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This collection of notes and exercises is intended as a workbook to introduce the
principles of microwave linear accelerators, starting with the underlying foundation in
electrodynamics. We review Maxwell's equations, the Lorentz force law, and the
behavior of fields near a conducting boundary. We go on to develop the principles of
microwave electronics, including waveguide modes, circuit equivalence, shunt
admittance of an iris, and voltage standing-wave ratio. We construct an elementary
example of a waveguide coupled to a cavity, and examine its behavior during transient
filling of the cavity, and in steady-state. We go on to examine a periodic line. We then
turn to examine the problem of acceleration in detail, studying first the properties of a
single cavity-waveguide-beam system and developing the notions of wall Q, external Q,
[R/Q], shunt impedance, and transformer ratio. We examine the behavior of such a
system on and off resonance, on the bench, and under conditions of transient and steady-
state beam-loading. This work provides the foundation for the commonly employed
circuit equivalents and the basic scalings for such systems. Following this we examine
the coupling of two cavities, powered by a single feed, and go on to consider structures
constructed from multiple coupled cavities. The basic scalings for constant impedance
and constant gradient travelling-wave structures are derived, including features of steady-
state beam-loading, and the coupled-circuit model. Effects of uniform and random
detuning are derived. These notes conclude with a brief outline of some problems of
current interest in accelerator research.

Introduction

The accelerator istheinstrument on which all intellectual life in high-energy

physics depends. Without accelerators, the great physicists of our time and decades
past would have been reduced to inspection of cosmic ray dribble, atomic spectra
corrections, and mathematics of uncertain pedigree. Happily, there were physicists
who loved to tinker, and from their sketches and machine shops sprang the
klystron,® and in the fog of their musings appeared the microwave linear
accelerator,’ finally cut in copper and called the Mark I11.3 Today, when Physics
has dwindled in the popular imagination, and 80,000 patients are treated each day
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by S-Band linacs, it is easy to forget that there is a field called High-Energy
Physics, that Man's ultimate reach into the sub-atomic world has yet to be decided,
that it depends on invention, and possibly your invention.

Historically, the kinds of inventions that have helped can be seen in the
story of the Two-Mile Accelerator,* the evolution of the 25-MW "XK-5" klystron to
the 60-MW " 5045" model,5 the invention of " SLED" pulse compression,s and the
transformation of the 20-GeV Two-Mile Linac to the 50-GeV Stanford Linear
Collider.” To reach till higher energies, the collider scalingss indicate that shorter
wavelength is required, and this observation has resulted in ten years of research
and development, culminating in the 50-MW "X-Band" klystron, "SLED-II" pulse
compression, and new "damped detuned structures’ designed to pass beams of
extraordinary charge and current.9 It is now thought possible that a 1-TeV collider
could be engineered based on these and other inventions.Y et to reach much higher
energies, 5 TeV and beyond, the collider scalings indicate that the linac would be of
enormous size, probably larger than society would care to support. Beyond 5 TeV
there is no technology adequate to the task, and inventions are required.

These notes are intended as a primer for those who are new to linacs and are
taken with the idea of exploration into the farthest realms of the universe. If the
desire is to invent the machine for tomorrow, let us review here what has shaped
the machines of today.

In its simplest form, the problem is to increase the energy of a particle, and
this requires applying a force. There are a handful of known Forces of the
Universe, and only one of them appears to be of much use for acceleration, and that
is the electromagnetic interaction. Electromagnetic acceleration in empty space, we
will find, is rather ineffective, and so material boundaries are favored to shape the
electromagnetic fields. Materials are lossy and so power, needed to establish
accelerating fields, is dissipated. Power dissipation in the end appears to be the
ultimate limit on terrestrial accelerators. But what thislimit is no one knows.

These notes provide an elementary introduction to the theory of
electromagnetic accelerators. Appendix A summarizes the math we will be using,
and Appendix B, the low-frequency electronics concepts often relied on for circuit
analogies. In Sec. 1, electrodynamics is reviewed, and in Sec. 2 electrodynamics
with material boundaries---microwave electronics---is developed. In Sec. 3, driven
on by the logic of Sections 1 and 2, we construct the simplest of accelerators,
consisting of asingle cavity powered via waveguide, and perturbed by a beam. We
go on to couple such cavities together to fashion standing-wave linacs. Appendix C
isincluded to provide more detail on the five formal calculations underpinning this
work. In Sec. 4 the extension to travelling-wave linacs is devel oped.

We omit quite a lot that one needs to construct and operate an accelerator:
techniques for fabrication and assembly, the klystrons, magnets, beam dynamics,
vacuum, radiation shielding, personnel protection, and operational know-how.
However, all one really needsin thisfield is a new idea that works; let us consider
then what works.



1. Electrodynamics

To accelerate particles, for best results, the particles should be charged, and
electric fields should be applied. In fields, energy is stored, and in media, energy is
dissipated. These features of accelerator mechanics we review from the beginning.

1.1 Lorentz Force Law

Theforce F acting on acharge q with velocity V takes the form
If:q(E+\7><B) (1.1)

where E is the electricfield with units of force per unit charge, newtons per
coulomb = volts per meter. The quantity B isthe magnetic flux density or magnetic
induction, with units of newtons per ampere-meter = tesla = weber/meter2. Eq.
(1.1) describes the forces acting on charged particles. Implicitly, it defines what

these fields are and it abstracts them from the sources that produced them.

With only the Lorentz force law we can determine how charges respond to
fields, but we are left wondering how the fields themselves are determined. One
may take some comfort in the observation that this problem is easily solved in
principle if one knows the fields arising from a single charged particle in motion,
for then the fields would be simply a superposition of each individual particle's
fields. In practice, we may have to account for enormous numbers of such charges-
--all the charges composing the conductors and dielectrics in the system. A proper
accounting for the evolution of the motion of an N-particle system by this method
must then track the microscopic motions of the constituents of the mediainvolved,

and the N? interactions taking place. In practice, with INN=50, this approach is
quite inefficient. Happily, one can make do by tracking the fields directly, and the
N interactions with the field. In fact, for many media, one needn't even track the
response of the medium directly, and one may confine attention only to charges
external to the medium. Oftentimes one may consider just one such externa charge,
and reason by superposition to obtain a complete description of the system's
evolution. This approach relies however on an understanding of media,
summarized in the notions of permittivity and permeability.

Exercise 1.1 A charged particle has a kinetic energy of 50 keV. You wish to apply as
large a force as possible. You may choose either an electric field of 500 kV/m or a
magnetic induction of 0.1 T. Which should you choose (a) for an electron, (b) for a
proton? In each case, compute also the gravitational force.

1.2 Permittivity and Permeability

In considering ensembles of charge, it is helpful to distinguish between

"free" charge or externally controllable charge, and "bound” charge, chargethat isa

constituent of a medium in the system. An example would be a capacitor consisting

of two plates, filled with oil. The circuit attached to the plates is controllable; the
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electrical behavior of the oil isnot. We arefreeto place charge on the plates if we
don't mind doing some work. However, the response of the oil to the applied field
is not oursto specify. Specificaly, the atomic electronsin the oil will be perturbed
by any applied field, and their motions will be distorted, resulting in a dipole
moment proportional to the applied field. This dipole moment contributes to the
electric field in the gap.

To account for the response of media, we have two choices. We may
attempt to calculate the response of the medium from first principles or we may
consult the known response of the medium as determined from experiment. To take
the latter, simpler approach however, we first must know the language folks use to
describe the response of media. Let usintroduce the notion of e ectric displacement
and magnetic field.

In vacuum, the electric displacement is D = &,E, and the magnetic field is
H = B/ u,, where £, =8.85x10™" farad/m and p, = 4rx107 henry/m. As is,
thisisjust achange of units, not cause for great excitement. In media, however, the
relation takes the form

(1.2)
H=B/u,-M (1.3)
where P is the electric dipole moment density of the medium and M is the

magnetic dipole moment density. These moment densities are the result of
polarization or magnetization of the medium by the very fields we are trying in the

end to determine, E and B. In the frequency domain, for alinear medium, they
may be expressed as

p= Xefoé, (1.4
M=x,H, (1.5)

where x, and x,, arethe electric and magnetic susceptibilities of the medium. In
terms of fields, these expressions take the form D =¢E, and B= uH, where
e=¢,(1+ x,) isthe electrical permittivity, and = p,(1+ x,,) is the magnetic
permeability. Thus € and u are frequency-domain quantities, and, in general, they
are tensors. Note particularly that H and D depend on how one chooses to
distinguish an external circuit. One could guess this by noticing that H and D do
not appear in the Lorentz forcelaw, E and B do.

1.3 Maxwell's Equations

Maxwell's equations are four; we review each in turn. The first and the
oldest is Gauss's law stating that at the end of aline of electric force one will find
charge. In differential form,



OsD=p (1.6)

with p the density of externally imposed charge, i.e., whatever charge is not

accounted for in the electrical permittivity & that has been used to define D. Like
each of Maxwell's equations, this can also be stated in integral form,

iﬁ-dézlpdv,

so that the flux of D through asurface &V bounding avolume V is proportional to

the charge enclosed. It is often useful to have the corollary boundary condition at
the interface between two media, on the normal component of electric displacement.
This can be determined by integrating Eq. (1.6) over the small volume depicted in
Fig. 1.1 to relate the discontinuity in electric displacement across an interface to the
surface charge density

(B,-B,)-A=zx. (1.62)

Evidently the unitsfor D are the same as surface charge density, coulomb/meterz.
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FIGURE 1.1. Sketch for application of Gauss's law to a thin pillbox at the interface
between two media.

Next we have Ampere' slaw

itzLZ‘?, (1.7)

or, inintegral form,



T A D
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«dS |
S S
pre—Maxwell displacement current

so that the circulation of magnetic field strength around a closed path JS bounding

asurface Sis proportional to the current enclosed. (Note that care is required in
applying integral forms to moving surfaces.) The displacement current term implies
that the magnetic induction is equally happy to circulate around a transient bundle of
electric field lines.
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FIGURE 1.2. Sketch for application of Ampere's law to a thin loop at the interface
between two media.

The boundary condition accompanying Ampere's law isillustrated in Fig.
1.2 for a thin loop placed across the interface between two media. For this
geometry and in the limit that the loop width goes to zero, Ampere's law takes the
form

(F, - F)e T =K xAeT, (1.72)
and states that a discontinuity in tangential magnetic field arises if any surface
current K is present. Evidently the units for H are those of surface current,

ampere/meter.

Gauss's law and Ampere's law together describe the response of the fields
to media; but electric fields don't depend solely on charge. According to Faraday's
law,

OxE=- (1.8)

*| &

circumferential electric field lines are induced around any magnetic flux varying in
time. Inintegral form,



fE edl :—I—- ds.

Thus a voltage drop will develop around a closed path JS bounding a surface S,

proportional to the time-rate of change of the magnetic flux enclosed by the path.
Applying Faraday's law to the geometry of Fig. 1.2, one finds,

Ax(E,-E)=0, (1.82)

i.e., the tangential component of the electric field is continuous at the interface
between two media.

Thelast of our four equations states that there is no magnetic charge,
[Je B = 0' (19)
or inintegral form, theflux of B through a closed surface dV vanishes,

Be dS=0.
|

Thus one will never find B field lines terminating anywhere; they form closed

loops. Applying this condition in the geometry of Fig. 1.1 yields the boundary
condition on normal magnetic induction,

(B.-8)-n=0, (1.92)

and corresponds to the absence of any magnetic charge layer.

1.4 Charge Conservation

Naturally, to get these equations named after him, Maxwell had to
contribute more than mere mathematical trickery; he contributed in particular the
displacement current. The first consequence of this term is the relation between
current and charge. Charge conservation as we now know it states that the time rate

of change of charge enclosed in avolume is equal to the flux of charge out of the
volume,

0 S

—[pdV==§JedS

alPN =

or, in differential form,

@m-j:o_ (1.10)
ot

Ampere’ slaw without displacement current implies

%P Hej=-0.0xH=0
d )



i.e., that charge density is constant in time. This is not a bad approximation in
conductors, or a dense plasma; it is exact for electrostatics, magnetostatics.
However, considered as a law of nature, Ampere's law was, before Maxwell,
inconsistent with conservation of charge. One could describe the situation
somewhat differently by saying that it hadn't been established that the current

determining B wasin fact the flux of charge determining E. In this view, Maxwell

unified E and B, proposing that they were in fact two aspects of the same
phenomenon, electromagnetism. We will see shortly that displacement current
permits the fields to propagate on their own, in vacuum, without any local chargeto
support the field lines. Charge conservation, a"symmetry" of nature, implied the
existence of a field with an identity of its own, that could propagate freely in
vacuum, and, as we will see, carry energy and momentum with it.

To appreciate Maxwell’ s contribution one can compare electrodynamics
before Maxwell, and after. In the centuries prior, it was gradually understood that
charges repel or attract, a property shared by current-carrying wires. Time-varying
currents can induce currents in their surroundings. Action at a distance could be
understood vialines of force. However, the unified equations Maxwell set down
contained in them features that were to revolutionize our understanding of physics.
(1) light is an electromagnetic phenomenon, (2) nature is not Galilean, (3)
thermodynamics applied to electromagnetic fields gives rise to divergences (i.e.,
nonsense), (4) matter must be unstable, (5) Newtonian gravitation is inconsistent
with electrodynamics. In short, two solid predictions, two paradoxes, and one
conundrum, all with one very reasonable looking term! The resolution of the
second item was to be found in special relativity. The resolution of the third item
commenced with the introduction of Planck's constant, and the notion that
electromagnetic energy comes in discrete packets called photons. This development
and the fourth item eventually precipitated the development of quantum mechanics.
Thefifth item led Einstein to develop histheory of general relativity.

1.5 Accelerators According to Maxwell

One can immediately discern in Maxwell's equations the three principle
methods of acceleration. The first employed by Man was el ectrostatic acceleration.

Thisisthelimit 9/t =0, sothat O x E =0, implying that the electric field may be

represented as the gradient of an electrostatic potential, E =-0¢. In this case,
Maxwell's equations reduce to Gauss's law, which in turn may be expressed as

Poisson's equation (0% =—p/¢,. If the beam is of sufficiently low charge, thisis

approximately just Laplace's equation, % =0, and fields are determined by
electrode shapes alone. Otherwise, one must solve self-consistently for the particle
motion, and the fields together, a nonlinear problem. Probably the most common
accelerator design activities today are the solution of this problem for an electron
source (gun design), and the closely related problem of solving for the
magnetostatic fields due to a configuration of magnetic materials and current-
carrying coils (magnet design).

Somewhat less frequently one encounters a problem which requires the
induction effect embodied in Faraday's law, but for which the displacement current

8



issmall. Such magneto-inductive effects are the operating principle for the betatron
and induction linacs. In such problems, a magnetic field is driven to a good
approximation, exclusively by external currents. With the help of magnetic
materials ( 4 >> u,) the magnetic induction is shaped, and the corresponding
magnetic flux drives an electric field.

The foregoing accel eration techniques require media of one kind or another
to be exposed to large persistent fields, and for this reason are limited in the net
accelerating voltage they can impart. Somewhat more robust, though still subject to
material damage, is the fully electromagnetic (microwave) accelerator. Here all
terms in Maxwell's equations are important; however, unless one is modelling the
microwave power source, one can frequently do without the source terms, in the
first approximation. This is because the fully electromagnetic solutions of
Maxwell's equations are capable of propagating on their own to their place of
business, being at most guided, shaped, and perhaps slowed down by material
boundaries. When intense beams are present (and they often are) one must consider
them aswell, in the final accounting.

In the electromagnetic accelerator, the logical algorithm for time-advance of
the fields is based on Faraday's law and Ampere's law,

@:-DxE, @:[}xH—J,

ot ot

while the remaining two equations are ssimply constraints that magnetic induction be
solenoidal, and Gauss's law. If these constraints are satisfied by the initial state of
the system, they will be satisifed by the evolved state. In practice the discretization
of space (the use of a"grid") in anumerical simulation introduces a numerical error
in the electric displacement. This error corresponds to an erroneous charge that the
numerical fields will see on the next time step, and respond to. As aresult, errors
can quickly become compounded. To avoid this, one enforces Gauss's law at each
time-step by solution for an error potential and correction of the electric
displacement obtained from Ampere's law.

1.6 Scalar and Vector Potentials

In all these cases there is an instructive aternative to solving for the fields
directly. Instead we may express them in terms of potentials, and solve for the
potentials. Since magnetic induction is solenoidal, we may expressit asthe curl of a
vector

B=0OxA (1.11)

sothat O+ B=0+0xA=0. A is referred to as the vector potential. From
Faraday's law then,

- B - [L AL
DXE"'@:DXEE'F@D:O'
2 0o &g

and this suggests that we express E as



E:—%A—@p, (1.12)

for some function ¢, referred to as the scalar potential. Note that the fields are
invariant (gauge invariance) under a change of potentials,

A- A-Oy, ¢ - ¢+%¢’, (1.13)

where (is any well-behaved function. Thus A and ¢ are not yet uniquely defined.
L et us determine what equations the potentials must satisfy. Ampere'slaw implies
Ox pH = EX(EXA):E(D-A)—DZA

OcE 20 oA
=pudxH=pu="—+pd = ue= -Opg+pd
= U Mg P = e ¢E”

or

2

A- ed&f‘:—uj+ﬁ§]- A+ue%@

Gauss's law implies

GeB=0eeE=efle 2P Apo= .

[ ] p— [ ] p— E—E E_
or

2 - _r
0 p dgj A+/J£ %

Since there are infinitely many gauge choices, oneis free to pick one's own
unique, personal gauge. In the meantime, two are quite popular. The Lorentz gauge
is defined by

2 _

Oe A+ us (Lorentz gauge condition) (1.14)

In the Lorentz gauge, Maxwell's equations reduce to wave equations for each
component of the potential,

e

O%A- ue dﬁf‘ =-uJ (Lorentz gauge) (1.15)
0% — ue &Z) =-ple. (Lorentz gauge) (1.16)

-1/2

Evidently the characteristic speed of propagation in the mediumis V = (ue)
However, the Lorentz gauge is by no means a unanimous choice, and often
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one encounters the Coulomb gauge,
O« A=0 (Coulomb gauge condition)

in which Maxwell's equations take the form

-
O2A- ue dﬂf‘ =—ud + ,LIED%, (Coulomb gauge)

0% =-ple. (Coulomb gauge)

We won't try here to promote one gauge over the other, as the question of gaugeis
really a personal decision each researcher must make on his own.

1.7 Energy Conservation

Usually the best-sounding ideas for accelerators fail one of two tests: (a)
they require excessive amounts of unobtainium or (b) they don't conserve energy.
Let's consider (b). The rate of work per unit volume done by the fields is just

J« E, and this may be evaluated by substitution from Ampere's law,

- - MW - -0 - MDD = - == = = = - -~ - _
—J-E=Ea—D—DXHD-EzaDoE—DXH-E+DXE-H—DXE-H
Oot 0 a e (ExH)
:d:)oE+|_jo(EXH)+ oH:dDoE+dBo|:i+|_jo§
ot ot ot
wherein the last line we introduce the Poynting flux,
S=ExH, (1.17)
with units of watts/meter2. In vacuum we may write this as
s =_= =,0u
—JeE=[]e S+ = 1.18
= (118)
where the quantity
.
—E(E- D+B« H), (1.19)

may be interpreted as the density of energy stored in the fields. Thisis a statement
of energy conservation. Work done on charges in some volume is balanced by a
loss of the energy stored in the fields in that volume, and/or a flux of energy into
the volume through the surface. Eq. (1.19) is usually sufficient for the most
commonly encountered problems.

Exercise 1.2 Consider a geometry consisting of two wide parallel plates of area A,
separated by a gap of length d, filled with dielectric of permittivity & Suppose a charge Q
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has been placed on one plate. Compute the steady-state electric field and the voltage V
between the plates. Show that the capacitance of the circuit C=Q/V is given by C=cA/d,

and that the energy stored is We=CVZ2/2.

Exercise 1.3 Consider a long helical coil of radius a, occupying a length d, with nturns
per meter, carrying current |/, filled with material of magnetic permeability u. Compute the

magnetic induction inside the coil, show that the stored energy is Wp,=LI2/2, with

L=umaZn2d, the inductance. Considering a time-varying current, show that the voltage
drop along the coil V=Ldl/dt.

1.8 Momentum Conservation

Consider a collection of particles in vacuum, enclosed by avolume V, and
acted on by electromagnetic fields. The Lorentz force law implies that the rate of
change of particle momentum is given by

dP, ., - = =
—mech — FqV(oE + J x B).

i 40 (oE+3 )
One expects this momentum gain or loss to be balanced by a momentum associated
with the fields. To determine this field momentum, we may re-express the relation
above, using Maxwell's equations. First,

i)

£+3xB=E0. B+xA-PhxB
g a e
Next we apply the chain rule, followed by Faraday's law,

?x E:%(f)x B)—f)xgg:%(f)x B)+E)X(ﬁx E),

so that

pE +JxB=ED+ B +(0x H)xB-Dx(xE)-2(5x8),

Finally, we make use of the identities

{ED- E-Ex (0 E)} = E°E° - E'0°E” + E°0°E" = 0°(E°E” - 1 E+ E5,),
((ox8)<8)" = FBu: B-8x(0x8) -o*(e'e - 16+ 8a.).

From this one has
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(pE+3xg)’
= £,0°(E*E" - 3 E+ EJ,,) + 1,0"(B*B* ~ 1 B+ Bo,, ) - £, (Ex B

or

P2, ) Az 2y
Th_JV'dVo"bTab eOJ/’dth(ExB),

with the tensor
T® = &,(E"E" - 1 E« E5,, ) + 14o(B*B° - 1 B+ B3,,).

This relation equates the time-rate of change of momentum within avolume, to a
surface flux,

P, dP, O .

e+ —SmH = [ TRdS, 1.20
Fa Tap [T (1.20)
where the momentum carried by the electromagnetic fieldsis smply
ﬁem:goéxézc_lzéxﬁzc_i, (1.21)

with S the Poynting flux. The rate of convection in the direction b, of field

momentum oriented along a is evidently given by T®, thus referred to as the
electromagnetic stress tensor. A useful alternative expression is

T® = D°E + H*B" —%(D- E+He B)o, = D°E" + H*B* - uJ,,, (1.22)

with u the energy density stored in electromagnetic fields. The symmetry of the
stress tensor (and the simplicity of the derivation) isinsured by the assumption that
the particles arein vacuum. In general, in media, anisotropy may be present.

1.9 The Problem of Electromagnetic Acceleration

Equipped with the mechanics of fields, let us reconsider the problem of

accelerating charged particles. We require an electric field, E, to produce any
change in particle energy, £, and energy transfer is governed by

where V isthe particle velocity and q is the charge. Let us suppose the particle is

already relativistic, so that V = ¢ is constant. Denote the direction of particle motion
S, and parameterize the motion by length traversed, s, with ds=Vdt. Then the
particle coordinates may be expressed as

13



F=ss, t=ty+,
v

where t, isthe time at which the particle reaches s=0. Energy gain takes the form

de _ L _ sO
=M =B SS L+ o

where E; isthe eectric field component parall€l to the particle motion.

To ascertain the form of the electric field, note that in an infinite unbounded
time-independent medium a well-behaved function may be expanded as a
superposition of plane-waves. This implies that at linear order we may consider
fields of the form

E= D{Eexp(jwt —jke F)} H= D{Hexp(jwt— jke F)}

Gauss's law requires that the polarization of the electric field be transverse to the
direction of propagation, Es k =0, implying two independent polarizations.
Faraday's Law requires that the magnetic field polarization be transverse to both the
direction of propagation and the electric field, Z,H = Exk. The quantity

Z, =l 1 &, =377 Q we will refer to as the wave impedance of free-space.
Evidently amplitude, propagation direction, polarization and frequency exhaust the
fundamental attributes of plane el ectromagnetic wavesin free-space.

With this we can compute the energy imparted to the particle in passing
through any finiteregion 5, <s<s,

Ag = Dqﬁjdsexp@i g + | % - kS§§= Oqve',

and we introduce the accelerating voltage phasor V.In free-space, we extend the
limitsto infinity to obtain

I Ol
V=2mEsy -k

The dispersion relation k? = w?/c?, and transverse polarization, imply that for
E. 70, w/k,>c, sothat w/k, >V, and therefore V =0. In accelerator jargon,

we say that this concept startsto ook iffy.
This observations suggests that useful acceleration should take place either
(1) inaterminated region of space, or (2) over an extended region, but with awave

whose phase-velocity w/k, =c. These two possibilities correspond to standing-

wave and travelling-wave accelerators.

There is a second problem of equal importance: how to produce the
el ectromagnetic wave? One needs a power converter drawing low-frequency power
from the wall-plug, and transforming it into high-frequency electromagnetic power.
In free space, a high peak power is required to produce a high electric field. In
structures, we will find that a high field can be obtained with lower peak power
than in free-space. Thisis because, with the help of material boundaries, we may
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store energy by resonant excitation. How much energy we may store, or how long
we may store it, depends on dissipation in the medium. Thus we require not only a
material medium, but one with low loss.

Exercise 1.4 The law of energy conservation has J« E on one side, and expressions

quaderatic in the fields on the other. How is it that the energy gain of a particle traversing an
accelerator might include a term proportional to the first power of the applied field?

1.10 Conductors

For engineering purposes there are four kinds of materials: metals,
ceramics, semiconductors, and plastics. From a more elementary point of view,
there are solids, liquids, gases and plasma. All have been proposed for accelerating
structures. However, let us not be distracted at the outset by the diversity of media
from which one could build accelerators. Any linac concept can be compared to and
judged against the conventional linac built of normal conductor.

The behavior of conductors with steady applied voltage was first noted in
the lab notebooks of Cavendish, but is usually associated with the name of Ohm,
since Cavendish failed to publish. It wasn't until 1900 that the first microscopic
picture of resistivity was developed, by Paul Drude,* whose model of a conductor
consisted of a gas of electrons in an array of ions. In the presence of an applied
field, electrons are accelerated but they tend to collide with ions on some

characteristic collision time-scale 7. A smple model of this motion takes the form

-V
m— =gqE-m—,
dt a T

and when the fields vary dowly on the time-scale 7, the solution is simply
v=4Lg
m
The current density flowing through the meta is then
no°t
m

J=ngV = E=0E, (1.23)

where o is the conductivity.

To appreciate the effect of a conducting boundary, consider first a perfect
conductor, o — oo. The boundary conditions on fields are two. (1) If electric field
lines terminate on a surface, they do so normal to the surface, for any tangential
component would quickly be neutralized by lateral motion of charge within the
surface. (2) Magnetic field lines avoid surfaces, for if they did not they would
terminate, since the magnetic field is zero within the conductor. These rules can be
employed to sketch rough solutions of Maxwell's equations in a copper structure.

The correction to the approximation g — o isquite small, in the sense that
it resultsin dissipation that is slow on the time-scale of an rf period. However, this
"small" correction in the end dominates the scalings for accelerators. To appreciate
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this slow dissipation, we start from Maxwell's equations, in a conducting medium,

assuming a single frequency excitation, so that fields are proportional to exp(j at).
Using phasor notation, Ampere's law takes the form

OxH=jaD+J=J=0E,
and we neglect displacement current in the limit of high-conductivity, sincein this
limit, currents in the media are much larger than the displacement current. Faraday's

law takes the form 0 x E = —jcB. In the limit of high-conductivity, the electrons

inside the conductor respond quickly to the applied field, so that inside the
conductor there is no bulk charge separation. In this case, Gauss's law takes the

~

form O« E =0. Wecan reduce this system to a single equation for H,
ix(ix H): i(i- I:|)—D2I:| -0°A = 0% (o) = -jawof = - o
so that,

210 2 ~_
O°H —Jsgnng =0
where we have introduced the skin-depth, ¢, a quantity with units of length,

E—g (1.24)

Next, let’s solve for the fields in the conductor, consulting the sketch in

Fig. 1.3. Choosing the coordinate ¢ to measure displacement into the surface along
the unit normal, we have

2

~ 2 ~

d_szt - jsgna)?Ht =0,

and the solution is

= 0

H,(&) = A ( )eXD[r‘z(lﬂsgnwEL (1.25)

E:EEXH:Eﬁxﬁ:—ZSnXI:lt. (1.26)
o g o0&

Evidently a conductor of finite conductivity does not satisfy exactly the condition
that transverse electric field should vanish on the surface. Instead, the transverse
electric field satisfies an impedance boundary condition with surface impedance,

1+ jsgnw .
—JU T =R(1+jsnw), (1.27)

and surface resistance, a quantity with units of ohms,

Z_
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R =—. (1.28)
VACUUM

tangential H

normal H

FIGURE 1.3. Sketch of the geometry for calculation of rf field penetration into a
conductor.

Due to the collisions of conduction electrons, a non-zero power per unit areais
deposited in the conductor on average,

Sefi= %D(Ex ACe f) = —%D(Zs(ﬁx A)x A d)

= SORzfAx A BRIl = 2R

where in the last line we have expressed the Ohmic power deposition in terms of the
surface current density,

2

~

A x H, K

K :J’jdE: ~Ax H(0).
0

This relation states that, in order to cancel out the magnetic field within the bulk of
the conductor, wall currents must flow. These currents should flow in the
conductor, and hence be perpendicular to the normal, A. In addition, Ampere's law
implies the currents must be perpendicular to the magnetic field, otherwise, the
currents will produce an additional uncompensated field component. Hence the

cross-product of A and H.

With the help of the foregoing analysis, and inspecting Table 1.1 we can see
why most linacs are built of copper. Copper is cheaper than silver, and just about as
good. Because of this, the facts of life for the material boundaries of a normal-
conducting microwave linac are just those for copper,

2.1um Y7y
0= —/ﬁ : R; =8.3mQ , f(GHz).
’\“

The skin-depth and surface resistance will appear frequently in our discussions, as
losses limit the efficiency of accelerators and set their characteristic length and time
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scales. Ohmic heating appears today to set the limit on achievable gradient in
conducting structures, although no one is quite sure what the limiting gradient is. At
amore mundane level, Ohmic heating can cause cavity dimensionsto change, and
requires temperature stabilization.

Table 1.1. Conductivity of some common materials, in units of mho/m.
silver 6.2 x 107

copper 5.8x10"
gold 4.1x 107
aluminum 3.8 x 107
brass 1.5 x 10/
solder 0.7 x 10/
stainless steel 0.1x 10’

Equipped then with Maxwell's equations, conservation laws (charge,
energy, momentum), and the skin-effect, we are aimost ready to sketch out an
accelerator. However, we will require some mechanism of power feed to the
interaction region, and in practice this is accomplished with waveguide. Waveguide
falls under awell-devel oped subject-heading called microwave e ectronics, to which
we turn in the next section. Before proceeding, it might be useful to take alook at
Appendix B where thereis abrief summary of "low-frequency” electronics.

Exercise 1.5 Show that a magnetic field in a uniform conductor satisfies the difffusion
equation, o"'I:I/dt:DDZI:I, and determine the diffusion coefficient D in terms of the
conductivity, o and the permeability, i . Argue from this result, that the time scale for

diffusion through a depth dis T=d2/D, and explain the scaling with d?on intuitive
grounds, referring to your experience with the random walk problem. Go on to justify the

scaling of rf penetration depth with w2

Exercise 1.6 Solve the collisional equation of motion subject to an electric field,
E-= D(l::ef‘*’t) = %(Eej‘”t +l::*e_j“’t),

with [ denoting the real part. Show that the electron current takes a similar form, with

J=—2 _E
(1+ joor)
Apply charge conservation to compute charge density from the current density. Show that
~ ~ g ~
D-eoEzf):—,iD-Jz—_iD-—,
Jjw jo  (1+ jor)

and conclude that an electron gas in an array of infinitely massive ions has permittivity

T (1 jur)
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What form does this take in the collisionless limit? Express this in terms of the plasma
frequency wf, = nq2 I mé&g. Note that one may view the problem treating the plasma as a

medium: Oe & E = Py, D=¢ E or not: O« goE = Pplasma + Pext » D = ggE . Taking the
former view, show that polarization as a function of time is given by

P(t) = g fodt'G(t -t')E(t))

with
Gty == +f° dew e/ o (w) = wf,r(l— et/ T)/—/(t)
2m -
where H is the step-function.
Exercise 1.7 Considering a current source in free-space, confirm that in the frequency

domain the Lorentz gauge vector potential satisfies, (IZI2 + kz)lz\ = —uoj, with k=w/c and

w the angular frequency. Derive the solution for a point source, J= 63(F), and argue by
superposition that the general solution is
~JK[F=F"

Alf k) =40 fa% S 7

37 K).

You will want to make use of causality, the result for the Coulomb field,
Dz(llr) = —47153(F), and the Laplacian in spherical coordinates. Argue that the scalar
potential satisfies,

~jK[F 7|

Id3F'e|F_—F,|ﬁ(F',k),

_1
4rEQ

#(rk) =
and show that this is consistent with the Lorentz Gauge condition.
Exercise 1.8 Consider a plane-polarized wave propagating in the z-direction,

A= % 0o, z.)e )8

Suppose that the a varies slowly on the time-scale 1/w, and slowly in space on the length
scale 1/B. Starting from the wave-equation for the vector potential, in the Lorentz gauge in

free-space, and changing variables to t=ct, and E:z-czkt/a), show that the phasor a
satisfies

2 w 0 [
2j9 9 =0
IRy

Check that the Poynting flux is given approximately by §=P0 %kgéfi with

PG8.7GW.
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2. MICROWAVE ELECTRONICS

It wasn't until 1888 that Heinrich Rudolf Hertz at the age of 31, provided
the experimental confirmation of Maxwell's displacement current, demonstrating
electromagnetic wave propagation in his lab using a spark-gap. Nine years later
Guglielmo Marconi, at the age of 23, demonstrated sending and receiving of signals
over atwo-mile range. Prior to this time, speed of light communication had been
available only by telegraph. While radio was vulnerable to eavesdropping, it
required no cable, and, for the first time, permitted communication over the horizon
with ships at sea. The navies of the world were not slow to notice this and the first
application of radio in war occurred on 14 April 1904, during the bombardment of
Port Arthur.11 The advent of bomber aircraft added some urgency to the quest for
reliable radar systems. The US Army conducted itsfirst field tests of a pulse radar
system in 1936, and deployed its first operational system, the SCR-268 (3 GHz) in
1938.12 By the end of World War 11, the MIT Radiation Laboratory had devel oped
some 150 radar systems. The subject of microwave electronics was devel oped
largely as aresult of such military demands during the period 1900-1950.

The work of this section is to describe the foundations of microwave
electronics, while somehow managing not to deriveit in all its detail. We introduce
the notion of voltage, V, and current, I, as they are used in waveguide and cavity
systems, and indicate how they may be employed in circuit equivalent models for
accelerators.

2.1 Waveguide Modes

All high-power microwave systems have connected to them a length of
waveguide. Waveguide is used to transport energy, and is favored over free-space
transport because it is compact and isimmune to cross-talk from the surroundings.
It can also be temperature-stabilized to preserve phase-information in a diurnally
reliable fashion. It can be filled with a high-pressure electronegative gas or
evacuated to inhibit breakdown. The two most common types of waveguide are
depicted in Fig. 2.1. One of these is rectangular waveguide, referred to as
"WRXX", where XX is the inner dimension (a in Fig 2.1) in hundredths of an
inch.®® Thus WR9O is rectangular waveguide, with a=0.90". Coaxial waveguide
comes in many sizes corresponding to the many different frequency ranges in
which it is employed. For work in S-Band (2-4 GHz) it is not uncommon to use
RG-214/U with Type-N connectors.* Such practices can be understood starting
from Maxwell's equations, but the reader will be spared that.

We start with uniform conducting waveguide, i.e., an arrangement of
conductors that is uniform in some direction, call it z. Since the geometry is
constant in time, and uniform in z, we are free to consider a single angular

frequency w and a single wavenumber (. Let the fields take the form
E(r.1) = O{ E(r., )}, A1) = O{ AF, w)el“ ).
The coordinate 1, = Xx + yy isthe position relative to the axis of the waveguide.
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FIGURE 2.1. The most commonly used waveguides are rectangular and coaxial.

We assume in the following discussion that «w#0, and that the boundaries are
perfectly conducting. Wall losses will be incorporated later as a perturbation.

We write out Maxwell's equations assuming no external source terms and a
uniform medium present in the waveguide,

-jBE,+0,+ E, =0, (Gauss's law)
~jpH, + 0, H, =0. (solenoidal condition)

Here the subscript [ denotes transverse components, thus

E,=SXE, +9YE,
ED:A£+"£’
ox "oy
- . d .0 . ~
0 =x—+y—-27B8=0--27p8.
EY %N iB=0U,-2pB

Thelast definition we make for convenience to smplify the expression of Ampere's
law and Faraday's law,

OxH = joeE, OxE=-jouH.

We can reduce these coupled first-order equations to second-order equationsfor E
and H, separately, in the form of wave equations,

0 x (ﬁ x I:|) =-0%°H = jwed xE= ja)e(—jawlzl) = w?euH

and similarly for E. The results then are two vector Helmholtz equations,
(B2 +p)A=0,  (OF+B)E=0,

where we have introduced

B =B~ B B = w’ep.
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We will refer to B, as the cutoff wavenumber, since frequencies lower than

w<p, /\571 correspond to evanescent waves (i.e.,3 is imaginary). The
divergence conditions may be used to express the longitudinal field componentsin
terms of the transverse components

1 y ~ 1 ~

EZ:FDD-ED, HZ:EDD-HD.

In addition,we may write the curl equations

~ 1 - ~ ~ 1 - =~

E=—0Ox2zZH, ZH=-—0OX%E,
iB, "B

where we make use of the wave impedance for free propagation in this medium,
Z, = \/g . (wave impedance)

These last results may be written more explicitly using the expression for the
gradient operator,

iBoZoF, =2 (DB, + jBE,). (21)
iBE, = ~2x(D,ZA, + iBZ,Hs). (22)

We proceed to enumerate the three kinds of solutions (modes) to Maxwell's
equations in uniform conducting guide. Notice that solutions of these equationsin
guide may be represented as superpositions of plane-waves.

Exercise 2.1 Conducting boundary conditions require that tangential electric field
AxE =AxEq =0, and that normal magnetic field, A+ H =A+ Hy =0, with A the normal to
the bounding surface. Making use of the last results, and taking dot and cross products
with A, confirm that a necessary condition for the vanishing of ﬁXI::D is

o"'l:lz Ion=ne ﬁDFIz =0, and then that o"'l:lz /on :I::z =0 are both necessary and
sufficient conditions for all components of the boundary conditions.

Exercise 2.2 Express E-= y sin(B.x)exp(jwt — jBz) as a superposition of plane-waves.

Compute the corresponding H . Determine conditions on Bc such that these fields are a
solution of Maxwell's equations in an infinite medium of permeability u and permittivity &.
Show that at the planes x=0, x=17/f3., y=0, and y=b conducting boundary conditions are
satisfied. Assuming B=31/283., sketch the constant phase fronts in the x-z plane for each
plane-wave in the superposition. What angle do the plane-wave components make with
the z-axis? If these signals were being generated at the z=0 plane, and the signal
generator were turned off, how long would it take for the signals to begin to die off at a
plane z=L in the waveguide?
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2.2 Modes With Zero Cutoff

First we consider a special case, ., = 0. We know, from the work of Sec.

1, that the solution will be a superposition of plane-waves with 3, = 0---whichis

to say, propagating in the z-direction. Since the plane-waves are transverse, the z-
components for the superposition must also vanish. Let us check this. For such a
mode, we have, from the Helmholtz equation,

O2E, = 02%H, = 0.

Green's theorem then implies

0=§H, M, g - [(A.02A, + O.A, « 0,A, ), =

and thus HZ is a constant throughout the waveguide cross-section. On the other

hand, if H, is a constant then the circulation of E about a closed loop 4S,
bounding an area S, with normal Z is proportional, by this constant, to the area
enclosed.

fE Ii xEs JﬁoZJ’H ds=-jB,Z,H Ids

Taking the loop dS along the waveguide periphery, we see that tangential electric
field vanishes there, and the circulation integral must therefore vanish. Thus
H =0. A similar argument can be employed to show that E 0. Thus a mode
W|th zero cutoff is a transver se el ectromagnetic mode or TEM mode, with vanishing
longitudinal fields. This accords with our intuition that 3, =0 corrresponds to
B= w\;’ﬁ, having the appearance of a plane-wave in an unbounded medium
propagating in the Z direction. Plane electromagnetic waves are inherently
transverse, polarized perpendicular to the direction of propagation.

Since the circulation integral of E = E,, about any closed loop lying in the

transverse plane vanishes, we may express ED in terms of a potential function,
defined according to alineintegral,
w(r) = Idr-ED,

oo

where the choice of the reference point 1, corresponds to the choice of a constant

of integration, and might as well be placed on a conducting surface. This definition
isindependent of the path connecting 17, and T, since the circulation integral about

any closed Ioop in the transverse plane vanishes. With this definition for ¢, it
follows that E = DDL,U and Gauss's law implies 02 @ = 0. Boundary conditions
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require 0 =nx ED =nx EDL,U. Since the geometric meaning of EDL,U is the normal
to a surface of constant ¢, it follows that each conductor is an equipotential. Upon

reflection one seesthat isjust a solution of the w=0 electrostatics problem in the
waveguide. Thus for example, if we have one conducting boundary (one
equipotential) then Green's theorem implies that the potential is a constant and the
electric field is zero. In this case, thereisno TEM mode. If we have two conducting
boundaries, then we may have one TEM mode.

Exercise 2.3 (TEM Mode of Coaxial Line) The most commonly used mode is TEM
mode of coaxial cable. Considering the geometry of Fig. 2.1, and starting from l::D = iw
and ZOI:ID =Zx I::D, argue that dy /dp=0. Show that the solution takes the form

r ~ ~ Kk ~ ~k
1] :k|n%§, ZoHp ZQDT, En :I’7

where k is a constant. Confirm that the choice k2 =2rmin(b/a) corresponds to the

normalization J’dZFDLED . l::D =1. Make a sketch of the field lines and wall currents.

2.3 Modes With Finite Cutoff

To treat the case Bc£0, we return to Egs. (2.1) and (2.2). Writing these

eguations out component-wise we find that the transverse fields can be determined
in terms of the longitudinal fields,

= _BS.a,a-Bget 2.3
O Jﬁczg O z BO DEE’ ()
B == B oD

Z,H, = 2 BB, + Dby (2.4)

Of the modes with B:£0, the first are transverse electric modes, or TE modes, with
Ez=0 (also called H-modes) for which the transverse fields may be determined from
Hz,

ZH, = ,—BzaDzOHZ, (2.5)
1B

~ - ~ B4 ~

E, = —ﬁzxmmonz_—EOzxonD, (2.6)

and H, satisfies

(02 +B2)H, =0, (TE) (2.7)

with boundary condition
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where n is the unit normal to the conducting boundary. Pictorially, a TE modeis
one for which the lines of electrical field, when viewed in cross-section, close on
themselves.

Of the modes with Bc£0, the second kind of mode is the transverse
magnetic mode or TM mode, with H=0, (also called an E-mode) for which the

transverse fields may be determined from E, |

E :%auﬁz, 2.9)
zoﬂmz%zximézz%zxém, (2.10)

and the longitudinal field satisfies

(02 + B?)E, =0, (T™) (2.11)
with boundary condition
E=0 (2.12)

For a TM mode the lines of magnetic field form closed loops in the transverse
plane.
Notethet if E, isasolution to this problem, then sois UE,, and similarly

for I:|Z. Evidently then one may choose longitudinal fields to be real for either TE or

TM modes. On the other hand, the transverse fields for these travelling waves arein
phase with each other, and always 90° out of phase with the longitudinal field. We
will employ the convention that both transverse fields are real, with the result that
longitudinal fields areimaginary.

Exercise 2.4 (TE1p Mode of Rectangular Guide) The second most commonly
used mode is TE 19 mode of rectangular waveguide. Consider the rectangular geometry
of Fig. 2.1, with a>b. Starting from the TE mode equation, Eq. (2.7) and considering the
most general solution exp(jkyx)exp(jkyy), show that boundary conditions require
solutions of the form l:lz(x,y) Ocos(nmx / a)cos(mmny [ b), with ky, =nm/a, and
ky =mm/b (TEnm mode). Compute the cutoff wavenumber and confirm that TE1 o

mode has the lowest cutoff ("fundamental mode of rectangular guide") and the fields take
the form
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En=Egsin(Bcx)y, ZcHp =Egsin(Bex)X, ZoH, = —jg—gEo cos(Bx),

and determine Z_.. Confirm that the choice EO:(Zlab)l/2 corresponds to the
normalization J’dZFD l::é =1

To summarize the foregoing analysis, boundary conditions restrict the
permissible values of cut-off wavenumber [ to a discrete set. Each mode has a
corresponding minimum wavelength A, = 271/ ., the cut-off wavelength; for
longer wavelengths, the solution for 8 isimaginary and the field evanescesin the
waveguide. The guide wavelength is A, =2m/B=2,/1- A5/ A7, where the
wavelength in the absence of boundaries isA, =2/ ,. In general for a given
mode we have
ZH,=2xE, (2.13)

where the characteristic impedance associated with the mode is

A
%& =—% TE mode

%)
| > Do
S o

Z, =17, TM mode . (2.14)

>

«Q

=S

1 TEM mode

OoooO

Thisis afunction of frequency for TE and TM modes. We choose the sign of Zc
positive for positive S.

2.4 Circuit Equivalence

Supposing that we have determined all the modes for our geometry, and

their eigenvalues, [, let usform alist (an infinitelist) of all these modes, and tally

them with index a. A general solution for avacuum oscillation in a given geometry
may then be represented as a sum over all these modes:

E =Y Eu() Vu(zw), (2.15)
H, = Z Hoa(F)1(2 0) Z (w) (2.16)
where

Z H.,=2xE.,. (2.17)

We adopt the normalization
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IerD Ea()* Ew(r) =1, (Slater normalization) (2.18)

where the integral is over the waveguide cross-section. We have chosen the
transverse field components in this normalization to be real. The coefficients VI
take the forms

V,(zw) = Ve P +\ P, (2.19)
Z | (zw) =\, e -\ &P (2.20)

The longitudinal fields may be determined using Egs. (2.4) and (2.5), the
conditions that the fields be solenoidal in the source-free waveguide,

E, = > Ealf (R voe e -y e, (2.21)
A —zH (7 \vre e+ v (2.22)

As defined, V and | are nothing more than mode coefficients, phasors that
represent the amplitude and phase of excitation of each and every waveguide mode.
Most typically one employs waveguide at a frequency below cut-off for all but one

mode, the fundamental mode or dominant mode---just the mode with the lowest ..

In this case one may rightly expect that only the coefficients for the fundamental
mode are non-negligible. Even so, we leave in al the coefficients for the time
being. We will find in later work that the usefulness of V and | arisesin coupled
systems, where one waveguide is joined to another, or to a cavity, or where an
obstacle or aperture has been placed in the waveguide. At waveguide junctions,
discontinuities or obstacles, evanescent modes play an important role, even while
thelr spatial extent islimited.

Next we devel op the circumstances that motivate and justify the terminology
"voltage" and "current," and form the basis for the microwave electronics circuit
analogy for waveguide systems. Let us consider each mode as consisting of two
channels, corresponding to right- and left-going waves. From Egs. (2.19) and
(2.20) voltage and current in each channel are proportiona by a constant with units
of impedance,

Z. ()l =%V, (characteristic mode impedance) (2.23)

where + denotes the wave flowing in the £z direction. Evidently these channels

are uncoupled in smooth waveguide, insofar as the forward-channel or forward-
going current is determined only by the forward-going voltage. To make further
progress, we must make a brief digression into mode orthogonality.

A number of integral relations can be established demonstrating the
independence of each mode as a channel of communication through the wavegui ide.

To demonstrate these relations one calls on the eigenvalue equations for H and E

the boundary conditions, Green’stheorem, and, in the case of degenerate modes,
Gram-Schmidt orthogonalization. We will simply list the results, assuming
orthogonalized modes,
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IdzrDEDa(FD) « Ep(T) = 0, (2.24)

[Hea® Hopd'ry = 523';’, (2.25)
[draze (e X Hip) = 8,221 (2.26)
It isaso helpful to note the orthogonality and norm of the full fields,
2
J’Ea- E,d’r :%5“, : (TM Mode) (2.27)
N 042 _ﬁ§ 1
IHa- H,dr ==%—>-0,,. (TE Mode) (2.28)
B Za
(Note that from our choice of normalization the longitudinal fields are pure

imaginary).

With these results in hand we can derive the basic relations that constrain the
circuit-equivalent description of a microwave system. Let us first compute the
power flowing in a particular channel in terms of voltage and current. Using Eq.
(2.25), one may express the power flow in the waveguide in terms of V and |
according to

P=30[drE xH;
=303 Z V,(zw)1,(z, ) Zy, (w) Idzr Eoa(T5) % Hoo(T) (2.29)
1Y T UEOLEZ0,2 =10 Vil

In addition, given the orthogonality relations, one can determine V and | uniquely
from the transverse fields at a point z,

Vo(zw) = [d°rE (R, 2)* Ew(F). (2.30)
l(2.0) = Z, [drH (7, 2) * Heo (7). (2.31)

and thisis enough to determine the solution everywhere in the uniform guide, since
this fixes the right- and left-going amplitudes. Moreover it showsthat Vand | in
any particular mode are functionally indepedent of the the other V'sand I's. Given
the uniqueness of V and | , their relation to power, and the units (volts, amperes) it
is natural to refer to them as voltage and current. It isimportant to keep in mind
however that they appear as complex mode amplitudes, not work done on a charge
or timerate of change of charge.

Let us also take account of stored energy. The energy stored per unit

volume in electric fields is w, :%goﬁ- EY and in magnetic fields
w, =41 He H" It is natural to associate we with capacitance and wm with
inductance. This can be made precise by means of the complex Poynting theorem.

We return to Maxwell's equations in the frequency domain,
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OxE=—-jewuH, OxH = joweE +J,
considering a current source term, for example, J = oE within some region. Next
we make use of the vector identity,

0+ (ExA)=E. (OxA)- A% (OxE),

and combine it with Maxwell's equations to produce
O (éx |5|D)= jw(lSD. E-B. Fl)—jD- E.

Thiswe integrate over any volume V, with the result

i ExFi% dS= wj’dv%ﬂ\é\z —uD\H\ZE—J’dij- E.
In vacuum this tak; the form i

1 -~ N0, "__1 =, 10 ; _
ELEXH dS= 2JV’E J +2](Jo‘v[(we w,)av. (2.32)

Employing this result together with the formulation of waveguide modes in terms of
voltage and current, we can describe a cavity's response in terms of an impedance,
as seen in the next exercise.

FIGURE 2.2. Sketch for application of the complex Poynting theorem to formulate the
notion of impedance of a cavity.

Exercise 2.5 Consider a waveguide operated in fundamental mode, attached to a
cavity, all encased in a perfect conductor, as illustrated in Fig. 2.2. Show that the
“impedance looking into the cavity" Z =Vq//1 (with V4 and /q the fundamental mode

voltage and current coefficients) takes the form
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B
Z—— E+ P+ 4jor(wy, -we)avi (2.33)
& d I( ) B

Expressing this as Z=R+jX, identify the equivalent resistance and reactance.

2.5 Phase and Group Velocity
In the midst of the single-frequency circuit analogy, transient phenomena
should not be forgotten. Let us consider, in the time-domain, the manner in which

signals may propagate in a waveguide mode. Suppose that by some external means,
anarrow-band signal isimposed at z=0,

V(t,0) = f(t)e'*",
where the phasor f may be slowly modulated in time. In the frequency domain we
have
V(w,0) = I f(t)e (%
and the modul ation may be expressed as
f(t) = J'd—wV(w o) (o)t
00\

L et us compute the voltage at alocation z,

* wt—jB(wy z—'% wy )(w-wy )z
_oo'\
o * dw w‘wo)g_%(%)zg jawo(t-21V,
- wot=jBlwy )z W — AW
= gleotiA(w) I\/_V(wO) d ~ &l ‘°)f(t—z/Vg).
We can see that constant phase-fronts travel at the phase-velocity
w
while any modulation in f travels a the group-vel ocity
v, = dw (2.35)
dB
For amode in uniform guide,
w _ 1 1 1

V, = = > ,
P -p we 1-pgipg ue

30



1 B_ 1 o e 1
V,=—=F = 1-B2IB s ——.
° Jue By Jue ° T e

Thus in straight guide the phase-velocity is never less than the speed of light in the

medium. The group velocity is never more. Equality resultsonly if =0 and, aswe

know, that requires a TEM mode. None of thisistoo mysterious in the picture of
the waveguide mode as a superposition of plane waves. The plane waves are
individually propagating at the speed of light in the medium---however, unless the
modeisaTEM mode, they are propagating at an angle to the z-axis. For this reason
it takes longer for amplitude modulations to make their way from one point to
another in the guide. Phase-velocity is larger than the speed of light smply because
the phase-fronts are propagating at an angle, so that crests sweep down the z-axis
at superluminal speeds. A similar phenomenon can be seen at a beach with long
breakers incident on the beach at a slight angle. The point of wave-breaking may
move at very high speed along the beachfront. For a surfer on the wave-crest,
however, the speed of motion along the beachfront can be quite small.

2.6 Attenuation

In the foregoing discussions we considered lossless waveguide. Let us now
consider the effect of finite wall resistivity, asindicated in Fig. 2.3. Taking thereal
part of Eg. (2.32) we obtain the change in forward-going power in the waveguide,
from entrance to exit of the volume,

DiEXHD dS=1wJ'dVE] \ \

where the volume V' is the region inside the conductor. Let us consider the case
where losses in the bulk medium are negligible, Os = Ou =0, and take over the

result from Sec. 1 for the field profile within a conductor,

1= -~ A né
—OxH=-ZnxH, ex —
S xH, pEré(

J’dVa‘ E‘

E= 1+jsgnw)§,

Q

where I:I0 is the tangential magnetic field at the conducting surface, which isto a

good approximation just the magnetic field one computes by assuming a perfectly
conducting surface. With this expression, the integral over V' can be reduced to an
area integral over the inner conducting face of the waveguide. Taking now the

length of the volume Az to be small, the area integral can be reduced to a line
integral around the inner circumference of the waveguide cross-section,

= -1rdvolg = -ZR§d =
AP ZJ, Volg| = &f \H\Az Az

The path JS bounds the cross-section S of the waveguide. Observing that the
integral is quadratic in the fields, and therefore proportional to power, we may
introduce the attenuation parameter, a,
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P e, (2.36)
dz

where

fcﬂ\ﬁ \2

ds ~ ~ .
DJ’dé- ExH"

Thusin the presence of losses, the propagation constant takes on a small imaginary
part, |B - y =]B—a. With the Slater normalization, we may also express Eq.

(2.40) as
10RO

GZZEZ_C dl

a= %& (independent of norm) (2.37)

~ |2
ZH ‘ : (Slater norm)

P(z+dz)
oV

d

4
— Z+dz

/P(Z)

FIGURE 2.3. Geometry for calculation of attenuation in waveguide.

Exercise 2.6 Show that the attenuation constant for the TE,;, mode of rectangular
guide is given by
~1/2
a:—sg"fzhzﬁ_c[ﬁg‘”_z— 20 (2.38)
Zogec b apwic 0
Sketch the result as a function of frequency and explain the high and low frequency

behavior in words. Why is WR90 operated in the frequency range of 8-12 GHz?
Consulting Table 2.1, and the TE 10 mode attenuation formula, confirm that the operating

ranges and attenuations quoted are reasonable.
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Table 2.1 Examples of standard rectangular waveguide.

Designation a(inch) b (inch) f(GHz) Attenuation (dB/100 ft)
WR650 6.50 3.25 11-17 0.3-0.2 (copper)
WR284 284 1.34 26-40 1.1-0.8 (copper)
WR90 0.90 0.4 8.2-12.4 6.5-4.5 (copper)
WR62 0.62 0.31 124-18 9.5-8.3 (copper)
WR28 0.28 0.14 26.4-40 22-15 (silver)

WR10 0.10 0.05 75-110 >100 (silver)

Exercise 2.7 Show that the attenuation constant for TEM mode in coaxial cable with
€ = g takes the form,

1 1

) |n%§

a = —
Most coax makes use of polyethylene dielectric, and attenuation occurs due not only to
the "skin-effect" losses accounted for in the result above, but to those in the bulk of the

dielectric. Starting from the dispersion relation [ =w./ e, argue that in general the

(2.39)

attenuation constant should consist of two terms, a = Uskin\*‘"? +apyif, depending on
the frequency f.

2.7 Impedance is a Many-Splendored Thing

The case of TEM mode in coaxial cable is illuminating for it provides a
simple working example of the differences between low-frequency and high-
frequency electronics. We may see an analogy between low-frequency circuits and
microwave circuits for hollow waveguide, but it is at best an analogy, since hollow
waveguide does not support a zero-frequency mode. For coaxial cable one can
compare directly the microwave circuit notions, and the ordinary low-frequency
concepts. In most engineering texts on the subject, the example of TEM mode is
discussed at length for this reason.15 Consider the solution as derived in a previous
exercise, with voltage coefficient asin our circuit analogy,

oo ~ .k~ ~ _ ~k~
w—kInEEE{/(z,w), ED—r?V(z,w), HD—go?I(z,w).

The coefficients take the form of forward and reverse waves,

V(zw) =V, (w)e " +V (w)e®,  Zi(zw)=V,(w)e* -V (w)e'”,

and the propagation constant is 8 = w./ e . Some observations are in order. First,
the coefficient V isnot the line integral of the electric field between the conductors,
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gﬁg ().
Nor for that matter does | correspond to the physical current that the inner

conductor would need to provide in order to support the magnetic field,

/2

2m . DZ

ly —fﬁm ed = [derH, = %TZ)E I(zw).

0 a

Asaresult, the characteristic TEM mode impedance Z.=Zo is not the same entity
as the cable impedance used at low frequency,

_V%_ 1 0O
Zaie = 1> = 5N 0 (2.40)

0

As described thisis simply a matter of normalization, but it is good to be aware of
the ambiguity in the notion of impedance. Actually, the ambiguity is deeper than
this. One very sensible definition of impedanceis

V(z w) _, VL(w)e ™ +V (w)e”
I(zw) V, (w)e " -V (w)e”’

referred to as the " impedance looking into the plane at z" The implication is that as
long as one thinks that impedance should be a ratio of voltage and current, then,
regardless of the normalization, the impedance depends on where one looks (on z).
One can also see how this problem was escaped at low frequency. The z-

dependence is significant only if one isworking over arange of z such that fz=1.
This motivates a ssimple definition of a microwave circuit: a circuit comparable to a
wavelength in size. In such acircuit, effects of spatial phase-shifts and interference
become noticeable.

This discussion helps to clarify that one may encounter many useful
definitions of impedance, wave impedance of the medium, characteristic impedance
of amode (in awaveguide filled with this medium), cable impedance, and termina
impedance. Later we will develop a so the notion of "impedance seen by the beam."
It is best to remember that the notion of "impedance" is a tool we use, and in
general one hasto ask what definition of impedance is being used and why.

Having contemplated the wonders of waveguide, let us connect it to athing
or two.

Z= (2.41)

Exercise 2.8 (Impedance Transformation) Consider a transmission line with
characteristic impedance Zg, and a signal with wavenumber 3 on the line. Show that the

impedance looking into terminal #1, Z1=V1//1, may be related to the impedance looking
into terminal #2, Z2=V2/I2, according to

2 “1 — jtan(BL)
2.2 (2.42)
Zc 1-j “Ltan(pL)

ZC
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2.8 Shunt Admittance of an Iris

Up to this point our treatment of waveguide propagation may have seemed a
bit artificial, insofar as we have considered a reverse and a forward wave with no
particular discussion of what caused the wavesin the first place. In general we will
be interested in a waveguide connected to a cavity, perhaps itself attached to other
cavities. We may be interested in intersecting waveguides. Our primary tool for
understanding these systems will be the notion of impedance introduced in Eq.
(2.43). We consider the ssimplest of examples, asillustrated in Fig. 2.4, consisting
of straight waveguide operated "in fundamental mode" (i.e., below cutoff for al
higher modes), with athin, perfectly conducting obstacle placed transversely to the
wave. This could by asymmetric iris, for example.

Let us consider the solution for the fields in this geometry, for awave V:

incident from z— —oo. We know that the fields are completely specified once the
transverse components are known. A general solution in uniform guide must take
the form

£ =3 BRI V), = S e 1)

where Z_1; = £V . However, thisis only a "general solution" in uniform guide,

and, having introduced an obstacle, we have split the guide into two lengths of
uniform guide that are coupled. Thus the coefficients in the mode sum may take
different values to the left and the right of the obstacle, for any obstacle worth its
salt. Note that only the fundamental mode, call it mode 1, is propagating. Other
modes evanesce with attenuation per unit length of

ya:_jﬁa:\ﬁcza_ﬁg'

VF

VR "

FIGURE 2.4. The "forward" wave Vkis incident from large negative z, and results in a
reverse wave Vk reflected toward negative z and a wave V7 transmitted to positive z .

Their effect in this problem isto provide field matching; as a consequence of
thelr presence, some energy is stored in the vicinity of the obstacle. If thisenergy is
stored primarily in electric fields, we may say the obstacle is capactive; if primarily
in magnetic fields, the obstacle is inductive in character. Since these fields should
evanesce away from the obstacle, and not grow without bound, we exclude from
the solutions the growing exponential terms.

Taking into account the foregoing comments, we may write out our mode
sums more explicitly, for z<0,
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azl
J = H (Vv -iBaz _ RV iBaz) 4 H (F\V* VaZ’
t Dl(rD)( e € ) Zl Da(rD) a €

a

= (1) (Ve + RveeR) + 5 EL (1,
H

and for >0,
E = B, (1T + 3 By (T Ve,

azl
H, = Hy (7)) TV + 5 H (7 Ve,
azl

In these expressions, we have introduced the reflection coefficient,

the ratio of reverse to incident forward voltage, a quantity that is complex in
general. We have aso introduced the transmission coefficient,
T(w) =%,

VF
the ratio of transmitted to incident forward voltage. To solve this problem
explicitly, one would like to match the fields across the plane z=0 and this requires
some knowledge of the iris geometry. However, one can make some general
statements independent of such details.

First, the transverse electric field must vanish on either side of the obstacle,
since it is assumed to be a perfect conductor, and is placed transversely to the
direction of propagation. Second, in the port, the tangential electric field must be
continuous, a consequence of Faraday's law, or if one likes, the case of matching
the field at a boundary between two identical media. Thus the transverse electric
field must be continuous at z=0, as illustrated in Fig. 2.5. Thus

E(zz 0‘) = E(z = 0+), or
EDl(FEI)VF (1+ R) + z EDa(FD )Va+ = EDl(FD)VFT + z EDa(FD)Va_'

azl azl
Taking the dot product of both sides of this expression with E,(F,) and integrating
over the waveguide cross-section, we obtain, from mode orthogonality,

1+R=T, (continuity of transverse electric field) (2.43)

Next, let's consider the transverse magnetic field. According to Ampere's
law, in the port the magnetic field will be continuous since there are no current
sources there. However, it need not vanish at the conducting obstacle, for there
wall currents may flow in such a way as to cancel out the field within the
conductor. Thus there are no grounds for declaring that transverse magnetic field is
continuous across the entire waveguide cross-section. In terms of current
coefficients,
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Zglg =V, 2=V, Z4l:=V,.

This discontinuity of the magnetic field amounts to some "missing current,”
I + 15 # 1. We may say that some current, I =1_ + 1 — |, has been shunted to
ground, and we may adopt a circuit picture, asillustrated in Fig. 2.6. Wall current
is flowing through the iris and modifying the fields. This shunt current arises to
cancel the longitudinal H field at the iris. Therefore, recalling Eq. (2.22), shunt
current is proportional to the voltage at theiris, \; = V; +V,. Thuswe may define a
shunt admittance,
I

Ys=2,

S VT
that depends only on the geometry of the iris, the mode, and the frequency, but not
on theincident signal amplitude.

Et=0 — | «—FEt=0

FIGURE 2.5. The transverse electric field is continuous across a thin obstacle.

Combining the foregoing, one may show that

_ —2R(w)

@)= 1 Rw)

where

Yo (w), (2.44)

0B
[F— TE mode
Yo = 1-1s e (2.45)
ch ZO
H1 TEM mode

isthe characteristic admittance of this waveguide mode. Thus the shunt admittance
is determined once the reflection coefficient is known, and vice versa.

Some common language is helpful to know. One often employs the
normalized shunt admittance

Ys _ _ 2R
Y, ST AR
In addition, one may express admittance in terms of real and imaginary parts,

Y, =G, + |B,, where G, iscalled the conductance and B, the susceptance. In the

case of athin, lossless obstacle, one has simply a shunt susceptance. A fair body of
literature is available on the calculation of shunt susceptance of a mode---typically
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the fundamental mode---for obstacles of various geometries. Starting with the
earliest, Marcuvitzié provides a catalog of results, Montgomery, Dicke and Purcel 117
provide examples of its use, and Jacksonis provides a very readable introduction to
the variationa technique. Modern works include textbooks by Collin,19 and Felsen
and Marcuvitz.20

VR+VE=VT
IF+IR ,/ IT

Y| |ls

z=0- z=0t 77

FIGURE 2.6. Equivalent circuit for a thin iris on a waveguide operated in a single mode.

2.9 VSWR

The reflection coefficent on alineis quantified by the voltage-standing wave
ratio or VSWR,; it is a figure of merit for microwave components. To define
VSWR, consider awaveguide operating in fundamental mode, with voltage

V(2) = V.e 7 + Ve,

and imagine a small probe sampling but not perturbing the electric field in the
waveguide. Let us suppose the output signal is proportional to the time-averaged

squared voltage V2, and compute this. The real voltage as afunction of timeis
V(zt) = D{\7(z)e"‘*‘} = E{VFejax—iﬁz +VRej‘*“jBZ} ’

and we wish to compute the mean squared voltage,

2l w

V2 (2) =2 rdtv(z i)
D=y [AVED
and after some algebratheresultis

1 »
Vi = (Ve + V[ + 20(ve Vi)

This is an oscillatory function of z, with period equal to one-half the guide
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wavelength of the mode. Maxima and minimaof this curve are
max V. = Ve | +[V, minV,, =|Ve| = Vg/-

Therefore if the output of the detector is plotted versus position on the slotted line,
we should get a curve looking something like that of Fig. 2.7. From such a curve
one can determine the guide wavelength (and thus the frequency), and one can
determine the ratio between the maxima and mimima of the standing-wave pattern,
the VSWR

VSWR = maXVrms = |VF| +|VR|

(2.47)

minV,o  Ve|=|Val

0 0.5 1 1.5 2
Z/\

FIGURE 2.7. lllustration of squared voltage versus probe position normalized to the
guide wavelength, for various values of the reflection coefficient R.

In terms of the reflection coefficient, this may be expressed simply as

VSWR = m (2.48)
1-R
Evidently, VSWR=1, with VSWR=1 only in the case of no reflection---a "perfect

match." In the case of total reflection, VSWR - o. Observe that VSWR is a
function of frequency, since R is. In fact, microwave components come with
specifications for maximum VSWR over arange of frequency. Low VSWR over a
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broad band costs extra.

Exercise 2.9 Consider fundamental mode lossless guide with an iris and a short as
illustrated in the sketch. In terms of angular frequency w, wavenumber b, and shunt
admittance Y of the iris, determine the reflection coefficient as a function of z, the distance
to the left of the iris. If the admittance is a pure susceptance, what is the VSWR on the
line?

z=0 z=L

-

2.10 An Elementary Cavity

In the discussion at the end of Sec. 1, we found that, for electromagnetic
acceleration, we required either (1) a terminated interaction or (2) a synchronous
mode, one with phase-velocity equal to c, for an extended interaction. We then
embarked on the treatment of waveguide to appreciate how power could be coupled
into such an interaction region, so as to accelerate a beam. We will consider (1) in
detail in Sec. 3, and (2) in Sec. 4. However, with the help of the previous analyses,
we are at a point where we can consider case (1), in its most elementary form,
without beam: the filling of a cavity with microwave energy. In Sec. 2.11 we will
provide asimilar elementary treatment of case (2).

For illustration we will make a cavity from alength of waveguide terminated
in an iris followed by a shorting plane, as seen in Fig. 2.8. The turn-on of the rf
drive corresponds to the launching of a wave down the waveguide, toward the
cavity formed by theiris and the short. For asmall iris one expects that most of the
incident wave will be promptly reflected. Some of the wave will scatter through the
obstacle. The forward wave in the cavity travels to the short, is reflected, returns to
theiris, radiates alittle bit through it, but for the most part is reflected. Over time,
the cavity fills, and in steady-state the prompt reflection of the incident wave at the
irisinterferes with the radiation from the cavity. Thus during the transient filling of
the cavity aleft-going signal or "reverse voltage" appears,; in steady-state the reverse
voltage may look different.
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FIGURE 2.8. lllustration of the transient filling of a cavity. For simplicity we consider a
length of waveguide terminated in a shorting plane. In front of the plane is an obstacle, for
example, a thin iris.

To characterize this system we must perform a calculation and this will be
aided by the circuit-equivalent picture of Fig. 2.9. Anincident wave represented by
phasor V, results in a prompt reflected wave RV,, where R is the (complex)
reflection coefficient of theiris. This coefficient isjust the steady-state reflection
coefficient of theiris when placed on smooth waveguide. Meanwhile, awave T\~/+
is transmitted through the iris. This wave will travel to the short, be reflected, and

return to the irisin atime r=2L/Vy where Vy is the group velocity in the unloaded
guide. Let us refer to the right-going wave phasor, just to the right of the iris, and

evaluated at time nr, as A(n). Evidently A(0)=TV,. To determine the cavity

voltage on subsequent bounces we simply follow this wave through the cavity and
back to the iris. Propagation to the shorting plane corresponds to the map

A(n) - e™A(n), where y = jB+a isthe propagation coefficient for the smooth
guide, and is determined from the guide wavenumber (3, and the attenuation
parameter a. Reflection at the shorting plane correspondsto e A(n) - —e™*A(n),
and we neglect losses on the endwall for simplicity. Propagation back to the iris
corresponds to -e™A(n) — —e?*A(n), and reflection there results in
—e?A(n) » —Re?* A(n). Evidently the right-going amplitude in the cavity on the
next bounceis

A(n+1) =TV, - Re 2 A(n).
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FIGURE 2.9. Transmission line picture for the cavity filling problem. The cavity has
length L, and the iris corresponds to a normalized shunt admittance Y. The forward
voltage V. is specified, and we wish to solve for the reflected signal, and the wave
amplitudes in the cavity.

Similar reasoning shows that the left-going wave to the left of the iris, \7_(n),
satisfies
V.(n+1)=RV,(n+1) - Te?A(n).

Due to the finite losses on a single-bounce, the system reaches a steady-state, where

A(n+1) = A(n). In this limit, we have

A T
o= e (2.49)

Thereflected signal will asymptote to
V. _R+(R-T?)e™*

V. 1+ Re?*

We can simplify these results by taking account of our previous work on the
problem of athin obstacle in aguide. We found that continuity of tangential electric
field at the thinirisimplies T=1+R. In addition, the reflection coefficient isrelated
to the normalized shunt admittance, and for alossless obstacle we may express Rin

terms of the normalized shunt susceptance, B,
1 =-1+| ﬂzc
R B

(2.50)

Thusin this problem there are only two free geometric parameters, oneis B and the
other isthe cavity length L.
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Exercise 2.10 Show that the condition for zero reverse wave in steady-state (critical
coupling) corresponds to

1+R2R =exp(-21L),

and confirm that, for small losses (a L << 1) this may be expressed as
cos2fL =exp(-2aL) = BL=Nm, (resonance)
sin2pL=-2/B - B=1/\aL, (matching)

where N is an integer. Check that the steady-state amplitude is much larger than the
incident voltage, /Z\/\7+ =-j/2al.

2.11 An Elementary Periodic Line

Let us consider next how to produce a synchronous wave, with phase-
velocity equal to c---i.e., how to design a dispersion relation. In Sec. 2.10 we
considered the effect of one iris; let us next analyze the effect of many irises
forming a periodically loaded waveguide, as depicted in Fig. 2.10. In the smooth
portion of the waveguide, a general solution for voltage and current phasorsin a
singlemodeis

V(2 =Vv/e”+ve* (-L<z<0),
Z, (2)=V, e -V e* (-L<z<0),

with iris separation L. Recall Zc isthe characteristic impedance of the fundamental
waveguide mode,

Zy = Zo%’

and 3 is the propagation constant, or wavenumber, = (f; - Bf)m, with B the
cutoff wavenumber. Let us compute the wave incident on the next port, and in this
way formulate propagation in a periodically-loaded guide. This notation comes
with the picture of Fig. 2.11.

Just to theright of the n-th iriswe have
V(2)= Vet 1y @Y (0<z< L),

n+1

Zyl (2) = Ve Y -Vt (0<z<L).

n

To solvefor V., V.., we apply two conditions. The voltage at node n is continuous
(since tangential electric field is continuous at athiniris), so

V(0-)=V(0+) = Vi+V=Viet+Vie”

Since current is shunted through the iris, there is a discontinuity in tangential
magnetic field given by
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| (0+)=1(0-)-YV(0),
and this may be written
V+ elﬂl- _V_+1e_JBL — Vn+ _Vn— _i(vn+ +Vn_),

n+1 n

abbreviating, Y, = Y,Z_,. These are two equations for V.".,, V.

n+17 "n+l

intermsof V" ,V, .

n-1 n n+l.. n-1 n n+1..
I I I
—p  |Ys| |Ys Ys
I I I

rri

FIGURE 2.10. We examine a waveguide periodically-loaded with thin irises, and
develop a transmission line model as indicated on the right.

Vn Vn+1

n, ' el

! Y

I |
Yg||ls
I |

| ] |
z=0" z=0" z=L"

FIGURE 2.11. Notation for voltages and currents in the vicinity of an iris.

rr

Solving them we find,

RYAIN _MDFD
48 VBB
where
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0 iewo 0, Y.0;,0
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and 6, = AL is the phase-advance per cell in the unloaded line. The matrix M
describes propagation on the loaded line. Notice that detM =1 and

A

m—coséi +JY ng,.
2 2

The eigenvaluesof M arethen

and they convey attenuation and phase-shift in the loaded line. In the simplest case
of a lossless junction, we have a pure susceptance, Y, = jB,, and the dispersion
relation for the loaded line takes the form

A

cosf = cosf, - %si no,. (2.51)

A sketch of 8and 6 versus wisdepicted in Fig. 2.12 for illustration. Note that for

some frequencies, in the loaded guide, there is no solution for real 6. The presence
of such "stop-bands' corresponds, in the wave picture, to destructive interference
over the course of multiple reflections from each obstacle.

Let usdefine 68 to be the solution for phase-advance per cell in the interval
-m< 6 <. Evidently then 8™ =6 +2nr is also a solution. In terms of

phase-advance one may define awavenumber for the loaded line, B =6 /L and
evidently there areinfinitely many of these,

B(n) B(O) + =0

2nn
L

The implication of thisisthat a periodic line will support infinitely many "space-
harmonics," al propagating with the same group velocity,

v g 0" _odpo D’

“BawB “Hewd °%

but all with different phase-velocities,
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In genera, in driving such atransmission line, one excites fields that correspond to
a superposition of space-harmonics. The field lines include the contribution of the
evanescent fields that arise in the vicinity of the irises.

100 ‘ A ‘ \
‘wL/ic =6

- unloaded

©
(631

W L/c (deg)

90

90 degrees per cell

85 s ! L ! s ! s ! s !
0 60 120 180 240 300 360

O (deg)

FIGURE 2.12. Dispersion relation for smooth guide and a guide periodically loaded
with capactive shunts (Brillouin diagram).

2.12 Common Microwave Elements

Before turning to analyze cavities and periodic lines for acceleration, we
should take a moment to note that a practical waveguide network for an accelerator
will include more than just straight waveguide and an accelerator cavity. To
describe common elements in the most simple fashion, it is helpful first to consider
the S-matrix for a network of lines connected to a device (sometimes called the
"device under test" or DUT) asillustrated in Fig. 2.13.

To simplify our work, we assume all the transmission line impedances are
the same (renormalizing voltages if necessary). Typically the DUT will consist only
of copper; we will assume at least, though, that any medium in the DUT may be
described by lossless, symmetric ("reciproca™), linear permittivity and permeability
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tensors. We define the S-Matrix for the DUT element-wise as follows. Let voltage
V,” beincident on line b, and all other lines terminated in their characteristic
impedance (matched load on all other ports). Let the voltage transmitted to the load
onthea-thportbe V., then S, =V, /V," isthe a-b element of the scattering matrix

for the DUT. Notice that since the voltage coefficientsin atransmission line depend
on the plane of reference, the S-matrix isnot uniquely specified unless the reference
planes for the measurement are defined. If there are N ports then the scattering
matrix is an N xN matrix of frequency-dependent elements. Lorentz reciprocity
implies that for such a source-free device, the S-matrix must be symmetric,
Sab=Sba, Or S =S. Since the device is lossless the complex Poynting theorem
implies that the scattering matrix is unitary, S= S, where recall that (§)ab =(9).,
is the hermitian conjugate. To prove these statements it is helpful to know how to
describe the DUT in terms of admittance or impedance matrices. The admittance

matrix Y relatestotal current at the reference plane in the port to total voltage at the
respective reference planes in each port,

Ia :Va+ _Va_ = Z (Y)abvb = Z (Y)ab(VbJr +Vb_)’
or, in vector form,

[=V*' -V =Y(\7+ +\7')=Y\7.

Vk+ Vk_
v

FIGURE 2.13. The general problem of network analysis for a device under test
attached by means of ports to a series of transmission lines, labelled k=1,...,N.

The impedance matrix Z relates voltage to current, V = ZI', and is evidently just

the inverse of the admittance matrix, Z =Y ™. On the other hand, using the
definition of the scattering matrix, and the principle of superposition, we have
V™ =SV*, and this permits us to determine the scattering matrix in terms of the
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admittance or impedance matrices. Specificaly,

V-V = Y(VE V) O (1 =YV = (1 +Y)V- OV =(1+Y) (1 =YV,
sothat S=(1+Y)7(I -Y).

Exercise 2.11 Show that S=(z+1)"{z-1).
Symmetry of the S-matrix then follows from the symmetry of the
admittance matrix, Y = Y'. Unitarity of the S-matrix follows for alossless junction

from Z = Z". Modern vector network analyzers permit one to measure S-matrices

in avery straightforward fashion, provided the DUT operates at frequencies below
cut-off for all but fundamental mode in the connecting guide. The unitarity and
symmetry theorems are extremely helpful insofar as they permit one to determine
the minimum number of essential parameters needed to characterize an el ement.

| |
Pre—@ | L ®—r

Pi — (@ _ (@ —py

FIGURE 2.14. lllustration of a directional coupler.

For example, the most common microwave element is the directional
coupler. Thisis afour-port device asillustrated in Fig. 2.14. An ideal directional
coupler is symmetric upon reflection in the horizontal or vertical, islosslessand is
perfectly matched. These conditions restrict the S-matrix to the form

O o a jvi-a? o O

. ]

s-0 @ 0 0 J\sl—azm
Ovi-a? 0 0 a O

0 jV1-a? a 0o 0

for some parameter a<1, and choice of reference planes. A real directiona coupler
is described by coupling C and directivity D, defined with respect to the quantities
indicated in the sketch: power incident on port 1, P, transmitted power to port 2,
Py, forward power on port 3, Pr, and reverse power, Py, on port 4. The coupling and
directivity are

C=10lo JRU (coupling) D =10lo D (directivity)
910%55’ pling gm%ﬁ%
Theisolation is defined according to
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P [
| = 10IogloEE—'E. (isolation)

A hybrid tee is a four-port device as illustrated in Fig. 2.15. In the ideal
case, it islossless and symmetry precludes coupling of ports1 and 4. A magictee
isahybrid tee that is matched on al ports; matching requiresin practice obstacles (a
post and a step) at the junction. A magic tee is formally equivalent to a 3 dB
coupler, however, the natural choice of reference planes makes it easy to
distinguish. Constraints of symmetry and unitarity reduce the possible forms of the
S-matrix to just one, after a choice of reference planes,

Mm 1 1 0Q
100 0 -0
> 2@ 0 o -1

%1—10

Exercise 2.12 (a)What is the directivity of an ideal directional coupler? Relate the
coupling C to the S-matrix parameter a. (b)The SLAC modified Bethe hole coupler has a
coupling of 52 dB and 80 dB isolation. What is the directivity? (c) An ideal "3 dB" coupler
has C=10log102 =3dB and infinite directivity. What is the S-matrix? (d)Compute the

outgoing signals for the situation depicted in the sketch, and explain how a 3 dB coupler
and a phase-shifter can be used to make a switch.

> _ .
Vo ?
—0 o—
o, 3dB —>

Exercise 2.13 (Magic Tee) Show that with voltages incident on arms 2 and 3, arm 4
provides a difference signal, and arm 3 a sum signal. Justify this referring to the field lines

| -
1 ‘13

N
—>
w

1

FIGURE 2.15. lllustration of a hybrid tee.
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3. Standing-Wave Accelerators

We have reached a point now where we can deliver power by means of a
waveguide and appreciate the coupling of awaveguide to a cavity, by means of an
iris. We consider in this section the question: What are we looking for in a cavity?
What features are important in characterizing its performance as an accelerator?
Here we devel op the subject of beam-cavity interaction for arelativistic beam, and
the logical consequences.

(P
VA

FIGURE 3.1. Acceleration in terminated waveguide.

We require an electric field, E, to produce any change in particle energy,
e=mgc?y, i.e, de/dt=qgE«V, where V is the particle velocity and q is the
charge. We assume the beam is relativistic so that V = c is constant. We suppose
for ssimplicity, asin the previous section, that our cavity isformed by aterminated
piece of straight waveguide. The mode employed should have an electric field
component along the direction of beam motion. For ballistic motion along a beam
axis S, that coincides with the waveguide axis this requires a TM mode. The axial

component of the dectric field will take the form
E, = DE, exp(jat - jBs),

where Eo = Eoe”’” , Eo isthe axia electric field amplitude, and ¢ is the rf-phase.
The particle energy will therefore vary according to

de ~ . :

o - DaEyexp(jat - jBs),

where we have changed the independent variable to s, with ds=Vdt. Notice that in
this description, timet is a dependent variable,

dt _1_19 10"

ds V ¢ yZE

and corresponds to the particle arrival time at s. For continuous acceleration in this
field, one would need the beam-phase to remain stationary, implying that the
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particle speed should match the phase velocity of the wave, V=c=w/ [, as
though the particle were riding the crest of a wave. This isn't possible, since for
TM modes in smooth waveguide w/ > ¢ and the phase-fronts will always wash
over the particle. Nevertheless one notices that the electron does gain energy for
one-half of an rf-cycle, and this suggests terminating the interaction before the
particle has dipped into the decelerating phase, as depicted in Fig. 3.1.

In thisform it is straightforward to calculate the energy gain assuming the
interaction is terminated. We situate the cavity entrance at s=0, and denote the
particle arrival time at s=0 by to, so that,

S
t=t +—.
° v

The energy gain in travelling through a cavity of length L isthen
W _ L0
o _Fot

[ _ ol
J[}\7_BD

expjL

L
Ag = Dqﬁoe‘%'fdsexpjs% - ,BE: OoE e/
0

m
Yvyv'

FIGURE 3.2. TMq10 mode of a right cylindrical pillbox. No ports yet.

3.1 Geometry and [R/Q]

To make further quantitative progress with this idea, we need to decide on
the actual mode to be employed. Clearly, the "terminated interaction” amounts to
using a cavity, since the rf fields cannot make it down the pipe, they must be
trapped. In principle we have many choices as to the kind of cavity we pick.*
Historicaly, cylindrical cavities have been easier to make, so let us consider those.
We will need to plan for ports, at least one port for the input waveguide, and at least
two holes for the beam to enter and exit ("beam ports"), but we can treat these later
as perturbations. Let us consider then just the TM modes in a closed right
cylindrical cavity as illustrated in Fig 3.2. In principle we may construct such
modes as superpositions of modes of straight guide. In straight guide TM modes

are determined by Ii satisfyi ng

o o0 1 c?z

Ha'a ' rar”

In view of cylindrical symmetry, we may decompose any solution into azimuthal
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harmonics, varying as €™ . For such harmonics one obtains Bessel functions for
theradial variation,

E,(r,.2) = J,(B.r)e™e ™.

The condition E,(r = R's) =0 dictatesthat J,,(8,R) = 0. We may then label these

TM modes according to the corresponding zero of the Bessel function,
B. =B = Jm! R, where jmn is the n-th root of the m-th Bessel function. To
accomodate waveguide shorts at s=0 and s=L, we must consult the transverse
fields,

~ By A ~ ~ ~
ZOHD_ﬁSXDDE’ ED_EDDEZ’

and superimpose solutions in such a way as to enforce conducting boundary
conditions

E.(s=0r)=E (s=Lr)=0, @+E, (sr=R)=0, feH (sr=R)=0.
Note that the normal component of the magnetic field at the shorting planes is
automatically zero for aTM mode. The remaining boundary condition we can meet
(Hwith B =0 (infinite phase-velocity wave) or (2) by adding aforward e '* and
reverse &/ wave to form a standing wave. Abbreviating ¢ = E,J, (B,r)e'™, with
normalization constant E,, the result is

E(r,s)=wcosPs, E, = %sinﬁsﬁuw, ZH, = j’%zcosﬂsé x Oy .

The boundary condition at s=L requires snfL =0, or 3 =, =mnp/L. The
resulting mode then has three indices and is referred to as the TMmnp mode. The
mode frequencies are

. /2
o = im , opmcfH
mnp RO OL DD !

and we havetaken u = u, and € = g, since we will be passing a beam through this

cavity and will probably want a high vacuum.
Next let us discriminate among these modes with an eye to acceleration.
Only m=0 modes have a hon-zero field on-axis. To decide on the best TM onp mode

to use we don't have much to go on yet. Let us consider a particle passing through
the cavity on-axis, asin the previous section. It witnesses afield

E, = E, cos(f3) cos(wt + ¢rf).

Exercise 3.1 Decompose this result into left- and right-going waves. Making use of the
transit angles
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/2
0y = +IBQ~ %on g P" El t pm,

argue that in the TMmpp mode with p¢0, the transit angle with respect to the backward

wave will be larger than 27p, corresponding to deceleration, and only the forward wave will
contribute to acceleration.

Exercise 3.1 suggests using one of the TMono modes, as depicted in Fig. 3.3. For
these modes, the transit angleis
ol
6=—, 3.1
v (31)

or, more explicitly,8 = j L/ R. The energy gain may be expressed in terms of the
transit angle factor,

sin(10)

(6) '
as Ae = qE,LT cos(a)t0 +¢, + %9), and this may be expressed in terms of the gap
voltage or cavity voltage phasor, \7C =ELT exp(j G t+3] 9) , @

T=

(3.2)

Ae = OoMV,e* (3.3)

Next let's determine the energy required to establish the accelerating
voltage. Thefields take the form

E = 2E,J,(B.r) cos{at + ¢, ), Z,H = gE,J;(B.r)sin(at +6,,),
where 3. = w,,,/ C. The energy stored in the cavity isthen
= lJ’dV(aEOE- E+p,He H) = <IdV£OE° E>

R L 2n

= % OEOJ'rdrIdsId(pJ B r)’

2

_EsoEoIdVJ Br

0E027'1LJ'rer (Br) —SOEOTILRZIUdUJ (Jontt)”

|I—‘ I\)|H

o%mﬁﬂm%

where the brackets denote a time-average. The next question we might have: isthis
alot or alittle? We can compare stored energy and accelerating voltage directly by
cons dering the amplitude independent ratio,

2

~

V,

C

%%:MJ’ (3.4)
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or, explicitly,

RO (E,LT) 5 o2 Ol oL
= = [+ - DZOT —=7ZT"—.
EH a);goE(?nLRle(jon)z BTJO“‘]l(JOH)2 E R i R

This quantity, with units of ohms, is referred to as the "R upon Q" or "R over Q";
the name and the notation are somewhat unwieldy, but that is convention. Rather
than being two separate entities as the notation would imply, it isin fact asingle
geometric quantity. Notice that it has nothing to do with wall losses. Referring to a
table of Bessel function zeroes,22 the quantity in square brackets is equal to 0.982
for n=1, and within 2% of unity for all values of radial mode index n.

Next we might like to try to optimize our cavity, and obtain the largest
acceleration for a given amount of energy. We suppose that the frequency has been
chosen, thus fixing the cavity radius. In this case, the question amounts to: What is

the best choice of transit angle? In terms of 8 we have
(RO 2 sin*(16)
5 = ZO - 1 ]
HMOHO Jon (E 9)
varying from 0 at 6=0 through a maximum at 6=133.56° (T=0.788), to 0 again at

6=360°. In thisform it is clear that maximum [ R/Q] at fixed frequency favors the
lowest radial mode, n=1, for in this case the cavity islongest. For the TM o190 mode

at optimal transit angle, [R/Q] = 0.6Z, = 221Q.

3.2 Loss Factor

Remarkably, [R/Q] determines more than just the stored energy required to
establish a gap voltage. It also determines the radiation by a beam into the cavity
mode. Let us consider a very short bunch of charged particles passing through a
structure, as depicted in Fig. 3.3.

Such a bunch will radiate and |ose some energy, if the geometry deviatesin
some way from a smooth perfectly conducting pipe. Thisisillustrated in Fig. 3.3.
If the bunch is quite short, then particles will radiate coherently, so that the energy

loss should be a quadratic function of beam charge, g, A€ = kg7. The quantity ki,

we will refer to as the loss-factor for a short bunch. In fact, given a complete
enumeration of orthogonal modes for the geometry, one could represent the loss
factor as a sum over the loss factorsinto each mode,

k = ;(K)A-

modes, A

One of these modes, A, isour resonant accelerating mode; let us consider that mode
alone. After the beam has passed, the mode rings, just as a harmonic oscillator
should after a sharp rap,
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V, =V, cosw,tH(t).

The voltage waveform is sketched in Fig. 3.4. (Note that in the act of singling out
one such narrow-band mode, we inevitably give up resolution of the full cavity-
voltage during transient period of length L/c in the vicinity of the beam arrival time

t=0.)
dp E—>

— X

FIGURE 3.3. A charge g, passing through a cavity deposits energy in the cavity. This
energy is lost by the particle, and this energy loss arises from the action of a self-induced
voltage V, acting on the particle. The "shock" excitation of the cavity mode results in

ringing at amplitude V, after the beam has passed.

beam
exits
cavity

S

beam

enters

cavity
|

L/c

FIGURE 3.4. After a charge g, has passed through a cavity, the cavity modes ring; here
we see the beam-induced voltage in a single mode.
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Notice in Fig. 3.4 that, averaged over the transit time, the beam witnesses
one-half of the final, peak gap voltage. Thus, in order for the beam to lose energy

Ag, =k, o by the action of this self-induced voltage, the peak gap voltage must be
V,, = 2k,0,. Meanwhile, this oscillation corresponds to a stored energy,

Vb2 — (Zklf\qb)z
ofRIQ],  @R/IQ],

We can solve this equation for the loss-factor in terms of the [R/Q],

K =%w%ﬁ- (3.5)

Notice that loss-factor has nothing a priori to do with wall-losses.

Thus [R/Q] measures the coupling of the mode to the beam, and the beam to
the mode, it determines the energy required for acceleration, and determines how
much energy the beam will deposit. Large [R/Q] impliesthat little energy is required
to produce a large acceleration. Conversely, this implies a large beam-induced
voltage, heavier "beam-loading.” Good accelerators are good decelerators. In this
light, it is easy to understand why we were having troubles in Sec. 1, with
acceleration in free-space. This result for beam-induced voltage is often referred to
as the fundamental theorem of beam-loading.

U=k,q =

Exercise 3.2 Using the result for beam-induced voltage in mode A, dVj,, from a single
short bunch of charge dqs, arriving at time =0, dVp) (t) =2k dqp cos(w,\t), argue that for
a continuous current waveform /(t), the net beam-induced voltage must take the form

Via (l’) =2k, }dl" lb(t')cos(w,\ [[ —l"]).

Go on to show that the beam-induced voltage satisfies the differential equation

Og2 0 di
2 b

O T Wy Vbr =2Kp — -

2 A dt

Justify the form of this equation in a few sentences, from first principles, making reference
to Maxwell's equations. In the frequency domain, it is common to characterize beam

interaction with a structure in terms of an impedance Zj| such that Vj(w) = Z}j(w)ip(w).
Show that the beam impedance for a lossless resonant mode A, in terms of the mode
frequency w, and [r/Q] = %[R/Q], takes the form

ilr/ol,

. (lossless)
wy lw-wlwy)

Z||A(w)=(
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3.3 Wall Losses

Having mentioned stored energy, we are naturally inclined to hook our
cavity up to waveguide and fire away. First though let us consider where this
energy really will go: it can be reflected, it can go into a beam, or it can be lost in
the walls. We know from the work of Sec. 1, that wall-losses arise due to the
penetration of the magnetic field into the conductor,

P= Fgfds<|H|2>:zx e+ §e),

endcap sidewalls

Let's compute the various integrals,

f(...) = &—E‘? de<[J(;(,BCr)sin(ax +¢. )]2> = I}T?Erdrquo[\l(’,(ﬁcr)]z

endcap

R\
= IREO IUdU[J Jon ] :nFEEZZ Jl(Jon) )
Next,

f( & de<[J Br sin ax+¢rf)] >
= &EO J’dszdw[J Br] :%{Jl' (jon)-

Thusthe total power flowing into thewallsis

R= B0 AR+ L),

We may characterize thisresult in terms of wall Q defined according to
wJ

=—. 3.6
Q. P (3.6)
In practical units we have
Q= JwZy, L _546x10"° 1

““ 2 RL+R f(GHz) 1+R/L’

where, in the last equality, we selected the TMoip mode and used
R =8.3mQ./ f(GHz) asfor copper at room temperature. For our [RIQ] optimized
cavity with 6=133.56° and L/R=0.969, this gives Q, =2.69x10*/./f(GHz). In
the time-domain,
du = _ ol

d Q,
and energy Up initially stored in the cavity will decay exponentially, according to
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U wtd
U=U,ex —
0 pE_QW%
thus the fields decay with atime-constant

T, = 2Q, = &l (3.7)
w mmf

For an [R/Q] optimized cavity thisgives T, = 8.56us/ f(GHz)*>.

Thusfar we have considered stored energy as though that were an important
guantity to minimize. However, for practical purposes, one may wish to know,
given the maximum microwave power available, what kind of accelerating voltage
could be achieved. For this purpose let us suppose that we have figured out how to
couple energy into the cavity (we will examine this shortly). If the beam to be
accelerated is of sufficiently low current, then the maximum energy we can put into
the cavity will be determined by a steady-state between power Pe flowing into the
cavity, and thence into the walls. Let us assume the power source has a natural
pulse length long enough to bring the cavity into this steady-state. Then

W _
dt

sothat P,=R =wU/Q,. Since in this case our voltage is limited by the peak
power available from the source, it is natural to define a quantity

R-R=0,

2 2

~ ~

_ RO \V _ \V
R—QWEH— me—?l, (3.8)

with units of ohms, and referred to as the shunt impedance. This quantity
determines, at the practical level, what accelerating voltage one can achieve with a
single cavity, in terms of the power available, assuming a pulse sufficiently long to
reach steady-state. Using our optimum [R/Q] parameters, one finds

R=5.95MQ/ . f(GHz). A few illustrative numbers are included in Table 3.2,

actual mileage will vary depending on the arrangement of beam ports and particulars
of the cavity shape. In practice, introduction of beam ports can reduce [R/Q] by a
factor of two. These are nevertheless, good "zeroth-order" estimates for single-
cavity scalings versus frequency.

Exercise 3.3 If in fact our accelerator were peak-power limited, we might like to optimize
our cavity design by maximizing shunt impedance as a function of transit angle. Show that
the maximum shunt impedance for the first radial mode occurs for 6=158.08° (7=0.712,
aspect ratio L/R=1.147) and is 7% larger than the result obtained for maximum [R/Q].
Show that the wall Q and decay time are 9% larger. Sample sensitivity to transit angle to
determine that R is 67% of optimal for 8=90°, 89% for 120°, and 97% for 180°. Check that
for the second radial mode, maximum shunt impedance occurs for 6=166.46° and
corresponds to 63% of the maximum for the first radial mode. Confirm the TMqg1g scalings

with transit angle illustrated in Fig. 3.5.
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Exercise 3.4 For copper at room temperature and the TMq10 mode of a right cylindrical
cavity, make a table of scalings for Qy, k;, Rspunt» [R!Ql, Tg, and the steady-state
power dissipation required to provide a 10-MeV/m accelerating gradient. Take note of the
exponent by which each quantity varies with wavelength and the value at 2856 MHz.
Assume a transit angle of 2173.

[R/Q]

Scaled TMy;o Quantities

OO L 1 L | L 1 L | L |
0 60 120 180 240 300 360

O (degrees)
FIGURE 3.5. Scalings with transit angle for the TMy:0 mode of a closed pillbox.

Table 3.2 To illustrate the scaling of cavity parameters. 6=133.56°

band frequency Ow To [R/Q] R

UHF 714 MHz 3.2x104 14 ps 221 Q 7 MQ
S 2.856 GHz 1.6x104 1.8 ps 221 Q 3.5 MQ
X 11.424 GHz 8.0x103 0.22 pys 221 Q 1.8 MQ
W 91.392 GHz 2.8x103 9.8 ns 221 Q 0.6 MQ

3.4 Cavity With Beam and Ports

Now that we have arough idea of what we are looking for in a cavity, let us
consider putting a port on the cavity and the details of how to get power into it. Our
guestion is: what do we want out of a port? We consider first a closed cavity with
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perfectly conducting walls, and resonant angular frequency Qo,

2
Dd +Q?2 H/ 0. (no port, beam or losses)

We next cut a port in the cavity and connect it to waveguide. From our
analysis of the thin irisin awaveguide, we understand that tangential electric field
in the guide is continuous across the iris. This amounts to the statement that cavity
voltage V. must track the tangential electric field on the waveguide side of theiris.
From our analysis of waveguide modes, we know that this tangential field

amplitude varies as the sum of forward and reverse voltages, V" and V7, in the
waveguide, defined as in Sec. 2. At the same time, we recognize that the cavity
voltage may be quite a bit larger than the voltages in the connecting guide. Indeed,
aswe saw in the example of Sec. 2, resonant charging of a cavity can produce large
amplitude oscillations even when the driving displacement is small, much asin a
swing or a pendulum. Recognizing this, let us employ normalized voltages,

V. =nV", V, =nV", such that our continuity condition reads simply
V. =V, +Vs. (3.9)

The factor n we will refer to as the turnsratio, or transformer ratio. Later, we will
return and calculate n, based on conservation of energy.
Next we account for perturbations to our harmonic oscillator,

2
%ﬂ% + QSH/C = [lossy walls] + [waveguide] +[beam].
l

Notice that each of the perturbatons may be thought of as a current. Wall current
has been dealt with and for practical purposes its effect is damping. The beam
current term also has been treated and its effect may be viewed as excitation of the
oscillator. As for the waveguide "current term,” this represents the threading of
magnetic flux from the waveguide into the cavity, as illustrated in Fig. 3.6, and
excitation of the oscillator by induction. We know from our analysis of waveguide
modes that the amplitude of the magnetic field may be represented in terms of a
current coefficient, itself, the difference in the forward and reverse voltagesin the
guide. Thus we may express our result as

Od* dv; d Or [l
%FH%@ZESm ng V)@ﬁﬁ— (3.10)

for some dimensionless coefficient Qe, the external Q. The notation «» we adopt for
the resonant frequency after perturbations---having added finite wall conductivity
and having cut copper to make the beam port and waveguide coupler. Introducing
the loaded Q,
1.1, (3.11)
Q Q Q.

and making use of the continuity condition, we may rewrite thisin the form
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2
Od° | w, d +w§%/‘::2&di+ Or Cdl,

Eﬂ?+aa o Qe at O)OEBE. (312)

A more formal development of this result can be found in Appendix C.

FIGURE 3.6. A waveguide excites a cavity via the threading of magnetic flux through
the coupling iris, and Faraday's law. The beam travels into the page.

\Vi

Ve
Iy

FIGURE 3.7. Sketch of the dynamic variables for a single cavity mode coupled to a
waveguide fundamental mode, and a beam.

This ssmple model affords a complete description of the kinematics of the
cavity-beam-waveguide system. The dynamic variables are summarized in Fig. 3.7.
We will show later that it can be employed for multi-cavity systems. We turn next
to explore the ramifications of the two coupling parameters we have introduced,
external Q, and transformer ratio, n, and other features of this system.

3.5 Cavity on the Bench
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Absent beam the system we have analyzed is the simplest of all microwave
elements: it is a one-port element, the S-matrix is asingle element Sy4, that is a

function of frequency, ssmply referred to as the reflection coefficient. If the cavity is
lossless, then unitarity implies that |Si1/=1, and all power is reflected from the

cavity. In the more interesting case of a cavity with wall losses, we may compute
the reflection coefficient, using our waveguide-cavity equation, Eq. (3.12). Our
model takesthe form

O0d*>  w, d w, dV,
J— + +w =290 F
Cdt? Q_dt c@/ Q dt

We consider steady-state excitation at angular frequency w,

Ve =0(Vee), Ve = 0(Vee), Ve =0(Vee).
Our equation takesthe form

O ~ , ~

2 - fy - 2192,

0 Q O Q.

It is conventional to characterize the differencein drive frequency from the resonant
frequency of the cavity by the tuning angle ¢,

t 3.13
any = QLE— wE (3.13)

In terms of tuning angle,

~ 2B .

V. =——"—cosyeV,, 3.14
¢ 1+p ye (3.14)

and we have introduced the parameter 3,

:_QW_ 3.15
B Q (3.15)

Notice that tuning angle is the angle the cavity voltage phasor \7C makes with the
forward drive phasor \7F . On resonance, the two are in phase,

V. = 12+Bﬁ V., (=0 = w=w, = resonance) (3.16)
and areflected signal is propagating back up the waveguide toward the source,
V,=V. -V, _B-ly (=0 <« w=w, = resonance) (3.17)

B+l
If B>1 the external Q islower than the wall Q, and the cavity is said to be over-
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coupled. In this case the reflected signal isin phase with the forward drive. If <1
the cavity is said to be under-coupled and in this case the reflected signal is 180° out
of phase with the drive. If 3=1 the cavity issaid to be critically-coupled, and there
isno reflected signal in steady-state.

With thisresult for cavity voltage, we may compute the reflection coefficient

using the continuity condition, Vi =V, = V¢,

S, = vl mcoswe”’ -1. (3.18)

Notice that measurement of the (complex) S-matrix can permit one to determine the

resonant frequency o, the coupling factor 3, and the loaded Q. Thus one can
extract aswell the external Q.

Exercise 3.5 Show that for small detuning from resonance, d<<1, with J = (w—wo)/wo
that tany = -2Q; 5. Show that Q; = Q,, /(1+ B). Sketch qualitatively a plot of tuning angle
versus frequency.

Exercise 3.6 Show that the minimum in |Si::] occurs on resonance,
min| S11|=|B-1]/|B+1|at w=wyp and is zero for critical coupling. Considering the three
cases of under-coupling, critical coupling and over-coupling, compute VSWR on
resonance. Make qualitative sketches of |Si;| and |V versus frequency. Evidently
regardless of the frequency, not all energy is reflected by the cavity; where does this
energy go?

3.6 Cavity on the Beamline

Having examined the properties of our cavity on the bench, let us next
consider it, with beam. Typically one is interested either in a very short bunch of
charge, much shorter than an rf period (single-bunch), or oneisinterested in atrain
of such bunches, spaced at or near the rf period (bunch-train). In this sections we
will consider each of these in turn. We will assume that the beam is a high-energy
beam and therefore does not slow down or speed up appreciably in the structure.
This assumption does not hold, for example, in an injector or aklystron cavity.

Let us take the drive terms to be varying at roughly the frequency w, but
allow for some slow variation in the envel opes,

Ve =0V @e“), 1, =0(i,(0e), Vv =0(V0e).

In this case, in the slowly-varying envelope approximation, ‘d\7C / dt‘ << ‘af/c ‘ the
cavity responds to the waveguide and beam excitation according to
W, o

. o _ Wy ~
& +2—QL(1 jtang)V, = a V. +kl,. (3.19)

e

63



where K is the loss-factor, and ¢ is the tuning angle. It is often convenient to
expressthisas

%C +(1- jtany )V, = ﬁﬂﬁ\l +rl., (3.20)
where
B S h:

T 2Q

is time measured in units of the fill-time, and the "circuit-equivalent loaded
resistance”’ may be expressed in various forms as

00 1 RO_1Q o _ Rum 3.21
QLB55 ZQLEH 20, Rt 201+ ) (3.21)

In steady-state dVC /dt =0 and the cavity and reflected voltages take the
forms

- L0288 ~ O

V. = cosye EM_BVF +, IbE’ (3.22)

V,=\. -V = cosgl/e“”D 2B cosye!? —1@7 +1,1. cosye' . (3.23)
R c ™ VE % F Tl

These steady-state relations are often depicted in the form of a phasor diagram, as
shown in Fig. 3.8.

It will be important, in treating this system, to account for the flow of
power, and we can accomplish this with the "transformer ratio” alluded to
previously. Recall that the power flowing in awavegwde may be expressed in
terms of the incoming and outgoing voltage phasors, V*, V~, combining Egs.

(2.20) and (2.29),

with Z. the characteristic mode impedance, just

-1/2

A0
Z, = Zo__zog‘ )\25 ’

for the TE10 mode in the waveguide, with A the free-space wavelength, and A the
cut-off wavelength in the guide. The forward and reverse voltages Vr and Vr are

proportional to these normalized amplitudes, V: =nV*, V; =nV . Thus the net
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power flowing in the waveguide may be expressed as

2 2

~ ~

VARsiva
" 2Z.n?

FIGURE 3.8. Phasor diagram for a beam-cavity waveguide system in steady-state.

In steady-state, with no beam, conservation of energy dictates that this equal the
rate at which power is being dissipated in the cavity walls, and thisis

2 2

~

V,

C

~

V,

C

_wJ _
’ QW le_%J &mnt
Equating these two, we may determine the transformer ratio, n. We make use of the
following identities:

U = Eﬁ—ﬁﬁg cos*y|¥% (beam off)
"R\Z = gﬁ%g co (Y +sin? w@f, (beam off)
Vel =[N = 4B o W[ (beam off)

(1+B)

Exercise 3.7 Derive these identities starting from the steady-state relation, Eq, (3.22),
with beam-off, and making use of \7R = \76 —\7,:.

Using these identitieswe find

026 O \V\

PR pH S YR

(beam off)
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2

~

VF
2Z.n°’

Pw = 4‘8 2
(1+B)
and equating these two results gives usthe turnsratio or transformer ratio,

. 42 s 32
n= %E = él%lm . (3.24)

¢ U

Note that while we have derived this under beam-off conditions, nis afunction of
geometry alone, independent of source terms.

Turning the beam back on, we can derive some generally useful results. The
forward-going power in the waveguide is

cos” Y

(beam off)

2 2

~

V. V.
" B 2ZCI’]2 Rhunt ’

and, if the rf source isisolated from the cavity-beam system, thisis just the power
supplied by the source. Typically such isolation is achieved with an arrangement
involving amagic tee (and another cavity), or a high-power isolator, or both.

For illustration, let us consider the problem of optimizing the coupling

parameter 8 to maximize power delivered to the beam; we suppose that forward
power and beam current are fixed and that the beam-phase relative to the cavity
voltage has been prescribed. The power delivered to the beam isjust

R =20(VT) =

~

=B

Iy

15
2

cosq,,

with ¢s the prescribed angle between the beam-phasor and the cavity voltage
phasor. Evidently maximum power corresponds to maximum cavity amplitude.
This on the other hand corresponds to maximum power dissipated in the walls.
Energy conservation, B- = B, +P, + R, or

2

2 2

0 W
= 'B +
I%mnt I1hunt Fg—lunt

tells us then that we are attempting to maximize the sum of the two terms on the
right, and this corresponds uniquely to a minimization of the first term, reflected
power, given that the sum of all three is fixed. Minimum reflected power

corresponds to zero reflected signal, or V, =V, and this condition permits us to

~

\

c

B

Y]
2

Ib‘cosqos,

solve for 3,
\7 2 \7 2 \72
Brr=p a4 2, |cose,
&mnt &mnt &]Unt 2
0
or
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(E-2)p = (p-1) - = 2, cosq. =P
B R.hunt 2

Thus,

1_._R

B R

Using,
~ 12
Ve 1 -

P, = =—PR, (no reflection)
Rom B

we may also express this as

B=1+1 (no reflection) (3.25)

d

This summarizes the basic features of steady-state beam-loading. Our beam-cavity-
waveguide model is also adequate to analyze the effect of transient beam-loading,
and thisisillustrated with the help of afew exercises.

Exercise 3.8 Consider filling a cavity with a step turn-on of the drive Vg,

_[0 <0
VF(I)_El t>0

under beam-off conditions. With the drive tuned on-resonance, w=w,, compute the
cavity and reverse voltages as a function of time. Confirm the steady-state results,

. oo
¢ 2P jim -R =£-1

toooV, B+1’

where B=0Q, /Qg. Evaluate and sketch the results, \7R and \7c versus time for

B=1/2,1,2. Sketch also the oscilloscope waveform that would be observed from a crystal
detector looking at the reflected waveform. What is the clear difference appearing on
these scope waveforms, between an over-coupled and under-coupled cavity?

Exercise 3.9 Express the beam-cavity waveguide equation in the form

Ha?2 g d ﬁ/ _ orod
©7 o DY T Y
identifying the waveguide (or "generator") contribution to the "cavity current” /.. Show that
Velt)= Jar 6(t-t) e (1)
o t
is a solution of this system, with Green's function,
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sin(Qr)

G(1) = 2k exp(—% vr)H(r) ,
H the step-function, Q = \/wg —%vz »and v =w,/Qy. Integrating by parts, express this
as

Ve(t) = }dt'G’(t—t’)lC(t').

—00

Exercise 3.10 Using the exact Green's function, compute the response of the cavity to
a train of point bunches, each of charge q», spaced at time intervals T. You will want to
make use of the identity

M-1 (1—x’V’)
Yy X =——t.
m=0 (1-x)
Evaluate the result after the M-th bunch has passed, in the limit MT>>fill-time, and

assuming the bunches arrive at the fundamental mode frequency, or a sub-harmonic of it,
wT=271k, with k an integer. Compare this result to the steady-state result

& — 9 7 = T, - 7 = L~ ](,U
20, (1-jtang)V, =kilp Ve QL[Q]/be cosy .

In developing the expression for fb, you may wish to use the identity

+00 00
T Y (t-mT)=1+2% cos%nnig,
m=-oco n=0 U

as a consequence of which, 7b =2qp /T for a train of zero-length charges Q, spaced at
interval T. Argue that the steady-state voltage induced by a beam of average current ib,
bunched on resonance, is equal to the voltage induced by a single bunch of charge
IpT;, with T¢ the fill ime for the mode. Given a cavity with a fill-time of 100 ns, which one

excites a larger cavity voltage, a single bunch with 5 nC charge, or a 1 ps pulse of total
charge 50 nC?

Exercise 3.11 Show that the impedance presented by a single cavity mode to the
beam is

jwawg|r!Q
2)(0)=— Lolriel
wy ~ W +jwwy/Qp

and express this in the equivalent forms

r/
N p— L)
1-jOL (wo /w-wl g

) =Q[r/Q]cosy el¥.

Exercise 3.12 One often-used equivalent circuit for the beam-cavity-waveguide
system takes the form show here.
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Analyze this circuit in the frequency domain, and identify parameters and dynamic
variables with those used in Eq. (3.12).

Exercise 3.13 A standing-wave accelerator is powered with a klystron putting out a
square pulse. (a) How long, in units of the fill-time, must the power source pulse-length
be to achieve 90% of the steady-state gap voltage? (b) After the gap voltage has
reached steady-state, the klystron turns off. Sketch cavity voltage, and forward and
reverse voltage waveforms versus time. What is the maximum in the reflected power
waveform relative to the klystron output?

Exercise 3.14 Our transient cavity-beam-guide formulation may be expressed as
ddi+(1—jtanw)\70 =VE +V},
T

where 1=t/T;,

\7,: = 2B
1+B
(a) Driving the cavity on resonance (¢=0), with rf drive turn-on at t=0, determine the beam

turn-on time 1,>0, such that gap voltage V. is constant when the beam is present. (b)
Sketch forward, reverse, beam-induced and gap voltage waveforms versus time.

; . 1R
VE, Vb :EQL%QIJ'

Exercise 3.15 Consider a single cavity coupled to a waveguide. It is to be operated at
2856 MHz, with a transit angle of 90° for a speed-of-light particle. (a) Select the
connecting guide from the following: WR510, WR284, WR187. Calculate the guide
wavelength A, Calculate the characteristic impedance Z. of the TEi, mode at this
frequency. (b) Calculate the dimensions, wall Q, [R/Q], Rstun, and fill-time for the cavity
based on closed pillbox TMoyo scalings. What external Q is required for critical coupling?
(c)Assuming critical coupling and a long klystron pulse length, determine the power
requirement for V,=2.5 MV, neglecting beam-loading. Calculate the transformer ratio, n.
(d)The klystron available puts out a peak power of 5 MW, how much current can be
accelerated while meeting the gap voltage requirement? (e)Assuming a current
requirement of 100 mA and using steady-state scalings, determine the optimal g for
transfer of power to the beam, the requirement on beam-injection time, for constant
loaded gap voltage during the beam-pulse, and the overall rf to beam efficiency for this
system.
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Exercise 3.16 For a cavity connected to a guide, relate the rate of change of cavity-
phase with frequency, relative to that of the forward voltage in the guide, to the ratio of
stored energy and input power.

Exercise 3.17 The designers of a 2856-MHz accelerating structure quote an estimate
of sensitivity of resonant frequency, to cavity diameter 2 b, 5f/5(2b) = 0.9 Mc/mil, where
Mc=megacycle, i.e., MHz. Explain this referring to TMs10 mode scalings. Based on analysis
of a single cavity, what tolerance, in mils, should be enforced to ensure a gap voltage
within 95% of design, assuming the drive frequency is fixed? What temperature
regulation is required in °C? (The coefficient of thermal expansion for copper is

a=17x10"2/°K.)

MY\
Rg :
vg@ H R =
1:n

Exercise 3.18 Consider the circuit in the adjacent sketch, in the frequency domain,
and compute the voltage V., assuming all elements are ideal. For zero current I, what is
the equivalent impedance seen from the primary? Identify parameters and dynamic
variables with those used in Eq. (3.12).

11
@)

L Ip Q Ve

Exercise 3.19 Consider a cavity connected to a waveguide. Taking a forward voltage of
the form

oo ;t<0
Hvy ;0 <t<T,
Ve()=tl,, -
D_VO T1<t<Ty
EO Ty <t

with T3 =2Tgy and To =2.5Tg. Assuming (=5, sketch cavity, forward and reflected
voltages versus time. What is the maximum reverse voltage amplitude? What is the
maximum ratio of reflected voltage to input amplitude attainable in this geometry for any
Tl,Tz and B’)

Exercise 3.20 At 77°K the resistivity of pure copper is 0.2 x10780Q -m. If a mode of
this cavity has a wall @ of 15,000 at 294°K, what is the wall Q when the copper is cooled to
77°K?

Exercise 3.21 A cylindrical cavity, with radius equal to its length, has sidewalls of
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copper and endwalls made of brass. The same design made of all copper has a wall Q of
15,000. What is the wall Q with brass endcaps?

3.7 Two Coupled Cavities

Occasionally one cavity is adequate for the job at hand; more typically, we
have a single source of power, and would like to achieve 5-20 MeV of acceleration
with it. Our analysis of single cavities indicates this isn't possible at microwave
frequencies with a single cavity and typical power sources. We could split the
power and drive multiple cavities with multiple feeds, however this takes up space
and adds complexity to the system. In this case not only must each cavity be
properly tuned, but each waveguide arm and each power splitter must be tuned to
the correct "electrical length,” measured in degrees of rf phase. Happily, it is
possible to couple cavities together and power them with a single feed. Let us start
with the simplest coupled cavity system, consisting of two cavities, as depicted in
Fig. 3.9.

VE VR
\
\
O
e Vl0V20

FIGURE 3.9. The simplest coupled-cavity accelerator consists of two cavities.

From the field-line point of view, this problem can take several distinct
forms, asillustrated in Fig. 3.10. We will consider the TM o1 mode with coupling
by a centered circular iris as depicted on the left in the figure.

We can determine the behavior of this system starting from Maxwell's
equations, as illustrated in Appendix C. Here let us decide on intuitive grounds
what to expect. Let V, be the voltage in cell #1, with V, the voltage in cell #2. We
expect the usual simple harmonic oscillator behavior of V, to be modified,

2
% + wpV, =[perturbation]

and we would like to know what form this perturbation should take. Inspecting the
electric field lines and magnetic field lines for one unperturbed cell, we see that it
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has the character of an LC circuit, with an electric field between two conducting
planes, and an azimuthal magnetic field filling the outer volume. Cutting a hole in
the center---where electric field is large, and the magnetic field is small---should
have the effect of lowering the capacitance. Lowering the capacitance in an LC
circuit raises the resonant frequency of the circuit, thus

||
: T

FIGURE 3.10. Cavity modes may be center or side-coupled, magnetically or electrically
coupled. On the left one sees center-coupled TMg1 mode, in the center, TM 11 coupling,

and on the right, off-center coupled TMg;.

d?v,

dt?
where the dimensionless constant k >0 should depend on the size of the hole.
However, this description must be incomplete, for we expect too that electric field
lines from cell #2 might find their way into cell #1; the cell amplitudes should be
coupled. In fact, the form of this coupling is determined from symmetry---from the
observation that if the voltage in cell #2, V,, is equal to that in cell #1, then every
field line in cell #1 continues through to cell #2, and none terminates on the iris
edge. In this case, there is no deformation of the field lines; as far as they are
concerned one might as well replace the hole with copper. Thus when the cavities
are in phase, they should oscillate as they would if there were no iris. Thisimplies
the coupling

+ WV, = —%ng\/l...,

2

IV 4 v, = - Lke(v, - ), (3.26)
dt 2

and, from symmetry,
2

ddt\zlz + WV, = —%ng(\/z -V,). (3.27)

Exercise 3.22 Considering cavity voltages varying as Dexp(jwt) show that there are

two possible angular frequencies w. Go on to show that one of these modes of oscillation
corresponds to the two cavities in-phase (0-mode), and oscillating at the original resonant

frequency of the unperturbed cavity. Show that in the second mode, the two cavities
oscillate 180° out of phase (1-mode) with resonant frequency, w= w0(1+K)1/2. Show

that the no-load accelerating voltage for this two-cavity system takes the form

72



where @ is the transit angle for a single cavity, and \71 is the no-load voltage phasor for a

single cavity. Which mode would be best for acceleration? Justify the answer by
computing the [R/Q] for the two-cavity system, defined, as previously, according to

~ 12
[RO_ \VNL\
BH wu
with U the stored energy. For each mode, determine the maximum [R/Q] as a function of
transit angle. Show that the optimal transit angle in 7rmode is 159.6°, for which the [R/Q] is

1.9 times that of the optimal [R/Q] for a single cavity. In this connection it will be helpful to
recall that the [R/Q] for a closed pillbox operated in TMq;0 mode takes the form

(RO sinz(%e)

%a = 3139—(—6r.

N

3.8 Multicell Structures

From the analysis of two coupled cavities, we have seen that one does not
need to power each cavity separately, one can couple them together, and form what
amounts to one long cavity consisting of two cells. This motivates the analysis of
multi-cell structures, asillustrated in Fig. 3.11. We neglect wall-losses, ports, and
the beam, as they can be added |ater as perturbations.

We consider N cavities that have been modified by coupling holes. We

denote w; (k) = w?(k = 0)(L+«k), in terms of which our problem takes the form

oV, 1 S
AV EwSK(Vn_1 +V...), (interior cells) (3.28)

for interior cells n=2,3,...,N—1. The end-cells, n=1,N, find themselves in
circumstances different from the interior cells, since each has had only one coupling
iriscut init. In generd, it is desirable to modify the end-cells in such away as to
insure the existence of an accelerating mode with good [R/Q].

To determine the eigenfrequencies of the structure, we consider the problem

in the frequency domain, looking for solutions V, = D\~/ne"“I , SO that

(2K N, + (w0} - w?)V, - (2wik V., =0. (interior cells) (3.29)

A general solution should consist of a left- and a right- going wave,
V, = Ae"” + Be ™, and substituting this in the difference equation, it can be
shown that the phase-advance per cell must satisfy
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w, —w

cos@= ‘;)7 (3.30)
VE VR
\
\
\
0 W o
TR

FIGURE 3.11. Concept for a multi-cell standing-wave structure.

It isat this point that the conditions on the end-cells enter. Thisisillustrated
with an exercise.

Exercise 3.23 Suppose that the end-cells are designed so as to satisfy

2
2%,
G

2
oV,
+ wgvl = wSKeVZ , TZN + OJSVN = ngeVN -1

Show that these conditions on the end-cells are satisfied only for certain discrete values
of phase-advance per cell, corresponding to a=1,2,...N discrete modes of oscillation,
indexed by a, with frequencies, wy = wy1-Kk cos¢, . Make a sketch of the wvs ¢

relation, and remark on the density of modes. Where are modes most dense? Least
dense? Determine the mode excitation patterns corresponding to ko =k /2, and those
corresponding to K¢ =K.

Redlistic standing-wave structures will have diverse features, including boundary
conditions corresponding to half-cells at each end, and perhaps a biperiodic
character.®* Those features of multicell structures that are qualitatively different
from the single-cell case can already be seen in the two-cell example. For example,

if amode o satisfies the synchronism condition 8 = ¢,, then one can show that
[R/Q] =[R/Q], x N/2. At the same time, this choice of phase-advance per cell is
74



not optimal. Instead, optimal [R/Q] corresponds to that mode with phase-advance
per cell closest to Tt Indeed, standing-wave structures typically operate in T-mode,
and do not satisfy the synchronous phase-advance condition. To emphasize, 1+

mode does not imply atransit angle of 1t Thisis arather subtle difference between
the standing-wave and travelling-wave linacs. Synchronous interaction in the

travelling-wave linac requires a geometric phase-advance per cell 8 matching the
kinematic phase-shift witnessed by a speed-of-light particle, wL/c, with L the
cell-length. On the other hand, for the terminated interaction in the standing-wave
linac, optimal [R/Q] occurs near rTphase-advance.

Starting from the perturbed cavity equations,

2
9 \2/” + WV, = %wSK(Vn_1 +V

)_w()%_&%a +ﬂ%5 "

Q& Q, & "™ Q, &

one can show that introduction of losses corresponds to a shift in mode resonance
frequency,

n+1

0 10 .o
Q? =l ——[+ | =2,
p %51 QWEHQW

One can also show that introduction of a port in one cell contributes a correction in
the form of an external Q for each mode, inversely proportional to the squared
mode amplitude in that cell. The external features of the cavity, as determined from
measurement of S;1, must take the form,

V, _ & 2jwaw, /
51(0‘)) - ,..—R - Z wao Qea _1’

VF a=1 (&)5 + jma /QLa _wZ)

and are determined by those modes with finite external Q (i.e., the modes that are
non-zero in the coupling cavity). In the end, the description of a perfectly tuned
multi-cell structure, operated in a particular mode, can be reduced to the form Eq.
(3.12).
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4. Travelling-Wave Accelerators

We began by considering how to accelerate particles and realized that
material boundaries were needed, either to terminate the interaction, or to provide
for a synchronous wave. In the last section, we considered the terminated
interaction in detail, the standing-wave linac. In this section, we consider how to
form a synchronous wave, atravelling-wave linac.

In light of our work on coupled cavities, the description of atravelling-wave
linac can be made quite simple: it is a multi-cavity accelerator, with critically
coupled input to the first cell, and a critically coupled output waveguide attached to
the last cell, with the output waveguide terminated in a high-power matched load.
These facts are enough to permit us to work out the basic design features of the
coupled cavity system, viewed as atransmission line. The pictureisthat of Fig 4.1.

from
klystron

Pout load

el o) e

(
input
coupler input  #2 eee #k e ee OUPUL
cell cell
#1 #n

FIGURE 4.1. Schematic of a travelling-wave accelerating structure.

4.1 Transmission Line Model

We assume that the transmission lines is operated at a frequency where the
input and output couplers are matched, and we analyze the steady-state established
with an input power Pin. If the energy stored in cell #k is Uy, then we may speak of

an energy per unit length at z=z=(k—-1)L given by u(z)=U/L, with L the cell
length. The power flowing past the point zis

P(2) = V,u(2),

with Vg the local group velocity. In steady-state the energy density stored in one cell
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is constant in time, and thus
w,U

0 = dU = changeinstoredenergy intimedt = (P_ - P+)dt - dt,

W

where Qu isthewall Q of asingle cell. The power flowing into the cell from the | eft

is P, and the power flowing out is P.. Thus,
R—R:LE:—%:—Q’O—UL’
dz Q, Q,

or
E__%_E(Vu)
dz Q, dz '

In the simplest case, the geometry of the line is strictly periodic, and it forms a
constant impedance structure. In general, however, we may find it helpful to vary
the cell dimensions adiabatically along the structure, as in the constant gradient
structure.

Given the group velocity variation along the structure, if any, one may solve
the first-order differential equation for u, EQ. (4.1), to determine the energy stored
per unit length. In solving this, one requires the energy stored in the first cell and
this may be determined from the input power Pin,

u(0) = R,/V,(0).

In passing we note that this also provides a simple way to estimate the external Q
required for the input coupler geometry in thefirst cell,

(4.1)

_ W, _ _ OJOL
R = U0 =Y OUI T Q=

and this external Q roughly characterizes the transmission bandwidth of the
structure, although not the useful bandwidth for acceleration, as we will see.

We will be interested in acceleration with this device so let us suppose the
shunt impedance for a single cell is R, and define the shunt impedance per unit
length,

LTTL  Lau
where Vs the voltage gain in one cell. This may be expressed in terms of the
accelerating gradient G, according to V=GL, so that,

QG _Q . © w2

r = :
L wU wu -dP/dz

Let us consider, first, a perfectly periodic (constant impedance) structure. In
this case Vg is a constant, and
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(;jz (V u) K % - ac)g_ij
so that
u(z) = u(0)exp(-2az),
where
=%
2Q,V,
Thusthe gradient at adistance z dong the structureis
[k, u DUZ

)=fo, g Ol

The net accelerating voltage isjust the integral of this,

I

1 g s
'!)' z)dz=G(0 pa

where Le=NL isthe structure length. Let us define an attenuation parameter, T,
T=al,= Zcé)L\S/

Note that the attenuation parameter determines the power to the load,

P(L,) = P(0)e™, (4.3)
and thefill time,

T =(—2==3=SSwg 4.4
GV, (4.4)

We may express the accel erating voltage directly in terms of the input power, using

ET/Z Eh) DUZ V2 _ 1 12
u(O)r —'”r 2aR,r 2TR
% - 5 =(2aR,r) L —(2rRR)",
where we have introduced the shunt impedance of the structure as awhole, R=rLs,
with Lgthe structure length, just NL, with N the number of cells. The voltage with
no beam present (no-load voltage) isthen

Vi =(27R Fi)”zl * =R R)"*(1-e )E%Sm (constant impedance).  (4.5)

78



Exercise 4.1 Show that the maximum no-load voltage for fixed input power and shunt
impedance in a constant impedance structure occurs for 7=1.26, and is

VL = 0.9(P,-n Rs)llz. Compute the ratio of maximum to average gradient in this case, and
the ratio of maximum to minimum power dissipation per unit length.

Exercise 4.2 Using the TMq, pillbox scalings to estimate [R/Q] and wall Q, roughly what
no-load voltage could you expect from a 10' long 1v2-mode constant impedance structure
operating at 2856 MHz, with group velocity of 0.01 ¢ and 20 MW of input power. What is
the fill time? Power to the load? Compare your figures to those for the Mark 1l structure,
with r=47 MQ/m, and other parameters the same.

Such a constant impedance structure is conceptually the simplest travelling-
wave linac, but it has a few undesirable features. These include peak gradient
higher than the average gradient, nonuniform power dissipation, and some subtle
features related to higher frequency modes in the structure. We are free of courseto
consider more elaborate designs. If we wish to obtain amore uniform field profile,
we could taper the group velocity Vy(2) in such away that stored energy per unit
length is constant (constant gradient structure). Thisimplies a narrowing of theiris
radius as one proceeds down the structure. Let us solve for the required group
velocity taper. We have

dv,
E(Vgu) = u_g = —%,
dz dz Q,
o that
W,
V,(2) = V,(0) —Q—Oz.

The power flowing through the structure takes the form

P(2) = V,u = P(0) +{P(L) - P(0)} Li
and in terms of the attenuation parameter, defined with respect to the power to the
load,

o P(L)
O
we may write,
P(2) = F’(O)El— (1- e‘”)ig (4.6)
O L.O

We may also expresstheinitial group velocity interms of 7, using

daP _ o i:_%U:_ W,
@ PO o PO
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s0 that

V,(0) = “’(S—LS(l— e?)™.

With thisin hand we note thefill time,

L.

: 0 0
T Idz Q,.0_ Ll 0_2q,
0

—=—-—%|n T
Vg wO QW\/g (0) E wO
Finally we compute the no-load voltage,

v, = GL, = U rDUZLS 0 @ P(O)rDUZLS
g@ H %WVQ(O) H (constant gradient) (4.7)

- (RR)“(2-¢*)"",
making the approximation that r is constant.

Exercise 4.3 Using the TMy,; pillbox scalings to describe [R/Q] and wall Q, roughly what
no-load voltage could one expect from a 10' long 21/3-mode constant gradient structure
operating at 2856 MHz, with initial group velocity of 0.02c¢, fill-time of 0.8 ps, and 20 MW
of input power. What is the power to the load? Compare to the SLAC 10' structure with r=
53 MQ/m.

Exercise 4.4 The SLAC 10' structure is a constant gradient 86-cell 21/3 mode
travelling-wave structure with nominal 2856 MHz operating frequency. Fill-time is 0.83 ps
and attenuation parameter is 7=0.57. Shunt impedance per unit length is r=53MQ/m
and initial group velocity is Vg/c=0.0204. You have N=245 20-MW klystrons with 3-us

pulse length, and an unlimited number of SLAC 10' structures. Assuming that you couple
one klystron to one structure, fill in the following numbers: a) V. for one structure and
Ve=NVii, b) total accelerator length, c) average site power. In calculating the accelerator
length, assume that 5% of the length is taken up by quads and instrumentation. In
calculating the site power, assume a klystron wall-plug efficiency of 10% and a repetition
rate of 120 Hz. Suppose next that the power from each klystron is divided in half mtimes,

to feed 2M structures. Calculate the net unloaded voltage and total accelerator length and
evaluate these results for m=1 and m=2.

4.2 Steady-State Beam-Loading

Having considered the no-load accel erating voltage provided by an external
power source, let us turn off the external power, and consider the beam-induced

voltage in atravelling-wave structure. The beam-induced gradient G,(2) at point z
in the structure corresponds to a power R,(z) flowing through the structure, with
_G

2ar’

b
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and Gy, the peak or on-crest gradient . Conservation of energy takes the form

ah 1,G, —2a R,

with Iy the beam current (charge per bucket times frequency). In terms of the beam-
induced gradient, thisis
2 2
Ei = |bi - i,
dz 2ar r

or
dG, 1 da
—+ 0 -——=G, =arl,.
dz gj 2a dngb °
Defining
’ 1 da 1, Oa(2)0
=(dZo-——0=1(2)—=In
| 20 dzH @35 0)8
this may be expressed as

iGbe" =arl e
dz
or
G,(2) =e @G, (0) +e ™ | dzarl, ).
0
On the other hand, Gy(0)=0 since the beam must travel afinite length before losing
energy. Thus,
G,(2) = Ibe‘“(Z)J'dz’are“(z'), (4.8)
0

and we take current to be constant for arelativistic beam. We may then express the
beam-induced voltage as an integral,

L

V,(2) = - fdz'Gb(z') =-ml,, (4.9)

where the minus sign reminds us that the beam-induced voltage is decelerating. The
beam-loading coefficient for the structure is

L

m= J’dz’e’“(z')I dz"are’®), (4.10)
0 0

The net voltage when the structure is powered may then be expressed as

V., =V, cosy —ml, (4.11)
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where ¢ is the phase of the applied rf. For a constant impedance structure, a andr
are constants, so that

G,(2) = rlb(l - e‘“z) : (constant impedance) (4.12)
1-e'0 :
m=R[MA- . E (constant impedance) (4.13)
with R=rLs.
For a constant gradient structure, one can show that
_ o 1dyv, _ 11
2V, dz 2¢&-7

with

_ L
¢= 1-e?"

In this case u=0, and one has

G,(2) = %rlID In%. (constant gradient) (4.14)
After an integration one finds

_pMl_ T O :
m= RSEE Z _10 (constant gradient) (4.15)

Exercise 4.5 A travelling-wave linac is designed to produce a net no-load voltage V. If
the linac current I, is chosen to optimize power transfer to the beam in steady-state, what
is the net loaded voltage?

Exercise 4.6 Considering a structure excited only by a beam, show that power to the
load takes the form

2
E(l— e_T)
827 ; constant impedance
T

Po(Ls)=Rs /2 L ,

2
= L ; constant gradient
. 2r
H e " -1

What is the result for a 100-mA beam in the SLAC 10" structure (53 MQ/m, 1=0.57,
constant gradient)?
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z=0 z=L

Exercise 4.7 A constant impedance structure has the output coupled through a phase
shifter and attenuator, and fed back into the input, as illustrated in the adjacent sketch.
Assuming the structure is excited only by the beam, compute the steady-state voltage in
the structure, and determine what input power would be required to produce the
equivalent no-load voltage. Evaluate this for a 50-cell, 21/3, 91.39 GHz constant
impedance structure, with group velocity 0.09¢, driven by a 0.5-A beam bunched at the
11.4 GHz subharmonic. Neglect the finite bunch length.

4.3 Coupled-Cavity Model

The transmission line model is quite adequate for understanding the scalings
for ideal travelling-wave structures. In general however we may be interested in the
effect of tuning errors, transient input waveforms and other more realistic features
of accelerator operation. These problems are simplified by analysis of the structure
asaseries of coupled cavities. The pictureisthat of Fig 4.2.

Let us consider the accelerating voltage in the first cell. The first cell isa
cavity coupled to awaveguide, another cavity, and the beam. The model for such a
system follows from Egs. (3.10) and (3.28),

U
o +—— wé/ ZWiK 4,V + 2 WF DrDEﬁl A

“RoHEa &

Thefirst cavity reflectsavoltage Vy =V, — VF back up the connecting guide toward
the source. The loaded Q includes the wall Q of the unperturbed (no ports) first

cavity
1 1 1
- = 4+ —_—,
QLl le Qel
and the externa Q due to the connecting guide.
For interior cells k=2,3,...N -1, the cell voltage evolves according to
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09°  w, @ O O, O

1
%+Q—E+wk§/ Zwk(Kk v2Vk1 T K k+l) kgﬂa—a
i

and the output coupler cell, k=N, evolves according to

Da wy N, DrD[ﬁID
¥ wg/ wKNl/2N1+2 FN

o, B B

The subscript on the beam-current term reminds us that there is afinite transit time
to cell #k.

VR VF Qw
AN

- 10 0 ()Vk-l() Vk 0Vk+ 0 O

#1 #H2 eoeoee Hk eoee@ #Hn

FIGURE 4.2. Model of a travelling-wave structure as a series of coupled cavities.

Having stated the most general model we will ever need to call on, let us
now consider some simplifying approximations. It is typically the case that shunt
impedance varies slowly with cell dimension, and so, for our purposes here may be
thought of as a constant. If the output load is well-matched, the term Vrn vanishes,
as thereis no power reflected back into the output cell. Wall Q varies slowly with
cell dimension and may be taken as a constant. To avoid a profusion of subscripts
we will simply drop the cavity subscript on the beam current term. Interior cells are
then described as achain of coupled oscillators, driven by the beam, and ultimately
the input cdll,

00° w, 0 1 a
5+ Q—"E + W, g/ Ewlf (Kk—1/ 2Vk—1 Ky 2Vk+1) + 2k‘ Eb’

W

where we refer to the loss-factor for the fundamental mode, k. Our procedure for

analyzing the structure will be to analyze propagation in the interior cells. We then
return to the first cell and examine the requirements imposed on cell resonance

frequency wi, and external Qe to insure a good match to the structure. Finally we
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visit the last cell and examine the requirements imposed on «w and external Q e to
insure agood match out of the structure.

4.4 Coupled Cavity Model, Constant Impedance, No Beam

First consider the perfectly periodic structure. Our model for interior cellsis
smply

00> w, 0 1
% +Q_OE +w§§/k = Eng(Vk—l +Vk+1)'

W

In steady state at angular frequency w, we may express this as a simple difference
eguation,

Vs +20V, +V,,, =0,
just asfor a standing-wave structure, with
_ - - jow, /Q,

a
WK

We wish to insure a travelling-wave, not a standing-wave solution, so we seek a
right-propagating solution of this difference equation. We leave some of the work
to the next exercises.

Exercise 4.8 Show that the dispersion relation for structure voltages
Vi Oexp(jwt - ky), takes the form y = j6 + T, with
2_.2
Wy — W

2 1
(A)OK

cosfg = (4.16)

and an attenuation in nepers per cell of

. wlag
KQy sinfg '’

assuming that '<<6,. What is the relation between drive frequency and the cell resonant
frequency for (a) a Tv2-mode structure, (b) a 21Y3-mode structure?

Exercise 4.9 Show that group velocity in this constant-impedance structure is given by

_Ldw _1 k6ysinfy . Bg _ 2By
cdd 2(1-kcos6p)’ %esin9+ﬁgcose fsind

(4.17)

and show that the attenuation parameter,

CNFe_ N N6 _ N

KQu sinBy  QuBy Q_e .
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Given the macroscopic parameters characterizing the structure (group
velocity, phase-advance per cell, attenuation parameter) one would like to determine
the circuit parameters required for the coupled-cavity model. The last exercises
developed the relations between these macroscopic parameters, and the circuit
parameters for interior cells. Let us consider conditions on the end cells. The
voltage in the input cell satisfies

D

—+w; é/ Z WK N, + Zﬁﬂ,

Q o

where the forward-gO| ng voltage in the connecting guide has been transformed to
VE, and reverse waveform Vg, satisfying V, = Vi +V;. The loaded Q of the first
cdlis
1 _ 1 1

+

Q Q Qu

The input cell resonance frequency, and external Q, Qe are adjusted to insure no
reflected signal in steady-state (V1=VF), corresponding to a match on the

transmission line to a forward-wave with phase-advance per cell 6. Thus

E-wz +%jw+wf§:%wf;<le‘je°(l— r )+2%jw,

1 el

with w the drive angular frequency for synchronism. Equality permits us to solve
for theinput coupler cell parameters,

K,\1-T |sing
w, = T @ ’i:i+l T 1( ) ° . (418)
\51—%K1(1—F)00590 Q Q. 2\51—%K1(1—F)00560
Similarly, the output cell should be matched, and this requires
E—a) + O J&)+O)NE EouNK e (1+r),
Th|S|mpI|$,
K(1+T )sing
w, = % 1 __ 1,1 L+ Jsing, (4.19)

-1k @+M)cosh, Qu  Q, 2 1-1ik,(1+T)cos,’

Based on this analysis, one may expect to find that input and output cells are
detuned from those in the interior of the structure.

Equations (4.16)-(4.19) determine the circuit parameters from the
macroscopic quantities: wall Q, phase-advance per cell, group velocity, angular
frequency. With them one is freed from dependence on the transmission line
picture, and can engage in realistic modelling of the structure behavior, in
particular, observables, such as transient waveforms viewed from couplers at the
input and output, no-load voltage under transient conditions, effects of cell-tuning
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errors, and the like.

Perhaps the first application one might make of the circuit model is the
calculation of the S-matrix for the structure. We will consider a perfectly tuned
structure for illustration, where the problem is solvable analytically. Given that one
is most often interested in assessing errorsin tuning, the primary value of such a
result will be as a check of the numerical circuit solution that we will shortly be
discussing.

Let usdrive a perfectly tuned structure from the input, at angular frequency

Q, the Smatrix elements are
_Vi(Q) _ _Vu(Q)

In this notation, we have transformed the impedance of the connecting guide to that
of the structure. We may compute the terms explicitly as follows. The cell
excitationsin general consist of forward and backward waves,

\7k = Ae_(k_l)y + Be(k_l)y’

where A, B and y are functions of Q. We wish to determine A and B, the
propagation constant we know is y = j8+ 1T, with

2
cos6(Q) = P -2 rQ)=—2/%
Wik kQ,sin6(Q)

The forward and backward wave amplitudes, A and B, may be computed from the
conditions on the end cells,

m o
leQ+wf—QzaA+B)—1wK(Aey+Bey)+21 “wQ ks
Q 2 Q

el

E'j W82 + oy~ QzaAe'(N'l)y + Be(N'l)V) = 1ot)ﬁ,KN(Ae‘(N’z)" + Be(N'Z)y).
Qu 2

Abbreviating

A= DL +wj - Q%

k
we may express this as an equation for the two unknowns, A and B,

O A -iwfke” A, -k, €
EHA -1k, &g Ay - Sokye ] %
with the solution,

Ag 10(A, —iwik,€e ]e [A 1wKeV]Eljlm w,Q

%E__H_ Za)NK ey]e A Zwl 1e M EH)EQJ Qel VF'

FE)E
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where
== (A1 —%wale‘V)[AN - %wﬁKNe‘V]e(N‘l)V
_(Al - %a)lzKley)[AN - %wﬁlKNev]e—(N-l)y_

The S-matrix e ements are then

S_l(Q) +1= \'Nj\-(FQB) =2j %Qé([AN —%a)ﬁKNe‘y]e(N‘l)y _[AN _%wﬁKNey]e—(N—l)y)’
F el —
-(N-1)y (N-1)y
(@) =2 3B @01 0 cosy.
VF(Q) Qel -

These results are most easily visualized by numerical calculation for particular
examples.

Exercise 4.10 Calculate and plot the modulus of the S-matrix elements for a constant
impedance, 7-cell structure, with group velocity 0.09 ¢ and 21/3 phase-advance per cell.
Assume the structure is perfectly tuned to operate at a frequency of 91.39 GHz, with a
wall Q of 2500. Make a similar plot for the cases (a) first cell detuned by +0.1%, (b) cells
perfectly tuned but Q,=500.

4.5 Numerical Solution of the Circuit Equations

For simulation of bench measurements and calculation of the effect of
fabrication errors, we can solve these coupled oscillator equations in the frequency
domain. For calculation of transient waveforms we will solve them in the time-
domain. We set down the numerical formalisms employed in either case. The
coupled circuit model consists of N 2nd-order differential equations,

00° w, d 1
gz + aa + wﬁ n— Ews(Kn—ﬂZVn—l + Kn+1/2Vn+1

n

)+ 20 Pes

O

with dn1 the Kronecker delta function, dn,1=0 unless n=1, in which case o 1=1. In
the frequency domain at drive frequency Q, we have

S
2

This is a tri-diagonal matrix equation and may be inverted quickly, using, for
example, the subroutine t r i dag from Numerical Recipes.25 In this way one can
quickly evaluate Eq. (4.20) for the S-matrix components. In a similar fashion,
adding a drive to the output cell, one can compute Si2 and So.

In the time-domain one may solve the second-order equations directly, or
make an eikonal approximation, preferred for speed of calculation. In thefirst case
one writes the equations as

~ 0 . - _ .
Kno1/2Voor + HQ% + O‘)rf - Qz@n - %wsKnﬂ/anu = ZJQ%VFJn,l'

en
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> IR

= _%\M - wrfvn + lwg(Kn—l/ZVn—l +Kn+l/2Vn+l) t— 200, OVe 5n
ot Q, 2 Q, o

and proceeds to a discrete time step, using a leap-frog approach, where W is
computed at midpoints ti+12, and V is computed at the time-centered points t;. Thus

. Vl+l_v|
V\{: 1/2 —_'n n ,
At
\/\4:+l/2_\/\4:—l/2 w W|+1/2 +W|—1/2
At T Q 2

1 2w, OV
_wzq/l Kn- 1/2 _2 n+1/2Vr:+lB Q o ( )5

More explicitly, starting at timet;, with W ™2, V! known, one proceeds to the next
time step using,

_w,AtQ
\Mu/z _ ZQAt | “1/2 _ D;At | Vn|+1 :an +M+l/2AI, (4.21)
[ﬂ_+ w D + Cl)nAtD
9720, 1 H* 20 H
where we abbreviate
1 0, 2w, V-
n sE{/nl n 1/2 - 2 n+1/2Vn|+1D Q dt (t )5 (422)

This approach requires 60 steps per rf period and is unnecessarily time-consuming
for a narrow-band drive. This approach is useful, however, as a check of the
following eikonal (slowly-varying envelope) technique in the case of a short pulse
excitation.

In the etkonal approach we assume a narrow band rf drive taking the form

Ve (t) = O{Vi (1)}

where "narrow-band" means,

F

7~ << Q‘\7F‘.

We look for a solution for cell voltages also taking the form of slowly varying
phasor amplitudes modulating the signal at the carrier frequency Q,

N, O _ w, 1 ~ 2]Quw,
o +HQan+w§_QZ§/ _Ew (Kn 1/2V +Kn+1/2Vn+1)+ l

2jQ o V3, ;.
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Letting

= jQ—" “n +w’ - Q7 (4.23)
Q
the time-centered discrete form of the equations for n-th cell voltage at time step a,
V2, is

n

Va+1 \7a \7a+1+ “a

2jQn——hopp n T
At 2
0 ~a+1+ “a "'a+1+ ~a 0 :
= l(")r21 n-1/2 Vn_l Vn_l K2 Vn+l Vn+l + ZJan VFa5n1
2 2 2 H Qun

and this may be rewritten as

1 ran  (RIQ A, 1 "
_Zwr?Kn—l/ZVn '+ DF T 2 E{/n ZwiKnu/anul

4.24
1 a+1 EQJQ An E{7a+1 1 2 a+1 ZJan a ( )
4wnKn 1/2V D At ?D n +anKn+1/2Vn+1 VF 5n1

en

Thus the etkonal form of the equations can be solved by ati mecentered difference
and one tri-diagonal matrix inversion at each time-step. Since the number of time-
stepsis governed only by the structure and drive bandwidths, this approach can be
much faster than solution of the full 2nd-order system.

4.6 Cell Tuning Errors
Having rested our hopes on resonant energy storage for acceleration, let us

consider the effect of deviation from resonance, on accelerating voltage. The net
voltage experienced by a particle entering the first cell at time to may be expressed as

N
= Z Vk(tO + tk)
=

where tyk=(k—21)L is the beam arrival time at cell #k (we take V=c). Expressed in
eikona formthisis

VNL(tO) = D(\N/NLGWO) =4 i\?kej“‘oﬂ'w‘k ,
=1
or

N
- Z \7kej(k—l)¢
=1

where ¢ = wL/c is the synchronous phase-advance per cell, and we assume no
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errorsin cell length. Inthisform \7k, the phasor in the rotating frame, may yet have

some time-dependence. For simplicity, we specialize to the steady-state case. We
consider a uniform complex phase-advance per cell y =j6+T at the drive

frequency w. Then,

TR . - 1-e\0o)
wk:wZamUk4XQ—r»:% (4.25)
=1

1-¢i

where 6=¢-6.
Considering a constant impedance structure, evaluating this for =0
(corresponding to synchronous phase-advance), and identifying the attenuation

parameter =N/, we recover Eqg. (4.5). Evidently the quantity o provides afigure
of merit for the useful accelerating bandwidth of the structure,

5:¢(w)—6(w):¢(w)—9(ws)—%(w—ws)+...: E%—VLE&(H...,

or

o= —2715@i = -T,dw, (4.26)
A w B

where ws isthe drive frequency for synchronism, and L isthe cell length. Thus the

useful bandwidth varies inversely with the fill time and is much narrower than the
transmission bandwidth.

Exercise 4.11 Plotthe loss in no-load voltage as a function of a uniform deviation from
synchronism, 9, for 7=1.26.

Exercise 4.12 The Mark Ill accelerator at Stanford was a 2856 MHz linac consisting of
twenty-one 20 MW klystrons each powering one 3.05 m constant-impedance A/4
structure. Fill time was T=1 psec, and wall Q "10,000. Shunt impedance per unit length
was r=47.3MQ/m. Calculate the loss in no-load voltage for the Mark Ill for a drive
frequency error of 100 kHz. What are the implications for temperature regulation? (Recall

that the temperature coefficient of expansion of copperis a =1.7 x 107° /°K).

For a constant-gradient structure, the analysis is similar to that for a
constant-impedance structure, except that theteem I' = 0,

Thus, for asmall deviation from synchronism, one has
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Next we consider the more general problem of cell-to-cell detuning. We will
consider a transmission line consisting of coupled cavities, with all but the m-th
cavity perfectly tuned, asillustrated in Fig. 4.3.

—~~1—E(N2 -1)5° =1—%(Tf5w)2 ~1-

Error

11— \ T—
N o

ol 0o

<+<—R  #m

FIGURE 4.3. We consider first the case of a travelling-wave structure with a single
tuning error. The tuning error results in a reflected signal R, and a transmitted signal T.

In steady-state, with awave launched into the structure from the input cell, a
reflection will occur at the m-th cell, and the voltage in the k-th cell will take the
form

Ba—k(j0+r) +[e—2m(j0+l')R]ek(j0+F); k<m
V.=0 . ,
a Te—k(]9+r) , mS k
where continuity requires T=1+R, and perfect tuning would correspond to R=0.

We can compute the reflection coefficient, R, in terms of the cell-detuning by
applying the coupled-cavity model,

(I 2 o, . IO, 2 1.,
?"‘)m + wm —W J Q =+ 5wm m Ewm(Km—ll 2Vm—1 +Km+1/ 2Vm+1)'
w

Explicitly thisis

E&ufn + W~ W+ | Og)m aTe‘m“‘“r))

- % wanm-m(e'(m‘l)“e”) + [e—zmue+r)R]e<m—1>(je+r)) + % WK, Te Mo

and after rearranging terms, and making use of the tuning condition,
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wrzn —w’+ | o = 10‘)rzn(Km—ll2e_(m_1)(j6+r) +Km+1/2e_(m+1)(19+|'))’
Q 2
one can show that
_ oy,
O, + WK -1, (T COSO + jSiNG)

R=

Thus we find that transmission through cell #m with detuning corresponds to a
transmission coefficient T = exp(jdm), where the term Jm is in general complex,
but to a good approximation is just
_1ow) 6
" 2w B,
With this result, we proceed to calculate the loss in no-load voltage due to cell

detuning. To simplify the problem, we will assume that all detunings are quite
small, and neglect multiple reflections, making the approximation

\7k = e_(k_l)kaTk—l' : T1\717

(4.28)

where y = j@+T is the propagation constant for the tuned structure. This is
expressed more simply as

~ e (DY
Vk_eJEe( )VV1'

where &«isthe cumulative error in phase-advance at cell k,
k

g = Z d, -

m=1

The no-load voltage is then
v, = igkeuk—w y i kD6 gies
=1 =1

In thisform it is straightforward to compute the no-load voltage, given small errors
in cell tuning.

To appreciate the tolerances implied for fabrication and assembly, it is
helpful to have something still more explicit, so let us consider the case of alarge
number of structures, fabricated with a particular distribution in cell detuning

errors. For simplicity, we assume the distribution in o, for any m, is a Gaussian,

with rms os. The average (over a large-number of structures) no-load voltage is
given by

(V) =V, i e lien) (g )
=1

and to compute the average, <ej£*>, we note that the cumulative error €, is
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distributed according to a Gaussian, with rms o7 = ka;. Thisimplies that

. © O 2 []
(€)= [0 g, OPHE B 2055000

The average no-load voltage is then
/ Ay i 01, .0
(Vi) = VlZ exp{(k-2)(i¢ - v)} P kI3
=1

Thisisjust ageometric series and easily summed. For illustration, consider the case
of aconstant gradient structure, with no error in drive frequency,

<\~/NL(05)> ~ sinh(% N0§)
V., (0) B exp(—%(N +1)0§) Nsinhi%a(i )

For No2/4<<1, thisissimply

<\7NL(U 6)>

Vi (0)

=1—%(N +1)o?. (4.29)

Comparing this with the result for a uniform frequency error, we can see that the
structure is more tolerant of random errors by afactor of = N/3.

Exercise 4.13 Consider a 91.39 GHz, 60-cell, 217/3-mode constant-gradient structure,
with initial group velocity 0.09c¢. Calculate the rms fractional cell frequency error tolerance
for an average loss of 1% in no-load voltage. Estimate the absolute tolerance in microns,
assuming OL/L =-dw/ w.

Exercise 4.14 For the structure of the previous exercise, write a short program to
check the analytic estimate. For each of 10 values of o; generate a sample of 100
structures with Gaussian-distributed detuning errors, compute the no-load voltage
reduction for each, and make a scatter plot of no-load phasor amplitude versus o, with
the theoretical mean overlayed.
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Epilogue

These notes are intended as an introduction to electrodynamics as applied to
microwave linacs. However, let us not leave without mentioning the challenges at
the forefront of research in electromagnetic accelerators. The ultimate goal of
accelerator research for high energy physics is high energy, and to reach high
energy in areasonable length, one requires a high gradient. For example, a5-TeV
collider fitting on any existing laboratory site would require agradient of 1 GeV/m
or more.

To place such a gradient in context, let us take note of the phenomena
known to limit gradient, and gradients achieved to date. A glimpse of these may be
seen in Fig. E.1. This plot includes results for a laser wakefield accelerator
(LWFA), a plasma beat-wave accelerator (PBWA), and several 0.5-TeV collider

concepts.® The block marked "SLC" extends from 20 MV/m as for a typical
structure, to 40 MV/m as for certain higher gradient structures on the linac. The
phenomena of concern are field-emission, breakdown, trapping, and pulsed
heating.

2 i
10- @ Breakdown
. . Trapping
= 10 -
~
3
(D 100 4
N
@) 120 °C
10 -1 CLIC @ : ; R 80 °C
NLC °
SLCD\. 40 °C
10 -2 L I | | |

10 -3 10-2 10-1 100 101 102
A(cm)

Figure E.1. Current state of the art in high-gradient accelerator research.

Field-emission refers to the extraction of electrons from a surface in the
presence of alarge electric field. The picture associated with this process consists of
apotential well binding electrons to the bulk of the solid, modified by the presence
of the applied electric field. Electrons tunnel through the modified potential barrier
at the surface and escape. For such a guantum-mechanical tunneling process, one
can show that emitted current density J varies roughly as InJ =-D/E withD a

constant depending on the work function, and E the electric field. In practice, in
high-power rf work, the exponent inferred from collected current is 50-200 times as
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large as one would expect based on the expected surface electric field. To operate at
agradient of 1 GeV/m one would require a much lower field-enhancement, on the
order of 5, to control loading and structure damage.

Known mechanisms for enhancement of field emission are (1) aroughened
surface, causing geometrical enhancement of the local electric field, and (2) surface
impurities, tending to lower the work function. Control of field emission is an
ongoing research activity at present, concerning itself with surface finish, coatings
and cleanliness.® At the same time, there is experimental evidence that field
emission is inhibited on short, nanosecond time-scales,”” and this suggests that to
reach high gradient, one could consider structures with natural fill times on the
nanosecond scale. Thisimplies a short rf wavelength, on the order of millimeters.

Field emission is sometimes associated with breakdown.” For high-power
pulsed rf systems operated at high vacuum (10-9-10-7 torr) as employed on rf
linacs, breakdown refers to a collection of three coincident symptoms: (1) a sudden
change in the rf waveform, e.g., a sudden increase in the reflected voltage from a
resonant device, (2) an increase in x-ray emission, (3) a degrading of the vacuum.
Thefield level at which breakdown occurs for a given structure is known to depend
on the history of the structure (fabrication, assembly, cleaning, handling), in
particular, its previous exposure to rf (conditioning cycle). In general one may say
that breakdown occurs at a higher field level for a shorter pulse and this too
suggests that for high gradient, structures operating on shorter time-scales would be
desirable.

Trapping refers to the acceleration from rest of field-emitted or injected
electronsin the structure. Trapping fraction is afunction of the product GA of the

gradient G and the rf wavelength A. This is easy to see. We express the
accelerating electric field in atravelling-wave structure as —eE, = eE, cosy , where

the phase ¢ = Bs—wt, with g the wavenumber for the rf signal. The angular

frequency of the microwave system is w. Given an initial value for an electron’s
phase and energy, we may track its longitudinal motion according to

dy _ w d _
bl vy d—s(mczy)—eEOcosw.

z

One can show for for an electron injected into a speed-of-light structure (a) IB= c),
with initial speed over ¢, 3, and phase ¢, that at any later time, its phase ¢/, and
speed over ¢, [ arerelated according to the "binding-field" expression,

. 101-8_ 1-B,0
S
with a =eE,/mc®B, just the normalized product of gradient and rf wavelength.
Analyzing this result one can show that the minimum value of a required for

trapping of particlesfrom restis a =1/2. More generally, one can show that the
fraction of a monoenergetic beam trapped in a speed-of-light structureis given by

96



0 1-p3.0
ftrap:1+15in_l —l ‘Jﬁ ]
2 m a\1l+[, E
To control the trapping of parasitic electrons at high gradient, one requires either (1)
control of field emission or (2) a short rf wavelength, or both. The curve in Fig.

E.1 corresponds to a=1 and atrapping fraction of 50%.

Pulsed heating refers to the deposition of heat, by Ohmic loss, in the
conducting structure, in asingle pulse. Heat flow within the conducting surfaceis
governed by the diffusion equation,

a1 o0°T
C—=0FE?-k ,
ot 0&?

with o E? the local volume rate of Ohmic energy deposition, k the thermal
conductivity, and C the heat capacity. For room-temperature copper
K =401W/°K -m and C=3.45x10°J/°K —m®. The depth to which heat
diffusesin atime t varies as t'?, and accordingly, the temperature rise within the

conductor varies as AT [ E*tY? Curves of constant pulsed temperature rise are
shown in Fig. E.1, for pulse length equal to the natural fill-time of a constant-

gradient travelling wave structure with attenuation parameter 7 = 1.

Taking all these considerations together, the phenomena limiting gradient all
imply that high gradient requires short wavelength. For a 1-GeV/m linac, interest
beginsin the W-Band, 75-110 GHz. A cross-mark has been added in Fig. E.1 asa
helpful landmark, corresponding to 1 GeV/m. The minimum frequency is close to
91.4 GHz (3.3 mm), the 32nd harmonic of the SLC fundamental frequency, 2.856
GHz. However, the curves of pulsed temperature rise, in Fig. E.1, make clear that
such a W-Band linac will suffer severe pulsed heating, and the conventional
travelling-wave structure, the paradigm for fifty years, will fail. To be sure, it isyet
an open question exactly what cyclic pulsed temperature rise a structure can
withstand, and thisis the subject of ongoing research on materials under conditions
of high-power pulsed rf.*® Other essential research problems include structure
fabrication,” wakefields,* and power sources.*

Ultimately the question for any linac concept is: what is the maximum
achievable gradient for a concept and technology scalable to ahigh energy collider?
This question is asked for the conducting geometries, as well as the dielectric, for
the tube-powered linacs, as well as laser and beam driven linacs. The answers are
largely unknown. For the conducting structures, conceptual innovation is required
aswell as materials research. For the plasma accelerators, basic parameters such as
[R/Q] have yet even to be calculated, and the collider concept itself is non-existent.
The field today is wide-open, and as Fig. E.1 implies, opportunities for research

abound.

1/2
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Appendix A: Numbers and Math

A.1 Constants

A few constants are hard to live without, and are listed for conveniencein
Table A.1. It is natura to ask: why these constants and not some others? Questions

like this are why we have high energy physics programs at many of the national
labs!

TABLE A.1. Constants for electrodynamics in this universe.

mc? = 0.5110MeV electron rest energy
1
C=— =2.9979 x 10° m/s speed of light
\€olo
2
€ -
r,= ~=2.8179%x107"m classical radius of the electron
4rE,MC
Z, = /E =376.7Q wave impedance of free space
80
rm3
l, = 4rE, =17.03kA Alfven's constant
e’ 1

a= = fine structure constant
4re,hic 137.036

To reduce quantities to practical units one needs in addition the charge of an
electron, -e, with e=1.602x10™°C, and mc/e=1.7x107T — m. Occasiondly it
is helpful to know the ratio of proton to electron mass, m,/m= 1836, Avogadro's
number N, = 6.022 x10%, and Boltzmann's constant, k;, where kT =1/38.7 eV
for T=300°K. It is never necessary to remember &,=8.85x10""Fm™,
U, = 4rrx107"NA™, nor the mass of the electron m=9.109 x 10*'kG.

Exercise A.1 A photon of angular frequency w carries energy % w  Using the constants

from Table 1.1, and the electronic charge in coulombs, show that a photon of 1 pm
wavelength carries energy of about 1 eV. (Evidently one does not need to remember

that Planck's constant divided by 2mis 7 =1.05 x 10734 Js J)

Exercise A.2 The binding energy of an electron in the ground state of a hydrogen atom
is meczor2 /2. Compute this in units of electron-volts.

In addition, there are a few combinations of numbers that come up so
frequently they also should be second nature. In speaking of couplers, attenuation
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and the like, decibels come in handy, 10log,,(2) = 3dB, 10log,,(3) =5dB. One
someday may wonder whether an error of +0.1 dB is important. Since
20l0g,,(0.99) = -0.1dB, the answer is yes if one is working at the 1% level in

voltage, otherwise no. If the error is +1 dB then since -1 dB = 10log,,(0.8), the
uncertainty is of order 20% in power. Mention of units for amplitude reminds us
too of units for phase, m=3.14159 and 1radian = 57.3°. Next, one may need to
communicate results in some strange yet conventional set of units, so let us
contemplate our choices.

A.2 Units For All Occasions

The conventional set of units is the International System of Units,
colloquially, MKS. That said, in some places, to get something machined one
needs 1 inch =254 cm and 1 mil =0.001 inch =25.4 um. If surfacefinishis a

concern, for a machined part, Class XX means XX pinches roughness average or
R,. Roughness average is the average peak-to-valley depth over the surface. A
rough surface exhibits greater losses than a smooth surface, for then the wall
currents must traverse a greater path length. In addition, rough surfaces are
rumored to have lower breakdown thresholds at high power. So agood finishisa
good thing. A Class 1 finish has a roughness average of 1 pinch =250 A. Other
units that may comeup: 1 m=3.3 ft, 1 mile=5280 ft =1609 m. Electronsin
linacs often come in bunches afew mm in length, where 1 mm = 3.3 ps.

Area too is a broad subject. Accelerators are often built based on the
expected cross-section for some event. Cross-sections are usually measured in
picobarns (10-12 barn) or, worse yet, femtobarns (10-15 barn) nowadays and so one

may need 1barn=10"m?. Oftentimes one hears experimenters speaking of

inverse picobarns; what they are referring to is a number (integrated luminosity)
they can multiply by their expected cross-section to determine the number of events
they could produce. Most likely they couldn't produce that many. Area is also
significant in the physical layout of an accelerator, with units such as 1 hectare
=100 m x 100 m, 1 acre=43,560 sg. ft= 0.4 hectare.

Meanwhile, time is of the essence, so we mention, 1 week=168 hour,

1year = 8760 hour =3.15x10"sec. Speed we appreciate; electrons in linacs
typicaly travel at about c=1 ft/ns. Signalsin coaxia cable (RG-214 or RG-58A,

say) often travel at 0.66c=1 m/5 ns. Let us also take a moment to enjoy the many
units for pressure,

1.01x10° Pa=1.01 bar = 760 mm Hg(0° C) = 760 torr =14.7 psi .

Exercise A.3 A 10-GeV electron beam travels through 8 girders, each girder consisting
of 40 feet of accelerating structure. At the end of each girder the beam induces a signal
on RG-214 cable. All cables must be run 50 feet up to exit the accelerator housing, and
then must be run to one location, directly above the end of one of the girders, to permit
acquisition of the signal by a single gated analog-to-digital converter (GADC). Cable
lengths must be such that all signals arrive simultaneously. At which of the eight locations
should the GADC be located to minimize the length of the longest cable?
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Accelerators consume a alot of joules, and this may show up on the power
bill in British thermal units, 1BTU =1.05kJ. If horsepower is needed,
1 hp=0.746 kW, at the other extreme, 1 mW =0 dBm, i.e., dBm means
decibels relative to milliwatt. Speaking of energy and power, it is amusing to note
that a typical industrial 5 hp motor will run at 70-80% efficiency, as can a home
furnace, or afluorescent light bulb. Makes one wonder what an accelerator can do.

Exercise A.4 The Stanford Linear Collider (SLC) collides two 46-GeV, 1-mm long
bunches, each with about 6 nC of charge, at a rate of 120 Hz during normal operation.
What is the average power in one beam? The peak power? If the power drawn by the site
during 120 Hz running is 50 MW, what is the practical efficiency of the SLC?

A.3 Vector |dentities

A vector recall is athing with magnitude and direction. For example, wind
"velocity" is avector since it consists of a speed (e.g., 100 miles per hour) and a

direction (e.g., from the East). The dot-product (or scalar product), As B, of two
vectors, A, B isjust a number, |A||B]|cosB, where | A| is the length (or
magnitude) of A, and 0 is the angle between A and B The cross-product of two
vectors is yet another vector, at right anglesto A and B. To picture the cross-

product Ax B, one places one's right thumb on A, and index finger on B; the
palm then pointsin the direction of the cross-product. At some point, use of hands
becomes tedious and we resort to an algebraic approach,

A A~ A~

XX X
AxB=|A A Al=%(AB -BA)+%(AB -BA)+%(AB -BA),
B B B

referred to an orthogonal right-handed coordinate system with basis vectors
%,,%,, %, for example (x;,%,,%;) =(X,y,2), corresponding to directions forward,

left and up.

It is when a cross-product is involved that the more outrageous of the
Vector Identities arise. However, the secrets of these Vector Identities can be
unlocked with the anti-symmetric 3-tensor, ¢,. If (ijk) isacyclic permutation of

(123), then ¢, =1. Thus €,,; = &;, = &,5 = 1. Moreover if (ijk) differs from (123)
by an even number of transpositions, then &, =1. A transposition is an
interchange of indices, such as (ijk) — (jik),(ikj),(kji). If (ijk) differs from (123)
by an odd number of transpositions, then ¢, =-1. If any of the indices (ijk) are
identical, then ¢, =0. Using these rules, one may check, component-wise, that
the cross-product of two vectors may be expressed as
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(Ax é)i =S S KB = g AB

where we adopt the abbreviation that repeated indices are summed over the values
1,2,3. This summation convention saves one alot of time and paper. One can also
check, component-wise, the secret to all curl identities

gijkgilm - 6]I5km _ 5jm6kl ,

where 8" isthe Kronecker delta, 5 =1if k=1, and & = 0 otherwise. One can go

on to demonstrate infinitely many identities; Exercise A.5 includes three of the more
popular ones.

Exercise A.5 Confirm that

A+(BxC)=C-(AxB)=B+(CxA),

Ax(BxC)=(4-Cc)B-(4- B)c,

(AxB)+(cxD)=(4-B)C+D)-(4: D)8 C).

We can dso use ¢, to derive some relations for gradient, divergence and curl. First
though, let us define these items.

A.4 Vector Calculus

Given areal-valued (scalar) function f(F), one may sketch the surfaces of

congtant f (equipotentials); the gradient of f, denoted if(F), is avector normal to
the surface passing through 1, given in Cartesian coordinates by
Of :iﬂ+yﬁ+2ﬂ.

ox "oy oz
Recall that the partial derivative, of / dx, isjust an ordinary derivative with respect
to x, when the other independent variables, y and z are looked on as constants. This
ordinary derivative s just the instantaneous slope of the curve f vs x.

Asfor divergence, first consider avector field A(F), i.e., an assignment of

avector A to each point in space F . For example, we may consider particles of hail
in a thunderstorm---specifically, the flux of hail particles, defined as the local
number density of hail multiplied by itslocal velocity. (Units would then be number

of hail particles per square meter per second, or m2s'1.) The divergence OeAaa
point I isjust the rate at which particles are leaving a small volume enclosing T,
divided by the volume. Symbolically, we say

e A= |imib|;2i- as.
v-o\
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The limit symbol means the value when V becomes small. The surface of the
volume V isdenoted by gV and this surface has been divided up into small squares

of area dS. The vector dS has magnitude dS and points outward, normal to the

surface. The dot product Ae dS simply counts particles flowing through the
square. The integral sign indicates a sum over each little square. In words, the rate
of accumulation in avolume V istherate at which flux enters.

Given this definition it isn't surprising that for a finite volume V, one has an
identity,

Ii- A d% :ﬁ. ds,
V

also referred to as the divergence theorem, or sometimes Green's theorem (although
George Green developed several, as we will see). On the left-side, the volume V

has been divided into little cubes each of volume d*f ; one can picture a cube of

dimensions dxx dy xdz, in which case d* = dxdydz. In Cartesian coordinates,
divergence takes the form

|_jo A:A+dﬁ+ﬁ_Al_
x & oz

Finally there is the matter of curl. The curl of a vector field A is another

vector, denoted [J x A, and is most easily defined component-wise. To compute
the component of curl along adirection n, at apoint ', let us draw a small closed

contour (a circle, if you like) around the point 7, with normal n. The curl is
defined as

where the area enclosed by the path (the area of the circle) is S and the contour (the
perimeter of S) is denoted JS. This contour has been divided into small lengths dl

and the vector dl is oriented tangent to the contour, with magnitude dl. Theintegral
sign indicates a sum over each length element. Such an integral is referred to as a
circulation integral, since it provides the local magnitude and direction of the
circulating component of the flux. For afinite surface S one has Stoke's Theorem,

OxA)edS= [Aedl.

Jo)-as=]

In Cartesian coordinates, the curl of avector may be expressed as
(OxA) = oA,

where we adopt the abbreviation 8' = ad/dx’ .

Exercise A.6 Confirm that O0x7 =0 and e (F Xé) =0, where a is a constant vector.
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Exercise A.7 Verify that
(i1 A) =5 A) - 024, a.(/:) ( A4« (ix8),

{ DXB} = AP9agb - AP3PBA,  (Fix A). (P ( Ab)(aasb) (aaAb)(abBa).

n /s

FIGURE A.1 Geometry for application of Green's theorem to a surface S and boundary

0S.

In analyzing waveguide, we will make use of Green's second identity, also
caled Green'stheorem,

0w+ B Bl = fun Weq,
S

wherey, and (, arefunctions of 1 , the areaintegral is over the waveguide cross-
section S, and the line integral is around the waveguide circumference JS, as
indicated in Fig. A.1. dy,/on isthe derivative of ¢, along the outward oriented
normal.

A.5 Cylindrical Coordinates

Cylindrical coordinates are frequently used in accelerator problems, as very
often the material geometry (the beamline) possesses cylindrical symmetry about
some axis, usually denoted Z or S. Notations we will use for position are

R=T, +Z=7,+5=(X,y,2) =fr + 2z,
where the radia coordinate r, and the angle @ are determined from X =r cosg,
y=rsing, sothat r? =x*+ y?. Unit vectors are

A

1,00 o o1 L
F=2(+yy), @=2(-yx+).

The gradient operator is
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ror o 2@ 97

The volume element in cylindrical coordinatesis d°f = dV =r dr dg dz.

Exercise A.8 Check that, for any constant coefficients fy,,
+o00 .
f= 3 fprmelm?
m=-—oo
is a solution to O%f =0. In the Xx-y plane, sketch the curves of constant rcosg@= Drejq’,

and r2 cos2¢=0r2e2/%.

A.6 Integrals and Special Functions

The bottom line on integrals is Gradshteyn and Ryzhik.33 At the top of the
listis

—x? _1.1/2
Idxe =im'?,
0

This can be checked as follows:

sy _szf_1D°°d s St s I IO
a X e E_ZHJ; ) %t[oxe E_ZH xdye

%7 e T, T

4{d(p{drre 4J;due 4
In the first line we used the fact that the integrand is even, so that the integral isjust
one-half of that over the entire real axis. In the second line we identified an integral
over the entire x-y plane. In the third line we changed to polar coordinates in the x-y
plane, and changed variables again from r to u=r2. The remaining integral was just
an exponential integral. We can also dress this integral up a bit with a change of
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variables,

<)

v O 0200
_J; dxe EEE eXpEEE'

Next, there are afew special functions that are essential; all can be found in
Numerical Recipes.2s The definition of the regular Bessel function of the first kind,
of order n, is

2m
3,(8) = %T [doereican,
0

and this may be expressed also asaTaylor series expansion,

(9-gd5 Ll

One can show that

%dfz f_f (€ n)gun:o,

that is to say, the Bessel function can be employed to construct solutions to the
Helmholtz equation in problems with circular symmetry,

'm(lea d 2 2 2 jme
0=emp Sl rr“ +B0(Br) = (02 + B2) 3, (Br)e™].

Thisfunction and afew others are plotted in Fig. A.2.

Exercise A.9 Confirm that f:Jm(BCr)ej(wt_ﬁzz)ejmq’ is a solution to the wave
equation,
0 20
2 1 0
H° - ZEf 0,
a
provided w? = CZ(BE +B§).

A number of Bessel function integrals can be found in the references; oneis
particularly helpful,

Jl'dq‘EJn(aE)Jn(BE)=%5g,ﬁ3§+1(0’), it J3,(a)=23,(8)=0.

In solving the wave equation in an enclosed cylindrical geometry, it is
helpful to have j,, the n-th zero of Jm, and j,,, be the n-th zero of J.. A few of
these are listed in Table A.2, and a more exhaustive listing may be found in
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Abramowitz and Stegun.22 1t is worth

others one can look up.

remembering

o

=24 and j;, =18, the

FIGURE A.2. A few Bessel Functions for illustration.

TABLE A.2. A few zeroes of Bessel functions.

Jon Jl(jon)

2.40483 0.51915
5.52008 -0.34026
8.65378 0.27145
11.79153 -0.23246

14.93092 +0.20655

A.7 Delta Function

Jin
3.83171
7.01559
/2n
5.13562
8.41724

Ji(j1n)
-0.40276
0.30012

J’2(f2n)
-0.33967
0.27138

i

Jon

3.83171
7.01559
Jin

1.84118
5.33144

JO(/(’)n)
-0.40276
0.30012

J1(jin)
0.58187
-0.34613

One most helpful tool in the analysis of waveformsis the delta function,

5(x) = ims, (x).

where

0, (%)=

\2710 E—Za %
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Given the integrals established in the previous section, one can see that

:[ dxd, (x) =

In fact, one can see that for a continuous function f varying slowly on the scale g,

ate ate

Idxé x—a)f Idxé x—a)f(a)= f(a),

provided gislarger than afew o. Based on these relations one can determine the
rules by which é-functions are employed,
. N0 c<a
[ax&(x-<)f(x) = Hf(c) a<c<b.
é E 0 b<c
A related item is the step-function,
10 x<O
H(x) = E% x=0
Hl 0<x
Onerelation is particularly handy, note that

1 O t2Qg 1° ol
5“(X)_Nr@1JEXpB—202 —ET:[Odwexp( lwo +]wt),

so that in the sense of our limit,
1 ” JfAI
o(t) =— Ida)e :
2.
Exercise A.10 The current waveform for a single electron bunch in a linac often takes
the approximate form
Qoo o
210} 0 201«2 D’

for some bunch length o, =co;. Confirm that Q is the charge in the bunch. Suppose
that such a current were passed through a resistor, R. Compute the energy dissipated,

I(t)=

+00
U= g dt I°R
—00

and the loss-factor k=U/ Qz.
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A.8 Fourier Analysis

The Fourier transformation is the map of an integrable function f(t) toits
Fourier transform f(w),

z 1

£(t) » f(w)= I (t) |

Since notations differ, it pays to check the normalization when checking another's
results. In reading physics papers one often makes the substitution j — —i. Notice

that one has an inverse Fourier transform

( 1

J‘dwe"“ ;n}odt’e"'“"f(t’)

= J’dt ft Idwe“*‘e Jx _Idt f(t)o(t-t) = f(t)

provided the order of integrations may be interchanged, which isto say, if fis
sufficiently well-behaved.

Exercise A.11 Show that the Fourier transform of the current waveform for the
Gaussian bunch of Exercise A.10 is

TP ( 1,2 2)
/ =—
(w) \Znexp 5w of

Confirm that the energy loss in Exercise A.10 may be expressed as

+00

U= _[dw‘/‘

Exercise A.12 (Convolution Theorem) Show that if f(w) = §(w)h(w), then

+o00

f(t)= far gt')h(t~t).

—00

For a well-behaved function defined on a finite interval, it is often
convenient to use a Fourier series. The Fourier series for F(¢) on the interval

(0,2m) takesthe form

+00

F(o) = Zej““’Fn,

n=-o0

where the coefficients are obtained according to
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2m 2

! J’d(pe "F(¢) = iId(pe Ing Ze‘m“’F

1 +00 2m

F, [dpe ™e™ = — L § F.210,,, =
2R L Sk,

m— —00

Exercise A.13 Consider the Laplace equation in two dimensions,

2
210,90, 1O o
ror or o"lqyz

Argue that at any fixed radial coordinate r, f(r,¢@) should be a periodic function of ¢ Go on
to decompose faccording to

f(r,g) = Jrzooej”(pfn (r).

Determine the equation satisfied by each f,, and in this way show that the solution given
in Exercise A.8 is the most general solution of the problem.

A.9 Numerical Integration

When confronted with a system of ordinary differential equations, it is often
easiest to solve the problem numerically. For example, in the simplest case, one
might wish to solve

d*X
= F(X).

dt2 ( )
We reduce the problem to afirst-order system

K v, Yo k(x),

dt dt
and we employ time-centering to insure a stable numerical integration,
Xorr ~ X V+1/2_V—1/2

n+ L=V L, =2 = F(X
At n+1/2 At ( n)-

This method can be applied to more complicated-looking systems, for example, a
travelling-wave accelerator, consisting of a chain of coupled oscillators.

Exercise A.14 Consider the leap-frog algorithm applied to the simple-harmonic

oscillator problem, F(X) =-Q2X. Show that the angular frequency of oscillation of the
numerical system, Qp, may be expressed in terms of the time-step At as

=11
Q, _sm (ZQAI)

Q (; ) ’
2QAl‘
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and confirm that for 60 steps per period the frequency is correct to within 0.5 parts per
thousand.34

A.10 Kinematics

Some features of particle kinematics are assumed in the text, and in any case
are helpful in appreciating the demands on accelerators for high-energy physics. We

review them here. The Lorentz factor for a particle with velocity V is

rpog

and if the particle's massis m, then its momentum is p = myV, and itstotal energy

V2D

is e=mc’y = (p c® +mfc ) . Thisis different from its kinetic energy which is

mc?(y -1).

There is one particular kinematic event that has a distinguished place in
accelerator physics work, and that is the collision of two-bodies. The algebra
behind the great machines of our time, and their gradual evolution over the decades,
is the kinematics of the two-body collision. The problem consists of two particles
flying together and other particles flying out. Without knowing the details of the
interaction, one can make strong statements about the kinematic features of such an
event, using smply energy and momentum conservation. To simplify this problem,
let us perform a change of reference frame, moving into the "center of momentum
frame.”

We consider two particles, indexed by i=1,2, of mass mi, momentum p
and energy &, so that

— o 4 =2 2
= mic* + pic®, &, = mic’ + pic’.

The total energy inthelab frameis ¢, = €, + &,, and the total momentum in the lab
frameis p, = B, + P,, and if thisis non-zero we boost to the center of momentum

frame, moving at velocity V = p, c?/&,. Calling this direction z, the Lorentz-
transformed momenta take the form

O - _ V O
plz y%)I 1|:| P, =Y 22_?£2D
with transverse momenta unchanged. The Lorentz factor is
1 &

— — tot _
\/1_\72/C2 J%‘CZI@&

It is straightforward to check that the sum of the two momenta is zero in this

boosted frame. The particle energiesin thisframe are
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g = y(gl _Vplz), g = y(£2 _szz),
and the total energy in thisframeis

_ _ _ — o2 _ 2.2
Ecom = 51 +££ _y(gtot thot—z)_\c“gtot C Ptz

= \ meet + mict + 2(5152 -c*|py r)2|cose) :

with 6 the angle between the particle momenta in the lab frame,

cosé = p,* P, /|B| P,

The two common situations where these scalings are employed are the
collider and the fixed-target experiment. In a collider, the lab frame and the center-
of-momentum frame are roughly the same, and the center-of-momentum frame
energy istwice the energy of one beam particle,

Eeom = 2. (collider)

Thus if one wishes to produce a 91.2-GeV particle, one needs two 45.6-GeV
particles. At the other extreme, in afixed-target experiment, one of the participants
inthe collisonisinitially at rest. Suppose thisis particle #2, then

Eoom = A/ MEC* + MEC* + 26, m,C2 .
If &5>>mc2, we have

oo = /26, M,C% (fixed target)

and the energy in the center of mass frame is scaling as the square root of the
incident particle energy.

The questions one might ask at this point include: (1) What particles can be
produced and collided? (2) What center of momentum energy can be reached? (3)
What interaction rate can be achieved? Each of these is a question posed to
accelerator physicists. So for example one could ask: what beam energy isrequired

to make e e - U u energetically possible? This reaction would be new and

therefore interesting. Evidently we would need €, = 2m,c* =2 x106 MeV. This
implies an incident beam energy of

o = Eom (27106 MeV)® A4 Gev
'2mc®  2x0511 MeV '

This might be interesting insofar as this energy is achievable with the SLAC beam.

Inspired, or at least not disappointed, by this brush with muons, one may
wish to inspect the many other particles available. One can get a glimpse of these
from the Review of Particle Physics, published each year in Physical Review D35. |
list afew in Table A.3 that you will certainly encounter, and afew in Table A.4 that
one may hear of in connection with high-energy experiments.

The Higgs (H) has not yet been discovered---the Superconducting
Supercollider (SSC) was intended to be the instrument for that. For the future,
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folks look toward the Large Hadron Collider (LHC) or the Next Linear Collider
(NLC) to be the instrument for discovering the Higgs. The Z was discovered at
CERN about 15 years ago, together with the W. The Z is the focus of the SLD
studies at the SLC, and determines the energy requirement for the linac. Note that

two-body kinematicsfor e'e” — Z - stuff require the energy of one beam particle
to satisfy €>m,/2=45.6GeV SLAC's two-mile accelerator can reach this
energy thanksto SLED pulse compression and the 5045 klystron.

Table A.3 Particles with personality.

Name Mass (MeV) Type Lifetime Decay Mode
y 0 gauge ©0

e’ 0.511 lepton ©0

us 106 lepton 2.2 ps U - evy,
° 135 meson 0.1 fs - w

T 140 meson 26 ns T - [V,
p 938 baryon © ?

n 940 baryon 887 s n - pev,

Table A.4 A selection of interesting, but shy particles. / denotes a lepton (i.e.an eora u

orarn).

Name Mass (MeV) Type Lifetime Decay Mode
K* 494 meson 12 ns K" - u'v,
Ko 498 meson 89 ps KS - m'm
K? 498 meson 52 ns K) - mev,
T 1.78x108 lepton 0.3 ps A R VAVA
D° 1.87 x 103 meson 0.4 ps (mesons etc.)
B° 5.28x103 meson 1.6 ps B° - IV etc

W*  80.3x 103 gauge FW2.1GeV  (hadrons)
Z° 91.2x108 gauge FW25GeV  (hadrons)
H° 2.
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Appendix B: Low-Frequency Electronics

A number of excellent texts on electronics can be found in the bookstores.
At the most elementary level, the short guide by Warring is quite readable. 36 The
text by Schwarz and Oldham37 provides an excellent introduction to electrical
engineering, with numerous solved problems. The text by Horowitz and Hill38 is
widely acclaimed. An excellent general reference on construction of apparatusisthe
text by Moore, Davis and Coplan,® and the text by Leo iswell worth reading.” In
the meantime, however, it is good to have a concise review of "ordinary
electronics' before ploughing into "microwave electronics.”

B.1 Basic Electronics

The basic circuit elements are illustrated in Fig. B.1. An ideal voltage
generator maintains its voltage at spec (V in the figure) regardless of the load. The
current through the voltage source is determined by the external circuit to whichitis
attached. An ideal current generator maintains its current at spec (I in the figure)
regardless of the external circuit. The voltage drop across the the current source is
determined by the externa circuit.

A capacitor isacircuit element which may accumulate charge Q, in which
case the voltage drop across the capacitor is Q/C, where C is the capacitance,
measured in units of farads. Energy is stored in the electric fields within the volume
of the capacitor in the course of charging it up. An inductor is an element which
develops a voltage drop across its terminals when a current |, varying with timet,
passes through it. The voltage drop is Ldl/dt, with L the inductance, measured in
henrys. Energy is stored in the magnetic field within the volume of the inductor, in
the course of establishing the current flow through it. A resistor isan element that
develops a voltage drop across its terminals when current flows through it. The
voltage drop is IR, with R the resistance measured in ohms. A resistor does not
store energy; it is, as we see in Chapter 1, simply a collection of collisional
conduction band electrons waiting to be pushed around, so they can go and beat up
on theions. A switch is an externally controllable element with two states. When
the switch is closed, current may flow, when it is open, current may not. The
voltage drop is zero across a closed switch, i.e., it isa short circuit.

Kirchoff's laws can be employed to figure out how circuits composed of the
elements above work; they are (1) the sum of all currents entering a node is zero,
and (2) the sum of all voltage drops around a close circuit is zero. The current law
derives from the definition of current astime rate of change of charge, together with
conservation of charge. Implicit in the voltage law is an assumption about
frequency and the elements employed. In this case, as far as terminal voltages are
concerned, we are dealing with an electrostatics problem, and voltage may be
identified uniquely as work per unit charge. In this case, the voltage law
corresponds to conservation of energy.
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(::) voltage source
@ @ current source

capacitor

Y'Y Y inductor

W resistor

—O/O— switch

FIGURE B.1. Basic electronic circuit elements include a perfectly regulated voltage
generator with no internal impedance, a perfectly regulated ideal current source with no
internal admittance, a capacitor (with no inductance or resistance), an inductor (with no
capacitance or resistance), a resistor (with no capacitance or inductance) and a switch.

Very often circuit analysis is aided by the notion of equivalent circuit,
replacing a complex looking circuit component with assimpler element of the same
impedance, as illustrated in Fig B.2. The wavy line inside the symbol for the
voltage generator ssimply indicates that we will be considering an aternating current
(AC) signal. That isto say wewill consider avoltage varying in

|
v RE CJ'|- LS Uy z
circuit equivalent circuit

FIGURE B.2. Circuit analysis is aided by the notion of equivalent circuit.
time according to asinusoidal pattern,
V(t) = D(\7ej“‘) = %(\7@“ + \7”e""“) =|V|cos{at + ¢),
where [J denotesthereal part, and V isthe voltage phasor, a complex quantity,
V= Me”’ = M(cosg0+ jsing).
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Notice that we are always free, in acircuit such asin Fig. B.2, to add a crow's foot
to it, to indicate a choice of "ground.” This does not mean in reality that this point
of the circuit will be at the same potential as the water pipes. Merely that for
purposes of circuit analysis, we have chosen a reference point in the circuit, and
chosen to analyze voltages with respect to it. For power circuits, and for analysis of
pulsed noise ("pick-up” or "ground-loop"), one might be more circumspect about
the concept of "ground.”

e

FIGURE B.3. Notation for analysis of the RLC circuit.

)
J

150150

O—— ——0-
fry

B.2 Circuit Analysis

Let us analyze the circuit of Fig. B.2 as it will appear rather frequently,
oftentimes disguised under a mass of symbols, that would otherwise mask its
simplicity. From Kirchoff's voltage law, the voltage drop across each element isthe
same, thus, with notation illustrated in Fig B.3,

V:L%:%:Rll.
d C

Thetota current drawn through the generator is, by Kirchoff's current law, just the
sum of the currents drawn through each element,

=40, =Yt jacV+

R [[aN
and we switch to phasor notation for simplicity. With this result we may summarize
our analysis of the circuit, insofar as the generator is concerned, by a single
impedance, "seen” looking into the reference plane marked by the dashed line in
Fig. B.3:

_}| <

Z =

where
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1 _1 . 10
— =+ -—
Z(w) R J%‘C ARE

Thisresult will often appear "dressed up" in the form,

Z(w)

where we have made the abbreviations, w, =1/+/LC, Q=R\/C/L.

In general we may characterize any two-terminal passive circuit by its
impedance. That's not to say that impedance determines everything about the circuit
element, merely how it behavesin public. (For example, it doesn't convey the peak
electric field within the element). We may wish also to distinguish between the real
part of the impedance, JZ, the resistance, and the imaginary part, 0Z, the
reactance. These distinctions become important when we consider energy flow.
From the definition of voltage and current we can see that the rate at which the
voltage generator isdoing work is

P(t) = V(t)I(t),

or, more explicitly,

P(0) = (Ve +Vie) 2 (fer + )

_ R
1+ Q(w/ wy — w, /)’

= 2 (Ve + T2 + T +i)
4

= 2o(Vie + Vi)
2

Averaging over one cycle we find that average rate of work done by the generator is
zero --- unless the load (2) has a resistive component,

5. % (i) = %D(z)m2 - %D(Y)MZ.

In thelast line we introduced the admittance,

v=2,
V4

and we will refer to Y asthe conductance, and [IY as the susceptance.

B.3 Simple Filters

With just these basic elements quite a variety of items can be built. Let us
consider the threein Fig B.4, for an appreciation of them will come in quite handy.
These examples of filters are easily understood qualitatively by noting that (1) a
capacitor at low frequency is an open circuit (no current flows) and at high
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frequency is ashort circuit (no voltage drop), (2) an inductor at low frequency isa
short circuit, and at high frequency is an open circuit. In fact these considerations
make for ssmple rules one can use to judge the behavior of circuits. To see the high-
frequency behavior, short the capacitors, and erase the inductors.

Exercise B.1 Referring to Fig. B.4, compute the transfer function for each filter, i.e.,
compute the voltage on the right terminal, assuming that terminal is an open circuit, and
assuming the voltage on the left terminal is specified,

Exercise B.2 Solve also for the response of the circuits in the time-domain, by
considering the response to a delta-function applied voltage. Why is the low-pass circuit
also called an integrator, and under what conditions is the output voltage faithful to the
integral of the input voltage? Under what conditions on the input voltage is the high-pass
filter a differentiator?

Exercise B.3 In steady-state, driven at angular frequency w, what is the energy stored
in the LC-circuit of the bandpass filter?

O*O lowpass filter - [

~y

O Z O  highpass filter

+
0— =0
7

7
0 z 0 bandpass filter

FIGURE B.4. Examples of handy items one can construct from the basic passive circuit
elements.

Exercise B.4 For each of these filters, derive an exact integral expression for the
voltage output. Breaking the time-axis into discrete points, and approximating the integral
between points using the trapezoidal rule, devise a simple numerical (digital) algorithm for
applying each filter to an input voltage specified at discrete time steps. In your algorithm,
do not assume the time-step is small compared to characteristic circuit time-scales.
Implement these filters as numerical subroutines in the language or with the software of
your choice, and test each against an exact solution.
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Exercise B.5 Making use of a standard fast-Fourier-transform package, devise an
algorithm for numerical implementation of these filters, assuming an input voltage

specified at discrete time-steps numbering 2N.

Two additional circuit elements will come in handy, and they are illustrated
in Fig. B.5. One encounters the diode in modulator circuits, and in a specia variety
of diode for microwave detection, the crystal detector . Transformers one finds in
the modulator circuit, and more importantly, we will find ourselves calling on the
notion of transformer when we adopt a circuit analogy for certain microwave
problems.

diode

\VAANY

NV transformer

FIGURE B.5. Two very common, but not-so-elementary circuit elements.

B.4 Diodes

A diode consists of p and n type semiconductors sandwiched together as
one crystal, on amount. A p-type semi-conductor has positively charged holes as
the majority carriers; n-type has negatively charged electrons as the mgjority carriers
of current. When a positive voltage is applied to the p-side of the junction (forward
bias), both p and n carriers flow through the junction in opposite directions. For the
opposite, reverse bias, little current flows. The |-V characteristic for a diode takes
the form, | = Is(ee‘” kel — 1), and the sign convention for the diode symbol is given
in Fig. B.6. The saturation current Is=108-10-14 A isa property of the junction and
T is the temperature, with ks, Boltzmann's constant. To gauge the behavior of

circuits, it is often adequate to replace diodes with ideal rectifiers, for which
I>0- V=0, and V<0 - 1=0. More precisely, >0 V=0.7, V<0.7 - 1 =0 for silicon.

N

FIGURE B.6. Sign convention for a diode.

B.5 Transformers
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Anideal transformer, as depicted in Fig. B.7, is characterized by the turns
ratio N1i/No. Theratio of voltagesisjust

V2 — N2

VN,

and theratio of currentsisjust
I2 — Nl

LN

If the voltage on the load-side (the voltage on the secondary winding) is high, this
isastep-up transformer. Otherwise it is a step-down transformer.

I 1 I

—> -
) +

+

V1 3 Vo
N1 :N»o

FIGURE B.7. An ideal transformer. The solid dot marks the positive terminal side. The
winding on the side of the power supply is the "primary," and the winding on the load-side
is the "secondary." In this drawing there is no indication of which side is the primary or the
secondary.

Figure B.8 provides a glimmer of how a transformer can be devised. The
application of voltage across the wire causes currents to flow and sets up a magnetic

field within the magnet. The field is concentrated in the magnet due to the high .
Thus one can control the magnetic field with the external circuit. However, this
does not imply that one has direct control over the magnetic induction, for the
magnet consists of many domains of magnetic dipoles, and these two respond to
the applied magnetic field. The actual local magnetic induction is then the outcome
of a statistical process by which atomic dipoles align themselves. By Faraday's
law, the voltage drop across terminal No. 1 must be proportional to the time rate of
change of magnetic flux enclosed by the circuit, and ssimilarly for termina No. 2,
do do

Vi = Nla’ v, = NZE.

Evidently then the voltages are transformed according to the turnsratio. Asto the
current transformation, the magnitude can be understood from energy conservation
(neglecting losses in the magent), and the sign from Lenz's law. In connection with
transformer circuits there is a notion of transferring aload to the primary circuit.
Theprincipleisillustrated in Fig. B.9. The impedance "seen” by the generator is
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. oN O
Z —EN—ZEZ.

Thus a step-up transformer, lowers the impedance referred to the primary circuit.

11
\_/
\
N1 turns N2 turns

FIGURE B.8. A transformer might consist of two coils of wire, magnetically coupled
through a high permeability material, such as iron.

1 I
—> <+
[
1

V Vo 7

N1 :No

FIGURE B.9. To illustrate transformation of load impedance, when referred to the
primary circuit.
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Appendix C: Cavity Modes and Perturbations

The development of the theory of the accelerator cavity in Sec. 3 proceeded
from an isolated resonance of a closed, lossless cavity, and considered
perturbations. abeam, Eq. (3.5), wall losses, Eq. (3.6), a waveguide, Eq. (3.12),
and iris-coupling to another cavity, EQ. (3.26). Since these results are central to the
development of linac theory it is useful to set down a more formal treatment of
these perturbations.

We consider fields and sources of the form

E(F.t) = O(E(F.w)e), A1) = D(A(F.w)e™),
3(r.) = 0(3(F.w)e™), p(F.t) = D(B(F.w)e),
and the charge density is subject to continuity,
~ 1- =

rw)=——0¢J(Fw).
A(r.w) i (7.w)
Maxwell's equations reduce to the form
OxE=—-jeuH, OxH=joweE+J.

Gausss law is satisfied identically, as one can check by taking the divergence. We
consider a closed cavity with perfectly conducting walls in the absence of source

terms. Boundary conditions are AXxE=0, A+ H =0, and the fields each
separately satisfy the Helmholtz equation,

(0* +K*)E=0, (0*+K*)H =0,

where k* = w’ e . These amount to eigenval ue equations for the mode frequencies.
Let us enumerate the modes and label them with index A. The eigenvalues we

denote Kk, , and the mode frequencies, w,. We select basis functions EA to beredl,
and adopt the normalization

[dFE - E. =5,

To demonstrate this for A # A', one employs, in the case of non-degenerate
modes, the Helmholtz equation, and conducting boundary conditions:

(k= )[d*rE, < E, = Id?’r”(EADZEA, - E,0°€,
:Im-{gx(axé) E, x (0 E)}
= [dS+{E, x(GxE,)-E, x(0xE,)}
= 0.
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In the case of degenerate modes, we assume Gram-Schmidt orthogonalization has
been employed. We define the basis functions for the magnetic field according to
EIXI:I}\:k/\é}\. ixé}\:kx\l:l}h

and one can show that these too satisfy orthonormality. For thisidealized system, a
general vacuum oscillation may be expressed as

E(r,t) = Z é/\ ()&, (), I:i('?’t) = Z |:|/\ (f)ﬁ/\ (t),

where the time evolution is given by Faraday's law in the time-domain,
d’]/\ —

i -w,e,,

and Ampere's law,

o8,

ZO

=w,Zh,

corresponding to an undamped simple harmonic oscillation in each mode,

o i =0
On average, equal amounts of energy are stored in the electric and magnetic fields.

Next let us consider aweakly perturbed cavity, one for which the original
basis functions are no longer exact solutions. Let the fields in steady-state at angular

frequency w take the form E(F,w), H(F,w). We define mode amplitudes for the
perturbed problem according to

= [dF E(F,w)s E, (F), h, (w) = [dF H(F,w)e H, (F),
with integrals over the unperturbed cavity volume. To obtain equations for these
mode amplitudes, we take the dot product of Faraday's law with H, , and we take

the dot product of Ampere's law with EA , and we integrate each over the volume.
Faraday's law takes the form

-juky, = [oF (O E)+ A, = [ar{0e (ExA,)+E- Dx A
= [dS+ ExH, +[dT E- (kE)=ké Idé ExA,.

and Ampere's law takes the form



Abbreviating,
J,=[dFI-E,

these arejust
—juoh, = k,8, +J’d§- ExH,, (C.1)
jewd, = k,h, +[dSe E, xH-1J,. (C.2)

The integrals are over the unperturbed cavity boundary. We consider next different
kinds of perturbations.

C.1 Perturbation Due to Lossy Walls

With the addition of finite conductivity to the cavity surface, the boundary
conditions on the physical fields (as opposed to our modes A that were derived for
different boundary conditions) are amended to read E= -ZAx H . Where recall

that Z, = &(1+ jsgn w) , With Rs the surface resistance. This permits usto compute
the surface integrals. We have

f o8+ ExF, = [ ds- (~zfix A) A, | dsz,+{(A+ A, )a-(a- A,)A}
=27 (dSHeH,,
]

where use is made of conducting boundary conditions on the unperturbed modal
pattern, ne H, = 0; likewise, Nx E, =0, so that

i dS- (E, x H):i dsh« (E, x H):i dsH « (AxE,)=o0.
To smplify the wall loss term, we make the approximation

i dSHe«H, = hA§[ dSH?,
thereby discarding any mode coupling through the lossy wall currents. This is

appropriate, for example, for an isolated resonance, one that does not overlap
another mode in the frequency domain. In terms of thewall quality factor, Qwa,

dSH?
Qu 235 2 [dVH:
we may write
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Putting the results together, we have
jead, =k h -J,, -—juch, =kB8, +Qﬁ(1+jsgnw)|w|h,\. (C.4)

We consider aweak perturbation, Quw>>1, neglecting terms which are second-order

in perturbations. In addition, we approximate |a| = w, in the term of order 1/Qu.
The effect of this approximation must be dlight, since Qw>>1. Note that wall-losses
have produced a shift in the real part of the cavity frequency, we subsume that into
aredefinition of w,,
2
YL (C.5)
1+1/Q,

We arrive at

0, .ww, L . 1=
(W _J__ e =_Jw_‘]1
D QW /\D/\ € A
or, in the time-domain,
O0d* | w, d ,0 1d
+w ==—1],. C.6
Faez Q, dt T e (C.6)

C.2 Perturbation Due to Beam

Next we evalute the perturbation due to the current source in Eq. (3.6). For
aballistic "pencil” beam, the current density is

J :252(rm)|b§—§g (C.7)

where |y, is the beam current waveform. In the frequency domain,
J(F,w) = 26 ( ——e ¥ % = 26%(1) )1, (w)e .

With this we may compute the source term J,,
J=[dri-E = J’d3F(252(FD)I~b(a))e‘i°’Z’V)- E,
=T, (w) [0zE, (r,=0,2)e7“"V =1, (w)w",

cavity
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and we abbreviate,

= IdzEM(FD =0,2)e"""".
cavity

This coefficient we may relate to the more conventional quantity, [R/Q], as follows.
The voltage drop (or gain) experienced by a particle travelling at speed V in the z-
direction, and passing z=0 at timet=to is

V,(to) = J'dzEZ%'D = 0,21, +§Er (C.8)

cavity

We may expr%sthis in terms of the modal decomposition,

E% Ozt+ ZE r—Oz % D

and in the frequency domain, as

cdw on ey dw _ju, z L
V.(w) = \Ee' V(t,) = | dzj’ﬁe’ ' eA§O+v%u(rD =0,2)

cavity —00

=8 (w )IdzE (7, =0,2) e,

cavity

and we assume for simplicity that only asingle mode, A, is excited. Evidently then
\7C = &,w, and our cavity equation, Eq. (C.5), may be re-expressed in terms of the

more meaningful normalizations, V, Ib, according to

W - —w%/ 197
U

W/\

or

s - —w%/ ij%ﬁﬂ,. (C.9)

UJ
Here we introduce

_ v
o £,

The [r/Q)] for the coupling of the beam to this mode A may be expressed in a
normalization-independent manner as
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(C.10)

where U is the stored energy in the cavity corresponding to cavity voltage \7C To
summarize, in the time-domain,

Dd2 L@ d g/ Or Odl,

C.11
Hie Qo AEEB_ (C11)
Let us note explicitly the relation
(RO Dr

between circuit and accelerator notations. In these notes we have consistently

distinguished between these two using upper-case and lower-case notations. In
reading the literature it pays to check the definition being employed.

C.3 Cell-to-Cell Coupling

Since we are working to first order in perturbations, there is no impediment
to considering each perturbation in isolation, later to return and add them all
together to describe the complete system. Accordingly, let us return to the closed
lossless cavity, and consider perturbation by iris-coupling to another cavity. The
evolution of the mode amplitudesis governed by Faraday's law,

—Hoﬁdn? =k,e, +I(n><E) H, dA,

Irs

and Ampere's law,

eo%zkAh -J, +J'(n><E) HdA=kh,.

Iris

In the last line we have set the current term to zero and taken account of the
conducting boundary conditions satisifed by the unperturbed mode electric field.
Combining these two results we obtain a single equation for the electric field
amplitude,

0;? ruwle, = -w cI(n x E)+ H, dA, (C.12)

Irs

Evidently the effect of theirisis known once the variation of the tangential electric
field in the vicinity of theirisis known, and the integral computed. Note that if we
take the variation in electric field near the iristo be just the unperturbed variation,
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then the tangential field is zero, and so isthe integral. Evidently then the important
feature of theirisisthe redistribution of electric field lines, some passing into the
next cavity, but some terminating on the iris edge.

To compute this variation we should in principle solve Maxwell's equations
for the new geometry. Happily however, for a small iris, the Helmholtz equation

for the potentials reduces simply to Laplace's equation (0% +k?)¢ =0= 0. This
approximation is adequate because, near the iris, spatial variations occur on the
length-scale of the iris. The rf, meanwhile, is incapable of resolving details much
smaller than a wavelength. Thus our problem is considerably smplified. One has a

circular aperture in aplane, and far from the aperture one has normal fields above
and below, call them Ez1 and E>. One intuits that if E1#E», some field lines will

terminate on the plane, and some tangential field will result. Following Jackon's
derivation,17 we simply write down the solution for this tangential field in the iris,

E,(F,z=0)= (E-E) r

T \“;‘az_rz

where z=0 locates the plane of theiris, I isthe coordinate in the plane of theiris, a
istheirisradius, E; isthe asymptotic field to the left of theiris (in cavity #1), and

E>is the asymptote to the right of the iris (in cavity #2). The basis functions and
normalization for the unperturbed TMg19 mode are

=3 ~ - , ~ _ . -1/2
E, = J(Br)Euz.  H,=-J(Br)Ene. B, =(mLRI(j))

The asymptotic field components are then E, = eE,,, E, =¢E,,, and we amend
our notation, denoting by e, the excitation of the fundamental mode in cavity #1,
and e, that for cavity #2. (There is no ambiguity here, since we are not considering

other modes A, to which previously the subscripts on the €s referred.). With thisit
remains only to compute the port integral appearing in Eq. (C.12),

A E)e H ,,ZH p (el_eO) Jc')(Bcr) 2
I(n E) H, dA= -([dqojo'rdr - =

2 2
port \/ a —r

= %(% -¢)E;a’B,.

Our equation for the excitation of cavity #1 then takes the form,

2

. 1

—0;'1 +wle = EKC«)S(P2 -8), (C.13)
0° 1

dt% +wye, = -EKwé(% -q), (C.14)

and the second line follows from the first, by symmetry. The coupling constant is
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3 3
=4 1 o152 (C.15)
3 LR (i) LR

In retrospect it should be clear that the ssmpler, and intuitive derivation in Sec. 3,
did no great injustice to this calculation, merely failing to produce an explicit result

for K.

C.4 Perturbation by Connecting Guide

To compute the coupling of a cavity to awaveguide, one again has a port-
integral to compute. However, in this case it is convenient to let our unperturbed
modal basis refer to the solution of the Helmholtz equation, with open-circuit
boundary conditions at the port, and to designate the port surface, S, as a plane

located in the smooth connecting guide. Since the waveguide modes form a
complete set we may expand theelectricfield on S,

= z Ema(rD)Va ) Z Hma ca a* (at pOft S))

where the subscript [ denotes components lying in the transverse plane in the
waveguide, i.e., S. Inasimilar way we may expand the cavity modes,

Ea(0)= 3 Bl ()= 3 Healro)Zalan.

wherethe rﬁode coefficients are just the overI ap integra of the unperturbed cavity
fields with the waveguide mode,

a = ca.]’dzrﬂl:l/\(rﬂ). I:Ima(rm)’ Vi = IdZFDEA(rD). Ema(rm)-
Sp Sp

Making use of the orthogonaity of the waveguide modes we have then

~ [l
_[ dS. Ez Ca amxiHDbzcblb/\ E:Z\/ala}\’
S, a

and smilarly,

cE L Oce y, O Ocp 0
é[ dSe E, x H :Idzruﬁz EooVan O ég AinZala0= 3 Vale.

a

Thus the mode equations take the form

jea®, = k,h, + zva/\la . —juah, =k @ + zVaIaA =
a . y a —
J dS+E, xH JdSeExH,
% S

and in the last equality we implemented the open-circuit boundary condition on the
modal basis, |_,=0. Combining these two results, we obtain a single equation for
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€,

(d—@ﬁ=—m%z%g. (C.16)

This should be augmented by one additional condition, continuity of
transverse electric field at the port. The electric field at the port may be expressed in
either basis,

()= 3 Bl = T E 1)

and, taking the dot-product with a guide-mode, we have
%:Z%g. (C.17)

This relation closes the system of equations and permits one to solve self-
consistently for the cavity fields and the forward and reverse signals in the
waveguide. For example, we may compute the impedance looking into the cavity,
from S, (i.e. in the direction in which we have taken positive current to flow)

\VA
Z, =

ly

Insofar as other modes are below cut-off we may solve approximately for the mode
excitation in terms of the driving current in the fundamental mode,
L W , (C.18)
w, j(w/w, - w, /)

50 that

8 =

V2
Y= ZVe—IZ ewja)/a) w/w)

Next we define the external Q, Qey, for mode A coupling to the fundamental mode
of the connecting guide,

2 0 L ﬁ
S TE— éﬂE-%D (C.19)
Qe/\ Ew, ch OO0 ch O
in terms of which
v 1/Q
Moz SN (C.20)
% 1, 1Z j(w/w, -w,/w)

Notice that Z11 islarge on-resonance, corresponding to an open circuit, just as we
expect. Meanwhile, off-resonance, Z;1 is small, corresponding to a short-circuit.
This motivates the standard nomenclature for our choice of reference plane: the

129



plane of the detuned short.
To make contact with Eq. (3.12), let us define V. =nV,, V; =nV_, where

n may be thought of as a turns ratio, transforming to an impedance Z! =n°Z,,.

Continuity of transverse electric field takes the form, \," +V,” =V,,&,, and this
suggests defining a cavity voltage, V, = nV,, &, , in terms of which continuity reads,

V, =V, + Ve,

The port current driving term may be expressed as, Z,l, =V," =\, and in the
time domain our system takes the form

2

Od ,0 1d

O tw =-———3% V,1,,
it A%‘ emza”
and in the transformed units,

Od*> . w, d

- tw =2 — (V. —Vg). C.21

A o
These calculations and the results Egs. (C.1)-(C.21) complete the formal

analysis underpinning the coupled cavity model introduced in the text, having

developed with some additional rigor the geometric origin of the coupled cavity

circuit parameters. Qw, K, Qe, N, [R/Q]. Historically, the formal treatment of a

cavity in this way was first set down by Slater; however, there were a number of
approximations in his approach that, for the pure mathematician are somewhat
unsatisfying. The first complete treatment of the problem is credited, by Collin, to
Kurokawa.42\We have side-stepped the full mathematical complexity of the problem
by electing to consider a single isolated, narrow-band cavity resonance. Thisisin
fact not the totality of the problem as one can see by inspecting a measured cavity
impedance. Such an impedance will indeed include narrow spikes corresponding to
cavity resonances, but broadband portions as well. Thus there is a complementary
problem of interest, calculation of broadband impedance. Such terms are important
for a complete treatment of beam dynamics. They are not essential, however, for
understanding the coupling of the accelerating mode, and its observational features,
seen by means of couplerslooking into the cavity.

There is one additional perturbation calculation that is sufficiently
fundamental that it should be included, and that is Slater's theorem.

C.5 Perturbation to a Conducting Boundary (Slater's Theorem)

We consider the effect on a mode resonant frequency of indenting a cavity
wall. Given the development of Sec. 1, it is most straightforward to proceed by
employing two results: momentum conservation and adiabatic invariance.

We consider a lossless cavity that is ringing in one mode. Momentum
conservation stipulates that if we slowly indent a cavity wall we must do work on
the mode such that
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OU =F25¢, = J’<Tab>d$,5£a,

where Sis the region of wall being indented, F? isthe average force on the wall,

(T™) isthe time-averaged stress-tensor and &€ isthe wall displacement. Tangential
wall displacements have no effect since they carry conductor into itself. Thus we

may consider a displacement along the outward normal A, & =AdE, i.e.,
o, =n, o6& . Notingthat dS, = n,dS, we have simply

6U = [(T™)dSs¢. (C.22)

The diagonal element of the stress-tensor for the normal component at a conducting
surface takes the smple form

T T

and is just the electromagnetic pressure on the wall. Next we employ a mode
expansion in the exact modal basis for the conducting boundaries as they are at time
t,

E=g,(t)E,(7), H =h,()H, (7).

Recognizing that the mode resonant frequency may be changing in time, we choose
to express the mode amplitude in terms of the cavity phase,

6(t) =j'dt' w, (1),
according to
e (t)= D{éA (t)e‘e} :

Maxwell's equations then take the form

Od? 5
+— +w;s(t)e (t) =0,

and after some algebrathis may be reduced to

Haw/w,0} =0

in the limit of an adiabatically varying resonant frequency. Taking account of
similar results for the magnetic field amplitude, and noting the expression for stored
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energy,
U= %I{HOHZ + EOEZ}CIV :J<£0E2>dv = %so

\%

we find
oU _ dw, du O

— == = 0 =0.

U  w  HoH
The adiabatic invariance of U/w, ("photon number") together with momentum
conservation permit us to solve for the increment in resonant frequency due to an
indentation &¢ . We express the time-averaged stress on the wall as

(C.23)

(1) = 22 e, (O (€ - H2) = SU(E: - A2),

" 2
to find
0w, - oYU __ S<Tm>d355 =2 (A2 - €2)dss
o, U U ZJ; il =5 £. (C.24)
We may integrate this formally to obtain Slater's theorem,
D, (C.25)

0 ~ o~

w? =w’,[d+[|H?-E’|oV
A A0 9 _\I/.( A A ) E
for the perturbation to the resonant frequency of a mode due to an excluded volume

V. In applying thisresult, it is good to keep in mind that the integration represented
here employs mode profiles that vary with the surface displacement, "oV"= dSA¢ .
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