ð5:59Þ

and in a similar manner for the refracted ray:

dI 0 ¼ 1�
r cos I 0

t

	 

d� ð5:60Þ

Differentiating the expression for Suell’s law of refraction we find

n cos IdI ¼ n0 cos I 0dI 0 ð5:61Þ

finally obtaining

n0 cos I 02

t0
�
n cos I 2

t
¼

n0 cos I 0 � n cos I

r
ð5:62Þ

This expression becomes the Gauss equation when the object height is zero,
so that I and I 0 are zero.

Sagittal Image

The corresponding equation for the sagittal image may now be found with
the help of Fig. 5.10. First, we have to remember that the sagittal image is on
the auxiliary axis. Thus, we only have to find the intersection of the
refracted principal ray with the auxiliary axis. Since the area of the triangle
BPBS is the area of the triangle BPC plus the area of the triangle PCBS, we
may write these areas as

1

2
ss0 sinð1808� Iþ I 0Þ ¼ �

1

2
sr sinð1808� I Þ þ

1

2
s0r sin I 0 ð5:63Þ

hence

�ss0 sinðI� I 0Þ ¼ �sr sin Iþ s0r sin I 0 ð5:64Þ
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Then, after some algebraic steps and using the law of refraction we finally
have

n0

s0
�
n

s
¼

n0 cos I 0 � n cos I

r
ð5:65Þ

Again, this expression becomes the Gauss equation when I and I
0
are zero.

These equations are frequently used to evaluate the astigmatism of optical
systems.

5.4.2 Relations Between Petzval Curvature and Astigmatism

With a third-order approximation, if the field is relatively small (semifield
smaller than about 10�) the sagittal (S), tangential (T), and Petzval (P)
surfaces may be represented by spherical surfaces, as shown in Fig. 5.11,
where these aberrations are positive. The separation between these surfaces
follows relation (5.56). The sagittas for sagittal and tangential surfaces are
equal to AstLSþPtz and AstLtþPtz, respectively. The surface of best
definition is between the sagittal and tangential surfaces. Thus, the sagitta
for the surface of best definition is

Best ¼ Ptzþ
AstTs þAstTt

2
¼ Ptzþ 2AstTs ð5:66Þ

If the surface of best definition has to be flat, this sagitta has to be equal to
zero, otherwise the radius of curvature for this surface is

rbest ¼
h02

2ðPtzþ 2AstTsÞ
ð5:67Þ

Figure 5.10 Derivation of Coddington equation for sagittal rays.
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We have proved that the Petzval curvature depends only of the total
power of the lenses forming the optical system and not on the lens shapes
(bending) nor on the stop position. Thus, by bending and selecting the stop’s
position we may only change the astigmatism. On the other hand, the
tangential and sagittal astigmatisms are always in a 3:1 relation. So, these
focal surfaces may have different curvatures, as shown in Fig. 5.12.

To obtain the best overall image definition we may position the
observation plane (screen, photographic film, or detector) at the places
indicated with a dotted line. The four figures show the same Petzval surface
with increasing amount of the magnitude of astigmatism. If there is no
astigmatism, but there is a negative Petzval curvature, as in most cases, as
shown in Fig. 5.12(a), the image is perfect and well defined over the whole
Petzval surface. In this case the observing screen may be curved as in some
astronomical instruments, or a field flattener may be used. As stated by

Figure 5.11 Astigmatic surfaces and definitions of sagittal and tangential
astigmatism.

Figure 5.12 Astigmatic curves for different amounts of astigmatism with a

constant Petzval curvature.

© 2004 by Marcel Dekker, Inc.



Conrady (1957), the astigmatism in Fig. 5.12(b) is a better choice for
astronomical photography, where the field is not very large. Then, there is
some astigmatism, but the optimum focal plane, between the sagittal and
tangential surfaces, is flatter. If elongated images are not satisfactory, as in
the case of photographic cameras, where the field is wide, the large
astigmatism in Fig. 5.12(d) is a compromise, where the best-definition
surface is flat. The price is a large astigmatism with the size of the image
growing toward the edge. The best choice for most practical purposes is to
reduce the astigmatism a little bit with respect to that in Fig. 5.12(d), by
choosing a flat tangential field, as in Fig. 5.12(c).

An important practical conclusion that should always be in mind is
that in a system with a negative Petzval sum, which occurs most of the time,
the best overall image is obtained only if positive astigmatism is present.

For semifields larger than about 20� significant amounts of high-order
astigmatism may appear, making the sagittal and tangential surfaces to
deviate strongly from the spherical shape. In this case, high-order aberrations
should be used to balance the primary aberrations, as shown in Fig. 5.13.
The two astigmatic surfaces should cross near the edge of the field.

5.4.3 Comatic and Astigmatic Images

We have seen that coma and astigmatism are two different aberrations, but
they are not independent in a single optical surface. Both are present and
closely interrelated through the spherical aberration. Figure 5.14 shows how
the aberrations of astigmatism and coma change for different values of the
ratio i/i. We may observe that for values of this ratio smaller than one the
coma dominates, but for values greater than one the situation is reversed.
Only in a complex system, with several centered spherical optical surfaces,

Figure 5.13 Astigmatic curves with high-order aberrations for a large field.
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may a single aberration, coma, or astigmatism be present. The image
structure for each of these aberrations will now be described.

To understand how the coma image appears, let us divide the exit
pupil into concentric rings as in Fig 5.15. The paths for some rays from one
of the rings in the pupil are illustrated in this figure. Here, we may
appreciate the following facts:

1. Rays symmetrical with respect to the meridional plane, Di and D0
i,

cross each other at a point on the meridional plane, Pi.

2. All the points Pi lie on a straight line, parallel to the principal ray.
This line is called the characteristic focal line. A diapoint is defined
as the point intersection of an oblique ray and themeridional plane.
Thus, the focal characteristic line may also be defined as the locus of
diapoints for the rays passing through a ring on the exit pupil.

3. Each circle on the exit pupil generates a characteristic focal line,
parallel to the principal ray. The smaller the circle on the exit pupil
is, the closer the characteristic focal line gets to the principal ray.

4. The tangential rays from D0 and D4 cross at the tangential focus,
on the focal plane.

5. The sagittal rays from D2 and D0
2 cross at the sagittal focus, on the

focal plane.

6. Each ring also on the exit pupil also becomes a small ring on the
focal plane. However, one turn around on the exit pupil becomes
two turns on the image.

7. The complete comatic image is formed with all the rings,
becoming smaller as they shift along the meridional plane ( y axis).

A stereo pair of images showing the ray paths passing through a ring
on the entrance pupil in the presence of coma is illustrated in Fig. 5.16. The

Figure 5.14 Variations in the ratios AstTS/SphT and ComaS/SphT versus the
ratio �ii/i.
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final structure of a comatic image with positive coma is illustrated in
Fig. 5.17. In this figure we see graphical definitions of the transverse sagittal
and tangential coma.

In an optical system with pure astigmatism (without coma), the rays
from a ring on the exit pupil travel as in Fig. 5.18. Here, we may appreciate
the following:

1. Rays symmetrical with respect to the meridional plane, Di and D0
i,

cross each other at a point on the meridional plane, P0
i. The letter i

stands for 0, 1, 2, 3, or 4 in Fig. 5.18.

Figure 5.15 Rays around a ring on the pupil in the presence of coma.

Figure 5.16 Stereo pair of images showing the ray paths from a ring on the pupil
in the presence of coma.
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2. All the points Pi lie on a straight line, perpendicular to the
principal ray. This line is the characteristic focal line. In this case
this is also the sagittal focus.

3. Each circle on the exit pupil generates a characteristic focal line;
all are placed on the corresponding sagittal focus. Thus, in a single
optical surface all characteristic focal lines are parallel to each
other and perpendicular to the principal ray. In an optical system
without spherical aberration all characteristic focal lines collapse
in a single line.

4. At an intermediate plane between the sagittal and the tangential
focus, the image is a small circle.

Figure 5.18 Rays forming the image in a system with astigmatism.

Figure 5.17 Formation of the comatic image.
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The astigmatic images at several focal planes are illustrated in
Fig. 5.19. The magnitudes of the sagittal and tangential transverse astig-
matisms are shown here. Now, let us make some general considerations
about the characteristic focal line:

1. The focal characteristic line for a single refracting surface is on the
auxiliary axis, as shown in Fig. 5.3.

2. In general, there is a focal characteristic line for each concentric
ring on the exit pupil, and all lines are parallel to each other.

3. In a system with pure coma the focal characteristic lines are
parallel to the principal ray and in a system with pure astigmatism
they are perpendicular to the principal ray. Thus, it is clear that in
a single surface we cannot isolate astigmatism and coma, because
the auxiliary optical axis is always inclined with respect to the
principal ray.

4. The center of the characteristic focal line is the sagittal focus. The
extremes are defined by the marginal tangential rays.

5. In a complete optical system the characteristic focal line is in
general inclined to a certain angle � with respect to the principal
ray. Then, this inclination is given by the relative amounts of these
two aberrations as follows:

tan � ¼ �
AstTS

ComaS
u0k ð5:68Þ

A little more insight and understanding about the structure of the
astigmatic and comatic images may be obtained with a detailed examination
of Fig. 5.20. This figure plots the locus of the intersections on the focal plane
of the light rays passing through a circular ring on the entrance pupil. These
plots are taken at different equidistant focal plane positions, but different

Figure 5.19 Astigmatic images in different focal surfaces.
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for the three cases shown. The large dot represents the principal ray
intersection and a line joining them would be the principal ray. The focal
characteristic line (or diapoint locus) is graphically represented in these three
cases.

5.4.4 Aplanatic Refractive Surfaces

From Eqs. (5.40) and (5.49) we see that both, the coma and astigmatism
contributions of a spherical optical surface are zero if (1) the contribution to
the spherical aberration is zero or (2) the principal ray is perpendicular to
the surface (i¼ 0). However, it is important to be careful with the cases in
which the meridional ray is perpendicular to the surface (i0 ¼ 0), because a
division by zero might occur in the factor (i/i0). If we see that Eq. (5.23) for
the spherical aberration contribution may be written as

SphLC ¼
yðn=n0Þðn� n0Þðiþ u0Þi2

2n0ku
02
k

ð5:69Þ

we then see that the astigmatism may be different from zero when the
spherical aberration is zero and the meridional ray is normal to the surface.

It is interesting to consider the three cases of spherical aberration zero
and coma zero in a single surface, described in Chap. 4. We may see that
these cases also have zero coma and zero astigmatism. An exception, as we
proved, is the case of astigmatism, when the object and the image are both at
the center of curvature.

Another method to prove that the coma aberration is zero in the
three cases of spherical aberration zero is by calculating the OSC. The OSC

Figure 5.20 Images in different focal surfaces in the presence of coma and

astigmatism: (a) astigmatism; (b) coma; (c) coma and astigmation.
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for any optical system, with zero spherical aberration (L0
k ¼ l0k), from

Eq. (5.37), is

OSC ¼
u0k sinU

u sinU0
k
� 1 ð5:70Þ

However, for a single reflecting surface, from Eqs. (1.19)–(1.21) we find that

M

m
¼

u0 sinU

u sinU0 ¼
L0 � r

L� r

	 

l� r

l0 � r

	 

ð5:71Þ

Since the surface is assumed to be free of spherical aberration (L0 ¼ l0), and
the object is assumed to be a point (L¼ l ), we see that both sides of this
expression are one. Then, it is easy to see that OSC and hence the sagittal
coma are zero in the three cases in which the spherical aberration is zero.

Abbe called these surfaces aplanatic due to their simultaneous
absence of spherical aberration and coma. In general, we say that an
optical system is aplanatic if it is simultaneously free from spherical
aberration and coma. According to a more recent definition, an optical
system is said to be aplanatic if the image is perfect (aberration free) and
can be moved to any point inside a small region centered on the optical
axis, without introducing any aberrations. This aberration-free region is
called the aplanatic region.

Similarly, a system is isoplanatic if the image can be moved to any
point inside of a small region near the optical axis, without altering the
image structure, i.e., without changing the aberrations. This zone near the
optical axis is the isoplanatic region.

5.5 DISTORTION

When all aberrations are absent, the image of a point object is located at a
point named the gaussian image. If the object height is h, the gaussian image
height is exactly equal to mh0, where m is the first-order lateral
magnification, obtained from the Lagrange theorem. With reference to
Fig. 5.2, we may see that if the coma aberration is zero, both the tangential
image T and the sagittal image S are on the principal ray, at points U andQ,
respectively. If there is no spherical aberration, the marginal sagittal focus S
coincides with the paraxial sagittal focus R, so the point Q and the point R
become the same. If there is no astigmatism, the paraxial sagittal focus R as
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well as the tangential focus T coincide at a single point P0 on the Petzval
surface.

Let us further assume that there is no Petzval curvature. Then, the
image point would be at the point N on the principal ray. In conclusion,
even if all aberrations we have studied are absent from the optical system,
the image might still be laterally deviated with respect to the gaussian image
point M.

The distortion aberration is due to a deviation in the actual image
height, determined by the principal ray, with respect to the gaussian image
height h0. Thus, if we plot the actual image height, defined by the
intersection of the principal ray with the gaussian focal plane, as a function
of the object height h0 the result is not a line, as shown in Fig. 5.21. The
distortion may be negative or positive. If a square is imaged with a lens
having distortion, the result may be as shown in Fig. 5.22(a) or (b). Positive
distortion is also called pincushion distortion, and negative distortion is also
called barrel distortion, due to the aspect of the image of a square.

Positive distortion occurs when the principal ray is above the ideal
gaussian image. Let us consider again Fig. 5.2, with a single refractive
surface with the principal ray and the auxiliary axis. The ideal or gaussian
image is then at the point M on the auxiliary axis. Then, the value of the
distortion is the distance from the gaussian image M to the intersection N of
the principal ray with the focal plane containing M. Thus, by observing the
figure, we see that the value of the distortion is

Dist ¼ �MR ¼ �ðPRþMPÞ ð5:72Þ

Figure 5.21 Principal ray height versus the gaussian image height in the presence
of distortion: (a) positive distortion; (b) negative distortion.
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but from using Eqs. (5.7) for the value of PR and since MP is the value of
Ptz, given in Eq. (5.21), the value of the distortion is

Dist ¼ � SphL
i

i

	 
2

þPtz

" #
 ð5:73Þ

and using now the value of  in Eq. (5.3):

Dist ¼ SphT
i

i

	 
3

�Ptz
i

i

	 

u0 ð5:74Þ

The distortion for this surface may also be written as

Dist ¼ ComaS
i

i

	 
2

�Ptz
i

i

	 

u0 ð5:75Þ

This is the distortion produced by only one surface. As usual, the
aberration contribution of this surface to the final astigmatism in a complete
system is obtained by multiplying this result by the longitudinal magnifica-
tion of the optical system after this surface. Then, we have

DistC ¼ ComaS C
i

i

	 
2

�PtzC
i

i

	 

u0k ð5:76Þ

Figure 5.22 Images of a square with both possible signs of distortion. The
distortion percentages at the corners of the square are indicated: (a) positive
distortion (pincushion); (b) negative distortion (barrel).
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It is possible to show that an alternative expression, better adapted for
numerical calculation, is

DistC ¼ � i iþ
h0k
2
ðu0

2
� u2Þ ð5:77Þ

where

� ¼
yðn=n0Þðn� n0Þðiþ u0Þ

2n0ku
0
k

ð5:78Þ

The aberration of distortion may be exactly computed by tracing the
principal ray and subtracting the image height obtained with this ray from
the gaussian image height.

This distortion increases with the image height and may be represented
by a polynomial with odd powers of this the image height. Thus, the
primary distortion term grows with the cube of the image height. This is the
reason for the appearance of the image of a square in the presence of this
aberration.

Frequently, the distortion is expressed as a percentage of the gaussian
image height, as shown in Fig. 5.22. If the object is a square, the value of the
distortion at the corners is exactly twice the value of the distortion at the
middle of the sides.

5.6 OFF-AXIS ABERRATIONS IN ASPHERICAL SURFACES

As shown in Chap. 4, an aspheric surface has a deformation with respect to
the sphere that introduces an additional spherical aberration term given by

SphTCasph ¼ Dy3 ð5:79Þ

where S has been replaced by the symbol y and the constant D is defined as

D ¼ �ð8A1 þKc3Þ
n� n0

2n0ku
0
k

	 

y ð5:80Þ

The ratio y/u0k is approximately constant.
This term changes the slope of the refracted light rays, and thus their

transverse aberrations by an amount equal to this transverse spherical
aberration. The value of y is the distance from the optical axis (vertex of the
surface) to the intersection of the light ray with the optical surface. Then, for
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the rays shown in Fig. 5.23, these additional transverse aberrations are as
follows:

1. For the principal ray, passing through P:

TAP ¼ Dy3 ð5:81Þ

2. For the upper tangential ray, passing through T1:

TAT1 ¼ Dð yþ y Þ3 ¼ Dð y3 þ y3 þ3y y2 þ3 y2 yÞ ð5:82Þ

3. For the lower tangential ray, passing through T2:

TAT 2 ¼ Dð y� y Þ3 ¼ Dð y3 � y3 �3y y2 þ3 y2 yÞ ð5:83Þ

4. For the sagittal rays, passing through S1 and S2:

TAS ¼ Dð y2 þ y2 Þ3=2 ’ Dð y3 þy y2Þ ð5:84Þ

With these results we may now find the additional aberration terms
due to the aspheric deformation. The additional term to be added to
the coma contribution ComaSC will be represented by ComaSCasph and is
given by

ComaS Casph ¼ TAS �TAP ¼ SphTCasph

y

y

	 

ð5:85Þ

since both the principal ray and the sagittal rays are modified.

Figure 5.23 Aberrations introduced by aspherizing an optical surface.
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The vertical shift of the marginal tangential focus is obtained by taking
the average of the transverse aberration for these rays. Since the distance
from this tangential focus to the principal ray is the tangential coma, the
additional term to be added to ComaT is given by

ComaT asph ¼
TAT1 þTAT 2

2
� TAP ð5:86Þ

thus, we may find the tangential coma contribution:

ComaT Casph ¼ 3SphTCasph

y

y

	 

ð5:87Þ

As we see, the 1:3 relation between the sagittal and the tangential coma is
preserved.

The sagittal rays are not contained in the meridional plane. The
sagittal transverse aberration TAS due to the aspheric deformation may
easily seen to be in the direction VS2 shown in Fig. 5.23.

The horizontal component (x direction) of the transverse aberration
for the sagittal rays is in opposite directions for the two rays and has a value
equal to

TASx ¼ TAS
y

y

	 

¼ Dð y3 þy y2Þ

y

y

	 

ð5:88Þ

Neglecting the second term to introduce a paraxial approximation, the
paraxial sagittal focus is longitudinally displaced by an amount equal to the
contribution to the longitudinal sagittal astigmatism, as follows:

AstLS asph ¼ �
TASx

u0
¼ �

Dy2 y

u0
ð5:89Þ

then, we obtain using Eqs. (5.79) and (4.27), the aspheric contribution to the
longitudinal sagittal astigmatism as

AstLS Casph ¼ SphLCasph

y

y

	 
2

ð5:90Þ

As shown in Fig. 5.23, the difference in the transverse aberrations in
the vertical direction for the two marginal tangential rays introduces a
longitudinal displacement �LAT of the tangential focus, given by

�LAT ¼ �
�TAT

2u0
¼ �

TAT1 �TAT 2

2u0

¼ �
Dðy3 þ3y y2Þ

u0
ð5:91Þ
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thus, the longitudinal shift of the paraxial tangential focus is given by

�LAT ¼ �
3Dyy2

u0
ð5:92Þ

where the cubic term in y was neglected to introduce the paraxial
approximation. It is interesting to notice that, as opposed to the case of
spherical surfaces, where the tangential focus is fixed for paraxial and
marginal rays, here, we have a spherical aberration effect. Thus, we have a
paraxial tangential focus and a marginal tangential focus at a different
position. This focus shift is the astigmatism contribution introduced by the
aspheric surface, which may be written

AstLT Casph ¼ �3SphLCasph

y

y

	 
2

ð5:93Þ

We see that the 1:3 relation is also preserved for the astigmatism
contributions due to the aspheric deformation.

The transverse aberration for the principal ray is equal to the
contribution to the distortion introduced by the aspheric deformation, as
follows:

DistCasph ¼ SphTCasph

y

y

	 
3

ð5:94Þ

5.7 ABERRATIONS AND WAVEFRONT DEFORMATIONS

According to the Fermat principle, the optical path from any point object to
its image must be a constant for all ray paths, if the image is perfect.
However, if the image has aberrations the wavefront exiting the optical
system is not spherical, but has some deformations (Miyamoto, 1964). These
aberrations may then be computed if the real optical path from the object to
the image is calculated.

Let us consider Fig. 5.24, where the optical path difference for the ray
refracted at the vertex of the surface and the ray refracted at the point P is

OPD ¼ ½nBPþ n0PB 0 � � ½nABþ n0AB 0 �

¼ n0½PB 0 � AB 0 � þ n½BP� AB � ð5:95Þ
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The sagitta z at this surface is given by

z ¼
x2 þ y2 þ z2

2r
¼

s2

2r
¼ r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �ðx2 þ y2Þ

p
ð5:96Þ

where s2¼ x2þ y2þ z2¼S2
þ z2. Thus, we may find that

AB ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

h

l

	 
2
s

ð5:97Þ

and

BP2 ¼ ð�lþ z Þ2 þð�hþ y Þ2 þ x2 ð5:98Þ

thus,

BP ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

h

l

	 
2

�
s2

l

1

r
�
1

l

	 

� 2

hy

l2

" #vuut ð5:99Þ

Now, expanding in a Taylor series, assuming that a
 1:

ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
¼ 1þ

1

2
a�

1

8
a2 þ

1

16
a3 �

5

128
a4 þ 	 	 	 ð5:100Þ

Figure 5.24 Optical paths of rays and their associated wavefronts.
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Hence, we may find that, eliminating all terms higher than h3 and S 4,

BP� AB ¼ �
s2

2

1

r
�
1

l

	 

�
hy

l
�
s4

8l

1

r
�
1

l

	 
2

�
h2 y2

2 l3
þ
s2 h2

4 l2
1

r
�
1

l

	 


�
s2 hy

2 l2
1

r
�
1

l

	 

þ
h3 y

2 l3
þ 	 	 	 ð5:101Þ

and similarly for PB0 �AB0. Then, the final result for the optical path
difference is

OPD ¼ �
s2

2
n

1

r
�
1

l

	 

� n0

1

r
�
1

l0

	 
� �
� y

nh

l
�
n0h0

l0

� �

�
s4

8

n

l

1

r
�
1

l

	 
2

�
n0

l0
1

r
�
1

l0

	 
2
" #

�
s2 y

2

nh

l2
1

r
�
1

l

	 

�
n0h0

l02
1

r
�
1

l0

	 
� �

þ
s2

4

n h2

l2
1

r
�
1

l

	 

�
n0 h02

l02
1

r
�
1

l0

	 
" #

�
y2

2

n h2

l3
�
n0 h02

l03

" #
þ
y

2

n h3

l3
�
n0 h03

l03

" #
. . . ð5:102Þ

The first term represents a defocusing term or a change in the spherical
reference wavefront. If we make this term equal to zero the points B and B0

are in planes conjugate to each other and we obtain the Gauss equation.
The second term is a transverse displacement of the image or a tilt of

the reference spherical wavefront in the y direction. If this term is made
equal to zero, the Lagrange theorem is obtained. Then, the point B0 is the
conjugate (image) of point B.

The third term is the primary spherical aberration of a single spherical
surface, expressed as a wavefront deformation. The ray transverse spherical
may be obtained from this expression by derivation with respect to S, as
shown in Section 1.9.
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The fourth term represents the primary coma on a single surface,
again, as a wavefront deformation. The sagittal coma may be obtained by
derivation with respect to x and the tangential coma by derivation with
respect to y.

The fifth and sixth terms combined represent the Petzval curvature
and the primary astigmatism. The last term is a tilt of the wavefront in the y
direction, produced by the primary distortion.

It must be pointed out that these aberrations assume that the stop is in
contact with the optical surface. However, these expressions may be
generalized to include any stop shift.

5.8 SYMMETRICAL PRINCIPLE

A system is fully symmetrical when one half of the system is identical to the
other half, including object and image. Then, the stop is always at the center
of the system and the magnification is �1, as shown in Fig. 5.25.

In this system the symmetrical wavefront aberrations [W( y)¼W(�y)]
are doubled, but the antisymmetrical [W( y)¼�W(�y)] wavefront aberra-
tions are canceled out. Then, the coma, distortion, and magnification
chromatic aberrations are automatically made zero.

Figure 5.25 Symmetrical optical system: (a) zero coma; (b) zero magnification
chromatic aberration.
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If the system is symmetrical, but the conjugates are not equal, still the
antisymmetrical aberrations are small. Fortunately, full symmetry is not
necessary to obtain zero antisymmetric aberrations. To understand how this
may be done, we have to remember some first-order properties of the
principal planes. The nodal points coincide with the principal points when
the object medium and the image medium are both air. If the stop is at one
of the principal planes, the entrance pupil coincides with one of the principal
planes and the exit pupil with the other. Then, the principal ray will pass
through the nodal points. We may then say that, if the principal planes are
fixed for all obliquity angles, the system is free of distortion. More generally,
we may say that, if the entrance and exit pupils are fixed for all obliquity
angles, the system is free of distortion. Similarly, as we will see in Chapter 6,
if the entrance and exit pupils are fixed for all colors, the system is free of
magnification chromatic aberration. These are the Bow–Sutton conditions.

5.9 STOP SHIFT EQUATIONS

When the stop is shifted to a new position, the principal ray height changes
at every surface. However, we have shown in Eq. (3.63) that the ratio of the
change in the principal ray height to the meridional ray height is a constant
for all surfaces in the system, as follows:

Q ¼
y� �y

y
ð5:103Þ

where we represent the modified value when the stop is moved to a new
position, with an asterisk.

Before we derive the expressions for the change in the aberrations
when the stop is shifted, let us find some useful relations. We see from
Fig. 5.26 that when we shift the principal ray:

u0�k � u0k ¼
1

l0k � l0�k
�

1

l0k � l0k

" #
h0k

¼
y�k � yk

l0k
¼

ðy�k � ykÞu
0
k

yk
ð5:104Þ

hence, the value of the constant parameter Q is given by

Q ¼
1

l0k � l0�k
�

1

l0k � l0k

" #
h0k
u0k

ð5:105Þ
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Another useful relation may be obtained from Eq. (5.5) as follows
(see Fig. 5.2):

i 0 ¼ AA0
i 0

y
¼ ðAVþ yÞ

i0

y
ð5:106Þ

where the distance AV remains constant with a stop shift. Similarly, for the
shifted stop we may write

i 0
�
¼ ðAVþ y�Þ

i 0

y
ð5:107Þ

and subtracting from Eq. (5.105):

i 0
�
�i 0 ¼ ð y� �yÞ

i 0

y
ð5:108Þ

Thus, using the definition of Q, we may find that

Q ¼
i 0
�
� i 0

i 0
¼

i � � i

i
ð5:109Þ

From this equation we may also see that

i 0
�2
� i 0

2
¼ Qð i 0

�
þi 0Þi 0 ð5:110Þ

Figure 5.26 Change in the off-axis aberrations by a shift in the stop.
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which may be transformed with the help of Eq. (5.109) into

i 0
�

i 0

	 
2

¼
i 0

i 0

	 
2

þ2Q
i 0

i 0

	 

þQ

2
ð5:111Þ

These expressions are all the tools we need to find the change in the
primary aberrations with a shift in the stop. The value of the spherical
aberration does not depend on the position of the stop because the image is
on the axis. Thus, for the case of spherical aberration we may write

SphT � ¼ SphT ð5:112Þ

It is easy to see from Eqs. (5.40) and (5.109) that for the case of ComaS
we have

ComaS
� ¼SphT � i 0

�

i 0

	 


¼ComaS þSphTQ ð5:113Þ

This equation shows that the coma aberration does not change its value by
shifting the stop if the spherical aberration of the system is zero. If we want
to correct the coma by selecting a position for the stop, the system must
have spherical aberration.

For the astigmatism, using Eqs. (5.50) and (5.111), we may write

AstT �
S ¼ SphT � i 0

�

i 0

	 
2

¼ AstTS þ2ComaS Qþ SphTQ
2

ð5:114Þ

The Petzval curvature does not change with a shift in the position of
the stop; thus, we write

Ptz� ¼ Ptz ð5:115Þ

In a similar manner, we may find the stop shift equation for distortion,
from Eq. (5.75), as follows:

Dist� ¼ SphT � i �

i

	 
3

�Ptz�
i �

i

	 

u0

¼ Distþ ð3AstTS þPtzT ÞQþ 3ComaS Q
2
þSphTQ

3
ð5:116Þ
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An interesting consequence of these stop shift equations is that if a
system has all primary aberrations corrected, a shift in the stop does not
change the state of correction.
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6
Chromatic Aberrations

6.1 INTRODUCTION

The value of the refractive index of any transparent material is a function of
the wavelength (color) of the light. In general, in the visible spectrum the
index of refraction increases with the frequency. In other words, it is higher
for violet light than for red light. Figure 1.3 shows some curves displaying
how the index of refraction changes with the wavelength for two typical
glasses.

The chromatic dispersion of glasses in the spectral range not including
absorption frequencies can be represented by several approximate expres-
sions. The simplest one was proposed by Cauchy in Prague:

n ¼ A0 þ
A1

�2
þ
A2

�4
ð6:1Þ

This formula is accurate only to the third or fourth decimal place in some
cases. An empirically improved formula was proposed by Conrady (1960) as
follows:

n ¼ A0 þ
A1

�2
þ

A2

�3:5
ð6:2Þ

within an accuracy of one unit in the fifth decimal place. Better formulas
have been proposed by several authors, e.g., by Herzberger (1942, 1959).

From a series expansion of a theoretical dispersion formula, a more
accurate expression was used by Schott for many years. Recently, However,
Schott has adopted a more accurate expression called the Sellmeier formula,
derived from classical dispersion theory. This formula permits the
interpolation of refractive indices for the entire visual range, from infrared
to ultraviolet, with a precision better than 1� 10�5, and it is written as

n2 ¼
B1�

2

�2 � C1
þ

B2�
2

�2 � C2
þ

B3�
2

�2 � C3
ð6:3Þ
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The coefficients are computed by glass manufacturers using the refractive
indices values for several melt samples. The values for these coefficients for
each type of glass are supplied by the glass manufacturers.

Chromatic aberration has been widely described in the literature by
many authors, among others, by Cruickshank (1946), Herzberger and
Salzberg (1962), and Herzberger and Jenkins (1949). This aberration may be
obtainedwithstrictlyparaxial rays, i.e.,withonly first-order (gaussian) theory.

6.2 AXIAL CHROMATIC ABERRATION

Primary approximation expressions for chromatic aberrations may be found
using only first-order theory (gaussian optics). To find an expression for the
axial chromatic aberration, illustrated in Fig. 6.1, let us represent the
refractive index for red light by nC and the refractive index for blue light by
nF; we may write the Gauss law for these two colors by

n0C
l0C

�
nC
lC

¼
n0C � nC

r
ð6:4Þ

and

n0F
l0F

�
nF
lF

¼
n0F � nF

r
ð6:5Þ

and subtracting the second expression from the first we have

n0C
l0C

�
n0F
l0F

�
nC
lC

þ
nF
lF

¼
ðn0C � n0FÞ � ðnC � nFÞ

r
ð6:6Þ

if we now define:

�n ¼ nF � nC ð6:7Þ

Figure 6.1 Definition of the object and image chromatic aberration.
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and

�n0 ¼ n0F � n0C ð6:8Þ

we obtain

n0Cðl
0
F � l0CÞ

l0Cl
0
F

�
nCðlF � lCÞ

lClF
¼ �n

1

r
�

1

lF

� �
��n0

1

r
�

1

l0F

� �
ð6:9Þ

or approximately

n0Cðl
0
F � l0CÞ

l02
�
nCðlF � lCÞ

l2
¼ �n

1

r
�
1

l

� �
��n0

1

r
�
1

l0

� �
ð6:10Þ

Now, using the relations u¼�y/l, u0 ¼�y/l0, and (1/r� 1/l)¼ i/y, which may
be obtained from Eq. (1.51), we find after defining AchrL¼ l0F � l0C and
AchrL�1¼ lF� lC, as in Fig. 6.1,

n0u0
2
AchrL� nu2AchrL�1 ¼ yni

�n

n
�
�n0

n0

� �
ð6:11Þ

Next, as in the spherical aberration in Section 4.1, we write this
expression for every surface in the optical system and add. After some
algebra, using the transfer relations, we obtain

AchrLk ¼ AchrL0
n1u1

2

n0ku
0
k
2

� �
þ
Xk
i¼0

yni

n0ku
0
k
2

�n

n
�
�n0

n0

� �
ð6:12Þ

where the subscript 0 is for the object, or

AchrLk ¼ AchrL0
n1u1

2

n0ku
0
k
2

� �
þ
Xk
i¼0

AchrLC ð6:13Þ

where the quantity in square brackets on the right-hand side of this equation
is the longitudinal magnification of the part of the optical system after the
surface being considered, and AchrLC is the longitudinal primary chromatic
aberration contribution, given by

AchrLC ¼
yni

n0ku
0
k
2

�n

n
�
�n0

n0

� �
ð6:14Þ
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As in the case of spherical aberration, we may also write an expression for
the axial transverse primary chromatic aberration as follows:

AchrTk ¼ AchrT0
n1u1
n0ku

0
k

� �
þ
Xk
i¼0

AchrTC ð6:15Þ

where

AchrTC ¼
yni

n0ku
0
k

�n

n
�
�n0

n0

� �
ð6:16Þ

6.2.1 Axial Chromatic Aberration of a Thin Lens

The axial chromatic aberration contribution of a thin lens may be found by
using the expressions in the preceding section. However, it is simpler to
obtain it directly from the thin-lens relation, Eq. (3.8). So, we may write

1

l0C
�

1

lC
¼ ðnC � 1Þ	 ð6:17Þ

where 	 is the total lens curvature (	¼ c1� c2), and

1

l0F
�

1

lF
¼ ðnF � 1Þ	 ð6:18Þ

Thus, subtracting the second expression from the first:

l0F � l0C
l0Fl

0
C

�
lF � lC
lFlC

¼ ðnC � nFÞ	 ð6:19Þ

Again, using the definitions for AchrL and �n, this expression may be
approximated by

AchrL

l02
¼

AchrL0

l2
��n	 ð6:20Þ

where the aberration with subscript 0 is on the object medium. Substituting
the value for the curvature 	 from Eq. (3.8) and using the relations u¼�y/l
and u0 ¼�y/l0, we find that

AchrL ¼ AchrL0
u2

u02
�

y2

u02f

�n

ðn� 1Þ
ð6:21Þ
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The Abbe number is a glass characteristic and is defined in Appendix 3 as
V¼ (n� 1)/�n¼ (nD� 1)/(nF� nC); thus, we may write

AchrL ¼ AchrL0
u2

u02
�

y2

u02fV
ð6:22Þ

We use now the well known procedure of writing this expression for a
centered system with k thin lenses, by adding in the corresponding
longitudinal magnifications. After some algebraic steps, using the transfer
equations, we may write

AchrL ¼ AchrL0
u21
u02k

�
1

u02k

Xk
i¼0

y2i Pi

Vi
ð6:23Þ

where Pi is the power of each lens. Thus, the transverse axial chromatic
aberration, multiplying by u0k, is given by

AchrT ¼ AchrT0
u21
u0k

�
1

u0k

Xk
i¼0

y2i Pi

Vi
ð6:24Þ

6.2.2 Achromatic Doublet

From Eq. (6.24) we see that an achromatic doublet formed by two thin
lenses in contact is obtained with the condition:

f1V1 ¼ �f2V2 ð6:25Þ

where the effective focal length F of the combination is given by Eq. (3.44).
Then, we may find that the focal length of the first element has to be

f1 ¼ F 1�
V2

V1

� �
ð6:26Þ

and the focal length of the second element is

f2 ¼ F 1�
V1

V2

� �
ð6:27Þ

As we should expect, the absolute value of the power for the positive
lens is greater than the absolute value of the power for the negative lens,
since the total power is positive. One conclusion is that an achromatic
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thin-lens system can be made only with two glasses with different Abbe
numbers. Newton has been sometimes criticized because he said that an
achromatic lens could not be constructed. The reason is that during his time
most known glasses had the same Abbe number.

The power of each component is inversely proportional to the
difference between the Abbe numbers. Hence, in order to have thin lenses
with low powers, the Abbe numbers must be as different as possible.
Unfortunately, this condition is incompatible with the condition for almost
equal partial dispersion ratios, in order to have low secondary color, as
required by Eq. (6.30).

Once the focal length of each component is calculated, we have the
bending of both lenses as degrees of freedom to correct the spherical
aberration and coma. We have seen that the solution for zero coma in a lens
is very close to a point for maximum spherical aberration (minimum
absolute value).

If we design an achromatic lens, as shown in Fig. 6.2, with two
different types of glass, the two selected wavelengths (frequently C and F )
will have the same focal length, but it will be different for all other colors.
The focal length as a function of the wavelength for an achromatic lens and
a single lens are compared in Fig. 6.3.

An alternative manner of deriving the conditions for an achromatic
doublet is by writing the power for a doublet from Eq. (2.8) as follows:

P ¼
1

F
¼

1

f1
þ

1

f2
¼ ðn1 � 1Þ	1 þ ðn2 � 1Þ	2 ð6:28Þ

Thus, the doublet is achromatic if

dP

d�
¼ 	1

dn1
d�

þ 	2
dn2
d�

¼ 0 ð6:29Þ

Figure 6.2 A doublet without chromatic aberration.
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is satisfied for a wavelength near the middle of the range of wavelengths
between C and F. It can be shown that this expression is equivalent to
Eq. (6.25).

6.2.3 Achromatic Doublet with Separated Elements

An achromatic system formed by two separated elements, as shown in
Fig. 6.4, is called a dialyte. Again, from Eq. (6.24) we see that an achromatic
doublet formed by two thin lenses separated by a finite distance d is
obtained with the condition:

f1V1

y1
¼ �

f2V2

y2
ð6:30Þ

Figure 6.3 Change of the longitudinal chromatic aberration with the wavelength
for an achromatic doublet and for a single lens.

Figure 6.4 Achromatic system with two spaced elements.
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On the other hand, from Eq. (3.43) and defining the ratio k¼ d/f1, we find
that

y2
y1

¼ 1�
d

f1
¼ 1� k ð6:31Þ

Since the effective focal length F of the combination is given by Eq. (3.42),
we may find that the focal length of the first element is

f1 ¼ F 1�
V2

V1ð1� kÞ

� �
ð6:32Þ

and the focal length of the second element is

f2 ¼ Fð1� kÞ 1�
V1ð1� kÞ

V2

� �
ð6:33Þ

We may see that, as the lenses are separated (k increased), the absolute value
of the power of both elements increases. However, the power of the negative
element increases faster. When k¼ 0.225 the absolute values of the power of
both lenses are equal.

6.2.4 Axial Chromatic Aberration Correction with One Glass

The axial chromatic aberration may also be corrected with only one type of
glass if either two separated lenses or a thick lens is made. Let us consider
first the case of two separated thin lenses, as shown in Fig. 6.5.

The system is corrected for axial chromatic aberration if the back focal
length is constant for all wavelengths. This is possible for a short range of
wavelengths if the derivative of the back focal length (or the back power)
with respect to the refractive index is made equal to zero. Thus, from Eqs.
(2.8) and (3.49) we may write

PB ¼
1

FB
¼

1

1=ðn� 1Þ	1 � d
þ ðn� 1Þ	2 ð6:34Þ

and taking the derivative of this power:

dPB

dn
¼

	1

½1� ðn� 1Þ	1d �
2
þ 	2 ¼ 0 ð6:35Þ
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we obtain

f2 ¼ �f1 1�
d

f1

� �2
¼ �f1½1� k�2 ð6:36Þ

where k has been defined as k¼ d/f1. If we use the expression for the
effective focal length, Eq. (3.46), we find that

f1 ¼
k

ðk� 1Þ
F ð6:37Þ

and

f2 ¼ �kðk� 1ÞF ð6:38Þ

As Kingslake (1978) points out, we see that for a positive system
the value of k has to be greater than one, making a very long system.
Since the separation is greater than the focal length of the first system, the
focus is inside the system, as shown in Fig. 6.5(a). This is called a
Schupmann lens.

In the case of a negative system (divergent), a long or compact system
may be obtained. The system is very compact with the positive lens in
the front, as in Fig. 6.5(b) or, with the negative system in the front, as in
Fig. 6.5(c). A long system may also be obtained, as shown in Fig. 6.5(d).

Let us now consider the case of a thick lens with zero axial chromatic
aberration. The procedure to design this lens is the same as for the system of
two separated thin lenses. The first step is to obtain the derivative of the

Figure 6.5 System with two separated elements without axial chromatic
aberration.
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back power of the thick lens in Eq. (3.37) and to make it equal to zero. Thus,
we may obtain

dPB

dn
¼

r1 � tðn� 1Þ2=n2
 �
r1 � tðn� 1Þ=n½ �

2
�

1

r2
ð6:39Þ

hence, the radii of curvature of the thick lens must satisfy the relation:

r2
r1

¼
1� kðn� 1Þ=n½ �

2

1� kðn� 1Þ2=n2
 � ð6:40Þ

where k has been defined as k¼ t/r1. Figure 6.6 shows this ratio of the radii
of curvature as a function of k in the interval from �1 to þ1.

It may be shown that this ratio is positive for values of k less than n2/
(n� 1)2� 9, which is an extremely thick lens. Using relation (6.38) and
Eq. (3.33), we may see that the effective focal length of a thick achromatic
lens is given by

F ¼ �
1� kðn� 1Þ=n½ �

kðn� 1Þ2=n2
 � r1 ð6:41Þ

and then, it is possible to show that this focal length is positive only if

k ¼
t

r1
�

n

n� 1
� 3 ð6:42Þ

assuming that the thickness t is always positive. Hence, the lens is corrected
for axial chromatic aberration and has a positive effective focal length only

Figure 6.6 Ratio r2/r1 for different values of k in a thick lens corrected for axial
chromatic aberration.
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if it is very thick. Then, the focus is inside of the lens body and the refracted
beam will be divergent anyway, after exiting the lens. Figure 6.7 shows some
possible configurations for this lens.

6.2.5 Spherochromatism

The magnitude of the spherical aberration is a function of the refractive
index, so it is reasonable to expect a variation in the spherical aberration
with the wavelength. The magnitude of the spherochromatism has been
defined as follows:

Spherochromatism ¼ SphLF � SphLC ¼ ðL0 � l0ÞF � ðL0 � l0ÞC

¼ ðL0
F � L0

CÞ � ðl0F � l0CÞ

¼ AchrLmarginal � AchrLparaxial ð6:43Þ

The transverse spherical aberration curves for three different
wavelengths are shown in Fig. 6.8. We may see as expected, that the

Figure 6.7 Thick lenses corrected for axial chromatic aberration: (a) k¼ 0.2;

(b) k¼� 0.2; (c) k¼ 5.0.

Figure 6.8 Transverse aberration for three colors in a system with spherochro-
matism.
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curves show a good achromatic correction only for a pair of wavelengths,
and that the spherical aberration correction is good only for one
wavelength. The effect of this aberration in catadioptric (a system formed
by lenses and mirrors) systems has been studied by Stephens (1948).

6.2.6 Conrady’s D–d Method of Achromatization

Spherochromatism, as explained in Section 6.2.5, is the change in the values
of the axial chromatic aberration with the height y of the ray. Thus,
correcting the axial chromatic aberration for paraxial rays does not mean
that the axial chromatic aberration for marginal rays is also zero. The best
choice is then to correct the axial chromatic aberration for the rays in the
zone at 0.7 of the semidiameter of the entrance pupil.

An equivalent way of looking at the same condition is as shown in
Fig. 6.9. A white light spherical wavefront entering the lens system, from an
on-axis object point is refracted passing through the lens. The blue (F ) and
red (C) colors produce two different wavefronts going out of the optical
system. Let us now assume that the two wavefronts touch each other at the
center and at the edge in order to minimize the axial chromatic aberration
for the whole aperture. This obviously means that the two wavefronts are
parallel to each other at about the 0.7 zone. Since the two wavefronts are
parallel, the two rays from this zone are traveling along the same path and
thus cross the optical axis at about the same point.

Summarizing, the optimum condition for the correction of the axial
chromatic aberration is obtained when the ray aberration for the rays from
the 0.7 zone is zero or, equivalently, when the wavefronts touch at the center
and at the edge.

Based on this result, Conrady (1960) suggested the D–d method of
achromatization. Using Fermat’s principle, the two wavefronts touch at the

Figure 6.9 Conrady’s D–d method to correct the achromatic aberration.
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center when the optical path is the same for the two paraxial rays with colors
C and F. Thus,

Xk
i¼0

dnC ¼
Xk
i¼0

dnF ð6:44Þ

and the wavefronts touch at the edge when the optical path is the same for
two marginal rays with these colors C and F:

Xk
i¼0

DnC ¼
Xk
i¼0

DnF ð6:45Þ

Now, we have that

Xk
i¼0

dnC ¼
Xk
i¼0

DnC ð6:46Þ

only if the two wavefronts touch each other at the edge, over the reference
sphere, which is not necessarily the case. Thus, subtracting Eq. (6.43) from
Eq. (6.44), we obtain

Xk
i¼0

ðD� d ÞnC ¼
Xk
i¼0

ðD� d ÞnF ð6:47Þ

or

Xk
i¼0

ðD� d ÞðnF � nCÞ ¼ 0 ð6:48Þ

In the practical computation of this expression we can make the
following approximations. The traveled distances are not exactly the same
for both colors because different colors follow slightly different paths, but
they may be considered equal. This approximation is quite accurate. Also,
to save some computation time, (D� d ) does not need to be calculated in
air, since (nF� nC)¼ 0 in a nondispersive medium like air or a vacuum.

As shown by Feder (1954), the relation between the axial transverse
aberration and the (D� d ) sum is given by

AchrT

F
¼ �

d
Pk

i¼0ðD� d ÞðnF � nCÞ
� �

dy
ð6:49Þ

The similarity between this expression and Eq. (1.76) is evident.
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6.3 SECONDARY COLOR ABERRATION

The focal length for the wavelengths between the two colors being selected
for achromatization is different from that for these colors. This is the
secondary color. The effect of the secondary color is so important that it has
been widely studied and described in the literature, e.g., by Cartwright
(1939), Christen (1981), Herzberger and McClure (1963), Smith (1959),
Stephens (1957, 1959, 1960), Willey (1962), and Wynne (1977, 1978). Since
the axial achromatic contribution of a thin lens for colors F and C, from
Eq. (6.21) and taking the longitudinal magnification factor into account,

AchrLC ¼ �
y2

u02f

nF � nC
ðn� 1Þ

¼ �
y2

u02fV
ð6:50Þ

by analogy, the axial achromatic contribution for colors l and F is

AchrLC�F ¼ �
y2

u02f

n� � nF
ðn� 1Þ

ð6:51Þ

Thus, by taking the ratio of the two expressions we find that

AchrLC�F ¼ AchrLC
n� � nF
nF � nC

� �
ð6:52Þ

The quantity in square brackets is defined as the partial dispersion ratio
from l to F, written as PlF. Thus,

P�F ¼
n� � nF
nF � nC

ð6:53Þ

Thus, by using Eq. (6.48), for an axially centered system of k surfaces
we have

AchrLC�Fk ¼ �
1

u02

Xk
i¼0

P�Fy
2

fV
ð6:54Þ

For an achromatic doublet with two thin lenses in contact, this expression
for the magnitude of the secondary axial color aberration becomes

AchrLC�F ¼ �F
P�F1 � P�F2
V1 � V2

� �
ð6:55Þ

© 2004 by Marcel Dekker, Inc.



This means that the doublet is apochromatic if the two partial
dispersions PlF1 and PlF 2 for the two glasses are equal. Figure A3.3 shows a
plot with many commercial optical glasses showing their value of the partial
dispersion versus the Abbe number. If an achromatic doublet is made with
two glasses represented in this graph, the axial secondary color aberration is
directly proportional to the slope of the straight line joining these two
points. Unfortunately, this slope is almost the same for any pair of glasses,
with the exception of some fluor–crown glasses and fluorite.

Another procedure to obtain the condition for apochromatism of a
doublet can be obtained from Eq. (6.29), which is satisfied for a wavelength
approximately between the C and F lines. If this expression is satisfied for all
wavelengths in this range, we can show that

d

d�

dn1=d�

dn2=d�

	 

¼ 0 ð6:56Þ

This condition (Perrin, 1938) is equivalent to the condition that the two
partial dispersions of the glasses should be equal. The problem of selecting
the glasses for apochromatism has also been studied by Lessing (1957,
1958).

6.3.1 Apochromatic Triplet

Another method to correct the secondary color is by means of the use of
three glasses forming a triplet. In order to have a focal length F for the
system, we write

1

F
¼

1

f1
þ

1

f2
þ

1

f3
ð6:57Þ

From Eq. (6.25), in order to correct for red (C) and blue light (F ), for
a system of three lenses we may write

1

f1V1
þ

1

f2V2
þ

1

f3V3
¼ 0 ð6:58Þ

and, from Eq. (6.54), in order to have the yellow (D) color at a common
focus with the red and blue light:

P1

f1V1
þ

P2

f2V2
þ

P3

f3V3
¼ 0 ð6:59Þ
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This system of three equations may be solved to obtain the following
focal lengths for the three lenses:

1

f1
¼

1

F

V1½P3 � P2�

�
ð6:60Þ

1

f2
¼

1

F

V2½P1 � P3�

�
ð6:61Þ

and

1

f3
¼

1

F

V3½P2 � P1�

�
ð6:62Þ

where Pi are the partial dispersions and � is the determinant:

� ¼

P1 V1 1
P2 V2 1
P3 V3 1

������

������ ð6:63Þ

We may see that the value of this determinant is the area of the triangle
connecting the points representing the three glasses in a diagram of the
partial dispersion P as a function of the Abbe number V. Thus, if this system
of equations is to have a solution, this triangle must not have a zero area.

6.4 MAGNIFICATION CHROMATIC ABERRATION

The magnification chromatic aberration, also frequently called lateral
chromatic aberration or lateral color, appears when the images produced by
different colors have different sizes on the observing plane. The effect of this
aberration is a blurring of the image detail for off-axis points. The farther
away from the axis, the greater the aberration (O’Connell, 1957).

To find an expression for the magnification chromatic aberration, let
us consider an optical system, as shown in Fig. 6.10. The paraxial sagittal
image for red light is at the point S on the red principal ray. The paraxial
sagittal image for blue light is at the point R on the blue principal ray. The
heights h0F and h0C may both be calculated with the Lagrange theorem. As
pointed out before, the magnification chromatic aberration arises because
the image magnification is different for the red and blue paraxial sagittal
rays. Due to the axial chromatic aberration, these two images are at
different planes. The magnification chromatic aberration, represented by

© 2004 by Marcel Dekker, Inc.



Mchr, is defined by the lateral distance SQ from the blue paraxial sagittal
focus to the red principal ray (or vice versa, by the distance PR�SQ).

Now, let us consider again Fig. 6.10 and define a quantity CDM
(chromatic difference of magnification), analogous to OSC. We assume in
this figure that the exit pupil position is at the same position for colors C
and F. This is not strictly true but it may be considered so in a first
approximation, if (l0F � l 0k) is large compared with the usually small distance
between the pupils for the two colors C and F. Thus, we may write

QM ¼
l0F � l 0k
l0C � l 0k

" #
h0C ð6:64Þ

Then, the quantity CDM is defined as

CDM ¼
QS

MQ
¼

MS�MQ

MQ
¼

MS

MQ
� 1

¼
h0F
MQ

� 1

ð6:65Þ

but substituting the value of MQ:

CDM ¼
l0C � l 0k
l0F � l 0k

" #
h0F
h0C

� 1 ð6:66Þ

Figure 6.10 Principal rays in a system with axial and magnification chromatic
aberration.
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or equivalently,

CDM ¼
l0C � l 0k
l0F � l 0k

" #
u0F
u0C

� 1 ð6:67Þ

Then, the transverse magnification or lateral chromatic aberration Mchr is
given by

Mchr0 ¼
l0C � l 0k
l0F � l 0k

" #
u0F
u0C

� 1

" #
h0 ð6:68Þ

which is valid for any object distance. For an object at infinity this
expression may be rewritten after some algebra and approximating l0C by
l 0F ¼ l 0K:

Mchr0 ¼
FF � FC

F
�

AchrL

l0k � l 0k

" #
h0 ð6:69Þ

where FC and FF are the effective focal lengths for red and blue light,
respectively. We see that this chromatic aberration depends both on the
axial chromatic difference and on the change in the magnitude of the
effective focal length with the color.

Let us now find the surface contribution to this aberration. From
Fig. 6.11 we may see that the magnification chromatic aberration is given by

MchrC ¼ SQ ¼ �RS ð6:70Þ

Thus, since RS is the axial elements aberration, by using Eq. (5.3), we may
obtain the magnification chromatic aberration as

Mchr ¼ �AchrLu0k
i

i

	 

¼ AchrT

i

i

	 

ð6:71Þ

As explained in Section 5.4, the angle ratio of the angles of refraction
for the principal and meridional rays increases linearly with the image height
for small fields. Thus, the primary (first order) magnification chromatic
aberration, as the primary (third order) coma, increases linearly with the
image height.
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The contribution to the final magnification chromatic aberration in
the whole optical system as

MchrC ¼ �AchrLCu0k
i

i

	 

¼ AchrTC

i

i

	 

ð6:72Þ

6.4.1 Stop Shift Equation

As in the case of the spherical aberration and the Petzval curvature, the axial
achromatic aberration remains unchanged with a shift in the stop:

AchrT � ¼ AchrT ð6:73Þ

In a similar way to the procedure used for the case of coma, using
Eq. (5.108), we may find for the magnification chromatic aberration:

MchrT � ¼ MchrTþ AchrTQ ð6:74Þ

6.4.2 Correction of the Magnification Chromatic Aberration

The magnification chromatic and the axial chromatic aberrations are closely
interrelated. They may appear in many different combinations, for example:

1. When both axial and magnification chromatic aberrations are
corrected, as illustrated in Fig. 6.12(a), the red and blue images are in the

Figure 6.11 Calculation of the magnification chromatic aberration.
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same plane and have the same size. It can be shown that in this case the
two meridional rays as well as the two principal rays for the two colors
(C and F ) follow the same paths. Also, the two exit pupils are at the same
position and have the same diameters. For the particular case when the
object is at an infinite distance, if this system is reversed as in Fig. 6.12(b),
after refraction, the red and blue rays follow the same path, parallel to the
optical axis.

2. If the axial chromatic aberration is corrected but not the
magnification chromatic aberration, as in Fig. 6.12(c), the red and blue
images are in the same plane but have different size. The two meridional
rays as well as the two principal rays follow different paths. Either the
positions for the exit pupils or their sizes or both are different. Considering

Figure 6.12 Red and blue meridional and principal rays in optical systems with

different amounts of axial and magnification chromatic aberrations.
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again the particular case when the object is at an infinite distance, if the
system is reversed as in Fig. 6.12(d), the exiting meridional rays will follow
different but parallel trajectories. The effective focal lengths for the red and
blue colors are equal.

3. Figure 6.12(e) shows the case when the lateral magnification is the
same for colors C and F, i.e., the two images have the same size but they
have different positions. The two refracted meridional rays have the same
slope. In this case the two chromatic aberrations are present.

4. Let us now consider the case when the angular magnification M is
the same for red and blue colors as illustrated in Fig. 6.12(f ), but neither the
axial chromatic nor the magnification chromatic aberrations are corrected.
The exiting principal rays for the two colors follow different but parallel
paths. The two exit pupils have the same size but different positions. Their
separation is frequently called the axial chromatic aberration of the pupil.
When their size is different the difference in their semidiameters is called the
magnification chromatic aberration of the pupil.

5. Finally, the system in Fig. 6.12(g) has not been corrected for axial
chromatic aberration but the magnification chromatic aberration is fully
corrected.

If the object is at an infinite distance and the red and blue images have
the same size, the effective focal lengths for blue and red light are equal
(FC¼FF). Thus, from Eq. (6.66), we may see that if FC¼FF the
magnification chromatic aberration is zero only if one of the following
conditions is satisfied:

1. The axial chromatic aberration is corrected.
2. The power of the system is zero (infinite effective focal length).
3. The exit pupil of the system is at infinity (l0k� lk), or in other

words, that the principal ray is parallel to the optical axis.

The effective focal length and the back focal length are equal in a thin
lens. Thus, in a thin achromatic lens both the axial achromatic and the
magnification chromatic aberrations are corrected. Another interesting
conclusion is that a system of two separated lenses has both chromatic
aberrations corrected only if the two components are individually corrected
for axial chromatic aberration.

6.4.3 Magnification Chromatic Aberration
Correction with One Glass

The magnification chromatic aberration may also be corrected, as the axial
chromatic aberration, with only one kind of glass, provided that the system
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is not thin. If the exit pupil is at infinity (back telecentric), or at a long
distance from the system compared with its focal length, the only necessary
condition is that the effective focal length of the system for the blue and
red colors be equal. Then, the system produces an image as illustrated in
Fig. 6.12(d). Let us consider two cases: (1) a system of two separated thin
lenses and (2) a thick lens.

From Eqs. (3.8) and (4.37), the effective focal length of a system of two
thin lenses separated by a distance d is given by

P ¼
1

F
¼ ðn� 1Þ	1 þ ðn� 1Þ	2 � d ðn� 1Þ2	1	2 ð6:75Þ

thus, differentiating with respect to n, we find that

dP

dn
¼ 	1 þ 	2 � 2d ðn� 1Þ	1	2 ¼ 0 ð6:76Þ

obtaining the condition:

d ¼
f1 þ f2

2
ð6:77Þ

Thus, the system is corrected for the magnification chromatic
aberration if the average of their focal lengths is equal to their separation
and the exit pupil is at infinity, as shown in Fig. 6.13.

Let us consider now the case of a single thick lens with thickness t,
corrected for magnification chromatic aberration, as shown in Fig. 6.14.
From Eq. (3.33) we find that

P ¼
1

F
¼ ðn� 1Þ	þ

ðn� 1Þ2

n
tc1c2 ð6:78Þ

thus, differentiating with respect to n, we find that

dP

dn
¼ 	þ

ðn2 � 1Þ

n2
tc1c2 ¼ 0 ð6:79Þ
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obtaining the condition:

t ¼
ðr1 � r2Þn

2

ðn2 � 1Þ
ð6:80Þ

We may see that the separation between the centers of curvature of
the two lens surfaces has to be equal to t/n2, as shown in Fig. 6.14. Finally,

Figure 6.13 System with two elements with the same glass, corrected for
magnification chromatic aberration. (a) The object is located at infinity and (b)

the intrance pupil in located at infinity.

Figure 6.14 A thick lens corrected for magnification chromatic aberration.
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we should remember that the magnification chromatic aberration in this
thick lens, is corrected with relation (6.77), and the system of two thin
lenses, is corrected using relation (6.74), only if the principal ray on the
image space is parallel to the optical axis, or in other words, if the exit
pupil is at infinity.
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7
The Aberration Polynomial

7.1 WAVE ABERRATION POLYNOMIAL

In a general manner, without assuming any symmetries, the shape of a
wavefront may be represented by the polynomial:

Wðx,yÞ ¼
Xk
i¼0

Xi
j¼0

cijx
jyi�j ð7:1Þ

including high-order aberration terms, where k is the degree of this
polynomial. In polar coordinates we define

x ¼ S sin y ð7:2Þ

and

y ¼ S cos y ð7:3Þ

where the angle y is measured with respect to the y axis, as shown in Fig. 7.1.
Then, the wavefront shape may be written as

WðS,yÞ ¼
Xk
n¼0

Xn
l¼0

Snðanl cos
lyþ bnl sin

lyÞ ð7:4Þ

where the cos y and sin y terms describe the symmetrical and antisymme-
trical components of the wavefront, respectively. However, not all possible
values of n and l are permitted. To have a single valued function we must
satisfy the condition:

WðS,yÞ ¼ Wð�S,yþ pÞ ð7:5Þ

Then, it is easy to see that n and l must both be odd or both even. If this
expression for the wavefront is converted into cartesian coordinatesW(x, y),
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it becomes an infinite series, unless l� n. Thus, if we want Eq. (7.4) to be
equivalent to the finite series in Eq. (7.1), we impose this condition, that is
almost always satisfied, except in some very rare cases related to rotational
shearing interferograms, as pointed out by Malacara and DeVore (1992).

Now, if we restrict ourselves to the case of a wavefront produced by an
axially symmetric optical system, with a point object displaced along the y
axis, the wavefront is symmetric about the tangential or meridional plane,
obtaining

WðS,yÞ ¼
Xk
n¼0

Xn
l¼0

S nanl cos
ly ð7:6Þ

As shown by Hopkins (1950), if we include in this expression the image
height h and impose the conditions:

WðS,y,hÞ ¼ WðS,� y,hÞ ð7:7Þ

because of the symmetry about the meridional plane, and

WðS,y,hÞ ¼ WðS,yþ p,� hÞ ð7:8Þ

because of the rotational symmetry of the lens system about the optical axis,
the wavefront expression may be shown to have only terms of the form:

S2, hS cos y, h2 ð7:9Þ

and their products. An interesting consequence is that the sum of the powers
of S and h is always an even number. The greater this number, the higher the
aberration order. The wavefront may be represented by a linear combina-
tion of these aberrations, with terms kwnl S

n hk cosly, where k is the power of

Figure 7.1 Polar coordinates for the ray on the entrance pupil of an optical

system.
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the image height h, n is the power of the aperture S, and l is the power of
cos y, with l� n. So, we obtain the wavefront W (S, y, h) as a sum of one or
more of the following terms:

Constant term (nþ k¼ 0)
0w00 Piston term (constant OPD)

First-order terms (nþ k¼ 2)

2w00 h
2 Parabolic field phase term

1w11 S h cos y Tilt about x axis (image y displacement)
with magnification change

0w20 S
2 Defocusing

Third-order or primary aberrations (nþ k¼ 4)

3w11 S h3 cos y Distortion

2w20 S
2 h2 Petzval curvature

2w22 S
2 h2 cos2y Primary astigmatism

1w31 S
3 h cos y Primary (circular) coma

0w40 S
4 Primary spherical aberration

Fifth-order aberrations (nþ k¼ 6)

2w40 S
4 h3 Secondary field phase term

1w51 S
5 h cos y Linear fifth-order coma

0w60 S
6, Fifth-order spherical aberration

etc. (7.10)

Each of these terms has a name, but not all are higher order terms.
Hopkins (1950) has proposed the following general names:

1. Spherical aberrations: terms independent of y (k¼ 0).
2. Comatic aberrations: terms with odd powers of cos y (k odd).
3. Astigmatic aberrations: terms with even powers of cos y (k even).

As an example, the fifth-order aberration 3w33 S
3 h3 cos3y is named an

elliptical coma because when added to the primary (circular) coma,
illustrated in Fig. 5.17, it transforms the circles into ellipses. This aberration
isolated (without the primary coma) is also sometimes called triangular
astigmatism by telescope makers, because it appears on-axis, due to a mirror
deformation and not as a result of an off-axis displacement of the image.

In the particular case of a centered optical system having only primary
aberrations, if the image height dependence is not considered, and the field
phase terms are neglected, the wavefront aberration polynomial may be
written in a more compact manner as described by Kingslake (1925–1926):

WðS,yÞ ¼ Fþ ES cos yþDS 2 þ CS 2ð1þ 2 cos 2 yÞ

þ BS 3 cos yþ AS 4 ð7:11Þ
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where S 2
¼ x 2

þ y 2. In cartesian coordinates we may write this poly-
nomial as

Wðx,yÞ ¼ Fþ EyþDðx 2 þ y 2Þ þ C ðx 2 þ 3y 2Þ

þ Byðx 2 þ y 2Þ þ Aðx 2 þ y 2Þ 2 ð7:12Þ

where:

A¼ 0w40 Spherical aberration coefficient
B¼ 1w31h Coma coefficient
C¼ 0.52w22 h

2 Astigmatism coefficient
D¼ 0w20� 0.52w22h

2 Defocusing coefficient
E¼ 1w11hþ 3w11 Tilt about the x axis (image

displacement along the y axis)
F ¼ 1w00 Constant or piston term (OPD)

The defocusing and the astigmatism coefficients have a different
definition, in order to have a 1:3 relation between the sagittal and the
tangential curvatures in the expression for the astigmatism. It is important
to notice that a positive transverse or longitudinal ray aberration means a
negative wavefront aberration and vice versa.

These wavefront aberration coefficients may be related to the Seidel or
primary aberrations by differentiation of the aberration polynomial in
Eq. (7.12) and using Eqs. (1.75) and (1.76), in order to obtain the transverse
aberration values, as follows:

A ¼ �
SphT

4rWy 3
¼ �

SphL

4y 4
¼ �

a

4y 2
ð7:13Þ

B ¼ �
ComaS
rWx2

¼ �
ComaT
3rWy 2

ð7:14Þ

C ¼ �
�fS

2r2W
¼ �

�fT

6r2W
ð7:15Þ

D ¼ �
�fA

2r2W
ð7:16Þ

and

E ¼ �
�h

rW
ð7:17Þ
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where rW is the radius of curvature of the reference sphere (distance from the
exit pupil to the gaussian image), �h is the transverse image displacement
along the y axis, measured with respect to the yellow gaussian image, and

�fA¼ axial focus displacement
�fS¼ sagittal focus displacement
�fT¼ tangential focus displacement

These image displacements are related to the sagittal and tangential
astigmatisms and to the Petzval curvature by

�fS ¼ AstLS þ Ptz� z ð7:18Þ

and

�fT ¼ AstLT þ Ptz� z ð7:19Þ

where z is the sagitta of the focal surface (if curved). We must remember that
the value of Ptz is referred to an ideally flat focal plane, and the focus
displacement is measured with respect to the actual curved focal surface.

7.2 ZERNIKE POLYNOMIALS

The actual wavefront deformations may be represented by means of many
types of analytical functions. However, the analytical function may not
exactly describe the actual wavefront. The fit error is the difference between
the actual wavefront W0 and the analytical wavefront W. We may then
define a quantity called the fit variance s2

f to characterize the quality of the
fit as follows:

s2
f ¼

R 1
0

R 2p
0 ðW 0 �W Þ

2r drdyR 1
0

R 2p
0 r drdy

¼
1

p

Z1

0

Z2p

0

ðW 0 �W Þ
2r dr dy ð7:20Þ

We may notice that the normalizing factor in front of the integral is 1/p.
When the fit variance is zero, the analytic function is an exact representation
of the real wavefront.

The mean wavefront deformation Wav including the normalizing
factor is defined by

Wav ¼
1

p

Z1

0

Z2p

0

Wðr,yÞr drdy ð7:21Þ
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All wavefront deformations are measured with respect to a spherical
reference. The center of curvature of this spherical wavefront is near the
gaussian image. Any displacement with respect to the gaussian image
appears as a wavefront tilt and any longitudinal displacement appears as a
defocusing term. However, the position of the center of curvature is not
enough to define completely the spherical reference, since the radius of
curvature is also needed. Any change in this radius of curvature introduces a
modification in the constant (piston) term. This last term is the only one that
does not affect the position of the image, which is the position of the center
of curvature, nor the image structure.

The wavefront variance s 2
w is defined as

s 2
w ¼

1

p

Z1

0

Z2p

0

ðWðr,yÞ �WavÞ
2rdr dy

¼
1

p

Z1

0

Z2p

0

W2ðr,yÞrdrdy�W 2
av ð7:22Þ

which represents the root mean squared (rms) value of the wavefront
deformations, with respect to the reference spherical wavefront. As we have
explained before, the reference spherical wavefront may be defined with any
value of the radius of curvature (piston term) without modifying the
position of the center of curvature or the image structure. Nevertheless, the
value of the wavefront variance may be affected by this selection. A
convenient way to eliminate this problem is to define the reference sphere in
the definition of the wavefront variance as one with the same position as
the mean wavefront deformation. This is the reason for subtracting Wav

in Eq. (7.22).
The most commonly used functions to represent analytically the

wavefront deformations are the Zernike polynomials, due to their unique
and desirable properties. We will now briefly describe this polynomial
representation (Malacara and De Vore, 1992; Wyant and Creath, 1992),
without restricting ourselves to the case of a wavefront with symmetry about
the y axis, as in the case of a wavefront produced by a centered system.
Zernike polynomials U(r, y) are written in polar coordinates and are
orthogonal in the unit circle (exit pupil with radius one), with the
orthogonality condition:

Z1

0

Z2p

0

U l
nU

l 0

n 0r drdy ¼
p

2ðnþ 1Þ
dnn 0dll 0 ð7:23Þ
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where r¼S/Smax. The Zernike polynomials are represented with two indices
n and l, since they are dependent on two coordinates. The index n is the
degree of the radial polynomial and l is the angular dependence index. The
numbers n and l are both even or both odd, making n� l always even,
as shown in Section 7.1, in order to satisfy Eq. (7.5). There are
(1/2)(nþ 1)(nþ 2) linearly independent polynomials Zl

n of degree � n, one
for each pair of numbers n and l. Thus, these polynomials can be separated
into two functions, one depending only on the radius r and the other being
dependent only on the angle y, as follows:

Ul
n ¼ Rl

n

sin

cos

� �
ly ¼ Un�2m

n ¼ Rn�2m
n

sin

cos

� �
ðn� 2mÞy ð7:24Þ

where the sine function is used when n� 2m> 0 (antisymmetric functions)
and the cosine function is used when n� 2m� 0 (symmetric functions).
Thus, in a centered optical system all terms with the sine function are zero
and only the cosine terms remain. The degree of the radial polynomial Rl

nðrÞ
is n and 0�m� n. It may be shown that jlj is the minimum exponent of
these polynomials Rl

n. The radial polynomial is given by

Rn�2m
n ðrÞ ¼ R�ðn�2mÞ

n ðrÞ

¼
Xm
s¼0

ð � 1Þs
ðn� sÞ!

s!ðm� sÞ!ðn�m� sÞ!
rn�2 s ð7:25Þ

All Zernike polynomials Un(r) may be ordered with a single index r,
defined by

r ¼
nðnþ 1Þ

2
þmþ 1 ð7:26Þ

The first 15 Zernike polynomials are shown in Table 7.1. Kim and
Shannon (1987) have shown isometric plots for the first 37 Zernike
polynomials. Figure 7.2 shows isometric plots for some of these
polynomials.

The triangular and ‘‘ashtray’’ astigmatisms may be visualized as the
shape that a flexible disk adopts when supported on top of three or four
supports equally distributed around the edge. However, according to
Hopkins’ notation, the triangular astigmatism is really a comatic term
(elliptical coma). It should be pointed out that these polynomials are
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Table 7.1 First 15 Zernike Polynomials

n m r Zernike polynomial Meaning

0 0 1 1 Piston term
1 0 2 r sin y Tilt about x axis

1 1 3 r cos y Tilt about y axis
2 0 4 r2 sin 2y Astigmatism with axis at� 45�

2 1 5 2r2� 1 Defocusing

2 2 6 r2 cos 2y Astigmatism, axis at 0� or 90�

3 0 7 r3 sin 3y Triangular astigmatism,
based on x axis

3 1 8 (3r3� 2r) sin y Primary coma along x axis

3 2 9 (3r3� 2r) cos y Primary coma along y axis
3 3 10 r3 cos 3y Triangular astigmatism,

based on y axis

4 0 11 r4 sin 4y Ashtray astigmatism,
nodes on axes

4 1 12 (4r4� 3r2) sin 2y
4 2 13 64r4� 6r2þ 1 Primary spherical aberration
4 3 14 (4r4� 3r2) cos 2y
4 4 15 r4 cos 4y Ashtray astigmatism,

crests on axis

Figure 7.2 Wavefront shapes for some aberrations: (a) piston term; (b) tilt;
(c) defocusing; (d) astigmatism; (e) coma; (f) spherical aberration.
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orthogonal by the definition in Eq. (7.23), only if the pupil is circular,
without any central obscurations.

Any continuous wavefront shape W(x,y) may be represented by a
linear combination of these Zernike polynomials, as follows:

Wðx,yÞ ¼
Xk
n¼0

Xn
m¼0

AnmUnm ¼
XL
r¼0

ArUr ð7:27Þ

Given a selected power L, the coefficients Ar are found by many of
several possible procedures, so that the fit variance defined in Eq. (7.20) is
minimized.

The advantage of expressing the wavefront by a linear combination of
orthogonal polynomials is that the wavefront deviation represented by each
term is a best fit (minimum fit variance) with respect to the actual
wavefront. Then, any combination of these terms must also be a best fit.
Each Zernike polynomial is obtained by adding to each type of aberration,
the proper amount of piston, tilt, and defocusing, so that the rms value s2

w,
for each Zernike polynomial, represented by Eq. (7.24) is minimized. As an
example, let us consider the term for spherical aberration, where we may see
that a term þ1 (piston term) and a term � 6r2 (defocusing) has been added
to the spherical aberration term 6r4. This term minimizes the deviation of
this polynomial with respect to a flat wavefront.

The practical consequence of the orthogonality of the Zernike
polynomials is that any aberration terms, like defocusing, tilt, or any
other, may be added or subtracted from the wavefront function W(x,y)
without losing the best fit.

Using the orthogonality condition in Eq. (7.23), the mean wavefront
deformation of each Zernike polynomial may be shown to be

Wav ¼
1

p

Z1

0

Z2p

0

Urðr,yÞr drdy

¼
1

2
; if : r ¼ 1

¼ 0; if : r > 1 ð7:28Þ

in other words, the mean wavefront deformation is zero for all Zernike
polynomials, with the exception of the piston term. Thus, the wavefront
variance, defined in Eq. (7.22) is given by

s2
W ¼

1

2

XL
r¼1

A2
r

nþ 1
�W2

av ¼
1

2

XL
r¼2

A2
r

nþ 1
ð7:29Þ
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where, from Eq. (7.25), n is related to r by

n ¼ next integer greater than
�3þ ½1þ 8r�1=2

2
ð7:30Þ

The aberrations of a centered optical system are symmetrical with
respect to the meridional plane, but this is not the general case, e.g., when
decentered or tilted surfaces are present. We may see that with Zernike
polynomials not only aberrations symmetrical with respect to the meridional
plane may be represented. For example, a coma or astigmatism aberration
with any orientation in the x–y plane may also be represented. A coma
aberration with a 100 inclination with respect to the x axis may be written as
a combination of coma along the y axis (r¼ 9) and coma along the x axis
(r¼ 8). As shown by Malacara (1983), these two terms may be combined in
a single term, where the orientation angle is a parameter and the magnitude
of the combined aberration is another parameter.

The wavefront deformation may be obtained by integration of the
transverse aberration values or by direct computation of the optical path
difference, as we will see in Chap. 9. Once some values of the wavefront are
determined, the analytic wavefront expression in terms of Zernike
polynomials may be obtained by a two-dimensional least squares fit as
shown by Malacara and DeVore (1992) and by Malacara et al. (1990).

7.3 WAVEFRONT REPRESENTATION BY AN ARRAY
OF GAUSSIANS

Frequently, a wavefront is measured or calculated only at some sampling
points, e.g., in phase-shifting interferometry and when calculating the
wavefront at an array of points, as in a spot diagram. The need for an
analytical representation of the wavefront may arise. In this case Zernike
polynomials may be employed. However, the description of a wavefront
shape can be inaccurate with a polynomial representation if sharp local
deformations are present. The largest errors in the analytical representation
occur at these deformations and near the edge of the pupil. In this case an
analytical representation by an array of gaussians may give better results, as
shown by Montoya-Hernandez et al. (1999). Let us assume that we have a
two-dimensional array of (2Mþ 1)� (2Nþ 1) gaussians with a separation d
as shown in Fig. 7.3. The height wnm of each gaussian is adjusted to obtain
the desired wavefront shape W(x, y) as follows:

Wðx,yÞ ¼
XM

m¼�M

XN
n¼N

wnme
�ððx�md Þ 2þð y�nd Þ 2Þ=r2 ð7:31Þ
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The Fourier transform F{W(x, y)} of the function W(x, y) represents
the spatial frequency content of this wavefront and it is given by

F Wðx,yÞ
� �

¼ pr2e ½�p2r2ð fx�fyÞ�
XM

m¼�M

XN
n¼N

wnme
�i 2 p dðmfx�n fyÞ ð7:32Þ

The separation d and the width r of the gaussians are two important
parameters to be selected. To understand how these values are found let us
consider a one-dimensional function g(x), which is sampled by a comb
function h(x) as shown in Fig. 7.4(a). We assume that the function g(x) is
band limited, with a maximum spatial frequency fmax. According to the
sampling theorem the comb sampling frequency should be less than half this
frequency fmax so that the function g(x) can be fully reconstructed.

The Fourier transform of the product of two functions is equal to the
convolution of the Fourier transforms of the two functions, as follows:

FfgðxÞhðxÞg ¼Gð f Þ �Hð f Þ ð7:33Þ

where the symbol � represents the convolution operation.
We see in Fig. 7.4(b) that in the Fourier or frequency space an array of

lobes represents each one the Fourier transforms of the sampled function. If
the sampling frequency is higher than 2fmax the lobes are separated without
any overlapping. Ideally, they should just touch each other. The function
g(x) is well represented only if all lobes in the Fourier space are filtered out
with the only exception of the central lobe.

To perform the necessary spatial filtering the comb function is now
replaced by an array of gaussians as in Fig. 7.5(a). In the Fourier space the

Figure 7.3 Sampling of a wavefront shape with a two-dimensional array of
gaussians.
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Fourier transform of these gaussians appears as a modulating envelope
that filters out the undesired lobes as in Fig. 7.5(b). To obtain a good filter-
ing the gaussians should have a width r approximately equal to the array
separation d.

The remaining parameter to be determined is the gaussian height wnm.
This can be done by an iterative procedure. To obtain the wavefront
deformation at a given point it is not necessary to evaluate all the gaussian
heights, since the contribution of the gaussians decay very fast with their
distance to that point. The height of each gaussian is adjusted until the

Figure 7.5 Sampling a one-dimensional function with an array of gaussians.

Figure 7.4 Sampling of a one-dimensional function with a comb function.
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function g(x) has the desired value at that point. A few iterations are
sufficient.

7.4 TRANSVERSE ABERRATION POLYNOMIALS

In a lens design or ray tracing program the transverse aberrations are more
easily obtained and analyzed than the wavefront aberrations. Given the
wavefront aberration, the transverse aberrations may be found, as we
described before, by differentiation of the aberration polynomial in Eq.
(7.12) and using Eqs. (1.75) and (1.76). Thus, we may find the transverse
aberrations along the x and y axes as

TAxðx,yÞ ¼ �½2ðDþ CÞ xþ 2Bxyþ 4Aðx2 þ y2Þx�rW ð7:34Þ

and

TAyðx,yÞ ¼ �½Eþ 2ðDþ 3CÞyþ B ð3y2 þ x2Þ þ 4Aðx2 þ y2Þy�rW

ð7:35Þ

where rW is the radius of curvature of the wavefront, as defined before. Let
us now study in more detail these transverse aberration functions.

7.4.1 Axial, Meridional, and Sagittal Plots

To analyze an optical system design, a fan of meridional rays and a fan of
sagittal rays is traced through the system, as shown in Fig. 7.6. The rays are
equally spaced on the entrance pupil, on the x and y axes. Off-axis as well as
axial fans of rays are traced. These plots are extremely important evaluation
tools in modern design. Any lens designer must understand them very well.

Axial plots—An axial fan of rays from an on-axis point object is traced
through the optical system. The heights of the rays on the entrance pupil are
selected at equal y intervals. The function describing the transverse
aberration TAy(0,y) versus the ray height y on the entrance pupil is
antisymmetric, due to the symmetry of the optical system about the
meridional plane, so, only the light rays on the positive side of the y axis are
necessary. Thus, from Eq. 7.35 we may write

TAyð0,yÞ ¼ a1yþ a3y
3 þ a5y

5

¼ �½2Dyþ 4Ay3�rW þ SphT5

¼ �fA
y

rW
þ SphTþ SphT5 ð7:36Þ
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where SphT5 is the fifth-order transverse spherical aberration. Only the
primary spherical aberration with a cubic term, the fifth-order spherical
aberration with a fifth power term, and the focus shift with a linear term are
present in this plot. Figure 7.7 shows an axial plot for a lens with spherical
and chromatic aberrations.

To analyze an axial plot a straight line tangent to the graph on the y
axis crossing is drawn, as shown in Fig. 7.8. The distance from a point P on
the straight line to the curve is the magnitude of the transverse spherical
aberration. The slope of the straight line is equal to �fA/rW.

Figure 7.6 Meridional and sagittal fans of rays traced through an optical system.

Figure 7.7 Axial plot for axial chromatic aberration.
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If two axial plots are obtained, one for blue light (F ) and one for red
light (C ), the axial chromatic aberration is given by

AchrL ¼ ð�fAÞF � ð�fAÞC ð7:37Þ

and the spherochromatism is given by

Spherochromatism ¼ SphLF � SphLC ð7:38Þ

Meridional plots—A meridional plot is obtained when the object is
off-axis and the rays are on the meridional plane. Then, the coordinate x on
the entrance pupil is zero, so TAx(x, y) becomes zero and TAy(x, y) is given by

TAyð0,yÞ ¼ a0 þ a1yþ a2y
2 þ a3y

3 þ a5y
5

¼ �½Eþ 2ðDþ 3CÞyþ 3By2 þ 4Ay3�rW þ SphT5

¼ �hþ ð�fA þ�fTÞ
y

rW
þ ComaT þ SphTþ SphT5 ð7:39Þ

We see that both the axial focus shift and the tangential surface curvature
produce a linear term in this plot. As in the axial plot, if a straight line,
tangent to the curve on the intersection of this plot with the y axis is drawn,
the slope is equal to (�fA þ �fT)/rW. Since �fA may be independently found
from an axial trace, the sagitta �fT for the tangential focal surface may be
determined. If the axial trace is made without any focus displacement (at the
gaussian plane), the slope of the meridional plot directly gives the sagitta of
the tangential focal surface, as follows:

�fT ¼ rW
dTAyð0,yÞ

dy
¼ 6 rWC ð7:40Þ

Figure 7.8 Axial plot for spherical aberration and defocusing.
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If the Petzval curvature is known, the tangential astigmatism may
be calculated with this value of the tangential focus displacement, using
Eq. (7.19).

On the meridional plot, the tangential coma produces a parabolic
term, the primary spherical aberration produces a cubic term, and the fifth-
order aberration a fifth degree term. We see that symmetrical as well as
antisymmetrical transverse ray aberrations appear and hence the plot does
not in general have any symmetry. Figure 7.9 shows meridional plots for
some aberrations.

The height of the graph at the point it crosses the y axis is equal to
the image displacement �h. If the rays are traced in yellow light, this
image height is the distortion. If two meridional plots are obtained, one with
red (C ) light and another with blue light (F ), the magnification chromatic
aberration is given by

Mchr ¼ �hF ��hC ð7:41Þ

Assuming that no high-order aberrations are present, from the
meridional plots we may obtain the magnitudes of the spherical aberration

Figure 7.9 Axial plots for some aberrations: (a) defocusing; (b) primary spherical
and distortion; (c) fifth-order spherical; (d) coma.
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and coma. Subtracting two symmetrically placed points on this plot we may
obtain

TAyð0,yÞ � TAyð0,yÞ

2
¼ a1yþ a3y

3 þ a5y
5

¼ �½2ðDþ 3C Þyþ 4Ay3�rW þ SphT5

¼ ð�fA þ�frÞ
y

rW
þ SphTþ SphT5 ð7:42Þ

and adding them we find that

TAyð0,yÞ þ TAyð0,� yÞ

2
¼ a 0 þ a2y

2

¼ �½Eþ 3By2�rW

¼ � hþ ComaT ð7:43Þ

Figure 7.10 shows meridional plots for some combination of aberrations.
In a more quantitative manner, to avoid a graphic estimation of the

slope of the plot, we may calculate the values of the transverse aberration at
six points, e.g., at the edge of the pupil (ym), at one-half of the radius (ym/2),

Figure 7.10 Meridional plots for some aberrations: (a) defocusing and primary

spherical; (b) primary and fifth-order spherical; (c) primary spherical coma and
distortion; (d) defocusing and coma.
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and at one-tenth of the radius ( ym/10) as follows:

TAyð0,ymÞ ¼ a1ym þ a3y
3
m þ a5y

5
m

TAyð0,ym=2Þ ¼
a1
2
ym þ

a3
8
y 3
m þ

a5
16

y 5
m

TAyð0,ym=10Þ ¼
a1
10

ym þ
a3
100

y 3
m þ

a5
1000

y 5
m ð7:44Þ

and then the coefficients a1, a3, a5 may be obtained from

a1 ¼
5 TAð0,ym=10Þ � TAð0,� ym=10Þ½ �

ym
�

a3
10

y2m �
a5

1000
y4m

a3 ¼
4 TAð0,ym=2Þ � TAð0,� ym=2Þ½ �

y3m
�
4a1
y2m

�
a5
8
y2m

a5 ¼
TAð0,ymÞ � TAð0,ymÞ½ �

2
�

a1
y4m

�
a3
y2m

ð7:45Þ

in an iterative manner, in no more than two or three passes, taking a3 and a5
equal to zero in the first equation and a5 equal to zero in the second
equation, in the first pass. In the same manner, we obtain for the even power
terms:

a0 ¼ TAð0,0Þ

a2 ¼
TAð0,ymÞ þ TAð0,� ymÞ

2y3m
�

a0
y2m

ð7:46Þ

Sagittal plots—These plots are obtained when the y coordinate on the
entrance pupil is equal to zero. The first plot is

TAxðx,0Þ ¼ �½2ðDþ C Þxþ 4Ax3�rW þ SphT5

¼ ð�fA þ�fSÞ
x

rW
þ SphTþ SphT5 ð7:47Þ

which detects and measures only antisymmetric transverse aberrations, like
spherical aberration and defocusing. The second sagittal plot is

TAyðx,0Þ ¼ �½Eþ Bx2�rW

¼ �hþ ComaS ð7:48Þ

showing only symmetric transverse aberrations like ComaS. In the first
term of the first sagittal plot we have the astigmatism and the focus
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shift represented. We may see that the amount of astigmatism may be
obtained by subtracting the linear terms (slope differences) of the merid-
ional TAy(0, y) and the sagittal TAx(x, 0) plots. In the second sagittal
plot TAy(x, 0) only the coma aberration is present. Figure 7.11 shows the
sagittal plots for an optical system with spherical aberration, coma, and
distortion.

Subtracting the meridional from the sagittal plots and making x¼ y,
we may also obtain

TAyð0,yÞ � TAxðx,0Þ ¼ �½Eþ 2Cy�rW

¼ �hþ�fS
y

rW
ð7:49Þ

Thus, with these plots we may obtain the magnitudes of all primary
aberrations. However, a more common approach in practice is to estimate
them from the primary aberration coefficients. The great advantage of these
plots over the primary aberration coefficients is that information about
high-order aberrations is also obtained.
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8
Diffraction in Optical Systems

8.1 HUYGENS–FRESNEL THEORY

As we pointed out in Chap. 7, light may be considered in a first
approximation as a bundle of rays, but the real nature is that of a wave.
Frequently, the geometrical optics approximation is not accurate enough to
describe and explain some phenomena or image structures. Then, it is
necessary to use diffraction theory. In this chapter we will briefly describe
this theory with a special emphasis on its applications to the study of
images. This subject has been treated in many books and journal
publications; see e.g., Born and Wolf (1964) and Malacara (1988).

There are many theories that explain diffraction phenomena, but the
simplest one is the Huygens–Fresnel theory, which is surprisingly accurate in
most cases. This theory assumes that a wavefront may be considered to emit
secondary wavelets as passing through an aperture as shown in Fig. 8.1.
This secondary Huygens wavelets were postulated by Christian Huygens in
1678 in Holland, but this theory was not enough to explain diffraction
effects quantitatively. Many years later, in 1815 in France, Agoustin Arago
Fresnel considered that Huygens wavelets must interfere with their
corresponding phase when arriving at the observing screen. This theory is
sufficient to explain all diffraction effects appearing in optical systems, with
the exception of the value of the resulting phase. However, the calculated
irradiance values for a point light source (plane wavefront) are extremely
accurate. Many other theories have been postulated to improve the results
of the Huygens–Fresnel model in some particular cases, but we do not need
them for our purposes.

In any diffraction experiment the important elements are the light
source, the diffracting aperture, and the observing screen. If any of the two
distances, the distance from the light source to the diffracting aperture or the
distance from the diffracting aperture to the observing screen, or both, are
finite, we have the so called Fresnel diffraction theory. If both distances are
infinite, then we have a Fraunhofer diffraction configuration. Let us now
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consider in the following sections some examples of Fresnel and Fraunhofer
diffraction phenomena.

8.2 FRESNEL DIFFRACTION

An interesting case of Fresnel diffraction is that of the diffraction by a
circular aperture, with the geometry depicted in Fig. 8.2. To add and
consider the interference of the Huygens wavelets with their proper phase at
the observing screen it is simple only at the observing point P on the optical
axis, due to the circular symmetry of the aperture. As we may see, all
Huygens wavelets emanating from a point on an imaginary thin ring
centered on the aperture would have the same phase on the observing point
P. Thus, the difference in phase between the light that passes the aperture
through its center (optical axis) and the light passing through this ring with
radius S is given by

d ¼ KS2 ð8:1Þ

with

K ¼
pðaþ bÞ

abl
ð8:2Þ

Figure 8.1 Diffraction of a wavefront of light passing through an aperture.
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where a and b are the distances from the point light source to the center of
the diffracting aperture and from this diffracting aperture to the observing
point, respectively. The contribution dI to the irradiance, at the point of
observation, of the light from the ring on the aperture is directly
proportional to its area. This area is directly proportional to the ring
width dS and its radius S. If we add these contributions to the irradiance,
like vectors, with an angle between them equal to their phase difference, we
find the curve in Fig. 8.3, represented mathematically by

dx ¼ A s dS cos d ð8:3Þ

Figure 8.2 Geometry for the diffraction of a spherical wavefront on-axis passing
through a circular aperture.

Figure 8.3 Vector addition of amplitude contributions on diffraction.
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and

dy ¼ A s dS sin d ð8:4Þ

Then, using Eq. (8.1) and integrating we may find that

x2 ¼ y�
a

2K

h i2
¼

A

2K

� �2
ð8:5Þ

This expression represents a circle with its center on the y axis and tangent
to the x axis. This means that if the aperture diameter is increased
continuously the irradiance at the point of observation on the optical axis is
going to oscillate, passing through values of maximum amplitude and values
with zero amplitude. Obviously, it is difficult to observe these oscillations
experimentally for a very large aperture, because the oscillations will be
quite rapid and decrease in amplitude as the aperture diameter becomes
larger, as shown in Fig. 8.4. Then, the curve in Eq. (8.5) instead of being a
circle, is a spiral, as shown in Fig. 8.5.

As an application of this theory, let us design a pinhole camera to
image the Sun. The optimum size for the pinhole is the minimum diameter
that produces the maximum irradiance at the point of observation. From
Fig. 8.5 we see that this diameter is such that the phase difference between
the ray traveling along the optical axis and the ray diffracted from the edge
of the aperture is equal to p/2. Thus, the radius S0 of this aperture is given by

S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab�

2ðaþ bÞ

s
ð8:6Þ

Figure 8.4 Amplitude variations along the radius of the circular aperture

illuminated with a spherical wavefront.
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Since the distance a from the Sun to the aperture is infinity, this expression
becomes

S0 ¼

ffiffiffiffiffiffi
b�

2

r
ð8:7Þ

The distance b determines the size and irradiance of the image of the
Sun. The size d of the image increases linearly with this distance b, while
the irradiance decreases inversely with this distance. Thus, given b, if the
angular diameter of the Sun is y in radians, the linear diameter d of the
image is

d ¼ yb ð8:8Þ

8.3 FRAUNHOFER DIFFRACTION

The most interesting type of diffraction, from the point of view of lens
designers is when both the distance from the light source to the aperture and
the distance from the aperture to the observation plane are infinity. This is
known as Fraunhofer diffraction.

In the case of lenses the diffracting aperture is the finite size of the lens
or, to be more precise, the finite diameter of the entrance pupil. The distance
from the light source to the aperture may not be infinite, but generally it is
long enough to be considered so. The distance from the aperture to the

Figure 8.5 Spiral representing the sum of the amplitude contributions on the
observing point for a spherical wavefront on-axis illuminating a circular aperture.
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image is not physically infinite, but is optically infinite, because the lens
focuses in a common point all rays in an incident beam of parallel
(collimated) rays, as shown in Fig. 8.6. Then, the observing plane may be
considered optically placed at infinity from the diffracting aperture. As a
typical and interesting example of Fraunhofer diffraction let us consider a
diffracting slit. The slit has a width 2a, it is in the plane x–y and centered on
the y axis as shown in Fig. 8.7.

From a direct application of the Huygens–Fresnel model of
diffraction, as illustrated in Fig. 8.7, the amplitude U(y) on a point in the
direction y over the observation screen is given by

UðyÞ ¼ A

Za

�a

ei k y sin y dy ð8:9Þ

Figure 8.6 Observing the diffraction image of a point object.

Figure 8.7 Geometry to calculate the Fraunhofer diffraction pattern.
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where A is a constant, and k is given by

k ¼
2p
l

ð8:10Þ

The exponential term is the phase of the ray passing through the point y
with respect to the ray passing through the origin. Integrating, we obtain

UðyÞ ¼ Aa
ei k y sin y � ei k y sin y

2 i ka sin y

� �

¼ U0
sin ðka sin yÞ

ka sin y

� �

¼ U0 sinc ðka sin yÞ ð8:11Þ

where U0 is a constant. The irradiance distribution I(y) is obtained by taking
the square conjugate of the amplitude function U(y). Since this amplitude
distribution is real, the irradiance distribution is

IðyÞ ¼ I0sinc
2
ðka sin yÞ ð8:12Þ

The function amplitude U(y) and its corresponding irradiance pattern
I(y) is plotted in Fig. 8.8. We may see that the first minimum (zero value) of
the irradiance, or dark fringe, occurs for an angle y given by

sin y ¼
�

2a
ð8:13Þ

As is expected, this angle decreases for wider slits.

Figure 8.8 Amplitude and irradiance patterns for Fraunhofer diffraction of a slit.

© 2004 by Marcel Dekker, Inc.



8.3.1 Circular Aperture

The most important aperture in Fraunhofer diffraction is the circular
aperture, since most lenses have this shape. In an analogous manner to the
slit, generalizing Eq. (8.9) for two dimensions, the Fraunhofer irradiance
distribution is given by

Uðyx,yyÞ ¼
A

p

Z

s

Z
ei k ðx sin yxþy sin yyÞ dxdy ð8:14Þ

where the factor 1/p has been placed in front of the integral, so that the
amplitude U(0,0) at the center of the image becomes one, when the
amplitude A of the incident light beam, as well as the radius of the exit pupil,
have also a unitary value. If we use polar coordinates, as shown in Fig. 8.1
and Eqs. (8.2) and (8.3), we may write for the polar coordinates of the
diffracted ray:

sin yx ¼ sin yr cosf ð8:15Þ

and

sin yx ¼ sin yr sinf ð8:16Þ

where sin yr is the radial angular distance and f is the angular coordinate.
Then, Eq. (8.14) may be written

Uðyr,fÞ ¼
A

p

Za

0

Z2p

0

ei k S sin yr cos ðy�fÞ SdS ð8:17Þ

Then, applying this expression to the circular aperture we find that

UðyrÞ ¼ 2U0
J1ðka sin yrÞ
ka sin yr

� �
ð8:18Þ

where a is the semidiameter of the circular aperture and J1(x) is the first-
order Bessel function. This irradiance distribution, called the Airy function,
shown in Fig. 8.9, is given by

IðyrÞ ¼ 4I0
J1ðka sin yrÞ
ka sin yr

� �2
ð8:19Þ
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The angular semidiameter yr of the first dark ring, also called the Airy
disk, is given by

sin yr ¼ 1:22
�

2a
¼ 1:22

�

D
ð8:20Þ

Thus, we may see that the angular resolution of a perfect lens depends only
on the diameter of the lens. The Airy disk has a semidiameter d/2 given by

d

2
¼ 1:22

F�

D
ð8:21Þ

where D is the aperture diameter and F is the effective focal length. If we
assume a wavelength l equal to 500 nm the Airy disk diameter becomes

d ¼ 1:22
F

D
¼ 1:22FN mm ð8:22Þ

thus, we may say that the Airy disk linear diameter is approximately equal
to the f-number FN in micrometers. The structure and characteristics of this
diffraction image has been studied in detail by Stoltzmann (1980) and
Taylor and Thompson (1958). Most of the light energy (about 84%) is in the
central nucleus (Airy disk), as shown in the radial distribution of energy
in Fig. 8.10.

8.3.2 Annular Aperture

Many instruments, like the Cassegrain telescope, have a central opaque disk
at the center of the entrance pupil. Then, the effective pupil is not a clear

Figure 8.9 Fraunhofer diffraction pattern produced by a circular aperture.
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disk, but an annular aperture. In this case the amplitude on the diffraction
image would be given by

UðyrÞ ¼ 2U0a
2
1

J1ðka1 sin yrÞ
ka1 sin yr

� �
� 2U0a

2
2

J1ðka2 sin yrÞ
ka2 sin yr

� �
ð8:23Þ

where a1 and a2 are the semidiameter of the aperture and the semidiameter
of the central disk, respectively. The obscuration ratio is defined as Z¼ a2/a1.
As the obscuration ratio increases, the diffraction image also increases its
size. Figure 8.11 shows the radial distribution of energy for different
obscuration ratios. The effect of an annular aperture has been studied by
Taylor and Thompson (1958) and Welford (1960).

Since the aperture shape and size have an influence on the image
structure, many authors have investigated many different ways of modifying
the entrance pupil to improve the image. This procedure is called
apodization. (Barakat, 1962a; Barakat and Levin, 1963a).

8.4 DIFFRACTION IMAGES WITH ABERRATIONS

In the presence of aberrations the image of the point object is not the
Airy function. In this case the image may be found by integration of the

Figure 8.10 Encircled energy in the Fraunhofer diffraction pattern of a circular
aperture.
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two-dimensional diffraction integral given by Eq. (8.17). However, in this
case amplitude A over the exit pupil is not constant and has to be inside the
integral sign. The amplitude A(S, y) including the phase distribution, may be
expressed as

AðS,yÞ ¼ EðS,yÞe ikWðS,yÞ ð8:24Þ

where E(S, y) is the amplitude distribution on the entrance pupil, which is in
general constant but not always. W(S,y) is the wavefront shape in the
presence of the aberrations in the optical system. Using polar coordinates,
this diffraction image in the presence of aberrations may be written as

Uðyx,yyÞ ¼
1

p

Z

s

Z
Eðx,yÞe ik ½ x sin yxþy sin yyþWðx,yÞ � dx dy ð8:25Þ

or, in polar coordinates, as

Uðyr,fÞ ¼
1

p

Za

0

Z2p

0

EðS,yÞe ik ½S sin yr cos ðy�fÞþWðS,yÞ� SdSdy ð8:26Þ

Figure 8.11 Encircled energy in the Fraunhofer diffraction pattern of a circular
aperture with an annular aperture.
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The aberrated images of a point source in the presence of aberrations
have a typical characteristic structure. Beautiful photographs may be found
in the book by Cagnet et al. (1962). The influence of the aberrations on the
images, taking into account diffraction, have been studied by several
authors (Barakat, 1961; Barakat and Houston, 1964a; Maréchal, 1947).
Figure 8.12 shows examples of diffraction images in the presence of primary
aberrations.

8.5 STREHL RATIO

When the aberrations are large the image size is larger than the Airy disk.
Since the amount of light forming the image is the same with and without
aberrations, the irradiance at the center of the images has to decreasewhen the
image size increases. From Eq. (8.26), assuming a constant amplitude
illumination over the entrance pupil, the amplitude at the center of the image
(optical axis) is

Uðyr,fÞ ¼
1

p

Z1

0

Z2p

0

eikWðr,yÞ rdrdy ð8:27Þ

where, as explained before, the quantity 1/p in front of the integral is a
normalization factor to make the amplitude equal to one when there are no
aberrations, and the entrance pupil has a semidiameter equal to one.

Figure 8.12 Fraunhofer diffraction images in the presence of aberrations.
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The Strehl ratio is defined as the ratio of the irradiance at the
center of the aberrated diffraction image to that of a perfect image and it is
given by

Strehl ratio ¼
1

p

Z1

0

Z2p

0

eikWðr,yÞ r drdy

������

������

2

¼
1

p

Z1

0

Z2p

0

cos kWðr,yÞ rdrdy

������

þ
i

p

Z1

0

Z2p

0

sin kWðr,yÞ rdrdy

������ ð8:28Þ

which, by assuming that W(r,y) is small compared with l, may also be
written as

Strehl ratio ¼
1

p

Z1

0

Z2p

0

½1�
1

2
ðkW Þ

2
þ ikW � rdr dy

������

������

2

ð8:29Þ

and transformed by separating each term into a different integral, to

Strehl ratio ¼ 1�
k2

2p

Z1

0

Z2p

0

W2 r drdyþ
ik

p

Z1

0

Z2p

0

W rdr dy

������

������

2

’ 1�
k2

2p

Z1

0

Z2p

0

W2 rdrdy

2
4

3
5

2

þ
2k

p

Z1

0

Z2p

0

W rdr dy

2
4

3
5

2

’ 1�
k2

p

Z1

0

Z2p

0

W2 r drdyþ k2W 2
av ð8:30Þ

However, from the definition of the wavefront variance s 2
W in Eq. (8.22), we

obtain

Strehl ratio ’ 1� k2s 2
W ð8:31Þ

We see that the Strehl ratio is a function only of the wavefront
variance, or the square of the rms wavefront deviation. This expression is
valid for Strehl ratios as low as 0.5.
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8.6 OPTICAL TRANSFER FUNCTION

Another method to specify the resolving power of an optical imaging system
is by means of the optical transfer function (OTF), described and studied by
many authors (Baker, 1992; Barakat, 1962b, 1964; Barakat and Houston,
1963a,b, 1965; Barakat and Levin, 1963a,b; Barnes, 1971; Hopkins, 1957;
Linfoot, 1955, 1956, 1964; Smith, 1963; Wolf, 1952). This function is defined
as the contrast in the image of a sinusoidal grating with a given spatial
frequency, defined by

o ¼
2p
L

ð8:32Þ

Let us assume that we form the image of an object containing a
wide spectrum of spatial frequencies and then analyze the frequency
content in the image of this object. Then, the OTF is the ratio of the
amplitude of a given spatial frequency in the image to the amplitude of
the component with the same spatial frequency in the object. If the object
contains all spatial frequencies with a constant amplitude, the OTF
becomes the Fourier transform of the image. Such an object is a point
object and its image is point spread function (PSF). Hence, the OTF is simply
the Fourier transform of the point spread function. If T(x,y) is the
amplitude (and phase) distribution on the exit pupil of the optical system,
called the pupil function (PF), from Eq. (8.14), the amplitude distribution on
the image of a point object, called the amplitude point spread function
(APSF), is given by

AðxF,yFÞ ¼
1

p

Z

s

Z
Tðx,yÞeikðxxF þ yyFÞ=rW dxdy ð8:33Þ

where (xF, yF) are the coordinates in the focal plane and rW is the radius of
curvature of the wavefront at the exit pupil. The integration is made over the
exit pupil area s. The pupil function T(x,y) may be written as

Tðx,yÞ ¼ Eðx,yÞeikWðx,yÞ ð8:34Þ

where E(x,y) represents the amplitude distribution (without any phase
information) over the exit pupil andW(x,y) is the wavefront deformation on
this pupil. The PSF is then given by the complex square of the amplitude in
the image:

SðxF,yFÞ ¼ AðxF,yFÞA
�ðxF,yFÞ ð8:35Þ
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and substituting here the value of A(x, y) we obtain

SðxF,yFÞ ¼
1

p2

Z Z
Tðx,yÞeikðxxFþyyFÞ=rW dx dy

�

Z Z
T �ðx,yÞe�ikðxxFþyyFÞ=rW dx dy ð8:36Þ

The variables x and y in the second integral are replaced by x0 and y0, in
order to move everything under the four integral signs, obtaining

SðxF,yFÞ ¼
1

p2

Z Z Z Z
Tðx,yÞ

� T �ðx0,y0Þe�ikðxFðx�x0Þ þ yFðy�y0ÞÞ=rW dx dy dx0 dy0 ð8:37Þ

Once the point spread function is computed by means of this
expression, or by any other procedure, the optical transfer function F(ox,
oy) may be obtained from the Fourier transform of the point spread
function S(x,y) as follows:

Fðox,oyÞ ¼

Z

�

Z
SðxF,yFÞe

iðoxxF,oyyFÞdxF dy ð8:38Þ

We see that in general this OTF is complex and, thus it has a real and an
imaginary term. The modulus of the OTF is called the modulation transfer
function (MTF) and represents the contrast in the image of a sinusoidal
periodic structure. The imaginary term receives the name of phase transfer
function (PTF) and gives information about the spatial phase shifting or any
contrast reversal (when the phase shift is 180�) in the image. Since the OTF
is the Fourier transform of a real function, it is hermitian. This means that
the real part is symmetrical and the imaginary part is antisymmetrical. In
other words,

Fðox,oyÞ ¼ F �ð � ox,oyÞ; Fðox,oyÞ ¼ F �ðox,� oyÞ ð8:39Þ

Due to the symmetry of the optical system about the meridional plane,
the point spread function satisfies the condition:

SðxF,yFÞ ¼ Sð�xF,yFÞ ð8:40Þ
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thus, we may show that F(ox,0) is real. If the PSF has the additional
property that

SðxF,yFÞ ¼ SðxF,� yFÞ ð8:41Þ

as in any rotationally symmetric aberration like defocusing, spherical
aberration, or astigmatism, the optical transfer function F(ox,oy) is real.

There is an alternative method to obtain the OTF if the pupil function
T(x,y) is known. To show this method let us assume that we know the
optical transfer function F(ox,!y); then, the PSF would be the inverse
Fourier transform as follows:

SðxF,yFÞ ¼
1

4p2

Z

s

Z
Fðox,oyÞe

iðoxxF þoyyFÞ dox doy ð8:42Þ

Now, except for a constant, Eqs. (8.37) and (8.42) are identical if we set

ox ¼
k

rW
ðx� x0Þ ð8:43Þ

oy ¼
k

rW
ð y� y0Þ ð8:44Þ

and

Fðox,oyÞ ¼
4r2W
k2

Z

s

Z
Tðx,yÞT �ðx�

rW
k

ox,y�
rW
k
oyÞ dx dy ð8:45Þ

We may now use this expression to compute the OTF by the
convolution of the pupil function. If the entrance pupil is illuminated with a
constant amplitude light beam we have E(x, y)¼ 1. Then, we may write

Fðox,oyÞ ¼
4r2W
k2

Z

s

Z
exp ik Wðx,yÞ �W x�

rW
k
ox,y�

rW
k

oy

� �� �
dxdy

ð8:46Þ

Figure 8.13 shows schematically the mutual relations between the main
functions described in this section. The constant in front of Eqs. (8.45) and
(8.46) is ignored and substituted by another such that the OTF at the origin
(ox¼oy¼ 0) is real and equal to one. This is equivalent to setting the total
energy in the PSF equal to one. This is the normalized OTF.
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An interesting case to study is when the optical system is free of
aberrations. Then, W(x,y)¼ 0, inside the exit pupil clear parts, and the OTF
is the common area of two images of the exit pupil laterally displaced with
respect to each other, as shown in Fig. 8.14. We may also see that the
maximum spatial frequency of this function is

ox ¼
kD

rW
ð8:47Þ

but using now the definition of spatial frequency in Eq. (8.32), we see that
the linear resolving power is given by

L �
�rW
D

ð8:48Þ

Figure 8.13 Transformation relations for some mathematical operations.

Figure 8.14 Two identical mutually displaced pupils for calculating the optical
transfer function.
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where D is the diameter of the exit pupil. This expression is almost the same
as Eq. (8.21).

Figure 8.15 shows some the normalized MTF for a perfect lens with
several amounts of defocusing. The OTF for an annular aperture has been
studied by O’Neill (1956).

The MTF off-axis does not necessarily have rotational symmetry.
Then, the normalized MTF has to be represented by a surface, as shown
in Fig. 8.16.

8.6.1 Optical Transfer Function and Strehl Ratio

From Eq. (8.42), the Strehl ratio is given by

Strehl ratio ¼ Sð0,0Þ ¼
1

4p2

Z

s

Z
Fðox,oyÞ dox doy ð8:49Þ

Figure 8.16 Isometric representation of a modulation transfer function for an
off-axis image.

Figure 8.15 Modulation transfer function for a perfect system and for systems
with a small amount of spherical aberration.
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and using now the property that the OTF is hermitian, and hence the real
part is symmetrical and the imaginary part is antisymmetrical, we may prove
that

Strehl ratio ¼
1

4p2

Z

s

Z
<½Fðox,oyÞ� dox do ð8:50Þ

where the symbol < represents the real part of a function.
The Strehl ratio and the wavefront variance are directly related to each

other by Eq. (8.31). Thus, we may conclude that the wavefront variance
determines the area under the surface representing the real part of the OTF.
On the other hand, since this MTF at high spatial frequencies increases with
this volume, the response of the system to such frequencies is determined
only by the wavefront variance.

8.7 RESOLUTION CRITERIA

There are many resolution criteria that can be used to specify the quality of
an optical system or to specify construction tolerances. Next, we will
describe a few of these criteria. An important variable when defining the
resolution of an optical system is the image detector being used. It is not the
same to detect the image with a photographic plate as with the eye.

If we have two close point objects, their images will also be close to
each other and their diffraction images may overlap. This overlapping may
be so large that only one image is observed. The problem then is to define
how close these images may be and still detect two separate images. There
are several different criteria, applicable to different conditions. For example,
if the two interfering images are completely coherent to each other, as in the
case of two stars in a telescope, the irradiances of the two images will add.
On the other extreme, if the object being imaged is illuminated with coherent
light, e.g., with a laser, the amplitudes will add to their corresponding phase,
producing a different result. There may also be intermediate situations, as in
a microscope, where the object is illuminated with partially coherent light.
One more variable that should be taken into account is the ratio of the
intensities of the two images.

One of these resolution criteria is the Rayleigh criterion (Barakat,
1965; Murty, 1945), which applies to incoherent images with equal
irradiances. It says that two images are just resolved when separated by
their Airy disk radius, as shown in Fig. 8.17. It should be pointed out here
that strictly speaking this Rayleigh criterion assumes that two neighboring
points in an image are incoherent to each other, so that their intensities and
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not their amplitudes have to be added. This means that the luminous object
has to be spatially incoherent or if it is opaque it has to be illuminated with a
spatially incoherent light beam. This hypothesis is clearly valid in the case of
telescopes and photographic cameras, but not completely in the case of
microscopes.

There is another resolution limit frequently used by astronomers, called
the Sparrow criterion (Sparrow, 1916). According to the astronomer Dawes,
two stars with the same intensity may be separated when observing with the
naked eye in a telescope, when they are actually closer than the Rayleigh
criterion suggests. This separation is about 0.84 the radius of the Airy disk.

Ideally, the wavefront in an optical system forming an image of a point
object should be spherical. Even if this wavefront is spherical the image is
not a point but a diffraction image with some rings around, known as the
Airy disk, as we have studied before. This diffraction image finite size limits
the resolution of perfect optical systems. Lord Rayleigh in 1878 pointed out
that the diffraction image remains almost unchanged if the converging
wavefront deviates from a perfect sphere by less than about one-quarter of a
wavelength. This is the Rayleigh limit, which is widely used by lens designers
as an aid in setting optical tolerances.

It has been found that wavefront deviations of up to twice the
Rayleigh limit in the central disk in the diffraction image do not
substantially increase the image in diameter. However, the image contrast
may decrease due to the presence of a halo around the central image.

The local wavefront deformations can be smaller than one-quarter of
the wavelength, but the transverse aberrations (wavefront slopes) can be
very high. This is why halos are produced. This quarter of a wave criterion is
quite useful, but with very complicated wavefront deformations a better
image analysis may be necessary. These effects have been studied by
Maréchal and Françon (1960). The Maréchal criterion (1947) establishes
that the image degradation due to the presence of aberrations is not

Figure 8.17 Rayleigh and Sparrow resolution criteria: (a) Rayleigh criterion;
(b) Sparrow criterion.
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noticeable when the Strehl value is greater than 0.8. (See Fig. 8.18). This
Strehl value corresponds to an rms wavefront deformation of about l/14.
The Maréchal criterion coincides with the Rayleigh criterion for the case of
spherical aberration.

When the transverse aberrations are large compared with the Airy
diffraction image, the effects of diffraction may be neglected. In this case,
tolerances are frequently based on the OTF.

8.8 GAUSSIAN BEAMS

A gaussian beam is one in which its amplitude and irradiance have a
distribution with rotational symmetry and decreases from the optical axis to
the edge with a gaussian shape, as shown in Fig. 8.19. Then, the amplitude
would be represented by

AðrÞ ¼ E0e
�r2=w2

ð8:51Þ

and the irradiance by

IðrÞ ¼ I0e
�2r2=w2

ð8:52Þ

Figure 8.18 Strehl resolution criterion

Figure 8.19 Gaussian irradiance distribution across a gaussian beam.
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where r is the distance from the point being considered to the optical axis
and, w is the value of r when the irradiance is 1/e2 of its axial value. These
beams appear in the light beams emited by gas lasers, and have very
interesting and important properties that have been studied by Kogelnik
(1959, 1979). A spherical convergent gaussian wavefront becomes flat and
gaussian at the focus. This is easy to understand if we remember that the
Fourier transform of a gaussian function is also a gaussian function. After
going through this focus the wavefront diverges again with an spherical
shape and a gaussian distribution of amplitudes. As shown in Fig. 8.20, the
beam is perfectly symmetrical, with the center of symmetry at the focus. This
focus or minimum diameter of the beam is called a waist. The semidiameter
w0 of the waist is related to the angle of convergence y by

y ¼
�

pw0
ð8:53Þ

Far from the waist or focus, the center of curvature of the wavefront is
at the center of this waist, but as the wavefront gets closer, it becomes
flatter. Finally, at the waist, it is perfectly flat. If we define the Rayleigh
range as

zR ¼
w0

y
ð8:54Þ

then, at a distance z from the waist the radius of curvature R of the
wavefront is

R ¼ zþ
p2w0

4

�2z
¼ zþ

zR
2

z
ð8:55Þ

Figure 8.20 Propagation of a gaussian beam.
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We then see that the center of curvature of the wavefront is at a distance
from the waist given by the last term in this expression. This center of
curvature is at the waist only when

z � zR ¼
w0

y
ð8:56Þ

The semidiameter w at a distance z from the waist is given by

w ¼ w0
2 þ

�2z2

p2w0
2

� �1=2
¼ w0 1þ

z2

zR2

� �1=2
ð8:57Þ

8.8.1 Focusing and Collimating a Gaussian Beam

Gaussian beams with a large angle of convergence are focused in a small
spot, and beams with a small angle of convergence are focused in a large
spot. The minimum spot size is at the gaussian waist, not at the focus of the
lens. The focus of the lens is at the center of curvature of the wavefront, at a
distance R from this wavefront.

Due to diffraction a flat wavefront with finite extension cannot keep
its flatness along its traveling path, due to diffraction effects. A wavefront
with a round shape and constant amplitude will diffract, producing a
divergent wavefront with a complicated shape. A flat gaussian beam is also
affected by diffraction, producing a divergent beam. In this case, however,
the wavefront is always spherical, with the center of curvature getting closer
to the center of the initial flat wavefront (waist) as it travels.

Figure 8.21 Focusing and collimation of a gaussian beam: (a) Focusing;
(b) collimating.
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The divergence angle will also approach the value given by Eq. (8.33)
at distances far from the waist. Thus, the divergence is larger for smaller,
initially flat, wavefronts. If a gaussian beam is collimated with a lens,
another gaussian beam with its waist at the exit pupil of the lens is produced.
The center of curvature of the entering wavefront must be at the focus of the
lens, not at the waist, as shown in Fig. 8.21. To reduce the divergence angle,
the diameter of the waist must be increased by means of an inverted
telescope.
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Maréchal, A., ‘‘Etude des Effets Combine de la Diffraction et des Aberration

Geometriques sur l’Image d’un Point Lumineux,’’ Rev. Opt., 9, 257–297
(1947).
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9
Computer Evaluation of Optical
Systems

9.1 MERIDIONAL RAY TRACING AND STOP POSITION
ANALYSIS

In general, the full real aperture of a lens system has to be greater than the
diameter of the stop, as shown in Fig. 9.1, in order to allow light beams from
off-axis object points to enter the lens. On-axis, the effective clear aperture is
smaller than the lens. If we obtain the meridional plot for the full lens
aperture with an enlarged stop in contact with the first surface of the lens, or
at any other selected place, we obtain a graph like that in Fig. 9.1. After
placing the stop with the correct diameter in its final place, only one region
of this graph will be used. This kind of enlarged meridional plot is very
useful in many systems to determine the best position for the final stop and,
by analyzing it, we may obtain the following information:

1. The height TA0 is the lateral image displacement due to distortion.
2. The difference in heights TA0 for several colors is the magnifica-

tion chromatic aberration, if plots for different wavelengths are
obtained.

3. The slope of the plot in the region selected is an indication of a
local off-axis meridional defocusing or, in other words, the
tangential field curvature.

4. The curvature of the plot is an indication of the magnitude of the
tangential coma.

5. An S-shaped plot (cubic component) represents the spherical
aberration.

6. At the minimum M1 or at the maximum M2 of this plot the
tangential field is flat (zero slope), but there is coma (curvature of
the plot).

7. The maximum and minimum regions may have different amounts
of distortion if their plot heights are different.
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8. At the inflection point I there is no coma (curvature zero), but
there is tangential field curvature (slope different from zero).

9. If the inflection point has zero slope the tangential field is flat and
there is no coma. This condition may be frequently obtained by
bending of the lenses.

Once the final principal ray height has been selected from examination
of this plot, the final position for the stop has to be calculated by any desired
procedure. One method is by tracing a meridional ray and the preliminary
principal ray with the enlarged stop and then using the stop shift relation in
Eq. (3.63). A position for the stop has to be found such that the principal
ray at the preliminary enlarged stop moves to the desired height. The y– �yy
diagram described in Chap. 3 may also be used to perform the stop shift.
For the particular case of a single thin or thick lens with an object at infinity,
the preliminary enlarged stop may be placed at the first surface, as shown in
Fig. 9.2. Then, the final stop position may be found from the selected final
principal ray height. If this ray height is positive, the final stop is in front of
the lens, at a distance from the front surface, given by

lF ¼ �F
yF
h0

ð9:1Þ

or, if the ray height is negative, the pupil is in the back of the lens, at a
distance from the last surface, given by

lB ¼ FB �
2F� FF

1� ð yB=h
0Þ

 � ð9:2Þ

Figure 9.1 Meridional plot of an optical system using an enlarged stop.
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where F is the effective focal length, FF is the front focal length, FB is the
back focal length and h0 is the image height.

9.2 SPOT DIAGRAM

The prediction of the image quality of optical systems can be performed with
several different procedures, as will be explained in this chapter (Wetherell,
1980). If the transverse aberrations are much larger than the Airy disk
diameter, so that we may neglect diffraction effects, the geometrical or ray
evaluation is enough to predict the actual performance of the lens system.
One of several geometric methods is the spot diagram. A rectangular or polar
array of rays is traced through the entrance pupil of the optical system, as
shown in Fig. 9.3. Then, the intersection of these rays with the focal plane is
plotted. This plot, called the spot diagram (Herzberger, 1947, 1957; Linfoot,
1955; Lucy, 1956; Miyamoto, 1963; Stavroudis and Feder, 1954), represents
the values of the transverse aberrations TAx and TAy for each ray. Due to the
symmetry of the system the spot diagram is also symmetrical about the y axis.

The spot diagrams give a visual representation of the energy
distribution in the image of a point object. Figure 9.4 shows some spot
diagrams traced with a rectangular array of rays. If several spot diagrams are
obtained, for different colors, the chromatic aberration may also be
evaluated.

9.2.1 Geometrical Spot Size

The spot diagram data may be used to obtain useful information regarding
the quality of the image, as the geometrical spot size of the image and the

Figure 9.2 Calculation of the stop position after using the enlarged stop.
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radial energy distribution, as we will now describe. With the definition of the
radial transverse aberration as

TA2
r ¼ TA2

x þ TA2
y ð9:3Þ

Figure 9.4 Spot diagrams for some primary aberrations, using polar and

rectangular arrays: (a) spherical aberration; (b) coma; (c) astigmatism.

Figure 9.3 Rectangular and polar arrays of rays on the entrance pupil, to obtain
the spot diagram: (a) rectangular array; (b) polar array.
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where we must remember that these ray transverse aberrations TAx and TAy

are measured with respect to the gaussian image, for the yellow line (d or e).
The average transverse aberration is the height of the centroid of the
aberrated image, also measured with respect to the gaussian image. Taking
into account the symmetry about the meridional plane, it may be written as

TA ¼

PN
i¼1 TAy

N
ð9:4Þ

where the sum is performed over all the rays in the spot diagram. The
geometrical spot size is easily defined in terms of the transverse aberrations,
by the variance of the transverse aberrations, which is the square of the root
mean square spot size TArms, as follows:

TA2
rms ¼

PN
i¼1½TA

2
x þ ðTAy � TAÞ2�

N
¼

PN
i¼1 TA

2
r

N
� TA

2
ð9:5Þ

In this expression, the reference for the calculation of the image size is
its centroid, which, in general, is not at the gaussian image. If the reference is
the gaussian image, the last term must be made equal to zero. The accuracy
of expressions (9.4) and (9.5) is critically dependent on two factors, as shown
by Forbes (1988). The first one is the type of array being used to trace the
rays for the spot diagram, and the second is the number of rays. The exact
result is obviously obtained only when the number of rays tends to infinity.

If we have an infinite number of rays, so that the transverse aberration
TAr(r,y) is a continuous function, Eqs. (9.4) and (9.5) become

TA ¼
1

p

Z1

0

Z2p

0

TAyðr,yÞ r drdy ð9:6Þ

and

TA2
rms ¼

1

p

Z1

0

Z2p

0

½TA2
x þ ðTAy � TAÞ2� r drdy

¼
1

p

Z1

0

Z2p

0

TA2
rðr,yÞ rdr dy� TA

2
ð9:7Þ

This expression may be accurately evaluated using gaussian quad-
rature integration with a procedure by Forbes (1988), to be described here.
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Now, let us place the rays on the entrance pupil in rings, all with the same
number of rays, with a uniform distribution given by

yk ¼
pðk� 1=2Þ

Ny
ð9:8Þ

where Ny is the number of points in one-half of a circle. It is easy to see that
the angular dependence of the transverse aberration function TAr(r,y) is
very smooth. This integral may be accurately represented by

TA2
rms ¼

2

Ny

XNy

k¼1

Z1

0

TA2
rðr,ykÞ r dr� TA

2
ð9:9Þ

On the other hand, for a centered system the transverse aberration
function TAr(r,y) is symmetrical about the meridional plane; hence, in an
analogous manner to the proof in Section 7.1 for the wavefront aberrations,
we may also prove that this transverse aberration function contains only
terms with r2 and with r cos y. Also, because of this symmetry, all odd
powers of cos y add to zero in the angular sum. This means that we have to
consider in this integral only even powers of r. If we define for convenience
a new variable s¼ r2, we obtain

TA2
rms ¼

XNy

k¼1

Z1

0

1

Ny
TA2

rðs
1=2,ykÞds� TA

2
ð9:10Þ

The gaussian method of integration permits us to evaluate a definite
integral as follows:

Z1

0

fðxÞdx ¼
XN
j¼1

wj f ðxjÞ ð9:11Þ

where f(x) is a polynomial whose value has been sampled at N points. The
gaussian sampling positions, xi and wi, are the gaussian weights selected to
make the integral exact when the degree of the polynomial is less than or
equal to 2N� 1. Thus, using this method to evaluate the radial integral in
Eq. (9.10), using again the normalized radius r instead of s1/2, we find that

TA2
rms ¼

XNy

k¼1

XNr

j¼1

wj ðrÞTA2
rð rj,ykÞ � TA

2
ð9:12Þ

with Nr being the number of rings where the gaussian sampling points are
located. If we trace the spot diagram with only nine rays, with Nr¼ 3 and
Ny¼ 3, as shown in Fig. 9.5(a) and suggested by Forbes (1988), we obtain an
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accuracy of 1%. The gaussian sampling points and the weights for this ray
configuration are presented in the Table 9.1. The weights wj (r) have been
normalized so that Ny[w1(r)þw2(r)þw3(r)]¼ 1.

This distribution of the rays on the entrance pupil just described is not
totally satisfactory, because the central ray in the pupil or principal ray is
not included. Forbes has described an alternative scheme called Radau
integration that solves this problem. The distribution of rays in the pupil for
the use of the Radau integration is shown in Fig. 9.5(b). The Radau
constants to be used in Eq. (9.12) are listed in Table 9.2, where the weights
wj (r) have been normalized so that Ny [w1(r)þw2 (r)þw3 (r)þw4 (r)]¼ 1.

Figure 9.5 Distribution of rays in the pupil for Radau integration: (a) Gauss
integration; (b) Radau integration.

Table 9.2 Radau Integration
Parameters for Nr¼ 4 and Ny¼ 3

j wj (r) rj

1 0.02083333 0.00000000

2 0.10961477 0.46080423
3 0.12939782 0.76846154
4 0.73487407 0.95467902

Table 9.1 Gaussian Integration

Parameters for Nr¼ 3 and Ny¼ 3

j wj(r) rj

1 0.09259259 0.33571069
2 0.14814815 0.70710678

3 0.09259259 0.94196515
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9.2.2 Radial Energy Distribution

The radial (or encircled) energy distribution may easily be obtained from the
spot diagram by counting the number of points in the diagram, inside of
circles with different diameters (Barakat and Morello, 1964), as illustrated in
Fig. 9.6. This is a one-dimensional result, but very valuable for estimating
the resolving power of the lens system.

9.3 WAVEFRONT DEFORMATION

The wavefront shape may be obtained in many ways, as will be described in
the following sections.

9.3.1 Calculation from Transverse Aberrations Data

One method to calculate the wavefront shape is by numerical integration of
the transverse aberrations in the spot diagram, using relations in Section 5.7
and the trapezoidal rule, as in the Hartmann test (Ghozeil, 1992).

The integration with the trapezoidal rule is exact only if the only
aberrations present are tilt, defocusing, and astigmatism. If there is spherical
aberration, coma, and high-order aberrations the results may have a large
error. In the Hartmann test this problem is greatly reduced by measuring the
transverse aberration to be integrated, with respect to the ideal aberrated
position. In lens design evaluation the analogous procedure consists of the
following steps:

1. The aberration coefficients are calculated from meridional and
sagittal plots using data contained in the spot diagram, as
described in Chap. 8. These coefficients give us the wavefront
shape assuming that only primary aberrations plus the fifth-order

Figure 9.6 Computing encircled energy from spot diagrams.
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spherical aberration are present. To improve these results the
following steps are then performed.

2. The spot diagram corresponding to these aberration coefficients is
calculated, by differentiation, in order to obtain the transverse
aberrations.

3. The transverse aberrations on the actual spot diagram are
subtracted from the transverse aberrations on the calculated
spot diagram.

4. The transverse aberration differences are then integrated to obtain
the high-order wavefront distortions. For an integration along a
line parallel to the x axis we may write

Wnm ¼
s
2rW

Xi¼n

i¼i1

½TAðxi�1,ymÞ � TAðxi,ymÞ� ð9:13Þ

and for an integration along a line parallel to the y axis.
5. These high-order wavefront distortions are added to the preli-

minary wavefront calculated in the first step. This is the desired
wavefront shape.

9.3.2 Direct Calculation of the Optical Path

The wavefront deformation in an optical system can be calculated by tracing
rays through the optical system (Plight, 1980). In this method the optical
path traveled by the light rays through the optical system is directly
obtained when doing the ray tracing. By Fermat’s principle the optical path
traveled by the light rays from the point object to the point image is a
constant if the image is perfect. Since the image is not perfect, not all rays go
to the ideal point image and the refracted wavefront is not spherical, but has
some deformations as in the example in Fig. 9.7.

To calculate the wavefront deformation we first define the position
and radius of curvature of a reference sphere. The natural selection is a
sphere tangent to the exit pupil, with center of curvature at the gaussian

Figure 9.7 Wavefront from an optical system.
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image, as shown in Fig. 9.8. Then, by ray tracing, the rays are traced from
the object point (not shown in the figure) to point A on the reference sphere,
and the added optical path is calculated. By Fermat’s principle, the optical
path from the point object to point B on the wavefront is equal to the optical
path from the point object to point C on the intersection of the principal ray
with the wavefront. Thus, the wavefront deformation is given by the optical
path along the principal ray to the point C on the wavefront, minus the
optical path along the traced ray, to the point A on the reference sphere.

This method has been described by Welford (1986) and used by
Marchand and Phillips (1963). The total optical path OPtotal through the
system from an off-axis point object to the reference wavefront is

OPtotal ¼
Xk
j¼0

OPj ð9:14Þ

where the first surface is number zero and the reference wavefront is surface
number k. The optical path OPj between surface j and surface jþ1, as shown
in Fig. 9.9, using Eq. A4.6, is given by

OPj ¼ n2j
Zjþ1 � Zj þ tj

Mj
ð9:15Þ

where, as defined in Section A4.1.1, Mj is the third cosine director multiplied
by the refractive index, and Zj and Zjþ1 are the sagittas for the first and
second surfaces.

Figure 9.8 Computing the wavefront shape from optical paths.
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The wavefront shape is then found by subtracting from this optical
path the optical path along the principal ray as follows:

Wðx,yÞ ¼ OPtotalðx,yÞ �OPtotalðx,yÞ

¼
Xk
j¼0

n2j
Zjþ1 � Zj þ tj

Mj
�
Zjþ1 � Zj þ tj

Mj

� �
ð9:16Þ

where as usual, the bar indicates that the variable is for the principal ray.
In general, the magnitudes of these two numbers to be subtracted are

as large as tj and must be computed with an accuracy of a small fraction of a
wavelength. This implies computing numbers with a precision of at least
eight to nine digits, which is not easy. As suggested by Welford (1986) to
solve this problem we may write

1

M
�

1

M
¼

M�M

MM
¼

M
2
�M2

MMðMþMÞ

¼
K2 þ L2 � K

2
� L

2

MMðMþMÞ
ð9:17Þ

where we have used the relation K2
þL2

þM2
¼ n2. Then, substituting this

result into Eq. (9.16) we finally obtain

Wðx,yÞ ¼
Xk
j¼0

n2j tj
K2

j þ L2
j � K

2

j � L
2

j

MjMjðMj þMjÞ
þ
Zjþ1 � Zj

Mj
�
Zjþ1 � Zj

Mj

" #

ð9:18Þ

Figure 9.9 Computing optical paths.
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In this manner, the accuracy is greatly increased to an acceptable
magnitude, because now the difference between very large numbers is not
taken. Instead, operations with relatively small numbers are involved.

9.3.3 Conrady’s Method to Compute Wavefront Deformation

Conrady (1960) proposed another method to compute the wavefront
deformation, based on results from ray tracing of an axial beam of rays. His
method is capable of great accuracy, but has two problems, namely, that it
applies only on-axis and to centered systems with rotational symmetry and
that it requires a lot computation.

To describe this method, let us consider Fig. 9.10, where a meridional
ray has been refracted in a spherical surface with vertex A, at point P. Let us
assume that the incident wavefront is perfectly spherical, with center of
curvature at B. Then, a point O is on the intersection of the incident ray and
this wavefront. Thus, the optical path difference (OPD) introduced by this
surface is

OPD ¼ n0AB 0 � nOP� n0PB 0 ð9:19Þ

We trace a circle passing through P, and a point E, with center at B0 (this
circle represents the refracted wavefront only if there is no OPD
introduced). Then, the optical path difference may also be expressed by

OPD ¼ n0AE� nOP ð9:20Þ

Figure 9.10 Conrady’s method to compute the wavefront on-axis for a centered
optical system.
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Now, we trace a circle through P and a point P0, with center at B.
Then, since OP is equal to AP0 we may see, observing Fig. 9.10, that

AE ¼ AQ� EQ; OP ¼ AQ� P 0Q ð9:21Þ

Also, we may see that the distance or sagitta AQ is given by

Z ¼ AQ ¼ Y tan
Uþ I

2
¼ Y tan

U 0 þ I 0

2
ð9:22Þ

and the distance EQ by

EQ ¼ Y tan
U

2
ð9:23Þ

Then, using these expressions and an analogous relation for P 0Q, we
find the OPD to be

OPD ¼ n 0Y tan
U 0 þ I 0

2
� tan

U 0

2

� �
� nY tan

Uþ I

2
� tan

U

2

� �
ð9:24Þ

With some trigonometrical work this expression becomes

OPD ¼ n 0Y
sin I 0=2

cosðU 0 þ I 0Þ=2 cosU 0=2
� nY

sin I=2

cosðUþ IÞ=2 cosU=2
ð9:25Þ

The next step is to multiply numerator and denominator of the first
term by 2 cos I0/2 and similarly the second term by 2cos I/2, and using sine
law, we find that

OPD ¼
n 0Y sin I 0

2 cos ðUþ I=2Þ

1

cos ðI 0=2Þ cos ðU 0=2Þ
�

1

cos ðI=2Þ cos ðU=2Þ

� �

ð9:26Þ

After some more algebraic steps, the final expression for the OPD is

OPD
¼ n 0Y sin ðU�U 0Þ=2� sin ðI�U 0Þ=2

2 cos ðU=2Þ cos ðI=2Þ cos ðU 0=2Þ cos ðI 0=2Þ cos ðUþ I=2Þ
ð9:27Þ

This is the OPD for a single surface, but for the whole system it is just
the sum of the surface contributions.
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9.4 POINT AND LINE SPREAD FUNCTION

The point and line spread functions are two different calculated functions
that permit the evaluation of the quality of the image produced by an optical
system (Barakat and Houston, 1964; Jones, 1958; Malacara, 1990;
Marchand, 1964). The point spread function is the irradiance in the image
of a point source in an optical system. This function may be obtained in
a number of ways. One way is with the Fourier transform of the pupil
function as shown in Chap. 8, where the amplitude on the image was
given by

AðxF,yFÞ ¼

Z

s

Z
Tðx,yÞeikðxxF þ yyFÞ=F dx dy ð9:28Þ

where (xF, yF) are the coordinates in the focal plane and the integration is
made over the entrance pupil area s. The amplitude T(x,y) on the entrance
pupil, or pupil function, is given by

Tðx,yÞ ¼ Eðx,yÞeikWðx,yÞ ð9:29Þ

where E(x, y) is the amplitude distribution over the exit pupil and W(x, y) is
the wavefront deformation on this pupil. The point spread function is then
given by the complex square of the amplitude in the image:

SðxF,yFÞ ¼ AðxF,yFÞA
�ðxF,yFÞ ð9:30Þ

If the entrance pupil has a constant illumination [E(x, y)¼ constant)],
Eq. (9.28) may be written as

AðxF,yFÞ ¼

Z

s

Z
eik½ðxxF þ yyFÞ=FþWðx,yÞ� dxdy ð9:31Þ

This integral may now be evaluated by dividing the aperture (region of
integration) into small squares, as shown in Fig. 9.11. Then, if the center of
each square has coordinates (x0, y0), the wavefront on this small square may
be written as

Wðx,yÞ ¼ W0 þ
TAx

F
ðx� x0Þ þ

TAy

F
ðy� y0Þ ð9:32Þ

where W0 is the wavefront deviation at the center of the square, found with
any of the methods described in Section 9.3. Then, by integrating, we may

© 2004 by Marcel Dekker, Inc.



find that

AðxF,yFÞ ¼
X

sinc
kA

2F
ðTAxj þ xFÞ

� �
sinc

kA

2F
ðTAyj þ yFÞ

� �

� exp ik W0j þ
xFx0j þ yFy0j

F

� �
ð9:33Þ

where A is the length of one side of the small square and the function sinc j
is equal to (sin j)/j. This is the superposition of many Fraunhofer
diffraction patterns produced by each of the small squares on the entrance
pupil. These patterns are added with a phase factor due to their relative
position on the pupil. The centers of these diffraction patterns correspond to
the ray intersections with the focal plane (spot diagram points). These
patterns must overlap, in order to produce a continuous spread function.
They should not be separated as in Fig. 9.12. A safe condition is that the
maximum value of the transverse aberration should be smaller than the
diffraction pattern size. Thus, we may write this condition as

TAxmax ¼
�F

A
ð9:34Þ

If the aberrations are large, we may compute the point spread function
by evaluating the density of points in the spot diagram. To have good
accuracy, the number of points must be as large as possible.

The image of a line object is called the line spread function, and it is
used many times compared to the point spread function. To have
information in several directions, line spread functions would have to be
computed for several object orientations.

Figure 9.11 Ray distribution on entrance pupil to compute the diffraction image.
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9.5 OPTICAL TRANSFER FUNCTION

The optical transfer function, already studied in some detail in Chap. 8, can
be calculated for an optical system by several different methods (Barakat
and Morello, 1962; Heshmaty-Manesh and Tam, 1982; Kidger, 1978; Plight,
1978). Here, we describe some practical procedures for its computation from
lens data.

Hopkins (1957) suggested a method to compute the modulation
transfer function by integration of Eq. (9.28). The two laterally sheared
apertures are divided into small squares as in Fig. 9.11 and the wavefront on
each square is represented by Eq. (9.32). Then, we may obtain the following
expression for the diffraction optical transfer function:

Fðox,oyÞ ¼
X

sin c
kA

2F
ðTAxj � TAxjsÞ

� �
sin c

kA

2F
ðTAyj � TAyjsÞ

� �

� expikðW0j �W0jsÞ ð9:35Þ

where the subscript s stands for the sheared exit pupil by an amount (Fox/k,
Foy/k).

9.5.1 Geometrical Optical Transfer Function

When the wavefront aberration is very large compared with the wavelength,
we may approximate the optical transfer function in Eq. (8.46) by

Fðox,oyÞ ¼

Z Z
exp iF

@Wðx,yÞ

@x
ox þ

@Wðx,yÞ

@y
oy

	 

dx dy ð9:36Þ

Figure 9.12 Nonoverlapping diffraction images from each square in Fig. 9.11.
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or by using relations (1.75) and (1.76):

Fðox,oyÞ ¼

Z Z
exp i½TAxðx,yÞox þ TAyðx,yÞoy� dx dy ð9:37Þ

The region of integration is the common area between the two laterally
sheared pupils, as in Fig. 8.14, but since the aberration is large, the cut-off
spatial frequency is reached before the shear is large. So, the region of
integration may be considered to be the whole circular pupil.

If the OTF is computed from ray tracing data (spot diagram), by
dividing the aperture into small squares, the geometrical transfer function
may be written as

Fðox,oyÞ ¼
XN
i¼1

cos ðTAxox þ TAyoyÞ

þ i
XN
i¼1

sin ðTAxox þ TAyoyÞ ð9:38Þ

where the sum is performed for all rays on a spot diagram. This geometrical
approximation is surprisingly accurate. An aberration of a few wavelengths
is large enough to produce the same result with the exact OTF and with the
geometrical approximation.

For very low spatial frequencies, assuming that the transverse
aberration is small compared with the spatial period, we may approximately
write

Fðox,oyÞ ¼
XN
i¼1

1�
ðTAxox þ TAyoyÞ

2

2

" #

þ i
XN
i¼1

½TAxox þ TAyoy� ð9:39Þ

This is the optical transfer function for low spatial frequencies and its square
is the modulation transfer function:

Fðox,oyÞF
�ðox,oyÞ ¼ N�

XN
i¼1

ðTAxox þ TAyoyÞ
2

þ
XN
i¼1

ðTAxox þ TAyoyÞ

" #2

ð9:40Þ
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From Eq. (9.5) we may see that, for an optical system with a rotationally
symmetric wavefront in which the value of ! is the same in all directions, we
may write

Fðox,oyÞF
�ðox,oyÞ ¼ 1� o2TA2

rms ð9:41Þ

This means that the modulation transfer function for low spatial frequencies
is determined by the root mean square size of the geometrical image.
Conversely, if a system is optimized for the lowest value of the geometrical
image, the optimization on the optical transfer function is for the lower
range of spatial frequencies.

9.6 TOLERANCE TO ABERRATIONS

It is not enough to evaluate the aberration of an optical system. They can
never be made perfect, so we must know when to stop trying to improve it.
The maximum allowed aberration in a given optical system depends on its
intended use. We will now study a few different cases.

1. Interferometric quality—A lens or optical system to be used in an
interferometer may for some particular applications require a wavefront as
good as possible. Then, primary as well as high-order aberration terms must
be highly corrected. Once the best lens is obtained, the wavefront deviations
are minimized with the proper amount of tilts and defocusing. A wavefront
deformation less than l/100 is some times required.

2. Diffraction limited—An image-forming lens with small aberra-
tions, so that the highest possible theoretical resolution is obtained, is said to
be diffraction limited. The image size is the Airy diffraction image.
According to the Rayleigh criterion, an optical system produces a
diffraction-limited image if the wavefront deformation has a maximum
absolute value less than one-quarter of the wavelength. It must be pointed
out, however, that this principle is strictly valid only for pure primary
spherical aberration. If the wavefront is smooth enough as in a lens with
only primary spherical aberration, the ray transverse aberrations are less
than the Airy disk radius.

3. Visual quality—A lens to be used for visual observations
may sometimes require diffraction-limited resolution. This is the case of
high magnification lenses, like microscope objectives. In many other low
magnification systems, like eyepieces or low-power telescopes, the limiting
factor is the resolution of the eye. In this case, the geometric image
(transverse aberrations) must be smaller than the angular resolution of the
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eye, which is about one minute of arc. The accomodation capacity of the
eye must be taken into account when evaluating visual systems.

4. Atmospheric seeing limited—This is the case of the terrestrial
astronomical telescope, in which the angular resolution is limited by the
atmospheric turbulence or ‘‘seeing.’’ Then, the transverse aberrations must
be smaller than the size of the seeing image. This image size is between 1 and
1/10 arcsec, depending on the atmospheric conditions and the quality of the
telescope site.

9.6.1 Curvature and Thickness Tolerances

The tolerance in the deviation of the construction value of the curvature
or thickness of a lens with respect to the ideal design value depends on many
factors. One of them is the allowed deviation in the performance of the
system, as described in the preceding section. The tolerance specification has
to take into account the cost, which is not linear with the magnitude of
the tolerance. The manufacturing cost grows almost exponentially with the
tightness of the tolerance. Thus, the tolerance should be as tight as the
previously set allowance in the cost of production permits it and not higher.
Another important factor is the technical capability of the optical shop in
charge of the manufacturing process. Given an optical system not all optical
surfaces are equally sensitive to figure or curvature deviations. The system
designer has to evaluate the sensitivity of each design parameter before
establishing the tolerances.

An idea of the magnitudes of the tolerances for different qualities of
optical instrument was given by Shannon (1995) (see Table 9.3).

It is quite important to keep in mind that not only will the deviation in
one parameter contribute to the image degradation, but a combination of all
deviations also will. The final error can be estimated by the rms value of all
tolerances, Thus, if there are N parameters and the tolerance in the

Table 9.3 Typical Manufacturing Tolerances in a Lens System

Parameter Commercial Precision High precision

Wavefront deformation 0.25 wave rms 0.1 wave rms 0.05 wave rms
Radius of curvature 1.0% 0.1% 0.01%
Thickness � 0.2mm � 0.5mm � 0.01mm

Decentration 0.1mm 0.01mm 0.001mm
Tilt 1 arcmin 10 arcsec 1 arcsec

Source: Shannon (1995).
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parameter i produces an error Wi, the final estimated rms error Wrms is
given by

Wrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼0
W2

i

r
ð9:42Þ
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10
Prisms

10.1 TUNNEL DIAGRAM

Prisms and mirror systems are important parts in optical systems and have
been studied by many authors, e.g., by Hopkins (1962, 1965). The presence
of a prism in an optical system has many effects that must be taken into
account when designing such a system. Among these effects we can mention
the following:

1. A change in the direction of propagation of the light.
2. A transformation on the image orientation.
3. An image displacement along the optical axis.
4. The limited sizes of their faces may act as stops, limiting the lateral

extension of the light beam.
5. Some aberration contributions are added, mainly spherical and

axial chromatic aberrations, even with flat faces.

It is easily proved that the longitudinal displacement d of the image,
introduced by a glass plate with thickness L, is given by

d ¼
ðn� 1Þ

n
L ð10:1Þ

The primary spherical aberration introduced by the prism may be
calculated as shown in Section 4.2.3.

All these effects may easily be taken into account while designing an
optical system by unfolding the prism in every reflection to find the
equivalent flat parallel glass block. Then, we obtain what is called a tunnel
diagram for the prism, as in the example in Fig. 10.1.

10.2 DEFLECTING A LIGHT BEAM

Let us consider the reflection of a light beam in a system of two reflecting
faces with one of these faces rotated at an angle y relative to the other, as
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shown in Fig. 10.2. We will prove that the direction of propagation of the
light beam will be changed by an angle 2y, independently of the direction of
incidence with respect to the system, as long as the incident ray is in a
common plane with the normals to the two reflecting surfaces.

In the triangle ABC we see that

f ¼ 2aþ 2b ð10:2Þ

and in the triangle ABD:

y ¼ aþ b ð10:3Þ

then, we see that

f ¼ 2y ð10:4Þ

Figure 10.1 Tunnel diagram for a prism.

Figure 10.2 Reflection in a system of two flat mirrors.
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In conclusion, if the angle between the two mirrors is y, the light ray will
deviate by an angle f, independently of the direction of incidence of the light
ray. There are several prisms that use this property.

By means of three reflections in three mutually perpendicular surfaces
a beam of light may also be deflected by an angle of 180�, reflecting it back
along a trajectory in a parallel direction to the incident light beam. To show
this let us use the vectorial reflection law, which may be obtained from the
vectorial refraction law in Eqs. (1.16) and (1.17), by setting n0 ¼�n, as

S0 ¼ Sþ ð2 cos I Þp

Sþ 2ðS 	 pÞp ð10:5Þ

where S and S0 are vectors along the incident and the reflected ray,
respectively. If we have three reflecting surfaces with their three normals not
coplanar, we may write for the first reflecting surface:

S0
1 ¼ S1 þ 2ðS1 	 p1Þp1 ð10:6Þ

for the second surface:

S0
2 ¼ S2 þ 2ðS2 	 p2Þp2 ð10:7Þ

and for the third surface:

S0
3 ¼ S3 þ 2ðS3 	 p3Þp3 ð10:8Þ

We may now assume that the ray is first reflected on the surface number one
and last on the surface number three. Then,

S2 ¼ S0
1 ð10:9Þ

and

S3 ¼ S0
2 ð10:10Þ

Hence, the final ray direction is then given by

S0
3 ¼ S1 þ 2ðS1 	 p1Þp1 þ 2ðS2 	 p2Þp2 þ 2ðS3 	 p3Þp3 ð10:11Þ
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Since the three reflecting surfaces are mutually perpendicular we have that
p1? p2¼ p2? p3¼ p1? p3. Then, using these relations we may find that

S0
3 ¼ S1 þ 2ðS1 	 p1Þp1 þ 2ðS1 	 p2Þp2 þ 2ðS1 	 p3Þp3 ð10:12Þ

but since the vectors p1, p2, and p3 form an orthogonal base, we may
show that

S0
3 ¼ S1 � 2S1 ¼ �S1 ð10:13Þ

proving that a system of three mutually perpendicular reflectors is a
retroreflecting system. There are many uses of this result, as we will see later.

10.3 TRANSFORMING AN IMAGE

In this chapter we will describe some prisms made out of isotropic materials,
such as glass, and with flat faces. We will consider prisms that change the
direction of propagation of the light without any chromatic dispersion.
Thus, this light deviation is produced by internal reflection if the internal
angle of incidence is greater than the critical angle, or by coating the surface
with a reflective coating. Besides changing the light direction, these prisms
also produce a change in the image orientation, which may be described by
some basic image transformations, illustrated in Fig. 10.3 and defined as
follows:

1. An inversion is a geometric reflection about a horizontal axis.
2. A reversion is a geometric reflection about a vertical axis.
3. A reflection on an inclined axis, at an angle y.
4. A rotation by an angle y.

Any mirror reflection (including reflections on spherical mirrors)
produces a reflection transformation. The axis for this operation is
perpendicular to both the incident and the reflected beams. Obviously, the

Figure 10.3 Image transformations.
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operations of inversion and reversion are particular cases of the general
reflection transformation. Two succesive reflections may be easily shown to
be equivalent to a rotation, as follows:

Reflection at a1 þ reflection at a2 ¼ rotation by 2ð�2 � �1Þ

An image is said to be readable, if its original orientation may be
recovered with a rotation. Thus, a rotation does not change the readability
of an image. It is easy to prove the important conclusion that an even
number of reflections produces a readable image. On the other hand, an odd
number of reflections always gives a nonreadable image. Thus, a rotation
can be produced only with an even number of reflections.

Two transformations may be combined to produce another transfor-
mation, as in the following examples that may be considered as particular
cases of the general relation just described:

Inversionþ reversion ¼ rotation by 1808

Inversionþ rotation by 1808 ¼ reversion

Reversionþ rotation by 908 ¼ reflection at 458

We may also show that if the axis of a reflection transformation
rotates, the resulting image also rotates, in the same direction and with twice
the angular speed. Thus, a practical consequence is that all inverting systems
may be converted into reversing systems by rotation by an angle of 90�.

A system of plane mirrors with arbitrary orientations have two distinct
effects: (1) the beam direction is changed and (2) the image orientation is
also modified. Both of these effects may be studied using matrices. The
problem of the optical axis deflection and the problem of the image
orientation has been treated by many authors, e.g., Pegis and Rao (1963),
Walles and Hopkins (1964), Walther (1964) and Berkowitz (1965). The
mirror system is described using an orthogonal system of coordinates x0, y0,
z0 in the object space, with z0 being along the optical axis and pointing in
the traveling direction of the light. Then, for a single mirror we have the
following linear transformation with a symmetrical matrix:

l

m

n

2
64

3
75 ¼

ð1� 2L2Þ ð�2LMÞ ð�2LNÞ

ð�2LMÞ ð1� 2M2Þ ð�2MN Þ

ð�2LNÞ ð�2MNÞ ð1� 2N2Þ

2
64

3
75

lo

mo

no

2
64

3
75 ð10:14Þ
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where (l, m, n) and (lo, mo, no) are the direction cosines of the reflected and
incident rays, respectively. The quantities (L,M, N) are the direction cosines
of the normals to the mirror.

To find the final direction of the beam, the reflection matrices for each
mirror are multiplied in the order opposite to that in which the light rays
strike the mirrors. On the other hand, to find the image orientation, the
matrices are multiplied in the same order that the light strikes the mirrors.

10.4 DEFLECTING AND TRANSFORMING PRISMS

These prisms, besides transforming the image orientation, bend the optical
axis, changing the direction of propagation of the light. There are many
prisms of this kind. Here, we will just describe a few examples.

10.4.1 Deflecting Prisms

To describe all the deflecting prisms would be impossible, so, we only
describe some of the main types, which are:

1. Right angle prism
2. Amici prism
3. Pentaprism
4. Wollaston prism

The right angle prism is the simplest of all prisms and in most of the
cases, it can be replaced by a flat mirror. The image produced by this prism is
not readable, since there is only one reflection, as shown by Fig. 10.4(a). This
prism can be modified to produce a readable image. This is accomplished by
substituting the hypotenuse side by a couple of mutually perpendicular faces,
forming a roof, to obtain an Amici prism as shown in Fig. 10.4(b).

Both rectangular and Amici prisms can be modified to deflect a beam
of light 45� instead of 90� as in the prisms shown in Fig. 10.5.

In the prisms previously described, the deflecting angle depends on the
angle of incidence. It is possible to design a prism in which the deflecting
angle is independent of the incidence angle. This is accomplished with two
reflecting surfaces instead of just one. By using the property described in
Section 10.2, the deflection angle is twice the angle between the two mirrors
or reflecting surfaces.

This property is used in the Wollaston prism, shown in Fig. 10.6, and
in the pentaprism, shown in Fig. 10.7. In the Wollaston prism both reflecting
surfaces form a 45� angle and the deflecting angle is 90�. In the pentaprism
both surfaces form an angle of 135� and the deflection angle is 270�.
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In both of the previously described prisms, the image is readable, since
there are two reflections. The pentaprism is more compact and simpler to
build; hence, it is more commonly used.

Although both prisms can be modified to obtain a 45� deflection, it
results in an impractical and a complicated shape. To obtain a 45� deflection
independent of the incidence angle, the prism shown in Fig. 10.8 is
preferred. These prisms are used in microscopes, to obtain a more
comfortable observing position.

Another 45� deflecting prism, similar to the pentaprism, is shown
in Fig. 10.1.

10.4.2 Retroreflecting Systems

A retroreflecting prism is a particular case of a constant deviation prism, in
which the deflecting angle is 180�.

Figure 10.4 (a) Right angle and (b) Amici prisms.

Figure 10.5 Deflecting dove prism.
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Figure 10.7 Pentaprism.

Figure 10.6 Wollaston prism.
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A rectangle prism can be used as a retroreflecting prism with the shape
shown in Fig. 10.9. In such a case, it is called a Porro prism. The Porro prism
is a perfect retroreflector, assuming that the incident ray is coplanar with the
normals to the surfaces.

A perfect retroreflecting prism without the previous constraint is made
with three mutually perpendicular reflecting surfaces. This prism, shown in
Fig. 10.10, is called a cube corner prism.

Cube corner prisms are very useful in optical experiments where a 180�

reflection is needed. Uses for the cube corner retroreflector are found in
applications where the prism can wobble or jitter or is difficult to align
because it is far from the light source. Applications for this prism range from
the common ones like reflectors in a car’s red back light to the highly

Figure 10.9 Rectangular retroreflecting prism.

Figure 10.8 Forty-five degrees deflecting prism.
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specialized ones like the reflectors placed on the surface of the moon in the
year 1969.

10.5 NONDEFLECTING TRANSFORMING PRISMS

These prisms preserve the traveling direction of the light beam, changing
only the image orientation. Some of the nondeflecting transforming prisms
will now be described.

10.5.1 Inverting and Reverting Prisms

In order to produce an image inversion or reversion, these prisms must have
an odd number of reflections. We will consider only prisms that do not
deflect the light beam. The simplest of these prisms has a single reflection, as
shown in Fig. 10.11. This is a single rectangular prism, used in a
configuration called a dove prism (for comparison with a dove tail).

The operation can be easily understood from the tunnel diagram.
Although we have two refractions, there is no chromatic aberration since
entrance and exiting faces act as in a plane-parallel plate. These prisms
cannot be used in strongly convergent or divergent beams of light because of
the spherical aberration.

An equilateral triangle prism can be used as an inverting or reverting
prism if used as depicted in Fig. 10.12. On this configuration, we have two
refractions and three reflections. Like the dove prism, this prism cannot be
used in strongly convergent or divergent beams of light.

Figure 10.10 Cube corner prism.
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Figures 10.13, 10.14, and 10.15 show three reverting prisms with three
internal reflections. The first one does not shift the optical axis laterally,
while in the last two the optical axis is displaced. These prisms can be used in
converging or diverging beams of light. The first two prisms can be made
either with two glass pieces or a single piece.

The Pechan prism, shown in Fig. 10.16, can be used in converging or
diverging pencils of light, besides being a more compact prism than the
previous ones.

10.5.2 Rotating Prisms

A half-turn rotating prism is a prism that produces a readable image, rotated
180�. The real image produced by a convergent lens is usually rotated 180�

Figure 10.11 Dove prism.

Figure 10.12 Inverting–reversing triangular prism.
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as compared with the object; hence, a rotating prism can bring back the
image to the original orientation of the object. These sort of prisms are
useful for monocular terrestrial telescopes and binoculars.

All of the reversing prisms previously described can be converted into
rotating prisms by substituting one of the reflecting surfaces by a couple of
surfaces with the shape of a roof. With this substitution the prism in Fig.
10.13 is transformed into the so-called Abbe prism, the one in Fig. 10.15 is
transformed into the Leman prism, and the one in Fig. 10.16 is transformed
into the Schmidt–Pechan prism, shown in Fig. 10.17. This last prism is used in

Figure 10.14 Reverting–inversing prism.

Figure 10.13 Reverting–inversing prism.
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small hand telescopes. An advantage for this prism is that the optical axis is
not laterally displaced.

A double prism commonly used in binoculars is the Porro prism,
shown in Fig. 10.18.

10.6 BEAM-SPLITTING PRISMS

These prisms divide the beam of light into two beams, with the same dia-
meter as the original one, but the intensity is reduced for both beams that now

Figure 10.15 Reverting–inversing prism.

Figure 10.16 Pechan prism.
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travel in different directions. Beam-splitting prisms are used in amplitude
division interferometers, and binocular microscopes and telescopes, where a
single image must be observed simultaneously with both eyes. Basically, this
prism is formed by a couple of rectangular prisms glued together to form a
cube. One of the prisms has its hypotenuse face deposited with a thin
reflecting film, chosen in such a way that, after cementing both prisms
together, both the reflected and transmitted beam have the same intensity.
Both prisms are cemented in order to avoid total internal reflection. This
prism and a variant of the basic prism are shown in Fig. 10.19.

Figure 10.17 Schmidt–Pechan prism.

Figure 10.18 Porro prism.
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10.7 CHROMATIC DISPERSING PRISMS

As shown in Fig. 1.3, the refracting index is a function of the light
wavelength and, hence, of the light color. This property is used in chromatic
dispersing prisms to decompose the light into its elementary chromatic
components, obtaining a rainbow, called a spectrum.

Equilateral prism. The simplest chromatic dispersing prism is the equi-
lateral triangle prism illustrated in Fig. 10.20. This prism is usually made
with flint glass, because of its large index variation with the wavelength.

Figure 10.19 Binocular beam-splitting system. (a) A single prism and (b) a
binocular prism.

Figure 10.20 Triangular dispersing prism.

© 2004 by Marcel Dekker, Inc.



As shown in Fig. 10.20, f is the deviation angle for a light ray and y is
the prism angle. We can see from this same diagram that

f ¼ ða� a 0Þ þ ðb� b0Þ ð10:15Þ

also,

y ¼ a 0 þ b0 ð10:16Þ

from this we obtain

f ¼ aþ b� y ð10:17Þ

From Snell’s law, we also know that

sin a
sin a 0

¼ n ð10:18Þ

and

sin b
sin b0

¼ n ð10:19Þ

From this we conclude that the deviation angle is a function of the
incidence angle a, the apex angle y, and the refractive index n. The angle f
as a function of the angle a for a prism with an angle y¼ 60� and n¼ 1.615 is
shown in Fig. 10.21.

The deviation angle f has a minimum magnitude for some value of a
equal to am. Assuming, as we can easily conclude from Fig. 10.21, that there
exists a single minimum value for f, we can use the reversibility principle to
see that this minimum occurs when a¼ b¼ am. It may be shown that

sin am ¼ n sin y=2 ð10:20Þ

Assuming that for yellow light a¼ am in a prism with y¼ 60� made
from flint glass, the angle f changes with the wavelength l as shown
in Fig. 10.22.

Let us now suppose that the angle y is small. It can be shown that the
angle f is independent from a and given by

f ¼ ðn� 1Þy ð10:21Þ
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Constant deviation prism. Taking as an example the prism shown in
Fig. 10.23. As we can see, the beam width for every color will be different
and with an elliptical transverse section. The minor semiaxis for the ellipse
for the refracted beam will be equal to the incident beam only when the
angle a is equal to the angle b.

For precise photometric spectra measurements, it is necessary that the
refracted beam width be equal to the incident beam for every wavelength.

Figure 10.21 Angle of deflection versus angle of incidence in a dispersing prism.

Figure 10.22 Deflection angle versus wavelength in a dispersing prism.
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This condition is only met when the prism is rotated so that a¼ b (minimum
deviation). Usually, these measurements are uncomfortable since both the
prism and the observer have to be rotated.

A dispersing prism that meets the previous condition with a single
rotation of the prism for every measurement and does not require the
observer to move is the constant deviation prism, shown in Fig. 10.24. This
prism is built in a single piece of glass, but we can imagine it as the
superposition of three rectangular prisms, glued together as shown in the
figure. The deflecting angle f is constant, equal to 90�. The prism is rotated
to detect each wavelength. The reflecting angle must be 45� and, hence,
angles a and b must be equal.

Nondeflecting chromatic dispersing prism. Sometimes it is convenient to
disperse the light chromatically without deflecting the main direction of the
light beam. This can be achieved by a system of three prisms as shown in

Figure 10.24 Constant deviation prism.

Figure 10.23 Variation in the beam width for different wavelengths in a triangular
prism.
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Fig. 10.25. The central prism has a low Abbe number (flint glass) and the
two other prisms have a high Abbe number (crown glass). The total
deflection ’ of the light beam can be shown to be given by

’ ¼ y1 � arc sin n1 sin y1 þ y2 � arc sin
n2
n1

sin y2

	 
� �� �
ð10:22Þ

where the angles are defined in Fig. 10.25.
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11
Simple Optical Systems and
Photographic Lenses

11.1 OPTICAL SYSTEMS DIVERSITY

An optical system is basically formed by lenses and mirrors, but it has an
extremely large number of possible configurations and requirements, as
pointed out by Hilbert and Rodgers (1987). The optical system may have
many different requirements, depending on its particular application, for
example:

1. Speed or f-number FN
2. Field angular diameter
3. Resolution on and off-axis
4. Aperture size (entrance pupil diameter)
5. Physical size of the system
6. Construction difficulties
7. Cost, etc.

From a strictly optical point of view, the first four items are the most
important. A single magnifier obviously does not have the same require-
ments as a microscope objective. The speed of a microscope objective is very
high and that of the single magnifier is very low. The required resolution of
a microscope objective is quite high but for a single lens is low.

The map in Fig. 11.1, representing the f-number FN versus the angular
field size for some of the most common optical systems has been described
by Hilbert and Rodgers (1987). All other characteristics, like the on and
off-axis resolutions are ignored in this map, but it gives some idea of the
great diversity of optical systems.

An interesting and important characteristic of imaging optical systems
is the total number of image elements it produces, which depends on the
f-number and on the aperture diameter. Assuming a perfect optical system,
the smaller the f-number, the smaller the image element (diffraction image)
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is, as described when studying diffraction. On the other hand, given an
image element size, a large field contains more image elements than a
smaller field. It is easy to see, as pointed out by Hopkins (1988), that the
total number of elements is equal to the square of the Lagrange invariant
multiplied by 4/l2.

The number of possible lens and mirror combinations is almost
infinite. There are, however, some basic configurations that will be described
in the next chapters, beginning by the simplest ones. Most optical systems
may be considered as derivatives of some basic system.

11.2 SINGLE LENS

A single lens is the simplest optical instrument and has many applications.
One important use is as a simple microscope or magnifier. Another
application is as a simple photographic lens. These lenses will now be
described.

11.2.1 Magnifiers

The apparent angular diameter of an object as measured from the pupil of
the observer’s eye determines the size of the image on the retina of the eye.

Figure 11.1 Diagram to illustrate the large diversity of optical systems.
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To increase this size the distance from the object to the eye may be reduced.
There is a limit, however, on this distance. As the object becomes closer, the
eye has to focus by adjusting the shape of the eye lens. The younger the
observer is, the shorter this distance may be. For an adult young person
the average distance is about 250mm. This distance receives the name of
minimum distinct vision distance.

If we want to observe from an even closer distance, a convergent lens
must be placed between the object and the observing eye. Let us consider a
convergent lens as in Fig. 11.2. An object with height h is placed at a distance
� l in front of the lens. This distance is less than the focal length in order to
obtain a virtual image (l0 is also negative). Thus, we may use Eq. (2.13) to find
this distance. Assuming that without the lens the observing distance is
250mm, the angular diameter would be equal to a¼ h/250, with h being in
millimeters. The angular diameter for the virtual image is b¼ h0/(�l0 þ d),
where d is the distance from the eye to the lens. Then, the apparent angular
magnification, or magnifying power, of this single microscope is

M ¼
b
a
¼

250

�l0 þ d
�
l0 þ 1

f

	 

ð11:1Þ

where all length units are in millimeters. If we place the virtual image at
infinity (l0 ¼1), the magnifying power becomes

M ¼
250

f
ð11:2Þ

independently of the separation between the lens and the eye. If we try to
increase the magnifying power by getting the virtual image closer to the
minimum observing distance of 250mm we obtain

M ¼
250

f
þ 1

	 

250

250þ d

	 

ð11:3Þ

Figure 11.2 Image formation in a single magnifier.
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Since the focal length f and the distance d are less than 250mm, in order to
obtain the maximum possible magnifying power, we may see that the
improvement with respect to Eq. (11.2) is negligible.

The aperture in a single magnifier is that of the observing eye, which
in general is very small. Therefore, the spherical aberration, the axial
chromatic aberration, and coma are negligible. Lateral chromatic aberration
is unavoidable in a single lens. Thus, we are left with astigmatism, field
curvature, and distortion to be corrected with the stop (the observing eye)
position. As an example, let us consider the case of a plano convex lens with
the following data:

Effective focal length: 100mm
Lens diameter: 50mm
Radius of curvature convex face: 51.67mm
Thickness: 10mm
Image height: 10mm
Glass: BK-7

If we trace an enlarged meridional plot through this lens as described
in Section 9.4, using the two possible lens orientations, we obtain the graphs
in Fig. 11.3. From these results we may conclude:

1. Since the two plots pass through the origin, as expected, the
distortion is zero for both lens orientations when the pupil of the

Figure 11.3 Meridional plot with an enlarged stop, in a single plano convex
magnifier.
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eye is in contact with the lens, and it increases with the distance of
the pupil from the lens.

2. Since the eye cannot be in perfect contact with the lens, the best
orientation is that with the convex face on the object side, as at
point A. This configuration has a very small amount of coma
because an inflection point is here, a flat tangential field, since the
slope of the plot is zero, and a low distortion, since the distance
from the point A to the horizontal axis is small.

3. The lens orientation at point B, with the plane face on the object
side, has only slightly higher aberrations than those at point A.

4. When the observing eye is far from the lens, with the plane face on
the object side, as represented by point C in the plot, all
aberrations are higher than at points A and B.

5. When the observing eye is far from the lens, but with the convex
face on the object side, as at point D in the plot, all aberrations are
still higher than at point C. In conclusion, if the eye cannot be
placed close to the lens, the best orientation is with the plane face
on the object side.

6. There is a certain distance from the observing eye to the lens,
represented by point E, for which both possible lens orientations
produce the same amount of distortion. The only difference is that
the orientation with the plane face on the object side has a slightly
flatter tangential field, because of the smaller slope in the graph.

The lens configurations represented by points A–D in the enlarged
meridional plot are illustrated in Fig. 11.4.

There are several possible designs of magnifiers that produce better
images than the single lens, as shown in Fig. 11.5. These designs may be
analyzed in the same manner as the single lens. As an example, Fig. 11.6 and
Table 11.1 show the design of a Hastings magnifier. The image resolution is
good. The most significant remaining aberration is field curvature.

11.2.2 Biocular Magnifiers

Biocular magnifiers are designed to observe the image with both eyes. They
are generally placed close to the head of the observer and must have a
sufficiently large diameter to permit simultaneous observation with both eyes.
The diameter of the lens on the side of the observer should be at least 75mm.
The most common application of these magnifiers is to look at the image of a
small cathode ray tube (CRT) or any other electronic display. This subject has
been covered by several authors (Hopkins, 1946; Coulman and Petrie, 1949
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Figure 11.4 Four ways to observe with a single plano convex magnifier.

Figure 11.5 Some magnifiers.
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and Rosin, 1965). A good review article on this subject with some references
has been written by Rogers (1985).

The fields observed by each of the two eyes is not identical, as
illustrated in Fig. 11.7. One eye sees the object from A to A0 while the other
eye sees it from B to B 0, but there is a common overlapping field. The
perspective for the two eyes is different. So, if the object is not flat the virtual
images provide a stereoscopic view.

The optical design is carried with a reversed orientation so that the
longest conjugate is on the object side. The stop is laterally shifted with
respect to the optical axis of the system, but an easier approach is to
consider a large stop that covers both eye pupils. Many different designs of
binocular magnifiers have been published and patented.

11.2.3 Single Imaging Lens

A single lens may be used to form real images on a screen or photographic
film. The focal length is fixed, since the magnification is predetermined.

Table 11.1 A 10 � Hastings Magnifier

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

Stop 5.0 10.00 Air
44.31 24.0 5.00 F2

17.65 24.0 15.00 SK16
�17.65 24.0 5.00 F2
�44.31 24.0 31.35 Air

Aperture (mm): 5.0

Effective focal length (mm): 40.0

Back focal length (mm): 31.35

Image height (angular semifield) (mm): 18.65 (25�)

Figure 11.6 A 7 � Hastings magnifier.
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Then, we have only two degrees of freedom, the lens bending and the stop
position. We know from third-order theory the following facts:

1. The spherical aberration cannot be completely corrected using
only spherical surfaces, but may be minimized. This aberration is
not important if the aperture is small, since its transverse value
increases with the cube of the aperture.

2. The coma aberration for any object position, lens bending, and
stop position may be calculated as described in Chap. 6. The
position for the stop producing zero coma for thin lenses and the
object at infinity is

l0 ¼ f 1�
SphL

f� fM

	 

ð11:4Þ

but we must remember that this expression is valid only for lenses
with spherical aberration.

3. The Petzval curvature increases linearly with the power of the lens
and is independent of the lens bending. Thus, it is unavoidable
in a single lens. The field may be flattened, however, if some
astigmatism is introduced on purpose. A desirable condition is a
flat tangential field. This has to be done by a proper selection of
the stop position. The value of the longitudinal Petzval curvature
is given by

Ptz ¼ �
h02k
2nf

ð11:5Þ

4. The astigmatism, when the stop is in contact with the lens, is
independent of the lens bending and is directly proportional to

Figure 11.7 Biocular magnifier.
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the power of the lens. This astigmatism is

AstLs ¼
h02k
2f

ð11:6Þ

If the stop is not in the lens plane, its position and the bending of
the lens become useful parameters. Since the Petzval curvature is
negative, the field may be flattened if the proper amount of
negative astigmatism is introduced.

5. The distortion is zero if and only if the stop coincides with
the lens.

6. The axial chromatic aberration is fixed, given the focal length and
has a value for the longitudinal component:

AchrL ¼
fðNF �NCÞ

ðN� 1Þ
¼

f

V
ð11:7Þ

or for the transverse aberration component:

AchrT ¼
y

V
ð11:8Þ

7. The magnification chromatic aberration is zero if and only if
the stop is at the same position as the single lens.

Thus, we may play with only two variables, the lens bending and the
stop position to obtain the desired results, according to the application of
the lens. To have a feeling for the possible solutions, let us examine the
meridional plots for a single lens with several lens bendings, keeping
constant the focal length, as shown in Fig. 11.8. This lens has the following
data:

Effective focal length: 100mm
Lens diameter: 20mm
Curvatures of front face: as indicated in Fig. 11.7, in 1/mm
Image height: 36.4mm (20�)
Thickness: 2mm
Glass: BK-7

The lens bending in Fig. 11.8(e) corresponds to the solution for zero
coma (with the stop at the lens) and minimum spherical aberration.
However, the large slope of the plot indicates tangential field curvature.
Since the plot is a straight line, this lens has constant values of the tangential
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field curvature and coma for all stop positions. All curves pass through the
origin, indicating zero distortion when the stop is at the lens plane. All
curves have the same slope at the origin, because the tangential surface has
the same curvature for all bendings. This is to be expected, since the
tangential curvature is given by the Petzval curvature and the astigmatism
when the stop is at the lens plane, and are both independent of the lens
bending.

11.2.4 Landscape Lenses

A single photographic lens is frequently called a landscape lens. This is a
lens in which the stop has been shifted at the expense of some distortion.
The stop has a diameter less than that of the lens, as indicated in the figures.
This small stop drastically reduces the effect of the spherical and axial
chromatic aberrations. A focal ratio of about 15 or larger is typical for these
lenses, widely used in old photographic cameras.

Observing Fig. 11.8 we may see that any points in these plots with-
out any curvature must be free of coma. These points are the inflection
points, indicated with an I in Figs. 11.8(a), (b), and (h). Similarly, any points
with zero slope must have a flat tangential focal surface. These points
are minima, maxima, or horizontal inflection points, as indicated in
Figs. 11.8(a), by M1 and M2, and in Figs. 11.8(b) and (h) by I. It should
be noticed in Fig. 11.8(a) that the minimum M1 has a larger distortion

Figure 11.8 Meridional plot with an enlarged stop in a landscape lens with several

different lens bendings.
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(TAy larger) than the maximum M2. In these graphical results we may
observe the following interesting facts

1. Only a certain amount of bending as in Figs. 11.8(b) and
Fig. 11.8(h) produces an inflection point (no coma) with zero
slope (flat tangential field).

2. There are two solutions, one with the stop in the front of the lens
as shown in Fig. 11.8(b), and one with the stop in the back of the
lens as in Fig. 11.8(h).

3. The distortion has an opposite sign for the two solutions, and
larger in magnitude for the stop in the back. For these solutions,
small stop shifts do not produce any change in the distortion.

4. The lens is more curved with the stop in the back of the lens, and
thus its spherical aberration is larger.

5. There is some axial and magnification chromatic aberration, but
not very large.

Once the height of the principal ray has been chosen from the
meridional plots, the position of the stop is calculated with Eqs. (9.1) for a
lens with the stop at the back or with Eq. (9.2) for a lens with the stop at the
front. The stop diameter is chosen so that the spherical aberration is not
noticeable. Finally, it is interesting to point out that, when the tangential
surface is flat, the sagitta of the Petzval surface, or Petzval curvature Ptz, is
equal to the tangential astigmatism. Since this value of Ptz is independent of
the bending, the final value of the astigmatism, after making the tangential
surface flat, is the same for both bending solutions. Figure 11.9 shows two
designs of landscape lenses, based on the meridional plots in Fig. 11.8. The
design data for a front stop landscape are presented in Table 11.2 and those
for the rear stop landscape lens in Table 11.3.

Figure 11.9 Two possible configurations for a landscape lens: (a) front stop;
(b) rear stop.
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Even though the front stop solution is optically better, the back stop
solution is frequently preferred, because the lens may be easily cleaned and it
is aesthetically better.

11.3 SPHERICAL AND PARABOLOIDAL MIRRORS

The first-order parameters in spherical mirror (concave or convex and
spherical or paraboloidal) with the object at a finite distance l and the stop
at a finite distance in front of the mirror will now be written. In Fig. 11.10
these parameters are represented for a concave surface (radius of curvature
negative), but the results are valid for concave as well as for convex mirrors.
After some algebraic steps using Eqs. (1.38) and (1.46) we may see that
the values of i, i0, u, and u0 for the meridional ray and the refractive
indices n and n0 can be expressed by

Table 11.2 Front Stop Landscape Lens

Radius of

curvature (mm)

Diameter

(mm)

Separation or

thickness (mm) Material

Stop 5.0 13.74 Air

�33.333 20.0 2.0 BK7
�20.678 20.0 — Air

Aperture (focal ratio) (mm): 5.0 (F/20)

Effective focal length (mm): 100.0

Back focal length (mm): 102.044

Object distance (mm): infinite

Image height (angular semifield) (mm): 36.4 (20�)

Table 11.3 Rear Stop Landscape Lens

Radius of

curvature (mm)

Diameter

(mm)

Separation or

thickness (mm) Material

12.500 17.0 2.0 BK-7
15.589 17.0 8.81 Air

Stop 5.0 — Air

Aperture (focal ratio) (mm): 5.0 (F/20)

Effective focal length (mm): 100.0

Back focal length (mm): 94.548

Object distance (mm): infinite

Image height (angular semifield) (mm): 36.4 (20�)
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When the object is at an infinite distance (see Fig. 11.11) from the
mirror these expressions reduce to

i ¼ �i0 ¼
y

r
¼ �

D

4f

u ¼ 0

u0 ¼ �2i ¼ �
2y

r
¼

D

2f

n0 ¼ �n ¼ �1 ð11:10Þ

For the principal ray we may find that

i ¼ �
l� r

r

	 

u ¼

l� r

r

	 

2=r� 1=l

1� l=l

	 

h0 ð11:11Þ

Figure 11.10 First-order parameters in a concave mirror with the object at a finite

distance from the mirror.
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thus, obtaining

i

i
¼ �

2=r� 1=lð Þ 1� l=r
� �

1=r� 1=lð Þ 1� l=l
� � h0

y
ð11:12Þ

which, when the object is at an infinite distance from the mirror, reduces to

i

i
¼ 2

l� r

r

	 

h0

y
ð11:13Þ

These expressions are valid for spherical as well as for paraboloidal
mirrors.

11.3.1 Off-Axis Aberrations for Spherical Mirrors

Now we will find the expressions for the primary off-axis aberrations for a
concave or convex spherical mirror.

Spherical Aberration

From Eq. (4.24) we can show that the primary longitudinal spherical
aberration for a spherical mirror, with the object at a finite distance l in
front of this mirror, is given by

SphL ¼ �
1=r� 1=lð Þ

2

2=r� 1=lð Þ
2

y2

r
¼ �

r� l

r� 2l

	 
2
y2

r
ð11:14Þ

Figure 11.11 First-order parameters in a concave mirror with the object at an
infinite distance from the mirror.
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Coma

As shown in Eqs. (5.40) and (5.49) the coma and astigmatism aberrations
depend on the value of the spherical aberration. In turn the value of the
spherical aberration depends on the position of the object. Thus, the values
of the coma and astigmatism are functions of the object position as well as
the stop position. The value of the sagittal coma for an object at a distance l
in front of the mirror can be shown to be given by

ComaS ¼ �
1=r� 1=lð Þ 1� l=r

� �
1� �ll=l
� � y2h0

r
ð11:15Þ

Astigmatism

From Eqs. (5.49) and (11.12), the longitudinal sagittal astigmatism when
the object is at a distance l in front of the mirror is given by

AstLS ¼ �
ð1� l=rÞ2

ð1� l=lÞ2
h2

r
ð11:16Þ

Petzval Curvature

From Eq. 5.23, the value of the Petzval curvature is

Ptz ¼
h02

r
¼

h02

2f
ð11:17Þ

11.3.2 Concave Spherical Mirror

Let us analyze each of the monochromatic primary aberrations on a concave
spherical mirror.

Spherical aberration

From Eq. 11.14 we can see that a spherical mirror is free of spherical
aberration when the object and the image are both at the center of curvature
or at the vertex of the mirror (l¼ r). If the object is at infinity (l¼1 and
l0 ¼� f¼ r/2) the longitudinal spherical aberration becomes

SphL ¼
y2

4r
¼

D2

32f
¼

z

2
ð11:18Þ
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and the transverse aberration is

SphT ¼
y3

2r2
¼

D3

64f 2
ð11:19Þ

where D is the diameter of the mirror, z is the sagitta of the surface, and r is
the radius of curvature. Integrating this expression and using Eq. (1.76),
with the radius of curvature of the wavefront equal to the focal length of the
spherical mirror (r/2) we may find that the wavefront aberration is given by

WðyÞ ¼
y4

4r 3
ð11:20Þ

It is interesting to see that this result is twice the sagitta difference Z¼B1S
4

between a sphere and a paraboloid, given by Eqs. (A2.8) and (A2.9). This is
to be expected, since the paraboloid is free of spherical aberration. In
conclusion, the wavefront spherical aberration of a spherical mirror is twice
the separation between the paraboloid and the sphere.

Coma

Restricting our analysis to the particular case of an object at an infinite
distance in front of the concave mirror, from Eq. (11.15) the sagittal coma is
given by

ComaS ¼ �
y2h0ðl� rÞ

r3
ð11:21Þ

when the stop is at the mirror ð �ll ¼ 0Þ, this value of the sagittal coma is

ComaS ¼
D2h0

16f 2
ð11:22Þ

If the exit pupil is at the center of curvature ð �ll ¼ rÞ, the value of the sagittal is
ComaS ¼ 0.

Astigmatism

From Eq. (11.16), for the case of an object at an infinite distance, we obtain

AstLS ¼
h02

r

l� r

r

	 
2

ð11:23Þ

As explained before, this result is valid only for an infinite distance from the
object to the mirror. By using Eq. (11.11), the primary longitudinal sagittal
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astigmatism may be written as

AstLS ¼ �
l� r

r

	 
2

Ptz ð11:24Þ

The value of the primary longitudinal tangential AstLT is equal to
three times this value.

Petzval Curvature

From Eq. (11.14) we see that the Petzval surface is concentric with the
mirror. If the object is not at an infinite distance from the mirror the
image is displaced to the corresponding conjugate distance, but its Petzval
curvature remains constant.

The sagitta of the sagittal focal surface is equal to the sum of the
Petzval curvature plus the longitudinal sagittal astigmatism. The sagitta of
the tangential focal surface is equal to the sum of the Petzval curvature plus
the longitudinal tangential astigmatism. The sagitta for the surface of best
definition is given by

Best ¼ 1� 2
l� r

r

	 
2
" #

Ptz ð11:25Þ

When the stop is at the center of curvature the astigmatism disappears,
but the field has Petzval curvature, as shown in Fig. 11.12(a). If the stop is at

l

r
¼ �

1ffiffiffi
3

p þ 1 ¼ 0:42; 1:58 ð11:26Þ

Figure 11.12 Astigmatic surfaces for a spherical mirror with four different stop
positions.
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the tangential surface is flat, as shown in Fig. 11.12(b). If the stop is
placed at

l

r
¼ �

1ffiffiffi
2

p þ 1 ¼ 0:29; 1:707 ð11:27Þ

the surface of best definition, located between the sagittal and the tangential
surfaces, is a plane, as shown in Fig. 11.12(c). When the stop is at the mirror
the longitudinal tangential astigmatism is of opposite sign, as shown in
Fig. 11.12(d). In this case the sagittal surface is flat.

When the object and the image are at the center of curvature of the
concave spherical mirror, the spherical aberration, coma, and astigmatism
are zero. Only the Petzval curvature exists.

11.3.3 Concave Paraboloidal Mirror

Again, let us examine each of the primary aberrations in a concave
paraboloidal mirror.

Spherical Aberration

In a paraboloidal mirror there is no spherical aberration when the object is
at infinity. However, if the object is at the center of curvature spherical
aberration appears. We see in Eq. (A2.16) that the exact expression for the
longitudinal aberration of the normals to the mirror is given by

SphLnormals ¼ ftan2j ð11:28Þ

as illustrated in Fig. 11.13. The spherical aberration of the paraboloid when
the object is at the center of curvature is approximately twice the aberration
of the normals. Thus, we may write

SphL ¼ 2f
y2

r2
¼

y2

r
¼ �

D2

8f
ð11:29Þ

If we compare this result with the spherical aberration for the
spherical mirror with the object at infinity, we see that their absolute
values are different by a factor of four and opposite in sign. This is easy to
understand if we notice that their wavefront aberrations must have
opposite signs and the same absolute values. In the sphere the observing
plane is at a distance �f¼ r/2 while in the paraboloid it is at a distance r.
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Then, the absolute values of their transverse aberrations must be different
by a factor of two and the absolute values of their longitudinal aberrations
by a factor of four.

Coma

Considering now the object at infinity, the paraboloid would be free of coma
if the stop is at the mirror, only if the principal surface is centered at the
focus, but this in not the case. The principal surface is the paraboloidal
surface itself. Thus, the value of OSC (defined in Sec. 5.3.1) is given by

OSC ¼
fM
f
� 1 ð11:30Þ

where fM and f are the marginal and paraxial focal lengths, as measured
along the reflected rays, as shown in Fig. 11.13. For a paraboloid, we may
show that

fM ¼ f z ð11:31Þ

where z is the sagitta, given by

z ¼ �
y 2

4f
¼ �

D2

16f
ð11:32Þ

Figure 11.13 Paraboloidal mirror.
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Then, the value of the sagittal coma is equal to

ComaS ¼ OSC ? h0 ¼ �
zh0

f
ð11:33Þ

or

ComaS ¼
D2h0

16f 2
ð11:34Þ

This value is identical to the value obtained for a spherical mirror. It
may also be obtained by adding the spherical and aspherical contributions
from Eqs. 5.41 and 5.85. However, it may be seen that the aspherical
contribution is zero when the stop is at the mirror, which explains why the
coma is the same for spherical and paraboloidal mirrors with the stop at the
mirror.

Astigmatism

In a paraboloid the spherical aberration with the object at infinity is zero. If
we separate the spherical and aspherical contributions of these aberrations
we may write

SphLsphere þ SphLasphere ¼ 0 ð11:35Þ

and similarly for the longitudinal sagittal astigmatism

AstLS total ¼ AstLS sphere þ AstLS asphere ð11:36Þ

which, by using Eqs. 5.50 and 5.90 is

AstLS total ¼ SphLsphere

i

i

	 
2
y

y

	 
2
" #

ð11:37Þ

or

AstLS total ¼ AstLS sphere 1�
i

i

y

y

	 
2
" #

ð11:38Þ
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The astigmatism when the stop is at the mirror is equal to the astigmatism of
a spherical mirror. Then, after some algebraic manipulation, we obtain

AstLS total ¼ AstLS sphere
ðl�rÞ2 � l

2

ðl� rÞ2

" #
ð11:39Þ

then, using Eq. (11.24), we obtain

AstLS total ¼
ðl� rÞ2 � l

2

r2

" #
Ptz ð11:40Þ

Then, using Eq. (5.67) for the sagitta of the surface of best definition:

Best ¼ 1� 2
r� 2l

r

	 
2
" #

Ptz ð11:41Þ

we see that the surface of best definition is flat when �ll=r ¼ 0:25.

11.3.4 Convex Spherical Mirror

Let us now study a convex spherical mirror. As shown in the diagram in
Fig. 2.9 for diverging lenses, a convex mirror cannot produce real images
with real objects. A real image can be produced only with a virtual object as
in the case on the Cassegrain telescope to be studied in Chap. 15. A virtual
object can produce a virtual image. We will describe here only configura-
tions with a real object and thus producing a virtual image.

If the entrance pupil is at the center of curvature of the mirror the
image will have a strong curved spherical focal surface, which is concentric
with the mirror, as shown in Fig. 11.14. The only aberrations in the system
are spherical aberration and Petzval curvature. Coma and astigmatism are
zero. The problem with this system is that the entrance pupil is behind the
convex mirror and thus this configuration is possible only if the mirror is
part of a more complicated arrangement.

A more frequent configuration is when a virtual image is observed
with the eye and the stop is the pupil of the observing eye. If the object is flat
and infinitely extended the virtual image would be strongly curved as shown
in Fig. 11.15. This convex lens acts as an extremely wide angle system
covering a field of view of one-half a sphere.
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When a flat virtual object is reflected on the mirror the real image has
a strong curvature as shown in Fig. 11.16. For small fields the Petzval,
sagittal, and tangential fields are spheres as predicted by the primary
aberration theory, (see dotted lines in Fig. 11.16). For extremely large fields
the shape of the image surfaces are ovoids highly resembling ellipsoids.

Figure 11.15 Convex spherical mirror with the stop at the center of curvature and
a plane image.

Figure 11.14 Convex spherical mirror with the stop at the center of curvature and
a plane object.
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There is a different ovoid for sagittal and tangential rays, as shown by
Mejı́a-Barbosa and Malacara-Hernández (2001). These surfaces can be
calculated with the help of the Coddington equations or with exact ray
tracing. At the vertex V these ovoids have the same curvatures as the
primary Petzval, sagittal, and tangential surfaces. These ovoids intersect at a
common circle around the optical axis, indicated by the point R at the
circular intersection of the flat object with the spherical mirror.

If the light paths are reversed the flat virtual object becomes a flat
virtual image and the ovoidal images become ovoidal objects. This arrange-
ment has been proposed by Mejı́a-Barbosa and Malacara-Hernández (2001)
for a corneal topographer.

11.4 PERISCOPIC LENS

If two meniscus lenses are placed together with their concave surfaces facing
toward each other, in a symmetrical configuration as in Fig. 11.17, we have
a system invented many years ago with the trade name of periscopic lens.
If the system is completely symmetric, including the object and the image
distances, the coma, distortion, and magnification chromatic aberrations are
automatically cancelled out. Thus, we do not have to worry about the coma
correction with the lens bending. Thus, in the curve in Fig 11.8(a) , we may

Figure 11.16 Convex spherical surface with a flat virtual object and the stop in
front of the mirror.
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choose a point with slope zero (flat tangential field) and we do not need to
worry about the coma (plot curvature). If we examine this plot we see that
there are two points M1 and M2 that satisfy our conditions. The point M1

has a larger distortion, but since it is going to be canceled anyway because of
the symmetry of the system, we choose this point because it produces a more
compact system. The bending of the lens is stronger than for the landscape
lens. The separation between the lenses is calculated from Eq. (11.2).

The complete symmetry cannot be preserved if the object is at infinity.
However, we may see by ray tracing analysis that the state of correction
remains surprisingly good even when the object is at infinity. The design of
the periscopic lens with the object at infinity is presented in Table 11.4.

Table 11.4 Periscopic Lens

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

20.000 12.0 2.0 BK-7
14.911 12.0 9.89 Air
Stop 5.0 9.89 Air
�14.911 12.0 2.0 BK-7

�20.000 12.0 — Air

Aperture (focal ratio) (mm): 5.0 (F/11.7)

Effective focal length (mm): 58.46

Back focal length (mm): 44.96

Object distance (mm): infinite

Image height (angular semifield) (mm): 21.28 (20�)

Figure 11.17 Periscopic lens.
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11.5 ACHROMATIC LANDSCAPE LENSES

It is natural to think about the possibility of achromatizing the landscape
lens to eliminate both chromatic aberrations. We have seen [(Eq. 6.55)] that,
if the axial chromatic aberration is corrected, the stop shift will not
introduce any magnification chromatic aberration, so both aberrations will
be corrected. To achromatize we use two different glasses, crown and flint,
as illustrated in Fig. 11.18. This achromatization may be done in many
ways, e.g., by using the D–d method or by ray tracing.

The next step, as in the landscape lens, would be to bend the lens until
the coma is made zero and the tangential field is made flat. However, the
tangential field cannot be flattened. The reason is that the concave front
surface and the crown–flint interface contribute a large positive astigma-
tism, making the tangential field backward curved. This type of achromatic
landscape lens is called the Chevalier lens.

Unfortunately, with normal glasses the bending of the lens increases
the astigmatism contribution of the glass interface while reducing the
contributions of the other surfaces. Thus, this achromatization has to pay
the price of increasing the astigmatism or the field curvature. In other
words, the meridional plot in Fig. 11.18 cannot be made to have an
inflection point I with zero slope. Then, we may correct coma by selecting
the point I for the height of the principal ray, or alternatively, we may
flatten the tangential surface by selecting the point M. Figure 11.19 shows
an achromatic landscape lens without coma and its design data are
presented in Table 11.5.

An obvious solution to the problem of the large positive astigmatism
in this lens is to eliminate the contribution of the glass interface by making
the positive lens with a glass with the same refractive index or even higher
than that of the negative lens, but with different Abbe numbers. This

Figure 11.18 Meridional plot with an enlarged stop for one-half of the periscopic
lens.
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approach requires glasses, like the barium crown glass. This is the new
achromatic landscape lens. This glass combination reduces the Petzval
curvature, increasing the field. However, the spherical aberration is worse in
the new achromat than in the Chevalier lens.

11.6 ACHROMATIC DOUBLE LENS

The achromatic landscape lens could also be made with the meniscus-
shaped crown positive lens on the side of the stop. This approach, proposed
in 1857 by the company Thomas Grubb in Great Britain, makes the crown–
flint interface very curved. The advantage is that the spherical aberration is
very well corrected, but again, it is impossible to correct coma and field
curvature at the same time.

A natural thing to do then is to place two of these lenses in a
symmetrical configuration, to correct coma with the symmetric configura-
tion, as shown in Fig. 11.20. This lens was given the name of Rapid

Table 11.5 Achromatic Landscape Lens

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

Stop 12.0 10.71 Air
�89.622 12.0 3.0 F2

89.622 12.0 6.0 BK-7
�29.933 12.0 — Air

Aperture (focal ratio) (mm): 5.0 (F/20.0)

Effective focal length (mm): 100.50

Back focal length (mm): 105.00

Object distance (mm): infinite

Image height (angular semifield) (mm): 36.40 (20�)

Figure 11.19 Achromatic landscape lens.
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Rectilinear. As Kingslake (1978) points out, the Rapid Rectilinear was one
of the most popular lenses ever made.

11.7 SOME CATOPTRIC AND CATADIOPTRIC SYSTEMS

A catoptric system is one formed only by mirrors. A catadioptric system is
formed by both, lenses and mirrors. In this section we will study some of
these systems.

11.7.1 Mangin Mirror

This mirror, illustrated in Fig. 11.21, was invented in 1876 in France by
Mangin, as an alternative for the paraboloidal mirror used in searchlights. It
is made with a meniscus negative lens coated with a reflective film on the
convex surface. The radius of curvature of the concave front surface is the
variable used to correct the spherical aberration. The coma is less than half
that of a paraboloidal mirror. This system has two important advantages.
One is that the surfaces are spherical not paraboloidal, making easier their
construction. The second advantage is that the reflecting coating is on the
back surface, avoiding air exposure and oxidation of the metal.

A Mangin mirror with a focal length F, made with crown glass BK-7,
can be designed with the following formulas:

r1 ¼ 0:1540Tþ 1:0079F ð11:42Þ

and

r2 ¼ 0:8690Tþ 1:4977F ð11:43Þ

where T is the thickness, r1 is the radius of curvature of the front surface,
and r2 is the radius of curvature of the back surface.

A Mangin mirror design is in Table 11.6. The system may be
achromatized, if desired.

Figure 11.20 Rapid Rectilinear lens.
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11.7.2 Dyson System

Unit magnification systems are very useful for copying small structures, or
drawings, e.g. in photolithography in the electronics industry. In general,
these systems are symmetric, automatically eliminating coma, distortion,
and magnification chromatic aberration. One of these systems, illustrated in
Fig. 11.22, was designed by Dyson.

The system is concentric. A marginal meridional ray on-axis leaving
from C would not be refracted. Thus, spherical aberration and axial
chromatic aberration are absent. The radius of curvature rL of the lens is

rL ¼
n� 1

n

	 

rM ð11:44Þ

where rM is the radius of curvature of the mirror, in order to make the
Petzval sum zero. The primary astigmatism is also zero, since the spherical
aberration contribution of both surfaces is zero. However, the high-order

Table 11.6 Mangin Mirror

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

�505.80 100.0 10.0 BK-7
�758.00 100.0 10.0 BK-7
�505.80 100.0 — Air

Aperture (focal ratio) (mm): 100.0 (F/5.0)

Effective focal length (mm): 500.23

Back focal length (mm): 105.00

Object distance (mm): infinite

Image height (angular semifield) (mm): 0.0 (0�)

Figure 11.21 Mangin mirror.
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astigmatism appears not very far from the optical axis. Thus, all primary
aberrations are corrected in this system.

It may be noticed that since the principal ray is parallel to the optical
axis in the object as well as in the image medium, the system is both frontal
and back telecentric. Table 11.7 shows the design of a Dyson system.

11.7.3 Offner System

The Offner system is another 1:1 magnification system, formed only by
mirrors, as shown in Fig. 11.23. The system is concentric and with zero
Petzval sum as in the case of the Dyson system. This system may be also
corrected for all primary aberrations, but since higher order astigmatism is
large in this configuration, actual Offner systems depart from this
configuration. Primary and high-order astigmatism are balanced at a field
zone to form a well-corrected ring where the sagittal and the tangential
surfaces intersect.

Table 11.7 Dyson System

Radius of

curvature (mm)

Diameter

(mm)

Separation or

thickness (mm) Material

500.00 340.72 BK-7

�340.72 500.00 659.28 Air
�1000.00 500.00 �659.28 Air
�340.72 500.00 �340.72 BK-7

Image height in mm (off-axis separation): 150.0

Figure 11.23 Offner system.

Figure 11.22 Dyson system.
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11.8 FRESNEL LENSES AND GABOR PLATES

A Fresnel lens is formed by rings with different slopes and widths as shown
in Fig. 11.24. We may think of such a lens as a plano convex thick lens
whose thickness has been reduced by breaking down the curved face in
concentric rings. The width of each ring increases with the square of its
radius, as the sagitta of the thick lens. Then, the lens has constant overall
thickness. Fresnel lenses have been made in many sizes, even on the micro
scale (micro Fresnel lenses) (Nishihara and Suhara, 1987).

The spherical aberration of these lenses may be controlled by bending
as in ordinary lenses. This is a redistribution of the power among the two
surfaces, by departing from the plano convex configuration. This method,
however, is seldom used, because of construction reasons it is more
convenient to have the grooved surface on only one side. Another method
for reducing the spherical aberration is by introducing an aspheric surface.
This is done by controlling the slope of each grove in the proper way. This
method is more common than the former one.

The primary aberrations of Fresnel lenses have been studied in detail
by Delano (1974, 1976, 1978, 1979, 1983). Some interesting results are
obtained. For example, that there exists a new kind of coma term called
linear coma that does not appear in normal lenses. The coma image is shown
in Fig. 11.25.

One very important difference exists between ordinary lenses and
Fresnel lenses. Assuming that no aberrations are present, in ordinary lenses
a spherical wavefront is produced, as shown in Fig. 11.26(a). In Fresnel
lenses, however, a randomly ring-stepped wavefront is produced in general,
as shown in Fig. 11.26(b). The reason is that the refracted ray direction is
controlled by means of the grove slope, but the thickness is not controlled

Figure 11.24 Positive and negative Fresnel lenses.
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with the required precision. For a perfect spherical refracted wavefront to be
produced, the thickness step on each ring has to be an integer multiple of the
wavelength. The effect of this wavefront stepping is that the theoretical
resolution is lower than that of a normal lens with the same aperture.

A small Fresnel lens that produces a continuous spherical or flat
wavefront may be manufactured. The construction methods have to be
completely different from those of ordinary Fresnel lenses. They even
receive a different name. They are called Gabor plates, kinoforms, or, in
general, diffractive optical elements. These elements may be produced with a
very high diffraction efficiency.

Figure 11.26 Wavefronts in coherent and incoherent Fresnel lenses: (a) coherent

wavefront; (b) incoherent wavefront.

Figure 11.25 Linear coma appearing in Fresnel lenses.
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12
Complex Photographic Lenses

12.1 INTRODUCTION

A large number of interesting photographic lenses have been designed since
the end of the 19th century. We will describe here only a few of them, but the
reader may consult the interesting books by Kingslake (1946, 1963, 1989).
Additional information may also be found in the articles by Betensky (1980)
and Cook (1965). Aklin (1948) made some considerations about the glass
selection for photographic lenses in general.

In order to produce a good image over a large field of view, most
photographic lenses are anastigmats. A lens is said to be anastigmat when it
has a flat field free of astigmatism. In order to design an anastigmat lens it is
necessary to have a very low Petzval sum, which is achieved only if the sum
of the powers of the individual components (thin lenses or surfaces) is zero.
This condition can be met by a large separation of the positive and negative
elements. Lenses for aerial photography require a high resolution over a
relatively high field (Kingslake, 1942, 1947).

The speed of a photographic objective may be changed by means of
a diaphragm, variable in fixed steps to any desired value, according to
any of two systems (Kingslake, 1945), as shown in the Table 12.1. From
one step to the next the area of the aperture changes by a factor of two.

The image plane of a typical 35mm objective with a 50mm effective
focal length has a diagonal equal to this focal length of the lens, producing
an angular field semidiameter of about 26.5� at the corner of the rectangular
field. Objectives with larger focal lengths are called telephotos and those
with shorter focal lengths are called wide-angle lenses (Gardner and Washer,
1948; Thorndike, 1950).
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12.2 ASYMMETRICAL SYSTEMS

Asymmetrical anastigmats have also been designed with many different
configurations. Here, some of the more important and interesting asym-
metrical lenses will be described.

12.2.1 Petzval Lens

The Petzval lens is one of the oldest photographic lenses systematically, not
empirically, designed. This lens consists of two achromatic doublets with the
stop between them. The original Petzval lens designed in 1839, had a speed of
about f/5. In the classic configuration the meridional ray is bent in each lens
about the same amount, so that the refractive work is divided into approxi-
mately equal parts. A system with an effective focal length F has a front
doublet with a focal length fa¼ 2F, a rear doublet with a focal length fb¼F,
and a separation between them equal to d¼F. The back focal length is
FB¼F/2. In the original design the stop was placed between the two
components.

The Petzval sum is very large, since both components have positive
power. Hence, some astigmatism must be introduced in order to produce a
flat tangential field. Since the stop is in the middle, the front doublet has a
tangential field curved backwards. Then, it may be proved that to flatten the
field, the real doublet must have a lower power. To be able to correct the
spherical aberration and the coma, and at the same time to have a flat

Table 12.1 f-Numbers FN for Photographic
Objectives

English system Continental system

1.0 1.1

1.4 1.6
2.0 2.3
2.8 3.2

4.0 4.5
5.6 6.3
8.0 9.0
11.3 12.5

16.0 19.0
22.6 25.0
32.0 36.0

45.0 50.0
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tangential field, the crown and flint glasses must have a large Abbe number
V difference. The spherical aberration and coma are corrected by a separate
bending of the two elements of the rear doublet.

Over the years, many important improvements to the original design
had been made. An example is the lens designed by Dallmeyer in 1860, by
turning around the rear doublet, with its positive component in front. The
image near the optical axis improved, but the astigmatism worsened.

More recent modifications of the Petzval design had moved the stop to
the front doublet. These lenses will be described in Chap. 17, since they are
mainly used for movie projectors. A Petzval lens is illustrated in Fig. 12.1,
with its design data listed in Table 12.2.

Table 12.2 Petzval Lens

Radius of
curvature (mm) Diameter (mm)

Separation or
thickness (mm) Material

55.90 36.0 7.00 K5
� 56.23 36.0 2.00 F2
598.10 36.0 16.50 Air

Stop 36.0 16.50 Air
198.35 32.0 2.00 F2
38.45 32.0 3.50 Air
45.80 32.0 5.00 BK-7

� 83.12 32.0 70.56 Air

Aperture (mm) (focal ratio): 10.0 (F/10.0)

Effective focal length (mm): 100.00

Back focal length (mm): 70.57

Object distance (mm): infinite

Image height (mm) (angular semifield): 26.8 (15�)

Figure 12.1 Petzval lens.
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12.2.2 Telephoto Lens

The telephoto lens has two basic elements: a positive lens in the front and a
negative lens in the back. The effective focal length of the system is larger
than the total length, from the front lens to the focal plane, of the system.
This kind of system is used whenever there is a need for a compact system,
as compared with its focal length. A telephoto lens is the lens equivalent of a
Cassegrain telescope. The telephoto ratio is defined as the ratio of the total
length of the system to the effective focal length as follows:

k ¼
tþ FB

F
ð12:1Þ

where t is the lens separation, F is the effective focal length, and FB is the
back focal length. Then, the focal length for the front element may be
written

fa ¼
Fd

Fð1� kÞ þ d
ð12:2Þ

and the focal length for the second element is

fb ¼
ð fa �d ÞðkF� d Þ

ð fa �kF Þ
ð12:3Þ

Typical values for the telephoto ratio are around 0.8.
A common problem with telephoto designs is the presence of

distortion, but it may be reduced as described by Kazamaki and Kondo
(1956). A telephoto lens, designed by Kingslake, redesigned by Hopkins,
and reported by Smith and Genesee Optics Software (1992) is described in
Table 12.3 and shown in Fig. 12.2.

An inverted telephoto lens is normally used to obtain wide-angle
fields. When the field is very large, this lens is sometimes wrongly called a
fisheye lens. The strong distortion of this system may be compensated by
introducing a positive lens in front of the negative element.

These lenses have the property that their back focal length is longer
than their effective focal length, which is useful in certain applications.

12.2.3 Cooke Triplet

H. Dennis Taylor, working for the Cooke and Sons company in York,
England, in 1893, invented this famous design. This system has just enough

© 2004 by Marcel Dekker, Inc.



degrees of freedom to correct all seven primary aberrations and to obtain
the desired focal length. The eight degrees of freedom are the three focal
lengths of the components, three lens bendings, and two air separations.
To arrive at his design Taylor reasoned the following:

1. The sum of the powers of the elements has to be zero in order to
have a zero Petzval sum.

2. To have low distortion and to correct the magnification chromatic
aberration, the system has to be nearly symmetric. Then, a
negative lens between the two positive lenses or a positive lens
between two negative lenses are possible solutions. He realized
later that the first solution leads to a better aberration correction.

3. To correct the axial chromatic aberration the central negative lens
should be made with a flint glass and the two positive lenses with
crown glass.

To find a thin-lens solution for the system we take the stop at the
negative lens and then we use five variables, the three lens powers, and the

Table 12.3 Telephoto Lens

Radius of

curvature (mm) Diameter (mm)

Separation or

thickness (mm) Material

24.607 18.4 5.080 BK-7

� 36.347 18.4 1.600 F2
212.138 18.0 12.300 Air
Stop 13.4 21.699 Air

� 14.123 18.8 1.520 BK-7
� 38.904 18.8 4.800 F2
� 25.814 18.8 37.934 Air

Aperture (mm) (focal ratio): 18.4 (F/5.6)

Effective focal length (mm): 101.6

Back focal length (mm): 37.93

Object distance (mm): infinite

Image height (mm) (angular semifield): 7.44 (4.19�)

Figure 12.2 Telephoto lens.

© 2004 by Marcel Dekker, Inc.



two separations to solve for five conditions. These five conditions must be
independent of the lens bendings. The next step is to use the three bendings to
correct the remaining three conditions that must depend on the bendings. The
effective focal length of the system, the axial chromatic aberration, the
magnification chromatic aberration, and the Petzval curvature do not depend
on the bendings. Four conditions that do depend on the bendings are the
spherical aberration, the coma, the astigmatism, and the distortion.

Thus, the focal lengths (three) and the separations (two) may be fixed
with the four parameters that do not depend on the lens bendings, plus
another one, which may be the ratio of the lens separations or the ratio of
the powers of the two positive lenses.

In the next step the lens bendings are found in order to correct the
spherical aberration, the coma, and the astigmatism. Then, the distortion is
calculated and if it is unacceptable, the design process is repeated, selecting a
new ratio between the separations or between the powers of the two positive
lenses.

The approximations used for thin lenses may give some errors when
calculating the primary aberrations for very thick lenses. This error might be
compensated by aiming in the thin-lens calculations to some small (nonzero)
values of the primary aberrations. The best aim value is obtained by trial
and error, until the real aberration becomes zero.

The design techniques for Cooke triplets have been described in detail
by Conrady (1960), Cruickshank (1958, 1960), Smith (1950), and Stephens
(1948). From Eq. (3.5) we may find that the total power for the lens system is

P ¼ P1 þ
y2
y1

P2 þ
y3
y1

P3 ð12:4Þ

If the astigmatism is zero, the Petzval surface must be flat. However, in the
initial design it is frequently better to assume a small residual value different
from zero, shown by Shatma and Rama Gopal (1982). However, from
Eq. (5.29), if the Petzval surface is assumed to be flat we may write

P1

n1
þ
P2

n2
þ
P3

n3
¼ 0 ð12:5Þ

and from Eq. (6.24), the transverse axial chromatic aberration may be
written as

AchrT ¼
1

Py1

y2
1 P1

V1
þ
y2
2 P2

V2
þ
y2
3 P3

V3

	 

ð12:6Þ
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and from Eq. (6.72), the magnification chromatic aberration is

Mchr ¼
1

Py1

y1 y1 P1

V1
þ
y2 y2 P2

V2
þ
y3 y3 P3

V3

	 

ð12:7Þ

It is convenient to define the power f of the system formed by the first two
elements as follows:

f ¼ P1 þ
y2
y1

P2 ð12:8Þ

We assume now that the glasses had already been selected from
experience. The problem of the selection of the glasses in the triplet has been
studied by Lessing (1958, 1959a,b). Then, from Eq. (12.5), and taking the
glass for the first and third lenses to be the same, we find that if the Petzval
surface is flat

P1 þ
n1
n2

P2 þP3 ¼ 0 ð12:9Þ

if the transverse axial chromatic aberration is equal to zero, from Eq. (12.6)
we have

P1 þ
V1

V2

	 

y2
y1

	 
2

P2 þ
y3
y1

	 
2

P3 ¼ 0 ð12:10Þ

and from Eq. (12.7), if the magnification chromatic aberration is also equal
to zero:

P1 þ
V1

V2

	 

y2
y1

	 

y2
y1

	 

P2 þ

y3
y1

	 

y3
y1

	 

P3 ¼ 0 ð12:11Þ

By observing Fig. 12.3, and assuming that the stop is in contact with
the middle lens ( �yy2 ¼ 0), we may see that

y3 ¼ �
d2

d1
y1 ð12:12Þ
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Thus, with this expression and again �yy2 ¼ 0, we may write Eq. (12.11) as

P1 �
y3
y1

	 

d2

d1

	 

P3 ¼ 0 ð12:13Þ

From Fig. 12.3, we may obtain

y2
y1

¼ 1� d1 P1 ð12:14Þ

and similarly, assuming that f is the power of the system formed by the first
two elements, we have

y3
y1

¼
y2
y1

� d2 f ð12:15Þ

After substituting ( y2/y1) and ( y3/y1) from Eqs. 12.14 and 12.15 into
Eqs. (12.4), (12.8), (12.9), (12.10), and (12.13) we obtain five equations with
five unknowns, namely P1, P2, P3, d1, and d2. The power f is taken as a
constant, by assigning to it a tentative value. To solve the system of five
equations is not simple.

Several methods have been proposed to solve this system of equations.
Here, the solution described by Cruickshank (1958, 1960) will be used. The
solutions for the lens powers and the separations will be written in terms of
the ratio y2/y1. Then, a second-degree equation will define the value of this
ratio. To begin, we may find from Eqs. (12.4) and (12.8) that

P� f ¼
y3
y1

	 

P3 ð12:16Þ

Figure 12.3 Some parameters in a Cooke triplet.
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then, from Eq. (12.14), the value of the first lens separation d1 is

d1 ¼
1� ð y2=y1Þ

P1
ð12:17Þ

and from Eqs. (12.13), (12.14), and (12.16) the second lens separation d2 is

d2 ¼
1� ð y2=y1Þ

P� f
ð12:18Þ

To find now the lens powers, from Eqs. (12.15) and (12.18), we write

y2
y1

	 

P� ðP� fÞ

y3
y1

	 

¼ f ð12:19Þ

On the other hand, from Eqs. (12.8), (12.10), and (12.16):

f ¼ P2

y2
y1

	 

1�

V1

V2

	 

y2
y1

	 
� �
� ðP� fÞ

y3
y1

	 

ð12:20Þ

Then, the power for the second lens can be found from Eqs. (12.19) and
(12.20) as

P2 ¼
P

1� ðV1=V2Þð y2=y1Þ
ð12:21Þ

and the power for the third lens from Eqs. (12.16) and (12.19) as

P3 ¼
ðP� f Þ

2

ð y2=y1ÞP� f
ð12:22Þ

Finally, from Eqs. (12.8) and (12.21), the power for the first lens is

P1 ¼ f�
y2
y1

	 

P2 ð12:23Þ

The final step now is to derive an expression that permits us to
calculate the ratio y2/y1. Substituting in Eq. (12.9) the values of the lens
powers from Eqs. (12.21), (12.22), and (12.23), we may find a second degree
equation:

B2

y2
y1

	 
2

þB1

y2
y1

	 

þ B0 ¼ 0 ð12:24Þ
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where

B2 ¼ Pþ f
y2
y1

	 

ð12:25Þ

B1 ¼ P
y2
y1

	 

�

V1

V2

	 
� �
� 2f 1þ

y2
y1

	 
� �
ð12:26Þ

and

B0 ¼ f
V1

V2

	 

þ 2

� �
� P ð12:27Þ

After the solutions to this second-degree equation are obtained, the
three lens powers and the two separations are easily found by selecting the
solution with a negative lens between two positive lenses.

The next step is to correct the spherical aberration, coma, and
astigmatism by bending of the lenses. Then, the distortion is calculated.
If the distortion is not zero, a new value is assigned to the power f and the
whole process is repeated in an iterative process, until the distortion
becomes zero. Hopkins (1962) and Wallin (1964) made complete third- and
fifth-order analyses of the Cooke triplet.

It is important to know that a triplet with a large or medium aperture
with a perfect correction for all six primary aberrations is quite deficient.
A good design compensates high-order aberrations with the presence of
some primary aberrations.

Figure 12.4 shows a Cooke triplet, with the data presented in
Table 12.4.

12.2.4 Tessar Lens

The Tessar lens is a descendant of the symmetrical double meniscus
anastigmats described in Section 12.1. We may consider that the front
component is an air-spaced doublet and that the rear component is a new
achromat. However, it may also be regarded as a modification of the Cooke
triplet. With this point of view, the triplet has been modified by substituting
the last element for a doublet. The negative component of this doublet has a
lower index and greater dispersion than the positive component. This
substitution reduces the spherical zonal aberration (spherical aberration
at 0.7 of the maximum aperture) and reduces the astigmatism. Typical
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glasses for this lens are dense barium crown for the first and last lenses, a
flint for the second, and a light flint for the third. The improvement over the
triplet is not much, but it is noticeable.

Figure 12.5 shows a Tessar lens, described by Smith and Genesee
Optics (1992), with the design data presented in the Table 12.5.

12.3 SYMMETRICAL ANASTIGMAT SYSTEMS

Many anastigmatic lenses have a symmetrical configuration about the stop,
to minimize coma and distortion, even though the object and image are

Table 12.4 Cooke Triplet Lens

Radius of
curvature (mm) Diameter (mm)

Separation or
thickness (mm) Material

36.10 48.0 10.50 SK4

Flat 48.0 12.00 Air
� 59.00 (stop) 36.0 2.00 SF2
� 32.79 36.0 12.50 Air

95.40 48.0 11.00 SK4
� 47.62 48.0 71.75 Air

Aperture (mm) (focal ratio): 40.0 (F/2.5)

Effective focal length (mm): 100.1

Back focal length (mm): 71.75

Object distance (mm): infinite

Image height (mm) (angular semifield): 26.79 (15�)

Figure 12.4 Cooke triplet lens.
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not symmetrically placed, as in the Dagor lens and the double Gauss lenses
to be described here. Another interesting symmetrical lens is the Ross lens,
frequently used in astrophotography (Cornejo et al., 1970).

12.3.1 Dagor Lens

One of the earliest anastigmats is the Dagor lens. This lens is symmetric or
almost symmetric about the stop. As in the landscape lens, the stop and lens
bendings are selected so that the astigmatism is small. If desired, the lens

Table 12.5 Tessar Lens

Radius of
curvature (mm) Diameter (mm)

Separation or
thickness (mm) Material

24.200 22.8 4.10 BaF10
555.000 22.8 2.20 Air
� 96.000 21.2 3.10 F2

21.000 21.2 3.40 Air
Stop 19.4 2.60 Air
� 166.000 20.2 0.70 LF3
21.000 20.0 4.40 BaF10

� 45.200 20.2 88.90 Air

Aperture (mm) (focal ratio): 22.8 (F/4.5)

Effective focal length (mm): 102.6

Back focal length (mm): 88.9

Object distance (mm): infinite

Image height (mm) (angular semifield): 54.36 (27.92�)

Figure 12.5 Tessar lens.
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may be designed so that one-half of the system, if used alone, performs
reasonably well. The advantage is that then we have two different focal
lengths, one for the whole system and another when one-half of the system is
used. If the two halves have different focal lengths, the system is not
completely symmetric about the stop. This is a hemisymmetrical lens. If each
half of the hemisymmetrical lens is allowed to be used alone, or in
combination with the other half, we have three different focal lengths. A lens
like this with two components that may be used alone or as a complete
system is said to be convertible.

The two glass-to-glass interfaces in the Dagor lens contribute very
little to the Petzval sum, since their power is small. Thus, the two external
surfaces determine both the focal length and the Petzval sum.

The three glasses are different. If we split the central negative element
of one-half into two parts, the outer part may be thought of as a new
achromat and the internal part as an old achromat. A study of the possible
methods to control the residual aberrations in the design of symmetrical
four-element anastigmatic lenses has been made by Smith (1958). Figure 12.6
shows a Dagor lens described by Smith and Genesee Optics Software (1992),
with the data presented in Table 12.6.

12.3.2 Double Gauss Lens

First, Karl Friedrich Gauss and then Alvan G. Clark suggested that a
symmetrical system with two meniscus-shaped components may produce a
very good lens design. A symmetrical lens with two negative lenses between

Figure 12.6 Dagor lens.
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two positive lenses has five degrees of freedom, namely, two lens powers,
two bendings, and the separation between the lenses. These variables are
used to set the desired focal length, and to correct the Petzval sum, the
spherical aberration, the axial chromatic aberration, and the astigmatism.
When the two halves are mounted together, the antisymmetric wavefront
aberrations are corrected.

The double Gauss lens can be considered as a modification of the
triplet, where the central negative lens is split into two lenses, each of them a
doublet. As in the rear doublet for the Tessar lens, the negative component of
this doublet should have a lower index of refraction and a higher dispersion.

To determine the power of the lenses and their separation we need to
impose three conditions. From Eq. (3.5) we may find that the total power
for the lens system is

P ¼ P1 þ
y2
y1

P2 ð12:28Þ

from Eq. (5.29), the curvature of the Petzval surface is

1

rPtz
¼ �

P1

n1
�
P2

n2
ð12:29Þ

and from Eq. (6.24), the transverse axial chromatic aberration may be
written as

AchrT ¼
1

Py1

y2
1 P1

V1
þ
y2
2 P2

V2

	 

ð12:30Þ

Table 12.6 Dagor Lens

Radius of

curvature (mm) Diameter (mm)

Separation or

thickness (mm) Material

19.100 14.8 3.056 SK6

� 22.635 14.8 0.764 BaLF3
8.272 12.0 1.910 K4
20.453 12.0 2.292 Air

Stop 5.6 2.292 Air

Aperture (mm) (focal ratio): 12.91 (F/8.0)

Effective focal length (mm): 103.3

Back focal length (mm): 96.27

Object distance (mm): infinite

Image height (mm) (angular semifield): 50.99 (26.6�)
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The ray heights y1 and y2, from Eq. (12.28), are related by

y2 ¼ y1
ðP� P1Þ

P2
ð12:31Þ

Since y1 is known, these three equations may be solved to obtain the two
lens powers. Then, the lens separation may be obtained from Eq. (3.45), as

d ¼
ðP1 þP2 �PÞ

P2 P1
ð12:32Þ

The next step is to find the two lens bendings to correct the spherical
aberration and the astigmatism. We may find many different solutions for
this system, depending on the glasses being chosen.

The system just described may acquire this shape if the proper glasses
are selected. These glasses have to be widely separated on the V–n diagram,
e.g., dense flint and dense barium crown. In the most common case of an
object at infinity, the design may depart from the exact symmetrical
configuration.

A general study of double Gauss lenses and derivatives has been
carried out by Kidger and Wynne (1967). The double Gauss aplanatic
system, with data presented in Table 12.7 and illustrated in Fig. 12.7, was
designed by Smith and Genesee Optics (1992).

Table 12.7 Double Gauss Lens

Radius of
curvature (mm) Diameter (mm)

Separation or
thickness (mm) Material

85.500 76.0 11.60 LaF2
408.330 76.0 1.50 Air

40.350 66.0 17.00 SK55
156.050 66.0 3.50 FN11
25.050 44.0 13.70 Air

Stop 42.6 8.30 Air
� 36.800 44.0 3.50 SF8
55.000 52.0 23.00 LaF2

� 51.500 52.0 1.00 Air
123.500 51.0 17.00 LaF2
� 204.960 51.0 55.07 Air

Aperture (mm) (focal ratio): 76.0 (F/1.35)

Effective focal length (mm): 100.4

Back focal length (mm): 55.07

Object distance (mm): infinite

Image height (mm) (angular semifield): 23.09 (13�)
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12.4 VARIFOCAL AND ZOOM LENSES

A varifocal lens is one whose effective focal length is variable, but the focus
may have to be readjusted after each change. These lenses are useful, e.g.,
for slide projectors. A zoom lens, on the other hand, is a lens whose effective
focal length may also be changed, but the lens remains in sharp focus while
changing the focal length. These lenses are mainly used for movie or
television cameras. In the past, however, the term varifocal was the only one
used to name both types of lenses.

Varifocal and zoom lenses have been widely studied, e.g., by Back and
Lowen (1954, 1958), Bergstein (1958), Bergstein and Motz (1957, 1962a,b,c),
Clark (1973), Cook (1958), Kingslake (1960), Pegis and Peck (1962), and
Wooters and Silvertooth (1965). A complete chapter on this subject by
Yamaji (1967) deserves special mention.

When changing the magnification in a zoom lens, the system has to be
compensated so that the focal plane does not change its position with
respect to the lens holder. This focus shift may be canceled (compensated)
by optical or mechanical means.

The mechanical compensation in zoom lenses is performed by
simultaneously moving two lenses in the system, one to change the focal
length and the other to maintain the image at a fixed plane. In general, these
movements are nonlinearly related to each other, so, a complicated set of
gears or cams is required.

The optical compensation is obtained when at least three points along
the zoom range have the same focal plane (but different magnification).
Then, the defocusing between these three points is small. This kind of
compensation requires three image-forming steps, thus a minimum of three
elements, as described by Back and Lowen (1954). A better system is

Figure 12.7 Double Gauss lens.
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obtained if instead of three lens elements, four are used to obtain four points
without focus shift.

There are several types of zoom lenses, but most of them are designed
along the same basic principles. A zoom lens system, as illustrated in
Fig. 12.8, may be considered as formed by a normal photographic lens with
a fixed focal length, and an afocal system with variable magnifying power
(angular magnification) in front of it. The simplest and basic afocal system
is formed by two positive lenses with focal length f1, and a negative
focal length with focal length f2 between them, as shown in Fig. 12.9.

Figure 12.9 Lens movements in an afocal zoom lens.

Figure 12.8 Afocal zoom lens in front of a fixed focal length lens.
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The absolute value of the power of the negative lens is larger than twice the
power of the positive lens, so that when they are in contact with each other,
the power F of the combination is negative and has an absolute value higher
than the power of the positive lens alone. The power of this doublet, from
Eq. (3.46), with a lens separation equal to zero, is given by

F ¼
f1 f2
f1 þ f2

ð12:33Þ

The negative lens is displaced along the optical axis, in the space
between the two positive lenses. When the negative lens is in contact with the
front positive lens, the system is a Galilean telescope with a magnifying
power M0, which, as will be shown in Chap. 14, is given by

M0 ¼ �
F

f1
ð12:34Þ

The magnifying power is positive and less than one, since F is negative and
its magnitude is less than f1. Thus, an erect and minified image is produced.
When the lens is moved to the other extreme, and placed in contact with the
back lens, the angular magnification is 1/M0, which is positive and larger
than one.

Since Galilean telescopes are afocal, the separation between the two
positive lenses must be

d ¼ Fþ f1 ð12:35Þ

From these two expressions, we find that the focal length f1 of the positive
lens is

f1 ¼
d

1�M0
ð12:36Þ

and the focal length of the negative lens is

f2 ¼ �
M0 d

1�M2
0

ð12:37Þ

Thus, if we move the negative lens in the space between the two positive
lenses, the system changes its magnifying power between the values M0 and
1/M0. However, the image is clearly focused only at the ends, as in

© 2004 by Marcel Dekker, Inc.



Fig. 12.10. At intermediate positions, we have to readjust the focus by
means of a small shift of the front lens. This is the so-called mechanical
compensation. Let us now consider the front and middle lenses as in
Fig. 12.11. When the negative lens is displaced a distance z from the initial
position at the front, the frontal lens has to be displaced a small distance Z,
to keep the image in focus. These two movements have to be done
maintaining the virtual image P at a fixed position in space. Then, the new
separation S between the front and the middle lens is

z ¼ Zþ S ð12:38Þ

Figure 12.11 Some parameters and variables in a three-lens afocal zoom system.

Figure 12.10 Focus shift in an afocal three-lens zoom system.
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Then, using Eq. (3.13) for the middle lens, we may write

1

f2
¼

1

F� z
�

1

f1 �S
ð12:39Þ

and substituting here the value of S from Eq. (12.38), we find that, after
some algebraic work,

Z ¼ z 1�
ð f1 � f2 Þ

2

f21 þð f1 þ f2Þz

� �
ð12:40Þ

which, written in terms of the minimum magnifying power M0, becomes

Z ¼ z 1�
d

M2
0 dþ ð1�M2

0Þz

� �
ð12:41Þ

This expression gives the relation between the lens displacements z and Z,
but does not allow us to calculate the values of these displacements for a
given zoom magnification. The magnifying power M for any position of the
middle negative lens, by using Eqs. (12.34) and (3.46) may be found to be

M ¼
M0 d

dþ ðZ� zÞð1�M2
0Þ

ð12:42Þ

The lens displacements for a magnifying power equal to one are

z0 ¼
M0 d

1þM0
ð12:43Þ

and

Z0 ¼ �
1�M0

1þM0
d ð12:44Þ

which is also the maximum displacement for Z.
The system may be improved by substituting the negative lens for two

negative lenses with a positive lens between them, as shown in Fig. 12.12.
With the two negative lenses displaced to one extreme, the system must be
afocal as is the system in Fig. 12.10. So, the image is in good focus at the two
extremes. The power of the central positive lens is a degree of freedom that
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may be used to impose the condition that the image is also in focus when the
magnifying power is one. Since the system is symmetric, the focus shift curve
must also be symmetric, as shown in Fig. 12.12. Thus, if the focal plane is
shifted to the plane indicated by a dashed line, we have four positions at
which the image is focused. If the maximum focus shift is acceptable, the
system does not need any refocusing cam and we say that the system has
optical compensation.

In general, if the afocal system is symmetrical like the ones in Figs. 12.10
and 12.12, and we move n alternate symmetrically placed lenses together, we
have nþ 1 different magnifications with the same focus position. A general
theory of zoom systems that predicts the number of points with the same
focus has been given by Bergstein (1958) and by Back and Lowen (1958).

The zoom systems we have described are all afocal and symmetric,
with an imaging system fixed with respect to the focal plane, as in Fig. 12.8.
The zoom system may be also asymmetric if we include in the system the last
imaging lens and we move it with respect to the focal plane. An example of
an asymmetric system is shown in Fig. 12.13. Yamaji (1967) has described in
detail the evolution of the different types of zoom systems.

Figure 12.13 Nonafocal three-lens zoom system with two movable lenses.

Figure 12.12 Focus shift in a five-lens afocal zoom lens system.
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The aberrations in a zoom system are corrected for at least three
different focus positions. This means that we have to correct three times the
number of aberrations that we have in a fixed-focus system. Thus, we need
more degrees of freedom, which are obtained with the larger number of
elements.
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13
The Human Eye and
Ophthalmic Lenses

13.1 THE HUMAN EYE

The first serious studies were carried out by Helmholtz, as described in his
book Optik. Eye studies continued in the 19th century with the pioneering
work by Gullstrand. A diagram of the human eye is presented in Fig. 13.1
and its main optical constants are listed in Table 13.1. The most important
optical components of the eye are:

The cornea—This is the front transparent tissue in the eye. Its normal
ideal shape is nearly spherical, with a dioptric power of about 43 diopters.
Any deviation from its ideal shape produces refractive errors. If it takes a
toroidal shape, with different curvatures along two mutually perpendicular
diameters, corneal astigmatism appears. The astigmatism is said to be with
the rule if the curvature in the vertical diameter is larger than in the horizontal
diameter and against the rule otherwise. A small protuberance and thinning
at the center makes the cornea to have an almost conic shape, in a defect
called keratoconus. These errors are measured with an ophthalmeter or a
corneal topographer.

The pupil—This is the circular opening in front of the eye and it is
surrounded by the iris. The pupil increases or decreases its diameter to
control the amount of light entering the eye. The maximum diameter of the
pupil, with low illumination levels (clear night) is around 8mm and the
minimum diameter with high illumination levels (sunny day) is near 1.5mm.
Its average diameter is about 3–4mm (well-illuminated office).

The aqueous humor—This is the liquid between the back of the cornea
and the eye lens.

The eye lens—This is a flexible lens, also called the crystalline lens,
whose optical power can be modified by means of the ciliary muscles.
It increases the power (accommodation) to focus near objects and relaxes its
shape to focus far-away objects. The nucleus of this lens has a refractive
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index higher than that of its external parts. The relaxed lens has a dioptric
power of about 15 diopters and can be increased (accommodation
amplitude) by about 15 diopters in children or about 0.5 diopter in old
people. The eye lens can lose its transparency for many reasons, producing
what is known as a cataract. To correct this condition, the eye lens has to be
removed. Frequently, a plastic lens is inserted to replace the eye lens.

The vitreous humor—This is the liquid filling most of the eye globe, in
the space between the eye lens and the retina. Sometimes, mainly in medium
or highly myopic eyes, small particles float in this medium, producing some
small images that appear to float in space.

The retina—This is the light-sensitive surface of the eye, on which the
images are formed. The eye retina is formed by several layers. The innermost
one, in contact with the vitreous humor, is formed by cells and fiber nerves,

Figure 13.1 Schematics of the human eye.

Table 13.1 Average Optical Constants of the Human Eye

Total length 24.75mm
Pupil diameter 1.5� 8.0mm
Effective focal length 22.89mm

Total power (unaccommodated) 58.6 diopters
Lens power (unaccommodated) 19 diopters
Corneal power 43 diopters
Corneal radius of curvature 7.98mm

Aqueous humor refractive index 1.336
Lens refractive index

center 1.406

edge 1.386
Vitreous refractive index 1.337
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while the last layer in the back has the light-sensitive elements, which are the
rods and cones. There is a zone where the optic nerve enters the eye globe,
producing a blind zone, with an angular diameter of about 5� to 7�, at 15� from
the optical axis on the nasal side. The fovea is a small zone near the optical
axis, where the retina becomes thinner and blood vessels are not present. The
fovea contains only cones in a dense randomarray. Outside the fovea themain
light-sensitive elements are the rods, which are responsible for the scotopic
vision. They are much more sensitive to brightness than the cones, but they
are not color sensitive and have very low spatial resolution. Using adaptive
optics techniques, David Williams and collaborators from the University of
Rochester have been able to obtain images of the cones, about 5 mm diameter
from a living body (Liang and Williams, 1997; Williams, 1999).

13.1.1 Eye Aberrations

As any other optical instrument with image-forming lenses, the eye has
optical aberrations that limit its optical performance (Gubisch, 1967; Liang
and Williams, 1997). The off-axis aberrations are not of concern for the eye,
since the image is always observed on-axis by fast scanning by continuously
moving the eye. However, the on-axis aberrations are important.

Because of the axial chromatic aberration the eye focuses the different
colors on different focal planes along the optical axis. Köhler (1962) has
devised a simple and interesting experiment to show the presence of axial
chromatic aberration in the eye. To perform this experiment, with each of
your hands hold a card and place them in front of each of your eyes. Each
card must be aligned with a straight edge in front of the eye covering half the
eye pupil. The left edge of the right-hand card must be in front of the pupil
of the right eye and the right edge of the left-hand card must be in front of
the pupil of the left eye. Now look at a highly colored image, e.g., on a
computer screen. It can be noticed that different color zones appear to have
slightly different depths. This effect, called pseudostereopsis, can be also
observed without the cards by some people. The effect arises because the
pupils of the eyes are not always centered with the optical axis.

Axial chromatic aberration has been studied and measured by several
researchers, e.g., Wald and Grifflin (1947) and Bedford and Wyszecki
(1957). The focus shift at the blue end of the spectrum due to this aberration
is as high as 2 diopters.

The spherical aberration of the eye appears because paraxial rays and
marginal rays passing through the eye are focused at different planes along
the optical axis. Many different experiments have been devised to measure
the spherical aberration of the eye (Koomen et al., 1949; Ivanof, 1956;
Williams, 1999).
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The contrast sensitivity of the human eye has also been the subject of
many investigations. For example, Williams (1985) has studied the visibility
and contrast of sinusoidal interference fringes near the resolution limit.

In a small region around the optical axis the resolving power of
the eye is about 1 arcmin. However, the image quality outside the optical
axis degrades quite fast with increasing angles, as plotted in Fig. 13.2
(Walker, 2000). For this reason the eye has to scan an observed image
by moving the eyes quite fast in their skull cavity. When an object of
interest is detected the eye is rotated quite fast to center the object on the
optical axis.

13.2 OPHTHALMIC LENSES

An ophthalmic lens is a thin meniscus lens placed in front of the eye to
correct its refractive defects, as shown in Fig. 13.3. This lens is mounted in a
frame in such a way that the distance from the vertex of the concave surface
to the cornea of the eye is 14mm. The purpose of the lens is to form a virtual
image of the observed object at the proper distance for the eye to observe it.
Thus, the important parameter to describe the lens is the back focal length.
The inverse of the back focal length in meters is called the vertex power,

Figure 13.2 Angular resolving power of the human eye.

© 2004 by Marcel Dekker, Inc.



expressed in diopters. According to the American Optometric Association
Standard, the tolerance in the specified power is � 0.06 diopter.

As shown in Fig. 13.4, an eye with a refraction defect may focus an
image of a very far object (without eye accommodation, i.e., with the eye
lens focused for a distant object) only if the distance from the cornea to the
image is L. If the distance L is positive (behind the eye), the eye is
hypermetropic and, if this distance is negative (in front of the eye), the eye is
myopic. To form the image at the proper place, a lens is used with a back
focal length FV such that FV¼L þ dV, where dV is the distance from the
vertex of the back surface of the lens to the cornea.

Figure 13.3 (a) Hypermetropia and (b) myopia.

Figure 13.4 Some parameters used in the design of ophthalmic lenses.
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If the radii of curvature of the surfaces of the lens are measured in
meters, the power of the surface in diopters is

P ¼
ðn� 1Þ

r
ð13:1Þ

It is measured with an instrument called a dioptometer (Coleman et al.,
1951). The power of the frontal (convex) surface is called the base power.
The refractive index for the most common ophthalmic glass is 1.523. For
practical convenience, the nominal dioptral power of a grinding or polishing
tool for ophthalmic lenses, with radius of curvature r, is defined as
Pn¼ 0.530/r. Thus, the real power P of the surface polished with a nominal
power Pn is

P ¼
ðn� 1Þ

0:530
Pn ð13:2Þ

From Eq. (3.37) we may show that the vertex power of the ophthalmic
lens (defined as the inverse of the back focal length) is

PV ¼
P1

1� P1ðt=1000nÞ
þ P2 ð13:3Þ

where the thickness t is in millimeters. This expression may be
approximated by

PV ¼ P1 þ P2 þ
P2
1t

1000n
ð13:4Þ

in order to make easier all hand calculations. With a slightly greater error
we may also write

PV ¼ P1 þ P2 ð13:5Þ

To get an idea of the error in these formulas, let us consider as an
example a glass lens with P1¼ 9 D, P2¼� 4 D, and t¼ 4mm. Then, we
obtain

PV ¼ 5.2179 with exact formula (13:3Þ

PV ¼ 5.2127 with approximate formula (13:4Þ

PV ¼ 5.0000 with approximate formula (13:5Þ
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The effective power Pe is the inverse of the effective focal length in
meters. Equation (3.39) may be written as

Pe ¼ P1 þ 1�
P1t

1000n

	 

P2 ð13:6Þ

The effective power of the lens in the last example is Pe¼ 5.094. Thus, the
relation between the effective power and the vertex power is

Pe ¼ 1�
P1t

1000n

	 

PV ð13:7Þ

13.2.1 Ophthalmic Lens Magnifying Power

When an eye is larger than normal but the refractive components do not
change their optical properties, the image of an object at infinity is
defocused. This is what happens in myopia. In hypermetropia the
mechanism is exactly the opposite. An ophthalmic lens corrects this defect,
shifting the real image formed by the optics of the eye to the new position.
If the combination of the optics of the eye with the ophthalmic lens
preserves the original effective focal length, the size of the image is also
preserved. In other words, the size of the images in a normal and in a
corrected eye with the same effective focal length are equal. It may be easily
shown that if the ophthalmic lens is in the front focus of the eye, the effective
focal length of the combination remains the same. This is only approximately
true, because the average eye has a cornea-to-front principal plane distance
of 16.0mm whereas a normal spectacle has a 14.5mm distance.

When the eye is corrected with a spectacle lens, the image can change
its size in a noticeable manner. This change in magnifying power is given by

�M ¼
1

1� ðdPe=1000Þ
� 1

	 

� 100% ð13:8Þ

where d is the distance from the principal plane of the lens to the cornea,
in millimeters. This equation may be written in terms of the power P1 of the
base and the vertex power PV, as follows:

M ¼
1

1� ðdPVÞ=1000ð Þ 1� ðP1tÞ=1000 nð Þ
� 1

	 

� 100% ð13:9Þ

Frequently, the first term in the denominator is said to be due to the power
of the lens and the second term to its shape. The effect of the first term is
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greater than that of the second. As an approximate rule, there is a
magnification of about 1.4% for each diopter in the lens.

An important property of ophthalmic lenses is that the functional
power of the lens depends on its distance to the eye. If the lens-to-cornea
distance is increased, the effective power decreases. Let the distance from the
lens to the cornea be d1, with its effective power P1, and also the distance
from the lens to the cornea be d2, with its effective power P2. Then, we have

P2 � P1

P1P2
¼

d1 � d2
1000

ð13:10Þ

For example, if a 5 D lens is moved 10mm, the effective power changes by
an amount 0.25 D.

13.3 OPHTHALMIC LENS DESIGN

An optical layout used for ophthalmic lens design is shown in Fig. 13.5. The
eye has a nearly spherical shape and moves in its cavity to observe objects in
different directions. Thus, the stop is at the plane of the eye’s pupil, which
rotates about the center of rotation of the eye. The actual stop can be
represented by an apparent stop located near the center of the eye. It is
assumed that all observed objects in different directions are at the same
distance from the eye. So, the object surface is spherical, with the center of

Figure 13.5 Optical schematics of an eye with its ophthalmic lens.
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curvature approximately at the stop. The image formed by the ophthalmic
lens should also be at a constant distance for any object in the object surface.
Thus, the image surface is also spherical, with the center of curvature at
the stop.

The distanceC from the cornea of the eye to the center of the eye globe is
called the sighting center distance, and it has been found (Fry and Hill, 1962)
to be a linear function of the refractive error of the eye, which may be
expressed by

C ¼ �
PV

6
þ 14:5mm ð13:11Þ

The distance from the vertex of the lens to the cornea of the eye is
not the same for all observers, but has small variations, with an average of
about 14mm.

The thickness t is assumed to be constant for negative lenses and
increasing linearly with the power for positive lenses, as shown in Fig. 13.6.
For positive lenses the edge thickness is taken as approximately constant,
equal to 1mm, as given by

t ¼ �
D2PV

8000ðn� 1Þ
þ 2:0mm ð13:12Þ

Since the vertex power of the lens and the stop position are fixed, the
only degree of freedom we have for the correction of aberrations is the lens
bending. The spherical aberration and the axial chromatic aberration are

Figure 13.6 Central thickness in an ophthalmic lens.
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not a problem, because the eye pupil’s diameter is very small compared with
the focal length of the lens. The coma is not very important compared with
the astigmatism, because of the large field and the small diameter of the
eye’s pupil. The remaining aberrations to be corrected are astigmatism, field
curvature, distortion, and magnification chromatic aberration. Distortion
and magnification chromatic aberrations cannot be corrected by just lens
bending. Thus, we are left with the astigmatism and the field curvature, also
sometimes called peripheral power error.

Ophthalmic lenses and their design techniques have been described by
several authors, e.g., Blaker (1983), Emsley (1956), Lueck (1965), Malacara
and Malacara (1985a), and Walker (2000). To design an ophthalmic lens is
relatively easy if we plot the curvatures of the Petzval, sagittal, and
tangential surfaces as a function of the power of the front lens surface, as
shown in Fig. 13.7. These curves were obtained for a thin lens (t¼ 2mm)
with a vertex power of three diopters and small field (5�), with a lens
evaluation program that directly computes these curvatures. However, these
may also be obtained from the slope at the origin of a meridional plot, by
first calculating �fT with Eq. (7.40) and then calculating the tangential
astigmatism with Eq. (7.19). If we assume a relatively small field, so that
only the primary aberrations are present, the sagittal astigmatism is one-
third of the tangential astigmatism. In Fig. 13.7 the zero for the vertical scale

Figure 13.7 Change in the tangential and the sagittal curvatures versus the frontal
power in an ophthalmic lens.
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is the curvature of the focal surface with center of curvature at the stop. We
may see small variations in the Petzval curvature because the vertex power is
constant, but the effective focal length and hence the Petzval sum is not
exactly constant.

The points where the three curves in Fig. 13.7 meet are the solutions
for no astigmatism (NA) and the points where the sagittal and tangential
curves are symmetrical with respect to the horizontal axis are the solutions
for no power error (NPE).

13.3.1 Tscherning Ellipses

We have seen that by bending we may correct either the astigmatism or the
field curvature, but not both simultaneously. The second defect produces a
defocusing of the objects observed through the edge of the lens. The
observer may refocus the image by accommodation of the eye, but this
introduces some eye strain, which may frequently be tolerated, especially by
young persons. If the frontal lens power or base is used as a parameter for
the bending, we may plot the total vertex power of the lens as a function of
the base power that gives a lens without astigmatism and similarly for the
peripheral power error. Thus, we obtain two ellipses as shown in Fig. 13.8,

Figure 13.8 Tscherning ellipses for ophthalmic lenses free of astigmatism and

power error.
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called Tscherning ellipses. We see that for each ellipse there are two
solutions, one with a low frontal power (Ostwald lenses) and the other with
a higher frontal power (Wollaston lenses). The Tscherning ellipses were
obtained using third-order theory, with a constant very small lens thickness,
a very small field, and a constant distance from the vertex of the lens to the
stop, equal to 29mm.

When the restrictions of constant thickness, constant distance from the
vertex of the lens to the stop, and small field are removed, the Tscherning
ellipses deform as shown in Fig. 13.9.

13.3.2 Aspheric Ophthalmic Lenses

We may see from the Tscherning ellipses that there are no solutions without
astigmatism or without peripheral power error for high lens vertex powers.
In this case an aspheric surface may be used in the front surface. With
aspheric surfaces the Tscherning ellipses change their shape, extending the
solution range to higher powers, as shown in Fig. 13.10 for the case of
astigmatism and in Fig. 13.11 for the case of zero power error. Aspherical
surfaces for ophthalmic lenses have been studied by Smith and Atchison
(1983), by Sun et al. (2000 and 2002) using third-order theory, and by
Malacara and Malacara (1985b) using exact ray tracing.

Figure 13.9 Tscherning ellipses deformed by the introduction of a finite lens
thickness.
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Figure 13.10 Tscherning ellipses for no astigmatism, deformed by the intro-

duction of an aspheric surface.

Figure 13.11 Tscherning ellipses for no power error, deformed by the introduction
of an aspheric surface.
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13.4 PRISMATIC LENSES

The two centers of curvature of the surfaces of the lens define the optical
axis. Only when the two centers of curvature coincide because the surfaces
are concentric, the optical axis is not defined. If the optical axis passes
through the center of a round lens, the edge has a constant thickness all
around.

When the optical axis does not pass through the center of the lens, the
lens is said to be prismatic because the two lens faces form an angle between
them at the center of the lens. Then, a ray of light passing through the center
of the lens is deviated by an angle f. If a prism deviates a ray of light by an
angle f, as shown in Fig. 13.12, the prismatic power PP in diopters is given by

PP ¼ 100 tanf ð13:13Þ

thus, a prism has PP diopters if a ray of light passing through the center of
the lens is deviated PP centimeters at a distance of 1m.

If the angle between the two faces of the lens is y, the angular deviation
of the light ray is

tanf ¼
sin y

n� cos y
ð13:14Þ

or approximately, for thin prisms:

f ¼
y

n� 1
ð13:15Þ

Figure 13.12 (a) Prism and (b) prismatic lens.
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If two thin prisms with prismatic powers P1 and P2 are superimposed,
forming at their bases an angle a between them, the resulting combination
has a prismatic power PR given by

P2
R ¼ P2

1 þ P2
2 þ 2P1P2 cos a ð13:16Þ

and its orientation is

sin b ¼
P2

PR
sin a ð13:17Þ

this result may also be obtained graphically, as shown in Fig. 13.13.
A lens with vertex power PV and prismatic power PP is a lens

whose optical axis is deviated from the center of the lens by an amount �y
given by

PP ¼
PV�y

10
ð13:18Þ

where the decentration �y is in millimeters.

13.5 SPHEROCYLINDRICAL LENSES

A spherocylindrical lens has a toroidal or spherocylindrical surface. The
lens does not then have rotational symmetry and an axial astigmatism is
introduced, to compensate that of the eye. Optically, these lenses may be
considered as the superposition of an spherical lens (with rotational
symmetry) and a cylindrical lens (power in only one plane). As shown in
Fig. 13.14, a spherocylindrical lens is defined by (1) its spherical power, (2) its

Figure 13.13 Vector addition of prisms.
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cylindrical power, and (3) its cylinder orientation. If a lens has a power P1 in
one diameter, at an angle f with the horizontal, and a power P2 in the
perpendicular diameter, at an angle fþ 90�, we may specify the lens as

Spherical power¼P1

Cylindrical power¼P2�P1

Axis orientation¼f

or as

Spherical power¼P2

Cylindrical power¼P1�P2

Axis orientation¼fþ 90�

The two specifications are identical. To pass from one form to the
other is said to be to transpose the cylinder. A cylinder transposition is done
in three steps, as follows:

1. A new spherical power value is obtained by adding the spherical
and cylindrical power values.

2. A new cylindrical power value is obtained by changing the sign of
the old value.

3. The new axis orientation is obtained by rotating the old axis at an
angle equal to 90�.

Figure 13.14 Powers and axis orientation in spherocylindrical lenses.
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The power Py of a spherocylindrical lens along a diameter at an angle y
may be found with the expression:

Py ¼ PC sin2ðy� fÞ þ PS ð13:19Þ

where PC is the cylindrical power, PS is the spherical power, and f is the
cylinder orientation. If two spherocylindrical lenses are superimposed, the
combination has a cylindrical power PCR given by

P2
CR ¼ P2

C1 þ P2
C2 þ 2PC1PC2 cos 2ðy2 � y1Þ ð13:20Þ

an axis orientation yR:

tan 2ðyR � y1Þ ¼
PC2 sin 2ðy2 � y1Þ

PC1 þ PC2 cos 2ðy2 � y1Þ
ð13:21Þ

and a spherical power PSR given by

PSR ¼ PS1 þ PS2 þ
PC1 þ PC2 � PCR

2
ð13:22Þ

Graphically, these expressions may be represented as in Fig. 13.15.
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14
Astronomical Telescopes

14.1 RESOLUTION AND LIGHT GATHERING POWER

The subject of astronomical telescopes has been treated by many authors,
e.g., the books by Dimitroff and Baker (1945), Linfoot (1955a,b), Maxwell
(1972), and Schroeder (1987, 1993) are excellent references. In this chapter,
astronomical telescopes will be studied in some detail.

To begin, let us consider the resolution of a telescope, which is limited
by several factors, like diffraction and atmospheric turbulence. The light
gathering power is another important characteristic in a telescope. In the
first sections of this chapter these important concepts will be reviewed.

14.1.1 Diffraction Effects and Atmospheric Turbulence

The atmosphere has large inhomogeneities in the index of refraction due to
variations in the pressure, to air currents, and to variations in the
temperature. These inhomogeneities are continuously changing and produce
wavefront distortions in the light coming from the stars, as shown in
Fig. 14.1. The effects of atmospheric turbulence in the stellar images are
mainly of two kinds, scintillation and seeing. Scintillation is a random
change in the light intensity and seeing is a random change in the direction
of the light arriving at the telescope.

Scintillation is observed only with small apertures, mainly with the
naked eye, producing what is commonly known as twinkling. The larger the
telescope, the smaller the effect of scintillation.

The effect of seeing depends on the aperture. As may be understood by
examination of Fig. 14.1, for small apertures the wavefront distortion is not
observed, but only a continuous change in the direction of propagation of
the wavefront. Thus, in telescopes with a small aperture, less than about
150mm, the image moves very fast about a mean position, with excursions
of the order of 1 arcsec. If the aperture is larger than about 1m, the image
movements are not seen. Only a large blurred image is observed.
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The diameter of the seeing enlarged image depends on the astro-
nomical site. In a medium size city it may be as large as 2 or 3 arcsec or even
more. In the best astronomical sites in a high mountain in the best nights it
may be of the order on one-tenth of an arcsec. It is the easy to notice that
under average conditions the diffraction image size is smaller than the seeing
enlarged image, if the telescope aperture is larger than about 150–200mm.
In other words, the angular resolving power of a telescope is limited by the
atmosphere, not by diffraction. Hence, a telescope does not need to be
diffraction limited unless it is located outside the atmosphere, in orbit, like
the Hubble telescope. Another exception is when some techniques are used
to compensate the wavefront deformations as in the new adaptive optics
techniques.

14.1.2 Visual Limit Magnitude of a Telescope

The magnitude of a star is an indication of its brightness. The greater the
magnitude, the fainter the star. The magnitude of a star is an arbitrary scale
invented by the Greeks. According to them, the brightest stars in the sky
had magnitude 1 and the faintest had magnitude 6. The same basic
definition is now used, but with a more formal and mathematical meaning.
Now we know that, according to the psychophysical law of Fetchner, the
optical sensation in the eye is directly proportional to the logarithm of the
luminous excitation. Based on this effect, John Herschel in 1830 defined that
the first magnitude star is 100 times brighter than the sixth magnitude star.
Thus, the brightness of a star one magnitude higher is (100)1/5¼ 2.512 times
larger.

Figure 14.1 Undistorted and distorted wavefronts traveling in the atmosphere.
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If two stars with magnitudes m and n have brightness Bn and Bm,
respectively, we may write

Bn

Bm
¼ 2:512m�n ð14:1Þ

whence, taking logarithms on both sides:

logBn � logBm ¼ ðm� nÞ log 2:512 ¼ 0:4ðm� nÞ ð14:2Þ

Thus, the magnitude difference between two stars is directly proportional
to the difference in the logarithm of their brightnesses. The first magnitude
star was then defined arbitrarily, as the magnitude of one star close to the
brightest stars.

When a star is observed through a visual telescope, the apparent
brightness is increased because the amount of light forming the image in the
retina is larger and the size of the image is not increased. This amount of
light is increased as the ratio of the square of the diameters of the telescope
Dt and the naked eye pupil’s, D0, as follows:

log
Bt

B0

	 

¼ �2 log

Dt

D0

	 

¼ 0:4ðm0 �mtÞ ð14:3Þ

where m0 is the largest magnitude that may be observed with the eye and mt

is the largest magnitude that may be observed through the telescope. Hence,
we may write

mt �m0 ¼ �5 log
D1

D0

	 

ð14:4Þ

The diameter of the pupil of the eye is different for different observers,
and it changes with the amount of light entering the eye, even for a single
observer. However, we may assume an average value of D0 equal to 6mm.
Thus, the limiting visual magnitude when observing through a telescope is

mv ¼ 7:10þ 5 logD ð14:5Þ

14.1.3 Photographic and CCD Limit Magnitude of a Telescope

The limiting magnitude in astronomical photography is larger than in visual
observation and depends not only on the aperture of the telescope, but also
on the exposure time. The sensitivity of the photographic emulsion is also a
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factor, but not very important, since the range of common sensitivities is not
so large. The reason is that the resolving power and the sensitivity have an
inverse relation to each other. If we assume an average emulsion, an
empirical relation for the limiting photographic magnitude is

mf ¼ 4þ 5 logDþ 2:15 log t ð14:6Þ

where D is the diameter of the telescope aperture and t is the exposure time.
It is easy to see that the limiting visual and photographic magnitudes are
approximately equal for an exposure time of 28min.

The sky background is not absolutely dark, so the ideal maximum
exposure time would be that such that the darkening of the background in
the photographic plate is not larger than a certain limit. The sky brightness
in the image of the telescope may be shown to be inversely proportional to
the square of the focal ratio or f-number FN.

The angular diameter of all stars is the same for all telescopes in a
given astronomical site, due to the atmospheric turbulence. Thus, the size of
the image is directly proportional to the effective focal length. On the other
hand, the amount of energy forming the image is directly proportional to the
square of the aperture. Then, the energy per unit area in the image is also
inversely proportional to the square of the focal ratio FN. However, the
grain in the photographic plate is chosen to be at least as large as the image
of the star. The blackening of an emulsion grain depends not on the
distribution of the light over the grain but on the total amount of energy
falling on it. So, the image may be considered to be a point, if all the light
falls on a single grain. This leads us to the conclusion that the ratio of the
effective brightness of the star image over the brightness of the background
depends only on the f-number FN.

An important conclusion is that the f-number determines the
maximum exposure time, producing the maximum allowed background
blackening. This is approximately given by the following empirical relation:

log t ¼ 0:6þ 2:325 logFN ð14:7Þ

where the exposure time is in minutes, but obviously this maximum
exposure time cannot be larger than about 300min (5 h). This means that for
5-h exposures the optimum f-number is equal to 6.4. It is then easy to see
that the limiting photographic magnitude is

mf ¼ 7:29þ 5 logF ð14:8Þ
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for an exposure time of 5 h. This means that the focal length has to be as
large as possible, but this also means a large diameter, since the focal ratio
is fixed.

A more general method for treating the problem of limiting
magnitudes has been given by several authors (Schroeder, 1987). The
evident conclusion is that the aperture of the telescope should be as large as
possible and that the observing site should be as transparent and seeing free
as possible.

To finish this section, we must know that modern astronomical
telescopes do not use photographic emulsions any more, but a much better
photoelectric device called a CCD (coupled charge device). This is an electro-
optical detector, exploiting semiconductor manufacturing technology, that
permits the telescope to reach the maximum theoretically possible sensitivity
(Mallama, 1993).

14.2 CATADIOPTRIC CAMERAS

In astronomical photography it is necessary to have a large aperture. Thus,
most astronomical cameras are either reflective (catoptric) or catadioptric.
A catadioptric camera is one formed by mirrors as well as by lenses. The
most popular of these are the Schmidt and the Maksutov cameras.

14.2.1 Schmidt Camera

The Schmidt camera, invented by Bernard Schmidt, is extremely popular for
wide-field, high-speed astronomical cameras and has been fully described by
many authors, e.g., Baker (1940b), Lucy (1940, 1941), Synge (1943),
Benford (1944), Linfoot (1955a), Linfoot and Wolf (1949), Wormser (1950),
Linfoot (1955a), Bowen (1960), Cornejo et al. (1970), Buchroeder (1972),
and many others. We have seen that a spherical mirror with the stop at the
center of curvature is free of coma, astigmatism, and distortion. It is easy to
see that this is due to the symmetry of the system about the center of
curvature. This symmetry also explains that the field is curved and also
concentric with the center of curvature of the mirror. The only problems
with large apertures are the spherical aberration and the spherochromatism.
If a parabolic shape is given to the mirror the spherical aberration is
corrected, but the spherical symmetry of the system about the center of
curvature is lost. Schmidt corrected then the spherical aberration by
introducing a thin aspheric correcting plate at the stop, as shown in Fig. 14.2.
The off-axis aberrations introduced by this correcting plate are negligible,
due to its small power and location at the stop.
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There are many ways of calculating the shape of this correcting plate,
but one simple approximate method is by considering that a flat wavefront
is deformed to obtain the shape:

WðSÞ ¼ ðn� 1ÞZðSÞ ð14:9Þ

when passing through the plate with shape Z(S) on its face. On the other
hand, the desired wavefront deformation is opposite to that of the spherical
wavefront deformation of a spherical mirror, as given in Eq. (11.20). Thus,

ZðSÞ ¼
S4

4ðn� 1Þ r3M
ð14:10Þ

where rM is the radius of curvature of the spherical mirror. This is a surface
shape as illustrated in Fig. 14.3(a). This is not the optimum shape, however,
because there is a noticeable spherical aberration for wavelengths differing
from the reference. This aberration may be minimized by introducing a
small curvature on the glass plate (a defocusing term) to minimize the
maximum slope on the surface of the correcting plate, as in Fig. 14.3(b).
Then, the new sagitta is

ZðSÞ ¼
S4

4ðn� 1Þ r3M
þ

S2

2 rp
ð14:11Þ

where rp is the vertex curvature of the glass plate and rM is the radius of
curvature of the spherical mirror. Then, rp is calculated by setting

dZðSÞ

dS

	 

0:707Smax

¼ 0 ð14:12Þ

Figure 14.2 Schmidt camera.
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where Smax is the value of S at the edge of the plate (semidiameter) obtaining
for the radius of curvature of the plate a value:

1

rp
¼

S2
max

2ðn� 1Þ r3M
ð14:13Þ

and the shape of the plate becomes

ZðSÞ ¼
S2

4ðn� 1Þ r3M
ðS

2 �S
2
maxÞ ð14:14Þ

as shown in Fig. 14.3(b). This result may be improved by exact ray tracing.
Since the focal plane is curved, with its radius equal to the system focal

length, we have to adopt either of two possible solutions: (1) the
photographic plate is curved on the plate holder by pushing it on its
center from the back, or (2) by flattening the field with a lens flattener.

14.2.2 Bouwers Camera

During the Second World War, Baker (1940a), Bouwers (1946), and
Maksutov (1944) independently developed cameras with a similar approach
to that of the Schmidt camera. All of them have the stop at the center of
curvature, but there are two main differences: (1) the correcting element is
not at the stop and (2) the correcting element has only spherical surfaces,
with a meniscus shape, concentric with the stop, as shown in Fig. 14.4.

The spherical aberration of the correcting plate may be found from
Eq. (4.32), which is valid for thick lenses. However, although the correcting

Figure 14.3 Schmidt corrector plates.
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lens has strongly curved surfaces, its thickness is very small compared with
the effective focal length. Thus, we may use a thin lens approximation. If we
take the object distance as infinity (v1¼ 0) we obtain from Eq. (4.33):

SphT ¼ FkS3ðG1 k2 �G2 k c1 þG4 c
2
1Þ ð14:15Þ

where F is the effective focal length of the correcting lens (not of the whole
system), given by Eq. (3.35). Since the faces are strongly curved and the
focal length is large, we may safely assume that k� c1 . Thus, if we neglect
the first two terms we obtain

SphT ¼
ðnþ 2ÞS3

2n r21
ð14:16Þ

Then, using Eq. (1.77), the wavefront aberration W(S) is given by

W ¼
1

F

ZS

0

SphTdS ¼
ðnþ 2ÞS4

8Fn r21
ð14:17Þ

As in the Schmidt camera, the desired wavefront deformation must be
opposite to the spherical wavefront deformation of a spherical mirror, as
given in Eq. (11.17). Thus, equating this result with the wavefront
aberration for the spherical mirror in Eq. (11.20) we obtain the result that
the correcting lens must satisfy the condition:

F r21 ¼
ðnþ 2Þ r3M

2n
ð14:18Þ

The lens thickness t has not been defined, and may thus be used as an extra
degree of freedom.

Figure 14.4 Concentric camera.
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Bouwers selected a value of the thickness t and a value of r1 such that
the whole system is concentric about the center of curvature C, as shown in
Fig. 14.4. Then all off-axis aberrations become zero. From Eq. (3.35), the
effective focal length of a concentric lens (r2¼ r1� t) is

F ¼
n r1ðr1 �tÞ

ðn� 1Þt
ð14:19Þ

The only remaining degree of freedom is the radius of curvature r1,
because the correcting meniscus may be placed at any distance from the stop,
with the only restriction that the system is concentric. The closer the meniscus
is to the center of curvature, the more curved and thinner the plate is. It is
important to see that the zonal spherical aberration has different degrees of
correction at different values of y. To achieve the maximum well-corrected
field of view and axial color correction, a weak lens element (or zero power
doublet) at the stop is needed; f/1.0, 30� total field of view designs is common.

14.2.3 Maksutov Camera

A slightly different system to that of Bouwers was designed by Maksutov
(1944). The system is based on the same concentricity principle. Maksutov,
however, deviates a little from concentricity in order to correct the
achromatic aberration. The magnification chromatic aberration is auto-
matically corrected with the concentricity of the surfaces. However, a small
amount of axial chromatic aberration is present, but it may be corrected
with the principle described in Section 6.2.4, by selecting the radii of
curvature such that

r2
r1

¼
1� ðn� 1Þt=n r1½ �

2

1� ðn� 1Þ2t=n2 r1
 � ð14:20Þ

where t is the thickness of the corrector. When the axial color is corrected in
this way the field of excellent correction is smaller than for the concentric
element approach.

14.3 NEWTON TELESCOPE

The Newton (or Newtonian) telescope, illustrated in Fig. 14.5, is just a
paraboloid with a small diagonal mirror near the focus to deviate the light
beam to one side. The aberrations of this telescope are those of a single
paraboloid, as studied in Section 11.3.3.
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If the focal length is large compared with its diameter (large focal
ratio, FN¼ f/D> 10), the spherical aberration of a spherical mirror becomes
negligible. Then, the telescope can be made with a spherical instead of a
parabolic mirror. The decision about when to use a spherical mirror must be
taken according to the criteria in Section 4.7 if a diffraction-limited
telescope is desired. This might be the case for a small diameter telescope
(less than about 20 cm), otherwise the limiting factor is the atmospheric
turbulence or seeing.

14.4 REFLECTING TWO-MIRROR TELESCOPES

A two-mirror telescope is formed by a large concave mirror, called the
primary mirror, and a small concave or convex mirror, called the secondary
mirror, in front of it, to reflect back the light towards the primary mirror.
The image is formed behind the primary mirror, with the light passing
through a hole in its center. If the secondary mirror is convex, as in Fig. 14.6,
we have a Cassegrain telescope, but if the secondary mirror is concave we
have a Gregory (or Gregorian) telescope, as in Fig. 14.11. We may easily see
that the effective focal length F is positive for the Cassegrain and negative
for the Gregory telescope. These telescopes have been studied and described
by Bouwers (1946), Yoder et al. (1953a,b), Jones (1954), Baker (1963),
DeVany (1963), Malacara (1965), Schulte (1966a,b), Bowen (1967), Wynne
(1968), Meinel (1969), Wetherell and Rimmer (1972), Cornejo and Malacara
(1973, 1975), Gascoine (1973), Shafer (1976), and Schroeder (1978, 1987).

14.4.1 First-Order Design of Two Mirror Telescopes

We will study in some detail these telescopes, but the first step is to calculate
the curvatures and separation between the mirrors, using first-order theory.
As a first step we may see that the focal lengths for the primary and

Figure 14.5 Newton telescope.
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secondary mirrors are f1 and f2 and are related to the radii of curvature r1
and r2 by

r1 ¼
1

c1
¼ �2 f1 ð14:21Þ

and

r2 ¼
1

c2
¼ 2 f2 ð14:22Þ

According to our sign convention both radii of curvature are negative;
hence, f1 is positive and f2 is negative. The image formed by the primary
mirror is used by the secondary mirror as an object, to form a magnified
image at the secondary focus. This lateral magnification ms introduced by
the secondary mirror is equal to

ms ¼
F

f1
¼

lþ s

f1 �l
ð14:23Þ

where F is the effective focal length of the telescope and s is the distance
from the vertex of the primary mirror to the secondary focus. For any two
mirror telescope we may find the effective focal length with Eq. (3.43).
However, it is simpler if, as shown in Fig. 14.6, we write

y1
y2

¼
F

lþ s
¼

f1

f1 �l
¼ �

D1

d2
ð14:24Þ

Figure 14.6 Some important parameters in a two-mirror telescope.
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where l is the separation between the mirrors, y1¼D1/2 is the height of
the meridional ray on the primary mirror (half the diameter of the
primary mirror), and y2¼� d2/2 is the height of the meridional ray on the
secondary mirror (half the diameter of the reflected conic light beam, on
the secondary mirror, with a plus sign for the Cassegrain or a minus sign for
the Gregory). From the second and third terms in this expression we may
obtain the separation l between the mirrors as

l ¼
F� s

1þ F= f1
¼

ms f1 �s

1þms
ð14:25Þ

and substituting back into Eq. (14.24):

y1
y2

¼
f1 þF

f1 þs
ð14:26Þ

On the other hand, applying Eq. (2.13) to the secondary mirror, we have

1

f2
¼

1

lþ s
�

1

f1 �l
ð14:27Þ

and, from Eq. (14.26), the ray height y2 is

y2 ¼ y1
f1 þs

f1 þF

	 

¼

D1

2

f1 þs

f1 þF

	 

ð14:28Þ

If the height of the image on the secondary focal plane is h0, the size of
the image at the prime focus is equal to h0/ms¼ h0 f1/F. Then, the height of
the principal ray on the secondary mirror is

y2 ¼ h0 ms
l

f1

	 

¼ h0

l

F

	 


¼
f1ðF� sÞ

Fð f1 þFÞ
h0 ð14:29Þ

From Eqs. (14.24) and (14.27), the focal length of the secondary
mirror is

1

f2
¼

y1
y2

1

F
�

1

f1

	 

ð14:30Þ
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and using Eq. (14.26), the focal length f2 may be written as

f2 ¼
F

f1

	 

f1 þ s

1� ðF= f1 Þ
2

	 

¼ f1

msð1þ s=f1Þ

1�m2
s

ð14:31Þ

The diameter of the secondary mirror is

D2 ¼ 2ðy2 þ y2Þ ¼
ð f1 �l ÞD1

f1
þ 2

l

F

	 

h0 ð14:32Þ

To complete the first-order analysis of two-mirror telescopes, it is
convenient to find the expressions for some parameters that will be needed
when studying the aberrations of some particular systems. One of these
quantities is the ratio between the principal ray height and the meridional
ray height at the secondary mirror. From Eqs. (14.28) and (14.29), this
ratio is

y2
y2

¼
f1ðF� sÞ

y1 Fð f1 þsÞ

	 

h0 ð14:33Þ

The angle of incidence of the meridional ray at the primary mirror has a
value:

i1 ¼ �
y1
2 f1

ð14:34Þ

which is negative, since the ray arrives to the mirror above the normal. The
angle of incidence at the primary mirror for the principal ray is

i1 ¼
h0

F
ð14:35Þ

which is positive, since the ray arrives to the mirror below the normal. The
angle of incidence of the meridional ray at the secondary mirror, from
Fig. 14.6, may be shown to be

i2 ¼ y2
1

ðlþ sÞ
�

1

2 f2

	 

ð14:36Þ
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which is positive, since the ray arrives from the right side to the mirror,
above the normal. Also, from examination of the same figure, the angle of
incidence at the primary mirror for the principal ray is

i2 ¼ � y2
1

l
�

1

2 f2

	 

ð14:37Þ

which is negative, since the ray arrives at the mirror from the right side,
below the normal. Then, after some algebraic work, we may find that these
two angles may be expressed as

i2 ¼ �
ð f1 þF Þ

2 f1 F
y1 ð14:38Þ

and

i2 ¼ �
ð f1 þF ÞðFþ sÞ

2F2ð f1 þsÞ
h0 ð14:39Þ

It is interesting to know that a system of two spherical mirrors can be
designed to be anastigmat, i.e., with spherical aberration, coma, and
astigmatism corrected. This system, formed by two concentric spherical
reflecting surfaces as described by Erdös (1959), is used for an object at a
finite distance. So, this configuration is not useful for telescopes, but for
imaging a small object located at a relatively small distance.

14.4.2 Cassegrain Telescope

The Cassegrain telescope will now be analyzed by studying the five Seidel
aberrations.

Spherical Aberration

In a Cassegrain telescope the spherical aberration is corrected separately on
each of the mirrors and hence on the complete system. The primary mirror is
a paraboloid and since its eccentricity is equal to 1, its conic constant is

K1 ¼ �1 ð14:40Þ

and the secondary mirror is a hyperboloid. The eccentricity e of this
paraboloid, from analytic geometry, may be found to be

e ¼
f1 þ s

2l� f1 þ s
ð14:41Þ
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thus, the conic constant is

K2 ¼ �
f1 þ s

2l� f1 þ s

	 
2

¼ �
ms þ 1

ms � 1

	 
2

ð14:42Þ

By aspherizing the mirror with the conic constants, the spherical
aberration is corrected by introducing an aspherical contribution that
cancels the spherical contribution. It is useful to compute the spherical
contribution, i.e., the aberration for spherical mirrors, using Eq. (4.29),
because they will be used several times later when computing other
aberrations. For a primary spherical primary mirror this aberration
contribution, using the value of the angle i1 from Eq. (14.34) we find that

SphTC1 ¼ � i1 þ
y1
f1

	 

F i

2
1

¼ �
y3
1 F

8f 3
1

ð14:43Þ

and similarly for the spherical secondary mirror, using Eqs. (14.26) and
(14.38):

SphTC2 ¼
y2
y1

ðF i2 � y1Þi
2
2

¼
ð f1 þ sÞðFþ f1ÞðF� f1Þ

8f 31F
2

y31 ð14:44Þ

Coma

The coma of a Cassegrain telescope may be found by adding the spherical
and aspherical contributions to the coma aberration for both mirrors, as
follows:

ComaS ¼ ComaS C1 þComaS C2 þComaS Casph1 þComaS Casph2

ð14:45Þ

and using now Eqs. (5.41) and (5.85) with the conditions that �yy1 (stop in
contact with primary mirror) and that SphTCþSphTCasph¼ 0 (each mirror
is individually corrected for spherical aberration), we find that

ComaS ¼ SphTC1

i1

i1

	 

þ SphTC2

i2

i2

	 

�

y2
y2

	 
� �
ð14:46Þ
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Now we consider the spherical aberration contributions in Eqs. (14.43) and
(14.44) and substitute into this expression the other required values. After
some algebraic work, we may prove that the sagittal coma of a Cassegrain
telescope is given by

ComaS ¼
y1
2F

� �2
h0 ð14:47Þ

which is equal to the sagittal coma of a paraboloid with the same effective
focal length. Hence, the principal surface of a Cassegrain telescope is a
paraboloid with a focal length equal to the effective focal length of this
telescope. Since the principal plane is a hyperboloid, we may obtain, using
Eq. (11.30):

ComaS ¼ OSCh0 ¼
Fm

F
� 1

� �
h0 ð14:48Þ

where Fm is the marginal effective focal length for the paraboloid.
It is also possible to prove in a direct manner that the principal surface

is a paraboloid with focal length F. Then, it is an immediate conclusion that
the coma of the Cassegrain telescope is equal to the coma of the equivalent
paraboloid.

Astigmatism

As in the case of the sagittal coma, the transverse sagittal astigmatism for
the Cassegrain telescope is

AstLS ¼ AstLS C1 þAstLS C2 þAstLS Casph1 þAstLS Casph2 ð14:49Þ

and using Eqs. (6.49) and (6.90) with the conditions that �yy1 and that
SphTCþSphTCasph¼ 0, as in the calculation of the sagittal coma, we find
that

AstLS ¼ �SphTC1

i1

i1

	 
2
F

y1

	 

� SphTC2

i2

i2

	 
2

�
y2
y2

	 
2
" #

F

y1

	 


ð14:50Þ

Then, after some algebraic manipulation, the astigmatism of a Cassegrain
telescope may be proved to be given by

AstLS ¼
1

2F

m2
s þS=f1

msð1þ S=f1Þ

� �
h0

2
ð14:51Þ
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If S/f1 is very small as compared with ms, as Meinel (1960) points out,
the astigmatism of the Cassegrain telescope is equal to that of the equivalent
paraboloid, multiplied by the magnification of the secondary mirror.
However, the limiting factor in the size of the image is the coma and not the
astigmatism.

Petzval Curvature

The longitudinal Petzval aberration Ptz may be shown to be

Ptz ¼
1

f1
þ

1

f2

	 

h02

2

¼ �
msðms � s=f1Þ � ðms þ 1Þ

ms f1 þ sð Þ

� �
h02

2

ð14:52Þ

This Petzval curvature and the astigmatism produce a curved focal surface
of best definition, which is convex, as seen from the observer’s side. The
surface of best definition has a curvature given by

cbest ¼ �
ðm2

s �2Þðms � s=f1Þ þmsðms þ 1Þ

m2
s ðf1 þ sÞ

ð14:53Þ

We see that this curvature increases with the magnification of the secondary
mirror, but the field size also decreases, compensating this curvature
increase.

Distortion

The distortion is, in general, extremely small, of the order of a few
hundredths of an arcsecond. This magnitude is less than the atmospheric
seeing size and hence it is not a problem.

Figure 14.7 shows a Cassegrain telescope with the characteristics listed
in Table 14.1 (Cornejo and Malacara, 1973). The spot diagrams for this
telescope are shown in Fig. 14.8; the image height is 11 cm. We may observe
that the image has a large amount of coma, but also some astigmatism. The
left-hand side diagram corresponds to the flat focal surface and the right-
hand side diagram to the focal surface of best definition.

14.4.3 Ritchey–Chrètien Telescope

A Ritchey–Chrètien telescope is aplanatic. That is, it is corrected for
spherical aberration and coma. The price is that both mirrors have to be

© 2004 by Marcel Dekker, Inc.



hyperboloids and thus the spherical aberration is not corrected on the
primary focus. Most modern astronomical telescopes are of this type.

We may calculate the conic constants for this telescope by taking the
Cassegrain telescope as a starting point and modifying the conic constants
to correct the sagittal coma, maintaining the correction for the spherical
aberration. The transverse spherical aberration for the complete telescope
may be written as

SphT ¼ SphTC1 þSphTC2 þSphTCasph1 þSphTCasph2

¼ SphTcassegrain þ�SphT

¼ �SphT ð14:54Þ

Table 14.1 Cassegrain Telescope

Radius of
curvature (cm) Conic constant Diameter (cm)

Separation or
thickness (cm)

� 1134.000 � 1.0000 211.5 � 446.327
� 311.416 � 2.4984 53.0 536.327

Aperture (cm) (focal ratio): 211.5 (12)

Effective focal length (cm): 2520.0

Primary focal length (cm): 567.0

Secondary magnification ms: 4.44

Distance s from primary vertex to secondary focus (cm): 90.0

Object distance: infinite

Curvature of best focal surface in 1/cm: �0.00772

Image height (cm) (semifield): 11.4 (15
0

)

Figure 14.7 Cassegrain telescope.
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where the subscript 1 is for the primary mirror and the subscript 2 is for the
secondary mirror. The last term is the spherical aberration introduced by the
change in the conic constants for the mirrors. This term has to be zero in
order to keep the spherical aberration corrected. Then, from Eq. (4.49), but
writing y instead of S, we obtain

�SphT ¼ �
y4
1 c

3
1

u02

	 

�K1 þ

y4
2 c

3
2

u02

	 

�K2 ¼ 0 ð14:55Þ

Now, using Eqs. (14.21)–(14.25) and then Eq. (14.31), we may find the
following condition for the correction of spherical aberration in a
two-mirror telescope:

�K2 ¼ �
f1 f

3
2

ð f1 �l Þ4
�K1

¼
m3

s ðms þ1 Þ4

ðm2
s �1 Þ3ð1þ s=f1Þ

�K1 ð14:56Þ

where �K1 and �K2 are the changes in the conic constants with respect to
those in the Cassegrain telescope. This is a completely general condition for
the correction of spherical aberration in any two-mirror telescope, not only
for the Ritchey–Chrètien.

The sagittal coma of the two mirror telescope may be written as

ComaS¼ComaSC1þComaSC2þComaSCasph1þComaSCasph2

¼ComaScassegrainþ�ComaS ð14:57Þ

Figure 14.8 Spot diagrams for Cassegrain telescope.
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where �ComaS is the change in the sagittal coma due to the changes in the
conic constants, obtained from Eq. (6.85) and (14.55) as

�ComaS ¼ �
y4
1 c

3
1

u02

	 

y1
y1

	 

�K1 þ

y4
2 c

3
2

u02

	 

y2
y2

	 

�K2 ð14:58Þ

Since the stop is in contact with the primary mirror, the first term is zero and
adding the sagittal coma obtained for the Cassegrain telescope in Eq.
(14.47), we find for the two-mirror telescope:

ComaS ¼
y1
2F

� �2
h0 þ

y4
2 c

3
2

u02

	 

y2
y2

	 

�K2 ð14:59Þ

Using Eqs. (3.2), (14.22), and (14.24):

ComaS ¼
y1
2F

� �2
h0 �

ðlþ s Þ3

2 f 32
y2 �K2

� �
ð14:60Þ

hence, using Eq. (14.29):

ComaS ¼
y1
2F

� �2
1�

lðlþ s Þ3

2 f 32 F
�K2

� �
h0 ð14:61Þ

Using Eq. (14.23) and (14.31) we finally obtain

ComaS ¼
y1
2F

� �2
1þ

ðms � s=f1Þðms �1 Þ3

2msðms þ1Þ
�K2

� �
h0 ð14:62Þ

For the particular case of a Ritchey–Chrètien telescope ComaS¼ 0, then,
from this relation we may now find, after some algebraic steps, that

�K2 ¼
2Fð f1 þ f2 �l Þ3

lð f1 � l Þ3
¼ �

2msðms þ 1Þ

ðms �s=f1Þðms �1 Þ3
ð14:63Þ

Hence, the conic constant for the secondary mirror of the Ritchey–Chrètien
telescope is

K2 ¼ �
f1 þ s

2l� f1 þ s

	 
2

þ
2Fð f1 þ f2 � l Þ3

lð f1 �l Þ3

¼ �
ms þ 1

ms � 1

	 
2

�
2msðms þ 1Þ

ðms � s=f1Þðms � 1 Þ3
ð14:64Þ
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and substituting the conic constant increment from Eq. (14.41) into
Eq. (14.37) we may find that

K1 ¼
2ð f1 �lÞ f 21

F2 l
� 1

�
2ð f1 þsÞ

m2
s ðms f1 �sÞ

� 1
ð14:65Þ

The astigmatism for this telescope, as pointed out by Schroeder (1987),
is equal to

AstLS ¼
1

2F

ð2ms þ1Þms þs=f1
2msð1þ s=f1Þ

� �
ð14:66Þ

and the curvature for the surface of best definition is

cbest ¼ �
ðms þ1Þ

m2
s ðf1 þsÞ

m2
s �ðms �1Þ

s

f1

	 
� �
ð14:67Þ

Figure 14.9 shows the spot diagrams for a Ritchey–Chrètien telescope
with the same dimensions as the Cassegrain telescope, but with conic
constants:

K1¼� 1:02737

K2¼� 2:77476

Figure 14.9 Spot diagrams for Ritchey–Chrètien telescope.
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and the curvature of the surface of best definition equal to � 0.00806. The
image height for these spot diagrams is 11 cm. The left-hand side diagram is
taken at the focal plane and the one on the right-hand side at the surface of
best definition, between the sagittal and the tangential focal surfaces.

14.4.4 Dall–Kirham Telescope

The construction of the hyperbolic secondary mirror in the Cassegrain and
the Ritchey–Chrètien telescopes is not easy. It presents many problems,
especially for amateur telescope makers. The Dall–Kirham telescope solves
this difficulty by using a spherical convex secondary instead of a
hyperboloid. In order to correct the spherical aberration the primary
mirror becomes an ellipsoid. This is another advantage, since it is easier to
test an ellipsoidal mirror than a hyperboloidal mirror. Another important
advantage is that the spherical shape of the secondary makes the telescope
virtually insensitive to misalignments.

Then, the secondary mirror has a conic constant K2¼ 0 and hence�K2

is equal to minus the value of K2 for the Cassegrain configuration, as follows:

�K2 ¼
ms þ1

ms � 1

	 
2

ð14:68Þ

Substituting this value into Eq. (14.55), we obtain

K1 ¼ �1þ
ðm2

s �1Þ 1þ s=f1ð Þ

m2
s

ð14:69Þ

After some algebraic work we may find that the sagittal coma for this
telescope is

ComaS ¼
y1
2F

� �2
1þ

ms �s=f1ð Þðm2
s �1Þ

2ms

� �
h0 ð14:70Þ

which, by assuming that m� s/f1, becomes approximately:

ComaS ¼
y1
2F

� �2 m2
s þ1

2

	 

h0 ð14:71Þ

There are some disadvantages to this telescope. The most important is
that the coma and the astigmatism are very large compared with the other
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telescopes. For example, the coma is (m2
s þ 1)/2 times larger than in the

Cassegrain. Thus, the diameter of the useful field of view is reduced by the
same factor. Another difference is that the secondary mirror produces some
high-order spherical aberration that the conic constant of the primary
mirror cannot compensate. The spot diagrams at the focal plane for this
telescope, with the same data as the Cassegrain telescope, are shown in
Fig. 14.10, but with the conic constants:

K1 ¼ �0:7525

K2 ¼ 0:0000

14.4.5 Gregory Telescope

The Gregory (or Gregorian) telescope, shown in Fig. 14.11, uses a concave
ellipsoidal secondary mirror instead of the hyperboloid. The advantage is
that the elliptical concave mirror is much easier to construct and test than
the convex hyperboloid. The main disadvantage is that, given a primary
mirror focal length, the Gregory telescope is longer than the Cassegrain and
Ritchey–Chrètien telescopes.

As with the Cassegrain, the Gregory telescope may be made aplanatic
by properly selecting the conic constants for the two mirrors. It is interesting
to know that in this case the primary mirror becomes ellipsoidal instead of
hyperboloidal as in the Ritchey–Chrètien telescope.

Figure 14.10 Spot diagrams for a Dall–Kirham telescope.
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Three-mirror telescopes have also been designed for some applica-
tions, as described by Robb (1978).

14.4.6 Coudé and Nasmythe Focus Configurations

In large astronomical telescopes the secondary focus obviously moves
around with the telescope, as it points to different stars. It might be
convenient in very large telescopes to have the secondary focus at a fixed
position in space. If the distance S is made large, the light may be directed by
means of mirrors along the polar axis, as shown in Fig. 14.12. The only
inconvenience might be in some cases that the effective focal length becomes
very large. Another disadvantage is that the image rotates as the telescope
moves following the star.

In a similar manner, if the telescope has an altitude–azimuth
mounting, the light beam may be directed along the altitude axis, with the
same advantages and disadvantages as the Coudé focus.

Figure 14.12 Coudé and Nasmythe focus configurations.

Figure 14.11 Gregory telescope.
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14.4.7 Cassegrain Light Shields

In a two-mirror telescope an adequate shielding is required in order to avoid
direct sky or environment light to fall on the focal plane. The problem of
designing a good set of light shields for two-mirror telescopes has been
treated by several authors, e.g., Young (1967), Cornejo and Malacara
(1968), Prescott (1968), Davies (1987), LaVaughn Hales (1992), and Song
et al. (2002). A large field with the shielding introduces two problems,
i.e., vignetting and central obscuration. The central obscuration is due to the
large diameter of the secondary shield. The edge vignetting is due to both
shields. A compromise has to be found to minimize the light losses.

Let us assume that the angular field diameter is 2a. As shown in
Fig. 14.13, the light ray AB from a star enters the telescope with a small
angle a with respect to the optical axis. Upon reflection on the primary
mirror, this ray follows the path BC and CD, arriving to the focal plane at a
point with a height h0. The image height on the primary focal plane is hp. A
light ray ED from an extraneous light source also arrives to the focal point
D, passing through the rims M and N of the light shields. These points M
and N define the dimensions of the shields. The algebraic steps to find the
light shields are not given here, but the interested reader can consult the
references.

As an example, the light shields for the Cassegrain telescope designed
in this chapter have the dimensions shown in Table 14.2.

14.5 FIELD CORRECTORS

Field correctors for telescopes have been designed to improve the quality of
the image by correcting some aberrations near the focal surface. These
correctors have been studied by many authors, e.g., Ross (1935), Rosin
(1961, 1964, 1966), Wynne (1965), and Schulte (1966b).

Figure 14.13 Light shields for a Cassegrain or Ritchey–Chrètien telescope.
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14.5.1 Single Field Flattener

A field lens or a field flattener is a single negative or positive lens placed
almost at the image plane. The contribution of this lens is zero or very small
to all aberrations, with the only exception of the Petzval curvature. As we
have seen, the Petzval curvature for a system of thin lenses is

1

rPtz
¼
Xk
j¼1

1

nj fj
ð14:72Þ

In general, we do not want the Petzval surface to be flat, due to the
presence of astigmatism. The usual requirement is to have a flat surface of
best definition. If rend and rsys are the desired and initial values of the radius
of curvature of the Petzval surface, we may write

1

rend
¼

1

rsys
þ

1

nf
ð14:73Þ

where n and f are the refractive index and the focal length of the field
flattener. A field flattener for the Ritchey–Chrètien telescope designed in
this chapter is shown in Fig. 14.14 and has the construction parameters
presented in the Table 14.3.

Figure 14.15 shows the spot diagrams for the Ritchey–Chrètien
telescope using this field flattener. We may clearly see the presence of the
small magnification chromatic aberration introduced.

14.5.2 Ross Corrector

The coma of a parabolic mirror or a Cassegrain telescope may be removed
by means of a pair of lenses placed near the focus, as suggested by Ross
(1935). This lens is an air-spaced doublet of nearly zero power, as shown in
Fig. 14.16. The coma and field curvature are greatly reduced with this

Table 14.2 Cassegrain Light Shields

Primary shield Secondary shield

Diameter 37.6 68.9
Length 224.7 56.2

Central obscuration (area): 10.77%
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Figure 14.14 Single-field flattener.

Figure 14.15 Spot diagrams with a single-field flattener.

Table 14.3 Field Flattener for Ritchey–Chrètien Telescope

Radius of
curvature (cm) Diameter (cm)

Separation or
thickness (cm) Material

� 42.02 25.0 1.27 Fused silica
Flat 25.0 1.00 Air

Distance from secondary mirror of telescope: 534.48

Image height (cm) (semifield): 11.0
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system, without introducing much spherical aberration. Since the power is
nearly zero, a good chromatic correction may be obtained using the same
glass for both lenses. The spherical aberration may be reduced by moving
the system close to the focal plane. However, as the lenses get closer to the
focus, the curvatures become larger, increasing the high-order aberrations.
A solution is to use a system of three lenses as described by Wynne (1965),
achieving a good correction of the spherical aberration.

14.5.3 Wynne Corrector

The image at the secondary focus in a Ritchey–Chrètien telescope is free of
spherical aberration and coma, but has astigmatism and a relatively large
amount of field curvature. Wynne (1965) corrected these aberrations
without introducing any other aberrations, by means of a system of two
lenses with almost zero power. As shown in Fig. 14.17, a convergent lens is
followed by a divergent lens with the shape of a meniscus. Table 14.4 shows

Figure 14.17 Ritchey–Chrètien field Wynne corrector.

Figure 14.16 Field Ross corrector.
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a corrector of this type for the Ritchey–Chrètien telescope described before.
Figure 14.18 shows the spot diagrams.

14.5.4 Aspheric Correctors

As explained before, in the Ritchey–Chrètien telescope the only significant
aberrations are the astigmatism and the field curvature. Schulte (1966b) and
Gascoigne (1973) showed that an aspheric plate, similar to a Schmidt plate,
near the secondary focus, removes the astigmatism and most of the field
curvature without introducing any coma or spherical aberration. This
system is simpler than the Wynne corrector, but more difficult to construct.

Figure 14.18 Spot diagrams for a Wynne corrector.

Table 14.4 Wynne Corrector for Ritchey–Chrètien Telescope

Radius of

curvature (cm) Diameter (cm)

Separation or

thickness (cm) Material

Flat 25.0 2.54 Fused silica

� 94.89 25.0 10.38 Air
� 40.45 25.0 1.27 Fused silica
� 1479.79 25.0 7.93 Air

Distance from secondary mirror of telescope: 514.38

Image height (cm) (semifield): 11.0
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14.6 CATADIOPTRIC TELESCOPES

A catadioptric telescope is formed by mirrors as well as lenses (Churilovskii
and Goldis1964; Villa, 1968; Maxwell, 1972). The telescopes studied in this
section are of the Cassegrain configuration, with two mirrors, but a Schmidt
correcting plate has been added to eliminate the spherical aberration.
Several variations of the basic configuration are possible (Linfoot, 1955b) as
will be seen.

14.6.1 Anastigmatic Concentric Schmidt–Cassegrain Telescope

A concentric Schmidt–Cassegrain telescope is formed by two concentric
spherical mirrors (DeVany, 1965), with a Schmidt correcting plate and the
stop placed at the common center of curvature of the mirrors (Fig. 14.19).
The concentric configuration avoids all off-axis aberrations with the
exception of the field curvature. The correcting plate, as in the Schmidt
camera, eliminates the spherical aberration. In conclusion, the only
remaining aberrations in this telescope are the Petzval curvature and
spherochromatism.

The condition for concentricity may be written as

f2 þ f1 ¼
l

2
ð14:74Þ

but substituting the value of f2 from this expression into Eq. (14.23) we
obtain

l

2
� f1 ¼

msð f1 þ sÞ

ð1�m2
s Þ

ð14:75Þ

Figure 14.19 Schmidt–Cassegrain telescope.
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Then, substituting here the value of l from Eq. (14.25) we may obtain

ðms �
s

f1
� 2Þðms þ1Þ ¼ 0 ð14:76Þ

The solution for ms¼�1 has no physical interest for us. So, the concentric
telescope must have a secondary magnification equal to

ms ¼
F

f1
¼ 2þ

s

f1
ð14:77Þ

Then, in this telescope the ratio between the effective focal length and
the primary mirror focal length is fixed to a value slightly greater than 2,
depending on the value of s.

14.6.2 Flat-Field Anastigmatic Schmidt–Cassegrain Telescopes

The Schmidt–Cassegrain telescope may deviate from the concentric
configuration. Then, the off-axis aberrations appear, but they may be
corrected by aspherizing the mirrors with a nonzero value for the conic
constants. However, the spherical aberration is not completely corrected
with the conic constants and the correcting plate has still to be used. The
condition for a flat Petzval surface is

f1 ¼ � f2 ð14:78Þ

after some straightforward algebra, using Eq. (14.31), we may find

� fs ¼
msð f1 þ sÞ

ð1�m2
s Þ

ð14:79Þ

with a solution:

ms ¼
1þ s=f1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2ðs=f1Þ þ ðs=f1Þ

2
q

2
ð14:80Þ

which may be approximated by

ms ¼
F

f1

	 

¼ 1:118þ 0:2236

s

f1

	 

þ 0:1006

s

f1

	 
2

ð14:81Þ
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This value of the magnification of the secondary mirror insures a flat
Petzval surface, but we now have to correct the spherical aberration, coma,
and astigmatism. The Schmidt correcting plate does not introduce
astigmatism nor coma due to its low power. Thus, the spherical aberration
correction is left to the end, by means of this plate. So, we have to correct
two aberrations, namely, coma and astigmatism, by means of three degrees
of freedom: two conic constants and the stop position. We will consider two
possible configurations, studied by Baker (1940a).

Stop at Primary Focal Plane

In this configuration, shown in Fig. 14.20(a), the stop is fixed at the location
of the focus for the primary mirror. Then, coma and astigmatism are
corrected by means of the conic constants. The two mirrors become strongly
elliptical. At the end, the correcting plate is calculated to correct the
spherical aberration.

Spherical Secondary

In this second configuration, shown in Fig. 14.20(b), the secondary mirror is
made spherical. Then, the conic constant for the primary mirror and the
stop position are used to correct coma and astigmatism. The primary mirror
becomes elliptical, but very close to a sphere. As in the first solution, at the
end the spherical aberration is corrected by means of the correcting plate.

It is important to notice that in an anastigmatic system the spherical
aberration, coma, and astigmatism are zero. Then, this correction is
independent of the stop position, but not of the corrector plate position.
However, it is desirable that the corrector plate is always located at the stop.

Figure 14.20 Two flat-field anastigmatic Schmidt–Cassegrain telescope.
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14.6.3 Aplanatic Schmidt–Cassegrain Telescope with
Spherical Mirrors

If the system is to be anastigmatic, with both mirrors being spherical, the
only solution is the concentric system, but the Petzval surface would be
curved, as described before. A Schmidt–Cassegrain system is strictly
aplanatic, by definition, only if the spherical aberration and coma are
simultaneously corrected. With this definition, it may be proved that an
aplanatic Schmidt–Cassegrain is possible only if it is also anastigmatic.
However, Linfoot (1955b) defines an aplanatic Schmidt–Cassegrain system
as one that has a small coma, a small astigmatism, and the surface of best
definition is flat.

This system requires a small Petzval curvature, so that the flattening of
the field does not require a large astigmatism. Thus, the focal lengths for the
two mirrors must have almost the same magnitude, but not be exactly equal.
A ratio f2/f1 of about � 0.95 is reasonable.

14.6.4 Maksutov–Cassegrain Telescope

The Maksutov–Cassegrain telescope (Waland, 1961; Malacara, 1975) is
similar to the Schmidt–Cassegrain telescope, with the difference that the
corrector element is a meniscus lens as in the Maksutov camera, as in
Fig. 14.21. The secondary mirror may be a separate element or a small
reflecting area at the center of the convex face of the correcting plate.

14.7 MULTIPLE MIRROR TELESCOPES

Instead of using a single large, thick, and heavy mirror, multiple-mirror
telescopes are formed by an array of smaller mirrors, as shown in Fig. 14.22.
The light-collecting capacity of the telescope is equal to that of a single

Figure 14.21 Maksutov–Cassegrain telescope.
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mirror, multiplied by the number of mirrors. The light from these mirrors
is brought to a common focus by means of small flat mirrors, as shown in
Fig. 14.23.

Each mirror produces its own diffraction image. When these images
are superimposed, they add their amplitudes. These amplitudes, however,

Figure 14.23 Optical layout in a multiple-mirror configuration.

Figure 14.22 Mirror array in a multiple-mirror telescope.
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may have wavefronts that are in phase or out of phase. If the phase of the
wavefronts from the mirrors is not accurately controlled, the resulting image
approximates the sum of the intensities. Then, the final image is about the
same size as the image of each individual mirror. This is an incoherent
multiple-mirror telescope. The resolving power is not greater than that of a
single mirror, but the light gathering power is that of the sum of the areas of
the mirrors.

In some cases, however, it might be desirable to have a coherent
telescope by superimposing all the light beams with the same phase. This is
possible by mechanically phasing the mirrors within a small fraction of the
wavelength. Then, the combined image is smaller than the individual
images, increasing the resolving power of the telescope, approximating that
of a large telescope with a diameter equal to the diameter of the whole array.
Most modern multiple-mirror telescopes are of this type. Meinel et al. (1983)
have published a detailed and complete study of the diffraction images
produced by many types of coherent arrays of apertures. The reader is
encouraged to examine these pictures in detail.

14.8 ACTIVE AND ADAPTIVE OPTICS

The wavefront forming the image of a point light source (star) may be
deformed due to imperfections in the optical components or to atmospheric
turbulence. These wavefront deformations may be eliminated by intro-
ducing the opposite deformations in a procedure called active or adaptive
optics. This subject is relatively new, but has already been treated in detail
by some authors, e.g., Tyson and Ulrich (1993), where many additional
references may be found.

In order to measure the wavefront shape, so that the appropriate
compensation may be introduced, a reference wavefront from a point source
near the observed object is required. Thus, an isolated bright star has to be
located in the vicinity of the observed objects. This is not always possible,
but this star may be artificially produced by sending a strong laser beam in
the direction pointed to by the telescope. The laser beam produces a
fluorescent spot in the upper atmosphere, acting as the required reference
star. Several laser pulses are sent at equal time intervals in order to measure
the wavefront frequently enough.

The active optics device to compensate for the atmospheric turbulence
is schematically shown in Fig. 14.24. The light from the reference star, after
passing through the telescope, enters a specially designed optical system to
collimate the light. This optical system also forms the image of the exit pupil
of the telescope on the compensating mirrors.
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The wavefront deformations are compensated on the system formed
by the tip–tilt mirror and the adapting mirrors. These mirrors move to
compensate the deformations, but they cannot easily compensate a
wavefront tilt. This is done by means of the tip–tilt mirror.

The dichroic mirror reflects the infrared reference wavefront from the
incoming light beam in order to send it to the wavefront-measuring device.
The information from this device is sent to a computer. Then, the computer
controls the adapting mirrors and the tip–tilt mirror by means of a digital/
analog control unit.

Obviously, adapting mirrors compensate not only the atmospheric
turbulence, but also any optics imperfections. If the system has a large time
constant and it is not fast enough to follow the atmospheric disturbances,
only the optics imperfections are compensated. Then, the system is said to
be adaptive, not active.

Figure 14.24 Adaptive optics basic arrangement.
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15
Visual Systems, Visual Telescopes,
and Afocal Systems

15.1 VISUAL OPTICAL SYSTEMS

15.1.1 Exit Pupil Location in Visual Optical Systems

The final image in a visual instrument is formed at the retina of a human
eye. If the eye is emmetropic, i.e., if it does not have any refractive errors, the
virtual image provided by the instrument has be located at an infinite
distance. The coupling of the visual instrument to the eye is done by locating
the eye close to the exit pupil of the instrument. The distance from the last
optical surface of the system to the exit pupil is called the eye relief.

The eye relief should be at least 10mm to provide enough space for
eyelashes, 15mm for a more comfortable viewing or even 20mm for people
wearing eyeglasses. For rifle sights the eye relief should be even larger,
at least 60mm to give space for the rifle recoil. A larger eye relief requires a
larger eyepiece, making the instrument more expensive.

Another consideration that should be made regarding the exit pupil in
visual instruments is its optimum location with respect to the observing eye.
It is commonly stated that the exit pupil of the instrument should be at the
same plane as the pupil of the observing eye. However, in some instruments
a better location is at the center of the eye globe.

To study this problem let us consider Fig. 15.1 where the exit pupil of
the visual system and the observing eye are shown. In Figs. 15.1(a) and (b)
the exit pupil of the system and the pupil of the eye are at the same plane.
If the object of interest is small and it is located at the center of the field,
the whole field is observed, but only the object at the center is clearly
defined. When an object is at the periphery it is observed as in Fig. 15.1(b),
rotating the eye globe about its center. Now, the object at the edge of the
field is clearly seen but much dimmer, unless the head is slightly moved
laterally to center again the exit pupil of the system with the pupil of the eye.
Thus, this position for the observing eye with respect to the exit pupil is
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correct if the objects of interest are small and in the vicinity of the optical
axis. A typical example is a visual astronomical telescope.

Let us now consider the case when the objects of interest are uniformly
distributed over the whole field and the exit pupil of the system is at the
center of the eye globe, as shown in Figs. 15.1(c) and (d). Now the eye has
continuously to move in its eye socket to observe the object of interest at a
given time. All the observed objects at any position within the field will have
the same luminous efficiency. However, the objects located at the opposite
side of the optical axis of the object of interest will be much dimmer or even
invisible. They will appear bright and clear if the eye is rotated to observe in
that direction. This position for the exit pupil of the system is appropriate
for ophthalmic lenses or systems with a wide field where the objects of
interest are over the whole field. If the exit pupil of the optical system is
much smaller than the pupil of the eye, the tolerance in the position of the
aye along the optical axis is much greater.

All preceding considerations were made assuming that the exit pupil
position of the visual optical instrument is defined independently of the
pupil of the observer. This is not true in some optical systems where the stop
of the system is the pupil of the observer’s eye, as in a magnifier, an
ophthalmic lens or a Galilean telescope. In these cases, clearly the exit pupil
should be considered at the center of rotation of the eye globe.

Figure 15.1 Different observing eye positions with respect to the exit pupil of
the visual system.

© 2004 by Marcel Dekker, Inc.



15.1.2 Optical Models of the Human Eye

It is sometimes desirable in the computer analysis of the optical design of
visual optical systems to incorporate a model of the human eye. Walker
(2000) has described a model, illustrated in Fig. 15.2 with the data presented
in Table 15.1. The pupil diameter is variable from about 2mm up to 6.0mm,
depending on the light illumination, but in this model a fixed average value
of 4.0mm is assumed. The refractive index of the eye lens is not uniform.
In this model the back surface of the eye lens is taken with a hyperboloidal
shape with a conic constant equal to �4.5 in order to simulate the
nonhomogeneous refractive index of the eye lens.

When numerically tracing rays in a computer to analyze the off-axis
performance of a visual system to which this model of the eye has been
attached, the eye model has to be rotated about the center of the exit pupil
of the system being analyzed.

Figure 15.2 Optical model of a human eye.

Table 15.1 Optical Model of the Human Eye

Radius of
curvature (mm)

Conic
constant

Separation or
thickness (mm)

Refractive index
(Vd¼ 55.0)

7.8 0.0 0.6 1.377
6.4 0.0 3.0 1.336
10.1 (5.95) 0.0 4.0 1.411

� 6.1 (� 4.50) �4.5 17.2 1.337
� 12.5 0.0 — —

Pupil diameter (average): 4.0.

Numbers in parentheses are for the accommodated eye.
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An alternative to avoid rotating the eye model for each off-axis point
is to use as an eye model a system that produces good quality optical images
on-axis as well as off-axis. The main requirements for this eye model is that
the image size has an angular diameter much less than a minute of arc and
second. An example is a concave spherical mirror with a stop at its center of
curvature and a spherical focal surface concentric with the mirror, as shown
in Fig. 11.12(a). The spherical aberration has to be small enough so that the
angular diameter of the image is smaller than 1 arcmin. A mirror with a
radius of curvature equal to 30.184mm ( f¼ 15.092mm) and 4mm diameter
produces an image with a transverse spherical aberration equal to 1 arcmin.
With a radius of curvature equal to 687.4mm the spherical aberration is
0.044 arcmin and a transverse aberration of 0.1 mm will correspond to an
angular aberration equal to 1 arcmin.

15.2 BASIC TELESCOPIC SYSTEM

A visual telescope consists of two lenses as shown in Fig. 15.3. The lens
closer to the object is called the objective and the lens closer to the eye is the
eye lens or eyepiece. The objective forms a real image of the object on the
focal plane of this objective. Then, the eye lens acts as a magnifier, forming a
virtual image, to be observed by the eye. If the object as observed with the
naked eye has an angular height a, observed through the telescope it has an
angular height b. Then, the angular magnification or magnifying power of the
telescope is defined by

M ¼ �
tan b
tan a

ð15:1Þ

Figure 15.3 Basic telescope arrangement.
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where the angles a and b are positive if their slope in Fig. 15.3 is positive.
This expression is to be expected from the definition of angular
magnification given in Chap. 1. Let us assume that the pupil of the
telescope is in contact with the objective. If f1 is the focal length of the
objective, f2 is the focal length of the eye lens, and l is the distance from
the eyepiece to the exit pupil, we may write

1

f2
¼

1

l
�

1

f1 þ f2
ð15:2Þ

assuming that the observed object is at infinity, so that the separation
between the objective and the eye lens is equal to the sum of the focal lengths
of both lenses. Thus,

l ¼
f2
f1
ð f1 þ f2Þ ð15:3Þ

Now, from Fig. 15.3 we may see that the angular magnification is given by

M ¼ �
tan b
tan a

¼ �
f1 þ f2

l
ð15:4Þ

Hence, substituting in this expression the value of l we obtain

M ¼ �
f1

f2
ð15:5Þ

If the diameter of the objective (entrance pupil) is D1 and the diameter
of the exit pupil is D2, we may find that the magnitude of the magnifying
power is also given by (see Fig. 15.4)

Mj j ¼
D1

D2
ð15:6Þ

where, by definition, the signs of these diameters D1 and D2 must be the
same as those of the angles a and b, respectively. The distance from the
eyepiece to the exit pupil of the telescope is a very important parameter
called eye relief. As in ophthalmic lenses (Section 13.2) the observer rotates
the eye globe in its skull socket to scan the whole image. Thus, ideally the
exit pupil of the telescope must coincide not with the pupil of the observer’s
eye but with the center of rotation of the eye globe. The eye relief must be
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large enough to allow space for the eyelashes. In telescopic gun sights the eye
relief must be considerable larger to avoid hitting the eye during the recoil
of the gun. A convergent lens, named a field lens, may be placed at the
image plane of the objective, to reduce the eye relief, as shown in Fig. 15.5.
If we assume that the focal length of the objective is much larger than the
focal length of the eye lens, the exit pupil would be located approximately
at the focus of the eye lens. The distance from this focus to the eye lens or
eye relief is equal to the back focal length of the field lens–eye lens
combination. It is interesting to notice that if the field lens is exactly at the
image plane, the back focal length is reduced but the effective focal length is
not changed by this lens. [See Eqs. (3.38) and (3.42).]

The combination of the eye lens and the field lens is known as an
eyepiece or ocular. They will be studied in Section 15.6.

Figure 15.4 Measurement of the size of the exit pupil of a telescope.

Figure 15.5 Telescope with an eyepiece having a field lens.
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15.3 AFOCAL SYSTEMS

An afocal system is one that has an effective focal length equal to infinity.
A good review of the properties of these systems has been published by
Wetherell (1987). A telescope focused on an object placed at an infinite
distance, and with the virtual image also at an infinite distance, has a
separation between the objective and the eye lens equal to the sum of the
focal lengths of both lenses. Thus, it is a special kind of afocal system.
With afocal systems we may form an image (real or virtual) of a real object.
Let us consider the afocal system shown in Fig. 15.6. The exit pupil is a real
image of the entrance pupil. The angles a and b satisfy Eq. (15.4) for the
magnifying power of the system. If we have an object H at a distance X from
the entrance pupil with diameter D1, its real image is at H0, at a distance X0

from the exit pupil with diameter D2. Thus, we may see that the magnifying
power is given by

M ¼
tan b
tan a

¼
D2 X

D1 X0
¼

1

M

X

X0
ð15:7Þ

thus

M
2 ¼

X

X0
ð15:8Þ

Figure 15.6 Image formation in an afocal system.
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The distance X is positive when the object is to the right of the entrance
pupil and the distance X0 is positive when the object is to the right of the exit
pupil. It is interesting to notice that X and X0 will always have the same sign.
Let us assume that the separation between the entrance pupil and the exit
pupil is LP. Then, we may see that the distance between the object and its
image is LI, given by

LI ¼ LP þX0 � X ¼ LP �X 1�
1

M2

	 

ð15:9Þ

Since in Fig. 15.6 we haveH¼D1/2 andH0 ¼D2/2, we may see that the
lateral magnification is equal to the inverse of the magnifying power of the
system. Afocal systems are very interesting, and as Wetherell (1987) points
out, they have three important properties:

1. If the stop is at the intermediate focus, as shown in Fig. 15.7,
the system is both front and back telecentric. Then, the lateral
magnification is constant, even if the image is defocused.

2. If the magnifying power M is equal to � 1, the distance LI is equal
to the distance LP, since X is equal to X0. Then, if the afocal system
is shifted along the optical axis in the fixed space between the
object and the image, the lateral magnification is always unitary
and the image position remains constant.

3. If the magnifying powerM is not equal to� 1, the distance LI is not
equal to the distance LP, unless the object is at the entrance pupil.
Then, the lateral magnification is constant and, if the object and the
image are fixed, the image focusing may be adjusted by moving the
afocal system, without modifying the lateral magnification.

These properties have very important practical applications, especially
in microlithography. Let us now examine two other interesting properties of
afocal systems.

Figure 15.7 Image formation in an afocal system with the stop at the common
focus of objective and eyepiece.
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A diverging light beam becomes even more diverging after passing
through a terrestrial telescope. The angle of divergence is increased by a
factor equal to the magnification of the telescope. If we are observing a near
object (at a distance X in front of the entrance pupil) through a telescope,
the observing eye has to focus on the image formed by the afocal system (at a
distance X0 in front of the exit pupil). Thus, if M is greater than one, the
apparent distance X0 is less than the actual distance X. On the other hand,
if M is less than one, the apparent distance X0 is greater than the actual
distance X. In conclusion, the depth of field is reduced when looking
through a telescope. Obviously, when observing with an inverted terrestrial
telescope the depth of field is increased. For this reason a myopic person
wearing noncontact ophthalmic lenses has a greater apparent depth of field
than an emetropic person of the same age (Malacara and Malacara, 1991),
reducing the effect of presbyopia.

Another interesting effect when looking through a telescope is that the
objects do not only look larger and closer, but also thinner. The apparent
compression along the line of sight is directly proportional to the square of
the magnifying power. Hence, if the magnifying power is greater than one,
the objects look too compressed in depth.

15.3.1 Two-Mirror Afocal Systems

Two-mirror afocal systems can be constructed with a similar arrangement to
that used for two-mirror telescopes, using a concave and a convex mirror,
as illustrated in Fig. 15.8. The Mersene system, formed by two paraboloids,

Figure 15.8 Two-mirror afocal system.
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can be considered as a Cassegrain telescope with an infinite effective focal
length. From Eqs. (14.47) and (14.51) we see that in the Cassegrain telescope
the coma and the astigmatism are inversely proportional to the effective focal
length. Thus, this afocal system is free of spherical aberration, coma, and
astigmatism. The distortion is small and only the Petzval curvature remains.

Puryayev (1993) has considered a modification of this afocal system,
substituting one of the two paraboloidal mirrors by a spherical mirror.
Then, the shape of the other mirror is modified to correct the spherical
aberration of the system. Strictly speaking, the shape of this modified mirror
is not a hyperboloid, although it is close. Puryayev has shown that the figure
of this mirror has the same evolute (same caustic for the spherical aberration
of the normals) as a paraboloidal surface virtually located at some point
along the optical axis.

Considering the case of a spherical secondary mirror, the virtual
paraboloid with the same evolute as the concave aspherical mirror has a
focal length equal to the separation between the mirrors and it is concentric
with the primary mirror, as shown in Fig. 15.9. Let us imagine the surface of
the aspheric mirror to be a wavefront. When this aspheric wavefront
propagates in space its shape is continuously changing along its trajectory,
but at some point in space it acquires the exact paraboloidal shape. This is
the virtual paraboloid.

15.4 REFRACTING OBJECTIVES

The typical configuration of a refracting telescope objective as an
achromatic doublet has been described in Section 6.2, but it can be more

Figure 15.9 Virtual paraboloid in two-mirror afocal system with a spherical
secondary mirror and an aspherical primary mirror.
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complicated (Fulcher, 1947). The design of a doublet presents many options,
depending on the aberrations that have to be corrected as described by
several authors (Hopkins and Lauroesh, 1955; Hopkins, 1959, 1962a,d;
Korones and Hopkins, 1959). We will study in this section these options and
their design procedures.

15.4.1 NonAplanatic Doublet

Given the glass types and the effective focal length, the degrees of freedom
are the three curvatures, in order to have the desired focal length and to
correct only two aberrations, namely, the spherical aberration and the axial
chromatic aberration. The ratio of the power of the two lenses is used to
correct the axial chromatic aberration, and the spherical aberration is
corrected by properly bending the lens to the right shape. The thicknesses
are chosen so that the lens is neither too thin nor too thick.

A very general graphical method that may be of great help in the design
of optical systems has been described by Kingslake (1978) and ascribed by
him to H. F. Bennett. This method may be used when an automatic lens
improvement program is not available, or when a good understanding of the
influence on the design of each of the available variables is desired. It is
interesting to use this method even when using ray-tracing programs, in
order to get a good feeling of the influence of the variables on the aberrations.
It may be used whenever we have two available parameters tomodify and two
functions (aberrations) to correct.

As an example, let us consider an achromatic doublet in which the
starting point is calculated with the first-order formulas in Chap. 6 with the
shape of the positive lens being equiconvex, with the following characteristics:

Diameter 20.00mm
Effective focal length 100.00mm
First radius of curvature 43.68mm (c1¼ 0.022893)
Second radius of curvature �43.68mm (c2¼�0.022893)
Third radius of curvature �1291.00mm
Thickness of first lens 4.00mm
Thickness of second lens 2.00mm
Glasses BK7 and F2

As shown in Fig. 15.10 the two functions to correct are the primary
spherical aberration SphT and axial chromatic aberration AchrT. The
variables in this case are the two curvatures c1 and c2 of the positive lens.
The third (last) curvature c3 is determined by the effective focal length of the
doublet. If our initial trial solution is at A, we change the front curvature of
the positive lens by an amount �c1, adjust the third curvature to preserve
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the focal length, evaluate the aberrations, and find that a new lens is at B.
Then, we go back to the initial point and change c2 by an amount �c2,
evaluate again, and find a new lens solution at C.

The final step is to assume a linear variation of the aberrations with
the parameters being modified. Graphically, as illustrated in Fig. 15.10, we
find that the desired solution at E may be obtained by changing the radii of
curvature lenses by amounts �c01 and �c03, given by

�c01 ¼
AD

AB
� c1 ð15:10Þ

and

�c03 ¼
DE

AC
� c3 ð15:11Þ

Wemay notice several interesting features in this diagram in Fig. 15.10:

1. Due to nonlinearities, the predicted solution E is not where the
actual solution F is; however, it is very close for all practical
purposes.

2. Both parameters c1 and c2 have about the same influence on both
aberrations. If the index of refraction nD is the same for both
glasses, the glass interface c2 would not have any influence on the
spherical aberration. Then, the lineACwould be vertical. The slope
of this line is thus smaller for a large difference in the refractive
indices.

3. The lines AB and AC are not parallel to each other, permitting the
possibility of a solution.

Figure 15.10 Graphical solution for an achromatic doublet corrected for spherical
aberration.
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We may find solutions for zero axial chromatic aberration, without
requiring correction of the spherical aberration. This produces the graph in
Fig. 15.11. We may see that there are two solutions, A and B, for zero
spherical aberration. The point B corresponds to the solution just found.
These two solutions are illustrated in Fig. 15.12.

The axial plots for the solution B are in Fig. 15.13. We may notice the
following:

1. Fifth-order spherical aberration and defocus is introduced, to
compensate the primary spherical aberration, making the total

Figure 15.11 Variation of the transverse spherical aberration versus the front

curvature of an achromatic doublet.

Figure 15.12 Two solutions for an achromatic doublet free of spherical
aberration: (a) left solution; (b) right solution.
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spherical aberration close to zero at the edge of the pupil. The
maximum transverse aberration is about 0.006mm (6 mm), which
is close to the diameter of the Airy disk.

2. The F and C curves cross each other near the edge of the pupil,
indicating a good correction for the primary axial chromatic
aberration. This curve for D colors does not cross the curves for C
and F colors near the edge of the aperture due to the presence of
secondary color.

3. The curves F and C have different amounts of spherical aberration,
due to the spherochromatism.

Figure 15.14 shows the meridional and sagittal plots at 5� off-axis
(h0 ¼ 8.75mm). The curves for the three colors are almost identical, indicating
the absence of magnification chromatic aberration. As expected, there is a
large coma aberration, indicated by the symmetric component of the
meridional ray-trace plot. The antisymmetric component of this curve is a
linear function with a slope due to the curved tangential field. The different
slopes for the meridional and sagittal plots indicate the presence of some
astigmatism. This lens design is presented in Table 15.2. If used as a
collimator, this lens produces a flat wavefront with a peak-to-valley (P–V)
error equal to 0.22 wavelength in yellow light.

We have seen, as in Chap. 5, that, if the glasses for two thin lenses in
contact have a different index of refraction, there are two solutions for zero

Figure 15.13 Axial plots for lens solution B in Fig. 15.11.
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spherical aberration. Thus, by selection of the glasses, or other methods
later described, we may place the zero spherical aberration solution at any
desired position to achieve coma correction. A system corrected for
spherical aberration and coma is said to be aplanatic.

15.4.2 Broken Contact Doublet

In this type of objective, described by many authors, e.g., Rosin (1952), the
two elements of the doublet are separately bent to the optimum shape to
obtain simultaneous full correction of the primary spherical aberration and
coma. Thus, given a focal length and the requirement for zero axial
chromatic aberration, the focal lengths of the two components are fixed.
The two bendings are then the two degrees of freedom needed to correct the
spherical aberration and coma. To modify our last design we first separate

Figure 15.14 Meridional and sagittal plots at 5� off-axis for lens solution B in
Fig. 15.11.

Table 15.2 F/5 Nonaplanatic Achromatic Doublet

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

44.14 (stop) 22.0 4.0 BK7
� 45.56 22.0 2.0 F2
� 1216.80 — 95.74 Air

Aperture (mm) (focal ratio): 20.0 (F/5.0).

Effective focal length (mm): 100.0.

Back focal length of doublet (mm): 273.47.

Back focal length of system (mm): 95.74.

Object distance (mm): infinite.

Image height (angular semifield): 8.75 (5�).
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the two lenses by introducing an air space between them equal to 0.15 mm.
This starting design is then evaluated. The primary sagittal coma aberration
is calculated with the usual coefficients. The spherical aberration, however,
is calculated using exact ray tracing for an axial ray passing through the
edge of the pupil. The transverse aberration TAy is then the value of the
transverse axial spherical aberration, including all high-order terms.

The next step is to bend the positive lens. This is done by changing the
curvature c1 by an amount �c1¼� 0.002 and then adjusting the curvature
c2 to preserve the same effective focal length. This new configuration is
evaluated like the starting design. The third step is to go back to the original
design and to bend the negative lens by the same amount and method as the
first lens. Again, this configuration is evaluated. In this manner, the graph in
Fig. 15.15 is obtained, where A is the original design, and B and C are the
configurations with the two lens bendings.

With the method previously described, a solution is found at a point
near E, but not exactly there. Due to nonlinearities this point is not at the
origin as desired, but a small bending of the negative lens brings the design
to a very good solution. Figure 15.16 and Table 15.3 show a doublet of the
broken contact type.

Figure 15.17 shows the axial plots for this lens, where we may observe
that:

1. The spherical aberration is quite similar to that of the cemented
doublet. Again, high-order spherical aberration and defocusing is
present to make the total aberration close to zero near the edge of
the aperture.

Figure 15.15 Graphical solution of a broken contact doublet.
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2. The primary chromatic aberration is also quite similar to that of
the cemented doublet.

The meridional and sagittal plots in Fig. 15.18 for an off-axis
point object with a height of 8.75mm (5�) show a straight line, indicating
the absence of coma. The large slope is due to the curved tangential field.
Notice that the slope at the origin in this plot and in Fig. 15.14 is the same.

Figure 15.16 Broken contact doublet.

Table 15.3 F/5 Broken Contact Aplanatic Achromatic Doublet

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

58.39 (stop) 22.0 4.0 BK7
� 36.29 22.0 0.15 Air
� 36.67 22.0 2.0 F2

� 161.92 — 96.55 Air

Aperture (mm) (focal ratio): 20.0 (F/5.0).

Effective focal length (mm): 100.0.

Back focal length (mm): 96.55.

Object distance (mm) : infinite.

Image height (angular semifield):8.75 (5�).
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The different slopes of the meridional and sagittal plots indicate the
presence of some astigmatism. Obviously, a lens system like this can not be
cemented and has to be very carefully mounted to avoid misalignments.

15.4.3 Parallel Air-Space Doublet

In the parallel air-space doublet the two inner radii of curvature are equal,
to reduce manufacturing costs. Thus, the two adjusting parameters are the
bending of the whole lens and the spacing between the two lenses.

The only problem with the design is that according to the principles
explained in Chap. 4, the high-order spherical aberration may become
too large, producing a large zonal aberration. Thus, the primary and the

Figure 15.17 Axial plots for a broken contact doublet.

Figure 15.18 Meridional plot for a broken contact doublet.
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high-order spherical aberrations have to be compensated with each other.
In general, the broken-type design is superior to the parallel air-space
system.

15.4.4 Cemented Aplanatic Doublet

As explained at the beginning of the Chap. 4, the solution for zero spherical
aberrationmay be placed at the bending value such that the coma is also zero.
In this lens system we have three degrees of freedom, namely, the bending of
the whole lens and the powers of the two components. We may use these
variables to obtain the desired focal length, to correct the spherical
aberration and to correct the coma, given the refractive indices of the lenses.
The Abbe numbers may then be chosen to correct the chromatic aberration.
For example, the same design in Fig. 15.12 can be improved, reducing the
coma by substituting the glass F2 by SF5 or SF9. With these two last glasses
the coma has opposite signs.

15.4.5 Apochromatic Lenses

The secondary color may be reduced by means of any of the following
methods:

1. Choosing the right glasses, so that the partial dispersions are equal
or at least close to each other for the two glasses. Unfortunately, this is not a
good solution since this requires the use of special glasses.

2. Using three different glasses, forming a triplet as shown in Chap. 6.
As mentioned there, the area of the triangle formed by the points representing
the three glasses in a P–V diagram must be different from zero in order to
have a solution. On the other hand, in order to have lens components with
low power this area must be as large as possible. A good selection of glasses,
as pointed out by Kingslake (1978), is a crown for the first element, a short
flint or lanthanum crown for the central element, and a very dense flint for the
last element.

15.4.6 Laser Light Collimators

It is frequently necessary to produce a well-collimated beam of laser light.
A normal telescope objective with a large f-number may be used, but an
important requirement is that the focal length is short. An f-number as low
as possible is convenient. This imposes the need for an extremely good
spherical aberration correction, with a low zonal aberration. As described
by Hopkins (1962d) and Korones (1959), the zonal aberration may be
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reduced by any of four methods:

1. Choosing the proper glasses

2. Using an air space

3. Introducing an aspherical surface

4. Splitting the positive lens into two

The requirement for good chromatic correction is not necessary in
a laser collimator, but the spherical aberration should be small for a
range of wavelengths. A refocusing may be necessary when changing the
color. Another important requirement is coma correction, so that small
misalignments are tolerated. Malacara (1965) has designed two such
collimators using the last approach, shown in Fig. 15.19, with the data in
Table 15.4.

Figure 15.19 Two He–Ne laser collimators. f/4 collimator; (b) f/2.64 collimator.

Table 15.4 F/4 Laser Light Collimator

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

136.4 50.0 8.886 BK7
� 465.6 50.0 0.193 Air
111.4 50.0 10.274 BK7
� 236.3 50.0 5.401 SF15

166.8 50.0 — Air

Aperture (mm) (focal ratio): 50.0 (F/4).

Effective focal length (mm): 200.0.

Back focal length (mm): 177.2.

Object distance (mm): infinite.
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In the second collimator, with data in Table 15.5, a meniscus lens was
added as in the duplex front of an immersion microscope objective, in order
to reduce the focal length.

The maximum wavefront deviation from flatness at 632.8 mm
is l/40.

15.5 VISUAL AND TERRESTRIAL TELESCOPES

Unlike professional astronomical telescopes, amateur astronomical tele-
scopes have an eyepiece to observe the image visually. Professional
astronomers almost never make direct visual observations.

We have seen that the ratio of the entrance pupil to the exit pupil is
equal to the angular magnification of the system. Let us assume that the exit
pupil of the telescope has a diameter equal to the diameter of the pupil of the
eye, which is about 6mm at night. With this condition the angular
magnification of the telescope is equal to D1/6, where D1 is the diameter of
the entrance pupil (the objective diameter for a Keplerian telescope).
However, this is not the case in most telescopes since the angular
magnification can be larger or smaller as follows:

1. If the angular magnification is larger than this value the size of the
exit pupil becomes smaller than the pupil of the eye. Then, the brightness of
a star is the same for any magnification since no light is lost. We have seen in
Chap. 14 that the limit magnitude is a function only of the diameter of the
entrance pupil, assuming that no light is lost. However, the larger the

Table 15.5 F/2.64 Laser Light Collimator

Radius of

curvature (mm)

Diameter

(mm)

Separation or

thickness (mm) Material

136.4 50.0 8.886 BK7

� 465.6 50.0 0.193 Air
111.4 50.0 10.274 BK7
� 236.3 50.0 5.401 SF15

166.8 50.0 2.100 —
69.6 50.0 7.000 —
108.5 50.0 — —

Aperture (mm) (focal ratio): 50.0 (F/2.64).

Effective focal length (mm): 132.0.

Back focal length (mm): 108.5.

Object distance (mm): infinite.
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magnification is, the smaller the field becomes, reducing the number of stars
within the field of view.

2. If the angular magnification is smaller than this value, the size of
the exit pupil becomes larger than the pupil of the eye and not all the
light entering the objective reaches the retina of the observer. Then, the
effective entrance pupil diameter is reduced. This condition increases
the field but decreases the resolution of the telescope and the star brightness.
A conclusion is that the maximum number of observed stars is obtained
when the magnification has the optimum value equal to D1/6. A telescope
with this magnification is sometimes called the richest field telescope.

Terrestrial telescopes must also present to the observer an erect
image. This is accomplished by means of a prism or lens erector. The simplest
and more common type of lens erector uses an inverting eyepiece as will be
described later in this chapter. Other erecting systems with better image
quality use erecting prism systems, such as those described in Chap. 10.

A typical visual refractive astronomical telescope has a larger focal
ratio that the doublets designed in the previous sections, close to F/10.
An example of an F/10 telescope objective is illustrated in Fig. 15.20 and
Table 15.6.

15.5.1 Galilean Telescopes

Although the first uses of Galilean telescopes were for direct astronomical
observations beginning with Galileo himself, now they are almost exclusively
used for terrestrial observations.

Galilean telescopes are now mainly used as theater binoculars and for
improving the visual capacity of low-vision persons. The optics literature

Figure 15.20 An F/10 telescope objective.
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about this topic is scarce (Bertele, 1983; Rusinov et al., 1983; Menchaca and
Malacara, 1988). Now, we will briefly describe these systems.

In a Galilean telescope, shown in Fig. 15.21, the pupil may be at the
observer’s eye or at the objective, according to the magnification of the
telescope and the objective diameter. If the telescope has a small diameter
objective and a large magnification, as in the case of the original
telescope made by Galileo, the stop is at the objective’s plane, as shown
in Fig. 15.21(a). In this case the exit pupil is far from the observer’s eye;
hence, the size of the field of view is very small and limited by the pupil of
the observer. In this type of telescope the observer has the sensation of
observing through a long and narrow tube.

Figure 15.21 Galilean telescopes with stop at the objective and at the observer’s eye.

Table 15.6 F/10 Telescope Objective

Radius of

curvature (mm)

Diameter

(mm)

Separation or

thickness (mm) Material

433.70 (stop) 102.0 16.0 BK7

� 459.90 102.0 10.0 F2
20000.00 102.0 981.1 Air

Aperture (mm) (focal ratio): 100.0 (F/10.0).

Effective focal length (mm): 1000.0.

Back focal length (mm): 981.1.

Object distance (mm): infinite.

Image height (angular semifield):17.45 (1�).
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If the ratio din/M is much greater than the diameter of the pupil of the
eye or, in order words, if the telescope has a large objective and a small
magnification, the stop would be at the observer’s eye, as shown in
Fig. 15.21(b). In this case the entrance pupil is not at the objective and its
size has no relation to the diameter of this objective, but it is equal to the
stop diameter times the telescope magnification power. The size of the
objective lens determines the field diameter. Thus, to have a reasonable field
of view, the objective should be large. As explained at the beginning of this
chapter, the exit pupil, which is defined by the position of the observer’s eye,
should be considered at the center of rotation of the eye globe and not at the
pupil of the eye.

On-axis aberrations, namely, spherical aberration and axial chromatic
aberration, in low-power telescopes, are not a serious problem, because the
diameter of the entrance pupil is small.

The correction of the magnification chromatic aberration is extremely
important because even a small amount is noticeable, due to the large
objective size, especially for large magnifying powers. This correction may
be achieved at the objective by using two different glasses. However, if the
axial chromatic aberration is also to be corrected, the eyepiece has also to be
a doublet.

The coma should be corrected as well as possible, but just below the
resolving power of the eye. The field curvature should be corrected only if a
focusing of a point on the edge of the field cannot be done with a small
amount of eye accommodation. In other words, a small concavity (from the
observer’s point of view) of the field is acceptable, but never a convexity of
the field.

The distortion cannot be completely eliminated and will always be
present and noticeable. In afocal systems like this the distortion is defined by
the ratio of the slopes of the principal rays after exiting the system and
before entering. If this ratio is a constant there is no distortion.

When using a ray-tracing program to design a telescope like this, it is
advised to design it with a reversed orientation, with the light entering the
stop. The reason is that with its normal orientation the system may have
strong chromatic aberration, producing several entrance pupils, one for each
color.

A 5.0� Galilean telescope designed by Menchaca and Malacara
(1988) is illustrated in Fig. 15.22 and the data are presented in Table 15.7.

A human eye can accommodate by refocusing the eye lens in order to
see near objects clearly. The amplitude of accommodation decreases with
age, mainly after 40 years of age. The depth of field can be defined as the
maximum angle of convergence that an emmetropic human eye can focus
the observed objects.
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A diverging light beam becomes even more diverging after passing
through a Galilean telescope. The angle of divergence is increased by a
factor equal to the magnification of the telescope. A consequence is that
when observing through the telescope the depth of field is reduced by the
same amount. Obviously, when observing with an inverted Galilean
telescope the depth of field is increased. For this reason a myopic person
wearing noncontact ophthalmic lenses has a greater depth of field than an
emmetropic person of the same age (Malacara and Malacara, 1991).

15.5.2 Design of a Terrestrial Telescope Objective

A terrestrial telescope objective has to be designed to include a block of glass
with plano parallel faces between the objective and the eyepiece. The reason

Table 15.7 A 5� Galilean Telescope

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

111.4 30.0 6.0 SSK2
� 27.2 30.0 2.0 F2

� 958.0 30.0 0.5 Air
40.9 30.0 3.0 SSK2
85.5 30.0 48.5 Air
� 50.4 10.0 2.0 BK7

12.8 10.0 1.0 F2
10.3 10.0 20.0 Air
Stop 3.0 — —

Angular magnification power: 5.0�.

Entrance pupil diameter: 15.0.

Angular semifield: 2.0�.

Eye relief (mm): 20.0.

Figure 15.22 Galilean telescope.
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is that the erecting prism system is used in converging light and thus
spherical aberration and axial chromatic aberrations are introduced.
Those aberrations have to be compensated in the design of the telescope
objective. An example is the system shown in Fig. 15.23 and in Table 15.8
using a Schmidt–Pechan prism.

15.6 TELESCOPE EYEPIECES

An eyepiece has its entrance and exit pupils outside the system (Hopkins,
1962c). Normally, the entrance pupil is located at the same plane as the exit
pupil of the telescope objective. To observe the image, the center of the eye
globe of the observer is located at the exit pupil of the eyepiece. The
transverse axial aberrations (spherical and chromatic) have to be smaller
than those of the telescope objective. The focal length of the eyepiece is
smaller than the focal length of the objective by a factor equal to the
magnification of the telescope. This means that the angular axial aberration
may be as large as those of the objective, times the telescope magnification.
In conclusion, the axial aberrations do not represent any problem.

Table 15.8 F/10 Telescope Objective

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

134.51 (stop) 43.0 7.0 BK7
�132.88 43.0 3.0 F2

�1230.50 43.0 130.0 Air
Flat 30.0� 30.0 138.6 BK7
Flat — 52.1 Air

Aperture (mm) (focal ratio): 40.0 (F/7.0).

Effective focal length (mm): 280.0.

Back focal length (mm): 52.1.

Object distance (mm): infinite.

Image height (angular semifield): 4.88 (1�).

Figure 15.23 An F/10 terrestrial telescope objective.
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Off-axis aberrations, on the other hand, must be more carefully
controlled. In general, the magnitude of all transverse (on- and off-axis)
aberrations have to be small enough so that the eye cannot detect them.
Since the resolving power of the eye is about 1 arcmin, the corresponding
value of the transverse aberrations is

TA ¼
�

10,800
F ð15:12Þ

where F is the effective focal length of the eyepiece.
Since most elements in an eyepiece are positive and with a short focal

length, in general, the Petzval curvature is large and negative. Then, a large
positive astigmatism has to be introduced, so that the sagittal surface
becomes flat. This means that the tangential surface would be curved
towards the observer. Then, the eye would be relaxed for images on-axis, but
it has to accommodate for off-axis images. A field curved away from the
observer is very unpleasant to the observer, because off-axis images cannot
be accommodated when on-axis images are focused at infinity. Thus,
off-axis images will always be defocused.

To have a feeling for the type of lens capable of introducing the desired
positive astigmatism, let us consider some typical configurations for plano
convex lenses, as shown in Fig. 15.24. The first four lenses (a)–(d) are
candidates for the field lens, since the stop is far away and the principal ray
arrives almost parallel to the optical axis. These four lenses have two possible
orientations, with the object in front and behind this lens. The last two lens
configurations (e) and (f) are candidates for the eye lens, because the stop is
located close to the lens, on the side of the collimated beam. The astigmatism
surface contributions, from Eqs. (4.23) and (5.51), may be found to be

AstLSC ¼
y n=n0ð Þðn� n0Þðiþ u0Þ�ii 2

2n0ku
2
k

ð15:13Þ

thus, applying this expression to the lens configurations in Fig. 15.24 we find
that these surface contributions are as indicated in the figure. Here, we
discard all lenses with a negative astigmatism and so we are left with
lenses (a), (b), and (e). For the eye lens we have only one possibility, with a
small astigmatism. Thus, all the desired astigmatism must come from the
field lens. Regarding the field lens, we have two possibilities. We must notice
that in the two lenses (a) and (b), the astigmatism would be extremely small
if the object coincided with the lens. Hence, the object should be at a certain
distance from the lens and on the side of the flat face.

In conclusion, the two possible eyepiece configurations with single
lenses are as shown in Fig. 15.24(a) and (b). Bending the lenses from the
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plano convex configuration does not much improve the correction. As to be
expected, due to the position of the pupil, the distortion is normally quite
high and of the pincushion type. These two designs receive the names of
Huygens and Ramsden eyepieces.

It is important to point out that eyepieces are evaluated in lens design
programs with the light entering through the long conjugate that is in the
opposite direction of the actual use. However, the designs described here are
shown with the correct orientation.

15.6.1 Huygens and Ramsden Eyepieces

The magnification chromatic aberration as explained in Section 6.4.2 may
be corrected in a system of two lenses made with the same glass when the

Figure 15.24 Several orientations and stop positions for a plano convex lens.
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stop is at infinity with a separation d between them equal to the average of
their focal lengths. In the case of telescopes the stop is not at infinity, but it
is far enough for all practical purposes. The two focal lengths cannot be
made equal, because the separation between them is then equal to the focal
length of the lenses, and the object would be located at the field lens plane.
The ratio between the two focal lengths may be used as a variable to obtain
the best possible off-axis image. For the case of the Huygens eyepiece,
shown in Fig. 15.25(a), a typical condition is fb/fa¼ 2, where fa and fb are the
focal lengths for the field lens and the eye lens, respectively.

A Huygens eyepiece has a relatively small apparent field of view of
about � 15�. The magnification chromatic aberration is corrected for the
whole eyepiece, but not for the eye lens alone. Thus, a reticle in the image

Figure 15.25 Three popular telescope eyepieces: (a) Huygens; (b) Ramsden;

(c) Kellner.
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plane would not be color free. The eye relief is relatively short, in telescopes
even shorter than in microscopes. For this reason, they are rarely used in
telescopes. More details on the design of Huygens eyepieces will be given in
Chap. 16.

In the Ramsden eyepiece, Fig. 15.25(b), the achromatism is
incompatible with the condition that the back focal length is greater than
zero, so that the focus is outside of the system. This means that the Ramsden
eyepiece cannot be corrected for the magnification chromatic aberration.
The aberrations and field width are similar in magnitude to those in the
Huygens eyepiece.

The Ramsden eyepiece may be used with a reticle, since the field stop
(object) is outside the system. The eye relief is short, but greater than in the
Huygens eyepiece. A 25mm Ramsden eyepiece is shown in Fig. 15.26 and its
design is presented in Table 15.9. The exit pupil (telescope exit pupil) is
assumed to be at a distance of 1m.

15.6.2 Erecting Eyepiece

The terrestrial telescope shown in Fig. 15.27 has an erecting eyepiece, which
consists of a relay system to erect the image and a Huygens eyepiece. The
erecting part may be considered as a projecting Ramsden eyepiece.
However, there is one important difference, that the stop is between the
two lenses and not outside. Since the stop is inside, the lens orientation also
has to be changed, so that the flat face of the lens is on the side of the stop as
in the Ramsden eyepiece. There is a magnification in this system to increase
the magnification of the telescope, to compensate for the increase in length.

An erecting eyepiece can also take the configuration of a Huygens
eyepiece if desired.

Figure 15.26 A 25mm telescope Ramsden eyepiece.
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15.6.3 Kellner Eyepiece

As pointed out before, the Ramsden eyepiece cannot be completely
corrected for the magnification chromatic aberration. The system may be
achromatized, substituting the single eye lens for a doublet, as shown in
Fig. 15.25(c). The system is correctly achromatized when the two principal
rays for colors C and F, crossing the exit pupil, are parallel to each other.

The Kellner eyepiece has a greater field of view than that of the
Huygens and Ramsden eyepieces, of about � 20�.

15.6.4 Symmetric or Plössl Eyepiece

A good eyepiece design has been described by Kingslake (1978), using two
doublets, as shown in Fig. 15.28(a). The field is as large as � 25�. In this
system we may not only flatten the field, but we may also correct the coma.

A similar eyepiece may be obtained by placing two identical doublets
in a symmetrical configuration. This is the symmetrical or Plössl eyepiece,
shown in Fig 15.28(b). Two important characteristics of this eyepiece are its
long eye relief and its wide field of view of about � 25� with a very good
image. A design of a 25mm telescope symmetric eyepiece is presented in
the Table 15.10.

15.6.5 Orthoscopic Eyepiece

The orthoscopic eyepiece has a low Petzval sum, a long eye relief, and a very
good color correction. The field of view is about � 25�. The best and most
expensive instruments have this kind of eyepiece. A 25mm telescope

Table 15.9 A 25mm Telescope Ramsden Eyepiece

Radius of

curvature (mm)

Diameter

(mm)

Separation or

thickness (mm) Material

Stop 5.0 6.4 Air

Flat 12.0 3.0 BK7
� 18.5 12.0 22.0 Air
16.5 20.0 4.0 BK7

Flat 20.0 7.0 Air
Field stop 13.4 — —

Angular semifield: 15.0�.

Exit pupil diameter (mm): 5.0.

Effective focal length (mm): 25.0.

Eye relief (mm): 6.4.
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Figure 15.27 Terrestrial telescope with an inverting eyepiece.
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orthoscopic eyepiece is shown in Fig. 15.29 and its design is presented in
Table 15.11.

15.6.6 Erfle Eyepiece

The Erfle eyepiece was designed by H. Erfle in 1921, and has the largest
field of all, approaching � 28�, as shown in the design in Fig. 15.30
and Table 15.12.

Figure 15.28 (a) Kingslake and (b) symmetric telescope eyepieces.

Table 15.10 A 25mm Telescope Symmetric Eyepiece

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

Stop 5.00 19.00 Air
48.86 24.00 1.5 SF2

22.19 24.00 7.9 BK7
� 35.97 24.00 0.1 Air
35.97 24.00 7.9 BK7

� 22.19 24.00 1.5 SF2
� 48.86 24.00 18.50 Air
Field stop 18.2 — —

Angular semifield: 20.0�.

Exit pupil diameter (mm): 5.0.

Effective focal length (mm): 25.0.

Eye relief (mm): 19.0.
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Figure 15.29 A 25mm telescope orthoscopic eyepiece.

Table 15.11 A 25mm Telescope Orthoscopic Eyepiece

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

Stop 5.0 17.80 Air
Flat 24.0 5.70 SK4
27.52 24.0 0.30 Air

29.81 24.0 9.80 BK7
� 17.24 24.0 1.00 F4
17.24 24.0 9.80 BK7

� 29.81 24.0 12.90 Air
Field stop 18.2 — —

Angular semifield: 20.0�.

Exit pupil diameter (mm): 5.0.

Effective focal length (mm): 25.0.

Eye relief (mm): 17.8.

Figure 15.30 A 25mm telescope Erfle eyepiece.
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15.7 RELAYS AND PERISCOPES

Relays like the lens erector described in Section 15.6.2 are frequently used,
not only in terrestrial telescopes, but also in periscope systems or
photocopiers. As illustrated in Fig. 15.31, periscopes are formed by relay
lenses to transfer the image from one plane to the next with a magnification
equal to one, and field lenses located at the image planes, to form the image
of the exit pupil of the preceding system, on the entrance pupil of the next
system (Hopkins, 1949, 1962b). A good aberration correction may be
obtained if each relay system is formed by a pair of doublets in a symmetrical
configuration. The periscope can be considered as formed by a series of
symmetrical unit angular magnification systems, each of them with a relay
lens at each end and a field lens at the center. The relay lenses have to be
corrected for longitudinal chromatic aberration, but the field lenses do not
need to be achromatic.

A practical disadvantage with the preceding configuration is that the
field lens is exactly located at the image plane, and any surface imperfections
and dirt on this lens can be clearly seen on top of the image. A common
solution is to split the field lens into two lenses, one on each side of the
stop, as illustrated in Fig. 15.32. Then, the unit relay system is formed by a
relay lens and a field lens. This unit relay system has to be corrected for
chromatic aberration as a whole because the field lens has some

Table 15.12 A 25mm Telescope Erfle Eyepiece

Radius of

curvature (mm)

Diameter

(mm)

Separation or

thickness (mm) Material

Stop 5.0 17.3 Air

Flat 32.0 3.0 F4
73.60 32.0 10.0 BK7
� 28.20 32.0 1.0 Air

87.50 38.0 8.7 SK4
� 68.50 38.0 1.0 Air
38.80 38.0 13.0 SK4
� 51.06 38.0 2.5 SF2

56.68 38.0 10.01 Air
Field stop 11.66 — —

Angular semifield: 25.0�.

Exit pupil diameter (mm): 5.0.

Effective focal length (mm): 25.0.

Eye relief (mm): 17.3.
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contribution to this aberration, which has to be compensated with the
opposite aberration in the doublet.

The symmetrical unit angular magnification system is formed by two
unit relay systems front to front in a symmetrical configuration, each of
them with a relay lens at each end and a pair of field lenses at the center.

An important problem when designing relay systems is that all
elements have a positive power and hence the Petzval sum is always positive,
inward curving the final image surface. A solution is to compensate with the
proper amount of astigmatism and to look for a flat tangential surface and/
or to reduce the Petzval sum as much as possible by means of thick elements.
These optical systems are quite important and useful since they are the basic
building components for many instruments, like periscopes and endoscopes,
as will be described later in this chapter.

15.7.1 Indirect Ophthalmoscope

Ophthalmoscopes are designed as periscopic afocal systems to observe the
retina of the eye. They have the following characteristics:

1. The entrance pupil of the instrument has the same position and a
smaller diameter than the eye pupil of the observed patient. This

Figure 15.31 Optical relay system.

Figure 15.32 Optical relay system with split field lenses.
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condition allows room for illuminating the retina of the patient
through the edge of its pupil.

2. In order to have a wide observed field of the retina of the observed
eye, the angular magnification should be smaller that one (typically
equal to 1/3). Hence, the exit pupil of the instrument is larger that
its entrance pupil.

The are several versions of the basic system, illustrated in Fig. 15.33.
The first lens, located at the front of the instrument, forms the image of the
retina at its back focal plane. The diameter of the entrance pupil is much
smaller than the lens, so that the on-axis aberrations of this lens are very
small. The height of the principal ray on the first lens is large since the field
must be wide enough to observe most of the retina of the patient. This lens
forms an image of the retina as well as an image of the pupil of the observed
eye. To form good images, the front surface of this lens has to be aspheric.

A diaphragm is located at the image of the pupil of the observed eye,
which has three small apertures. Two of these windows, on opposite sides of
the optical axis, provide a stereoscopic view of the retina by sending the light
from each window to a different observing eye. The third window, on top of
the other two, is used to illuminate the retina of the observed eye.

An achromatic doublet, located at the image of the pupil of the
observed eye just behind the diaphragm, forms an erected image of the
retina of the observed eye at the focal planes of the eyepieces. The final
image is observed with a pair of Huygens eyepieces.

The angular magnification M of this ophthalmoscope, which has to be
smaller than one, is given by

M ¼
tan b
tan a

¼ m
fa

fe
ð15:14Þ

Figure 15.33 Indirect ophthalmoscope.
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where fa is the effective focal length of the aspheric lens, fe is the effective
focal length of the eyepiece, and m is the lateral magnification of the
achromatic lens located at the image of the pupil of the observed eye.

To be able to use the full field provided by the aspheric lens, the
tangent of the angular field semidiameter ae of the eyepiece should be equal
to the tangent of the angular field semidiameter b of the aspheric lens,
multiplied by the angular magnification M, as follows:

tan b ¼ M tan ae ð15:15Þ

15.7.2 Endoscopes

Endoscopes are also afocal periscopic systems designed to observe the
interior of the human body. They take different names, depending on which
part of the body they are used, e.g., gastroscope for the digestive system,
laparoscope for the abdominal cavity, etc. These instruments are
characterized for their extreme length in comparison with their diameter.
The complete endoscope system must have an optical path for the
transmission of the image but it must also have a parallel path, most of
the times with an optical fiber, to illuminate the object under study.
Basically there are three different methods to design these optical systems as
will now be described.

Traditional endoscope—With a periscope formed by a series of basic
unit angular magnification relay systems using relay and field lenses as
described before.

Hopkins endoscope—Another popular design is one due to H. H.
Hopkins (1966, 1976). This system is a modification of the basic system,
where the space in the unit relay system between the relay doublet and the
field lens is filled with a glass rod as shown in Fig. 15.34. These lenses and
rod are cemented together into a single block. An important advantage may
be obtained with this modification. If the rod length is made equal to the

Figure 15.34 H. H. Hopkins endoscope system.
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original field lens to relay lens distance, the light throughput and hence the
image brightness is increased by a factor equal to the square of the refractive
index of the rod. As in the standard system, each unit system has to be
corrected for axial chromatic aberration. An additional advantage is that
this system is easier to assemble.

Gradient index endoscopes—Endoscopes can also be constructed with
a series of long radial gradient index rods. The radial index gradient in these
rods is symmetric about the optical axis and is represented by

nðrÞ ¼ N00 þN10 r
2 þN20 r

4 þ 	 	 	 ð15:16Þ

where r is the radial distance from the optical axis. In a rod lens a light ray
entering the rod follows a curved sinusoidal path as illustrated in Fig. 15.35.
The wavelength L of this wavy sinusoidal is given by

L ¼ 2� �
N00

2N20

	 
1=2
ð15:17Þ

If the rod has a length L, an object located at the front surface is
imaged free of spherical aberration with unit magnification on the rear
surface without any spherical aberration. The image is sharp and with good
contrast. These properties make these rods ideal for endoscopic relays
(Tomkinson et al., 1996).

Fiber optics endoscope—With a coherent bundle of optical fibers that
transmit the image from one end of the fiber to the other. Their great
advantage is flexibility. Their disadvantages are a relatively low resolution
and also a low light efficiency.

Figure 15.35 Radial gradient rod lens.
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Electronic endoscope—A similar system transfers the image electron-
ically with a microscopic television camera and electrical wires to the
eyepiece where a tiny monitor is located.

All of these instruments have a light source to illuminate the observed
object through an optical fiber that runs along the optical system.
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16
Microscopes

16.1 COMPOUND MICROSCOPE

We have seen in Chap. 11 that the magnifying power of a single lens may be
increased by decreasing the focal length, but there is a practical limit to this
procedure. Then, the lens becomes too small and during observation, object,
lens, and eye must be brought very close together. A practical limit is a
magnifying power of about 100�, with a focal length of about 2mm.
Anthony Van Leeuwenhoek in the 17th century in Holland made several
microscopes using a minute single lens with very strong curvatures,
obtaining magnifying powers of the order of 100. Two problems with this
simple design are the low numerical aperture (0.2 NA) and the small field.
With these simple microscopes, he discovered the first microorganisms.

A compound microscope, as illustrated in Fig. 16.1, is a possible
solution. The lens closer to the object is known as the objective and the lens
on the eye side is the eyepiece. There are two equivalent methods for the
interpretation of this optical system, as we will now see.

First Method

We may think of this system as one formed by two thin lenses, the objective,
with focal length fo and the eyepiece with focal length fe. Then, if the
separation between the two lenses is l2þ fe, the effective focal length is, from
Eq. (3.42),

F ¼
fo fe

fo þ fe �ðl2 þ feÞ
¼

fo fe

fo � l2
ð16:1Þ

Thus, from Eq. (11.2), the magnifying power of the system is

M ¼
250ðfo � l2Þ

fo fe
ð16:2Þ
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Second Method

An alternative but equivalent way of obtaining the magnifying power of the
microscope is as follows. The objective in the system shown in Fig. 16.1
forms a real image of the object. The magnification mo of the objective, from
Eq. (3.9), is given by

mo ¼ 1�
l2

fo
ð16:3Þ

If we write this expression in terms of the distance X0 from the back focus of
the objective to the image, an alternative expression for the magnification
mo of the objective may be found from Newton’s equation (3.10) and
Eq. (3.9) as follows:

mo ¼ �
nX0

fo
ð16:4Þ

where n is the refractive index in the object media and fo is the effective focal
length of the objective on the object side. If the distance X0 is defined as the
optical tube length, and made a constant for all objectives, the objective
magnification would be a function only of its focal length. This is why this
distance has been standardized by most manufacturers. The two most
common values are either 160 or 170mm.

The magnifying power Me of the eyepiece is given by Eq. (11.2). Thus,
since the microscope magnifying power is the product of the magnification
mo of the objective multiplied by the magnifying power Me of the eyepiece,
using Eq. (16.3) we may find that

M ¼ mo Me ¼ 1�
l2

fo

	 

250

fe
ð16:5Þ

Figure 16.1 Basic microscope arrangement.
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which may be shown to be equal to Eq. (16.2). However, using Eq. (16.3)
and a value of X0 ¼ 160mm, we have

M ¼ mo Me ¼
250nX0

fo fe
¼

40,000n

fo fe
ð16:6Þ

Mechanically, the microscope is assembled as in Fig. 16.2, where the
following terms are defined:

Optical Tube Length. As previously explained, this is the distance
from the back focal plane to the focus. This length has been standardized to
a value of 160mm by the Deutsche Industrie Normen (DIN) and to a value
of 170mm by the Japanese Industry Standard (JIS).

Shoulder Height. This is the height of the shoulder of the objective
with respect to the object plane. In order to be able to interchange
microscope objectives without a large refocusing, this distance has been

Figure 16.2 Some standard physical dimensions in a microscope for the DIN
standard.
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standardized to a value of 45mm by the DIN and to a value of 36mm by the
JIS. Since the objective lens design may have many configurations, this
standard value automatically places the back focal plane at many different
possible positions with respect to the shoulder.

If a series of objectives have the same shoulder height and the same
shoulder-to-image distance, the objectives may be interchanged (e.g., by
means of a rotating turret) without any refocusing. These objectives are said
to be parfocal.

Mechanical Tube Length. This is the distance from the end of the
thread in the objective mount (shoulder) to the end of the eyepiece. This
distance has not been standardized, due to the variations in the position of
the objective’s back focal plane with respect to the shoulder. As a
consequence, the optical tube length is not preserved when changing
objectives and eyepieces. Thus, the mechanical tube length has to be
adjusted for optimum performance. This mechanical tube length has to be
carefully adjusted, to use the objective’s proper conjugate positions, for
three reasons: (1) to obtain the prescribed magnification, (2) to fine tune the
minimum spherical aberration, and (3) to keep the image in focus when
parfocal objectives are used and the magnification is changed.

Working Distance. This is the distance from the upper surface of
the object cover glass to the vertex of the lowest optical surface of the
microscope objective. The distance X from the object to the focus on the
object side may be found from Eqs. (3.11) and (3.14) as

X ¼ �
f 2
o

nX0
ð16:7Þ

where n is the refractive index in the object medium (air or oil). Hence,
the working distance S is

S ¼ Xþ foF � nc T ¼ �
f 2
o

nX0
þ foF � nc T ð16:8Þ

where foF is the front focal length (object side) of the microscope objective,
T is the thickness of the object cover glass, and nc is its refractive index.

16.1.1 Microscope Aperture and Resolving Power

The relative aperture of telescope objectives was defined as the focal
ratio or f-number FN. In the case of microscope objectives this
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aperture is defined by the numerical aperture, illustrated in Fig. 16.3, as
follows:

NA ¼ n sin � ð16:9Þ

where n is the refractive index in the object media and � is the angular
semidiameter of the entrance pupil as observed from the object. The
resolving power of a diffraction-limited microscope objective is determined
by the diameter of the diffraction image of a point source. As will be
described in more detail in Chap. 17, in the microscope, as well as in
projectors, the object in general is illuminated with partially coherent light.
The minimum separation of two-point images is a function of the degree of
coherence, given by

d ¼ k
�0
NA

ð16:10Þ

where l0 is the wavelength in vacuum and the constant k has a value equal
to 0.61 for fully incoherent illumination and a value 0.77 for totally coherent
illumination (Born and Wolf, 1964). In the case of the microscope the
illumination is partially coherent. Abbe’s theory of image formation is
developed, assuming a totally coherent illumination.

Observing these two images in a microscope with magnifying power
M, the apparent separation of the virtual images at a distance of 250mm
from the observer’s eye is

d ¼ k
M �0
NA

ð16:11Þ

Figure 16.3 Numerical aperture of a microscope objective.

© 2004 by Marcel Dekker, Inc.



On the other hand, the resolving power of the eye is nearly one arcmin.
At a distance of 25mm this gives a separation of about 0.07mm. If we take a
value of k equal to 0.7 we may easily conclude that the magnifying power
needed to just match the resolving powers of the eye and that of the
objective is

M ¼ 182NA ð16:12Þ

However, this is not a practical limit for the highest magnifying power.
A more realistic limit is about five times this value, hence, we may write

Mmax ¼ 1000NA ð16:13Þ

any higher magnifying power will not provide any more detail and the image
will look worse. This is what is called empty magnification.

It is interesting to notice that using Lagrange’s theorem the objective
magnification may be written as

mo ¼
NA

NAi
ð16:14Þ

where NA and NAi are numerical apertures in the object and image spaces,
respectively.

Most microscope objectives have the dimensional characteristics
illustrated in Fig. 16.4. A series of objectives is frequently designed so
that the exit pupil has a nearly constant value of about 6.4mm. This gives a
nearly constant value of the numerical aperture in the image space, equal to
NAi¼ 0.02 (except for the high-power objectives, where this diameter may be

Figure 16.4 Optical schematics for a microscope objective.
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as low as 0.0125). Then, from Eq. (16.14), we see that the numerical aperture
in the object space is approximately equal to NA¼ 0.02mo. The numerical
aperture in the object space obviously determines the size of the exit pupil of
the whole microscope. If d is the diameter of this pupil, using Eq. (11.2), we
may show that

d ¼
500NAi

Me
ð16:15Þ

hence, using Eq. 16.6 we find that

M ¼
500NA

d
ð16:16Þ

Since the average diameter of the exit pupil with bright illumination
is about 2mm, making the diameter of the exit pupil of the microscope
equal to the diameter of the eye, we may find an alternative expression to
Eq. (16.12) for the maximum microscope magnifying power, given by

M ¼ 250NA ð16:17Þ

Any magnifying power higher than this value will produce an exit pupil
smaller than the eye’s pupil.

16.2 MICROSCOPE OBJECTIVES

Reviews of microscope optics, in particular objectives and eyepieces has
been given by Bennett (1943, 1962, 1963), Cruickshank (1946), Foster and
Thiel (1948), Foster (1950), Benford (1965), Benford and Rosenberger
(1967, 1978), Laikin (1990), Broome (1992), and Smith and Genesee Optics
Software (1992).

The optical tube length, as we pointed out before, is standardized to a
value of 160 or 170mm. This imposes a limit to the mechanical tube length.
However, sometimes it is necessary to increase substantially the mechanical
tube length to be able to bend the tube for a more comfortable observation,
or in order to introduce a prism system for binocular vision. In this case a
relay lens system must be used. This relay system may take the form of a
zoom lens, like the ones in Chap. 12 as described by Benford (1964).
A microscope with a zoom relay lens and a binocular prism system is
illustrated in Fig. 16.5.
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In order to obtain diffraction-limited resolution it is very important to
obtain a high level of correction of the chromatic aberration in microscope
objectives. They can be classified in several different categories according to
the degree of chromatic correction and field curvature, as described by
Broome (1992).

Achromats are microscope objectives with a limited spectral correction
and moderate field of view. These are the most popular objectives, with
many design variations.

Semiapochromats are designed to achieve nearly apochromatic
correction by reducing the secondary spectrum, where calcium fluoride or
fluorite was introduced into microscope objectives by Ernst Abbe. Fluorite
has a low refractive index equal to 1.43 and an unusual dispersion,
permitting a large reduction in the chromatic aberration. Figure 16.6 shows
the longitudinal chromatic aberration for a normal achromatic objective
and for one made with fluorite.

Figure 16.5 Microscope with a zoom assembly and deflecting binocular prisms.
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Apochromats or true apochromatic microscope objectives have also
been designed using calcium fluoride positive elements cemented to two
negative lenses from the LAK glass series instead of the doublet used in the
design of achromats.

Plan-achromats: the main characteristic of these objectives is their flat
field achieved with a low Petzval curvature and a small astigmatism. Their
chromatic correction is that of an acromat.

Plan-Apochromats: these objectives, like the plan-achromats, have a
flat field with an excellent correction of Petzval curvature and astigmatism.
Their chromatic correction is that of an apochromat.

In microscope objectives with large magnifications the magnification
chromatic aberration is difficult to correct, although the remaining
aberration is not very large. However, this aberration may be noticeable if
all other aberrations are well corrected, especially in apochromatic objectives.
In some high-quality microscopes called compensated microscopes, the
residual magnification chromatic aberration of the objective is corrected in
the eyepiece. The problem then is that objectives and eyepieces are not
interchangeable. To solve this difficulty, a residual magnification chromatic
aberration is intentionally introduced in low-power objectives, so that all
objectives could be used with all eyepieces. However, as pointed out by
Hopkins (1988), this compensation necessarily introduces some axial
chromatic aberration and the only good solution is to correct fully the
chromatic aberration in both the objective and the eyepiece.

Figure 16.6 Longitudinal achromatic aberration in conventional achromatic and
fluorite objectives.
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When designing a microscope objective it should be pointed out that
it is easier to design and evaluate it if the light rays enter the lens in an
opposite direction to the actual one. Thus, when using ray-tracing programs
it is convenient to interchange the object and image positions.

There are many types of microscope objectives, whose design depends
on the desired magnification. In the next sections some of the most common
types will be described. Table 16.1 lists some of the main characteristics of
microscope objectives with the DIN standard.

Figure 16.7 shows some of the most common objective achromatic
microscope objectives and Fig. 16.8 shows some apochromatic objectives,

Table 16.1 Some Microscope Objectives (DIN)

Type Power
Focal

length (mm) NA
Field
(mm)

Working
distance (mm)

Doublet 4.0� 30.60 0.08 4.50 15.80
Low power 3.5� 30.00 0.07 5.20 25.40
Lister 10� 16.60 0.20 1.80 6.30
Lister 20� 8.78 0.40 0.90 1.50

Amici 40� 4.50 0.70 0.45 0.45
Oil immersion 100� 1.86 1.25 0.18 0.13

NA ¼ numerical aperture.

Figure 16.7 Some microscope objectives. (From Benford, 1965.)
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made with fluorite. These figures are adapted from a publication by Benford
(1965). The field of a microscope objective is very small compared with
that of a photographic lens. This field is approximately constant for all
objectives, with a diameter of about 7�.

16.2.1 Low-Power Objectives

The simplest objective is a doublet. The procedure for the design of this lens
is identical to the one used in Chap. 14 for telescope objectives, with the only
difference that high-index glasses are frequently used to obtain a better
spherical aberration and axial chromatic aberration correction. Sometimes
low-power objectives have an extra single thick meniscus element to reduce
the Petzval curvature.

16.2.2 Lister Objectives

Medium power or Lister microscope objectives are formed by a pair of
widely separated doublets, originally designed as separable, so that they
could be used alone or as a system. In the separable system both elements
are free of spherical aberration and coma, so that no astigmatism or field
curvature correction is possible.

The principle used in the design of these objectives was first used by
Lister in 1830 when he discovered that a plano convex lens has two pairs of

Figure 16.8 Some fluorite microscope objectives. (From Benford, 1965.)
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object and image positions for which these conjugate points are aplanatic.
One pair occurs when both the object and the image are real. In the other
pair the object is real and the image is virtual. Thus, Lister placed the first
doublet (the lens closer to the object) with the real object at the aplanatic
location and its image at the virtual aplanatic point. The second doublet is
then placed with its real aplanatic object at the virtual image of the first
doublet. The final image is real.

A better correction is obtained if, as in the Petzval lens described in
Chap. 12, the system is not to be separated. Then, the large separation
between the two elements, which is equal to about the effective focal length
of the objective, allows the designer to correct partially the field curvature
with the proper amount of astigmatism in the cemented interface. It should
be noticed, however, as pointed out by Hopkins (1988), that by reducing the
field curvature in this manner increases the secondary color. This is the main
reason for the use of fluorite in these lenses.

In order to find the lens bendings that corrects both the spherical
aberration and the coma in the system, Conrady (1960) and Kingslake
(1978) describe a graphical method called the matching principle. They trace
rays through both components, individually, the first component from left
to right and the second component from right to left. Then, the system is
assembled and the rays from both components in the space between them
should match each other. This method was especially useful when
computers for tracing rays were not widely available. Four different
bending combinations may be found to produce a system with spherical
aberration and coma corrected. One of these solutions corresponds to the
two components individually corrected for both aberrations, thus producing
a separable system. Unfortunately, this is the form with the astigmatism
producing the strongest field curvature. The solution with the largest
curvature on the surface closest to the image gives a system with the less
strong curvatures on average. This is the best of the four solutions.

In a typical design the two elements have about the same power
contribution, so that the refractive work is equally shared by the two
components. Normally, the separation between the two lenses is equal to
the focal length of the second element (this is the lens closer to the image).
The stop is assumed to be at the plane of the second element, so that the
objective is telecentric in the object space, as described by Broome (1992).

16.2.3 Amici Objectives

The Amici objective, first designed in 1850, is obtained from the Lister
objective by adding an almost aplanatic hyperhemispherical lens on the
object side. It might be thought at first that the hyperspherical surface
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should be made perfectly aplanatic. However, the front flat surface
introduces some spherical aberration, since it is not in contact with the
object. Thus, the radius of curvature of the spherical surface is made slightly
larger than the aplanatic solution in order to compensate the aberrations
introduced by the first surface. This solution not only introduces a small
amount of spherical aberration that compensates that introduced by the
plane surface, but also a small astigmatism that tends to flatten the field. An
important problem with the Lister objective is its short working distance.

As in the Lister objective, the stop is placed at the position that
produces a telecentric objective in the object space.

16.2.4 Oil Immersion Objectives

An oil immersion objective is often a Lister objective with an aplanatic front
system as shown in Fig. 16.9. The flat object is protected with a thin cover
glass with an approximate thickness of 0.18mm. Then, a thin layer of oil is
placed between the cover glass and the front flat face in the objective. The
refractive index of immersion oil is 1.515, a value that nearly matches
the refractive index of the cover glass and the first lens.

If the radius of curvature of the hyperhemispherical surface is r, the
distance L from the object to this surface, according to the Abbe aplanatic
condition described in Chap. 4 is

L ¼ 1þ
1

n

	 

r ð16:18Þ

Figure 16.9 Duplex front of an oil immersion microscope objective.
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and the image would then be at a distance L0 from the surface, given by

L0 ¼ ð1þ nÞr ð16:19Þ

Then, the radius of curvature of the front face of the meniscus lens should be
equal to t2þ L0, so that the object for this surface is at its center of
curvature. The second radius of curvature of the meniscus lens is also
aplanatic, satisfying the Abbe condition in Eq. (16.18), where L0 is the
distance from this surface to the object position. There is some chromatic
aberration and field curvature introduced by the aplanatic front, but they
are compensated in the rest of the system.

The effect of each Abbe aplanatic surface is to reduce the
numerical aperture of the cone of rays by a factor equal to the refractive
index n of the glass. Since the aplanatic front system contains two
Abbe surfaces, the numerical aperture of the cone of rays is reduced by
a factor n2.

16.2.5 Other Types of Objectives

Many other objectives of microscope have been designed. One improve-
ment that can be made is to reduce the field curvature and the astigmatism.
This is not an easy problem and very complicated designs may result,
as described, e.g., by Claussen (1964) and Hopkins (1988). The basic
principle used in these designs is the separation of elements with positive
and negative power contributions, so that the Petzval sum could be
made small. These systems resemble inverted telephoto lenses, with the
negative elements closer to the image and the positive elements closer to
the object.

A recent innovative change (Muchel, 1990) has been made by
designing the objective with the image at infinity, so that the output beam
is collimated. Then, another lens at the end of the tube is used to form the
image at the eyepiece. This approach has two main advantages: (1) the
mechanical tube length can have any magnitude and (2) the magnification
chromatic aberration is fully corrected in the objective even for high
magnifications.

16.2.6 Reflecting Objectives

Around the year 1904 Karl Schwarzschild discovered that the two-mirror
system in Fig. 16.10(a) is free of spherical aberration, coma, and
astigmatism. The system is formed by two concentric spherical mirrors
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and a collimated beam of light (point light source at infinity) enters the
system on the convex mirror. The radii of curvature of the two mirrors
must be in the ratio:

r2
r1

¼

ffiffiffi
5

p
þ 1ffiffiffi

5
p

� 1
¼ 2:618034 ð16:20Þ

as shown by Erdös (1959).
This system may be easily modified for use as a microscope objective

(Grey and Lee, 1949a,b; Grey, 1950, 1952; Norris, et al., 1951; Thornburg,
1955) by moving the object closer to the system, as shown in Fig. 16.10(b).
This introduces some aberrations, but we may still correct them by
modifying the ratio between the two radii of curvature, preserving the
concentricity. In an example given by Kingslake (1978), for a 10� objective
the new ratio is equal to 3.07787.

This type of design is limited to a maximum magnification of
about 30� with a numerical aperture NA¼ 0.5. For higher magnifications
quartz refractive components have to be added to the system. These
objectives may be improved with the use of aspherical surfaces (Miyata
et al., 1952).

These microscope objectives are useful with ultraviolet or infrared
light, where normal objectives cannot be used due to the absorption of such
radiation by the glass.

Figure 16.10 Reflecting microscope objective.
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16.2.7 Compact Disk Objectives

Compact disk objectives are very similar to microscope objectives, with the
important difference that they are used with monochromatic laser light.
An excellent review on this subject by Broome (1992) is recommended, who
points out that there are five basic configurations for these objectives,
namely: a double Gauss derivative, a Petzval derivative, a triplet derivative,
a doublet, and a single lens. These lenses may be designed for collimated
light, if a collimator in front of the laser is used. Otherwise, a 5� to 20�
magnification is used. Many popular designs use aspheric lenses or gradient
index glass to reduce the number of lenses.

16.3 MICROSCOPE EYEPIECES

A microscope with an eyepiece without a field lens has the disadvantage
that the exit pupil of the microscope is far from the eyepiece, making
the observation uncomfortable. A field lens may be introduced, as shown
in Fig. 16.1, at the plane where the intermediate real image is formed.
If the field lens is very thin and exactly at the real image plane, no
aberrations are introduced (with the exception of Petzval curvature).
Only the exit pupil is moved closer to the eyepiece. Another more important
reason for introducing the field lens is the correction of some aberrations.
The system formed by the eyepiece and the field lens is simply called an
eyepiece. The effective focal length of the eyepiece is then obtained from
Eq. (4.41). If the field lens is exactly at the plane of the observed image,
we may easily see that the effective focal length is equal to the focal
length of the lens closer to the eye, without any influence from the field
lens. However, in general, the field lens is not at the plane of the observed
image.

The exit pupil of the microscope is located close to the eye lens and the
observer’s eye pupil must be placed there. If this is not so, the whole field
will not be observed. The distance from the eye lens to the exit pupil of the
eyepiece is called the eye relief. A large eye relief may be important if the
observer wears spectacles.

It is important to remember when designing an eyepiece that the
aberrations do not need to be corrected better than a normal eye can detect
them. This means that the angular aberrations do not need to be smaller
than about 1 arcmin.

Table 16.2 lists the main characteristics of some microscope eyepieces,
illustrated in Fig. 16.11. The design principles of these eyepieces will be
described in the next sections.

© 2004 by Marcel Dekker, Inc.



16.3.1 Huygens Eyepieces

Huygens eyepieces (Stempel, 1943) are the simplest and more common ones
for telescopes as well as for microscopes. The design of Huygens eyepieces
for telescopes has been described in Chap. 15. The main difference for
microscope eyepieces is that the entrance pupil for the eyepiece is closer to
the eyepiece than in the case of telescopes. The magnification chromatic
aberration is not exactly corrected by a separation of the two lenses equal to
the average of the focal lengths. In this case the separation must be selected
so that the incident white principal ray is split into two parallel colored rays
after exiting the eyepiece, as shown in Fig. 16.12. This means that the
condition for the correction of the magnification chromatic aberration is

�uu0kC ¼ �uu0kF ð16:21Þ

Table 16.2 Some Commercial Microscope Eyepieces (DIN)

Type Power Focal length (mm) Field (degrees) Eye relief (mm)

Huygens 5� 50.00 19.00 14.00
Huygens 10� 25.00 13.00 8.50

Huygens 15� 16.70 8.00 7.00
Wide field 10� 25.00 18.00 15.50
Wide field 15� 16.70 13.00 12.60

Wide field 20� 12.50 10.00 9.80

Figure 16.11 Some microscope eyepieces.
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Another way of expressing this condition is by means of a general-
ization of Eq. (6.69), for the case of a near entrance pupil, as follows
(Conrady, 1957):

d ¼
f1 þ f2

2þ f1= �ll1
� � ð16:22Þ

where l1 is the distance from the stop to the first lens, as in Fig. 16.12. If the
eyepiece power is large, this expression approaches Eq. 6.69. If the stop is
close to the eyepiece, the distance d between the two lenses becomes larger,
since l1 is negative.

Having fixed the shape of the lenses to the plano convex form, as
pointed out in Chap. 15, the only available degrees of freedom are the two
powers and the lens separation to obtain the desired effective focal length, to
correct the coma and the magnification chromatic aberration, and to
minimize the field curvature. As a compromise, if necessary, it is better
to correct the coma as well as possible, even if some residual chromatic
aberration remains.

Eyepieces are typically designed with the light entering the system in
reverse so that the object is at an infinite distance. Then, the curvature of the
last surface can be set so that the system has the required effective focal
length. Since the eye relief is another important parameter to take care of,
which should be as large as possible, the conclusion is that we have the
convex curvature of the first lens and the separation between the lenses in
order to correct the coma and to obtain a good eye relief. If the coma
aberration is corrected, solutions may exist for a range of values of the

Figure 16.12 Design of Huygens eyepieces.
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radius of curvature of the eye lens. As this radius of curvature increases, the
focal length of the eye lens gets longer until it finally reaches the field lens
(for a 10� eyepiece this occurs for a radius of curvature close to a value of
about�12mm). These solutions are plotted in Fig. 16.13 for a 10� eyepiece.
Some designers prefer to sacrifice a good correction for coma to obtain a
reasonably large eye relief.

To obtain a better correction we can make the eye lens with crown
glass and the field lens with flint glass. It is found that a good ratio of the
focal lengths of the two lenses is about 2.3 for high magnifying powers in
telescopes, but may be as low as 1.4 for low microscope magnifying powers.
For example, a typical microscope eyepiece has a ratio f1/f2 equal to 1.5 for a
5� power and equal to 2.0 for a 10� power.

A 10� Huygens eyepiece for microscopes is shown in Fig. 16.14 and
its design is presented in Table 16.3.

16.3.2 Wide-Field Eyepieces

Wide-field eyepieces are designed to provide a large field of view. Very
good correction of most aberrations is obtained as well as a large eye relief.

Figure 16.13 Values of the lens separation d and the eye relief ER versus the
convex radius of curvature of the eye lens for a Huygens eyepiece corrected for coma.
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These designs are often a Kellner eyepiece, like the one shown in Fig. 16.15,
whose design is presented in Table 16.4. The field width in this case is the
same as in the Huygens eyepiece, but with a much better off-axis image and
a larger eye relief.

The Hi-Point eyepiece has a reasonable aberration correction, with a
large eye relief. Its symmetrical configuration makes it easy to construct.

16.4 MICROSCOPE ILLUMINATORS

The illuminating systems (Dempster, 1944) in a microscope are of the
Koehler or critical types. The first one is also used in projectors; hence, its
description is left to Chap. 17. Critical illuminators have the basic

Figure 16.14 A 10� Huygens eyepiece.

Table 16.3 10� Huygens Eyepiece

Radius of curvature
(mm)

Diameter
(mm)

Separation or thickness
(mm) Material

Stop 5.0 4.8 Air
Flat 11.0 3.0 BK7

� 10.0 11.0 19.1 Air
Field stop 10.4 4.0 Air
Flat 17.0 4.4 BK7
� 15.21 17.0 �8.59 Air

Angular field radius: 15.0�.

Exit pupil diameter (mm): 5.0.

Effective focal length (mm): 25.0.

Eye relief (mm): 4.8.
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arrangement shown in Fig. 16.16. The tungsten filament of the light source
is imaged into the stop by means of a condenser. Then, the substage
condenser images the field stop on the object plane. The stop, also called an
aperture diaphragm or substage iris determines the numerical aperture of the
illuminating system. The numerical aperture of this illuminating system
must be as large as the largest numerical aperture of the microscope
objective. The focus of the substage condenser must be critically adjusted.
Once this condenser is carefully focused, the stop or substage iris diameter
has to be adjusted to match the numerical aperture of the condenser with
that of the objective. A diameter of the aperture greater than 30mm is
needed to achieve a reasonable focal length and a large numerical aperture.

Table 16.4 A 10� Microscope Wide-Field Eyepiece

Radius of curvature

(mm)

Diameter

(mm)

Separation or thickness

(mm) Material

Stop 5.0 18.9 Air

� 32.8 20.0 3.1 SF1
22.0 20.0 7.1 BK7
� 17.1 20.0 0.2 Air

33.25 24.0 5.8 BK7
� 33.25 24.0 27.45 Air
Field stop 10.4 – –

Angular field radius: 5.0�.

Exit pupil diameter (mm): 5.0.

Effective focal length (mm): 25.0.

Eye relief (mm): 18.9.

Figure 16.15 A 10� microscope wide-field eyepiece.
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The simplest substage condenser is the Abbe condenser that consists of
a nearly hemispherical lens and a convergent lens, as shown in Fig. 16.17(a).
A more complicated design permits the correction of the chromatic
aberration, as shown in Fig. 16.17(b).

Figure 16.16 A microscope critical illuminator. The dashed lines represent the
principal rays.

Figure 16.17 (a) Abbe and (b) achromatic condensers for microscope illumina-

tors.
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17
Projection Systems

17.1 SLIDE AND MOVIE PROJECTORS

A slide projector or home movie projector has an optical arrangement as
illustrated in Fig. 17.1, and uses a special lamp as shown in Fig. 17.2, with a
tungsten filament coiled over the area of a small square. Behind the tungsten
filament, outside the lamp, but sometimes inside it, a small metallic spherical
mirror is placed. The purpose of this mirror is to reflect back the light to the
lamp, forming an image of the filament on the same plane. Ideally, the
mirror should be aligned so that the image of the filament coil falls in
the filament spaces, not over them. Unfortunately, this mirror is easily
misaligned, making it completely useless.

After the lamp, a lens, called the condenser is placed in order to form
on the entrance pupil of the projection lens an image of the filament. This
image of the filament should fill the lens aperture without losing any light on
the edges. This type of system in which the image of the light source is
imaged on the entrance pupil of the projection lens is known by the name of
Köhler illuminator. If the light source is assumed to have small dimensions
as compared with the condenser aperture so that it can be considered
essentially a point light source, the total luminous flux f in lumens passing
through the condenser is given by

f ¼ LAsource� ¼ MAsource ð17:1Þ

where L is the luminance in lumens per square meter per steradian emitted
by the light source with area Asource, M is the luminous emittance in lumens
per square millimeter, and � is the projected solid angle subtended by the
condenser as seen from the center of the light source.

On the other hand, if the total flux needed on the screen is equal to
the required illuminance E in lumens per square meter (lux), multiplied by
the area Ascreen of the screen, the following relation has to be satisfied for
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the flux passing through the condenser:

f ¼ fT

�

4�

	 

¼ MAsource ¼ LAsource � ¼ EAscreen ð17:2Þ

where fT is the total flux in lumens emitted by the lamp, and the solid angle
� is given by

� ¼ � sin2 y ð17:3Þ

If the light source is not small, which is the normal case, these formulas
may still produce approximate results, as long as the light source may be
considered diffuse, or in more precise words, lambertian.

17.2 COHERENCE EFFECTS IN PROJECTORS

To understand the effect of the spatial coherence of the light source let
us first consider a projector with a point light source (Hopkins, 1988).

Figure 17.1 Basic optical arrangement for a projector.

Figure 17.2 (a) Side and (b) front views of a projection lamp.
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Then, the image of the light source on the entrance pupil of the projecting
lens would be a point (assuming a perfect condenser). If the object being
projected is a diffraction grating, from the Abbe theory of image formation
we know that the fidelity of the image increases with the aperture of the
projecting lens, since more spatial frequencies would be allowed to pass
through the lens. Since the lens has a finite entrance pupil, the image of
the grating is never perfect, but has some spurious oscillations (or fringes).
If the point light source is substituted by an extended source, each point of
the light source produces an image of the grating. However, each image is
incoherent with each other, since the light from different points of the light
source are mutually incoherent. Then, the irradiances of the images, and
not the field amplitudes, are added to form the resulting composed image.
This final image does not have the spurious fringes and looks smoother.

Given an entrance pupil diameter, the ideal thing is to fill the aperture
of the entrance pupil with the image of the light source formed by the
condenser. However, then the light source image points near the edge of the
pupil would not form a good image because some of the high spatial
frequencies would be cut by the rim of the pupil. In conclusion, the ideal
situation is when the image of the extended light source does not completely
fill the aperture. Another important reason to avoid filling the lens pupil is
the scattering and diffraction of light on the edge, this drastically reduces
the image contrast.

17.3 MAIN PROJECTOR COMPONENTS

17.3.1 Lamp

It has been found empirically that almost all tungsten–halogen lamps have
the same luminous emittance L of about 30 lumens per steradian per square
millimeter. The difference between lamps of different power is only the area
of the filament. The total flux fT in lumens of a lamp with a power W in
watts is approximately given by

fT ¼ 3W ð17:4Þ

Another common type of lamp used in projectors uses a conic
(parabolic or elliptical) reflector behind it, with a large collecting solid angle,
that focuses the light at some distance in front of the lamp (Malacara and
Morales, 1988). A typical lamp focuses the light at a distance of 5.6 inches
(14.2 cm) from the rim of the reflector. These lamps have a corrugated
(or formed by many small plane facets) reflector and a tungsten filament
coiled along the axis of the lamp. These lamps produce an extended and
diffuse spot of light in front of them.
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We may then think, in the projector shown in Fig. 17.3, that we have
an extended light source in the plane of the stop in front of the lamp.
However, most of the light passing through the stop is traveling towards
the condenser. In other words, this virtual light source is not a diffuse
(lambertian) light source. Then, to collect most of the light from this source
a condenser with a large collecting solid angle is not needed. Thus, the
assumptions made in Eq. (17.1) are not valid. Most modern slide projectors
use this kind of lamp.

17.3.2 Condenser

The spherical mirror on the back of the lamp in Fig. 17.1 duplicates the
collecting solid angle, by forming a real image of the filament, back on itself.
Unfortunately, it is almost never well aligned. Some lamps have this spherical
mirror included as part of the glass envelope, reducing the possibility of
misalignments. To have a large collecting solid angle in the condenser,
its focal length must be as short as possible. The usual requirement is a lens
with a focal length so short that the spherical aberration becomes extremely
large and some rays may not even enter the projecting lens. Then, the slide
regions being illuminated by these rays would be dark on the screen.

To obtain a short focal length and with a tolerable spherical aberration
the condenser may be designed in several ways, as illustrated in Fig. 17.4.
The simplest condenser is a pair of plano convex lenses as in Fig. 17.4(a),
but the collecting solid angle cannot be made very large without introducing
a large amount of spherical aberration. An improvement is in Fig. 17.4(b)
where the refractive work is divided among three lenses. The first two lenses
have aplanatic surfaces, and the third one is equiconvex. Another solution is

Figure 17.3 Optical arrangement of a modern slide projector.
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to use aspheric lenses, as shown in Fig. 17.4(c). The problem with aspheric
lenses is that they must be produced by pressing in large quantities to obtain
them at a reasonable low price.

The light from the condenser passes through the slide, illuminating
it as evenly as possible. It is desirable to use a heath absorbing glass before
the slide to avoid damaging it.

17.3.3 Projecting Lens

The projection lens forms the image of the slide over the screen, and should
be well corrected for aberrations. There are some important differences of
projecting lenses with the photographic lenses. One difference is that their
focal lengths are normally longer and the other is that their f-numbers are
larger, of the order of 3.5. The point spread function must be less than
1 arcmin (the resolving power of the eye) for the observer being closest to
the screen. However, commercial projecting lenses in general are not as well
corrected as good photographic lenses.

The aberrations of projecting lenses should be corrected, taking into
account any curvature of the slide. Film slides are always slightly curved,
unless they are sandwiched between two thin glasses. When purchasing a
high-quality projection lens it is necessary to specify if film or glass slides are
to be used. The screen may also be cylindrically curved. Then, it is better to
take into account this curvature, even if some small defocusing is produced
in the upper and lower parts of the screen. If this defocusing is not tolerated,
the screen must have a spherical shape instead of cylindrical.

It should be noticed that the effective entrance pupil is only as large as
the image of the light source being formed by the collimator.

Figure 17.4 Three condensers for projectors.
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A frequently used design for projection lenses is the Petzval lens, which
differs from with the classical Petzval design studied in Chap. 12 in that the
stop is on the first lens (on the lens closer to the long conjugate) or on the
second lens for the case of a projecting lens. Since the lens with the stop in
contact contributes negative astigmatism to the system, the other lens must
contribute with positive astigmatism. The astigmatism of this lens is a
function of many factors, but one of them is the cemented surface if the
power of both glasses is different. The field may be flattened by means of a
negative lens close to the focal plane. An example of a Petzval projection
lens with a field flattener, described by Smith and Genesee Optics Software
(1992), is shown in Fig. 17.5 and its design parameters are listed in
Table 17.1, where the closest Schott glass has been written in parentheses.

Figure 17.5 Petzval projection lens with a field flattener.

Table 17.1 A Petzval Projecting Lens

Radius of
curvature (mm)

Diameter
(mm)

Separation or
thickness (mm) Material

73.962 63.2 18.550 DBC1 (SK6)
�114.427 63.2 0.776 Air
�99.163 63.2 5.300 EDF3 (SF10)

680.831 63.2 59.678 Air
55.173 46.2 15.900 DBC1 (SK6)
�228.329 42.2 19.769 Air
44.891 30.8 2.650 EDF3 (SF10)

�2130.600 30.8 15.724 Air

Aperture (mm) (focal ratio): 54.0 (1.6)

Effective focal length (mm): 100.70

Back focal length (mm): 15.72

Object distance (mm): infinite

Image height (mm) (field): 16.12 (9.09�).
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Asymmetrical double Gauss lenses such as those described in Chap. 12
are also frequently used as projecting lenses.

17.4 ANAMORPHIC PROJECTION

An anamorphic compression consists in producing an image with different x
and y magnifications, the x magnification being smaller. To see this image
with the correct proportions, it has to be projected with anamorphic
expansion. This imaging process has found in the past a successful
application in the motion picture industry (Benford, 1954), to produce
images on a wide screen with a normal film format.

A method to produce this anamorphic imaging is by means of
focal attachments, in front of the imaging or projection lens, just as in the
case of zoom lenses. Figure 17.6 shows an focal Galilean anamorphic
attachment. Another method to produce this anamorphic imaging is by
means of a system of two prisms, as invented by Brewster in 1831, as shown
in Fig. 17.7. Using two identical prisms the chromatic dispersion and the
angular deviation produced by the first prism are compensated in the second
prism. On the other hand, the anamorphic compression (or expansion) in
one prism is cos y but for the two prisms the effect is doubled, producing an
effect equal to cos2 y. Changing the prisms’ orientation, a continuously
variable prism anamorphoser may be constructed.

Figure 17.6 Anamorphic lens projector afocal attachment: (a) side view;
(b) top view.
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17.5 OVERHEAD PROJECTORS

An overhead projector is represented in Fig. 17.8. The light source is a small
tungsten filament. The condenser is a pair of plastic Fresnel lenses, on top of

Figure 17.7 Anamorphic prism system.

Figure 17.8 Overhead projector attachment.
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which the object slide is placed. The image of the light source on the
projecting lens is only a small spot of light. The size of this image determines
the size of the stop, hence, the effective diameter of the entrance pupil of the
lens is also small. The projecting lens is basically a symmetric landscape lens
as described in Chap. 11, with most aberrations corrected, due to the
symmetry and low aperture of the system. However, large aberrations may
appear if the system is not properly aligned.

Frequently the lens head of the overhead projector is tilted to project
the image on to a screen much higher that the overhead projector. Then, the
ideally square image is strongly distorted to a trapezoidal shape with its
largest side up and the smallest side down. This effect is known by the name
of keystone aberration.

17.6 PROFILE PROJECTORS

In high-precision mechanical and instrumentation shops or laboratories
a profile projector is used to examine small parts. The projecting lens, as
illustrated in Fig. 17.9, has to be telecentric, i.e., with the entrance pupil at
infinity. There are two important reasons for this telecentricity. One is that a
volume object, as a sphere, may be examined and its profile measured only if
the principal ray is parallel to the optical axis. The other reason is that small
defocusings by displacements of the object do not produce any change in the
magnification.

For the same reasons, the illuminating beam has to be collimated, by
placing the light source at the focus of the collimator. This is the normal
Köhler illumination used in projectors, where the light source is imaged over
the entrance pupil of the projecting lens. However, in this case the entrance
pupil is at infinity. More detail on projectors may be found in the book by
Habell and Cox (1948).

Figure 17.9 Telecentric projection system.
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17.7 TELEVISION PROJECTORS

The projection of television images is made in many different ways. Here, we
will describe only two methods; the first one is illustrated in Fig. 17.10
(Habell and Cox, 1948). In this system, three images tubes are normally
used, one for each color. Then, the three colors are superimposed on the
screen. A Schmidt system (Friedman, 1947) is used with great advantage,
due to its large aperture. Plastic or glass lens objectives can also be used with
success. Frequently, the lenses have to be aspheric. A few important facts
have to be remembered when designing these lenses (Osawa et al., 1990), for
example:

1. The f-number has to be small, of the order of f/1 due to the need
for a bright image.

2. The field of view angle has to be large, around 30� or more to
shorten the projecting distance.

3. A good correction of distortion is not so important, since it can be
electronically corrected on the image tubes.

4. If three independent image tubes are used a good color correction
is not necessary.

5. Field curvature can be tolerated and compensated by curving the
surface of the image tubes or by using a liquid field flattener.

In another method commonly used in portable television projectors,
the color image is formed in a transparent liquid crystal display. Then, the
image is projected as in the conventional slide projector depicted in Fig. 17.1.
Since there is only one colored image to project, the objective has to be well
corrected for chromatic aberrations.

Figure 17.10 Television projection Schmidt system.
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When a slide projector is on top of a table and the screen is not located
with its center at the optical axis of the projector, the projector has to be tilted
upwards by an angle to point to the center of the screen. This tilting produces
keystone distortion. That is, the screen has a trapezoidal shape with its largest
side on top. To eliminate this problem the optical system has to be designed as
illustrated in Fig. 17.11. We can see that the distortion free field has to be
greater than the actual field being used. The optical axis of the projecting lens
does not pass through the center of the slide nor the center of the screen.
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Figure 17.11 Optical layout in a portable television projector.
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18
Lens Design Optimization

18.1 BASIC PRINCIPLES

Up to the late 1940s, all optical designs had to be made by hand calculation,
tracing rays with a logarithmic table. This method was extremely tedious and
slow. To trace only one ray through an optical system took many hours of
work and patience. Probably the earliest use of a computer to trace rays was
by James G. Baker in 1944, who used the Mark I calculator at Harvard to
trace rays. To trace only one skew ray through an optical surface on this
machine took 120 sec.At the Institute ofOptics of theUniversity ofRochester,
the first use of a computer to trace rays was made in 1953 for the IBM 650, by
Robert E. Hopkins. Another leader in this field, at the Eastman Kodak Co.,
was Donald P. Feder. This computer work saved a lot of time in the design
process, but the programs were just tools to make the whole process faster.
Both methods were essentially the same. However, this work set up a solid
foundation for future results. A good review of the history of automatic
lens design is found in the article by Feder (1963). The methods being used are
quite numerous (Brixner 1964a,b,c; Feder, 1951, 1957a, 1962; Grey, 1963a,b;
Holladay, 1960; Hopkins, 1962a,b,c; Hopkins and Spencer, 1962; Meiron
and Volinez, 1960; Peck, 1980; Stavroudis, 1964; Wynne, 1963). Present lens
design programs are much better, but they are still far from being completely
automatic. To operate them correctly a good optical design knowledge is
absolutely necessary.

In lens design the merit function is a function of the parameters that
describe the quality of the system (how close it is to the ideal solution). The
greater themerit function, the worse the system is. The goal of all optimization
methods is to reduce this merit function as much as possible. Some authors
have proposed to call this function the error function, because the smaller the
final value of this function, the closer the optical system is to the desired state.

Lens optimization programs need a starting design to make several
iterations until a good design is found. Good sources of starting designs are
the books by Smith and Genesee Optics Software (1992), Laikin (1990) and
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Cox (1964). Some programs have been made so automatic that the starting
point may be a set of parallel glass plates (Brixner, 1963a), but even so, an
operator with experience is required.

The starting design, as described by Hilbert et al. (1990), may be set up
in several different ways:

1. Similar existing designs in the technical literature. The books by
Cox (1964), Laikin (1990), Smith and Genesee Optics Software
(1992), and many others are good sources for these designs.

2. Scaling of an existing design, with the same f-number FN and
similar main characteristics.

3. Substantially modifying a design with characteristics at least close
to the ones desired.

4. First-order designing the system from scratch and then using
third-order aberration theory to obtain an approximate design.

18.2 OPTIMIZATION METHODS

Many different schemes have been developed for lens design optimization,
with different advantages and disadvantages. Several good reviews on the
subject have been written, e.g., by Feder (1963) and by Hayford (1985).

The main problem in lens design is that the functions forming the
merit function are not linear. Then, the solution very much depends on the
starting point. To approach the solution, several mathematical methods
have been used. We will now describe some of them.

1. One of the early methods used is called the optimum gradient
method, the steepest descent method, or the zig-zag method. These are
different names for a method first proposed by Cauchy in 1847. An initial
point in the parameter space is taken and its merit function and partial
derivatives with respect to each parameter are calculated at that point. Then,
a new point is taken in the opposite direction to the gradient in order to
reduce the merit function. This point is moved in a straight line until the
merit function ceases to decrease and begins increasing. At this point the
calculations are repeated and a new gradient direction is found. It may be
shown that the new gradient is perpendicular to the former; hence, the name
of zig-zag method. This is probably the simplest method, but after a few
successful iterations the convergence to a solution becomes extremely slow.
This problem is present in the method, even if the functions are exactly
linear, which is not usually the case.

2. The conjugate gradient method is quite similar to the optimum
gradient method. The difference is that the new direction after each iteration
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is not the new gradient, but slightly different. So, this new direction is not
perpendicular to the previous path, but at an angle less than 90� with respect
to it. The consequence of this difference is that the speed of convergence is
greatly improved. For example, the solution to a system of N linear
equations is always found in N iterations. Mathematical details for this
method are found in the article by Feder (1963).

3. Grey’s optimization method, developed by Grey (1963a,b), is based
on the construction of an aberration theory with orthogonal aberration
coefficients, to simplify aberration balancing.

4. The Glatzel adaptive method, described in detail by Glatzel and
Wilson (1968), has been independently proposed by Glatzel (1961) and
Hopkins and Spencer (1962). This method resembles the path followed by a
designer before the lens optimization programs were used. A merit function
is not used. Instead, the individual aberrations are corrected, a few at a time,
until all are corrected. In a certain manner, this method resembles the
graphic method described in Chap. 11. We will describe this method in some
detail in this chapter.

5. Another procedure applies the least squares method invented by
Legendre in 1805. This method was devised to solve a system of linear
equations by minimizing the sum of the square of the residuals. An extension
of this method to a system with nonlinear functions was made by
approximating them to linear functions by means of a Taylor expansion,
neglecting high-order terms. The first ones to apply this method to lens design
were Rosen and Eldert (1954). A merit function is defined as the sum of the
squares of the aberrations. The aberrations are the linearized functions. Since
the functions are not really linear, the process has to be repeated in successive
iterations until a solution is found when the merit function is not reduced any
more. A problem soon found with this method is that the functions are so far
from being linear that frequently a solution is not found and the iterations just
oscillate wildly about the minimum without ever approaching it.

6. The damped least squares method tries to force the least squares
method to find a solution by damping the magnitude of the jumps on each
iteration. This method was originally proposed by Levenverg in 1944,
and will be described here later in detail (Meiron, 1959, 1965; Rosen and
Chung, 1956). This is the most common method used in commercial lens
design programs.

18.3 GLATZEL ADAPTIVE METHOD

In this method, as described in detail by Glatzel and Wilson (1968), the
designer selects a small number of aberrations, not exceeding the number of
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independent variables and assigns a target value to them. For the other
aberrations only a maximum limit is assigned. Thus, we may write for this
system a set of simultaneous linear equations, for the aberrations fn, with
the variables pj, as follows:

@fn
@p1

ð p1 � po1Þ þ
@fn
@p2

ð p2 � po2Þ þ 	 	 	 þ
@fn
@pJ

ð pJ � poJÞ ¼ fn � fon

n ¼ 1, . . . ,N ð18:1Þ

assuming that the functions are linear in the vicinity of the initial point in
the variables space fpo1, po2, . . . , poNg. At this initial point the aberrations
have the values fon.

The optimization for the whole optical system is accomplished in
the following steps:

1. The matrix of the system of equations (18.1) is evaluated.
2. A solution ( pj� poj) is calculated using the system matrix and

the values ( fn� fon) of the changes required in the aberrations.
3. A new system is proposed, moving the variables only a fraction k of

the calculated change ( pj� poj), but in that direction.The increments
k( pj� poj) for each variable are stored in memory for later use.

4. The system is evaluated at this new point and the calculated values
for the aberrations are compared with the expected values, taking
into account that only a fraction k of the calculated step length
was made. This permits an estimation of the nonlinearities.

5. The same system matrix obtained in step 1 is used to calculate
a new solution that produces the desired changes in the aberrations.

6. Another variable change is thus calculated. The increment for
the variable that had the largest change is compared with the
increment obtained and stored in memory for the same variable in
step 3. Then, the step length is adjusted in such a way that the
largest of the two compared increments is used for the variable
just considered. If the largest of all variable increments is zero,
we go to step 8, otherwise we go to step 4 to repeat the process
from that point.

7. If the largest proposed increment for the variables is zero, we go to
step 8, otherwise we should go back to step 4.

8. A new set of aberrations with new target values is selected and
then we go back to step 1.

The optimization procedure is finished when all desired aberrations
are corrected within the prescribed limits. Further details may be found in
the article by Glatzel and Wilson (1968).
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18.4 CONSTRAINED DAMPED LEAST SQUARES
OPTIMIZATION METHOD

This section is written closely following the treatment of Spencer (1963a,b).
The system variables, like lens curvatures, thicknesses, separations, etc., are
represented by J variables p1, p2, p3, . . . , pJ. Some functions f1( p1, p2, . . . , pJ),
f2( p1, p2, . . . , pJ), . . . , fK( p1, p2, . . . , pJ), some times called operands, are
defined in terms of these variables. These functions define the characteristics
of the optical system and are the effective focal length, the back focal length,
the spherical aberration, the coma, the Petzval curvature, the optical
transfer function, etc., or any other lens characteristics chosen by the lens
designer. These functions aim to a certain value, sk, not necessarily zero.
Then, the problem reduces to finding a simultaneous solution to the set of
equations:

fkð p1, . . . , pJÞ ¼ sk; k ¼ 1, . . . ,K ð18:2Þ

where the sk are constants representing the goal values for the functions fk.
A simultaneous solution to the set of equations does not always exist.

For instance, frequently the number of functions is larger than the number
of variables (K> J ). Then, instead of looking for a solution, the goal is to
minimize the function:

j ¼
XK
k¼1

w2
kð fk � skÞ

2
ð18:3Þ

where the wk are weight factors. These factors are used to set the relative
priority in the minimization of the functions. If a simultaneous solution
exists, the minimization will correspond to this solution. The definition of
this function, called the merit function, is one of the most critical steps in
the lens design process (Feder, 1957b).

In general, some of these functions fk require minimization, e.g., the
primary spherical aberration, but some others require an exact solution, e.g.,
the final value of the effective focal length. Thus, it is convenient to separate
these functions into two groups, one:

gmð p1, . . . , pjÞ; m ¼ 1, . . . ,M ð18:4Þ

requiring minimization, and another:

hnð p1, . . . , pjÞ; n ¼ 1, . . . ,N<J ð18:5Þ
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requiring an exact solution. Then, the following merit (or error) function is
minimized:

j ¼
XM
m¼1

w2
mðgm � smÞ

2
ð18:6Þ

where sm is the target value of gm and the following set of simultaneous
equations is solved:

hnð p1, . . . , pjÞ ¼ tn; n ¼ 1, . . . ,N ð18:7Þ

where the tn are the desired values for the functions hn.

18.4.1 Linearization of the Problem

The great problem in lens design is that the functions (operands) are not
linear with changes in the system variables. If the changes in the variables
are not large, however, they may be approximated by a linear function. This
is done by expanding each function in a Taylor series about the initial point
( p01, p02, . . . , p0J) and taking only the constant and linear terms. The final
solution is found by successive iterations of this procedure. Then, we may
write the functions gm and hn as

gm ¼ gomþ
@gm
@p1

ðp1�po1Þþ
@gm
@p2

ðp2�po2Þþ 	 	 	þ
@gm
@pJ

ðpJ�poJÞ ð18:8Þ

and

hn ¼ honþ
@hn
@p1

ðp1�po1Þþ
@hn
@p2

ðp2�po2Þþ 	 	 	þ
@hn
@pJ

ðpJ�poJÞ ð18:9Þ

We now define the following variables to simplify the notation:

dm ¼ sm � g0m

en ¼ tn � h0n

qj ¼ pj � p0j

amj ¼
@gm
@pj

bnj ¼
@hn
@pj

ð18:10Þ
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Then, using the linear approximations in expressions (18.6) and (18.7),
the problem becomes one of minimizing the merit (error) function:

j ¼
XM
m¼1

w2
m

XJ
j¼1

amj qj � dm

 !2

ð18:11Þ

and at the same time obtaining a solution to the set of N simultaneous
equations of constraint:

XJ
j¼1

bnj qj ¼ en; n ¼ 1, . . . ,N ð18:12Þ

18.4.2 Use of the Lagrange Multipliers

Let us now describe in a general manner the method of Lagrange multipliers.
We have a merit function j(q1, q2, . . . , qJ) that we want to minimize.
This minimum is found with the condition:

dj ¼
@j
@q1

	 

dq1 þ

@j
@q2

	 

dq2 þ 	 	 	 þ

@j
@qJ

	 

dqJ ¼ 0 ð18:13Þ

If the variables (q1, q2, . . . , qJ) are all independent, the solution to this
expression is simply obtained with

@j
@qj

¼ 0; j ¼ 1, 2, . . . , J ð18:14Þ

however, in our system there are N equations of constraint that we may
represent by

unðq1, q2, . . . , qJÞ ¼ en; n ¼ 1, . . . ,N<J ð18:15Þ

So, instead of J independent variables, only J�N are independent and
Eq. (18.13) is not true.

If before minimizing the merit function we look for a solution to the
equations of constraint, we will find that there is a continuous set of points
satisfying these constraints, in a space of (J�N) dimensions, because there
are J variables and N< J equations of constraint. The region in space where
the constraint equations are satisfied, assuming linearity with respect to
all variables, may be considered a (J�N)-dimensional plane in a space of
N dimensions.
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Out of the possible solutions, in the space with only (J�N) independent
variables, we must find one solution that minimizes the merit function by
satisfying Eq. (18.12). We have explained why we cannot use Eq. 18.13,
but the method of undetermined Lagrange multipliers may help us.

Now, let us assume that the point fq1; q2; . . . ; qJg is one of the desired
solutions and that fq1 þ dq1; q2 þ dq2; . . . ; qJ þ dqJg is another solution, if
the differentials satisfy the conditions:

dun ¼
@un
@q1

	 

dq1 þ

@un
@q2

	 

dq2 þ 	 	 	 þ

@un
@qJ

	 

dqJ ¼ 0;

n ¼ 1, . . . ,N ð18:16Þ

so that the value of un does not change. A geometrical interpretation for
this expression is that each equation of constraint is a plane (in a small
neighborhood of the point where the derivatives are taken, so that
the linearity assumptions remain valid) with J� 1 dimensions, in a space
of J dimensions, with a vector normal to this plane, given by

@un
@q1

	 

,
@un
@q2

	 

, . . . ,

@un
@qJ

	 

ð18:17Þ

The gradient of the merit function must be perpendicular to the
(J�N)-dimensional plane where all constraints are satisfied. In this plane
the minimum value, or to be more precise, a stationary for the merit
function, must be located. Obviously, at this minimum, the gradient in
Eq. (18.17) must be perpendicular to the (J�N)-dimensional plane. Hence,
it is possible to write this gradient as a linear combination of the vectors
perpendicular to each of the constraint planes, obtaining

@j
@qk

	 

þ
XN
n¼1

ln
@un
@qk

	 

¼ 0; k ¼ 1, . . . , J ð18:18Þ

where the unknown constants ln are called the Lagrange multipliers.
The constraint equations (18.15) and (18.18) form together a set of

Nþ J equations with Nþ J unknowns, l1, . . . , lN, q1, . . . , qJ. The solution
satisfies both the constraint conditions and the extremum value of the merit
function.

Since the constraint conditions are given by Eqs. (18.12) and (18.15),
we obtain

@un
@qk

¼ bnk ð18:19Þ
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and from Eq. (18.11):

@j
@qk

¼ 2
XM
m¼1

XJ
j¼1

w2
mamkamjgj �

XM
m¼1

w2
mamkdm

" #
ð18:20Þ

Thus, Eq. (18.19) becomes:

XM
m¼1

XJ
j¼1

w2
mamkamjqj þ

XN
n¼1

bnk�n ¼
XM
m¼1

w2
mamkdm; k ¼ 1, . . . , J ð18:21Þ

where �n¼ ln/2. Equations (18.12) and (18.21) form a set of Nþ J linear
equations with Nþ J unknowns that may be solved with standard methods.
As pointed out by Spencer (1963b) this method obtains a minimum of the
merit function, and rules out the possibility of a maximum. However,
sometimes this minimum is not uniquely defined, since the minimum may be
a small area and not a point. Then, this ambiguity is easily removed by
adding to the merit function the sum:

S ¼
XJ
j¼1

ðcj qjÞ
2

ð18:22Þ

where the cj are weight factors. This sum, besides removing the ambiguity,
allows control over the influence of the change of the different variables over
the solution. A large value of cj forces the system to produce a small change
in that parameter. In other words, the solution is taken in the small region of
the minima, at the point closest to the initial solution. Taking into account
this term, Eq. (18.22) becomes

XM
m¼1

XJ
j¼1

w2
mamkamjqj þ c2kqk þ

XN
n¼1

bnk�n ¼
XM
m¼1

w2
mamkdm; k ¼ 1, . . . , J

ð18:23Þ

18.4.3 Matrix Representation

Continuing along Spencer’s lines, including his notation, we will now
represent the system of Eqs. (18.12) and (18.23) in matrix form by defining
the followingmatrices, where J is the number of parameters, used as variables,
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M is the number of functions (aberrations) appearing in the merit function,
and N is the number of constraints:

A ¼

a11 : : : a1J

: : : : :

aM1 : : : aMJ

2
64

3
75 ð18:24Þ

B ¼

b11 : : : b1J

: : : : :

bN1 : : : bNJ

2
64

3
75 ð18:25Þ

C ¼

c21 0 : 0

0 c22 : 0

: : : :

0 0 : c2J

2
66664

3
77775 ð18:26Þ

W ¼

w1 0 : 0

0 w2 : 0

: : : :

0 0 : wM

2
6664

3
7775 ð18:27Þ

d ¼

d1

:

:

dM

2
6664

3
7775 ð18:28Þ

e ¼

e1

:

:

eN

2
6664

3
7775 ð18:29Þ

q ¼

q1

:

:

qJ

2
6664

3
7775 ð18:30Þ

v ¼

v1

:

:

vN

2
6664

3
7775 ð18:31Þ
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Since the matrix A and the vector d always appear multiplied by W,
we may for convenience define

M ¼ WA ð18:32Þ

and

r ¼ Wd ð18:33Þ

Also, a matrix G and a vector q may be defined by

G ¼ MtMþ C ð18:34Þ

and

g ¼ Mtr ð18:35Þ

where the superscript t represents the transpose.
Hence, Eqs. (18.23) and (18.12) become

Gqþ Btv ¼ g ð18:36Þ

and

Bq ¼ e ð18:37Þ

respectively.

18.4.4 Numerical Calculation of Matrix Solution

Expressions (18.36) and (18.37) form together a system of (Nþ J ) equations
with (Nþ J) unknowns, namely N values of vn and J values of qj. Then, the
inversion of a matrix of (Nþ J)� (Nþ J) elements is required. Fortunately,
the system may be separated into two smaller systems, increasing the
computational accuracy. This separation is achieved as follows. From
Eq. (18.37) we may write

q ¼ G�1ðg� BtvÞ ð18:38Þ

and substituting this result into Eq. (18.38) and solving for �:

v ¼ E�1ðBG�1 � eÞ ð18:39Þ
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where

E ¼ BG�1Bt ð18:40Þ

The calculations are now carried on by following the next steps:

1. The inverse of the matrix G with J� J elements is calculated.
2. The matrix E with N�N elements is calculated using Eq. (18.40)

and then inverted.
3. The vector � is found with Eq. (18.39).
4. The solution vector q is finally calculated with Eq. (18.38).

The two matrices G and E are symmetric, requiring less numeric
operations to invert than ordinary matrices.

After obtaining the solution, the new lens is taken as the initial point
and the whole procedure is started again. The final result is obtained in an
iterative manner. It is important, however, that the lens changes in each
iteration are kept within reasonable limits, so that the linear approximations
remain valid.

18.4.5 Use of the Weight Factors

There are two sets of weight factors wm and cj that may be used to control
the nature of the solution. They are so important that their value may
determine if a solution is found or not. The weights wm define the relative
importance of the various aberrations forming the merit function. Their
values depend on many factors, as described in Section 18.5.

The weight factors cj control the influence of each variable on the
search for a solution. As the factor cj is made larger, the associated variable
qj is forced to change less. Thus, variables with smaller weights will do most
of the work. These weights are also called damping factors. It is convenient
to separate these damping factors into the product of two factors. One is
the general damping factor, with a common value for all variables, and
the other is another damping factor for each variable.

It should be mentioned that sometimes two variables may not be
completely linearly independent from the other. Then, the system matrix is
nearly singular and designer intervention is needed to remove one of the
variables, or to introduce different factors cj to these variables to remove the
singularity, before any further progress can be made. Some modern lens
design programs, however, perform this function automatically.

Frequently, a stagnation point is encountered, where very small
improvements in the merit function are achieved in each iteration and
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the program never converges to a solution. This situation occurs when the
merit function change is buried in the numerical noise. In this case a variable
may be changed, to begin the optimization at some other initial point. The
variables’ weights are useful in this case.

Even when all the individual damping factors are equal, it is logical to
expect that different variables have different effects on the search for a
solution. Thus, equal individual factors are not convenient, because then the
work may be done with a large change of some variables and a small change
of some others. Several solutions have been proposed to counteract this
artificial weighting of the variables in a lens system (Spencer, 1963a).
Buchele (1968) proposes modifying the damping factors continuously, by
trial and error, as the iterations go on. Rayces and Lebich (1988) have made
a careful study of the effect of different choices for the damping factor.
Sometimes a change in the damping factor is not sufficient to increase the
speed of convergence towards a solution when the solution is being
approached extremely slowly. In this case, Robb (1979) has proposed to
alter the direction of the next proposed solution.

Many practical comments about the use of weights and variables in
an optimization program are found in Chap. 2 of the book by Smith and
Genesee Optics Software (1992).

18.5 MERIT FUNCTION AND BOUNDARY CONDITIONS

The definition of the merit (or error) function and the boundary conditions
are two very important steps in lens design. Next, we will briefly review
the two problems.

18.5.1 Merit Function

The merit function may be defined in many different manners, e.g., by:

1. The geometrical spot size or mean square size of the image, as
defined in Section 9.2.

2. The root mean square wavefront deviation as described in
Section 9.3.

3. The modulation transfer function (MTF ), optimized at some
desired spatial frequencies range, as explained by Rimmer et al.
(1990).

4. An appropriate linear combination of primary and high-order
aberration coefficients.

As pointed out in Section 9.5.1, the image mean square size mini-
mization optimizes the MTF for low spatial frequencies and as shown in
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Section 9.5.1, the minimization of the root mean square wavefront deviation
is related to the high spatial frequencies.

The decision about the type of merit function to be used depends on the
application of the optical system being designed, as well as on the personal
preferences and experience of the lens designer. It should be noticed that in a
perfect (diffraction-limited system) all definitions of the merit function are
simultaneously minimized to a zero value. In a real imperfect system, the
choice of the merit function affects the final performance of the lens.

Let us assume that the geometrical spot size is selected for the
evaluation. The next important decision is how important is the color
correction, since each color produces a different image. To use the image
size as the merit function, let us write Eq. (10.12) as follows:

TA2
rmsðl,hÞ ¼

XNy

k¼1

XNr

j¼1

wjðrÞTA2
rðrj,yk,l,hÞ � TA

2
ðl,hÞ ð18:41Þ

where the dependence on the wavelength l of the light and the image height
h has been made explicit. A complete merit function representation must
take into account many different factors as will now be seen.

Color Averaging

This image size may be averaged over all the colors in many different ways.
For example, for a visual instrument the chromatic response of the eye has
to be taken into account. The easiest but less accurate manner of taking
this average for a visual instrument is by just considering that the visual
efficiency of different wavelengths is as shown in Fig. 18.1, and assigning

Figure 18.1 Sensitivity curve for the standard human eye.
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a proper weight to the spot diagram taken with each color. The weights
wi(l) take into account the relative importance of each wavelength l. The
weights taken from this figure, must be normalized so that their sum is equal
to one. Thus, the color averaged value of TA2

rmsðl; hÞ is

TA2
rmsðhÞ ¼

XNl

i¼1

wiðlÞTA2
rmsðli,hÞ ð18:42Þ

hence, substituting this relation into Eq. (18.41) we obtain

TA2
rmsðhÞ ¼

XNy

k¼1

XNr

j¼1

wjðrÞ
XNl

i¼1

wiðlÞTA2
rðrj,yk,li,hÞ

�
XNl

i¼1

wiðlÞTA
2
ðli,hÞ ð18:43Þ

As an example, if we obtain three spot diagrams (Nl¼ 3), for colors C,
d, and F, the three color weights are:

wC ¼ 0:0784=ð0:0784þ 0:7848þ 0:1816Þ ¼ 0:0750

wd ¼ 0:7848=ð0:0784þ 0:7848þ 0:1816Þ ¼ 0:7511

wF ¼ 0:1816=ð0:0784þ 0:7848þ 0:1816Þ ¼ 0:1738

However, this is not an accurate method, since the whole function in
Fig. 18.1 is not taken into account. The error using this procedure is higher
than 10%. Forbes (1988) developed a highly accurate method based on
gaussian integration. The details of this method may be read in his paper.
Equation (18.43) remains valid, but with the important difference that
the color for the calculation of the spot diagrams must be those listed in
Table 18.1 with the weights given there. These weights are normalized so
that their sum is equal to one.

Table 18.1 Gaussian Integration Parameters for
Color Averaging of a Visual Instrument, Using
Three Colors (Nl¼ 3)

i li wi(l)

1 0.434658 0.006963
2 0.518983 0.054553

3 0.614795 0.038483
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With this method, an accuracy of about 0.01% may be obtained.
These results are valid for a visual instrument, but not for one whose
detector has a more uniform chromatic response (panchromatic). If this
response is assumed to be constant from 0.4 to 0.7 mm, the gaussian constants
in Table 18.2 must be used.

Obviously, if the system is to be used with monochromatic light, no
color averaging should be made.

Field Averaging

The image size may also be averaged over the field using gaussian or Radau
integration, as described by Forbes (1988). Radau integration is chosen,
so that the on-axis image is included. Then, the mean square size of the image
with color and field averaging is

TA2
rms ¼

XNy

k¼1

XNr

j¼1

wjðrÞ
XNl

i¼1

wiðlÞ
XNh

n¼1

whTA
2
rðrj,yk,li,hÞ

�
XNl

i¼1

wiðlÞ
XNh

n¼1

wnðhÞTAðli,hÞ ð18:44Þ

where the image heights to be used with their corresponding normalized
weights are as listed in Table 18.3, where the maximum image height has
been normalized to one.

Table 18.2 Gaussian Integration Parameters for
Color Averaging of a Panchromatic Instrument,

Using Three Colors (Nl¼ 3)

i li wi (l)

1 0.418886 0.164853

2 0.505546 0.412843
3 0.644536 0.422307

Table 18.3 Radau Integration Parameters for

Field Averaging, Using Three Image Heights
(Nh¼ 3)

n hn wn(h)

1 0.000000 0.14000
2 0.564842 0.57388
3 0.893999 0.28612
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If the lens is to be used only on the optical axis, no field averaging
should be used. However, even if the whole field is going to be used, the
off-axis images do not in general have the same priority for correction as
the on-axis image. As an example given by Forbes (1988), let us consider the
off-axis weight function in Fig. 18.2. For this case the Radau parameters for
three image points, one on-axis and two off-axis, are listed in Table 18.3.

Distortion

The merit function based on the image size in Eq. (18.44) does not take into
account any possible distortion in the optical system, since any shift of the
image centroid from the gaussian image position is compensated. The
distortion would be taken into account in the merit function if the centroid
shift is not compensated, by making the last term in Eq. (18.44) equal to
zero (TAy ¼ 0).

18.5.2 Boundary Conditions

Some of the possible boundary conditions used in lens optimization
programs are the following.

Axial Optical Thickness

If the light ray travels from a surface j in the optical system to optical
surface jþ 1 , the traveled optical path is positive for both traveling

Figure 18.2 Proposed relative weight versus the normalized object height.
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directions, left to right as well as right to left, as shown in Figs. 18.3(a)
and (b). Thus, we may write

njtj � 0 ð18:45Þ

This optical path nt may be negative only in the following cases:

1. The ray exits from surface j and does not travel towards surface
jþ 1, but in the opposite direction. This is possible only if surface
jþ 1 is a dummy surface (not an actual refractive or reflective
surface) (nj¼ njþ 1) or a virtual focal surface ( jþ 1¼ k), as in
Fig. 18.3(c).

2. The ray travels towards surface jþ 1, but it is also approaching
surface j, not getting away from it. This is possible only if surface
j is a dummy surface (nj� 1¼ nj) or it is a virtual object surface
( j¼ 0), as in Fig. 18.3(d).

If a surface does not satisfy these conditions, we have a boundary
condition violation.

Edge Optical Thickness

The aperture of a lens is equal to or greater than any of the values of ( �yyþ y)
at the two surfaces of a lens. With this aperture value and the lens curvatures,
the edge optical thickness ntedge has to be greater than a predetermined
minimum value.

Figure 18.3 Boundary conditions in lens design.
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Average Lens Thickness

The average thickness of a lens must be greater than a certain minimum that
depends on the lens diameter.

These are not the only possible boundary conditions, but many others
may be used if desired, e.g., the maximum length of the optical system or the
maximum thickness of a lens. The final choice of boundary conditions to be
satisfied depends on the type of optical system being designed.

18.6 MODERN TRENDS IN OPTICAL DESIGN

The optimization methods are quite numerous, but the most widely used are
the constrained damped least squares algorithms just described. However,
there are some new methods that have recently received some attention.
Among these, the most notable is global optimization by using a simulated
annealing procedure, as next described.

18.6.1 Global Optimization and Simulated Annealing

As explained at the beginning of this chapter, the goal of any lens
optimization program is to locate in variable space a point for which the
so-called merit function has a minimum value. If the region being considered
is small, perhaps only one minimum is there. However, if the space is large
enough, many minima for the function may exist. Not all these minima will
have the same value for the merit function, but some may be smaller than
others. Thus, it is desirable to find the smallest minimum and not the closest
to the starting point. This procedure, called global optimization (Kuper and
Harris, 1992), has the advantage that the solution does not depend on the
starting point. There are many procedures to perform global optimization,
but only quite recently is there computer power available for this task.

A simple global optimization method is the grid search, in which the
merit function is evaluated at equidistant points on a regular grid on the
variables space. Once the point with the minimum merit function is located,
the minimum on this region is found.

Another global optimization method is the simulated annealing
algorithm, first used by Bohachevsky et al. (1984). In this algorithm the
variables space is sampled with a controlled random search. The controlling
parameter T is called ‘‘temperature’’ because it is analogous to the physical
temperature in the thermal annealing process.

The main problem now with global optimization is that the computing
time may become extremely large. This computing time grows very rapidly
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with the number of variables, making it feasible only for a relatively small
number of variables. There is no doubt, however, that in the near future this
method will become practical and more widely used.

18.7 FLOW CHART FOR A LENS OPTIMIZATION PROGRAM

The flow chart for a lens optimization program may have many different
forms. It may also be very simple or extremely complex. As an example,
Fig. 18.4 shows a more or less typical one.

18.8 LENS DESIGN AND EVALUATION PROGRAMS

Lens data input in lens evaluation programs shares many common
procedures. Here, we will describe a few of these techniques. Regarding
the signs, we have the following standard conventions:

1. The sign of the curvature or the radius of curvature of an optical
surface is positive if the center of curvature is to the right of the
surface and negative otherwise. This sign selection is independent
of the direction in which the light is traveling.

2. The sign of a lens thickness or spacing between two of them is
positive if the next surface is to the right of the preceding surface
and negative otherwise. The next surface is not necessarily in
the direction in which the light is traveling. In other words, it may
be a virtual surface.

3. The sign of the refractive indexmedium is positive if the light travels
in this medium from left to right and negative otherwise. Thus,
at each reflecting surface the sign of the refractive index has to be
changed.

4. The sign of any ray angle with respect to the optical axis is positive
if the slope is positive and negative otherwise.

5. The sign convention for the angles of any ray with respect to the
normal to the surface, as described in Section 1.3 and Fig. 1.14,
are positive if the slope of the ray is greater that the slope of the
normal to the surface and negative otherwise.

The curvature or the radius of curvature of an optical surface can be
specified in several alternative ways:

1. Providing the value of the radius of curvature.
2. Specifying the value of the curvature, which is the inverse of the

radius of curvature.
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3. By specification of the dioptric power of the surface.
4. Setting the value of the angle that the meridional ray must have

after refraction or reflection at this surface. This method is useful
in the last surface to set this curvature to a value that produces
the desired effective focal length for the system. This value is

Figure 18.4 Flow chart for a typical lens design program.
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u0k ¼�D/(2F), where D is the entrance pupil diameter and F is the
effective focal length.

5. With the height that the meridional ray must have when arriving
at the next surface.

6. By making this curvature equal in magnitude and sign or equal in
magnitude but with different sign to a previous curvature in the
system.

The thickness or separation of a surface from the next one can be
specified:

1. By the desired value of this parameter.

2. By setting the height of the meridional ray at the next surface. If we
set this height equal to zero at the last surface, its position will be
at the paraxial focus.

3. This separation can be made equal in magnitude, with the same
or opposite sign, to the separation for a previously defined surface.

There are some useful tricks that lens designers apply when using a lens
evaluation program. A few can be mentioned, for example:

1. The lens system is frequently oriented so that the light enters the
system thorough the longest conjugate. Thus, if the object is closer
to the system than the image, the system is reversed.

2. If the system is afocal, like a terrestrial telescope, a focusing
element is placed at the end of the system, so that the light is focused
at a finite distance. A possibility is to use a spherical mirror. To
avoid introducing spherical aberration the radius of curvature
should be much longer that the exit pupil of the system. Its
selection depends on the resolution required from the system. To
avoid off-axis aberrations the exit pupil of the system under
evaluation is located at the center of curvature of the focusing
spherical mirror.

With most commercial programs all the image analysis procedures and
aberration plots described in Chap. 9 can be performed.

18.9 SOME COMMERCIAL LENS DESIGN PROGRAMS

Commercial lens design and evaluation programs are appearing quite
frequently. Some of them are very complete, flexible, and sophisticated, but
others are simple. A few of these programs have been reviewed in the
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proceedings of the International Lens Design Conference (Lawrence, 1990).
A partial list of commercially available raytracing, lens design, and
evaluation programs is as follows:

ACCOS
Optikos, 7796 Victor-Mendon Road, Victor, NY, 14564, U.S.A.
BEAM FOUR
Stellar Software, P.O. Box 10183, Berkeley, CA 94709, U.S.A.
CODE V (Version 9.20 for Microsoft Windows)
Optical Research Associates, 550 N. Rosemead Blvd., Pasadena,

CA 91107, U.S.A.
EIKONAL
Juan Rayces Consulting, Inc., 22802 Montalbo Rd., Laguna Niguel,

CA 92677, U.S.A.
GENII
Genesee Computer Center, 20 University Avenue, Rochester, NY

14605, U.S.A.
LASL
Los Alamos program, available to public users. Berlyn Brixner or

Morris Klein, Los Alamos National Laboratories, Los Alamos,
NM 87545, U.S.A.

OPTIX
P. O. Box 5243, 3637 U.S. 19N, Palm Harbor, FL 34684, U.S.A.
OSDP
Gibson Optics, 655 Oneida Drive, Sunnyvale, CA 94087, U.S.A.
OSLO
Sinclair Optics, Inc.,6780 Palmyra Rd., Fairport, NY 14450, U.S.A.
SIGMA PC
Kidger Optics Ltd., Sussex House, Farmingham Rd., Jarvis Brook,

Crowborough, East Sussex TN6 2JP, U.K.
SCIOPT
Sciopt Enterprises, P.O. Box 20637, San Jose, CA 95160.
SOLORD
Lord Ingenierie Mediterranee, Ze de la Farlède, Rue Parmentier,

B. P. 275, F-83078 Toulon, Cedex 9, France.
SYNOPSYS
Optical Systems Design Inc., P.O. East Bothbay, ME 04544-0247,
U.S.A.
ZEMAX
Focusoft, Inc., P. O. Box 756, Pleasanton, CA 94566, U.S.A.

These programs can solve almost any lens design problem, but
they require an experienced person with considerable design background to
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use them properly. The programs are so flexible that there is a great
possibility of making mistakes if the operator does not have a good optics
knowledge.
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Appendix 1
Notation and Primary Aberration
Coefficients Summary

A1.1 NOTATION

The paraxial variables follow the notation in Table A1.1. Unprimed
variables are used before refraction and primed variables are used after
refraction on the optical surface. When the next surface is to be considered,
a subscript þ1 is used.

The are several kinds of focal lengths, as shown in Table A1.2. For
example, one has a different value in the object space (lens illuminated with a
collimated beam from right to left) than in the image space (lens illuminated
with a collimated beam from left to right). In the first case an unprimed
variable is used and in the second case a primed variable is used. When the
object and imagemedium is the same, generally air, the two focal lengths have
the same value. Then, the focal length is unprimed.

Table A1.1 Notation for Some Paraxial Variables

At surface j

At surface jþ1Before
refraction

After
refraction (Before refraction)

Meridional rays i i0 iþ1

u u0 uþ1

l l0 lþ1

y y0 yþ1

Q Q0 Qþ1

Principal rays �ii �ii0 �iiþ1

�uu �uu0 �uuþ1
�ll �ll0 �llþ1

�yy �yy0 �yyþ1
�QQ �QQ0 �QQþ1
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The focal length f for a thin lens or mirror is represented with lower
case. The effective focal length F for a thick lens or a complete system is
represented with upper case. The back focal length for a thick lens or system
is represented with a subscript B.

The focal length as measured from the focus to the principal surface,
along the optical axis, is used without any subscript. If this focal length is
measured from the focus to the principal surface, along the meridional ray,
a subscript M is used.

The focal ratio (or f-number), is represented by FN and defined as
follows:

FN ¼
F

Diameter of entrance pupil
ðA1:1Þ

The numerical aperture for an object at a finite distance is

NA ¼ n0 sinU0 ðA1:2Þ

where n0 is the refractive index in the object medium.
The primary aberration coefficients are represented by a short

abreviation of its name. These names closely resemble those of Conrady.
However, there are some important differences. To avoid confusion with the
concept of longitudinal and transverse aberrations, the chromatic aberra-
tions are named axial chromatic and magnification chromatic aberrations.
A second important thing to notice is that some aberrations like the
spherical aberration and astigmatism may be evaluated by their transversal
or longitudinal extent. A letter T for transverse or a letter L for longitudinal
is added to the name of these aberrations.

The aberrations due to only one surface or to a complete system are
represented with the same symbol, asumming that one surface may be

Table A1.2 Notation for Focal Lengths

Object space
Image
space

Same object

and image
medium

Thin lens or mirror Axial Focal Length f f’ f
Marginal Focal Length fM f 0M fM

Thick lens or system Effective Focal Length F F0 F

Back Focal Length FB f 0B FB

Marginal Focal Length FM f 0M FM
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considered as a system with only one refracting surface. The contribu-
tion of a surface to the total aberration in the system is represented
by adding a letter C as usual. A subscript is sometimes used to indicate
the surface to which it applies. The symbol (without primas, as in
Conrady’s notation) represents the aberration after refraction on the
surface. The aberration before refraction would be represented by a
subscript �1, which stands for the previous surface. Thus, the aberration
in the object space (before surface 1 in the system) is represented with the
subscript 0. The object is the surface number zero in the optical system.
The aberration after the last surface (k) in the system is represented by the
subscript k. Table A1.3 shows the symbols used to represent these
aberrations.

When doing exact ray tracing, the aberration measured in a
direction parallel to the optical axis is called the longitudinal aberra-
tion LA. The value of the aberration in a perpendicular direction to the
optical axis is called the transverse aberration TA. The wavefront
deformations are represented byW. These symbols are shown in Table A1.4.

Table A1.3 Notation for Primary Aberration Coefficients

Total Surface contribution

Aberration Longitudinal Transverse Longitudinal Transverse

Spherical aberration SphL SphT SphLC SphTC
Coma (sagittal) — ComaS — ComaCS

Coma (tangential) — ComaT — ComaCT

Astigmatism (sagittal) AstLS AstTS AstLSC AstTSC
Astigmatism (tangential) AstLT AstTT AstLTC AstTTC
Distortion — Dist — DistC

Petzval curvature Ptz — PtzC —
Axial chromatic AchrL AchrT AchrLC AchrTC
Magnification chromatic — Mchr — MchrC

Table A1.4 Notation for Ray and Wave Aberrations

Exact aberration Longitudinal Transverse Wave aberration

General (off-axis) LA TA W

x Component (off-axis) LAx TAy —
y Component (off-axis) LAx TAy —
On-axis LA0 TA0 W0
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A1.2 SUMMARY OF PRIMARY ABERRATION
COEFFICIENTS

A1.2.1 Conrady’s Form

This is the form of the coefficients as derived by Conrady, but with our sign
notation.

Spherical aberration

SphTC ¼
y n=n0ð Þðn� n0Þðiþ u0Þi2

2n0ku
0
k

ðA1:3Þ

and the contribution of the aspheric deformation is

SphTCasph ¼ �ð8A1 þ Kc3Þ
n� n0

2

	 

y4

n0ku0k

	 

ðA1:4Þ

Coma

ComaSC ¼ SphTC
�ii

i

	 

ðA1:5Þ

the aspheric contribution is represented by ComaS asph and given by

ComaSCasph ¼ SphTCasph
�yy

y

	 

ðA1:6Þ

Astigmatism

AstTsC ¼ SphTC
�ii

i

	 
2

ðA1:7Þ

the aspheric contribution is

AstLSCasph ¼ SphLCasph
�yy

y

	 
2

ðA1:8Þ

Petzval curvature

PtzC ¼
h02k n

0
k

2

n0 � n

nn0r

	 

ðA1:9Þ
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Distortion

DistC ¼ ComaSC
�ii

i

	 
2

PtzC
�ii

i

	 

u0k ðA1:10Þ

the contribution introduced by the aspheric deformation is

DistCasph ¼ SphTCasph
�yy

y

	 
3

ðA1:11Þ

Axial chromatic aberration

AchrTC ¼
yni

n0ku
0
k

nF � nC
n

�
n 0
F � n 0

C

n0

	 

ðA1:12Þ

Magnification chromatic aberration

MchrC ¼ AchrTC
�ii

i

	 

ðA1:13Þ

A1.2.2 For Numerical Calculation

The following slightly different set of equations have been recommended by
many authors for use in electronic computers.

Spherical aberration

SphTC ¼ si2 ðA1:14Þ

where

s ¼
y n=n0ð Þðn� n0Þðiþ u0Þ

2n0ku
0
k

ðA1:15Þ

the contribution of the aspheric deformation is

SphTCasph ¼ �ð8A1 þ Kc3Þ
n� n0

2

	 

y4

n0ku
0
k

	 

ðA1:16Þ
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Coma

ComaSC ¼ s i�ii ðA1:17Þ

The aspheric contribution is

ComaSCasph ¼ SphTCasph
�yy

y

	 

ðA1:18Þ

Astigmatism

AstTSC ¼ s�ii 2 ðA1:19Þ

the aspheric contribution is

AstLSCasph ¼ SphLCasph
�yy

y

	 
2

ðA1:20Þ

Petzval curvature

PtzC ¼ �
h0k

2n0k
2

n0 � n

n n0r

	 

ðA1:21Þ

Distortion

DistC ¼ �ssi�iiþ
h0k
2
ð �uu0

2
� �uu2Þ ðA1:22Þ

where

�ss ¼
�yy n=n0ð Þðn� n0Þð�iiþ �uu0Þ

2n0ku
0
k

ðA1:23Þ

the contribution to the aspheric deformation is

DistCasph ¼ SphTCasph
�yy

y

	 
3

ðA1:24Þ
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Axial chromatic aberration

AchrTC ¼
yni

n0ku
0
k

n0F � n0C
n0

�
n0F � n0C

n0

	 

ðA1:25Þ

Magnification chromatic aberration

MchrC ¼ AchrTC
�ii

i

	 

ðA1:26Þ

The magnitude of the aberrations depends both on the lens aperture and on
the image height. Table A1.5 shows how each of the primary aberrations
depend on these two parameters.

Table A1.5 Functional Dependence of Primary Aberrations on Aperture and
Image Height

Semiaperture y

Image height

h0

Spherical aberration Longitudinal y 2 None

Transverse y 3

Wavefront S 4

Coma Transverse y2 h0

Wavefront S 2 y¼ (x2þ y2) y

Astigmatism Longitudinal None h0 2

Transverse y
Wavefront S 2

þ 2 y2¼ x2þ 3 y2

Petzval curvature Longitudinal None h0 2

Wavefront S 2

Distortion Transverse None h0 3

Wavefront y

Axial chromatic aberration Longitudinal None None
Transverse y
Wavefront S 2

Magnification chromatic
aberration

Transverse None h0

Wavefront y
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Appendix 2
Mathematical Representation of
Optical Surfaces

A2.1 SPHERICAL AND ASPHERICAL SURFACES

An optical surface may have many shapes (Herzberger and Hoadley, 1946;
Mertz, 1979a,b; Shannon, 1980; Schulz, 1988; Malacara, 1992), but the most
common is spherical, whose sagitta for a radius of curvature r and a
semidiameter S¼ x2þ y2 may be written as

Z ¼ r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � S2

p
ðA2:1Þ

However, this representation fails for flat surfaces. A better form is

Z ¼
cS2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2S2

p ðA2:2Þ

where, as usual, c¼ 1/r, and S2
¼ x2þ y2.

A conic surface is characterized by its eccentricity e. If we define a
conic constant K¼�e2, then the expression for a conic of revolution may be
written as

Z ¼
1

Kþ 1
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðKþ 1ÞS2

ph i
ðA2:3Þ

which works for all conics except the paraboloid. It also fails for flat
surfaces, so a better representation is

Z ¼
cS2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðKþ 1Þc2S2

p ðA2:4Þ
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The conic constant defines the type of conic, according to the Table A2.1. It
is easy to see that the conic constant is not defined for a flat surface.
Figure A2.1 shows the shape of some conic surfaces.

To the equation for the conic of revolution we may add some aspheric
deformation terms as follows:

Z ¼
cS2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðKþ 1Þc2S2

p þ A1S
4 þ A2S

6 þ A3S
8 þ A4S

10 ðA2:5Þ

An axicon (McLeod, 1954, 1960), which has the conical shape
illustrated in Fig. A2.2, may be represented by means of a hyperboloid with

Table A2.1 Values of Conic Constants for Conicoid Surfaces

Type of conic Conic constant value

Hyperboloid K<�1

Paraboloid K¼�1
Ellipse rotated about its major axis
(prolate spheroid or ellipsoid)

�1<K< 0

Sphere K¼ 0

Ellipse rotated about its minor axis
(oblate spheroid)

K> 0

Figure A2.1 Shape of some conic surfaces.
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an extremely large curvature, obtaining

K ¼ �ð1þ tan2 yÞ < �1 ðA2:6Þ

and

c ¼
1

ðKþ 1Þb
ðA2:7Þ

Sometimes it may be interesting to express the optical surface as a
spherical surface plus some aspheric deformation terms that include the
effect of the conic shape. Then, we may find that

Z ¼
cS2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2S2

p þ B1S
4 þ B2S

6 þ B3S
8 þ B4S

10 ðA2:8Þ

where

B1 ¼ A1 þ
½ðKþ 1Þ � 1�c3

8
ðA2:9Þ

B2 ¼ A2 þ
½ðKþ 1Þ2 � 1�c5

16
ðA2:10Þ

B3 ¼ A3 þ
5½ðKþ 1Þ3 � 1�c7

128
ðA2:11Þ

and

B4 ¼ A4 þ
7½ðKþ 1Þ4 � 1�c9

256
ðA2:12Þ

Figure A2.2 An axicon.
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A2.1.1 Aberrations of Normals to Aspheric Surface

A normal to the aspheric optical surface intersects the optical axis at a
distance Zn from the center of curvature. Sometimes it is important to know
the value of this distance, called aberration of the normals. To compute
its value, we first find the derivative of Z with respect to S, as follows:

dZ

dS
¼

cSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðKþ 1Þc2S2

p þ 4A1S
3 þ 6A2S

5 þ 8A3S
7 þ 10A4S

9

ðA2:13Þ

Then, the distance Ln as shown in Fig. A2.3 is

Ln ¼
S

dZ=dS
þ Z ðA2:14Þ

which as shown by Buchroeder et al. (1972), for conic surfaces becomes

Ln ¼
1

c
� KZ ðA2:15Þ

The envelope of the caustic produced by the normals to the aspheric
surface is called the evolute in analytic geometry. It is interesting to see that

Figure A2.3 Some parameters for conic surfaces.
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for the case of a paraboloid (K¼�1), as shown in Fig. A2.4 this aberration
of the normals becomes

Ln ¼
1

c
þ Z ¼

1

c
þ f tan2 j ðA2:16Þ

where the angle j is the angle between the normal to the surface and the
optical axis, as illustrated in this figure, and f is the focal length of the
paraboloid. We may see that, for this case of the paraboloid, the distance Zn

from the center of curvature to the intersection of the normal with the optical
axis is equal to the sagitta Z, as shown in Fig. A2.3. In the general case of
aspheric surfaces, the intersection of the normals may be approximated by

Ln ¼
1

c
�
ðKc3 þ 8A1ÞS

2

2c2
ðA2:17Þ

Figure A2.4 Aberration of the normals to the aspheric surface: (a) oblate spheroid
(K> 0); (b) prolate spheroid (�1<K< 0); (c) paraboloid (K¼�1); (d) hyperboloid
(K>�1).
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Sometimes, it is desirable to express a nonplane aspherical surface in
terms of the angle j between the normal to the surface and the optical axis
instead of the ray height S. In this case the following relation can be used in
Eq. (A2.3):

c2S2 ¼
sin2 j

1þ K sin2 j
ðA2:18Þ

A2.1.2 Some Parameters for Conic Surfaces

The positions for the foci of the conic surfaces as functions of the radius of
curvature r and the conic constant K, as illustrated in Fig. A2.4, are

d1 ¼
r

ðKþ 1Þ
ðA2:19Þ

d2 ¼
r

ðKþ 1Þ
ð2

ffiffiffiffi
K

p
Þ ðA2:20Þ

d3; d4 ¼
r

ðKþ 1Þ
ð1�

ffiffiffiffiffiffiffiffi
�K

p
Þ ðA2:21Þ

d5 ¼
r

2
ðA2:22Þ

and

d6; d7 ¼
r

ðKþ 1Þ
ð
ffiffiffiffiffiffiffiffi
�K

p
� 1Þ ðA2:23Þ

It is important to point out that the oblate spheroid is not an optical
system with symmetry of revolution, since the object and image are off-axis.
Thus, the image is astigmatic.

A2.1.3 Off-Axis Paraboloids

Figure A2.5 shows an off-axis paraboloid tilted an angle y with respect to the
axis of the paraboloid. The line perpendicular to the center of the off-axis
paraboloid is defined as the optical axis. If the diameter of this surface is
small compared with its radius of curvature, it may be approximated by a
toroidal surface. Then, the tangential curvature, ct, defined as the curvature
along a circle centered on the axis of the paraboloid, as shown by Malacara
(1991), is

ct ¼
cos3 y
2f

ðA2:24Þ

© 2004 by Marcel Dekker, Inc.



where f is the focal length of the paraboloid, and y is the angle between the
axis of the paraboloid and the optical axis, as in Fig. A2.5. The sagittal
curvature cs, defined as the curvature along a radial direction, is

cs ¼
cos y
2f

ðA2:25Þ

The on-axis vertex curvature of the paraboloid is

c ¼
1

2f
ðA2:26Þ

hence, we may find that

ctc
2 ¼ c3s ðA2:27Þ

which, as shown by Menchaca and Malacara (1984), is true for any conic,
not just for paraboloids.

As shown by (Malacara, 1991) the shape of the off-axis paraboloid in
the new system of coordinates rotated by an angle y is given by

Zðx, yÞ ¼
ðX2 þ Y2 cos2 yþ Z2 sin2 yÞ cos y

4f 1þ Y sin y cos2 y=2fð Þ
ðA2:28Þ

When the diameter of the paraboloid is relatively small, the surface
may be approximated by

Zðx, yÞ ¼
cxX

2

2
þ
cyY

2

2
�
c2

4
cos3 y sin yð1þ 3 cos2 yÞðX2 þ Y2ÞY

�
c2

4
cos3 y sin3 yð3X2 � YÞY ðA2:29Þ

Figure A2.5 Off-axis paraboloid.
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This surface has the shape of a toroid (represented by primary astigmatism)
as indicated by the first two terms. An additional comatic deformation is
represented by the third term. As should in Plloptd 5, a comatic shape is like
that of a spoon, with a nonconstant increasing curvature along one diameter
and another, constant curvature along the other perpendicular diameter.
With somewhat larger diameters triangular astigmatism appears, as shown
by the last term. This triangular astigmatism is the shape obtained by
placing a semiflexible disk plate on top of three supports located at its edge,
separated by 120�.

A2.1.4 Toroidal and Spherocylindrical Surfaces

An astigmatic surface is one that has two different curvatures along two
orthogonal axes. For example, a toroidal surface, as described before, an
ellipsoid of revolution, and an off-axis paraboloid are astigmatic. If we
restrict our definition only to surfaces that have bilateral symmetry about
these two orthogonal axes the off-axis paraboloid is out. Let us assume that
the two orthogonal axes of symmetry are along the x and y axes. Then, the
two orthogonal curvatures are given by

cx ¼
1

rx
þ

@2Zðx, yÞ

@x2

	 

ðA2:30Þ

and

cy ¼
1

ry
þ

@2Zðx, yÞ

@y2

	 

ðA2:31Þ

and the curvature cy in any arbitrary direction at an angle y with respect to
the x axis is given by

cy ¼
1

ry
¼ cx cos

2 yþ cy sin
2 y ðA2:32Þ

If we further restrict our definition of astigmatic surfaces to surfaces
where the cross-sections along the symmetry axes are circles we still have
an infinite number of possibilities (Malacara-Doblado et al., 1996). The
most common of these surfaces are the toroidal and the spherocylindrical
surfaces. Sasian (1997) has shown that an astigmatic surface can sometimes
replace an off-axis paraboloid, which is more difficult to manufacture.
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A toroidal surface, shown in Fig. A2.6, may be generated in many
ways (Malacara and Malacara, 1971). It has the shape of a donut and is
represented by

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2y � Y2Þ

q
þ rx � ry

h i2
�X2

	 
1=2

þ rx ðA2:33Þ

where rx is the radius of curvature on the x–z plane (large radius) and ry is
the radius of curvature in the y–z plane (small radius). We may see that this
expression is not symmetrical in X and Y because the axis of symmetry of
the toroid is parallel to the y axis (X¼ 0, Z¼ rx), but does not have any
symmetry about any axis parallel to the x axis.

As we may see in Fig. A2.6(a), observing the dotted line crossing the
toroid, there are four solutions (P1, P2, P3, P4) for Z, given a pair of values
of X and Y. This is obvious if we notice that we have two square roots, one
inside the other. In Fig. A2.6(b) when ry< rx, two of the four solutions are
imaginary.

Another similar surface, called a spherocylindrical surface (Menchaca
and Malacara, 1986), is illustrated in Fig. A2.7 and expressed by

Z ¼
cxX

2 þ cyY
2

1þ 1� ðcxX2 þ cyY2Þ
2=ðX2 þ Y2Þ

 �1=2 ðA2:34Þ

where cx and cy are the curvatures along the x and y axes, respectively. This
surface is symmetric in X and Y. What these two surfaces have in common is
that their cross-sections in the planes x–z and y–z are circles. If the clear
apertures of these two types of surfaces, the toroidal and the spherocylin-
drical, are small compared with their radii of curvature, they become
identical for all practical purposes.

Figure A2.6 Toroidal surface parameters: (a) r1>2r2; (b) r1< 2r2.
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An important difference between the toroidal and the spherocylin-
drical surface is that the second has only two possible solutions for Z, since
there is only one square root.
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Appendix 3
Optical Materials

A3.1 OPTICAL GLASSES

Optical glass is mainly determined by their value of two constants, namely,
the refractive index and the Abbe constant. A diagram of the Abbe number
Vd versus the refractive index nd for Schott glasses is shown in Fig. A3.1.
The glasses with a letter ‘‘K’’ at the end of the glass type name are crown
glasses and those with a letter ‘‘F’’ are flint glasses. Besides the refractive
index for the d line, several other quantities define the main refractive
characteristics of the glass. The difference (nF� nC) is called the principal
dispersion. The Abbe value expresses the way in which the refractive index
changes with wavelength. The Abbe value Vd for the d line is defined as

VdSphTC ¼
nd � 1

nF � nC
�i2 ðA3:1Þ

Figure A3.1 Abbe number versus refractive index chart for optical glasses.
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The secondary spectrum produced by an optical glass is determined by the
partial dispersion of the glass. The partial dispersion Pg,F for the lines g and
F is defined as

PVg;Fd ¼
ngd � nF1
nF � nC

ðA3:2Þ

There is such a large variety of optical glasses that to have a complete
stock of all types in any optical shop is impossible. Many lens designers
have attempted to reduce the list to the most important glasses, taking into
consideration important factors, like optical characteristics, availability,
and price. A list of some of the most commonly used optical glasses is given
in Table A3.1.

Table A3.1 Some Schott Optical Glasses

Name Vd nC nd nF ng

BaF4 43.93 1.60153 1.60562 1.61532 1.62318
BaFN10 47.11 1.66579 1.67003 1.68001 1.68804

BaK4 56.13 1.56576 1.56883 1.57590 1.58146
BaLF5 53.63 1.54432 1.54739 1.55452 1.56017
BK7 64.17 1.51432 1.51680 1.52238 1.52668

F2 36.37 1.61503 1.62004 1.63208 1.64202
K4 57.40 1.51620 1.51895 1.52524 1.53017
K5 59.48 1.51982 1.52249 1.52860 1.53338

KzFSN4 44.29 1.60924 1.61340 1.62309 1.63085
LaF2 44.72 1.73905 1.74400 1.75568 1.76510
LF5 40.85 1.57723 1.58144 1.59146 1.59964

LaK9 54.71 1.68716 1.69100 1.69979 1.70667
LLF1 45.75 1.54457 1.54814 1.55655 1.56333
PK51A 76.98 1.52646 1.52855 1.53333 1.53704
SF1 29.51 1.71032 1.71736 1.73463 1.74916

SF2 33.85 1.64210 1.64769 1.66123 1.67249
SF5 32.21 1.66661 1.67270 1.68750 1.69985
SF8 31.18 1.68250 1.68893 1.70460 1.71773

SF10 28.41 1.72085 1.72825 1.74648 1.76198
SF15 30.07 1.69221 1.69895 1.71546 1.72939
SF56A 26.08 1.77605 1.78470 1.80615 1.82449

SK4 58.63 1.60954 1.61272 1.62000 1.62569
SK6 56.40 1.61046 1.61375 1.62134 1.62731
SK16 60.32 1.61727 1.62041 1.62756 1.63312

SK18A 55.42 1.63505 1.63854 1.64657 1.65290
SSKN5 50.88 1.65455 1.65844 1.66749 1.67471

© 2004 by Marcel Dekker, Inc.



The location of these glasses in a diagram of the Abbe number Vd

versus the refractive index nd is shown in Fig. A3.2. Figure A3.3 shows a
plot of the partial dispersion Pg,F versus the Abbe number Vd.

Ophthalmic glasses are also widely used. Table A3.2 lists some of these
glasses.

Figure A3.2 Some common optical glasses.

Figure A3.3 Abbe number versus relative partial dispersion of optical glasses.
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Finally, Table A3.3 lists some other optical isotropic materials used in
optical elements.

A3.2 OPTICAL PLASTICS

There is a large variety of plastics, with many different properties, used to
make optical components, but some of the most common ones are listed in
Table A3.4.

A3.3 INFRARED AND ULTRAVIOLET MATERIALS

Most glasses are opaque to infrared and ultraviolet radiation. If a lens has
to be transparent at these wavelengths special materials have to be selected.

Table A3.2 Some Schott Ophthalmic Glasses

Glass type Vd nC nd nF ng

Density

(g/ml)

Crown (D 0391) 58.6 1.5203 1.5230 1.5292 1.5341 2.55

Flint (D 0290) 44.1 1.5967 1.6008 1.6103 1.6181 2.67
Flint (D 0389) 42.9 1.5965 1.6007 1.6105 1.6185 2.67
Flint (D 0785) 35.0 1.7880 1.7946 1.8107 1.8239 3.60

Flint (D 0082) 30.6 1.8776 1.8860 1.9066 1.9238 4.02
Low density flint (D 0088) 30.8 1.6915 1.7010 1.7154 1.7224 2.99

Table A3.3 Other Optical Isotropic Materials

Material Vd nC nd nF ng

Fused rock crystal 67.6 1.45646 1.45857 1.46324 1.46679
Synthetic fused silica 67.7 1.45637 1.45847 1.46314 1.46669
Fluorite 95.3 1.43249 1.43384 1.43704 1.43950

Table A3.4 Some Optical Plastics

Material Vd nC nd nF ng

Acrylic 57.2 1.488 1.491 1.497 1.5000
Polystyrene 30.8 1.584 1.590 1.604 1.6109
Polycarbonate 30.1 1.577 1.583 1.604 1.6039

CR-39 60.0 1.495 1.498 1.504 1.5070
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The subject of these special materials is so wide that it cannot be treated in
this book due to a lack of space. Instead, some references are given for the
interested reader.
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Appendix 4
Exact Ray Tracing of Skew Rays

A4.1 EXACT RAY TRACING

Ray-tracing procedures have been described many times in the literature
(Herzberger and Hoadley, 1946; Herzberger, 1951, 1957; Allen and Snyder,
1952; Lessing, 1962; Spencer and Murty, 1962; Malacara, 1965; Feder, 1968;
Cornejo-Rodrı́guez and Cordero-Dávila, 1979). These methods are basically
simple, in the sense that only elementary geometry is needed. However,
tracing of skew rays through aspherical surfaces is quite involved from
an algebraic point of view. This is the reason why these methods are not
well described in many optical design books. Nevertheless, the practical
importance of ray-tracing procedures is great, especially if a computer
program is to be used or understood.

We will derive now the necessary equations to trace skew rays through
aspherical surfaces, using a procedure described by Hopkins and Hanau
(1962). This method is formed by the following four basic steps:

1. Transfer from first surface to plane tangent to next surface
2. Transfer from tangent plane to osculating sphere
3. Transfer from osculating sphere to aspheric surface
4. Refraction at aspheric surface

The rays are defined by the intersection coordinates X, Y, and Z on the
first surface and their direction cosines multiplied by the refractive indices,
K, L, and M. We will now study in some detail these steps.

A4.1.1 Transfer from First Surface to Plane Tangent to
Next Surface

To begin the derivation of the formulas to trace skew rays, let us consider
Fig. A4.1. The origin of coordinates is at the vertex of the optical surface.
The starting point for the ray are the coordinates X�1, Y�1, and Z�1 on
the preceding surface. The ray direction is given by the direction cosines
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K�1/n�1, L�1/n�1, and M�1/n�1. The distance d, along the ray, from the
starting point to the intersection of the ray with the plane tangent to the next
surface is given by the definition of M�1 as

d�1

n�1
¼

t�1 � Z�1

M�1
ðA4:1Þ

then, using this value and the definitions of L and M, the coordinates XT

and YT on the tangent plane are given by

XT ¼ X�1 þ
d�1

n�1

	 

K�1 ðA4:2Þ

and

YT ¼ Y�1 þ
d�1

n�1

	 

L�1 ðA4:3Þ

A4.1.2 Transfer from Tangent Plane to Osculating Sphere

A sphere is said to be osculating to an aspherical surface when they are
tangents at their vertices and have the same radii of curvature at that point.
Let us find now the intersection of the ray with the osculating (osculum is the
latin word for kiss) sphere. If A is the distance along the ray, from the point

Figure A4.1 Ray tracing through an optical surface.
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on the tangent plane to the intersection with the sphere, the coordinates of
this intersection are

X ¼ XT þ
A

n�1

	 

K�1 ðA4:4Þ

Y ¼ YT þ
A

n�1

	 

L�1 ðA4:5Þ

and

Z ¼
A

n�1

	 

M�1 ðA4:6Þ

However, before computing these coordinates we need to know the value of
the distance A. Then, the first step is to find this distance, illustrated in
Fig. A4.1. From Fig. A4.2 we may see that

Z ¼ r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðX2 þ Y2Þ

p

¼
1

c
�
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2ðX2 þ Y2Þ

p
ðA4:7Þ

Figure A4.2 Some parameters in ray tracing.
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and then, transposing and squaring we obtain

c2ðX2 þ Y2 þ Z2Þ � 2cZ ¼ 0 ðA4:8Þ

then, we substitute here the values of X, Y, and Z given by Eqs.
(A4.4)–(A4.6):

A

n�1

	 
2

cðK2
�1 þ L2

�1 þM2
�1Þ � 2

A

n�1

	 

½M�1 � cðYTL�1 þ XTK�1Þ�

þ cðX2
T þ Y2

TÞ ¼ 0 ðA4:9Þ

where we divided by c, assuming that c is not zero. Since the sum of the
squares of the direction cosines is one, we may write

cn2�1

A

n�1

	 
2

�2B
A

n�1

	 

þH ¼ 0 ðA4:10Þ

where we have defined:

B ¼ ½M�1 � cðYTL�1 þ XTK�1Þ� ðA4:11Þ

and

H ¼ cðX2
T þ Y2

TÞ ¼ r
X2

T þ Y2
T

r2

	 

¼ r tan2 b ðA4:12Þ

where the angle b is shown in Fig. A4.2. To obtain the desired value of
A we must find the roots of the second-degree equation (A4.10), as follows:

A

n�1

	 

¼

B� n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
n�1

� �2
�cH

r

cn2�1

ðA4:13Þ

Let us now consider the case of a plane surface (c¼ 0). When the value of c
approaches zero, the value of A must also go to zero, as we may see in
Fig. A4.1. This is possible only if we take the negative sign in expression
(A4.13). Now let us find an alternative expression for the square root.
Considering now Fig. A4.3 and using the cosine law, we may find that the
segment D has a length given by

D2 ¼ X2
T þ Y2

T þ r2 ¼ A2 þ r2 þ 2Ar cos I ðA4:14Þ
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thus, solving for cos I and using the value of H in Eq. (A4.12), we obtain

n�1 cos I ¼
H� cn2�1 A=n�1ð Þ

2

2 A=n�1ð Þ
ðA4:15Þ

Now, we substitute here the value of (A/n�1) given in Eq. (A4.13) (using the
minus sign, as pointed out before) and, after some algebraic manipulation,
we may find that

n�1 cos I ¼ n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

n�1

	 
2

�cH

s
ðA4:16Þ

then, we substitute this result into Eq. (A4.13), with the minus sign in front
of the square root, obtaining

A

n�1

	 

¼

B� n�1 cos I

cn2
�1

ðA4:17Þ

On the other hand, from Eq. (A4.16) we also may find that

cn2�1 ¼
B2 � n2�1 cos

2 I

H

¼
ðBþ n�1 cos I ÞðB� n�1 cos I Þ

H
ðA4:18Þ

Figure A4.3 Ray refraction at the optical surface.

© 2004 by Marcel Dekker, Inc.



Then, substituting this expression into Eq. (A4.17), the result for (A/n�1) is

A

n�1

	 

¼

H

Bþ n�1 cos I
ðA4:19Þ

In conclusion, first the values of B and H are calculated with
Eqs. (A4.11) and (A4.12), respectively. Then, the value of n�1 cos I is
obtained with Eq. (A4.16) and substituted into Eq. (A4.19) to obtain the
desired value of (A/n�1).

A4.1.3 Transfer from Osculating Sphere to Aspheric Surface

We proceed here in a similar way as in the last section. The first part is to
compute the distanceA0 (Fig. A4.1) from the intersection point of the ray with
the osculating sphere to the intersection point with the aspherical surface. The
direct method is extremely complicated and it is better to obtain this value in
an iterative manner, as illustrated in Fig. A4.4. Let us assume that the
coordinates of the ray intersection with the osculating spherical surface
(point a1) are (X1, Y1, Z1). The procedure is now as follows:

1. The point b1, with the same X1 and Y1 coordinates, at the
aspherical surface is found and the distance �F1 is computed.

2. We find the plane tangent to the aspherical surface at this point.
3. The intersection a2 of the ray with this plane is calculated.

Figure A4.4 Transfer to the aspheric surface.
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4. The same procedure is continued for points b2, a3, b3, and so on,
until the error becomes small enough.

For any iteration step, let (Xn, Yn, Zn) represent the coordinates at the
point an , and (Xn,Yn,Z

0
n) the coordinates at the point bn, where this number n

is the order of approximation. The radial distance Sn from the optical axis to
the point an is

S2
n ¼ X2

n þ Y2
n ðA4:20Þ

then, we define Wn as the square root in expression (A2.8) for the aspherical
surface:

Wn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2S2

n

q
ðA4:21Þ

Now the distance �Fn from an to bn is given by

Fn ¼ Zn �
cS2

n

1þWn
þ B1S

4
n þ B2S

6
n þ B3S

8
n þ B4S

10
n

� �

¼ Zn � Z0
n ðA4:22Þ

The coordinates of the point anþ1 may be found only after we calculate the
length �A0

n, as illustrated in Fig. A4.4, but first we need the equation of the
plane tangent to the aspheric surface at point bn. To find the equation of this
plane let us consider the equation of the aspheric surface (eliminating for
simplicity the subscript n), which is

�ðX;Y;ZÞ ¼ Z�
cS2

1þW
þ B1S

4 þ B2S
6 þ B3S

8 þ B4S
10

� �
¼ 0

ðA4:23Þ

then the equation of the tangent plane is

�ðXn;Yn;Z
0
nÞ þ ðX� XnÞ

@�

@X

	 

Xn;Yn;Z0

n

þðY� YnÞ
@�

@Y

	 

Xn;Yn;Z0

n

þ ðZ� Z0
nÞ

@�

@Z

	 

Xn;Yn;Z0

n

ðA4:24Þ

The next step is to compute these partial derivatives as follows

@�

@X
¼
@�

@S

@S

@X
¼
@�

@S

X

S
ðA4:25Þ

@�

@Y
¼
@�

@S

Y

S
ðA4:26Þ
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and

@�

@Z
¼ 1 ðA4:27Þ

Differentiating Eq. (A4.23), and with the definition of W in Eq. (A4.21),
we obtain

@�

@S
¼ �

S

W
c� S½4B1S

2 þ 6B2S
4 þ 8B3S

6 þ 10B4S
8�

¼ �
S

W
E ðA4:28Þ

where

E ¼ cþW 4B1S
2 þ 6B2S

4 þ 8B3S
6 þ 10B4S

8
 �

ðA4:29Þ

With these results, after substituting into Eq. (A4.24) we obtain the
following equation of the plane:

�ðX� XnÞ
Xn

Wn
E� ðY� YnÞ

Yn

Wn
Eþ ðZ� Z0

nÞ þ Zn � Z0
n ¼ 0 ðA4:30Þ

but defining

Un ¼ �XnEn ðA4:31Þ

Vn ¼ �YnEn ðA4:32Þ

and using Fn ¼Zn�Z0
n, the equation of the plane may be found to be

ðX� XnÞUn þ ðY� YnÞVn þ ðZ� ZnÞWn ¼ �FnWn ðA4:33Þ

If we now take the particular values Xnþ1, Xnþ1, Xnþ1, for the coordinates X,
Y, Z we may find that

ðXnþ1 � XnÞUn þ ðYnþ1 � YnÞVn þ ðZnþ1 � ZnÞWn ¼ �FnWn ðA3:34Þ

Similarly to Eqs. A4.4, A4.5, and A4.6, we may write for the
coordinates Xnþ1, Ynþ1, Znþ1:

Xnþ1 ¼ Xn þ
�A0

n�1

	 

K�1 ðA4:35Þ

Ynþ1 ¼ Yn þ
�A0

n�1

	 

L�1 ðA4:36Þ
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and

Znþ1 ¼ Zn þ
�A0

n�1

	 

M�1 ðA4:37Þ

Hence, substituting these values into Eq. (A4.33) and solving for �A0/n�1

we find that

D�1 ¼ d�1 þ Aþ A0 ðA4:38Þ

This iterative loop ends when the desired tolerance in the value of �A0/n�1

has been obtained. Finally, from Fig. A4.1 we see that

�A0

n�1
¼ �

FnWn

K�1Un þ L�1Vn þM�1Wn
ðA4:39Þ

A4.1.4 Refraction at Aspheric Surface

From Eq. (A4.33) we see that the direction cosines of the normal to the
plane (or to the aspherical surface) are U/G, V/G, W/G, where

G2 ¼ U2 þ V2 þW2 ðA4:40Þ

and the subscript n has been eliminated, since the iteration has been finished.
Thus, the unit vector normal to the surface S1 is

S1 ¼
U

G
;
V

G
;
W

G

	 

ðA4:41Þ

Then, the scalar product of the unit normal vector and the unit vector along
the ray is the cosine of the angle between the two. Thus,

cos I ¼
K�1

n�1

U

G
þ
L�1

n�1

V

G
þ
M�1

n�1

W

G
ðA4:42Þ

which may be rewritten as

Gn�1 cos I ¼ K�1Uþ L�1VþM�1W ðA4:43Þ

From Eq. (1.17), the vectorial law of refraction is given by

S2 ¼ S1 � �p ðA4:44Þ

© 2004 by Marcel Dekker, Inc.



where � is given by Eq. (1.18) as

� ¼ n cos I0 � n�1 cos I ðA4:45Þ

which may be rewritten as

P ¼
�

G
¼

Gn cos I 0 � Gn�1 cos I

G2
ðA4:46Þ

In the same expression (1.18) we also have that

n cos I0 ¼ n
n�1

n
cos I

� �2
�

n�1

n

� �2
þ1

� �1=2
ðA4:47Þ

thus, multiplying by G we obtain

Gn cos I0 ¼ n G
n�1

n
cos I

� �2
� G2 n�1

n

� �2
þ G2

� �1=2
ðA4:48Þ

Finally, the vectorial law of refraction may be written with three
separate expressions, as

K ¼ K�1 þUP ðA4:49Þ

L ¼ L�1 þ VP ðA4:50Þ

and

M ¼ M�1 þWP ðA4:51Þ

A4.1.5 Refraction at Toroidal or Spherocylindrical Surfaces

To trace rays through toroidal (Murra, 1954; Spencer and Murty, 1962)
or spherocylindrical surfaces (Menchaca and Malacara, 1986), we may
follow basically the same procedure we used for the rotationally
symmetric aspherical surfaces. For spherocylindrical surfaces the method
described by Menchaca and Malacara (1986) may be used. In this case, the
following equations must be used to find the values of U and V. First,
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we define the parameters:

Q ¼ c1X
2 þ c2Y

2 ðA4:52Þ

and

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Q2

S2

r
ðA4:53Þ

Then, the value of F defined in Eq. (A4.22) is now given by

F ¼ Zn �
Q

ð1þ RÞ
ðA4:54Þ

The value of W is the same given in Eq. (A4.21) and the values of U and V
become

U ¼ W
� 2c1Xnð1þ RÞ þ 2 ðc1X

2
n=S

4Þð2c1 �QÞQ
� � �

ð1þ RÞ2
ðA4:55Þ

and

V ¼ W
� 2c2Ynð1þ RÞ þ 2 ðc2Y

2
n=S

4Þð2c2 �QÞQ
� � �

ð1þ RÞ2
ðA4:56Þ

A4.2 SUMMARY OF RAY TRACING RESULTS

The final set of expressions for tracing rays through an aspherical surface
with rotational symmetry is now listed in the order in which they are to be
used. The ray to be traced is defined by the intersection coordinates X�1,
Y�1, and Z�1 on the first surface and its direction cosines multiplied by the
refractive indices, K�1, L�1, and M�1. First, to trace the ray from the
previous surface to the plane tangent to the surface being considered:

d�1

n�1
¼

t�1 � Z�1

M�1
ðA4:57Þ

XT ¼ X�1 þ
d�1

n�1

	 

K�1 ðA4:58Þ

YT ¼ Y�1 þ
d�1

n�1

	 

L�1 ðA4:59Þ
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Then, the ray is traced from the tangent plane to the spherical osculating
surface as follows:

H ¼ cðX2
T þ Y2

TÞ ðA4:60Þ

B ¼ M�1 � cðYTL�1 þ XTK�1Þ ðA4:61Þ

n�1 cos I ¼ n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

n�1

	 
2

�cH

s
ðA4:62Þ

If the argument of this square root is negative, the ray does not
intersect the spherical surface. Next, we calculate

A

n�1

	 

¼

H

Bþ n�1 cos I
ðA4:63Þ

X ¼ XT þ
A

n�1

	 

K�1 ðA4:64Þ

Y ¼ YT þ
A

n�1

	 

L�1 ðA4:65Þ

Z ¼
A

n�1

	 

M�1 ðA4:66Þ

We have calculated the coordinates of the ray on the osculating
sphere. Now, we begin the iterative process to calculate the ray coordinates
on the aspheric surface:

S2
n ¼ X2

n þ Y2
n ðA4:67Þ

Wn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2S2

n

q
ðA4:68Þ

where, if the argument of this square root is negative, the ray is not crossing
the aspherical surface. Then, we calculate

Fn ¼ Zn �
cS2

n

1þWn
þ B1S

4
n þ B2S

6
n þ B3S

8
n þ B4S

10
n

� �
ðA4:69Þ

When the optical surface is a conic, the coefficients Bi are computed with
Eqs. (A2.9)–(A2.12). Then,

En ¼ cþWn 4B1S
2
n þ 6B2S

4
n þ 8B3S

6
n þ 10B4S

8
n

 �
ðA4:70Þ

Un ¼ �XnEn ðA4:71Þ
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Vn ¼ �YnEn ðA4:72Þ

�A0

n�1
¼ �

FnWn

K�1Un þ L�1Vn þM�1Wn
ðA4:73Þ

Xnþ1 ¼ Xn þ
�A0

n�1

	 

K�1 ðA4:74Þ

Ynþ1 ¼ Yn þ
�A0

n�1

	 

L�1 ðA4:75Þ

Znþ1 ¼ Zn þ
�A0

n�1

	 

M�1 ðA4:76Þ

If the magnitude of �A0 is greater than the tolerance (typically about l/20 or
less), another iteration is performed by going again to the first equation
(A4.67). Then, with the final values we continue by calculating

G2 ¼ U2 þ V2 þW2 ðA4:77Þ

Gn�1 cos I ¼ K�1Uþ L�1VþM�1W ðA4:78Þ

Gn cos I0 ¼ n G
n�1

n
cos I

� �2
�G2 n�1

n

� �2
þG2

� �1=2
ðA4:79Þ

but if the argument of this square root is negative, the ray is not refracted,
but totally reflected internally. Then, we continue with

P ¼
Gn cos I0 � Gn�1 cos I

G2
ðA4:80Þ

K ¼ K�1 þUP ðA4:81Þ

L ¼ L�1 þ VP ðA4:82Þ

M ¼ M�1 þWP ðA4:83Þ

This ends the ray-tracing procedure for the rotationally symmetric
aspheric surface.

A4.3 TRACING THROUGH TILTED OR DECENTERED
OPTICAL SURFACES

An optical surface may be tilted or decentered (Allen and Snyder, 1952) with
respect to the optical axis of the system. In other words, there may not be a
single common optical axis for all surfaces. Let us take a system of
coordinates, as shown in Fig. A4.5, with its origin at the vertex of the
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surface under consideration, before tilting and/or decentering. Then, the z
axis is aligned with the z axis of the previous surface and the y axis is parallel
to the y axis of the previous surface. The optical axis of a surface may be
inclined with respect to the optical axis of the previous surface by a rotation
of this system of coordinates by an angle yx about the x axis or by a rotation
by an angle yy about the y axis. A rotation by an angle yz about the z axis
may be also important if the surface does not have rotational symmetry, as
in a toroid. When tracing rays through a tilted or decentered surface a
transformation with the desired rotations and decentration, with pivot at the
origin (vertex of the surface), must be performed. This transformation is
always made with respect to the previous surface, as shown in Fig. A4.6. So,
if only one surface is tilted or decentered, a second transformation must be
made to bring the optical axis to its previous position. The parameters to be
transformed are the position from which the ray starts (X, Y, and, Z for the
intersection of the ray with the previous surface) and the ray direction
(cosine directors multiplied by refractive index values K, L, and M). These
transformations for the three possible rotations are

X0
�1 ¼ X�1

Y0
�1 ¼ �ðZ�1 � t�1Þ sin yx þ Y�1 cos yx þ t�1

Z0
�1 ¼ ðZ�1 � t�1Þ cos yx þ Y�1 sin yx þ t�1

ðA4:84Þ

and for the ray direction:

K0
�1 ¼ K�1

L0
�1 ¼ �M�1 sin yx þ L�1 cos yx

M0
�1 ¼ M�1 cos yx þ L�1 sin yx

ðA4:85Þ

Figure A4.5 Tilting angles for a tilted optical surface.
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The decentration is performed by means of the transformation

X0
�1 ¼ X�1 ��X

Y0
�1 ¼ Y�1 ��Y

ðA4:86Þ

It is important to notice that the operations of tilting and decentering are
not commutative, i.e., their order is important, as shown in Fig. A4.6.

After a surface has been decentered or tilted, the new optical axis for
the following surfaces may have one of three different orientations, as
shown in Fig. A4.7. These new possible orientations are:

1. The optical axis of the surface is tilted and/or decentered, as in
Fig. A4.7(a). This is useful if not only one surface is tilted, but also
several like a lens or system of lenses.

2. The refracted or reflected optical axis is as shown in Fig. A4.7(b).
This is the case, e.g., when the tilted surface is a mirror and the
new system elements have to be aligned with the reflected light
beam.

Figure A4.6 Tilting and decentering of optical surfaces: (a) decentering plus tilt;

(b) tilt plus decentering.
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3. The previous axis remains unchanged, as shown in Fig. A4.7(c).
This is the case if only one surface, between two surfaces with a
common axis, has been tilted and/or decentered.
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