General Methods for Optimized Design of Mueller Polarimeters

A. De Martino, E. Garcia-Caurel, R. Ossikovski, T. Nobikova and B. Drévillon

CNRS - UMR 7647 - ECOLE POLYTECHNIQUE - LABORATOIRE DE PHYSIQUE DES INTERFACES ET DES COUCHES MINCES

Outline

- The Stokes formalism: What ellipsometers can do with?
- The use of the condition number as an objective criteria for optical design.
- Calibration of Mueller polarimeters.

Jones and Stokes Formalisms

$$
\begin{gathered}
\text { Jones vector } \\
\text { (2 complex components) } \\
\qquad\binom{E_{p}}{E_{s}}=\binom{A_{p} e^{i \varphi_{p}}}{A_{s} e^{i \varphi_{s}}}
\end{gathered}
$$

Jones matrix (2 x 2)

Mueller matrix (4 x 4)

$$
\binom{E_{p}}{E_{s}}=\left(\begin{array}{ll}
J_{p p} & J_{p s} \\
J_{s p} & J_{s s}
\end{array}\right) \cdot\binom{E_{p}^{0}}{E_{s}^{0}}
$$

$$
\left(\begin{array}{l}
I \\
Q \\
U \\
V
\end{array}\right)_{\text {OUT }}=\left(\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right) \cdot\left(\begin{array}{l}
I \\
Q \\
U \\
V
\end{array}\right)_{I N}
$$

For non depolarizing samples both, the Mueller matrix and the Jones matrix have the same physical meaning.

If depolarization is important, only the Mueller matrix is physically meaningful.
Reflection of transmision by a planar isotropic surface can be expressed in terms of ellispometric angles Ψ and Δ.

$$
R(\tau, \Psi, \Delta)=\tau\left(\begin{array}{cc}
\tan \Psi e^{i \Delta} & 0 \\
0 & 1
\end{array}\right) \quad R(\tau, \Psi, \Delta)=\left(\begin{array}{cccc}
\tau & -\cos 2 \Psi & 0 & 0 \\
-\cos 2 \Psi & 1 & 0 & 0 \\
0 & 0 & \sin 2 \Psi \cos \Delta & \sin 2 \Psi \sin \Delta \\
0 & 0 & -\sin 2 \Psi \sin \Delta & \sin 2 \Psi \cos \Delta
\end{array}\right)
$$

Measurement Principle and Experimental set-up

- Modulation matrix W : Stokes vectors generated by the polarization state generator (PSG)
- Analysis matrix A : signal vector on the polarization state analyser (PSA)
- Complete measurement B = A.M.W
- Obtention of the Mueller Matrix :M = $\mathrm{A}^{-1} \cdot \mathrm{~B} \cdot \mathrm{~W}^{-1}$
- M can only be obtained if W and A are invertible.
- A and W must be as much « non-singular » as possible.

- Singular value decomposition of any square matrix A

$\mathbf{A}=\mathbf{t} \mathbf{U D} \mathbf{V} \quad$ with U, V unitary, D diagonal (singular values)

- Conditioning number

$$
C(A)=\left|\frac{D_{i i}^{\min }}{D_{i i}^{\max }}\right| \quad \mathrm{C}(\mathrm{~A}) \text { goes from } 0 \text { (A singular) to } 1 \text { (A unitary) }
$$

- Error propagation in a linear transformation

\mathbf{X} and \mathbf{Y} : vectors related by $\mathbf{Y}=\mathbf{A} \mathbf{X}$, with errors $\delta \mathbf{X}$ and δY Error propagation is proportional to the inverse of $C(A)$

[^0]
Calibration: Theoretical principle

Calibration: Practical determination of \boldsymbol{H}^{W} and H^{A}

Calibration of the PSG and the PSA requires a set of calibration samples. The choice of the calibration set is not unique.

1. Measurement of B_{0} from the set of reference samples: $B_{0}=A \cdot M_{0} W$
2. Measurement of B_{1}, B_{2}, B_{3} from the set of reference samples :

$$
B_{1}=A \cdot M_{0} P_{\theta 1}(\tau) W, \quad B_{2}=A \cdot M_{0} P_{\theta 2}(\tau) W, \quad B_{3}=A \cdot M_{0} D\left(\tau_{D}, \psi, \Delta\right) W
$$

3. Determination of the Mueller matrices of the ref. samples using Eigenvalue Method:

4. Calculation of the linear mappings $\left\{\begin{array}{l}H_{M_{0} \rho_{01}}^{W} X=P_{\theta 1} X-X B_{0}^{-1} B_{1} \\ H_{M_{0} \theta_{21}}^{w} X=P_{\theta 2} X-X B_{0}^{-1} B_{2} \\ H_{M_{0} D}^{w} X=D X-X B_{0}^{-1} B_{3}\end{array}\right.$
5. Calculation of the matrix $\left\{\begin{array}{l}K^{W}=H_{M_{1}}^{W} \cdot\left(H_{M_{1}}^{W}\right)^{T}+H_{M_{2}}^{W} \cdot\left(H_{M_{2}}^{W}\right)^{T}+H_{M_{3}}^{W} \cdot\left(H_{M_{3}}^{W}\right)^{T} \\ K^{A}=H_{M_{1}}^{A} \cdot\left(H_{M_{1}}^{A}\right)^{T}+H_{M_{2}}^{A} \cdot\left(H_{M_{2}}^{A}\right)^{T}+H_{M_{3}}^{A} \cdot\left(H_{M_{3}}^{A}\right)^{T}\end{array}\right.$
6. Solution of the 2 linear systems: $\left\{\begin{array}{l}K^{W} W=0 \\ K^{A} A=0\end{array}\right.$

Main advantages:

Simplicity:

- Only 3 measurements allow to find 16 unknown coefficients.
- No need to model the properties of the optical elements of the PSG and the PSA.

Robustness:

- Some parasitic artifacts (multiple reflections, diverging beams) are automatically accounted for.

Flexibility:

- The sample calibration set is not unique.
- Sample calibration set can be optimized to current working conditions.

Conclusions

- The design of a polarimeter is based on an objective criterion: conditioning optimization in order to minimize error propagation.
- Multiple optical configurations optimizing the condition number can be considered.
- A robust calibration procedure is applied that does not require modeling of the PSG or PSA optical elements. Easy implementation!

[^0]: -To minimize error propagation, $C(A)$ must be as much close to 1 as possible.
 -The optical elements and configuration of the PSG and the PSA must be chosen in order to maximize the condition number.

