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This collection of notes and exercises is intended as a workbook to introduce the
principles of microwave linear accelerators, starting with the underlying foundation in
electrodynamics. We review Maxwell's equations, the Lorentz force law, and the
behavior of fields near a conducting boundary. We go on to develop the principles of
microwave electronics, including waveguide modes, circuit equivalence, shunt
admittance of an iris, and voltage standing-wave ratio. We construct an elementary
example of a waveguide coupled to a cavity, and examine its behavior during transient
filling of the cavity, and in steady-state. We go on to examine a periodic line. We then
turn to examine the problem of acceleration in detail, studying first the properties of a
single cavity-waveguide-beam system and developing the notions of wall Q, external Q,
[R/Q], shunt impedance, and transformer ratio. We examine the behavior of such a
system on and off resonance, on the bench, and under conditions of transient and steady-
state beam-loading. This work provides the foundation for the commonly employed
circuit equivalents and the basic scalings for such systems. Following this we examine
the coupling of two cavities, powered by a single feed, and go on to consider structures
constructed from multiple coupled cavities. The basic scalings for constant impedance
and constant gradient travelling-wave structures are derived, including features of steady-
state beam-loading, and the coupled-circuit model. Effects of uniform and random
detuning are derived. These notes conclude with a brief outline of some problems of
current interest in accelerator research.

Introduction

The accelerator is the instrument on which all intellectual life in high-energy
physics depends. Without accelerators, the great physicists of our time and decades
past would have been reduced to inspection of cosmic ray dribble, atomic spectra
corrections, and mathematics of uncertain pedigree. Happily, there were physicists
who loved to tinker, and from their sketches and machine shops sprang the
klystron,1 and in the fog of their musings appeared the microwave linear
accelerator,2 finally cut in copper and called the Mark III .3 Today, when Physics
has dwindled in the popular imagination, and 80,000 patients are treated each day
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by S-Band linacs, it is easy to forget that there is a field called High-Energy
Physics, that Man's ultimate reach into the sub-atomic world has yet to be decided,
that it depends on invention, and possibly your invention.

Historically, the kinds of inventions that have helped can be seen in the
story of the Two-Mile Accelerator,4 the evolution of the 25-MW "XK-5" klystron to
the 60-MW "5045" model,5 the invention of "SLED" pulse compression,6 and the
transformation of the 20-GeV Two-Mile Linac to the 50-GeV Stanford Linear
Collider.7 To reach still higher energies, the collider scalings8 indicate that shorter
wavelength is required, and this observation has resulted in ten years of research
and development, culminating in the 50-MW "X-Band" klystron, "SLED-II" pulse
compression, and new "damped detuned structures" designed to pass beams of
extraordinary charge and current.9 It is now thought possible that a 1-TeV collider
could be engineered based on these and other inventions.Yet to reach much higher
energies, 5 TeV and beyond, the collider scalings indicate that the linac would be of
enormous size, probably larger than society would care to support. Beyond 5 TeV
there is no technology adequate to the task, and inventions are required.

These notes are intended as a primer for those who are new to linacs and are
taken with the idea of exploration into the farthest realms of the universe. If the
desire is to invent the machine for tomorrow, let us review here what has shaped
the machines of today.

In its simplest form, the problem is to increase the energy of a particle, and
this requires applying a force. There are a handful of known Forces of the
Universe, and only one of them appears to be of much use for acceleration, and that
is the electromagnetic interaction. Electromagnetic acceleration in empty space, we
will find, is rather ineffective, and so material boundaries are favored to shape the
electromagnetic fields. Materials are lossy and so power, needed to establish
accelerating fields, is dissipated. Power dissipation in the end appears to be the
ultimate limit on terrestrial accelerators. But what this limit is no one knows.

These notes provide an elementary introduction to the theory of
electromagnetic accelerators. Appendix A summarizes the math we will be using,
and Appendix B, the low-frequency electronics concepts often relied on for circuit
analogies. In Sec. 1, electrodynamics is reviewed, and in Sec. 2 electrodynamics
with material boundaries---microwave electronics---is developed. In Sec. 3, driven
on by the logic of Sections 1 and 2, we construct the simplest of accelerators,
consisting of a single cavity powered via waveguide, and perturbed by a beam. We
go on to couple such cavities together to fashion standing-wave linacs. Appendix C
is included to provide more detail on the five formal calculations underpinning this
work. In Sec. 4 the extension to travelling-wave linacs is developed.

We omit quite a lot that one needs to construct and operate an accelerator:
techniques for fabrication and assembly, the klystrons, magnets, beam dynamics,
vacuum, radiation shielding, personnel protection, and operational know-how.
However, all one really needs in this field is a new idea that works; let us consider
then what works.
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1. Electrodynamics

To accelerate particles, for best results, the particles should be charged, and
electric fields should be applied. In fields, energy is stored, and in media, energy is
dissipated. These features of accelerator mechanics we review from the beginning.

1.1 Lorentz Force Law

The force   
r
F  acting on a charge q with velocity   

r
V takes the form

  

r r r r
F q E V B= + ×( ) (1.1)

where   
r
E  is the electric field with units of force per unit charge, newtons per

coulomb = volts per meter. The quantity   
r
B  is the magnetic flux density or magnetic

induction, with units of newtons per ampere-meter = tesla = weber/meter2. Eq.
(1.1) describes  the forces acting on charged particles. Implicitly, it defines what
these fields are and it abstracts them from the sources that produced them.

With only the Lorentz force law we can determine how charges respond to
fields, but we are left wondering how the fields themselves are determined. One
may take some comfort in the observation that this problem is easily solved in
principle if one knows the fields arising from a single charged particle in motion,
for then the fields would be simply a superposition of each individual particle's
fields. In practice, we may have to account for enormous numbers of such charges-
--all the charges composing the conductors and dielectrics in the system. A proper
accounting for the evolution of the motion of an N-particle system by this method
must then track the microscopic motions of the constituents of the media involved,
and the N 2  interactions taking place. In practice, with lnN ≈ 50,  this approach is
quite inefficient. Happily, one can make do by tracking the fields directly, and the
N interactions with the field. In fact, for many media, one needn't even track the
response of the medium directly, and one may confine attention only to charges
external to the medium. Oftentimes one may consider just one such external charge,
and reason by superposition to obtain a complete description of the system's
evolution. This approach relies however on an understanding of media ,
summarized in the notions of permittivity and permeability.

Exercise 1.1 A charged particle has a kinetic energy of 50 keV. You wish to apply as
large a force as possible. You may choose either an electric field of 500 kV/m or a
magnetic induction of 0.1 T. Which should you choose  (a) for an electron,  (b) for a
proton? In each case, compute also the gravitational force.

1.2 Permittivity and Permeability

In considering ensembles of charge, it is helpful to distinguish between
"free" charge or externally controllable charge, and "bound" charge, charge that is a
constituent of a medium in the system. An example would be a capacitor consisting
of two plates, filled with oil. The circuit attached to the plates is controllable; the
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electrical behavior of the oil is not. We are free to  place charge on the plates if we
don't mind doing some work. However, the response of the oil to the applied field
is not ours to specify. Specifically, the atomic electrons in the oil will be perturbed
by any applied field, and their motions will be distorted, resulting in a dipole
moment proportional to the applied field. This dipole moment contributes to the
electric field in the gap.

To account for the response of media, we have two choices. We may
attempt to calculate the response of the medium from first principles or we may
consult the known response of the medium as determined from experiment. To take
the latter, simpler approach however, we first must know the language folks use to
describe the response of media. Let us introduce the notion of electric displacement
and magnetic field.

In vacuum, the electric displacement is   
r r
D E= ε0 , and the magnetic field is

  

r r
H B= / µ0 , where ε0

128 85 10= × −. farad/m  and µ π0
74 10= × − henry/m. As is,

this is just a change of units, not cause for great excitement. In media, however, the
relation takes the form

  

r r r
D E P= +ε0 , (1.2)

  

r r r
H B M= −/ µ0 (1.3)

where   
r
P  is the electric dipole moment density of the medium and   

r
M  is the

magnetic dipole moment density. These moment densities are the result of
polarization or magnetization of the medium by the very fields we are trying in the
end to determine,   

r
E  and   

r
B . In the frequency domain, for a linear medium, they

may be expressed as

˜ ˜P Ee= χ ε0 , (1.4)
˜ ˜M Hm= χ , (1.5)

where χe  and χm  are the electric and magnetic susceptibilities of the medium. In

terms of fields, these expressions take the form ˜ ˜D E= ε , and ˜ ˜B H= µ , where

ε ε χ= +( )0 1 e  is the electrical permittivity, and µ µ χ= +( )0 1 m  is the magnetic

permeability. Thus ε and µ are frequency-domain  quantities, and, in general, they

are tensors. Note particularly that   
r
H  and   

r
D  depend on how one chooses to

distinguish an external circuit. One could guess this by noticing that   
r
H  and   

r
D  do

not appear in the Lorentz force law,   
r
E  and   

r
B  do.

1.3 Maxwell's Equations

Maxwell's equations are four; we review each in turn. The first and the
oldest is Gauss’s law stating that at the end of a line of electric force one will find
charge. In differential form,
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r r
∇ • =D ρ , (1.6)

with ρ the density of externally imposed charge, i.e., whatever charge is not

accounted for in the electrical permittivity ε that has been used to define   
r
D . Like

each of Maxwell's equations, this can also be stated in integral form,

  

r r
D dS dV

V V

• =∫ ∫
∂

ρ ,

so that the flux of   
r
D  through a surface ∂V  bounding a volume V is proportional to

the charge enclosed. It is often useful to have the corollary boundary condition at
the interface between two media, on the normal component of electric displacement.
This can be determined by integrating Eq. (1.6) over the small volume depicted in
Fig. 1.1 to relate the discontinuity in electric displacement across an interface to the
surface charge density

  

r r
D D n2 1−( ) • =ˆ Σ . (1.6a)

Evidently the units for   
r
D  are the same as surface charge density, coulomb/meter2.

Medium 2

Medium 1
+ + + + + + + + + + + + + + ++

surface charge density Σ
pillbox area A

n̂

FIGURE 1.1. Sketch for application of Gauss's law to a thin pillbox at the interface
between two media.

Next we have Ampere’s law

  

r r r
r

∇ × = +H J
D

t

∂
∂

, (1.7)

or, in integral form,
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r r r r

1 2444 3444

r
r

1 24 34

H dl J dS
D

t
dS

S S

pre Maxwell

S

displacement current

∂

∂
∂∫ ∫ ∫• = • + •

−

,

so that the circulation of magnetic field strength around a closed path ∂S  bounding
a surface S is proportional to the current enclosed. (Note that care is required in
applying integral forms to moving surfaces.) The displacement current term implies
that the magnetic induction is equally happy to circulate around a transient bundle of
electric field lines.

Medium 2

Medium 1
+ + + + + + + + + + + + + + ++

surface charge density Σ
pillbox area A

n̂ Medium 2

Medium 1

surface current density
contour side L

n̂

r
K

l̂

FIGURE 1.2. Sketch for application of Ampere's law to a thin loop at the interface
between two media.

The boundary condition accompanying Ampere's law is illustrated in Fig.
1.2 for a thin loop placed across the interface between two media. For this
geometry and in the limit that the loop width goes to zero, Ampere's law takes the
form

  

r r r
H H l K n l2 1−( ) • = × •ˆ ˆ ˆ , (1.7a)

and states that a discontinuity in tangential magnetic field arises if any surface
current   

r
K  is present.  Evidently the units for   

r
H  are those of surface current,

ampere/meter.
Gauss's law and Ampere's law together describe the response of the fields

to media; but electric fields don't depend solely on charge. According to Faraday's
law,

  

r r
r

∇ × = −E
B

t

∂
∂ , (1.8)

circumferential electric field lines are induced around any magnetic flux varying in
time. In integral form,
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r r
r

r
E dl

B

t
dS

S S∂

∂
∂∫ ∫• = − • .

Thus a voltage drop will develop around a closed path ∂S  bounding a surface S ,
proportional to the time-rate of change of the magnetic flux enclosed by the path.
Applying Faraday's law to the geometry of Fig. 1.2, one finds,

  
n̂ E E× −( ) =

r r
2 1 0 , (1.8a)

i.e., the tangential component of the electric field is continuous at the interface
between two media.

The last of our four equations states that there is no magnetic charge,

  ∇ • =
r
B 0, (1.9)

or in integral form, the flux of   
r
B   through a closed surface ∂V vanishes,

  

r r
B dS

V

• =∫
∂

0.

Thus one will never find   
r
B  field lines terminating anywhere; they form closed

loops. Applying this condition in the geometry of Fig. 1.1 yields the boundary
condition on normal magnetic induction,

  

r r
B B n2 1 0−( ) • =ˆ , (1.9a)

and corresponds to the absence of any magnetic charge layer.

1.4 Charge Conservation

Naturally, to get these equations named after him, Maxwell had to
contribute more than mere mathematical trickery; he contributed in particular the
displacement current. The first consequence of this term is the relation between
current and charge. Charge conservation as we now know it states that the time rate
of change of charge enclosed in a volume is equal to the flux of charge out of the
volume,

  

∂
∂

ρ
∂t

dV J dS
V V
∫ ∫= − •

r r

or, in differential form,

  

∂ρ
∂t

J+ ∇ • =
r

0. (1.10)

Ampere’s law without displacement current implies

  

∂ρ
∂t

J H= −∇ • = −∇ • ∇ × =
r r

0,
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i.e., that charge density is constant in time. This is not a bad approximation in
conductors, or a dense plasma; it is exact for electrostatics, magnetostatics.
However, considered as a law of nature, Ampere’s law was, before Maxwell,
inconsistent with conservation of charge. One could describe the situation
somewhat differently by saying that it hadn't been established that the current
determining   

r
B  was in fact the flux of charge determining   

r
E . In this view, Maxwell

unified   
r
E  and   

r
B , proposing that they were in fact two aspects of the same

phenomenon, electromagnetism. We will see shortly that displacement current
permits the fields to propagate on their own, in vacuum, without any local charge to
support the field lines. Charge conservation, a "symmetry" of nature, implied the
existence of a field with an identity of its own, that could propagate freely in
vacuum, and, as we will see, carry energy and momentum with it.

To appreciate Maxwell’s contribution one can compare electrodynamics
before Maxwell, and after.  In the centuries prior, it was gradually understood that
charges repel or attract, a property shared by current-carrying wires. Time-varying
currents can induce currents in their surroundings. Action at a distance could be
understood via lines of force. However, the unified equations Maxwell set down
contained in them features that were to revolutionize our understanding of physics:
(1) light is an electromagnetic phenomenon, (2) nature is not Galilean, ( 3 )
thermodynamics applied to electromagnetic fields gives rise to divergences (i.e.,
nonsense), (4) matter must be unstable, (5) Newtonian gravitation is inconsistent
with electrodynamics. In short, two solid predictions, two paradoxes, and one
conundrum, all with one very reasonable looking term! The resolution of the
second item was to be found in special relativity. The resolution of the third item
commenced with the introduction of Planck's constant, and the notion that
electromagnetic energy comes in discrete packets called photons. This development
and the fourth item eventually precipitated the development of quantum mechanics.
The fifth item led Einstein to develop his theory of general relativity.

1.5 Accelerators According to Maxwell

One can immediately discern in Maxwell's equations the three principle
methods of acceleration. The first employed by Man was electrostatic acceleration.
This is the limit ∂ ∂/ t ≈ 0, so that   

r r
∇ × =E 0 , implying that the electric field may be

represented as the gradient of an electrostatic potential,   
r
E = −∇ϕ . In this case,

Maxwell's equations reduce to Gauss's law, which in turn may be expressed as
Poisson's equation ∇ = −2

0ϕ ρ ε/ . If the beam is of sufficiently low charge, this is

approximately just Laplace's equation, ∇ =2 0ϕ , and fields are determined by
electrode shapes alone. Otherwise, one must solve self-consistently for the particle
motion, and the fields together, a nonlinear problem. Probably the most common
accelerator design activities today are the solution of this problem for an electron
source (gun design), and the closely related problem of solving for the
magnetostatic fields due to a configuration of magnetic materials and current-
carrying coils (magnet design).

Somewhat less frequently one encounters a problem which requires the
induction effect embodied in Faraday's law, but for which the displacement current
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is small. Such magneto-inductive effects are the operating principle for the betatron
and induction linacs. In such problems, a magnetic field is driven to a good
approximation, exclusively by external currents. With the help of magnetic
materials ( µ µ>> 0 ) the magnetic induction is shaped, and the corresponding
magnetic flux drives an electric field.

The foregoing acceleration techniques require media of one kind or another
to be exposed to large persistent fields, and for this reason are limited in the net
accelerating voltage they can impart. Somewhat more robust, though still subject to
material damage, is the fully electromagnetic (microwave) accelerator. Here all
terms in Maxwell's equations are important; however, unless one is modelling the
microwave power source, one can frequently do without the source terms, in the
first approximation. This is because the fully electromagnetic solutions of
Maxwell's equations are capable of propagating on their own to their place of
business, being at most guided, shaped, and perhaps slowed down by material
boundaries. When intense beams are present (and they often are) one must consider
them as well, in the final accounting.

In the electromagnetic accelerator, the logical algorithm for time-advance of
the fields is based on Faraday's law and Ampere's law,

  

∂
∂

∂
∂

r
r r

r
r r rB

t
E

D

t
H J= −∇ × = ∇ × −, ,

while the remaining two equations are simply constraints that magnetic induction be
solenoidal, and Gauss's law. If these constraints are satisfied by the initial state of
the system, they will be satisifed by the evolved state. In practice the discretization
of space (the use of a "grid") in a numerical simulation introduces a numerical error
in the electric displacement. This error corresponds to an erroneous charge that the
numerical fields will see on the next time step, and respond to. As a result, errors
can quickly become compounded. To avoid this, one enforces Gauss's law at each
time-step by solution for an error potential and correction of the electric
displacement obtained from Ampere's law.

1.6 Scalar and Vector Potentials

In all these cases there is an instructive alternative to solving for the fields
directly. Instead we may express them in terms of potentials, and solve for the
potentials. Since magnetic induction is solenoidal, we may express it as the curl of a
vector

  
r r r
B A= ∇ × , (1.11)

so that   
r r r r r
∇ • = ∇ • ∇ × =B A 0.   

r
A  is referred to as the vector potential . From

Faraday's law then,

  

r v
r

r v
r

∇ × + = ∇ × +








=E
B

t
E

A

t

∂
∂

∂
∂

0,

and this suggests that we express   
r
E  as
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v
r

r
E

A

t
= − − ∇∂

∂
ϕ , (1.12)

for some function ϕ , referred to as the scalar potential. Note that the fields are
invariant (gauge invariance) under a change of potentials,

  

r r r
A A

t
→ − ∇ → +ψ ϕ ϕ ∂ψ

∂
, , (1.13)

where ψ is any well-behaved function. Thus   
r
A  and ϕ  are not yet uniquely defined.

Let us determine what equations the potentials must satisfy. Ampere's law implies

  

r r r r r r r r

r r
r

r
r

r r

∇ × = ∇ × ∇ ×( ) = ∇ ∇ •( ) − ∇

= ∇ × = + = − − ∇






+

µ

µ µ ∂ε
∂

µ µε ∂
∂

∂
∂

ϕ µ

H A A A

H
E

t
J

t

A

t
J

2

or

  
∇ − = − + ∇ ∇ • +





2
2

2

r
r

r r r
A

A

t
J A

t
µε ∂

∂
µ µε ∂ϕ

∂
.

Gauss's law implies

  

r r r r r
r

r
∇ • = ∇ • = ∇ • − − ∇







=D E
A

t
ε ε ∂

∂
ϕ ρ ,

or

  
∇ − = − − ∇ • +





2
2

2

1ϕ µε ∂ ϕ
∂ ε

ρ ∂
∂

µε ∂ϕ
∂t t

A
t

r
.

Since there are infinitely many gauge choices, one is free to pick one's own
unique, personal gauge. In the meantime, two are quite popular. The  Lorentz gauge
is defined by

  
∇ • + =

r
A

t
µε ∂ϕ

∂
0 . (Lorentz gauge condition) (1.14)

In the Lorentz gauge, Maxwell's equations reduce to wave equations for each
component of the potential,

  
∇ − = −2

2

2

r
r

r
A

A

t
Jµε ∂

∂
µ , (Lorentz gauge) (1.15)

∇ − = −2
2

2ϕ µε ∂ ϕ
∂

ρ ε
t

/ . (Lorentz gauge) (1.16)

Evidently the characteristic speed of propagation in the medium is V = −( ) /µε 1 2 .
However, the Lorentz gauge is by no means a unanimous choice, and often
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one encounters the Coulomb gauge,

  
r r
∇ • =A 0 , (Coulomb gauge condition)

in which Maxwell's equations take the form

  
∇ − = − + ∇2

2

2

r
r

r r
A

A

t
J

t
µε ∂

∂
µ µε ∂ϕ

∂ ,  (Coulomb gauge)

∇ = −2ϕ ρ ε/ .   (Coulomb gauge)

We won't try here to promote one gauge over the other, as the question of gauge is
really a personal decision each researcher must make on his own.

1.7 Energy Conservation

Usually the best-sounding ideas for accelerators fail one of two tests: (a)
they require excessive amounts of unobtainium or (b) they don't conserve energy.
Let's consider (b). The rate of work per unit volume done by the fields is just

  
r r
J E• , and this may be evaluated by substitution from Ampere's law,

  

− • = − ∇ ×








• = • −∇ × • + ∇ × • − ∇ × •

= • + ∇ • ×( ) + • =

∇• ×( )

r r
r

r r r
r

r r r r r r r
1 24444 34444

r r r

r
r r r r

r
r

r

r r r
J E

D

t
H E

D

t
E H E E H E H

D

t
E E H

B

t
H

D

E H

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂∂

∂
∂t

E
B

t
H S• + • + ∇ •

r
r

r r r

where in the last line we introduce the Poynting flux,

  
r r r
S E H= × , (1.17)

with units of watts/meter2. In vacuum we may write this as

  
− • = ∇ • +

r r r r
J E S

u

t

∂
∂ , (1.18)

where the quantity

  
u E D B H= • + •( )1

2

r r r r
, (1.19)

may be interpreted as the density of energy stored in the fields. This is a statement
of energy conservation. Work done on charges in some volume is balanced by a
loss of the energy stored in the fields in that volume, and/or a flux of energy into
the volume through the surface. Eq. (1.19) is usually sufficient for the most
commonly encountered problems.

Exercise 1.2 Consider a geometry consisting of two wide parallel plates of area A,
separated by a gap of length d, filled with dielectric of permittivity  ε. Suppose a charge Q
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has been placed on one plate. Compute the steady-state electric field and the voltage V
between the plates. Show that the capacitance of the circuit C=Q/V is given by C=εA/d,
and that the energy stored is We=CV2/2.

Exercise 1.3  Consider a long helical coil of radius a, occupying a length d, with n turns
per meter, carrying current  I, filled with material of magnetic permeability µ. Compute the
magnetic induction inside the coil, show that the stored energy is Wm=LI2/2, with

L=µπa2n2d, the inductance. Considering a time-varying current, show that the voltage
drop along the coil V=LdI/dt.

1.8 Momentum Conservation

Consider a collection of particles in vacuum, enclosed by a volume V, and
acted on by electromagnetic fields. The Lorentz force law implies that the rate of
change of particle momentum is given by

  

dP

dt
dV E J Bmech

V

r
r r r

= + ×( )∫ ρ .

One expects this momentum gain or loss to be balanced by a momentum associated
with the fields. To determine this field momentum, we may re-express the relation
above, using Maxwell's equations. First,

  
ρ ∂

∂
r r r r r r r

r
r

E J B E D H
D

t
B+ × = ∇ • + ∇ × −







× .

Next we apply the chain rule, followed by Faraday's law,

  

∂
∂

∂
∂

∂
∂

∂
∂

r
r r r r

r
r r r r rD

t
B

t
D B D

B

t t
D B D E× = ×( ) − × = ×( ) + × ∇ ×( ) ,

so that

  
ρ ∂

∂
r r r r r r r r r r r r r
E J B E D H B D E

t
D B+ × = ∇ • + ∇ ×( ) × − × ∇ ×( ) − ×( ).

Finally, we make use of the identities

  

r r r r r r r
E E E E E E E E E E E E E E

a
a b b b a b b b a b a b

ab∇ • − × ∇ ×( ){ } = − + = − •( )∂ ∂ ∂ ∂ δ1
2 ,

  

r r r r r
123

r r r r r
∇ ×( ) ×{ } = ∇ • − × ∇ ×( )








= − •( )B B B B B B B B B B
a

a

b a b
ab

0

1
2∂ δ .

From this one has
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ρ

ε ∂ δ µ ∂ δ ε ∂
∂

r r r

r r r r r r

E J B

E E E E B B B B
t

E B

a

b a b
ab

b a b
ab

a

+ ×{ }
= − •( ) + − •( ) − ×( )0

1
2 0

1
2 0 .

or

  

dP

dt
dV T dV

t
E Bmech

a

V

b ab

V

a
= − ×( )∫ ∫∂ ε ∂

∂0

r r
, 

with the tensor

  
T E E E E B B B Bab a b

ab
a b

ab= − •( ) + − •( )ε δ µ δ0
1
2 0

1
2

r r r r
.

This relation equates the time-rate of change of momentum within a volume, to a
surface flux,

  

dP

dt

dP

dt
T dSmech em

a

V

ab
b

r r

+






= ∫
∂

,  (1.20)

where the momentum carried by the electromagnetic fields is simply

  

r r r r r
r

P E B
c

E H
S

cem = × = × =ε0 2 2

1
,  (1.21)

with   
r
S  the Poynting flux. The rate of convection in the direction b, of field

momentum oriented along a is evidently given by T ab , thus referred to as the
electromagnetic stress tensor. A useful alternative expression is

  
T D E H B D E H B D E H B uab a b a b

ab
a b a b

ab= + − • + •( ) = + −1
2

r r r r
δ δ ,  (1.22)

with u the energy density stored in electromagnetic fields. The symmetry of the
stress tensor (and the simplicity of the derivation) is insured by the assumption that
the particles are in vacuum. In general, in media, anisotropy may be present.

1.9 The Problem of Electromagnetic Acceleration

Equipped with the mechanics of fields, let us reconsider the problem of
accelerating charged particles. We require an electric field,   

r
E , to produce any

change in particle energy, ε , and energy transfer is governed by

  

d

dt
qE V

ε = •
r r

,

where   
r
V  is the particle velocity and q is the charge. Let us suppose the particle is

already relativistic, so that V c≈  is constant. Denote the direction of particle motion
ŝ , and parameterize the motion by length traversed, s, with ds Vdt= . Then the
particle coordinates may be expressed as
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r )
r ss= , t t

s

V
= +0 ,

where t0  is the time at which the particle reaches s=0. Energy gain takes the form

  

d

ds
qE r t qE ss t

s

Vs s

ε = ( ) = +





r )
, , 0 ,

where Es  is the electric field component parallel to the particle motion.
To ascertain the form of the electric field, note that in an infinite unbounded

time-independent medium a well-behaved function may be expanded as a
superposition of plane-waves. This implies that at linear order we may consider
fields of the form

  

r r r
E E j t jk r= ℜ − •( ){ }˜ exp ω ,

  

r r r
H H j t jk r= ℜ − •( ){ }˜ exp ω .

Gauss's law requires that the polarization of the electric field be transverse to the
direction of propagation,   ̃E k• =

r
0, implying two independent polarizations.

Faraday's Law requires that the magnetic field polarization be transverse to both the
direction of propagation and the electric field,   Z H E k0

˜ ˜= ×
)

. The quantity

Z0 0 0 377= ≈µ ε/ Ω we will refer to as the wave impedance of free-space.
Evidently amplitude, propagation direction, polarization and frequency exhaust the
fundamental attributes of plane electromagnetic waves in free-space.

With this we can compute the energy imparted to the particle in passing
through any finite region s s s0 1< < ,

∆ε ω ω ω= ℜ + −











= ℜ∫qE ds j t j
V

k s qVes

s

s

s
j t˜ exp ˜

0

1

0
0 ,

and we introduce the accelerating voltage phasor Ṽ . In free-space, we extend the
limits to infinity to obtain

˜ ˜V E
V

ks s= −



2π δ ω

.

The dispersion relation   
r
k c2 2 2= ω / , and transverse polarization, imply that for

Es ≠ 0, ω / k cs > , so that ω / k Vs > , and therefore Ṽ = 0 . In accelerator jargon,
we say that this concept starts to look iffy.

This observations suggests that useful acceleration should take place either
(1) in a terminated region of space, or (2) over an extended region, but with a wave
whose phase-velocity ω / k cs = . These two possibilities correspond to standing-
wave and travelling-wave accelerators.

There is a second problem of equal importance: how to produce the
electromagnetic wave? One needs a power converter drawing low-frequency power
from the wall-plug, and transforming it into high-frequency electromagnetic power.
In free space, a high  peak power is required to produce a high electric field. In
structures, we will find that a high field can be obtained with lower peak power
than in free-space. This is because, with the help of material boundaries, we may
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store energy by resonant excitation. How much energy we may store, or how long
we may store it, depends on dissipation in the medium. Thus we require not only a
material medium, but one with low loss.

Exercise 1.4 The law of energy conservation has   
r r
J E•  on one side, and expressions

quadratic in the fields on the other. How is it that the energy gain of a particle traversing an
accelerator might include a term proportional to the first power of the applied field?

1.10 Conductors

For engineering purposes there are four kinds of materials: metals,
ceramics, semiconductors, and plastics. From a more elementary point of view,
there are solids , liquids, gases and plasma. All have been proposed for accelerating
structures. However, let us not be distracted at the outset by the diversity of media
from which one could build accelerators. Any linac concept can be compared to and
judged against the conventional linac built of normal conductor.

The behavior of conductors with steady applied voltage was first noted in
the lab notebooks of Cavendish, but is usually associated with the name of Ohm,
since Cavendish failed to publish. It wasn't until 1900 that the first microscopic
picture of resistivity was developed, by  Paul Drude, 10  whose model of a conductor
consisted of a gas of electrons in an array of ions. In the presence of an applied
field, electrons are accelerated but they tend to collide with ions on some
characteristic collision time-scale τ. A simple model of this motion takes the form

  
m

dV

dt
qE m

V
r

r
r

= −
τ

,

and when the fields vary slowly on the time-scale τ, the solution is simply

  

r r
V

q

m
E= τ

.

The current density flowing through the metal is then

  
J nqV

nq

m
E E= = =

r r r2τ σ , (1.23)

where σ is the conductivity.
To appreciate the effect of a conducting boundary, consider first a perfect

conductor, σ → ∞ . The boundary conditions on fields are two. (1) If electric field
lines terminate on a surface, they do so normal to the surface, for any tangential
component would quickly be neutralized by lateral motion of charge within the
surface. (2) Magnetic field lines avoid surfaces, for if they did not they would
terminate, since the magnetic field is zero within the conductor. These rules can be
employed to sketch rough solutions of Maxwell's equations in a copper structure.

The correction to the approximation σ → ∞  is quite small, in the sense that
it results in dissipation that is slow on the time-scale of an rf period. However, this
"small" correction in the end dominates the scalings for accelerators. To appreciate
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this slow dissipation, we start from Maxwell's equations, in a conducting medium,
assuming a single frequency excitation, so that fields are proportional to exp(jωt).
Using phasor notation, Ampere's law takes the form

   
r
∇ × = + ≈ =˜ ˜ ˜ ˜ ˜H j D J J Eω σ ,

and we neglect displacement current in the limit of high-conductivity, since in this
limit, currents in the media are much larger than the displacement current. Faraday's
law takes the form   

r
∇ × = −˜ ˜E j Bω . In the limit of high-conductivity, the electrons

inside the conductor respond quickly to the applied field, so that inside the
conductor there is no bulk charge separation. In this case, Gauss's law takes the
form   

r
∇ • =Ẽ 0 . We can reduce this system to a single equation for H̃ ,

  

r r r r r
∇ × ∇ ×( ) = ∇ ∇ •( ) − ∇ = −∇ = ∇ × ( ) = − = −˜ ˜ ˜ ˜ ˜ ˜ ˜H H H H E j B j H2 2 σ ωσ µωσ

so that,

∇ − =2
2

2
0˜ sgn ˜H j Hω

δ
where we have introduced the skin-depth, δ, a quantity with units of length,

δ
µσ ω

=






2
1 2/

. (1.24)

Next, let’s solve for the fields in the conductor, consulting the sketch in
Fig. 1.3. Choosing the coordinate ξ to measure displacement into the surface along
the unit normal, we have

d

d
H j Ht t

2

2 2

2
0

ξ
ω

δ
˜ sgn ˜− = ,

and the solution is

˜ ˜ exp ( sgn )H H jt tξ ξ
δ

ω( ) = ( ) − +







0 1 , (1.25)

  

˜ ˜ ˆ
˜

ˆ ˜E H n
H

Z n Hs t= ∇ × ≈ × = − ×1 1
σ σ

∂
∂ξ

r
. (1.26)

Evidently a conductor of finite conductivity does not satisfy exactly the condition
that transverse electric field should vanish on the surface. Instead, the transverse
electric field satisfies an impedance boundary condition with surface impedance,

Z
j

R js s= + = +( )1
1

sgn
sgn

ω
σδ

ω ,  (1.27)

and surface resistance, a quantity with units of ohms,
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RS = 1
σδ

.  (1.28)

ξ

CONDUCTORVACUUM
ta ngenti al H

normal H

FIGURE 1.3. Sketch of the geometry for calculation of rf field penetration into a
conductor.

Due to the collisions of conduction electrons, a non-zero power per unit area is
deposited in the conductor on average,

S n E H n Z n H H n

Z n H R n H R K

s t

s t s s

• = ℜ × •( ) = − ℜ ×( ) × •( )
= ℜ ×



 = × =

∗ ∗ˆ ˜ ˜ ˆ ˆ ˜ ˜ ˆ

ˆ ˜ ˜ ˜

1
2

1
2

1
2

1
2

1
2

2 2 2

where in the last line we have expressed the Ohmic power deposition in terms of the 
surface current density,

˜ ˜ ˆ ˜K Jd n H= = − × ( )
∞

∫ ξ
0

0 .

This relation states that, in order to cancel out the magnetic field within the bulk of
the conductor, wall currents must flow. These currents should flow in the
conductor, and hence be perpendicular to the normal, n̂ . In addition, Ampere's law
implies the currents must be perpendicular to the magnetic field, otherwise, the
currents will produce an additional uncompensated field component. Hence the
cross-product of n̂  and H̃ .

With the help of the foregoing analysis, and inspecting Table 1.1 we can see
why most linacs are built of copper. Copper is cheaper than silver, and just about as
good. Because of this, the facts of life for the material boundaries of a normal-
conducting microwave linac are just those for copper,

δ µ≈
( )

2 1. m

GHzf
, R fS ≈ ( )8 3. m GHzΩ .

The skin-depth and surface resistance will appear frequently in our discussions, as
losses limit the efficiency of accelerators and set their characteristic length and time
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scales. Ohmic heating appears today to set the limit on achievable gradient in
conducting structures, although no one is quite sure what the limiting gradient is. At
a more mundane level, Ohmic heating can cause cavity dimensions to change, and
requires temperature stabilization.

Table 1.1. Conductivity of some common materials, in units of mho/m.

silver 6 2. ×107

copper 5 107.8 ×
gold 4 1. × 107

aluminum 3 8. × 107

brass 1 5. × 107

solder 0 7. × 107

stainless steel 0 1. × 107

Equipped then with Maxwell's equations, conservation laws (charge,
energy, momentum), and the skin-effect, we are almost ready to sketch out an
accelerator. However, we will require some mechanism of power feed to the
interaction region, and in practice this is accomplished with waveguide. Waveguide
falls under a well-developed subject-heading called microwave electronics, to which
we turn in the next section. Before proceeding, it might be useful to take a look at
Appendix B where there is a brief summary of "low-frequency" electronics.

Exercise 1.5 Show that a magnetic field in a uniform conductor satisfies the difffusion

equation,   ∂ ∂
r r

H t D H/ = ∇2 , and determine the diffusion coefficient D in terms of the

conductivity, σ and the permeability, µ . Argue from this result, that the time scale for

diffusion through a depth d is T d D≈ 2 / , and explain the scaling with d 2 on intuitive
grounds, referring to your experience with the random walk problem. Go on to justify the

scaling of rf penetration depth with ω −1 2/ .

Exercise 1.6 Solve the collisional equation of motion subject to an electric field,

  

r
E Ee Ee E ej t j t j t= ℜ( ) = +( )−˜ ˜ ˜ *ω ω ω1

2
,

with ℜ denoting the real part. Show that the electron current takes a similar form, with

˜ ˜J
j

E=
+( )

σ
ωτ1

.

Apply charge conservation  to compute charge density from the current density. Show that

∇ • = = − ∇ • = − ∇ •
+( )ε ρ

ω ω
σ

ωτ0
1 1

1
˜ ˜ ˜ ˜E

j
J

j j
E .

and conclude that an electron gas in an array of infinitely massive ions has permittivity

ε ε
ω

σ
ωτ

= +
+( )0

1
1j j

.
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What form does this take in the collisionless limit? Express this in terms of the plasma

frequency ω εp nq m2 2
0= / . Note that one may view the problem treating the plasma as a

medium:  ∇ • =ε ρ˜ ˜E ext , ˜ ˜D E= ε  or not: ∇ • = +ε ρ ρ0
˜ ˜ ˜E plasma ext , ˜ ˜D E= ε0 . Taking the

former view, show that polarization  as a function of time is given by

  

r r
P t dt G t t E t( ) = ′ − ′( ) ′( )

−∞

+∞
∫ε0

with

G t d e e H tj t
e p

t( ) ( )/= ( ) = −( )
−∞

+∞
−∫

1
2

12
π

ω χ ω ω τω τ

where H is the step-function.

Exercise 1.7 Considering a current source in free-space, confirm that in the frequency

domain the Lorentz gauge vector potential satisfies, ∇ +( ) = −2 2
0k A J˜ ˜µ , with k=ω/c and

ω the angular frequency. Derive the solution for a point source, 
  
J̃ r= ( )δ 3 r

, and argue by

superposition that the general solution is

  

˜ , ,A r k d r
e

r r
J r k

jk r rr r
r r

) r
r r

( ) = ′
− ′

′( )∫
− − ′µ

π
0 3

4
.

You will want to make use of causality, the result for the Coulomb field,

  
∇ ( ) = − ( )2 31 4/ r rπδ

r
, and the Laplacian in spherical coordinates. Argue that the scalar

potential satisfies,

  

˜ , ˜ ,ϕ
πε

ρ
r r

r v
r

r v

r k d r
e

r r
r k

jk r r

( ) = ′
− ′

′( )∫
− − ′

1
4 0

3 ,

and show that this is consistent with the Lorentz Gauge condition.

Exercise 1.8 Consider a plane-polarized wave propagating in the z-direction,

  

r r
A x

mc
e

a r z t e j t kz= ℜ ( )
⊥

−( )ˆ ˜ , , ω .

Suppose that the ã  varies slowly on the time-scale 1/ω, and slowly in space on the length
scale 1/β. Starting from the wave-equation for the vector potential, in the Lorentz gauge in

free-space, and changing variables to τ=ct, and ξ=z-c2kt/ω, show that the phasor ã
satisfies

∇ −







=⊥
2 2 0j

c
a

ω ∂
∂τ

˜ .

Check that the Poynting flux is given approximately by 
  

r
S P

c
k a z≈ 



0

2ω ˜ ˆ , with

P0˜8.7GW.
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2. MICROWAVE ELECTRONICS

It wasn't until 1888 that Heinrich Rudolf Hertz at the age of 31, provided
the experimental confirmation of Maxwell's displacement current, demonstrating
electromagnetic wave propagation in his lab using a spark-gap. Nine years later
Guglielmo Marconi, at the age of 23, demonstrated sending and receiving of signals
over a two-mile range.  Prior to this time, speed of light communication had been
available only by telegraph. While radio was vulnerable to eavesdropping, it
required no cable, and, for the first time, permitted communication over the horizon
with ships at sea . The navies of the world were not slow to notice this and the first
application of radio in war occurred on 14 April 1904, during the bombardment of
Port Arthur.11 The advent of bomber aircraft added some urgency to the quest for
reliable radar systems. The US Army conducted its first field tests of a pulse radar
system in 1936, and deployed its first operational system, the SCR-268 (3 GHz) in
1938.12 By the end of World War II, the MIT Radiation Laboratory had developed
some 150 radar systems. The subject of microwave electronics was developed
largely as a result of such military demands during the period 1900-1950.

The work of this section is to describe the foundations of microwave
electronics, while somehow managing not to derive it in all its detail. We introduce
the notion of voltage, V, and current, I, as they are used in waveguide and cavity
systems, and indicate how they may be employed in circuit equivalent models for
accelerators.

2.1 Waveguide Modes

All high-power microwave systems have connected to them a length of
waveguide. Waveguide is used to transport energy, and is favored over free-space
transport because it is compact and is immune to cross-talk from the surroundings.
It can also be temperature-stabilized to preserve phase-information in a diurnally
reliable fashion. It can be filled with a high-pressure electronegative gas or
evacuated to inhibit breakdown. The two most common types of waveguide are
depicted in Fig. 2.1. One of these is rectangular waveguide, referred to as
"WRXX", where XX is the inner dimension (a in Fig 2.1) in hundredths of an
inch.13  Thus WR90 is rectangular waveguide, with a=0.90". Coaxial waveguide
comes in many sizes corresponding to the many different frequency ranges in
which it is employed. For work in  S-Band (2-4 GHz) it is not uncommon to use
RG-214/U with Type-N connectors.14 Such practices can be understood starting
from Maxwell's equations, but the reader will be spared that.

We start with uniform conducting waveguide, i.e., an arrangement of
conductors that is uniform in some direction, call it z. Since the geometry is
constant in time, and uniform in z, we are free to consider a single angular
frequency ω  and a single wavenumber β. Let the fields take the form

  

r r r
E r t E r e j t z, ˜ ,( ) = ℜ ( ){ }⊥

−( )ω ω β ,
  

r r r
H r t H r e j t z, ˜ ,( ) = ℜ ( ){ }⊥

−( )ω ω β .

The coordinate   
r )
r xx yy⊥ = +ˆ  is the position relative to the axis of the waveguide.
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FIGURE 2.1. The most commonly used waveguides are rectangular and coaxial.

We assume in the following discussion that ω≠0, and that the boundaries are
perfectly conducting. Wall losses will be incorporated later as a perturbation.

We write out Maxwell's equations assuming no external source terms and a
uniform medium present in the waveguide,

  − + ∇ • =⊥ ⊥j E Ezβ ˜ ˜
r

0, (Gauss's law)

  − + ∇ • =⊥ ⊥j H Hzβ ˜ ˜
r

0 . (solenoidal condition)

Here the subscript ⊥  denotes transverse components, thus

˜ ˆ ˜ ˆ ˜E xE yEx y⊥ = + ,

  

r
∇ = +⊥ ˆ ˆx

x
y

y

∂
∂

∂
∂

,

  

r r
∇ = + − = ∇ −⊥ˆ ˆ ˆ ˆx

x
y

y
zj zj

∂
∂

∂
∂

β β .

The last definition we make for convenience to simplify the expression of Ampere's
law and Faraday's law,

  
r
∇ × =˜ ˜H j Eωε ,   

r
∇ × = −˜ ˜E j Hωµ .

We can reduce these coupled first-order equations to second-order equations for Ẽ
and H̃ , separately, in the form of wave equations,

  

r r r
∇ × ∇ ×( ) = −∇ = ∇ × = −( ) =˜ ˜ ˜ ˜ ˜H H j E j j H H2 2ωε ωε ωµ ω εµ

and similarly for Ẽ . The results then are two vector Helmholtz equations,

∇ +( ) =⊥
2 2 0βc H̃ , ∇ +( ) =⊥

2 2 0βc Ẽ ,

where we have introduced

β β βc
2

0
2 2= − , β ω εµ0

2 2= .
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We will refer to βc  as the cutoff wavenumber, since frequencies lower than

ω β εµ< c /  correspond to evanescent waves (i.e., β  is imaginary). The
divergence conditions may be used to express the longitudinal field components in
terms of the transverse components

˜ ˜E
j

Ez = ∇ •⊥ ⊥
1
β

, ˜ ˜H
j

Hz = ∇ •⊥ ⊥
1
β

.

In addition,we may write the curl equations

  

˜ ˜E
j

Z H= ∇ ×1

0
0β

r
,

  
Z H

j
E0

0

1˜ ˜= − ∇ ×
β

r
,

where we make use of the wave impedance for free propagation in this medium,

Z0 = µ
ε

. (wave impedance)

These last results may be written more explicitly using the expression for the
gradient operator,

  
j Z H z E j Ezβ β0 0

˜ ˆ ˜ ˜
⊥ ⊥ ⊥= × ∇ +( )r

, (2.1)

  
j E z Z H j Z Hzβ β0 0 0

˜ ˆ ˜ ˜
⊥ ⊥ ⊥= − × ∇ +( )r

. (2.2)

We proceed to enumerate the three kinds of solutions (modes) to Maxwell's
equations in uniform conducting guide. Notice that solutions of these equations in
guide may be represented as superpositions of plane-waves.

Exercise 2.1  Conducting boundary conditions require that tangential electric field
ˆ ˜ ˆ ˜n E n E× = × =⊥ 0, and that normal magnetic field, ˆ ˜ ˆ ˜n H n H• = • =⊥ 0, with n̂  the normal to

the bounding surface. Making use of the last results, and taking dot and cross products

with n̂ , confirm that a necessary condition for the vanishing of ˆ ˜n E× ⊥  is

  ∂ ∂˜ / ˆ ˜H n n Hz z= • ∇ =⊥
r

0, and then that ∂ ∂˜ / ˜H n Ez z= = 0  are both necessary and

sufficient conditions for all components of the boundary conditions.

Exercise 2.2  Express ˜ ˆ sin( )exp( )E y x j t j zc= −β ω β  as a superposition of plane-waves.

Compute the corresponding H̃ . Determine conditions on βc such that these fields are a

solution of Maxwell's equations in an infinite medium of permeability µ and permittivity ε.
Show that at the planes x=0, x=π/βc, y=0, and y=b conducting boundary conditions are
satisfied. Assuming β=31/2βc, sketch the constant phase fronts in the x-z plane for each

plane-wave in the superposition. What angle do the plane-wave components make with
the z-axis? If these signals were being generated at the z=0 plane, and the signal
generator were turned off, how long would it take for the signals to begin to die off at a
plane z=L in the waveguide?
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2.2 Modes With Zero Cutoff

First we consider a special case, βc = 0. We know, from the work of Sec.

1, that the solution will be a superposition of plane-waves with βc = 0---which is
to say, propagating in the z-direction. Since the plane-waves are transverse, the z-
components for the superposition must also vanish. Let us check this. For such a
mode, we have, from the Helmholtz equation,

∇ = ∇ =⊥ ⊥
2 2 0˜ ˜E Hz z .

Green's theorem then implies

  
0 2 2

2
2= = ∇ + ∇ • ∇( ) = ∇∫ ∫ ∫⊥ ⊥ ⊥ ⊥ ⊥ ⊥

˜
˜

˜ ˜ ˜ ˜ ˜H
H

n
dl H H H H d r H d rz

z
z z z z z

∂
∂

r r r
,

and thus H̃z  is a constant throughout the waveguide cross-section. On the other

hand, if H̃z  is a constant then the circulation of Ẽ  about a closed loop ∂S ,
bounding an area S, with normal ẑ  is proportional, by this constant, to the area
enclosed.

  

˜ ˜ ˜ ˜E dl E dS j Z H dS j Z H dS
S S

z

S

z

S

• = ∇ × • = − = −∫ ∫ ∫ ∫
r r r

∂

β β0 0 0 0 ,

Taking the loop ∂S  along the waveguide periphery, we see that tangential electric
field vanishes there, and the circulation integral must therefore vanish. Thus
˜ .Hz = 0  A similar argument can be employed to show that Ẽz = 0.  Thus a mode

with zero cutoff is a transverse electromagnetic mode or TEM mode, with vanishing
longitudinal fields. This accords with our intuition that βc = 0 corrresponds to

β ω µε= , having the appearance of a plane-wave in an unbounded medium
propagating in the ẑ  direction. Plane electromagnetic waves are inherently
transverse, polarized perpendicular to the direction of propagation.

Since the circulation integral of ˜ ˜E E= ⊥  about any closed loop lying in the

transverse plane vanishes, we may express Ẽ⊥  in terms of a potential function,
defined according to a line integral,

  

ψ r r

r

r

r dl E
r

r

⊥ ⊥( ) = •
⊥

⊥

∫
0

˜ ,

where the choice of the reference point   
r
r⊥0  corresponds to the choice of a constant

of integration, and might as well be placed on a conducting surface. This definition
is independent of the path connecting   

r
r⊥  and   

r
r⊥0  since the circulation integral about

any closed loop in the transverse plane vanishes. With this definition for ψ, it

follows that   Ẽ⊥ ⊥= ∇
r

ψ , and  Gauss's law implies   
r
∇ =⊥

2 0ψ . Boundary conditions

2 3



require   0 = × = × ∇⊥ ⊥n E n˜
r

ψ . Since the geometric meaning of   
r
∇⊥ψ  is the normal

to a surface of constant ψ, it follows that each conductor is an equipotential. Upon

reflection one sees that ψ is just a solution of the ω=0 electrostatics problem in the
waveguide. Thus for example, if we have one conducting boundary (one
equipotential) then Green's theorem implies that the potential is a constant and the
electric field is zero. In this case, there is no TEM mode. If we have two conducting
boundaries, then we may have one TEM mode.

Exercise 2.3 (TEM Mode of Coaxial Line ) The most commonly used mode is TEM

mode of coaxial cable.  Considering the geometry of Fig. 2.1, and starting from   Ẽ⊥ = ∇
r

ψ
and Z H z E0

˜ ˆ ˜⊥ ⊥= × , argue that ∂ψ ∂φ/ = 0 . Show that the solution takes the form

 ψ = 





k
r
a

ln , Z H
k
r0

˜ ˆ⊥ = φ , ˜ ˆE r
k
r⊥ =

where k is a constant. Confirm that the choice k b a− =2 2π ln( / )  corresponds to the

normalization   d r E E2 1
r
⊥ ⊥ ⊥∫ • =˜ ˜ . Make a sketch of the field lines and wall currents.

2.3 Modes With Finite Cutoff

To treat the case βc≠0, we return to Eqs. (2.1) and (2.2). Writing these
equations out component-wise we find that the transverse fields can be determined
in terms of the longitudinal fields,

  

˜ ˆ ˜ ˜E
j

z Z H E
c

z z⊥ ⊥ ⊥= × ∇ − ∇






β
β

β
β

0
2 0

0

r r
, (2.3)

  
Z H

j
z E Z H

c
z z0

0
2

0
0

˜ ˆ ˜ ˜
⊥ ⊥ ⊥= × ∇ + ∇







β
β

β
β

r r
. (2.4)

Of the modes with βc≠0, the first are transverse electric modes , or TE modes, with
Ez=0 (also called H-modes) for which the transverse fields may be determined from
Hz,

  
Z H

j
Z H

c
z0 2 0

˜ ˜
⊥ ⊥= ∇β

β

r
, (2.5)

  

˜ ˆ ˜ ˆ ˜E
j

z Z H z Z H
c

z⊥ ⊥ ⊥= − × ∇ = − ×β
β

β
β

0
2 0

0
0

r
, (2.6)

and H̃z  satisfies

∇ +( ) =⊥
2 2 0βc zH̃ , (TE) (2.7)

with boundary condition
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0 0 2 0= • = • ∇⊥ ⊥ˆ ˜ ˆ ˜n Z H

j
n Z H

c
z

β
β

r
,

or

∂
∂
H̃

n
z = 0, (2.8)

where n is the unit normal to the conducting boundary. Pictorially, a TE mode is
one for which the lines of electrical  field, when viewed in cross-section, close on
themselves.

Of the modes with βc≠0, the second kind of mode is the transverse
magnetic mode  or TM mode, with Hz=0, (also called an E-mode) for which the

transverse fields may be determined from Ẽz ,

  

˜ ˜E
j

E
c

z⊥ ⊥= ∇β
β 2

r
, (2.9)

  
Z H

j
z E z E

c
z0

0
2

0˜ ˆ ˜ ˆ ˜
⊥ ⊥ ⊥= × ∇ = ×β

β
β
β

r
, (2.10)

and the longitudinal field satisfies

∇ +( ) =⊥
2 2 0βc zẼ , (TM) (2.11)

with boundary condition

Ẽz = 0. (2.12)

For a TM mode the lines of magnetic field form closed loops in the transverse
plane.

Note that if Ẽz  is a solution to this problem, then so is ℜẼz , and  similarly

for H̃z . Evidently then one may choose longitudinal fields to be real for either TE or
TM modes. On the other hand, the transverse fields for these travelling waves are in
phase with each other, and always 90° out of phase with the longitudinal field. We
will employ the convention that both transverse fields are real, with the result that
longitudinal fields are imaginary.

Exercise 2.4 (TE10 Mode of Rectangular Guide) The second most commonly

used mode is TE10 mode of rectangular waveguide. Consider the rectangular geometry

of Fig. 2.1, with a>b. Starting from the TE mode equation, Eq. (2.7) and considering the
most general solution exp( )exp( )jk x jk yx y , show that boundary conditions require

solutions of the form ˜ ( , ) cos( / )cos( / )H x y n x a m y bz ∝ π π , with k n ax = π / , and
k m by = π /  (TEnm mode). Compute the cutoff wavenumber and confirm that TE10
mode has the lowest cutoff ("fundamental mode of rectangular guide") and the fields take
the form
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˜ sin ˆ, ˜ sin ˆ, ˜ cosE E x y Z H E x x Z H j E xc c c z
c

c⊥ ⊥= ( ) = ( ) = − ( )0 0 0
0

0β β β
β

β ,

and determine Zc . Confirm that the choice E ab0
1 22= ( )/ /  corresponds to  the

normalization   d r E2 2 1
r
⊥ ⊥∫ =˜ .

To summarize the foregoing analysis, boundary conditions restrict the
permissible values of cut-off wavenumber βc to a discrete set. Each mode has a

corresponding minimum wavelength λ π βc c= 2 / , the cut-off wavelength; for

longer wavelengths, the solution for β is imaginary and the field evanesces in the

waveguide. The guide wavelength  is λ π β λ λ λg c= = −2 10 0
2 2/ / / , where the

wavelength in the absence of boundaries is λ π β0 02= / . In general for a given
mode we have

Z H z Ec
˜ ˆ ˜

⊥ ⊥= × , (2.13)

where the characteristic impedance associated with the mode  is

Z Zc

g

g

=

=

=















0

0

0

0

0

1

β
β

λ
λ

β
β

λ
λ

TE mode

TM mode .

TEM mode

(2.14)

This is a function of frequency for TE and TM modes. We choose the sign of Zc

positive for positive β.

2.4 Circuit Equivalence

Supposing that we have determined all the modes for our geometry, and
their eigenvalues, βc, let us form a list (an infinite list) of all these modes, and tally
them with index a. A general solution for a vacuum oscillation in a given geometry
may then be represented as a sum over all these modes:

  

˜ ( , )E E r V zt a
a

a= ( )⊥ ⊥∑ r ω , (2.15)

  

˜ ( , )H H r I z Zt a
a

a ca= ( ) ( )⊥ ⊥∑ r ω ω (2.16)

where 

Z H z Eca a a⊥ ⊥= ×ˆ . (2.17)

We adopt the normalization
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d r E r E ra a

2 1⊥ ⊥ ⊥ ⊥ ⊥∫ ( ) • ( ) =r r
, (Slater normalization) (2.18)

where the integral is over the waveguide cross-section. We have chosen the
transverse field components in this normalization to be real. The coefficients  V,I
take the forms

V z V e V ea a
j z

a
j za a( , )ω β β= ++ − − , (2.19)

Z I z V e V eca a a
j z

a
j za a( , )ω β β= −+ − − . (2.20)

The longitudinal fields may be determined using Eqs. (2.4) and (2.5), the
conditions that the fields be solenoidal in the source-free waveguide,

  
Ẽ E r V e V ez za

a
a

j z
a

j za a= ( ) −{ }⊥
+ − −∑ r β β , (2.21)

  
H̃ H r V e V ez za

a
a

j z
a

j za a= ( ) +{ }⊥
+ − −∑ r β β . (2.22)

As defined, V and I are nothing more than mode coefficients, phasors that
represent the amplitude and phase of excitation of each and every waveguide mode.
Most typically one employs waveguide at a frequency below cut-off for all but one
mode, the fundamental mode  or dominant mode---just the mode with the lowest βc.
In this case one may rightly expect that only the coefficients for the fundamental
mode are non-negligible. Even so, we leave in all the coefficients for the time
being. We will find in later work that the usefulness of V and I  arises in coupled
systems, where one waveguide is joined to another, or to a cavity, or where an
obstacle or aperture has been placed in the waveguide. At waveguide junctions,
discontinuities or obstacles, evanescent modes play an important role, even while
their spatial extent is limited.

Next we develop the circumstances that motivate and justify the terminology
"voltage" and "current," and form the basis for the microwave electronics circuit
analogy for waveguide systems. Let us consider each mode as consisting of two
channels, corresponding to right- and left-going waves. From Eqs. (2.19) and
(2.20) voltage and current in each channel are proportional by a constant with units
of impedance,

Z I Vca a aω( ) = ±± ± , (characteristic mode impedance) (2.23)

where ±  denotes the wave flowing in the ± ẑ  direction. Evidently these channels
are uncoupled in smooth waveguide, insofar as the forward-channel or forward-
going current is determined only by the forward-going voltage.  To make further
progress, we must make a brief digression into mode orthogonality.

A number of integral relations can be established demonstrating the
independence of each mode as a channel of communication through the waveguide.
To demonstrate these relations one calls on the eigenvalue equations for H̃z  and Ẽz ,
the boundary conditions,  Green’s theorem, and, in the case of degenerate modes,
Gram-Schmidt orthogonalization. We will simply list the results, assuming
orthogonalized modes,
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d r E r E ra b ab

2
⊥ ⊥ ⊥ ⊥ ⊥∫ ( ) • ( ) =r r δ . (2.24)

 H H d r
Za b

a b

ca
⊥ ⊥ ⊥• =∫ 2

2

δ , , (2.25)

d r z E H Za b ab ca
2 1

⊥ ⊥ ⊥
−∫ • ×( ) =ˆ δ . (2.26)

It is also helpful to note the orthogonality and norm of the full fields,

˜ ˜
,E E d ra b

a
a b• =∗∫ 2 0

2

2

β
β

δ , (TM Mode) (2.27)

˜ ˜
,H H d r

Za b
a ca

a b• =∗∫ 2 0
2

2 2

1β
β

δ . (TE Mode) (2.28)

(Note that from our choice of normalization the longitudinal fields are pure
imaginary).

With these results in hand we can derive the basic relations that constrain the
circuit-equivalent description of a microwave system. Let us first compute the
power flowing in a particular channel in terms of voltage and current.  Using Eq.
(2.25), one may express the power flow in the waveguide in terms of V and I
according to

  

P d r E H

V z I z Z d r E r H r

V z I z Z Z V I

t t

a b
a b cb a a

a b
a b cb ab ca

a
a a

= ℜ ×

= ℜ ( ) ( ) × ( )

= ℜ = ℜ

∫
∑ ∑ ∫
∑ ∑ ∑

∗

∗
⊥ ⊥ ⊥ ⊥

∗ − ∗

1
2

2

1
2

2

1
2

1 1
2

˜ ˜

( , ) ( , )

( , ) ( , )

ω ω ω

ω ω δ

r r
(2.29)

In addition, given the orthogonality relations, one can determine V and I  uniquely
from the transverse fields at a point z,

  
V z d r E r z E ra t a( , ) ˜ ,ω = ( ) • ( )⊥ ⊥ ⊥ ⊥∫ 2 r r

, (2.30)

  
I z Z d r H r z H ra ca t a( , ) ˜ ,ω = ( ) • ( )⊥ ⊥ ⊥ ⊥∫ 2 r r

, (2.31)

and this is enough to determine the solution everywhere in the uniform guide, since
this fixes the right- and left-going amplitudes. Moreover it shows that V and I  in
any particular mode are functionally indepedent of the the other V's and I's. Given
the uniqueness of V and I , their relation to power, and the units (volts, amperes) it
is natural to refer to them as voltage and current. It is important to keep in mind
however that they appear as complex mode amplitudes, not work done on a charge
or time rate of change of charge.

Let us also take account of stored energy. The energy stored  per unit
volume in electric fields is w E Ee = • ∗1

4 0ε ˜ ˜ , and in magnetic fields

w H Hm = • ∗1
4 0µ ˜ ˜ . It is natural to associate we with capacitance and wm with

inductance. This can be made precise by means of the complex Poynting theorem.
We return to Maxwell's equations in the frequency domain,
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r
∇ × = −˜ ˜E j Hωµ ,   

r
∇ × = +˜ ˜ ˜H j E Jωε ,

considering a current source term, for example, ˜ ˜J E= σ  within some region. Next
we make use of the vector identity,

  

r r r
∇ • ×( ) = • ∇ ×( ) − • ∇ ×( )∗ ∗ ∗˜ ˜ ˜ ˜ ˜ ˜E H E H H E ,

and combine it with Maxwell's equations to produce

  

r
∇ • ×( ) = • − •( ) − •∗ ∗ ∗˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜E H j D E B H J Eω .

This we integrate over any volume V, with the result

  ∂
ω ε µ

V V V

E H dS dV E H dVJ E∫ ∫ ∫× • = −



 − •∗ ∗ ∗ ∗˜ ˜ ˜ ˜ ˜ ˜

r 2 2
.

In vacuum this takes the form

  

1
2

1
2

2˜ ˜ ˜ ˜E H dS E J j w w dV
V V

e m

V

× • = − • + −( )∗ ∗∫ ∫ ∫
∂

ω
r

. (2.32)

Employing this result together with the formulation of waveguide modes in terms of
voltage and current, we can describe a cavity's response in terms of an impedance,
as seen in the next exercise.

V

FIGURE 2.2.  Sketch for application of the complex Poynting theorem to formulate the
notion of impedance of a cavity.

Exercise 2.5 Consider a waveguide operated in fundamental mode, attached to a
cavity, all encased in a perfect conductor, as illustrated in Fig. 2.2. Show that the
"impedance looking into the cavity" Z V I= 1 1/  (with V1 and I1 the fundamental mode

voltage and current coefficients) takes the form
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Z
I

E J j w w dV
V

m e
V

= • + −( )











∗∫ ∫

1
4

1
2

˜ ˜ ω . (2.33)

Expressing this as Z=R+jX, identify the equivalent resistance and reactance.

2.5 Phase and Group Velocity

In the midst of the single-frequency circuit analogy, transient phenomena
should not be forgotten. Let us consider, in the time-domain, the manner in which
signals may propagate in a waveguide mode. Suppose that by some external means,
a narrow-band signal is imposed at z=0,

V t f t e j t( , ) ( )0 0= ω ,

where the phasor f may be slowly modulated in time. In the frequency domain we
have

˜ ( , ) ( )V
dt

f t e j tω
π

ω ω0
2

0=
−∞

∞
−( )∫ ,

and the modulation may be expressed as

f t
d

V e j t( ) ˜ ( , )=
−∞

∞
−( )∫ ω

π
ω ω ω

2
0 0 .

Let us compute the voltage at a location z,

V t z
d

V e
d

V e

e
d

V e

j t j z
j t j z j

d

d
z

j t j z
j t

d

d

( , ) ˜ ( , ) ˜ ( , )

˜ ( , )

= ≈

≈

−∞

∞
−

−∞

∞
− ( ) − ( ) −( )

− ( )

−∞

∞ −( ) −

∫ ∫

∫

ω
π

ω ω
π

ω

ω
π

ω

ω β ω β ω β
ω

ω ω ω

ω β ω ω ω β
ω

ω

2
0

2
0

2
0

0 0 0

0 0
0 0(( )



 −( )≈ −( )z t j t z V

ge f t z V
ω ϕ0 /

/ .

We can see that constant phase-fronts travel at the phase-velocity

Vϕ
ω
β

= (2.34)

while any modulation in f travels at the group-velocity

V
d

dg = ω
β . (2.35)

For a mode in uniform guide,

V
c c

ϕ
ω

β β µε β β µε
=

−
=

−
≥

0
2 2 2

0
2

1 1

1

1

/
,

3 0



Vg c= = − ≤1 1
1

1

0

2
0
2

µε
β
β µε

β β
µε

/ .

Thus in straight guide the phase-velocity is never less than the speed of light in the
medium. The group velocity is never more. Equality results only if βc=0 and, as we
know, that requires a TEM mode. None of this is too mysterious in the picture of
the waveguide mode as a superposition of plane waves. The plane waves are
individually propagating at the speed of light in the medium---however, unless the
mode is a TEM mode, they are propagating at an angle to the z-axis. For this reason
it takes longer for amplitude modulations to make their way from one point to
another in the guide. Phase-velocity is larger than the speed of light simply because
the phase-fronts are propagating at an angle, so that crests  sweep down the z-axis
at superluminal speeds. A similar phenomenon can be seen at a beach with long
breakers incident on the beach at a slight angle. The point of wave-breaking may
move at very high speed along the beachfront. For a surfer on the wave-crest,
however, the speed of motion along the beachfront can be quite small.

2.6 Attenuation

In the foregoing discussions we considered lossless waveguide. Let us now
consider the effect of finite wall resistivity, as indicated in Fig. 2.3. Taking the real
part of Eq. (2.32) we obtain the change in forward-going power in the waveguide,
from entrance to exit of the volume,

  
∆P E H dS dV E H dV E

V V V

= ℜ × • = ℑ( ) − ℑ( )



 −∫ ∫ ∫∗

′

1
2

1
2

2 2
1
2

2

∂

ω ε µ σ˜ ˜ ˜ ˜ ˜
r

,

where the volume V' is the region inside the conductor. Let us consider the case
where losses in the bulk medium are negligible, ℑ = ℑ =ε µ 0 , and take over the
result from Sec. 1 for the field profile within a conductor,

  

˜ ˜ ˆ ˜ exp sgnE H Z n H js≈ ∇ × = − × − +( )







1
10σ

ξ
δ

ω
r

,

where H̃0  is the tangential magnetic field at the conducting surface, which is to a
good approximation just the magnetic field one computes by assuming a perfectly
conducting surface. With this expression, the integral over V' can be reduced to an
area integral over the inner conducting face of the waveguide. Taking now the
length of the volume ∆z to be small, the area integral can be reduced to a line
integral around the inner circumference of the waveguide cross-section,

∆ ∆ ∆P dV E R dl H z
dP

dz
z

V

s

S

= − = − =
′
∫ ∫1

2

2 21
2

σ
∂

˜ ˜ .

The path ∂S  bounds the cross-section S of the waveguide. Observing that the
integral is quadratic in the fields, and therefore proportional to power, we may
introduce the attenuation parameter, α,
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dP

dz
P= −2α ,  (2.36)

where

  

α ∂=
ℜ • ×

∫
∫ ∗

1
2

2

R

dl H

dS E H
s

S

˜

˜ ˜
r . (independent of norm)   (2.37)

Thus in the presence of losses, the propagation constant takes on a small imaginary
part, j jβ γ β α→ = − . With the Slater normalization, we may also express Eq.
(2.40) as

α
∂

=




 ∫1

4

2R

Z
dl Z Hs

c S

c
˜ . (Slater norm) 

P(z)
z

z+dz

P(z+dz)
∂V

V

FIGURE 2.3. Geometry for calculation of attenuation in waveguide.

Exercise 2.6 Show that the attenuation constant for the TE10 mode of rectangular
guide is given by

α ω β
ω

ω β= +












−










−
R
Z c b a

c

c
s c

c
0

2

2

2 2

2
2

1 2
1

2

/

. (2.38)

Sketch the result as a function of frequency and explain the high and low frequency
behavior in words. Why is WR90 operated in the frequency range of 8-12 GHz?
Consulting Table 2.1, and the TE10 mode attenuation formula, confirm that the operating

ranges and attenuations quoted are reasonable.

3 2



Table 2.1 Examples of standard rectangular waveguide.

Designation a (inch) b (inch) f (GHz)  Attenuation (dB/100 ft)

WR650 6.50 3.25 1.1 - 1.7   0.3-0.2 (copper)
WR284  2.84 1.34 2.6 - 4.0   1.1-0.8 (copper)
WR90  0.90 0.4 8.2 -12.4  6.5-4.5 (copper)
WR62  0.62 0.31 12.4 - 18   9.5-8.3 (copper)
WR28  0.28 0.14 26.4 - 40   22-15 (silver)
WR10  0.10 0.05 75 - 110   >100 (silver)

Exercise 2.7 Show that the attenuation constant for TEM mode in coaxial cable with
ε ε≈ 0 takes the form,

 α =






+











1
2

1 1
R
Z

a b
b
a

s

c ln
. (2.39)

Most coax makes use of polyethylene dielectric, and attenuation occurs due not only to
the "skin-effect" losses accounted for in the result above, but to those in the bulk of the
dielectric. Starting from the dispersion relation β ω µε= , argue that in general the

attenuation constant should consist of two terms, α α α= +skin bulkf f , depending on
the frequency f.

2.7 Impedance is a Many-Splendored Thing

The case of TEM mode in coaxial cable is illuminating for it provides a
simple working example of the differences between low-frequency and high-
frequency electronics. We may see an analogy between low-frequency circuits and
microwave circuits for hollow waveguide, but it is at best an analogy, since hollow
waveguide does not support a zero-frequency mode. For coaxial cable one can
compare directly the microwave circuit notions, and the ordinary low-frequency
concepts. In most engineering texts on the subject, the example of TEM mode is
discussed at length for this reason.15   Consider the solution as derived in a previous
exercise, with voltage coefficient as in our circuit analogy,

ψ ω= 



 ( )k

r

a
V zln ˜ , , ˜ ˆ ˜ ,E r

k

r
V z⊥ = ( )ω , ˜ ˆ ˜ ,H

k

r
I z⊥ = ( )φ ω .

The coefficients take the form of forward and reverse waves, 

˜ ,V z V e V ej z j zω ω ωβ β( ) = ( ) + ( )+
−

− , Z I z V e V ej z j z
0
˜ ,ω ω ωβ β( ) = ( ) − ( )+

−
− ,

and the propagation constant is β ω µε= . Some observations are in order. First,

the coefficient Ṽ  is not the line integral of the electric field between the conductors,

3 3



V b V z
b
a

0

1 2

2
= ( ) = ( )





( )ψ
π

ω
ln ˜ ,

/

.

Nor for that matter does Ĩ  correspond to the physical current that the inner
conductor would need to provide in order to support the magnetic field,

  

I H dl d r H I z
b
a

0

0

2 1 2

2= • = = ( )






( )⊥∫ ∫˜ ˜

ln
˜ ,

/
r

φ π ω
π

φ .

As a result,  the characteristic TEM mode impedance Zc=Z0 is not the same entity
as the cable impedance used at low frequency,

Z
V

I

b

a
Zcable = = 





0

0
0

1
2π

ln . (2.40)

As described this is simply a matter of normalization, but it is good to be aware of
the ambiguity in the notion of impedance. Actually, the ambiguity is deeper than
this. One very sensible definition of impedance is

Z
V z

I z
Z

V e V e

V e V e

j z j z

j z j z= ( )
( )

= ( ) + ( )
( ) − ( )

+
−

−

+
−

−

˜ ,
˜ ,

ω
ω

ω ω
ω ω

β β

β β0 , (2.41)

referred to as the " impedance looking into the plane at z." The implication is that as
long as one thinks that impedance should be a ratio of voltage and current, then,
regardless of the normalization, the impedance depends on where one looks (on z).
One can also see how this problem was escaped at low frequency. The z-
dependence is significant only if one is working over a range of z such that βz ≈ 1.
This motivates a simple definition of a microwave circuit: a circuit comparable to a
wavelength in size. In such  a circuit, effects of spatial phase-shifts and interference
become noticeable.

This discussion helps to clarify that one may encounter many useful
definitions of impedance, wave impedance of the medium, characteristic impedance
of a mode (in a waveguide filled with this medium), cable impedance, and terminal
impedance. Later we will develop also the notion of "impedance seen by the beam."
It is best to remember that the notion of "impedance" is a tool we use, and in
general one has to ask what definition of impedance is being used and why.

Having contemplated the wonders of waveguide, let us connect it to a thing
or two.

Exercise 2.8 (Impedance Transformation )  Consider a transmission line with
characteristic impedance Zc, and a signal with wavenumber β on the line. Show that the

impedance looking into terminal #1, Z1=V1/I1, may be related to the impedance looking

into terminal #2, Z2=V2/I2, according to

Z
Z

Z
Z

j L

j
Z
Z

Lc

c

c

2

1

11
=

− ( )

− ( )

tan

tan

β

β
. (2.42)
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2.8 Shunt Admittance of an Iris

Up to this point our treatment of waveguide propagation may have seemed a
bit artificial, insofar as we have considered a reverse and a forward wave with no
particular discussion of what caused the waves in the first place. In general we will
be interested in a waveguide connected to a cavity, perhaps itself attached to other
cavities. We may be interested in intersecting waveguides. Our primary tool for
understanding these systems will be the notion of impedance introduced in Eq.
(2.43). We consider the simplest of examples, as illustrated in Fig. 2.4, consisting
of straight waveguide operated "in fundamental mode" (i.e., below cutoff for all
higher modes), with a thin, perfectly conducting obstacle placed transversely to the
wave. This could by a symmetric iris, for example.

Let us consider the solution for the fields in this geometry, for a wave  VF

incident from z→−∞. We know that the fields are completely specified once the
transverse components are known. A general solution in uniform guide must take
the form

  
Ẽ E r V e V et a

a
a

j z
a

j za a= ( ) +( )⊥ ⊥
+ − −∑ r β β , 

  
H̃ H r Z I e I et a

a
ca a

j z
a

j za a= ( ) ( ) +( )⊥ ⊥
+ − −∑ r ω β β ,

where Z I Vca a a
± ±= ± . However, this is only a "general solution" in uniform guide,

and, having introduced an obstacle, we have split the guide into two lengths of
uniform guide that are coupled. Thus the coefficients in the mode sum may take
different values to the left and the right of the obstacle, for any obstacle worth its
salt. Note that only the fundamental mode, call it mode 1, is propagating. Other
modes evanesce with attenuation per unit length of

γ β β βa a caj= − = −2
0
2 .

VF

VR
VT

FIGURE 2.4. The "forward" wave VF is incident from large negative z, and results in a
reverse wave VR reflected toward negative z   and a wave VT  transmitted to positive z .

Their effect in this problem is to provide field matching; as a consequence of
their presence, some energy is stored in the vicinity of the obstacle. If this energy is
stored primarily in electric fields, we may say the obstacle is capactive; if primarily
in magnetic fields, the obstacle is inductive in character. Since these fields should
evanesce away from the obstacle, and not grow without bound, we exclude from
the solutions the growing exponential terms.

Taking into account the foregoing comments, we may write out our mode
sums more explicitly, for z<0,
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Ẽ E r V e RV e E r V et F

j z
F

j z
a

a
a

za a a= ( ) +( ) + ( )⊥ ⊥
−

⊥ ⊥
≠

+∑1
1

r rβ β γ ,

  
H̃ H r V e RV e H r V et F

j z
F

j z
a

a
a

za a a= ( ) −( ) + ( )⊥ ⊥
−

⊥ ⊥
≠

+∑1
1

r rβ β γ ,

and for z>0, 

  
Ẽ E r TV e E r V et F

j z
a

a
a

za a= ( ) + ( )⊥ ⊥
−

⊥ ⊥
≠

− −∑1
1

r rβ γ ,

  
H̃ H r TV e H r V et F

j z
a

a
a

za a= ( ) + ( )⊥ ⊥
−

⊥ ⊥
≠

− −∑1
1

r rβ γ .

In these expressions, we have introduced  the reflection coefficient,

R
V

V
R

F

ω( ) = ,

the  ratio of reverse to incident forward voltage, a quantity that is complex in
general. We have also introduced the transmission coefficient,

T
V

V
T

F

ω( ) = ,

the  ratio of transmitted to incident forward voltage. To solve this problem
explicitly, one would like to match the fields across the plane z=0 and this requires
some knowledge of the iris geometry. However, one can make some general
statements  independent of such details.

First, the transverse electric field must vanish on either side of the obstacle,
since it is assumed to be a perfect conductor, and is placed transversely to the
direction of propagation. Second, in the port, the tangential electric field must be
continuous, a consequence of Faraday's law, or if one likes, the case of matching
the field at a boundary between two identical media. Thus the transverse electric
field must be continuous at z=0, as illustrated in Fig. 2.5. Thus
˜ ˜E z E zt t=( ) = =( )− +0 0 , or

  
E r V R E r V E r V T E r VF a

a
a F a

a
a⊥ ⊥ ⊥ ⊥

≠

+
⊥ ⊥ ⊥ ⊥

≠

−( ) +( ) + ( ) = ( ) + ( )∑ ∑1
1

1
1

1
r r r r

.     

Taking the dot product of both sides of this expression with   E r⊥ ⊥( )0

r
 and integrating

over the waveguide cross-section, we obtain, from mode orthogonality,

1 + =R T , (continuity of transverse electric field) (2.43)

Next, let's consider the transverse magnetic field. According to Ampere's
law, in the port the magnetic field will be continuous since there are no current
sources there. However, it need not vanish at the conducting obstacle, for there
wall currents may flow in such a way as to cancel out the field within the
conductor. Thus there are no grounds for declaring that transverse magnetic field is
continuous across the entire waveguide cross-section. In terms of  current
coefficients,
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Z I Vc F F1 = , Z I Vc R R1 = − , Z I Vc T T1 = .

This discontinuity of the magnetic field amounts to some "missing current,"
I I IF R T+ ≠ . We may say that some current, I I I IS F R T= + − , has been shunted to
ground, and we may adopt a circuit picture, as illustrated in Fig. 2.6. Wall current
is flowing through the iris and modifying the fields. This shunt current arises to
cancel the longitudinal H field at the iris. Therefore, recalling Eq. (2.22), shunt
current is proportional to the voltage at the iris, V V VT F R= + . Thus we may define a
shunt admittance,

Y
I

VS
S

T

= ,

that depends only on the geometry of the iris, the mode, and the frequency, but not
on the incident signal amplitude.

Et=0 Et=0

FIGURE 2.5. The transverse electric field is continuous across a thin obstacle.

Combining the foregoing, one may show that

Y
R

R
YS cω ω

ω
ω( ) = − ( )

+ ( )
( )2

1 1 , (2.44)

where

Y
Z Z

TE

TEM
c

c
1

1 0

0
1 1

1

= = ×






β
β

mode

mode

(2.45)

is the characteristic admittance of this waveguide mode. Thus the shunt admittance
is determined once the reflection coefficient is known, and vice versa. 

Some common language is helpful to know. One often employs the
normalized shunt admittance

Ŷ
Y

Y
Y Z

R

RS
S

c
S c= = = −

+1
1

2
1

. (2.46)

In addition, one may express admittance in terms of real and imaginary parts,
Y G jBs s s= + , where Gs  is called the conductance and Bs  the susceptance. In the
case of a thin, lossless obstacle, one has simply a shunt susceptance. A fair body of
literature is available on the calculation of shunt susceptance of a mode---typically
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the fundamental mode---for obstacles of various geometries. Starting with the
earliest, Marcuvitz16 provides a catalog of results, Montgomery, Dicke and Purcell17

provide examples of its use, and Jackson18 provides a very readable introduction to
the variational technique. Modern works include textbooks by Collin,19 and Felsen
and Marcuvitz.20

                  

Is

IF+IR

VR+VF=VT

z=0+z=0-

Ys

IT

FIGURE 2.6. Equivalent circuit for a thin iris on a waveguide operated in a single mode.

2.9 VSWR

The reflection coefficent on a line is quantified by the voltage-standing wave
ratio or VSWR; it is a figure of merit for microwave components. To define
VSWR, consider a waveguide operating in fundamental mode, with voltage

Ṽ z V e V eF
j z

R
j z( ) = +− β β ,

and imagine a small probe sampling but not perturbing the electric field in the
waveguide. Let us suppose the output signal is proportional to the time-averaged
squared voltage Vrms

2 , and compute this. The real voltage as a function of time is

V z t V z e V e V ej t
F

j t j z
R

j t j z, ˜( ) = ℜ ( ){ } = ℜ +{ }− −ω ω β ω β ,

and we wish to compute the mean squared voltage,

V z dt V z trms
2

0

2
2

2
( ) = ( )∫ω

π

π ω/

, ,

and after some algebra the result is

V V V V V erms F R F R
j z2 2 2 21

2
2= + + ℜ( ){ }∗ − β .

This is an oscillatory function of z, with period equal to one-half the guide
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wavelength of the mode. Maxima and minima of this curve are

maxV V Vrms F R= + , minV V Vrms F R= − .

Therefore if the output of the detector is plotted versus position on the slotted line,
we should get a curve looking something like that of Fig. 2.7. From such a curve
one can determine the guide wavelength (and thus the frequency), and one can
determine the ratio between the maxima and mimima of the standing-wave pattern,
the VSWR

VSWR = =
+
−

max
min

V

V

V V

V V
rms

rms

F R

F R

. (2.47)

0

0.5

1

1.5

2

0 0.5 1 1.5 2

/ λ

R=0.5

R=0.99

R=0.01

z

FIGURE 2.7.  Illustration of squared voltage versus probe position normalized to the
guide wavelength, for various values of the reflection coefficient R.

In terms of the reflection coefficient, this may be expressed simply as

VSWR = +
−

1
1

R

R
. (2.48)

Evidently, VSWR≥1, with VSWR=1 only in the case of no reflection---a "perfect
match." In the case of total reflection, VSWR→∞. Observe that VSWR is a
function of frequency, since R is. In fact, microwave components come with
specifications for maximum VSWR over a range of frequency. Low  VSWR over a
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broad band costs extra.

Exercise 2.9 Consider fundamental mode lossless guide with an iris and a short as
illustrated in the sketch. In terms of angular frequency ω, wavenumber b, and shunt
admittance Y of the iris, determine the reflection coefficient as a function of z, the distance
to the left of the iris. If the admittance is a pure susceptance, what is the VSWR on the
line?

z=0 z=L

Y

2.10 An Elementary Cavity

In the discussion at the end of Sec. 1, we found that, for electromagnetic
acceleration, we required either (1) a terminated interaction or (2) a synchronous
mode, one with phase-velocity equal to c, for an extended interaction. We then
embarked on the treatment of waveguide to appreciate how power could be coupled
into such an interaction region, so as to accelerate a beam. We will consider (1) in
detail in Sec. 3, and (2) in Sec. 4. However, with the help of the previous analyses,
we are at a point where we can consider case (1), in its most elementary form,
without beam: the filling of a cavity with microwave energy. In Sec. 2.11 we will
provide a similar elementary treatment of case (2).

For illustration we will make a cavity from a length of waveguide terminated
in an iris followed by a shorting plane, as seen in Fig. 2.8. The turn-on of the rf
drive corresponds to the launching of a wave down the waveguide, toward the
cavity formed by the iris and the short. For a small iris one expects that most of the
incident wave will be promptly reflected. Some of the wave will scatter through the
obstacle. The forward wave in the cavity travels to the short, is reflected, returns to
the iris, radiates a little bit through it, but for the most part is reflected. Over time,
the cavity  fills, and in steady-state the prompt reflection of the incident wave at the
iris interferes with the radiation from the cavity. Thus during the transient filling of
the cavity a left-going signal or "reverse voltage" appears; in steady-state the reverse
voltage may look different.

4 0



drive
turns
on

cavity
fills

steady-
state

FIGURE 2.8. Illustration of the transient filling of a cavity. For simplicity we consider a
length of waveguide terminated in a shorting plane. In front of the plane is an obstacle, for
example, a thin iris.

To characterize this system we must perform a calculation and this will be
aided by the circuit-equivalent picture of Fig. 2.9. An incident wave represented by
phasor Ṽ+  results in a prompt reflected wave RṼ+ , where R is the (complex)
reflection coefficient of the iris. This coefficient is just the  steady-state reflection
coefficient of the iris when placed on smooth waveguide. Meanwhile, a wave TṼ+

is transmitted through the iris. This wave will travel to the short, be reflected, and
return to the iris in a time τ=2L/Vg where Vg is the group velocity in the unloaded
guide. Let us refer to the right-going wave phasor, just to the right of the iris, and
evaluated at time nτ ,  as Ã n( ) . Evidently ˜ ˜A TV0( ) = + . To determine the cavity
voltage on subsequent bounces we simply follow this wave through the cavity and
back to the iris. Propagation to the shorting plane corresponds to the map
˜ ˜A n e A nL( ) → ( )−γ , where γ β α= +j  is the propagation coefficient for the smooth

guide, and is determined from the guide wavenumber β, and the attenuation

parameter α. Reflection at the shorting plane corresponds to e A n e A nL L− −( ) → − ( )γ γ˜ ˜ ,
and we neglect losses on the endwall for simplicity. Propagation back to the iris
corresponds to − ( ) → − ( )− −e A n e A nL Lγ γ˜ ˜2 , and reflection there results in

− ( ) → − ( )− −e A n Re A nL L2 2γ γ˜ ˜ . Evidently the right-going amplitude in the cavity on the
next bounce is

˜ ˜ ˜A n TV Re A nL+( ) = − ( )+
−1 2γ .
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z=0 z=L

Y

V+

V-

FIGURE 2.9. Transmission line picture for the cavity filling problem. The cavity has
length L, and the iris corresponds to a normalized shunt admittance Y. The forward
voltage V+ is specified, and we wish to solve for the reflected signal, and the wave
amplitudes in the cavity.

Similar reasoning shows that the left-going wave to the left of the iris, Ṽ n− ( ),
satisfies

˜ ˜ ˜V n RV n T e A nL
− +

−+( ) = +( ) − ( )1 1 2γ .

Due to the finite losses on a single-bounce, the system reaches a steady-state, where 
˜ ˜A n A n+( ) = ( )1 . In this limit, we have

˜

˜
A

V

T

Re L
+

−=
+1 2γ . (2.49)

The reflected signal will asymptote to

˜

˜
V

V

R R T e

Re

L

L
−

+

−

−=
+ −( )

+

2 2 2

21

γ

γ . (2.50)

We can simplify these results by taking account of our previous work on the
problem of a thin obstacle in a guide. We found that continuity of tangential electric
field at the thin iris implies T=1+R. In addition, the reflection coefficient is related
to the normalized shunt admittance, and for a lossless obstacle we may express R in
terms of the normalized shunt susceptance, B̂ ,

1
1

2
R

j
B

= − + ˆ .

Thus in this problem there are only two free geometric parameters, one is B̂  and the
other is the cavity length L.
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Exercise 2.10 Show that the condition for zero reverse wave in steady-state (critical
coupling) corresponds to

R
R

L
1 2

2
+

= −( )exp γ ,

and confirm that, for small losses (α L << 1) this may be expressed as

cos exp2 2β α β πL L L N= −( ) ⇔ ≈ , (resonance)

sin / ˆ ˆ /2 2 1β αL B B L= − ⇔ ≈ , (matching)

where N is an integer. Check that the steady-state amplitude is much larger than the

incident voltage, ˜ / ˜ /A V j L+ ≈ − 2 α .

2.11 An Elementary Periodic Line

Let us consider next how to produce a synchronous wave, with phase-
velocity equal to c---i.e., how to design a dispersion relation. In Sec. 2.10 we
considered the effect of one iris; let us next analyze the effect of many irises
forming a periodically loaded waveguide, as depicted in Fig. 2.10. In the smooth
portion of the waveguide, a general solution for voltage and current phasors in a
single mode is

V z V e V e L zn
j z

n
j z( ) = + − < <( )+ − −β β 0 ,

Z I z V e V e L zc n
j z

n
j z

1 0( ) = − − < <( )+ − −β β ,

with iris separation L. Recall Zc1 is the characteristic impedance of the fundamental
waveguide mode,

Z Zc1 0
0= β

β
,

and β is the propagation constant, or wavenumber, β β β= −( )0
2 2 1 2

c

/
, with βc the

cutoff wavenumber. Let us compute the wave incident on the next port, and in this
way formulate propagation in a periodically-loaded guide.  This notation comes
with the picture of Fig. 2.11.

Just to the right of the n-th iris we have

V z V e V e z Ln
j z L

n
j z L( ) = + < <( )+

+ − −( )
+
− −( )

1 1 0β β ,

Z I z V e V e z Lc n
j z L

n
j z L

1 1 1 0( ) = − < <( )+
+ − −( )

+
− −( )β β .  

To solve for V Vn n+
+

+
−

1 1,  we apply two conditions. The voltage at node n is continuous
(since tangential electric field is continuous at a thin iris), so

V V V V V e V en n n
j L

n
j L0 0 1 1−( ) = +( ) ⇔ + = ++ −

+
+

+
− −β β . 

Since current is shunted through the iris, there is a discontinuity in tangential
magnetic field given by
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I I Y Vs0 0 0+( ) = −( ) − ( ),

and this may be written

V e V e V V Y V Vn
j L

n
j L

n n s n n+
+

+
− − + − + −− = − − +( )1 1

β β ˆ ,

abbreviating, Ŷ Y Zs s c= 1. These are two equations for V Vn n+
+

+
−

1 1,  in terms of V Vn n
+ −, .

n n+1 ...n-1 n n+1 ...n-1

Ys Ys Ys

FIGURE 2.10.  We examine a waveguide periodically-loaded with thin irises, and
develop a transmission line model as indicated on the right.

Is

In In+1
Vn Vn+1

z=L-z=0+z=0-

Ys

FIGURE 2.11. Notation for voltages and currents in the vicinity of an iris.

Solving them we find,

V

V

V

V
n n

+

−

+

+

−







=







1

M ,

where
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M =
−







−

+
























− −1
2 2

2
1

2

0 0

0 0

ˆ ˆ

ˆ ˆ

Y
e

Y
e

Y
e

Y
e

s j s j

s j s j

θ θ

θ θ

and θ β0 = L  is the phase-advance per cell in the unloaded line. The matrix M
describes propagation on the loaded line. Notice that det M = 1 and

trM
2 20 0= +cos

ˆ
sinθ θj

Ys .

The eigenvalues of M  are then

e jjθ ± = ± − 





tr trM M
2

1
2

2

.

and they convey attenuation and phase-shift in the loaded line. In the simplest case
of a lossless junction, we have a pure susceptance, ˆ ˆY jBs s= , and the dispersion
relation for the loaded line takes the form

cos cos
ˆ

sinθ θ θ= −0 02
Bs . (2.51)

A sketch of θ and θ0 versus ω is depicted in Fig. 2.12  for illustration. Note that for

some frequencies, in the loaded guide, there is no solution for real θ. The presence
of such "stop-bands" corresponds, in the wave picture, to destructive interference
over the course of multiple reflections from each obstacle.

Let us define θ ( )0  to be the solution for phase-advance per cell in the interval

− < <π θ π( )0 . Evidently then θ θ π( ) ( )n n= +0 2  is also a solution. In terms of

phase-advance one may define a wavenumber for the loaded line, β θ( ) ( ) /0 0= L  and
evidently there are infinitely many of these,

β β π( ) ( )n n

L
= +0 2

.

The implication of this is that a periodic line will support infinitely many "space-
harmonics," all propagating with the same group velocity,

V
d

d

d

d
Vg

n
n

g
( )

− −
( )= 





= 





=β
ω

β
ω

( ) ( )1 0 1

0 ,

but all with different phase-velocities,
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V
n

L

n

L
Vn

n

ϕ ϕ
β
ω

β
ω

π
ω

π
β

( )
− − −

( )= 





= +





= +






( ) ( )

( )

1 0 1

0

1

02
1

2
.

In general, in driving such a transmission line, one excites fields that correspond to
a superposition of space-harmonics. The field lines include the contribution of the
evanescent fields that arise in the vicinity of the irises.

8 5

9 0

9 5

1 0 0

0 6 0 1 2 0 1 8 0 2 4 0 3 0 0 3 6 0

θ

ω
(d

eg
)

(deg)

ω    =θ
unloaded

loaded

90 degrees per cell

L/
c

L/c

FIGURE 2.12. Dispersion relation for smooth guide and a guide periodically loaded
with capactive shunts (Brillouin diagram).

2.12 Common Microwave Elements

Before turning to analyze cavities and periodic lines for acceleration, we
should take a moment to note that a practical waveguide network for an accelerator
will include more than just straight waveguide and an accelerator cavity. To
describe common elements in the most simple fashion, it is helpful first to consider
the S-matrix for a network of lines connected to a device (sometimes called the
"device under test" or DUT) as illustrated in Fig. 2.13.

To simplify our work, we assume all the transmission line impedances are
the same (renormalizing voltages if necessary). Typically the DUT will consist only
of copper; we will assume at least, though, that any medium in the DUT may be
described by lossless, symmetric ("reciprocal"), linear permittivity and permeability
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tensors. We define the S-Matrix for the DUT element-wise as follows. Let voltage
Vb

+  be incident on line b, and all other lines terminated in their characteristic
impedance (matched load on all other ports). Let the voltage transmitted to the load
on the a-th port be Va

− , then S V Vab a b= − +/  is the a-b element of the scattering matrix
for the DUT. Notice that since the voltage coefficients in a transmission line depend
on the plane of reference, the S-matrix is not uniquely specified unless the reference
planes for the measurement are defined. If there are N ports then the scattering
matrix is an N × N matrix of frequency-dependent elements. Lorentz reciprocity
implies that for such a source-free device, the S-matrix must be symmetric,
Sab=Sba, or S St = . Since the device is lossless the complex Poynting theorem
implies that the scattering matrix is unitary, S S= −1 , where recall that S S( ) = ( )∗

ab ba

is the hermitian conjugate. To prove these statements it is helpful to know how to
describe the DUT in terms of admittance or impedance matrices. The admittance
matrix Y  relates total current at the reference plane in the port to total voltage at the
respective reference planes in each port,

I V V V V Va a a
b

ab b
b

ab b b= − = ( ) = ( ) +( )+ − + −∑ ∑Y Y ,

or, in vector form,

  

r r r r r r
I V V V V V= − = +( ) =+ − + −Y Y .

V1
+

V1
−

V2
−

V2
+

Vk
+ Vk

−

FIGURE 2.13. The general problem of network analysis for a device under test
attached by means of ports to a series of transmission lines, labelled k=1,...,N.

The impedance matrix Z  relates voltage to current,   
r r
V I= Z , and is evidently just

the inverse of the admittance matrix, Z Y= −1. On the other hand, using the
definition of the scattering matrix, and the principle of superposition, we have

  
r r
V V− += S , and this permits us to determine the scattering matrix in terms of the

4 7



admittance or impedance matrices. Specifically,

  

r r r r r r r r
V V V V V V V V+ − + − + − − − +− = +( ) ⇒ −( ) = +( ) ⇒ = +( ) −( )Y I Y I Y I Y I Y1 ,

so that S I Y I Y= +( ) −( )−1 .

Exercise 2.11 Show that S Z I Z I= +( ) −( )−1 .

Symmetry of the S-matrix then follows from the symmetry of the
admittance matrix, Y Y= t . Unitarity of the  S-matrix follows for a lossless junction

from Z Z= ∗. Modern vector network analyzers permit one to measure S-matrices
in a very straightforward fashion, provided the DUT operates at frequencies below
cut-off for all but fundamental mode in the connecting guide. The unitarity and
symmetry theorems are extremely helpful insofar as they permit one to determine
the minimum number of essential parameters needed to characterize an element.

1

4 3

2Pi

Pr Pf
Pt

FIGURE 2.14. Illustration of a directional coupler.

For example, the most common microwave element is the directional
coupler. This is a four-port device as illustrated in Fig. 2.14. An ideal directional
coupler is symmetric upon reflection in the horizontal or vertical, is lossless and is
perfectly matched. These conditions restrict the S-matrix to the form

S =

−
−

−
−



















0 1 0

0 0 1

1 0 0

0 1 0

2

2

2

2

α α
α α

α α
α α

j

j

j

j

,

for some parameter α≤1, and choice of reference planes. A real directional coupler
is described by coupling C and directivity D, defined with respect to the quantities
indicated in the sketch: power incident on port 1, Pi, transmitted power to port 2,
Pt, forward power on port 3, Pf, and reverse power, Pr, on port 4. The coupling and
directivity are

C
P

P
i

f

=






10 10log , (coupling) D

P

P
f

r

=






10 10log . (directivity)

The isolation is defined according to
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I
P

P
i

r

=






10 10log . (isolation)

A hybrid tee is a four-port device as illustrated in Fig. 2.15. In the ideal
case, it is lossless and symmetry precludes coupling of ports 1 and 4. A  magic tee
is a hybrid tee that is matched on all ports; matching requires in practice obstacles (a
post and a step) at the junction. A magic tee is formally equivalent to a 3 dB
coupler, however, the natural choice of reference planes makes it easy to
distinguish. Constraints of symmetry and unitarity reduce the possible forms of the
S-matrix to just one, after a choice of reference planes,

S =
−
−

−



















1
2

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

.

Exercise 2.12 (a)What is the directivity of an ideal directional coupler? Relate the
coupling C to the S-matrix parameter α. (b)The SLAC modified Bethe hole coupler has a
coupling of 52 dB and 80 dB isolation. What is the directivity? (c) An ideal "3 dB" coupler
has C=10log102 ≈ 3dB and infinite directivity. What is the S-matrix? (d)Compute the

outgoing signals for the situation depicted in the sketch, and explain how a 3 dB coupler
and a phase-shifter can be used to make a switch.

jV 0

 V0 3dB
 ?

 ?

Exercise 2.13 (Magic Tee) Show that with voltages incident on arms 2 and 3, arm 4
provides a difference signal, and arm 3 a sum signal. Justify this referring to the field lines
sketched in Fig. 2.15.

1

32

4

FIGURE 2.15. Illustration of a hybrid tee.
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3. Standing-Wave Accelerators

We have reached a point now where we can deliver power by means of a
waveguide and appreciate the coupling of a waveguide to a cavity, by means of an
iris. We consider in this section the question: What are we looking for in a cavity?
What features are important in characterizing its performance as an accelerator?
Here we develop the subject of beam-cavity interaction for a relativistic beam, and
the logical consequences.

L

R
e-

FIGURE 3.1.  Acceleration in terminated waveguide.

We require an electric field,   
r
E , to produce any change in particle energy,

ε γ= m ce
2 , i.e.,   d dt qE Vε / = •

r r
, where   

r
V  is the particle velocity and q is the

charge. We assume the beam is relativistic so that V c≈  is constant. We suppose
for simplicity, as in the previous section, that our cavity is formed by a terminated
piece of straight waveguide. The mode employed should have an electric field
component along the direction of beam motion. For ballistic motion along a beam
axis ŝ , that coincides with the waveguide axis this requires a TM mode. The axial
component of the electric field will take the form

E E j t j ss = ℜ −( )˜ exp0 ω β ,

where Ẽ E e
j rf

0 0= ϕ , E0 is the axial electric field amplitude, and ϕrf is the rf-phase.
The particle energy will therefore vary according to

d

ds
qE j t j s

ε ω β= ℜ −( )˜ exp0 ,

where we have changed the independent variable to s, with ds=Vdt.  Notice that in
this description, time t is a dependent variable,

dt

ds V c
= = −







−
1 1

1
1

2

1 2

γ

/

,

and corresponds to the particle arrival time at s. For continuous acceleration in this
field, one would need the beam-phase to remain stationary, implying that the
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particle speed should match the phase velocity of the wave, V c≈ ≈ ω β/ , as
though the particle were riding the crest of a wave. This isn't possible, since for
TM modes in smooth waveguide ω β/ > c  and the phase-fronts will always wash
over the particle. Nevertheless one notices that the electron does gain energy for
one-half of an rf-cycle, and this suggests terminating the interaction before the
particle has slipped into the decelerating phase, as depicted in Fig. 3.1.

In this form it is straightforward to calculate the energy gain assuming the
interaction is terminated. We situate the cavity entrance at  s=0, and denote the
particle arrival time at s=0 by t0, so that,

t t
s

V
= +0 .

The energy gain in travelling through a cavity of length L is then

∆ε ω β

ω β

ω β

ω ω= ℜ −



 = ℜ

−



 −

−





∫qE e ds js
V

qE e
jL

V

j
V

j t
L

j t˜ exp ˜
exp

0

0

0
0 0

1
.

E H

FIGURE 3.2. TM010 mode of a right cylindrical pillbox. No ports yet.

3.1 Geometry and [R/Q]

To make further quantitative progress with this idea, we need to decide on
the actual mode to be employed. Clearly, the "terminated interaction" amounts to
using a cavity, since the rf fields cannot make it down the pipe, they must be
trapped. In principle we have many choices as to the kind of cavity we pick.21

Historically, cylindrical cavities have been easier to make, so let us consider those.
We will need to plan for ports, at least one port for the input waveguide, and at least
two holes for the beam to enter and exit ("beam ports"), but we can treat these later
as perturbations. Let us consider then just the TM modes in a closed right
cylindrical cavity as illustrated in Fig 3.2. In principle we may construct such
modes as superpositions of modes of straight guide. In straight guide TM modes
are determined by Ẽz  satisfying

1 1
02

2

2
2

r r
r

r r
E rc z

∂
∂

∂
∂

∂
∂φ

β+ +






( ) =˜ .

In view of cylindrical symmetry, we may decompose any solution into azimuthal
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harmonics, varying as e jmφ . For such harmonics one obtains Bessel functions for
the radial variation,

˜ ,E r z J r e ez m c
jm j s( ) = ( ) −β φ β .

The condition ˜ ,E r R sz =( ) = 0  dictates that J Rm cβ( ) = 0 . We may then label these
TM modes according to the corresponding zero of the Bessel function,
β βc mn mnj R= = / , where jmn is the n-th root of the m-th Bessel function. To
accomodate waveguide shorts at s=0 and s=L, we must consult the transverse
fields,

Z H
j

s E
c

z0
0
2

˜ ˆ ˜
⊥ ⊥= × ∇β

β
, ˜ ˜E

j
E

c
z⊥ ⊥= ∇β

β 2 ,

and superimpose solutions in such a way as to enforce conducting boundary
conditions

˜ , ˜ ,E s r E s L r⊥ ⊥=( ) = =( ) =0 0,   ˆ ˜ ,φ • =( ) =⊥E s r R 0 , ˆ ˜ ,r H s r R• =( ) =⊥ 0.

Note that the normal component of the magnetic field at the shorting planes is
automatically zero for a TM mode. The remaining boundary condition we can meet
(1)with β = 0 (infinite phase-velocity wave) or (2) by adding a forward e j s− β  and
reverse e j sβ  wave to form a standing wave. Abbreviating ψ β φ= ( )E J r em c

jm
0 , with

normalization constant E0 , the result is

˜ , cosE r s sz ( ) = ψ β ,
  

˜ sinE s
c

⊥ ⊥= ∇β
β

β ψ2

r
,

  
Z H

j
s s

c
0

0
2

˜ cos ˆ⊥ ⊥= ×∇β
β

β ψ
r

.

The boundary condition at s=L requires sin βL = 0, or β β π= =p p L/ . The
resulting mode then has three indices and is referred to as the TMmnp mode. The
mode frequencies are

ω π
mnp

mnc
j

R

p

L
= 



 + 













2 2 1 2/

,

and we have taken µ µ= 0 and ε ε= 0  since we will be passing a beam through this
cavity and will probably want a high vacuum.

Next let us discriminate among these modes with an eye to acceleration.
Only m=0 modes have a non-zero field on-axis. To decide on the best TM0np mode
to use we don't have much to go on yet. Let us consider a particle passing through
the cavity on-axis, as in the previous section. It witnesses a field

E E s tz rf= ( ) +( )0 cos cosβ ω ϕ .

Exercise 3.1 Decompose this result into left- and right-going waves.  Making use of the
transit angles
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θ ω β π π± = ±





= 





+ ( )











±

V
L

c
V

j
L
R

p pon

2
2

1 2/

,

argue that in the TMmnp mode with p≠0, the transit angle with respect to the backward

wave will be larger than 2πp, corresponding to deceleration, and only the forward wave will
contribute to acceleration.

Exercise 3.1 suggests using one of the TM0n0  modes, as depicted in Fig. 3.3. For
these modes, the transit angle is

θ ω= L

V
, (3.1)

or, more explicitly,θ = j L Ron / . The energy gain may be expressed in terms of the 
transit angle factor,

T = ( )
( )

sin 1
2

1
2

θ
θ

,  (3.2)

as ∆ε ω ϕ θ= + +( )qE LT t rf0 0
1
2cos , and this may be expressed in terms of the gap

voltage or cavity voltage phasor, ˜ expV E LT j jc rf= +( )0
1
2ϕ θ , as

∆ε ω= ℜqV ec
j t˜ 0  . (3.3)

Next let's determine the energy required to establish the accelerating
voltage. The fields take the form

  

r
E zE J r tc rf= ( ) +( )ˆ cos0 0 β ω ϕ ,

  
Z H E J r tc rf0 0 0

r
= ′( ) +( )ˆ sinφ β ω ϕ ,

where β ωc n c= 0 0 / . The energy stored in the cavity is then

  

U dV E E H H dV E E

E dVJ r E rdr ds d J r

E L rdrJ r E LR udu

c

LR

c

R

c

= • + •( ) = •

= ( ) = ( )

= ( ) =

∫ ∫

∫ ∫∫∫

∫ ∫

1
2

1
2

1
2

1
2

2

0 0 0

0 0
2

0

2

0 0
2

0

2

00

0

2

0 0
2

0

0

2

0 0
2 2

0

1

ε µ ε

ε β ε φ β

ε π β ε π

π

r r r r r r

JJ j u

E LR J j

on

on

0

2

0 0
2 2

1

21
2

( )

= ( )ε π ,

where the brackets denote a time-average. The next question we might have: is this
a lot or a little? We can compare stored energy and accelerating voltage directly by
considering the amplitude independent ratio,

R

Q

V

U

c





=
˜ 2

ω
, (3.4)
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or, explicitly,

R

Q

E LT

E LR J j j J j
Z T

L

R
Z T

L

R
on on on







= ( )
( )

=
( )













≈0

2

0 0
2 2

1

2
1

2 0
2

0
2

1
2

2

ω ε π π
.

This quantity, with units of ohms, is referred to as the "R upon Q" or "R over Q";
the name and the notation are somewhat unwieldy, but that is convention. Rather
than being two separate entities as the notation would imply, it is in fact a single
geometric quantity. Notice that it has nothing to do with wall losses. Referring to a
table of Bessel function zeroes,22 the quantity in square brackets is equal to 0.982
for n=1, and within 2% of unity for all values of radial mode index n.

Next we might like to try to optimize our cavity, and obtain the largest
acceleration for a given amount of energy. We suppose that the frequency has been
chosen, thus fixing the cavity radius. In this case, the question amounts to: What is
the best choice of transit angle? In terms of θ we have

R

Q
Z

jTMono on







= ( )
( )0

2 1
2

1
2

2 sin θ
θ

,

varying from 0 at θ=0 through a maximum at θ=133.56° (T=0.788), to 0 again at

θ=360°. In this form it is clear that maximum [R/Q] at fixed frequency favors the
lowest radial mode, n=1, for in this case the cavity is longest. For the TM010 mode

at optimal transit angle, R Q Z/ .[ ] = =0 6 2210 Ω .

3.2 Loss Factor 

Remarkably, [R/Q] determines more than just the stored energy required to
establish a gap voltage. It also determines the radiation by a beam into the cavity
mode. Let us consider a very short bunch of charged particles passing through a
structure, as depicted in Fig. 3.3.

Such a bunch will radiate and lose some energy, if the geometry deviates in
some way from a smooth perfectly conducting pipe. This is illustrated in Fig. 3.3.
If the bunch is quite short, then particles will radiate coherently, so that the energy
loss should be a quadratic function of beam charge, qb,  ∆ε = k ql b

2. The quantity kl,
we will refer to as the loss-factor for a short bunch. In fact, given a complete
enumeration of orthogonal modes for the geometry, one could represent the loss
factor as a sum over the loss factors into each mode,

k kl l= ( )∑ λ
λmodes,

.

One of these modes, λ, is our resonant accelerating mode; let us consider that mode
alone. After the beam has passed, the mode rings, just as a harmonic oscillator
should after a sharp rap,
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V V t H tbλ λ λω= ( )cos .

The voltage waveform is sketched in Fig. 3.4. (Note that in the act of singling out
one such narrow-band mode, we inevitably give up resolution of the full cavity-
voltage during transient period of length L/c in the vicinity of the beam arrival time
t=0.)

qb

FIGURE 3.3. A charge qb passing through a cavity deposits energy in the cavity. This
energy is lost by the particle, and this energy loss arises from the action of a self-induced
voltage Vb acting on the particle. The "shock" excitation of the cavity mode results in
ringing at amplitude Vb after the beam has passed.

Vb

tL/c

beam 
exits 
cavity

beam 
enters 
cavity

FIGURE 3.4.  After a charge qb has passed through a cavity, the cavity modes ring; here
we see the beam-induced voltage in a single mode.
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Notice in Fig. 3.4 that, averaged over the transit time, the beam witnesses
one-half of the final, peak gap voltage. Thus, in order for the beam to lose energy
∆ελ λ= k ql b

2  by the action of this self-induced voltage, the peak gap voltage must be

V k qb l bλ λ= 2 . Meanwhile, this oscillation corresponds to a stored energy,

U k q
V

R Q

k q

R Ql b
b l b= =

[ ]
=

( )
[ ]λ

λ

λ

λω ω
2

2
2

2

/ /
.

We can solve this equation for the loss-factor in terms of the [R/Q],

k
R

Qlλ
λ

ω= 





1
4

. (3.5)

Notice that loss-factor has nothing a priori to do with wall-losses.
Thus [R/Q] measures the coupling of the mode to the beam, and the beam to

the mode, it determines the energy required for acceleration, and determines how
much energy the beam will deposit. Large [R/Q] implies that little energy is required
to produce a large acceleration. Conversely, this implies a large beam-induced
voltage, heavier "beam-loading." Good  accelerators are good decelerators. In this
light, it is easy to understand why we were having troubles in Sec. 1, with
acceleration in free-space. This result for beam-induced voltage is often referred to
as the fundamental theorem of beam-loading.

Exercise 3.2  Using the result for beam-induced voltage in mode λ, dVbλ, from a single
short bunch of charge dqb, arriving at time t=0, dV t k dq tb l bλ λ λω( ) = ( )2 cos , argue that for

a continuous current waveform I(t), the net beam-induced voltage must take the form

V t k dt I t t tb l

t

bλ λ λω( ) = ′ ′( ) − ′[ ]( )
−∞
∫2 cos .

Go on to show that the beam-induced voltage satisfies the differential equation

d

dt
V k

dI
dtb l

b
2

2
2 2+









 =ωλ λ λ .

Justify the form of this equation in a few sentences, from first principles, making reference
to Maxwell's equations. In the frequency domain, it is common to characterize beam

interaction with a structure in terms of an impedance Z|| such that ˜ ˜
||V Z Ib bω ω ω( ) = ( ) ( ).

Show that the beam impedance for a lossless resonant mode λ , in terms of the mode

frequency ωλ, and r Q R Q/ /[ ] = [ ]1
2 , takes the form

Z
j r Q

||
/

/ /λ
λ

λ λ
ω

ω ω ω ω
( ) =

[ ]
−( ) . (lossless)
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3.3 Wall Losses

Having mentioned stored energy, we are naturally inclined to hook our
cavity up to waveguide and fire away. First though let us consider where this
energy really will go: it can be reflected, it can go into a beam, or it can be lost in
the walls. We know from the work of Sec. 1, that wall-losses arise due to the
penetration of the magnetic field into the conductor,

  

P R dS Hl s

walls endcap sidewalls

= = × ( ) + ( )∫ ∫ ∫2 2 K K ,

Let's compute the various integrals,

  

K( ) = ′( ) +( )[ ] = ′( )[ ]

= ′( )[ ] = ( )

∫ ∫ ∫ ∫

∫

endcap

s

endcap

c rf
s

R

c

s
on

s
on

R E

Z
dS J r t

R E

Z
rdr d J r

R E R

Z
udu J j u

R E R

Z
J j

0
2

0
2 0

2
0
2

0
2

0 0

2

0

2

0
2 2

0
2

0

1

0

2 0
2 2

0
2 1

2

2

2

β ω ϕ φ β

π π

π

sin

.

Next,

  

K( ) = ′( ) +( )[ ]
= ′( )[ ] = ′ ( )

∫ ∫

∫ ∫

sidewalls

s

sidewalls

c rf

s
L

c
s

on

R E

Z
dS J r t

R E

Z
ds Rd J r

R E LR

Z
J j

0
2

0
2 0

2

0
2

0
2

0 0

2

0

2 0
2

0
2 1

2

2

β ω ϕ

φ β ππ

sin

.

Thus the total power flowing into the walls is

P
R E

Z
J j R R Ll

s
on= ( ) +( )π 0

2

0
2 1

2
.

We may characterize this result in terms of wall Q defined according to

Q
U

Pw
l

= ω
. (3.6)

In practical units we have

Q
j Z

R

L

L R f R Lw
on

s

=
+

≈ ×
( ) +2

5 46 10 1
1

0
4.

/GHz
,

where, in the last equality, we selected the TM0 1 0 mode and used

R fs = ( )8 3. m GHzΩ  as for copper at room temperature. For our  [R/Q] optimized

cavity with θ=133.56° and L/R=0.969, this gives Q fw = × ( )2 69 104. / GHz . In
the time-domain,
dU

dt
P

U

Ql
w

= − = − ω

and energy U0 initially stored in the cavity will decay exponentially, according to
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U U
t

Qw

= −




0 exp

ω
;

thus the fields decay with a time-constant

T
Q Q

f
w w

0

2 1= =
ω π

. (3.7)

For an [R/Q] optimized cavity this gives T f0
3 28 56= ( ). / /µs GHz .

Thus far we have considered stored energy as though that were an important
quantity to minimize. However, for practical purposes, one may wish to know,
given the maximum microwave power available, what kind of accelerating voltage
could be achieved. For this purpose let us suppose that we have figured out how to
couple energy into the cavity (we will examine this shortly). If the beam to be
accelerated is of sufficiently low current, then the maximum energy we can put into
the cavity will be determined by a steady-state between power Pe flowing into the
cavity, and thence into the walls. Let us assume the power source has a natural
pulse length long enough to bring the cavity into this steady-state. Then

dU

dt
P Pe l= − = 0,

so that P P U Qe l w= = ω / . Since in this case our voltage is limited by the peak
power available from the source, it is natural to define a quantity

R Q
R

Q
Q

V

U

V

Pw w
l

= 





= =
˜ ˜2 2

ω
, (3.8)

with units of ohms, and referred to as the shunt impedance. This quantity
determines, at the practical level, what accelerating voltage one can achieve with a
single cavity, in terms of the power available, assuming a pulse sufficiently long to
reach steady-state. Using our optimum [R / Q ]  parameters, one finds
R f= ( )5 95. /M GHzΩ . A few illustrative numbers are included in Table 3.2,
actual mileage will vary depending on the arrangement of beam ports and particulars
of the cavity shape. In practice, introduction of beam ports can reduce [R/Q] by a
factor of two. These are nevertheless, good "zeroth-order" estimates for single-
cavity scalings versus frequency.

Exercise 3.3 If in fact our accelerator were peak-power limited, we might like to optimize
our cavity design by maximizing shunt impedance as a function of transit angle. Show that
the maximum shunt impedance for the first radial mode occurs for θ=158.08° (T=0.712,
aspect ratio  L/R=1.147) and is 7% larger than the result obtained for maximum [R/Q].
Show that the wall Q and decay time are 9% larger. Sample sensitivity to transit angle to
determine that R is 67% of optimal for θ=90°, 89% for 120°, and 97% for 180°. Check that
for the second radial mode, maximum shunt impedance occurs for θ=166.46° and
corresponds to 63% of the maximum for the first radial mode. Confirm the TM010 scalings

with transit angle illustrated in Fig. 3.5.
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Exercise 3.4  For copper at room temperature and the TM010 mode of a right cylindrical
cavity, make a table of scalings for  Qw , kl , Rshunt , [ / ]R Q , T0 , and the steady-state
power dissipation required to provide a 10-MeV/m accelerating gradient. Take note of the
exponent by which each quantity varies with wavelength and the value at 2856 MHz.
Assume a transit angle of 2π/3.
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Q

(degrees)

FIGURE 3.5. Scalings with transit angle for the TM010 mode of a closed pillbox.

Table 3.2 To illustrate the scaling of cavity parameters. θ=133.56°

band frequency Qw T0 R Q/[ ] R

UHF 714 MHz 3.2x104  14 µs 221 Ω  7 MΩ
S 2.856 GHz 1.6x104  1.8 µs 221 Ω  3.5 MΩ

X 11.424 GHz 8.0x103  0.22 µs 221 Ω  1.8 MΩ

W 91.392 GHz 2.8x103  9.8 ns 221 Ω  0.6 MΩ

3.4 Cavity With Beam and Ports

Now that we have a rough idea of what we are looking for in a cavity, let us
consider putting a port on the cavity and the details of how to get power into it. Our
question is: what do we want out of a port? We consider first a closed cavity with
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perfectly conducting walls, and resonant angular frequency Ω0,

d

dt
Vc

2

2 0
2 0+








=Ω . (no port, beam or losses)

We next cut a port in the cavity and connect it to waveguide. From our
analysis of the thin iris in a waveguide, we understand that tangential electric field
in the guide is continuous across the iris. This amounts to the statement that cavity
voltage Vc  must track the tangential electric field on the waveguide side of the iris.
From our analysis of waveguide modes, we know that this tangential field
amplitude varies as the sum of forward and reverse voltages, V +  and V − , in the
waveguide, defined as in Sec. 2.  At the same time, we recognize that the cavity
voltage may be quite a bit larger than the voltages in the connecting guide. Indeed,
as we saw in the example of Sec. 2, resonant charging of a cavity can produce large
amplitude oscillations even when the driving displacement is small, much as in a
swing or a pendulum. Recognizing this, let us employ normalized voltages,
V nVF = + ,  V nVR = − , such that our continuity condition reads simply

V V Vc F R= + . (3.9)

The factor n we will refer to as the turns ratio , or transformer ratio . Later, we will
return and calculate n, based on conservation of energy.

Next we account for perturbations to our harmonic oscillator,

d

dt
Vc

2

2 0
2+








= [ ] + [ ] + [ ]Ω lossy walls waveguide beam .

Notice that each of the perturbatons may be thought of as a current. Wall current
has been dealt with and for practical purposes its effect is damping. The beam
current term also has been treated and its effect may be viewed as excitation of the
oscillator. As for the waveguide "current term," this represents the threading of
magnetic flux from the waveguide into the cavity, as illustrated in Fig. 3.6, and
excitation of the oscillator by induction. We know from our analysis of waveguide
modes that the amplitude of the magnetic field may be represented in terms of a
current coefficient, itself, the  difference in the forward and reverse voltages in the
guide. Thus we may express our result as

d

dt
V

Q

dV

dt Q

d

dt
V V

r

Q

dI

dtc
w

c

e
F R

b
2

2 0
2 0 0

0+







= − + −( ) + 





ω ω ω ω , (3.10)

for some dimensionless coefficient Qe, the external Q. The notation ω0 we adopt for
the resonant frequency after perturbations---having added finite wall conductivity
and having cut copper to make the beam port and waveguide coupler. Introducing
the loaded Q,

1 1 1
Q Q QL e w

= + , (3.11)

and making use of the continuity condition, we may rewrite this in the form
6 0



d

dt Q

d

dt
V

Q

dV

dt

r

Q

dI

dtL
c

e

F b
2

2
0

0
2 0

02+ +








= + 





ω ω ω ω . (3.12)

A more formal development of this result can be found in Appendix C.

r
H

FIGURE 3.6. A waveguide excites a cavity via the threading of magnetic flux through 
the coupling iris, and Faraday's law. The beam travels into the page.

VF

VR

Vc

Ib

FIGURE 3.7.  Sketch of the dynamic variables for a single cavity mode coupled to a
waveguide fundamental mode, and a beam.

This simple model affords a complete description of the kinematics of the
cavity-beam-waveguide system. The dynamic variables are summarized in Fig. 3.7.
We will show later that it can be employed for multi-cavity systems. We turn next
to explore the ramifications of the two coupling parameters we have introduced,
external Q, and transformer ratio, n, and other features of this system.

3.5 Cavity on the Bench
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Absent beam the system we have analyzed is the simplest of all microwave
elements: it is a one-port element, the S-matrix is a single element S11, that is a
function of frequency, simply referred to as the reflection coefficient. If the cavity is
lossless, then unitarity implies that |S11|=1, and all power is reflected from the
cavity. In the more interesting case of a cavity with wall losses, we may compute
the reflection coefficient, using our waveguide-cavity equation, Eq. (3.12). Our
model takes the form

d

dt Q

d

dt
V

Q

dV

dtL
c

e

F
2

2
0

0
2 02+ +









=ω ω ω
.

We consider steady-state excitation at angular frequency ω,

V V eF F
j t= ℜ( )˜ ω , V V eR R

j t= ℜ( )˜ ω , V V eC C
j t= ℜ( )˜ ω .

Our equation takes the form

j
Q

V j
Q

V
L

c
e

F

ω ω ω ω ω ω0
0
2 2 02+ −









=˜ ˜ .

It is conventional to characterize the difference in drive frequency from the resonant 
frequency of the cavity by the tuning angle ψ,

tanψ ω
ω

ω
ω

= −






QL
0

0

. (3.13)

In terms of tuning angle,

˜ cos ˜V e Vc
j

F=
+
2

1
β
β

ψ ψ , (3.14)

and we have introduced the parameter β,

β = Q

Q
w

e

. (3.15)

Notice that tuning angle is the angle the cavity voltage phasor ṼC  makes with the

forward drive phasor ṼF . On resonance, the two are in phase,

˜ ˜V VC F=
+
2

1
β
β

, ψ ω ω= ⇔ = ⇔( )0 0 resonance (3.16)

and a reflected signal is propagating back up the waveguide toward the source,

˜ ˜ ˜ ˜V V V VR C F F= − = −
+

β
β

1
1

. ψ ω ω= ⇔ = ⇔( )0 0 resonance (3.17)

If β>1 the external Q is lower than the wall Q, and the cavity is said to be over-

6 2



coupled. In this case the reflected signal is in phase with the forward drive. If β<1
the cavity is said to be under-coupled and in this case the reflected signal is 180° out
of phase with the drive. If β=1 the cavity is said to be critically-coupled , and there
is no reflected signal in steady-state.

With this result for cavity voltage, we may compute the reflection coefficient
using the continuity condition, ˜ ˜ ˜V V VR c F= − ,

S
V

V
eR

F

j
11

2
1

1= =
+

−
˜

˜ cos
β
β

ψ ψ . (3.18)

Notice that measurement of the (complex) S-matrix can permit one to determine the
resonant frequency ω0, the coupling factor β, and the loaded Q. Thus one can
extract as well the external Q.

Exercise 3.5 Show that for small detuning from resonance, δ<<1, with δ ω ω ω= −( )0 0/

that tanψ δ≈ −2QL . Show that Q QL w= +( )/ 1 β . Sketch qualitatively a plot of tuning angle

versus frequency.

Exercise 3.6  Show that the minimum in |S 11| occurs on resonance,
min /S11 1 1= − +β β  at ω ω= 0  and is zero for critical coupling. Considering the three
cases of under-coupling, critical coupling and over-coupling, compute  VSWR on
resonance. Make qualitative sketches of |S11|  and |Vc|  versus frequency. Evidently
regardless of the frequency, not all energy is reflected by the cavity; where does this
energy go?

3.6 Cavity on the Beamline

Having examined the properties of our cavity on the bench, let us next
consider it, with beam. Typically one is interested either in a very short bunch of
charge, much shorter than an rf period (single-bunch), or one is interested in a train
of such bunches, spaced at or near the rf period (bunch-train). In this sections we
will consider each of these in turn. We will assume that the beam is a high-energy
beam and therefore does not slow down or speed up appreciably in the structure.
This assumption does not hold, for example, in an injector or a klystron cavity.

Let us take the drive terms to be varying at roughly the frequency ω, but
allow for some slow variation in the envelopes,

V V t eF F
j t= ℜ ( )( )˜ ω ,  I I t eb b

j t= ℜ ( )( )˜ ω , V V t eC C
j t= ℜ ( )( )˜ ω .

In this case, in the slowly-varying envelope approximation, dV dt VC C
˜ / ˜<< ω , the

cavity responds to the waveguide and beam excitation according to

dV

dt Q
j V

Q
V k IC

L
C

e
F l b

˜
tan ˜ ˜ ˜+ −( ) = +ω ψ ω0 0

2
1 . (3.19)
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where kl is the loss-factor, and ψ  is the tuning angle. It is often convenient to
express this as

dV

d
j V V r IC

C F l b

˜
tan ˜ ˜ ˜

τ
ψ β

β
+ −( ) =

+
+1

2
1

, (3.20)

where

τ ω= =t

T

t

Qf L

0

2

is time measured in units of the fill-time, and the "circuit-equivalent loaded
resistance" may be expressed in various forms as

r Q
r

Q
Q

R

Q

Q

Q
R

R
l L L

L

w
shunt

shunt= 





= 





= =
+( )

1
2

1
2 2 1 β

. (3.21)

In steady-state dV dC̃ / τ = 0 and the cavity and reflected voltages take the
forms

˜ cos ˜ ˜V e V r IC
j

F l b=
+

+






ψ β
β

ψ 2
1

, (3.22)

˜ ˜ ˜ cos cos ˜ ˜ cosV V V e e V r I eR C F
j j

F l b
j= − =

+
−







+ψ β
β

ψ ψψ ψ ψ2
1

1 . (3.23)

These steady-state relations are often depicted in the form of a phasor diagram, as
shown in Fig. 3.8.

It will be important, in treating this system, to account for the flow of
power, and we can accomplish this with the "transformer ratio" alluded to
previously. Recall that the power flowing in a waveguide may be expressed in
terms of the incoming and outgoing voltage phasors, ˜ , ˜V V+ − , combining Eqs.
(2.20) and (2.29),

P
V V

Zw
c

=
−+ −˜ ˜2 2

2
,

with Zc the characteristic mode impedance, just

Z Z
c

Zc
z

c= = −







−

0 0

2

2

1 2

1
ω
β

λ
λ

/

,

for the TE10 mode in the waveguide, with λ the free-space wavelength, and λc the
cut-off wavelength in the guide. The forward and reverse voltages VF and VR are

proportional to these normalized amplitudes, V nVF = + , V nVR = − . Thus the net

6 4



power flowing in the waveguide may be expressed as

P
V V

Z nw

F R

c

=
−˜ ˜2 2

22
.

Ṽc

rLĨb 2β
1+βṼF

ψ

FIGURE 3.8. Phasor diagram for a beam-cavity waveguide system in steady-state.

In steady-state, with no beam, conservation of energy dictates that this equal the
rate at which power is being dissipated in the cavity walls, and this is

P
U

Q

V

Q

V

Rd
w

c

w
R
Q

c

shunt

= = [ ] =ω ˜ ˜2 2

.

Equating these two, we may determine the transformer ratio, n. We make use of the
following identities:

˜ cos ˜V Vc F

2
2

2
22

1
=

+






β
β

ψ , (beam off)

˜ cos sin ˜V VR F

2
2

2 2
21

1
= −

+






+











β
β

ψ ψ , (beam off)

˜ ˜ cos ˜V V VF R F

2 2

2
2

24

1
− =

+( )
β
β

ψ . (beam off)

Exercise 3.7 Derive these identities starting from the steady-state relation, Eq, (3.22),

with beam-off, and making use of ˜ ˜ ˜V V VR c F= − .

Using these identities we find

P
V

Rd

F

shunt

=
+







2
1

2

2

2

β
β

ψcos
˜

, (beam off)
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P
V

Z nw

F

c

=
+( )
4

1 22
2

2

2

β
β

ψcos
˜

, (beam off)

and equating these two results gives us the turns ratio or transformer ratio,

n
R

Z

Q

Z
shunt

c

e
r
Q

c

=






= [ ]







2

1 2 1 2

β

/ /

. (3.24)

Note that while we have derived this under beam-off conditions, n is a function of
geometry alone, independent of source terms.

Turning the beam back on, we can derive some generally useful results. The
forward-going power in the waveguide is

P
V

Z n

V

RF

F

c

F

shunt

= =
˜ ˜2

2

2

2
β ,

and, if the rf source is isolated from the cavity-beam system, this is just the power
supplied by the source. Typically such isolation is achieved with an arrangement
involving a magic tee (and another cavity), or a high-power isolator, or both.

For illustration, let us consider the problem of optimizing the coupling
parameter β to maximize power delivered to the beam; we suppose that forward
power and beam current are fixed and that the beam-phase relative to the cavity
voltage has been prescribed.The power delivered to the beam is just

P V I V Ib c b c b s= ℜ( ) =∗1
2

1
2

˜ ˜ ˜ ˜ cosφ ,

with φs the prescribed angle between the beam-phasor and the cavity voltage
phasor. Evidently maximum power corresponds to maximum cavity amplitude.
This on the other hand corresponds to maximum power dissipated in the walls.
Energy conservation, P P P PF R d b= + + , or

β β φ
˜ ˜ ˜

˜ ˜ cos
V

R

V

R

V

R
V I

F

shunt

R

shunt

c

shunt
c b s

2 2 2

1
2

= + + ,

tells us then that we are attempting to maximize the sum of the two terms on the
right, and this corresponds uniquely to a minimization of the first term, reflected
power, given that the sum of all three is fixed. Minimum reflected power
corresponds to zero reflected signal, or ˜ ˜V Vc F= , and this condition permits us to

solve for β,

  

β β φ
˜ ˜ ˜

˜ ˜ cos
V

R

V

R

V

R
V I

F

shunt

R

shunt

c

shunt
c b s

2 2

0

2

1
2

= + +
123

,

or
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β
β

β φ−( ) = −( ) = =
1

1
1
2

2

P
V

R
V I PF

c

shunt
c b s b

˜
˜ ˜ cos .

Thus,

1
1

β
= − P

P
b

F

.

Using,

P
V

R
Pd

c

shunt
F= =

˜ 2

1
β

, (no reflection)

we may also express this as

β = +1
P

P
b

d

. (no reflection) (3.25)

This summarizes the basic features of steady-state beam-loading. Our beam-cavity-
waveguide model is also adequate to analyze the effect of transient beam-loading,
and this is illustrated with the help of a few exercises.

Exercise 3.8 Consider filling a cavity with a step turn-on of the drive VF,

˜ ;

;
V t

t

tF ( ) =
<
>





0 0

1 0

under beam-off conditions. With the drive tuned on-resonance, ω=ω0, compute the
cavity and reverse voltages as a function of time. Confirm the steady-state results,

lim
˜

˜t
C

F

V

V→∞
=

+
2

1
β

β
, lim

˜

˜t
R

F

V

V→∞
= −

+
β
β

1
1
,

where β = Q Qw e/ . Evaluate and sketch the results, ṼR  and ṼC  versus time for

β=1/2,1,2. Sketch also the oscilloscope waveform that would be observed from a crystal
detector looking at the reflected waveform. What is the clear difference appearing on
these scope waveforms, between an over-coupled and under-coupled cavity?

Exercise 3.9 Express the beam-cavity waveguide equation in the form

d

dt Q
d
dt

V
r
Q

dI
dtL

c
c

2

2
0

0
2

0+ +











= 





ω
ω ω ,

identifying the waveguide (or "generator") contribution to the "cavity current" Ic. Show that

V t dt G t t
dI
dt

tc

t
c( ) = ′ − ′( ) ′( )

−∞
∫

is a solution of this system, with  Green's function,
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G k Hlτ
τ

ντ τ( ) = ( ) −( ) ( )2 1
2

sin
exp

Ω
Ω

,

H the step-function, Ω = −ω ν0
2 1

4
2 , and ν ω= 0 /QL. Integrating by parts, express this

as

V t dt G t t I tc

t

c( ) = ′ ′ − ′( ) ′( )
−∞
∫ .

Exercise 3.10 Using the exact Green's function, compute the response of the cavity to
a train of point bunches, each of charge qb, spaced at time intervals T. You will want to
make use of the identity

x
x

x
m

m

M M

=

−
∑ =

−( )
−( )0

1 1

1
.

Evaluate the result after the M-th bunch has passed, in the limit MT>>fill-time, and
assuming the bunches arrive at the fundamental mode frequency, or a sub-harmonic of it,
ωT=2πk, with k an integer. Compare this result to the steady-state result

ω ψ ψψ0
2

1
Q

j V k I V Q I e
L

C l b C L
r
Q b

j−( ) = ⇔ = [ ]tan ˜ ˜ ˜ ˜ cos .

In developing the expression for Ĩb , you may wish to use the identity

T t mT n
t
Tm n=−∞

+∞

=

∞
∑ ∑−( ) = + 





δ π1 2 2
0

cos ,

as a consequence of which, ˜ /I q Tb b= 2  for a train of zero-length charges qb  spaced at

interval T. Argue that the steady-state voltage induced by a beam of average current Ib ,
bunched on resonance,  is equal to the voltage induced by a single bunch of charge
I Tb f ,  with Tf  the fill time for the mode. Given a cavity with a fill-time of 100 ns, which one
excites a larger cavity voltage, a single bunch with 5 nC charge, or a 1 µs pulse of total
charge 50 nC?

Exercise 3.11 Show that the impedance presented by a single cavity mode to the
beam is

Z
j r Q

j QL
||

/

/
ω

ω ω

ω ω ω ω
( ) = [ ]

− +
0

0
2 2

0
,

and express this in the equivalent forms

Z
Q r Q

j Q
Q r Q eL

L
L

j
||

/

/ /
/ cosω

ω ω ω ω
ψ ψ( ) = [ ]

− −( ) = [ ]
1 0 0

.

Exercise 3.12 One often-used equivalent circuit for the beam-cavity-waveguide
system takes the form show here.
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Ig

W
W I

R C L

W
W IbRg VcI

Analyze this circuit in the frequency domain, and identify parameters and dynamic
variables with those used in Eq. (3.12).

Exercise 3.13  A standing-wave accelerator is powered with a klystron putting out a
square pulse. (a) How long, in units of the fill-time, must the power source pulse-length
be to achieve 90% of the steady-state gap voltage? (b) After the gap voltage has
reached steady-state, the klystron turns off. Sketch cavity voltage, and forward and
reverse voltage waveforms versus time. What is the maximum in the reflected power
waveform relative to the klystron output?

Exercise 3.14 Our transient cavity-beam-guide formulation may be expressed as

dV
d

j V V Vc
c F b

˜
tan ˜ ˆ ˆ

τ
ψ+ −( ) = +1 ,

where τ=t/Tf,

ˆ ˜V VF F=
+
2

1
β
β

, ˆ ˜V Q
R
Q

Ib L b= 





1
2

.

(a) Driving the cavity on resonance (ψ=0), with rf drive turn-on at t=0, determine the beam
turn-on time τb>0, such that gap voltage Vc is constant when the beam is present. (b)
Sketch forward, reverse, beam-induced and gap voltage waveforms versus time.

Exercise 3.15  Consider a single cavity coupled to a waveguide. It is to be operated at
2856 MHz, with a transit angle of 90° for a speed-of-light particle. (a) Select the
connecting guide from the following: WR510, WR284, WR187. Calculate the guide
wavelength λg. Calculate the characteristic impedance Zc of the TE10 mode at this
frequency. (b) Calculate the dimensions, wall Q, [R/Q], Rshunt, and fill-time for the cavity
based on closed pillbox TM010 scalings. What external Q is required for critical coupling?
(c)Assuming critical coupling and a long klystron pulse length, determine the power
requirement for Vc=2.5 MV, neglecting beam-loading. Calculate the transformer ratio, n.
(d)The klystron available puts out a peak power of 5 MW, how much current can be
accelerated while meeting the gap voltage requirement? (e)Assuming a current
requirement of 100 mA and using steady-state scalings, determine the optimal β for
transfer of power to the beam, the requirement on beam-injection time, for constant
loaded gap voltage during the beam-pulse, and the overall rf to beam efficiency for this
system.
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Exercise 3.16 For a cavity connected to a guide, relate the rate of change of cavity-
phase with frequency, relative to that of the forward voltage in the guide, to the ratio of
stored energy and input power.

Exercise 3.17  The designers of a 2856-MHz accelerating structure quote an estimate
of sensitivity of resonant frequency, to cavity diameter 2b, δ δf b/ .2 0 9( ) ≈ Mc/mil, where
Mc=megacycle, i.e., MHz. Explain this referring to TM010 mode scalings. Based on analysis
of a single cavity, what tolerance, in mils, should be enforced to ensure a gap voltage
within 95% of design, assuming the drive frequency is fixed? What temperature
regulation is required in °C? (The coefficient of thermal expansion for copper is

α ≈ × °−1 7 10 5. / K .)

Vg
W

W I

R C L Ib

Rg

Vc

˜

WW

1:n

I

Exercise 3.18  Consider the circuit in the adjacent sketch, in the frequency domain,
and compute the voltage Vc, assuming all elements are ideal. For zero current Ib, what is
the equivalent impedance seen from the primary? Identify parameters and dynamic
variables with those used in Eq. (3.12).

Exercise 3.19 Consider a cavity connected to a waveguide. Taking a forward voltage of
the form

V t

t

V t T

V T t T

T t

F ( ) =

<
< <

− < <
<











0 0

0

0

0 1

0 1 2

2

;

;

;

;

with T Tfill1 2=  and T Tfill2 2 5= . . Assuming β=5, sketch cavity, forward and reflected
voltages versus time. What is the maximum reverse voltage amplitude? What is the
maximum ratio of reflected voltage to input amplitude attainable in this geometry for any
T1,T2  and β ?

Exercise 3.20 At 77°K the resistivity of pure copper is 0 2 10 8. × −− Ω m . If a mode of
this cavity has a wall Q of 15,000 at 294°K, what is the wall Q when the copper is cooled to
77°K?

Exercise 3.21  A cylindrical cavity, with radius equal to its length, has sidewalls of
7 0



copper and endwalls made of brass. The same design made of all copper has a wall Q of
15,000. What is the wall Q with brass endcaps?

3.7 Two Coupled Cavities

Occasionally one cavity is adequate for the job at hand; more typically, we
have a single source of power, and would like to achieve 5-20 MeV of acceleration
with it. Our analysis of single cavities indicates this isn't possible at microwave
frequencies with a single cavity and typical power sources. We could split the
power and drive multiple cavities with multiple feeds, however this takes up space
and adds complexity to the system. In this case not only must each cavity be
properly tuned, but each waveguide arm and each power splitter must be tuned to
the correct "electrical length," measured in degrees of rf phase. Happily, it is
possible to couple cavities together and power them with a single feed.  Let us start
with the simplest coupled cavity system, consisting of two cavities, as depicted in
Fig. 3.9.

VF VR

V2V1
Ib

FIGURE 3.9. The simplest coupled-cavity accelerator consists of two cavities.

From the field-line point of view, this problem can take several distinct
forms, as illustrated in Fig. 3.10. We will consider the TM01 mode with coupling
by a centered circular iris as depicted on the left in the figure.

We can determine the behavior of this system starting from Maxwell's
equations, as illustrated in Appendix C. Here let us decide on intuitive grounds
what to expect. Let V1 be the voltage in cell #1, with V2 the voltage in cell #2. We
expect the usual simple harmonic oscillator behavior of V1 to be modified,

d V

dt
V

2
1

2 0
2

1+ =ω [ ]perturbation ,

and we would like to know what form this perturbation should take. Inspecting the
electric field lines and magnetic field lines for one unperturbed cell, we see that it
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has the character of an LC circuit, with an electric field between two conducting
planes, and an azimuthal magnetic field filling the outer volume. Cutting a hole in
the center---where electric field is large, and the magnetic field is small---should
have the effect of lowering the capacitance. Lowering the capacitance in an LC
circuit raises the resonant frequency of the circuit, thus

E

H

H

FIGURE 3.10. Cavity modes may be center or side-coupled, magnetically or electrically
coupled. On the left one sees center-coupled TM01 mode, in the center, TM11 coupling,

and on the right,  off-center coupled TM01.

  

d V

dt
V V

2
1

2 0
2

1 0
2

1

1
2

+ = −ω κω K,

where the dimensionless constant κ  >0 should depend on the size of the hole.
However, this description must be incomplete, for we expect too that electric field
lines from cell #2 might find their way into cell #1; the cell amplitudes should be
coupled. In fact, the form of this coupling is determined from symmetry---from the
observation that if the voltage in cell #2, V2, is equal to that in cell #1, then every
field line in cell #1 continues through to cell #2, and none terminates on the iris
edge. In this case, there is no deformation of the field lines; as far as they are
concerned one might as well replace the hole with copper. Thus when the cavities
are in phase, they should oscillate as they would if there were no iris. This implies
the coupling

d V

dt
V V V

2
1

2 0
2

1 0
2

1 2

1
2

+ = − −( )ω κω , (3.26)

and, from symmetry,

d V

dt
V V V

2
2

2 0
2

2 0
2

2 1

1
2

+ = − −( )ω κω . (3.27)

Exercise 3.22 Considering cavity voltages varying as ∝ ( )exp j tω  show that there are
two possible angular frequencies ω. Go on to show that one of these modes of oscillation
corresponds to the two cavities in-phase (0-mode), and oscillating at the original resonant
frequency of the unperturbed cavity. Show that in the second mode, the two cavities

oscillate 180° out of phase (π-mode) with resonant frequency, ω ω κ= +( )0
1 21 / . Show

that the no-load accelerating voltage for this two-cavity system takes the form
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˜ ˜
cos ;

sin ;

/V V e
j

NL
j= ×

( ) −

( ) −









1
2

1
2

1
2

2
0

θ
θ

θ π

mode

mode
,

where θ is the transit angle for a single cavity, and Ṽ1 is the no-load voltage phasor for a

single cavity. Which mode would be best for acceleration? Justify the answer by
computing the [R/Q] for the two-cavity system, defined, as previously, according to

R
Q

V

U

NL





=
˜ 2

ω
,

with U the stored energy. For each mode, determine the  maximum [R/Q] as a function of
transit angle. Show that the optimal transit angle in π-mode is 159.6°, for which the [R/Q] is
1.9 times that of the optimal [R/Q] for a single cavity. In this connection it will be helpful to
recall that the [R/Q] for a closed pillbox operated in TM010 mode takes the form

R
Q







=
( )

( )1

2 1
2

1
2

313Ω
sin θ

θ
.

3.8 Multicell Structures

From the analysis of two coupled cavities, we have seen that one does not
need to power each cavity separately, one can couple them together, and form what
amounts to one long cavity consisting of two cells. This motivates the analysis of
multi-cell  structures, as illustrated in Fig. 3.11. We neglect wall-losses, ports, and
the beam, as they can be added later as perturbations.

We consider N cavities that have been modified by coupling holes. We
denote ω κ ω κ κ0

2
0
2 0 1( ) = =( ) +( ), in terms of which our problem takes the form

∂
∂

ω ω κ
2

2 0
2

0
2

1 1

1
2

V

t
V V Vn

n n n+ = +( )− + , (interior cells)                 (3.28)

for interior cells n=2,3,...,N − 1. The end-cells, n=1,N , find themselves in
circumstances different from the interior cells, since each has had only one coupling
iris cut in it. In general, it is desirable to modify the end-cells in such a way as to
insure the existence of an accelerating mode with good [R/Q].

To determine the eigenfrequencies of the structure, we consider the problem
in the frequency domain, looking for solutions V V en n

j t= ℜ ˜ ω , so that

−( ) + −( ) − ( ) =− +
1
2 0

2
1 0

2 2 1
2 0

2
1 0ω κ ω ω ω κ˜ ˜ ˜V V Vn n n . (interior cells)                (3.29)

A general solution should consist of a left- and a right- going wave,
Ṽ Ae Ben

jn jn= + −φ φ , and substituting this in the difference equation, it can be
shown that the phase-advance per cell must satisfy

7 3



cosφ ω ω
ω κ

= −0
2 2

0
2 . (3.30)

cell
#1

cell
#n

VF

cell
#2

VR

FIGURE 3.11. Concept for a multi-cell standing-wave structure.

It is at this point that the conditions on the end-cells enter. This is illustrated
with an exercise.

Exercise 3.23 Suppose that the end-cells are designed so as to satisfy

∂
∂

ω ω κ
2

1
2 0

2
1 0

2
2

V

t
V Ve+ = ,

∂
∂

ω ω κ
2

2 0
2

0
2

1
V

t
V VN

N e N+ = − .

Show that these conditions on the end-cells are satisfied only for certain discrete values
of phase-advance per cell, corresponding to α=1,2,...N discrete modes of oscillation,

indexed by α , with  frequencies, ω ω κ φα α= −0 1 cos .  Make a sketch of the ω vs φ
relation, and remark on the density of modes. Where are modes most dense? Least
dense? Determine the mode excitation patterns corresponding to κ κe = / 2 , and those
corresponding to κ κe = .

Realistic standing-wave structures will have diverse features, including boundary
conditions corresponding to half-cells at each end, and perhaps a biperiodic
character.23,24   Those features of multicell structures that are qualitatively different
from the single-cell case can already be seen in the two-cell example. For example,
if a mode α satisfies the synchronism condition θ φα= , then one can show that

R Q R Q N/ / /[ ] = [ ] ×1 2 . At the same time, this choice of phase-advance per cell is
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not optimal. Instead, optimal  [R/Q] corresponds to that mode with phase-advance
per cell closest to π. Indeed, standing-wave structures typically operate in π-mode,

and do not satisfy the synchronous phase-advance condition. To emphasize, π-

mode does not imply a transit angle of π. This is a rather subtle difference between
the standing-wave and travelling-wave linacs. Synchronous interaction in the
travelling-wave linac requires a geometric phase-advance per cell θ matching the

kinematic phase-shift witnessed  by a speed-of-light particle, ω L c/ , with L the
cell-length. On the other hand, for the terminated interaction in the standing-wave
linac, optimal [R/Q] occurs near π phase-advance.

Starting from the perturbed cavity equations,

∂
∂

ω ω κ ω ∂
∂

ω ∂
∂

δ ω ∂
∂

δ
2

2 0
2

0
2

1 1
0 0 01

2
2V

t
V V V

Q

V

t Q

V

t Q

V

t
n

n n n
w

n

eM

n
n M

eM

F
n M+ = +( ) − − +− + , , ,

one can show that introduction of losses corresponds to a shift in mode resonance
frequency,

Ωα α
αω ω2 2
2

1
1≈ −







+
Q

j
Qw w

.

One can also show that introduction of a port in one cell contributes a correction in
the form of an external Q for each mode, inversely proportional to the squared
mode amplitude in that cell. The external features of the cavity, as determined from
measurement of S11, must take the form,

S
V

V

j Q

j Q
R

F

e

L

N

11
0

2 2
1

2
1ω ωω

ω ωω ω
α

α α αα
( ) = =

+ −( ) −
=

∑
˜

˜
/

/
,

and are determined by those modes with finite external Q (i.e., the modes that are
non-zero in the coupling cavity). In the end, the description of a perfectly tuned
multi-cell structure, operated in a particular mode, can be reduced to the form Eq.
(3.12).
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4. Travelling-Wave Accelerators

We began by considering how to accelerate particles and realized that
material boundaries were needed, either to terminate the interaction, or to provide
for a synchronous wave. In the last section, we considered the terminated
interaction in detail, the standing-wave linac. In this section, we consider how to
form a synchronous wave, a travelling-wave linac.

In light of our work on coupled cavities, the description of a travelling-wave
linac can be made quite simple: it is a multi-cavity accelerator, with critically
coupled input to the first cell, and a critically coupled output waveguide attached to
the last cell, with the output waveguide terminated in a high-power matched load.
These facts are enough to permit us to work out the basic design features of the
coupled cavity system, viewed as a transmission line. The picture is that of Fig 4.1.

input
cell
#1

output
cell
#n

Pin
Pout

to
load

from
klystron

input
coupler #2 #k

e-

L

FIGURE 4.1. Schematic of a travelling-wave accelerating structure.

4.1 Transmission Line Model

We assume that the transmission lines is operated at a frequency where the
input and output couplers are matched, and we analyze the steady-state established
with an input power Pin. If the energy stored in cell #k is Uk, then we may speak of
an energy per unit length at z=zk=(k − 1)L given by u(zk)=Uk/L, with L the cell
length. The power flowing past the point z is

P z V u zg( ) = ( ),

with Vg the local group velocity. In steady-state the energy density stored in one cell
7 6



is constant in time, and thus

0 0= = = −( ) −− +dU dt P P dt
U

Q
dt

w

change instored energy in time
ω

,

where Qw is the wall Q of a single cell. The power flowing into the cell from the left
is P− , and the power flowing out is P+ . Thus,

P P L
dP

dz

U

Q

uL

Qw w
− +− ≈ = − = −ω ω0 0 ,

or

dP

dz

u

Q

d

dz
V u

w
g= − = ( )ω0 . (4.1)

In the simplest case, the geometry of the line is strictly periodic, and it forms a
constant impedance  structure. In general, however, we may find it helpful to vary
the cell dimensions adiabatically along the structure, as in the constant gradient
structure.

Given the group velocity variation along the structure, if any, one may solve
the first-order differential equation for u, Eq. (4.1), to determine the energy stored
per unit length. In solving this, one requires the energy stored in the first cell and
this may be determined from the input power Pin,

u P Vin g0 0( ) = ( )/ .

In passing we note that this also provides a simple way to estimate the external Q
required for the input coupler geometry in the first cell,

P
Q

u L V u Q
L

Vin
e

g e
g

= ( ) = ( ) ( ) ⇒ ≈
( )

ω ω0 00 0 0
0

,

and this external Q roughly characterizes the transmission bandwidth of the
structure, although not the useful bandwidth for acceleration, as we will see.

We will be interested in acceleration with this device so let us suppose the
shunt impedance for a single cell is R, and define the shunt impedance per unit
length,

r
R

L

Q R Q

L

Q

L

V

U
w w= = [ ] =/ 2

0ω
,

where V is the voltage gain in one cell. This may be expressed in terms of the
accelerating gradient G, according to V=GL, so that,

r
Q

L

GL

U

Q

u
G

G

dP dz
w w= ( ) = =

−

2

0 0

2
2

ω ω /
. (4.2)

Let us consider, first, a perfectly periodic (constant impedance) structure. In
this case Vg is a constant, and
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d

dz
V u V

du

dz

u

Qg g
w

( ) = = − ω0 ,

so that

u z u z( ) = ( ) −( )0 2exp α ,

where 

α ω= 0

2Q Vw g

.

Thus the gradient at a distance z along the structure is

G z
u

Q
r G z

w

( ) =






= ( ) −( )ω α0

1 2

0
/

exp .

The net accelerating voltage is just the integral of this,

V G z dz G
e

NL

L Ls s

= ( ) = ( ) −∫
−

0

0
1 α

α
,

where Ls=NL is the structure length. Let us define an attenuation parameter, τ,

τ α ω= =L
L

Q Vs
s

w g

0

2
.

Note that the attenuation parameter determines the power to the load,

P L P es( ) = ( ) −0 2τ , (4.3)

and the fill time,

T
dz

V

L

V

Q
f

g

L

s

g

w
s

= = =∫
0 0

2
ω

τ . (4.4)

We may express the accelerating voltage directly in terms of the input power, using

G
Q

u r
Q

P

V
r P r

L
P R

w w

in

g
in

s
in s0 0 2

1
20

1 2

0

1 2

1 2 1 2( ) = ( )





=






= ( ) = ( )ω ω α τ

/ /

/ /
,

where we have introduced the shunt impedance of the structure as a whole, Rs=rLs, 
with Ls the structure length, just NL, with N the number of cells. The voltage with 
no beam present (no-load voltage) is then

V P R
e

P R eNL in s in s= ( ) − = ( ) −( )



−
−2

1
1

21 2 1 2
1 2

τ
τ τ

τ
τ/ /

/

(constant impedance). (4.5)
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Exercise 4.1  Show that the maximum no-load voltage for fixed input power and shunt
impedance in a constant impedance structure occurs for τ ≈ 1.26, and is

V P RNL in s≈ ( )0 9 1 2. / . Compute the ratio of maximum to average gradient in this case, and

the ratio of maximum to minimum power dissipation per unit length.

Exercise 4.2 Using the TM01 pillbox scalings to estimate [R/Q] and wall Q, roughly what
no-load voltage could you expect from a 10' long π/2-mode constant impedance structure
operating at 2856 MHz, with group velocity of 0.01c and 20 MW of input power. What is
the fill time? Power to the load? Compare your figures to those for the Mark III structure,
with r ≈ 47 MΩ/m, and other parameters the same.

Such a constant impedance structure is conceptually the simplest travelling-
wave linac, but it has a few undesirable features. These include peak gradient
higher than the average gradient, nonuniform power dissipation, and some subtle
features related to higher frequency modes in the structure. We are free of course to
consider more elaborate designs. If we wish to obtain a more uniform field profile,
we could taper the group velocity Vg(z) in such a way that stored energy per unit
length is constant (constant gradient structure). This implies a narrowing of the iris
radius as one proceeds down the structure. Let us solve for the required group
velocity taper. We have

d

dz
V u u

dV

dz

u

Qg
g

w

( ) = = − ω0 ,

so that

V z V
Q

zg g
w

( ) = ( ) −0 0ω
.

The power flowing through the structure takes the form

P z V u P P L P
z

Lg
s

( ) = = ( ) + ( ) − ( ){ }0 0 ,

and in terms of the attenuation parameter, defined with respect to the power to the 
load,

e
P L

P
− = ( )

( )
2

0
τ ,

we may write,

P z P e
z

Ls

( ) = ( ) − −( )







−0 1 1 2τ . (4.6)

We may also express the initial group velocity in terms of τ, using

dP

dz
P e

L

u

Q Q V
P

s w w g

= − ( ) −( ) = − = −
( )

( )−0 1
1

0
02 0 0τ ω ω

,
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so that

V
L

Q
eg

s

w

0 10 2 1( ) = −( )− −ω τ .

With this in hand we note the fill time,

T
dz

V

Q L

Q V

Q
f

g

L

w s

w g

w
s

= = − −
( )







=∫

0 0

0

0

1
0

2
ω

ω
ω

τln .

Finally we compute the no-load voltage,

V GL
u

Q
r L

Q V
P r L

R P e

NL s
w

s
w g

s

s in

= =






=
( )

( )







= ( ) −( )−

ω ω

τ

0

1 2

0

1 2

1 2 2 1 2

0
0

1

/ /

/ /
,

(constant gradient)   (4.7)

making the approximation that  r is constant.

Exercise 4.3 Using the TM01 pillbox scalings to describe [R/Q] and wall Q, roughly what
no-load voltage could one expect from a 10' long 2π/3-mode constant gradient structure
operating at 2856 MHz, with initial group velocity of 0.02c, fill-time of 0.8 µs,  and 20 MW
of input power. What is the power to the load? Compare to the SLAC 10' structure with r ≈
53 MΩ/m.

Exercise 4.4 The SLAC 10' structure is a constant gradient 86-cell 2π/3 mode
travelling-wave structure with nominal 2856 MHz operating frequency. Fill-time is 0.83 µs
and attenuation parameter is τ ≈ 0.57. Shunt impedance per unit length is r ≈ 53MΩ/m
and initial group velocity is Vg/c ≈ 0.0204. You have N=245 20-MW klystrons with 3-µs

pulse length, and an unlimited number of SLAC 10' structures. Assuming that you couple
one klystron to one structure, fill in the following numbers: a)VNL for one structure and
Vnet=NVNL, b) total accelerator length, c) average site power. In calculating the accelerator
length, assume that 5% of the length is taken up by quads and instrumentation. In
calculating the site power, assume a klystron wall-plug efficiency of 10% and a repetition
rate of 120 Hz. Suppose next that the power from each klystron is divided in half m times,
to feed 2m structures. Calculate the net unloaded voltage and total accelerator length and
evaluate these results for m=1 and m=2. 

4.2 Steady-State Beam-Loading

Having considered the no-load accelerating voltage provided by an external
power source, let us turn off  the external power, and consider the beam-induced
voltage in a travelling-wave structure. The beam-induced gradient G zb( ) at point z
in the structure corresponds to a power P zb( )  flowing through the structure, with

P
G

rb
b=
2

2α
,
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and Gb the peak or on-crest gradient . Conservation of energy takes the form

dP

dz
I G Pb

b b b= − 2α ,

with Ib the beam current (charge per bucket times frequency). In terms of the beam-
induced gradient, this is

d

dz

G

r
I G

G

r
b

b b
b

2 2

2α
= − ,

or

dG

dz

d

dz
G rIb

b b+ −



 =α

α
α α1

2
.

Defining

µ α
α

α τ α
α

= ′ −


= ( ) − ( )
( )





∫ dz

d

dz
z

zz

0

1
2

1
2 0

ln ,

this may be expressed as

d

dz
G e rI eb b

µ µα=

or

G z e G e dz rI eb
z

b
z

z

b
z( ) = ( ) + ′− ( ) − ( ) ′( )∫µ µ µα0

0

.

On the other hand, Gb(0)=0 since the beam must travel a finite length before losing
energy. Thus,

G z I e dz reb b
z

z
z( ) = ′− ( ) ′( )∫µ µα

0

, (4.8)

and we take current to be constant for a relativistic beam. We may then express the
beam-induced voltage as an integral,

V z dz G z mIb

L

b b

s

( ) = − ′ ′( ) = −∫
0

, (4.9)

where the minus sign reminds us that the beam-induced voltage is decelerating. The
beam-loading coefficient for the structure is

m dz e dz re
L

z
z

z
s

= ′ ′′∫ ∫− ′( )
′

′′( )

0 0

µ µα . (4.10)

The net voltage when the structure is powered may then be expressed as

V V mInet NL b= −cosψ , (4.11)
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where ψ is the phase of the applied rf. For a constant impedance structure, α and r
are constants, so that

G z rI eb b
z( ) = −( )−1 α , (constant impedance) (4.12)

m R
e

s= − −





−

1
1 τ

τ
, (constant impedance) (4.13)

with Rs=rLs.
For a constant gradient structure, one can show that

α
ξ

= − =
−

1
2

1
2

1
V

dV

dz zg

g ,

with

ξ τ=
− −
L

e
s

1 2 .

In this case µ=0, and one has

G z rI
zb b( ) =

−
1
2

ln
ξ

ξ
. (constant gradient) (4.14)

After an integration one finds

m R
es= −

−






1
2 12

τ
τ . (constant gradient) (4.15)

Exercise 4.5 A travelling-wave linac is designed to produce a net no-load voltage VNL. If
the linac current Ib is chosen to optimize power transfer to the beam in steady-state, what
is the net loaded voltage?

Exercise 4.6 Considering a structure excited only by a beam, show that power to the
load takes the form

P L R I

e

e

b s s b( ) =

−( )

−( )














−

2

2

2

2

1

2

1

τ

τ

τ

τ

;

;

constant impedance

constant gradient

,

What is the result for a 100-mA beam in the SLAC 10' structure (53 MΩ/m, τ ≈ 0.57,
constant gradient)?
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A ejφ

z=0 z=L

Exercise 4.7 A constant impedance structure has the output coupled through a phase
shifter and attenuator, and fed back into the input, as illustrated in the adjacent sketch.
Assuming the structure is excited only by the beam, compute the steady-state voltage in
the structure, and determine what input power would be required to produce the
equivalent no-load voltage. Evaluate this for a 50-cell, 2π/3, 91.39 GHz constant
impedance structure, with group velocity 0.09c, driven by a 0.5-A beam bunched at the
11.4 GHz subharmonic. Neglect the finite bunch length.

4.3 Coupled-Cavity Model

The transmission line model is quite adequate for understanding the scalings
for ideal travelling-wave structures. In general however we may be interested in the
effect of tuning errors, transient input waveforms and other more realistic features
of accelerator operation. These problems are simplified by analysis of the structure
as a series of coupled cavities. The picture is that of Fig 4.2.

Let us consider the accelerating voltage in the first cell. The first cell is a
cavity coupled to a waveguide, another cavity, and the beam. The model for such a
system follows from Eqs. (3.10) and (3.28),

∂
∂

ω ∂
∂

ω ω κ ω ∂
∂

ω ∂
∂

2

2
1

1
1
2

1 1
2

3 2 2
1

1
1

1 1

1
2

2
t Q t

V V
Q

V

t

r

Q

I

tL e

F b+ +






= + + 









/ .

The first cavity reflects a voltage V V VR F= −1  back up the connecting guide toward
the source. The loaded Q includes the wall Q of the unperturbed (no ports) first
cavity

1 1 1

1 1 1Q Q QL w e

= + ,

and the external Q due to the connecting guide. 
For interior cells k=2,3,...N − 1, the cell voltage evolves according to
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∂
∂

ω ∂
∂

ω ω κ κ ω ∂
∂

2

2
2 2

1 2 1 1 2 1

1
2t Q t

V V V
r

Q

I

t
k

wk
k k k k k k k k

k

b

k

+ +






= +( ) + + 









− − + +/ / ,

and the output coupler cell, k=N, evolves according to

∂
∂

ω ∂
∂

ω ω κ ω ∂
∂

ω ∂
∂

2

2
2 2

1 2 1

1
2

2
t Q t

V V
Q

V

t

r

Q

I

t
N

LN
N N N N N

N

eN

FN
N

N

b

N

+ +






= + + 









− −/ .

The subscript on the beam-current term reminds us that there is a finite transit time
to cell #k.

VF

#1 #2 #k #n

VR

VkVk-1 Vk+1

Qe

Qw

FIGURE 4.2. Model of a travelling-wave structure as a series of coupled cavities.

Having stated the most general model we will ever need to call on, let us
now consider some simplifying approximations. It is typically the case that shunt
impedance varies slowly with cell dimension, and so, for our purposes here may be
thought of as a constant. If the output load is well-matched, the term VFN vanishes,
as there is no power reflected back into the output cell. Wall Q varies slowly with
cell dimension and may be taken as a constant. To avoid a profusion of subscripts
we will simply drop the cavity subscript on the beam current term. Interior cells are
then described as a chain of coupled oscillators, driven by the beam, and ultimately
the input cell,

∂
∂

ω ∂
∂

ω ω κ κ ∂
∂

2

2
2 2

1 2 1 1 2 1

1
2

2
t Q t

V V V k
I

t
k

w
k k k k k k k l

b+ +






= +( ) +− − + +/ / ,

where we refer to the loss-factor for the fundamental mode, kl. Our procedure for
analyzing the structure will be to analyze propagation in the interior cells. We then
return to the first cell and examine the requirements imposed on cell resonance
frequency ω1, and external Qe1 to insure a good match to the structure. Finally we
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visit the last cell and examine the requirements imposed on ωN and external Q eN to
insure a good match out of  the structure.

4.4 Coupled Cavity Model, Constant Impedance, No Beam 

First consider the perfectly periodic structure. Our model for interior cells is
simply

∂
∂

ω ∂
∂

ω ω κ
2

2
0

0
2

0
2

1 1

1
2t Q t

V V V
w

k k k+ +






= +( )− + .

In steady state at angular frequency ω, we may express this as a simple difference
equation,

˜ ˜V V Vk k k− ++ + =1 12 0α ,

just as for a standing-wave structure, with

α
ω ω ωω

ω κ
=

− −2
0
2

0

0
2

j Qw/
.

We wish to insure a travelling-wave, not a standing-wave solution, so we seek a
right-propagating solution of this difference equation. We leave some of the work
to the next exercises.

Exercise 4.8 Show that the dispersion relation for structure voltages
V j t kk ∝ −( )exp ω γ , takes the form γ θ= +j 0 Γ , with

cosθ
ω ω

ω κ
0

0
2 2

0
2=
−

, (4.16)

and an attenuation in nepers per cell of

Γ ≈
ω ω

κ θ
/
sin

0

0Qw
,

assuming that Γ<<θ0. What is the relation between drive frequency and the cell resonant
frequency for (a) a π/2-mode structure, (b) a 2π/3-mode structure?

Exercise 4.9 Show that group velocity in this constant-impedance structure is given by

β ω
θ

κ θ θ
κ θg

L
c

d
d

= =
−( )

1
2 1

0 0

0

sin
cos

, or κ
β

θ θ β θ

β
θ θ

=
+

≈g

g

g
1
2

2

sin cos sin
(4.17)

and show that the attenuation parameter,

τ
κ θ

θ
β

= ≈ ≈ ≈N
N

Q
N

Q
N

Qw w g e
Γ

sin 0

0 .
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Given the macroscopic parameters characterizing the structure (group
velocity, phase-advance per cell, attenuation parameter) one would like to determine
the circuit parameters required for the coupled-cavity model. The last exercises
developed the relations between these macroscopic parameters, and the circuit
parameters for interior cells. Let us consider conditions on the end cells. The
voltage in the input cell satisfies

∂
∂

ω ∂
∂

ω ω κ ω ∂
∂

2

2
1

1
1
2

1 1
2

1 2
1

1

1
2

2
t Q t

V V
Q

V

te

F+ +






= + ,

where the forward-going voltage in the connecting guide has been transformed to
VF, and reverse waveform VR, satisfying V V VF R1 = + . The loaded Q of the first
cell is

1 1 1

1 1 1Q Q Qe w

= + .

The input cell resonance frequency, and external Q, Qe1 are adjusted to insure no
reflected signal in steady-state (V1=VF), corresponding to a match on the

transmission line to a forward-wave with phase-advance per cell θ0. Thus

− + +






= −( ) +−ω ω ω ω ω κ ω ωθ2 1

1
1
2

1
2

1
1

1

1
2

1 20

Q
j e

Q
jj

e

Γ ,

with ω the drive angular frequency for synchronism. Equality permits us to solve
for the input coupler cell parameters,

ω ω
κ θ

1
1
2 1 01 1

=
− −( )Γ cos

, 
1 1 1

2

1

1 11

1 0

1
2 1 0

Q Qe w

= +
−( )

− −( )
κ θ

κ θ

Γ

Γ

sin

cos
. (4.18)

Similarly, the output cell should be matched, and this requires

− + +






= +( )ω ω ω ω ω κ θ2 2 21
2

10N

N
N N N

j

Q
j e Γ ,

This implies,

ω ω
κ θN

N

=
− +( )1 11

2 0Γ cos
, 

1 1 1
2

1

1 1
0

1
2 0Q QeN w

N

N

= − +
+( )

− +( )
κ θ

κ θ
Γ

Γ

sin

cos
.  (4.19)

Based on this analysis, one may expect to find that input and output cells are
detuned from those in the interior of the structure.

Equations (4.16)-(4.19) determine the circuit parameters from the
macroscopic quantities: wall Q, phase-advance per cell, group velocity, angular
frequency. With them one is freed from dependence on the transmission line
picture, and can engage in realistic modelling of the structure behavior, in
particular, observables, such as transient waveforms viewed from couplers at the
input and output, no-load voltage under transient conditions, effects of cell-tuning
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errors, and the like.
Perhaps the first application one might make of the circuit model is the

calculation of the S-matrix for the structure. We will consider a perfectly tuned
structure for illustration, where the problem is solvable analytically. Given that one
is most often interested in assessing errors in tuning, the primary value of such a
result will be as a check of the numerical circuit solution that we will shortly be
discussing.

Let us drive a perfectly tuned structure from the input, at angular frequency
Ω, the S-matrix elements are

S
V

VF
11

1 1Ω Ω
Ω

( ) = ( )
( )

−
˜

˜ , S
V

V
N

F
21 Ω Ω

Ω
( ) = ( )

( )
˜

˜ . (4.20)

In this notation, we have transformed the impedance of the connecting guide to that
of the structure. We may compute the terms explicitly as follows. The cell
excitations in general consist of forward and backward waves,

Ṽ Ae Bek
k k= +− −( ) −( )1 1γ γ ,

where A, B and γ are functions of Ω . We wish to determine A  and B , the
propagation constant we know is γ θ= +j Γ , with

cosθ ω
ω κ

Ω Ω( ) = −0
2 2

0
2 , Γ Ω Ω

Ω
( ) =

( )
/

sin
ω

κ θ
0

Qw

.

The forward and backward wave amplitudes, A and B, may be computed from the
conditions on the end cells,

j
Q

A B Ae Be j
Q

V
e

F

ω ω ω κ ωγ γ1

1
1
2 2

1
2

1
1

1

1
2

2
Ω Ω Ω+ −







+( ) = +( ) +− ˜ ,

j
Q

Ae Be Ae BeN

N
N

N N
N N

N Nω ω ω κγ γ γ γΩ Ω+ −






+( ) = +( )− −( ) −( ) − −( ) −( )2 2 1 1 2 2 21
2

.

Abbreviating

∆ Ω Ωk
k

k
kj

Q
= + −ω ω 2 2 ,

we may express this as an equation for the two unknowns, A and B,

∆ ∆
∆ ∆

Ω1
1
2 1

2
1 1

1
2 1

2
1

1
2

2 1 1
2

2 1
1

1

2
1

0

− −
−[ ] −[ ]













= 





−

− −( ) − −( )
ω κ ω κ

ω κ ω κ
ωγ γ

γ γ γ γ

e e

e e e e

A

B
j

Q
V

N N N
N

N N N
N

e
F

˜ .

with the solution,

A

B

e e e

e e e
j

Q
VN N N

N

N N N
N

e
F







=
−[ ] − −[ ]

− −[ ] −












− −( )

− −( ) −
1 1

0
2

1
2

2 1
1

1
2 1

2
1

1
2

2 1
1

1
2 1

2
1

1

1Ξ
∆ ∆
∆ ∆

Ωω κ ω κ
ω κ ω κ

ωγ γ γ

γ γ γ
˜ ,

8 7



where

Ξ ∆ ∆

∆ ∆

= −( ) −[ ]
− −( ) −[ ]

− − −( )

− −( )

1
1
2 1

2
1

1
2

2 1

1
1
2 1

2
1

1
2

2 1

ω κ ω κ

ω κ ω κ

γ γ γ

γ γ γ

e e e

e e e

N N N
N

N N N
N .

The S-matrix elements are then

S
A B

V
j

Q
e e e e

F e
N N N

N
N N N

N
11

1

1

1
2

2 1 1
2

2 11 2
1Ω

Ω
Ω

Ξ
∆ ∆( ) + = +

( )
= −[ ] − −[ ]( )− −( ) − −( )

˜ ,
ω ω κ ω κγ γ γ γ

S
Ae Be

V
j

Q

N N

F e
N N12

1 1
1

1

22
1Ω

Ω
Ω

Ξ
( ) = +

( )
=

− −( ) −( )γ γ ω ω κ γ˜ cosh .

These results are most easily visualized by numerical calculation for particular
examples.

Exercise 4.10 Calculate and plot the modulus of the S-matrix elements for a constant
impedance, 7-cell structure, with group velocity 0.09c and 2π/3 phase-advance per cell.
Assume the structure is perfectly tuned to operate at a frequency of 91.39 GHz, with a
wall Q of 2500. Make a similar plot for the cases (a) first cell detuned by +0.1%, (b) cells
perfectly tuned but Qw=500.

4.5 Numerical Solution of the Circuit Equations

For simulation of bench measurements and calculation of the effect of
fabrication errors, we can solve these coupled oscillator equations in the frequency
domain. For calculation of transient waveforms we will solve them in the time-
domain. We set down the numerical formalisms employed in either case. The
coupled circuit model consists of N 2nd-order differential equations,

∂
∂

ω ∂
∂

ω ω κ κ ω ∂
∂

δ
2

2
2 2

1 2 1 1 2 1 1

1
2

2
t Q t

V V V
Q

V

t
n

n
n n n n n n n

n

en

F
n+ +







= +( ) +− − + +/ / , ,

with δn,1 the Kronecker delta function, δn,1=0 unless n=1, in which case δn,1=1. In

the frequency domain at drive frequency Ω, we have

− + + −






− =− − + +
1
2

1
2

22
1 2 1

2 2 2
1 2 1 1ω κ ω ω ω κ ω δn n n

n

n
n n n n n

n

en
F nV j

Q
V V j

Q
V/ / ,

˜ ˜ ˜ ˜Ω Ω Ω .

This is a tri-diagonal matrix equation and may be inverted quickly, using, for
example, the subroutine tridag from Numerical Recipes.25 In this way one can
quickly evaluate Eq. (4.20) for the S-matrix components. In a similar fashion,
adding a drive to the output cell, one can compute S12 and S22.

In the time-domain one may solve the second-order equations directly, or
make an eikonal approximation, preferred for speed of calculation. In the first case
one writes the equations as
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W
V

tn
n= ∂

∂
,

∂
∂

ω ω ω κ κ ω ∂
∂

δW

t Q
W V V V

Q

V

t
n n

n
n n n n n n n n

n

en

F
n= − − + +( ) +− − + +

2 2
1 2 1 1 2 1 1

1
2

2
/ / , ,

and proceeds to a discrete time step, using a leap-frog approach, where W is
computed at midpoints tl+1/2, and V is computed at the time-centered points  tl. Thus

W
V V

tn
l n

l
n
l

+
+

= −1 2
1

/

∆
,

W W

t Q

W W

V V V
Q

V

t
t

n
l

n
l

n

n

n
l

n
l

n n
l

n n
l

n n
l n

en

F
l n

+ − + −

− − + +

− = − +

− − −



 + ( )

1 2 1 2 1 2 1 2

2
1 2 1 1 2 1 1

2

1
2

1
2

2

/ / / /

/ / ,

∆
ω

ω κ κ ω ∂
∂

δ
.

More explicitly, starting at time tl, with Wn
l −1 2/ , Vn

l  known, one proceeds to the next
time step using,

W

t

Q
t

Q

W
D t

t

Q

n
l

n

n

n

n

n
l n

l

n

n

+ −=
−

+

















−
+







1 2 1 2

1
2

1
2 1

2

/ /

ω

ω ω

∆

∆
∆

∆
, V V W tn

l
n
l

n
l+ += +1 1 2/ ∆ ,  (4.21)

where we abbreviate

D V V V
Q

V

t
tn

l
n n

l
n n

l
n n

l n

en

F
l n= − −



 + ( )− − + +ω κ κ ω ∂

∂
δ2

1 2 1 1 2 1 1

1
2

1
2

2
/ / , . (4.22)

This approach requires 60 steps per rf period and is unnecessarily time-consuming
for a narrow-band drive. This approach is useful, however, as a check of the
following eikonal (slowly-varying envelope) technique in the case of a short pulse
excitation.

In the eikonal approach we assume a narrow band rf drive taking the form

V t V t eF F
j t( ) = ℜ ( ){ }˜ Ω ,

where "narrow-band" means,

∂
∂
˜

˜V

t
VF

F<< Ω .

We look for a solution for cell voltages also taking the form of slowly varying
phasor amplitudes modulating the signal at the carrier frequency Ω,

2
1
2

22 2 2
1 2 1 1 2 1 1j

V

t
j

Q
V V V

j

Q
Vn n

n
n n n n n n n

n

en
F nΩ Ω Ω Ω∂

∂
ω ω ω κ κ ω δ

˜
˜ ˜ ˜ ˜

/ / ,+ + −






= +( ) +− − + + .
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Letting

∆ Ω Ωn
n

n
nj

Q
= + −ω ω 2 2 ,  (4.23)

the time-centered discrete form of the equations for n-th cell voltage at time step a,
Ṽn

a , is

2
2

1
2 2 2

2

1 1

2
1 2

1
1

1
1 2

1
1

1
1

j
V V

t

V V

V V V V j

Q
V

n
a

n
a

n
n
a

n
a

n n
n
a

n
a

n
n
a

n
a

n

en
F
a

n

Ω
∆

∆

Ω

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜
˜

/ / ,

+ +

−
−
+

−
+

+
+

+

− + +

= + + +





+ω κ κ ω δ
,

and this may be rewritten as

− + +



 −

= + −



 +

− −
+ +

+ +
+

− −
+ +

+ +

1
4

2
2

1
4

1
4

2
2

1
4

2
1 2 1

1 1 2
1 2 1

1

2
1 2 1

1 1 2
1 2 1

ω κ ω κ

ω κ ω κ

n n n
a n

n
a

n n n
a

n n n
a n

n
a

n n n

V
j

t
V V

V
j

t
V V

/ /

/ /

˜ ˜ ˜

˜ ˜ ˜

Ω
∆

∆

Ω
∆

∆ aa n

en
F
a

n

j

Q
V+ +1

1

2 Ωω δ˜
,

.

  (4.24)

Thus the eikonal form of the equations can be solved by a time-centered difference
and one tri-diagonal matrix inversion at each time-step. Since the number of time-
steps is governed only by the structure and drive bandwidths, this approach can be
much faster than solution of the full 2nd-order system.

4.6 Cell Tuning Errors

Having rested our hopes on resonant energy storage for acceleration, let us
consider the effect of deviation from resonance, on accelerating voltage. The net
voltage experienced by a particle entering the first cell at time t0 may be expressed as

V t V t tNL k k
k

N

0 0
1

( ) = +( )
=

∑ ,

where tk=(k − 1)L is the beam arrival time at cell #k (we take V=c). Expressed in
eikonal form this is

V t V e V eNL NL
j t

k
j t j t

k

N
k

0
1

0 0( ) = ℜ( ) = ℜ +

=
∑˜ ˜ω ω ω ,

or

˜ ˜V V eNL k
j k

k

N

= −( )

=
∑ 1

1

ϕ ,

where ϕ ω= L c/  is the synchronous phase-advance per cell, and we assume no
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errors in cell length. In this form Ṽk , the phasor in the rotating frame, may yet have
some time-dependence. For simplicity, we specialize to the steady-state case. We
consider a uniform complex phase-advance per cell γ θ= +j Γ  at the drive

frequency ω. Then,

˜ ˜ exp ˜V V k j V
e

e
NL

k

N N j

j= −( ) −( ){ } = −
−=

−( )

−( )∑1
1

11
1

1
δ

δ

δΓ
Γ

Γ , (4.25)

where δ=ϕ−θ.

Considering a constant impedance structure, evaluating this for δ=0
(corresponding to synchronous phase-advance), and identifying the attenuation
parameter τ=NΓ , we recover Eq. (4.5). Evidently the quantity δ provides a figure
of merit for the useful accelerating bandwidth of the structure,

  

δ ϕ ω θ ω ϕ ω θ ω θ
ω

ω ω δω= ( ) − ( ) = ( ) − ( ) − −( ) + = −






+s s

g

d

d

L

c

L

V
K K,

or

δ π
λ

δω
ω β

δω≈ − ≈ −2
1L

Ts

g
f , (4.26)

where ωs is the drive frequency for synchronism, and L is the cell length. Thus the
useful bandwidth varies inversely with the fill time and is much narrower than the
transmission bandwidth.

Exercise 4.11 Plot the loss in no-load voltage as a function of a uniform deviation from
synchronism, δ,  for τ ≈ 1.26.

Exercise 4.12 The Mark III accelerator at Stanford was a 2856 MHz linac consisting of
twenty-one 20 MW klystrons each powering one 3.05 m constant-impedance λ /4
structure. Fill time was Tf=1 µsec, and wall Q ˜10,000. Shunt impedance per unit length
was r ≈ 47.3MΩ/m. Calculate the loss in no-load voltage for the Mark III for a drive
frequency error of 100 kHz. What are the implications for temperature regulation? (Recall

that the temperature coefficient of expansion of copper is α ≈ × °−1 7 10 5. / K ).

For a constant-gradient structure, the analysis is similar to that for a
constant-impedance structure, except that the term Γ = 0,

˜ ˜ ˜ sin

sin
V V

e

e
V e

N
NL

j N

j

j N= −
−

= ( )
( )

−( )
1 1

1
1
2

1
2

1
1

1
2

δ

δ
δ δ

δ .

Thus, for a small deviation from synchronism, one has
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˜

˜

V

V
N T

LNL

NL

f
s

g

δ
δ δω π

λ
δω
ω β

( )
( )

≈ − −( ) ≈ − ( ) ≈ −





0
1

1
6

1 1
1
6

1
1
6

2
12 2 2

2

.  (4.27)

Next we consider the more general problem of cell-to-cell detuning. We will
consider a transmission line consisting of coupled cavities, with all but the m-th
cavity perfectly tuned, as illustrated in Fig. 4.3.

#m

1

R

T

Error

FIGURE 4.3. We consider first the case of a travelling-wave structure with a single
tuning error. The tuning error results in a reflected signal R, and a transmitted signal T.

In steady-state, with a wave launched into the structure from the input cell, a
reflection will occur at the m-th cell, and the voltage in the k-th cell will take the
form

V
e e R e k m

Te m k
k

k j m j k j

k j
=

+ [ ] ≤

≤







− +( ) − +( ) +( )

− +( )

θ θ θ

θ

Γ Γ Γ

Γ

2 ;

;
,

where continuity requires T=1+R, and perfect tuning would correspond to R=0.
We can compute the reflection coefficient, R, in terms of the cell-detuning by
applying the coupled-cavity model,

δω ω ω ωω δω ω κ κm m
m

w
m m m m m m mj

Q
V V V2 2 2 2 2

1 2 1 1 2 1

1
2

+ − + +






= +( )− − + +/ / .

Explicitly this is

δω ω ω ωω

ω κ ω κ

θ

θ θ θ θ

m m
m

w

m j

m m
m j m j m j

m m
m j

j
Q

Te

e e R e Te

2 2 2

2
1 2

1 2 1 2
1 2

11
2

1
2

+ − +




( )

= + [ ]( ) +

− +( )

−
− −( ) +( ) − +( ) −( ) +( )

+
− +( ) +( )

Γ

Γ Γ Γ Γ
/ /

,

and after rearranging terms, and making use of the tuning condition,
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ω ω ωω ω κ κθ θ
m

m

w
m m

m j
m

m jj
Q

e e2 2 2
1 2

1
1 2

11
2

− + = +( )−
− −( ) +( )

+
− +( ) +( )

/ /
Γ Γ ,

one can show that

R
j

m

m m m

= −
+ +( )−

δω
δω ω κ θ θ

2

2 2
1 2/ cos sinΓ

.

Thus we find that transmission through cell #m with detuning corresponds to a
transmission coefficient T jm m= ( )exp δ , where the term δm is in general complex,
but to a good approximation is just

δ δω
ω

θ
βm

m

m g

≈ 1
2

2

2 . (4.28)

With this result, we proceed to calculate the loss in no-load voltage due to cell
detuning. To simplify the problem, we will assume that all detunings are quite
small, and neglect multiple reflections, making the approximation

  
˜ ˜V e T T T Vk

k
k k= − −( )

−
1

1 1 1
γ L ,

where γ θ= +j Γ  is the propagation constant for the tuned structure. This is
expressed more simply as

˜ ˜V e e Vk
j kk= − −( )ε γ1

1,

where εk is the cumulative error in phase-advance at cell k,

ε δk m
m

k

=
=

∑
1

.

The no-load voltage is then

˜ ˜ ˜V V e V e eNL k
j k

k

N
k j

k

N
j k= =−( )

=

−( ) −( )

=
∑ ∑1

1
1

1

1

ϕ ϕ γ ε .

In this form it is straightforward to compute the no-load voltage, given small errors
in cell tuning.

To appreciate the tolerances implied for fabrication and assembly, it is
helpful to have something still more explicit, so let us consider the case of a large
number of structures, fabricated with a particular distribution in cell detuning
errors. For simplicity, we assume the distribution in δm, for any m, is a Gaussian,

with rms σδ. The average (over a large-number of structures) no-load voltage is
given by

˜ ˜V V e eNL
k j

k

N
j k= −( ) −( )

=
∑1

1

1

ϕ γ ε ,

and to compute the average, e j kε
, we note that the cumulative error εk  i s
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distributed according to a Gaussian, with rms σ σε δk
k2 2= . This implies that

e d jj
k k

kk

k k

k

ε

ε ε
εε

πσ
ε ε

σ
σ= −







= −





−∞

∞

∫ 1
2

1
2

2

2
2exp exp .

The average no-load voltage is then

˜ ˜ exp expV V k j kNL
k

N

= −( ) −( ){ } −





=
∑1

1

21
1
2

ϕ γ σδ .

This is just a geometric series and easily summed. For illustration, consider the case
of a constant gradient structure, with no error in drive frequency,

˜

˜ exp
sinh

sinh

V

V
N

N

N

NL

NL

σ
σ

σ
σ

δ
δ

δ

δ

( )
( )

= − +( )( ) ( )
( )0

11
2

2
1
4

2

1
4

2 .

For Nσδ
2 4 1/ << , this is simply

˜

˜

V

V
N

NL

NL

σ
σδ

δ

( )
( )

≈ − +( )
0

1
1
2

1 2 . (4.29)

Comparing this with the result for a uniform frequency error, we can see that the
structure is more tolerant of random errors by a factor of ≈ N / 3 .

Exercise 4.13  Consider a 91.39 GHz, 60-cell, 2π/3-mode constant-gradient structure,
with initial group velocity 0.09c. Calculate the rms fractional cell frequency error tolerance
for an average loss of 1% in no-load voltage. Estimate the absolute tolerance in microns,
assuming δ δω ωL L/ /= − .

Exercise 4.14 For the structure of the previous exercise, write a short program to
check the analytic estimate. For each of 10 values of σδ, generate a sample of 100
structures with Gaussian-distributed detuning errors, compute the no-load voltage
reduction for each, and make a scatter plot of no-load phasor amplitude versus σω, with
the theoretical mean overlayed.
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Epilogue

These notes are intended as an introduction to electrodynamics as applied to
microwave linacs. However, let us not leave without mentioning the challenges at
the forefront of research in electromagnetic accelerators. The ultimate goal of
accelerator research for high energy physics is high energy , and to reach high
energy in a reasonable length, one requires a high gradient. For example, a 5-TeV
collider fitting on any existing laboratory site would require a gradient of 1 GeV/m
or more.

To place such a gradient in context, let us take note of the phenomena
known to limit gradient, and gradients achieved to date. A glimpse of these may be
seen in Fig. E.1. This plot includes results for a laser wakefield accelerator
(LWFA), a plasma beat-wave accelerator (PBWA), and several  0.5-TeV collider
concepts.9 The block marked "SLC" extends from 20 MV/m as for a typical
structure, to 40 MV/m as for certain higher gradient structures on the linac. The
phenomena of concern are field-emission,  breakdown, trapping, and pulsed
heating.

10 -2

10 -1

10 0

10 1

10 2

10 -3 10 -2 10 -1 10 0 10 1 10 2

G
 

(G
eV

/m
)

λ(cm)

LWFA

PBWA

CLIC

NLC
SLC

Breakdown

Trapping

120 °C
80 °C
40 °C

Figure E.1. Current state of the art in high-gradient accelerator research.

Field-emission refers to the extraction of electrons from a surface in the
presence of a large electric field. The picture associated with this process consists of
a potential well binding electrons to the bulk of the solid, modified by the presence
of the applied electric field. Electrons tunnel through the modified potential barrier
at the surface and escape. For such a quantum-mechanical tunneling process, one
can show that emitted current density J varies roughly as ln /J D E≈ −  with D a
constant depending on the work function, and E the electric field. In practice, in
high-power rf work, the exponent inferred from collected current is 50-200 times as
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large as one would expect based on the expected surface electric field. To operate at
a gradient of 1 GeV/m one would require a much lower field-enhancement, on the
order of 5, to control loading and structure damage.

Known mechanisms for enhancement of field emission are (1) a roughened
surface, causing geometrical enhancement of the local electric field, and (2) surface
impurities, tending to lower the work function. Control of field emission is an
ongoing research activity at present, concerning itself with surface finish, coatings
and cleanliness.26  At the same time, there is experimental evidence that field
emission is inhibited on short, nanosecond time-scales,27 and this suggests that to
reach high gradient, one could consider structures with natural fill times on the
nanosecond scale. This implies a short rf wavelength, on the order of millimeters.

Field emission is sometimes associated with breakdown.28 For high-power
pulsed rf systems operated at high vacuum (10-9-10-7 torr) as employed on rf
linacs, breakdown refers to a collection of three coincident symptoms: (1) a sudden
change in the rf waveform, e.g., a sudden increase in the reflected voltage from a
resonant device, (2) an increase in x-ray emission, (3) a degrading of the vacuum.
The field level at which breakdown occurs for a given structure is known to depend
on the history of the structure (fabrication, assembly, cleaning, handling), in
particular, its previous exposure to rf (conditioning cycle). In general one may say
that breakdown occurs at a higher field level for a shorter pulse and this too
suggests that for high gradient, structures operating on shorter time-scales would be
desirable.

Trapping refers to the acceleration from rest of field-emitted or injected
electrons in the structure. Trapping fraction is a function of the product Gλ  of the

gradient G  and the rf wavelength λ . This is easy to see. We express the
accelerating electric field in a travelling-wave structure as − =eE eEz 0 cosψ , where

the phase ψ β ω= −s t , with β  the wavenumber for the rf signal. The angular

frequency of the microwave system is ω. Given an initial value for an electron's
phase and energy, we may track its longitudinal motion according to

d

ds Vz

ψ β ω= − ,
d

ds
mc eE2

0γ ψ( ) = cos .

One can show for for an electron injected into a speed-of-light structure ω β/ ,=( )c

with initial speed over c , β0  and phase ψ 0, that at any later time, its phase ψ , and

speed over c , β  are related according to the "binding-field" expression,

sin sinψ ψ
α

β
β

β
β

= + −
+

− −
+









0
0

0

1 1
1

1
1

,

with α β= eE mc0
2/ , just the normalized product of gradient and rf wavelength.

Analyzing this result one can show that the minimum value of α  required for

trapping of particles from rest is α = 1 2/ . More generally, one can show that the
fraction of a monoenergetic beam trapped in a speed-of-light structure is given by
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ftrap = + − −
+







−1

2
1

1
1 1

1
1 0

0π α
β
β

sin .

To control the trapping of parasitic electrons at high gradient, one requires either (1)
control of field emission or (2) a short rf wavelength, or both. The curve in Fig.
E.1 corresponds to α=1 and a trapping fraction of 50%.

 Pulsed heating refers to the deposition of heat, by Ohmic loss, in the
conducting structure, in a single pulse. Heat flow within the conducting surface is
governed by the diffusion equation,

C
T

t
E

T∂
∂

σ κ ∂
∂ξ

= −2
2

2 ,

with σ E2 the local volume rate of Ohmic energy deposition, κ  the thermal
conductivity, and C  the heat capacity. For room-temperature copper
κ = ° −401 W K m/  and C J K m= × ° −3 45 106 3. / . The depth to which heat
diffuses in a time t  varies as t1 2/ , and accordingly, the temperature rise within the
conductor varies as ∆T E t∝ 2 1 2/  Curves of constant pulsed temperature rise are
shown in Fig. E.1, for pulse length equal to the natural fill-time of a constant-
gradient travelling wave structure with attenuation parameter τ ≈ 1.

Taking all these considerations together, the phenomena limiting gradient all
imply that high gradient requires short wavelength . For a 1-GeV/m linac, interest
begins in the W-Band, 75-110 GHz. A cross-mark has been added in Fig. E.1 as a
helpful landmark, corresponding to 1 GeV/m. The minimum frequency is close to
91.4 GHz (3.3 mm), the 32nd harmonic of the SLC fundamental frequency, 2.856
GHz. However, the curves of pulsed temperature rise, in Fig. E.1, make clear that
such a W-Band linac will suffer severe pulsed heating, and the conventional
travelling-wave structure, the paradigm for fifty years, will fail. To be sure, it is yet
an open question exactly what cyclic pulsed temperature rise a structure can
withstand, and this is the subject of ongoing research on materials under conditions
of high-power pulsed rf.29 Other essential research problems include structure
fabrication,30  wakefields,31  and power sources.32

Ultimately the question for any linac concept is: what is the maximum
achievable gradient for a concept and technology scalable to a high energy collider?
This question is asked for the conducting geometries, as well as the dielectric, for
the tube-powered linacs, as well as laser and beam driven linacs. The answers are
largely unknown. For the conducting structures, conceptual innovation is required
as well as materials research. For the plasma accelerators, basic parameters such as
[R/Q] have yet even to be calculated, and the collider concept itself is non-existent.
The field today is wide-open, and as Fig. E.1 implies, opportunities for research
abound.
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Appendix A: Numbers and Math

A.1 Constants

 A few constants are hard to live without, and are listed for convenience in
Table A.1. It is natural to ask: why these constants and not some others? Questions
like this are why we have high energy physics programs at many of the national
labs!

TABLE A.1. Constants for electrodynamics in this universe.

mc2 0 5110= . MeV electron rest energy

c = = ×1
2 9979 10

0 0

8

ε µ
. m/s speed of light

r
e

mce = = × −
2

0
2

15

4
2 8179 10

πε
. m classical radius of the electron

Z0
0

0

376 7= =µ
ε

. Ω wave impedance of free space

I
mc

e0 0

3

4 17 03= =πε . kA Alfven's constant

  
α

πε
= =e

c

2

04
1

137 036h .
fine structure constant

To reduce quantities to practical units one needs in addition the charge of an
electron, -e, with e = × −1 602 10 19. C, and mc e/ .= × −−1 7 10 3 T m. Occasionally it
is helpful to know the ratio of proton to electron mass, m mp / ≈ 1836, Avogadro's

number NA = ×6 022 1023. , and Boltzmann's constant, kB , where k TB = 1 38 7/ . eV
for T=300°K. It is never necessary to remember ε0

128 85 10= × − −. Fm 1,

µ π0
74 10= × − −NA 2 , nor the mass of the electron m = × −9 109 10 31. kG.

Exercise A.1 A photon of angular frequency ω carries energy   hω . Using the constants

from Table 1.1, and the electronic charge in coulombs, show that a photon of 1 µm
wavelength carries energy of about 1 eV. (Evidently one does not need to remember

that Planck's constant divided by 2π is   h = × −1 05 10 34. Js .)

Exercise A.2 The binding energy of an electron in the ground state of a hydrogen atom

is m ce
2 2 2α / . Compute this in units of electron-volts.

In addition, there are a few combinations of numbers that come up so
frequently they also should be second nature. In speaking of couplers, attenuation
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and the like, decibels come in handy, 10 2 310log ( ) ≈ dB, 10 3 510log ( ) ≈ dB. One
someday may wonder whether an error of ±0 1. dB is important. Since
20 0 99 0 110log . .( ) ≈ − dB, the answer is yes if one is working at the 1% level in
voltage, otherwise no. If the error is ±1 dB then since − ≈ ( )1 10 0 810dB log . , the
uncertainty is of order 20% in power. Mention of units for amplitude reminds us
too of units for phase, π ≈ 3 14159.  and 1 57 3radian = °. . Next, one may need to
communicate results in some strange yet conventional set of units, so let us
contemplate our choices.

A.2 Units For All Occasions

The conventional set of units is the International System of Units,
colloquially, MKS. That said, in some places, to get something machined one
needs 1 2 54inch cm= .  and 1 0 001 25 4mil inch m= =. . µ . If surface finish is  a

concern, for a machined part, Class XX  means XX µinches roughness average  or
Ra . Roughness average is the average peak-to-valley depth over the surface. A
rough surface exhibits greater losses than a smooth surface, for then the wall
currents must traverse a greater path length. In addition, rough surfaces are
rumored to have lower breakdown thresholds at high power. So a good finish is a
good thing. A Class 1 finish has a roughness average of 1 250µinch A≈ . Other
units that may come up: 1 3 3m ft= . , 1 5280 1609mile f m= =t . Electrons in
linacs often come in bunches a few mm in length, where 1 3 3mm ps≈ . .

Area too is a broad subject. Accelerators are often built based on the
expected cross-section for some event. Cross-sections are usually measured in
picobarns (10-12  barn) or, worse yet, femtobarns (10-15 barn) nowadays and so one
may need 1 10 28barn m2= − . Oftentimes one hears experimenters speaking of
inverse picobarns; what they are referring to is a number (integrated luminosity)
they can multiply by their expected cross-section to determine the number of events
they could produce. Most likely they couldn't produce that many. Area is also
significant in the physical layout of an accelerator, with units such as 1 hectare
=100 m ×  100 m, 1 acre=43,560 sq. ft ≈  0.4 hectare.

Meanwhile, time is of the essence, so we mention, 1 week=168 hour,
1 8760 3 15 107year hour= = ×. sec . Speed we appreciate; electrons in linacs
typically travel at about c ft ns≈ 1 / . Signals in coaxial cable (RG-214 or RG-58A,
say) often travel at 0.66c ≈ 1 m/5 ns. Let us also take a moment to enjoy the many
units for pressure,

1 01 10 7605. × ≈ ≈ °( ) ≈ ≈Pa 1.01 bar 760 mm Hg 0 C torr 14.7 psi .

Exercise A.3  A 10-GeV electron beam travels through 8 girders, each girder consisting
of 40 feet of accelerating structure. At the end of each girder the beam induces a signal
on RG-214 cable.  All cables must be run 50 feet up to exit the accelerator housing, and
then must be run to one location, directly above the end of one of the girders, to permit
acquisition of the signal by a single gated analog-to-digital converter (GADC). Cable
lengths must be such that all signals arrive simultaneously.  At which of the eight locations
should the GADC be located to minimize the length of the longest cable?
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Accelerators consume a a lot of joules, and this may show up on the power
bill in British thermal units, 1 BTU 1.05 kJ= . If horsepower is needed,
1 hp 0.746 kW= ; at the other extreme, 1 mW 0 dBm≡ , i.e. , dBm means
decibels relative to milliwatt. Speaking of energy and power, it is amusing to note
that a typical industrial 5 hp motor will run at 70-80% efficiency, as can a home
furnace, or a fluorescent light bulb. Makes one wonder what an accelerator can do.

Exercise A.4  The Stanford Linear Collider (SLC) collides two 46-GeV, 1-mm long
bunches, each with about 6 nC of charge, at a rate of 120 Hz during normal operation.
What is the average power in one beam? The peak power? If the power drawn by the site
during 120 Hz running is 50 MW, what is the practical efficiency of the SLC?

A.3 Vector Identities

A vector recall is a thing with magnitude and direction. For example, wind
"velocity" is a vector since it consists of a speed (e.g., 100 miles per hour) and a
direction (e.g., from the East). The dot-product (or scalar product),   

r r
A B• , of two

vectors,   
r
A ,   

r
B  is just a number,   | | | | cos

r r
A B θ , where   | |

r
A  is the length (or

magnitude) of   
r
A , and θ is the angle between   

r
A  and   

r
B . The cross-product of two

vectors is yet another vector, at right angles to   
r
A  and   

r
B . To picture the cross-

product   
r r
A B× ,  one places one's right thumb on   

r
A , and index finger on   

r
B ; the

palm then points in the direction of the cross-product. At some point, use of hands
becomes tedious and we resort to an algebraic approach,

  

r r
A B

x x x

A A A

B B B

x A B B A x A B B A x A B B A× = = −( ) + −( ) + −( )
ˆ ˆ ˆ

ˆ ˆ ˆ
1 2 3

1 2 3

1 2 3

1 2 3 2 3 2 3 1 3 1 3 1 2 1 2 ,

referred to an orthogonal right-handed coordinate system with basis vectors
ˆ , ˆ , ˆx x x1 2 3 , for example x x x x y z1 2 3, , , ,( ) = ( ), corresponding to directions forward,

left and up.
It is when a cross-product is involved that the more outrageous of the

Vector Identities arise. However, the secrets of these Vector Identities can be
unlocked with the anti-symmetric 3-tensor, ε ijk . If (ijk) is a cyclic permutation of
(123), then ε ijk = 1. Thus ε ε ε123 312 231 1= = = . Moreover if (ijk) differs from (123)
by an even number of transpositions, then ε ijk = 1. A transposition is an

interchange of indices, such as ijk jik ikj kji( ) → ( ) ( ) ( ), , . If (ijk) differs from (123)
by an odd number of transpositions, then ε ijk = −1. If any of the indices (ijk) are
identical, then ε ijk = 0 .  Using these rules, one may check, component-wise, that
the cross-product of two vectors may be expressed as

1 0 0



  

r r
A B A B A B

i

j k

ijk j k ijk j k×( ) = =
= =

∑ ∑
1

3

1

3

ε ε" ",

where we adopt the abbreviation that repeated indices are summed over the values
1,2,3. This summation convention saves one a lot of time and paper. One can also
check, component-wise, the  secret to all curl identities

ε ε δ δ δ δijk ilm jl km jm kl= − , 

where δ kl  is the Kronecker delta, δ kl = 1 if k=l, and δ kl = 0 otherwise. One can go
on to demonstrate infinitely many identities; Exercise A.5 includes three of the more
popular ones.

Exercise A.5 Confirm that

  

r r r r r r r r r
A B C C A B B C A• ×( ) = • ×( ) = • ×( ) ,

  

r r r r r r r r r
A B C A C B A B C× ×( ) = •( ) − •( ) ,

  

r r r r r r r r r r r r
A B C D A B C D A D B C×( ) • ×( ) = •( ) •( ) − •( ) •( ) .

We can also use ε ijk  to derive some relations for gradient, divergence and curl. First
though, let us define these items.

A.4 Vector Calculus

Given a real-valued (scalar) function   f r
r( ), one may sketch the surfaces of

constant f (equipotentials); the gradient of f, denoted   
r r∇ ( )f r , is a vector normal to

the surface passing through   
r
r , given in Cartesian coordinates by

  

r ) )∇ = + +f x
f

x
y

f

y
z

f

z
ˆ

∂
∂

∂
∂

∂
∂

.

Recall that the partial derivative, ∂ ∂f x/ , is just an ordinary derivative with respect
to x, when the other independent variables, y and z are looked on as constants. This
ordinary derivative is just the instantaneous slope of the curve f vs x.

As for divergence, first consider a vector field   
r r
A r( ) , i.e., an assignment of

a vector   
r
A  to each point in space   

r
r . For example, we may consider particles of hail

in a thunderstorm---specifically, the flux of hail particles, defined as the local
number density of hail multiplied by its local velocity. (Units would then be number
of hail particles per square meter per second, or m-2s-1.) The divergence   

r r
∇ • A  at a

point   
r
r  is just the rate at which particles are leaving a small volume enclosing   

r
r ,

divided by the volume. Symbolically, we say

  

r r r r
∇ • = •

→ ∫A
V

A dS
V

V

lim
0

1

∂

.
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The limit symbol means the value when V becomes small. The surface of the
volume V is denoted by ∂V  and this surface has been divided up into small squares
of area dS . The vector   dS

r
 has magnitude dS and points outward, normal to the

surface. The dot product   
r r
A dS•  simply counts particles flowing through the

square. The integral sign indicates a sum over each little square. In words, the rate
of accumulation in a volume V is the rate at which flux enters.

Given this definition it isn't surprising that for a finite volume V, one has an
identity,

  

r r r r r
∇ • = •∫ ∫A d r A dS

V V

3

∂

,

also referred to as the divergence theorem, or sometimes Green's theorem (although
George Green developed several, as we will see). On the left-side, the volume V
has been divided into little cubes each of volume   d r3r ; one can picture a cube of
dimensions dx dy dz× × , in which case   d r dx dy dz3r = .  In Cartesian coordinates,
divergence takes the form

  

r r
∇ • = + +A

A

x

A

y

A

z
x y z∂

∂
∂
∂

∂
∂

.

Finally there is the matter of curl. The curl of a vector field   
r
A  is another

vector, denoted   
r r
∇ × A , and is most easily defined component-wise. To compute

the component of curl along a direction   
)
n , at a point   

r
r , let us draw a small closed

contour (a circle, if you like) around the point   
r
r , with normal   

)
n . The curl is

defined as

  

r r r v
)∇ ×( ) = •

→ ∫A
S

A dl
n S

S

lim
0

1

∂

.

where the area enclosed by the path (the area of the circle) is S, and the contour (the
perimeter of S) is denoted ∂S . This contour has been divided into small lengths dl
and the vector   dl

r
is oriented tangent to the contour, with magnitude dl. The integral

sign indicates a sum over each length element. Such an integral is referred to as a
circulation integral, since it provides the local magnitude and direction of the
circulating component of the flux. For a finite surface S, one has Stoke's Theorem,

  

r r r r v
∇ ×( ) • = •∫ ∫A dS A dl

S S∂

.

In Cartesian coordinates, the curl of a vector may be expressed as

  

r r
∇ ×( ) =A A

i
ijk j kε ∂ ,

where we adopt the abbreviation ∂ ∂ ∂j jx= /  .

Exercise A.6 Confirm that   
r r
∇ × =r 0 and 

  

r r r
∇ • ×( ) =r a 0 , where   

r
a  is a constant vector.
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Exercise A.7 Verify that

  

r r r r r r r
∇ × ∇ ×( ) = ∇ ∇ •( ) − ∇A A A2 ,           

  

r r r r r r r r r
∇ • ×( ) = • ∇ ×( ) − • ∇ ×( )A B B A A B ,

  

r r r
A B A B A B

a b a b b b a× ∇ ×( ){ } = −∂ ∂ ,   
  

r r r r
∇ ×( ) • ∇ ×( ) = ( )( ) − ( )( )A B A B A Ba b a b a b b a∂ ∂ ∂ ∂ .

n̂ ∂S

S

FIGURE A.1  Geometry for application of Green's theorem to a surface S and boundary 
∂S .

In analyzing waveguide, we will make use of Green's second identity, also
called  Green’s theorem,

  
ψ ψ ψ ψ ψ ∂ψ

∂∂
1

2
2 1 2

2
1

2∇ + ∇ • ∇( ) =⊥ ⊥ ⊥ ⊥∫ ∫
r r

S S

d r
n

dl ,

whereψ1 and ψ 2  are functions of   
r
r⊥  , the area integral is over the waveguide cross-

section S, and the line integral is around the waveguide circumference ∂S , as
indicated in Fig. A.1. ∂ψ ∂2 / n is the derivative of ψ 2  along the outward oriented
normal.

A.5 Cylindrical Coordinates

Cylindrical coordinates are frequently used in accelerator problems, as very
often the material geometry (the beamline) possesses cylindrical symmetry about
some axis, usually denoted ẑ  or ŝ . Notations we will use for position are

  

r r r
R r zz r ss x y z rr zz= + = + = ( ) = +⊥ ⊥ˆ ˆ , , ˆ ˆ,

where the radial coordinate r, and the angle φ are determined from x r= cosφ ,

y r= sinφ ,  so that r x y2 2 2= + . Unit vectors are

ˆ ˆ ˆr
r

xx yy= +( )1
, ˆ ˆ ˆφ = − +( )1

r
yx xy .

The gradient operator is
1 0 3



  

r
∇ = + + = + +ˆ ˆ ˆ ˆ ˆ ˆx

x
y

y
z

z
r

r r
z

z

∂
∂

∂
∂

∂
∂

∂
∂

φ ∂
∂φ

∂
∂

1
.

and a few other operators are handy to have,

  

r r
∇ • = + +A

r r
rA

r

A A

zr
z1 1∂

∂
∂
∂φ

∂
∂

φ ,

  

r r
∇ × = −







+ −



 + −







A r
r

A A

z

A

z

A

r
z

r r
rA

r

Az r z rˆ ˆ ˆ
1 1 1∂

∂φ
∂
∂

φ ∂
∂

∂
∂

∂
∂

∂
∂φ

φ
φ ,

∇ = + +2
2

2

2

2

2

1 1
f

r r
r

f

r r

f f

z

∂
∂

∂
∂

∂
∂φ

∂
∂

.

The volume element in cylindrical coordinates is   d r dV r dr d dz3r = = φ .

Exercise A.8 Check that, for any constant coefficients fm ,

f f r em
m

m jm=
=−∞

+∞
∑ φ  

is a solution to ∇ =2 0f . In the x-y plane, sketch the curves of constant r re jcosφ φ= ℜ ,

and r r e j2 2 22cos φ φ= ℜ .

A.6 Integrals and Special Functions

The bottom line on integrals is Gradshteyn and Ryzhik.33 At the top of the
list is

dx e x−
∞

∫ =
2

0

1
2

1 2π / .

This can be checked as follows:

dx e dx e dx e dx dye

d dr r e due

x x y y x

r u

−
∞

−

−∞

∞
−

−∞

∞
− −

∞
−

∞
−

∫ ∫ ∫ ∫∫

∫ ∫ ∫







=













=

= = =

2 2 2 2 2

2

0

2

0

2

0 0

1
4

1
4

1
4 4 4

φ π ππ

.

In the first line we used the fact that the integrand is even, so that the integral is just
one-half of that over the entire real axis. In the second line we identified an integral
over the entire x-y plane. In the third line we changed to polar coordinates in the x-y
plane, and changed variables again from r to u=r2. The remaining integral was just
an exponential integral. We can also dress this integral up a bit with a change of
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variables,

dx e x x− +

−∞

∞

∫ =












µ ν π
µ

ν
µ

2 2

1 2 2/

exp .

Next, there are a few special functions that are essential; all can be found in
Numerical Recipes.25 The definition of the regular Bessel function of the first kind,
of order n, is

J d e en
jn jξ

π
θ

π
θ ξ θ( ) = ∫ −1

2
0

2
sin ,

and this may be expressed also as a Taylor series expansion,

J
k n kn

n

k

k

ξ ξ ξ( ) = 





−( )
+( )=

∞

∑2 0

1
4

2

! !
.

One can show that

ξ
ξ

ξ
ξ

ξ2
2

2
2 2 0

d

d

d

d
n Jn+ + −( )





= ,

that is to say, the Bessel function can be employed to construct solutions to the
Helmholtz equation in problems with circular symmetry,

0
1 2

2
2 2 2= − +





( ) = ∇ +( ) ( )[ ]⊥e
r r

r
r

m

r
J r J r ejm

c n c c n c
jmφ φ∂

∂
∂
∂

β β β β .

This function and a few others are plotted in Fig. A.2.

Exercise A.9 Confirm that f J r e em c
j t z jmz= ( ) −( )β ω β φ  is a solution to the wave

equation,

∇ −








 =2

2

2

2
1

0
c t

f
∂
∂

,

provided ω β β2 2 2 2= +( )c c z .

A number of Bessel function integrals can be found in the references; one is
particularly helpful,

d J J J J Jn n n n nξξ αξ βξ δ α α βα β
0

1

1
21

2
0∫ ( ) ( ) = ( ) ( ) = ( ) =+, , if .

In solving the wave equation in an enclosed cylindrical geometry, it is
helpful to have jmn the n-th zero of Jm, and ′jmn be the n-th zero of ′Jm . A few of
these are listed in Table A.2, and a more exhaustive listing may be found in
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Abramowitz and Stegun.22 It is worth remembering j01 2 4≈ .  and ′ ≈j11 1 8. , the
others one can look up.

-2

-1

0

1

2

0 1 2 3 4 5

J0

J1

Y0

Y1

FIGURE A.2. A few Bessel Functions for illustration.

TABLE A.2.  A few zeroes of Bessel functions.

jon J jon1( ) j n1 ′( )J j n1 1 ′j n0 J j n0 0′( )
2.40483 0.51915 3.83171 -0.40276 3.83171 -0.40276
5.52008 -0.34026 7.01559 0.30012 7.01559 0.30012
8.65378 0.27145 j n2 ′ ( )J j n2 2 ′j n1 J j n1 1′( )
11.79153 -0.23246 5.13562 -0.33967 1.84118 0.58187
14.93092 +0.20655 8.41724 0.27138 5.33144 -0.34613

A.7 Delta Function

One most helpful tool in the analysis of waveforms is the delta function,

δ δ
σ σx x( ) = ( )

→
lim

0
,

where

δ
πσ σσ x

x( ) = −





1
2 2

2

2exp .
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Given the integrals established in the previous section, one can see that

dx xδσ ( ) =
−∞

+∞

∫ 1.

In fact, one can see that for a continuous function f varying slowly on the scale σ,

dx x a f x dx x a f a f a
a

a

a

a

δ δσ
ε

ε

σ
ε

ε

−( ) ( ) ≈ −( ) ( ) ≈ ( )
−

+

−

+

∫ ∫ ,

provided ε is larger than a few σ. Based on these relations one can determine the 

rules by which δ-functions are employed,

dx x c f x

c a

f c a c b

b ca

b

δ −( ) ( ) =
<

( ) < <
<






∫

0

0

.

A related item is the step-function,

H x

x

x

x

( ) =
<
=
<







0 0

0

1 0

1
2 .

One relation is particularly handy, note that

δ
πσ σ π

ω ω σ ωσ x
t

d j t( ) = −





= − +( )
−∞

∞

∫1
2 2

1
2

2

2
1
2

2 2exp exp ,

so that in the sense of our limit,

δ
π

ω ωt d e j t( ) =
−∞

∞

∫1
2

.

Exercise A.10  The current waveform for a single electron bunch in a linac often takes
the approximate form

I t
Q t

t t
( ) = −











2 2

2

2πσ σ
exp ,

for some bunch length σ σz tc= . Confirm that Q is the charge in the bunch. Suppose

that such a current were passed through a resistor, R. Compute the energy dissipated,

U dt I R=
−∞

+∞
∫ 2

and the loss-factor  k U Q= / 2.
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A.8 Fourier Analysis

The Fourier transformation is the map of an integrable function f t( ) to its 

Fourier transform f̃ ω( ),

f t f dt e f tj t( ) → ( ) = ( )−

−∞

+∞

∫˜ ω
π

ω1
2

.

Since notations differ, it pays to check the normalization when checking another's
results. In reading physics papers one often makes the substitution j i→ − .  Notice
that one has an inverse Fourier transform

1
2

1
2

1
2

1
2

π
ω ω

π
ω

π

π
ω δ

ω ω ω

ω ω

d e f d e dt e f t

dt f t d e e dt f t t t f t

j t j t j t

j t j t

˜( ) = ′ ′( )

= ′ ′( ) = ′ ′( ) − ′( ) = ( )

−∞

+∞

−∞

+∞
− ′

−∞

+∞

−∞

+∞

−∞

+∞
− ′

−∞

+∞

∫ ∫ ∫

∫∫ ∫
provided the order of integrations may be interchanged, which is to say, if  f is
sufficiently well-behaved.

Exercise A.11 Show that the Fourier transform of the current waveform for the
Gaussian bunch of Exercise A.10 is

˜ expI
Q

tω
π

ω σ( ) = −( )2
1
2

2 2 .

Confirm that the energy loss in Exercise A.10 may be expressed as

U d I R=
−∞

+∞
∫ ω ˜ 2

.

Exercise A.12 (Convolution Theorem) Show that if ˜ ˜ ˜f g hω ω ω( ) = ( ) ( ) , then

f t dt g t h t t( ) = ′ ′( ) − ′( )
−∞

+∞
∫ .

For  a well-behaved function defined on a finite interval, it is often
convenient to use a Fourier series . The Fourier series for F φ( ) on the interval

(0,2π) takes the form

F e Fjn
n

n

φ φ( ) =
=−∞

+∞

∑ ,

where the coefficients are obtained according to
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1
2

1
2

1
2

1
2

2

0

2

0

2

0

2

π
φ φ

π
φ

π
φ

π
πδ

φ
π

φ
π

φ

φ
π

φ

d e F d e e F

F d e e F F

jn jn jm
m

m

m
m

jn jm
m

m
m n n

− −

=−∞

+∞

=−∞

+∞
−

=−∞

+∞

∫ ∫ ∑

∑ ∫ ∑

( ) =

= = =, .

Exercise A.13 Consider the Laplace equation in two dimensions,

∇ = + =⊥
2

2

2

2
1 1

0f
r r

r
f
r r

f∂
∂

∂
∂

∂
∂φ

.

Argue that at any fixed radial coordinate r, f(r,φ) should be a periodic function of φ. Go on
to decompose f according to

f r e f rjn
n

n
,φ φ( ) = ( )

=−∞

+∞
∑ .

Determine the equation satisfied by each fn , and in this way show that the solution given

in Exercise A.8 is the most general solution of the problem.

A.9 Numerical Integration

When confronted with a system of ordinary differential equations, it is often
easiest to solve the problem numerically. For example, in the simplest case, one
might wish to solve

d X

dt
F X

2

2 = ( ).

We reduce the problem to a first-order system

dX

dt
V

dV

dt
F X= = ( ), ,

and we employ time-centering to insure a stable numerical integration,

X X

t
Vn n

n
+

+
− =1

1 2∆ / ,
V V

t
F Xn n

n
+ −−

= ( )1 2 1 2/ /

∆ .

This method can be applied to more complicated-looking systems, for example, a
travelling-wave accelerator, consisting of a chain of coupled oscillators.

Exercise A.14 Consider the leap-frog algorithm applied to the simple-harmonic

oscillator problem, F X X( ) = −Ω2 . Show that the angular frequency of oscillation of the

numerical system, Ωn , may be expressed in terms of the time-step ∆t  as

Ω
Ω

Ω ∆

Ω ∆
n

t

t
=

( )
( )
−sin 1 1

2
1
2

,
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and confirm that for 60 steps per period the frequency is correct to within 0.5 parts per
thousand.34

A.10 Kinematics

Some features of particle kinematics are assumed in the text, and in any case
are helpful in appreciating the demands on accelerators for high-energy physics. We
review them here. The Lorentz factor for a particle with velocity   

r
V  is

  
γ = −







−

1
2

2

1 2r
V

c

/

,

and if the particle's mass is m, then its momentum is   
r r
p m V= γ , and its total energy

is   ε γ= = +( )mc p c m c2 2 2 2 4 1 2r /
. This is different from its kinetic energy which is

mc2 1γ −( ) .
There is one particular kinematic event that has a distinguished place in

accelerator physics work, and that is the collision of two-bodies. The algebra
behind the great machines of our time, and their gradual evolution over the decades,
is the kinematics of the two-body collision. The problem consists of two particles
flying together and other particles flying out. Without knowing the details of the
interaction, one can make strong statements about the kinematic features of such an
event, using simply energy and momentum conservation. To simplify this problem,
let us perform a change of reference frame, moving into the "center of momentum
frame."

We consider two particles, indexed by i=1,2, of mass mi, momentum   
r
pi

and energy εi, so that

  ε1 1
2 4

1
2 2= +m c p c

r
,   ε2 2

2 4
2
2 2= +m c p c

r
.

The  total energy in the lab frame is ε ε εtot = +1 2 , and the total momentum in the lab

frame is   
r r r
p p ptot = +1 2 , and if this is non-zero we boost to the center of momentum

frame, moving at velocity   
r r
V p ctot tot= 2 / ε . Calling this direction z, the Lorentz-

transformed momenta take the form

′ = −



p p

V

cz z1 1 2 1γ ε , ′ = −



p p

V

cz z2 2 2 2γ ε ,

with transverse momenta unchanged. The Lorentz factor is

  

γ ε
ε

=
−

=
−

1

1 2 2 2 2 2
r r
V c c p

tot

tot tot/
.

It is straightforward to check that the sum of the two momenta is zero in this
boosted frame. The particle energies in this frame are
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′ = −( )ε γ ε1 1 1Vp z , ′ = −( )ε γ ε2 2 2Vp z ,

and the total energy in this frame is

  

ε ε ε γ ε ε

ε ε θ

com tot tot z tot tot zVp c p

m c m c c p p

= ′ + ′ = −( ) = −

= + + −( )
− −1 2

2 2 2

1
2 4

2
2 4

1 2
2

1 22
r r

cos .

with θ  the angle between the particle momenta in the lab frame,

  cos /θ = •r r r r
p p p p1 2 1 2 .

The two common situations where these scalings are employed are the
collider and the fixed-target experiment. In a collider, the lab frame and the center-
of-momentum frame are roughly the same, and the center-of-momentum frame
energy is twice the energy of one beam particle,

ε εcom = 2 1 . (collider)

Thus if one wishes to produce a 91.2-GeV particle, one needs two 45.6-GeV
particles. At the other extreme, in a fixed-target experiment, one of the participants
in the collision is initially at rest. Suppose this is particle #2, then

ε εcom m c m c m c≈ + +1
2 4

2
2 4

1 2
22 .

If ε1>>mic2, we have

ε εcom m c≈ 2 1 2
2 , (fixed target)

and the energy in the center of mass frame is scaling as the square root of the
incident particle energy.

The questions one might ask at this point include: (1) What particles can be
produced and collided? (2) What center of momentum energy can be reached? (3)
What interaction rate can be achieved? Each of these is a question posed to
accelerator physicists. So for example one could ask: what beam energy is required
to make e e− − − −→ µ µ  energetically possible? This reaction would be new and

therefore interesting. Evidently we would need ε µcom m c≥ = ×2 2 1062 MeV . This
implies an incident beam energy of

ε ε
1

2

2

2

2

2 106

2 0 511
44= =

×( )
×

=com

em c

MeV

MeV
GeV

.
.

This might be interesting insofar as this energy is achievable with the SLAC beam.
Inspired, or at least not disappointed, by this brush with muons, one may

wish to inspect the many other particles available. One can get a glimpse of these
from the Review of Particle Physics, published each year in Physical Review D35. I
list a few in Table A.3 that you will certainly encounter, and a few in Table A.4 that
one may hear of in connection with high-energy experiments.

The Higgs (H) has not yet been discovered---the Superconducting
Supercollider (SSC) was intended to be the instrument for that. For the future,
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folks look toward the Large Hadron Collider (LHC) or the Next Linear Collider
(NLC) to be the instrument for discovering the Higgs. The Z was discovered at
CERN about 15 years ago, together with the W. The Z is the focus of the SLD
studies at the SLC, and determines the energy requirement for the linac. Note that
two-body kinematics for e e Z+ − → → stuff require the energy of one beam particle
to satisfy ε > =mZ / .2 45 6 GeV . SLAC's two-mile accelerator can reach this
energy thanks to SLED pulse compression and the 5045 klystron.

Table A.3 Particles with personality.

Name Mass (MeV) Type Lifetime Decay Mode

γ 0 gauge ∞
e± 0.511 lepton ∞
µ± 106  lepton 2.2 µs µ ν νµ

− −→ e e

π 0 135  meson 0.1 fs π γγ0 →
π ± 140 meson 26 ns π µ νµ

− −→
p 938 baryon ∞ ?

 n 940 baryon 887 s n pe e→ −ν

Table A.4 A selection of interesting, but shy particles. l denotes a lepton (i.e. an e or a µ 
or a τ).

Name Mass (MeV) Type Lifetime Decay Mode

K ± 494 meson 12 ns K + +→ µ νµ

KS
0 498 meson 89 ps KS

0 → + −π π
KL

0 498 meson 52 ns K eL e
0 → + −π ν

τ ± 1.78 x 103 lepton 0.3 ps τ ν ντ
− −→ l l

D0 1.87 x 103 meson 0.4 ps (mesons etc.)

B0 5.28 x 103 meson 1.6 ps B l etcl
0 → −ν

W ± 80.3 x 103 gauge FW 2.1 GeV (hadrons)

Z 0 91.2 x 103 gauge FW 2.5 GeV (hadrons)

H 0        ?...
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Appendix B: Low-Frequency Electronics

A number of excellent texts on electronics can be found in the bookstores.
At the most elementary level, the short guide by Warring is quite readable. 36 The
text by Schwarz and Oldham37 provides an excellent introduction to electrical
engineering, with numerous solved problems. The text by Horowitz and Hill38 is
widely acclaimed. An excellent general reference on construction of apparatus is the
text by Moore, Davis and Coplan,39  and the text by Leo is well worth reading.40 In
the meantime, however, it is good to have a concise review of "ordinary
electronics" before ploughing into "microwave electronics."

B.1 Basic Electronics

 The basic circuit elements are illustrated in Fig. B.1. An ideal voltage
generator maintains its voltage at spec (V in the figure) regardless of the load. The
current through the voltage source is determined by the external circuit to which it is
attached. An ideal current generator maintains its current at spec (I in the figure)
regardless of the external circuit. The voltage drop across the the current source is
determined by the external circuit.

A capacitor is a circuit element which may accumulate charge Q, in which
case the voltage drop across the capacitor is Q/C, where C is the capacitance,
measured in units of farads. Energy is stored in the electric fields within the volume
of the capacitor in the course of charging it up. An inductor is an element which
develops a voltage drop across its terminals when a current I, varying with time t,
passes through it. The voltage drop is LdI/dt, with L the inductance, measured in
henrys. Energy is stored in the magnetic field within the volume of the inductor, in
the course of establishing the current flow through it. A resistor is an element that
develops a voltage drop across its terminals when current flows through it. The
voltage drop is IR, with R the resistance measured in ohms. A resistor does not
store energy; it is, as we see in Chapter 1, simply a collection of collisional
conduction band electrons waiting to be pushed around, so they can go and beat up
on the ions. A switch is an externally controllable element with two states. When
the switch is closed, current may flow, when it is open, current may not. The
voltage drop is zero across a closed switch, i.e., it is a short circuit.

Kirchoff's laws can be employed to figure out how circuits composed of the
elements above work; they are (1) the sum of all currents entering a node is zero,
and (2) the sum of all voltage drops around a close circuit is zero. The current law
derives from the definition of current as time rate of change of charge, together with
conservation of charge. Implicit in the voltage law is an assumption about
frequency and the elements employed. In this case, as far as terminal voltages are
concerned, we are dealing with an electrostatics problem, and voltage may be
identified uniquely as work per unit charge. In this case, the voltage law
corresponds to conservation of energy.
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WW

voltage source

current source

capacitor

inductor

resistor

switch

˜
II

FIGURE B.1. Basic electronic circuit elements include a perfectly regulated voltage
generator with no internal impedance, a perfectly regulated ideal current source with no
internal admittance, a capacitor (with no inductance or resistance), an inductor (with no
capacitance or resistance),  a resistor (with no capacitance or inductance) and a switch.

Very often circuit analysis is aided by the notion of equivalent circuit,
replacing a complex looking circuit component with a simpler element of the same
impedance, as illustrated in Fig B.2. The wavy line inside the symbol for the
voltage generator simply indicates that we will be considering an alternating current
(AC) signal. That is to say we will consider a voltage varying in

IW
W

˜ CR LV ˜V Z⇒

circuit equivalent circuit

I

FIGURE B.2. Circuit analysis is aided by the notion of equivalent circuit.

time according to a sinusoidal pattern,

V t Ve Ve V e V tj t j t j t( ) = ℜ( ) = +( ) = +( )∗ −˜ ˜ ˜ ˜ cosω ω ω ω φ1
2

,

where ℜ denotes the real part, and Ṽ  is the voltage phasor, a complex quantity,

˜ ˜ ˜ cos sinV V e V jj= = +( )φ φ φ .
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Notice that we are always free, in a circuit such as in Fig. B.2, to add a crow's foot
to it, to indicate a choice of "ground." This does not mean in reality that this point
of the circuit will be at the same potential as the water pipes. Merely that for
purposes of circuit analysis, we have chosen a reference point in the circuit, and
chosen to analyze voltages with respect to it. For power circuits, and for analysis of
pulsed noise ("pick-up" or "ground-loop"), one might be more circumspect about
the concept of "ground."

IW
W

˜V
I1 I2 I3I

FIGURE B.3. Notation for analysis of the RLC circuit.

B.2 Circuit Analysis

Let us analyze the circuit of Fig. B.2 as it will appear rather frequently,
oftentimes disguised under a mass of symbols, that would otherwise mask its
simplicity. From Kirchoff's voltage law, the voltage drop across each element is the
same, thus, with notation illustrated in Fig B.3,

V L
dI

dt

Q

C
RI= = =3 2

1.

The total current drawn through the generator is, by Kirchoff's current law, just the
sum of the currents drawn through each element,

˜ ˜ ˜ ˜
˜

˜
˜

I I I I
V

R
j CV

V

j L
= + + = + +1 2 3 ω

ω
,

and we switch to phasor notation for simplicity. With this result we may summarize
our analysis of the circuit, insofar as the generator is concerned, by a single
impedance, "seen" looking into the reference plane marked by the dashed line in
Fig. B.3:

Z
V

I
=

˜

˜ ,

where
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1 1 1
Z R

j C
Lω

ω
ω( )

= + −



 .

This result will often appear "dressed up" in the form,

Z
R

j Q
ω

ω ω ω ω
( ) =

+ −( )1 0 0/ /
,

where we have made the abbreviations, ω0 1= / LC , Q R C L= / .
In general we may characterize any two-terminal passive circuit by its

impedance. That's not to say that impedance determines everything about the circuit
element, merely how it behaves in public. (For example, it doesn't convey the peak
electric field within the element). We may wish also to distinguish between the real
part of the impedance, ℜZ , the resistance, and the imaginary part, ℑZ , the
reactance. These distinctions become important when we consider energy flow.
From the definition of voltage and current we can see that the rate at which the
voltage generator is doing work is

P t V t I t( ) = ( ) ( ),

or, more explicitly,

P t Ve V e Ie I e

VIe V I e V I VI

VIe VI

j t j t j t j t

j t j t

j t

( ) = +( ) +( )
= + + +( )
= ℜ +( )

∗ − ∗ −

∗ ∗ − ∗ ∗

∗

1
2

1
2

1
4
1
2

2 2

2

˜ ˜ ˜ ˜

˜˜ ˜ ˜ ˜ ˜ ˜˜

˜˜ ˜˜ .

ω ω ω ω

ω ω

ω

Averaging over one cycle we find that average rate of work done by the generator is
zero --- unless the load (Z) has a resistive component,

P VI Z I Y V= ℜ( ) = ℜ( ) = ℜ( )∗1
2

1
2

1
2

2 2˜˜ ˜ ˜ .

In the last line we introduced the admittance,

Y
Z

= 1
,

and we will refer to ℜY  as the conductance, and ℑY  as the susceptance.

B.3 Simple Filters

With just these basic elements quite a variety of items can be built. Let us
consider the three in Fig B.4, for an appreciation of them will come in quite handy.
These examples of filters are easily understood qualitatively by noting that (1) a
capacitor at low frequency is an open circuit (no current flows) and at high
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frequency is a short circuit (no voltage drop), (2) an inductor at low frequency is a
short circuit, and at high frequency is an open circuit. In fact these considerations
make for simple rules one can use to judge the behavior of circuits. To see the high-
frequency behavior, short the capacitors, and erase the inductors.

Exercise B.1 Referring to Fig. B.4, compute the transfer function for each filter, i.e.,
compute the voltage on the right terminal, assuming that terminal is an open circuit, and
assuming the voltage on the left terminal is specified,

Exercise B.2 Solve also for the response of the circuits in the time-domain, by
considering the response to a delta-function applied voltage. Why is the low-pass circuit
also called an integrator, and under what conditions is the output voltage faithful to the
integral of the input voltage? Under what conditions on the input voltage is the high-pass
filter a differentiator?

Exercise B.3 In steady-state, driven at angular frequency ω, what is the energy stored
in the LC-circuit of the bandpass filter?

˜̃ lowpass filter

˜̃ highpass filter

˜ bandpass filter

˜̃

II

WW

I I

WW

I
W

W
I

FIGURE B.4. Examples of handy items one can construct from the basic passive circuit
elements.

Exercise B.4 For each of these filters, derive an exact integral expression for the
voltage output. Breaking the time-axis into discrete points, and approximating the integral
between points using the trapezoidal rule, devise a simple numerical (digital) algorithm for
applying each filter to an input voltage specified at discrete time steps. In your algorithm,
do not assume the time-step is small compared to characteristic circuit time-scales.
Implement these filters as numerical subroutines in the language or with the software of
your choice, and test each against an exact solution.
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Exercise B.5 Making use of a standard fast-Fourier-transform package, devise an
algorithm for numerical implementation of these filters, assuming an input voltage
specified at discrete time-steps numbering 2N.

Two additional circuit elements will come in handy, and they are illustrated
in Fig. B.5. One encounters the diode in modulator circuits, and in a special variety
of diode for microwave detection, the crystal detector.41  Transformers one finds in
the modulator circuit, and more importantly, we will find ourselves calling on the
notion of transformer when we adopt a circuit analogy for certain microwave
problems.

diode

transformer

FIGURE B.5. Two very common, but not-so-elementary circuit elements.

B.4 Diodes

A diode consists of p and n type semiconductors sandwiched together as
one crystal, on a mount. A p-type semi-conductor has positively charged holes as
the majority carriers; n-type has negatively charged electrons as the majority carriers
of current. When a positive voltage is applied to the p-side of the junction (forward
bias), both p and n carriers flow through the junction in opposite directions. For the
opposite, reverse bias, little current flows. The I-V characteristic for a diode takes
the form, I I es

eV k TB= −( )/ 1 , and the sign convention for the diode symbol is given
in Fig. B.6. The saturation current Is ≈ 10-8-10-14 A is a property of the junction and
T is the temperature, with kB, Boltzmann's constant. To gauge the behavior of
circuits, it is often adequate to replace diodes with ideal rectifiers, for which
I>0→V=0, and V<0→I=0. More precisely, >0→V ≈ 0.7, V<0.7→I ≈ 0 for silicon.

+ -

I

FIGURE B.6. Sign convention for a diode.

B.5 Transformers
1 1 8



An ideal transformer, as depicted in Fig. B.7, is characterized by the turns
ratio N1/N2. The ratio of voltages is just

V

V

N

N
2

1

2

1

= ,

and the ratio of currents is just

I

I

N

N
2

1

1

2

= − .

If the voltage on the load-side (the voltage on the secondary winding) is high, this
is a step-up transformer. Otherwise it is a step-down transformer.

N1:N2

-

-

+
+

V 1 V 2

I 1 I2

FIGURE B.7.  An ideal transformer. The solid dot marks the positive terminal side. The
winding on the side of the power supply is the "primary," and the winding on the load-side
is the "secondary."  In this drawing there is no indication of which side is the primary or the
secondary.

Figure B.8 provides a glimmer of how a transformer can be devised. The
application of voltage across the wire causes currents to flow and sets up a magnetic
field within the magnet. The field is concentrated in the magnet due to the high µ.
Thus one can control the magnetic field with the external circuit. However, this
does not imply that one has direct control over the magnetic induction, for the
magnet consists of many domains of magnetic dipoles, and these two respond to
the applied magnetic field. The actual local magnetic induction is then the outcome
of a statistical process by which atomic dipoles align themselves. By Faraday's
law, the voltage drop across terminal No. 1 must be proportional to the time rate of
change of magnetic flux enclosed by the circuit, and similarly for terminal No. 2,

V N
d

dt1 1= Φ
, V N

d

dt2 2= Φ
.

Evidently then the voltages are transformed according to the turns ratio. As to the
current transformation, the magnitude can be understood from energy conservation
(neglecting losses in the magent), and the sign from Lenz's law. In connection with
transformer circuits there is a notion of transferring a load to the primary circuit.
The principle is illustrated in Fig. B.9. The impedance "seen" by the generator is
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′ =






Z
N

N
Z1

2

2

.

Thus a step-up transformer, lowers the impedance referred to the primary circuit.

N1 turns N2 turns

I1
I2

FIGURE B.8. A transformer might consist of two coils of wire, magnetically coupled
through a high permeability material, such as iron.

N1:N2

V 1 V 2

I 1 I 2

Z

FIGURE B.9. To illustrate transformation of load impedance, when referred to the
primary circuit.
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Appendix C: Cavity Modes and Perturbations

The development of the theory of the accelerator cavity in Sec. 3 proceeded
from an isolated resonance of a closed, lossless cavity, and considered
perturbations:  a beam, Eq. (3.5), wall losses, Eq. (3.6), a waveguide, Eq. (3.12),
and iris-coupling to another cavity, Eq. (3.26). Since these results are central to the
development of linac theory it is useful to set down a more formal treatment of
these perturbations.

We consider fields and sources of the form

  

r r r
E r t E r e j t, ˜ ,( ) = ℜ ( )( )ω ω , 

  

r r r
H r t H r e j t, ˜ ,( ) = ℜ ( )( )ω ω ,

  

r r r
J r t J r e j t, ˜ ,( ) = ℜ ( )( )ω ω ,   ρ ρ ω ωr r

r t r e j t, ˜ ,( ) = ℜ ( )( ) ,

and the charge density is subject to continuity,

  
˜ , ˜ ,ρ ω

ω
ωr r r

r
j

J r( ) = − ∇ • ( )1
.

Maxwell's equations reduce to the form

  
r
∇ × = −˜ ˜E j Hωµ ,   

r
∇ × = +˜ ˜ ˜H j E Jωε .

Gauss's law is satisfied identically, as one can check by taking the divergence. We
consider a closed cavity with perfectly conducting walls in the absence of source
terms. Boundary conditions are   

)
n E× =˜ 0 ,   

)
n H• =˜ 0 , and the fields each

separately satisfy the Helmholtz equation,

∇ +( ) = ∇ +( ) =2 2 2 20 0k E k H˜ , ˜ ,

where k2 2= ω µε . These amount to eigenvalue equations for the mode frequencies.

Let us enumerate the modes and label them with index λ . The eigenvalues we

denote kλ , and the mode frequencies, ωλ . We select basis functions Ẽλ  to be real,
and adopt the normalization

  
d rE E3∫ • =′ ′

r ˜ ˜
,λ λ λ λδ .

To demonstrate this for λ λ≠ ′ , one employs, in the case of non-degenerate
modes, the Helmholtz equation, and conducting boundary conditions:

  

k k d rE E d r E E E E

d r E E E E

dS E E E

λ λ λ λ λ λ λ λ

λ λ λ λ

λ λ λ

2 2 3 3 2 2

3

−( ) • = ∇ − ∇( )
= ∇ • × ∇ ×( ) − × ∇ ×( ){ }
= • × ∇ ×( ) − × ∇ ×

′ ′ ′ ′

′ ′

′ ′

∫ ∫
∫
∫

r r

rr r r

r r r

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ẼEλ( ){ }
= 0.

.
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In the case of degenerate modes, we assume Gram-Schmidt orthogonalization has
been employed. We define the basis functions for the magnetic field according to

  

r
∇ × =˜ ˜H k Eλ λ λ ,   

r
∇ × =˜ ˜E k Hλ λ λ ,

and one can show that these too satisfy orthonormality. For this idealized system, a
general vacuum oscillation may be expressed as

  

v r r
E r t E r e t, ˜ ˜( ) = ( ) ( )∑

λ
λ λ ,

  

r r r
H r t H r h t, ˜ ˜( ) = ( ) ( )∑

λ
λ λ ,

where the time evolution is given by Faraday's law in the time-domain,

Z
h

t
e0

∂
∂

ωλ
λ λ= − ,

and Ampere's law,

∂
∂

ωλ
λ λ

e

t
Z h= 0 ,

corresponding to an undamped simple harmonic oscillation in each mode,

∂
∂

ωλ λ

2

2
2 0

t
e+





= .

On average, equal amounts of energy are stored in the electric and magnetic fields.
Next let us consider a weakly perturbed cavity, one for which the original

basis functions are no longer exact solutions. Let the fields in steady-state at angular
frequency ω take the form   

˜ , , ˜ ,E r H r
r rω ω( ) ( ). We define mode amplitudes for the

perturbed problem according to

  
˜ ˜ , ˜e d r E r E rλ λω ω( ) = ( ) • ( )∫ 3r r r

,
  
˜ ˜ , ˜h d r H r H rλ λω ω( ) = ( ) • ( )∫ 3r r r

,

with integrals over the unperturbed cavity volume. To obtain equations for these
mode amplitudes, we take the dot product of Faraday's law with H̃λ , and we take

the dot product of Ampere's law with Ẽλ , and we integrate each over the volume.
Faraday's law takes the form

  

− = ∇ ×( ) • = ∇ • ×( ) + • ∇ ×{ }
= • × + • ( ) = + • ×

∫ ∫
∫ ∫ ∫

j h d r E H d r E H E H

dS E H d r E k E k e dS E H

µω λ λ λ λ

λ λ λ λ λ λ

˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ .

3 3

3

r r r r r

r r r v

and Ampere's law takes the form

  

j e d r H E d r J E

d r H E H E d r J E

k h dS E H d r J E

ωε λ λ λ

λ λ λ

λ λ λ λ

˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ .

= ∇ ×( ) • − •

= • ∇ ×( ) − ∇ • ×( ){ } − •

= + • ×( ) − •

∫ ∫
∫ ∫

∫ ∫

3 3

3 3

3

r r r

r r r r

r r r r
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Abbreviating,

  
˜ ˜ ˜J d r J Eλ λ= •∫ 3r ,

these are just

  
− = + • ×∫j h k e dS E Hµω λ λ λ λ

˜ ˜ ˜ ˜
r

, (C.1)

  
j e k h dS E H Jεω λ λ λ λ λ˜ ˜ ˜ ˜ ˜= + • × −∫

r
. (C.2)

The integrals are over the unperturbed cavity boundary. We consider next different
kinds of perturbations.

C.1 Perturbation Due to Lossy Walls

With the addition of finite conductivity to the cavity surface, the boundary
conditions on the physical fields (as opposed to our modes λ that were derived for

different boundary conditions) are amended to read ˜ ˆ ˜E Z n Hs= − × , where recall

that Z R js s= +( )1 sgnω , with Rs the surface resistance. This permits us to compute
the surface integrals. We have

  

S S

s

S

s

s

S

w w w

w

dS E H dS n Z n H H dS Z n H H n n H H

Z dS H H

∫ ∫ ∫

∫

• × = • − ×( ) × = • •( ) − •( ){ }
= •

r
˜ ˜ ˆ ˆ ˜ ˜ ˆ ˜ ˜ ˆ ˆ ˜ ˜

˜ ˜ ,

λ λ λ λ

λ

where use is made of conducting boundary conditions on the unperturbed modal
pattern, ˆ ˜n H• =λ 0; likewise,  ˆ ˜n E× =λ 0, so that

  S S Sw w w

dS E H dS n E H dS H n E∫ ∫ ∫• ×( ) = • ×( ) = • ×( ) =
r

˜ ˜ ˆ ˜ ˜ ˜ ˆ ˜
λ λ λ 0.

To simplify the wall loss term, we make the approximation

S Sw w

dS H H h dS H∫ ∫• ≈˜ ˜ ˜
λ λ λ

2 ,

thereby discarding any mode coupling through the lossy wall currents. This is
appropriate, for example, for an isolated resonance, one that does not overlap
another mode in the frequency domain. In terms of the wall quality factor, Qwλ,

1
2 2

2

2

2Q
dS H

dS H

dV Hw S

wall

volume
wλ

λ

λ

λ

δ δ= =∫
∫
∫

˜

˜

˜
. (C.3)

we may write
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  S
s

S ww w

dS E H Z dS H H
Q

j h∫ ∫• × = • = +( )
r

˜ ˜ ˜ ˜ sgnλ λ λ
µ ω ω1 .

Putting the results together, we have

j e k h Jεω λ λ λ λ˜ ˜ ˜= − , − = + +( )j h k e
Q

j h
w

µω µ ω ωλ λ λ λ
˜ ˜ sgn1 . (C.4)

We consider a weak perturbation, Qw>>1, neglecting terms which are second-order

in perturbations. In addition, we approximate ω ωλ≈  in the term of order 1/Qw.
The effect of this approximation must be slight, since Qw>>1. Note that wall-losses
have produced a shift in the real part of the cavity frequency, we subsume that into
a redefinition of ωλ ,

ω ωλ
λ

2
2

1 1+
→

/ Qw

. (C.5)

We arrive at

ω ωω ω ω
ε

λ
λ λ λ

2 2 1− −








= −j
Q

e j J
w

˜ ˜ ,

or, in the time-domain, 

d

dt Q

d

dt
e

d

dt
J

w

2

2
2 1+ +







=
ω ω

ε
λ

λ λ λ . (C.6)

C.2 Perturbation Due to Beam

Next we evalute the perturbation due to the current source in Eq. (3.6). For
a ballistic  "pencil" beam, the current density is

  

r r
J z r I t

z

Vb= ( ) −



⊥ˆδ 2 , (C.7)

where Ib is the beam current waveform. In the frequency domain,

  

˜ , ˆ ˆ ˜ /J r z r
d

e I t
z

V
z r I ej t

b b
j z Vr r rω δ ω

π
δ ωω ω( ) = ( ) −



 = ( ) ( )⊥

−∞

∞
−

⊥
−∫2 2

2
.

With this we may compute the source term J̃λ ,

  

˜ ˜ ˜ ˆ ˜ ˜

˜ , ˜ ,

/

/

J d r J E d r z r I e E

I dz E r z e I w

b
j z V

b

cavity

z
j z V

b

λ λ
ω

λ

λ
ω

δ ω

ω ω

= • = ( ) ( )( ) •

= ( ) =( ) = ( )
∫ ∫

∫
⊥

−

⊥
− ∗

3 3 2

0

r r r

r
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and we abbreviate,

  

˜ , /w dz E r z e
cavity

z
j z v= =( )∫ ⊥λ
ωr

0 .

This coefficient we may relate to the more conventional quantity, [R/Q], as follows.
The voltage drop (or gain) experienced by a particle travelling at speed V in the z-
direction, and passing z=0 at time t=t0 is

  

V t dz E r z t
z

Vc

cavity

z0 00( ) = = +



∫ ⊥

r
, , . (C.8)

We may express this in terms of the modal decomposition,

  
E r z t

z

V
E r z e t

z

Vz z

r r
⊥ ⊥= +



 = =( ) +



∑0 00 0, , ,λ

λ
λ ,

and in the frequency domain, as

  

˜ ˜ ,

˜ , ,/

V
d

e V t dz
d

e e t
z

V
E r z

e dz E r z e

c
j t

c
j t

cavity

z

cavity

z
j z V

ω ω
π

ω
π

ω

ω ω
λ λ

λ λ
ω

( ) = ( ) = +



 =( )

= ( ) =( )
−∞

∞
−

−∞

∞
−

⊥

⊥

∫ ∫∫

∫
2 2

0

0

0 0
0 0

r

r

and we assume for simplicity that only a single mode, λ, is excited. Evidently then
˜ ˜ ˜V e wc = λ , and our cavity equation, Eq. (C.5), may be re-expressed in terms of the

more meaningful normalizations, Ṽc , Ĩb , according to

  

ω ωω ω ω
ε

λ
λ

λ λ

2 2 2− −








= −j
Q

V
j

I w
w

c

we

b

wJ

˜ ˜

˜ ˜
{ 123

, 

or

ω ωω ω ωωλ
λ λ

2 2− −








= − 





j
Q

V j
r

Q
I

w
c b

˜ ˜ . (C.9)

Here we introduce

r

Q

w





=
2

0ε ωλ

.

The [r/Q] for the coupling of the beam to this mode λ  may be expressed in a
normalization-independent manner as
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r

Q

dz E r z e

d r E E

V

U
cavity

z
j z V

cavity

c





=

=( )

•
=

∫

∫

⊥λ
ω

λ λ λ λ

λ

ε ω ω

r

r r r

0

2

2

0
3

2, ˜
/

, (C.10)

where U is the stored energy in the cavity corresponding to cavity voltage Ṽc . To
summarize, in the time-domain,

d

dt Q

d

dt
V

r

Q

dI

dtw
c

b
2

2
2+ +







= 





ω ω ωλ
λ λ .  (C.11)

Let us note explicitly the relation

R

Q

r

Q







= 





2 ,

between circuit and accelerator notations. In these notes we have consistently
distinguished between these two using upper-case and lower-case notations. In
reading the literature it pays to check the definition being employed.

C.3 Cell-to-Cell Coupling

Since we are working to first order in perturbations, there is no impediment
to considering each perturbation in isolation, later to return and add them all
together to describe the complete system. Accordingly, let us return to the closed
lossless cavity, and consider perturbation by iris-coupling to another cavity. The
evolution of the mode amplitudes is governed by Faraday's law,

  
− = + ×( ) •∫µ ∂

∂
λ

λ λ λ0

h

t
k e n E H dA

iris

ˆ
r r

,

and Ampere's law,

  
ε ∂

∂
λ

λ λ λ λ λ λ0

e

t
k h J n E H dA k h

iris

= − + ×( ) • =∫ ˆ
r r

.

In the last line we have set the current term to zero and taken account of the
conducting boundary conditions satisifed by the unperturbed mode electric field.
Combining these two results we obtain a single equation for the electric field
amplitude,

  

∂
∂

ω ωλ
λ λ λ λ

2

2
2e

t
e c n E H dA

iris

+ = − ×( ) •∫ ˆ
r r

. (C.12)

Evidently the effect of the iris is known once the variation of the tangential electric
field in the vicinity of the iris is known, and the integral computed. Note that if we
take the variation in electric field near the iris to be just the unperturbed variation,
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then the tangential field is zero, and so is the integral. Evidently then the important
feature of the iris is the redistribution of electric field lines, some passing into the
next cavity, but some terminating on the iris edge.

To compute this variation we should in principle solve Maxwell's equations
for the new geometry. Happily however, for a small iris, the Helmholtz equation
for the potentials reduces simply to Laplace's equation ∇ +( ) = ≈ ∇2 2 20k ϕ ϕ . This
approximation is adequate because, near the iris, spatial variations occur on the
length-scale of the iris. The rf, meanwhile, is incapable of resolving details much
smaller than a wavelength. Thus our problem is considerably simplified. One has a
circular aperture in a plane, and far from the aperture one has normal fields above
and below, call them E1 and E2. One intuits that if E1≠E2, some field lines will
terminate on the plane, and some tangential field will result. Following Jackon's
derivation,17 we simply write down the solution for this tangential field in the iris,

  

r r
r

E r z
E E r

a r
⊥ =( ) =

−( )
−

, 0 1 2

2 2π
,

where z=0 locates the plane of the iris,   
r
r  is the coordinate in the plane of the iris, a

is the iris radius, E1 is the asymptotic field to the left of the iris (in cavity #1), and
E2 is the asymptote to the right of the iris (in cavity #2). The basis functions and
normalization for the unperturbed TM010 mode are

  

r
E J r E zcλ λβ= ( )0 0

ˆ,   

r
H J r Ecλ λβ φ= − ′( )0 0

ˆ , E LR J j0
2

1
2

01

1 2

λ π= ( )( )− /
.

The asymptotic field components are then E e E1 1 0≈ λ , E e E2 2 0≈ λ , and we amend
our notation, denoting by e1 the excitation of the fundamental mode in cavity #1,
and e2 that for cavity #2. (There is no ambiguity here, since we are not considering

other modes λ, to which previously the subscripts on the e's referred.). With this it
remains only to compute the port integral appearing in Eq. (C.12),

  

ˆ

.

n E H dA d rdr
e e J r

a r
rE

e e E a

port

a
c

c

×( ) • ≈
−( ) ′( )

−

≈ −( )

∫ ∫ ∫
r r

λ

π

λ

λ

φ
π

β

β

0

2

0

1 0 0

2 2 0
2

2 1 0
2 32

3

Our equation for the excitation of cavity #1 then takes the form,

∂
∂

ω κω
2

1
2 0

2
1 0

2
2 1

1
2

e

t
e e e+ = −( ), (C.13)

∂
∂

ω κω
2

2
2 0

2
2 0

2
2 1

1
2

e

t
e e e+ = − −( ), (C.14)

and the second line follows from the first, by symmetry. The coupling constant is
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κ
π

= ( ) ≈4
3

1
1 57

3

2
1
2

01

3

2

a

LR J j

a

LR
. . (C.15)

In retrospect it should be clear that the simpler, and intuitive derivation in Sec. 3,
did no great injustice to this calculation, merely failing to produce an explicit result
for κ .

C.4 Perturbation by Connecting Guide

To compute the coupling of a cavity to a waveguide, one again has a port-
integral to compute. However, in this case it is convenient to let our unperturbed
modal basis refer to the solution of the Helmholtz equation, with open-circuit
boundary conditions at the port, and to designate the port surface, Sp, as a plane
located in the smooth connecting guide. Since the waveguide modes form a
complete set we may expand the electric field on Sp,

˜ ˜E r E r Va a
a

⊥ ⊥ ⊥ ⊥( ) = ( )∑ ,  ˜ ˜H r H r Z Ia ca a
a

⊥ ⊥ ⊥ ⊥( ) = ( )∑ . (at port Sp)

where the subscript ⊥  denotes components lying in the transverse plane in the
waveguide, i.e.,  Sp. In a similar way we may expand the cavity modes,

˜ ˜E r E r Va a
a

⊥ ⊥ ⊥ ⊥( ) = ( )∑λ λ , ˜ ˜H r H r Z Ia ca a
a

⊥ ⊥ ⊥ ⊥( ) = ( )∑λ λ ,

where the mode coefficients are just the overlap integral of the unperturbed cavity 
fields with the waveguide mode,

  

I Z d r H r H ra ca

S

a

p

λ λ= ( ) • ( )⊥ ⊥ ⊥ ⊥∫ 2r ˜ ˜ , 

  

V d r E r E ra

S

a

p

λ λ= ( ) • ( )⊥ ⊥ ⊥ ⊥∫ 2r ˜ ˜ .

Making use of the orthogonality of the waveguide modes we have then

  S
a a

a
b cb b

b
a a

a
p

dS E H d r E V H Z I V I∫ ∫ ∑ ∑ ∑• × = 







× 







=⊥ ⊥ ⊥

r r˜ ˜ ˜ ˜
λ λ λ

2 ,

and similarly,

  S
a a

a
b cb b

b
a

a
a

p

dS E H d r E V H Z I V I∫ ∫ ∑ ∑ ∑• × = 







× 







=⊥ ⊥ ⊥

r r˜ ˜ ˜ ˜
λ λ λ

2
.

Thus the mode equations take the form

  

j e k h V Ia
a

a

dS E H
Sp

εω λ λ λ λ

λ

˜ ˜

˜ ˜

= + ∑
∫ • ×

r
124 34

,

  

− = + =∑
• ×∫

j h k e V I k ea a
a

dS E H
Sp

µω λ λ λ λ λ λ

λ

˜ ˜ ˜

˜ ˜
r

124 34

,

and in the last equality we implemented the open-circuit boundary condition on the
modal basis, Iaλ =0. Combining these two results, we obtain a single equation for
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ẽλ ,

ω ω ω
ελ λ λ

2 2 1−( ) = − ∑ẽ j V Ia
a

a . (C.16)

This should be augmented by one additional condition, continuity of
transverse electric field at the port. The electric field at the port may be expressed in
either basis,

˜ ˜ ˜ ˜E r E r V E r ea a
a

⊥ ⊥ ⊥ ⊥ ⊥( ) = ( ) ≈ ( )∑ ∑ λ
λ

λ ,

and, taking the dot-product with a guide-mode, we have

V V ea a= ∑ λ
λ

λ˜ . (C.17)

This relation closes the system of equations and permits one to solve self-
consistently for the cavity fields and the forward and reverse signals in the
waveguide. For example, we may compute the impedance looking into the cavity ,
from Sp, (i.e. in the direction in which we have taken positive current to flow)

Z
V

I11
1

1

= .

Insofar as other modes are below cut-off we may solve approximately for the mode
excitation in terms of the driving current in the fundamental mode,

˜
/ /

e I
V

jλ
λ

λ

λ λεω ω ω ω ω
=

−( )1
11

, (C.18)

so that

V V e I
V

j1 1 1
1
21= =
−( )∑ ∑

λ
λ λ

λ λ

λ

λ λεω ω ω ω ω
˜

/ /
.

Next we define the external Q , Qeλ, for mode λ coupling to the fundamental mode
of the connecting guide,

  

1 11
2

1 1

2
1

2

Q

V

Z Z
d r E E

e c c Spλ

λ

λ λ
λεω εω

= = •








⊥ ⊥∫

r ˜ ˜ , (C.19)

in terms of which

Z
V

I
Z

Q

jc
e

11
1

1
1

1
= =

−( )∑
λ

λ

λ λω ω ω ω
/

/ /
. (C.20)

Notice that Z11 is large on-resonance, corresponding to an open circuit, just as we
expect. Meanwhile, off-resonance, Z11 is small, corresponding to a short-circuit.
This motivates the standard nomenclature for our choice of reference plane: the
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plane of the detuned short.
To make contact with Eq. (3.12), let us define V nVF = + , V nVR = − , where

n may be thought of as a turns ratio , transforming to an impedance ′ =Z n Zc c
2

1.

Continuity of transverse electric field takes the form, V V V e1 1 1
+ −+ = λ λ˜ , and this

suggests defining a cavity voltage, V nV ec = 1λ λ˜ , in terms of which continuity reads,

V V Vc F R= + .

The port current driving term may be expressed as, Z I V Vc1 1 1 1= −+ − , and in the
time domain our system takes the form

d

dt
e

d

dt
V Ia

a
a

2

2
2 1+








= − ∑ω
ελ λ λ ,

and in the transformed units,

d

dt
V

Q

d

dt
V Vc

e
F R

2

2
2+








= −( )ω ω
λ

λ . (C.21)

These calculations and the results Eqs. (C.1)-(C.21) complete the formal
analysis underpinning the coupled cavity model introduced in the text, having
developed with some additional rigor the geometric origin of the coupled cavity
circuit parameters: Qw, κ , Qe, n, [R/Q]. Historically, the formal treatment of a
cavity in this way was first set down by Slater; however, there were a number of
approximations in his approach that, for the pure mathematician are somewhat
unsatisfying. The first complete treatment of the problem is credited, by Collin, to
Kurokawa.42 We have side-stepped the full mathematical complexity of the problem
by electing to consider a single isolated, narrow-band cavity resonance. This is in
fact not the totality of the problem as one can see by inspecting a measured cavity
impedance. Such an impedance will indeed include narrow spikes corresponding to
cavity resonances, but broadband portions as well. Thus there is a complementary
problem of interest, calculation of broadband impedance . Such terms are important
for a complete treatment of beam dynamics. They are not essential, however, for
understanding the coupling of the accelerating mode, and its observational features,
seen by means of couplers looking into the cavity.

There is one additional perturbation calculation that is sufficiently
fundamental that it should be included, and that is Slater's theorem.

C.5 Perturbation to a Conducting Boundary (Slater's Theorem)

We consider the effect on a mode resonant frequency of indenting a cavity
wall. Given the development of Sec. 1, it is most straightforward to proceed by
employing two results: momentum conservation and adiabatic invariance.

We consider a lossless cavity that is ringing in one mode. Momentum
conservation stipulates that if we slowly indent a cavity wall we must do work on
the mode such that
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δ δξ δξU F T dSa
a

ab

S

b a= = ∫ ,

where S is the region of wall being indented, Fa  is the average force on the wall,

T ab  is the time-averaged stress-tensor and   δξ
r

 is the wall displacement. Tangential
wall displacements have no effect since they carry conductor into itself. Thus we

may consider a displacement along the outward normal n̂ ,   δξ δξ
r

= n̂ , i .e . ,
δξ δξa an= . Noting that  dS n dSb b= , we have simply

δ δξU T dSnn

S

= ∫ . (C.22)

The diagonal element of the stress-tensor for the normal component at a conducting
surface takes the simple form

  
T E Hnn = −1

2
1
20

2
0

2ε µ
r r

,

and is just the electromagnetic pressure on the wall. Next we employ a mode
expansion in the exact modal basis for the conducting boundaries as they are at time
t,

  

r r r
E e t E r= ( ) ( )λ λ ,  

r r r
H h t H r= ( ) ( )λ λ .

Recognizing that the mode resonant frequency may be changing in time, we choose
to express the mode amplitude in terms of the cavity phase,

θ ωλt dt t
t

( ) = ′ ′( )∫ ,

according to

e t e t e j
λ λ

θ( ) = ℜ ( ){ }˜ .

Maxwell's equations then take the form

d

dt
t e t

2

2
2 0+ ( )








( ) =ωλ λ ,

and after some algebra this may be reduced to

d

dt
e t t˜λ λω( ) ( ){ } = 0,

in the limit of an adiabatically varying resonant frequency. Taking account of
similar results for the magnetic field amplitude, and noting the expression for stored
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energy,

  
U H E dV E dV e t

V V

= +{ } = = ( )∫ ∫1
2

1
20

2
0

2
0

2
0

2µ ε ε ε λ

r r r
˜

we find

δ δ ω
ω

δ
ω

λ

λ λ

U

U

U= − ⇔






= 0 . (C.23)

The adiabatic invariance of U /ωλ  ("photon number") together with momentum
conservation permit us to solve for the increment in resonant frequency due to an
indentation δξ . We express the time-averaged stress on the wall as

  
T e t E H U E Hnn = ( ) −( ) = −( )1

4
1
20

2 2 2 2 2ε λ λ λ λ λ˜
r r r r

,

to find

  

δ ω
ω

δ δξ δξλ

λ
λ λ= − = − = −( )

∫
∫U

U

T dS

U
H E dS

nn

S

S

1
2

2 2
r r

. (C.24)

We may integrate this formally to obtain Slater's theorem,

ω ω δλ λ λ λ
2

0
2 2 21= + −( )




∫ ˜ ˜H E V
V

, (C.25)

for the perturbation to the resonant frequency of a mode due to an excluded volume
V. In applying this result, it is good to keep in mind that the integration represented
here employs mode profiles that vary with the surface displacement, " "δ δξV dS≡ .
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