
ABSTRACT

OH, CHULWOO. Broadband Polarization Gratings for Efficient Liquid Crystal Display,
Beam Steering, Spectropolarimetry, and Fresnel Zone Plate. (Under the direction of Dr.
Michael Escuti).

Efficient control of light polarization is essential in any optical systems where

polarized light is used or polarization information is of interest. In addition to intensity

and wavelength, polarization of light gives a very useful/powerful tool to control light itself

and observe many interesting optical phenomena in nature and applications. Most available

light sources, however, produce unpolarized or weakly polarized light except some of fancy

lasers. Therefore, efficient polarization control/generation is important to improve/advance

existing or emerging technologies utilizing polarized light. It is also true that polarization

can be used to control another properties of light (i.e., intensity, direction).

We have introduced and demonstrated achromatic polarization gratings (PGs)

as broadband polarizing beam splitters performing ∼ 100% theoretical efficiency over a

wide spectral range. The novel design of achromatic PGs and their effective fabrication

method will be presented. Experimental demonstration will show that practically 100%

efficient diffraction is achieved by achromatic PGs embodied as thin liquid crystal (LC)

layers patterned by holographic photoalignment techniques.

Non-ideal diffraction behaviors of the PGs also have been investigated beyond

the paraxial limitations via numerical analysis based on the finite-difference time-domain

method. We, first, study the effect of the grating regime for this special type of anisotropic

diffraction gratings with the minimum assumptions. Optical properties of the PGs at

oblique incidence angles and in a finite pixel are numerically predicted and confirmed by

experiments. Design and fabrication of small-period PGs are discussed to show how to

achieve high diffraction efficiency and large diffraction angles at the same time.

Three key innovative technologies utilizing the unique diffraction properties of

the PGs have been introduced and experimentally demonstrated. The first application for

light-efficient LC displays is the polymer-PG display, which allows an immediate brightness

improvement (up to a factor of two) of conventional LC displays by replacing absorbing

polarizers with achromatic PGs as thin, transmissive polymer films. We demonstrate the

first proof-of-concept prototype projector based on the polymer-PG display and we also



discuss optical design considerations and challenges toward a viable solution for our ultra-

bright pico-projector applications of the polymer-PG display. Second, two novel beam steer-

ing concepts based on the PG diffraction have been proposed. The polarization-sensitive

diffraction of the PGs provides very attractive beam steering operations with ultra-high

efficiency over wide steering angles by all-thin-plate electro-optical systems. We developed

a non-mechanical, wide-angle beam steering system using stacked PGs and LC waveplates,

and we also demonstrated a continuous beam steering using two rotating PGs, named the

Risley grating as a thin-plate version of the Risley prism. The third PG application is in

imaging and non-imaging spectropolarimetry. We have shown a snapshot, hyperspectral,

full-Stokes polarimeter using inline PGs and quarter-waveplates. The use of PGs as a new

polarimetric element for astronomical instruments in the mid-wave IR wavelengths also has

been proposed to overcome current limitations of existing IR polarimeters.

In the last part of this Dissertation, we introduce a polarization-type Fresnel zone

plates (P-FZPs), comprising of spatially distributed linear birefringence or concentric PG

(CPG) patterns. Effective fabrication methods of P-FZPs have been developed using po-

larization holography based on the Michelson interferometer and photoalignment of LC

materials. We demonstrated high-quality P-FZPs, which exhibit ideal Fresnel-type lens ef-

fects, formed as both LC polymer films and electro-optical LC devices. We also discuss the

polarization-selective lens properties of the P-FZPs as well as their electro-optical switching.

In summary, we have explored the fundamental diffraction behavior of the polar-

ization gratings and their applications in advanced optics and photonics. The achromatic

designs of the PGs allow their broadband diffraction operation over a wide range of spec-

trum, which increases the applicability of the PGs with a great extent. Three novel tech-

nologies that directly benefit from the distinct diffraction properties of the PGs have been

developed. In addition, a new diffractive lens element operating solely on light polarization

has been introduced and experimentally demonstrated. We conclude this Dissertation with

our suggestions of a number of potential innovations and advances in technologies that can

be enabled by polarization gratings and related technologies.
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Chapter 1

Introduction

The electromagnetic nature of light was significantly understood by James Clark

Maxwell along with his beautifully simple but rigorous mathematical explanations [1]. In

many classical optics (i.e., ray optics and wave theory), light is often treated as a prop-

agating ray/wave without much details of its vectorial properties as an electromagnetic

radiation. Although these scalar theories well predict some optical phenomena such as light

propagation, interference, and diffraction [2], they only provide approximations of Maxwell’s

theory under certain conditions (in passive, isotropic media). An electromagnetic wave with

full vector description, therefore, has to be considered for accurate solutions wherever the

non-scalar nature of light (i.e., non-trivial polarization) takes its place.

Polarization [3] is one particular vectorial property of light, which leads to very in-

teresting optical phenomena such as birefringence, dichroism, Faraday rotation, and Thom-

son scattering. Human eyes and most other light sensors (photodiodes, charge-coupled

devices or CCDs), however, cannot directly detect the polarization properties of light but

only count the number of photons. In nature, the effect of polarization is perceived in

different forms such as changes in intensity or colors by reflection (e.g., Plusiotis, cuttle-

fish) or scattering (e.g., atmosphere, interstella dust). To observe or generate polarized

light, various techniques have been introduced and developed as polarization science and

engineering.

The most common polarizing elements are including absorbing polarizers (po-

laroid films or wire-grids) and polarizing beam splitters. Excellent polarization contrast

and low price make absorbing polarizers very attractive as a practical solution for produc-
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k

E

Polarization

λ

(a) (b)
Thin-plate polarizing

beam splitterΛ

Figure 1.1: Electromagnetic nature of lightwave and a thin-plate polarizing beam splitter:
(a) a schematic view of light propagation as the electromagnetic radiation; (b) a thin-plate
polarizing beam splitter that generates orthogonal polarization states (i.e., left- and right-
handed circular) with a separation angle in the forward direction.

ing/filtering polarized light. The use of polarizers is often subject to substantial losses by

absorption (> 50% with unpolarized light). Polarizing beam splitters operate by separating

the beam into two different directions with different polarization states. This beam-splitter

type polarizer is typically useful to divide or combine beams. Relatively large volumes

and expensive multi-coating process of polarizing beam splitters continue to be major lim-

itations along with poor angular sensitivity and unwanted polarization sensitivity of their

properties. Both traditional polarizing elements have limitations of operating wavelengths

(not always available for certain wavelength ranges). Therefore, it is natural to consider a

thin-film polarizing beam splitter that perform excellent optical properties (high polariza-

tion contrast, high throughput, wide angle performance, well-defined beam directions) over

a broad range of spectrum.

In recent years, polarization gratings (PGs) [4, 5, 6, 7] have been introduced as

efficient polarizing beam splitters and optical switches [8, 9, 10, 11]. The most-studied

PGs have its anisotropy profile consisting of a patterned linear birefringence that is both

periodic and continuous. Unlike conventional diffraction gratings, this anisotropic grating

can manifest a combination of the most advantageous properties of both thick-and thin-

gratings (and beyond): 100% diffraction efficiency, strong polarization sensitivity of the ±1-

order diffraction, polarization-independence of the 0-order diffraction, and comparatively
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wide bandwidth. These exceptional properties of the PGs offer unique opportunities to

improve current technologies that utilize polarization of light.

Until now, the most popular approach to create the PG is using polarization

holography with organic materials containing azobenzene moieties [12, 13], which can have

modest diffraction efficiencies (80%) and a wide range of grating periods[14, 15]. However,

it is limited by absorption at visible wavelengths and irreversible degradation when illu-

minated or when heated above modest temperatures. An alternative approach employs

patterned surfaces which then transfer their anisotropy to a liquid crystal (LC) layer via a

photoalignment material [16, 17]. Using this method, we successfully demonstrated defect-

free PGs performing their ideal properties [18, 19]. Still, the alignment of liquid crystals

remains one of the main fabrication issues and the poor alignment of the LCs causes sig-

nificant problems of incoherent scattering, especially when the grating period is relatively

small. Substantial experimental studies are considered to optimize the fabrication process

for small-period PGs by a careful choice of materials.

The ideal diffraction behavior of the PG was significantly investigated by using

the Jones calculus in the paraxial domain [6, 19], where light is treated as a ray making

a small angle to the optic axis of the system. The theoretical prediction of PG diffraction

properties is no longer valid beyond paraxial approximations (i.e., small grating periods or

highly oblique incidence). No work adequately deals with the fundamental question of de-

lineating the thin/thick grating regimes in anisotropic gratings. It is, therefore, our desire to

investigate PG behavior as the grating period becomes comparable to the wavelength. The

study will provide better understanding where the fundamental limits arise and ultimately

we seek more practical guidelines for material and processing optimization.

The operation bandwidth of all diffractive elements has a certain limitation [20].

While a polarization grating can perform with extremely high efficiency, its bandwidth for

high efficiency is limited by the chromatic dispersion of retardation that light at different

wavelengths experiences while traveling through the medium. Several broadband designs

of diffraction gratings were proposed to operate with wide-band illumination (i.e., white

light) [21]. However, every efforts so far have been plagued by fabrication difficulties or

low efficiencies. We designed and demonstrated achromatic polarization gratings with high

efficiency over a broad spectrum and at wide angles of incidence. To achieve this achro-

maticity of grating diffraction, we utilize self-compensation of the retardation dispersions
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due to two different polarization mechanisms (linear birefringence and optical activity).

This unique achromatic diffraction will lead to more diverse utilities of the PG in many

photonics applications.

Our aim in this dissertation is to investigate and apply the polarization grating

within many areas of photonics and optoelectronic devices. To this end, we first study

diffraction behavior of the PG beyond simplistic, limiting assumptions (i.e., paraxial ap-

proximation) via numerical modeling of the PGs. We will prove the broadband design of

the PG and experimentally demonstrate the achromatic PGs using liquid crystal materials.

This dissertation also focuses on the development of three pioneering technologies based on

the PG diffraction: (i) Polymer-PG displays; (ii) novel beam steering systems; (iii) advanced

spectro-polarimeters. Finally, we expand our exploitation of polarization-based diffractive

elements to shape vectorial beam properties. As one of the examples, the ideal Fresnel lens

effect by concentric polarization gratings is explored.

In Chapter 2, we start with Maxwell’s equations and then introduce the fundamen-

tals of electromagnetic natures of light. Brief descriptions of the polarization of light and

different vector representations for polarized light follow. We also discuss light propagation

in anisotropic media with optical anisotropy and periodic structures including conventional

phase diffraction gratings. A brief summary of material properties of liquid crystals (LCs)

and related technologies in optics and photonics is presented. A technical survey of LC

diffractive elements for various applications is also given. Chapter 2 is summarized with an

introduction of the polarization grating as highly efficient polarizing beam splitters. The

theoretical foundations to understand the PG behavior and the fabrication techniques using

polarization holography are included.

Chapter 3 presents our extensive studies on the PG diffraction and the design

and fabrication of the achromatic PGs. In the beginning of the Chapter, we examine the

properties of the PG and develop a proper evaluation tool to determine the grating regime

which the PG falls into. Design considerations for high efficiency with small grating periods

(at large diffraction angles) are presented. The broadband design of the PGs have been

developed and the properties of the achromatic PG are investigated in both theories and

experiments. The Chapter includes experimental results of the achromatic PGs embodied

in forms of liquid crystal polymer films (in transmissive mode) and switchable cells (in

reflective mode).
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In the following three Chapters, we discuss our development of technologies based

on the PG diffraction. Chapter 4 introduces the polymer-PG display as a viable solution for

highly efficient, polarizer-free LCDs. In this Chapter, we show how to achieve polarization-

independent modulation using achromatic PGs and conventional LCDs. We also present

preliminary results of a prototype of the polymer-PG projection display using a commercial

microdisplay and replacing polarizer films with achromatic PGs. Design considerations of

the achromatic PGs and techniques for the extinction-ratio enhancement are also discussed.

Novel beam steering systems based on the PG diffraction are presented in Chapter 5. We

first demonstrated non-mechanical, wide-angle beam steering using stacked LC polarization

gratings and waveplates. Several different system designs are considered and the results of

a prototype beam steering device are presented. The second beam steering device is the

Risley grating, which is a thin-plate version of the Risley prism. This compact beam steering

device utilizes a fair of identical PGs that are individually rotated to scan continuous angles

within the field of regard. In Chapter 6, we introduce simplified spectropolarimetry using the

polarization sensitive diffraction of the PGs and its experimental demonstration at infrared

(IR) wavelengths. We also discuss the use of the PGs as polarizing elements for mid-IR

spectropolarimeters, especially for astronomical detection. The preliminary experimental

results include material feasibility tests of liquid crystals and the PG diffraction properties

in mid-IR.

In Chapter 7, the concept and properties of concentric polarization gratings (CPGs)

are examined. The CPG is a vectorial version of the Fresnel zone plate that spatially mod-

ulate the polarization state of light leading to lens effects. Unlike conventional Fresnel zone

plates operating on phase or intensity modulation, the CPGs can exhibit a single diffraction

order with sin 100% efficiency in addition to polarization selective lens properties. When a

CPG is formed in a liquid crystal cell, an electrically switchable lens can be implemented.

In this Chapter, we discuss potential advantages of the CPGs over other Fresnel zone plates

(and Fresnel lenses) and also classical volume lenses. We also show preliminary experimental

results of CPGs using polarization holography and liquid crystal materials and we summa-

rize the Chapter with discussions on potential applications of the CPGs as lens elements

or vector (polarization) beam shapers and other possible variations of spatial polarization

modulation for generating/manupulating vectorial beam properties.

Chapter 8 summarizes the results of this dissertation and suggests topics for further
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study. Also, practical fabrication techniques for mass production of the PGs are discussed.

The Appendix gives a technical and theoretical background about the Jones calculus for

the PG diffraction and fabrication details of the polarization holography.
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Chapter 2

Light Propagation in Anisotropic

and Periodic Media
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2.1 Electromagnetic Properties of Lightwaves

The electromagnetic origin of light was significantly understood for the first time

by James C. Maxwell [1]. Since his beautiful description of the electromagnetic dynamics,

the concealed motion of light is captured by simple mathematical expressions now termed

“Maxwell’s equations.” This Section begins with Maxwell’s equations and then introduces

electromagnetic properties of lightwaves including polarization of light.

2.1.1 Maxwell’s equations and light propagation

The electromagnetic field can be defined by two vector quantities: the electric

and magnetic fields. Maxwell’s equations describe the behavior of these two vector fields

in relation to each other and the position and motion of charged particles. In differential

form, Maxwell’s equations are given by [22]

∇×E(r, t) = −∂B(r, t)
∂t

(Faraday′s law) (2.1a)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
(Ampere′s law) (2.1b)

∇ · D(r, t) = ρ(r, t) (Gauss′s law) (2.1c)

∇ · B(r, t) = 0 (Gauss′s law) (2.1d)

where r is the position vector and t is time. The field variables are defined as:

E : electric field (V/m) H : magnetic field (A/m)

D : electric displacement (W/m2) B : magnetic flux density (C/m2)

J : electric current density (A/m2) ρ : electric charge density (C/m3)

These variables (except ρ, a scalar) are vectors and may have complex amplitudes. ρ is a

scalar variable function of space and time.

In order to solve Eq. 2.1, another set of relationships between E (H) and D (B)

must be known. These are called constitutive relation [23]. These conditions are established

by the physical properties of media; the permittivity ε and permeability µ. In a vacuum,

these relations are:

D(r, t) = ε0E(r, t) (2.2a)

B(r, t) = µ0H(r, t) (2.2b)
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where the subscript ‘0’ refers to the value in a vacuum. J can generally be found from

Ohm’s law: J(r, t) = σ(r)E(r, t), where σ is the conductivity. Since materials of interest in

this dissertation are nonmagnetic (at least the effect of magnetic properties is small enough

to ignore in normal conditions), µ is assumed as µo without any special comment. In linear

media, ε = ε(r) is a function of position. For anisotropic media, permittivity must be

expressed in the form of a tensor ε̃, which may have different values for each direction of

the electromagnetic field vectors. We will discuss more about material properties and light

propagation of anisotropic media in Section 2.2.

Maxwell’s equations in a source-free space, where σ = ρ = 0, can be rewritten as

∇×E(r, t) = −µ
∂H(r, t)

∂t
(2.3a)

∇×H(r, t) = ε
∂E(r, t)

∂t
(2.3b)

∇ · E(r, t) = 0 (2.3c)

∇ · H(r, t) = 0 (2.3d)

The electromagnetic wave equation can be derived from Eqs. 2.3a and 2.3b. We can elimi-

nate H by taking the curl of Eq. 2.3a and substituting Eq. 2.3b and we get

∇× (∇×E) = −µε
∂2E
∂2t

(2.4)

Applying the vector identity (∇×∇× = ∇(∇·)−∇2) and ∇ · E = 0, it is reduced to

∇2E− 1
u2

∂2E
∂2t

= 0 (2.5)

where u = (µε)−1/2 is the phase velocity of light propagating in the medium; u in vacuum is

given as the special symbol c = (µ0ε0)−1/2 = 2.998×108(m/s), generally called the speed of

light. In a dielectric medium, the phase velocity is u = c/n where n = (ε/ε0)1/2 is referred

to as the index of refraction. Without specifying the precise spatial nature of the wave, the

time-harmonic electric field can be rewritten as E(r, t) = E(r)ejωt where ω is the angular

frequency. Substituting it into Eq. 2.5, we have

∇2E(r) + k2E(r) = 0 (2.6)

where k = ω/u is the wavenumber and k = k̂k is defined as the wave vector (k̂ is the

direction vector of propagation). Eq. 2.6 is known as the Helmholtz equation [2, 24]. A

similar expression for H can be obtained.
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2.1.2 Polarization of light

A uniform plane wave is a particular solution of Maxwell’s equations with E or H

assuming the same direction, same magnitude, and same phase in infinite planes perpendic-

ular to the direction of propagation (k̂). While its magnitude, sign and direction can vary

in time, the electric field resides in what is known as the plane of vibration. Polarization

is the property of an electromagnetic wave or light, which shows the pattern of the electric

field vibration. In other words, the polarization of a uniform plane wave describes the locus

of the E’s tip at a given point in space as a function of time [3]. Fig. 2.1(a) shows two

special cases of polarization states: linear and circular.

An electric field may have only two other components perpendicular to the prop-

agation direction. For instance, the electric field vector of lightwave propagating along the

z-axis (k̂ ≡ ẑ) can be written as follows

E(z, t) = (x̂Ex + ŷEy)ej(ωt−kz) (2.7)

where Ex and Ey are complex amplitudes of E corresponding to x̂ and ŷ, respectively. The

relative difference in magnitude and phase between x- and y-components determines the

polarization state. So it is convenient to rewrite the electric field as

E(z, t) = Ex(x̂ + ŷAe−jϕ)ej(ωt−kz) (2.8)

a
b

x

y

ψ

tanχ=±b/a
k k

Linear Polarization Circular Polarization

(a) (b)

Figure 2.1: Polarization of light: (a) two special polarization states (linear and circular);
(b) the polarization ellipse. The polarization state can be described by two characteristic
angles of the polarization ellipse: the orientation angle ψ and the ellipticity angle χ as
shown in the part (b).
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The magnitude A and phase ϕ allow us to identify three types of polarization states: linear,

circular, and elliptical polarization. Note that A = |Ey/Ex| and ϕ = arg(Ey)− arg(Ex).

The polarization property also can be described by two characteristic angles, re-

ferred to as the orientation angle ψ and the ellipticity angle χ of the polarization ellipse.

ψ is the angle of the major axis of the ellipse from the +x-axis and χ is determined by

the ratio between the longest diameter ‘a’ and the shortest diameter ‘b’ of the polarization

ellipse as tan χ = ±b/a (see Fig. 2.1(b)). Both ψ and χ can be written in terms of A and

ϕ by introducing an auxiliary angle α = tan−1 A (0 ≤ α ≤ π/2) as follows

tan 2ψ =
2 tanα

1− tan2 α
cos ϕ (2.9a)

sin 2χ = (sin 2α) sinϕ (2.9b)

Readers may refer to Ref. [3] for more detailed descriptions of the polarization ellipse.

For linear polarization states (χ = 0), the locus of E lies on a line oriented at ψ

from the +x-axis. One can say that light has a horizontal linear polarization (HLP) when

ψ = nπ and a vertical linear polarization (VLP) when ψ = (n + 1
2)π (n is an integer).

For circular polarization states (χ = ±π/4), the polarization ellipse becomes a circle. If

χ = +π/4, the electric field vector rotates clockwise and it is so called a right-handed circular

polarization (RCP). Similarly, if χ = −π/4, it is called a left-handed circular polarization

(LCP). Elliptical polarization is the most general type of polarization and, if χ and ψ do

not satisfy the above conditions, light is elliptically polarized.

2.1.3 Jones vector, Stokes parameters, and Poincaré sphere

The Jones vector is one of the simplest ways to describe polarized light [25]. In

1941 [26], R. Clark Jones invented a simple vector representation for the electric field of a

planewave as follows

E =



 E0xejϕx

E0yejϕy



 = E0e
jϕx



 cos χ

ejϕ sinχ



 (2.10)

where E0x,0y and ϕx,y are the instantaneous amplitudes and phase factors for the x and y

components of E, respectively. E0 is the total magnitude of the electric field, E2
0 = E2

0x+E2
0y

and tanχ = E0y/E0x, and ϕ = ϕy − ϕx is the relative phase difference. Light propagation

in an arbitrary medium can be expressed as a vector product of the Jones vector and a
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2 × 2 matrix that represents the material properties of the medium. This method, often

called the Jones matrix analysis or Jones calculus, is particularly useful to analyze optical

properties of planar/stratified media. The extended Jones matrix method also has been

developed for oblique incidence analyses [27]. We note that the Jones vector representation

can be applied only to perfectly polarized light. We apply the Jones matrix method to

derive analytical expressions for ideal diffraction behavior of a special kind of anisotropic

diffraction gratings, known as polarization gratings.

An important and more general mathematical representation including aspects

incoherency for polarized light was developed by G. Stokes in 1852 [28]. He showed that

the polarization state of light can be specified by four quantities referred to as the Stokes

parameters [3], which are given by

S0 =ExE∗
x + EyE

∗
y + EunpolE

∗
unpol = E2

0x + E2
0y + I2

unpol (2.11a)

S1 =ExE∗
x − EyE

∗
y = E2

0x − E2
0y (2.11b)

S2 =ExE∗
y + EyE

∗
x = 2E0xE0y cos ϕ (2.11c)

S2 =j
(
ExE∗

y − EyE
∗
x

)
= 2E0xE0y sinϕ (2.11d)

where S0 is the total intensity of the light and Eunpol is the electric field component corre-

sponding to unpolarized light (Iunpol = |Eunpol|2). S1 and S2 describe the amount of vertical

or horizontal polarization and linear ±45◦ polarization, respectively. The last parameter S3

depicts the amount of either right- or left-handed circular polarization depending on its sign

(a positive for RHC and a negative for LHC). For fully-polarized light, the Stokes parame-

ters satisfy S2
0 = S2

1 + S2
2 + S2

3 (Iunpol = 0), while S2
0 ≥ S2

1 + S2
2 + S2

3 for partially polarized

light. One can determine the degree of polarization P by use of the Stokes parameters as

follows

P =
Ipol

Itot
=

Itot − Iupol

Itot
=

√
S2

1 + S2
2 + S2

3

S0
(2.12)

where Ipol is the sum of the intensity of the polarization components and Itot is the total

intensity. It is often convenient to normalize the Stokes parameters by the value of S0 as

follows

S =





S′0

S′1

S′2

S′3




=





1

P cos 2χ cos 2ψ

P cos 2χ sin 2ψ

P sin 2χ




(2.13)
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Eq. 2.13 also shows how the Stokes parameters relate to two characteristic angles; the

orientation angle (ψ) and the ellipticity angle (χ).

Another useful tool to describe the polarization state of light is the Poincaré

sphere [3], which was developed by Henri Poincaré in 1892 as a graphical method of de-

picting light polarization. The Stokes parameters can be captured in the Poincaré sphere

as shown in Fig.2.2. In particular, the Poincaré sphere is useful to describe the change in

polarized light when it interacts with polarizing elements.

χ
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ψ

Figure 2.2: Poincaré sphere for graphical description of light polarization. An arbitrary
polarization state can be represented as a point within the sphere and the coordinations
are determined by the Stokes parameters.
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2.2 Light Propagation in Anisotropic and Periodic Media

The vectorial nature of light can lead to different optical properties according

to its polarization state when propagation occurs in anisotropic media. In addition, when

light travels through/scatters from periodic media, it experiences diffraction or interference,

which leads to a spatial modulation of phase or intensity of lightwave. In this Section, we

briefly discuss how light interacts with matters while traveling in anisotropic and periodic

media.

2.2.1 Light propagation in anisotropic media

Recall the constitutive relation between E and D. For anisotropic media with a

directional dependency of the permittivity, a tensor equation is necessary [25]:

D(r, t) = ε0ε̃E(r, t) (2.14)

where ε0 is the dielectric constant in a vacuum and a tilde of ε̃ signifies a tensor. One can

define an arbitrary permittivity tensor ε̃ as follows

ε̃ =





εxx εxy εxz

εyx εyy εyz

εzx εzy εzz



 (2.15)

where εmn (m, n = x, y, z) are the normalized permittivities and they could have complex

amplitudes. Note again that we assume non-magnetic material properties (µ = µ0).

We first consider a dielectric medium with uniaxial anisotropy in the refractive

index only. The permittivity tensor for an arbitrary uniaxial media can be written as

ε̃ = R−1(φ, θ)





εe 0 0

0 εo 0

0 0 εo



R(φ, θ) (2.16)

where εo and εe are the permittivities for the ordinary and extraordinary waves, respectively.

The indices of refraction for each characteristic waves are defined as no,e = √εo,e. R is the

transformation matrix, which is specified by two angles as follows

R(φ, θ) =





sinφ − cos φ 0

cos θ cos φ cos θ sinφ − sin θ

sin θ cos φ sin θ sinφ cos θ



 (2.17)
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where φ and θ are the azimuthal and polar angles measured from the +x- and +z-axes,

respectively. A difference of the refractive indices ∆nl (= ne − no) is often called linear

birefringence of the medium [29]. The normal modes for E corresponding to the ordinary

and extraordinary waves can be written as [30]

Eo =





Eox

Eoy

Eoz



 =





sinφ

− cos φ

0



 (2.18a)

Ee =





Eex

Eey

Eez



 =





n2
e cos θ cos φ

n2
e cos θ sinφ

−n2
o sin θ



 (2.18b)

Consider linearly polarized light (E = Exx̂) propagating through a waveplate,

which is a dielectric slab with linear birefringence ∆nl. As the light travels through the

waveplate, it experiences the optical retardation as shown in Fig. 2.3(a). The Stokes pa-

d
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Figure 2.3: Light propagation in a waveplate: (a) a schematic view of a waveplate (i.e.,
φ = π/4 and ∆nld = λ/4 for a quarter wave retardation); (b) the normalized Stokes
parameters of the output beam as a function of the retardation (∆nld/λ) of the waveplate,
where φ = π/4 and θ = 0.
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rameters of the emerging light are given by

S′1 = cos2(2φ) + sin2(2φ) cos
(

2π∆nld

λ

)
(2.19a)

S′2 = cos(2φ) sin(2φ)
[
1− cos

(
2π∆nld

λ

)]
(2.19b)

S′3 = sin(2φ) sin
(

2π∆nld

λ

)
(2.19c)

where φ is the orientation of the optic axis of the waveplate, d is the thickness of the slab,

and λ is the wavelength of light (Fig. 2.3(b)). For a simplification, we assume the polar

angle θ = 0. As light travel through the waveplate, it experiences relative phase differences

between two characteristic waves (ordinary and extraordinary) depending on the orientation

of the optic axis and the polarization orientation, which is often called retardation. For

example, a linear polarization is converted in to a circular polarization when φ = π/4 and

∆nd = λ/4 (Fig. 2.3)

Certain substances are found to possess the ability to rotate the plane of polariza-

tion of light passing through them as illustrated in Fig.2.4(a). This phenomenon is known as

optical activity [2]. Consider a simple medium possessing the following permittivity tensor

ε̃ =





εx −jεg 0

jεg εx 0

0 0 εz



 (2.20)

where εg is the gyration factor. The dispersion relation for a wave propagating along the ẑ

direction is given by

k =
ω

c

√
εx ± εg (2.21)

where the upper sign corresponds to right-handed circular polarization and the lower sign

to left-handed circular polarization. Accordingly, the refraction indices for the orthogonal,

circular polarizations are

nR =
√

εx + εg (2.22a)

nL =
√

εx − εg (2.22b)

where the subscripts ‘R’ and ‘L’ correspond to the right- and left-handed circular polariza-

tions, respectively. The difference of the refractive indices (∆nc = nR − nL) is often called

circular birefringence as opposed to linear birefringence [29].
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Figure 2.4: Light propagation in an optically active medium: (a) a rotation of the plane
of the polarization as light travels in the medium; (b) the normalized Stokes parameters of
the output beam as a function of the optical activity (∆ncd/λ).

Consider linearly polarized light (E = Exx̂) propagating through a slab with

circular birefringence ∆nc. The light experiences the optical rotation as shown in Fig. 2.4(a).

The Stokes parameters of the emerging light are given by

S′1 = cos
(

2π∆ncd

λ

)
(2.23a)

S′2 = − sin
(

2π∆ncd

λ

)
(2.23b)

S′3 = constant = 0, (2.23c)

where d is the thickness of the slab and λ is the wavelength of light (Fig. 2.4(b)). Since the

plane of the polarization rotates in the optically active medium, the ellipticity remains a

constant in an ideal case.
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2.2.2 Light propagation in periodic media

Light propagating through or scattering from periodic structures/surfaces such

as gratings experiences diffraction or interference. Conventional diffraction gratings can

be classified into two different categories depending on their spatial variations of material

properties: phase gratings and amplitude gratings. A phase grating modulates the phase

of the propagating wave by its periodically varying refractive index while amplitude grat-

ings modulates the amplitude by its absorption coefficient variation. Although there are

interesting aspects of the latter case, we limit our discussion to phase gratings and their

properties in this Dissertation. We also briefly cover form-birefringent gratings based on

subwavelength structures.

Consider two simple examples of phase gratings with sinusoidal and binary index

profiles as shown in Fig. 2.5. These gratings are defined by the grating pitch Λ, average

index n̄ and index modulation factor n1 as follows

n(x) =






n̄ + n1 cos(Gx) for a sinusoidal grating

n̄ + n1 {1− 2
∏

[tan (ftGx)]} for a binary grating
(2.24)

where G is the grating wave number (2π/Λ), Λ is the grating period, and
∏

(x) is a function

that is 0 outside the interval x = [−1, 1] and unity inside it. For binary gratings, the fill

factor ft is a ratio of the area with the higher refractive index (n̄ + n1).

The diffraction orders of a grating can be specified by integer numbers known

as the Floquet modes (m = 0,±1,±2, . . .). The diffraction angle θm to the mth order is

(a) (b)

n

n

x
Λ 2Λ0

n

n

x
Λ 2Λ0

n1 n1

Figure 2.5: The refractive index profiles of conventional phase gratings: (a) a sinusoidal
grating; (b) a binary grating. The grating parameters are defined by the period Λ, average
index n̄, and index modulation factor n1.
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determined by the grating equation [31], defined as follows

sin θm =
mλ

Λ
+ sin θinc (2.25)

where θinc is the incident angle.

Most phase gratings can be defined into two different grating regimes depending

on their grating parameters (i.e., thickness, period, and refractive index): the Bragg and

Raman-Nath regimes. Diffraction characteristics differ for gratings in each regime as shown

in Fig. 2.6. It is customary to distinguish among the two regimes of diffraction by defining

a dimensionless parameter Q known as the Klein parameter [32, 33]

Q =
2πλd

n̄Λ2
(2.26)

where d is the grating thickness. In general cases, gratings with Q ) 1 fall into the Bragg

(or thick) grating regime while gratings with Q < 1 and Λ ) λ into the Raman-Nath (or

thin) grating regime. The above descriptions based on Q, however, may be invalid for some

extreme cases such as gratings with too large or too small index contrast. Moharam et al.

introduced a new dimensionless parameter ρ [34] defined as follows

ρ =
λ2

n̄n1Λ2
(2.27)

, which provides more rigorous descriptions of the grating regime. Similar to the case of

Q, the Bragg regime resides in the condition of ρ ) 1 and the Raman-Nath regime in the

condition of ρ ≤ 1. Note that the grating thickness does not enter ρ but it should be chosen

to have reasonable diffraction effect of the grating.

For Bragg gratings (Q) 1 or ρ) 1), the maximum diffraction occurs where the

incident angle satisfies the following condition

2Λ sin θinc = λ (2.28)

This angle is known as the Bragg angle θB. The diffraction angle of the transmitted wave

is given by θt = θB + ∆θ, where ∆θ represents a phase mismatch between the incident and

transmitted waves. The maximum diffraction efficiency of a Bragg grating is given by [25]

ηmax =
1

1 + [G∆θ/(2ξ)]2
(2.29)
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Figure 2.6: The two different grating regimes depending on the grating parameters (i.e.,
thickness, period, and refractive index): (a) a Bragg or thick grating; (b) a Raman-Nath or
thin grating.

where G is the grating number (2π/Λ) and ξ2 is given by (πn1/λ)2(cos θinc cos θt)−1. Note

that the maximum diffraction efficiency can be 100% when ∆θ = 0.

For Raman-Nath gratings (Q * 1 or ρ ≤ 1), a multiple orders may appear in

diffraction as defined in the grating equation (Eq. 2.25). The diffraction efficiencies of

sinusoidal phase gratings are given by [25]

ηm = J2
m

(
2πn̄d

λ cos θinc

)
(2.30)

where Jm is the mth order Bessel’s function. A binary grating with ft = 1
2 has diffraction

efficiencies of the mth order as follows

ηm =






cos2 ϕ for the 0th order

4(mπ)−2 sin2 ϕ for the mth order
(2.31)

where the phase angle ϕ = πn1d/(λ cos θg) and θg is the refractive angle of the grating,

which satisfies n̄ sin θg = n0 sin θinc.

Birefringence may arise from an ordered structure of optically isotropic material

whose size is small compared with the wavelength of light. We then speak of form bire-

fringence [35]. A wave propagating in subwavelength features experiences anisotropy in the

effective refractive indicies, which leads to two characteristic waves: an ordinary wave and

extraordinary wave.
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Consider a periodic structure composed of subwavelength features of two different

media shown in Fig. 2.7 and having permittivity distribution as follows

n(x) =






n1 for (p ≤ x/Λ ≤ p + f1)

n2 for (p− f2 ≤ x/Λ ≤ p)
(2.32)

where Λ ! λ, p is an integer, and f1 + f2 = 1 (f1, f2 > 0). The effective dielectric constant

no for the ordinary wave and ne for the extraordinary wave are given by

no =
n1n2√

f1n2
2 + f2n2

1

(2.33a)

ne =
√

f1n2
1 + f2n2

2 (2.33b)

and the form-refringence can be defined as ∆n = ne− no. Note that this assembly exhibits

uniaxial anisotropy along the x-axis with a negative birefringence (∆n < 0). One can

modulate the refractive index by varying the thickness of features or rotating the effective

optic axis. Extensive studies of subwavelength gratings are found in [36, 37, 38, 39, 40,

41]. Subwavelength gratings are essentially equivalent to anisotropic gratings in naturally

birefringent media such as liquid crystals [42, 43, 44].

no
ne

no

f1Λ f2Λ

Λ

ε1 ε2

Figure 2.7: Form-birefringence of a subwavelength periodic structure. f1 and f2 are the
fractions of the pitch (Λ) for the parts of n1 and n2 respectively. Note that Λ ! λ.
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2.3 Liquid crystals: soft-condensed matters that control light

Liquid crystal [45, 46, 47] is a phase of soft condensed matter that simultaneously

exhibits characteristics of both isotropic liquid and crystalline solids. Since the first dis-

covery of cholesteric liquid crystals by Reinitzer in 1888, liquid crystals (LCs) and related

technologies have been of great interest to diverse communities in both science and engi-

neering. In this Section, we will briefly review several distinct properties of LC materials

and their applications in optics and photonics.

2.3.1 Properties of nematic liquid crystal materials

The liquid crystal phases are often characterized by the nature of ordering: posi-

tional and orientational order. The nematic is one of the most common LC phases that has

the lowest degree of ordering with a one dimensional orientation order but no long-range

positional order (Fig. 2.8(a)). It is convenient to define a unit vector n, often called the

‘nematic director,’ pointing the average direction of an ensemble of molecules (Fig. 2.8(b)).

The deviation from the nematic director n can be quantified with the order parameter S,

E

εε

ε

(a)

n

(b)

(c)

splay bendtwist

Figure 2.8: Properties of nematic liquid crystal (LC) materials: (a) a LC molecule with an
dielectric anisotropy; (b) a nematic director n; (c) three basic elastic deformations in LCs
(splay, twist, and bend).
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defined as S = 1
2(3 cos2 θ−1) (θ is the orientation angle of individual molecules with respect

to n).

The anisotropy in dielectric and optical properties of LCs is a key to enable LCDs

and other LC-based electro-optical devices. Consider a nematic LC molecule with the rod-

like shape as illustrated in Fig. 2.8(a). The nematic LC exhibits the dielectric anisotropy

(expressed as ∆ε = ε‖− ε⊥). When an electric field E is applied, the field tends to polarize

the free charges within the molecule and leads to a dipole moment. Due to the dielectric

anisotropy, this induced dipole moment makes the nematic molecule reorient either parallel

(∆ε > 0) or perpendicular (∆ε < 0) to the applied electric field as shown in Fig. 2.8(a).

At optical frequencies, the nematic LC also shows the optical anisotropy, conveniently

quantified by a linear birefringence ∆nl = ∆n‖ − ∆n⊥ and light passing through the LC

medium may experience phase retardation (∆nld/λ). The ability of the electro-optic control

of optical anisotropy makes liquid crystals uniquely useful for many applications in optics

and photonics. We also note that any static deformation of LCs by external fields and

surface interactions can be described by the three basic elastic deformations: splay, twist,

and bend (Fig. 2.8(c)).

The elastic continuum theory well explains LC ordering in a finite geometry and

applied electric fields [48]. In Ossen-Frank theory, the static free energy density wf of a LC

volume can be expressed as follows

wf =
1
2
K11[∇ · n]2 +

1
2
K22[n ·∇× n]2 +

1
2
K33[n×∇× n]2 (2.34)

where K11, K22, and K33 are the elastic constants corresponding to the splay, twist, and

bend deformations, respectively (Fig. 2.8(c)). Electric fields that are applied across the

volume contribute the total energy density by the addition of an extra term: welec =

−1
2ε0∆ε|E ·n|2. Due to chemical and microscopic structural interactions, LCs will typically

exhibit a preferred orientation with respect to a surface. This surface influence to LC

ordering can be quantified by another extra term: wsurf = 1
2(wθ sin2 φ + wφ sin2 φ) where

wθ and wφ are surface anchoring strengths (θ and φ are the polar and azimuth angles of the

nematic director). The equilibrium states for a given set of conditions can be found where

the sum w = wf + welec + wsurf is minimized. The resulting configuration of the nematic

director can then be used to find many electro-optical properties.

We now discuss another class of liquid crystal materials relevant to this disser-
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(a) (b)

(c)

Figure 2.9: Types of polymerizable liquid crystal (reactive mesogen or RM) materials: (a) a
main-chain LC polymer; (b) a side-chain LC polymer; (c) a chemical structure for a typical
RM monomer (RM257 from Merck).

tation. Reactive mesogens (RMs) are liquid crystalline materials with polymerizable end

groups [49, 47, 50]. Polymerization of RMs with two or more polymerizable groups leads

to densely crosslinked networks in which the liquid crystalline order is permanently fixed.

Figs. 2.9(a) and 2.9(b) show two main kinds of reactive mesogens: main-chain and side-

chain RMs, respectively. A typical LC diacrylate molecule (RM257 from Merck) is also

shown in Fig. 2.9(c). Many interesting applications using these RM materials have been

suggested [51, 52, 53, 54, 55, 56, 57, 58]; for example, optical compensation films for LCDs,

reflective color filters, and micro-actuators for biomedical applications.

2.3.2 Rubbing techniques of liquid crystal alignment

Although the nematic director is free to point in any direction, LCs typically ex-

hibit a preferred orientation with respect to a surface due to chemical and microscopic

structural interactions [47]. If the alignment condition is poor (weak anchoring or disconti-

nuity), alignment-related defects may appear, such as disclination lines, reverse twist, and

reverse tilt. These defects usually lead to considerable light scattering and have large effects

on the electro-optical properties of LC devices. It is therefore very important to control the

alignment conditions for most LC applications.

Rubbing is the most conventional LC alignment process. When a thin polymer

film (i.e., polyimide) is rubbed using a cloth, liquid crystal molecules tend to be aligned by

surface interactions. The alignment strength of a uniformly rubbed surface can be quantified

by the azimuthal anchoring energy wφ (typically, ∼ 10−3J · m−2) defined as follows[59]:

wφ =
1
4
K11A

2q (2.35)
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Rubbed polymer surface

qA

(a) (b)Rubbing cloth

Polymer film

Figure 2.10: Rubbing technologies for LC alignment: (a) rubbing of a polymer film; (b) LC
alignment by a rubbed polymer surface (groove height A, pitch q) with a pretilt angle α.

where K11 is the splay elastic constants of the LC and A and q are the depth (several µm)

and pitch (tens of µm) of surface relief structures, respectively. The rubbing also generates

a polar directional alignment, called the pretilt angle. Although the polymer rubbing is a

simple and effective method for aligning LCs in a large scale, it is often subject to several

problems: static charges, non-uniformity, and surface impurities. A number of non-rubbing

alignment techniques have been developed, including photoalignment, chemically treated

surfaces, and oblique evaporation [60].

2.3.3 Photoalignment of liquid crystal materials

Photoalignment of LCs has become of great interest in display industries due to

its capability of the multi-domain alignment for viewing angle improvement of LCDs. The

first reports on photoalignment techniques was found in 1988 and 1991 using azobenzene

materials [61, 62]. Soon after, in 2002 [16], Schadt and coworkers reported photoalign-

ment by dimerization of poly (vinyl cinnamate) photopolymer exposed to linearly polarized

UV light, which is known as the linear photo-polymerization (LPP) polymer due to its

anisotropic crosslinking selectively responding to linearly polarized light. Although only a

few limited types of photoalignment materials were considered in the early development of

this alignment techniques, significant improvements have been done during the last decade

with more types of photoalignment techniques and increased choices of materials [63, 64, 65].

Applications of photoalignment materials with liquid crystal polymers also successfully draw

substantial interests in optical retardation films and color filters.

Photoalignment via a reversible cis-trans transformation (photoisomerization) of

azo-dye molecules was observed by Ichimura et al. [61]. The azobenzene molecule undergoes
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365nm

440nmtrans

cis(a)

(b)

Figure 2.11: Photoalignment of LCs by the photoisomerization of azo-containing polymers:
(a) homogeneous to homeotropic transition by a ‘command surface’ treated as aligned azo-
dye monolayer (from Ref. [61]); (b) in-plane (or azimuthal) alignment of LCs using the
effect of rotation of the azo-dye absorption oscillator (from Ref. [62]).

photoisomerization to the cis form upon UV exposure (at 365nm) and the trans form upon

visible light exposure (at 440nm) as shown in Fig. 2.11(a). If the dye molecules are directly

attached to the surface (a so-called “command surface”), the reorientation of LC molecules

between homeotropic and planar configurations can be achieved by subsequent illumination

of UV-visible light (Fig. 2.11(a)). Azimuthal alignment by the dichroism or reorientation of

azo-dye side-chain polymers was also reported [62]. Due to the dichroism of the azobenzene

molecule, molecules in the trans form is isomerized to the cis form with linearly polarized UV

light (at 365nm) parallel to the molecular long axis. The relative population of molecules

in the trans form whose long axes are perpendicular to the polarization axis increases

and the LC molecules become aligned perpendicular to the polarization axis as shown in

Fig. 2.11(b). Another important mechanism for photoalignment of azobenzene molecules is

a molecular reorientation upon the polarized light illumination. The molecular reorientation
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Figure 2.12: Photoalignment of LCs via linear photopolymerization (LPP): (a) crosslink-
ing of polyvinyl 4-methoxy-cinnamate perpendicular the polarization axis (from Ref. [16]);
(b) crosslinking of coumarin side-chain polymer parallel to the polarization axis of the il-
lumination light. The latter shows a biased tilt angle θ with oblique illumination in the
polarization plane (from Ref. [67]).

involves a molecular axis that actually moves during tis conformation change. A diffusion

model of the azo-dye absorption oscillator (chromophore) has been developed to describe

this reorientation phenomena [66].

LC alignment by the photo-induced crosslinking of polyvinyl 4-methoxy-cinnamate

(PVMC) was experimentally demonstrated in 1992 [16]. The mechanism of crosslinking in

PVMC is described as linear photo-polymerization (LPP) which leads to a preferred de-

pletion of the cinnamic side chain molecules along the polarization axis due to the (2+2)
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cycloaddition reaction as shown in Fig. 2.12(a). This causes an anisotropic distribution of

cyclobutane molecules with their long axis preferably aligned perpendicular to the polar-

ization axis and LC alignment also perpendicular to the polarization axis. Thus anisotropic

Van der Waals interactions of the rigid cores of the anisotropically corsslinked photoprod-

ucts are primarily responsible for the alignment of liquid crystals on the LPP surface with

two additional factors (anisotropic steric interactions with their partly aligned hydrochar-

bon polymer chains and anisotropically depleted prepolymer molecules). In 1996, Schadt et

al. reported a modified LPP process based on coumarin side-chain polymers [67]. Similar

photo-induced crosslinking can be achieved by the (2+2) cycloaddition reaction as shown

in Fig. 2.12(c). There are two very important improvements in comparison with cinna-

mate side-chain polymers: (i) coumarin molecules do not give photoisomerization; (ii) the

anisotropic crosslinking occurs parallel to the polarization axis and it also leads to LC

alignment along the polarization axis. The former removes an issue of alignment stabil-

ity in case of the cinnamoyl moiety. The latter shows, for the first time, an azimuthal

alignment direction parallel to the electric field of the illumination light. Development of

modified LPP photoalignment materials based on endo cinnamic ester polymer molecules

and its applications in displays and optical thin films was reported in Ref. [68].

Another important photoalignment mechanism is photodegradation in polyimide

materials. The successful photoalignment of a polyimide is considered to be an important

technological goal, because of the high thermal stability of polyimides and their acceptance

as the alignment layer of choice by the LC display industry. Hasegawa and Taira [69] first

reported photoalignment of polyimide by polarized light exposure at 257 nm. Homogeneous

LC alignment was obtained in a direction perpendicular to the polarization of the incident

UV beam. This is the direction of the maximum density of unbroken polyimide chains on

exposure. Therefore, alignment was attributed to the anisotropic depolymerization of the

polyimide.

Photoalignment mechanism by anisotropic light desorption was introduced by

Nazarenko et al. [70]. This approach may extend the research on photoalignment mate-

rials with a great extent from very complex molecular engineering of specialized functional

polymers to any possible substrates for liquid crystal devices.

The anchoring energy is one of the most important parameters to characterize

the LC alignment quality. To avoid the formation of surface walls and to provide a fast
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(a) Rubbed polyimide (b)

Φ Δφ

Photoaligned layer

Figure 2.13: Anchoring energy of the photoalignment layer: (a) measurement of the az-
imuthal anchoring energy using a twisted LC cell with the in-plane sliding mode; (b) the
effect of the exposure energy on the anchoring energy. (from Ref. [71])

switching ‘off’ time, the anchoring energy should sufficiently high (e.g., wφ > 10−4J/cm2),

comparable with that of the rubbed polymer surface.

Recall the surface anchoring strengths defined as ws = 1
2(wθ sin2 φ + wφ sin2 φ).

The azimuthal anchoring energy wφ can be measured using a Φ-twisted nematic LC cell

assembled with a rubbed polyimide alignment layer on a substrate and a photoalignment

layer on the other as shown in Fig. 2.13(a). The value of the apparent twist angle in the

LC cell is lower than that the one set by the preferred azimuthal director alignment on

the substrates (Φ), because the strong azimuthal anchoring substrate affects the director

alignment on the weak azimuthal anchoring one with a photoalignment layer [72]. Assuming

the infinite anchoring energy of the rubbed surface, the azimuthal anchoring energy of the

photoalignment layer can be calculated from the torque balance equation in the LC cell as

follows

wφ =
2K22∆φ

d sin 2(Φ−∆φ)
(2.36)

where ∆φ is the measured apparent twist angle. wφ ≈ 10−5 to 10−6J/m2 was reported

from photoalignment layers based on polyvinyl cinnamate derivatives, about one to two

orders of magnitude smaller than that of rubbed polyimide layers [73]. Subsequently higher

azimuthal anchoring energy wφ > 10−4J/m2, comparable with the anchoring energy of

the rubbed polyimide layer, was measured from azo-dye photoalignment layers [74]. Even

though the surface interactions are predominantly responsible for aligning LCs, the thinck-
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ness of the photoalignment layer can strongly affects the alignment quality. For a ultra-thin

photoalignment layers, the film may not be uniform or even continuous and the discontinu-

ous layer exhibits a lower anchoring energy. However, once a continuous film is obtained, LC

alignment can be achieved with good anchoring properties. Another important factor for

the anchoring energy of the photoalignment layers is the exposure energy/dose. Fig. 2.13(b)

shows the azimuthal LC anchoring energy of the azo-dye layers depending on the UV dose

with varying the exposure time [71].

2.3.4 Liquid crystal applications in displays and photonics

Liquid crystal technology has had a major effect many areas of science and engi-

neering, as well as device technology. Applications for this special kind of material are still

being discovered and continue to provide effective solutions to many different problems. In

this Section, we review three different examples of liquid crystal applications in displays and

photonics: (i) flat panel displays, (ii) spatial light modulators, and (iii) diffractive optical

elements.

Liquid crystal displays (LCDs) are one of the most popular LC devices with a hugh

success of commercialization that utilize distinct electro-optical properties of LC materials.

The twisted nematic (TN) LC is the first successful mode of LCDs [75]. Fig. 2.14 illustrates

glass substrates

analyzer

color filter

liquid crystal

polarizer(a) (b)

polarizer

analyzer

ON-State OFF-State

ITO electrodes

V>Vth

Figure 2.14: Liquid crystal displays: (a) a single pixel of LCDs with a twisted-nematic
(TN) LC layer between crossed polarizers (from http://en.wikipedia.org/wiki/Liquid_
crystal_display); (b) basic light switching operations of a TN-LCD.



31

the operation principle of TN-LCDs consisting of a 90◦-twisted LC cell sandwiched between

crossed polarizers. In the ‘ON’ state (V = 0), the polarization vector of the incident beam

follows the twist of the liquid crystal directors, which is often called the adiabatic following

or waveguiding in the TN-LC. On the other hand, light passes without experiencing waveg-

uiding in the ‘OFF’ state (V > Vth) where the LC directors are mostly reoriented normal

to the surface.

There are a number of advantages of LCDs as compared to traditional displays

using the cathode ray tube (CRT). Since a LCD is formed in two sandwiched glass substrates

with a few µm gap, the size and weight is dramatically reduced and this flat panel display has

been replacing CRT displays in the last decade. The scalability of LCDs from microdisplays

to big screen TVs is another important advantage over even other types of flat panel displays

such as plasma displays and digital imaging devices based on MEMS technologies. Even

though the LCD technology requires external light sources, it generally shows a low power

consumption as compared with that of the CRT. However, some technical challenges remain

to improve, including light efficiency, viewing angle, contrast ratio, and response time. While

the most advanced LCDs suggest potential solutions for most of these problems, the use of

absorbing/reflective polarizers and color filters limit the light efficiency.

LC-based spatial light modulators (SLMs) have become popular to control an op-

tical wave-front by altering the phase distribution [76, 77, 78, 79]. A spatial light modulator

is a device that imposes some form of spatially-varying modulation (either phase or intensity

or both simultaneously) on a beam of light. A typical LC-SLM consists of a liquid-crystal-

on-silicon (LCoS) backplane, a LC layer, and a glass substrate coated with a transparent

electrode as shown in Fig. 2.15. With combination of the electro-optic control of the LC

directors, advanced Si technologies provide a number of attractive characteristics of LC-

SLMs such as compactness, high density integration, and low cost. Utilities of LC-SLMs

can be found in various photonics applications [80, 81, 79]; for example, holographic data

recording, adaptive optical systems, beam steering, optical communication, and projection

displays. More recently, holographic optical tweezers have been developed using a high

resolution LC-SLMs [82].

Several concepts of liquid crystal gratings have been proposed as optical diffractive

elements for various photonics applications which include beam steering/shaping [44, 83],

tunable filters [84], and displays [85]. Both a relatively large optical anisotropy and the
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Figure 2.15: LC-based spatial light modulator (LC-SLM) (from Boulder Nonlinear Systems,
Inc.)

ability to control the director configuration by surfaces and applied fields uniquely makes

LC materials attractive to form grating structures with with advanced functions including

electro-optical switching/tuning and polarization sensitivity/selectivity.

One possibility is to use surface structures to form LC micro-prisms [83] or LC-

filled groove structures [42] as shown in Fig 2.16(a). If the surface structure is patterned

using a dielectric material with the ordinary index of the liquid crystal, a polarization

selective diffraction can be achieved; light with a linear polarization parallel to the LC

long axis experiences diffraction due to the index difference between two regions with and

without LCs, while light with a linear polarization perpendicular to the LC long axis simply

travels through without experiencing diffraction. An electrical switching of diffraction also

can be done by applying a voltage across two substrate electrodes and then no diffraction

will occur. Fig. 2.16(b) shows a LC blazed phase grating by using patterned electrodes

with differential applying fields within a grating period, which alter the LC directors to

effectively form the gradient index profile. This LC blazed gratings have been studied in

beam steering applications because of their high efficiency (up to ∼ 90%) into a single

diffracted order [86, 87]. General problems of most LC gratings may include scattering

due to defects in the LC, non-ideal index profiles, and problems related to fine alignment
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Figure 2.16: Liquid crystal diffraction gratings: (a) a surface-groove LC binary phase grating
(Ref. [42]); (b) an electrically addressed LC blazed phase grating (Ref. [83]).

patterns.

Polarization sensitivity of diffraction properties also could be a concern where light

polarization cannot be properly controlled. A stack of two LC gratings with the orthogonal

LC profiles may be considered to compensate the effect of polarization. More recently,

grating structures employing hybrid LC configurations have been proposed as a polarization-

independent light modulator that exhibits optical switching/diffraction insensitive to the

polarization of incident light (Figs. 2.17(a) and 2.17(b)) [89, 88, 90] and ∼ 100% theoretical

efficiency. One major problem of binary LC configurations is disclinations (line defects)

along the boundaries between two different domains. One can avoid such a problem using

a uniform LC alignment as an initial state and the grating profile is created by applying

a voltage across the LC cell. However the fringe fields between electrodes and interactions

between neighboring LCs affect a non-ideal LC profile.

An interesting idea of using polymer walls between LC domains was introduced [91,

Λ

φ=0° φ=90°(a)

Λ

Left- Right-handed(b)

Figure 2.17: Polarization-independent light modulators based on LC diffraction gratings:
(a) a hybrid LC configuration (Ref [88]); (b) a reverse twist configuration (Ref. [89]).
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92]. The polymer walls are formed via polymer diffusion process during selective UV expo-

sure as shown in Fig. 2.18(c). Since the LC orientation in the polymer wall is locked and

it does not response to the electric field, the phase profile more close to the ideal case can

be obtained. A very high efficiency ∼ 97% was also reported. This polymer-wall grating,

however, is limited by problems with creating narrow polymer walls (currently, tens of µm)

and the effect of the polymer surface still causing non-ideal phase profiles.

(b)

(a)

Reflector
QWP

Reflector
QWP

Figure 2.18: Liquid crystal grating with the polymer walls (from Ref. [92]): (a) the basic
concept for polarization-independent modulation; (b) the fabrication of the polymer wall
via the polymer diffusion process during selective UV exposure.
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2.4 Polarization Gratings

Polarization gratings (PGs) [4, 93, 6] are generally described as periodic profiles of

spatially-varying optical anisotropy. Unlike conventional phase or amplitude gratings, this

special type of anisotropic gratings operates by locally modifying the polarization state of

lightwaves passing through them. The most-studied PG profiles are continuous and trans-

parent, which we classify into two primary types based on their local anisotropy: circular

PGs consisting of a spiralling, constant-magnitude, linear birefringence (Fig. 2.19(a)); and

linear consisting of a varying-magnitude circular and linear birefringence PGs (Fig. 2.19(b)).

They manifest a unique combination of optical properties that can include 100% diffraction

into a single order, diffracted orders with a fixed polarization state controlled by the PG

profile, and efficiencies that are highly polarization sensitive. These make PGs useful for

numerous applications in a variety of fields, including polarimeters [5, 94, 95, 96, 19], dis-

plays [10, 97, 98], polarizing beam-splitters [99, 8], beam-steering [100, 101], and polarization

multiplexers [102]. (add more of our application papers)

The profiles of the two primary PG types (circular and linear) can now be fully

defined by their anisotropy profile (φ, no, ne, and εg) in terms of material parameters (n̄,

∆nl, and ∆nc) and geometry (thickness d and effective optical period Λ). The permittivity

0 Λ/2 Λ

y-
ax
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x

(a) (b)

x

z

Circular PG
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z
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y-
ax
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x
0 Λ/2 Λ

Figure 2.19: Periodic birefringence profiles for the two primary types of polarization gratings
(PGs): (a) circular PG and (b) linear PG. The direction/handednesses of the total local
anisotropy are illustrated as arrows. (Λ is the effective optical grating period/pitch.)



36

tensor ε̃ can be written as follows

ε̃ = R−1(φ, 0) [ε̃l + ε̃c]R(φ, 0) (2.37)

where φ(x) is the azimuthal orientation of spatial-variant linear birefringence, and ε̃l and ε̃c

are tensor elements corresponding to linear and circular anisotropy, respectively, which can

be written as follows

ε̃l =





n2
e 0 0

0 n2
o 0

0 0 n2
o



 (2.38a)

ε̃c =





0 −iεg 0

iεg 0 0

0 0 0



 (2.38b)

where no,e(x) are the ordinary and extra-ordinary refractive indices of the anisotropic

medium, respectively, and the linear birefringence is defined as ∆nl = ne − no. The gy-

ration factor εg(x) = n̄∆nc is symmetric about the z-axis (where n̄ = 1
2 (no + ne) is the

average index of refraction and the circular birefringence is identified as ∆nc). Table 2.1

summarizes these material and geometric parameters for both circular and linear types of

PGs. We note that the azimuthal orientation of the anisotropy is changing along the x-axis

(or the grating axis) for the circular PG with a constant value of birefringence (∆nl ,= 0,

∆nc = 0) while the magnitudes of linear and circular birefringence vary along the grating

axis but at the same azimuthal angle (i.e., φ = π/4) for the linear PG.

The both circular and linear polarization gratings can exhibit several unique fea-

tures as shown in Figs. 2.19(a) and 2.19(b) that include: (i) only three orders are potentially

Table 2.1: Material parameters for two primary types of the polarization gratings

Circular PG Linear PG

φ(x) xπ/Λ + π/4 π/4

ne(x) n̄ + ∆nl/2 n̄ + (∆nl/2) cos (xπ/Λ)

no(x) n̄−∆nl/2 n̄− (∆nl/2) cos (xπ/Λ)

εg(x) 0 n̄∆nc sin (xπ/Λ)
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non-zero (η|m|≥2 = 0, unlike thin phase gratings); (ii) the first orders are circularly/linearly

polarized regardless the input polarization state; (iii) all three orders can have efficiencies

from 100% to 0%. Theoretical descriptions for these ideal properties of the PGs have been

developed using the Jones matrix method for paraxial diffraction.

2.4.1 Essential diffraction properties of polarization gratings

In what follows, we derive a concise summary of the properties of the circular PG,

based in part on Jones matrix reasoning [6, 19]. We begin by assuming an infinite grating

and express the (far-field) electric field Dm for each diffraction order m as the Fourier

transform of the (near-field) output. Under this set of assumptions, we can express the

far-field electric field of the diffraction order m as follows

Dm =
1
Λ

∫ Λ

0
T(x)Eine−j2πmx/Λdx (2.39)

The transfer matrix T is given by

T(x) = R
(
−πx

Λ

)


 e−jπ∆nld/λ 0

0 ejπ∆nld/λ



R
(πx

Λ

)
(2.40)

where ∆nld/λ is the normalized retardation and R is the rotation matrix. Assuming an

incident plane-wave (uniform in the x direction), we can rewrite Eq. 2.39 as follows

Dm = TmEin (2.41)

where the grating transfer matrix is defined as Tm = Λ−1
∫ Λ
0 T(x)e−i2πmx/Λdx. Since PGs

have non-zero solutions only for m = −1, 0,+1, Eq. 2.41 can be summarized as follows

D0 = Ein cos
(

π∆nld

λ

)
(2.42a)

D±1 =
1
2
Ein sin

(
π∆nld

λ

) 

 −j ∓1

∓1 j



 (2.42b)

We can now solve for the diffraction efficiency as the ratio of output to input intensity

(ηm = |Dm|2/|Ein|2) as follows

η0 = cos2
(

π∆nld

λ

)
(2.43a)

η±1 =
1
2
(1∓ S′3) sin2

(
π∆nld

λ

)
(2.43b)
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where S′3 = S3/S0 is the normalized Stokes parameter corresponding to ellipticity of the

incident light. Furthermore, it can be shown that the polarization states of the ±1-orders

will be orthogonal and circularly polarized (hence the label ‘circular’ PG). Jones analysis

for more general cases of the polarization grating (including the linear PGs) can be found

in Ref. [103].

The expressions above are derived using the paraxial approximation (that all waves

of interest propagate along directions close to the z-axis), which necessarily implies that the

gratings are considered ‘thin’. Several unique features are apparent: (i) only three orders

are potentially non-zero (η|m|≥2 = 0, unlike thin phase gratings); (ii) the first orders are

circularly polarized regardless the input polarization state as shown in Fig. 2.20(a); (iii)

all three orders can have efficiencies from 100% to 0%; (iv) both η0 and the sum of η±1
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Figure 2.20: Diffraction properties of the circular PG: (a) the first-order diffraction with
orthogonal circular polarization states; a schematic view of the circular PG embodied as
a liquid crystal layer – (b) plane- and (c) side-view; diffraction efficiencies of the circular
PG as a function of (d) the normalized retardation ∆nld/λ and (e) the ellipticity angle χ
(related to the Stokes parameter by S′3 = sin(2χ)) of the input polarization.
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depend only on the normalized retardation ∆nld/λ (see Fig. 2.20(d)). It is also important

to note that the efficiencies of the ±1-orders are strongly coupled by the polarization state

of incident light as shown in Fig. 2.20(e).

A circular PG has moderate diffraction bandwidths (through ∆nd/λ in Eqs. 2.43(a)

and 2.43(b)) and reasonable angular response when compared with other conventional grat-

ings. The spectra of diffraction efficiencies of this grating are very similar to those of binary

phase gratings while the maximum efficiency can be ∼ 100%. The PG also shows similar

high efficiency and polarization properties over a fairly wide angles of incidence (i.e., ±30◦).

For Bragg gratings, ∼ 100% efficiency can be obtained in special conditions (i.e., θinc ≈ θB).

However, diffraction efficiencies of both blazed and Bragg gratings are highly sensitive to

incident angle variation. We will discuss more on the diffraction bandwidth and angular

sensitivity of PGs in Chapter 3, and we will also show how to make achromatic PGs in the

same Chapter.

2.4.2 Historical record in literature

The concept of polarization gratings was first proposed in 1972 [104] as spatially

modulated linear/circular polarizer patterns to create polarization moiré in interferometry

applications. Theoretical foundations to understand diffraction behavior of these absorbing

gratings was developed using the Jones matrix analysis and the basic optical properties

were also confirmed by initial experimental demonstrations. The author of the paper in 1972

also presented very interesting interferometer configurations using polarization gratings and

some important aspects of this special type of anisotropic gratings were hinted in the same

paper, which are also very useful for many different applications including polarimetric

imaging, beam steering, light modulation, and so on. These marvelous theoretical and

experimental works, however, were not quite well recognized in literatures and not so much

works had been reported after this first appearance of the polarization grating. One of the

reasons may be no practical means to create such complex patterns using polarizer films

with a high resolution although several techniques utilizing electro-optical materials and

polarization-sensitive recording materials were suggested. The initial experiments employed

Ronchi rullings (few mm wide) of polarizer films.

Soon after, in 1974 [105], a method of holographic recording of polarization gratings

was proposed with extended mathematical descriptions for general polarization holograms



40

including grating patterns. Polarization-sensitive materials of which birefringence can be

induced under the action of polarized coherent light was considered as a holographic record-

ing medium. Nikolova and Todorov reported a summary of distinct properties of special

types of polarization gratings [4] and their development of organic polarization-sensitive

materials (containing azo dye molecules) [12, 106], which publications successfully draw

hugh interests in both material and optics communities. Perhaps, more importantly, it

was first time to prove theoretical 100% efficiency from paraxial-domain (or thin-grating

regime) diffractive elements [4, 107, 6]. Polarization gratings based on dichroism (anisotropic

absorption) rather than birefringence were simultaneously reported in both theory and ex-

periment [108, 109].

The most popular means to create PGs is using polarization holography with

anisotropic organic recording materials (especially azobenzene-containing polymers [14, 110,

111, 112]), among other materials [113, 114, 15]. PGs also can be formed by sub-wavelength

features [99, 115]. Several related approaches use patterned surfaces via micro-rubbing

or photoalignment to align a liquid crystal layer [116, 17, 10], which have recently been

implemented experimentally with ideal optical properties [18, 19, 11].

The first application of polarization gratings was suggested as a polarizing compo-

nent for advanced interferometric imaging systems to create polarization-type Moiré-fringe

patterns [104]. While the use of polarization gratings in imaging systems has become of a

great interest, this interesting work, however, was not quite recognized because of fabrica-

tion complexity at the time when it is published. A simplified polarimetry concept based

on PG diffraction was proposed by Gori [5] and many other publications of PG applications

as a polarizing beam splitter followed [99, 94, 117, 8]. Polarization detection methods using

PGs in optical communication were also proposed [102, 118]. Most previous attempts could

not lead to successful development of applications and limited because of poor optical per-

formance (low efficiency, incoherent scattering, low polarization contrast) of actual PGs, far

away from its ideal properties. A new fabrication process that separates holographic record-

ing and liquid crystal alignment via the photoalignment surface layer was proposed to over-

come the complexity of volume holographic recording (usually limited by recording efficiency

and low induced birefringence of the recording medium) and the difficulty of liquid crystal

alignment in such a complex spatial pattern using rubbing techniques [119, 17]. With ben-

efits of development of new liquid crystal materials and photoalignment techniques [18, 96],
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more practical applications arose in displays [10, 9, 98, 120, 121], imaging/nonimaging

polarimeters [96, 19, 122, 123], imaging/nonimaging spectrometers [124, 125, 126], beam

steering [100, 127], and optical switching/imaging [128].

2.4.3 Holographic insights of polarization gratings

Holography is a photographic technique to create an interference pattern using

multiple beams of coherent light [129]. While most conventional holography uses an intensity

modulation as shown in Fig. 2.21(a), polarization holography involves a modulation of the

polarization state as a result of interference of light with different polarization. Interesting

interference patterns can be created when two beams have orthogonal polarization states

with each other. Figs. 2.21(b)–2.21(d) show polarization holograms for three special cases

of orthogonal polarizations (linear vertical and horizontal, linear at ±45◦, and right- and

left-handed circular). The circular PG is one type of these polarization interference patterns

with two orthogonal, circularly polarized light (Fig. 2.21(d)). Polarization holograms can be

represented as circles on the Poincaré sphere. One interesting view of polarization gratings

is that all above polarization holograms based on two orthogonal beams with the same

intensity make great circles on the sphere as shown in Figs. 2.22(a)–2.22(c). A polarization

hologram of any circle on the sphere can be achieved by adjusting the relative intensities of

orthogonal beams (Fig. 2.22(d)).

The birefringence pattern of the circular PG can be interpreted as the interference

of two circularly polarized beams (left- and right-handed) of which electric fields are:

EL =
E0

2



 1

−i



 e(iπx/Λ) (2.44a)

ER =
E0

2



 1

i



 e(−iπx/Λ) (2.44b)

where Λ = λR/(2 sin θ) is the modulation period, λR is the wavelength of the recording

beams, and ±θ is the incident angle of the recording beams. The Jones vector for the

resulting polarization is given by E = EL + ER = E0[cos (πx/Λ), sin (πx/Λ)]T . This spa-

tially modulated polarization pattern can be directly recorded in a volume by illuminating

polarization-senstive holographic materials, which can exhibit induced birefringence as a

product of photochemical reaction. The most effective way to capture such a polarization
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pattern is to record it in polarization-sensitive materials which then transfer their anisotropy

Orthogonal circular polarization (right- & left-handed)

Orthogonal linear polarization (+45° & −45°)

Orthogonal linear polarization (horizontal & vertical)

I(x)

x

I(x)

x
n(x)

x

Intensity interference

Recorded as refractive index

Constant intensity

(a)

(b)

(c)

(d)

Figure 2.21: Polarization holograms by two beam interference with orthogonal polarizations:
(a) classical intensity interference with two linear beams with the same polarization; (b)–
(d) polarization interference patterns with two orthogonal beams with linear ((b) vertical
& horizontal, (c) +45◦ & −45◦) and circular ((d) right- & left-handed) polarizations. While
the intensity profile is captured as a modulated refractive index of the recording medium
for the conventional holography, the polarization pattern is recorded as a distribution of
the orientation of the induced birefringence.
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(a) (b)

(c) (d)

Figure 2.22: Polarization holograms represented on the Poincaré sphere. Polarization grat-
ing patterns created by two orthogonal beams with the same intensity can be described as
great circles on the sphere (see (a)–(c)). An arbitrary polarization hologram can be also
represented as circles on the sphere (see (d)).

to a liquid crystal layer via surface alignment of LCs.

2.4.4 Polarization holography & LC photoalignment: an effective fabri-

cation method for creating PGs

The most popular means to create PGs is using polarization holography with

anisotropic organic recording materials (especially azobenzene-containing polymers [14, 110,

111, 112]), among other materials [113, 114, 15]. PGs also can be formed by sub-wavelength

features [99, 115]. Several related approaches use patterned surfaces to align a liquid crystal

layer [116, 17, 10], which have recently been implemented experimentally with ideal optical
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(a) Before Exposure (b) After Exposure

UV Exposure

E

LC director

n

Figure 2.23: LC photoalignment using a linear photopolymerizable polymer (LPP).
Anisotropic LPP-distribution via cross-linking on the function of linearly polarized UV
exposure leads to directional alignment of LCs through Van der Waals interactions [68].

properties [18, 19, 11].

We have developed an effective fabrication method for creating defect-free PGs

with ultra-high efficiency and low incoherent scattering by adopting polarization holog-

raphy and liquid crystal materials. The key of the fabrication technique is the use of

photo-alignment techniques that allow the separation of hologram recording and grating

structure amplification and a careful optimization of materials (photoalignment materials,

liquid crystals) and processing parameters (exposure doses, spin processing).

In particular, we utilize a linear photopolymerizable polymer (LPP) ROP-103/2CP

(Rolic), which manifests a strong orientational photo-chemical reaction in response to the

local direction of linearly polarized UV light [68]. Figs. 2.23(a) and 2.23(b) illustrate in-

termolecular reaction and the anisotropic molecular configuration, respectively, when the

LPP is exposed with a linearly polarized UV light. This new alignment technology allows

generation of high resolution azimuthal LC director patterns and optically patterned de-

vices. A proper choice of the exposure fluence (J·cm−2) is essential to obtain the strong

alignment condition, which is degenrally dependent on the surface pattern and LC material

properties.

We have developed PG fabrication processes for two different forms of a switchable

cell and a polymer film as shown in Figs. 2.24(a)–2.24(e). We first prepare a thin (typically,

< 100nm) film of LPP on a glass substrate by spin-coating. The LPP substrate is then

exposed to a polarization hologram from a UV laser (i.e., HeCd, 325nm) with orthogonal

circular polarizations as shown in Fig. 2.24(b). The typical recording dose of choice is

around a few J·cm−2 depending on liquid crystal materials and grating parameters (i.e.,

thickness d and period Λ).
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We use polymerizable liquid crystals (reactive mesogen, RM) to form a polymer

PG (now called a RMPG). As shown in Figure 2.25(a), the fabrication of RMPGs proceeds

with following four basic steps: first, a LPP layer is coated on a glass substrate; second,

the LPP substrate is exposed to UV recording beams, leading to a polarization hologram

for PG patterns; third, a RM mixture (including liquid crystal monomers, solvents, photo-

initiators, and surfactants) is coated on the LPP layer and made to be aligned according

to the surface pattern; finally, the RM layer is photopolymerized with a blanket ultraviolet

exposure to permanently fix the largely structured optical anisotropy. Virtually any grating

thickness can be achieved by multiple coating of thin RM layers while the maximum cell

thickness (≤ dC) is limited for LCPG samples. The resulting PG exhibits all the properties

predicted by theory with unsurpassed fidelity; > 99% first-order efficiency, > 4000 : 1

polarization contrast ratio, and < 0.1% incoherent scattering.

For a switchable liquid crystal PG sample (now called a LCPG), we prepare two

ITO-glass substrates coated with a LPP layer and make a cell with a uniform gap (a few

µm) (Fig. 2.25(b)). For the maximum diffraction efficiency (∼ 100%), the cell gap can be

designed for a half-wave retardation (∆nd = 1
2λ) at a target wavelength. After UV exposure
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Figure 2.24: Holography setup for recording polarization gratings: (a) a modified Mach-
Zehnder interferometer setup for UV holographic recording; (b) a polarization interference
pattern recorded from two circularly polarized coherent beams; (c) our UV holography setup
using a HeCd laser (325 nm).
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to a polarization hologram (with two orthogonal, circularly polarized beams), we fill the

cell with liquid crystals via capillary action, typically above the isotropic temperature. As

cooling the cell, liquid crystal molecules are aligned by the surface pattern of the LPP

layer to form a polarization grating profile. Applying a voltage above the threshold across

the ITO electrondes, one can modulate light by altering the diffraction efficiencies. The

electro-optical properties of LCPGs have been studied in both theory and experiments and

referring readers to Refs. [9, 121, 130, 131] for details.

Polarization Holography

RCP LCP

LC

LC FillingCell Assembly
LPP coating (~100nm)

Glass SubstrateITO

Glass SubstrateITO

(b)

Polarization Holography

RCP LCP RM coating

Photopolymerization

LPP coating (~100nm)

Glass Substrate

(a)

LCP layers

spacer

Figure 2.25: Fabrication of polarization gratings using polarization holography and pho-
toalignment of LCs: (a) fabrication process for polymer RMPGs; (b) fabrication process
for switchable LCPGs.
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Chapter 3

Achromatic Polarization Gratings

as Broadband Beam Splitters
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3.1 Study on the diffraction limits of polarization gratings

We have done an extensive numerical analysis of the optical properties of PGs using

the finite-difference time-domain (FDTD) method [132]. While concise analytic expressions

for the diffraction properties of PGs have been derived [4, 6] using Jones calculus [26], these

are limited by their assumptions to large grating periods, normal incidence, and infinite

gratings. Furthermore, even the most unabridged coupled-wave analysis [93] is limited to

slowly-varying envelopes, and has only been developed for pure volume holograms.

Most conventional gratings may fall into two grating regimes, thin or thick grat-

ings, depending on both their material properties and physical structures. When a grating

is well defined in one of these grating regimes, its behavior is usually well understood and

analytical descriptions for optical properties (such as efficiency, diffraction angles) are often

available for many grating types. These explanations, however, may fail to predict actual

diffraction behavior of gratings in intermediate situations between the thin and thick grating

regimes. Some literatures reported comprehensive studies on the effect of the grating re-

time on diffraction properties of phase gratings and suggested how to interpret given grating

parameters to determine a proper grating regime [32, 34]. Still, no work adequately deals

with the fundamental question of delineating the thin/thick grating regimes in anisotropic

gratings.

Therefore, we focus to investigate two issues: First and most prominently, we seek

to understand PG behavior as the grating period becomes comparable to the wavelength;

Second, we predict the angular response and the behavior of a finite grating. To this end, we

numerically analyze the PG diffraction using the open-source software package WOLFSIM-

Wideband OpticaL Fdtd SIMulator, developed at NCSU for efficient modeling of periodic

anisotropic media.

3.1.1 Numerical analysis of polarization gratings using the FDTD method

We have developed an efficient FDTD algorithm for wide-band analysis of pe-

riodic anisotropic media [133, 134], now available as an open-source software WOLF-

SIM [135]. WOLFSIM incorporates a two-dimensional 2D spatial grid containing media

with an arbitrary three-dimensional, nondispersive permittivity tensor. Off-axis illumina-

tion, monochromatic and wideband Gaussian-pulse sources, and periodic boundaries are
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Figure 3.1: Numerical analysis of the polarization grating (PG) using the finite-difference
time-domain (FDTD) method: (a) light diffraction from periodic structures at oblique
incidence; (b) a layout of the FDTD simulation space. Note that the simulation space
includes only one period of the PG structure (the x-width = Λ) for most our simulations.

explicitly incorporated.

We consider structures with 1D periodicity along the x-axis. Fig. 3.1 illustrates

a 2D FDTD simulation space for PG analysis. The heart of the simulation is a modified

split-field method, adapted for arbitrary anisotropic media with input illumination at a

general angle of incidence. The finite simulation space is implemented by applying the

periodic boundary conditions along the x-axis and placing uniaxial perfectly matched layers

(UPML) at the boundaries along the z-axis. To appropriately isolate the effect of the

PGs themselves from Fresnel reflection effects, we also place gradient-index antireflection

layers [136] at the air-PG interfaces. The computational grid spacing ∆u was selected as

λmin/(20nmax), where λmin is the shortest wavelength of interest and nmax is the maximum

index of refraction in the media. The time resolution was chosen as ∆t = ∆u/3c to ensure

numerical stability, where c is the speed of light. The expected accuracy of the FDTD

simulation is 0.05% meansquare error. A more complete description of the details can be

found in Ref. [7].

The diffraction angle θm of the m-order propagating wave (Fig. 3.1(a)) is deter-

mined by the grating equation sin θm = mλ/Λ+sin θinc, where θinc is the angle of incidence.

The complex vector amplitude Em in the far-field of the m-order propagating wave is calcu-

lated by a (Fourier) vector transformation applied to a line sampled immediately following

the structure (defined explicitly in Eqs. (18) in Ref. [134]). Except where noted, diffraction
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efficiencies (or intrinsic efficiencies) are calculated as the ratio of the intensity of wave m to

the total intensity of the forward propagating waves:

ηm = |Em|2/|Etot|2 (3.1)

where |Etot|2 =
∑+∞

m=−∞ |Em|2.
We now revisit the analytic expressions for the diffraction efficiency of a circular

PG (see Eqs. 2.43): η0 = cos2 (π∆nld/λ) and η±1 = 1
2(1∓S′3) sin2 (π∆nld/λ), where λ is the

wavelength, ηm is the diffraction efficiency of the m-order, ∆nl is the linear birefringence,

d is the grating thickness, and S′3 = S3/S0 is the normalized Stokes parameter of the input

light.

The numerically calculated diffraction efficiencies of a circular PG are shown in

Fig. 3.2(a), compared to the analytic prediction. The grating parameters for the FDTD

simulations are: Λ = 20λ0, d = 5λ0, n̄ = 1.6, and ∆nl = 0.2 (e.g., Λ = 10µm, d = 2.5µm

for λ0 = 500nm), where λ0 is the center-wavelength of the input source. As expected,

only three diffraction orders (0,±1) are non-zero (> 0.01%), and the maximum first-order

efficiency approaches 100% (actually 99.96%). We also verified the polarization states of

each diffraction order; the 0-order has the same linear polarization state as the input and

the +1- and −1-orders have right- and left-hand circular polarizations, respectively.

The polarization sensitivity of the first-orders is shown in Fig. 3.2(b), which plots

the calculated first-order efficiencies for different ellipticity angles χ of the incident polar-
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Figure 3.2: Diffraction behavior of a circular PG numerically calculated (curves) and an-
alytically estimated (©, ♦, and #) using Eqs. 2.43: (a) diffraction efficiency spectra as a
function of the normalized retardation (∆nld/λ); (b) polarization response of the first-order
efficiencies when ∆nld/λ = 1
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Figure 3.3: FDTD near-field maps of the electric fields from a circular polarization grating
with circular (a) and linear (b) incident polarizations. (Λ = 20λ, n̄ = 1.6, ∆nl = 0.2,
d = 2.5λ)

ization when ∆nld = λ/2 (i.e., when η0 / 0). The ellipticity angle χ is related to the

normalized Stokes parameter by S′3 = sin(2χ). The FDTD electric field maps in the near

field, captured using a monochromatic source, are presented in Figs. 3.3(a) and 3.3(b) for

circular (χ = π/4) and linear (χ = 0) incident polarizations, respectively. Overall, the

FDTD calculation correlates extremely well to the analytic expressions.

3.1.2 Beyond the paraxial approximation

While excellent agreement is observed between the FDTD results and analyti-

cal solutions for the paraxial case, the small-angle assumptions used in the derivation of

Eqs. 2.43 suggest that they may not describe diffraction if Λ/λ becomes relatively small

(and large diffraction angles). Several fundamental questions therefore remain unanswered:

For what PG parameters do the analytic equations properly apply? Is the Klein parameter

Q useful to distinguish grating regimes in PGs, or is another parameter more descriptive?

For a given λ and Λ (or for a fixed diffraction angle), what choice of d, ∆nl, and n̄ enables

high efficiencies?

The best way to address these questions is to consider a parameter-space defined

by the normalized retardation ∆nld/λ and grating period Λ/λ0 (similar to Ref. [137]

for phase gratings). This is essentially a summary of diffraction spectra versus grating

period. In Fig. 3.4, we present a map of the total first-order diffraction for a relatively high

(∆nl = 0.2) and low (∆nl = 0.04) birefringence. We plot the FDTD result as solid-line
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Figure 3.4: The behavior of the circular PG diffraction with respect to grating regime (thin
or thick), from the perspective of Q and ρ parameters [33, 138, 34]. The contour plots show
the total first-order diffraction Ση±1 versus normalized retardation ∆nld/λ and normalized
grating period Λ/λ0. A comparison between numerical FDTD calculation (black solid-line
contours) and analytical estimate (grayscale levels) is shown for a high (∆nl = 0.2) and low
(∆nl = 0.04) birefringence in parts (a) and (b), respectively. We note that diffraction best
follows the analytic expressions when ρ < 1, the thin-grating regime. (from Ref. [7])

contours, and plot the analytic expressions (Eqs. 2.43) as grayscale levels. Note that these

are well correlated for larger values of Λ/λ0, but become dramatically different for smaller

grating periods.

The FDTD calculation was generated as follows: for each setting of Λ/λ0, a

Gaussian-pulsed planewave [134] was input with linear, vertical polarization, and the nor-

malized spectral output (Ση±1 versus ∆nld/λ) was calculated. Additionally, d = λ0/2∆nl

and n̄ = 1.6.

It is instructive to segment this first-order efficiency map into grating regimes, often

described as either thin or thick. In classical grating analysis, two dimensionless parameters

Q [33, 138] and ρ [34] are frequently used to identify the grating regimes: Q = 2πλd/
(
n̄Λ2

)

and ρ = 2λ2/
(
n̄∆nlΛ2

)
. The contours of both parameters are superimposed on the map in

Fig. 3.4.
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The condition Q < 1 is most popularly used to identify the thin-grating (Raman-

Nath) regime, and it is appropriate to note that the analytic equations (Eqs. 2.43) corre-

spond well to the FDTD solution under this same condition. However, it is important to

note that this is sufficient, but not necessary: for some regions with Q > 1, it is still pos-

sible for the FDTD solution to be nearly identical to the analytic solutions (especially for

larger values of ∆nld/λ). This suggests that Q is not the best indicator of the thin-grating

regime boundary. In fact, this is generally true for phase gratings [34], but is particularly

noticeable in circular PGs since their birefringence can be high.

A contour for the parameter ρ = 1 is also shown in Fig. 3.4. Note that because

the FDTD and analytic solutions correlate strongly when ρ < 1, this parameter is the most

robust indication of when Eqs. 2.43 are valid. The usefulness of ρ over Q is particularly

important when large diffraction angles are desired (i.e., Λ/λ approaching 1). Assuming

normally-incident light, we therefore predict that the following conditions must be met for

≈ 100% diffraction in PGs: ρ < 1 and ∆nld/λ = 1
2 + a, where a is a non-negative integer.

A complementary view of circular PG behavior is shown in Fig. 3.5. A series of

FDTD simulations were performed with a normally-incident, linearly polarized, Gaussian-

pulsed planewave input for a range of Λ and ∆nl. The first maximum of the first-order
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Figure 3.6: Angular response of a circular PG when illuminated at oblique incidence with
right-handed circular polarization input (χ = 45◦): (a) First-order and (b) zero-order
diffraction efficiency; (c) Polarization state of the diffracted −1-order. PG parameters
are set for halfwave retardation. (Λ = 20λ, d = 5λ, n̄ = 1.6, and ∆nl = 0.2)

diffraction efficiency Ση±1,max (which appears at or near the ∆nld/λ = 0.5 line in Fig. 3.4)

decreases as Λ approaches λ. We normalize with respect to the actual wavelength λmax at

which each maximum occurs. One apparent lesson about circular PGs is therefore that ma-

terials that possess a high linear birefringence are needed in order to achieve high diffraction

efficiencies and large diffraction angles. We will return to this topic in latter Section 3.4

with experimental demonstration of highly efficient, small-period grating using liquid crystal

materials with high ∆nl values.

The angular response is shown in Fig. 3.6, where the impact of oblique illumination

is highlighted (a topic not yet theoretically studied, to our knowledge). For small angles of

incidence θinc, only the −1-order has appreciable power (≈ 100%) and manifests a nearly
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perfect right-handed circular polarization (S′3 / 1). For |θinc| > 20◦, the −1-order efficiency

decreases (with the leakage passing into the 0-order), and its polarization state becomes

increasingly elliptical. We note that the angular response is asymmetric with respect to

θinc = 0. We consider all of these off-axis effects as being primarily related to a change in

the effective optical path length experienced by the incident lightwave as θinc increases. We

also note that the +1-order remains very small (≤ 1) for all the cases.

In many application contexts (most notably in displays [97, 98]), finite-size PGs

are inherently involved because the transverse direction of the grating is bounded in some

way (e.g., by pixel edges). It is therefore important to quantify the diffraction of this finite

grating as its lateral size L becomes comparable to the grating period Λ. To accomplish

this, we have created a pixel model by surrounding a circular PG in the lateral direction by

absorbing materials.

The near-field and far-field diffraction of an example pixel (L = 2Λ) with a Cir-

cular PG (Λ = 10λ, ∆nld = λ/2 and n̄ = 1.6) and an isotropic dielectric slab are shown

in Figs. 3.7(a) and 3.7(b), respectively. A monochromatic planewave with right-hand cir-

cular polarization was input with normal incidence, and the far-field intensity calculated

with the standard Kirchhoff integral method for finite apertures (e.g., Ref. [2]). Since

the far-field intensity profiles follow the classical single-slit aperture diffraction (I(θ) ∝
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Figure 3.7: Diffraction behavior of finite circular PGs with circularly polarized light: (a)
FDTD near-field map of a pixelated circular PG with two periods (L = 2Λ, Λ = 10λ); (b)
FDTD near-field map of a dielectric slab with the same width.
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sinc2 (π sin(θ − θm)L/λ), with θm = 0 for the dielectric slab), the diffraction efficiency is

no longer strictly a scalar. However, we can still make useful comparisons between the two

cases of Fig. 3.7 by defining the diffraction efficiency for finite PGs as:

η =
(Ipeak/Itot)PG

(Ipeak/Itot)SLAB

, (3.2)

where Ipeak and Itot are the maximum and total intensities in the far-field in the two

simulations. In this way, we isolate the diffraction effect of the grating as opposed to the

aperture.

Fig. 3.8 shows the−1-order efficiency when Λ = 10λ and 6λ. As might be expected,

we observe that as L/Λ increases, the efficiency asymptotically approaches the value (99.5%)

of the comparable infinite PG. Furthermore, a weak oscillation away from this maximal value

becomes increasingly pronounced for smaller grating periods (Λ/λ). However, this analysis

suggests that a high efficiency can still be achieved even with a small pixel size (e.g. L ≈ 12

µm, for λ = 550 nm and Λ = 3.3 µm).

This work is the first rigorous numerical analysis of polarization gratings and

presents their diffraction behavior on a fundamental level with as few assumptions as pos-

sible. Using our newly developed FDTD method for periodic anisotropic media, we found

strong correspondence with the analytic expressions previously developed for ‘thin’ PGs

(i.e., with small diffraction angles and normally incident illumination). We explored the

thin-thick grating regime transition, and identified ρ < 1 as the most robust condition (as

opposed to Q < 1) to delineate the grating regime. It is also apparent that materials with

large linear birefringence are most likely to support a high diffraction efficiency and large

diffraction angle simultaneously. In studying off-axis illumination, we found that PGs can
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retain high diffraction efficiencies for modest incident angles (< 20◦). We also studied the

behavior of a finite grating, and found that first-order diffraction remains nearly identical

in magnitude to that of a comparably small aperture (i.e. high diffraction efficiency oc-

curs even for only a few grating periods). We also present further numerical analysis of a

different type of polarization gratings comprising of both linear and circular birefringence

(namely, ‘linear’ PGs) in Appendix A.
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3.2 Achromatic diffraction by self-compensated twisted po-

larization gratings

Since its first appearance in literature, many aspects of the polarization grating

which are not available in classical scalar diffractive elements have been recognized by dif-

ferent groups of researchers, and recent advances in fabrication technologies significantly

improve or even eliminate problems associated with fabrication challenges (i.e., incoherent

scattering, limited grating period, and discontinuity of birefringence profile), which often

result in poor optical properties. In last five years, we have developed fabrication process for

high-quality PGs using UV polarization holography and photoalignment of LC materials.

We routinely make PGs with a wide range of grating periods (typically, from 2 µm to 20

µm) as electrically controlled liquid crystal devices and thin liquid crystal polymer films

depending on requirements for different applications. Our numerical study of the circular

PG also suggests a more realistic guideline for the design of grating parameters (i.e., thick-

ness, period, and birefringence) along with the elastic continuum analysis that provides a

prediction of the physical behaviors of liquid crystal molecules (i.e., alignment condition,

voltage threshold, and switching times).

Wavelength sensitivity of diffraction efficiency is often a concern in applications

where broadband illumination is required (i.e., white light). A circular PG shows a modest

bandwidth for high efficiency as compared with conventional phase gratings (but substan-
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Figure 3.9: Wavelength sensitivity of the diffraction efficiency of a circular PG: the first-
order efficiency as a function of (a) retardation (∆nld/λ) and (b) wavelength.
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tially broader than Bragg or volume-holographic gratings that show similar high efficiency).

Since the PG operates on a spatial modulation of local polarization states by retardation of

the medium (i.e., liquid crystals), its spectral characteristics rely on the optical retardation

that light at different wavelengths experiences while propagating through the PG. Fig. 3.9(a)

shows the first-order efficiency as a function of retardation (∆nld/λ). It is clear that the

maximum efficiency can be obtained when ∆nld = λ/2 and high efficiency is available only

near the center wavelength. For a PG optimized for ∼ 100% at a green wavelength (∼530

nm), small but apparent reductions of efficiency are predicted for other visible wavelengths

(i.e., 93% at 470 nm, 96% at 630 nm) as shown in Fig. 3.9(b). Broadband designs, therefore,

are desired to make the nearly ideal PG properties available for all wavelengths of interest.

An interesting design of achromatic gratings was proposed by Lajunen et al. [139, 21]. The

suggested design approach using subwavelength features, however, is limited by no practical

method of creating fine structures (i.e., few nanometers for optical frequencies).

Here, we demonstrate a broadband, thin-film, polarizing beamsplitter (Fig. 3.10(a))

based on an anisotropic diffraction grating composed of reactive mesogens (polymerizable

liquid crystals). This achromatic polarization grating (PG) manifests high diffraction effi-

ciency (∼100%) and high extinction ratio (≥1000:1) in both theory and experiment. We

show an operational bandwidth ∆λ/λ0 ∼ 56% (roughly spanning visible wavelength range)

that represents more than a four-fold increase of bandwidth over conventional PGs (and

significantly larger than any other grating). The diffraction angle and operational region

(visible, near-infrared, mid-wave infrared, and ultraviolet wavelengths) may be easily tai-

lored during fabrication. The essence of the achromatic design is a stack of two chiral PGs

with opposite twist sense, and employs the principle of retardation compensation. We fully

characterize its optical properties and derive the theoretical diffraction behavior.

This achromatic PG comprises two antisymmetric chiral circular PGs with oppo-

site twist sense, where the nematic director n follows

n(x, z) = [cos φ(x, z), sinφ(x, z), 0] (3.3a)

φ(x, z) =





πx/Λ +Φ z/d if 0 ≤ z ≤ d

πx/Λ− Φz/d + 2Φ if d < z ≤ 2d
(3.3b)

where φ is the azimuth angle of the director field, Λ is the grating period, d is the thickness,

and Φ is the twist angle of each chiral layer. Figs. 3.10(b) and 3.10(c) illustrate this profile.
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Reactive mesogens [53] are ideal to create this anisotropy pattern since their orientation

can be initially established by surfaces and chiral dopants, and indefinitely fixed via photo-

polymerization.

3.2.1 Achromatic design of polarization gratings

The diffraction efficiency ηm of order m may be calculated using Jones calculus

under the paraxial (small-angle) approximation, a method employed previously by several

authors for conventional PGs [6, 19, 103]. Since the derivation for our anisotropy profile

(Eq. (3.5)) involves lengthy expressions, here we will only summarize the approach and in-

clude the final result (referring the reader to Ref. [140] and Appendix B for details). First,

we find the spatially-varying 2 × 2 transfer matrix TAPG(x), incorporating all grating ge-

ometry and material anisotropy. The achromatic PG profile is expressed as multiple thin

layers of Circular PGs with a small lateral phase shift between them, akin to the analysis

of twisted nematic LC modes as stratified media [30]. Second, we find the electric field

of diffraction order m far from the grating as Dm = (1/Λ)
∫ Λ
0 TAPG(x)Eine−i2πmx/Λdx.

Finally, we determine the diffraction efficiency as ηm = |Dm|2/|Ein|2, which may be ana-

lytically summarized by the following:

η0 =
[
cos2(X) +

(
Φ2 − Γ2

)
sinc2(X)

]2 (3.4a)

η±1 = A2

(
1∓ S′3

2

) (
cos2(X) + Φ2sinc2(X)

)
(3.4b)
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Figure 3.10: Achromatic polarization grating (PG): (a) diffraction geometry (note only the
m = ±1 orders emerge; nematic director profile (a) plan- and (b) side-view.
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Figure 3.11: Theoretical diffraction of the achromatic PG: (a) First-order efficiency spectra
vs twist angle Φ (Ση±1 ≥ 99%, red outlined region); (b) First-order efficiency spectrum for
Φ = 70◦ compared to the circular PG.

where Γ = π∆nld/λ, X =
√

Φ2 + Γ2, A = 2ΓsincX, and sinc(X) ≡ sin(X)/X. The term

S′3 = S3/S0 is a normalized Stokes parameter. The grating equation sin θm = mλ/Λ ±
sin(θinc) governs diffraction angles (Fig. 3.10(a)).

Several important properties should be noted in Eqs. (3.4) and in Ref. [141]. First,

only three diffraction orders (0 and ±1) exist, which depend on both the retardation ∆nld/λ

and the twist angle Φ. We will show that Ση±1 ≈ 100% over a wide wavelength range by

balancing the effect of retardation and twist. Second, the first-orders have orthogonal circu-

lar polarizations (Fig. 3.10(c)). Third, the first-order efficiencies are strongly sensitive to the

incident polarization state through S′3 (akin to circular PGs). Overall, we understand the

achromaticity of the two antisymmetric chiral layers as self-compensation, via counteracting

chromatic dispersions in the linear and twist-induced circular birefringences [142].

To enable quantitative evaluation, we define bandwidth as ∆λ/λ0, the ratio of the

spectral range ∆λ (over which high diffraction efficiency Ση±1 ≥ 99% occurs) to the center

wavelength λ0. We employ Eq. (3.4b) to generate a map of total first-order diffraction

efficiency as a function of the retardation and the twist angle (shown in Fig. 3.11(a)). The

maximum bandwidth (/ 56.1%) for ≥ 99% efficiency is found when Φ = 70◦. Note, this is

more than a four-fold enhancement as compared with a conventional Circular PG (/ 12.8%),

as shown in Fig. 3.11(b) with relative bandwidths highlighted. Numerical studies at oblique

incidence and near the paraxial limit are also found in Ref. [140].
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Figure 3.12: Photographs of achromatic PG diffraction: unpolarized, white LED light, as
seen from (a) plan-view (intersecting a white card), and (b) projected screen-view; and (c)
linearly polarized laser light. (Λ = 6.5 µm)

3.2.2 Fabrication of achromatic polarization gratings

We have experimentally realized this achromatic PG formed as a reactive mesogen

(RM) film by polarization holography and photo-alignment techniques. Again, we utilized

a linear photopolymerizable polymer (LPP) [68] ROP-103 (Rolic) as a photo-alignment

material. The surface alignment pattern with a period of Λ = 6.5 µm was recorded in

the LPP layer by orthogonal circular-polarized beams from a HeCd laser (at 325 nm).

After holographic exposure, RM films were spin-coated on the LPP-coated substrate. The

first PG layer was composed of the RM prepolymer/solvent mixture RMS03-001 (Merck,

∆nl / 0.159 at 589 nm) doped with a small amount (0.34%) of the chiral molecule CB15

(Merck, right-handed). A thickness d /1.7 µm was chosen so that halfwave retardation

Γ = π/2 (at λ / 550 nm) and a twist Φ = +70◦ occurred simultaneously. The second

PG layer was deposited directly on the top of the first, and was composed of RMS03-001

doped with a small amount (0.25%) of the chiral molecule ZLI-811 (Merck, left-handed),
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resulting in the same thickness and opposite twist angle (Φ = −70◦). As these RM films are

highly crosslinked acrylate films, they are known [49, 53] to have high thermal and optical

stability. Reproducibility and fabrication process sensitivity are similar to other spin-coated

RM films.

These achromatic PGs exhibit practically ideal properties, with high first-order

efficiency, high polarization selectivity, low scattering, and low non-first-order leakage. As

shown in Fig. 3.12, nearly 100% of incident light can be directed into the first-orders alone,

for both light-emitting-diode (LED) and laser light (wavelengths in Fig. 3.12(c)). Note the

substantially reduced zero-order leakage of the achromatic PG compared to the circular PG

(see Fig. 3.12(b)). Note also that both unpolarized and linearly polarized light are split

equally (since S′3 = 0).
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Figure 3.13: Measured diffraction of the achromatic PG: (a) the efficiencies with circularly-
polarized incident laser light (same wavelengths as in Fig. 3.12(c)); (b) the polarization
sensitivity of the m = +1 order with a rotating quarter-waveplate, and (c) the first-order
efficiency spectrum from spectrometer (curves) and laser (diamonds) measurements.
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The measured diffraction efficiencies of the achromatic PG with circularly-polarized

incident laser light are summarized in Fig. 3.13(a). Very high efficiencies of ≥ 99% within

a single order (m = +1) were observed throughout the visible spectrum (since S′3 = −1).

Most other diffraction orders (m = −2,−1,+2, and higher) manifest ≤ 0.1%, while the

worst case leakage of < 0.7% arose in the zero-order (m = 0) for the green wavelength. We

define diffraction efficiency as ηm = Im/IREF , where Im is the measured intensity of the

mth transmitted diffracted order, and where IREF is a reference transmission intensity for

a glass substrate. Incoherent scattering was measured as ≤ 0.3% above 400 nm.

We also measured the polarization sensitivity of the first-orders, by arranging and

rotating quarter-waveplates in between the achromatic PG and the linearly-polarized lasers.

Fig. 3.13(b) shows the +1-order response for the red laser (as the best example wavelength).

The efficiency varies as the incident light is varied from linear (/ 50%), to circular (/ 99.5%,

right handed), to linear (/ 50%), and finally back to circular (/ 0.05%, left handed). The

extinction ratio is therefore 99.5/0.05 / 2000 : 1 (or 33 dB), an excellent measure for

polarizing beamsplitters of any kind. The green and blue wavelengths were slightly lower,

but nevertheless maintained ≥ 1000 : 1 (30 dB) extinction ratios.

Finally, we examined the spectrum of the achromatic PG by measuring η0 using

a spectrophotometer (with η|m|≥1 blocked) and estimating Ση±1 / 100% − η0 (due to

the difficulty of its direct measurement). The result is shown in Fig. 3.13(c), with the

exact efficiencies measured using lasers (which match up well). The achromatic PG clearly

manifests high diffraction efficiency (≥ 99%) across almost all visible wavelengths, which is

a substantial improvement over the conventional circular PG.

3.2.3 Electrically switchable achromatic liquid crystal polarization grat-

ings on reflective substrates

We also report on our successful implementation of electrically switchable achro-

matic LCPGs on a reflective substrate (Fig. 3.14), which manifest polarization-independent

modulation with high efficiencies (≥ 95%). To pattern a spiraling, periodically varying LC

profile, we utilize polarization holography and photoalignment techniques. Use of reflec-

tive substrates enables the same retardation compensation of double-layer achromatic PGs.

In addition, perhaps most importantly, the single cell structure allows the electro-optical

switching/modulation by applying an electric field across the cell. The achromatic LCPG
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of Circular PGs; (c) a schematic view of transmissive achromatic PG; (d) a reflective achro-
matic LCPG and its electro-optical switching.

sample shows steeper voltage responses and less spectral shifts while operating in grayscale

with respect to previously reported LCPGs. Relatively faster switching times (∼6 msec for

3 µm-thickness) were measured compared to a conventional LCPG with the same thickness

(∼10 msec). Interesting electro-optical behaviors were also observed including zero-voltage

threshold and a hysteresis in the voltage response.

We introduce a simple but effective way to implement a reflective version of the

achromatic PG. Use of a reflective substrate effectively captures the self-compensation of

retardation dispersion within a single cell. In addition, the degenerate surface allows to

control the twist angle only by the amount of chiral dopants without precision substrate

registrations. The achromatic LCPG consists of a cell structure of a transmissive substrate

with a LC alignment layer on a transparent electrode (i.e., ITO) and a reflective substrate

(i.e., aluminum coated glass), whose surface is treated for degenerate anchoring of LCs.
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Figure 3.15: Fabrication procedures for reflective achromatic LCPGs using the polarization
holography and photo-alignment techniques for LCs. A spiraling anisotropy profile is pat-
terned on the photoalignment layer (LPP) surface and the reflective surface is coated with
3-GPS for for degenerate anchoring of LCs. Then, both substrates are assembled to form a
cell to fill with LC mixtures.

The cell thickness d is determined to deliver a half-wave retardation (i.e., ∆nld = λ/2)

and a proper twist angle (∼ 70◦). The cell is filled with a nematic liquid crystal mixture,

which are doped with chiral agents, to form the grating as shown in Fig. 3.14(d), which is

controlled by surface alignment and amount of chiral dopants in the LC mixture.

The following process was used for the results reported here(Fig. 3.15. An index-

matched ITO glass substrate (from Thin Film Devices Inc.) with a broadband AR coating

was used to minimize Fresnel losses due to index mismatch (i.e., reflections at an air-glass

interface). We coated the ITO substrate with a photoalignment material ROP103-2CP

(from Rolic, with standard recommended coating processing). A HeCd laser (325 nm) de-

livering a dose of 5 J/cm2 with orthogonal circularly polarized beams was used to expose a

surface periodic alignment pattern with a period of Λ =9 µm. A standard aluminum-coated

glass substrate (from Edmund Optics) was coated with (3-glycidoxypropyl) trimethoxysi-

lane (also called 3-GPS) to form a dense, homogeneous monolayer, which allows in-plane

degenerate surface anchoring of LCs. The ITO and Al substrates were assembled to to form

a 3 µm-thickness cell. We prepared a LC mixture of nematic liquid crystal MLC-12100-

000 (from Merck, ∆nl = 0.113, TNI = 92 ◦C, K1 = 11.4 pN, K3 = 13.8 pN, ∆ε = 8.5,

γ1 = 183 mPa-sec) with a small amount (∼ 0.22%) of chiral dopant CB15 (from Merck,

right-handed, HTP / 7.3 µm−1), chosen so that the twist angle Φ = 70◦. Isotropic filling

of the LC mixture was done on a hotplate at 130 ◦C.
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We also demonstrated electrical switching of broadband light (i.e., white light

or red, green, blue LEDs) using reflective achromatic LCPGs. The voltage response of a

reflective LCPG (Λ = 9 µm, d = 3 µm) is shown in Fig. 3.16(a). The grating efficiency and

reflectance (of the first-orders) were measured with unpolarized red, green, and blue LEDs

(collimated for this measurement to ∼ 4◦). We observe that the achromatic LCPG diffracts

all RGB LEDs with efficiency Ση±1 ≥ 95% and reflectance R ≥ 90% without voltage

modulation. Diffraction efficiencies for red and green LEDs (≥ 98%) reach nearly the 100%

theoretical value while the blue LED produces a slightly lower value (∼ 95%) due to the

dispersion of LC birefringence (in general, larger values for shorter wavelengths). Further

optimization can be done by a fine tuning of the thickness and the amount of chiral dopants

in the LC mixture. Losses in reflectance predominantly result from electrode-absorptions.

Note that the achromatic LCPG sample does not show a voltage threshold.
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Figure 3.16: Electro-optical properties of the reflective achromatic LCPG sample: (a) volt-
age response of the first-order efficiency for RGB LED light; (b) contrast ratios at 6, 8, 10
V; (c) diffraction spectra with various applied voltages; (d) switching times.
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The contrast ratios were also measured by comparing first-order diffracted powers

without applied voltage (0 V) with respect to diffracted powers at three different applied

voltages (6, 8, 10 V). As shown in Fig. 3.16(b), the maximum contrast ratio ≥ 400 was

measured with red LED light (contrast ratios of 140 and 70 with green and blue LEDs,

respectively), which is much higher than the best previous report of conventional reflective

LCPGs [143] (i.e., CR≥ 50 at 13 V applied voltage). We believe that the effect of twist

and degenerate surface anchoring of LCs result in such a low voltage threshold and high

contrast ratios.

To characterize the grayscale operation, we also measured diffraction spectra of

the achromatic LCPG with varying applied voltages. We estimated the first-order efficiency

from the zero-order reflection spectra (Ση±1 ≈ η0) because of difficulty of its direct mea-

surement. Fig. 3.16(c) shows estimated first-order efficiencies at different RMS voltages

(0, 1.5, 2.5, 3, 4, 5, 10 V). The diffraction spectrum moves mostly up-and-down without

noticeable spectral shifts. In addition, the achromatic LCPG exhibits a steeper grayscale

curve than the conventional LCPGs [131].

The dynamic response was also characterized, where a few ms total switching times

are typical for conventional LCPGs [98]. Fig. 3.16(d) shows the rise and fall times (10%

– 90% transitions) of the achromatic LCPG switching from 0V to the indicated applied

voltage. The total switching times ∼ 6 ms was measured. The general trend is similar

to other LC modes: rise-time is strongly dependent on voltage, while fall-time is roughly
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Figure 3.17: Voltage response of the zero-order efficiency with HeNe red laser light. A
hysteresis is observed and the transitions occur at ∼ 6 V and ∼ 2.5 V while increasing and
decreasing applied voltages, respectively.
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constant. These switching times are ∼ 2 times faster than a conventional LCPG with a

same thickness while a normal LCPG requires a 1/4-wave thickness instead of a 1/2-wave

thickness. Since the switching times are generally proportional to a square of the thickness,

the increase of switching times due to doubled thickness of the reflective achromatic LCPG

is only two-times rather than four-times with respect to those of a conventional reflective

LCPG.

Somewhat surprisingly, we noticed two very interesting characteristics from the

voltage response of the achromatic LCPG diffraction. First, we observed no obvious thresh-

old of the applied voltage. The zero-order transmittance almost immediately starts to

increase when even a very small voltage is applied as shown in Fig. 3.17. No proper expla-

nation for such a zero-threshold behavior is found in literature to the author’s knowledge.

Second, there is a hysteresis in the voltage response curve of diffraction efficiencies (both

zero- and first-order), also shown in Fig. 3.17. We believe that such a hysteresis has its

origin in the presence of twist in the LCPG cell [144, 145]. Transitions for the hysteresis

are always found at certain applied voltages across many samples as shown in Fig. 3.17;

one transition occurs at ∼ 6 V while increasing the voltage and the other occurs at ∼ 2.5 V

while decreasing the voltage. This effect appears more evident in the voltage response of the

zero-order efficiency, while it is also seen from the first-order diffraction. More investigation

on these interesting electro-optical behaviors of such a LC structure (with all three types

of deformations (spray, bend, twist) in a periodic way) is suggested.
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3.3 Super-achromatic diffraction by three-layered polariza-

tion gratings with a phase shift

There is a well-known technique to implement achromatic waveplates using a stack

of two or three birefringent layers. When three identical waveplates are stacked with the

middle layer oriented at a certain angle with respect to the others, a uniform retardation

can be obtained over an very broad spectrum range [146, 147, 148, 149]. The key of this

structure is the self-compensation of retardation due to the relative phase differences in the

optic axes of the waveplates. Since the polarization grating diffraction relies on spatially

modulated retardation of the birefringent medium, a similar approach can be employed to

enhance its broadband performance. A broadband design using three-layered polarization

gratings (Fig. 3.18) was proposed by the Author [133], and the design parameters for the

bandwidth optimization were developed for highly diffraction efficiencies over a extremely

wide range of spectrum, so called super -achromatic diffraction.

In this Section, we demonstrate super-achromatic polarization gratings composed

of thin liquid crystal polymer films. This achromatic PG manifests high diffraction effi-

ciency (> 99%) and high polarization extinction ratio in both theory and experiment. We

show an operation bandwidth ∆λ/λ0 ∼ 78% that represents more than a six-fold increase

of bandwidth over conventional PGs (and 40% increase compared with another achromatic
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Figure 3.18: Super-achromatic polarization grating (PG): (a) triple-layered broadband PG
design with a phase shift at an angle Φ (i.e., 55◦) in the director profile of the middle PG;
Nematic director profile (b) plane- and (c) side-view.
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PGs with double twisted layers). We confirm excellent optical properties (i.e., high effi-

ciency, excellent polarization sensitivity) of the super-achromatic PGs that are optimized

at visible and infrared wavelangths.

This achromatic PG comprises three identical circular PG layers with a relative

phase shift in the birefringence profile of the second PG layer, where the nematic director

n is described as follows

n(x) = [cos φ(x), sinφ(x), 0] (3.5a)

φ(x, z) =





πx/Λ if 0 ≤ z ≤ d and 2d < z ≤ 3d

πx/Λ + Φ if d < z ≤ 2d
(3.5b)

where φ is the azimuth angle of the director field, Λ is the grating period, d is the thickness,

and Φ is the shift angle of the second PG layer. Figs. 3.18(b) and 3.18(c) illustrate this

profile. The phase shift in the grating profile can be implemented by using thin chiral liquid

crystal polymer layers with opposite handedness as described in Ref. [133].

3.3.1 Super-achromatic diffraction by three-layered PGs

We can apply Jones calculus to derive the analytic expressions for three-layered

PGs that describe the diffraction efficiency and polarization properties of the diffraction

orders. Here we present only a summary of the analytical results (referring readers to

Appendix C for more detailed mathematical descriptions). The diffraction efficiency of a
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Figure 3.19: Theoretical diffraction of the super-achromatic PG: (a) first-order efficiency
spectra vs the phase shift angle Φ (Ση±1 ≥ 99%, red outlined region); (b) first-order effi-
ciency spectrum for Φ = 55◦ compared to the circular PG.
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stack of three PGs with a phase shift Φ of the middle layer is given by

η0 = {cos3(Γ)− [1 + 2 cos(2Φ)] cos(Γ) sin2(Γ)}2 (3.6a)

η±1 =
1∓ S′3

2
sin2(Γ)

{
1− 4[1 + cos(2Φ)] cos(2Φ) cos2(Γ) + 4[1 + cos(2Φ)]2 cos4(Γ)

}

(3.6b)

where Γ = π∆nld/λ. The term S′3 = S3/S0 is a normalized Stokes parameter. The grating

equation sin θm = mλ/Λ±sin θinc governs diffraction angles. Note that we assume a discrete

shift in the grating profile between the second and the first or third layers without taking

account of the optical effect of the thin chiral layers.

Several important properties should be noted in Eqs. (3.6). First, only three

diffraction orders (0 and ±1) exist, which depend on both the retardation ∆nld/λ and the

shift angle Φ. We will show that Ση±1 ≈ 100% over a wide wavelength range by a careful

choice of the shift angle Φ (∼ 55◦). Second, the first-orders have orthogonal circular polar-

izations. Third, the first-order efficiencies are strongly sensitive to the incident polarization

state through S′3 (akin to circular PGs). Overall, we understand the achromaticity of the

three layers with a relative phase shift, via self-retardation compensation.

To enable quantitative evaluation, we define bandwidth as ∆λ/λ0, the ratio of

the spectral range ∆λ (over which high diffraction efficiency Ση±1 ≥ 99% occurs) to the

center wavelength λ0. We employ Eq. (3.6) to generate a map of total first-order diffraction

efficiency as a function of the retardation and the shift angle (shown in Fig. 3.19(a)). The

maximum bandwidth / 90% for ≥ 99% efficiency is found when Φ = 55◦. Note, this is more

than a 7-fold enhancement as compared with a non-achromatic PG (/ 12.8%), as shown in

Fig. 3.19(b) with relative bandwidths highlighted.

3.3.2 Fabrication of super-achromatic polarization gratings

We have experimentally realized this super-achromatic PG, optimized for visible

and near-infrared wavelength, formed as a reactive mesogen (RM) film by polarization

holography and photo-alignment techniques. The fabrication steps include UV holographic

exposure and multiple coating of RM/chiral layers as illustrated in Fig. 3.20. Again, we uti-

lized a linear photopolymerizable polymer (LPP) [68] ROP-103 (Rolic) as a photo-alignment

material. The surface alignment pattern with a period of Λ = 6.5 µm was recorded in the
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Figure 3.20: Fabrication steps for super-achromatic PGs with three-layer PGs with a phase
shift in the middle PG layer by Φ. Each chiral layer delivers either Φ = +55◦ or Φ = −55◦

by opposite handedness of its chirality.

LPP layer by orthogonal circular-polarized beams from a HeCd laser (at 325 nm). Af-

ter holographic exposure, RM films were spin-coated on the LPP-coated substrate. The

first PG layer was composed of the RM prepolymer/solvent mixture RMS03-001 (Merck,

∆nl / 0.159 at 589 nm) with a thickness for a halfwave retardation Γ = π/2 (d /1.7 µm at

550 nm, d /4.5 µm at 1400 nm). The first chiral layer was deposited directly on the top of

the first PG layer, and was composed of RMS03-001 doped with a small amount (2.32 wt-%)

of the chiral molecule ZLI-811 (Merk, left-handed), resulting in the twist angle Φ = −55◦

within a thin layer, which provides the required phase shift for the next RM layer. The

second PG layer was coated identical to the first PG (with the same thickness, d /1.7 µm,

but the grating profile shifted by Φ = −55◦). Another thin chiral layer of RMS03-001 doped

with a small amount (2.9 wt-%) of another chiral molecule CB15 (Merk, right-handed) to

implement the opposite shift angle Φ = +55◦. The third PG layer was coated again with

the same thickness of RMS03-001 and its grating profile is exactly matched to the first PG.

As these RM films are highly crosslinked acrylate films, they are known [52] to have high

thermal and optical stability. Reproducibility and fabrication process sensitivity are similar

to other spin-coated RM films.

These super-achromatic PG samples exhibit practically ideal properties, with high

first-order efficiency, high polarization selectivity, low scattering, and low non-first-order

leakage. We examined the spectrum of the achromatic PG by measuring η0 using a spec-
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Figure 3.21: Diffraction efficiency of two different super-achormatic PG samples optimized
for (a) visible and (b) near-infrared wavelengths. Both samples exhibit high efficiency (95%–
99%) over very wide ranges of spectrum, high polarization selectivity, low scattering, and
low non-first-order leakage.

trophotometer (with η|m|≥1 blocked) and estimating Ση±1 / 100%−η0 (due to the difficulty

of its direct measurement). The results are shown in Figs. 3.21(a) and 3.21(b) for RMPG

samples optimized for visible and IR wavelengths, resepctively. The both super-achromatic

PG clearly manifest high diffraction efficiency (95% – 99%) across very wide ranges of spec-

trum in both wavelength regions, which is a substantial improvement over the conventional

circular PG and also the first kind of achromatic PGs with two chiral layers. We also

confirmed the +1-order response for a monochromatic beam (from a HeNe laser at 633

nm). The efficiency varies as the incident light is varied from linear (/ 50%), to circular

(/ 99.3%, right handed), to linear (/ 50%), and finally back to circular (/ 0.13%, left

handed). The extinction ratio is therefore 99.3/0.03 / 550 : 1 (or 27.4 dB), an excellent

measure for polarizing beamsplitters of any kind.
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3.4 Fabrication of small-period PGs using high ∆nl materials

Until now, we have shown great potentials of polarization gratings as a broadband

polarizing beam splitter that can operate at ∼ 100% efficiency. This thin-plate beam split-

ter embodied as liquid crystal cells or liquid crystal polymer films has a number of distinct

advantages over other conventional beam splitting elements that include high polarization

contrast (between two emerging beams), good response over a fairly wide range of inci-

dence angles, capability of electrooptical switching/tunning (for LCPGs), excellent optical

transparency from visible to midwave IR wavelengths, ease of integration with other optical

elements or multiple stacks, and no need for specialized substrates in general. Novel designs

for achromatic PGs suggest significant improvement of performance even with broadband

illumination, which can enhance existing optical systems by replacing polarizing elements

or even lead to new applications.

Fabrication of high-quality PGs is essential for many practical applications where

large angular dispersion/separation is required. In recent five years, we have developed fab-

rication technologies for creating PGs utilizing polarization holography and photoalignment

of LC materials, and demonstrated PGs showing nearly ideal properties for a wide range

of grating periods (from ∼ 2 µm to a few 100’s µm) and various operating wavelengths

(visible, near-infrared, mid-infrared). In this Section, we report our most recent advances

of fabrication of PGs with small periods using liquid crystal materials with high ∆nl. We

also discuss our choice of different materials and fabrication challenges.

We fabricated non-achromatic, reactive mesogen PG samples with different peri-

ods for comparison. To observe the effect of ∆nl on optical properties of PGs, we also

prepared RMPG samples at the same periods using following RM prepolymer/solvent mix-

tures (all from Merk): (i) RM1: RMS03-001C (∆nl = 0.159 at 589 nm); (ii) RM2: RMS08-

075 (∆nl = 0.25 at 589nm); (iii) RM3: RMS09-025 (∆nl = 0.33 at 589 nm); (iv) RM4:

RMS09-038 (∆nl = 0.39 at 589nm). We utilized a new linear photopolymerizable poly-

mer LIA-01 (from Dainippon Ink and Chemical) as a photoalignment material. The gen-

eral fabrication process consists of the following four steps: First, substrate cleaning and

LPP coating/drying; Second, surface alignment pattern via UV exposure with orthogonal

ciruclar-polarized beams from a HeCd laser (at 325 nm) (typical dose ∼5 J/cm2); Third,

after holographic exposure, RM coating/photopolymerization.
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Figure 3.22: The 0-order spectra of reactive mesogen (RM) PG samples at different grating
periods (Λ = 1.8 µm and 1.35µm) using two RM materials, RMS08-075 (∆nl = 0.25 at
589 nm) and RMS09-025 (∆nl = 0.33 at 589 nm). Note that the 0-order transmittance
was measured at every coating steps for RM layers to get spectra with different thicknesses.
Also note that dotted lines are predicted guidelines to show the trend in the 0-order leakage
as wavelength increases for the same grating period and same material ∆nl. No measurable
high-order diffraction was observed other than the 0- and first-orders for all RMPG samples.

Figs. 3.22(a)–3.22(d) show spectra of the 0-order leakage of RMPG samples with

1.8 µm (i.e., θ±1 ≈ ±20◦ at 632.8 nm) and 1.35 µm (i.e., θ±1 ≈ ±28◦ at 632.8 nm) periods

for two different RM mixtures (RM2 and RM3). The 0-order spectra of the same RMPG

sample were taken after every RM coating. The 0-order leakage substantially increases for

longer wavelengths and this trend is more obvious for the case of RM2 than RM3 at both

grating periods. We should note that our observation across most of RMPG samples is less

0-order leakages (or high first-order efficiencies) for larger grating periods and higher ∆nl

values, which is already predicted as the effect of ρ parameter in Section 3.1. To confirm
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the rule of ρ ≤ 1 for high efficiency of PGs, we also plot the maximum diffraction efficiency

(calculated from the 0-order efficiency as ηmax = 100% − η0,min) for different period of

RMPGs with alll the above RM materials (RM1-RM4) in Fig. 3.23, which is similar to

Fig. 3.5. The results show very good agreement with numerically predicted trends for

different values of ∆nl. A small discrepancy between the experimental results and the

numerical prediction can be explained as the effect of the dispersion of ∆nl (∆nl generally

decreases as wavelength increases) of which was not taken account in the numerical results.

We have achieved ∼ 95% efficiency even at ±29◦ diffraction angles using RM4

(RMS09-038 with ∆nl = 0.39 at 589 nm). We also experimentally prove the general trend

in the maximum diffraction efficiency at different diffraction angles with various choices of

∆nl materials, which is well predicted from the numerical analysis in Section 3.1. High

∆nl has a significant impact on the maximum efficiency when the grating period become

comparable to wavelength (i.e., Λ ≤ 5) while all RMPGs show very high efficiency (> 95%)

for larger grating periods. These relationships between the maximum achievable efficiency

and the ρ parameter (determined by Λ and ∆nl) provide us a very useful guideline for the
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Figure 3.23: The first maximum of the first-order diffraction efficiency Ση±1 of the RMPG
samples, calculated from the 0-order transmittance as 100% − η0. It is clear that high
∆nl materials have advantages to achieve high diffraction efficiency even at small grating
periods.
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choice of materials and grating periods depending on requirements for different applications.

We also should note that the layer-by-layer process of RM materials has many

advantages especially for fabrication of small-period PGs. Since multiple thin polymer layers

can be coated to achieve a desired thickness, conditions for LC alignment is very relaxing

compared to a LCPG cell and, more importantly, the limit of the critical thickness (no in-

plane alignment beyond a certain thickness) can be avoided by controlling the thickness of

each RM layer. This thin-film coating process is promising to make high-quality PGs with

any grating periods even close to wavelengths. Another important advantage is its potential

of mass production with large areas using conventional thin film fabrication techniques (i.e.,

slot coating). A raster scanning of a fractional area for exposure to cover the entire size can

be considered to maximize productivity keeping the same cost for the exposure system.
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Chapter 4

Polymer-PG Displays:

a viable solution for

polarization-independent displays

We introduce a polarization-independent microdisplay, namely “polymer-PG dis-

play,” employing standard liquid crystal display (LCD) panels and multiple polymer polar-

ization gratings (PGs). The PGs replace conventional (absorbing or reflecting) polarizers,

and inherently double light efficiency by enabling direct modulation of unpolarized-light by

virtually any LCD modes. Unlike other previous approaches of polarization-independent

modulation, no modification to the LC microdisplay is required.
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4.1 Polymer-PG Liquid Crystal Displays

We introduce a deceptively simple method of doubling the light efficiency of liquid

crystal (LC) microdisplays by replacing the polarizers in common LCDs with polarization

gratings (PGs) as transparent polymer, thin-film, broadband polarizing beam-splitters. We

employ achromatic PGs, reactive mesogen (polymerizable LC) films shown in Fig. 4.1(a),

in such a way so that they act as both polarizer and analyzer. The operation concept of

polarization-independent modulation is illustrated in Fig. 4.2(b). The result is that both

orthogonal polarizations (i.e. all of the unpolarized light) can be directed through the

microdisplay simultaneously, so that the display has ∼ 100% (brightness) efficiency (as

opposed to < 50% efficiency when using polarizers). We term this a “polymer-PG display”

system, requiring little-or-no modifications to commercial, off-the-shelf LC microdisplays.

4.1.1 Polarization-independent light modulation by the polymer-PG LCD

The key elements of the polymer-PG display system are achromatic polarization

gratings, which replace absorbing film polarizers or polarizing cube bean splitters of con-

ventional LCDs. It is convenient to understand the polarization filtering based on PGs by

analogy with parallel and crossed polarizers. Figs 4.2(a) and 4.2(b) illustrate parallel and

antiparallel configurations of two identical PGs, respectively. For parallel PGs which are

equivalent to parallel polarizers, an incoming beam (unpolarized) is diffracted into the first

orders by the first PG and redirected back to the original direction by the second PG. For

antiparallel PGs equivalent crossed polarizers, the beam is again diffracted by the first PG
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Figure 4.1: Operation concept of the polymer-PG display: (a) achromatic polarization grat-
ing (PG) diffraction; (b) polarization-independent light modulation using a liquid crystal
display and achromatic PG films.
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but it is diffracted at even higher angles (θ±2) by the second PG. Light switching can be

done by using aperture stops and lenses to filter the diffraction orders (either the 0- or

higher-orders).

As in conventional LCDs, LC switching leads to light modulation by altering po-

larization states of light passing through the LC layer. The first PG outputs circular po-

larizations in the first orders, the handedness of which is affected by LC switching and the
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Figure 4.3: Polarization-independent light modulation by the polymer-PG LCD: (a) on-
state and (b) off-state of the LC retardation. LC switching leads to light modulation by
changing the polarization state of light from the first PG. Note that two PGs are aligned
in an anti-parallel configuration.

relative orientation between the first and second PG (see Figs. 4.3(a) and 4.3(b)). The sec-

ond PG either diffracts the light into higher angles or directs it toward the normal direction

based on the polarization handedness of light from the LC layer. We limit our discussion to

the anti-parallel alignment of PGs, bearing in mind that there would be a number of varied

designs possible.

4.1.2 Demonstration of the polymer-PG display with a vertically aligned

(VA) LC cell

For our initial demonstration of the basic operation of the polymer-PG display

concept, we prepared a pair of achromatic PG polymer films (grating period = 3 µm) with

high efficiencies (> 95%) for red, green, and blue LED lights with divergence angle ∼ ±5◦.

We again utilized a linear-photopolymerizable polymer (LPP) ROP-103/2CP (Rolic) as the

photo-alignment material a reactive mesogen (RM) RMS03-001C (Merck, ∆nl = 0.159 at

589 nm) with small amount (0.25%) of chiral dopants CB15 (Merck, right-handed) and

ZLI-811 (Merck, left-handed).

We first highlight the maximum achievable brightness and contrast ratios of our

current Polymer-PG Displays. As described above, we prepared a pair of achromatic PG
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polymer films (grating period = 3 µm) with high efficiencies (> 95%) for red, green, and

blue LED lights with divergence angle ∼ ±5◦. To obtain the upper limits of light efficiency

and contrast ratios, we aligned two PG samples in parallel and anti-parallel orientations

(Figs. 4.2(a) and 4.2(b)), which are nearly equivalent to the bright-state and dark-state of an

ideal display system, respectively. Fig. 4.2(c) presents the true transmittance spectra of both

configurations, for unpolarized input light. Parallel PGs manifest ∼ 90% transmittance,

while anti-parallel PGs leak ∼ 0.5% for visible light (450-650 nm). Fig. 4.2(d) shows the

extinction ratio of anti-parallel PGs (analogous to crossed-polarizers) is ≥ 100, and has a

peak of ∼ 400 in the red.) as shown in Fig. 2c. Note we expect this can be improved

by optimized PG film-coating processing. Note that we used anti-reflection coated glass

(ColorLink in Japan) to reduce Fresnel losses.

(Unpolarized LED Input)

x2

1 2 3 4 5 6
0

20

40

60

80

100

Applied RMS Voltage (V)

Tr
an
sm
itt
an
ce
(%
)

PG-based
LCD

400 500 600 700
0

40

80

120

160

200

Wavelength (nm)

C
on
tra
st
R
at
io
(-
)

(a)

Anti-Parallel PGs

VAN cell (b)

LED

X

X

Photo DetectorVA
N
LC
D

PGs

(c) (d)

Figure 4.4: Polymer-PG LC display experimental data with VA-mode LC pixel and for
unpolarized LEDs (red at 625 nm, green at 530 nm, blue at 470 nm): (a) the polymer-PG
LCD configuration; (b) a measurement setup with LED illumination; (c) the transmittance
vs. voltage curve (solid lines), compared to those of a polarizer-based VA-LCD (dashed
lines); (d) the contrast ratios (bright/dark).



84

We demonstrate electro-optical switching with a single monolithic pixel with a

conventional LC cells (with vertical-alignment (VA) mode, prepared with MLC-6610 Merck

LC, SE-1211 Nissan homeotropic polyimide, and 6 µm cell gap). We arranged two achro-

matic Polymer PGs in anti-parallel orientations to the LC cell (Fig. 4.4(a)), which controls

the polarization of light passing through it. Recall that the VA-mode cell with an ap-

plied voltage (∼ 4V) applied will present a half-wave retardation due to its predominantly

planar alignment, and will therefore reverse the polarizations of the two beams (simulta-

neously) passing through it (from the first PG). This light will then be directed toward

the normal direction by the second PG (Fig. 4.4(b)), and subsequently projected to the

screen/viewer/detector. However, when zero voltage is applied to the VA-mode cell, it

presents very little retardation, and light subsequent to the first PG entering the LC layer

will retain its original polarization (simultaneously) and be diffracted to even higher angles

by the second PG.

The transmittance vs. voltage curves for the Polymer-PG and polarizer-based

VA-mode are compared in Fig. 3a, for unpolarized light from RGB LEDs. The voltage

applied was a 4 kHz square wave with zero DC bias. Note that the switching curves are

similar and reach a maximum at around 4V. Most remarkably, as Fig. 4.4(b) shows, the true

transmittance to unpolarized light for the polymer-PG LCD is ∼ 80%, more than double

that of a conventional polarizer-based display, while still maintaining modest contrast ratios

(114:1 to 140:1, Fig. 3c). Note that retardation compensation for the VA-LC pixel (not

used in these measurements), would likely enhance the contrast similarly to conventional

LCDs.

4.1.3 Prototype projector based on the polymer-PG display with a com-

mercial LC microdisplay

To confirm the imaging properties of the polymer-PG display, we have built a

prototype projector using a commercial LC microdisplay panel (transmissive, 0.41” VGA,

planar-alignment mode) with our achromatic PG films. We used a Golden-eye LED light

source (supporting color-sequential operation) limited to a ±6◦ divergence angle. We re-

moved the polarizers from the commercial microdisplay, and added our own retardation

compensation film (RM-based, +A plate). Here, Polymer-PGs (with 2.5 µm period) were

aligned in anti-parallel configuration. Simple lenses were used to achive a magnification was
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∼ 20, with a throw of ∼ 2 ft. The overall system is shown in Fig. 4.5(a), and a photo in

Fig. 4.5(b).

A comparison (Fig. 4.5(c)) of projected images from the original display and our

polymer-PG display shows equivalently sharp edges, nearly identical color saturation, and

excellent image focus. The full-on and full-off transmittance values of the Polymer-PG LCD

(R: 24%, G: 45%, B: 33%) are more than double the values of the unmodified polarizer-

based LCD (R: 9.4%, G: 20%, B: 18%) for the unpolarized LED input. This includes in

both cases all losses within the display itself (e.g. electrode absorption, fill-factor blocking,

interfaces) and the PGs and polarizers. The contrast ratios of polymer-PG LCD (around

30:1 for all colors) are admittedly not nearly as high as the polarizer-based LCD (around

60:1 for all colors), which we feel is predominantly related to the sub-optimal retardation

compensation film we fabricated for the Polymer-PG Display. Improving this remains one

of our primary continuing efforts.

Note we observed parallax in projected images with a small spatial offset, which

we attribute to the distance (glass thickness) between the imaging plane and the second

PG. To avoid this, we place two additional parallel PGs (identical to the PGs already

chosen) with the same gap thickness as the glass after the second PG, which perfectly

compensates for the offset, as Fig. 4.6 shows. This set of PGs with a spacing is now so

called an “offset compensator” throughout this dissertation. The offset compensator can

be inserted anywhere after the second PG to fix the parallax problem, which also can be

PG

Offset

Compensator

Figure 4.6: The offset compensator using a fair of identical PGs with a spacing, which
cancels a spatial offset causing parallax in projected images due to the distance between
the imaging plane and the second PG.
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eliminated by inserting the second PG inside of the LCD panel.

The Polymer-PG Display improves the light efficiency of LC microdisplays sim-

ply by replacing polarizers with diffractive transparent polymer thin films. Brightness of

(unmodified) commercial LC microdisplays can be roughly doubled, and standard étendue-

limited light sources may be used. Improvement for low contrast ratios and limited diver-

gence angles of light sources is suggested and will be discussed in the following Section 4.2.
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4.2 Optical Design Consideration: System Acceptance Angle

and Extinction Ratio

4.2.1 System acceptance angle

All projection systems are deeply influenced by the maximum acceptance angle

of the most restricting optical element (e.g. defining the useful divergence angle of the

light source and F/# of the lenses). In any system based on the polymer-PG display, the

PG-LCD-PG stack presents this key limitation. In this Section, we detail this constraint,

and discuss the design trade-off between the acceptance angle and the extinction ratio.

Acceptance angle and extinction ratio are uniquely related polymer-PG enabled

projection displays. In order to quantify these, we must begin by considering the realistic

versus ideal properties of PGs. Recall that a single PG ideally diffracts into two off-axis

directions (only the ±1-orders, as in Fig. 4.7(a)). Furthermore, if an LCD and a second PG

follow this, the PG-LCD-PG assembly ideally diffracts into three possible directions (only

the 0- and ±2-orders) depending on the state of the LCD. However, realistic PGs will have
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Figure 4.7: Optical design consideration of the polymer-PG display: (a) ideal PG diffraction;
(b) non-ideal PG diffraction with a leakage δ; (c) and (d) diffracted beams (the 0-, ±1-, and
±2-orders) from the PG-LCD-PG assembly with and without angle filtering, respectively.
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some non-ideal zero-order leakage that complicates this picture somewhat (Fig. 4.7(b)).

If we account for a small leakage δ in each PG (e.g. a few %), then a single

grating can be described as having the following efficiencies across the entire spectral range

as follows

η0 = δ(λ) (4.1a)

η±1 =
1
2

[100%− δ(λ)] (4.1b)

In this situation, a single PG diffracts into three orders, and the PG-LCD-PG assembly

diffracts into five possible orders (the 0-, ±1-, and ±2-orders, as in Fig. 4.7(c)). If we con-

figure a projection system so that all orders are angularly separate, then total transmittance

of the dark- and bright-states of the display are given by

Tdark = δ2(λ) (4.2a)

Tbright = 100%− 2δ(λ) + 2δ2(λ) ≈ 100%− 2δ(λ) (4.2b)

The maximum extinction ratio is calculated as ER = Tbright/Tdark, which can be ∼ 1000 : 1

even for 3% of the 0-order leakage (δ ≤ 3%).

The actual extinction ratios of achromatic PGs, however, were measured less than

the values suggested from Eqs. 4.2b. We found that a substantial amount of light of the

first diffraction order from the first PG is diffracted back to the global normal direction by
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Figure 4.8: Effect of polarization leakages on the extinction ratio of antiparallel PGs: (a)
light leakage (ζ) from the global first orders (±1) due to the polarization mismatch; (b)
Extinction ratio comparison of anti-parallel PGs (dotted line) and crossed PGs (solid line).
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the second PG as shown in Fig. 4.8(a). If we account for this leakage ζ, then Eqs. 4.2b for

the total transmittance are re-written as follows

Tdark = δ2(λ) + ζ(1− δ) ≈ δ2(λ) + ζ (4.3a)

Tbright = 100%− (2 + ζ)δ(λ) + 2δ2 − ζ ≈ 100%− 2δ(λ)− ζ (4.3b)

This leakage is mainly due to the polarization mismatch between the polarization state of the

first order and the ideal polarization condition for the second PG [121]. We can indirectly

measure this leakage by comparing the extinction ratios of PGs in anti-parallel and crossed

configurations. When two gratings are aligned as their grating axis are orthogonal (90◦) to

each other, these leakages do not affect the extinction ratio and the maximum achievable

extinction ratio (from Eqs. 4.2b) is obtained. Fig. 4.8(b) shows extinction ratios of both

anti-parallel and crossed gratings. A significant reduction in the extinction ratio is observed

for the anti-parallel case and this result indicates the polarization leakage can be a few %

of the input intensity, comparable to the 0-order leakage of individual PGs (δ). We have

discovered that a relatively simple retardation film can dramatically improve the extinction

ratio of anti-parallel PGs. We will discuss on this extinction ratio improvement techniques

in the following Section.

The acceptance angle (Ω) of the above configurations can be determined as follows
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Figure 4.9: System requirements for high-contrast polymer-PG displays: (a) acceptance
angle and (b) F/# of projection optics.
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As is well known, a projector system has an aperture that is angularly limited to a cone of

half angle Ω, the F/# (defined as ratio of a lens focal length to its diameter) can be deter-

mined as F/# = 1
2 tan Ω. These are calculated and shown in Fig. 4.9 for three wavelengths

(red, green, blue) corresponding to the peak wavelengths of popular high-brightness LEDs.

For obvious reasons, we focuses on achieving the lowest 0-order leakage and smallest grating

period possible, since these aims lead to higher extinction ratio and larger acceptance angle,

respectively.

4.2.2 Extinction ratio enhancement

The parallel and anti-parallel configurations of two achromatic PGs are directly

analogous to parallel and crossed polarizers, respectively. Most importantly, note that the

transmittance of parallel PGs is approximately double that of parallel polarizers. However,

the raw extinction-ratio from anti-parallel PGs (typically, at small periods ∼ 2µm) are

significantly lower than expected and are limited to ≤100:1, mainly related to leakage

illustrated in Fig. 4.10(a).

We have discovered that a fractional +a-plate placed immediately after the first PG

can dramatically improve the extinction-ratio of anti-parallel PGs. The relative orientation

of this extinction-ratio enhancement film (EEF) is shown in Fig. 4.9(b). We found that the

best matched EEF has a retardation ∼ 0.04λ, and it improves the peak extinction-ratio by
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Figure 4.10: Effect of the extinction-ratio enhancement film (EEF): (a) polarization leakage;
(b) anti-parallel PGs with an EEF; (c) transmittance of parallel and antiparallel PGS; (d)
improvement on the extinction ratio by an EEF.
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nearly a factor of four (up to 400:1 versus 100:1, Figs. 4.9(c) and 4.9(d)). The EEF adjusts

the polarization of the diffracted orders from the first PG to match the eigen-polarizations

of the second grating, thus reducing the leakage into the redirected beam at the output,

even at large diffraction angles. Although the retardation of this film may vary with the

grating period, we find in general that such thin retardation films nearly always offer a

significant enhancement.
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Chapter 5

Novel Beam Steering Systems

using Polarization Gratings

The ability of precise beam pointing is crucial to any optical systems such as free-

space optical communications, remote sensing, laser cutting/milling, fiber optic connections,

optical data storage, displays, even laser-guided weaponry, and related technologies where

directional control of collimated light is essential. The most common approaches employ

large mechanically controlled mirrors (i.e., Ginballed mirros). While this technology is

mature, conventional mechanical steering is still limited by difficulties of rapid pointing,

stability issues, requirement of large weight and volume, mechanical design complexity,

and high costs. To overcome these limitations of the current mechanical beam steering

systems, there are increasing demands for compact, robust, and cost effective devices for

beam steering.

In this Chapter, we introduce and demonstrate a beam steering device based on

a stack of polarization gratings and waveplates. This all-thin-plate beam steering design

enables wide-angle steering at extremely high-efficiency with a large aperture beam in a

compact, light-weight, nonmechanical system. We also introduce a new beam steering

concept Risley Grating using rotating, inline polarization gratings as a thin-plate version of

the Risley prism. The Risley grating suggests the same mechanical stabilities and precisions

of the Risley prism but a much more compact design with larger apertures over large angular

range.



94

5.1 Non-mechanical, wide-angle beam steering using stacked

polarization gratings and LC waveplates

Nonmechanical beam steering has been of great interest for many application es-

pecially where mechanical parts are not acceptable (i.e., due to vibration/thermal fluc-

tuation) or a large-aperture beam is required in a limited space and weight [101]. One

approach to nonmechanical beam steerng is an optical phased array (OPA) enabled by

MEMS-based micro-mirros [150] and liquid crystal technologies [86] to create a phase profile

by tilting micro-mirrors or changing liquid crystal arrangement. Several other approaches

based on acousto-optic devices, electro-optic polymer devices, micro-prism or micro-lens

elements [83, 151], birefringent prisms [87], holographic glass [152], and electrowetting de-

vices [153]. Significant advances have been made in key performance areas such as size,

rapid pointing, power, and design simplicity. However, viable solutions for wide-angle beam

steering have not been established yet.

Liquid crystal technologies have several advantages of high birefringence, excellent

electro-optical properties including fast switching and low operation voltages, and well-

established techniques (e.g., liquid crystal displays). While these exceptional properties

make LC devices attractive as a nonmechanical beam steering device, continuous steering

over large angular range still remains an important challenge to advance the current beam

steering technology. The LC-based OPA concept has been developed in the last decade

but often limited to small-aperture, small-angle steering. A combination of this LC-OPA

Fine Steering
Module

+40°

Field of Regard

Figure 5.1: Concept of a beam steering system combining a continuous, narrow-angle steer-
ing device and a coarse, wide-angle beam steering device to achieve a large field of regard.
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with other large angle, discrete steering techniques was also suggested to enable continuous,

wide-angle steering. A few different types of LC phase gratings (i.e., binary or blazed) for

large angle, discrete steering have been investigated. However, one important disadvantage

of all these LC gratings has proven to be their poor steering efficiency at large angles.

In this Section, we introduce a novel non-mechanical beam steering device based

on the polarization sensitive properties of liquid crystal polarization gratings (PGs) [100].

They can function as highly efficient beam steering elements, by deflecting all of the incident

light into one of the three diffraction orders (0 and ±1), based on the input polarization

and the applied voltage. The unique properties of PGs can give very high experimental

diffraction efficiency (∼ 100%) for various diffraction angles, and the thickness of PGs is

independent of the aperture size so it allows for wide angle steering with large aperture.

Multiple stacks of PGs with LC waveplates enables all electrically controlled, wide-angle

beam steering in a remarkably thin package and with light weight. As shown in Fig. 5.1,

high throughput, continuous steering with a large aperture size over a large FOR can be

obtained by combining of a fine-angle, but continuous beam steering device (i.e., LC-OPA).

5.1.1 Basic beam steering operation of polarization gratings

We have identified several combinations of PGs and LC waveplates, that can per-

form a three-way steering. These designs can be implemented with switchable (active) or

polymer (passive) PGs, with each approach having its own advantages and disadvantages.

We will discuss two representative cases of PG beam steering, compare the fabrication

procedures involved, and measure their individual performance.

We first consider an active PG beam steering stage, which contains one LCPG

and one LC half-waveplate as shown in Fig. 5.2(a). In this scheme, a circular incident

polarization is assumed and the notations for circular polarizations are given as right-

handed (RCP) and left-handed (LCP). The LC waveplate, which can lead to a half-wave

retardation (∆nld = λ/2), determines the handedness of polarization (RCP or LCP). With

no external field, the beam is diffracted from the LCPG cell and its direction (either the

+1- or −1-order, θ±1 = sin−1(λ/Λ)) is determined by the beam polarization state. Note

that the handedness of output polarization is again flipped by PG diffraction (RCP to

LCP or LCP to RCP). When a voltage is applied to the LCPG cell, the beam passes

through without changing its direction. Hence a unique steering operation with three beam
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directions corresponding to the diffraction orders (0 and ±1) is enabled by individually

switching two LC elements. We note that this approach may involve 4 glass substrates and

4 transparent-conducting-electrodes (i.e., ITO).

Fig. 5.2(b) shows a passive PG steering stage, which is also able to steer an

incident beam into three different directions. This stage includes each pair of RMPGs and

LC half-waveplates to essentially perform in the same manner as the active PG steering

stage. Since RMPGs diffract the beam into desired directions depending on the polarization

handedness that is determined by LC waveplates, the final steering angle can be controlled

by switching the two LC waveplates. Note that the number of active elements (for electrical

switching) remains same but the steering angle becomes the second order of diffraction

(θ2 = sin−1(2λ/Λ)) instead of the first order (θ1 = sin−1(λ/Λ)) for an active PG stage with

the same grating period. We again note that each stage may involve 6 glass substrates and

4 transparent-conducting-electrodes, which means more interfaces than the active PG case.

5.1.2 Diffraction characterization of single PGs

We prepared two sets of PGs with 5◦ (Λ ≈ 18µm) and 10◦ (Λ ≈ 9µm) diffraction

angles using the reactive mesogen mixture RMS03-001C (Merck, ∆nl=0.14 at 1550 nm) for

passive RMPGs and nematic LC MDA-06-177 (Merck, ∆nl=0.13 at 1550 nm) for active

LCPGs. The thickness of the gratings is ∼ 6µm for a halfwave retardation at 1550nm

(∆nld = 1/2). We measured the power of three possible diffraction orders with both RMPGs

and LCPGs with an infrared laser beam (1550nm), which was right-handed, circularly
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Figure 5.2: Non-mechanical beam steering based on PGs: (a) switchable (active) LCPG
configuration and (b) polymer (passive) RMPG configuration. The notations ‘RCP’ and
‘LCP’ represent right- and left-handed circular polarization, repsectively. Note that both
LC waveplates (WPs) and PGs are optimized for a half-wave retardation (∆nld = λ/2).
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polarized (see Fig. 5.3). In order to quantitatively evaluate the diffraction properties, we

define a number of different parameters including the input power Iin, the transmitted

power of a reference substrate/cell filled with glue Iref , the power of the m-th diffracted

order Im, the transmittance of the m-th order Tm = Im/Iin, the absolute efficiency of the

m-th diffracted order ηa
m = Im/Iref , and the intrinsic efficiency of the m-th diffracted order

ηi
m = Im/(· · ·+ I−1 + I0 + I+1 + · · · ). Table 5.1 summarizes our measurements of these two

sets of PGs.

Intrinsic efficiency quantifies the inherent diffraction efficiency of the grating alone,

normalizing out the effects of the substates and any scattering. From this data, it is apparent

that diffraction from individual gratings is extremely efficient (> 99.7% for all cases). For

the absolute efficiency measurement including scattering, both RMPG perform with high

IR-Laser (1550nm)

θ
-1

Figure 5.3: Experimental setup for characterization of basic diffraction properties of PG
samples. Note that the IR laser beam is circularly polarized at the grating sample and the
beam is diffracted predominantly into one of the first order.

Table 5.1: Diffraction characterization of two different types of PGs at 1550nm.

Type of PG θ±1 (deg) Iin (mW) Iref (mW) I−1 (mW) T−1 (%) ηa
−1 (%) ηi

−1 (%)

RMPG ±5 41.32 37.91 37.83 91.4 99.6 99.8

RMPG ±10 41.32 37.91 37.44 91.1 99.3 99.8

LCPG ±5 41.71 35.68 35.63 85.3 99.7 99.8

LCPG ±10 41.82 35.68 33.71 80.6 94.5 99.7
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efficiencies (> 99.3%) while the LCPG with 10◦ diffraction angle shows lower efficiency

(∼ 94.5%) that indicates more scattering. The actual transmittance was measured between

80% and 91% for all PG samples. It is important to note that almost all of the losses,

therefore, were due to the substrate absorption and interfaces. We expect that as we reduce

reflection-related losses by acquiring more optimum glass substrates (AR-coated and index-

matched), we will be able to dramatically improve the overall transmittance.

We now discuss some trade-offs between these two approaches using either RMPGs

or LCPGs as beam steering elements. One clear advantage of RMPGs over LCPGs is larger

steering angles using the same period gratings (i.e., 20◦ steering from 10◦ diffraction angle).

Another important advantage is layer-by-layer processing of RMPGs, which allows small

grating periods without limitation of the critical thickness. RMPGs, however, require two

more substrates (4 more interfaces) for each stage. Since every interface likely involves

scattering and reflection losses, minimum substrates in use is always preferred. Therefore,

RMPGs can be employed in steering stages for high angles where LCPGs cannot perform

with high efficiencies or beyond the critical thickness.

5.1.3 2-stage beam steering system with ±15◦ steering angles

We built a simple active PG beam steering system that are composed of two

LCPGs and two LC waveplates and demonstrated electrically controlled beam steering into

seven different angles within ±15◦. The same LCPG samples (with 5◦ and 10◦ diffraction

angles) were used for this system. We also prepared two LC waveplates with a half-wave

thickness (d = 6µm) for 1550nm using nematic LC MDA-06-177 (Merck, ∆nl ≈ 0.13).

These LCPGs and LC waveplates are stacked as shown in Fig. 5.4(a).

The stage can selectively control steering angles from −15◦ to +15◦ with 5◦ steps

by switching individual gratings and waveplates. Fig. 5.4(b) shows pictures of diffraction

spots at seven different steering angles (on an IR sensitive detecting card located 40cm

off from the steerer). All diffraction spots are well aligned each other and no significant

walk-off was observed, which is another advantage of this thin-plate beam steering system.

Experimentally demonstrated intrinsic efficiency (steering efficiency) ranges from 99.5%

to 99.6% for all seven diffraction beams with the case of 15◦ diffraction angle shown in

Fig. 5.4(c).
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Figure 5.4: Beam steering system using LCPGs with ±15◦ steering angles: (a) photograph
of 2-stage steerer with two LCPGs and two LC waveplates; (b) steered beam at seven
different angles; (c) intrinsic efficiencies for 15◦ steering angle.
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5.2 High-Throughput, Continuous, Beam Steering Using Ro-

tating Polarization Gratings

The ability of precise beam pointing is crucial to any optical system such as free-

space optical communications, countermeasure, laser weapons, and fiber optic switches

where beam alignment and target tracking are required. With increasing demands for

compact, robust, and cost-effective devices for beam steering, Risley Prisms [154, 155, 156,

157, 158, 159] comprising pairs of wedge prisms have long been used for its high degree of

accuracy and stability. Their utility, however, is often limited by small deflection angles

and poor size scaling properties (due to bulky prismatic elements) where wide angles and

modest/large apertures are required.

Here, we introduce an arrangement of two independently rotating, inline polariza-

tion gratings (Fig. 5.5(a)), which we term Risley Gratings, to achieve a remarkably efficient

and compact beam steering device (Fig. 5.5(b)). The single-order diffraction, high effi-

ciency, polarization behavior, and wide acceptance angle of the polarization gratings [7]

(PGs) described here enable a unique opportunity for beam steering with high throughput

and low sidelobes. Several liquid crystal (LC) grating structures (i.e., blazed or binary

types) were proposed as a beam steering element [42, 83]. The practical use of such LC

gratings, however, is limited by their poor angle performance, limited peak efficiency, and

low transmittance, and they are not applicable for the Risley gratings. A nonmechanical

beam steering system based on stacked LCPGs and LC waveplates was first introduced and

demonstrated by Kim et al. [100]. A similar steering operation by rotating two PGs was

also reported in Ref. [128], but the Risley grating concept was not yet clearly captured.

The two PGs can be formed on are thin substrates (eg, glass, Si) can be placed in close

proximity (total thickness of few mm) and can be made with wide areas (easily many cm2),

exhibiting a dramatic aspect ratio improvement as compared to Risley Prisms. A further

benefit is that our arrangement manifests practically no beam walk-off, and can be tailored

to operate at nearly any wavelength from visible to midwave-infrared.

In this Section, we will show the basic concept and its operation principles of this

new beam steering device based on PGs and demonstrate a Risley grating that performs

continuous steering of a laser beam (at 1550 nm) with the maximum deflection angle of

±31◦ and up to 92% throughput. The angle of the emerging beam from the Risley grating
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Figure 5.5: Risley gratings as a thin-plate, continuous beam steering element using rotating
polarization gratings (PGs): (a) a PG formed in a thin liquid crystal layer; (b) beam steering
from two inline PGs (with azimuthal orientation angles at φ1 and φ2); (c) simple scanning
patterns of the Risley grating. Note that the maximum deflection angle Ω is determined
by the diffraction angle θg (e.g., θg = 15◦) of the PGs as sin Ω = 2 sin θg (e.g., Ωg = 31◦).
The field-of-regard (FOR) of such a beam steering system is defined as 2Ω (e.g., θg = 62◦).
Several different steering conditions are described here as: (i) the beam is diffracted into
the +1-order at both the PG stages and the final steering angle is the maximum deflection
angle Ω; (ii) the beam is first diffracted into the +1-order by the first PG but redirected
back to the normal by the second PG and the final steering angle is 0◦; (iii) the beam is
diffracted into the −1-order at both the PG stages and final steering angle is −Ω; (iv) the
first PG is fixed at φ1 = 0 and the second PG is rotated by 360◦ to scan an inner circle; (v)
the two PGs are aligned in an antiparallel orientation and both are rotated by 360◦ to scan
a most outer circle within the FOV; (vi) and (vii) the two PGs are aligned in an antiparallel
orientation and counter-rotated with each other (i.e., the first PG is rotated in clockwise
while the second in counterclockwise) to scan linear lines within the FOR.
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is calculated using the direction cosine space method and confirmed by experimental results.

The steering patterns and sidelobes will be also discussed.

5.2.1 Basic steering operation of the Risley grating

In general [4, 6], PGs are diffractive elements composed of periodic profiles of

spatially varying optical anisotropy, and as such, often manifest unique behavior. Here,

we employ “Circula”-type PGs [7], defined by a spiraling, constant-magnitude, uniaxial

birefringence (Fig. 5.5(a)). Remarkably, this PG exhibits some of the best properties of

both the thin- (Raman-Nath) and thick (Bragg) grating regimes, including 100% theoretical

efficiency into a single diffraction order and a wide angular acceptance angle. As long as the

parameter ρ = 2λ2/n̄∆nlΛ2 << 1, the first-order diffraction efficiency can be accurately

approximated as follows [7]: η±1 = 1∓S′
3

2 cos2
(

π∆nld
λ

)
, where ∆nl is the birefringence, n̄ is

the average index, d is the grating thickness, Λ is the grating period, λ is the wavelength,

and S′3 = S3/S0 is the normalized Stokes parameter describing polarization ellipticity of the

incident light. Note that a single first-order efficiency can indeed be 100% when ∆nld = λ/2

and when circularly polarized light (ie, S′3 = ±1) is incident, as illustrated in Fig. 5.5(b).

Note that first-order diffracted light will have the reverse handedness of the input, and

is always circularly polarized regardless of the input. Also note that within our modest

assumptions, efficiency does not depend on either Λ or the angle of incidence θin, enabling

significant design flexibility (especially compared to Bragg gratings, another common high

efficiency grating). The propagation angle θ±1 light transmitted into the first-orders is

determined by the classic grating equation: sin θ±1 = ±λ/Λ + sin θin (when the incident

light is coplanar with the grating vector).

Here, we arrange two independently rotating, inline PGs, to achieve a remarkably

efficient and compact beam steering device (Fig. 5.5(b)). The principle of operation is

described as follows. A circularly polarized, collimated, narrowband beam is arranged

normally incident on the first PG. With nearly 100% efficiency, this light is redirected into

the polar angle θg = sin−1 (λ/Λ) with an azimuthal direction set by the azimuth angle

φ1 of this first PG. The second PG then receives this beam, and redirects it again with a

nonlinear dependence on its diffraction angle θg and azimuth angle φ2.

Since the angle relationship is nonlinear, it is often convenient to introduce the

direction cosine space where diffraction at an arbitrary incident angle can be described by
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simple, linear vector representations as shown in Figs. 5.6(a) and 5.6(b) [160]. The direction

cosines of the steered beam are given by

α = sin θg (cos φ1 − cos φ2) (5.1a)

β = sin θg (sinφ1 − sinφ2) (5.1b)

γ =
√

1− α2 − β2, (5.1c)

By definition, α2 +β2 ≤ 1. The net azimuth and polar angles of the transmitted beam can

be determined from Eqs. 5.1 as

φ = tan−1 (β/α) (5.2a)

θ = cos−1 (γ) . (5.2b)

The maximum deflection angle Ω is defined as sinΩ = 2 sin θg, and the device can steer to

any angle within a ±Ω cone (as shown in Fig. 5.5(c)), with a field-of-regard (FOR) = 2Ω.

The author refers readers to Appendix ?? for more details on mathematical descriptions for

the steering angles. Chromatic dispersion in this simple two PG device will follows typical

diffractive dispersion.

α

β

α

β

G 1

PG
#1

PG#2

G
2G

φ1
φ2

G 1

(a) (b)

α2 + β2 = 1

Figure 5.6: Vector representations of the PG diffraction in the direction cosine space: (a)
the first PG diffraction G1; (b) the second PG diffraction G2. The final direction can be
expressed as a simple vector sum G = G1 + G2.
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5.3 Demonstration of the Risley grating with ±31◦ field of

regard

We demonstrate the Risley grating beam steering with the maximum deflection

angle Ω = 31◦ at 1550 nm using a pair of PGs (each with Λ =6 µm, and θg = 15◦). Two

PGs are mounted in separate rotation stages to independently set their grating orientations.

Our defect-free PGs were formed as LC cells, using polarization holography and

photo-alignment materials, as well described elsewhere [18, 11, 17]. We utilized a linear-

photopolymerizable polymer (LPP) (ROP-103/2CP, from Rolic) and nematic LC (LCMS-

102, from Boulder Nonlinear Systems, ∆nl = 0.31 at 1550 nm). After coating glass sub-

strates with LPP using standard processing (3000 krpm spin, 130◦C bake for 10 min), we

formed a cell with 2.5 µm thickness (using silica spacers). The PG pattern was recorded

with orthogonal, circularly polarized beams from a HeCd laser (325 nm), with an exposure

energy of 2 J/cm2. Then the exposed cell was filled with LC in the isotropic state (at

150◦C) at atmospheric pressure. The individual PGs exhibit nearly ideal PG diffraction

as Eq. 2.43 with > 98% first-order efficiency, with no observable higher orders or scatter-

ing. Note that both air/glass interfaces were treated with anti-reflection coatings to reduce

reflection losses.

10°

20°

θ=30°

φ=0°

90°

180°

270°

10°
20°

θ=30°

φ=0°

90°

180°

270°

(a) (b)

Figure 5.7: Demonstration of the Risley grating beam steering with a 62◦ FOR at 1550 nm
wavelength. Note that the pictures of the steered beam on an IR sensitive detecting screen
were taken and post-processed onto the angle space.
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Fig. 5.7 shows images of the steered beam (from a linearly polarized IR laser

passed through a quarter-waveplate) directed incident on a planar screen, showing a variety

of simple scans (lines and circles) within the entire field-of-regard (FOR). These correspond

to the curves indicated in Fig. 5.5(c), validating Eqs. 5.2. Each image is a superposition of

individual pictures taken of the beam incident on a fluorescent infrared viewing-card in a

dark room.

We confirmed continuous beam steering within ±31◦ with ∼ 92% throughput

(i.e., transmittance defined as T = Pout/Pin, where Pin is the input power and Pout is the

power in the steered direction). We also calculate the diffraction efficiency, a normalization

that removes the effect of the substrates and allows direct comparison to Eq. 2.43, defined

as η = Pout/Ptot, where Ptot is the total transmitted power into the output hemisphere.

Fig. 5.8(a) shows transmittance and efficiency of the steered beam at the (intended) steered

angle. This shows high transmittance (from 92% to 89%), with some variation depending

on the steering angle. Since we estimate that each of our glass/LC interface has a ∼ 1%

Fresnel-type reflection loss, the substrates cause roughly 4% of the transmittance loss.

The remaining loss is due to leakage into sidelobe directions, as better characterized in

Fig. 5.8(b). Note that the diffraction efficiency is even higher, since the loss due to substrates

is normalized away. In order to explore the severity of sidelobe leakage (for the two extreme

and center angles), we show in Fig. 5.8(b) the fraction of transmitted power measured at

observation angles when the PGs were fixed. In all cases, the sidelobe leakage occurred at

angles that were multiples of θg, and were in the range of 1% to 6%. This leakage primarily

results from oblique incidence to the second PG, and can be reduced by the use of higher

birefringence LC materials and additional retardation compensation films in between the

two PGs (similar to the display application [?]). Within our measurement error, we noticed

< 0.5% absorption and scattering. We note that the reflection loss and any absorption can

be further improved with the use of enhanced index-matched (glass/LC) substrates.

While these tests were performed at 1550 nm with ∼ 5 W/cm2 intensity without

degradation, we have also conducted preliminary tests with similar PGs at 1064 nm at

several 100s W/cm2 intensities with the same result. We speculate that polymer PGs

formed with commercial materials on index-matched substrates could steer very high beam

powers (perhaps many kW/cm2 at near-infrared wavelengths).

We demonstrated that two rotating, inline PGs is a highly efficient beam steering
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Figure 5.8: High throughput from 92% to 89% of the Risley grating: (a) transmittance and
efficiency for different steered angles; (b) transmittance at observation angles across ±40◦

for three steering angles (0◦ and ±31◦).

device, with an ultra-compact and lightweight form factor. Our prototype continuously

steers within a FOR = 62◦, and manifests a transmittance as high as 92% into the steered

direction, with sidelobe leakage on the order of a few percent. We employ two identical PGs

(with Λ = 6 µm) with ±31◦ maximum deflection angles at 1550 nm wavelength. Each PG is

a thin-plate and can be formed at almost arbitrarily large areas, and practically eliminates

beam walk-off. Larger steering angles, further loss reduction, and implementation at other

wavelengths are certainly possible through continued optimization of substrates and PG

materials, as discussed.
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Chapter 6

Advanced Hyperspectral

Polarimeters and Imaging

Spectropolarimeters at Visible and

Midwave-Infrared Wavelengths

Enabled by Polarization Gratings
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6.1 Snapshot full-Stokes hyperspectral polarimetry based on

inline polarization gratings

The measurement of complete polarimetric parameters for a broad spectrum of

wavelengths is challenging because of the multi-dimensional nature of the data and the

need to chromatically separate the light under test. As a result, current methods for

spectropolarimetry and imaging polarimetry are limited because they tend to be complex

and/or relatively slow. Here we experimentally demonstrated an approach to measure all

four Stokes parameters [3] using three polarization gratings and four simultaneous intensity

measurements, with potential to dramatically impact the varied fields of air/space-borne

remote sensing, target detection, biomedical imaging/diagnosis, and telecommunications.

We suggest that an ideal spectropolarimeter would (i) determine the full Stokes

vector through only four simultaneous intensity measurements per wavelength, (ii) require

no polarizers at all (avoiding their expense, bulk, and wavelength limitations), (iii) offer

the potential to operate across wavelengths ranging from 0.4µm to mid-infrared with easy

calibration, (iv) be robust to photo/mechnical/chemical/thermal degradation, and (v) have

ability to be easily fabricated with clear apertures of several cm2 or more. The inline PG

spectropolarimeter we describe and validate here achieves all of these properties.

While the details of polarimetry using PGs depend on the specific implementation,

a generic description capturing the basic elements of the approach is illustrated Fig. 6.1(a).

An inline arrangement of polarization-sensitive diffraction gratings allows for the detection

Incident
Light

λ1
λ2
λ3

λ1
λ2

λ3

PG Measuring S3(λ) PG Measuring S2(λ) PG Measuring S1(λ)

Figure 6.1: Hyperspectral polarimetry based on polarization gratings (PGs) with parallel
detection of the full Stokes parameters.
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at each stage of at least one of the Stokes parameters by the measurement of the diffracted

intensities. Wavelength separation occurs inherently (governed by the grating equation),

and detection can be done in a fashion similar to conventional spectrometers using linear

photodetector arrays or two-dimensional focal-plane-arrays. We utilize three PG elements

along with two achromatic quarter-waveplates to implement the spectropolarimeter, as

shown in Fig. 6.2.

6.1.1 Measurement of the Stokes parameter using PG elements: Jones

matrix reasoning

We now revisit the Jones matrix reasoning for describing PG diffraction, which is

described in Section 2.4. The far-field electric field of the diffraction order m can be written

as follows

Dm =
1
Λ

∫ Λ

0
T(x)Eine−j2πmx/Λdx (6.1)

The transfer matrix T is given by

T(x) = R (−πx/Λ)



 e−jΓ 0

0 ejΓ



R (−πx/Λ) (6.2)

where Γ = π∆nld/λ is the normalized retardation and R is the rotation matrix. Assuming

an incident plane-wave (uniform in the x direction), we can rewrite Eq. 6.1 as follows

Dm = TmEin (6.3)

where the grating transfer matrix is defined as Tm = Λ−1
∫ Λ
0 T(x)e−j2πmx/Λdx. Since PGs

have non-zero solutions only for m = −1, 0,+1, we can rewrite Eq. 6.3 as follows

D0 = Ein cos Γ (6.4a)

D±1 =
1
2
Ein sin Γ



 −j ∓1

∓1 j



 (6.4b)

We can now solve for the diffraction efficiency as the ratio of output to input intensity

(ηm = |Dm|2/|Ein|2) as follows

η0 = cos2 Γ (6.5a)

η±1 =
1
2
(1∓ S′3) sin2 Γ (6.5b)
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where S′3 = S3/S0 is the normalized Stokes parameter corresponding to ellipticity of the

incident light.

It should be clear that these three unique properties make it suitable to implement

the first element in Fig. 6.1, allowing the measurement of both S0 and S3 each wavelength

knowing only the parameters of the PG and the first-order intensities I+1(λ) and I−1(λ).

S0 = (I+1 + I−1) cos−2 Γ (6.6a)

S3 = (I−1 − I+1) sin−2 Γ (6.6b)

Additionally, we have discovered that this PG may also be configured to measure the

other two Stokes parameters when combined with achromatic quarter-waveplates, enabling

a simple implementation of the second two elements in Fig. 6.1.

Consider the assembly in Fig. 6.2, where the second stage is implemented as a

quarter-waveplate (symmetry axes parallel to the x-axis (φ = 0◦)) placed immediately

before the PG. The Jones transfer matrix for a quarter-waveplate at an angle φ from the

x-axis can be expressed as follows

Jφ
λ/4 =

1√
2



 1 + j cos 2φ j sin 2φ

j sin 2φ 1− j cos 2φ



 (6.7)

If we consider this assembly in isolation (apart from the first stage), the electric-field of the

diffracted orders can be found simply by replacing Ein with Jφ
λ/4Ein in Eqs. 6.4 as follows

D±1 = T±1J0◦
λ/4Ein =

1
2
√

2
Ein sin Γ



 1− j ∓(1 + j)

∓(1 + j) 1 + j



 (6.8)

PG#3

λ/4-WP
(θ=0°)

λ/4-WP
(θ=45°)

PG#2 PG#1I–1 (λ)
PG#3

I+1 (λ)
PG#3 I+1 (λ)

PG#2 I+1 (λ)
PG#1

Incident
Light

Figure 6.2: Proposed implementation with three PGs and two quater-waveplates enabling
detection of the complete Stokes vector information with only four simultaneous intensity
measurements per wavelength.
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The diffraction efficiency of this quarter-waveplate (φ = 0◦) and PG assembly is therefore

η±1 =
1
2
(1 ± S′2) sin2 Γ (6.9)

where S′2 = S2/S0 is the normalized Stokes parameter corresponding to the component of

incident light linearly polarized in the ±45◦ directions. The 0-order diffraction efficiency η0

remains the same as Eq. 6.5.

Finally, consider an assembly with two quarter-waveplates placed immediately

before the PG. If the first waveplate has its symmetry axis at 0◦ and the second at 45◦, the

electric-field of the diffracted orders can be expressed as follows

D±1 = T±1J45◦
λ/4J

0◦
λ/4Ein =

1
4
Ein sin Γ



 (−1 + j) ± (1− j) (−1 + j)∓ (1 + j)

−(1 + j)∓ (1 + j) (1 + j)∓ (1 + j)



 (6.10)

The diffraction efficiency of this double-waveplate (φ = 0◦, 45◦) and PG assembly is therefore

η±1 =
1
2
(1∓ S′1) sin2 Γ (6.11)

where S′1 = S1/S0 is the normalized Stokes parameter corresponding to the component of

incident light linearly polarized in the horizontal (0circ) and vertical (90◦) directions. The

0-order diffraction efficiency η0 remains the same as Eq. 6.5.

We can determine the Stokes parameters using the following simple relationships:

S0(λ) =
IPG#3
+1 (λ) + IPG#3

−1 (λ)
sin2 Γ3

(6.12a)

S1(λ) =
IPG#1
−1 (λ)− IPG#1

+1 (λ)
sin2 Γ1 cos2 Γ2 cos2 Γ3

(6.12b)

S2(λ) =
IPG#2
+1 (λ)− IPG#2

−1 (λ)
sin2 Γ2 cos2 Γ3

(6.12c)

S3(λ) =
IPG#3
−1 (λ)− IPG#3

+1 (λ)
sin2 Γ3

(6.12d)

where the subscripts refers to the parameters of the respective PG (Γi = π∆nl,idi/λ, i =

1, 2, 3). Using the relationships between the Stokes parameters, all four Stokes parameters

can be found by measuring four intensities at each wavelength as follows




S0(λ)

S1(λ)

S2(λ)

S3(λ)




=





0 0 C C

−A 0 C C

0 B −C −C

0 0 C −C









IPG#1
+1 (λ)

IPG#2
+1 (λ)

IPG#3
+1 (λ)

IPG#3
−1 (λ)




(6.13)



112

with

A = 2(γ sin2 Γ1 cos2 Γ2 cos2 Γ3−1) (6.14a)

B = 2(γ2 sin2 Γ2 cos2 Γ3−1) (6.14b)

C = (γ3 sin2 Γ3)−1 (6.14c)

where the subscripts refers to the parameters of the respective PG (Γi = π∆nl,idi/λ,

i = 1, 2, 3). The factor γ is the total transmittance of each PG stage, which includes

the influence of the material absorption and Fresnel reflection losses at the interfaces. We

assume here that this factor is the same for each PG stage.

6.1.2 Experimental demonstration of simplified spectropolarimeter based

on PGs

In order to prove the principle-of-operation of the proposed spectropolarimeter

(Fig. 6.2), three reactive mesogen PGs with were prepared on borosilicate glass substrates.

Their grating period (Λ = 5µm) and birefringence (measured at ∆nl ≈ 0.144 at 1550 nm)

were the same for each, and the thicknesses were 6, 3, and 2µm for PG#1, PG#2, and

PG#3 respectively. The 0-order efficiency spectra are shown in Fig. 6.3, and each had an

area of ∼ 1cm2. These were designed such that each PG stage diffracts approximately 1/3

of the incident light into its respective first-orders, insuring equal signal strength for each

measurement. The absorption of the substrates and Fresnel air-glass reflections led to the
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Figure 6.3: Measured diffraction efficiencies (0-order) of the polarization gratings (PGs)
used for the spectropolarimeter implementation. Note that Λ = 5µm, ∆nl = 0.144, and
that they were optimized for measurements around 1550nm.
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transmittance T ≈ 0.7 at 1550 nm.

First, we quantitatively measured the polarization-dependent diffraction properties

using the setup in Fig. 6.4(a), where a linearly polarized probe laser was arranged such that

it would be modulated by the rotation of a waveplate. In Fig. 6.4(b) and 6.4(c), a quarter-

waveplate was rotated to vary the probe light between circular and linear polarizations

as the +1- and −1-order diffraction efficiencies were measured. An excellent match with

Eq. 6.13 is observed. The polarization contrast ratio (between left and right handedness)

in the first-orders was remarkably > 4000 : 1. The response to a half-waveplate was also

measured, and revealed an almost constant ∼50% for both first-orders regardless of the

orientation of the input linearly polarized light (Fig. 6.4(d) and 6.4(e)), as expected.
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Figure 6.4: Polarization sensitivity of the reactive mesogen PGs: (a) measurement setup
including a linearly polarized laser with waveplates modulating the polarization incident
on the PG; (b)measured −1-order and (c) +1-order di?raction response to the rotation of
a quarter-waveplate, showing strong experimental sensitivity (from ∼ 0% to ∼ 100%); (d)
measured −1-order and (c) +1-order di?raction response to the rotation of a half-waveplate,
showing almost constant ∼ 50%. Discrete points correspond to experimental data and solid
lines correspond to the theoretical response (Eq. 6.5).
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λ/4-WP(0°)

λ/4-WP(45°)

Photo-
diode

Figure 6.5: Photograph of the basic spectropolarimeter based on three polarization gratings
(PGs) and two quarterwaveplates (WPs). Note that the polarizer used to set the test-input
polarization state was placed immediately after the collimator (not shown for clarity).

A near-infrared tunable fiber laser with output-collimator was arranged as the

test-source, along with two zero-order quarter-waveplates, as shown in Fig. 6.5. The six

intensities were measured with a photo-diode across 1525nm to 1625nm (slightly more than

the C- and L-bands). An infrared-polarizer was used to set the polarization state of the test-

light at 22.5◦ from the horizontal direction (Fig. 6.4(a)). The normalized Stokes parameters

for this fully-polarized test input are therefore S′1 = 0.707, S′2 = −0.707, and S′3 = 0 across

the entire wavelength range.

The six first-order diffraction intensities were measured for the linearly-polarized

test input, and are shown in Fig. 6.4(b), where the nominal intensity of the tunable laser

was set to 0.5mW for all wavelengths. Using only the four measured intensities identified in

Eq. 6.13, the resulting Stokes parameters from this measured data were calculated and are

shown in Fig. 6.4(c). The measured intensity of the input signal S0 was within ±5% of the

nominal value. The other Stokes parameters S1, S2, and S3 were approximately constant,

and matched the ideal values within ±5% even in this very preliminary spectropolarimeter

setup. The degree-of-polarization (
√

S2
1 + S2

2 + S2
3/S0) was also calculated from the mea-

sured data, and resulted in a value within ±3% of the actual value (100%). A small amount

of measurement error was introduced by the use of zero-order quarter-waveplates (instead

of truly achromatic waveplates), by the potential non-uniformity in the IR-absorption of the

PG substrates, as well as by the imperfect positioning of the photo-diode that was manually

aligned for each measurement.

Nevertheless, the strong correspondence between measurement and actual value

clearly demonstrates the ability of this PG spectropolarimeter to detect all four Stokes pa-
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Figure 6.6: Results of the PG-based spectropolarimeter measuring linearly polarized input
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intensities; and (c) Measured Stokes parameters calculated only from the four measured
intensities IPG#1
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+1 (λ), and IPG#3
−1 (λ).

rameters in a wavelength-parallel fashion using only four simultaneous intensity measure-

ments. Its spectral resolution and sampling rate is limited primarily by the implementation

of the photo-detection elements, and could most likely be designed with resolution and

speed commensurate with conventional spectrometers for the same wavelength range and

application (MHz or more). The bandwidth of this detection system is potentially very

large, and can be estimated by considering the wavelength range over which all three PGs

diffract more than 10% into their first orders (∆λ/λ0 ≈ 70% of the center wavelength).

While the representative experiment reported here tested a point-light source, it

should be noted that one and two-dimensional (1D/2D) images could also be implemented

without much modification. Figs. 6.6(a) and 6.6(b) show two different image registration

schemes using a single detector (CCD or photo-detector arrays) for a hyper-spectral imaging
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Figure 6.7: Image registration schemes for a hyper-spectral imaging polarimeter based on
PGs using a single detector (CCD or photo-detector arrays): (a) axial arrangement (PGs
are oriented at 60◦ with respect to each other); (b) parallel arrangement (PGs are aligned
in parallel); (c) 2D dispersion pattern (PGs are stacked with relative angles (i.e., 60◦)).

polarimeter with zero- and one-dimensional field of view, respectively. In order to measure

the full spectropolarimetric data of a 2D image, a scanning element would be needed to

sweep across only one spatial dimension of the input image (e.g., a pushbroom scanner or

a rotating mirror). Design of a snapshot imaging spectropolarimeter was proposed by Kim

et al. [122], which can capture all Stokes parameters directly from dispersed 2D images

from a stack of three PGs and two quarter-waveplates onto a single imaging sensor (CCD

or photo-detector arrays) utilizing computed tomographic techniques for the reconstruction

of the object data cube (containing all intensity, spectrum, and polarization information
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of the 2D scence). Since each PG stage inherently consolidates the two key functions in

spectropolarimetry (wavelength and polarization sensitivity) into a single planar element, a

wide variety of polarimeter designs optimized for multi-, hyper-, and imaging polarimetry

are possible.



118

6.2 Polarization Gratings: A New Polarimetric Component

for Astronomical Instruments

The use of PGs as a polarizing beam splitter offers a new potential for advances

in astronomical polarimetry. Flexibility in wavelength tuning of diffraction spectrum and

material properties of liquid crystal polymers make PGs a strong candidate as a key po-

larizing element in a mid-IR polarimeter. The potential use of the PG technology for a

mid-IR (5-40µm) polarimetry for NASAs SOFIA 2.5m airborne telescope has been exten-

sively evaluated in Ref. [123].

Polarization in the MIR is usually due to emission and absorption by aligned

aspheric dust grains; polarization due to scattering from typical (astrophysical) sized dust

is not observed at wavelengths > 5µm. The polarization gives access to the presence,

orientation and distribution of magnetic fields in astrophysical objects, and the nature and

mineralogy of the dust grains in them and in the interstellar medium, and is much more

sensitive to chemical and physical differences than spectroscopy alone [123].

The Stratospheric Observatory for Infrared Astronomy (SOFIA) offers a near un-

interrupted spectral coverage and sensitivity in the mid-infrared waveband. First (airborne)

Figure 6.8: The atmospheric transmission expected for SOFIA, and the shaded areas show
the initial filter selection for FORCAST (from Ref. [123]).
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light of the telescope is expected in 2009, with regular science operations expected in 2010.

Through the very high altitude of observations ( 12.5km) and its corresponding reduction

in precipitatable water vapor, observations in an otherwise opaque part of the atmosphere

are possible, opening observations in that wavelength space. Instruments such as FOR-

CAST fully exploit this capability, in this example offering observing windows throughout

the 5–40µm range.

The SOFIA Mid-InfraRed Polarimeter (SMIRPh) is currently under construction

using the traditional and commonly implemented methodology of a crystalline Wollaston

prism and half-wave retarder to offer dual beam polarimetry [161]. Typically, this dual beam

polarimeter offers very high throughput, low instrumental polarization and high accuracy.

However, at wavelengths longer than ∼ 20µ, there appears to be no suitable birefringent

crystalline materials for a Wollaston prism and half wave retarder.

Polarization gratings have been proposed to be used as a thin-film, polarizing beam

splitter, which is functionally analogous a Wollaston prism. This beamsplitter is made up

of a thin polymer film (< 300µm) comprising a liquid crystal polymer coated optionally

on a reflective or transparent substrate, and can be made with almost any surface area.

Although its natural eigen-polarizations are circular, the PG beamsplitter can be paired

with a quarter-waveplate (QWP) in order to separate incident light based on any eigen-

polarization desired, as discussed in the previous Section 6.1.

Here we report our preliminary work as we consider the behavior of PGs at MIR

wavelengths (5-40µm). We assert that two primary questions drive this initial work: (i) Do

our current liquid crystal polymer materials manifest any birefringence over this wavelength

range? and (ii) What is the absorption over this wavelength range?

6.2.1 Primary material properties of liquid crystal polymers in MIR

We first performed basic characterization of liquid crystal materials in the entire

range of IR spectrum (i.e., 5–40µm). The indices of refraction and the extinction coefficients

of reactive mesogen RMS03-001C (Merck) were measured on a J. A. Woollam Infrared

Ellipsometer System at CREOL. This reactive mesogen results in a densely cross-linked

polymer via UV photopolymerization, which is robust to optical, thermal, mechanical,

and chemical degradation. A uniformly aligned layer was arranged on a glass substrate,

with a thickness of 9.4µm, in such a way that the extra-ordinary index (i.e., the uniaxial
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Figure 6.9: Preliminary measurements on RMS03-001C liquid crystal polymer films: (a)
birefringence and extinction coefficient; and (b) Fresnel interface reflectance loss and ab-
sorption coefficient.

symmetry axis) was in the plane of the substrate. All measurements were performed at

room temperature.

From the measured ordinary no and extraordinary ne indices, the birefringence

∆nl = ne−no was found, which is shown in Fig. 6.9(a) along with the measured extinction

coefficient k. Notice that a strong birefringence (∼ 0.15) is indeed present, a value that

compares very favorably to that offered by crystalline materials at optical and near-IR

wavelengths. Note also that the extinction coefficient is particularly low at wavelengths

>∼ 20µm, the very range at which conventional crystalline Wollaston prisms no longer

function. The absorption coefficient (α = 4πκ/λ) is shown in Fig. 6.9(b).

The total throughput Ttot of the PG thin-film is composed of several elements, and

may be estimated in both reflective and transmissive modes by the following

Ttot = ηi
totηabsηrefl = ηi

tote
−αd(1−R)2 (6.15)

where ηi
tot is a sum of intrinsic diffraction efficiencies (ηi

−1 + ηi
0 + ηi

+1) of the grating itself,

to be calculated below. The quantity ηabs = e−αd is the fraction of light not absorbed

through a film of thickness d (which must be d ∼ 3λ0/(2∆nl), as discussed below). The

quantity ηrefl = (1 − R)2 is the fraction of light not reflected at the two air-polymer

interfaces, where the reflectance of each interface determined by the Fresnel equation R =

((n1)2 +κ2)/((n+1)2 +κ2), shown in Fig. 3b for our measured n and κ. For simplicity, we
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have neglected the influence of the substrate, which in reflective PGs is likely to be only a

refinement on the estimate in Eq. 6.15.

6.2.2 Behavior of polarization gratings with illumination in MIR

Until now we have exclusively examined the material properties of the LC polymer.

Now we begin to examine the polarization, diffraction, and throughput behavior of PGs

formed with that LC polymer. A series of “circular-type” (narrowband) PGs were formed

with a 131µm grating period (±4.65◦ first-order diffraction angle for 10.6µm wavelength)

on undoped Si substrates.

We arranged a polarized collimated CO2 laser beam (10.6µm wavelength) into the

PG, normally incident, and measured the power going in the off- and on-axis directions.

Ideally, all of the input light would be found in either of the two ±1-order directions (±4.65◦

off-axis). For a PG with 25µm thickness, we report the transmittance in all diffraction

directions in Fig. 6.10, for three input polarizations (linear, and left- and right-handed

circular polarizations).

Overall, it is clear that the PG operates very much as a polarizing beam splitter,

similar to all prior effects observed at visible/NIR wavelengths. Upon illumination with

linear polarization, the beam is nearly equally split into the ±1-orders. Strong diffraction

into one of the first orders is observed when the input polarization is circular. The most

crucial evidence of polarization sensitive diffraction of the PG at this wavelength is the
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Figure 6.10: Measured beam powers of diffracted orders from a polymer PG sample
(Λ = 131µm, d = 10.6µm with a CO2 laser beam (10.6µm wavelength) with different
polarizations: (a) linear polarization; (b) left-handed circular polarization; (c) right-handed
circular polarization. Highly efficient (> 99.8%) and strongly polarization sensitive (400 : 1
extinction ratio) diffraction have been confirmed at this IR wavelength.
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measured polarization extinction ratios up to ∼ 400 : 1, which are calculated as the ratio of

the first-order powers for orthogonal circular polarizations. We may attribute most losses to

material absorptions and interface reflections without noticeable scattering from the PG. It

is important to note that there is ∼ 30% loss from the Si substrate due to Fresnel reflections.

We prepared a series of PGs with a range of LC polymer thicknesses, and with

otherwise identical parameters. In Fig. 6.11(a), we report the total forward-going transmit-

tance (in all orders) at various thicknesses. We then found the least-square-error fit with

Eq. 6.15 to determine the absorption coefficient at this wavelength as α = 0.032µm−1, very

similar to the value measured by ellipsometry.

We also calculated the zero- and total first-order efficiency, which enables us to ob-

serve the behavior of the grating itself, where the influence of the substrate, interface reflec-

tions, and all absorption is normalized out. This is useful because we can estimate the bire-

fringence at this wavelength. The measured diffraction efficiency is shown in Fig. 6.11(b),

where it is notable that the maximum measured total-first order diffraction efficiency was

98.2% (±1%); this confirms that apart from absorption and Fresnel reflections at inter-

faces, the PG itself is a nearly 100% efficient diffraction grating (just as it is at visible/NIR

wavelengths).
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Figure 6.11: Total transmittance and intrinsic diffraction efficiencies of PGs with different
LC polymer thicknesses (22–34µm) and their comparison with analytically estimated values.
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6.2.3 Optimum broadband design using achromatic PGs

The bandwidth 5–40µm is extremely large (∆λ/λ0 = 156%), and as a result, more

than one PG is necessary to cover this range. In addition, more than one type of FPA

detector is needed, and both of these facts constrain the optical system design. Here, we

identify an optimum design of the number and properties of PGs optimized to enable the

highest efficiency as possible.

We experimentally confirm > 98% efficiency but this high efficiency may be held

only at wavelengths close (within λ/λ0 ∼ 12%) to the half-wave retardation condition

(∆nld = λ0/2). Nevertheless, several ‘achromatic’ PGs with modified nematic director

profiles have been identified [133, 141], with high efficiency bandwidths λ/λ0 increased by

up to eight-fold. In the most preferred achromatic PG for this application, the thickness

depends on the center wavelength of the high efficiency window according to d ∼ 3λ/(2∆nl).

In Fig. 6.12, we show the calculated diffraction efficiency of three achromatic PGs using

the Finite-Difference Time-Domain (FDTD) simulation tool WOLFSIM [134, 135]. These

three wavelength windows (5–11.2µm, 11.2–25µm, and 25–40µm) were chosen based on the

FPA detector technologies and the desire to keep the spectral dispersion consistent. The

ideal PG diffraction efficiency (Σηi
±1) is therefore > 99% for the entire 5–40µm range.
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It is important to note that both the initial fabrication of and measurements on the

liquid crystal polymer measured above were all made at room temperature. Nevertheless,

the optical and mechanical behaviors of PGs at the operational cryogenic temperatures are

undoubtedly critical for SMIRPh. Whilst we are still in the initial phase of studying tem-

perature effects, we can note two points: (i) The liquid crystal material composing the PG

is a highly cross-linked poly-acrylate network, which we have observed to remain mechan-

ically intact even with manual handling at liquid nitrogen temperatures; and (ii) It is well

known that the birefringence of these materials increases as temperature decreases [162].

With both of these positive points in mind, we are actively working to quantitatively un-

derstand the optical/physical behavior and limitations of our polymer PGs at cryogenic

temperatures.

In summary, we have shown that liquid crystal polymer materials show the nec-

essary birefringence at the MIR wavelengths of operation. We also have confirmed high

efficiency and polarization sensitive diffraction of polymer PG samples at an IR wavelength

(10.6µm). Future work will continue optimization work on the transmission of the PGs,

and refining our preliminary measurements, which are likely pessimistic as the absorption

bands are likely significantly more narrow than we show above. In addition, we plan to

characterize the PGs at cryogenic temperatures. The optimum broadband design using

achromatic PGs will be also studied.
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Chapter 7

Concentric Polarization Gratings

as Vectorial Fresnel Zone Plates: a

new opportunity for beam shaping

Shaping of a beam can be done by a precise control of wavefront via refrac-

tion/diffraction/interference. One of the most classical methods for beam shaping is to

use curved/angled surfaces of a medium which has a different index of refraction from that

of the other region. Volume lenses, curved mirrors, and prisms are good examples of this

type of beam shaping elements which are commonly found in any optics laboratory. Micro-

optical devices based on liquid crystal technologies and electro-wetting have been introduced

to miniature or improve classical optics. Especially, optical phase array (OPA) and MEMS-

based micro-mirror technologies enable similar spatial modulation in the wavefront even in

a dynamic environment.

In this Chapter, we introduce a new vector-version of Fresnel zone plates that can

produce ideal Fresnel lens effect by shaping polarization states using concentric polariza-

tion grating patterns. We, first, briefly overview Fresnel-type lenses as thin-plate lenses and

review some recent developments of liquid crystal lenses. Then, we introduce a concentric

pattern of polarization gratings (with radially modulated periods corresponding to Fres-

nel zones) as a polarization-type Fesnel zone plate. Finally, we report our development of

concentric PGs formed as both an electrically switchable LC device and liquid crystal poly-
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mer thin films. Excellent optical performance including good focusing and high efficiency

(≥ 98%) and polarization-selective lens properties have been demonstrated.
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7.1 Fresnel lenses and zone plates as a thin lens

Lenses are the most popular optical elements that are found from daily-life prod-

ucts such as eye-glasses, cameras, and DVD players to sophisticated optical systems such

as microscopes, observatory telescopes, and most advanced lithography systems. Although

fabrication of lenses is still challenging at the current technological era, even cheap lenses

can perform excellent jobs on converging (negative lenses) or diverging (positive lenses) the

beam depending on the lens geometry. These classical lenses, however, are often limited

by its volume structure with surface curvatures that cannot be easily scaled. In addition,

highly-graded optical materials for making lenses are usually expensive and not always

available some wavelength regions.

A Fresnel lens is a thin-plate type of lens invented by Augustin-Jean Fresnel.

This thin lens is made up of fractional prismatic structures by breaking the conventional

spherical lens into a set of concentric annular sections known as Fresnel zones as shown

in Fig. 7.1(a). Each of these zones effectively beaks down the continuous curvature of a

standard lens into a set of surfaces of the same shape, with discontinuities between them. A

substantial reduction in thickness can be done by employing such fractional compartment

of small surface elements and lenses with a large aperture can be easily manufactured using

a small volume of material in a thin plate. While a Fresnel lens is typically useful for large

optical systems such as lighthouses, traffic lights, automobile headlamps, and projectors, it

is not quite often to use in high-quality imaging systems due to its poor image quality. One

(c)(a) (b)

Figure 7.1: Fresnel-type thin-plate lenses: (a) a Fresnel lens compared to a classical volume
lens; (b) a binary-type Fresnel zone plate; (c) a sinusoidal-type Fresnel zone plate.
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of the main reasons is the discrete pattern of individual zone elements (often, saw-toothed

structures). For non-ideal structures (i.e., smooth tips, angled edges) or non-collimated

beams, the effective surface curvature of the Fresnel lens is distorted from that of the

original lens. There is a general trade-off of the resolution of zones between thickness and

lens quality.

A zone plate, often called a Fresnel zone plate (FZP), also can be used to focus

light similar to a Fresnel lens but operating by diffraction instead of refraction. A zone plate

consists of a set of radially symmetric rings with alternating transparent and opaque zones.

Figs. 7.1(b) and 7.2(c) illustrate two different types of FZPs with binary and sinusoidal

profiles in opacity. To obtain constructive interference at the focus, the radius of the m-th

zone should be determined as follows [35]

rn =
√

mλf + n2λ2/4 /
√

mfλ (7.1)

where λ is the wavelength, f is the distance of the focus from the zone plate. The effective

focal length also can be determined by the radius (rN ) and resolution (∆rN ) of the outermost

zone as follows

f =
2rN∆rN

λ
(7.2)

and the maximum possible resolution of the zone plate is given by

∆l = 1.22∆rN , (7.3)

which is equivalent to the diffraction limit based on the Raleigh criterion. While a binary

zone plate produces multiple foci along the axis of the plate at odd fractions (f/3, f/5, f/7,

etc.), a sinusoidal zone plate can have a single focal point (for one wavelength). A primary

means for creating binary zone plates is lithography but holographic techniques can be

employed to make sinusoidal patterns, which are equivalent to transmission holograms of a

converging lens.

The use of liquid crystals to implement switchable lenses has been proposed by

many research groups. Generally, they can be divided into two types according to their

structures. One type is based on the patterned relief surface substrates then it is filled

with liquid crystals [163, 164]. The other type is based on patterned electrodes to generate

a special distribution of electric field to align LC molecules, forming an index profile as a
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Figure 7.2: Focusing of a Fresnel zone plate and its diffraction-limited spatial resolution.

lens [165, 166, 167, 168, 169]. Both types of LC lenses have their own problems: the first

type of LC-filled lenses are often limited because of their large thickness of the active area,

high operating voltage, and poor transmittance due to optical scattering; the LC lenses with

patterned electrodes require a complicated design of electrodes and it is difficult to get ideal

LC profiles due to fringing fields between electrodes and interaction of neighboring LCs. The

properties of most LC lenses are dependent on polarization state of illuminating light due

to the anisotropy of LCs. A simple solution to make polarization-independent lenses was

proposed by overlying LC layers with orthogonal orientations [170]. This method, however,

produces issues of a precise alignment of two LC lens elements.

A number of binary FZPs were proposed using alternating zones in two orthogonal

LC directions [171, 172]. While this type of FZPs operates on a spatial modulation of

polarization state of light instead of phase or intensity, this polarization operation was not

well recognized. The polarization properties of diffracted beam from a binary LC FZP were

studied by Lin et al. [173]. A polarization-type FZP with quasi-continuous patterns (more

than binary) was introduced and demonstrated using a computer-generated space-variant

sub-wavelength dielectric grating that effectively modulates polarization state of light [174].

Advantages of a continuous grating profile with ∼ 100% efficiency was also theoretically

predicted and an IR FZP was experimentally demonstrated to have 94.5% efficiency at 10.6

µm wavelength. A similar LC FZP was demonstrated at a visible wavelength (i.e., 633
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nm) using micro-rubbing techniques for LC alignment [175] and focusing properties and

electro-optical response of the LC FZP were also studied by the same authors. All of these

initial efforts to create a highly-efficient polarization-type (or vectorial) FZP, however, have

been limited by their fabrication difficulties to pattern defect-free, continuous polarization

grating profiles.

7.2 Polarization-type Fresnel zone plates based on a contin-

uous, concentric polarization grating pattern

The polarization-type FZP has a radially symmetric birefringence profile similar

to a sinusoidal amplitude FZP. The spatial distribution of the azimuthal orientation of local

birefringence (Fig. 7.3(a)) in the m-th zone can be written as follows [175]

φ =
π

λ
(f −

√
f2 − r2) +

(
m +

1
2

)
π (7.4)

where r =
√

x2 + y2 is the distance from the center ([x,y]=[0,0]) of the FZP. We now

call this type of FZPs as a concentric polarization grating (CPG) because its birefringence

pattern is identical to that of the circular PG but with radially modulated periodicity. 100%

efficiency also can be achieved at a single focal point when the CPG produces a half-wave

retardation and the input is circularly polarized. Fig. 7.3(b) shows an intensity profile of the

CPG with a half-wave thickness between crossed polarizers, which is interestingly identical

to the profile of a sinusoidal amplitude FZP. Another interesting view of the CPG is the

phase profile of the emerging beam immediately after the CPG when it is illuminated with

circularly polarized light. The resulting phase profile is also identical to that of an ideal

Fresnel lens as shown in Fig. 7.3(c) and 7.3(d). The CPG shows polarization-selective lens

properties: it functions as a convex (or positive) lens for right-handed circular light while it

acts as a concave (or negative) lens for left-handed light. Similar to the PG, the diffracted

beam has the opposite handedness of the input polarization (i.e., left- to right-handed or

right- to left-handed).
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(a) (b)

(c) (d)

Figure 7.3: Concentric polarization gratings (CPGs): the spatial distribution of (a) a bire-
fringence profile and (b) an intensity profile between crossed polarizers, equivalent to a
sinusoidal FZP; (c) and (d) the phase profiles of the emerging beam immediately after the
CPG for circular input polarizations (right- and left-handed, respectively).

7.3 Fabrication of concentric polarization gratings as a po-

larization hologram

We have demonstrated high-quality concentric polarization gratings (CPGs) that

manifests excellent focusing properties with nearly 100% efficiency. We utilize polarization

holography and photoalignment techniques for liquid crystal materials. Figs. 7.4(a) and

7.4(b) show a schematic view and a real picture of the holography setup based on the

Michelson interferometer. A collimated beam (diameter D ∼ 20 mm) from a HeCd UV

laser (at 325 nm) with linear polarization (vertical, LVP) is split and recombined by a non-

polarizing beam splitter. The polarization of one of the beam after a beam splitter is flipped

into the orthogonal linear polarization (horizontal, LHP) as it travels twice of a quarter-

waveplate (effectively by a half-wave retardation). A recording lens is inserted in one of

the beam paths as shown in Fig. 7.4. Polarization states of these two recording beams are

converted to orthogonal circular polarizations (i.e., vertical linear to left-handed circular
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Figure 7.4: Polarization holography setup based on the Michelson interferometer: (a) a
schematic view of the UV holography setup; (b) a picture of the actual optics setup in
the lab. The linearly polarized beam from a UV laser is split and recombined by a non-
polarizing beam splitter of the Michelson setup and two recording beams with orthogonal
circular polarizations are superimposed at the sample position. A lens was inserted in a
path of one of the two recording beams as shown in the actual picture.

or horizontal linear to right-handed circular), which result in a polarization interference

equivalent to the birefringence profile of the CPG. The sample is placed where two beams are

exactly overlapped and the resulting polarization hologram is recorded into the polarization

sensitive layer (as a photoalignment layer for LCs) of the sample.

We fabricated CPG samples as electrically switchable LC devices and liquid crystal

polymer (LCP) thin films. We used two different linear photopolymerizable polymer (LPP)

materials, ROP-103/2CP (from Rolic) for LC cells and LIA-01 (from Dainippon Ink and

Chemical) for LCP films. We also used a nematic liquid crystal MLC-12100-000 (from

Merck, ∆nl = 0.113 at 589 nm, TNI = 92◦C) for LC cells and a RM prepolymer/sovent

mixture RMS08-075 (Merk, ∆nl = 0.159 at 589 nm) for LCP samples. The fabrication

processes for both LC cells and LCP samples are very similar to those for LCPGs and

RMPGs, respectively. More details of fabrication will be discussed elsewhere.

To confirm the CPG profile of LC alignment, the CPG samples were observed with

a polarizing microscope. Figs. 7.5(a)–7.5(b) show polarizing microscope images of a CPG

polymer sample with different polarizer angles (0◦, 90◦, ±45◦). Very well-defined sinusoidal

profiles were observed without defects or discontinuities and the intensity profile varies as
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Figure 7.5: Polarizing microscope images of a CPG polymer sample with four different
polarizer angles: (a) 0◦; (b) +90◦; (c) +45◦; (d) −45◦.

the analyzer rotates with respect to the bottom polarizer (fixed at an angle). These pictures

show us that a nearly ideal CPG pattern was recorded and it was successfully captured in

the liquid crystal layer, which is permanently fixed via photopolymerization for this LCP

sample.

We also characterized lens properties of the CPG samples. We measured a focal

length f / 16 cm and ∼ 98% efficiency at the focal point at a green laser wavelength (532

nm). Note that the thickness of the CPG samples were optimized for a half-wave retardation

at the same wavelength (d / 1.65 µm and d / 2.4 µm for CPG polymer and LC samples,

respectively). Figs. 7.6(a) and 7.6(b) show the polarization-selective lens properties of CPG

samples. We took pictures of a green laser beam (diameter D / 1 cm) on a screen placed

at the focus of the CPG as rotating a quarter-waveplate to control the input polarization

state. For right-handed circular polarization, the beam is focused as shown in Fig. 7.6(a)

so that the CPG behaviors as a positive lens. On the other hand, the beam is diverged
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Figure 7.6: Polarization-selective lens properties of CPG samples: pictures of a laser beam
(at 532 nm) with (a) right- and (b) left-handed circular polarization. The same CPG
can function as both a positive lens and a negative lens for right- and left-handed circular
polarization, respectively. The emerging beams are always circularly polarized (either right-
or left-handed) regardless the input polarization state.

for left-handed input and the CPG acts as a negative lens. We should also note that the

emerging beam is always circularly polarized regardless the input polarization state and

it has the opposite handedness for circularly polarized input. Electrical switching of lens

effect also has been demonstrated using CPG LC cells as shown in Figs. 7.7(a) and 7.7(b).

These pictures were taken by placing a CPG cell in front of a camera with and without

applying a voltage across the LC cell. The focused images with the CPG in the “ON” state

(no voltage applied) show very good image qualities. The switching times for the particular

sample (d / 2.4 µm) was measured ∼ 8 ms.
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(a) (b)Lens OFF Lens ON

Figure 7.7: Electrical switching of the CPG LC cell. Images were taken by placing a CPG
cell in front of a camera (a) with and (b) without applying a voltage across the LC cell.
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Chapter 8

Discussion and Conclusions

Achromatic polarization gratings have been proposed as a broadband polarizing

beam splitter which is embodied as a thin liquid crystal layer. Our extensive numerical anal-

ysis predicts diffraction behavior of the PG beyond the limit of the paraxial approximation,

where the analytical solutions cannot properly explain the phenomena, and it also suggests

a practical guideline to design and evaluate PGs. We have introduced and experimentally

demonstrated achromatic PGs that perform ideal diffraction properties of the circular PG

over a broad range of spectrum, which was the first realization of achromatic diffraction

at nearly 100% efficiency. Three key innovative technologies based on PGs have been de-

veloped in displays, beam steering, and spectropolarimetry. The last, but very interesting,

innovation in this Dissertation was the concentric polarization grating as a vectorial Fresnel

zone plate, which functions as a polarization-selective, thin-plate lens.

8.1 Summary and Conclusions

We reported a rigorous numerical analysis of the polarization grating with the

minimum possible assumptions using our in-house simulation tool WOLFSIM based on the

finite-difference time-domain method. We have studied the effect of grating parameters on

diffraction properties of PGs, especially where the theoretical predictions become invalid

(i.e., beyond paraxial domain). We evaluated the grating regime (thin or thick gratings)

for the PG and discovered that a dimensionless parameter (ρ ∝ ∆nl(λ/Λ)2) can be used

as a criterion to determine where the PG can perform its ideal properties (ρ < 1), which is
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the first honest analysis of the grating regime for anisotropic diffraction gratings. We also

suggested to use the relationship between grating parameters (Λ, ∆nl, d) to achieve both

high efficiency (∼ 100%) and large diffraction angles at the same time. We demonstrated

small-period PGs as small as Λ = 1.35 µm, fabricated as liquid crystal polymer films, with

excellent diffraction properties. In particular, 1.35 µm PGs were created and perform > 95%

efficiency at 650 nm (the diffraction angle θ±1 = 28.8◦). Experimental results show a great

agreement with the numerically predicted efficiencies. Angular sensitivity and the effect

of a finite grating have been studied and confirmed that the PG exhibits excellent angle

performance compared to any other type of diffraction gratings and only a few periods of a

pixelated PG can perform the nearly ideal properties in both efficiency and polarization.

The achromatic design of PGs is one of the key inventions of this Dissertation

research, which realizes, for the first time, 100% efficient diffraction over a fairly wide

spectrum (actually, ∼ 56% of the center wavelength for ≥ 99% efficiency versus 12.8% of

the non-achromatic PG) and leads to development of a number of interesting advanced

technologies. Relatively simple and robust fabrication process for achromatic PGs has been

developed using UV holography and commercially available liquid crystal materials. We

routinely fabricate very high-quality PGs with a wide range of grating periods (Λ / 1.35

µm to several 100s µm) for different wavelength regions (visible, near-infrared, midwave-

infrared). The resulting achromatic PGs demonstrate ≥ 99% efficiency for almost all visible

wavelengths from 470 nm to 630 nm and the same polarization properties as non-achromatic

PGs. Another type of the achromatic PG, namely the super -achromatic PG, based on three

layers with a relative phase shift has been experimentally demonstrated to have a even

broader bandwidth for high diffraction efficiency with a significant improvement factor (×2

of the first achromatic PG and ×7 of the non-achromatic PG) in both visible and near-

infrared wavelength ranges.

Polymer-PG display has been developed as a viable solution for light-efficient

LC display without using polarizers. A significant improvement (up to a factor of 2) in

brightness can be achieved by replacing polarizers with transmissive, thin-film polarizing

beam splitters, polymer PGs, using a conventional LC displays (virtually any LC mode

can be used). Polarization-independent light modulation by the polymer PG display has

been demonstrated with single-pixel LC displays with several different LC modes (includ-

ing VAN, ECB, and TN-modes). We confirmed more than ×2 brightness improvement
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compared to polarizer-based LCDs. We also developed a prototype projector based on the

polymer-PG display using a commercial microdisplay. The polymer-PG projection display

exhibits double the brightness than the original display using polarizers with all excellent

imaging qualities preserved. The extinction ratio of antiparallel PGs (equivalent to crossed

polarizers) remains a limiting factor to prevent high contrast-ratio displays. We also dis-

covered that the use of simple retardation films effectively reduces polarization-related light

leakages.

Novel beam steering concepts based on PG diffraction were introduced in Chap-

ter 5. First, we developed a non-mechanical, wide-angle beam steering system using stacked

PGs and LC waveplates. ±15◦ beam steering with 5◦ resolution was demonstrated using

only two pairs of PGs and LC waveplates (few mm of the total thickness). We also intro-

duced a new beam steering concept, ‘Risley grating,’ using a pair of rotating PGs. This

thin-plate version of the Risley prism can function continuous beam steering within a field-

of-regard (FOR) that is determined by the diffraction angle of the PG. We derived govern-

ing equations to describe the steering angle using the direction Cosine method. Continuous

beam steering with 62◦ FOR was realized at an infrared wavelength (1550 nm) using a pair

of 6 µm-period LCPGs (±31◦ diffraction angles at 1550 nm) and high throughputs from

92% to 89% (efficiency from 92% to 97%) were measured for all steering angles. Losses

in transmittance and efficiency are considered mainly due to reflection losses at the LC-

glass interfaces and the polarization-related leakages from PGs, respectively. The use of

index-matching substrates and polarization compensation techniques have been suggested

to increase the steering efficiency even further.

The Chapter 7 comprised of a brief introduction of the vectorial Fresnel zone plate

(we named the concentric polarization grating or CPG) and our recent demonstration of

ideal Fresnel lens effect by the CPGs that were fabricated as both switchable LC lens and

highly crosslinked polymer films. We apply a polarization holography setup based on the

Michelson interferometer to record a conventional spherical lens as a spatially distributed

polarization hologram. Both types of CPG samples show good imaging properties as thin-

plate diffraction lenses as well as polarization-selective lens properties (it acts as a positive

or negative lens depending on the handedness of circular polarization). CPG LC lenses also

show good electro-optical properties including fast switching times at a modest operating

voltage (i.e., 8 ms at 10 Vrms). The results on high-quality CPGs suggest a new potential of
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polarization holograms for beam shaping; holographic techniques with polarization-sensitive

materials enable many possibilities creating complex vector beams with preserving high

optical qualities.

In summary, we have shown a new possibility of the use of a special type of

anisotropic gratings as broadband polarizing beam splitters for a number of different ap-

plications. In last few years, we have developed effective fabrication processes for creating

high-quality polarization gratings even with a very small period (between 1 µm and 2 µm)

using holographic photoalignment techniques and liquid crystal materials with high linear

birefringence. Achromatic PGs were created by a relatively simple fabrication method and

used to advance existing technologies and also lead to innovative technologies. Finally, the

holographic fabrication process for high-quality CPGs proposes a practical method for cre-

ating complex vector holograms with arbitrary, spatially distributed polarization patterns.

8.2 Suggestions for future work

Until now, we have seen a great potential of polarization gratings as an efficient

polarizing element that can be employed in many interesting optical systems including

displays, polarimeters, beam steering/shaping, spectrometers, and so on. Although a com-

prehensive study of these special anisotropic gratings has been done in both theory and

experiment by the Author and others, many aspects of PG diffraction behavior still remain

not fully understood yet. In this Section, we briefly summarize current challenges and lim-

itations of applications based on PGs and present suggestions for future work to advance

the technology.

8.2.1 Challenges and advances in PG fabrication

Fabrication of small-period PGs using high ∆nl materials

Recent advances in photoalignment technologies of LCs significantly improve the

fabrication process for PGs with polarization holography. The anchoring energy of pho-

toalignment materials is critical to obtain good alignment of LCs. As the grating period

decreases, a stronger anchoring energy is required to prevent defects in LC profiles. We have

demonstrated 1.35 µm-period gratings with nearly perfect LC alignment. However, it is very
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challenging to fabricate high-quality PGs below 1 µm period, which has not been demon-

strated experimentally. In addition, liquid crystal materials with high ∆nl are required to

obtain high diffraction efficiency at these small grating periods. Therefore, development

of new photoalignment materials with higher anchoring energy and high ∆nl LCs may be

required to overcome the current limitation of PG fabrication.

We have tried to use a new reactive mesogen prepolymer/solvent mixture RMS09-

038 (from Merk, ∆nl = 0.39 at 589 nm). Although this material shows the best performance

(> 95% efficiency for 1.35 µm PGs at 650 nm) among other similar RM materials with lower

∆nl, processing of the material is very challenging because of instability of main molecules.

Crystallization of reactive mesogen molecules immediately occur as the temperature of the

mixture is below a certain point (∼ 60◦). Figs. 8.1(a) and 8.1(b) show microscope images

of crystallized particles formed during spin-coating process. Interestingly, crystallized RM

molecules show very regular patterns which may indicate phase separation to another LC

phase (i.e., smectic A) during this crystallization process. Further optimization of processing

and possible modification of chemicals can improve the coating qualities as well as diffraction

properties of PGs.

(a) (b)

Figure 8.1: Microscope images of crystallized reactive mesogen molecules with a high ∆nl

material (RMS09-038, ∆nl = 0.39 at 589 nm): (a) individual RM crystals; (b) a RMPG
sample with typical coating problems with particles (RM crystals).
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Proximity lithographic fabrication of PGs

Holographic recording of polarization grating patterns is the key technology for the

successful fabrication of PGs. Although the current exposure method employ an interference

of two orthogonal beams, a PG itself can be used to create the same polarization hologram at

least in the near field. The resulting PG pattern, however, is expected to have half the period

of the original PG (now named the ‘master’ PG) because of the difference between the period

of interference (2Λ sin θi = λ) and patterned birefringence (Λ sin θg = λ). The resulting PG

pattern can be recorded by placing the sample (named the ‘copy’ PG) immediately after the

master PG, which method is basically the proximity lithography commonly used in micro-

fabrication process. Initial experiments to fabricate a circular PG from a master grating on

a fused silica substrate with period Λ = 4 µm (optimized for a half-wave retardation at 325

nm) via the proximity lithography. Fig. 8.2(a) shows the 0-order transmission spectrum of

the master PG and Fig. 8.2(b) shows a comparison of PGs fabricated using the conventional

holography and the proximity lithography. The copy PG shows a half grating period of the

mater PG (2 µm versus 4 µm) and excellent diffraction properties including 99% efficiency at

633 nm and > 500 : 1 polarization contrast. Note that we used a photoalignment material

LIA-01 (from Dainnipon Ink and Chemical) and a reactive mesogen prepolymer/solvent

mixture RMS08-075 (from Merk, ∆nl = 0.25 at 532 nm). These preliminary results show
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Figure 8.2: Proximity lithography as a fabrication method of PGs through a direct copy
of the master PG: (a) the 0-order transmission spectrum of the master PG (optimized for
a half-wave retardation at 325 nm); (b) the 0-order transmission spectra of the copy PG
(compared with an identical PG fabricated by conventional polarization holography.
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Figure 8.3: Fabrication of a flexible PG on a thin plastic film: (a) RMPG preparation; (b)
glass assembling with optical glue; (c) de-lamination of the RMPG-glue film.

a good promise of the proximity lithography as an effective fabrication method for high-

quality PGs at lower cost for mass-production.

Fabrication of liquid crystal polymer PGs on a flexible plastic film

PGs can be fabricated as a liquid crystal polymer film that is a highly crosslinked,

rigid plastic sheet. It is very interesting to fabricate diffraction gratings on non-uniform

surfaces or flexible substrates. Here, we propose a simple but effective fabrication method to

transfer RMPGs onto a flexible substrate (i.e., thin plastic films). Figs. 8.3(a)–8.3(c) show

the suggested method with following three steps: (i) fabricate RMPG layers on a normal

solid substrate (a glass); (ii) assemble the RMPG sample with another glass substrate using

an optical adhesive (UVS 61 from Norland) then cure the glue via UV exposure; (iii) break

the glass substrate carefully then laminate the RMPG film with a relatively thick (i.e., ∼ 10

µm) glue layer that serves as a flexible substrate. Fig. 8.3(c) also shows an actual flexible

RMPG film. A number of alternative ways can be employed to produce similar plastic

gratings. This thin-film grating can be laminated to any optical systems even with curved

surfaces.

8.2.2 Polymer-PG display: toward ultra-bright pico-projectors

We have demonstrated the polymer-PG projection display with double the bright-

ness as compared to the same system using polarizer-based display. However, low contrast

ratio remains a main limitation of the polymer-PG display for practical pico-projector devel-

opment. The extinction ration enhancement technique substantially improve the inherent

extinction ratio of the polymer PGs but the system contrast ratio cannot reach to an accept-

able level (> 100 : 1). Since most conventional light engines developed for pico-projectors
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have ∼ 10◦ divergence angle, > 20◦ diffraction angle of the PG (Λ < 1.35 µm for the

shortest wavelength, 470 nm) is required to achieve high contrast images. To achieve this

large diffraction angle and high efficiency at the same time, high ∆nl materials has to be

considered. We believe the currently available high birefringence RM material (RMS09-038,

∆nl = 0.39 at 589 nm) can satisfy these requirements. In addition, more studies on polar-

ization properties of PG diffraction at such large diffraction angles are highly suggested to

improve the polarization compensation for the extinction ratio enhancement. We recently

found that the LC/glass interfaces produce substantial light reflection (∼ 3%) due to high

index differences between glass and LCs with high ∆nl (the average LC index n̄ = no+ 1
2∆nl)

and affect the contrast ratio when the reflective display is used. The use of index-matched

glasses for the LC materials can significantly reduce this reflection.

8.2.3 Uni-directional pointing of broadband beam using polarization grat-

ings

Diffraction-based beam steering devices have a common problem of chromatic sep-

aration of the broadband beam due to the fundamental diffraction phenomena. The benefits

of high steering efficiency and wide-angle scanning capability of PG-based beam steering

systems can be maximized if it also allows uni-directional beam pointing even with broad-

band light (i.e., collimated white light). We propose a uni-directional pointing device based

on two PGs and a waveplate with carefully engineered retardation for the spectrum of light

source as shown in Fig. 8.4(a). We assume a white LED light source with intensity peaks

at three wavelengths (red, green, blue). The beam is diffracted by the first achromatic PG

(Fig. 8.4(b)) and then the polarization state at one wavelength is flipped to the orthog-

onal circular polarization by the waveplate (Fig. 8.4(c)). Finally, the second circular PG

diffracts only two wavelengths at 100% efficiency but the center wavelength is not diffracted

(0% efficiency of the second PG). Since two wavelengths have orthogonal circular polariza-

tions, both beams are diffracted to the same direction of the center wavelength as shown in

Fig. 8.4(c). The retardation engineering for optimized spectrum (Fig. 8.4(d)) can be done

by a careful choice of materials and thicknesses of the each element.
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Figure 8.4: Uni-directional pointing of beadband beam using polarization gratings: (a) a
schematic view of the pointing device using two PGs (one achromatic and one dispersive)
and one waveplates; (b) the first achromatic PG diffraction at different wavelengths; (c)
the second PG diffraction after a waveplate. The unidirectional pointing of the beam with
intensity peaks at three different wavelengths is achieved by a precise engineering of the
retardation spectra of individual elements as shown in the part (d).

8.2.4 Polarization holographic elements for vector beam shaping

We have shown that the polarization holography is an effective method to create

complex polarization patterns and these spatially distributed polarization can be captured

into a liquid crystal layer via photoalignment techniques. We, for the first time, demon-

strated vectorial Fresnel zone plates as liquid crystal concentric polarization gratings using

the polarization holography based on the Michelson interferometer. While our initial test

was done with a simple spherical lens, any optical elements can be recorded as polarization

holograms. One very interesting element is a fork grating [176] that generates a cylindrical

vector beam. A polarization hologram corresponding to this grating pattern can be gener-

ated by inserting an axicon which has a conical surface as shown in Fig. 8.5. A number of

different type of polarization holograms can be considered to create polarization diffractive
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elements as vector-beam shapers.
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Figure 8.5: Polarization holographic elements for vector beam shaping: (a) polarization
holography with a axicon; (b) a polarization-version of a fork grating
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A. Numerical Analysis of Linear Polarization Gratings

Linear PGs are distinct from circular PGs because they have a periodic modulation

in the magnitude of their linear and circular birefringences (Fig. 2.19(b)), attainable in

various materials [12, 14, 15]. Classification into two cases is convenient: (A) ∆nl = ∆nc

and (B) ∆nl ,= ∆nc.

The presence of the circular birefringence (∆nc) makes the diffraction properties

of Linear PGs distinct. When ∆nl = ∆nc, interesting diffraction properties result: again

only three diffracted orders are present, but the first-order beams are linearly polarized and

their efficiencies are strongly dependent on the extent of linear polarization present in the

incident light. Analytic expressions can be derived using Jones calculus (a re-formulation

of Ref. [14]) under the same assumptions as before:

η0 = cos2 (π∆nd/λ) (A-1a)

η±1 =
1∓ S′1

2
sin2 (π∆nd/λ) (A-1b)

where ∆n = ∆nl = ∆nc and S′1 = S1/S0 is the normalized Stokes parameter [3] of the

input light. Since the polarization states of the ±1-orders will be orthogonal and linearly

polarized, the label ‘Linear PG’ applies.

The numerical and analytic diffraction spectra of linear PGs correspond well, and
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Figure A-1: Diffraction behavior of the Linear PG (∆nl = ∆nc = ∆n = 0.2) – (a) diffraction
efficiency spectra and (b) polarization-sensitive first-order diffraction (∆nd/λ = 1/2) –
numerically calculated (curves) and analytically estimated (©, ♦, and #) using Eqs. (A-1).
(Λ = 20λ0, n̄ = 1.6)
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Figure A-2: Diffraction behavior of the Linear PG (∆nc ,= ∆nl) for different values of
circular birefringence ∆nc; (a) diffraction efficiency spectra and (b) polarization-sensitive
first-order diffraction (∆nld/λ = 1/2). (Λ = 20λ, d = 5λ, n̄ = 1.6, and ∆nl = 0.2)

are shown in Fig. A-1(a), with Λ = 20λ0, d = 5λ0, n̄ = 1.6, and ∆n = 0.2. As expected,

only three diffraction orders are present, and the maximum first-order efficiency approaches

100% (actually, 99.73%). We also verified the polarization states of each diffraction order;

the 0-order has the same polarization state as the input and the +1- and −1-orders have

horizontal and vertical linear polarizations. We also examined the paraxial limit for the

ideal diffraction of the linear PG, in the same manner as Section 3.1 and Fig. 3.4. The

resulting behavior of the linear PG was the same as for the circular PG with respect to

the grating regime and conditions for high diffraction efficiency, and the discussion in that

Section (3.1) therefore also applies to Linear PGs. Note that we omit the figures for linear

PGs because they appear identical.

The polarization sensitivity is shown in Fig. A-1(b) with respect to the orientation

angle of the linearly polarized incident light (S′1 = cos(2ψ)). We emphasize that the first-

diffraction orders of Linear PGs respond to the orientation and extent of linear polarization

in the incident light, while Circular PGs respond to the ellipticity and extent of circular

polarization. The FDTD near-field maps of Linear PG with a monochromatic source appear

identical to Fig. 3.3(a) and 3.3(b) for vertical linear incident polarization and right-handed

circular incident polarization, respectively, and are therefore omitted.

Unlike the two previous PGs examined so far, Linear PGs with ∆nc ,= ∆nl exhibit

non-zero higher diffraction orders (η|m|≥2 ,= 0), similar to thin phase and amplitude gratings.
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However, diffraction properties depend strongly [14] on the birefringence ratio ∆nc/∆nl,

and we can identify several interesting cases: for ∆nc = 0, light diffracted into odd orders

of Linear PGs alter the incident light as if traveling through a λ/2-waveplate whose fast

axis is at 45◦; for ∆nl = 0, the odd orders act as a 90◦ polarization rotator. In both of

these extremes, the diffraction efficiencies follow ηm = J2
m(π∆nd/λ).

Diffraction spectra for various ∆nc/∆nl ratios with linearly polarized input are

shown in Fig. A-2(a), where ∆nl = 0.2, Λ = 20λ0, d = 5λ0, and n̄ = 1.6. When ∆nc = 0, it

should be noted that only the magnitude (and not the orientation) of its linear birefringence

is varying spatially, and as such, these Linear PGs show very similar diffraction behaviors

to conventional phase gratings: multiple diffraction orders and no polarization sensitivity.

However, as ∆nc increases, the maximum diffraction efficiency increases, and the first-

orders become sensitive to the incident polarization (i.e. ∝ S′1). Both of these effects can

be observed (Fig. A-2(b)) in the polarization contrast between the m = ±1 orders. It is

important to note the local influence that a Linear PG imposes on incident light: the linear

birefringence locally modifies the polarization orientation, while simultaneously the circular

birefringence modifies its ellipticity — both in a spatially-dependent fashion. When the

variation in the two types of anisotropy is balanced, Linear PGs manifest properties in

response to linear incident polarizations which are analogous to Circular PGs illuminated

with circular polarizations.
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B. Jones Matrix Analysis of Achromatic PGs with Twist

The Jones matrix for a circular PG can be expressed as

TPG = R(−φ)



 e−iΓ 0

0 eiΓ



R(φ) (B-2)

where Γ = π∆nd/λ is the retardation, R is the rotation matrix, and φ = φ(x) = πx/Λ.

The circular PG with a twist can be approximated as a stack of multiple (N) thin

circular PG layers with a small phase shift ∆φ in the azimuth. The Jones matrix for this

stratified grating structure can be written as

TPG,twist =
N∏

m=1

R (−m∆φ)TPG(∆Γ)R (m∆φ)

= R (−Φ) [TPG(∆Γ)R (∆φ)]N (B-3)

where N is the number of circular PG layers, ∆Γ = Γ/N is the retardation of each layer,

and Φ = N∆φ is the total twist angle.

Now we introduce an auxiliary matrix W = TPGR (∆φ):

W =



 W11 W12

W21 W22



 , (B-4)

where

W11 =
(
e−i∆Γ cos2(φ) + ei∆Γ sin2(φ)

)
cos(∆φ)−

(
e−i∆Γ − ei∆Γ

)
sin(φ) cos(φ) sin(∆φ)

(B-5a)

W12 =
(
e−i∆Γ cos2(φ) + ei∆Γ sin2(φ)

)
sin(∆φ) +

(
e−i∆Γ − ei∆Γ

)
sin(φ) cos(φ) cos(∆φ)

(B-5b)

W21 = −
(
e−i∆Γ sin2(φ) + ei∆Γ cos2(φ)

)
sin(∆φ) +

(
e−i∆Γ − ei∆Γ

)
sin(φ) cos(φ) cos(∆φ)

(B-5c)

W22 =
(
e−i∆Γ sin2(φ) + ei∆Γ cos2(φ)

)
cos(∆φ) +

(
e−i∆Γ − ei∆Γ

)
sin(φ) cos(φ) sin(∆φ)

(B-5d)
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As N →∞, we can simplify W11 as follows

W11
∼= cos(∆φ)− i(∆Γ) cos(2φ) (B-6a)

W12
∼= ∆φ− i(∆Γ) sin(2φ) (B-6b)

W21
∼= −∆φ− i(∆Γ) sin(2φ) (B-6c)

W22
∼= cos(∆φ) + i(∆Γ) cos(2φ) (B-6d)

Using Chebychev’s identity, we can find a matrix W′ = WN as follows

W′ =



 W ′
11 W ′

12

W ′
21 W ′

22





=




W11 sin(NZ)−sin(N−1)Z

sin(Z)
W12 sin(NZ)

sin(Z)
W21 sin(NZ)

sin(Z)
W22 sin(NZ)−sin(N−1)Z

sin(Z)



 (B-7)

where W ′
ij is the (i, j) component of W′ and Z = cos−1

[
1
2(W11 + W22)

]
.

We can further simplify W′ using approximations: as N → ∞, sin(NZ)/NZ ∼=
sinX/X and cos(NZ) ∼= cos X, where X =

√
φ2 + Γ2.

W ′
11
∼= cos(X)− iΓ cos(2φ)sinc(X) (B-8a)

W ′
12
∼= [Φ− iΓ sin(2φ)] sinc(X) (B-8b)

W ′
11
∼= − [Φ + iΓ sin(2φ)] sinc(X) (B-8c)

W ′
11
∼= cos(X) + iΓ cos(2φ)sinc(X) (B-8d)

where sinc(X) = [sin(X)]/X. Substituting W′ into Eq. B-3, we finally get the Jones matrix

for the PG with twist:

TPG,twist =



 T11 T12

T21 T22



 = R(−Φ)W′ (B-9)
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where Tij is the (i, j) component of TPG,twist:

T11 = cos(Φ) cos(X) + Φ sin(Φ)sinc(X)− i
Γ
2

sinc(X)eiΦei2φ − i
Γ
2

sinc(X)e−iΦe−i2φ

(B-10a)

T12 = − sin(Φ) cos(X) + Φ cos(Φ)sinc(X)− Γ
2

sinc(X)eiΦei2φ +
Γ
2

sinc(X)e−iΦe−i2φ

(B-10b)

T21 = sin(Φ) cos(X)− Φ cos(Φ)sinc(X)− Γ
2

sinc(X)eiΦei2φ +
Γ
2

sinc(X)e−iΦe−i2φ (B-10c)

T22 = cos(Φ) cos(X) + Φ sin(Φ)sinc(X) + i
Γ
2

sinc(X)eiΦei2φ + i
Γ
2

sinc(X)e−iΦe−i2φ

(B-10d)

where X =
√

Φ2 + Γ2. The Jones matrix TPG,twist can be split into three matrices T0,

T+1, and T−1:

TPG,twist = T0 + ei2φT+1 + e−i2φT−1 (B-11)

where

T0 = cos(X)R(−Φ) + Φ
[
sin(X)

X

]
R(π/2− Φ) (B-12a)

T±1 = e±iΦ Γ
2

sinc(X)



 −i ∓1

∓1 i



 (B-12b)

where Tm (m = 0,±1) is a transmission matrix corresponding to the mth-order of diffrac-

tion. Still, only three diffracted orders exist and the first orders have orthogonal circular

polarizations regardless the incident polarization. However, the polarization state of the

0-order generally becomes elliptical due to the effect of twist.

Let us consider a Jones vector Einc with normalized intensity for the incoming

electric field:

Einc =



 Ex

Ey



 =



 cos(α)

eiδ sin(α)



 (B-13)

where α is an auxiliary angle (0 ≤ α ≤ π/2) for the polarization ellipse and δ = δy − δx is

the phase difference between Ex and Ey. The outgoing electric field of each diffracted order

can be obtained as follows

Em = TmEinc (m = 0,±1) (B-14)
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Still, only three diffracted orders exist and the first orders have orthogonal circular polar-

izations regardless the incident polarization. However, the polarization state of the 0-order

generally becomes elliptical due to the effect of twist. The normalized intensity (or effi-

ciency) in each diffracted order is given by:

ηm = E†
mEm (m = 0,±1) (B-15)

where E† denotes the Hermitian adjoint of E. Diffraction efficiencies of a single circular PG

with a twist can be expressed as

η0 = cos2 X + Φ2

(
sinX

X

)2

(B-16a)

Ση±1 = 1− η0 = sin2 X − Φ2

(
sinX

X

)2

(B-16b)

where X =
√

Φ2 + Γ2. We omit the individual expressions for the first order efficiencies

(η±1) because of complexity. The efficiencies can be calculated by using computer softwares

such as Matlab from Eqs. B-12 and B-15.

Now we consider the other circular PG with the same twist angle but opposite

twist sense. Since we want to have two symmetric gratings, the anisotropy profile of two

gratings should be in phase at the interface as shown in Fig. 3.10(b) and 3.10(c). The Jones

matrix T′
PG,twist for the second circular PG can be obtained simply by replacing φ and Φ

with φ + Φ and −Φ from Eqs. B-12, respectively:

T′
PG,twist = T′

0 + ei2(φ+Φ)T′
+1 + e−i2(φ+Φ)T′

−1 (B-17)

and

T′
0 = cos(X)R(Φ)− Φ

[
sin(X)

X

]
R(π/2 + Φ) (B-18a)

T′
±1 = e∓iΦ Γ

2
sinc(X)



 −i ∓1

∓1 i



 (B-18b)

where Tm (m = 0,±1) is a transmission matrix corresponding to the mth-order of diffrac-

tion. Since the handedness of twist does not affect the field distribution in the diffraction,

the efficiencies are found same as those of the first circular PG in Eq. B-16.

The Jones matrix TAPG for the achromatic PG (APG) composed of two chiral

circular PGs with opposite twist sense can be obtained simply by multiplying the Jones



170

matrices for each PG:

TAPG = T′
PG,twistTPG,twist (B-19)

Again, TAPG can be split into three parts corresponding to each diffracted order:

TAPG = T0,APG + ei2φT+1,APG + e−i2φT−1,APG (B-20)

and

T0,APG =
{
cos2(X) +

(
Φ2 − Γ2

)
sinc(X)2

}


 1 0

0 1



 (B-21a)

T±1,APG = −ie±iΦΓsinc(X)



 T (±)
11,APG T (±)

12,APG

T (±)
21,APG T (±)

22,APG



 (B-21b)

where

T (±)
11,APG = cos(Φ) cos(X) + Φ sin(Φ)sinc(X)∓ i [sin(Φ) cos(X)− Φ cos(Φ)sinc(X)]

(B-22a)

T (±)
12,APG = − sin(Φ) cos(X) + Φ cos(Φ)sinc(X)∓ i [cos(Φ) cos(X) + Φ sin(Φ)sinc(X)]

(B-22b)

T (±)
21,APG = − sin(Φ) cos(X) + Φ cos(Φ)sinc(X)∓ i [cos(Φ) cos(X) + Φ sin(Φ)sinc(X)]

(B-22c)

T (±)
22,APG = − cos(Φ) cos(X)− Φ sin(Φ)sinc(X) ± i [sin(Φ) cos(X)− Φ cos(Φ)sinc(X)]

(B-22d)

Interestingly, the transmission matrix for the 0-order diffraction is reduced to a identity

matrix with a magnitude depending on the twist angle (Φ) and retardation (Γ). We can

interpret that the polarization effect of twist is canceled out by two chiral layers with

opposite twist sense. Therefore, the polarization of the 0-order remains same as the incident

polarization.

Similar to Eqs. B-16, the final expressions for diffraction efficiencies of the achro-

matic PG can be obtained as follows

η0 =

[
cos2 X +

(
Φ2 − Γ2

) (
sinX

X

)2
]2

(B-23a)

η±1 = A2

(
1∓ S′3

2

) (
cos2 X + Φ2sinc2X

)
(B-23b)
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where Γ = π∆nd/λ and X =
√

Φ2 + Γ2. We omit the individual expressions for the first

order efficiencies (η±1) because of complexity. Again, the efficiencies can be calculated by

using computer softwares such as Matlab from Eqs. B-22 and B-23.
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C. Jones Matrix Analysis of Super-Achromatic PGs

Again, the Jones matrix for a circular PG can be expressed as

TPG = R(−φ)



 e−jΓ 0

0 ejΓ



R(φ) (C-24)

where Γ = π∆nd/λ is the retardation, R is the rotation matrix, and φ = φ(x) = πx/Λ.

The above equation can be rewritten as follows

T = cos(Γ)− j sin(Γ)



 − cos(2φ) sin(2φ)

sin(2φ) cos(2φ)



 (C-25)

Now consider a stack of three PGs of which grating directions are all parallel but

shifted by an angle Φ for the middle PG with respect to the others. The transfer matrices

for each grating are given by

T1,3 = cos(Γ)− j sin(Γ)



 − cos(2φ) sin(2φ)

sin(2φ) cos(2φ)



 = cos(Γ)− j sin(Γ)U (C-26)

T2 = cos(Γ)− j sin(Γ)



 − cos(2φ′) sin(2φ′)

sin(2φ′) cos(2φ′)



 = cos(Γ)− j sin(Γ)U′ (C-27)

where φ′ = φ + Φ and U and U′ are auxiliary matrices for the first and last PGs and the

second PG, respectively. The Jones matrix for all three PGs can be written as follows

T = T3 ×T2 ×T1 (C-28)

After significant mathematical steps (similar to Appendix B), we get the diffraction effi-

ciencies as follows

η0 = {cos3(Γ)− [1 + 2 cos(2Φ)] cos(Γ) sin2(Γ)}2 (C-29)

η±1 =
1∓ S′3

2
sin2(Γ)

{
1− 4[1 + cos(2Φ)] cos(2Φ) cos2(Γ) + 4[1 + cos(2Φ)]2 cos4(Γ)

}

(C-30)
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D. Direction Cosine Description of Two Rotating Gratings

Diffraction behaviors of gratings can be conveniently described in the direction

cosine space. Especially, the conical diffraction is traced by linear relationships between

two projected dimensions (α, β). Here we derive the governing equations for the exiting

diffraction angle from two rotating inline PGs in the direction cosine space.

An arbitrary vector in the Cartesian coordinate space can be expressed in the

direction cosine space as follows

6A = Ax6i + Ay6j + Ax
6k (D-31a)

= A(α6i + β6j + γ6k) (D-31b)

where A = | 6A| is the magnitude of the vector and α, β, and γ are projections of the direction

vector (6uA = 6A/A) onto x-, y-, and z-axes and can be expressed by the angles between the

direction vector and 6i, 6j, and 6k as follows

α = Ax/A = cos(θx) (D-32a)

β = Ay/A = cos(θy) (D-32b)

γ = Az/A = cos(θz) (D-32c)

It is convenient to express α, β, and γ with the polar and azimuth angles (θ, φ) in the

Spherical coordination space because these angles are useful to describe angular behaviors.

α = sin(θ) cos(φ) (D-33a)

β = sin(θ) sin(φ) (D-33b)

γ = cos(θ) (D-33c)

It is also noted that α2 + β2 + γ2 = 1 and γ can be always found from α and β by

γ2 = 1− (α2 + β2). From this relationship, we can treat any problem in the α-β space and

then find the complete solution.

The diffraction equation at an arbitrarily oblique angle (θi, φi) can be expressed
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in the direction cosine space as follows

αm = −αi + m

[
λ cos(ψ)

Λ

]
= −αi + m∆α (D-34a)

βm = −βi + m

[
λ sin(ψ)

Λ

]
= −βi + m∆β (D-34b)

γm =
√

1− α2
m − β2

m (D-34c)

where the subscript m is the order of diffraction, ∆α = (λ/Λ) cos(ψ) and ∆β = (λ/Λ) sin(ψ),

ψ is the angle between the grating vector (6g) and the α- or x-axis, and αi, βi, and γi are

given by

αi = sin(θi) cos(φi) (D-35a)

βi = sin(θi) sin(φi) (D-35b)

γi = cos(θi) (D-35c)

Now, we can consider a special case of two circular polarization gratings that are

aligned inline but rotating around the propagation axis (the z-axis). The orientation angles

of each grating from the x-axis are φ1 and φ2, respectively. The offsets of nearest diffracted

orders are give by ∆α1,2 = (λ/Λ)cos(φ1,2) and ∆β1,2 = (λ/Λ)sin(φ1,2). The direction of

the outgoing beam from the first PG can be written as follows

α(1) = −αi + ∆α1 (D-36a)

β(1) = −βi + ∆β1 (D-36b)

γ(1) =
√

1−
(
α(1)

)2 −
(
β(1)

)2 (D-36c)

We assume that the incident polarization is left-handed circular, which leads to only +1-

order in the diffraction of the first PG with right-handed circular polarization. We also

assume that the second PG is identical to the first PG so that only −1-order can exist in

the diffraction from the second PG. The direction of the outgoing beam from the second

PG can be written as follows

α(2) = −α(1) −∆α2 (D-37a)

β(2) = −β(1) −∆β2 (D-37b)

γ(2) =
√

1−
(
α(2)

)2 −
(
β(2)

)2 (D-37c)
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For normal incidence, we can simplify Eq. D-37:

α(2) = −(∆α1 + ∆α2) = −(λ/Λ) [cos(φ1) + cos(φ2)] (D-38a)

β(2) = −(∆β1 + ∆β2) = −(λ/Λ) [sin(φ1) + sin(φ2)] (D-38b)

γ(2) =
√

1−
(
α(2)

)2 −
(
β(2)

)2 (D-38c)

Finally, we get the angles for the emerging beam as follows

φ = tan−1(β/α) (D-39a)

θ = cos−1(γ) (D-39b)


