
International Series on
Computational Intelligence

L.C. Jain, R.P. Johnson, Y. Takefuji, and L.A. Zadeh
Knowledge-Based Intelligent Techniques in Industry

L.C. Jain and C.W. de Silva
Intelligent Adaptive Control: Industrial Applications in the
Applied Computational Intelligence Set

L.C. Jain and N.M. Martin
Fusion of Neural Networks, Fuzzy Systems, and Genetic Algorithms:
Industrial Applications

H.-N. Teodorescu, A. Kandel, and L.C. Jain
Fuzzy and Neuro-Fuzzy Systems in Medicine

C.L. Karr and L.M. Freeman
Industrial Applications of Genetic Algorithms

L.C. Jain and B. Lazzerini
Knowledge-Based Intelligent Techniques in Character Recognition

L.C. Jain and V. Vemuri
Industrial Applications of Neural Networks

H.-N. Teodorescu, A. Kandel, and L.C. Jain
Soft Computing in Human-Related Sciences

B. Lazzerini, D. Dumitrescu, L.C. Jain, and A. Dumitrescu
Evolutionary Computing and Applications

B. Lazzerini, D. Dumitrescu, and L.C. Jain
Fuzzy Sets and Their Application to Clustering and Training

L.C. Jain, U. Halici, I. Hayashi, S.B. Lee, and S. Tsutsui
Intelligent Biometric Techniques in Fingerprint and Face Recognition

Z. Chen
Computational Intelligence for Decision Support

L.C. Jain
Evolution of Engineering and Information Systems and Their Applications

The CRC Press

Series Editor
L.C. Jain, Ph.D., M.E., B.E. (Hons), Fellow I.E. (Australia)

©2001 CRC Press LLC

H.-N. Teodorescu and A. Kandel
Dynamic Fuzzy Systems and Chaos Applications

L. Medsker and L.C. Jain
Recurrent Neural Networks: Design and Applications

L.C. Jain and A.M. Fanelli
Recent Advances in Artifical Neural Networks: Design and Applications

M. Russo and L.C. Jain
Fuzzy Learning and Applications

J. Liu and J. Wu
Multi-Agent Robotic Systems

M. Kennedy, R. Rovatti, and G. Setti
Chaotic Electronics in Telecommunications

H.-N. Teodorescu and L.C. Jain
Intelligent Systems and Techniques in Rehabilitation Engineering

I. Baturone, A. Barriga, C. Jimenez-Fernandez, D. Lopez, and S. Sanchez-Solano
Microelectronics Design of Fuzzy Logic-Based Systems

T. Nishida
Dynamic Knowledge Interaction

C.L. Karr
Practical Applications of Computational Intelligence for Adaptive Control

©2001 CRC Press LLC

Jiming Liu
Jianbing Wu

MULTI-AGENT
ROBOTIC
SYSTEMS

Boca Raton London New York Washington, D.C.
CRC Press

©2001 CRC Press LLC

Royalties from this book will be donated
to Friends of the Earth and the World Wildlife Fund

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-2288-X

Library of Congress Card Number 2001025397
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Liu, Jiming, 1962-
Multi-Agent robotic systems / Jiming Liu, Jianbing Wu.

p. cm.—(International series on computational intelligence)
Includes bibliographical references and index.
ISBN 0-8493-2288-X (alk. paper)
1. Robots—Control systems. 2. Intelligent agents (Computer software) I. Wu,

 Jianbing. II. Title. III. CRC Press international series on computational intelligence

TJ211.35 .L58 2001 2001025397

disclaimer Page 1 Tuesday, April 10, 2001 4:41 PM

©2001 CRC Press LLC

Preface

Not everything that can be counted counts, and not everything that
counts can be counted.1

An autonomous agent is a computational system that acquires and analyzes
sensory data or external stimulus and executes behaviors that produce effects in
the environment. It decides for itself how to relate sensory data to its behav-
iors in its efforts to attain certain goals. Such a system is able to deal with un-
predictable problems, dynamically changing situations, poorly modeled environ-
ments, or conflicting constraints.

The motivation behind the research and development in multi-agent robotic
systems comes from the fact that the decentralized multi-robot approach has a
number of advantages over traditional single complex robotic systems approaches.
Distributed robots can readily exhibit the characteristics of structural flexibility,

1A sign hanging in Albert Einstein’s office at Princeton.

©2001 CRC Press LLC

reliability through redundancy, simple hardware, adaptability, reconfigurability,
and maintainability. The robots can interact with their local environments in the
course of collective problem-solving. Responding to different local constraints re-
ceived from their task environments, they may select and exhibit different behav-
ior patterns, such as avoidance, following, aggregation, dispersion, homing, and
wandering. These behaviors are precisely controlled through an array of parame-
ters (such as motion direction, timing, lifespan, age, etc.), which may be carefully
predefined or dynamically acquired by the robots based on certain computational
mechanisms.

In order to successfully develop multi-agent robotic systems, the key method-
ological issues must be carefully examined. At the same time, the underlying com-
putational models and techniques for multi-agent systems engineering must be
thoroughly understood. As a companion to Autonomous Agents and Multi-Agent
Systems by Jiming Liu, World Scientific Publishing, 2001, this book is about
learning, adaptation, and self-organization in decentralized autonomous robots.
The aims of the book are to provide a guided tour of the pioneering work and the
major technical issues in multi-agent robotics research (Part I), and to give an in-
depth discussion on the computational mechanisms for behavior engineering in a
group of autonomous robots (Parts II to IV). Through a systematic examination,
we aim to understand the interrelationships between the autonomy of individual
robots and the emerged global behavior properties of the group in performing a
cooperative task. Toward this end, we describe the essential building blocks in
the architecture of autonomous mobile robots with respect to the requirements on
local behavior conditioning and group behavior evolution.

This book has a number of specially designed features to enable readers to
understand the topics presented and to apply the techniques demonstrated. These
features are:

1. The contents have a balanced emphasis on the recent and pioneering work,
the theoretical/computational aspects, and the experimental/practical issues
of multi-agent robotic systems.

2. The materials are structured in a systematic, coherent manner with
implementation details, comprehensive examples, and case studies.

3. Many graphical illustrations are inserted to explain and highlight the
important notions and principles.

4. MATLAB toolboxes for multi-agent robotics research, experimentation,
and learning are provided, which are available for free download
from http : ==www:crcpress:com=us=ElectronicProducts=
downandup:asp?mscssid=.

©2001 CRC Press LLC

After reading this book, we hope that readers will be able to appreciate the
strengths and usefulness of various approaches in the development and application
of multi-agent robotic systems. They will be able to thoroughly understand the
following five issues:

1. Why and how do we develop and experimentally test the computational
mechanisms for learning and evolving sensory-motor control behaviors in
autonomous robots.

2. How do we enable group robots to converge to a finite number of desirable
task states through group learning.

3. What are the effects of the local learning mechanisms on the emergence of
global behaviors.

4. How do we design and develop evolutionary algorithm-based behavior
learning mechanisms for the optimal emergence of (group) behaviors.

5. How do we use decentralized, self-organizing autonomous robots to
perform cooperative tasks in an unknown environment.

Jiming Liu
Jianbing Wu

Summer 2001

©2001 CRC Press LLC

Acknowledgements

First, we would like to thank the pioneers and fellow researchers as well as the au-
thors of books, papers, and articles in the fields of intelligent systems, autonomous
agents and multi-agent systems, and robotics for providing us with insights, ideas,
and materials in preparing the surveys in this book.

Second, we wish to offer our thanks to our home institutions, Hong Kong Bap-
tist University (HKBU) and University of Calgary, for providing us with pleasant
working environments that enable us to pursue our research. Without these en-
vironments, it could take longer for us to come up with this synthesis. Part of
this book was written during Jiming’s sabbatical leave in the Computer Science
Department of Stanford University. Here we would like to thank Prof. Oussama
Khatib for his kind invitation and also thank HKBU for granting this opportunity.

Third, we wish to acknowledge the research grants support provided by Hong
Kong Baptist University under the scheme of Faculty Research Grants and by the
Hong Kong Research Grants Council under the scheme of Earmarked Research
Grants. Without that support, the theoretical and experimental studies reported in
this book would not be possible.

In addition, we wish to thank X. Lai, K. P. Chow, and K. K. Hui for providing
research assistance in some of the related studies. Our special thanks go to the
editor of the series, Prof. Lakhmi C. Jain, for his vision and encouragement, and
to Jerry Papke and Dawn Mesa of CRC Press for professionally managing and
handling this book project. We also want to thank Madeline Leigh of CRC Press
for carefully editing the draft version of this book.

And finally, to our families, to Meilee, Isabella, and Bernice from Jiming Liu,
and to Audrey from Jianbing Wu, our heartfelt thanks for their love, inspiration,
support, and encouragement.

©2001 CRC Press LLC

Other Credits

Grateful acknowledgement is made to IEEE and ACM for permission to reuse
some of our IEEE/ACM-copyrighted material in this book.

Portions of Jiming Liu et al., Learning coordinated maneuvers in complex envi-
ronments: a SUMO experiment, Proceedings of the IEEE/IEE Congress on Evo-
lutionary Computation (CEC’99), pages 343-349, Washington, D.C., July 1999,
are reused in Chapter 10. Portions of Jiming Liu and Jianbing Wu, Evolutionary
group robots for collective world modeling, Proceedings of the Third Interna-
tional Conference on Autonomous Agents (AGENTS’99), 1999, ACM Press, are
reused in Chapters 12 and 13.

Figures 6.2, 6.11, 9.1-9.3, and 9.5-9.13 and Tables 7.1 and 9.1 are adopted, and
Figures 6.15, 7.3(a), 8.6(a), 8.7(a), 8.8(a), 8.9(a), and 8.14(b) are modified, based
on the figures and tables in Jiming Liu, Jianbing Wu, and Y. Y. Tang, On emer-
gence of group behavior in a genetically controlled autonomous agent system,
Proceedings of the IEEE International Conference on Evolutionary Computation
(ICEC’98), pages 470-475, Anchorage, May 1998.

Figures 11.1 and 11.4-11.10 are adopted, and Figures 11.2 and 11.3 are modi-
fied, based on the figures in Jiming Liu, Jianbing Wu, and Xun Lai, Analytical and
experimental results on multiagent cooperative behavior evolution, Proceedings
of the the IEEE/IEE Congress on Evolutionary Computation (CEC’99), pages
1732-1739, Washington, D.C., July 1999.

Figures 12.3, 12.4, 12.12, 13.5-13.13, and 14.28 are adopted, and Figures 13.3
and 13.4 and Table 13.1 are modified, based on the figures and table in Jiming
Liu, Jianbing Wu, and David A. Maluf, Evolutionary self-organization of an ar-
tificial potential field map with a group of autonomous robots, Proceedings of
the IEEE/IEE Congress on Evolutionary Computation (CEC’99), pages 350-357,
Washington, D.C., July 1999.

Omissions of credit acknowledgement in this book, if any, will be corrected in
future editions.

Jiming Liu
Jianbing Wu

Summer 2001

©2001 CRC Press LLC

Contents

I Motivation, Approaches, and Outstanding Issues

1 Why Multiple Robots?
1.1 Advantages
1.2 Major Themes
1.3 Agents and Multi-Agent Systems
1.4 Multi-Agent Robotics

2 Toward Cooperative Control
2.1 Cooperation-Related Research

2.1.1 Distributed Artificial Intelligence
2.1.2 Distributed Systems
2.1.3 Biology

2.2 Learning, Evolution, and Adaptation
2.3 Design of Multi-Robot Control

3 Approaches
3.1 Behavior-Based Robotics
3.2 Collective Robotics
3.3 Evolutionary Robotics
3.4 Inspiration from Biology and Sociology
3.5 Summary

©2001 CRC Press LLC

4 Models and Techniques
4.1 Reinforcement Learning

4.1.1 Markov Decision Process
4.1.2 Reinforcement Learning Algorithms
4.1.3 Temporal Differencing Techniques
4.1.4 Q-Learning
4.1.5 Multi-Agent Reinforcement Learning

4.2 Genetic Algorithms
4.3 Artificial Life
4.4 Artificial Immune System
4.5 Probabilistic Modeling
4.6 Related Work on Multi-Robot Planning and Coordination

5 Outstanding Issues
5.1 Self-Organization
5.2 Local vs. Global Performance
5.3 Planning
5.4 Multi-Robot Learning
5.5 Coevolution
5.6 Emergent Behavior
5.7 Reactive vs. Symbolic Systems
5.8 Heterogeneous vs. Homogeneous Systems
5.9 Simulated vs. Physical Robots
5.10 Dynamics of Multi-Agent Robotic Systems
5.11 Summary

II Case Studies in Learning

6 Multi-Agent Reinforcement Learning: Technique
6.1 Autonomous Group Robots

6.1.1 Overview
6.1.2 Sensing Capability
6.1.3 Long-Range Sensors
6.1.4 Short-Range Sensors
6.1.5 Stimulus Extraction
6.1.6 Primitive Behaviors
6.1.7 Motion Mechanism

6.2 Multi-Agent Reinforcement Learning
6.2.1 Formulation of Reinforcement Learning
6.2.2 Behavior Selection Mechanism

6.3 Summary

7 Multi-Agent Reinforcement Learning: Results
7.1 Measurements

©2001 CRC Press LLC

7.1.1 Stimulus Frequency
7.1.2 Behavior Selection Frequency

7.2 Group Behaviors
7.2.1 Collective Surrounding
7.2.2 Cooperation among RANGER Robots

7.2.2.1 Moving away from Spatially Cluttered Locations
7.2.2.2 Changing a Target
7.2.2.3 Cooperatively Pushing Scattered Objects
7.2.2.4 Collective Manipulation of Scattered Objects

7.2.3 Concurrent Learning in Different Groups of Robots
7.2.3.1 Concurrent Learning in Predator and Prey
7.2.3.2 Chasing
7.2.3.3 Escaping from a Surrounding Crowd

8 Multi-Agent Reinforcement Learning: What Matters?
8.1 Collective Sensing
8.2 Initial Spatial Distribution
8.3 Inverted Sigmoid Function
8.4 Behavior Selection Mechanism
8.5 Motion Mechanism
8.6 Emerging a Periodic Motion
8.7 Macro-Stable but Micro-Unstable Properties
8.8 Dominant Behavior

9 Evolutionary Multi-Agent Reinforcement Learning
9.1 Robot Group Example

9.1.1 Target Spatial Distributions
9.1.2 Target Motion Characteristics
9.1.3 Behavior Learning Mechanism

9.2 Evolving Group Motion Strategies
9.2.1 Chromosome Representation
9.2.2 Fitness Functions
9.2.3 The Algorithm
9.2.4 Parameters in the Genetic Algorithm

9.3 Examples
9.4 Summary

III Case Studies in Adaptation

10 Coordinated Maneuvers in a Dual-Agent System
10.1 Issues
10.2 Dual-Agent Learning
10.3 Specialized Roles in a Dual-Agent System
10.4 The Basic Capabilities of the Robot Agent

©2001 CRC Press LLC

10.5 The Rationale of the Advice-Giving Agent
10.5.1 The Basic Actions: Learning Prerequisites
10.5.2 Genetic Programming of General Maneuvers
10.5.3 Genetic Programming of Specialized Strategic Maneuvers

10.6 Acquiring Complex Maneuvers
10.6.1 Experimental Design
10.6.2 The Complexity of Robot Environments
10.6.3 Experimental Results
10.6.4 Lightweight or Heavyweight Flat Posture
10.6.5 Lightweight Curved Posture
10.6.6 Lightweight Corner Posture
10.6.7 Lightweight Point Posture

10.7 Summary

11 Collective Behavior
11.1 Group Behavior

11.1.1 What is Group Behavior?
11.1.2 Group Behavior Learning Revisited

11.2 The Approach
11.2.1 The Basic Ideas
11.2.2 Group Robots
11.2.3 Performance Criterion for Collective Box-Pushing
11.2.4 Evolving a Collective Box-Pushing Behavior
11.2.5 The Remote Evolutionary Computation Agent

11.3 Collective Box-Pushing by Applying Repulsive Forces
11.3.1 A Model of Artificial Repulsive Forces
11.3.2 Pushing Force and the Resulting Motion of a Box
11.3.3 Chromosome Representation
11.3.4 Fitness Function
11.3.5 Examples

11.3.5.1 Task Environment
11.3.5.2 Simulation Results
11.3.5.3 Generation of Collective Pushing Behavior
11.3.5.4 Adaptation to New Goals
11.3.5.5 Discussions

11.4 Collective Box-Pushing by Exerting External Contact Forces and
Torques
11.4.1 Interaction between Three Group Robots and a Box
11.4.2 Case 1: Pushing a Cylindrical Box

11.4.2.1 Pushing Position and Direction
11.4.2.2 Pushing Force and Torque

11.4.3 Case 2: Pushing a Cubic Box
11.4.3.1 The Coordinate System
11.4.3.2 Pushing Force and Torque

11.4.4 Chromosome Representation

©2001 CRC Press LLC

11.4.5 Fitness Functions
11.4.6 Examples

11.4.6.1 Task Environment
11.4.6.2 Adaptation to New Goals
11.4.6.3 Simulation Results
11.4.6.4 Adaptation to Dynamically Changing Goals
11.4.6.5 Discussions

11.5 Convergence Analysis for the Fittest-Preserved Evolution
11.5.1 The Transition Matrix of a Markov Chain
11.5.2 Characterizing the Transition Matrix Using Eigenvalues

11.6 Summary

IV Case Studies in Self-Organization

12 Multi-Agent Self-Organization
12.1 Artificial Potential Field (APF)

12.1.1 Motion Planning Based on Artificial Potential Field
12.1.2 Collective Potential Field Map Building

12.2 Overview of Self-Organization
12.3 Self-Organization of a Potential Field Map

12.3.1 Coordinate Systems for a Robot
12.3.2 Proximity Measurements
12.3.3 Distance Association in a Neighboring Region
12.3.4 Incremental Self-Organization of a Potential Field Map
12.3.5 Robot Motion Selection

12.3.5.1 Directional1. .
12.3.5.2 Directional4
12.3.5.3 Random94

12.4 Experiment 1
12.4.1 Experimental Design
12.4.2 Experimental Result

12.5 Experiment
12.5.1 Experimental Design
12.5.2 Experimental Results

12.6 Discussions

13 Evolutionary Multi-Agent Self-Organization
13.1 Evolution of Cooperative Motion Strategies

13.1.1 Representation of a Proximity Stimulus
13.1.2 Stimulus-Response Pairs
13.1.3 Chromosome Representation
13.1.4 Fitness Functions
13.1.5 The Algorithm

13.2 Experiments

©2001 CRC Press LLC

13.2.1 Experimental Design
13.2.2 Comparison with a Non-Evolutionary Mode
13.2.3 Experimental Results

13.3 Discussions
13.3.1 Evolution of Group Behaviors
13.3.2 Cooperation among Robots

13.4 Summary

V An Exploration Tool

14 Toolboxes for Multi-Agent Robotics
14.1 Overview
14.2 Toolbox for Multi-Agent Reinforcement Learning

14.2.1 Architecture
14.2.2 File Structure
14.2.3 Function Description
14.2.4 User Configuration
14.2.5 Data Structure

14.3 Toolbox for Evolutionary Multi-Agent Reinforcement Learning
14.3.1 File Structure
14.3.2 Function Description
14.3.3 User Configuration

14.4 Toolboxes for Evolutionary Collective Behavior Implementation
14.4.1 Toolbox for Collective Box-Pushing by Artificial Repul-

sive Forces
14.4.1.1 File Structure
14.4.1.2 Function Description
14.4.1.3 User Configuration
14.4.1.4 Data Structure

14.4.2 Toolbox for Implementing Cylindrical/Cubic Box-Pushing
Tasks
14.4.2.1 File Structure
14.4.2.2 Function Description
14.4.2.3 User Configuration
14.4.2.4 Data Structure

14.5 Toolbox for Multi-Agent Self-Organization
14.5.1 Architecture
14.5.2 File Structure
14.5.3 Function Description
14.5.4 User Configuration
14.5.5 Data Structure

14.6 Toolbox for Evolutionary Multi-Agent Self-Organization
14.6.1 Architecture
14.6.2 File Structure

©2001 CRC Press LLC

14.6.3 Function Description
14.6.4 User Configuration
14.6.5 Data Structure

14.7 Example
14.7.1 True Map Calculation
14.7.2 Initialization
14.7.3 Start-Up
14.7.4 Result Display

References

©2001 CRC Press LLC

Liu, J. & Wu, J. "Why Multiple Robots?"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

Part I

Motivation, Approaches, and
Outstanding Issues

1

Why Multiple Robots?

So, then, to know a substance or an idea we must doubt it, and thus,
doubting it, come to perceive the qualities it possesses in its finite
state, which are truly “in the thing itself,” or “of the thing itself,” or
of something or nothing. If this is clear, we can leave epistemology
for the moment.1

Woody Allen

The field of distributed and cooperative robotics has its origins in the late
1980s, when several researchers began investigating issues in multiple mobile
robot systems [AMI89, FN87]. Prior to this time, research had concentrated on
either single-robot systems or distributed problem-solving systems that did not
involve robotic components [Par00]. Since then, the field has grown dramatically,
with a much wider variety of topics addressed.

1Getting Even, W.H. Allen & Co. Ltd., London, 1973, p 29.

 ©2001 CRC Press LLC

1.1 Advantages

The use of multiple robots is often suggested to have many advantages over
single-robot systems [BMF+00, CFK97, DJMW96]. Cooperating robots have the
potential to accomplish some tasks more efficiently than a single robot. Fox et al.
[FBKT99] have demonstrated that multiple robots can localize themselves faster
and more accurately if they exchange information about their positions when-
ever they sense each other. Furthermore, using several low-cost robots introduces
redundancy and therefore is more fault-tolerant than having only one powerful
and expensive robot. Generally speaking, a multi-robot system has the following
remarkable properties:

� a larger range of task domains

� greater efficiency

� improved system performance

� fault tolerance

� robustness

� lower economic cost

� ease of development

� distributed sensing and action

� inherent parallelism

� insight into social and life sciences

1.2 Major Themes

In developing a multi-robot system, one of the primary concerns is how to enable
individual robots to automatically program task-handling behaviors adaptive to
the dynamic changes in their task environments. Several researchers have started
to address the issue of multiple autonomous robot cooperation. Mataric [Mat94a,
Mat94d] has developed a group behavior learning method in which heterogeneous
reward function-based reinforcement learning is applied to associate the foraging
subset (i.e., summation and/or switching) of six basic behaviors with triggering
conditions. Fukuda and Iritani have proposed a mechanism for emerging group
cooperative behaviors among decentralized autonomous robotic systems, called
CEBOT (i.e., Cellular Robots) [FI95]. Their work simulates the emergence of
group behaviors based on a globally stable attractor and the generation of new
group behaviors based on bifurcation-generated new attractors.

 ©2001 CRC Press LLC

Cao et al. [CFKM95] have highlighted five major themes in the mobile robot
group studies; namely, group control architecture (e.g., decentralization and dif-
ferentiation), resource conflict resolution (e.g., space sharing), the origin of co-
operation (e.g., genetically determined social behavior vs. interaction-based co-
operative behavior [Mat94c]), learning (e.g., control parameter tuning for desired
cooperation), and geometric problem solving (e.g., geometric pattern formation).
While the methodology for behavior engineering of a single autonomous robot
may be simply defined as the stages of target behavior analysis, architecture
design, implementation, training, and behavior assessment [CDB96], the emer-
gence of complex robot group behaviors remains an open problem.

Multi-robot system design is challenging because the performance in such a
system depends significantly on issues that arise from the interactions between
robots [Bal98]. These interactions complicate development since they are not ob-
vious in the hardware or software design but only emerge in an operating group. It
is very hard, or even impossible, to model the group behaviors and design central-
ized controllers in a top-down manner for robot teams in unknown, unconstructed,
or dynamic environments. Automatic methods for matching multi-robot config-
urations to tasks do not yet exist. Cooperation and robot-robot interference, for
instance, are not considerations for a single robot but are crucial in multi-robot
systems.

1.3 Agents and Multi-Agent Systems

Maes [Mae95] defines an agent as “a computational system that tries to fulfill a
set of goals in a complex, dynamic environment.” It can sense the environment
through its sensors and act upon the environment using its actuators. Depending
on the types of environment it inhabits, an agent can take many different forms.
Agents inhabiting the physical world are typically robots. Maes proposes that
an agent’s goals can have many different manifestations: they can be end goals
or particular states the agent tries to achieve, they can be a selective reinforce-
ment or reward that the agent attempts to maximize, they can be internal needs or
motivations that the agent has to keep within certain viability zones, and so on.

Following the considerations in [WJ95], a weak and a strong notion of agency
can be distinguished. According to the weak notion, an agent displays the
following properties:

� autonomy

� reactivity

� proactiveness

According to the more specific and strong notion, additional properties or
mental attitudes, such as the following, are used to characterize an agent:

� belief, knowledge, etc. (describing information states)

 ©2001 CRC Press LLC

� intention, commitment, etc. (describing deliberative states)

� desire, goal, etc. (describing motivational states)

As Maes [Mae95] states,

An agent is called autonomous if it operates completely autonomously – that
is, if it decides itself how to relate its sensory data to motor commands in
such a way that its goals are attended to successfully.

An agent is said to be adaptive if it is able to improve its goal-achieving com-
petence over time. Autonomous agents constitute a new approach to the study of
artificial intelligence, which is highly inspired by biology, in particular ethology,
the study of animal behavior. An autonomous agent approach is appropriate for
the class of problems that require a system to autonomously achieve several goals
in a dynamic, complex, and unpredictable environment.

In recent years, a rapidly growing interest has been shown in systems composed
of several interacting autonomous agents instead of only a single agent. Weiss and
Dillenbourg [WD99] propose at least three reasons for this interest in multi-agent
systems:

1. They are applicable in many domains that cannot be handled by centralized
systems.

2. They reflect the insight gained in the past decade in disciplines like artificial
intelligence, psychology, and sociology that “intelligence and interaction
are deeply and inevitably coupled to each other.”

3. A solid platform of computer and network technology for realizing complex
multi-agent systems is now available.

The bibliography in [JD87] lists earlier related work in multi-agent systems. A
description of more recent work can be found in [Wei99].

1.4 Multi-Agent Robotics

We can make several interesting observations from natural multi-agent societies.
For example, ant colonies have workers, soldiers, and a queen; hundreds of ants
can shoulder a dead earthworm cooperatively from one place to another [Bal97].
Why does specialization occur? Are individuals born with skills and physical at-
tributes? It may not be straightforward to answer these questions bounded only
in natural systems, but we can investigate the issues in artificial societies – multi-
agent robotic systems – and gain some insights from observations.

Some typical examples of multi-agent robotic systems are given in Table 1.1.
As Arkin suggests [Ark98], CEBOT [FN87] may be regarded as the first among
all such systems. It is a cellular robotic system with small robots that can dock to-
gether to produce a larger robot. The CEBOT research utilizes an architecture that

 ©2001 CRC Press LLC

has multiple parallel behaviors integrated by vector summation. The motivation
of MARS [FMSA99] is to design lifelike robotics systems. Multi-Agent Robotic
Systems research [Bal97] concerns learning in multi-robot teams, e.g., finding
which conditions lead to the diversity in a learning team and how to measure it.
Several tasks for Multi-Agent Robotic Systems, including formation, foraging,
and soccer, are investigated. The goal of Biorobotics and Collective Intelligence
research [PS98] at the University of Zurich is to model and learn from biological
systems, such as the navigation behavior of insects or the walking dynamics of
humans, and explore the emergence of structures in a group of interacting agents.
Nicoud and his group [FGM+ 98] study the different ways of using autonomous
robot teams to efficiently fulfill predefined missions. They define the problems of
coordinating robot activities. Inspired by the collective intelligence demonstrated
by social insects, they focus on the robot-robot and robot-environment interac-
tions leading to robust, goal-oriented, and perhaps emergent group behaviors. AC-
TRESS (ACTor-based Robots and Equipments Synthesis System) [AMI89] is a
multi-robot system designed for heterogeneous applications that focuses on com-
munication issues. Normally, the robots act independently; but if a need arises,
they negotiate with other robots to form a cooperative group to handle a spe-
cific task. Mataric [Mat92c, Mat93] has created behaviors for multi-robot sys-
tems using a subsumption style architecture [Bro86]. She has created homing,
aggregation, dispersion, following, and wandering behaviors, and used them in a
foraging task.

Project Researcher Organization Website
CEBOT, MARS T. Fukuda Nagoya University, Japan http://www.mein.nagoya-u.ac.jp/
Multi-Agent R. C. Arkin Georgia Institute of http://www.cc.gatech.edu/aimosaic/
Robotic Systems Technology, USA robot-lab/research/multi-agent.html
Multirobot M. J. Mataric University of Southern http://www-robotics.usc.edu/
Systems California, USA �maja/group.html
Biorobotics R. Pfeifer University of Zurich, http://www.ifi.unizh.ch/groups/ailab/

Switzerland
Collective J.-D. Nicoud Swiss Federal Institute of http://diwww.epfl.ch/lami/
Robotics Technology, Switzerland
ACTRESS H. Asama RIKEN, Japan http://celultra.riken.go.jp/ �asama/

TABLE 1.1. Some representative multi-agent robotics studies.

Particularly challenging tasks for multi-agent robotics are those that are
inherently cooperative. Research themes that have been so far studied include:

� multi-robot path planning [YFO+00]

� traffic control [PY90]

� formation generation [AOS89]

� formation keeping and control [BH00, BA98, Wan89]

� target tracking [PT00, PM00]

 ©2001 CRC Press LLC

http://www.mein.nagoya-u.ac.jp/
http://www.cc.gatech.edu/aimosaic/
http://www-robotics.usc.edu/
http://www.ifi.unizh.ch/groups/ailab/
http://diwww.epfl.ch/lami/
http://celultra.riken.go.jp/%20%CB%98asama/

� multi-robot docking [MMHM00]

� box-pushing [MC92, MNS95]

� foraging [Mat94a, Mat94c]

� multi-robot soccer [MAAO+99, RV00, SV98]

� exploration [BMF+00, SAB+00]

� localization [FBKT99, FBKT00]

� collision avoidance [FAAE98]

� transport [IOH98, KZ97]

Multi-agent robotic research is growing so rapidly that it is becoming very
difficult to keep track of what is going on. For a reference, here are some journals
that from time to time publish articles on multi-agent robotics:

� Autonomous Robots: A recent issue of the journal Autonomous Robots was
dedicated to colonies of robots

� Adaptive Behavior: This new multidisciplinary journal provides the first
international forum for research on adaptive behavior in animals and
autonomous, artificial systems

� Robotics and Autonomous Systems: Its primary goal is to capture the
state-of-the-art in both symbolic and sensory-based robot control and learn-
ing in the context of autonomous systems

� Other major journals in this field include:

– Artificial Life and Robotics

– Autonomous Agents and Multi-Agent Systems

– IEEE Transactions on Robotics and Automation

Besides these journals, there are a number of international conferences
featuring the state-of-the-art in this as well as other related fields:

� IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)

� IEEE International Conference on Robotics and Automation (ICRA)

� International Conference on Simulation of Adaptive Behavior (SAB)

� International Conference on Autonomous Agents

� International Conference on Multi-Agent Systems (ICMAS)

 ©2001 CRC Press LLC

� International Symposium on Distributed Autonomous Robotic Systems
(DARS)

� International Symposium on Artificial Life and Robotics

� International Joint Conference on Artificial Intelligence (IJCAI)

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Toward Cooperative Control"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

2

Toward Cooperative Control

Partnership is an essential characteristic of sustainable communities.
The cyclical exchanges of energy and resources in an ecosystem are
sustained by pervasive cooperation. Indeed, we have seen that since
the creation of the first nucleated cells over two billion years ago,
life on Earth has proceeded through ever more intricate arrange-
ments of cooperation and coevolution. Partnership – the tendency to
associate, establish links, live inside one another, and cooperate – is
one of the hallmarks of life.1

Fritjof Capra

The cooperation of robots in unknown settings poses a complex control prob-
lem. Solutions are required to guarantee an appropriate trade-off in task objec-
tives within and among the robots. Centralized approaches to this problem are not

1The Web of Life, Harper Collins Publishers, Great Britain, 1996, p 293.

 ©2001 CRC Press LLC

efficient or applicable due to their inherent limitations – for instance, the require-
ment of global knowledge about an environment and a precise design to consider
all possible states [PM00]. Distributed approaches, on the other hand, are more
appealing due to their properties of better scaling and reliability.

2.1 Cooperation-Related Research

An overview of approaches and issues in cooperative robotics can be found in
[Ark98, CFK97, Mat95b]. Parker [Par99] has demonstrated multi-robot target ob-
servation using the ALLIANCE architecture [Par94], where action selection con-
sists of inhibition (through motivational behaviors). As opposed to ALLIANCE,
Pirjanian and Mataric [PM00] have developed an approach to multi-robot coordi-
nation in the context of cooperative target acquisition. Their approach is based on
multiple objective behavior coordination extended to multiple cooperative robots.
They have provided a mechanism for distributed command fusion across a group
of robots to pursue multiple goals in parallel. The mechanism enables each robot
to select actions that not only benefit itself but also benefit the group as a whole.
Hirata et al. [HKA+99] have proposed a decentralized control algorithm for mul-
tiple robots to handle a single object in coordination. The motion command is
given to one of the robots, referred to as a leader; and the other robots, referred to
as followers, estimate the motion of the leader from the motion of the object and
handle the object based on the estimated reference.

Studies on cooperation in multi-agent robotic systems have benefited from a
number of distinct fields such as social sciences, life sciences, and engineering.
According to Cao et al. [CFK97], the disciplines that are most critical to the
development of cooperative robotics include distributed artificial intelligence,
distributed systems, and biology.

2.1.1 Distributed Artificial Intelligence

Grounded in traditional symbolic AI and social sciences, DAI is composed of two
major areas of study: Distributed Problem Solving (DPS) and Multi-Agent Sys-
tems (MAS) [Ros93]. DPS considers how the task of solving a particular prob-
lem can be divided among agents that cooperate in dividing and sharing knowl-
edge about the problem and its evolving solutions. One important assumption in
DPS is that the agents are predisposed to cooperate. Cao et al. [CFK97] advo-
cate DPS research on “developing frameworks for cooperative behavior between
willing agents” rather than “developing frameworks to enforce cooperation be-
tween potentially incompatible agents.” The MAS research studies the collective
behavior of a group of possibly heterogeneous agents with potentially conflicting
goals [CFK97]. Durfee et al. [DLC89] define MAS as “a loosely coupled network
of agents that work together to solve problems that are beyond their individual
capabilities.”

 ©2001 CRC Press LLC

2.1.2 Distributed Systems

The field of distributed systems is a natural source of ideas and solutions for study-
ing multi-robot systems. Some researchers have noted that distributed comput-
ing can contribute to the theoretical foundations of cooperative robotics [CFK97,
FMSA99]. In [CFK97], distributed control is considered as a promising frame-
work for the cooperation of multiple robots, i.e., distributed control methods real-
ize many advantages (flexibility, adaptability, and robustness etc.) when the pop-
ulation of robots increases. By noting the similarities with distributed computing,
theories pertaining to deadlock, message passing, and resource allocation, and the
combination of the above as primitives can be applied to cooperative robotics.

2.1.3 Biology

The majority of existing work in the field of cooperative robotics has cited biolog-
ical systems as inspiration or justification [Bal94]. Well-known collective behav-
iors of ants, bees, and other eusocial insects provide striking proof that systems
composed of simple agents can accomplish sophisticated tasks in the real world
[CFK97]. Although the cognitive capabilities of these insects are very limited,
the interactions between the agents, in which each individual obeys some simple
rules, can result in the emergence of complex behaviors. Thus, rather than follow-
ing the traditional AI that models robots as deliberative agents, some researchers
in cooperative robotics have chosen to take a bottom-up approach in which in-
dividual agents are more like ants – they follow simple reactive rules [Mat94a,
BHD94, SB93, DGF+91, BB99, DMC96]. The behavior of insect
colonies can be generally characterized as self-organizing systems.

2.2 Learning, Evolution, and Adaptation

An important goal in the development of multi-agent robotic systems is to design
a distributed control infrastructure to enable robots to perform their tasks over a
problem-solving period without human supervision. These lifelong robotic sys-
tems must be capable of dealing with dynamic changes occurring over time, such
as unpredictable changes in an environment or incremental variations in their own
performance capabilities.

Learning, evolution, and adaptation endow an agent in a multi-agent system
with the ability to improve its likelihoodof survival within an environment through
appropriate competition or cooperation with other agents. Learning is a strategy
for an agent to adapt to its environment. Through its experience of interacting with
the environment, the agent can form its cognition for the application of a specific
behavior, incorporating certain aspects of the environment in its internal structure.
On the other hand, evolution is considered as a strategy for a population of agents
to adapt to the environment. Adaptation refers to an agent’s learning by mak-
ing adjustments with respect to its environment. As identified by Colombetti and

 ©2001 CRC Press LLC

Dorigo [CD98], two kinds of adaptation that are relevant to multi-agent robotics
are evolutionary adaptation and ontogenetic adaptation. The former concerns the
way in which species adapt to environmental conditions through evolution, and
the latter is the process by which an individual adapts to its environment during
its lifetime. As far as behavior is concerned, ontogenetic adaptation is a result
of learning . Adaptability allows agents to deal with noise in their internal and
external sensors as well as inconsistencies in the behaviors of their environment
and other agents.

In the opinion of Nolfi and Floreano [NF99], evolution and learning are two
forms of biological adaptation that differ in space and time. Evolution is “a pro-
cess of selective reproduction and substitution” based on the existence of a dis-
tributed population of individuals. Learning, on the other hand, is “a set of mod-
ifications taking place within each individual during its own lifetime.” Evolution
and learning operate on different time scales. Evolution is “a form of adaptation
capable of capturing relatively slow environmental changes that might encom-
pass several generations.” Learning, on the other hand, “allows an individual to
adapt to environmental changes that are unpredictable at the generational level.”
Learning may include a variety of mechanisms that produce adaptive changes in
the individual during its lifetime, such as physical development, neural matura-
tion, and synaptic plasticity.

Although evolution and learning are two distinct kinds of change that occur in
two distinct types of entities, Parisi and Nolfi [PN96] argue that the two strategies
may influence each other. The influence of evolution on learning is not surprising.
Evolution causes the changes in a genotype.

Each individual inherits a genome that is a cumulative result at the level of
the individual of the past evolutionary changes that occur at the level of a
population.

The individual’s genome partially specifies a resulting phenotypic individual – it
constrains how the individual will behave and what it will learn. The way is open
for an influence of evolution on learning. On the other hand,

Evolution can converge to a desired genome more quickly than if learning
is absent, although it remains true that learned changes are not inherited. If
evolution is unaided by learning, its chances of success are restricted to the
case that the single desired genome suddenly emerges because of the chance
factors operating at reproduction. Learning can accelerate the evolutionary
process both when learning tasks are correlated with the fitness criterion and
when random learning tasks are used.

From an evolutionary perspective, learning has several adaptive functions. It al-
lows individuals to adapt to changes in the environment that occur in the lifespan
of an individual or across a few generations. Learning supplements evolution,
as it enables an individual to adapt to changes in the environment that happen

 ©2001 CRC Press LLC

too quickly to be tracked by evolution. In summary, learning can help and guide
evolution [FU98, NF99].

Although the distinction between learning and adaptation is not always clear,
Weiss [Wei96] has shown that multi-robot learning can usually be distinguished
from multi-robot adaptation by the extent to which new behaviors and processes
are generated. Typically, in multi-robot learning, new behaviors or behavior se-
quences are generated, or functions are learned, thus giving a robot team radically
new capabilities. Frequently, the learning takes place in an initial phase, where
performance during learning is not of importance. In multi-agent adaptation, the
robot team exercises a control policy that gives reasonable results for the ini-
tial situation. The team is able to gradually improve its performance over time.
The emphasis in multi-robot adaptation is the ability to change its control policy
online – while the team is performing its mission – in response to changes in the
environment or in the robot team.

In multi-agent robotics, evolutionary algorithms have been widely used to
evolve controllers [HHC92, HHC+96, Har96, Har97, HHCM97]. Generally speak-
ing, the controllers that become well adapted to environmental conditions during
evolution may not perform well when the conditions are changed. Under these cir-
cumstances, it is necessary to carry out an additional evolutionary process, which,
as Urzelai and Floreano [UF00] have stated, can take a long time. On the other
hand, the integration of evolution and learning may offer a viable solution to this
problem by providing richer adaptive dynamics than when parameters are entirely
genetically determined.

2.3 Design of Multi-Robot Control

Finding the precise values for control parameters that lead to a desired coopera-
tive behavior in multi-robot systems can be a difficult, time-consuming task for
a human designer. Harvey et al. [HHC+96] point out that there are at least three
major problems that a designer may encounter:

1. It is not clear how a robot control system should be decomposed.

2. The interactions between separate subsystems are not limited to
directly visible connecting links; interactions are also mediated via the
environment.

3. As system complexity grows, the number of potential interactions
between the components of the system grows exponentially.

As Harvey [Har96] indicates, classical approaches to robotics have often as-
sumed a primary decomposition into perception, planning, and action modules.
Brooks [Bro86], on the other hand, acknowledges problems 2: and 3: in his sub-
sumption architecture, and he advocates the careful design of a robot control
system layer by layer by hand. An obvious alternative approach is to abandon

 ©2001 CRC Press LLC

Sensorimotor

Controller
Actions

State

Goal

FIGURE 2.1. A general model of robotic control.

hand design and explicitly use evolutionary techniques to incrementally evolve
complex robot control systems.

The control in a multi-agent robotic system determines its capacities to achieve
tasks and to react to various events. The controllers of autonomous robots must
possess both decision-making and reactive capabilities. And the robots must react
to the events in a timely fashion. Figure 2.1 presents a general model of robot con-
trollers. Generally speaking, a robot controller should demonstrate the following
characteristics [Ark98, ACF+98, BH00]:

1. Situatedness: The robots are entities situated and surrounded by the
real world. They do not operate upon abstract representations of reality,
but rather upon reality itself.

2. Embodiment: Each robot has a physical presence (a body). This
spatial reality has consequences in its dynamic interactions with the
world (including other robots).

3. Programmability: A useful robotic system cannot be designed only
for a single environment or task. It should be able to achieve
multiple tasks described at an abstract level. Its functions should be
easily combined according to the task to be executed.

4. Autonomy and adaptability: The robots should be able to carry out
their actions and to refine or modify the task and their own behavior
according to the current goal and execution context as perceived.

5. Reactivity: The robots have to take into account events with time
bounds compatible with the correct and efficient achievement of their
goals (including their own safety).

6. Consistent behavior: The reactions of the robots to events must be
guided by the objectives of their tasks.

7. Robustness: The control architecture should be able to exploit the
redundancy of the processing functions. Robustness will require the
control to be decentralized to some extent.

8. Extensibility: Integration of new functions and definition of new tasks
should be easy. Learning capabilities are important to consider here;
the architecture should make learning possible.

9. Scalability: The approach should easily scale to any number of robots.

10. Locality: The behaviors should depend only on the local sensors of
each robot.

 ©2001 CRC Press LLC

11. Flexibility: The behaviors should be flexible to support many social
patterns.

12. Reliability: The robot can act correctly in any given situation over
time.

 ©2001 CRC Press LLC

Liu, J. & Wu, J."Approaches"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

3

Approaches

Intelligence without Reason can be read as a statement that intelli-
gence is an emergent property of certain complex systems – it
sometimes arises without an easily identifiable reason for arising....

We are a long way from creating Artificial Intelligences that mea-
sure up to the standards of early ambitions for the field. It is a
complex endeavor and we sometimes need to step back and
question why we are proceeding in the direction we are going, and
look around for other promising directions.1

Rodney A. Brooks

1Chapter 8: Intelligence without Reason, Cambrian Intelligence, The MIT Press, Cambridge, Mas-
sachusetts, p 185.

 ©2001 CRC Press LLC

3.1 Behavior-Based Robotics

Mataric [Mat98] states that behavior-based robotics designs controllers for en-
dowing robots with intelligent behavior, based on “a biologically inspired phi-
losophy that favors parallel, decentralized architectures.” It draws on the idea
of providing the robots with a range of basic behaviors and letting the environ-
ment determine which behavior is more suitable as a response to a certain stimu-
lus. Sukhatme and Mataric [SM00] define behaviors as “real-time processes that
take inputs from sensors and/or other behaviors and send outputs to actuators
and/or other behaviors.” In behavior-based robotics, basic behaviors are funda-
mental units for control, reasoning, and learning. The environment plays a cen-
tral role in activating a certain basic behavior at any given time. The behavior
modules and the coordination mechanisms are usually designed through a trial-
and-error process in which a designer progressively changes them and tests the
resulting behavior in the environment. Extending the reactive and behavior-based
approaches to a multi-agent domain will lead to completely distributed systems
with no centralized controller.

Behavior-based robotics has been an active and popular approach to robot con-
trol in the multi-robot domain, allowing multi-robot systems to adapt to real-
world environments. Behavior-based systems are praised for their robustness and
simplicity of construction [Bro86, Mae89, Mat92a]. Based on Brooks’ behavior-
based subsumption architecture [Bro86], for example, Parker developed the AL-
LIANCE architecture [Par94] for controlling groups of heterogeneous robots and
demonstrated it on a group of four physical robots performing puck manipula-
tion and box-pushing. He divides tasks into subtasks, with groups of behaviors
addressing each subtask. At the highest level, “mutually inhibitory motivational
behaviors are designed to direct the overall behavior of a robot, which in turn acti-
vates lower-level behaviors to perform a subtask” [Par94]. Along with the typical
sensor-based conditions that might trigger motivational behaviors, Parker adds
impatience and acquiescence. Impatience increases if no other robot is tempting
to solve the subtask associated with a motivational behavior, while acquiescence
inhibits the behavior if the robot is not successful in the subtask. The combination
of the ordinary conditions of impatience and acquiescence in a group enables the
robots to cooperate in striving to achieve an overall task.

Balch [Bal97] takes motor schemas as an example of behavior-based robot
control. Motor schemas are the reactive components in an Autonomous Robot
Architecture (AuRA) [AB97]. AuRA’s design integrates “deliberative planning at
the top level with behavior-based motor control at the bottom.” The lower levels
are concerned with executing reactive behaviors. Individual motor schemas, or
primitive behaviors, express separate goals or constraints for a task. For example,
the schemas for a navigational task may involve avoiding obstacles and moving
to a goal. Since schemas are independent, they can run concurrently, providing
parallelism and efficiency. Motor schemas may be grouped to form more
complex, emergent behaviors.

 ©2001 CRC Press LLC

3.2 Collective Robotics

Ant colonies are able to collect objects (such as food or dead ants) and place
them in particular places. The term collective behavior generically refers to “any
behavior of a system having more than one agent” [CFK97]. Collective behaviors
offer the possibility of enhanced task performance, increased task reliability, and
decreased cost over traditional robotic systems.

Much work to date in collective robotics focuses on limited cases, such as flock-
ing and foraging. Typical agents in such experiments either use manually built
(non-learning) controllers [BA95, BHD94], or perform learning in
simulated [Bal97, SP96] or relatively simple physical domains/environments
[Mat94d, UAH98].

One way to generate robust collective behaviors is to apply biologically
inspired adaptive algorithms at the team level. We believe that the integration
of learning methods can contribute significantly to the design of a team of self-
programming robots for some predefined tasks. In the past few years, reinforce-
ment learning and genetic algorithms have been used to produce adaptive be-
haviors in the context of single-robot applications [FM96]. In multi-robot appli-
cations, where fitness is measured at the team level, robots will be faced with
the credit assignment problem – deciding to what extent their behavior has con-
tributed to the team’s overall score [VG97]. Two ways for bypassing this problem
have been proposed. The first is to integrate the global communication among
teammates [Par95]. However, this is not a completely decentralized solution and
does not match the above definition of biologically inspired robotics. Further-
more, depending on the environmental conditions, global communication is not
always possible and tends to become a bottleneck when the size of a team in-
creases. The second way is to measure individual performance for each robot in-
stead of team performance [Mat96]. A drawback of this approach is that it forces
a collective behavior to be the sum of individual behaviors, which is not neces-
sarily the optimal strategy for a shared mission. Martinoli and Mondada [MM95]
have implemented two biologically inspired collective behaviors in a group of
miniature mobile robots. Martinoli et al. [MFM97] also provide a reliable setup
for conducting bio-inspired experiments with real robots.

3.3 Evolutionary Robotics

Evolutionary computation has attracted attention from various research fields as
a way of solving optimization problems [BHS97, Bre62, Mic92, Sch95, Sha94].
Robotics is one of such fields in which researchers have found many applications,
ranging from control strategy synthesis to geometric motion planning [FAvN+96,
HHC+96, HCH96, MC96]. As a result, a new wave in robotics has started to
emerge; we may call it evolutionary robotics.

 ©2001 CRC Press LLC

In evolutionary robotics, there are a number of representative issues; some are
concerned with robot design, whereas others are concerned with planning and
control. For instance, Murray and Louis [ML95] used a genetic algorithm to bal-
ance evolutionary design and human expertise in order to best develop robots
that can learn specific tasks. Nolfi et al. [NFMM94], Steels [Ste94], and Xiao et
al. [XMZT97] have applied genetic algorithms to various problems in robotics,
such as design, behavior emergence, motion planning, and navigation. Harvey
[Har92] has extended standard genetic algorithms for a finite search space with
fixed-length genotypes to an open-ended evolution with variable-length
genotypes.

Evolutionary robotics is a promising new approach to the development of multi-
robot systems capable of reacting quickly and robustly in both real and simulated
environments. In this discipline, algorithms inspired largely by biological evolu-
tion are used to automatically design sensorimotor control systems [NFMM94].
Although in the early days artificial evolution was mainly seen as a strategy
to develop more complex robot controllers, today the field has become much
more sophisticated and diversified. Floreano and Urzelai [FU00] have identi-
fied at least three approaches to evolutionary robotics: automated engineering,
artificial life, and synthetic biology/psychology. These three approaches overlap
with each other but still have quite different goals that eventually show up in
the results obtained. Automated engineering is “about the application of artifi-
cial evolution for automatically developing algorithms and machines displaying
complex abilities that are hard to program with conventional techniques;” artifi-
cial life is “about the evolution of artificial creatures that display lifelike proper-
ties;” and synthetic biology/psychology attempts to “understand the functioning of
biological and psychological mechanisms by evolving those mechanisms in a
robot put in conditions similar to those of animals under study.”

In evolutionary robotics, the predominant class of systems for generating be-
haviors is Artificial Neural Networks (ANNs) [Hus98]. ANNs can be envisaged
as simple nodes connected together by directional wires along which signals flow.
The nodes perform an input-output mapping that is usually some sort of sig-
moid function. Many people have applied ANNs in evolutionary robotics [Dye95,
Har96, Har97, Har00, HHC+96, Sha97, Zie98]. Jakobi [Jak98b] has stated some
specific reasons why ANNs are generally preferred:

1. By varying the properties and parameters of simple processing units
used, different types of functionality can be achieved with the same
type of network structure. This means that the same encoding schemes
can be used independently of the functionality of the control system.

2. Using ANNs allows us to implement and test ideas from biology about
how neural mechanisms for the generation of behavior may work.
Also, it allows us to test and refine proposed biological models through
the exploration of parameter spaces that may suggest new hypotheses.

 ©2001 CRC Press LLC

3. There are other adaptive processes that we may use in conjunction with
artificial evolution, such as various forms of supervised and
unsupervised learning.

4. The behaviors that evolutionary robotics is concerned with at present
are low-level behaviors, tightly coupled with the environment through
simple, precise feedback loops. ANNs are ideal for this purpose.

Much of the evolutionary robotics work that has been undertaken to date con-
cerns the evolution of fixed-architecture neural networks for the control of robots
[FU00, NP95]. However, it is also possible to evolve neural networks for robot
control whose size and morphology are under the control of an evolutionary pro-
cess itself [Har97, JQ98]. Several systems have combined the power of neural
controllers and genetic algorithms. Lewis et al. [LFB94] used genetic algorithm-
based (GA) methods to evolve the weights for a neural controller in a robotic
hexapod, named Rodney, rather than using traditional neural learning. Apart from
neural networks, various types of control architectures have been evolved for
robots (either simulated or real). The most common are techniques from genetic
programming [KR92, LHL97a, LHF+97]. Other types of controller architectures
that have been employed include classifier systems [DC94, DMC96, SG94].

Another important research direction in evolutionary robotics is to evolve and
grow entire robots (e.g., the evolution of structures and body plans for LEGO
robots) [FP97, LHL97b], in addition to evolving controllers given their morpholo-
gies. The significance of this work is that in robot manipulations, sometimes mor-
phology can play an essential role. Depending on particular shapes, certain tasks
may become much easier to perform than others.

Related to robot morphology evolution is the earlier work on evolving three-
dimensional animated creatures. Ventrella [Ven94] has studied the possibility of
emerging the structure and locomotion behaviors of an artificial creature using
genetic algorithms. His system uses a model of specifically tailored qualitative
forward dynamics to generate gravitational, inertial, momentum, frictional, and
dampening effects. Sims [Sim94] has developed a system in which both the
animated three-dimensional creatures’ bodies (i.e., morphology) and their neu-
ral control systems (i.e., virtual brains) are genetically evolved and/or coevolved.

Mataric and Cliff [MC96] have identified several key problems with existing
evolutionary robotics methods, such as simulator fidelity, evaluation time, and
hardware robustness. Embodied evolution (EE) [WFP00], a new methodology for
conducting evolutionary robotics, is proposed to ameliorate these particular con-
cerns. Embodied evolution uses a population of physical robots that “evolve by
reproducing with one another” in a task environment, where evaluation, selec-
tion, and reproduction are carried out by and between the robots in a distributed,
asynchronous, and autonomous manner. However, some researchers have pointed
out other questions [MC96, NFMM94] that need to be answered if evolutionary
robotics is to progress beyond the proof-of-concept stage. One of the most urgent
concerns is how evolved controllers can best be evaluated. If they are tested using
real robots in the real world, then this has to be done in real time; and the evolution

 ©2001 CRC Press LLC

of complex behaviors will take a prohibitively long time. If controllers are tested
using simulation, then the amount of modeling necessary to ensure that evolved
controllers work on real robots may mean that the simulation is so complex to
design and so computationally expensive that all potential speed advantages over
real-world evaluation are lost.

3.4 Inspiration from Biology and Sociology

As pointed out by Colombetti and Dorigo [CD98], the view that animal behavior
is best described as a number of interacting innate motor patterns has inspired
the presently popular approaches to multi-robot control. These approaches apply
some simple control rules from biological societies – particularly ants, bees, and
birds – to the development of similar behaviors in cooperative robot systems.
Work in this vein has demonstrated the ability of multi-robot teams in flock-
ing, dispersing, aggregating, foraging, and following trails (see [Mat92b]). Mc-
Farland [McF94] has applied the dynamics of ecosystems to the development of
multi-robot teams that emerge cooperation as a result of acting on selfish inter-
ests. Competition in multi-robot systems, similar to that in nature, is presently
being studied in domains such as multi-robot soccer games (see [MAAO+99,
SV98]). Other recently identified topics of relevance include the use of imitation
to learn new behaviors, and the physical interconnectivity as demonstrated by
insects, such as ants, to enable collective navigation over challenging terrains (see
[BDT99, Mat94b, Sch99]).

As described by Parker [Par00], many cooperative robotics researchers have
found it instructive to examine the social characteristics of insects and animals
and to apply these findings to the design of multi-robot systems. The fields of
population biology and ecological modeling are concerned with the large-scale
emergent processes that govern systems of many entities interacting with one an-
other. Population biology and ecological modeling in this context consider the
“dynamics of the resultant ecosystem,” in particular “how its long-term behavior
depends on the interactions among the constituent entities” [WT99]. The field
of swarm intelligence studies the systems that are modeled after social insect
colonies [BDT99]. For instance, Beni [Ben88, BW89] has investigated cellular
robotic systems where many simple agents occupy one- or two-dimensional envi-
ronments to generate and self-organize patterns through nearest-neighbor interac-
tions. Swarm intelligence may be viewed as ecological modeling where individual
entities have extremely limited computing capacity and/or action sets, and where
there are very few types of entities. The premise of this field is that the rich behav-
ior of social insect colonies arises not from the sophistication of any individual
entity in the colony, but from the interactions among those entities. The study of
social insect colonies will also provide us with new insight into how to achieve
learning in large-scale distributed systems [WT99].

In addition, ethological studies have shown that multi-agent societies offer
significant advantages in performing community tasks. A wide range of animal
social structures exists to support agent-agent interactions. For example, “uni-

 ©2001 CRC Press LLC

level organizations are found in schooling fish, hierarchical systems are found in
baboon societies, and caste systems are typified by many insect colonies (such as
bees)” [Ark98]. The relationships between these agents often determine the na-
ture and type of communication essential for the social system to succeed. The
converse also holds in that the communication abilities somewhat determine the
most effective social organizations for a particular class of agents [Ark98]. Mc-
Farland [McF94] defines cooperative behavior as “the social behavior observed
in higher animals (vertebrates) – cooperation is the result of interactions among
selfish agents.” Dautenhahn and Billard [BD97] have undertaken studies on so-
cial robotics where the emergence of a social behavior is achieved through the
interaction of two robots via a simple imitative strategy. Dautenhahn and Ne-
haniv [DN98] have addressed the issues of social intelligence, communication,
and body image. While interesting from an artificial life perspective, Dauten-
hahn and Nehaniv do not utilize an explicit communication protocol or archi-
tecture that directly supports formal social interactions. The social behaviors pro-
duced are primarily emergent and based on semaphore communication. Similar
research by Pfeifer [Pfe98] demonstrates that very simple robotic entities can
exhibit emergent social behaviors.

Furthermore, economies also provide examples of naturally occurring systems
that demonstrate (more or less) collective intelligence. Both empirical economics
(e.g., economic history, experimental economics) and theoretical economics (e.g.,
general equilibrium theory, theory of optimal taxation) provide rich literature on
strategic situations where many parties interact [Bed92]. In fact, much of the en-
tire field of economics is concerned with how to maximize certain world utilities,
when there are some restrictions on individual agents and their interactions and in
particular when we have limited freedom in setting the utility functions for those
agents.

3.5 Summary

Behavior-based robotics, collective robotics, and evolutionary robotics have been
inspired by biology, ethology, sociology and other related fields. The three ap-
proaches are interrelated. They all aim at generating complex, adaptive, and goal-
driven group behaviors from simple local interactions among individuals in multi-
agent robotic systems [Mat92b]. However, they also produce different forms of
autonomy, adaptability, task complexity, and intelligence in multi-agent systems.
For example, although behavior-based approaches are robust for many task
environments, they are not necessarily adaptive. An evolutionary system can, on
the other hand, improve the adaptability to the changes in a dynamic environment.

Figure 3.1 presents a comparative view of the three approaches along the
dimensions of autonomy and task performance.

 ©2001 CRC Press LLC

A
u

to
n

o
m

y

Traditional AI Approaches

Collective Robotics

Evolutionary Robotics

Behavior-Based Robotics

Task Performance

FIGURE 3.1. Approaches in multi-agent robotics research focusing on various objectives.

 ©2001 CRC Press LLC

Liu, J. & Wu, W. "Models and Techniques"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

4

Models and Techniques

So even if we do find a complete set of basic laws, there will still be
in the years ahead the intellectually challenging task of developing
better approximation methods, so that we can make useful
predictions of the probable outcomes in complicated and realistic
situations.1

Stephen Hawking

4.1 Reinforcement Learning

Reinforcement learning (RL) is defined by Sutton and Barto in their book Re-
inforcement Learning: An Introduction [SB98] as “learning what to do – how

1A Brief History of Time, Bantam Press, Great Britain, 1988, p 187.

 ©2001 CRC Press LLC

to map situations to actions – to maximize a numerical reward signal.” In rein-
forcement learning, as in most forms of machine learning, “a learner is not told
which actions may take, but instead must discover which actions yield the most
reward by trying them.” In most cases, actions may affect not only the immedi-
ate reward but also the next situation and through that, all subsequent rewards.
In their opinion, “trial-and-error search and delayed reward are the two important
distinguishing features of reinforcement learning.” The trade-off between explo-
ration and exploitation has been thought as a challenge arising in reinforcement
learning, but not in other forms of learning. In order to gain a positive reward, a
reinforcement-learning agent must prefer actions that it has tried in the past and
found to be effective in producing a reward; but to discover new actions it has to
try actions that it has not selected before. That means the agent has to exploit what
it already knows in order to obtain a reward, and it also has to explore in order to
make better action selections in the future.

Besides an agent and an environment, Sutton and Barto [SB98] have further
identified four important elements of reinforcement learning: a policy, a reward
function, a value function, and optionally, a model of the environment. Specifically,

A policy defines the learning agent’s way of behaving at a given time. Roughly
speaking, a policy is a mapping from certain perceived states of the environ-
ment to actions to be taken when in those states. A reward function defines
the goal in a reinforcement learning problem. It maps a perceived state (or
state-action pair) of the environment to a single number, a reward, indicating
the intrinsic desirability of the state. A reinforcement learning agent’s sole
objective is to maximize the total reward it receives in the long run. The re-
ward function determines what are the good or bad events for the agent. A
value function specifies what is good in the long run. The value of a state is
the total amount of reward the agent can expect to accumulate in the future
starting from that state. Whereas rewards determine the immediate, intrinsic
desirability of environmental states, values indicate the long-term desirabil-
ity of states after taking into account the states that are likely to follow and
the rewards available in those states. A model of the environment is some-
thing that mimics the behavior of the environment. The agent can use such a
model to predict how the environment will respond to its actions.

In multi-agent robotics, robotic agents may have many possible actions that
they can take in response to a stimulus; and a policy determines which of the avail-
able actions the robots should undertake. Reinforcement is then applied based
on “the results of that decision, and the policy is altered in a manner consistent
with the outcome (reward or punishment)” [Ark98]. The ultimate goal is to “learn
an optimal policy that chooses the best action for every set of possible inputs.”
The robots strive to improve their performance, finding suitable behaviors as they
interact with their environment. This approach has the added benefit of allow-
ing the agents to adapt to different environmental conditions. For this reason,
reinforcement learning has become an attractive learning technique in multi-agent
robotics [Bal98, KLM96].

 ©2001 CRC Press LLC

4.1.1 Markov Decision Process

Mataric [Mat94a] has observed that in most computational models of reinforce-
ment learning, the agent-environment interaction can be described as a Markov
decision process (MDP). Her arguments are as follows:

1. The agent and the environment can be modeled as synchronized finite
state automata.

2. The agent and the environment interact in discrete time intervals.

3. The agent can sense the state of the environment and use it to make
actions.

4. After the agent acts, the environment makes a transition to a new state.

5. The agent receives a reward after performing an action.

4.1.2 Reinforcement Learning Algorithms

Mataric [Mat94a] also provides the following general form of reinforcement
learning algorithms:

1. Initialize the learner’s internal state I to I0.

2. Repeat:

(a) Observe current world state s.
(b) Choose an action a = F (I; s) using evaluation function F .
(c) Execute action a.
(d) Let r be an immediate reward for executing a in world state s.
(e) Update internal state I = U(I;s;a; r) using update function U .

The internal state I encodes the information the learning algorithm saves
about the world, usually in the form of a table maintaining state and action
data. The update function U adjusts the current state based on the received
reinforcement and maps the current internal state, input, action, and rein-
forcement into a new internal state. The evaluation function F maps an in-
ternal state and an input into an action based on the information stored in
the internal state. Different reinforcement learning algorithms vary in their
definitions of U and F .

4.1.3 Temporal Differencing Techniques

As Mataric [Mat94a] indicates, the predominant methodology used in reinforce-
ment learning is based on a class of temporal differencing (TD) techniques. All
TD techniques deal with “assigning credit or blame to past actions by predict-
ing long-term consequences of each action.” Sutton’s original formalization of
temporal differencing deals with such predictions in a Markovian environment
[Sut88].

 ©2001 CRC Press LLC

4.1.4 Q-Learning

Balch [Bal97] has given a detailed description of Q-learning.

It is a type of reinforcement learning in which the value of taking each possi-
ble action in each situation is represented as a utility function,Q(s;a), where
s is a state or situation and a is a possible action. If the function is properly
computed, an agent can act optimally simply by looking up the best-valued
action for the situation. The problem is to find Q(s; a) that provides an
optimal policy.

Watkins and Dayan [WD92] have developed an algorithm for determiningQ(s; a)
that converges.

Lin [Lin93] has proposed a method of Q-learning where complex tasks can
be learned hierarchically at several levels. The method decomposes a task into
subtasks. A robot learns at the subtask level first, then at the task level. The over-
all rate of learning is increased if compared to monolithic learning. Similarities
between Lin’s decomposition and temporal sequencing for assemblages of mo-
tor schemas can be readily observed. Lin’s subtasks or elementary skills corre-
spond to behavior assemblages, while a high-level skill is a sequence of assem-
blages. Learning the elementary skills corresponds to tuning individual states or
behavior assemblages, and learning at the high level is equivalent to learning the
state transitions in a finite state automaton.

Since Q-learning is often used to deal with discrete actions and states, it may
require a great deal of time and memory to learn the proper actions for all states.
To reduce the complexity and generalize conventional Q-learning, Kim et al.
[KSO+97] suggest a region-based credit assignment approach, where the regions
are generated by applying an online convex clustering technique.

4.1.5 Multi-Agent Reinforcement Learning

To date, reinforcement learning is most often applied in single-robot systems
[MB90, MC92]; but recent work indicates that multi-robot systems should benefit
as well [Bal97, Mat97b]. As in other aspects of multi-robot systems design, when
learning is extended from an individual to a team, new interactions will arise.
Mataric [Mat94c] has investigated the learning of behavior-based multi-robot
teams in foraging tasks. Her work focuses on developing specialized
reinforcement functions for social learning.

The overall reinforcement, Rt, for each robot is composed of separate com-
ponents, D, O, and V . D indicates the progress of the robot toward its
present goal.O corresponds to reinforcement if the present action is a repeti-
tion of another robot’s behavior. V is a measure of vicarious reinforcement,
which follows the reinforcement provided to other robots.

Mataric [Mat94a, Mat94d] has also proposed a reformulation of reinforcement
learning using higher levels of abstraction (i.e., conditions, behaviors,

 ©2001 CRC Press LLC

heterogeneous reward functions, and progress estimators, instead of states, ac-
tions, and reinforcement) to enable robots to learn a composite foraging behavior.

Moreover, Nagayuki et al. [NID00] have developed a multi-agent reinforce-
ment learning method based on the estimation of other agents’ actions for solving
a two-agent cooperation problem. Parker [Par94] uses standard reinforcement al-
gorithms to improve the performance of cooperating agents in the L-ALLIANCE
architecture by having the agents learn how to estimate the performance of other
agents. Sen et al. [SSH94] use reinforcement learning in a two-robot box-pushing
task. Balch [Bal97] applies reinforcement learning in building a task-achieving
strategy for each robot in a team, while the robots learn individually to activate
particular behavior assemblages given their current situation and a reward signal.
Uchibe et al. [UAH98] propose a reinforcement learning method supported by
system identification and learning schedules in multi-agent environments. Their
method estimates the relationships between a robot’s behavior and those of others
through interactions. However, only one robot may learn and other robots will use
a fixed policy in order for the learning to converge.

Reinforcement learning allows an autonomous agent that has no knowledge of
a task or an environment to learn its behavior by progressively improving its per-
formance based on given rewards as the learning task is performed. However, this
may involve a high computational cost. Sometimes agents based on reinforce-
ment learning can be very slow in adapting to environmental changes. Fukuda et
al. [FFA99] propose a method to reduce the adaptation delay. Their idea is to make
it possible for a robot to know if any environmental change has occurred through
multiplex reinforcement learning. Sen et al. [SSH94] note that applying reinforce-
ment learning to a group can make the learning more difficult as each individual
agent becomes a dynamic factor in the others’ learning. Takahashi and Asada
[TA99] have developed a method of multi-layered reinforcement learning with
which a control structure can be decomposed into smaller transportable chunks,
and therefore previously learned knowledge can be applied to related tasks in
newly encountered situations. Similarly, Fujii et al. [FAAE98] have applied a
multi-layered reinforcement learning scheme to acquire collision-avoidance be-
haviors. Their scheme consists of four layers of modular control, correspond-
ing to four stages of reinforcement learning that start with easier problems and
proceed to more complicated ones.

It should be mentioned that the amount and quality of reinforcement can de-
termine how quickly an agent will learn. In a nondeterministic, uncertain world,
learning within bounded time requires reinforcement shaping in order to take ad-
vantage of as much information as available to the agent. As suggested by Mataric
[Mat94a], there are generally two ways of accelerating reinforcement learning: (1)
“by building in more information” and (2) “by providing more reinforcement.” In
the case of a multi-agent system, Yamaguchi et al. [YTY97] point out the im-
portance of propagating and selectively sharing learning results. Along this line,
Mataric [Mat97a] has studied how to learn social rules, including the observation
and communication of a behavior, among four physical robots.

 ©2001 CRC Press LLC

One of the attractive features of reinforcement learning lies in its formal foun-
dation. If certain conditions (e.g., an infinite number of trials and a Markovian en-
vironment) are satisfied, an agent will converge toward an optimal action selection
policy. Unfortunately, these conditions are seldom attainable in real, complex sit-
uations. As Maes [Mae95] points out, existing reinforcement learning algorithms
will have several difficulties:

1. They cannot deal with time-varying goals; the action policy learned is
for a fixed set of goals.

2. If the goals change, they will have to relearn everything from scratch.

3. For realistic applications, the size of the state space (or the number of
situation-action pairs) is so large that learning takes too much time to
be practical.

4. Only when a reward is received can the agent start learning about the
sequence of actions leading to that reward; and as a result, it takes a lot
of time to learn long action sequences.

5. Given faulty sensors or hidden states, it is difficult for the agent to
know at all times which situation it is in.

6. It is hard to build initial knowledge into learning.

7. The agent cannot learn when multiple actions are taken in parallel.

Wyatt [Wya97] has also noted the limitations associated with reinforcement
learning methods per se, and believes that these are especially pertinent to the
problem of using them in real robots. First, while many interesting learning do-
mains can be modeled as MDPs, agents situated in nondeterministic, uncertain en-
vironments do not fit in this model [Mat94a]. New algorithms have been designed
to cope with this difficulty [LM92, WB90] but are not guaranteed to converge to
an optimal policy under such circumstances. The second problem is that of slow
convergence. Although deterministic MDPs can be solved efficiently, this has not
been shown to extend to MDPs with stochastic transition functions [LDK95].
Furthermore, because the number of possible states increases exponentially with
the number of features in the environment, the time taken to solve MDPs rises
rapidly as the complexity of the environment increases. Consequently, in stochas-
tic environments of large feature (and hence state) space, the convergence can be
prohibitively slow. Two possible remedies to this problem will be: (1) to make the
temporal credit assignment mechanism faster and (2) to make the temporal credit
assignment problem simpler.

4.2 Genetic Algorithms

A genetic algorithm (GA) may be regarded as “a hill-climbing search method that
finds near-optimal solutions by subjecting a population of points in a search space
to a set of biologically inspired operators” [Gol89]. The basic principle of genetic
algorithms works as follows [Hol75]:

 ©2001 CRC Press LLC

1. The fitness of each member in a GA population is computed according to
an evaluation function, called fitness function, that measures how well the
individual performs in the given task domain.

2. The best individuals of the population are propagated proportionately to
their fitnesses, while poorly performing individuals are reduced or
eliminated completely.

3. By exchanging information between individuals to create new search points,
the population explores the search space and converges to the neighborhood
of an optimal solution.

The algorithm may find the optimal solution, but it is not guaranteed to do so.
Genetic algorithms apply their operators to a representation of the search-space
points. The representation is a position-dependent bit string, where each bit is a
gene in the chromosome string. Several genetic operators have been proposed, but
the three most frequently used are reproduction, crossover, and mutation

[Gol89]. These operators are graphically illustrated in Figure 4.1. The reproduc-
tion operator “selects the fittest individuals and copies them exactly, replacing
less-fit individuals so the population size remains constant.” This increases the
ratio of well-performing individuals to poorly performing ones. The crossover
operator “allows two individuals to exchange information by swapping some part
of their representations.” The mutation operator is used to “prevent the loss of
information that occurs as the population converges on the fittest individuals.”

Reproduce

Crossover

Mutate

FIGURE 4.1. An illustration of genetic operators [RABP94].

Figure 4.2 presents the evolutionary cycle of GA in pseudo-code, where pc and
pm specify the probabilities of crossover and mutation, respectively.

Generally speaking, every researcher has his or her own GA recipe. Some
people rely solely on mutation and do not use crossover, whereas others stress
the importance of crossover. Some prefer tournament-based selection, whereas
others use global ranking of all individuals. Additionally, crossover can take
different forms, depending very much on the genetic encoding scheme employed.

Ram et al. [RABP94] have explored the application of genetic algorithms in the
learning of robot navigation behaviors. Unlike standard genetic algorithms, they

 ©2001 CRC Press LLC

begin
generation � 0
seed population
while not termination condition do
generation � generation + 1
calculate fitness
selection
crossover (pc)
mutation (pm)

endwhile
end

FIGURE 4.2. The evolutionary cycle in GA [Ang93].

use a floating point gene representation method. Dorigo and Schnepf [DS91] have
used GA to train simulated robots to avoid obstacles and follow moving targets.
Their genetic algorithm can determine when the robots should switch from one
behavior to another.

Task domains do not always fall into the convenient picture of fixed-dimensional
search space. In order to deal with such domains, SAGA (i.e., Species Adaptation
Genetic Algorithms) [Har96] has been developed. It is an incremental evolution
through a gradual increase in genotype length. Rank-based selection is used to
maintain a constant selective pressure, and the mutation rate is on the order of one
mutation per genotype.

4.3 Artificial Life

As originally defined by Langton [Lan88], the field of artificial life (AL) fo-
cuses on “the basic phenomena commonly associated with living organisms, such
as self-replication, parasitism, evolution, competition, and cooperation.” It com-
plements traditional biological and social sciences by attempting to “simulate
or synthesize lifelike behaviors in computers, robots, or other man-made sys-
tems.” According to Langton, the goal of AL is to “model ‘life-as-it-could-be’
so as to enhance the understanding of ‘life-as-we-know-it’.” It increases our un-
derstanding of nature and offers us insight into artificial models, thereby pro-
viding us with the ability to improve their performance. More specifically, AL
provides a unique framework for studying “how entities at different levels of
organization (e.g., molecules, organs, organisms, and populations) interact among
themselves” [Par97] although, of course, at the cost of introducing crude
simplifications. AL draws on bottom-up modeling of complex systems, such as
colonies of ant-like agents [BB99, DMC96]. It is this bottom-up, parallel, dis-
tributed, local determination of behavior that AL employs in its primary method-
ological approach to the generation of lifelike behaviors. The key concepts of AL

 ©2001 CRC Press LLC

are adaptation, self-organization, evolution, and emergent behaviors. Adaptation
and self-organization mean that a system improves its own structure over time
based on its own experience in an environment. Evolution offers the possibility of
adaptation to the dynamic changes in the environment. When an unforeseen event
occurs, the system can evolve and adapt to the new situation.

Although AL shares with AI its interest in synthesizing adaptive autonomous
agents, the AL community has initiated a radically different approach toward the
goal of building autonomous agents that focuses on fast, reactive behavior as well
as adaptation and learning, rather than knowledge and reasoning [Lan88].

The AL approach differs from classical robotics approaches in that the former is
interested in how a robotic agent interacts with its environment and learns from its
interaction, leading to emergent robotic behaviors. Multi-agent robotics is related
to AL in that both are concerned with exploiting the dynamics of local interac-
tions between agents and the world in order to create complex global behaviors.
However, research in AL usually deals with much larger population sizes.

Brooks [Bro92] has discussed the general issues involved in using AL tech-
niques to program mobile robots. In particular, he examines the difficulties in-
herent in transferring programs evolved in a simulated environment to run on an
actual robot. While analyzing the dual evolution of organism morphology and
nervous systems in biology, he proposes a technique for capturing some of the
search space pruning that the dual evolution offers in the domain of robot
programming.

4.4 Artificial Immune System

Ishiguro et al. [IKW+97] point out that in behavior-based robotics, there are
two problems that have to be resolved: how to construct an appropriate arbi-
tration mechanism, and how to prepare appropriate competence modules. One
of the promising approaches to tackle these two problems is based on a biolog-
ical immune system – a biologically inspired behavior arbitration mechanism.
This is because the immune system has various interesting features when viewed
from the engineering standpoint, such as immunological memory, immunological
tolerance, pattern recognition, and so on.

Recent studies on immunology have shown that “the immune system does not
just detect and eliminate non-self materials called antigens (such as virus) but
rather plays an important role in maintaining its own system against dynami-
cally changing environments through the interactions among lymphocytes and/or
antibodies” [Per92]. Therefore, the immune system can be expected to provide a
new methodology suitable for dealing with unknown or hostile environments.

Following the descriptions in [AG96], the basic components of a biological
immune system are macrophages, antibodies, and lymphocytes. Lymphocytes are
mainly classified into two types, B-lymphocytes and T-lymphocytes.
B-lymphocytes are the robots maturing in bone marrow.

 ©2001 CRC Press LLC

Roughly 107 distinct types of B-lymphocytes are contained in a human body,
each of which has a distinct molecular structure and produces Y-shaped an-
tibodies from its surfaces. The antibody recognizes specific antigens, which
are the foreign substances that invade a living system. To cope with continu-
ously changing environments, living systems possess an enormous repertoire
of antibodies in advance. On the other hand, T-lymphocytes are the robots
maturing in thymus, and they generally perform to kill infected robots and
regulate the production of antibodies from B-lymphocytes.

Immune system models can be extended to multi-agent robotic systems. Mit-
sumoto et al. [MFA+96] have drawn parallels at several levels – a robot and
its environment are modeled as a stimulating antibody-antigen relationship, and
robot-robot interactions can be both stimulating and suppressing (analogous to
antibody-antibody relationships). Each robot decides its next action based on its
relationships with other robots and the world, organizing itself to effectively con-
duct a task. Fukuda et al. [FMSA99] have utilized an immune architecture to
realize a phase change of group behavior patterns in Micro Autonomous Robotic
System (MARS) and design lifelike robotic systems.

4.5 Probabilistic Modeling

The core of probabilistic modeling is the idea of representing information through
probability densities. Specifically, Thrun [Thr00] emphasizes two aspects of
probabilistic characterization in robotics:

1. Probabilistic perception: Robots are inherently uncertain about the
state of their environments. The uncertainty arises from sensor limi-
tations, noise, and the fact that most interesting environments are, to
a certain degree, unpredictable. When guessing a quantity from sen-
sory data, probabilistic approaches compute a probability distribution
over what might be the case in the world instead of generating a single
best guess only. As a result, a probabilistic robot can gracefully re-
cover from errors, handle ambiguities, and integrate sensory data in a
consistent way. Moreover, the probabilistic robot knows about its own
ignorance – a key prerequisite of autonomous robots.

2. Probabilistic control: Autonomous robots must act in the face of un-
certainty. Instead of considering the most likely situations only (current
or projected), probabilistic approaches strive to compute a decision-
theoretic optimum, in which decisions are based on all possible
contingencies.

Probabilistic approaches are typically more robust in the face of sensor limita-
tions, sensor noise, and environment dynamics [BIM00]. They often scale better
to complex environments, where the ability to handle uncertainty is of greater

 ©2001 CRC Press LLC

importance. In addition, “probabilistic algorithms make much weaker require-
ments on the accuracy of models than many classical planning algorithms do,
thereby relieving a programmer from the (unsurmountable) burden of coming
up with accurate models” [BIM00]. As viewed probabilistically, the robot learn-
ing is a long-term estimation problem. Thus, probabilistic algorithms provide a
sound methodology for many flavors of robot learning. However, probabilistic
algorithms are inherently less efficient than non-probabilistic ones due to the fact
that they consider entire probability densities.

Probabilistic approaches are similar to behavior-based approaches since they
place a strong emphasis on sensory feedback [BIM00]. Because probabilistic
models are insufficient to predict an actual state, sensor measurements play a vi-
tal role in state estimation and, thus, in determining a robot’s actual behavior.
At the same time, they differ from behavior-based approaches since they rely on
planning and since the robot behavior is not just a function of a small number of
recent sensory readings.

Burgard et al. [BMF+00] have presented a probabilistic approach for the coor-
dination of multiple robots that simultaneously explore an unknown environment.
They take into account the costs of reaching a target point and the utility of the
target point, as given by the size of the unexplored area that a robot can cover with
its sensors upon reaching the target position. Whenever a target point is assigned
to a specific robot, the utility of the unexplored area visible from this target po-
sition is reduced for other robots. In this way, a team of robots assigns different
target points to different individuals.

Simmons et al. [SAB+00] address the problem of exploration and mapping
of an unknown environment by multiple robots with a mapping algorithm and
an exploration algorithm. The former is “an online likelihood maximization that
uses hill climbing to find maps that are maximally consistent with sensory data.”
The latter explicitly coordinates the robots. It tries to maximize the overall util-
ity by minimizing the potential of overlap in information gain among the various
robots. Thrun et al. [TFB98] consider map building as a “constrained, proba-
bilistic maximum-likelihood estimation problem” and address the task of build-
ing large-scale geometric maps of indoor environments with mobile robots. They
have proposed a practical algorithm for generating the most likely map from data,
along with the most likely path to be taken by a robot.

Localization is a process of updating the pose of a robot in an environment
based on sensory readings. Fox et al. [FBKT99, FBKT00] present a probabilistic
algorithm for collaborative mobile robot localization. They use a sample-based
version of Markov localization, capable of localizing mobile robots in an anytime
fashion. When a team of robots localizes in the same environment, probabilistic
methods are employed to synchronize each robot’s belief whenever one robot
detects another. As a result, the robots can localize themselves faster.

 ©2001 CRC Press LLC

4.6 Related Work on Multi-Robot Planning and
Coordination

Besides the above-mentioned work, some well-known strategies, such as multi-
agent planning and model-based techniques, can also play an important role in
multi-agent robotic systems. Inoue et al. [IOH98] have described a planning
method for an interactive transportation task by cooperative mobile robots in an
unknown environment. The task requires the acquisition of environmental infor-
mation, the generation of appropriate robot paths based on the acquired informa-
tion, and the formation of a robot group. In order to realize an efficient trans-
portation, they propose a motion planning architecture consisting of environmen-
tal exploration phase, path-generation phase, and strategy-making phase. In each
phase, every robot plans its own motion individually; and the phase transitions are
made at the same time for all robots. Miyata et al. [MOA+00] have developed a
task-assignment architecture for dealing with the same task. They consider three
needs that a planner should meet: to deal with a variety of tasks in time and space;
to deal with a large number of tasks; and to decide behavior in real time. The
following approaches have been proposed:

1. Based on sensory information, tasks will be dynamically generated
using so-called task templates.

2. The generation of tasks is tuned in quality by feeding back executed
results.

3. The main part of the architecture consists of two real-time planners:
a priority-based task-assignment planner using a linear programming
method and a motion planner based on short-time estimation.

Donald et al. [DJR93] have examined motion-planning algorithms for coor-
dinated manipulation with different numbers of robots and different amounts
of a priori knowledge about an object to be moved. The theoretical aspect of
their work focuses on computing information requirements for performing par-
ticular robot tasks such as box-pushing. Botelho and Alami [BA00] have pro-
posed a general architecture called M+ cooperative task achievement, where
various schemes for multi-robot task achievement are integrated. It is based on
an online combination of local individual planning and multi-robot plan vali-
dation for coordinated and cooperative behaviors. The robots plan/refine their
respective missions, taking into account other robots’ plans and social rules as
planning/refinement constraints, and thus produce validated multi-robot plans
containing coordinated and cooperative actions.

Last but not least, Goldberg and Mataric [GM99] have shown how various lev-
els of coordinated behaviors may be achieved in a group of mobile robots by
applying a dynamics model of the interaction between a robot and its environ-
ment. They use augmented Markov models (AMMs) as a tool for capturing such
interaction dynamics online and in real time, with little computational and storage
overhead.

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Outstanding Issues"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

5

Outstanding Issues

There are many other deep, simple principles: continuity,
connectivity, feedback, information, order, disorder,
bifurcation, learning, autonomy, emergence....

Right now, we are aware of a few of these deep principles. We
need more. We also need a better understanding of how to use those
principles. We also need to extend the range of systems that our
mathematics can handle.1

Ian Stewart

1Life’s Other Secret, John Wiley & Sons, 1998, p 247.

 ©2001 CRC Press LLC

5.1 Self-Organization

One of the main features that makes the multi-agent approach attractive in syn-
thesizing the adaptive behavior of a multi-robot system is the possibility of self-
organization [Nol98]. The advantages of self-organization and the efficiency of
self-organizing behaviors in animal societies can be readily noted. Some animal
societies, particularly social insects, can achieve complex tasks that are impossible
to complete individually [BDT99]. In a self-organizing system, simple programs
can operate in unforeseen situations and adapt to changing conditions.

Bonabeau et al. [BDT99] summarized three important characteristics of
self-organization.

First, a self-organizing system can accomplish complex tasks with simple in-
dividual behaviors. Second, any change in the environment may influence the
same system to generate a different task, without any change in the behavior
characteristics. Finally, any small differences in the individual behaviors can
influence the collective behavior of the system.

Therefore, social complexity of the system is compatible with simple identical
individuals, as long as the communication among the individuals can provide a
necessary amplifying mechanism. For example, a swarm of robotic agents gath-
ering under a palletized load can change the operation phase by receiving a signal
from any member of the swarm. Bonabeau et al. [BTC98, BT95] achieved this by
defining specific communication mechanisms. Generally speaking, the character-
istics of self-organization are desirable in a swarm of robots where simple indi-
vidual behaviors can be achieved with relatively low cost [Bon98]. At the same
time, the simplicity (and homogeneity) of individual agents in a robotic swarm
also decreases the likelihood of breakdown. Also, the breakdown of one agent
will not affect the activity of the whole robotic swarm [Ste95].

5.2 Local vs. Global Performance

With respect to multi-robot performance, several important issues can be posed
for a system of decentralized autonomous robots.

Given a finite number of behaviors locally defined for individual robots in an
environment, how will the robots converge to a set of desirable configurations?
How will the parameters, such as the initial number/distribution of the robots and
their given behavior parameters, affect the converged states?

Suppose that we have two concurrent ways of linearly changing behavior pa-
rameters, in order to make the steady state convergence faster and more selec-
tive (since we may be interested in only one of the states). The first way is
through each of the individual robots – the robot records its own performance,
such as the number of encounters and the number of moves. Then, based on such
observations, it tries to modify its own behavior parameters in order to achieve an

 ©2001 CRC Press LLC

optimal performance, such as the maximum number of encounters and the mini-
mum number of moves. Another way is through the feedback of the information
that is observed globally from the whole system, such as the spatial pattern for-
mation in group robots. For example, a particular group of robots switches from
one behavior to another as commanded by a global control mechanism; or the be-
havior parameters in a particular group change in a certain way. From the above
descriptions, we now come to the following questions: in order to achieve an opti-
mal multi-robot performance, how much optimization at the local individual level
and how much at the global level will be necessary? What will be a reasonable
balance between the two? And, how do we dynamically maintain such a balance?

5.3 Planning

The bottom-up organization of robot behaviors has several variations. For exam-
ple, supervenience architecture adds a goal-driven mechanism to enable a hier-
archical task-network planner to adapt behaviors to a context and to new goals
[SH94]. Similarly, Arkin’s AuRA binds a set of reactive behaviors to a simple hi-
erarchical planner that chooses appropriate behaviors in a given situation [Ark89].
Toward an integration of planning and reacting, Lyons and Hendriks [LH94]
have developed a system called RS in which planning is seen as the permanent
adaptation of a reactive process.

To date, research in multi-agent planning has been limited primarily to the areas
of distributed artificial intelligence (DAI) [SV97, SV98, SL93, DMC96]. With
DAI, several agents may cooperate to accomplish a certain task. The task may
be one of such complexity that no single agent can accomplish it alone. Alami et
al. [AFH+98] examined the planning and plan cooperation in multi-agent robotic
systems and have identified the following issues:

1. Global vs. local: In planning actions for a group of robots, we can con-
sider the whole group or limit the scope of planning to the subgroups
of robots with conflicting actions. If the number of critical resources
in an environment is more or less equal to the number of robots, con-
flict resolution may, by propagation, involve the whole group. On the
other hand, if the environment is properly sized, conflicts may re-
main local; and the solutions can be negotiated locally without dis-
turbing unconcerned robots. In addition, the uncertainty in perceiv-
ing states will grow with the increased complexity of the environment.
Consequently, global planner-based approaches to control will not be
well suited for problems involving multiple robots acting in real time
based on uncertain sensory information.

2. Complete vs. incremental: We can also limit the scope of plan-
ning and plan cooperation in time. When a mission is sent to a robot,
the robot may plan the whole mission. But considering the execution

 ©2001 CRC Press LLC

hazards and computational costs involved, it will be inefficient to plan
too far ahead. Plan cooperation can be done continuously to guarantee
a smooth navigation and to avoid over-constraining other robot plans.

3. Centralized vs. distributed: Where should planning and plan coop-
eration take place, in a centralized computer or on board? This does
not change the computational complexity of treatment itself. How-
ever, in a centralized approach, all the data (which is mostly local)
needs to be sent to a central station and therefore requires a reliable
communication link with a high bandwidth between robots and the
central station.

5.4 Multi-Robot Learning

While a considerable amount of work has been devoted to multi-agent learning
[Wei96], somewhat less work has been accomplished to date in multi-robot learn-
ing. Multi-robot learning is a complex problem. As Schaal [Sch00] has noted,
research needs to address how to learn from (possibly delayed) rewards, how to
deal with high-dimensional learning, how to use efficient function approximators,
and how to embed all the elements in a distributed control system with real-time
performance. A particularly challenging domain for multi-robot learning concerns
the cooperation of team robots.

5.5 Coevolution

Coevolution has been receiving increased attention as a method of multi-agent si-
multaneous learning (e.g., to evolve a learner and a learning environment simulta-
neously). Mataric [Mat94b] has applied coevolution in a group of
physical robots to achieve collective learning through a direct exchange of
received reinforcement and learned information.

As highlighted by Nolfi and Floreano [NF98], coevolution has several interest-
ing features that can potentially enhance the adaptation power of artificial evo-
lution. For instance, the performance of individuals in a population depends on
the individual strategies of other populations, which vary during an evolutionary
process.

Existing coevolution methods have mostly focused on two competing indi-
viduals, such as a prey and a predator [CM96, FN97, LHF+97]. Since behav-
iors emerged from a multi-agent environment include not only competition but
also cooperation, ignorance, and so on, artificial coevolution beyond competition
should also be explored. Uchibe et al. [UNA98] suggest that the environment
itself should coevolve from simpler to more complicated situations and thus as-
sist agents in developing the desired skills of competition and cooperation. More
systematic studies are needed to understand what are the necessary and sufficient
conditions for leading coevolutionary processes to successful results.

 ©2001 CRC Press LLC

5.6 Emergent Behavior

Steels [Ste95] has noted two advantages of emergent behavior when compared to
directly programmed behavior:

1. No additional structure is needed inside an agent to get additional ca-
pabilities. Therefore, we do not need any special explanations on how
the behavior may come about.

2. Emergent behavior tends to be more robust because it is less dependent
on accurate sensing or action and because it makes less environmental
assumptions.

Behavior-based AI research considers the notion of emergent behavior as a pos-
sible explanation for the emergence of functional complexity in agents. Emergent
behavior implies a holistic capability where “the sum is greater than its parts.”
Arkin [Ark98] provided a survey of discussions on emergence:

1. Emergence is “the appearance of novel properties in whole systems”
[Mor88].

2. “Global functionality emerges from the parallel interaction of local
behaviors” [Ste90].

3. “Intelligence emerges from the interaction of the components of the
system” (where the system’s functionality – planning, perception,
mobility, etc. – results from the behavior-generating components) [Bro91].

4. “Emergent functionality arises by virtue of interaction between components
not themselves designed with the particular function in mind” [MB93].

Furthermore, Arkin [Ark98] defines emergence as “a property from a collec-
tion of interacting components – behaviors.” Generally speaking, emergent prop-
erties are common phenomena in behavior-based systems. In some cases, they are
straightforward, such as choosing the highest ranked or most dominant behavior;
in others they are more complex, involving a fusion of multiple active behav-
iors. Further studies are needed in order to better understand the efficient ways of
inducing emergent properties in a multi-robot system.

5.7 Reactive vs. Symbolic Systems

Spier [Spi97] categorized researchers in cooperative robotics into those who be-
lieve “robot control is best achieved through symbolic means – including explicit
world representation and logical reasoning” and those who believe “it is best
achieved through reactive means – in which robots rely on simple behaviors and
intelligence emerges naturally from the interactions among those behaviors.” As
he points out, both approaches have their drawbacks.

 ©2001 CRC Press LLC

While reactive systems are robust and understandable (at the single-agent
level), they are generally inefficient and extremely complex (at the global
level) – especially when a global behavior is desired, as in many multi-agent
systems.

Often, reactive systems seem to attain a correct global behavior through a combi-
nation of luck and sheer persistence on the part of a programmer. As a reactive rule
base grows, reasoning about the complex interactions among the rules becomes
very difficult [OJ96].

On the other hand, symbolic systems, which generally perform more predictably
than reactive systems, and whose global behavior is easier to understand than
that of an equivalent reactive system, also have a number of problems. As Spier
[Spi97] indicates, they are not robust; the failure of one component in a multi-
agent planning system can lead to the failure of the whole system. In addition,
difficult tasks can lead to poor performance on the part of symbolic systems.

Generally speaking, reactive approaches [LVCS93, Mat95a, Mat95b, SB93,
BDT99] tend to view cooperating agents as decentralized groups of peers. In these
approaches, each agent follows its own reactive programming. Besides robust-
ness, reactive systems are desirable in that they are modular (theoretically, the
programmer needs only to think in terms of a single robot) [Mat92a, Mat95b,
SB93].

5.8 Heterogeneous vs. Homogeneous Systems

Heterogeneity in multi-robot systems presents a challenge to efficient autonomous
control, especially when an overlap in team member capabilities exists. As Mataric
[Mat94a] observes, in a multi-robot system, more than one robot may be able to
perform a given task, but “with different levels of efficiency.” In such a case, the
robots must continuously determine which individual in the team is currently best
suited for the task. This type of decision is usually not so easy to make, especially
when the multi-robot system control is distributed across all team members. Thus,

A heterogeneous team control mechanism must have some effective means
of distributing tasks so that an acceptable level of efficiency can be achieved
without sacrificing the desirable features of fault tolerance and robustness
[Mat94a].

Most research in multi-robot systems has centered on homogeneous systems,
with some work on heterogeneous systems focusing on mechanical and sensor
differences (for example, see Parker’s work [Par94]). Recent investigations in-
dicate that behaviorally heterogeneous systems can offer advantages in certain
tasks [Bal97, FM97]. Teams of mechanically identical robots are particularly
interesting because they can be either homogeneous or heterogeneous,
depending only on their behavior.

 ©2001 CRC Press LLC

Goldberg and Mataric [GM99] proposed a framework for investigating the
relative merits of heterogeneous and homogeneous behaviors in foraging tasks.
They focus on mechanically identical but behaviorally different agents. Time,
interference, and robustness are proposed as metrics for evaluating a foraging
robot team, while pack, caste, and territorial arbitration are offered as mechanisms
for
generating an efficient behavior.

5.9 Simulated vs. Physical Robots

There are good reasons for working with simulated robots: “learning often re-
quires experimenting with behaviors that may occasionally produce unacceptable
results” [Sch94]. Making mistakes on real physical systems can be quite costly
and dangerous. In addition, the evolution of complex behaviors from scratch on a
physical robot, even if it is technically feasible, would require “an adaptation time
that is too long to be practically exploited for real-world applications” [FM98].
It is well-known that the performance of genetic algorithms is sensitive to ini-
tial conditions. Evolution in simulated environments, usually less time-consuming
than that in the real world, may allow us to ascertain to what extent a specific evo-
lutionary process is sensitive to the initial conditions and therefore the probability
that a limited number of simulations in real environments can produce desired
performance. Nolfi et al. [NFMM94] suggest that simulated robots be used in de-
veloping control systems for real robots when certain special conditions are taken
into account. However, one should not expect control systems that are evolved in
a simulated environment to behave exactly the same in a real environment.

As researchers have pointed out [Bro92, FM96], there are certain situations
where those who use simulated robots to develop control systems for real robots
may encounter problems:

1. Sensors should not be confused, as in simulation. However, physi-
cal sensors do not separate objects from the background, they do not
operate in a stable coordinate system, and they do not provide
information regarding the absolute positions of objects.

2. Simulation usually does not consider all the physical laws of the
interaction of a real agent with its environment, such as mass, weight,
friction, inertia, etc.

3. Physical sensors deliver uncertain values and commands to actuators
that may have very uncertain effects, whereas simulation often uses
grid-worlds and sensors that return perfect information.

4. Different physical sensors and actuators perform differently because
of the slight differences in electronics and mechanics or because of
their different positions in a robot. This factor is not considered in
simulation.

 ©2001 CRC Press LLC

Generally speaking, simulation can be of great help when properly integrated
with tests on physical robots. Current simulation methods have progressed from
unrealistic grid-worlds to new methodologies that, to a certain extent, guarantee
an acceptable transfer to a target robot under well-understood constraints [Jak98a,
Jak98b, NFMM94].

5.10 Dynamics of Multi-Agent Robotic Systems

Cooperative behaviors in multi-agent robotic systems arise out of the local ac-
tions and interactions of relatively simple (as compared to the system as a whole)
individuals, without the existence of centralized control [Win90, NNS97]. Often,
the local interactions are nonlinear. In other words, the behavior of the system
as a whole is more than a linear superposition of the behaviors of the individuals
when considered in isolation. This property can be stated using the popular phrase
“the whole is more than the sum of the parts” [Hor99]. The global, cooperative
behavior-generating dynamics in multi-agent robotic systems may be regarded as
an emergent property of such systems.

Harvey [Har00] defines a dynamic system as “any system with a finite number
of state variables that can change over time.” The rate of change in one variable
depends on the current values of some or all of the variables in a regular fashion.
The design problem that a robot builder faces is creating the internal dynamics of a
robot as well as the dynamics of its coupling and its sensorimotor interactions with
its environment, such that the robot can exhibit a desired behavior. The design of
any one component of a control system depends on an understanding of how it
interacts in real time with other components. Such an interaction may be mediated
via the environment [Bro99]. Brooks’ subsumption approach [Bro86] offers one
design heuristic:

First build a robot with behaviors simple enough to understand, and then
incrementally add new behaviors of increasing complexity or variety, one
at a time, which subsume the previous ones. Before the designer adds a new
control system component in an attempt to generate a new behavior, the robot
is fully tested and debugged for its earlier behaviors.

Huberman and Hogg [HH93] studied a form of distributed computation in
which agents have incomplete knowledge and imperfect information about the
state of the whole system, and they presented a mechanism for achieving global
stability through local control. They [HH95] also proposed a detailed model of
collaboration in communities and its dynamics. This model enables a community
to naturally adapt to its growth and specialization or to any changes in the envi-
ronment without the need for any centralized control. Youssefmir and Huberman
[YH95] have shown the dynamics of a multi-agent system whose members con-
tinuously modify their behaviors in response to the dynamics that unfold within
the system. The behaviors are driven by the local optimization of the utilities that

 ©2001 CRC Press LLC

the agents accrue when gaining access to resources. The agents decide on the
basis of bounded rationality, which implies imperfect information and delayed
knowledge about the present state of the system.

5.11 Summary

Multi-agent robotic system design is challenging because the performance of such
a system depends significantly on issues that arise from the interactions between
robots. Distributed approaches are appealing due to their properties of scalability
and reliability. Learning, evolution, and adaptation are three fundamental charac-
teristics of individuals in a multi-agent robotic system. Behavior-based robotics,
collective robotics, and evolutionary robotics have offered useful models and ap-
proaches for cooperative robot control in the multi-robot domain. They are in-
spired by the ideas from biology, ethology, and sociology. Different techniques of
reinforcement learning, genetic algorithms, artificial life, immune systems, prob-
abilistic approaches, and multi-agent planning can be helpful in the design of co-
operative controllers for multiple robots. Several important issues in multi-agent
robotics, such as self-organization, multi-agent planning and control, coevolution,
emergent behavior, reactive behavior, heterogeneous/homogeneous design, multi-
agent simulation, and behavioral dynamics need to be addressed. The ultimate aim
is to synthesize complex group behaviors from simple social interactions among
individuals based on simple strategies.

 ©2001 CRC Press LLC

Liu, Jiming et al "Multi-Agent Reinforcement Learning: Technique"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

Part II

Case Studies in Learning

6

Multi-Agent Reinforcement
Learning: Technique

Learning itself may be the fundamental mechanism which converts
chaotic attractors to orderly ones.1

Stuart A. Kauffman

What is a robot group? How do we characterize group robots? What is the
mechanism for collective learning? How do we design such a mechanism? This
chapter will address these questions. The models and mechanisms introduced
here will serve as a basis for the following discussions in Chapters 7 and 8.
Specifically, we will consider the building blocks of group robots, consisting of
sensing capability, primitive behaviors, behavior learning mechanism, and
behavior selection mechanism.

1The Origins of Order, Oxford University Press, Inc., Oxford, 1993, p 229.

 ©2001 CRC Press LLC

6.1 Autonomous Group Robots

6.1.1 Overview

Figures 6.1 and 6.2 provide two schematic diagrams showing a group of
autonomous robots and the architecture of an individual robot, respectively.

As illustrated in Figure 6.2, each robot carries a ring of equally spaced sensors
that enables the robot to get the proximity information from its local environment.
The extracted proximity information is called external stimulus to the robot. In
addition to sensors, the robot has two driving wheels and one omnidirectional
wheel that allow the robot to move in any arbitrary direction with an arbitrary
step once it is commanded to do so. The robot also has an on-board behavior
selector. The functions of the behavior selector will be discussed in the following
sections.

FIGURE 6.1. A group of autonomous robots in an environment.

Omnidirectional wheel

Robot body

Sensor

Driving wheel

FIGURE 6.2. A schematic diagram illustrating a mobile robot (c1998 IEEE).

 ©2001 CRC Press LLC

6.1.2 Sensing Capability

Each robot sensor can detect whether other robots are present in a sector as mea-
sured by angle � within a certain distance. The surrounding area within which the
sensor can detect other robots is called a neighboring region. When there is/are
robot(s) inside this region, the sensor will return 1; otherwise, it will return 0. In
order to be able to instantaneously determine the presence or absence of other
robots in a local two-dimensional environment, the robot utilizes all N equally
spaced sensors, where

N =
2�

�
: (6.1)

The proximity information acquired from the N sensors, with respect to a spe-
cific group of robots, will be represented into a binary string of length N . The
most significant bit (MSB) in the binary string corresponds to the first sector in
a polar coordinate system of the robot. Figure 6.3 illustrates an example where
N=8.

1

2
3

4

5

6 7

8

MSB LSB1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

FIGURE 6.3. Eight proximity sensors mounted on a robot and their corresponding
representation as a binary string.

Each group robot can choose either long- or short-range sensing capabilities.
The difference is that the long-range capability can sense a large region
comparable to the size of the entire task environment, whereas the short-range
capability can extract proximity information only within a limited range of radius
R0.

6.1.3 Long-Range Sensors

A long-range sensor is a sensor that acquires the information on whether other
robots are present inside a circular sector of a very large radius (which may be

 ©2001 CRC Press LLC

regarded as infinite). For this type of sensor, the returned value of sensor j in
sector Ej is expressed as follows:

rj =

�
1; 9Pi 2 Ej ,
0; 8Pi 62 Ej , (6.2)

where Pi denotes the position of robot i. An arrangement of rj , 8j = 1; 2; :::;N ;
gives a binary string of lengthN . All possible binary strings provide the complete
set R of returned values, that is:

[r1; r2; � � � ; rN] 2 R: (6.3)

Figure 6.4 presents an example of sensing results in an environment, where
each robot has eight long-range sensors.

Returned value: 01100111

FIGURE 6.4. A schematic diagram illustrating long-range sensors.

6.1.4 Short-Range Sensors

A short-range sensor is a sensor that acquires the information on whether other
robots are present inside a surrounding region of a certain radius,R0. In this case,
a circular sector j in the surrounding region of a sensing robot is denoted as �Ej
and expressed as follows:

�Ej = fPi j j Pi � P0 j< R0g; (6.4)

where Pi denotes the position of robot i, and P0 denotes the position of a sensing
robot.

The returned value of sensor j in sector �Ej can be expressed as follows:

rj =

�
1; 9Pi 2 �Ej ,
0; 8Pi 62 �Ej .

(6.5)

 ©2001 CRC Press LLC

Returned value: 10100101

Ro

FIGURE 6.5. A schematic diagram illustrating short-range sensors.

Figure 6.5 presents an example of sensing results in an environment, where
each robot has eight short-range sensors.

It should be mentioned that short-range sensors can be further divided into two
categories:

1. In the first category, the reachable distance is fixed as a constant,R0, which
is equal to an original sensing radius.

2. In the second category, the reachable distance is adjustable. Such a sensor
searches the surrounding region of a robot with an original sensing radius
first. If all the sensors return 0, then the sensing radius of these sensors will
increase by an increment, �R, based on the previous sensing radius. The
robot will adjust its sensing range in this way until the returned value of
some sensor(s) is 1. Figure 6.6 presents an operational flowchart for this
category of sensors.

6.1.5 Stimulus Extraction

Each returned binary string of length N corresponds to a local condition of the
robot environment. Although there can be as many as 2N possible string val-
ues, the number of distinct local conditions that can actually occur will be quite
limited. For instance, if we perform circular shift (to left or to right) or circu-
lar reverse shift operations as illustrated in Figure 6.7, we realize that for each
binary string (except strings 00000000 and 11111111), there exists an equivalent
string. Two strings are considered equivalent if their expressed proximity distribu-
tions surrounding a sensing robot are the same. Figure 6.9 shows two equivalent
strings: 00000011 and 00011000. A group of equivalent binary strings obtained
by performing the shift operations corresponds to a distinct local condition,
called a stimulus.

 ©2001 CRC Press LLC

R0= R0 + R
 = Current Return Value

of All Sensors
Sc

R0= R0 + R
Sc

R0 = Original sensing radius

S0 = Current Return Value
of All Sensors

Sensing Operation ,

Sc = S0

S0

Sc = S0

0RReturn S0,

Sc = [0 0 ... 0] 1xN ?Sc = [0 0 ... 0] 1xN?
Y

N

Sensing operation:

= Currently returned
 values of all sensors

= Currently returned
 values of all sensors

FIGURE 6.6. An operational flowchart for a radius-adjustable short-range sensor.

We define an operator, extr (i.e., extraction), to map from the set of returned
sensory measurements R to the set of stimuli S:

extr : R ! S: (6.6)

Table 6.1 gives the number of possible stimuli with respect to string length N .

01 0 1. . .10 0 1. . .

One-bit of circular shift to left

1 10 0. . .10 0 1. . .

One-bit of circular shift to right

10 0 1. . . 011 0 . . .

Reverse operation

FIGURE 6.7. A schematic diagram illustrating circular shift and reverse operations.
The corresponding algorithms are given in Figure 6.8.

6.1.6 Primitive Behaviors

A group robot can move in an arbitrary direction with an arbitrary step. However,
in order to conveniently control the robot, we assume that the motion direction of
the robot is divided into N sectors, corresponding to N equally spaced sensors.
Figure 6.10 shows the motion directions when N =8, with respect to a local polar
coordinate system. The motions in these directions are referred to as the primitive

 ©2001 CRC Press LLC

Circular Shift to Left for M (0<M<N) bits:

NewCodeString(1:(N-M))=OldCodeString((M+1):N);
NewCodeString((N-M+1):N)=OldCodeString(1:M);

Circular Shift to Right for M (0<M<N) bits:

NewCodeString(1:M)=OldCodeString((N-M+1):N);
NewCodeString((M+1):N)=OldCodeString(1:(N-M));

Reverse Operation:

for i=1:N
NewCodeString(i)=OldCodeString(N-i+1);

end

FIGURE 6.8. The algorithms for circular shift and reverse operations.

N 1 2 3 4 5 6 7 8 9 ...
Total 2 3 4 6 8 14 18 29 42 ...

TABLE 6.1. The number of possible stimuli with respect to string lengthN .

behaviors of the robot. We will use an N -dimensional vector to represent the
primitive behaviors of the robot:

[Behavior] =

2
6664

B1

B2

...
BN

3
7775 ; where Bi 2 f�1; 1g: (6.7)

If a component of this vector, Bi = 1, it means the robot is capable of performing
behavior i. On the other hand, Bi = �1 indicates that the robot cannot generate
behavior i.

Corresponding to an array of robot primitive behaviors, we will further define a
weight vector to express the probability of success if a specific behavior response
is performed given a certain stimulus. The weight vector can be written as follows:

W =

2
6664

w1
w2
...

wN

3
7775 ; (6.8)

 ©2001 CRC Press LLC

Returned value: 00000011

(a)

Returned value: 00011000

(b)

FIGURE 6.9. Two equivalent binary strings and their corresponding local conditions.

where
wi = �1; if Bi = �1; i = 1; 2; � � � ;N ;PN

i=1wi jwi 6=�1= 1:
(6.9)

It should be mentioned that the actual movement step size d0 of each robot
at a given time will depend on the maximum movement step size dm and the
maximum free movement step size dp, as follows:

d0 = min(dm ; dp); (6.10)

where dm is determined according to a predefined ratio �, i.e.,

� =
dm

R0
; (6.11)

and the maximum free movement step size dp is determined by the maximum
collision-free displacement in a chosen direction. Figure 6.11 illustrates the

 ©2001 CRC Press LLC

1

23

8

7

4

5

6

FIGURE 6.10. A schematic diagram illustrating the primitive behaviors of a robot.

execution of a behavior (i.e., a movement in a certain direction), where P t and
P t+1 denote the positions at time t and time t+ 1, respectively.

6.1.7 Motion Mechanism

Having defined the notion of primitive behaviors and its associated
representations, let us now consider some possible motion mechanisms, as
follows:

1. Experience-driven motion: A robot with this control mechanism moves in
its local environment without any predefined conditions. The robot selects
the best primitive behavior based on its current stimulus and previously
acquired experience. It executes the selected behavior and then updates its
experience based on an evaluation of the behavior.

2. Conditional motion: A robot with this control mechanism selects and ex-
ecutes a certain behavior whenever some predefined conditions are satis-
fied. These conditions are the policies according to some special stimuli.
After the execution of the selected behavior, it learns some aspects of
this behavior based on a behavior learning mechanism.

3. Random motion: A robot with this control mechanism moves in a ran-
dom manner. There is no learning or experience updating involved in this
mechanism.

4. Stationary: A robot with this control mechanism does not execute any
motion. Its kinetic energy is equal to zero.

 ©2001 CRC Press LLC

Pt

P
t+1

d0

FIGURE 6.11. A schematic diagram illustrating behavior execution (c1998 IEEE).

6.2 Multi-Agent Reinforcement Learning

The sensory data received by an autonomous mobile robot from its environment
constitutes a stimulus (or behavior triggering condition) to the robot. Based on its
embedded learning mechanism, the robot will derive a specific stimulus-response
behavioral association through behavior weight updating, as illustrated in Fig-
ure 6.12. Given multiple triggering conditions, the robot will determine its next
move based on the result of voting from multiple behavioral associations, as
illustrated in Figure 6.13.

Any response acquired in a situation will be represented in a vector of varying
weights, called a behavior weight vector. In other words, given a stimulus, si, there
exists a vector, W , where each component expresses the probability of having a
good performance if a certain reactive motion is executed. This pair of si and W
is referred to as a stimulus-response behavioral chain. At each learning step, if
a robot has selected a direction for its next movement, then the components of
W will be updated. Based on a series of updating, the weight of some motion
direction will become more significant than the others, signifying that a motion
in the respective direction has a higher likelihood of success than the rest, with
respect to a specific stimulus. The conditioned (or empirically acquired) behavior
patterns will serve as the basis for behavior selection in the robots of the same
group.

6.2.1 Formulation of Reinforcement Learning

Suppose that a robot selects behavior Bi at time t when encountering stimulus
sk. After the execution of the selected behavior, Bi, the robot learns based on its

 ©2001 CRC Press LLC

Sensors

Stimulus
Extraction

Sk

Performance
Evaluation

Behavior
Weighting

Bk
Behavior
Selection

FIGURE 6.12. The behavioral conditioning mechanism in an autonomous robot.

local performance criteria. All group robots can share their learned knowledge
since it is used as the common basis for behavior selection. Having learned from
the executed behavior, the behavior weight vector will be updated as follows:

W t+1
sk

= normal(shape(W t
sk +�W)); (6.12)

where �W is an increment vector. Operator normal normalizes the weight
vector.

Operator shape is illustrated in Figure 6.14, where the updated weight vector
passes through function1, and conditionally function2, before normalization.
The definitions of function1 and function2 are given as follows:

� function1:

w0 =

(0; if wi < 0,
wi; if 0 � wi � 1,
1; if wi > 1.

(6.13)

� function2:

w0 =
�

1 + e�wi

� ; (6.14)

where � and are coefficients that affect the shape of the function.
Figure 6.15 shows its shape when � = 3:9 and = 1:9.

 ©2001 CRC Press LLC

Sensors

Stimulus
Extraction

S1

S2

Sk

Bj

Behavior
Selection

Voting
Based on
Behavorial
Strength

Performance
Evaluation

Behavior
Weighting

B1

B2

Bk

Behavior
Selection

Behavior
Selection

FIGURE 6.13. Voting-based behavior selection.

function1 function2

w iw i+

w0

FIGURE 6.14. A schematic diagram of operator shape as used in the behavior learning
mechanism.

Component j in weight increment vector �W is defined as follows:

�wj =

�
� j E(Bk); if j = k,
0; if j 6= k,

(6.15)

where E(Bk) is an evaluation of behaviorBk, and � 2 [�1; 1].
At time t = 0, component i of the behavior weight vector is computed as

follows:

w0
i =

�
�1; ifBi = �1,
1
B ; otherwise, (6.16)

where B denotes the number of feasible behaviors.

 ©2001 CRC Press LLC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 6.15. The shape of function2 as in Eq. 6.14.

6.2.2 Behavior Selection Mechanism

Behavior selection refers to the mapping from a behavior weight vector to a
behavior response. It can be expressed as follows:

sel : W ! Bk: (6.17)

A group robot may choose one of the following two ways to select a behavior
based on its behavior weight vector – a mapping from a current stimulus to a
future behavior:

1. Selection based on the probability distribution: In this mechanism, a be-
havior response is selected based on the probability given in the behavior
weight vector. The mechanism can be expressed as follows:

Bsk = Bk jP(wk) : (6.18)

2. Selection based on the maximum weight: In this mechanism, a behavior
response will be chosen if it has the maximum probabilistic weight, that is:

Bsk = Bk jwk=max(w1;w2;���;wN) : (6.19)

After the selection of a behavior, the robot moves in the selected direction with
step d0, as illustrated in Figure 6.11, where P t and P t+1 denote the positions
at time t and time t + 1, respectively. Here, we introduce operator action to
represent the motion of robot i from P t to P t+1 with selected behavior Bk and
with step d0, that is:

P t+1
i = action(Bk; d0; P

t
i): (6.20)

 ©2001 CRC Press LLC

It should be pointed out that there is an operation hidden in operator action.
We name it ret. It maps from selected behavior Bk to movement sector �j , that
is:

ret : Bk ! �j ; k; j = 1; 2; � � � ;N : (6.21)

Based on the above definitions and notations, we can now define a mapping of
behavior learning from an encountered stimulus to a reactive behavior, as follows:

learn : S ! Bs : (6.22)

6.3 Summary

Figure 6.16 presents an illustrative example to summarize behavior learning and
selection as described in this chapter. In this example, we assume that each robot
has eight short-range sensors and eight primitive behaviors.

Et(B2)=0.3

W=[0 .3 0 0 0 0 0 0] T

Wo= shape(W+ W)
T=[.1 .6 .1 .1 .1 .1 .1 .1]

W(t+1)= normal(Wo)

T
=[.077 .46 .077 .077 .077
 .077 .077 .077]

t

Stimuli-Wight Lib.

S=[00000011]
W=[.1 .3 .1 .1 .1 .1 .1 .1] T

S=[00000011]
W=[.1 .3 .1 .1 .1 .1 .1 .1] T

R=[00011000]

Sk= Extr(R) =[00000011]

TWk=[.1 .3 .1 .1 .1 .1 .1 .1]

Bk=Sel(Wk) B2(d0=d)

R=[00011000]

Sk= extr(R) =[00000011]

TWk=[.1 .3 .1 .1 .1 .1 .1 .1]

Bk=sel(Wk) B2(d0=d)

t+1

Et(B2)=0.3

W=[0 .3 0 0 0 0 0 0] T

Wo= shape (W+ W)
T=[.1 .6 .1 .1 .1 .1 .1 .1]

normal(Wo)

T
= [.077 .46 .077 .077 .077
 .077 .077 .077]

d

2

Stimuli-Weight Lib.

S=[00000011]
W=[.1 .3 .1 .1 .1 .1 .1 .1] T

Stimulus-weight storage

S=[00000011]
W=[.077 .46 .077 .077
 .077 .077 .077 .077] T

W =t+1

Stimulus-weight storage

FIGURE 6.16. An illustrative example of behavior learning and selection.

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Multi-Agent Reinforcement Learning: Results"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

7

Multi-Agent Reinforcement
Learning: Results

The major result of this experiment was that some of my rats had
babies.1

B. F. Skinner

Based on the design and formulation of a multi-agent reinforcement learning
technique provided in the preceding chapter, this chapter will present the results
of several experiments that examine the effectiveness of learning group behav-
iors in autonomous robots and highlight some of the key observations obtained
from these experiments as well as their underlying conditions. The aim is to
demonstrate the interrelationshipsbetween the local autonomy of individual robots
and their emergent spatial properties as a result of the dynamic interactions
between robots of the same class and their environment that may involve robots
of other classes.

1A case history in scientific method. American Psychologist, 11, 1956, p 221-233.

 ©2001 CRC Press LLC

We will elaborate on our experimental procedures for investigating group be-
haviors, covering the experimental conditions involved and the experimental mea-
surements employed. This is followed by a summary of the experimental results
with respect to the proposed measurement variables.

7.1 Measurements

In order to quantitatively characterize the spatial conditions of an environment and
the behavior performance of group robots, we will introduce two measurements:
stimulus frequency and behavior selection frequency.

7.1.1 Stimulus Frequency

Stimulus frequency refers to the frequency at which group robots encounter a
specific stimulus. Let us define a set J (sk; t) to contain all the group robots that
encounter stimulus sk at time t, that is:

J (sk; t) = fPi j s
t
i = sk; i = 1; 2; � � � ;Mg; (7.1)

where M denotes the number of robots in a group. Other symbols refer to the
same meanings as those defined in the preceding chapter.

Next, we define the number of times that the group robots encounter stimulus
sk at time t as follows:

Ht
sk = size(J (sk; t)); (7.2)

where operator size returns the number of elements in J (sk; t).
Figure 7.1 presents an example of measurement Ht

sk
. The upper subfigure

shows the changes of Ht
sk

over time, with respect to a group of robots called
RANGER that encounters STIMULUS = 00000000. The lower subfigure provides
the corresponding weight changes associated with the primitive behaviors of the
RANGER robots.

The naming convention for the example given in Figure 7.1 as well as other
examples in the following sections is summarized in Table 7.12.

7.1.2 Behavior Selection Frequency

Behavior selection frequency is another important measurement that we will use
to quantitatively describe a multi-agent robotic system. More specifically, we let

2The remaining letters in a case name, **Cx**Ry**Wz, denote the xth definition for the weight
increment (�W) in behavior weight updating, the y number of RANGER robots, and the z number of
WILD robots, respectively.

 ©2001 CRC Press LLC

1 2 3 4
B: Target learning to stationary random

motion move away motion
characteristic

D: Target decentralized, decentralized, centralized, centralized,
distribution, no wall wall no wall wall
wall-closure

L: Learning, smoothed smoothed original original
selection weights, weights, weights, weights,

mechanism by probability by maximum by probability by maximum
weight weight

S: Sensor short long
range

TABLE 7.1. The naming convention as used in multi-agent reinforcement learning case
studies (c1998 IEEE).

�(Bk; t) denote a set of group robots that execute behavior Bk at time t, which is
formally expressed as follows:

�(Bk; t) = fPi j B
t
i = Bk; i = 1; 2; � � � ;Mg; (7.3)

where M denotes the number of robots in the group. Thus, the behavior selection
frequency of Bk, that is, the number of times that behavior Bk is selected by
the group robots, as denoted by IDtBk

, can be readily derived by performing the
following operation:

IDtBk
= size(�(Bk; t)): (7.4)

Figure 7.2 gives an example plot of behavior selection frequency IDtBk
for 8

primitive behaviors. From the figure, it can be noted that the most frequently
selected behaviors are behaviors 1 and 2.

7.2 Group Behaviors

In this section, we will discuss how group behaviors can be produced effec-
tively based on the earlier described multi-agent reinforcement learning. The sce-
nario that we will focus on consists of two distinct groups of robots, RANGER
robots and WILD robots, in a bounded rectangular environment. The WILD robots
can only perform simple behaviors, such as randommotion and escaping. The
RANGER robots, on the other hand, are supposed to find out how to collectively

 ©2001 CRC Press LLC

Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 7.1. An example of measurementHt

sk
.

search, approach, follow, and surround the WILD robots by means of multi-agent
reinforcement learning.

7.2.1 Collective Surrounding

In our experiments, a group of 25 simulated autonomous robots, as denoted by the
� symbols in Figure 7.3(a), will be used. The individual robot in this group can
receive time-varying stimuli from its environment, e.g., the change in the number
of WILD robots within its neighboring region before and after the execution of a
selected behavior. The WILD robots are marked with the � symbols in the figure.
Without loss of generality, the task of the RANGER robots is to surround the set of
8 WILD robots placed within a 10� 10 area.

Initially, the RANGER robots are randomly distributed in their environment with-
out a priori knowledge about their environment and desirable motion behaviors,
whereas the WILD robots are placed together as a crowd, as shown in Figure 7.3(a).
In this case, the RANGER robots are found to be capable of quickly develop-
ing a group behavior that enables them to move toward the WILD crowd. From
Figures 7.3(b) and (c), we note that all RANGER robots move directly toward the
WILD robots.

From Figure 7.4(a), we realize that all RANGER robots initially encounter
STIMULUS1. With respect to this stimulus, the robots select behavior B1 as their
response. Although we can see in Figure 7.3(b) that there is one robot moving
against theWILD crowd at the beginning, after the evaluation to the selected behav-
ior, its corresponding weight decreases. At the same time, other behavior weights
increase. That is why we find in Figure 7.4(a) that the weight of behavior B1
reaches 1 quickly. Due to the knowledge sharing mechanism, all robots will se-
lect behaviorB1 when encountering STIMULUS1. This can be denoted as follows:

learn(STIMULUS1)! Bs = B1: (7.5)

 ©2001 CRC Press LLC

Case: B1C1D1L1R25S1W8
Subject: Red Response_Id

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

t

R
es

po
ns

e_
Id

FIGURE 7.2. An example plot of IDtBk
.

This learning result can also be expressed as the following rule:

Rule RA1 :
8i 2 RANGER; if si = STIMULUS1

+
P t+1
i = action(B1; d0; P t

i);

(7.6)

where symbols si, Pi, and d0 refer to the same meanings as those defined in the
preceding chapter. An illustration of this rule is given in Figure 7.5(a).

After performing operation ret, all robots will move in a direction where most
WILD robots can be found. This trend is quite evident from Figure 7.3(b).

Referring to Figure 7.3(b) and Figure 7.4(b), we can note that as more and more
RANGER robots surround the WILD group, some of the RANGER robots will en-
counter STIMULUS2. Similarly, as a result of learning, behavior B8 (correspond-
ing to region j after mapping: �j = ret(B8)) will be selected as their moving
direction, as indicated in Figure 7.4. Although other moving directions may have
been selected before reaching the stable state (after about 20 steps), the behav-
ior corresponding to this direction is more positively reinforced and hence more
likely to be selected than others during the group learning based on Eq. 6.15. As
a result, the response to STIMULUS2 in this case can be acquired and expressed as
follows:

Rule RB1 :
8i 2 RANGER; if si = STIMULUS2

+
P t+1
i = action(B8; d0; P t

i):

(7.7)

Figure 7.5(b) illustrates this rule. Figure 7.3(d) shows the resulting stable state of
collective surrounding.

 ©2001 CRC Press LLC

Case: B1C1D3L2R25S1W8 Step: 0

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L2R25S1W8
Step: 3 Steps of Spline: 2

(a) (b)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L2R25S1W8
Step: 5 Steps of Spline: 2

Case: B1C1D3L2R25S1W8 Step: 20

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

(c) (d)

FIGURE 7.3. (a) The initial distribution of robots in an environment. (b) (c) All RANGER
robots move directly toward the WILD robots. (d) A stable distribution is reached at step
20.

7.2.2 Cooperation among RANGER Robots

The next question that we are interested in is whether the RANGER robots can ac-
quire a cooperative behavior in order to effectively surround the WILD group. From
our experiments, it can be observed that as a result of learning, the RANGER robots
will move to positions around the WILD robots. For instance, when a RANGER

robot finds that a WILD robot is surrounded by fewer RANGER robots, it will join
the shorthanded group. Also, some RANGER robots will cooperatively push one or
more WILD robots.

7.2.2.1 Moving away from Spatially Cluttered Locations

From Figure 7.6, we note that a RANGER robot moves away from the back of
other RANGER robots and then finds itself a new position. This behavior is induced

 ©2001 CRC Press LLC

from the learning process as shown in Figure 7.7. We can find that the last robot
that receives STIMULUS1 finds its new optimal position at step 184. Although
this robot previously reached a locally optimal state about 50 steps ago, it was at
step 177 when it selected a randomizedmotion behavior that caused the robot
to move away from this locally optimal state. Thus, before the system reaches
its globally optimal state, the selection of some temporally worse (or mutated)
behaviors by the individual robots can be helpful for the system to reach a globally
optimal state. The observation is summarized in rule RC1 below (see Figure 7.8):

Rule RC1 :
8i 2 RANGER; if si = STIMULUS1; 9T; 9�T; 8t 2 [t0; t0 + T];

dwi

dt
= 0; and T > �T;

+
P t+1
i = action(Bm; d0; P

t
i);

where Bm = mutation(B1):
(7.8)

Operator mutation returns a randomly mutated behavior based on a primitive
behavior.

The multi-agent system reaches its stable state as all the RANGER robots are
governed by rule RB1 as shown in Eq. 7.7, which is also reflected from
Figure 7.7(b).

7.2.2.2 Changing a Target

Figure 7.9(a) shows a quasi-stable state where some RANGER robots have not
reached their optimal positions even though all of them are surrounding the WILD
robots. By applying RC1 as expressed in Eq. 7.8, the system will be able to transi-
tion to its globally optimal state. Figure 7.9(b) presents a situation where a RANGER
jumps away from one crowd and moves to a less surrounded WILD robot.

Also from Figure 7.10, we can find that some RANGER robots with STIMULUS1
are gradually leaving the RANGER crowd to approach other WILD robots. After
step 50, all RANGER robots are with the WILD robots. Thereafter, a stable state is
maintained by rule RB1 as expressed in Eq. 7.7.

7.2.2.3 Cooperatively Pushing Scattered Objects

Figures 7.11 and 7.12 present two cases where a WILD robot is gradually being
pushed to the left. The three coordinated RANGER robots push the WILD robot at
the same pace in the same direction until it is obstructed by another RANGER robot.
Figure 7.13 plots the process of acquiring a response to STIMULUS2. The resulting
behavior is referred to as rule RB1.

7.2.2.4 Collective Manipulation of Scattered Objects

In the above cases on the cooperation among the RANGER robots, we note that the
robots can jump away from a crowd and find better positions, but they will never
stay at common locations. In other words, they tend to be spatially distributed

 ©2001 CRC Press LLC

around the WILD robots. This phenomenon is created by the robots based on the
coupling of the above three rules, that is:

Rule :
sharing = RA1
 RB1
 RC1 :

(7.9)

where
 means coupling.
Figure 7.14 presents a typical example of spatial distribution produced by the

coupling of the acquired surrounding (rule RA1), pursuing (rule RB1), and
mutation (rule RC1).

7.2.3 Concurrent Learning in Different Groups of Robots

7.2.3.1 Concurrent Learning in Predator and Prey

Figure 7.15 shows a spatial distribution of the WILD robots after 4 steps. Fig-
ures 7.16 and 7.17 provide two snapshots of collective pushing by the RANGER
robots at steps 9 and 19, respectively. Figures 7.18 to 7.24 present the processes of
learning behavior responses with respect to various stimuli in two different robot
groups. In this case, the RANGER robots often encounter the stimuli of STIMULUS1,
STIMULUS2, and STIMULUS3, as observed from Figures 7.18 to 7.20. The result
of learning as shown in Figure 7.18 is consistent with rule RA1 as defined in
Eq. 7.6. On the other hand, the result shown in Figure 7.19 agrees well with rule
RB1 as defined in Eq. 7.7, corresponding to the group behavior of following or
pushing. After the mapping of ret, the relative direction (the eighth sector to
STIMULUS1 and the coupling of the fifth and the seventh sectors to STIMULUS2)
determines their respective motion sector. In this case, the acquired responses to
STIMULUS3, STIMULUS4, STIMULUS7, and STIMULUS8 are expressed as follows
(see Figure 7.25):

Rule RB2 :
8i 2 RANGER; if si = STIMULUS3

+
P t+1
i = action(B1
B8; d0; P

t
i):

(7.10)

Rule RB3 :
8i 2 RANGER; if si = STIMULUS4

+
P t+1
i = action(B7; d0; P t

i):

(7.11)

Rule RB4 :
8i 2 RANGER; if si = STIMULUS7

+
P t+1
i = action(B1
B5; d0; P

t
i):

(7.12)

 ©2001 CRC Press LLC

Rule RB5 :
8i 2 RANGER; if si = STIMULUS8

+
P t+1
i = action(B6
B7; d0; P t

i):

(7.13)

 ©2001 CRC Press LLC

Case: B1C1D3L2R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 13

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a)
Case: B1C1D3L2R25S1W8

Cls: 1 Stimu: 10000000 Total_Stimu: 13

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(b)

FIGURE 7.4. The histograms of (a) STIMULUS1 and (b) STIMULUS2, along with their
corresponding behavior weights for the RANGER group.

 ©2001 CRC Press LLC

stimulus: 00000000 (STIMULUS1)

B1

Pt

P
t+1

(a)

stimulus: 00000001 (STIMULUS2)

B8

P
t+1P

t

(b)

FIGURE 7.5. An illustration of rules (a) RA1 and (b) RB1.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B2C1D1L1R25S1W8
Step: 184 Steps of Spline: 7

FIGURE 7.6. A RANGER robot moves away from the back of other RANGER robots to a
better position.

Case: B1C1D1L2R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 12

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D1L2R25S1W8

Cls: 1 Stimu: 00001000 Total_Stimu: 12

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)

FIGURE 7.7. The histograms of (a) STIMULUS1 and (b) STIMULUS2, along with their
corresponding behavior weights the RANGER group in the case where the WILD group is
stationary.

 ©2001 CRC Press LLC

stimulus: 00000000 (STIMULUS1)

Pt+1

Pt+1

Pt+1

Pt+1

Pt+1

Pt+1

Pt+1

Pt

FIGURE 7.8. An illustration of rule RC1.

Case: B1C1D2L1R25S1W8 Step: 25

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D2L1R25S1W8
Step: 34 Steps of Spline: 5

(a) (b)

FIGURE 7.9. (a) A quasi-stable distribution at step 25. (b) A RANGER robot jumps away
from a RANGER crowd to find other less surrounded WILD robots.

 ©2001 CRC Press LLC

Case: B1C1D2L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 12

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D2L1R25S1W8

Cls: 1 Stimu: 00100000 Total_Stimu: 12

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)

FIGURE 7.10. The histograms of (a) STIMULUS1 and (b) STIMULUS2, along with the
corresponding behavior weights for the RANGER group.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L4R25S1W8
Step: 6 Steps of Spline: 3

FIGURE 7.11. Three RANGER robots cooperatively push a WILD robot.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L4R25S1W8
Step: 10 Steps of Spline: 3

FIGURE 7.12. Three RANGER robots cooperatively push a WILD robot.

Case: B1C1D1L4R25S1W8

Cls: 1 Stimu: 00001000 Total_Stimu: 12

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 7.13. The process of learning a response to STIMULUS2.

 ©2001 CRC Press LLC

Case: B1C1D4L1R25S1W8 Step: 60

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

FIGURE 7.14. A spatial distribution of the RANGER robots observed during collective
surrounding.

Case: B1C1D4L1R25S1W8 Step: 4

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

FIGURE 7.15. The loose distribution of WILD robots after 4 steps in the case of
B1C1D4L1R25S1W8.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D4L1R25S1W8
Step: 9 Steps of Spline: 3

FIGURE 7.16. The RANGER robots push the WILD robots to move.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D4L1R25S1W8
Step: 19 Steps of Spline: 3

FIGURE 7.17. The WILD robots are pushed together by the RANGER robots.

 ©2001 CRC Press LLC

Case: B1C1D4L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 7.18. The histogram of STIMULUS1 and the corresponding behavior weights
acquired by the RANGER.

Case: B1C1D4L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 7.19. The histogram of STIMULUS2 and the corresponding behavior weights
acquired by the RANGER.

 ©2001 CRC Press LLC

Case: B1C1D4L1R25S1W8

Cls: 1 Stimu: 00011000 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 7.20. The histogram of STIMULUS3 and the corresponding behavior weights
acquired by the RANGER.

Case: B1C1D4L1R25S1W8

Cls: 1 Stimu: 00010100 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 7.21. The histogram of STIMULUS4 and the corresponding behavior weights
acquired by the RANGER.

 ©2001 CRC Press LLC

Case: B1C1D4L1R25S1W8

Cls: 1 Stimu: 00101100 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 7.22. The histogram of STIMULUS8 and the corresponding behavior weights
acquired by the RANGER.

Case: B1C1D4L1R25S1W8

Cls: 1 Stimu: 00011100 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 7.23. The histogram of STIMULUS7 and the corresponding behavior weights
acquired by the RANGER.

These learning results indicate that the RANGER robots will move closer to the
regions in or near which there is/are some WILD robot(s) and hence produce a
propulsive force to the WILD.

Similarly, it can be realized from Figure 7.24 that as a WILD robot encounters
STIMULUS8, it is very likely to select the first and the fifth sector. This means the
WILD robot will try to escape when the RANGER pursues, as stated in rule RD1
below (see Figure 7.26):

 ©2001 CRC Press LLC

Case: B1C1D4L1R25S1W8

Cls: 2 Stimu: 01000011 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 7.24. The histogram of STIMULUS8 and the corresponding behavior weights
acquired by the WILD.

Rule RD1 :
8i 2 WILD; if si = STIMULUS8

+
P t+1
i = action(B2; d0; P t

i):

(7.14)

It should be pointed out that the number of times that the WILD encounters
STIMULUS8may be just once or twice, since many WILD robots are surrounded in
the center by other WILD robots.

From the macroscopic point of view, what will be observed as a result is that
a crowd of the WILD robots that are surrounded by the RANGER will move closer
and closer to each other, as shown in Figure 7.17.

7.2.3.2 Chasing

Figure 7.27 presents a case where some RANGER robots have learned to chase the
WILD robots. Figure 7.28 shows the histogram and the corresponding behavior
weights acquired by the two robot groups. As shown in Figure 7.28(a), after a
RANGER robot encounters STIMULUS2 (that is, some WILD robots are found in the
third sector), it will be very likely to select the second or third sector as its motion
direction, as governed by rule RB1 of Eq. 7.7. As a result, it stays together with
the caught WILD robot(s).

Figure 7.27 shows an example where several WILD robots are being chased by
the RANGER robots until they encounter STIMULUS2. From Figure 7.28(b), we can
find that in this case, the WILD is very likely to move to the third or the fourth
sector. Because the WILD finds that there are RANGER robots in the seventh sector,
it will select the behavior of moving against the RANGER; that is to say, it will try
to escape from the RANGER. The acquired rule of escaping for a WILD robot in
this case can be expressed as follows (see Figure 7.29):

 ©2001 CRC Press LLC

B1

stimulus: 00000011 (STIMULUS3)

B8

Pt+1

Pt+1Pt

B7

stimulus: 00000101 (STIMULUS4)

Pt+1

Pt

(a) (b)
stimulus: 00000111 (STIMULUS7)

B1

B5

Pt+1

Pt Pt+1

B7B6

stimulus: 00001101 (STIMULUS8)

Pt+1

Pt

Pt+1

(c) (d)

FIGURE 7.25. An illustration of rules (a) RB2, (b) RB3, (c) RB4, and (d) RB5.

Rule RD2 :
8i 2 WILD; if si = STIMULUS2

+
P t+1
i = action(B4; d0; P

t
i):

(7.15)

7.2.3.3 Escaping from a Surrounding Crowd

As can be noted from Figure 7.30(a), a WILD robot will try to escape from being
surrounded by the RANGER robots. This is evident from the corresponding behav-
ior weights given in Figure 7.30(b). Based on group learning, the WILD robots will
select the fifth or the seventh sector as its motion direction when they identify the
distribution around them as 01110101. In other words, the WILD robots will es-
cape from being surrounded by the RANGER. The rule of escaping for a WILD

robot in such a case can be expressed as follows (see Figure 7.31):

Rule RD3 :
8i 2 WILD; if si = STIMULUS25

+
P t+1
i = action(B4
B6; d0; P t

i):

(7.16)

 ©2001 CRC Press LLC

B2

stimulus: 00001101 (STIMULUS8)

P
t+1

P
t

FIGURE 7.26. An illustration of rule RD1.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L1R25S1W8
Step: 12 Steps of Spline: 3

FIGURE 7.27. The RANGER robots follow the WILD robots.

 ©2001 CRC Press LLC

Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00100000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a)
Case: B1C1D1L1R25S1W8

Cls: 2 Stimu: 00000010 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(b)

FIGURE 7.28. The histogram and corresponding behavior weights for (a) STIMULUS2 in
the RANGER group and (b) STIMULUS2 in the WILD group.

 ©2001 CRC Press LLC

stimulus: 00000001 (STIMULUS2)

B4

Pt

Pt+1

FIGURE 7.29. An illustration of rule RD2.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D4L3R25S1W8
Step: 12 Steps of Spline: 3

(a)
Case: B1C1D4L3R25S1W8

Cls: 2 Stimu: 01110101 Total_Stimu: 33

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(b)

FIGURE 7.30. (a) A WILD robot tries to escape from being surrounded by the RANGER

robots. (b) The histogram of STIMULUS25.

 ©2001 CRC Press LLC

P

B4

P

B6

stimulus: 11101010 (STIMULUS25)

t

Pt+1

t+1

FIGURE 7.31. An illustration of rule RD3.

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Multi-Agent Reinforcement Learning: What Matters?"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

8

Multi-Agent Reinforcement
Learning: What Matters?

A bridge, under its usual conditions of service, behaves simply as
a relatively smooth level surface on which vehicles can move. Only
when it has been overloaded do we learn the physical properties of
the materials from which it is built.1

Herbert A. Simon

The preceding chapters described a multi-agent reinforcement learning tech-
nique and various reactive behaviors acquired by group robots using such a tech-
nique. This chapter will further discuss the important factors that can influence
multi-agent learning. These factors include group sensors, initial distribution,
behavior selection mechanism, and motion mechanism used by a WILD group.

1The Sciences of the Artificial, The MIT Press, Cambridge, Massachusetts, 1996 (3rd ed.), p 13.

 ©2001 CRC Press LLC

8.1 Collective Sensing

Long-range sensors can cover an entire environment. However, with this type of
sensors, it is sometimes difficult to reflect some slight changes in the positions
of other robots in the sensory data. As a result, such sensors may be insensitive
to the local motions of the robots. Short-range sensors, on the other hand, divide
the surrounding area into two regions separated by a circle with the radius of
sensing length. The spatial arrangements in each of the two regions can be dealt
with, respectively. In other words, with the second type of sensors, a finer, more
accurate description of the environment can be achieved. In order to demonstrate
this point, let us take a look at some examples:

Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a)
Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00100000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(b)

FIGURE 8.1. The histogram and corresponding behavior weights with respect to (a)
STIMULUS1 (b) STIMULUS2 in the RANGER group in the case of B1C1D1L1R25S1W8.

 ©2001 CRC Press LLC

1. Case B1C1D1L1R25S1W8(short-range) vs. Case B1C1D1L1R25S2W8
(long-range): All the conditions in these two cases are the same except that
two different types of sensors are used. Figure 8.1 shows the histograms
of STIMULUS1 and STIMULUS2 as extracted by the RANGER group and their
corresponding behavior weights. From the figure, we can observe that in
the case of B1C1D1L1R25S1W8, after several steps of group learning, two
directions are identified for reactive motion with respect to each stimu-
lus. After 30 steps, the RANGER robots start to encounter STIMULUS2 and
the system reaches a stable state. This is governed by rules RA1 and RA2.
The macroscopic spatial distances between the RANGER robots, between the
RANGER and the WILD robots, and the selected sectors at each step are given
in Figures 8.2 (a), (b), and (c), respectively. From these figures, we can note
that the system is stable in a macroscopic sense.

Case: B1C1D1L1R25S1W8
Subject: RR_Distance

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

t

M
ac

ro
−D

is
ta

nc
e

Case: B1C1D1L1R25S1W8
Subject: RW_Distance

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

t

M
ac

ro
−D

is
ta

nc
e

Case: B1C1D1L1R25S1W8
Subject: Red Response_Id

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

t

R
es

po
ns

e_
Id

(a) (b) (c)

FIGURE 8.2. The distributions of the spatial distances (a) between two RANGER robots and
(b) between a RANGER and a WILD robot. (c) Behaviors selected by the RANGER robots.

As a comparison, Figure 8.3 provides the histograms of STIMULUS3 and
STIMULUS7 received by the RANGER group and their corresponding behav-
ior weights in the case of B1C1D1L1R25S2W8. From the figure, we can
see that this group does not learn anything as time goes by. Thus, their
motions are almost random. This can be described below as rule RE (see
Figure 8.4):

Rule RE :
8i 2 WILD; 8si 2 S

+
P t+1
i = action(1 Bk; d0; P

t
i);

(8.1)

where 1 Bk means a non-deterministic behaviorBk, and S is the set of all
stimuli.

Figures 8.5(a), (b), and (c) present the macroscopic spatial distance between
the RANGER robots, the distance between the RANGER and the WILD robots,
and the selected sectors at each step, respectively.

Figures 8.6 and 8.7 show the resulting spatial distributions of the group
robots in the above-mentioned two cases, at three different steps,
respectively.

 ©2001 CRC Press LLC

2. Case B1C1D3L1R25S1W8(short-range) vs. Case B1C1D3L1R25S2W8
(long-range): The difference between the present two cases and the previ-
ously mentioned two cases is that here the distribution of the WILD is rela-
tively centralized. Figures 8.8 and 8.9 show the spatial distributions of the
group robots at three corresponding steps in these two cases, respectively.
We can note that the results are similar to those in the previous two cases.

In the case of long-range sensing, it is observed that the system is unstable
and that the group robots do not react to the stimuli they encounter. This
is primarily because when a robot moves with an arbitrary small step in an
arbitrary direction, other robots with a long-range sensing capability may
not be able to detect such changes and hence fail to learn any useful behav-
iors. On the other hand, robots with short-range sensors do not have this
problem.

8.2 Initial Spatial Distribution

In the experiments, we considered two kinds of initial distributions: one consists
of randomly centralized WILD robots with randomly distributed RANGER robots,
and another consists of randomly decentralized WILD robots with randomly
distributed RANGER robots.

1. Case B1C1D1L1R25S1W8 (decentralized) vs. Case
B1C1D3L1R25S1W8 (centralized): The two cases are the same except
that they consider different initial distributions of the WILD robots. The goal
of the experiment is to examine how the RANGER robots learn to find and
surround the WILD. In these two different cases, the RANGER group learns
and acquires different kinds of experience. In the first case, because the dis-
tribution of the WILD robots is decentralized (to some extent, the distance
between two robots is greater than their sensors can reach), the RANGER

robots encounter fewer stimuli; and the stimuli they encounter trigger be-
haviors following and pursuing. That is to say, the results of learning in
the case of B1C1D1L1R25S1W8 are useful for following and pursuing
a WILD robot. Figure 8.10 shows the histograms of two stimuli and their
corresponding behavior weights. From them, we can find that almost all
RANGER robots over time encounter such stimuli. Furthermore, after 100
steps, almost all 25 RANGER robots encounter the unique STIMULUS2 for
the remaining steps. The second and the third sectors are identified as the
optimal directions for achieving their goal. That is why we observe that the
RANGER robots follow the found WILD robots, as shown in Figure 8.11(a).
The phenomenon of surrounding can also be found in Figure 8.11(a).

In the case of B1C1D3L1R25S1W8, the RANGER robots encounter 14 dif-
ferent stimuli. The most significant ones are STIMULUS1, STIMULUS2,
STIMULUS3, STIMULUS8, STIMULUS4, and STIMULUS7. Figure 8.12

 ©2001 CRC Press LLC

presents the learning results of the RANGER group in this case. All of them
have induced the same rules as RA1, RB1, RB2, RB3, RB4, and RB5. From
them we conclude that the RANGER will adopt the strategy of surrounding
whenever it encounters the WILD. Figure 8.11(b) shows the surrounding
tendency in the RANGER robots.

2. Case B1C1D1L2R25S1W8 (decentralized) vs. Case
B1C1D3L2R25S1W8(centralized): The difference between these two cases
and the above two cases is that here the second behavior selection mecha-
nism is adopted. From the results of Figures 8.13 and 8.14, we can readily
arrive at the same conclusion as above.

8.3 Inverted Sigmoid Function

During group learning, after the evaluation of selected behaviors, behavior weights
will be modified according to the observed effects. In doing so, an inverted sig-
moid function is applied to the weights before normalizing behavior weight vec-
tors. Our experiments have shown that if the inverted sigmoid function term is
not used in weight modification, the weight of any well-performed behavior with
respect to the current environment is increased quickly to 1, and the weight of
an unsuitable behavior is tuned down quickly to 0. In this case, the system is im-
mediately stabilized in a locally optimal state; all 0-weight behaviors will not be
selected again. On the other hand, the 1-weight behavior will always be selected
if robots encounter the same stimulus, even though this behavior may not be the
best one.

Having introduced the inverted sigmoid function term, the behavior weights
may approach but will never reach 1 or 0. Thus, every behavior will have a chance
to be considered.

8.4 Behavior Selection Mechanism

Two mechanisms for behavior selection have been described in the preceding
chapters. One is to select a behavior based on a probability distribution that corre-
sponds to a behavior weight vector. The other is to choose the behavior that has the
highest corresponding weight in the behavior vector. Through experimental vali-
dations, we have found that the maximum weight-based selection mechanism is
less robust and more harsh than the former. The phenomenon can be readily noted
by comparing the paired subfigures in Figures 8.15, 8.16, 8.17, and 8.18. From the
macroscopic point of view, the cases with the maximum weight-based selection
mechanism become stabilized faster than the cases with the former mechanism.
In other words, the WILD in the cases with the latter mechanism creates a stronger
attractive force to the RANGER, as may be noted by comparing the paired
subfigures in Figures 8.19 and 8.20.

 ©2001 CRC Press LLC

8.5 Motion Mechanism

In the preceding chapters, we have presented four different motion mechanisms
for the WILD group. In our experiments, we are interested in knowing how the
RANGER can become stabilized if the WILD uses a special mechanism.

First, if the positions of the WILD robots are fixed, the dynamic properties of
the system completely depend on the learning and performance by the RANGER

robots. In this case, the WILD cannot induce any complex local constraints to the
RANGER. Thus, the number of stimuli encountered is quite small. As a result, it is
quite easy for the RANGER group to learn and to reach a stable state. Now, if we
let the WILD move with a group learning capability, the dynamic properties of the
system in this case become more complex than the above case. However, because
of the concurrent learning in the WILD, the system can still quickly reach a stable
state, similar to the previous case. Next, we let the motion of the WILD group be-
come completely random. Thus, the RANGER robots encounter more stimuli. This
makes the RANGER learning more difficult than the above cases. The system even-
tually reaches a dynamically stable state. Figures 8.21(a), (b), and (c) show the
processes of learning how to react to a key stimulus, STIMULUS1, in the cases of
B1C1D1L1R25S1W8, B2C1D1L1R25S1W8, and B3C1D1L1R25S1W8, respec-
tively. Figures 8.22(a), (b), and (c) show the processes of learning how to react to
another key stimulus, STIMULUS2, in the three cases, respectively.

 ©2001 CRC Press LLC

Case: B1C1D1L1R25S2W8

Cls: 1 Stimu: 00000011 Total_Stimu: 22

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a)
Case: B1C1D1L1R25S2W8

Cls: 1 Stimu: 01110000 Total_Stimu: 22

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(b)

FIGURE 8.3. The histograms of (a) STIMULUS3 and (b) STIMULUS7 received
by the RANGER group and their corresponding behavior weights in the case of
B1C1D1L1R25S2W8.

 ©2001 CRC Press LLC

B4

B6

Arbitrary Stimulus

B5

B3

B2

B1

B8

B7

P
t+1

P
t+1

P
t+1

P
t+1

P
t+1

P
t+1

P
t+1

P
t+1P

t

FIGURE 8.4. An illustration of rule RD3.

Case: B1C1D1L1R25S2W8
Subject: RR_Distance

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

t

M
ac

ro
−D

is
ta

nc
e

Case: B1C1D1L1R25S2W8
Subject: RW_Distance

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

t

M
ac

ro
−D

is
ta

nc
e

Case: B1C1D1L1R25S2W8
Subject: Red Response_Id

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

t

R
es

po
ns

e_
Id

(a) (b) (c)

FIGURE 8.5. The distributions of the spatial distances (a) between two RANGER robots and
(b) between a RANGER and a WILD robot. (c) Behaviors selected by the RANGER robots.

Case: B1C1D1L1R25S1W8 Step: 0

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L1R25S1W8
Step: 10 Steps of Spline: 5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L1R25S1W8
Step: 50 Steps of Spline: 5

(a) (b) (c)

FIGURE 8.6. (a) The original distribution of the robots in the case of
B1C1D1L1R25S1W8. (b) The spatial distribution of the robots at step 10. (c) The
spatial distribution of the robots at step 50.

 ©2001 CRC Press LLC

Case: B1C1D1L1R25S2W8 Step: 0

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L1R25S2W8
Step: 10 Steps of Spline: 5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L1R25S2W8
Step: 50 Steps of Spline: 5

(a) (b) (c)

FIGURE 8.7. (a) The original distribution of the robots in the case of
B1C1D1L1R25S2W8. (b) The spatial distribution of the robots at step 10. (c) The
spatial distribution of the robots at step 50. Note that some RANGER robots have moved
outside the environment.

Case: B1C1D3L1R25S1W8 Step: 0

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L1R25S1W8
Step: 10 Steps of Spline: 5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L1R25S1W8
Step: 50 Steps of Spline: 5

(a) (b) (c)

FIGURE 8.8. (a) The original distribution of the robots in the case of
B1C1D3L1R25S1W8. (b) The spatial distribution of the robots at step 10. (c) The
spatial distribution of the robots at step 50.

Case: B1C1D3L1R25S2W8 Step: 0

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L1R25S2W8
Step: 10 Steps of Spline: 5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L1R25S2W8
Step: 50 Steps of Spline: 5

(a) (b) (c)

FIGURE 8.9. (a) The original distribution of the robots in the case of
B1C1D3L1R25S2W8. Note that it is the same as the one in Figure 8.8(a). (b) The
spatial distribution of the robots at step 10. (c) The spatial distribution of the robots at step
50. Note that some RANGER robots have moved outside the environment.

 ©2001 CRC Press LLC

Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a)
Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00100000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(b)

FIGURE 8.10. The histograms of (a) STIMULUS1 and (b) STIMULUS2 received
by the RANGER group and their corresponding behavior weights in the case of
B1C1D1L1R25S1W8.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L1R25S1W8
Step: 10 Steps of Spline: 5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L1R25S1W8
Step: 10 Steps of Spline: 5

(a) (b)

FIGURE 8.11. The spatial distributions of the robots at step 10 in the cases of (a)
B1C1D1L1R25S1W8 and (b) B1C1D3L1R25S1W8, respectively.

 ©2001 CRC Press LLC

Case: B1C1D3L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 26

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D3L1R25S1W8

Cls: 1 Stimu: 00000100 Total_Stimu: 26

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)
Case: B1C1D3L1R25S1W8

Cls: 1 Stimu: 00011000 Total_Stimu: 26

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D3L1R25S1W8

Cls: 1 Stimu: 00101100 Total_Stimu: 26

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(c) (d)
Case: B1C1D3L1R25S1W8

Cls: 1 Stimu: 00010100 Total_Stimu: 26

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D3L1R25S1W8

Cls: 1 Stimu: 00011100 Total_Stimu: 26

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(e) (f)

FIGURE 8.12. The histograms and corresponding behaviors with respect to (a)
STIMULUS1, (b) STIMULUS2, (c) STIMULUS3, (d) STIMULUS8, (e) STIMULUS4, and (f)
STIMULUS7 in the RANGER group in the case of B1C1D3L1R25S1W8.

 ©2001 CRC Press LLC

Case: B1C1D1L2R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 12

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D3L2R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 13

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)
Case: B1C1D1L2R25S1W8

Cls: 1 Stimu: 00001000 Total_Stimu: 12

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D3L2R25S1W8

Cls: 1 Stimu: 10000000 Total_Stimu: 13

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(c) (d)
Case: B1C1D3L2R25S1W8

Cls: 1 Stimu: 00101000 Total_Stimu: 13

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D3L2R25S1W8

Cls: 1 Stimu: 10000001 Total_Stimu: 13

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(e) (f)

FIGURE 8.13. The histograms and corresponding behaviors of the RANGER group with
respect to (a) STIMULUS1 in the case of B1C1D1L2R25S1W8; (b) STIMULUS1 in the
case of B1C1D3L2R25S1W8; (c) STIMULUS2 in the case of B1C1D1L2R25S1W8;
(d) STIMULUS2 in the case of B1C1D3L2R25S1W8; (e) STIMULUS4 in the case of
B1C1D3L2R25S1W8; and (f) STIMULUS3 in the case of B1C1D3L2R25S1W8.

 ©2001 CRC Press LLC

Case: B1C1D1L2R25S1W8
Step: 5 Steps of Spline: 3

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L2R25S1W8
Step: 5 Steps of Spline: 3

(a) (b)

FIGURE 8.14. All RANGER robots move directly toward the WILD robots. Some WILD robots
are followed or pursued by the RANGER robots.

Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D1L2R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 12

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)

FIGURE 8.15. The histogram of STIMULUS1and its corresponding behavior weights in the
RANGER group in the cases of (a) B1C1D1L1R25S1W8 and (b) B1C1D1L2R25S1W8.

Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00100000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D1L2R25S1W8

Cls: 1 Stimu: 00001000 Total_Stimu: 12

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)

FIGURE 8.16. The histogram of STIMULUS2and its corresponding behavior weights in the
RANGER group in the cases of (a) B1C1D1L1R25S1W8 and (b) B1C1D1L2R25S1W8.

 ©2001 CRC Press LLC

Case: B1C1D3L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 26

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D3L2R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 13

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)

FIGURE 8.17. The histogram of STIMULUS1and its corresponding behavior weights in the
RANGER group in the cases of (a) B1C1D3L1R25S1W8 and (b) B1C1D3L2R25S1W8.

Case: B1C1D3L1R25S1W8

Cls: 1 Stimu: 00000100 Total_Stimu: 26

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D3L2R25S1W8

Cls: 1 Stimu: 10000000 Total_Stimu: 13

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)

FIGURE 8.18. The histogram of STIMULUS2and its corresponding behavior weights in the
RANGER group in the cases of (a) B1C1D3L1R25S1W8 and (b) B1C1D3L2R25S1W8.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L1R25S1W8
Step: 5 Steps of Spline: 3

Case: B1C1D1L2R25S1W8
Step: 5 Steps of Spline: 3

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

(a) (b)

FIGURE 8.19. The trajectories of the RANGER robots in chasing the WILD robots at step 5,
in the cases of (a) B1C1D1L1R25S1W8 and (b) B1C1D1L2R25S1W8.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L1R25S1W8
Step: 5 Steps of Spline: 3

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L2R25S1W8
Step: 5 Steps of Spline: 3

(a) (b)

FIGURE 8.20. The trajectories of the RANGER robots in chasing the WILD robots at step 5,
in the cases of (a) B1C1D3L1R25S1W8 and (b) B1C1D3L2R25S1W8.

 ©2001 CRC Press LLC

Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B2C1D1L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 3

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B3C1D1L1R25S1W8

Cls: 1 Stimu: 00000000 Total_Stimu: 7

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b) (c)

FIGURE 8.21. The histogram and corresponding behavior weights for STIMULUS1 in the
RANGER group in the cases of (a) B1C1D1L1R25S1W8, (b) B2C1D1L1R25S1W8, and (c)
B3C1D1L1R25S1W8.

Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00100000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B2C1D1L1R25S1W8

Cls: 1 Stimu: 00100000 Total_Stimu: 3

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B3C1D1L1R25S1W8

Cls: 1 Stimu: 00100000 Total_Stimu: 7

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b) (c)

FIGURE 8.22. The histogram and corresponding behavior weights for STIMULUS2 in the
RANGER group in the cases of (a) B1C1D1L1R25S1W8, (b) B2C1D1L1R25S1W8, and (c)
B3C1D1L1R25S1W8.

8.6 Emerging a Periodic Motion

As observed from our experiments, long-range sensors can sometimes induce
periodic motions in the RANGER robots.

From Figures 8.23(a) and (b), we can note that there are three RANGER robots in
the upper part of the figures and three in the lower part moving periodically. Their
periodic motions are induced from the periodic stimuli, as shown in Figure 8.24.
When a RANGER robot encounters STIMULUS3 (00000011), it selects the first sec-
tor to move into. Then, its stimulus will change to 01110000 and it will choose
behavior 1 to react. As a result, it will go back to an environment from which the
received stimulus is 00000011 again, as shown in Figure 8.23(c). Thus, it moves
periodically.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L3R25S2W8
Step: 55 Steps of Spline: 2

Case: B1C1D1L3R25S2W8
Step: 56 Steps of Spline: 2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L3R25S2W8
Step: 57 Steps of Spline: 2

(a) (b) (c)

FIGURE 8.23. Some RANGER robots move periodcally, as shown at steps (a) 55, (b) 56,
and (c) 57.

Case: B1C1D1L3R25S2W8

Cls: 1 Stimu: 00000011 Total_Stimu: 20

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D1L3R25S2W8

Cls: 1 Stimu: 01110000 Total_Stimu: 20

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)

FIGURE 8.24. The histograms of (a) STIMULUS3 and (b) STIMULUS7 and their
corresponding behavior weights in the RANGER group in the case of B1C1D1L3R25S2W8.

8.7 Macro-Stable but Micro-Unstable Properties

In some cases, although a system has reached a globally stable state, some indi-
vidual robots may still be unstable. Figure 8.25(a) shows a stable distribution of
the system in the case of B1C1D4L1R25S1W8. Figure 8.26 presents the learning
processes of the WILD group encountering STIMULUS2 and STIMULUS4, respec-
tively. From this figure, we can realize that the weights are unstable. In other
words, the WILD robots cannot decide what to do when they encounter such stim-
uli. The cause of such a phenomenon is that the WILD robots have been surrounded
by some RANGER robots or surrounded by other WILD robots. No matter which
behavior it selects, it cannot change its current state of being surrounded. There-
fore, it tries out every behavior but without much success. In this case, the WILD
robots also encounter other stimuli after the system has become stable, such as
STIMULUS3, STIMULUS8, and STIMULUS13. Figure 8.25(b) shows the circum-
stance of encountering STIMULUS8. With these stimuli, the WILD group is close
to the RANGER. Thus, their slight motions can change their stimuli as well as lo-
cal constraints from which the robots can gradually learn something. The cause

 ©2001 CRC Press LLC

of this phenomenon is related to the parameters of the robot sensors. It may be
possible that after the sensing radius is changed, they can sense useful information
and detect local constraints.

Case: B1C1D4L1R25S1W8 Step: 60

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D4L1R25S1W8

Cls: 2 Stimu: 01000011 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
ti
m

u
li

H
is

t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
e

ig
h

t

(a) (b)

FIGURE 8.25. (a) A stable spatial distribution in the case of B1C1D4L1R25S1W8. (b) An
example of learning with respect to STIMULUS8 in this case.

Case: B1C1D4L1R25S1W8

Cls: 2 Stimu: 00010000 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

Case: B1C1D4L1R25S1W8

Cls: 2 Stimu: 01000001 Total_Stimu: 24

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

(a) (b)

FIGURE 8.26. The histograms of (a) STIMULUS2 and (b) STIMULUS4 and their
corresponding behavior weights in the WILD group in the case of B1C1D4L1R25S1W8.

8.8 Dominant Behavior

Most of the learning results in the cases of B*C1D*L1R25S1W8 have shown
that the main reaction to a certain stimulus always consists of two behaviors. We
can observe this from some of the previous examples, such as Figure 8.27. This
demonstrates that neither of the two behaviors is dominantly better than the other.

 ©2001 CRC Press LLC

After a robot selects, performs, and evaluates one of them, it may still switch to
another one later. The cause of this phenomenon is that the resolution of sensors
with respect to the environment is not high enough.

Case: B1C1D1L1R25S1W8

Cls: 1 Stimu: 00100000 Total_Stimu: 15

50 100 150 200 250 300 350 400
0

5

10

15

20

25

t

S
tim

ul
i H

is
t

50 100 150 200 250 300 350 400
0

2

4

6

8

t

w
ei

gh
t

FIGURE 8.27. The histogram of STIMULUS2and its corresponding behavior weights in the
RANGER group in the case of B1C1D1L1R25S1W8.

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Evolutionaty Multi-Agent Reinforcement Learning"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

9

Evolutionary Multi-Agent
Reinforcement Learning

The radical of one century is the conservative of the next. The radical
invents the views. When he has worn them out, the
conservative adopts them.

Mark Twain

In a system of decentralized autonomous robots, each individual robot can have
its own primitive behaviors, such as avoidance, following, aggregation, disper-
sion, homing, and wandering. These behaviors are precisely defined through an ar-
ray of behavior parameters (for controlling sensing and stimulus extraction capa-
bilities, reactive motion strategies, and reinforcement strengths, etc.). The robots
belonging to one group may share some or all of their behavior
characteristics.

In this chapter, we will discuss the problem of acquiring emergent behav-
ior among several decentralized mobile robotic agents and address the issue of
interrelationships between the autonomy of individual robots and their group

 ©2001 CRC Press LLC

evolution. Specifically, we will describe how to enable a group of robots to de-
termine their behavior characteristic parameters in order to achieve a globally
optimal performance.

We will present a genetically controlled means for a group of autonomous
robots (RANGER) to collectively achieve such tasks as surrounding a group of
WILD robots. Toward this end, we will demonstrate how a genetic algorithm can
be applied to evolve some globally optimal group behavior among the robots,
by way of selecting appropriate sensory capability and behavior learning or se-
lection capability1. At the same time, we will identify the most effective task
environment, such as the specific targets of certain spatial distribution and
motion characteristics.

9.1 Robot Group Example

In our present work, we will study both the local and the global behaviors of a
group of 25 simulated RANGER robots as denoted by the � symbols in the spatial
maps of Figures 9.1 and 9.2. The individual mobile robot of this group can receive
its time-varying stimulus that reflects the changes in its environment, that is, the
change in the number of WILD robots within its neighboring region before and
after the execution of a selected behavior. The WILD robots are marked with the
� symbols in the maps. Without loss of generality, the task of the autonomous
robots that we will concentrate on here is to surround the group of eight WILD
robots placed within a 10� 10 area.

9.1.1 Target Spatial Distributions

The spatial characteristics of the WILD robots can be described in terms of two
types of distributions: (1) random distributionover a relatively large region (radius
of 4 units), which may be regarded as a decentralized distribution, and (2) random
distribution over a small region (radius of 1 unit), which may be regarded as a
centralized distribution. Figures 9.1 and 9.2 provide two examples of such spatial
distributions, respectively.

9.1.2 Target Motion Characteristics

In addition to the spatial distributions, the WILD robots may further be described
by their motion characteristics. Here we consider the WILD robots of three
distinct motion characteristics; namely, (1) learning to move away from the
chasing robots, (2) stationary, and (3) random motion.

1We assume that all the robots being considered here are homogeneous in their functionality as
well as their behavior learning capability and can communicate among themselves in order to share
their reactive behavior strategies.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

FIGURE 9.1. A typical example of decentralized WILD distribution in a robot task
environment (c1998 IEEE).

9.1.3 Behavior Learning Mechanism

Each robot has a built-in reinforcement learning (RL) mechanism. Suppose that
the robot selects behavior Bk based on the probability distribution of its behav-
ior weight vector, while encountering stimulus sk. After the execution of the
behavior, the corresponding behavior weights vector W t

sk
are updated according

to the following function:

W t+1
sk

= normal(smooth(W t
sk

+�W)); (9.1)

where �W is a weight increment vector whose j component is defined as follows:

�wj =

�
� j E(Bk); if j = k,
0; if j 6= k.

(9.2)

The E(Bk) function evaluates the result of behaviorBk, in terms of change in the
number of WILD robots inside the neighboring region of the robot, and � 2 [�1; 1].
Operator smooth performs a post-processing operation to smooth the weights
by scaling down the relatively larger weights and scaling up the smaller ones.
Operator normal normalizes the weight vector.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

FIGURE 9.2. A typical example of centralized WILD distribution in a robot task
environment (c1998 IEEE).

9.2 Evolving Group Motion Strategies

The preceding chapters have described the sensory and behavioral capabilities of
an autonomous robot and the characteristics of its task environment. What follows
will address the central issue of this chapter – that is, given a specific spatial or
temporal optimality criterion for a group of autonomous mobile robots that collec-
tively perform a predefined task (such as surroundinga group of WILD robots), find
the most suitable sensory and behavioral requirements in the
individual robots, and determine the most effective task configuration, which
would enable the robots to exhibit the optimal group performance.

Specifically, we will apply a genetic algorithm to evolve a near-optimal solu-
tion. The algorithm employs a set of operators to gradually produce better gen-
erations of solutions. Here the fitness function of each member in a population
is computed by measuring how well it satisfies a given optimality criterion. The
best members of the population are rewarded in their fitness values and hence
are selected, while poorly performing members are removed. In this way, the
population, and thus some of the individuals, can quickly converge to some near-
optimal solution(s) to the group behavior optimization problem.

9.2.1 Chromosome Representation

A 7-bit chromosome will be used in the genetic algorithm-based group evolution,
which encodes the specific characteristics as mentioned in Section 9.1. Figure 9.3

 ©2001 CRC Press LLC

shows the definition of the chromosome that expresses up to 96 distinct condi-
tions. The semantics of the individual bits are described in Table 9.1.

chromosome

234567 1

{

{
0:S1

1:S2

{
0 0: L1
0 1: L2
1 0: L3
1 1: L4

{
0 0: D1
0 1: D2
1 0: D3
1 1: D4

{

{

{
0 0: B1

1 0: B3
0 1: B2

Sensor range

Learning/selection
mechanism

Target spatial/
wall closure

Target motion
characteristics

FIGURE 9.3. Definition of the chromosome (c1998 IEEE).

9.2.2 Fitness Functions

In our experiments, we define an optimal group performance in terms of the fitness
functions of individual robots. In this respect, four types of fitness functions will
be investigated, which are defined as follows:

1. CONTACT: Each RANGER robot can find at least one WILD robot, that is:

s1 =
T1 � T0PT1
t=T0

Dt
; (9.3)

where

Dt =
1

MR

MRX
i=1

minfdist(P t
i ; P

t
j)j j = 1; : : : ;MWg: (9.4)

This fitness function calculates the average distance between an autonomous
robot i and the closest WILD robot j, at time t. MR and MW denote the to-
tal numbers of RANGER robots and WILD robots, respectively. Function dist
computes the distance between RANGER robot i and WILD robot j.

 ©2001 CRC Press LLC

1 2 3 4
B: Target learning to stationary random

motion move away motion
characteristic

D: Target decentralized, decentralized, centralized, centralized,
distribution, no wall wall no wall wall
wall-closure

L: Learning, smoothed smoothed original original
selection weights, weights, weights, weights,

mechanism by probability by maximum by probability by maximum
weight weight

S: Sensor short long
range

TABLE 9.1. Selectable conditions in the experiments (c1998 IEEE).

2. SURROUND: Each WILD robot will be surrounded by at least three robots,
that is:

s2 =
1PT1

t=T0
(�D3

t;W)2
; (9.5)

where

�Dk
t;W =

1

MW

MWX
i=1

(
1

k

kX
	kfdist(P

t
i ; P

t
j)j j = 1; : : : ;MRg

)
: (9.6)

This fitness function computes the average distance between a WILD robot
i, and the nearest k RANGER robots at time t. Function 	k computes the k
minimum distances.

3. CHASE: Each RANGER robot moves directly toward the WILD, that is:

s3 =
1qPMR

k=1

PT1
t=T0

d(t; k)
; (9.7)

where d(t; k) is the movement step of robot k at time t.

4. FOCUS&CONTACT: Each RANGER robot focuses on learning some specific
reactive behaviors and attains the goal of finding at least one WILD robot,
that is:

 ©2001 CRC Press LLC

s4 = s1 � std

T1X
t=T0

ws t
max

!
; (9.8)

where s tmax corresponds to the most frequently encountered stimulus at
time t.

PT1
t=T0

ws t
max

sums up the behavior weights for respective stimuli.
Function std computes the standard deviation of the weight sum.

Here it may be noted that this fitness function is concerned not only with
the CONTACT behavioral requirement but also the requirement for high-
efficiency learning based on a limited number of stimuli.

9.2.3 The Algorithm

The complete genetic algorithm as used in the group behavior evolution is given
in Figure 9.4.

begin
define fitness function si,
define the maximum number of generations per step G,
define population size P,
define crossover probability pc,
define mutation probability pm,
modify seed of random number generator,
create an initial population of P members,
for generation : 1 �! G do

evaluate each individual fitness si in current generation:
for population: 1 �! P do

modify sensory/behavioral conditions for the group,
enable low-level robot learning,
observe emergent group behavior,
evaluate group performance,

endfor
copy the best individuals to the next generation,
select other individuals based on their fitness values,
use one-point crossover with probability pc,
mutate the individuals of generation with probability pm,

endfor
end

FIGURE 9.4. The genetic algorithm for selecting robot sensory/behavioral characteristics
as well as corresponding task configurations.

 ©2001 CRC Press LLC

9.2.4 Parameters in the Genetic Algorithm

Parameter L P G pc pm T0 T1
Value 7 7 40 0.6 Eq. 9.9 1 20

TABLE 9.2. Parameters as used in the experiments (c1998 IEEE).

The specific parameters in our genetic algorithm are given in Table 9.2, where L
denotes the bit length of a chromosome, and mutation probability pm is defined
as follows:

pm =

8><
>:

0:2; if 1 � generation < 10,
0:06; if 10 � generation < 20,
0:005; if 20 � generation < 30,
0:001; if 30 � generation � 40.

(9.9)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B2C1D2L1R25S1W8
Step: 10 Steps of Spline: 10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B2C1D2L1R25S1W8
Step: 20 Steps of Spline: 10

FIGURE 9.5. The robot motion trajectories in the case of B2C1D2L1R25S1W8 (c1998
IEEE).

9.3 Examples

As examples of the genetic algorithm based evolution, Figures 9.5 to 9.8 present
the trajectories of motion in surrounding a group of WILD robots by a group of
learning robots, which exhibit the optimal group behavior as defined using the
four fitness functions, respectively. In the figures, the left-hand side shows the
first 10 steps of robot motion, and the right-hand side corresponds to the next 10
steps. In order to gain a better insight into the process of the evolution, Figures 9.9
to 9.12 show the detailed changes in the four fitness functions over 40 generations,
respectively.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L3R25S1W8
Step: 10 Steps of Spline: 10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D3L3R25S1W8
Step: 20 Steps of Spline: 10

FIGURE 9.6. The robot motion trajectories in the case of B1C1D3L3R25S1W8 (c1998
IEEE).

From the above results, it can be readily noted that all the trajectories as well
as the converged spatial locations of the robots after 20 movement steps meet
the predefined optimality requirements quite well. In addition, we can make the
following observations on the results of group behavior evolution:

1. It is very effective to perform the CONTACT group behavior in a task config-
uration where the WILD robots are stationary and in a decentralized spatial
distribution. In such a case, the best way for an individual RANGER robot
to select its movement from its behavior weight vector is based on the
probability distribution after a smoothing operation.

2. Both SURROUND and CHASE are effective with moving WILD targets with
centralized spatial distributions. In addition, in order to achieve the for-
mer group behavior, it requires each of the individual RANGER robots to
select its own local behavior based on non-smoothed probability
distribution, allowing a certain degree of randomized movements for the
robots to evenly surround the WILD group. For the latter group behavior,
however, it is most efficient for the individual robots to determine their
movements by selecting the maximum weight behavior responses.

3. Generally speaking, the WILD robots of a centralized spatial distribution
will have a stronger attraction. In Figures 9.6 and 9.7, all the RANGER robots
settle around the WILD robots after 20 steps.

4. Unlike the CONTACT behavior, FOCUS&CONTACT is effective in the cases of
moving targets with decentralized spatial distribution. This is because the
moving WILD targets can readily improve the behavior learning in
individual RANGER robots by offering a variety of stimuli for the robots to
search and acquire their reactive behaviors accordingly. The target-

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D4L4R25S1W8
Step: 10 Steps of Spline: 10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D4L4R25S1W8
Step: 20 Steps of Spline: 10

FIGURE 9.7. The robot motion trajectories in the case of B1C1D4L4R25S1W8 (c1998
IEEE).

following behavior, as can be observed from the trajectories of the robots,
also shows that learning by the RANGER robots in such a case is quite robust.

9.4 Summary

This chapter has presented an evolutionary computation approach to selecting
robot sensory, behavioral, and task configurations to allow for the emergence of
optimal group behavior. The multi-agent approach can be regarded as an effective
way of developing, predicting, and controlling the group behavior of autonomous
robots in a distributed setting.

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L1R25S1W8
Step: 10 Steps of Spline: 10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Case: B1C1D1L1R25S1W8
Step: 20 Steps of Spline: 10

FIGURE 9.8. The robot motion trajectories in the case of B1C1D1L1R25S1W8 (c1998
IEEE).

0 5 10 15 20 25 30 35 40
12

14

16

18

20

22

24

generations

fit
ne

ss

FIGURE 9.9. The change of s1 (CONTACT) fitness over 40 generations (c1998 IEEE).

 ©2001 CRC Press LLC

0 5 10 15 20 25 30 35 40
1

2

3

4

5

6

7

8

9

10

generations

fit
ne

ss

FIGURE 9.10. The change of s2 (SURROUND) fitness over 40 generations (c1998 IEEE).

0 5 10 15 20 25 30 35 40
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

generations

fit
ne

ss

FIGURE 9.11. The change of s3 (CHASE) fitness over 40 generations (c1998 IEEE).

 ©2001 CRC Press LLC

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

generations

fit
ne

ss

FIGURE 9.12. The change of s4 (FOCUS&CONTACT) fitness over 40 generations (c1998
IEEE).

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Coordinated Maneuvers in a Dual-Agent System"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

Part III

Case Studies in Adaptation

10

Coordinated Maneuvers in a
Dual-Agent System

The real problem is not whether machines think but whether men do.

B. F. Skinner

Robotic agents adapt to their dynamically changing environments by perform-
ing coordinated maneuvers. Such maneuvers may be achieved either at the level
of actuators in a single robot or at the level of robot groups.

In this chapter, we will describe a dual-agent system capable of evolving eye-
body coordinated maneuvers in a sumo contest. The two agents rely on each
other by either offering feedback information on the physical performance of a
selected maneuver or giving advice on candidate maneuvers for an improvement
over the previous performance. Central to this learning system is a multi-phase
genetic programming approach that is aimed at enabling the player to gradually
acquire sophisticated sumo maneuvers. As will be illustrated in the sumo learning
experiments involving opponents of complex shapes and sizes, the developed
multi-phase learning allows the development of specialized strategic maneuvers

 ©2001 CRC Press LLC

based on general ones and hence demonstrates the effectiveness of maneuver
acquisition.

In this chapter, we will first describe a multi-phase genetic programming ap-
proach in coding eye-body-coordinated motion strategies for complex environ-
ments. Then we will present an implemented sumo learning system that
empirically validates the effectiveness of our approach in dealing with a number
of difficult sumo situations.

10.1 Issues

Researchers have demonstrated various characteristics and capabilities of mobile
robotic agents. For instance, considering the task of obstacle avoidance, Miglino
et al. [MLN96] developed and experimentally tested an artificial neural network-
based controller for a miniature mobile robot called Khepera. The controller is
evolved based on a genetic algorithm. Nolfi and Parisi [NP95] have shown that
the above-mentioned approach can be readily applied to develop a capability of
object-picking by the robot with one arm while avoiding obstacles.

The application of genetic programming focuses on the synthesis of robot mo-
tion/control programs. Koza [Koz92] has shown the application of genetic pro-
gramming in synthesizing a subsumption controller for robots capable of per-
forming wall-following and box-moving tasks. Reynolds [Rey92, Rey94] has ap-
plied genetic programming to create control programs that enable a mobile ve-
hicle to avoid collisions. In this chapter, we are interested in evolving coordi-
nated behaviors, i.e., effective maneuvers, for a sumo robot with respect to cer-
tain performance requirements. This problem is in essence a problem of genetic
programming that is aimed at synthesizing local motion strategies for the robot.

10.2 Dual-Agent Learning

The problem addressed in this chapter can be stated as follows: A sumo contest
is to be played in a closed environment of size 42cm � 65cm. One player of di-
ameter 12cm is required to learn necessary sumo maneuvers that would force its
opponent out of the contest area. While learning, the player is allowed to com-
municate with an assistant responsible for passing advice to the player in order
to improve its performance. Suppose that the opponent to this player is capable
of showing different complex postures as well as different resistances (as simu-
lated by changing weights) in an attempt to minimize the strength of the player.
Our goal is to develop a working sumo learning system involving a physically
embodied robotic agent as the player and a computational agent as the assistant.
Figure 10.1 shows a sumo contest scenario involving two mobile robots.

 ©2001 CRC Press LLC

FIGURE 10.1. A scenario of sumo contest between two robotic agents (c1999 IEEE).

10.3 Specialized Roles in a Dual-Agent System

The sumo learning system will consist of two essential agents: the sumo player
(named Junior) and the assistant (named Pal). Junior is a physical micro-
mobile robot, as shown in Figure 10.2, whose objective is to learn sumo tricks
while actually performing strategic motion maneuvers against its opponent and
following the advice of Pal. During the training sessions, the opponent is re-
placed by dummy players of various postures. Pal is a computer system that
constantly monitors and evaluates the performance of Junior and thereafter of-
fers friendly advice to Junior. The advice that Pal comes up with should not
overwhelm Junior. In other words, Junior should learn the general maneuvers
first and then move on to the specialized ones for the sake of effective learning.

10.4 The Basic Capabilities of the Robot Agent

In the sumo learning, Junior can readily utilize its two arms, two eyes, a real-
time action controller, memory, and a communication device. This will offer
Junior a number of basic capabilities. For instance, the arms can effectively push
and at the same time sense its opponent. They are physically implemented with
two micro-switches. The two infrared sensor-based eyes are capable of detecting
the presence of the opponent. In addition to the two front eyes, Junior is also
equipped with one pair of downward-looking infrared sensors to detect whether
it is off the boundary of the contest area. The real-time action controller will
enable Junior to perform a specific maneuver with its two arms and two wheels

 ©2001 CRC Press LLC

FIGURE 10.2. The appearance of Junior. It is equipped with two arms (Circle 1), two
eyes (Circle 2), a real-time motion controller, memory, and a communication device
(Circle 3) (c1999 IEEE).

(located right below its eyes). The memory will help record the present sensory
information and recall a certain earlier acquired strategic maneuver. Last but not
least, the communication infrastructure will serve as a channel of information and
debriefing between Junior and Pal. That is, what Junior sees and feels will
be communicated through such a channel back to Pal for its monitoring and ma-
neuver programming. In a similar way, the maneuver selected by Pal can also
be sent to Junior. The action controller, memory, and communication device are
physically embodied in an onboard micro-controller remotely connected to Pal.

10.5 The Rationale of the Advice-Giving Agent

Pal is responsible for providing just-in-time advice to Junior. It works with a set
of basic actions that Junior has and evaluates and corrects Junior’s maneuvers
in order to achieve a better performance. In doing so, it utilizes a multi-phase

 ©2001 CRC Press LLC

genetic programming approach that attempts to efficiently achieve the learning of
general maneuvers prior to the specialized ones.

10.5.1 The Basic Actions: Learning Prerequisites

The learning prerequisites for Junior consist of the following actions: forward
move, backward move, left turn, right turn, and stop. These actions are the basic
motions that Junior must be able to initially perform by controlling the angular
displacements of its two wheels as well as their directions.

10.5.2 Genetic Programming of General Maneuvers

In order to give just-in-time advice on general sumo maneuvers, Pal selects a
series of basic actions in response to the sensory data as obtained and sent by
Junior at each time step t. A sequence of such selected basic actions is viewed
as a single maneuver. The action selection process is governed by the principle of
genetic programming.

Specifically, Pal represents, in the form of a chromosome, a sequence of l ba-
sic actions as a candidate maneuver with respect to a certain category of sensory
stimulus as received by Junior. In order to evolve the most effective maneuver,
i.e., the advice for Junior, it maintains a population of such candidate maneu-
vers and applies the genetic operations of crossover and mutation among them.
Next, it passes the candidate action sequences to Junior for execution and evalu-
ates the effectiveness of resulting performance in Junior by calculating a fitness
function. The highly effective action sequences are kept in the population for fur-
ther selection. Here, the fitness function corresponds to a criterion for good sumo
performance, which is specifically defined as follows:

S =
lX

i=1

wi �

0
@ nX
j=1

�j(Bi) +
mX
k=1

(#k(Bi) + %k(Bi))

1
A ; (10.1)

where �j(Bi), #k(Bi), and %k(Bi) will return one if Junior can see its oppo-
nent with side j sensing, arm k holding onto its opponent, and arm k coming in
contact with the opponent, respectively, during basic action Bi. Such information
is readily obtained by Junior via its sensors. l, n, and m denote the number of
basic actions selected (which is set to 4 in our experiments), the number of eyes,
and the number of arms, respectively. wi denotes a weight for basic action Bi.

In other words, here a good performance by Junior entails the one in which it
can constantly face and see its opponent with both-side sensing. At the same time,
its two arms should firmly hold onto the body of its opponent, while pushing, until
the opponent is forced out of the sumo area. Furthermore, in order to achieve a
greater impact, Junior should try to actively engage its opponent with its arms.

 ©2001 CRC Press LLC

10.5.3 Genetic Programming of Specialized Strategic Maneuvers

Once a certain general sumo maneuver is acquired by Junior, Pal embarks on a
new course of genetic programming for Junior that aims to further improve the
performance of Junior by fine-tuning the basic actions. The fine-tuning actions
are created drawing on the basic ones. Table 10.1 provides a taxonomy of such
actions as used in this phase of genetic programming.

Basic actions for creating Fine-tuning actions for composing
general sumo maneuvers specialized strategic maneuvers
F: forward move FF: fast forward move

MF: moderate forward move
SF: slow forward move

B: backward move FB: fast backward move
MB: moderate backward move
SB: slow backward move

L: left turn LSRF: r-wheel forward move with stall l-wheel
LBRS: l-wheel backward move with stall r-wheel
LBRF: l-wheel backward and r-wheel forward move

R: right turn LFRS: l-wheel forward move with stall r-wheel
LSRB: r-wheel backward move with stall l-wheel
LFRB: l-wheel forward and r-wheel backward move

S: stop S: stop

TABLE 10.1. The basic and fine-tuning actions of which the general sumo maneuvers and
the specialized strategic maneuvers are composed, respectively.

In the genetic programming of specialized strategic maneuvers, Pal classifies
the situations that Junior is facing by considering not only the present sensory
state but also the previous one. Accordingly, it represents candidate specialized
strategic maneuvers in the form of further fine-grained chromosomes based on
those of general sumo maneuvers. Such a representation incorporates the infor-
mation on what sequence of fine-tuned actions should be involved. The actual
implementation of genetic programming for this phase is similar to the one for
the general maneuvers.

Figure 10.3 presents a schematic diagram of the multi-phase genetic
programming approach that attempts to efficiently achieve the learning of
sophisticated maneuvers by Junior.

 ©2001 CRC Press LLC

MPGP

Basic action
sequence
selection

Action
sequence
fine-tuning MPGP MPGP

MPGP MPGP MPGP

MPGP

MPGP

G
eneral sum

o m
aneuvers

Specialized strategic m
aneuvers

FIGURE 10.3. An illustration of multi-phase genetic programming (MPGP) as used by
Pal in generating its advice (c1999 IEEE).

10.6 Acquiring Complex Maneuvers

Having presented the basic principles behind the dual-agent system for learning
sumo maneuvers, the following sections describe the experimental verification of
this approach.

10.6.1 Experimental Design

In order to demonstrate the effectiveness of learning, we have decided not to use a
physical mobile robot as an opponent to Junior, but instead to place a number of
dummy players in different sizes and shapes, corresponding to different weights
and postures that a real opponent may hold against Junior. Figures 10.4(a)-
(d) show four such postures, named flat, curved, corner, and circular postures,
respectively. The aim of these experiments is to show whether Junior, with
the coaching assistance of Pal, can successfully acquire eye-body-coordinated
maneuvers in a complex sumo environment with opponents of varying weights
and postures.

10.6.2 The Complexity of Robot Environments

There are five dummy opponents used in the experiments. Four postures are of
particular interest as shown in Figure 10.4. The complexity of the dummy op-
ponents that Junior faces can be viewed with respect to the weights and the
characteristic engagement types. A classification of this complexity is shown in
Figure 10.5. The vertical axis corresponds to the weight of an opponent, whereas
the horizontal axis corresponds to three types of engagement contact, namely, sur-
face, corner, and point contact. The weight difference of an opponent is considered
only in the case of a flat posture.

In a surface contact, it is relatively easier for Junior to see its opponent with
both-side sensing (i.e., with both front eyes) and at the same time engage the
opponent with both arms. On the other hand, in the case of a corner contact, it is

 ©2001 CRC Press LLC

(a) Flat posture (b) Curved posture

(c) Corner posture (d) Circular posture

FIGURE 10.4. The dummy opponents in a variety of difficult postures (c1999 IEEE).

difficult for Junior to focus with both-side sensing and to engage with both arms
due to the small size of its opponent. In addition, what makes the situation more
complex is that, once Junior pushes its opponent with one arm, the opponent
may move in an uncertain direction. When a corner contact and push occurs, this
leads to an edge contact. Finally, the point contact is similar to the corner contact,
except that it is impossible to have both-side sensing and both-arm engagement.

10.6.3 Experimental Results

The performance of the dual-agent sumo learning system is shown in Figure 10.6,
where five specialized strategic maneuvers are genetically selected with respect to
five different categories of opponent situations. They are (a) lightweight flat pos-
ture, (b) heavyweight flat posture, (c) lightweight curved posture, (d) lightweight
corner posture, and (e) lightweight circular posture. The resulting maneuvers are,
respectively, called (a) straight push, (b) intermittent impact, (c) stall turning, (d)
corner-to-edge alignment, and (e) alternating twist. Details on the multi-phase
genetic programming of these maneuvers can be viewed from the correspond-
ing fitness-function curves as given in Figure 10.7. In Figure 10.7, dotted circle,
dashed star, and solid lines correspond to the learning of coordinated maneuvers
in response to left-side sensing, right-side sensing, and both-side sensing of the
opponent, respectively.

 ©2001 CRC Press LLC

W
ei

gh
t

Contact Type

Flat Curved Corner Circular

Surface Corner Point

Heavy

Light

Possible Postures
of an Opponent

FIGURE 10.5. The complexity of the Junior environments, as classified according to the
weights and the possible engagement contact types of an opponent (c1999 IEEE).

10.6.4 Lightweight or Heavyweight Flat Posture

As shown in Figures 10.6 and 10.7(a)-(b), while dealing with the lightweight
or heavyweight flat posture opponent, Junior can easily see its opponent with
both-side sensing. The fact that the dotted and dashed fitness-function curves are
much shorter than the solid curve indicates that Junior can quickly figure out the
best way to turn to its opponent with both-side sensing and thereafter concentrate
on the learning of effective specialized strategic maneuvers of straight push or
intermittent impact. Also it can be noted that such learning can be readily achieved
once the single-side sensing is corrected after 13 genetic programming steps.

Both lightweight and heavyweight cases are similar in terms of switching from
the single-side sensing mode to the both-side in learning specialized maneuvers.
The key difference between them is that the maneuvers for the single-side sensing
in the latter case are not as effective as those in the former case, judging from
their fitness-function curves. In addition, the strategic maneuvers in the latter case
create a sequence of fine-tuned actions for high-impact intermittent push. In other
words, the multi-phase genetic programming by Pal has found a niche maneuver
of intermittent impact that could score high fitness values in the situation of a
heavyweight opponent.

10.6.5 Lightweight Curved Posture

Concerning the case of lightweight curved posture opponent, the resulting ma-
neuver transitions from a single-side sensing mode to a both-side sensing mode,
repeatedly. This is reflected in the concurrent learning of three sensing mode ma-
neuvers as shown in Figure 10.7(c). The solid line in the figure indicates that
the selected actions are similar to those in the lightweight flat posture case. As

 ©2001 CRC Press LLC

a result, a sequence of fine-tuned actions is selected that creates a behavior of
effective stall turning, as an adaptation to the curved posture opponent.

10.6.6 Lightweight Corner Posture

In this case, the both-side sensing of an opponent with both eyes is impossi-
ble. This is why the solid fitness-function curve is short. Besides, due to the
uncertainty in the environment – that is, the difficulty in predicting the move-
ment directions of the opponent – the maneuvers for the situation of single-side
sensing are not as effective as those in the preceding three cases, as may be
compared based on their fitness-function curves. The fact that the fitness func-
tion in this case can be stabilized at a certain level, even though without further
improvement, reveals that the basic performance of Junior is still achievable
using the genetically programmed specialized maneuvers.

10.6.7 Lightweight Point Posture

As shown in Figure 10.7(e), the maneuvers acquired are slightly more effective
than those in the previous case, meaning that the movement uncertainty in the
point posture is less than that in the corner posture, since it does not involve any
engagement contact transitions. As a result, the multi-phase genetic programming
has led to a niche maneuver of alternating two arms.

10.7 Summary

This chapter has described a coordinated maneuver learning system in which one
agent named Junior senses its environment and performs physical maneuvers.
Another agent named Pal offers just-in-time suggestions for improving perfor-
mance by way of monitoring and generating better and specialized candidate
maneuvers. The two agents work collaboratively by offering either performance
feedback or maneuver advice. In order to test the adaptability of sumo behaviors,
we created various complex environments for Junior by presenting a number of
dummy opponents of varying weights and postures.

From our experiments, it is demonstrated that the coaching assistance provided
by Pal can gracefully lead Junior to become a competent player who executes
specialized maneuvers. The key to Pal’s coaching lies in the use of a real-time
multi-phase genetic programming approach. The developed genetic programming
approach is effective in searching for niche solutions in terms of both general and
specialized maneuvers for Junior to deal with a variety of situations, even in the
presence of uncertainty in the dynamics of its opponent. Furthermore, from the
obtained results, it is shown that the multi-phase genetic programming approach
is an efficient way of learning by focusing on general solutions (e.g., general sumo
maneuvers) first and then moving on to specialized ones (e.g., specialized strategic

 ©2001 CRC Press LLC

maneuvers) based on the obtained high-fitness general solutions (e.g., inheriting
general sumo expertise).

While comparing the multi-phase genetic programming approach to the single-
phase one, it can be noted that the former does not involve all sensory and control
variables. Instead it groups similar ones together in order to speed up learning.
Once the learning in this phase is achieved, it divides the groups to consider more
variables in a given situation.

 ©2001 CRC Press LLC

FIGURE 10.6. The specialized strategic maneuvers resulting from multi-phase
genetic programming (c1999 IEEE).

 ©2001 CRC Press LLC

5 10 15 20 25 30 35 40 45 50
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Left eye

Right eye

Both eyes

Step

F
itn

es
s

V
al

ue
light−weight flat−posture

5 10 15 20 25 30 35 40 45 50
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Left eye

Right eye

Both eyes

Step

F
itn

es
s

V
al

ue

heavy−weight flat−posture

(a) Straight push (b) Intermittent impact

5 10 15 20 25 30 35 40 45 50
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Left eye

Right eye

Both eyes

Step

F
itn

es
s

V
al

ue

light−weight curved−posture

5 10 15 20 25 30 35 40 45 50
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Left eye

Right eye

Both eyes

Step

F
itn

es
s

V
al

ue

light−weight corner−posture

(c) Stall turning
(d) Corner-to-edge
alignment

5 10 15 20 25 30 35 40 45 50
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Left eye

Right eye

Step

F
itn

es
s

V
al

ue

light−weight circular−posture

(e) Alternating twist

FIGURE 10.7. Fitness-function curves recorded during the multi-phase
genetic programming of five specialized maneuvers for Junior (c1999 IEEE).

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Collective Behavior"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

11

Collective Behavior

If the observer were intelligent (and extraterrestrial observers are
always presumed to be intelligent) he would conclude that the earth
is inhabited by a few very large organisms whose individual parts
are subordinate to a central directing force. He might not be able to
find any central brain or other controlling unit, but human biologists
have the same difficulty when they try to analyze an ant hill. The
individual ants are not impressive objects – in fact they are rather
stupid, even for insects – but the colony as a whole behaves with
striking intelligence.1

Jonathan Norton Leonard

Decentralized autonomous robots can effectively perform certain tasks with
their collective behaviors. In this chapter, we will address the problem of how to

1Other-Worldly Life, Flight into Space, Sidgwick & Jackson Ltd. and Random House Inc., 1953.

 ©2001 CRC Press LLC

acquire a collective goal-directed, task-driven behavior in a group of distributed
robots. The specific task that we will consider here is for the individual robots to
perform coordinated movements that will push a box toward a desired goal loca-
tion. The difficulty of this task is that the movements of the robots with respect to
the box cannot follow an explicit, global plan and control command, due to cer-
tain modeling limitations as well as planning costs. In such a case, it is important
that the individual robots locally modify their movement strategies. At the same
time they must create a desired collective interaction between the robot group and
the box, which will successfully bring the box to the goal location.

In order to solve this problem, we will present an evolutionary computation ap-
proach in which no centralized modeling and control are involved except a high-
level criterion for measuring the quality of collective task performance. The evolu-
tionary learning approach is based on a fittest-preserved genetic algorithm (GA).
Our approach begins with a model of local interactions between the robots and the
box in the environment. We then apply a GA as a global optimization technique to
select the local motion strategies of the individual robots in an
attempt to maximize the overall effectiveness of moving the box toward the goal
location.

While giving the formulation and algorithm of the GA-based collective behav-
ior learning, we will also provide the results of several computer simulations for
illustrating and validating the effectiveness of our approach. In order to further
examine the convergence properties of the group behavior learning, we will use
a Markov chain to model the genetic algorithm and to derive the probability of
success for the distributed robots to obtain their collective goal-directed behavior
after some iterations of evolutionary computation.

The chapter is structured as follows: Section 11.1 provides a formal statement
of the problem addressed. Section 11.2 gives an overview of the approach to group
behavior learning with both modeling and algorithmic details. Sections 11.3 and
11.4 describe two sets of computer simulations. The first illustrates how the group
behavior learning works, with a simplified dynamics model of robot-box inter-
action. The second presents some physically modeled, collective box-pushing
examples to further investigate the effectiveness of learning in a more complex
pushing task, where robots of rectangular shape can have many possible point
contacts while pushing and orienting a box. Section 11.5 describes a Markov
chain model of the GA-based behavior learning and examines its convergence
properties. Section 11.6 summarizes this chapter.

11.1 Group Behavior

Many existing approaches to robot motion planning have, to some extent, shared
one thing in common; namely, the motion of robots is planned and executed
by utilizing complete and/or partial representations of a task environment, such
as box shape, obstacle dimensions, and the position and orientation information

 ©2001 CRC Press LLC

about other robots. The question that remains is how to effectively generate co-
ordinated motions for a group of robots when the information about the environ-
ment, such as the states of other robots, is not available or too costly to obtain.
This issue is particularly relevant if we are to develop group robots that can work
collectively and adaptively on a common task, even though each robot can only
sense and hence react to its environment locally.

11.1.1 What is Group Behavior?

Let "t denote the local environment state of a robot group at time step t and �

denote the sensory inputs to the individual robots. In the environment, each robot
is capable of performing some actions � . A coordinated movement, U , by the
group robots in response to "t is composed of actions � such that they satisfy �,
the constraints imposed by the environment such as point contacts with a box,
and �, the criterion of collective task performance. This may be expressed as
follows:

8"t; 9 t 2 �; s:t: U � f t g; E(A)
U
=) �; (11.1)

where ftg corresponds to a goal-directed group behavior at time step t. A de-
notes group robots. E(A) denotes the performance evaluation of A.

11.1.2 Group Behavior Learning Revisited

The problem of group behavior learning is essentially a problem of learning how
to collectively perform a given task. Solving this problem requires group robots
to continuously gain experience from their local interaction with an environ-
ment. Such group experience is incrementally updated. This may be expressed as
follows:

�t = "t�1 � �t�1; U leads to �t j ��t � 0; E(A)=� ; (11.2)

where �t represents the group experience at time step t,� denotes a computational
updating mechanism, and "t�1 corresponds to the environment state sensed at
time step t� 1.

A group behavior will be generated from group experience following a series of
environment state transitions. Therefore, the process of group behavior learning
may be regarded as the process of converging group experience.

The specific group learning problem to be considered in this chapter can be
stated as follows: given a group of three individual robots, A, capable of sens-
ing and changing their own local positions and orientations, "t, with respect to
a box and a desired goal location in their workspace, how to develop a genetic
algorithm-based mechanism, �, such that A can gradually acquire a coordinated
movement, U , based on a series of �t changes. It is required that as a result of U ,
the box will be collectively pushed by A toward a goal location, "t0.

 ©2001 CRC Press LLC

As in some real-world situations, here we assume that each group robot has lim-
ited sensing, communication, and onboard computation capabilities. More
specifically:

1. Sensing: The group robots are capable of distinguishingwhich is the box to
be pushed and which is its group mate (e.g., through color detection). Due
to the limitation in its sensing range, the robot will not be able to detect
the exact shape of the box. The robot can only sense the direction of the
common goal location – hence estimate its relative orientation – but not the
exact distance from the goal.

2. Communication: There will be no cross-communication between group
robots. Each group robot can only establish a communication channel with
a remote evolutionary-computation agent for receiving the next local
movement command.

3. Onboard computation: All coordinated movement evaluation and selec-
tion are handled by a remote agent. The onboard computation of a robot is
responsible only for its motor-level control, local sensing, and
communication.

Besides the above assumptions, to focus on the issue of learning collective box-
pushing behavior, we assume that each group robot is capable of finding the box,
in case the contact between the robot and the box is lost. We will demonstrate
our approach with a series of simulations in which we ignore modeling and con-
trol uncertainties. The observations and experience gained from such simulation-
based studies can provide us with insights into group behavior learning in physical
robotic systems.

11.2 The Approach

This section presents a genetic algorithm-based approach to the problem of
learning how to perform a collective box-pushing task by a group of distributed
robots.

11.2.1 The Basic Ideas

Figure 11.1 presents a schematic diagram of the computational architecture for
genetic algorithm-based group behavior learning. As shown in the figure, the fit-
ness function of our genetic algorithm involves two components: one corresponds
to the interactions (the relative spatial configurations of individual robots relative
to a box), whereas the other corresponds to global feedback information (the di-
rection of a net pushing force on the box relative to a goal direction, as a result
of robot spatial configurations). Based on the current spatial configurations of the
robots, the genetic algorithm will first generate a set of new spatial configurations,

 ©2001 CRC Press LLC

Goal
Setting
Goal

Setting

Local
Constraint

Local
Constraint

Robot Configuration

Task Achievement

Save Current State

Observe the Emergent Behavior
Save Current State

Observe the Emergent Behavior

Previous
Behavior

Genetic
Algorithm

Sensing

System Goal Changing

Global
Expression

Local
Expression

Fitness

Refer/Update
Optimal Behavior

Learning Result

Display

FIGURE 11.1. The computational architecture for collective box-pushing behavior evolu-
tion. The movements of group robots in terms of their local spatial relationships, such as
a relative orientation with respect to a box being pushed and a desired goal location, are
gradually selected by a genetic algorithm-based evolutionary computation mechanism that
computes and evaluates the outcomes of potential motion strategies for the robots (c1999
IEEE).

evaluate these configurations using the fitness function (as denoted by a dashed
line), and then select the high-fitness configurations for the next step of evolution.
In doing so, the local motion strategies for the robots are continuously evolved
and performed. Each strategy is encoded in terms of the relative positions and
orientations of the robots.

11.2.2 Group Robots

In our work, simulated mobile robots will be used, which are graphically repre-
sented as circular or rectangular shapes2. Each robot is equipped with an array of
ultrasonic sensors to sense a box of a certain height in its workspace environment.

11.2.3 Performance Criterion for Collective Box-Pushing

The task performance of group robots in collective box-pushing will be evalu-
ated based on a high level criterion. This criterion favors the following collective
performance:

1. The robots maximize their net pushing force on the box.

2Here we consider rectangle-shaped robots in order to make the box-pushing problem more com-
plex and interesting – in the rectangular case, the configurations of the contacts between a robot and a
box being pushed will not be unique.

 ©2001 CRC Press LLC

2. The direction of the box movement is pointed toward a desired goal.

3. Whenever a goal location is redefined, the robots change their motion
strategies accordingly.

11.2.4 Evolving a Collective Box-Pushing Behavior

The mechanism for selecting robot movement strategies is based on a fittest-
preserved genetic algorithm (GA). This algorithm emphasizes on the highest-
fitness individual3, i.e., the best movement strategy, by recording it to the next
generation and applying mutation to this individual without any crossover op-
eration. The complete GA as used in the group behavior learning is given in
Figure 11.2.

begin
define fitness function Sf ,
define the maximum number of generations per step G,
define population size P,
define crossover probability pc,
define mutation probability pm,
create an initial population of P members,
for generation : 1 �! G do

evaluate fitness Sf in the current generation:
for population : 1 �! P do

propose new spatial configurations for group robots,
compute the corresponding motions of the group robots,
evaluate the fitness values for the computed movements,

endfor
record the highest-fitness individual,
mutate the highest-fitness individual with pm to get a

new individual for the next generation,
select additional P � 1 individuals based on their fitness values,
apply a two-point crossover operation to the P � 1 individuals

to get P � 1 new members,
mutate the P � 1 new members with probability pm

to create the next generation,
endfor

end

FIGURE 11.2. The genetic algorithm that is used to compute, evaluate, and select collective
goal-attaining, box-pushing motion strategies for group robots.

3A distinction should be made between the individuals in a GA population and the individual
robots in a group.

 ©2001 CRC Press LLC

11.2.5 The Remote Evolutionary Computation Agent

The entire system for a collective box-pushing task is composed of two parts;
namely, distributed group robots that directly interact with a task environment and
a remote agent that handles the computational and communication duties required
for the task. The remote agent will be responsible for performing the GA-based
evolutionary computation and broadcasting selected movement strategies to the
group robots.

11.3 Collective Box-Pushing by Applying Repulsive
Forces

In order to illustrate the key steps of the above-mentioned group behavior learn-
ing approach and to show its general features, this section presents the formula-
tion and experimentation in an illustrative collective box-pushing example. In this
example, we assume that the robots can be regarded as point robots. In addi-
tion, we define the dynamics of robot-box interaction by introducing a notion of
artificial repulsive force.

11.3.1 A Model of Artificial Repulsive Forces

The model of artificial repulsive forces between group robots and a box is based
on a Hooke’s law, spring-like model as follows: if a robot moves inside an l0-
radius region around the box, it will immediately exert an artificial repulsive force
~Fi on the box. The direction of ~Fi is shown in Figure 11.3, and the scale of ~Fi is
computed as follows:

Fi =

�
� � (l0 � di); if di � l0 ,
0; otherwise,

(11.3)

where � is a positive coefficient, and di is the Euclidean distance between the
robot and the box at the time of exerting a repulsive pushing force. If the robot is
outside the l0 range of the box, the pushing force will become zero.

By introducing a notion of artificial repulsive forces, we will regard the inter-
action between three group robots and a box as being created by such forces.
In other words, the group robots will collectively push the box through their
repulsive forces, if and only if their distances to the box are less than or equal
to a predefined constant, l0.

11.3.2 Pushing Force and the Resulting Motion of a Box

In this example, we are interested in the coordination among three group robots
in pushing a box toward a desired goal location. The pushing force acting on

 ©2001 CRC Press LLC

di

Box
iRobot

Fi

FIGURE 11.3. A top view of collective box-pushing (Note: for the sake of clarity, only one
robot is depicted) where group robots, marked with *, move toward a box, signified by a
shaded area. When their distances di are less than or equal to threshold l0 , pushing forces
will be exerted on the box by the robots, according to the model of a repulsive pushing
force (refer to the text).

the box will be contributed by all three robots. Here, we apply the rule of vector
composition to combine the pushing forces as created by the robots.

We consider that the motion of a box is caused by the collective net repul-
sive pushing force on the box, vector sum(~Fi), as follows: the direction of box
displacement is the same as that of the net force, and the magnitude of box
displacement is proportional to that of the net force.

11.3.3 Chromosome Representation

In the genetic algorithm as given in Figure 11.2, each of the members in a popu-
lation is encoded using a gray code, called a chromosome. Specifically, we assign
an 8-bit substring to encode the relative spatial configuration of one of the three
robots, as shown in Figure 11.4(a). Furthermore, we subdivide the 8-bit substring
into two parts, as in Figure 11.4(b), that correspond to orientation angle �i and
distance di of a robot relative to a box, respectively, as illustrated in Figure 11.5.
The most significant 5 bits of the 8-bit substring are assigned to encode �i. That
is, the entire range of 2� for the relative orientation is divided into 32 units with
an angular resolution of �

16 . The other 3 bits are assigned to encode di. Thus, the
distance is divided into 8 units with a linear resolution of l0

8 .
It may be noted from Figure 11.5 that �i and di together form a polar coor-

dinate for the robot. In this polar coordinate system, the polar axis is originated
at a certain reference point on the box, pointing toward the goal, as denoted by
+. Thus, if robot i has distance di from the box and orientation �i in this polar
coordinate system, then the relative spatial configuration of robot i can be
expressed as follows:

~Ti = di � ej�i : (11.4)

Accordingly, the direction of a pushing force, ~Fi, as produced by the robot will
become e

�j�i . The magnitude of this force will satisfy Eq. 11.3. Thus, we have:

 ©2001 CRC Press LLC

12312345 12345 {
Part 1

123 {

Part 2

(b)

(a)

{ 8 bits

Robot 3 ’s Code

{ 8 bits

Robot 1 ’s Code

{ 8 bits

Robot 2 ’s Code

FIGURE 11.4. (a) A 24-bit binary string is used to represent individual members, i.e., chro-
mosomes, in the genetic algorithm-based motion strategy selection for three group robots.
(b) Each of the 8-bit substring in the chromosome, encoding the local motion strategy of a
single robot, consists of two parts: part 1 encodes relative orientation angle �i and part 2
local distance di (c1999 IEEE).

~Fi = Fi � e�j�i : (11.5)

11.3.4 Fitness Function

In the genetic algorithm as used for evolving robot coordinated movement strate-
gies, a function is used to continuously evaluate the fitness of each member (a
potential strategy) in a population, which is referred to as a fitness function.
This function represents a high-level criterion, as stated earlier, for the task of
collective box-pushing. Specifically, our fitness function is defined as follows:

Sf = s1 � s2 � s3 ; (11.6)

where s1 specifies a net pushing force on a box as created by group robots, which
can be mathematically expressed as follows:

s1 = � � kvector sumi(~Fi)k: (11.7)

s2 measures how close the robots are to the box, which is calculated as follows:

s2 = � � [
X
i

di]
�1: (11.8)

 ©2001 CRC Press LLC

Goal
Box

d i
i

Robot i

FIGURE 11.5. A top view of robot local spatial configuration in a movement strategy
(Note: for the sake of clarity, only one robot, marked with *, is shown). In our experiment,
once a robot has moved to a location close enough to a box (di � l0), it can exert a
repulsive force on the box at its relative orientation, �i, with respect to a reference point
on the box and a desired goal location. �i and di can be regarded as the polar coordinates
of the robot in a coordinate system defined by the current and the desired locations of the
box (c1999 IEEE).

Finally, s3 indicates whether and how much the motion of the box is directed
toward a desired goal location, or more specifically:

s3 =

�
cos�; � 2 [��

2 ;
�
2],

0; otherwise,
(11.9)

where � denotes the direction of the net force by the three robots.

11.3.5 Examples

In this section, we will describe some experiments in which the GA-based group
behavior learning mechanism is implemented and validated. In order to have a
closer examination into the process of coordinated movement, we will present
and trace several snapshots of the behavior selection and motion execution in a
typical case study. In our experiments, we assume that the robots exert repulsive
forces simultaneously.

11.3.5.1 Task Environment

In our experiments, we define the workspace for three group robots as a square
arena, E , of size 10 l0�10 l0. Whenever the robots or the box hit the boundary of
the workspace, the task of box-pushing will be reset. At the beginning, the three
robots and the box will be randomly placed inside E . A desired goal location will
be arbitrarily generated within the workspace.

 ©2001 CRC Press LLC

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

t=4 t=8 t=12

t=16 t=20 t=24

t=28 t=32 t=36

FIGURE 11.6. The snapshots of collective box-pushing by three robots taken every 4 gen-
erations from generations 4 to 36 (top view). The collective movement in each snapshot
is generated based on the fittest member of a population at a certain generation of collec-
tive behavior evolution. In the robot environment, a desired goal location is marked with
symbol +. A box is marked with symbol � (c1999 IEEE).

11.3.5.2 Simulation Results

Figures 11.6 and 11.7 provide a series of snapshots showing the process of group
behavior learning based on a genetic algorithm, from generations 4 to 72 (taken
every 4 generations). From these snapshots, we note that three robots continuously
modify their spatial configurations in order to satisfy a high-level fitness require-
ment. As a result, a box, marked with �, is gradually moved toward a desired goal
location, marked with +. The box reaches the goal location at generation 64.

11.3.5.3 Generation of Collective Pushing Behavior

Figure 11.8 presents the trajectories of three robots pushing a box. In the
figure, the solid line denotes the trajectory of the box, and the dashed line,

 ©2001 CRC Press LLC

dotted line and dash-dot line correspond to those of the three robots. At the be-
ginning of box-pushing, the robots move in a rather chaotic manner. It took more
than 20 generations for the group of distributed robots to develop (emerge) an
effective group behavior that maximizes the fitness function as given in Eq. 11.6.
The motion trajectories are gradually getting smoother, as the evolution of col-
lective motion strategies goes on. After about 40 generations, as marked in the
figure, the coordination among the robots becomes most apparent. We also note
that the group creates a spiral motion near the goal location. This is because in
many high-fitness individuals selected (effective strategies), the direction of a net
repulsive force may not be directly pointing toward the goal location, implying
that the GA-based learning after the given period of evolution yields a good, but
not necessarily the best, strategy for accomplishing the task.

11.3.5.4 Adaptation to New Goals

In our experiments, we are also interested in whether group robots can adapt to
the change of a goal location. Figure 11.9 presents the traced motion trajectories
of the robots after the goal is changed to a new location at generation 70. In such a
case, the robots can immediately bring the box toward the new goal location, indi-
cating that the GA-based evolutionary behavior learning can adapt to the changes
in the task environment. In Figure 11.9, symbol o at t=70 denotes a previous goal
location.

The above observations are also reflected in a fitness function plot for the best
individual of each generation over the entire process of behavior learning, as given
in Figure 11.10. From the figure, we may identify four distinct stages in the evo-
lution. The first stage occurs during the early 20 generations, where the robots
execute their motion strategies quite chaotically. The next stage happens in the
following 19 generations – from generations 21 to 39. During this period, the
robots execute several collective group behaviors of low fitness. Then, during later
task performance from generations 40 to 64, improved collective behaviors start
to emerge, even though there are a few slight oscillations involved. Finally, after
generation 64, the fitness values reach a new level, even when the goal location is
changed twice – one at generation 70 and another at generation 97.

11.3.5.5 Discussions

In the formulation of our fitness function, we have emphasized keeping a good
balance between the local interaction of individual robots and the global goal-
directedness of box movement. This is best reflected in the three terms of Eq. 11.6.
Now let us consider what would happen if either the local interaction or the global
goal-directedness were removed in the fitness function.

As we may recall, s1 and s2, as defined in Eqs. 11.7 and 11.8, respectively,
imply that all robots should try to surround the box as tightly as possible while
maintaining a maximum pushing force. If only these two terms were involved in
the task performance criterion, the robots would immediately acquire a series of
pushing movements without taking into account any specific direction of pushing.

 ©2001 CRC Press LLC

In such a case, the box would be pushed straight toward the boundary of the robot
workspace – any turning can be against previously evolved behavior patterns and
indicate low fitness.

Unlike s1 and s2, s3 in Eq. 11.6 implies that the net pushing force as created
by group robots should be pointed toward the direction of a desired goal location
without considering the exact distance from the goal. This term of global goal-
directedness information alone will by no means create any effective pushing co-
ordination among the robots. In such a case, even though the box may be brought
to the goal location eventually, the local motions of the robots will become very
chaotic.

From the above discussions, we note that there should be a good balance
between the overall goal-directedness and the local movement behavior.

By incorporating a constraint on the local movement behavior into the fitness
function, we have embedded certain designer’s knowledge in the fitness function.
However, such high-level knowledge may not be complete as in many GA appli-
cations. This was also reflected in the experiment that resulted in a near-optimal
solution. In the case studies, we note that although the collective box-pushing
task is achievable, the fitness values appear to fluctuate due to the definition of the
three-term fitness function. From Eqs. 11.7 and 11.8, some slight changes in the
relative position and orientation of the group robots may produce quite dramatic
changes in the group fitness value.

11.4 Collective Box-Pushing by Exerting External
Contact Forces and Torques

The aim of the previous example is to illustrate how the group behavior learning
approach works and the general characteristics of this approach. Toward this end,
we simplify the dynamics of robot-box interaction by introducing a notion of
repulsive forces and at the same time treat group robots and a box as points of
zero physical size.

In some earlier studies conducted by Mataric [MNS95], it was shown that the
location on the box that a robot is pushing can, to a certain extent, affect the
performance of a pushing task. In this section, we will consider the problem of
group behavior learning to perform a complex box-pushing task, where rectangu-
lar robots and a cylindrical/cubic box are involved that can have many possible
point contacts among them. The goal of this example is to further examine and
validate the effectiveness of learning in a more realistic simulation that is closer
to a real-world situation than the preceding case study.

11.4.1 Interaction between Three Group Robots and a Box

Our next example involves three robots and one box. Two types of boxes are
considered: one is cylindrical and another is cubic. The boxes are rigid bodies,

 ©2001 CRC Press LLC

whose motions are based on the influence of forces and torques externally applied
by the group robots.

In order for group robots to move a box, the robots must simultaneously exert
external forces and torques on the box. The individual forces and torques arise
from the point contacts between the robots and the box. Here we disallow colli-
sions among the robots and the box. We assume that the robot always produces
a unit force if it is in contact with the box in a certain direction. The net contact
force on the box by the three robots can produce a linear displacement of the box.
A contact force may be applied to the box, at some distance from its center of
mass, which may create a corresponding torque. If the net torque on the box is
non-zero, the box will rotate.

11.4.2 Case 1: Pushing a Cylindrical Box

11.4.2.1 Pushing Position and Direction

In the case of pushing a cylindrical box, the contact positions and directions of
robots can be described as follows: assume that there are N positions around
the box at which the robots may contact and push, and each robot can produce a
pushing force in one ofM directions. All these locations and directions are evenly
distributed around the box and the robot. Thus, the resolutions for describing the
pushing positions and the pushing-force directions are 2�

N and 2�
M , respectively.

11.4.2.2 Pushing Force and Torque

Figure 11.11 illustrates a contact pushing force on a cylindrical box that leads to
its motion. Suppose that the direction of the pushing force is �i, and robot i pushes
the box at a position with angular measurement �i. In this case, the box will be
pushed to move by unit force ~Fi and torque Ji, i.e.,

~Fi = K � ej�i ; (11.10)

Ji = �K � li ; (11.11)

where K is the magnitude of the unit force, and li is the distance from the center
of mass to the direction of pushing force ~Fi. When the direction of ~Fi is counter-
clockwise, the sign of Ji is positive; otherwise, it is negative.

With the pushing force and torque, the box will be pushed to move in the di-
rection of the force and, at the same time, rotate about its center. The linear and
angular displacements are defined as follows:

O = �1 � kvector sumi(~Fi)k; (11.12)

R� = �2 �
X
i

Ji; (11.13)

where �1 and �2 are positive coefficients, and kvector sumi(~Fi)k and
P

i Ji
correspond to net force and net torque, respectively.

 ©2001 CRC Press LLC

11.4.3 Case 2: Pushing a Cubic Box

As in the preceding case, group robots will push a box through their contact
forces. However, the present case differs from the above in that a cubic box is
used, whose orientation will no longer be unique.

11.4.3.1 The Coordinate System

Figure 11.12 presents a top view of group robots pushing a cubic box. For the sake
of clarity, only one of the three robots is shown. During collective box-pushing,
the relative spatial configuration of each robot is specified by a relative orientation,
�i, with respect to a desired goal location and a reference point on the box. The
coordinate system for describing �i is shown in Figure 11.12. In this system the
origin lies in the reference point on the box, and the axis points toward the desired
goal.

11.4.3.2 Pushing Force and Torque

Figure 11.13 shows a contact-pushing force on a cubic box, which causes the
motion of the box. In this case, the definitions of force, torque, and displacements
are the same as those in the preceding cylindrical box case.

11.4.4 Chromosome Representation

In the present case studies, the chromosome for each individual robot is encoded
in 10 bits. Thus, each member of a population, expressing a possible collective
motion strategy for three robots, is represented using a 30-bit chromosome. In
each 10-bit substring, the most significant 5 bits express angle �i for one of the
three robots in a polar coordinate system, as mentioned above. That is to say, the
total range 2� of orientation is subdivided into 32 units with an angular resolution
of �

16 . The remaining 5 bits encode the direction of a pushing force acting on the
box by that robot.

11.4.5 Fitness Functions

Case 1: Pushing a Cylindrical Box

In this case, we measure the performance of a group behavior using the following
fitness function:

Sf = s1 � s2 � s3 ; (11.14)

where
s1 = kvector sumi(~Fi)k; (11.15)

s2 = 1 + cos�; (11.16)

s3 = k
X
i

Jik�1; (11.17)

 ©2001 CRC Press LLC

where � is the direction of the net contact force by all three robots. ~Fi and Ji
denote a contact force and a corresponding torque created by robot i, respectively.

In the above definition of the fitness function, s1 implies that the box should
be pushed by a large net contact force, s2 implies that the box should be moved
toward a desired goal location, and s3 implies that the rotation of the box should
be discouraged during collective pushing.

Case 2: Pushing a Cubic Box

In the case of pushing a cubic box, we calculate the fitness function for group
robots as follows:

Sf =
p
s1 � (s2 � s3)4; (11.18)

where s1, s2 and s3 are given in Eqs. 11.15, 11.16, and 11.17, respectively.

11.4.6 Examples

This section presents some experiments in which the above-mentioned GA-based
group behavior learning is implemented and validated.

11.4.6.1 Task Environment

Our experimental environment for box-pushing is a square arena E of 100units�
100units. If a robot or a box hits the boundary of the environment, the experiment
is reset. At the beginning, group robots and the box are randomly placed inside
E . The task of the three robots is to move the box to a desired goal location. The
location of the goal is also randomly selected at the beginning. Whenever the box
reaches the goal, a new goal location is selected.

11.4.6.2 Adaptation to New Goals

While observing the evolution of collective box-pushingbehaviors in group robots,
we will also study the relationship between group behavior learning for reaching
one goal location and that for a different goal location. In order to do so, we will
conduct an experiment in which the group robots are required to move the box
toward a new goal location as soon as the box reaches its old goal location. We
are interested in knowing whether the group robots can adapt to the change of a
desired goal location by reselecting some previously evolved motion strategies.

11.4.6.3 Simulation Results

In what follows, we will provide some results obtained from our simulation exper-
iments on collectively pushing cylindrical and cubic boxes with a group of three
robots. The specific parameters set in the experiments are given in Table 11.1.

 ©2001 CRC Press LLC

Parameter Symbol Value
number of robots M 3
number of contact segments N 32
environment size 100�100
translation step coefficient �1 0.5
rotation step coefficient �2

�
6

radius of a cylindrical box 2
dimension of a rectangular-shaped robot 1�1.5
chromosome length L 30
population size P 8
crossover probability pc 0.8
mutation probability pm 0.05

TABLE 11.1. Parameters as used in the experiments.

Case 1: Pushing a Cylindrical Box

Figures 11.14 and 11.15 present a series of snapshots showing the movement steps
of three robots in pushing a box toward a desired goal location. Figures 11.16 and
11.17 show the trajectories of the robots and the box. In the figure, the solid line
denotes the trajectory of the box; and the dashed line, dotted line and dash-dot
line correspond to those of the three robots. Figure 11.18 shows the corresponding
fitness value changes during group behavior learning.

At the beginning of box-pushing, group robots move in a rather chaotic manner.
The reason is that when the chromosomes in a population are randomly initialized,
no high-fitness configuration can be found with genetic operations. It takes more
than 30 generations for the group of distributed robots to emerge more effective
group behaviors. This is also reflected in the fitness value changes as shown in
Figure 11.18. The motion trajectories are getting increasingly smoother, as the
evolution for collective box-pushing continues. After about 40 generations, as
shown in the figures, the coordination among the robots becomes most apparent.

 ©2001 CRC Press LLC

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

0 2 4 6

2

4

6

8

t=40 t=44 t=48

t=52 t=56 t=60

t=64 t=68 t=72

FIGURE 11.7. The snapshots of collective box-pushing by three robots taken every 4 gen-
erations from generations 40 to 72 (top view). The collective movement in each snapshot
is generated based on the fittest member of a population at a certain generation of collec-
tive behavior evolution. In the robot environment, a desired goal location is marked with
symbol +. A box, marked with �, is gradually moved toward the goal direction, after about
40 generations of motion strategy selection (c1999 IEEE).

 ©2001 CRC Press LLC

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Motion Trajectory

t=40
t=64

FIGURE 11.8. The box-pushing trajectories created by three group robots. The solid line
corresponds to the trajectory of the box, whereas the others correspond to the movement
traces for the three robots. At the beginning, the net pushing force of the robots results in
a rather randomized motion of the box. This corresponds to the random initialization of
potential collective motion strategies in the genetic algorithm. Next, the motion of the box
is transformed into a phase of chaotic oscillation, as the genetic algorithm is undergoing
the recombination and mutation of some suboptimal local movement strategies (that is,
certain terms in the fitness function may first get optimized before the others). Later, after
some generations of selection, a niche is found, representing a globally near-optimal col-
lective motion strategy, and hence the oscillating movement of the box becomes stabilized
(c1999 IEEE).

 ©2001 CRC Press LLC

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
Motion Trajectory (Zoom View)

t=95

t=80

t=70

FIGURE 11.9. At generation 70, a new goal location is set. The earlier selected movement
strategies for group robots to collectively push a box can be immediately readjusted, since
only the movement direction needs to be offset in this case (c1999 IEEE).

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

F
itn

es
s

t

FIGURE 11.10. A fitness function plot for the fittest member of a population at each gen-
eration, over 100 generations (the entire evolution process of collective box-pushing). Due
to the fact that any slight movement change can cause significant variations in some of the
terms in the fitness function (the direction and/or the magnitude of the net pushing force),
the fitness values recorded have shown some fluctuations. Nevertheless, the trend of the fit-
ness change tends to increase over the period of collective behavior evolution, even when
the desired goal locations are reset twice at generations 70 and 97 (c1999 IEEE).

 ©2001 CRC Press LLC

Box

Robot

Box

Robot

iJ

il

Fi

Fi

i i

FIGURE 11.11. A top view of group robots pushing a cylindrical box (Note: for the sake
of clarity, only one of the three robots is shown). The pushing force on the box is created
by individual, rectangular-shaped robots via their contact points. As a result of this force,
the box may be pushed to translate as well as rotate about a certain axis.

Goal

Box

i

i

Robot

Fi

i

FIGURE 11.12. A top view of group robots pushing a cubic box (Note: for the sake of
clarity, only one of the three robots is shown). As in the preceding case, the pushing force
on the box is created via the physical contacts between the robots and the box. During
collective box-pushing, the relative spatial configuration of each robot is specified by a
relative orientation, �i, with respect to a desired goal location and a reference point on the
box.

Box Box

i
iJl Fi

Fi

Robot i Robot i

FIGURE 11.13. As a result of the net contact force on a box, as created by three group
robots, the box may be pushed to translate as well as rotate about a certain axis (Note: for
the sake of clarity, only one of the three robots is shown).

 ©2001 CRC Press LLC

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=1)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=7)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=13)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=19)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=25)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=31)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=37)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=43)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=49)

FIGURE 11.14. The snapshots of pushing a cylindrical box by three group robots (top
view). The collective movement in each snapshot is generated based on the fittest mem-
ber of a population at a certain generation of collective behavior evolution. In the robot
environment, a desired goal location is marked with symbol +. The number shown at the
upper right corner of each snapshot corresponds to the generation number. The tail orig-
inated from each robot indicates the direction of its movement. As shown in the figure,
good collective motion strategies are found after about 30 generations.

 ©2001 CRC Press LLC

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=55)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=61)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=67)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=68)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=78)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=88)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=98)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=108)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=118)

FIGURE 11.15. The snapshots of pushing a cylindrical box by three group robots (top
view). The collective movement in each snapshot is generated based on the fittest mem-
ber of a population at a certain generation of collective behavior evolution. In the robot
environment, a desired goal location is marked with symbol +. The number shown at the
upper right corner of each snapshot corresponds to the generation number. The tail origi-
nated from each robot indicates the direction of its movement. As shown in the figure, at
generation 67, the desired goal location is reset. In such a case, previously found motion
strategies are quickly reselected.

 ©2001 CRC Press LLC

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Motion Trajectory

t=67

FIGURE 11.16. The trajectories of cylindrical box-pushing by group robots from the be-
ginning until the box reaches a desired goal location. The solid line corresponds to the
trajectory of the box, whereas the others correspond to the movement traces for the three
robots.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Motion Trajectory

t=118

t=68

FIGURE 11.17. The desired goal location is reset at generation 67.

 ©2001 CRC Press LLC

0 20 40 60 80 100 120
5

10

15

20

25

30

35

t

F
itn

es
s

V
al

ue

FIGURE 11.18. A fitness function plot for the fittest member of a population at each gener-
ation over the entire collective behavior evolution of 118 generations. Unlike the previous
illustrative example, in this experiment, changes in the movements of three group robots
can be quickly stabilized after about 30 generations, where further recombinations and
mutations of the potential motion strategies will not result in significant fluctuations in
the fitness values. This is primarily because the present fitness function, e.g., the direction
and/or the magnitude of the net pushing force, is not as sensitive as the previous one to the
same amount of movement variations.

 ©2001 CRC Press LLC

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=1)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=10)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=19)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=28)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=37)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=46)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=55)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=64)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=73)

FIGURE 11.19. The snapshots of pushing a cubic box by three group robots (top view).
Similar to the preceding experiment, the collective movement in each snapshot is generated
based on the fittest member of a population at a certain generation of collective behavior
evolution. Except the change of a box, all the rest of notations here remain the same as
before. As shown in the figure, good collective motion strategies are found after about 20
generations.

 ©2001 CRC Press LLC

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=83)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=84)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=100)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=120)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=140)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=158)

FIGURE 11.20. The snapshots of pushing a cubic box by three group robots (top view).
As shown in the figure, at generation 84 the desired goal location is reset. In such a case,
previously found motion strategies are readjusted.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Motion Trajectory

t=83

t=1

FIGURE 11.21. The trajectories of cubic box-pushing by group robots from the beginning
until the box reaches a desired goal location. The solid line corresponds to the trajectory of
the box, whereas the others correspond to the movement traces for the three robots.

 ©2001 CRC Press LLC

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Motion Trajectory

t=158

t=84

FIGURE 11.22. At generation 84, a new goal location is set.

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12
x 10

4

t

F
itn

es
s

V
al

ue

FIGURE 11.23. A fitness function plot for the fittest member of a population at each
generation over the entire evolution of 158 generations. Similar to the previous experi-
ment, the collective movements of three group robots can be quickly stabilized after about
20 generations, where further recombinations and mutations of the potential movement
strategies will not result in significant changes in the fitness values. However, unlike the
cylindrical box-pushing experiment, in the present experiment, after the goal location is
reset, the robots cannot simply reselect the previously found motion strategies due to the
orientation of the box created at the time when the goal is first reached at generation 83.

 ©2001 CRC Press LLC

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90

Object Motion Process

FIGURE 11.24. The trajectory of a cubic box collectively pushed by three group robots
from the beginning until the box reaches the first desired goal location, and then moves
toward a new goal. The diagonal inside the cubic box signifies the orientation of the box.

Case 2: Pushing a Cubic Box

In the case of cubic box-pushing, all parameters, except the box shape and dimen-
sions, are the same as those in the previous case. The side of the cubic box is 4
units long.

Figures 11.19 and 11.20 show the snapshots of cubic box-pushing.
Figures 11.21 and 11.22 give the trajectories traced in the process. Figure 11.23
presents a plot of the corresponding fitness value changes during the behavior
evolution.

Similar to the previous experiment, the collective movements of three group
robots can be quickly stabilized after about 20 generations, where further recom-
binations and mutations of the potential movement strategies will not result in sig-
nificant changes in the fitness values. However, unlike the cylindrical box-pushing
experiment, in the present experiment, after the goal location is reset, the robots
cannot simply reselect the previously found motion strategies due to the orien-
tation of the box created at the time when the goal is first reached at generation
83.

Figure 11.24 provides a series of box positions and orientations, showing the
translation and rotation of the box as a result of collective pushing. We note
that the box is being pushed without much rotation (The diagonal inside the box
signifies the orientation of the box).

 ©2001 CRC Press LLC

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=68)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=74)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=80)

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90 (t=81)

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90 (t=91)

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90 (t=101)

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90 (t=111)

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90 (t=121)

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90 (t=131)

FIGURE 11.25. The snapshots of collective cylindrical box-pushing in which a new goal
location, denoted by +, is set at generation 81, before an old one, denoted by}, is reached.
In this case, the robots successfully readapt their collective movements. The process of
collective pushing before generation 68 has been shown in Figures 11.14 and 11.15.

11.4.6.4 Adaptation to Dynamically Changing Goals

In the preceding experiments, a new goal location is set as soon as group robots
bring a box to a desired goal location. Here, an interesting question to ask is what
will happen if the goal location is changed before it is reached by the box.

Case 1: Pushing a Cylindrical Box

Figure 11.25 shows a series of snapshots from collective cylindrical box-pushing
where a new goal location, denoted by +, is set at generation 81, before an old
one, denoted by }, is reached. In this case, the robots successfully readapt their
collective movements. The process of collective pushing before generation 68 has
been given in Figures 11.14 and 11.15.

Figure 11.26 gives the trajectories of collective cylindrical box-pushing where
the solid line corresponds to the trajectory of the box and the others correspond to
those of the three robots. The successful readaptation of the robots is also reflected

 ©2001 CRC Press LLC

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Motion Trajectory

t=131

t=80

t=68

FIGURE 11.26. The trajectories of collective cylindrical box-pushing (the solid line for
the box and the others for the three robots). In this case, a new goal location, denoted by
+, is set at generation 81, before an old one, denoted by }, is reached. The successful
readaptation of the robots is reflected in the smoothness of the observed trajectories. The
process of collective pushing before generation 68 has been given in Figures 11.16 and
11.17.

in the smoothness of the observed trajectories. The process of collective pushing
before generation 68 can be found in Figures 11.16 and 11.17.

Figure 11.27 provides a fitness function plot corresponding to the movement
selection and readaptation of three group robots, as shown in Figure 11.26, over
the entire evolution process of 131 generations.

Case 2: Pushing a Cubic Box

Figure 11.28 presents several snapshots of collective cubic box-pushing. In this
case, a new goal location, denoted by +, is set at generation 91, before an old one,
denoted by }, is reached. Like the preceding experiment, the robots again suc-
cessfully readapt their collective movements. The process of collective pushing
before generation 84 can be found in Figures 11.19 and 11.20.

Figure 11.29 shows the trajectory of a cubic box collectively pushed by three
group robots. The successful readaptation of the robots is reflected in the smooth-
ness of the observed trajectory. In the trace, the diagonal inside the cubic box
signifies the orientation of the box.

Figure 11.30 presents a fitness function plot corresponding to the movement
selection and readaptation of three group robots, as shown in Figure 11.29, over
the entire evolution process of 152 generations.

 ©2001 CRC Press LLC

0 20 40 60 80 100 120 140
5

10

15

20

25

30

35

t

F
itn

es
s

V
al

ue

FIGURE 11.27. A fitness function plot corresponding to the movement selection and
readaptation of three group robots, as shown in Figure 11.26, over the entire evolution
process of 131 generations.

11.4.6.5 Discussions

We can note from the above case studies that group robots can quickly adapt
to a new goal location based on their early evolved movement strategies. In the
case of cylindrical box-pushing, the adaptation simply involves the reselection
of a previous collective movement behavior. This is because the orientation of the
cylindrical box is uniform, and its resulting orientation at the time when it reaches
an old goal will not affect the subsequent learning to reach a new goal. In fact,
such a case may be viewed as if the robots are undertaking a continuous evolution
for collective box-pushing toward the same goal location.

On the other hand, in the case of cubic box-pushing, the group robots will
slightly adjust their motion strategies with respect to the current orientation of
the cubic box, in order to move the box toward a new goal location. This is also
reflected in the slight perturbation in the fitness function plot of Figure 11.30.

In all experiments presented in this section, the box, either cylindrical or cu-
bic, is pushed by the group robots through their direct contact forces. Since the
size of the box is relatively larger than the one used in the preceding illustrative
example of Section 11.3, the fitness function that measures the direction and mag-
nitude of the net pushing force/torque will be less sensitive to the slight movement
variations as compared to the previous illustrative example.

It should be pointed out that the fitness functions used in the experiments are
not unique. Other forms of fitness measurements may also be introduced. It is
important to note that the definition of a fitness function can play a role in the
resulting performance of collective box-pushing behavior learning.

All case studies that we have described here are taken from the simulation
runs that we have conducted and regard as typical. Naturally, this leads us to
our next question: from a theoretical point of view, is it possible to estimate the

 ©2001 CRC Press LLC

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=84)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=90)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=91)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=102)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=112)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=122)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=132)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=142)

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90 (t=152)

FIGURE 11.28. The snapshots of collective cubic box-pushing in which a new goal loca-
tion, denoted by +, is set at generation 91, before an old one, denoted by }, is reached.
Like the preceding experiment, the robots again successfully readapt their collective
movements. The process of collective pushing before generation 84 has been shown in
Figures 11.19 and 11.20.

probability of converging to a motion strategy by applying the fittest-preserved
genetic algorithm? In the next section, we will explicitly deal with this issue.

11.5 Convergence Analysis for the Fittest-Preserved
Evolution

In what follows, we will provide some analytical results concerning the
convergence of the fittest-preserved genetic algorithm.

11.5.1 The Transition Matrix of a Markov Chain

For a standard genetic algorithm, it is possible to model the set of all possible
populations as the state space of a Markov chain and hence derive the transition

 ©2001 CRC Press LLC

10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90

Object Motion Process

FIGURE 11.29. The trajectory of a cubic box collectively pushed by three group robots.
In this case, a new goal location, denoted by +, is set before an old one, denoted by },
is reached. The successful readaptation of the robots is reflected in the smoothness of the
observed trajectory. In the trace, the diagonal inside the cubic box signifies the orientation
of the box.

matrix of the Markov chain. Let c(0; v) denote the occurrences of individual 0 in
a population labeled as v, and c(1; v) denote the occurrences of individual 1 in
population v and so on. We denote the transition matrix as Q = (Qv;w), where
Qv;w is the probability that population v evolves to population w and can be
calculated as follows [NV92]:

Qv;w = P!
2L�1Y
j=0

b(j; v)c(j;w)

c(j; w)!
; (11.19)

where P, L, and b(j; v) denote the size of a population, the bit length of an indi-
vidual, and the probability of producing individual j from population v,
respectively.

Now let us take a look at the case of fittest-preserved evolution and obtain its
corresponding transition matrix. Before doing so, let us consider the following
conventions for labeling individuals and populations:

1. We use
PL

i
k(i)2i�1 to label each individual k, where L and k(i) denote

the bit length of an individual and the value of the i-th bit of k, respectively.
The convention for labeling each individual k becomes: assign labels j =
0; 1; � � � ; 2L � 1 to individuals according to a descending order of their
fitness function values, Sf (k). That is, label the individual with the highest

 ©2001 CRC Press LLC

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12
x 10

4

t

F
itn

es
s

V
al

ue

FIGURE 11.30. A fitness function plot corresponding to the movement selection and
readaptation of three group robots, as shown in Figure 11.29, over the entire evolution
process of 152 generations.

fitness function value 0, label the individual with the second highest fitness
function value 1, and so on. Thus, individual k refers to the individual with
(k + 1)-th highest fitness function value. If two individuals have the same
fitness function value, they will be differentiated with two distinct labels
following certain criteria.

2. The convention for labeling different populations is given as follows: let
k�(h) denote the individual with the highest fitness function value in pop-
ulation h. Assign labels j = 1; 2; � � � ; N to the individuals of each popula-
tion according to an ascending order of k�(h). If we find two populations
h1 and h2 have the same k�(h1) = k�(h2), we can define some criterion to
let them have different labels.

Having given the conventions for labeling individuals and populations, we can
now write the transition matrix for the Markov chain that models the fittest-
preserved genetic algorithm as follows:

Qv;w =

(
(P � 1)!

Q2L�1
j=0

b(j;v)z(j;w)

z(j;w)! ; k�(v) � k�(w),
0; k�(v) < k�(w),

(11.20)

where P, L, and b(j; v) denote the size of a population, the bit length of an indi-
vidual, and the probability of producing individual j from population v,
respectively. And,

z(j; w) =

�
c(j; w)� 1; j = k�(w),
c(j; w); j 6= k�(w).

(11.21)

 ©2001 CRC Press LLC

\

Q = (Qv;w) can be divided into 2L submatrices along its diagonal. Each
submatrix has size N (i)�N (i), i = 0; 1; � � � ; 2L� 1, where N (i) is the number
of populations in which i is the individual with the highest fitness function value,
e.g., k�(v) = i.

Specifically, the transition matrix for the fittest-preserved genetic evolution,
Q = (Qv;w), can be written as follows:

2
6666666666666666666664

Q(0)

Q(1) 0

. . .
N(i)z }| {
Q(i) gN (i)

nonzero
. . .

Q(2L � 1)

3
7777777777777777777775

: (11.22)

This Markov chain has absorbing states; any initial state will eventually evolve
into such states. The absorbing states consist of populations with individual 0.

11.5.2 Characterizing the Transition Matrix Using Eigenvalues

Let �1; �2; � � � ; �N be N eigenvalues of the transition matrix Q = (Qv;w). From
matrix theory, we know that there exists a matrix, T, such that,

Q = T�1

2
6664

�1
�2

. . .
�N

3
7775T; (11.23)

where

T =

2
664

b11 b12 � � � b1N
b21 b22 � � � b2N
� � � � � � � � � � � �
bN1 bN2 � � � bNN

3
775 : (11.24)

T�1 is the inverse matrix of T, that is,

NX
l=1

avlblw =

�
1; v = w,
0; v 6= w,

(v; w = 1; 2; � � � ; N): (11.25)

 ©2001 CRC Press LLC

We can obtain

Qv;w =
NX
l=1

�lavlblw; (11.26)

Qn = (Q(n)
v;w) = T�1

2
6664

�n1
�n2

. . .
�nN

3
7775T; (11.27)

and

Q(n)
v;w =

NX
l=1

�nl avlblw; (11.28)

where Q
(n)
v;w is the probability that population w can be generated from popula-

tion v after n generations. In our fittest-preserved genetic algorithm, Q(n)
v;w can be

rewritten in an equivalent form:

Q(n)
v;w =

2L�1X
i=0

N(i)X
j=1

�ni;jav;i;jbi;j;w: (11.29)

Let
0 denote the set of populations that include individual 0. Then for v 2
0

and w 62
0, Q(n)
v;w = 0. More generally, Q(n)

v;w = 0 when k�(v) < k�(w).
If the initial state is q(0) = (q

(0)
1 ; q

(0)
2 ; � � � ; q(0)N), then the state in the next gen-

eration will be q(1) = (q(1)1 ; q
(1)
2 ; � � � ; q(1)N) = q(0)Q, and the state after n genera-

tions will be q(n) = (q(n)1 ; q
(n)
2 ; � � � ; q(n)N) = q(0)Qn.

P
w2
0

q
(n)
w =

PN(0)
w=1 q

(n)
w

represents the probability that a population including individual 0 will be gen-
erated after n generations. On the other hand,

P
w 62
0

q
(n)
w = 1 �Pw2
0

q
(n)
w

represents the probability that no population including individual 0 will be gener-
ated. We can show that

P
w 62
0

q
(n)
w is upper bounded.

X
w 62
0

q(n)w =
X
w 62
0

NX
v=1

q(0)v Q(n)
v;w; (11.30)

=
X
w 62
0

NX
v=1

0
@q(0)v

2L�1X
i=0

N(i)X
j=1

�ni;jav;i;jbi;j;w

1
A ; (11.31)

�
0
@X
w 62
0

NX
v=1

0
@q(0)v

2L�1X
i=0

N(i)X
j=1

av;i;jbi;j;w

1
A
1
A j�maxjn;(11.32)

=

0
@X
w 62
0

q(0)v

1
A j�maxjn (derived from Eq: 11:25);(11.33)

= Const j�maxjn; (11.34)

 ©2001 CRC Press LLC

where Const is a positive number smaller than 1. Hence, we have:X
w2
0

q(n)w � 1� Const j�maxjn � 1� j�maxjn: (11.35)

The next step is to estimate the absolute value of �max . It is obvious that � is the
eigenvalue ofQ if and only if � is the eigenvalue of one of the submatrices (Q(i))
since the determinant of Q is equal to the multiplication of the determinants of
(Q(i)). Then from Markov chain theory and matrix theory [KS60], we know that

j�maxj � max0�i<2L�1max1�j�N(i)

N(i)X
v=1

Q(i)j;v; (11.36)

where
PN(i)

v=1 Q(i)j;v represents the probability that the highest fitness value of
population

Pi�1
k=0N (k) + j will not get better or worse in the next generation,

while 1 �PN(i)
v=1 Q(i)j;v represents the probability that the highest fitness value

of population
Pi�1

k=0N (k) + j will get better in the next generation.
Now let us calculate the least probability that a population will get better in the

next generation of box-pushing behavior evolution. From our coding scheme we
can prove that, by changing only one bit of the chromosome, it is possible to make
the individual corresponding to the chromosome have a higher fitness value. The
detailed proof is not given here due to space limitation.

The probability that a mutation happens on the right bit is the least probability
that a new populationwill get better. In fact, the probabilitycan be higher since the
crossovers and mutations of other individuals may also generate some individuals
with higher fitness values than the original fittest. However, it is sufficient for us to
only consider the mutation on the individual with the highest fitness value. When
we let the individual with the highest fitness value in a generation get mutated
directly, the least probability that a populationwill get better in the next generation
is:

(1� pm)
23
pm: (11.37)

That is:

1� max0�i<2L�1max1�j�N(i)

N(i)X
v=1

Q(i)j;v � (1� pm)
23
pm: (11.38)

Thus, we have:

j�maxj � max0�i<2L�1max1�j�N(i)

N(i)X
v=1

Q(i)j;v � 1� (1� pm)
23
pm: (11.39)

Differentiate the right-hand side of the above inequality and let the differenti-
ation be equal to 0, we obtain (1� pm)

22
(1� 24pm) = 0. The right-hand side

of the inequality will get its minimum value, when pm = 1=24; in such a case,

 ©2001 CRC Press LLC

j�max j � 1�(1�1=24)23 �1=24 = 0:985. Now let us revisit Eq. 11.35 and rewrite
it as follows: X

w2
0

q(n)w � 1� j�maxjn � 1� 0:985n: (11.40)

Therefore, we can have:

n = 50;
X
w2
0

q(n)w � 1� 0:98550 � 0:53; (11.41)

n = 80;
X
w2
0

q(n)w � 1� 0:98580 � 0:7; (11.42)

n = 100;
X
w2
0

q(n)w � 1� 0:985100 � 0:78; (11.43)

n = 150;
X
w2
0

q(n)w � 1� 0:985150 � 0:9; (11.44)

n = 200;
X
w2
0

q(n)w � 1� 0:985200 � 0:95: (11.45)

We know from the above list that no matter what the initial population is, we
can have a probability greater than 50% to get a population containing individual
0 after 50 generations, a probability greater than 78% after 100 generations, and
a probability greater than 95% after 200 generations. When we have a population
containing individual 0, the direction of the net pushing force by three group
robots is exactly toward a desired goal location.

11.6 Summary

In this chapter, we have described a fittest-preserved evolutionary computation ap-
proach to learning collective box-pushing behaviors in group robots. We have pre-
sented the basic ideas of this approach, its underlying computational
architecture, and the fundamentals and characteristics of a genetic algorithm.

We have carried out a series of simulations involving robots and boxes of var-
ious sizes and shapes. The experimental results from typical case studies have
shown that the coupling of local interaction and global goal-directedness created
by the group robots can effectively select a collective box-pushing behavior after
a reasonable number of generations.

The above observations are consistent with our theoretical results on the con-
vergence of a fittest-preserved genetic algorithm, as derived from a Markov chain
model. Based on Markov chain modeling, we note that there is a high probability
for the group robots to optimally achieve a collective box-pushing task.

In order to further examine the adaptation of group robots to the changes in goal
locations, we have conducted several case studies where the desired goal locations

 ©2001 CRC Press LLC

are reset after and before the box reaches an old goal location. We have noted that
in both cases the robots can quickly adjust and sometimes reselect previously
found collective motion strategies.

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Multi-Agent Self-Organization"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

Part IV

Case Studies in
Self-Organization

12

Multi-Agent Self-Organization

[The man of system] seems to imagine that he can arrange the dif-
ferent members of a great society with as much ease as the hand
arranges the different pieces upon a chessboard; he does not con-
sider that the pieces upon the chessboard have no other principle of
motion besides that which the hand impresses upon them; but that,
in the great chessboard of human society, every single piece has a
principle of motion of its own, altogether different from that which
the legislator might choose to impress upon it.1

Adam Smith

In this chapter, we will consider the problem of self-organizing a spatial map in
an unknown environment by using a group of autonomous robots.
Generally speaking, map building in an unknown environment presents a

1The Theory of Moral Sentiments, Part VI, Chapter 2, Section II.

 ©2001 CRC Press LLC

challenging problem in robotics. Some earlier studies have tackled this problem
by using exact search algorithms to derive graph-like representations of the en-
vironment. An example of this approach is the work by Betke et al. [BRS94] on
the piecemeal learning of a robot environment containing convex obstacles. Oth-
ers [BBHCD96, VBX96] have addressed the problem by modeling an unknown
environment with a set of basic geometric primitives such as line segments, cir-
cles, regions, landmarks, and/or local maps. In such an approach, incremental
learning algorithms, such as Kohonen neural networks and Kalman filters, are of-
ten applied [HBBC96, JGC+97, Koh88, KE94]. While the majority of the map
building studies deal with the problems of modeling two-dimensional environ-
ments, some researchers [BH94] have investigated the use of a self-organizing
approach in reconstructing an unknown three-dimensional surface.

Unlike these studies in which only a single mobile robot or sensing system is
involved, this chapter will address the issue of collective artificial potential field
map construction using a group of distributed robots.

12.1 Artificial Potential Field (APF)

12.1.1 Motion Planning Based on Artificial Potential Field

The problem of robot motion planning has been traditionally treated as an opti-
mization problem in which the configuration of a robot is represented in a param-
eter space; and a solution to this problem is computed by searching the parameter
space in an attempt to satisfy a predefined cost function, such as the distance
between the robot and a goal location. The major limitation of this approach is
that it is computationally too costly to generate new plans when dealing with
dynamic environments that involve unexpected obstacles. As a more practical ap-
proach to real-time planning of collision-free motions for manipulators and mo-
bile robots, the notion of artificial potential field (APF) was proposed by Khatib
[Kha85, Kha86]. The APF approach incorporates dynamic sensing feedback into
robot control and hence overcomes the limitation by extending the reactiveness of
the low-level motion control.

APF theory states that for any goal-directed robot in an environment that con-
tains stationary or dynamically moving obstacles, an APF map can be formulated
and computed, taking into account an attractive pole at the goal position of the
robot and repulsive surfaces of the obstacles in the environment. This potential
field can be expressed as follows:

Uart(x) = Ugoal(x) + Uobs(x); (12.1)

where Uart(x), Ugoal(x), and Uobs(x) denote the artificial potential field, the at-
tractive potential from the goal, and the repulsive potential from the obstacles,
respectively. x denotes a set of independent parameters, called operational coordi-
nates, that describe the position and orientation of the robot. A possible expression

 ©2001 CRC Press LLC

of attractive potential would be:

Ugoal(x) = �1

2
kp(x� xgoal)

2; (12.2)

where kp is a positive gain.
An example of repulsive potential is given as follows:

Uobs(x) =
(

1
2�
�
1
x
� 1

l0

�2
; if x � l0,

0; if x > l0,
(12.3)

where � is a constant. l0 is a distance threshold, beyond which no repulsive force
will be received by the robot.

Generally speaking, Uobs is chosen such that Uart is a non-negative continuous
and differentiable function that tends to infinity when x approaches the surface of
an obstacle and tends to zero when x approaches the goal position, xgoal. Given
Eq. 12.1, the force, resulting from the APF at x, can therefore be derived:

~Fart = �r[Uart(x)]; (12.4)

where r denotes a gradient.
The above expression tells us that applying artificial potential field Uart(x) to

a robot can be realized by using ~Fart as a command vector to control the robot
in its operation space (as the motion of an end-effector can be decoupled in its
operation space [Kha87]). In doing so, the joint forces corresponding to ~Fart must
be obtained using the Jacobian matrix. Under such a control, the robot will be able
to avoid obstacles as the repulsive force in the potential field pushes it away into
the valleys of the field. At the same time, it can move toward a goal location as
the attractive force in the potential field pulls it in the direction of a global zero-
potential pole.

With APF, a robot can reach a stable configuration in its environment by fol-
lowing the negative gradient of its potential field. In this case, locally stable con-
figurations are inevitable. Nevertheless, they can be readily overcome by either
incorporating a global motion planner, utilizing a harmonic function that does
not contain any local minima, or applying generalized APF formulations, such
as elastic bands [QK93] and elastic strips [BK98]. The generalized APF formu-
lations effectively allow for the real-time planning and control of robot motion
that is both locally reactive to any dynamically changing obstacles and globally
optimal with respect to any motion criteria for attaining a predefined goal.

12.1.2 Collective Potential Field Map Building

The question that remains is how the APF theory can be used if a robot environ-
ment is not given as a priori knowledge. In such a situation, it would be essential
to dynamically derive a potential field representation based on the sensory data
obtained during the interaction between a robot and its environment.

 ©2001 CRC Press LLC

Prassler [Pra95] has proposed the use of a massively parallel network of simple
processing elements, arranged in a rectangular grid structure, for computing and
manipulating a two-dimensional potential field. Lee and Kardaras [LK97] have
applied a multi-layered backpropagation neural network in building potential field
maps of different resolutions. Kassim and Kumar [KK95] have used a single-
layered network, called Wave Expansion Neural Network (WENN), for learning
artificial potential field maps with respect to the configuration-space (C-space)
obstacles of a robot [Lat91].

One of the practical concerns in deriving APF representations with a machine
learning technique is that it requires a large amount of input data. As an alter-
native, we are interested in whether the task of building a potential field rep-
resentation of an unknown robot environment can be carried out by a group of
autonomous robots. Our goal is to enable group robots to collectively perform the
map building task based on less sensory data. That is to construct a potential field
map as efficiently as possible.

12.2 Overview of Self-Organization

The basic idea behind collective potential field map building is that we utilize
a distance association scheme to estimate, from the proximity measurement at
one location, the distances between obstacles and other unvisited locations within
a neighboring region. Therefore, based on the results of such associations, we
can update potential field values corresponding to the measurement at the current
location as well as those corresponding to neighboring regions. This association
scheme enables a global potential map to be dynamically and incrementally self-
organized based on the sensory measurements and associations made by a group
of distributed robots. All the robots will share and update the global potential
map whenever they have sensory data available. Figure 12.1 presents a schematic
flowchart of the process.

Locate in
P0(x0 , y0)
Move to
P0(x0 , y0)

Take N measurements

[D 1
0 D 2

0 D N
0

, , ...],

Associate to grids
Pj(jyxj ,) in viewport
Associate to grids

Pj(jyxj ,) in neighbors

Update the map

in reachable grids
Update the map

in reachable grids

Motion

planning
Motion

planning

(loop)

FIGURE 12.1. A flowchart of the map building process.

The system for the collective map building task is illustrated in Figure 12.2.
During their interactions with an unknown environment, group robots will
broadcast their current locations to a remote host, which is responsible for com-
puting a global potential field map based on the spatial measurements and
associations from the robots.

 ©2001 CRC Press LLC

. . .
Unknown environment

Robot

Remote host

Map-updating

Potential field map
 representation

i

FIGURE 12.2. An illustration of potential field self-organization with a group of
autonomous robots.

12.3 Self-Organization of a Potential Field Map

12.3.1 Coordinate Systems for a Robot

The position of an individual robot in a task environment is described using Carte-
sian coordinates P0(x0; y0). With respect to the current position of the robot,
a relative polar coordinate frame can be constructed. Figure 12.3 shows the re-
lationship between the Cartesian coordinates of the robot and its relative polar
coordinates. From the figure, it is clear that a new location, Pj(xj ; yj), can be
expressed with respect to P0(x0; y0) as follows:�

xj
yj

�
=

�
x0
y0

�
+ �j

�
cos

sin

�
; (12.5)

where and �j denote the relative polar angle and polar radius of location Pj,
respectively.

We assume that the robot is capable of measuring and hence determining its
current coordinates in the environment.

 ©2001 CRC Press LLC

x

y

Pj

j

O

Object

P0

FIGURE 12.3. The coordinate systems of a robot within an environment (c1999 IEEE).

12.3.2 Proximity Measurements

Each robot will measure its distances to the surrounding obstacles in its environ-
ment by taking a sensory reading in each ofN directions (with a resolution of 2�

N
per reading). These measurements will be recorded in a sensing vector, I0, with
respect to location P0, that is:

I0 4
=
�
D0
1; D

0
2; � � � ; D0

i ; � � � ; D0
N

�
: (12.6)

12.3.3 Distance Association in a Neighboring Region

Having recorded the proximity information at P0 with vector I0, a robot will asso-
ciate this information to the neighbor adjacent to P0 by estimating the proximity
values for those locations. The estimated proximity for a neighboring location,
Pj , to a sensed obstacle can be determined as follows:

D̂j
i = D0

i � �j � cos� ; i = 1; 2; � � � ;N ; (12.7)

where � =
(i)
0 � j .

(i)
0 and j denote the polar angle of the sensing

direction and that of location Pj, respectively. D̂j
i is an estimate for Pj based

on the ith direction sensing value. D0
i is the current measurement taken from P0

in the ith direction. Thus, the estimated proximity values for location Pj can be
written as follows:

Îj 4
=
h
D̂j
1; D̂

j
2; � � � ; D̂j

i ; � � � ; D̂j
N

i
: (12.8)

 ©2001 CRC Press LLC

P 0
Pjj

Di
0

^
D ji

D ji
~

Edge of a sensed
 object

Imaginary edge

FIGURE 12.4. An illustration of the distance association scheme that computes proximity
estimations in a surrounding region based on the proximity measurement obtained at the
current location (c1999 IEEE).

Figure 12.4 illustrates the distance association scheme. From the figure, it is
clear that an estimated proximity value in one of the N directions gives true
proximity information, if the sensing direction is perpendicular to the edge of a
sensed obstacle and the edge is long enough. Otherwise, the estimate provides an
approximation; based on Figure 12.4, we can readily derive its error as follows:

"d = j ~Dj
i � D̂j

i j; (12.9)

where ~Dj
i denotes the true proximity value in the ith sensing direction at location

Pj .
It should be pointed out that the amount of errors induced in our association

scheme depends on the complexity of a given environment. In order to express
our confidence in accepting proximity estimates, we define a confidence weight
for each element of Îj, that is, a function of the distance between a robot and
location Pj , or specifically:

wj = e���
2
j ; (12.10)

where � is a positive coefficient. �j is the distance as shown in Figure 12.4.
According to Eq. 12.10, the weight is equal to 1 if the robot is located exactly

at Pj. That means Îjjj=0 is the true value.

 ©2001 CRC Press LLC

12.3.4 Incremental Self-Organization of a Potential Field Map

At time t, the potential field value of a location can be calculated from its Îj
vector, as long as the vector satisfies the following condition:

8i 2 [1;N] ; D̂j
i � 0: (12.11)

Location Pj will be referred to as a visible location if the above condition is
satisfied. The potential field estimate for visible location Pj will be computed as
follows:

Û t
j

4
=

NX
i=1

e��D̂
j

i ; (12.12)

where � is a positive coefficient. If at some locations Eq. 12.11 is not satisfied,
the robot will simply discard those locations, since they are considered part of an
obstacle.

Thus, at time t, a set of potential field estimates,
t
j

4
= fÛ t1

j ; Û t2
j ; � � � ; Û tk

j g,
can be derived by k robots with respect to location Pj ; that is,

t
j =
t�1

j [Q; (12.13)

where
t�1
j denotes the set of potential field estimates for location Pj at time

t � 1, and

Q =

�
Û tk
j ; if Îj satisfies Eq. 12.11,
;; otherwise,

(12.14)

where subscript k indicates that the potential value is estimated based on the mea-
surement of the kth robot.

t
j is associated with a confidence weight set:

W t
j

4
= fwt1

j ; w
t2
j ; � � � ; wtk

j g: (12.15)

Hence, at time t, an acceptable potential field value can be readily calculated
as follows:

U t
j =

(
Û ti
j ; if 9i 2 [1; k] ; wti

j = 1,Pk

i=1 Û ti
j � �wti

j ; otherwise,
(12.16)

where �wti
j denotes a normalized weight component of W t

j , i.e.,

�wti
j =

wti
jPk

n=1w
tn
j

: (12.17)

Eqs. 12.13 and 12.16 are referred to as the incremental self-organization of a
potential field value. Assume that M robots are collectively working in the envi-
ronment. At time t, after their distributed sensing, association, and potential field

 ©2001 CRC Press LLC

self-organization, a global potential field map covering all locations can therefore
be obtained.

12.3.5 Robot Motion Selection

Having performed sensing, association, and map updating operations at location
P0, a robot will move to another location to continue the task of map building. In
doing so, the robot may apply one of three motion selection mechanisms.

12.3.5.1 Directional1

In this motion selection mechanism, the standard deviation of a potential field
map for all sensing sectors within a given maximum movement step dm at time
steps t and t � 1 is calculated. The movement at time t + 1 will be determined
according to (1) motion direction � and (2) motion step ds. Thus, the location of
a robot at time t+ 1, as denoted by P t+1

0 , can be written in the following form:

P t+1
0 = P t

0 + ds � ej�: (12.18)

Let array � store the standard deviation of the difference between potential
field values at time steps t and t� 1 in each sensing sector, whose ith component
can be expressed as follows:

�i = std(f�ij j �ij = U t
ij � U t�1

ij ; 8j 2 Ei; i = 1; 2; � � � ;Ng); (12.19)

where operator std stands for the calculation of standard deviation for a set. Ei
denotes the ith sensing sector.

Let another array � stand for the standard deviation of potential field values at
time t for all locations in the same sensing sector, whose ith component can be
written as follows:

�i = std(f�ij j �ij = U t
ij; 8j 2 Ev; jj � ij � 1g); (12.20)

where Ev is determined based on Eq. 12.19.
Thus, in the motion selection mechanism of Directional1, the robot will

select its movement direction �i (i.e., in the ith sensing sector) that satisfies:

�ij�i = max(�1;�2;���;�N); (12.21)

and
8j; Pj 62 Ei; (12.22)

where operator max returns the maximum value from a set. Ei denotes the ith
sensing sector, and Pj denotes the location of robot j.

After determining the movement sector, the robot will then choose an exact
location P t+1

0 (x0; y0) within the selected sector to go to. The potential field value
around the location should satisfy the following condition:

 ©2001 CRC Press LLC

(x0; y0)j�i(x0;y0) = max(�1;�2;���): (12.23)

12.3.5.2 Directional2

This motion selection mechanism is similar to Directional1 in that a robot
selects its movement direction by applying the same strategy as Directional1.
However, the next location, P t+1

0 (x0; y0), within the selected sector is chosen
such that it has the minimum standard deviation in the neighboring locations, that
is:

(x0; y0)j�i(x0;y0) = min(�1;�2;���); (12.24)

where operator min returns the minimum value from a set.

12.3.5.3 Random

In this motion selection mechanism, a robot selects its movement direction and
movement step randomly, i.e.,

�i = rand([1 N]); (12.25)

ds = rand([1 dm]); (12.26)

where operator rand returns a random number within an interval.

12.4 Experiment 1

12.4.1 Experimental Design

The first experiment studies the characteristics of self-organizing potential field
map building with autonomous robots applying the above mechanisms. Initially,
the robots have a decentralized spatial distribution, as shown in Figure 12.5, where
� denotes a robot. There are 4 obstacles in the environment. The parameters as
used for this experiment are given in Table 12.1.

A second-moment error for all locations in an obtained potential field map will
be calculated as an evaluation of the different motion selection mechanisms. The
error is defined as follows:

"t
4
=

vuut 1

K

KX
j=1

(U t
j � �Uj)2; (12.27)

where K denotes the total number of locations in the potential field map, and U t
j

and �Uj denote the estimated and the true potential values at location Pj(xj ; yj),
respectively.

The true potential map and its contour map corresponding to the given
environment are shown in Figures 12.6(a) and (b), respectively.

 ©2001 CRC Press LLC

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 12.5. The experimental environment and initial distribution of the robots in
Experiment 1.

12.4.2 Experimental Results

Figures 12.7, 12.8, and 12.9 present the potential field maps and their correspond-
ing contour plots at four different time steps with the three motion selection mech-
anisms, respectively. Figure 12.10 shows the robot trajectories of the past four
steps recorded at the four different time steps with respect to the three motion
selection mechanisms.

12.5 Experiment 2

12.5.1 Experimental Design

The second experiment examines a scenario in which the group robots that apply
the mechanisms have a centralized spatial distribution, as shown in Figure 12.11.
The environment is the same as that in Experiment 1. The parameters in this ex-
periment are also the same as those given in Table 12.1 except �. Here, � is set to
1
5 .

The true potential map and its contour map corresponding to the given environ-
ment are shown in Figure 12.12(a) and (b), respectively.

 ©2001 CRC Press LLC

Parameter Symbol Unit Value
number of robots M 10
sensory section N 16
environment size grid� grid 204�204
map resolution grid 5
map locations 40�40
maximum movement step dm location 8
coefficient � 1

600
coefficient � 1

TABLE 12.1. Parameters as used in the experiments.

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

1

2

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a) (b)

FIGURE 12.6. (a) A true potential field map. (b) A contour plot for the true potential field
map.

12.5.2 Experimental Results

Figures 12.13, 12.14, and 12.15 show the potential field maps and their corre-
sponding contour plots at four different time steps with respect to the three motion
selection mechanisms, respectively. Figure 12.16 shows the robot trajectories of
the past four steps recorded at the four different time steps, as a result of using the
three motion selection mechanisms.

12.6 Discussions

From the results provided in Figures 12.7, 12.8, 12.9, 12.13, 12.14, and 12.15,
it can be noted that the spatial maps of an unknown environment can be self-
organized, which gradually get closer to an exact map. The self-organization

 ©2001 CRC Press LLC

method is powerful since only a few measurements from distributed robots are
required.

By comparing these figures, it is observed that different motion selection mech-
anisms have different effects on the collective performance. Clearly, the group
robots with the Randommechanism is the slowest, especially in the case of a cen-
tralized initial distribution as in Experiment 2. The other two directional mecha-
nisms are both effective in potential field map building. The reason is that with
the directional mechanisms, the robots will be able to explore unknown locations
more directly. It should be pointed out that the robots with the Randommechanism
can still perform the map building task, if they are given enough time. To some
extent, this mechanism is effective in a less complex environment.

From the trajectories of group robots with different motion selection mecha-
nisms, observations similar to the above can also be made.

When comparing the results of two directional mechanisms, we can note that
Directional2 performs better at the very beginning of map building. This mo-
tion strategy implies that the robots will go to the area within a complex en-
vironment but they may stay in the grids with a smooth potential distribution.
The robots will go to the undiscovered area at the beginning because it has even
features. On the other hand, the robots with Directional1 will have a rela-
tively small motion area. Thus, Directional2 enables a faster discovery than
Directional1. However, after a large area has been discovered, the robots with
Directional1 will become more effective in exploring complex areas, such as
the edges of the environment.

When comparing Figure 12.17 with Figure 12.18, it is difficult to identify
whether Directional1 or Directional2 is better. In Figure 12.17, all three
mechanisms have similar error trends. The reason is that because of a decen-
tralized robot distribution, the robots can measure their environment and build
a map from various locations. Thus, the merits of directional movement mecha-
nisms cannot be adequately reflected. However, in a centralized initial distribu-
tion, we can find that the case of Random produces a larger error, and the case of
Directional1 is faster or more accurate than that of Directional2. This can
be observed from Figure 12.18.

 ©2001 CRC Press LLC

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

1

2

(STEP=4)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
(STEP=4)

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

1

2

(STEP=8)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
(STEP=8)

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

1

2

(STEP=12)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
(STEP=12)

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

1

2

(STEP=16)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
(STEP=16)

(a) (b)

FIGURE 12.7. (a) The snapshots of a potential field map at four different time steps,
as built by a group of decentralized robots with the motion selection mechanism of
Directional1. (b) The corresponding contour plots.

 ©2001 CRC Press LLC

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

1

2

(STEP=4)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
(STEP=4)

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

1

2

(STEP=8)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
(STEP=8)

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

1

2

(STEP=12)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
(STEP=12)

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

1

2

(STEP=16)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
(STEP=16)

(a) (b)

FIGURE 12.8. (a) The snapshots of a potential field map at four different time steps,
as built by a group of decentralized robots with the motion selection mechanism of
Directional2. (b) The corresponding contour plots.

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Evolutionary Multi-Agent Self-Organization"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

13

Evolutionary Multi-Agent
Self-Organization

This is what the ecosystem is all about: responsive mutation. It gives
the homostat a task which at last can be done in the time available.
The species can evolve, the individual can learn. The viable system,
of whatever kind, can adapt. This is a control device which takes the
fortuitousness out of randomness.1

Stafford Beer

In Chapter 12, we described how a global potential field map can be dynam-
ically self-organized based on distributed sensory measurements and local prox-
imity associations by a group of autonomous robots. In what follows, we will
further discuss how to enable the robots to handle the incremental potential field
self-organization task in a more efficient way.

1Decision and Control, John Wiley & Sons Ltd., London, 1966, p 369.

 ©2001 CRC Press LLC

The important feature of our approach is that it optimizes the efficiency of
the distance association and map updating by evolving motion strategies for the
group robots based on some global fitness criteria. The selected (high-fitness) co-
operative motion strategies will be used to control the individual robots in their
navigation and sensing. Such an approach to evolution-based cooperative strat-
egy learning and incremental potential map self-organization is referred to as an
evolutionary self-organization approach to collective map building.

Figure 13.1 illustrates a multi-robot system for evolutionary self-organization.
While maintaining and updating a potential field map, a remote host will also
be responsible for evolving motion strategies and broadcasting them to the group
robots.

. . .
Unknown environment

Robot

Remote host

Motion strategy
 evolutionMap-updating

Potential field map
 representation

i

FIGURE 13.1. An illustration of the multi-robot system for evolutionary self-organization.

13.1 Evolution of Cooperative Motion Strategies

Figure 13.2 shows a schematic diagram of the computational architecture for
implementing the evolutionary self-organization of a potential field map with a
group of autonomous robots. In the process of map building, the motions of the
robots are evolved according to two fitness criteria: one is to spatially diffuse the
robots and another is to cover the environment as much as possible, the details of
which will be given in Section 13.1.4. The selected motion strategies (stimulus-
response pairs) will be performed and evaluated, which in turn serve as the basis
for further behavior evolution.

 ©2001 CRC Press LLC

Unknown environment

Sensing Action

Map-updating

module

Robot Local
Stimulus

Robot local
 stimulus

potential field map
World

Stimulus-response

 Behavioral
vector-based
 experience
 sharing

Updating

Global feedback

 Criterion 1:
spatial_diffusion

 Criterion 2:
area_coverage

 Strategy
selection

 New spatial
configurations

pairs

FIGURE 13.2. The architecture for the evolutionary self-organization of potential field
maps by a group of autonomous robots.

 ©2001 CRC Press LLC

13.1.1 Representation of a Proximity Stimulus

Generally speaking, the goal of motion strategy evolution is to let group robots
learn their reactive motions in response to various sensory stimuli. An acquired
stimulus-response pair is expressed in terms of the relative angular difference
between the direction of a stimulus and that of a reactive motion. This pair is
shared among all the group robots. A detailed definition of the stimulus-response
pair will be given in Section 13.1.2.

In our implementation, two situations are considered during the evolution: one
is spatial diffusion when the distance between robots i and j, dij, is less than or
equal to a threshold, R2, and another is area coverage when dij > R2. In either
situation, we use a unified direction representation of robot proximity, denoted by
�i, to indicate a significant proximity direction of all proximity stimuli to robot i.
This proximity direction is formally defined as follows:

1. spatial diffusion: For a certain robot i, 8m 2 [1;M] and
m 6= i; dim � R2,

md�1
vector sum

m=1

e�jm

dim

4
= �ie

j�i ; (13.1)

2. area coverage: For a certain robot i, 8m 2 [1;M] and m 6=
i; dim > R2,

N

vector sum
n=1

ej2�n=N

D0
n

4
= �ie

j�i ; (13.2)

where dim denotes the distance between robots i and m. md is the number of
group robots for spatial diffusion. m denotes the angle in Figure 12.3 where
robot m occupies location Pj. �i corresponds to a significant proximity direc-
tion, as mentioned above, and �i corresponds to a significant proximity distance.
Both �i and �i are not directly measured but computed based on other measured
proximity information. D0

n denotes the nth component (sector) in sensing vector
I0.

Having identified the two situations in group robots, we can reduce the prob-
lem of motion strategy evolution into that of acquiring two individual reactive
motion behaviors; namely, one for spatial diffusion and another for area cover-
age, respectively. Both reactive behaviors respond to proximity stimuli as defined
in terms of unified significant proximity directions. As opposed to the reactive
behavior learning directly for each of possible sensory stimuli, the unified
significant proximity representation can improve the efficiency of learning.

13.1.2 Stimulus-Response Pairs

A response evolved in a situation is represented in a vector of varying weights,
called a behavior weight vector. In other words, with respect to a stimulus

 ©2001 CRC Press LLC

represented as a significant proximity direction, �ui , using Eqs. 13.1 and/or 13.2,
there exists a probability vector, $i, where each component expresses the proba-
bility of having efficient spatial diffusion and/or area coverage, if a reactive mo-
tion in a specific direction is executed. Here the superscript u in �ui indicates that
the significant proximity direction �i is the uth sector in [1;N]. The pair of �ui and
$i is defined as a stimulus-response pair. Specifically, behavior weight vector $i

can be written as follows:

$i
4
= [�1; �2; � � � ; �k; � � � ; �N] ; (13.3)

where �k 2 [0; 1], and
PN

k=1 �k = 1.
At each movement step, if robot i has selected the vth direction in [1;N],

denoted by �vi , for its next movement, then the kth component in vector $i will
be updated accordingly as follows:

�t+1k =
�tk + �

1 +
; (13.4)

where � = f ; if k = v � u+ 1;
0; otherwise:

 denotes a positive coefficient. u and v denote the indices of directions �ui and
�vi , respectively, in [1;N].

Based on a series of updating, the weights for some motion directions be-
come more significant than the others, signifying that motions in the respective
directions have higher probabilities of good performance than the rest with
respect to a certain stimulus.

13.1.3 Chromosome Representation

At each time step, a robot senses its environment and then derives a significant
proximity direction as defined in Eqs. 13.1 and 13.2. Subsequently, it selects a
set of possible reactive motion directions based on the experience obtained by
its group. That is, a population for evolution is created based on vector $i. In
our present work, once a motion direction is selected, the exact movement step
increment within a local region is randomly determined.

In order to represent the next possible movements in our present implemen-
tation, we define a two-dimensional Cartesian coordinate frame (x0; y0) centered
at the current location of an individual robot. Next, we consider a square bound-
ing region of width (2 � dm + 1) around the robot, where dm denotes the maxi-
mum movement step increment for the robot. Thus, the local region for the next
movement of the robot is bounded in x0� and y0� directions with respect to the
local reference frame, as follows:

x0; y0 2 [�dm; dm]: (13.5)

Suppose that (2 � dm + 1) corresponds to a binary string of length L. In such a
case, we can uniquely represent a location within the local region with two binary

 ©2001 CRC Press LLC

values, each with lengthL. By the same token, for behavior evolution, we can use
a chromosome of length 2L to encode the next reactive movement of a robot.

As for the evolution in a group of M robots, the length of a chromosome be-
comes (2L) �M . The chromosome for the group robots is represented in gray
codes.

13.1.4 Fitness Functions

In behavior evolution, the fitness function used to select the best next location
consists of two terms: one is called general fitness and another is called spe-
cial fitness. The general fitness term encourages the group robots to explore the
potential field in new, less confident regions, and at the same time avoid repeating
the work of other robots. It is defined as follows:

sg =
mY
i=1

8<
:(1� maxfwtk

i g)
meY
j=1

4

p
dij � R1

9=
; ; (13.6)

where maxfwtk
i g denotes the maximum confidence weight corresponding to the

location of robot i. m denotes the number of robots that are grouped together
during one evolutionary movement step (of several generations), according to
a special fitness term. When the special fitness is concerned with spatial diffu-
sion, m becomes md. me denotes the number of robots that do not belong to m
and have just selected and executed their next motion strategies. dij denotes the
distance between robots i and j, which is greater than a predefined distance
threshold, R1.

In addition to the general fitness, we also define two special fitness terms corre-
sponding to the criteria of multi-robot spatial diffusion and area coverage,
respectively. They are:

1. spatial diffusion:

s1 =
md�1Y
i=1

mdY
j=i+1

p
dij � R2; (13.7)

2. area coverage:

s2 =

p
�VQmc

i=1 �i
; (13.8)

where md denotes the number of spatially diffusing robots whose interdistances
dij are greater than distance threshold R2. �V denotes the total number of loca-
tions visited by a group ofmc area-covering robots based on their selected motion
directions. �i denotes a significant proximity distance between robot i and other
robots in the environment, as defined in Eq. 13.2.

Having defined the general and the special fitness terms, we can now give the
complete fitness function used in the evolution of group robots, as follows:

 ©2001 CRC Press LLC

S =

�
sg � s1; for spatially diffusing robots,
sg � s2; for area-covering robots. (13.9)

Thus, given a certain stimulus, a robot first of all applies some genetic opera-
tions to a population of chromosomes representing possible next locations. This
population is created according to Eq. 13.3. Next, the robot selects the fittest mem-
ber of the population based on its evaluation using Eq. 13.9. Finally, it executes a
response motion according to the direction given in the selected chromosome and
uses this direction to update the weight vector of Eq. 13.3.

13.1.5 The Algorithm

Figure 13.3 illustrates the scheme of encoding a proximity stimulus with a
unified, direction-based representation, evolving a high-fitness next movement,
and updating the components of a behavior weight vector based on a selected
motion strategy.

The detailed algorithm for the behavior evolution in group robots for the task of
collective potential field map building is given in Figure 13.4. At each evolution-
ary step, a robot selects location P t+1

0 based on its current sensory measurement,
executes the selected next movement, takes a new measurement, and updates the
global potential field map. This cycle repeats itself until the map is accurately
constructed.

13.2 Experiments

In order to experimentally validate our multi-robot potential field map building
approach, we will examine how a group of autonomous robots in a bounded two-
dimensional environment can efficiently perform the task as mentioned in the
preceding sections. Figure 13.5 shows the experimental environment and initial
spatial distribution of the robots, where symbol � denotes the location of a mobile
robot. The environment contains 4 stationary obstacles. All the robots are homed
at one corner in the environment. At the beginning, the robots have no a priori
knowledge about their reactive behaviors.

The parameters used in this experiment are given in Table 13.1. In the table,
population size P and generation size G are chosen according to the number of
group robots,m, involved in the evolution; they are listed with respect to a varying
group size of 1 to 6. As the population of reactive motion strategies evolves, the
probability of mutation will automatically decrease in a step-by-step fashion.

13.2.1 Experimental Design

For the ease of comparison, we have provided a true potential field map and its
contour plot for the given task environment in Figures 13.6(a) and (b),

 ©2001 CRC Press LLC

Parameter Symbol Unit Value
number of robots M 6
sensory section N 16
environment size grid� grid 204�204
map resolution grid 5
map locations 40�40
maximum movement step dm location 7
coefficient � 1

600
coefficient � 1

5
behavior vector increment 0.2
chromosome length (2L) �M bit 16 �M
population size P 20/30/45/65/90/120
generations per step G 8/12/18/26/36/48
crossover probability pc 0.6
mutation probability pm 0.1/0.05/0.005
distance threshold R1 grid 10
distance threshold R2 grid 15

TABLE 13.1. Parameters as used in the experiments.

respectively. When comparing with the true map, we will compute the second-
moment errors for all locations in an estimated potential field map at each step of
local motion strategy evolution and proximity measurement. The error is formally
defined as follows:

"t
4
=

vuut 1

K

KX
j=1

(U t
j � �Uj)2; (13.10)

where K denotes the total number of locations in the potential field map, and U t
j

and �Uj denote the estimated and the true potential values at location Pj(xj ; yj),
respectively.

13.2.2 Comparison with a Non-Evolutionary Mode

In order to evaluate the performance of the evolutionary approach to incremen-
tal potential field map building, we also compare a resulting map with the one
generated by a group of autonomous robots that utilized predefined reactive mo-
tion strategies without any behavior evolution (a non-evolutionary mode). In both
evolutionary and non-evolutionary modes, we use the same set of parameters as
given in Table 13.1.

In the non-evolutionary mode, individual robots select and execute their local
motions by calculating the standard deviation of potential field values within their
neighboring regions of radius dm (the maximum movement step increment). The

 ©2001 CRC Press LLC

next movement at time t + 1 will be determined by motion direction � and step
increment ds. Thus, the location at time t+ 1, P t+1

0 , can be described as follows:

P t+1
0 = P t

0 + ds � ej�: (13.11)

More specifically, a vector � is defined to record the standard deviation of
potential value differences between times t and t� 1, for all sensing sectors. The
vth component of this vector is calculated as follows:

�v = std(f�vj j �vj = U t
vj � U t�1

vj ; 8j 2 Evg); v = 1; 2; � � � ;Ng); (13.12)

where operator std denotes the standard deviation for all locations inside the vth
sensing sector, Ev.

In addition, another vector � is also defined to store the standard deviation of
potential values at time t around each location within the same sensing sector.
The jth component of this vector is determined as follows:

�j = std(f�jl j �jl = U t
jl; 8l 2 Ev; jl � jj � 1g); (13.13)

where Ev is determined based on Eq. 13.12.
Based on the above definitions, robot i in a non-evolutionary mode chooses its

next movement direction �vi (the vth sensing sector) whenever the following is
satisfied:

�vi j�v = max(�1;�2;���;�N); (13.14)

and
8k; Pk 62 Ev; (13.15)

where operator max returns the maximum from a set of values. Pk denotes the
position of robot k.

Having determined its movement direction sector, the robot further chooses its
next location P t+1

0 (x0; y0) to move to, within the chosen sector. This location
should satisfy the following condition:

(x0; y0)j�j(x0;y0) = max(�1;�2;���): (13.16)

13.2.3 Experimental Results

Figures 13.7 and 13.8 present the potential field maps obtained in the evolution-
ary and non-evolutionary modes, respectively, along with their contour plots. The
robot motion trajectories in the two modes are shown in Figures 13.9 and 13.10,
respectively. In the evolutionary mode of Figure 13.9, the robots collectively build
a potential field map in about 10 movement steps. Their navigation tends to ex-
plore uncovered areas first and then try to refine local potential field values. On
the other hand, in the non-evolutionary mode of Figure 13.10, the robots are more

 ©2001 CRC Press LLC

cluttered together during their motions. This wastes some searching time for the
group. Hence, it takes a longer time for the non-evolutionary robots to make prox-
imity measurements and associations. If we compare these two sets of results, we
can readily note that the group of evolutionary robots leads to a faster convergence
of the global potential field map.

In order to examine the overall spatial distributions of group robots during map
building, Figures 13.11 and 13.12 present the locations in the unknown environ-
ment visited by the robots in two different modes, respectively. It is interesting to
observe that the group robots with behavior evolution can sample the unknown
environment evenly, along the valley of the potential field. They focus slightly
more on the junction locations in order to eliminate the proximity uncertainty in-
volved. In the non-evolutionary mode, however, the robots quite often go to the
locations near the edges of the obstacles where large standard deviations of the
map are found.

In addition to the above observations, Figure 13.13 further provides a second-
moment error comparison between the two modes of map building. It is obvious
from the figure that the error in the case of evolutionary robots goes down much
faster than the one in the non-evolutionary case.

13.3 Discussions

In what follows, we will make several remarks about the evolutionary
self-organization of a potential field map by a group of autonomous robots.

13.3.1 Evolution of Group Behaviors

Figure 13.14 presents the initial motion trajectories of 6 robots having no a priori
knowledge about their reactive motion strategies. The robots start with a phase of
exploratory world modeling, in which the robots interact with their environment
by executing some S-shaped movements. As a result, robots 4, 6, and 1 move to
regions B, C, and D, respectively.

The process of evolving group behaviors during potential field map building
can be readily observed from Figure 13.15 (where t(m)

n signifies robot m at step n).
We note that the trajectories of some robots become smoother, as some stable
behavior responses are acquired by the robots. At the same time, we also note
from Figure 13.16 that the remaining two robots (robots 3 and 5) concentrate
more on the finer details in the areas omitted by the other 4 robots.

13.3.2 Cooperation among Robots

In Figure 13.17, some degree of cooperation between robots 1 and 6 can be ob-
served as the two are moving closer to each other at step 6. As far as robot 1 is
concerned, it turns around to visit other uncovered locations at step 7, leaving the

 ©2001 CRC Press LLC

locations ahead to robot 6. However, at step 8, it returns back to the locations on
the right, as robot 6 moves away. A similar behavior is also found in robot 6. Such
a cooperative group motion strategy has been found quite effective in exploring
the unknown environment and building a global potential map along the way.

Figure 13.18 provides a zoom-in view of Figure 13.15, from which we notice
that at step 4, robot 2 encounters two choices of motion: one is to go from region
B to F and another is to E. However, since region F has already been visited by
robot 4, robot 2 decides to move toward region E. So does robot 4 at step 5,
moving from region G toward H.

13.4 Summary

In this chapter, we described an evolutionary computation approach to the emer-
gence of group behaviors for incrementally self-organizing a global potential field
representation in an unknown environment. While giving the underlyingmodeling
and computation formalisms, we have presented several results from our experi-
mental validation. Generally speaking, our approach enables the distributed robots
to gradually develop an ability of experience-based cooperation and adaptation to
their task environment.

 ©2001 CRC Press LLC

Significant proximity direction

Reactive motion direction

> Based on the present significant proximity,

 select reactive motion directions from the

 behavior vector

> Randomly select a location within each

 selected direction sector

> Represent the new location coordinates

 in a chromosome

> Apply GA operations

> Select the fitte
st next location

> Find the direction of the selected location

> Update the behavior vector based on Eq.13.4

x’

y’

P
0

P
0

i
u

x’

y’

GA Module

1 0 1 1 0 ... 1

0 0 1 1 1 ... 1

1 0 0 0 1 ... 0

k

Modify
according to Eq.13.4

Find fitt
est m

ember (i.e.,
)
v
i

i
u

i
v

FIGURE 13.3. An illustration of proximity stimulus encoding, reactive behavior evolution,
and behavior vector updating.

 ©2001 CRC Press LLC

begin
define fitness function S (i.e., general and special terms) for the current step,
define the maximum number of generations per step G w.r.t. robot group size,
define population size P w.r.t. the robot group size,
define crossover probability pc,
define mutation probability pm,
for generation : 1 �! G do

for robots of the same group (e.g., spatial diffusion or area coverage)
sense and compute stimulus directions,
find possible reactive directions based on stimulus-response pairs,
randomly select locations in their respective directions,
form a chromosome by combining their motion strategies,
create populationP of possible group motion strategies,

endfor
use two-point crossover with probability pc,
mutate the members of generation with probability pm,
evaluate the current generation according to fitness function S:

for population: 1 �! P do
modify robot positions w.r.t. the chromosome of population,
compute the fitness function S for the group robots,

endfor
select the best reactive motion strategies based on computed fitness values,
execute the selected reactive motions by the group robots,
update behavior vector $i, taking into account the executed motions,

endfor
end

FIGURE 13.4. The algorithm for evolving reactive motion strategies for group robots with
respect to their stimuli.

 ©2001 CRC Press LLC

1

2

3
4

5

6

"A"

"B"

"C"

"D"

"E"

"F"

"G"
"H"

"I"

"J"
"K"

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 13.5. The environment used for experimentation. The numbers signify the initial
locations of group robots, and the capital letters are regional labels (c1999 IEEE).

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

5

10

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a) (b)

FIGURE 13.6. (a) A true potential field map. (b) A contour plot for the true potential field
map (c1999 IEEE).

 ©2001 CRC Press LLC

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

5

10

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a) (b)

FIGURE 13.7. Evolutionary mode: (a) A potential field map built by 6 group robots after
20 movement steps. (b) A contour plot for the obtained potential field map (c1999 IEEE).

0
5

10
15

20
25

30
35

40

0

5

10

15

20

25

30

35

40

0

5

10

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a) (b)

FIGURE 13.8. Non-evolutionary mode: (a) A potential field map built by 6 robots with
predefined reactive motion strategies after 24 movement steps. (b) A contour plot for the
obtained potential field map (c1999 IEEE).

 ©2001 CRC Press LLC

(STEP=5)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(STEP=10)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(STEP=15)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(STEP=20)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 13.9. Evolutionary mode: The motion trajectories produced by a group of
evolutionary robots in the first 20 movement steps (c1999 IEEE).

 ©2001 CRC Press LLC

(STEP=6)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(STEP=12)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(STEP=18)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(STEP=24)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 13.10. Non-evolutionary mode: The motion trajectories produced by a group of
non-evolutionary robots in the first 24 movement steps (c1999 IEEE).

 ©2001 CRC Press LLC

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 13.11. Evolutionary mode: Locations visited by a group of evolutionary
autonomous robots (c1999 IEEE).

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 13.12. Non-evolutionary mode: Locations visited by a group of non-evolutionary
robots (c1999 IEEE).

 ©2001 CRC Press LLC

0 5 10 15 20 25
1

2

3

4

5

6

7

8

Movement step

T
he

 s
ec

on
d−

m
om

en
t e

rr
or

Evolutionary
Non−evolutionary

FIGURE 13.13. A second-moment error comparison between the two modes of map build-
ing. The solid line corresponds to the error measured in the case of evolutionary robots
during their evolutionary self-organization of a potential field map, whereas the dashed
line corresponds to that in the case of non-evolutionary robots (c1999 IEEE).

"A"

"B"

"C"

"D"

1

2

3

4
5

6

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 13.14. The initial motion trajectories of 6 robots in an unknown environment.

 ©2001 CRC Press LLC

1

2

4

6

t
0
(1)t

0
(2)

t
0
(4)

t
0
(6)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 13.15. The motion trajectories of 4 robots in an unknown environment.

3

5

t
0
(5)t

0
(3)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 13.16. The motion trajectories of 2 robots focusing on the details of the
environment.

 ©2001 CRC Press LLC

1 6

4

2

t
8

t
8

t
6

t
6t

7
t
8

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 13.17. The emergence of a cooperative behavior in robots 1 and 6.

FIGURE 13.18. The emergence of a cooperative behavior in robots 2 and 4.

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "Toolboxes for Multi-Agent Robotics"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

Part V

An Exploration Tool

14

Toolboxes for Multi-Agent Robotics

Nor can we know or imagine now the limitless beauty yet to be
revealed in the future � by science.1

Isaac Asimov

14.1 Overview

MATLAB2 is a computing environment for high-performance numerical compu-
tation and visualization. MATLAB integrates numerical analysis, matrix compu-
tation, signal processing, and graphics in an easy-to-use environment. MATLAB

1The Roving Mind, Prometheus Books, 1983.
2MATLAB is a trademark of MathWorks, Inc.

 ©2001 CRC Press LLC

also features a family of application-specific solutions that are called
toolboxes. They are comprehensive collections of MATLAB functions (M-files)
that extend the MATLAB environment in order to solve particular classes of
problems. Areas in which toolboxes are available include signal processing, con-
trol systems design, dynamic system simulation, systems identification, image
processing, neural networks, and others.

In this chapter we present a set of new toolboxes, called Multi-Agent
Robotics Toolboxes,3 that we developed for conducting research studies related to
multi-robot reinforcement learning, adaptation, self-organization, trajectory
generation, and graphics. The toolboxes include:

� Multi-Agent Reinforcement Learning

� Evolutionary Multi-Agent Reinforcement Learning

� Evolutionary Collective Behavior Implementation

� Multi-Agent Self-Organization

� Evolutionary Multi-Agent Self-Organization

These toolboxes are useful for simulation as well as for analyzing results of
experiments with simulated robots. They are based on a very general method
of representing the evolutionary approaches to multi-agent robotic systems by
description matrices.

In what follows, we provide detailed references on the architecture, file
structure, function description, user configuration, and data structure used in each
of the toolboxes.

14.2 Toolbox for Multi-Agent Reinforcement
Learning

14.2.1 Architecture

The architecture for implementing multi-agent reinforcement learning is given in
Figure 14.1.

14.2.2 File Structure

The file structure for the multi-agent reinforcement learning toolbox is shown in
Figure 14.2. The calling tree for the system initialization in this toolbox is shown
in Figure 14.3, where the functions in shaded blocks are user defined.

3http : ==www:crcpress:com=us=ElectronicProducts=downandup:asp?mscssid=

 ©2001 CRC Press LLC

14.2.3 Function Description

The toolbox functions for multi-agent reinforcement learning and for data
processing are described in Tables 14.1 and 14.2, respectively.

14.2.4 User Configuration

set default value:

1. Current X and Current Y define the central point for display.
Visible Width defines the size of the area for graphics display.

2. Region Max sets the width of a square area for the experiments. Together
with other four parameters, Xmin, Ymin, Xmax, and Ymax, an experimental
area can be accurately defined.

3. Origin Sense Radius defines the initial range of a sensor.

4. Sensing Step Ratio determines the step size for each robot. It defines
the relationship between a sensing radius and a step size, i.e.,

ds = Sensing Step Ratio �R0; (14.1)

where R0 is the sensing radius of a robot and ds is the step size.

5. Delta Radius models a robot sensor as an incremental device. Before it
can find its operating object, a robot increases its sensing range gradually
with the increment of Delta Radius.

6. Move Step defines the movement step of the objects in the experiments.

7. Cell Min Distance indicates the minimum distance between robots.

8. Red White Distance defines the minimum safety distance between a
robot and an object.

9. Break Point sets the maximum number of program running time steps.

10. Increment Now, Distribute Now, Selection Now, PostProcess Now, and
Region Num are all initial experimental settings to configure the weight
increment, distribution mode, behavior selection strategy, post-processing
style, and resolution scale, respectively.

main ini:

The initialization for this file is similar to that for the same file in the toolbox for
Evolutionary Collective Behavior Implementation, as will be described later. So
is the initialization for set norm class:m and char position def:m.

 ©2001 CRC Press LLC

14.2.5 Data Structure

In this toolbox, matrices CLASS, CELL, and HISTORY have the same forms as the
ones given in Figures 14.9, 14.10, and 14.11, respectively. The representations
of Red Step Matrix, Red Position, and LoopEnd Behavior have the same
format as shown in Figure 14.4.

Assume that there are K classes of robots involved in the experiments, and
the number of each class of robots are M1, M2, � � �, MK , respectively. Here,
Mcel =

PK
i=1Mi.

1. Red Step Matrix: For this matrix, M = Mcel. The submatrices in
Figure 14.4 can be expressed as follows:

[d11 � � � dij � � � dKNK
]; (14.2)

where dij is the step of the cell (robot) j of class i at time t.

2. Red Position: Here, M = 2 �Mcel. The submatrices in Figure 14.4 can
be expressed as follows:

[x11 y11 � � � xij yij � � � xKNK
yKNK

]; (14.3)

where (xij; yij) is the position of the cell (robot) j of class i at time t.

3. LoopEnd Behavior: This matrix records the history of weights corre-
sponding to the primitive behavior set. Assume that there are B primi-
tive behaviors for each robot. Then for LoopEnd Behavior, M = B. The
submatrix in Figure 14.4 can be expressed as follows:

[w1 w2 � � � wB]; (14.4)

where
PB

i=1wi = 1.

14.3 Toolbox for Evolutionary Multi-Agent
Reinforcement Learning

14.3.1 File Structure

The file structure for the evolutionary multi-agent reinforcement learning toolbox
is shown in Figure 14.5. The calling tree of this toolbox is given in Figure 14.6,
where the functions in shaded blocks are user defined.

14.3.2 Function Description

The toolbox functions for evolutionary multi-agent reinforcement learning are
described in Table 14.3.

 ©2001 CRC Press LLC

14.3.3 User Configuration

initial para:

1. Fitness Fun corresponds to the name of the fitness function.

2. Range Chrom defines the range of chromosomes. In some cases, the
domain of definition for genetic operations is a subset of all possible
chromosomes.

3. Bit Length sets the bit length of the chromosomes in genetic
optimization.

4. Population Size defines the size of the population in genetic operations.

5. Total Generations sets the number of generations in genetic
optimization.

6. Cross Prob and Mutation Prob define the probabilities of crossover and
mutation in genetic operations, respectively.

7. Analysis Time sets the steps for analysis in the experiments.

8. Case Default and Case Position initialize the settings associated with
the results of multi-agent reinforcement learning experiments.

14.4 Toolboxes for Evolutionary Collective Behavior
Implementation

14.4.1 Toolbox for Collective Box-Pushing by Artificial Repulsive
Forces

14.4.1.1 File Structure

The file structure for the toolbox of collective box-pushing by artificial repulsive
forces is shown in Figure 14.7. The calling tree of this toolbox is presented in
Figure 14.8, where the functions in shaded blocks are user defined.

14.4.1.2 Function Description

The toolbox functions for collective behavior based on artificial repulsive forces
and for data processing are described in Tables 14.4 and 14.5, respectively.

14.4.1.3 User Configuration

char position def:

In this file, the positions of all features to model a class in matrix CLASS are de-
fined. They act as an index for later display, computation, etc. The
corresponding values of the features will be assigned in set norm class:m.

 ©2001 CRC Press LLC

ga initial:

1. RadiusCode Len and AngleCode Len specify the bit lengths of binary
representations for a moving radius and an angle in genetic chromosomes,
respectively.

2. Fitness Fun corresponds to the name of a fitness function.

3. Population Size defines the size of a population in genetic operations.

4. Total Generations indicates the number of generations in evolution for
each movement of robots.

5. Cross Prob and Mutation Prob define the probabilities of crossover and
mutation in genetic operations, respectively.

6. BreakGA Ratio is used to break the genetic optimization when the
specified proportion of individuals in the whole population has converged.

main ini:

1. Behav Matrix Size defines the size of the behavior matrix.

2. Total Goal Num sets the number of goals in the experiment.

3. Class Num indicates the number of classes. All the classes are numbered
in Class Id Vector one by one.

4. Char Matrix Size defines the size of a matrix that characterizes the
features of the classes.

replsmain:

1. FLname assigns a file name and a destination/path for saving the
experimental results.

set default value:

1. Total Cell Num defines the number of robots in the experiment.

2. Cell Name numbers the robots in a vector of size 1� Total Cell Num.

3. Robot Distrib defines a square area for the initial distribution of robots.
For example, when Robot Distrib = [a b], the initial positions of robots
are in the area of a square with 4 corners at (a; a), (a; b), (b; b), and (b; a).
Object Distrib and Goal Distrib define 2 square areas for the initial
distributions of a box and a goal, respectively, with the same strategy as
Robot Distrib.

4. Goal Vary Tm defines the interval to change the location of the goal.

 ©2001 CRC Press LLC

5. Step Ratio is the ratio of a step size to a repulsive force, i.e.,

ds = Step Ratio � F; (14.5)

where ds is the step size and F is the repulsive force.

6. Step Change Ratio is an ideal ratio for robot evolution. A box is expected
to be pushed at the step that is inverse to the distance between the box and
a goal.

7. Cell Min Distance indicates the minimum distance between robots.

8. Red White Distance defines the limited distance between a robot and a
box.

9. Class Change Dist sets the distance for robot-box interaction.

10. Region Num specifies the number of regions divided equally around robots.

11. Break Point sets the maximum number of program running time steps.

set norm class:

1. Character needs to be initialized one by one for each class. The meaning
of each element is defined in char position def:m.

14.4.1.4 Data Structure

Assume that there are K classes of robots involved in the experiments, and the
numbers for different classes of robots are M1, M2, � � �, MK , respectively.

1. CLASS

CLASS is a matrix that indicates the features and characteristic parameters
for all classes. It has the structure given in Figure 14.9.

Ci is a submatrix for class i. In this submatrix, part I records the class name
(identification); part II, Bi, defines the behavior parameters; part III, Gi, is
for goal definition; and all the other feature expressions of this class are in
part IV, Ai. The total row number of Ci is equal to the maximum of the
numbers of rows in Bi, Gi, and Ai. Note that some of the elements in the
matrix may not be used. In such a case, the unused elements are assigned
with �1, as illustrated in Figure 14.9. Part I is a one-column vector, as
follows:

2
6664
i

i
...
i

3
7775 : (14.6)

 ©2001 CRC Press LLC

2. CELL

CELL defines the positions of robots of all classes in an environment. It has
the form given in Figure 14.10, where Mcel =

PK
i=1Mi, and for the jth

cell (robot) of class i, the vector in CELL is:

[i j xij yij]; (14.7)

where (xij ; yij) is the coordinate of this robot in the experimental
environment.

3. HISTORY

The movements of all robots are recorded in HISTORY, as shown in Fig-
ure 14.11. At time t, the submatrix of HISTORY, Hi, contains the informa-
tion about the current positions of all robots. Hi organizes them one by one
corresponding to CELL, i.e., Hi has Mcel too. The historical position of the
jth cell (robot) of class i at time t is given by:

[i j t xtij y
t
ij]; (14.8)

where (xtij ; ytij) is the coordinate of this robot in the experimental
environment at time t.

14.4.2 Toolbox for Implementing Cylindrical/Cubic Box-Pushing
Tasks

14.4.2.1 File Structure

The file structure for the toolbox that implements collective cylindrical box-
pushing and cubic box-pushing is presented in Figure 14.12. The calling tree of
this toolbox is shown in Figure 14.13, where the functions in shaded blocks are
user defined.

14.4.2.2 Function Description

The toolbox functions for evolutionary cylindrical/cubic box-pushing and for data
processing are described in Tables 14.6 and 14.7, respectively.

 ©2001 CRC Press LLC

environment
robots,

initial analysis

result saving
plotting,

virtual
sensing

marlmainstimulus
extraction

system
initialization

data
processing

result

evaluation,
learning

knowledge

action
selection

behavioral
execution

FIGURE 14.1. The architecture of the multi-agent reinforcement learning toolbox.

 ©2001 CRC Press LLC

display

initial

main

analys

getvalue

calculat

marl

drawing.m
get_age_row.m
get_begin_row.m
get_cell_color.m
get_cell_num.m
get_history_config.m
historyview_menu.m
is_dash.m
move_cell.m
plot_history.m
show_history.m
start_show_history.m
view_spline.m
view_withlast.m

drawing.m
get_age_row.m
get_begin_row.m
get_cell_color.m
get_cell_num.m
get_history_config.m
historyview_menu.m
is_dash.m
move_cell.m
plot_history.m
show_history.m
start_show_history.m
view_spline.m
view_withlast.m

calculate.m
check_inclusion.m
execute_response.m
follow_response.m
modify_behavior_par.m
modify_cell_config.m
perform_system_eval.m
select_by_probab.m
select_response.m
step_by_mindist.m
test_density.m

calculate.m
check_inclusion.m
execute_response.m
follow_response.m
modify_behavior_par.m
modify_cell_config.m
perform_system_eval.m
select_by_probab.m
select_response.m
step_by_mindist.m
test_density.m

get_cell_color.m
plot_cell.m
save_all_process.m

get_cell_color.m
plot_cell.m
save_all_process.m

get_begin_row.m
get_behavior_param.m
get_cell_config.m
get_cell_num.m
get_cell_row.m
get_class_idnum.m
get_current_age.m
get_goal_id.m
get_inrad_response.m
get_match_matrix.m
get_match_response.m
get_random_response.m

get_begin_row.m
get_behavior_param.m
get_cell_config.m
get_cell_num.m
get_cell_row.m
get_class_idnum.m
get_current_age.m
get_goal_id.m
get_inrad_response.m
get_match_matrix.m
get_match_response.m
get_random_response.m

char_position_def.m
giniti.m
init_cell.m
init_class.m
main_ini.m
public_string.m
random_create_cell.m
read_class_char.m
set_default_value.m
set_norm_cell.m
set_norm_class.m

char_position_def.m
giniti.m
init_cell.m
init_class.m
main_ini.m
public_string.m
random_create_cell.m
read_class_char.m
set_default_value.m
set_norm_cell.m
set_norm_class.m

marlmain.mmarlmain.m

FIGURE 14.2. The file structure for the multi-agent reinforcement learning toolbox.

 ©2001 CRC Press LLC

set_default_value

char_position_def

plot_cell

random_create_cell

set_norm_classread_class_char

init_cell

marlmain

giniti

public_string

save_all_process

main_ini

calculate
get_cell_color

init_class

set_norm_cell

get_begin_row

FIGURE 14.3. The calling tree for the initialization in the multi-agent reinforcement
learning toolbox.

.

.

.

..

.

(1 M)

(1 M)

t

t+1

FIGURE 14.4. A schematic diagram illustrating matrices Red Step Matrix,
Red Position, and LoopEnd Behavior.

 ©2001 CRC Press LLC

Function Description
calculate perform the main computation
char position def define the position of feature parameters
check inclusion determine which region the cell (robot) is in
execute response execute the selected response
follow response put the selected response to use
get begin row obtain the beginning row of a class in CLASS
get behavior param obtain submatrix with behavior parameters from

CLASS

get cell color obtain the display color of a robot from CLASS

get cell config obtain the configuration of the current robot
get cell num obtain the robot number of the current class
get cell row obtain the offset of the current robot in CELL

get class idnum obtain the number of a certain class
get current age obtain the current time step of the robot from HISTORY

get goal id obtain the goal identification in CLASS

get inrad response obtain a behavior identification
get match matrix create a matrix including class/goal name and a stimulus
get match response obtain the response that matches the current stimulus
get random response select a response from CLASS randomly
giniti initialize overall experimentation parameters
init cell initialize CELL
init class initialize CLASS
main ini initialize the system parameters
marlmain serve as the main program for reinforcement learning
modify behavior par modify the behavior weight and normalize it
modify cell config modify the robot configuration after evaluation
perform system eval evaluate the selected response
plot cell plot the current location of the robots
public string create a string to identify the experiment and the file

name for saving
random create cell create the distribution of robots randomly
read class char fill in CLASS

save all process save all important variables into MAT-file
select by probab choose a response by probability
select response obtain a stimulus for the current robot

and select a sub-behavior
set default value set some variables with default value
set norm cell initialize CELL for classes
set norm class set the content of an environment for CLASS
step by mindist calculate the minimum step in a forward movement
test density detect the distribution of robots

TABLE 14.1. Description of the functions in the toolbox for implementing multi-agent
reinforcement learning.

 ©2001 CRC Press LLC

Function Description
drawing draw the experimental results
get age row obtain the row of age in CLASS

get begin row obtain the beginning row of a class
get cell color obtain the cell (robot) color from CLASS

get cell num obtain the robot number of the current class
get history config match the configuration of the robot in history
historyview menu control the menu in the history window
is dash test whether there is a dash symbol in a file name
move cell move the robot in a color map
plot history draw the robot in HISTORY

show history show the process in HISTORY

start show history start to show history
view spline plot the spline trajectories of robots
view onetime observe the experimental situation at a time step

TABLE 14.2. Description of the functions for analyzing the results of multi-agent
reinforcement learning.

bin_int.m
build_casename.m
call_fitness.m
chrom_generat.m
cross_chrom.m
evmarlmain.m
fitness.m
initial_para.m
islegal_chrom.m
load_data.m
mutate.m
seed_generate.m
select_gen.m

bin_int.m
build_casename.m
call_fitness.m
chrom_generat.m
cross_chrom.m
evmarlmain.m
fitness.m
initial_para.m
islegal_chrom.m
load_data.m
mutate.m
seed_generate.m
select_gen.m

evmarl

FIGURE 14.5. The file structure for the evolutionary multi-agent reinforcement learning
toolbox.

 ©2001 CRC Press LLC

\

call_fitness

select_gen

cross_chrom

bin_intislegal_chrom

mutate chrom_generat

initial_para evmarlmain

seed_generate fitness

load_data build_casename

FIGURE 14.6. The calling tree for the evolutionary multi-agent reinforcement learning
toolbox.

Function Description
build casename create a case name corresponding to chromosomes
call fitness call a fitness function for chromosomes
chrom generat generate a population of chromosomes
cross chrom mate two individuals
evmarlmain serve as the main program for evolutionary

reinforcement learning
fitness get the fitness function for genetic operations
initial para initialize the parameters for genetic operations
islegal chrom test whether a chromosome is legal
load data load data from storage
mutate mutate chromosomes at a given rate
seed generate create the seed for random data generation
bin int convert a binary code to an integer number
select gen select the best chromosomes for the next generation

TABLE 14.3. Description of the functions in the evolutionary multi-agent reinforcement
learning toolbox.

 ©2001 CRC Press LLC

display

initial

main

analys

calculat

repls

code

genetic

calcuforce.m
plotcell.m
plot_cell_no.m
plot_trace.m
show_result.m
show_single.m
show_two.m
view_history.m
view_onetime.m
view_spline.m
view_trace.m

calcuforce.m
plotcell.m
plot_cell_no.m
plot_trace.m
show_result.m
show_single.m
show_two.m
view_history.m
view_onetime.m
view_spline.m
view_trace.m

calcuonce.m
config_from_ra.m
force_calcu.m
get_begin_row.m
get_cell_num.m
get_code_config.m
get_new_config.m
get_object_config.m
goal_object_pos.m
move_object.m

calcuonce.m
config_from_ra.m
force_calcu.m
get_begin_row.m
get_cell_num.m
get_code_config.m
get_new_config.m
get_object_config.m
goal_object_pos.m
move_object.m

get_cell_color.m
plot_cell.m

get_cell_color.m
plot_cell.m

call_fitness.m
chrom_generat.m
cross_chrom.m
fitness.m
islegal_chrom.m
mutate.m
select_gen.m

call_fitness.m
chrom_generat.m
cross_chrom.m
fitness.m
islegal_chrom.m
mutate.m
select_gen.m

char_position_def.m
ga_initial.m
ginitial.m
init_cell.m
init_class.m
init_goal.m
main_ini.m
random_create_cell.m
set_default_value.m
set_norm_cell.m
set_norm_class.m

char_position_def.m
ga_initial.m
ginitial.m
init_cell.m
init_class.m
init_goal.m
main_ini.m
random_create_cell.m
set_default_value.m
set_norm_cell.m
set_norm_class.m

replsmain.mreplsmain.m

bin2int.m
gray2bin.m

bin2int.m
gray2bin.m

FIGURE 14.7. The file structure for the evolutionary collective box-pushing toolbox.

 ©2001 CRC Press LLC

set_norm_cellrandom_create_cell

init_goal init_cell

ga_initial

char_position_def

set_default_value

get_new_config calcuonce

mutate

config_from_ra call_fitness

goal_object_pos
bin2int

gray2bin

islegal_chrom

chrom_generat

get_object_config

force_calcu

move_object

plot_cell

get_cell_color

get_begin_row

get_cell_num

set_norm_class

init_classginitial

main_ini
replsmain

cross_chrom

select_gen

fitnessget_code_config

FIGURE 14.8. The calling tree for the evolutionary collective box-pushing toolbox.

 ©2001 CRC Press LLC

Function Description
bin2gray convert a binary code to a gray code
bin2int convert a binary code to an integer number
calcuonce perform the main computation
call fitness calculate the fitness values for chromosomes
char position def define the position of feature parameters in the matrix
chrom generat generate a population of chromosomes
config from ra return the robot configuration from an angle
cross chrom mate two individuals
fitness get the fitness function for genetic operations
force calcu calculate the net force on a box
ga initial initialize the parameters for genetic operations
get begin row obtain the beginning row of CLASS
get cell color obtain the color from CLASS for robot display
get cell num obtain the robot number of the current class
get code config convert a binary representation to a real configuration
get new config obtain the new configuration of a robot
get object config get the configuration of the current box
ginitial initialize overall experimentation parameters
goal object pos calculate the angle from the box and the goal
gray2bin convert a gray code to a binary code
init cell initialize the robot matrix
init class initialize the class matrix
init goal initialize the goal in the experiment
int2bin convert an integer number to a binary code
islegal chrom test whether a chromosome is legal
main ini initialize system parameters
move object move an object in a certain environment
mutate mutate chromosomes at a given rate
plot cell plot a robot distribution in an environment
random create cell create a distribution of robots randomly
replsmain serve as the main program for pushing by repulsive forces
select gen select the best chromosomes for the next generation
set default value assign some variables with default values
set norm cell initialize the robot matrix for CLASS
set norm class set the content of an environment for CLASS

TABLE 14.4. Description of the functions for collective box-pushing by artificial repulsive
forces.

 ©2001 CRC Press LLC

Function Description
calcuforce calculate the net force on a box
plot cell no plot the current location of a robot
plot trace plot the trajectories of robots
plotcell plot the current location of a robot
show result draw experimental results
show single plot the snapshots of an entire process
show two compare the results between two experiments
view history draw the history of the experiments
view onetime draw the distribution at a certain step
view spline draw the spline trajectory
view trace trace the motions of robots and a box

TABLE 14.5. Description of the functions for analyzing the results of box-pushing by
artificial repulsive forces.

...

..

.

Ci classiCLASS =

I II
III IV

- 1

FIGURE 14.9. A schematic diagram of CLASS.

 ©2001 CRC Press LLC

class ji, cell

i j+1class , cell

CELL =

Mcel()4

.

.

.

.

.

.

(1 4)

(1 4)

FIGURE 14.10. A schematic diagram of CELL.

class ji, cell

i j+1class , cell

.

.

.

.

.

.

(1 5)

(1 5)

Mcel 5()

.

.

.

.

.

.

Ht tHISTORY =

FIGURE 14.11. A schematic diagram of HISTORY.

 ©2001 CRC Press LLC

dealrobo

display

initial

analys

boxpush

c_plothist.m
c_viewobj.m
c_viewspli.m
distance.m
drawfitness.m
plotrob.m
r_allobj.m
r_plothist.m
r_plotsquare.m
r_viewobj.m
r_viewspli.m

c_plothist.m
c_viewobj.m
c_viewspli.m
distance.m
drawfitness.m
plotrob.m
r_allobj.m
r_plothist.m
r_plotsquare.m
r_viewobj.m
r_viewspli.m

code

genetic

pushrect

pushcircle

bin2gray.m
bin2int.m
gray2int.m
int2bin.m

bin2gray.m
bin2int.m
gray2int.m
int2bin.mislegal.m

newgoal.m

draw.mdraw.m

callfitn.m
crosover.m
forlegal.m
getchrom.m
getreal.m
isbreak.m
mutate.m
normal.m
select.m

callfitn.m
crosover.m
forlegal.m
getchrom.m
getreal.m
isbreak.m
mutate.m
normal.m
select.m

initial.m
saveini.m

initial.m
saveini.m

circlmain.m
fitness.m
gettorqu.m
initpos.m
kerncalc.m
objaxis.m
precalcu.m
takerole.m

circlmain.m
fitness.m
gettorqu.m
initpos.m
kerncalc.m
objaxis.m
precalcu.m
takerole.m

fitness.m
gettorqu.m
initpos.m
kerncalc.m
objaxis.m
precalcu.m
rectmain.m
takerole.m

fitness.m
gettorqu.m
initpos.m
kerncalc.m
objaxis.m
precalcu.m
rectmain.m
takerole.m

FIGURE 14.12. The file structure for the evolutionary cylindrical/cubic box-pushing
toolbox.

 ©2001 CRC Press LLC

islegal isbreak

selectinitpos

circlmain
/rectmain

mutate

forlegal int2bin

getchrom

bin2gray

gray2int bin2int

getreal

gettorqu

takerole

kerncalc

objaxis

normal

crosovernewgoal

precalcu

draw

saveini

initial fitness

callfitn

FIGURE 14.13. The calling tree for the evolutionary cylindrical/cubic box-pushing
toolbox.

 ©2001 CRC Press LLC

Function Description
bin2gray convert a binary code to a gray code
bin2int convert a binary code to an integer number
callfitn calculate the fitness values for chromosomes
circlmain serve as the main program for cylindrical box-pushing
crosover mate two individuals
draw plot the results
fitness z get the fitness function for genetic operations
forlegal prepare for testing the legality of a chromosome
getchrom convert a population to its corresponding chromosomes
getreal return the corresponding value of a chromosome
gettorqu z calculate the torque from the force on a box
gray2bin convert a gray code to a binary code
initial initialize some variables with default values
initpos z initialize robots, box, and goal
int2bin convert an integer number to a binary code
isbreak test whether to break the genetic operation loop of a GA process
islegal test whether the current case is legal
kerncalc z calculate the parameters for a selected chromosome
mutate mutate chromosomes at a given rate
newgoal get a new goal location
normal normalize a chromosome after mutation
objaxis z calculate the absolute angle of a moving coordinate axis
precalcu z precalculate some parameters
rectmain serve as the main program for cubic box-pushing
saveini initialize items for data storage
select select the best chromosomes for the next generation
takerole z test whether a robot is acting on a box

TABLE 14.6. Description of the functions in the toolboxes for implementing evolutionary
cylindrical/cubic box-pushing behaviors. (z: Functions in boxpush=pushcircl= are for
cylindrical box-pushing, and those with the same function names in boxpush=pushrect=
are for cubic box-pushing.)

 ©2001 CRC Press LLC

Function Description
c plothist plot the process of cylindrical box-pushing
c viewobj draw the trajectory of a cylindrical box when being pushed
c viewspli draw the spline trajectory of cylindrical box-pushing
distance return the change of the distance between a box and a goal
drawfitness plot the fitness values during the course of pushing
plotrob draw robots
r allobj draw the movement of a cubic box during the course of pushing
r plothist plot the complete process of cubic box-pushing
r plotsquare draw square objects
r viewobj view the trajectory of a cubic box during the course of pushing
r viewspli view the movement trajectories of robots and a cubic box

TABLE 14.7. Description of the functions for analyzing the results of evolutionary
cylindrical/cubic box-pushing.

14.4.2.3 User Configuration

initial:

1. RobotNum defines the number of robots in the experiments.

2. WorkAreadefines the experimental area in which robots work. If WorkArea
is set to [xmax ymax], the robots will move in a rectangular area, where
the coordinates of 4 corners are (0; 0), (0; ymax), (xmax; ymax), and
(xmax; 0), respectively.

3. RobotSize has the format of [Wid Len]. In this toolbox, all robots are of a
rectangular shape. Wid and Len define the width and length of the robots,
respectively.

4. CompareDist is a parameter for representing the situation of a box with
respect to its current goal. If the distance between the box and the goal is
shorter than CompareDist, it is said that the box has reached the current
goal.

5. ObjectShape specifies the shape of an object. For example, if
ObjectShape is set to 1, it means a cylindrical box is adopted in the
experiment; if it is initialized to 2, a cubic box is used.

6. ObjectSizedefines the size of a box. In the case of cylindrical box-pushing,
ObjectSize gives the radius of the box. In the case of cubic box-pushing,
it gives the width of the box.

7. EdgeLimit sets a distance to keep robots away from the border of an
experimental area.

 ©2001 CRC Press LLC

8. NewGoalLimit limits the choices for new goal locations. In this toolbox,
the distance between a current goal and a new goal must be greater than the
set value.

9. RunTimes sets the maximum number of program running time steps.

10. GoalVaryTm defines a time interval to reset the location of a goal.

11. StepRatio is the ratio of a step size to a pushing force, i.e.,

ds = StepRatio �F; (14.9)

where ds is the step size, and F is the pushing force.

12. StepChangeRatio gives an ideal ratio for robot evolution. A box is
expected to be pushed at the step that is the inverse of the distance between
the box and a goal.

13. RotateRatio is similar to StepRatio. The former establishes the
relationship between the amount of rotation and that of an acting torque.

14. RegionNum specifies the number of regions divided equally around robots.
RegionCodeLen gives the bit length of a chromosome for representing all
regions.

15. DirectionNum specifies the number of possible directions for a robot to
move forward. DirectCodeLen, associated with DirectionNum, gives the
bit length of chromosomes in genetic operations.

16. FitnessFun defines the name of a fitness function.

17. BitLength is the bit length of chromosomes in genetic operations.

18. SingleCodeWidth is the bit length in a chromosome for representing one
robot.

19. PopulationSize defines the size of a population in genetic operations.

20. TotalGenerations indicates the number of generations in evolution for
each movement of robots.

21. CrossProb and MutationProb define the probabilities of crossover and
mutation in genetic operations, respectively.

22. BreakGARatio is used to break the genetic optimization when the specified
proportion of individuals in the whole population has converged.

 ©2001 CRC Press LLC

initpos:

1. GoalPosition defines the initial position of a goal in an environment.

2. ObjectPosition defines the position of an object. In the case of cylindri-
cal box-pushing, it has the format of [x y], where (x; y) is the coordinate for
the center of the box in the environment. In the case of cubic box-pushing,
it includes 2 additional parameters besides the coordinate, i.e., [x y �],
where � is the current orientation angle of a contacting robot in the envi-
ronment, and is the amount of accumulative rotation of the robot.

14.4.2.4 Data Structure

Assume that there are Mr robots in the experiment. There are 4 global variables to
record the entire experimentation process. They are RobotHistory, GoalHistory,
ObjectHistory, and ChromHistory. All of them are represented in the format
as shown in Figure 14.14.

.

.

.

.

.

.

(1 M)

(1 M)

t

t+1

FIGURE 14.14. A schematic diagram illustrating the format of RobotHistory,
GoalHistory, ObjectHistory, and ChromHistory.

RobotHistory records the history of robot locations. For each step, M in
Figure 14.14 is equal to 2 � Mr . The vector (i.e., submatrix of size 1 � M in
Figure 14.14 at time t) can be expressed as follows:

[x1 y1 x2 y2 � � � xMr
yMr

]; (14.10)

where (xi; yi) is the coordinate of the ith robot.
As for GoalHistory, the submatrix of size 1 � M in Figure 14.14 specifies

the location of a goal at time t. Thus, M = 2. And, it has the format of [xg yg],
where (xg; yg) denotes the current coordinate of the goal.

 ©2001 CRC Press LLC

ObjectHistory records the locations of an object. In the case of cylindrical
box-pushing, M = 2, and the submatrix has the format of [xo yo]. In the case of
cubic box-pushing,M = 4, with a submatrix of [xo yo �o o].
ChromHistory records the set of optimal individuals obtained from the evolu-

tion process. For each step, M in Figure 14.14 is equal to 2 �Mr. The vector in
ChromHistory at time t can be expressed as follows:

[E1 D1 E2 D2 � � � EMr
DMr

]; (14.11)

where Ei and Di denote the selected region and direction for the behavior
execution at time t + 1, respectively.

14.5 Toolbox for Multi-Agent Self-Organization

14.5.1 Architecture

The architecture for implementing multi-agent self-organization is shown in
Figure 14.15.

14.5.2 File Structure

The file structure for the multi-agent self-organization toolbox is shown in Fig-
ure 14.16. The calling tree of this toolbox is shown in Figure 14.17, where the
functions in shaded blocks are user defined.

14.5.3 Function Description

The toolbox functions for multi-agent self-organization and for data processing
are described in Tables 14.8 and 14.9, respectively. The functions for computing
a true potential field map are the same as those in the toolbox for evolutionary
multi-agent self-organization and will be described in Table 14.11.

14.5.4 User Configuration

User configuration for this toolbox is similar to that for the evolutionary multi-
agent self-organization toolbox (see Section 14.6.4).

14.5.5 Data Structure

All variables have the same data structures as those in the toolbox for evolutionary
multi-agent self-organization (see Section 14.6.5).

 ©2001 CRC Press LLC

analysisinitial

result

masomain

true map
calculation

system
initialization

virtual
sensing

self-organized
robot motion planning

potential field
measuring

data
processing

result saving
plotting,

environment
robots,

precise

FIGURE 14.15. The architecture of the multi-agent self-organization toolbox.

dealenv

dealrobo

display

initial

main

potent

sensor

som

analys

precise

getenvir.mgetenvir.m

showmap.mshowmap.m

envirini.m
globini.m
robotini.m
saveini.m

envirini.m
globini.m
robotini.m
saveini.m

comp_pot.m
exp_sqrd.m
getpotent.m

comp_pot.m
exp_sqrd.m
getpotent.m

globprec.m
precini.m
precise.m
preciuls.m
premain.m
prepoten.m
showprec.m

globprec.m
precini.m
precise.m
preciuls.m
premain.m
prepoten.m
showprec.mcallsom.mcallsom.m

maso

point

calcuerror.m
dealnear.m
directresult.m
dualval.m
extrapointpo.m
figureout.m
plot_origi.m
pointerrcal.m
statis.m
statisnear.m
statisplot.m

calcuerror.m
dealnear.m
directresult.m
dualval.m
extrapointpo.m
figureout.m
plot_origi.m
pointerrcal.m
statis.m
statisnear.m
statisplot.m

getinterval.m
getrobot.m
newrobot.m

getinterval.m
getrobot.m
newrobot.m

masomain.mmasomain.m

pointcal.m

ultrason.multrason.m

FIGURE 14.16. The file structure for the multi-agent self-organization toolbox.

 ©2001 CRC Press LLC

Function Description
callsom calculate the potential field map for a designated robot
comp pot calculate a potential field value
envirini initialize an environment
exp sqrd define a potential field function
getenvir normalize the environment for the experiment
getinterval calculate the interval between two robots
getpotent perform an incremental self-organization
getrobot set the initial positions of robots
globini initialize some global variables
masomain serve as the main program for self-organization
newrobot assign new locations to robots
pointcal calculate the potential field value for a certain location
robotini initialize a robot group for the experiment
saveini initialize variables for a data storage operation
showmap display a potential field map and a robot environment
ultrason simulate ultrasonic sensors

TABLE 14.8. Description of the functions in the evolutionary self-organization toolbox.

14.6 Toolbox for Evolutionary Multi-Agent
Self-Organization

14.6.1 Architecture

The architecture for implementing evolutionary multi-agent self-organization is
shown in Figure 14.18.

14.6.2 File Structure

The file structure for the evolutionary multi-agent self-organization toolbox is
shown in Figure 14.19. The calling trees for this toolbox and for true potential
field map building are shown in Figures 14.20 and 14.21, respectively, where the
functions in shaded blocks are user defined.

14.6.3 Function Description

The toolbox functions for evolutionary self-organization, true map calculation,
and data processing are described in Tables 14.10, 14.11, and 14.12, respectively.

 ©2001 CRC Press LLC

robotini showmap ultrason

getpotent

getrobot

newrobot

getintervalexp_sqrdcomp_pot

envirini

getenvir

globini

saveini

masomain

pointcalcallsom

FIGURE 14.17. The calling tree for the multi-agent self-organization toolbox.

precise initial analysis

result

potential field
measuring and association

cooperative
self-organization

evolutionary
concurrent learning

environment
robots, virtual

sensing evmasomain

true map
calculation

system
initialization

data
processing

result saving
plotting,

FIGURE 14.18. The architecture of the evolutionary self-organization toolbox.

 ©2001 CRC Press LLC

evmaso

code

dealenv

dealrobo

display

genetic

initial

main

potent

sensor

som

analys

precise

calmaperr.m
calpercent.m
figout.m
plotdistr.m
plot_ori.m
pre_fig.m
process.m
sigmaperr.m
sigpercent.m
viewmap.m
weightmap.m

calmaperr.m
calpercent.m
figout.m
plotdistr.m
plot_ori.m
pre_fig.m
process.m
sigmaperr.m
sigpercent.m
viewmap.m
weightmap.m

bin2gray.m
bin2int.m
codedelta.m
deltacode.m
gray2bin.m
int2bin.m

bin2gray.m
bin2int.m
codedelta.m
deltacode.m
gray2bin.m
int2bin.m

getenvir.mgetenvir.m

caldist.m
checkstimu.m
getceil.m
getrobot.m
moveablepos.m
restoreconfig.m
robeffect.m
sensing.m
sumattract.m
whorun.m

caldist.m
checkstimu.m
getceil.m
getrobot.m
moveablepos.m
restoreconfig.m
robeffect.m
sensing.m
sumattract.m
whorun.m

showmap.mshowmap.m

call_fitness.m
chrom_generat.m
cross_chrom.m
fitness1.m
fitness2.m
genmain.m
getsubchrom.m
islegal_chrom.m
mutate.m
select_gen.m
whetherbreak.m

call_fitness.m
chrom_generat.m
cross_chrom.m
fitness1.m
fitness2.m
genmain.m
getsubchrom.m
islegal_chrom.m
mutate.m
select_gen.m
whetherbreak.m

envirini.m
gaini.m
globini.m
robotini.m
saveini.m

envirini.m
gaini.m
globini.m
robotini.m
saveini.m

evmasomain.mevmasomain.m

comp_pot.m
exp_sqrd.m
getpotent.m

comp_pot.m
exp_sqrd.m
getpotent.m

globprec.m
precini.m
precise.m
preciuls.m
premain.m
prepoten.m
showprec.m

globprec.m
precini.m
precise.m
preciuls.m
premain.m
prepoten.m
showprec.m

testenv.m
testindirect.m
ultrason.m

testenv.m
testindirect.m
ultrason.m

callsom.mcallsom.m

FIGURE 14.19. The file structure for the evolutionary self-organization toolbox.

 ©2001 CRC Press LLC

showmap

bin2int

gray2bin

whetherbreak

codedelta deltacode

restoreconfig

fitness2 fitness1 select_gen

bin2gray

int2bin

getsubchrom

chrom_generat

cross_chrom

mutate

islegal_chrom

whorun

getrobot

getpotent

caldistglobinigainisaveinigetenvir

sensing

robotini

callsom

checkstimu

testindirect getceil
genmain

evmasomain

call_fitness

testenv

sumattract

robeffect

comp_pot

exp_sqrd

ultrason

envirini

moveablepos

FIGURE 14.20. The calling tree for the evolutionary self-organization toolbox.

precini prepoten preciuls

precise

premain

showprecglobprec

FIGURE 14.21. The calling tree for the true potential field map calculation.

 ©2001 CRC Press LLC

Function Description
calcuerror calculate and display potential field errors
dealnear count the location numbers in each behavior sector
directresult display contour plots and robot trajectories, and save them in files
dualval convert elements into 0 (if less than 1) or 1 (otherwise) values
extrapointpo choose the parameters of a potential field map for comparison

and save them in a file
figureout display a potential field map and the corresponding robot

trajectories
plot origi plot the initial distribution of robots and their environment
pointerrcal calculate and display the error of a potential field map
statis count the error distributions for different experiments
statisnear compare the selectable location numbers in different experiments
statisplot display errors in different experiments for comparison

TABLE 14.9. Description of the functions for analyzing the results of potential field map
building.

14.6.4 User Configuration

envirini:

1. EnvironName specifies the name of a file (in the BMP format) for a robot
environment.

2. PreciseFileName specifies a MAT file for saving a true potential field
map.

3. MaxAttitude sets the maximum attitude of a potential field map.

4. MapGridWidth sets the grids in a working environment, i.e., each
MapGridWidth point marks a grid as a unit in map building.

5. EnvThresh specifies a geometric distance threshold for robot interaction.

gaini:

1. FitnessFun specifies the file name for fitness functions in a string matrix.

2. SingleCodeWidth sets the bit length in a chromosome for a single robot.

3. PopulationSizeand GenerationSizeassign the sizes of populationand
generation, respectively, for genetic optimization.

4. CrossProb and MutationProb set the probabilities of crossover and
mutation, respectively.

5. BreakRatio is used to break the genetic optimization when the specified
proportion of individuals in the whole population has converged.

 ©2001 CRC Press LLC

globini:

1. FreeIndex, ObstacleIndex, and RobotIndex must be set to different
numbers for object identification at a certain location.

2. PotentFunc specifies the name of the function that defines a potential field
expression.

3. MaxRunStep sets the maximum number of loops in computation. The pro-
gram can break the loops before the running time step reaches MaxRunStep
if it satisfies a convergence condition. Otherwise, the computation will be
stopped at MaxRunStep.

robotini:

1. RobotNum sets the total number of autonomous robots in a group. SensorNum
sets the total number of sensors mounted on each robot.

2. SensorType gives the name of the function that defines the sensing ability
of a robot.

3. IncrementWeight sets the maximum increment for the best selection.

4. MaxMoveStep defines the maximum movement step of each robot.

saveini:

1. SaveDirectory specifies the directory name with a full path for saving a
data file (in the MAT format).

2. SaveItem assigns all the global variables required to be stored for future
analysis.

14.6.5 Data Structure

Assume that there are M cooperative robots in an environment of size X0 � Y0
for evolutionary potential field map building. An example of the environment is
shown in Figure 14.22. Matrix RealEnviron is used to specify this environment,
as follows:

RealEnviron =

2
664

. . .
...

� � � Eij � � �
...

. . .

3
775
(Y0�X0)

; (14.12)

where

Eij =

�
FreeIndex; if grid (j; i) belongs to working space,
ObstacleIndex; if grid (j; i) belongs to an obstacle.

(14.13)

 ©2001 CRC Press LLC

X 0

0
Y

obstacleworking space

FIGURE 14.22. A robot environment.

In the design of this toolbox, variable MapGridWidth is used to set the spacing
for robot map building, as illustrated in Figure 14.23. Thus, the size of a map will
be X � Y , where

X = b
X0

MapGridWidth
c; Y = b

Y0

MapGridWidth
c; (14.14)

where b�c converts a real number into an integer.
Matrix VisitTimes records the total number of robots that have visited a

certain location. It can be expressed as follows:

VisitTimes =

2
664

. . .
...

� � � Nij � � �
...

. . .

3
775
(Y�X)

; (14.15)

where Nij 2 f0; 1; 2; � � �g.
VisitPlusEnviron marks the locations visited by robots based on

RealEnviron, i.e.,

VisitPlusEnviron =

2
664

. . .
...

� � � Vij � � �
...

. . .

3
775
(Y0�X0)

; (14.16)

 ©2001 CRC Press LLC

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12

(1) (2) (3) (4)

(1)

(2)

(3)

(4)

environment grid

map grid

obstacle

FIGURE 14.23. A schematic diagram of the map lattice.

where

Vij =

8<
:
FreeIndex; if grid (j; i) belongs to working space,
ObstacleIndex; if grid (j; i) belongs to an obstacle,
MarkColorIndex; if grid (j; i) is visited by robot(s),

(14.17)
where MarkColorIndex is the 8-bit complementary number of FreeIndex.
PrecisePotent stores the true potential field value at each map grid, i.e.,

PrecisePotent =

2
664

. . .
...

� � � �Uij � � �
...

. . .

3
775
(Y�X)

; (14.18)

where �Uij is the true potential field value at (j; i).
The measurements or associations of a temporary potential field map at any

time for any locations are stored in a three-dimensional data structure,
TempPotentField. The corresponding probabilities are in TempPotentWeight.
They both have the format of Figure 14.24, in which the longitudinal array at grid
(j; i) has been highlighted. The array of temporary probabilities for the specific
grid can be expressed as follows:

�tij = fwt1
ij ; w

t2
ij ; � � � ; wtk

ij g: (14.19)

Similarly, the array of temporary potential field values for the specific grid can be
written as follows:

 ©2001 CRC Press LLC

1

end

T

(j, i, T)

FIGURE 14.24. A schematic diagram illustrating the format of TempPotentWeight and
TempPotentField.

tij = fU t1
ij ; U

t2
ij ; � � � ; U tk

ij g; (14.20)

where wtk
ij indicates the probability for U tk

ij at time tk.
Matrix TotalWeight records the history of weight changing in behavior selec-

tion, as shown in Figure 14.25. Each row in TotalWeight represents the set of
weights corresponding to all primitive behaviors, except the first element, which
indicates a behavior code selected in response to the stimulus at time t. W t can
be expressed as follows:

W t = fBk; !
t
1; !

t
2; � � � ; !t

K
g; (14.21)

where Bk is the code for the kth primitive behavior, and

KX
i=1

!ti = 1: (14.22)

.

.

.

.

.

.

Wt1)(1 (1 K)TotalWeight =

FIGURE 14.25. A schematic diagram of TotalWeight.

 ©2001 CRC Press LLC

Matrix AllRobotConfig, as shown in Figure 14.26, stores the history of robot
configurations. At time t, submatrix Ct is added to the bottom of
AllRobotConfigwhere

Ct =

2
664

...
...

yk xk
...

...

3
775
(M�2)

; (14.23)

where (xk; yk) specifies the location of robot k at time t.

.

.

.

C1(M 2)

C2 (M 2)AllRobotConfig =

FIGURE 14.26. A schematic diagram of AllRobotConfig.

TotalPotent uses the similar rule, as shown in Figure 14.27, to store all tem-
porary potential field map measurements corresponding to mapping grids. At time
t, submatrix U t can be written as follows:

U t =

2
664

. . .
...

� � � U t
ij � � �
...

. . .

3
775
(Y�X)

; (14.24)

where U t
ij is the potential field value at (j; i) at time t.

14.7 Example

Let us take a look at an example of how to carry out a multi-robot experiment
on evolutionary multi-agent self-organization using the provided toolbox. The
parameters for this example are given in Table 14.13.

14.7.1 True Map Calculation

First of all, we initialize several true map calculation functions, according to the
parameters in Table 14.13.

 ©2001 CRC Press LLC

TotalPotent =

.

.

.

(Y X)P1

(Y X)P2

FIGURE 14.27. A schematic diagram of TotalPotent.

1. evmaso=precise=glibprec:m

In this function, variables SensorNum, MapGridWidth, and EnvironName

are initialized as follows:

SensorNum=16;
MapGridWidth=5;
EnvironName=’testimg.bmp’;

where the simulated environment file, testimg:bmp, is kept in the same
directory, or the path name for the MATLAB environment is set to share
the directory that contains this file.

2. evmaso=precise=premain:m

This file assigns a file for saving a true potential field map.

save precis PrecisePotent;

3. evmaso=precise=precini:m

This file assigns two function names for potential field function
PrecisePotentFunc and sensor feature description PreciseSensor,
respectively:

PrecisePotentFunc=’prepoten’;
PreciseSensor=’preciuls’;

Thereafter, two named functions, prepoten:m and preciuls:m, need to be
defined.

 ©2001 CRC Press LLC

4. evmaso=precise=prepoten:m

This file implements the function for calculating a potential field value
based on the equation given in Table 14.13:

function DirectPotent=prepoten(DirectDist)
% PREPOTEN Define the potential field function.

% Copyright (c) 1998-2001 Jiming Liu & Jianbing Wu

DirectPotent=exp(-DirectDist/5);

5. evmaso=precise=preciuls:m

As far as the sensor feature description is concerned,
evmaso=precise=preciuls:m can be defined in the same way as
evmaso=precise=prepoten:m.

Now, evmaso=precise=will contain the following files:

sccs5:˜/evmaso/precise>ls
globprec.m precise.m premain.m showprec.m
precini.m preciuls.m prepoten.m testimg.bmp
sccs5:˜/evmaso/precise>_

After running evmaso=precise=premain:m, e.g.,

>> cd evmaso/precise

>> premain

>>

the MAT file, precis:mat, with a true potential field map will be created in the
current directory, which now contains the following files:

sccs5:˜/evmaso/precise>ls
globprec.m precis.mat preciuls.m prepoten.m testimg.bmp
precini.m precise.m premain.m showprec.m
sccs5:˜/evmaso/precise>_

14.7.2 Initialization

Next, we initialize the functions for evolutionary multi-agent self-organization,
using the parameters in Table 14.13.

1. evmaso=initial=globini:m

In this function, potential field function PotentFunc and variable
MaxRunStep are initialized as follows:

 ©2001 CRC Press LLC

PotentFunc=’exp_sqrd’;

MaxRunStep=120;

where exp sqrd:m is created for potential field measurements. This
function is the same as evmaso=precise=prepoten:m given above.

2. evmaso=initial=envirini:m

This file initializes the following variables with respect to a simulated
environment:

PreciseFileName=’precis’;

EnvironName=’testimg.bmp’;

MaxAttitude=9;

MapGridWidth=5;

EnvThresh=3;

where precis:mat and testimg:bmp are put in a directory set in PATH.

3. evmaso=initial=robotini:m

In this file, the following variables are initialized:

RobotNum=6;

SensorType=’ultrason’;

SensorNum=16;

IncrementWeight=0.2;

MaxMoveStep=7;

As associated with SensorType, ultrason:m is created to specify the
features of the sensors.

4. evmaso=initial=getrobot:m

In this file, the initial configurations of N robots are defined:

RobotConfig=[20 30;
5 5;
20 10;
10 40;

 ©2001 CRC Press LLC

45 25;
55 5];

5. evmaso=initial=gaini:m

In this file, several parameters for genetic operations are defined:

FitnessFun=[’fitness1’;’fitness2’];
SingleCodeWidth=8;
PopulationSize=[20 30 45 65 90 120];
GenerationSize=[8 12 18 26 36 48];
CrossProb=0.6;
MutationProb=[0.1 0.05 0.005];
BreakRatio=0.8;

fitness1:m and fitness2:m give two example fitness functions for our
experiments. They are created before starting the main program.

6. evmaso=initial=gaini:m

Through the following steps, the given variables will be saved in
evmaso=result=exper:mat:

SaveItem=’TotalPotent AllRobotConfig VisitTimes MapSize RunTimes’;
SaveItem=[SaveItem ’ TotalRunningRobot PrecisePotent VisitPlusEnviron’];
SaveItem=[SaveItem ’ MapGridWidth RobotNum SensorNum DirectionWeight’];
SaveItem=[SaveItem ’ TempPotentField TempPotentWeight TotalWeight’];
SaveItem=[SaveItem ’ BeginTime EndTime’];

SaveDirectory=’../result/exper’;

14.7.3 Start-Up

Before we run the main program, we will set the path by creating file
evmaso=run=startup:m, as follows:

path(path,’../evmaso/code’);
path(path,’../evmaso/dealenv’);
path(path,’../evmaso/dealrobo’);
path(path,’../evmaso/display’);
path(path,’../evmaso/genetic’);
path(path,’../evmaso/initial’);
path(path,’../evmaso/main’);
path(path,’../evmaso/potent’);
path(path,’../evmaso/precise’);
path(path,’../evmaso/sensor’);
path(path,’../evmaso/som’);

Now, we can run the main program and begin the experiment on evolutionary
multi-agent self-organization as follows:

 ©2001 CRC Press LLC

>> cd evmaso/run

>> startup

>> evmasomain

>>

Thereafter, file exper:mat will be saved in
evmaso=result=.

14.7.4 Result Display

As an example, function =evmaso=analys=plotdistr:m can be called to dis-
play the visited locations in the simulated environment. The resulting MAT file is
designated as follows:

FileName=’exper’;

After the following operations,

>> cd evmaso/analys

>> plotdistr

>>

a window will pop up in which the experimental result is displayed, as shown in
Figure 14.28, and a postscript file, exper distr:ps, will be saved in
=evmaso=result=.

 ©2001 CRC Press LLC

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

FIGURE 14.28. A graphical display in the example (c1999 IEEE).

 ©2001 CRC Press LLC

Function Description
bin2gray convert a binary code to a gray code
bin2int convert a binary code to an integer number
caldist calculate the distance between two robots
callsom calculate the potential field map for a designated robot
call fitness calculate the fitness value for a population of chromosomes
checkstimu check the stimulus for a running robot
chrom generat generate a population of chromosomes
comp pot calculate a potential field value
cross chrom perform a crossover operation
deltacode convert a robot configuration to a gray code representation
deltaconfig convert a gray code representation to a robot configuration
envirini initialize an environment
evmasomain serve as the main program for evolutionary self-organization
exp sqrd define a potential field function
fitness1 define a fitness function for genetic operations
fitness2 define a fitness function for genetic operations
gaini initialize the parameters for genetic operations
genmain serve as the main program for genetic algorithm operations
getceil round a robot coordinate to the nearest location toward

the origin of an environment
getenvir normalize the environment for the experiment
getpotent perform an incremental self-organization
getrobot set the initial positions of robots
getsubchrom generate the subchromosomes for a group robot
globini initialize some global variables
gray2bin convert a gray code to a binary code
int2bin convert an integer number to the corresponding binary code
islegal chrom test the legality of individuals in a population
moveablepos determine feasible positions for robots
mutate perform a mutation operation
restoreconfig perform a transformation from chromosomes
robeffect get the interaction between two robots
robotini initialize robots and their sensors
saveini initialize variables for a data storage operation
select gen perform a selection operation
sensing sense an environment by each selected robot
showmap display a potential field map and a robot environment
sumattract return the sum of attraction from other robots
testenv sense an environment in a certain direction
testindirect determine the distance between two robots of different groups
ultrason simulate ultrasonic sensors
whetherbreak test whether to stop genetic operations
whorun determine executable robots at time t

TABLE 14.10. Description of the functions in the evolutionary self-organization toolbox.

 ©2001 CRC Press LLC

Function Description
globprec initialize true potential field map calculation
precini initialize sensor simulation and a potential field function
precise calculate the potential field distribution for an environment
preciuls perform a sensing operation for true map calculation
premain serve as the main program for computing a true potential field map
prepoten define a potential field function
showprec display a true potential field map

TABLE 14.11. Description of the functions for computing true potential field values.

Function Description
calmaperr calculate and display the errors of a built map
calpercent calculate the percentage of a reached area
figout display the trajectories of robots and save them in files
plot ori display an initial state
plotdistr mark the positions of robots in an environment
pre fig display comparable robot trajectories and save them in files
process view the history of robot movements
sigmaperr calculate the second-moment error in map building
sigpercent calculate the percentage of an unreached area
viewmap view the potential field distribution at time t
weightmap plot the weight matrix

TABLE 14.12. Description of the functions for analyzing the results of potential field map
building.

 ©2001 CRC Press LLC

Parameter Value
number of robots 6
sensory section 16
simulated environment testimg:bmp
MapGridWidth 5
potential field function �exp(�di=5)
true map file precis:mat
maximum number of running time steps 120
potential function exp sqrd:m
sensor feature description ultrason:m
maximum movement step 7
behavior vector increment 0.2
bitlength for each robot in GAs 8
population size 20/30/45/65/90/120
generations per step 8/12/18/26/36/48
crossover probability 0.6
mutation probability 0.1/0.05/0.005
BreakRatio 0.8

TABLE 14.13. Parameters as used in the experiments.

 ©2001 CRC Press LLC

Liu, J. & Wu, J. "References"
Multi-Agent Robotic Systems
Boca Raton: CRC Press LLC,2001

References

[AB97] R. C. Arkin and T. Balch. AuRA: Principles and practice in re-
view. Journal of Experimental and Theoretical Artificial Intelli-
gence, 9(2-3):175–189, 1997.

[ACF+98] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An
architecture for autonomy. International Journal of Robotics Re-
search – Special Issue on Integrated Architectures for Robot Con-
trol and Programming, 17(4):315–337, 1998.

[AFH+98] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-
robot cooperation in the Martha project. IEEE Robotics and Au-
tomation Magazine – Special Issue on Robotics and Automation in
the European Union, 5(1):36–47, 1998.

[AG96] R. Ahmed and D. Gray. Immunological memory and protec-
tive immunity: Understanding their relation. Science, 272:54–60,
1996.

[AMI89] H. Asama, A. Matsumoto, and Y. Ishida. Design of an autonomous
and distributed robot system: ACTRESS. In Proceedings of the
IEEE/RSJ International Workshop on Intelligent Robots and Sys-
tems, pages 283–290, Tsukuba, 1989.

[Ang93] P. J. Angeline. Evolutionary Algorithms and Emergent Intelli-
gence. Ph.D. Thesis, Ohio State University, 1993.

 ©2001 CRC Press LLC

[AOS89] T. Arai, H. Ogata, and T. Suzuki. Collision avoidance among
multiple robots using virtual impedance. In Proceedings of the
IEEE/RSJ International Workshop on Intelligent Robots and Sys-
tems, pages 479–485, Tsukuba, 1989.

[Ark89] R. C. Arkin. Motor schema-based mobile robot navigation. Inter-
national Journal of Robotics Research, 8(4):92–112, 1989.

[Ark98] R. C. Arkin. Behavior-Based Robotics. The MIT Press, Cam-
bridge, MA, 1998.

[BA95] T. Balch and R. C. Arkin. Motor schema-based formation con-
trol for multiagent robot teams. In Proceedings of the First Inter-
national Conference on Multi-Agent Systems, pages 10–16, AAAI
Press, Menlo Park, 1995.

[BA98] T. Balch and R. C. Arkin. Behavior-based formation control for
multi-robot teams. IEEE Transactions on Robotics and Automa-
tion, 14(6):1–15, 1998.

[BA00] S. C. Botelho and R. Alami. A multi-robot cooperative task
achievement system. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2716–2721, San
Francisco, 2000.

[Bal94] C. Balkenius. Biological Learning and Artificial Intelligence.
Technical Report, Cognitive Science Department, Lund University,
Sweden, 1994.

[Bal97] T. Balch. Learning roles: Behavioral diversity in robot teams. In
Proceedings of the AAAI-97 Workshop on Multiagent Learning,
pages 7–12, Providence, RI, 1997.

[Bal98] T. Balch. Behavioral Diversity in Learning Robot Teams. Ph.D.
Thesis, College of Computing, Georgia Institute of Technology,
1998.

[BB99] H. M. Botee and E. W. Bonabeau. Evolving ant colony optimiza-
tion. Advances in Complex Systems, 1(2-3):149–159, 1999.

[BBHCD96] S. Betge-Brezetz, P. Hebert, R. Chatila, and M. Devy. Uncer-
tain map making in natural environments. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages
1048–1053, Minneapolis, 1996.

[BD97] A. Billard and K. Dautenhahn. Grounding communication in situ-
ated, social robots. In Proceedings of TIMR97, Towards Intelligent
Mobile Robots Conference, Manchester, UK, 1997.

 ©2001 CRC Press LLC

[BDT99] E. W. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intel-
ligence: From Natural to Artificial Systems. Oxford University
Press, New York, 1999.

[Bed92] M. A. Bedau. Philosophical aspects of Artificial Life. In F. J.
Varela and P. Bourgine, editors, Towards a Practice of Autonomous
Systems: Proceedings of the First European Conference on Artifi-
cial Life, pages 494–503, The MIT Press/Bradford Books, Cam-
bridge, MA, 1992.

[Ben88] G. Beni. The concept of cellular robotic systems. In Proceedings
of the IEEE International Symposium on Intelligent Control, pages
57–62, Arlington, VA, 1988.

[BH94] A. Baader and G. Hirzinger. A self-organizing algorithm for multi-
sensory surface reconstruction. In Proceedings of the IEEE/RSJ/GI
International Conference on Intelligent Robots and Systems, pages
81–88, Munich, 1994.

[BH00] T. Balch and M. Hybinette. Social potentials for scalable multi-
robot formations. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, San Francisco, 2000.

[BHD94] R. Beckers, O. Holland, and J. Deneubourg. From local actions to
global tasks: Stigmergy and collective robotics. In R. A. Brooks
and P. Maes, editors, Proceedings of the Fourth International Con-
ference on Artificial Life, pages 181–189, The MIT Press, Cam-
bridge, MA, 1994.

[BHS97] T. Bäck, U. Hammel, and H.-P. Schwefel. Evolutionary computa-
tion: Comments on the history and current state. IEEE Transaction
on Evolutionary Computation, 1(1):3–17, 1997.

[BIM00] A. Billard, A.-J. Ijspeert, and A. Martinoli. A multi-robot sys-
tem for adaptive exploration of a fast changing environment: Prob-
abilistic modeling and experimental study. Connection Science,
11(3-4):357–377, 2000.

[BK98] O. Brock and O. Khatib. Executing motion plans for robots with
many degrees of freedom in dynamic environment. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 1–6, Leuven, Belgium, 1998.

[BMF+00] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collab-
orative multi-robot exploration. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, San Francisco,
2000.

 ©2001 CRC Press LLC

[Bon98] E. W. Bonabeau. Social insect colonies as complex adaptive sys-
tems. Ecosystems, 1(5):437–443, 1998.

[Bre62] H. J. Bremermann. Optimization through evolution and recombi-
nation. In M. C. Yovits et al., editors, Self-Organizing Systems,
pages 93–106, Spartan Books, Washington, 1962.

[Bro86] R. A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, RA-2(1):14–23, 1986.

[Bro91] R. A. Brooks. Intelligence without Reason. Memo 1293, MIT AI
Lab, USA, 1991.

[Bro92] R. A. Brooks. Artificial Life and real robots. In F. J. Varela and
P. Bourgine, editors, Towards a Practice of Autonomous Systems:
Proceedings of the First European Conference on Artificial Life,
pages 3–10, The MIT Press/Bradford Books, Cambridge, MA,
1992.

[Bro99] R. A. Brooks. Cambrian Intelligence: the Early History of New AI.
The MIT Press, Cambridge, MA, 1999.

[BRS94] M. Betke, R. L. Rivest, and M. Singh. Piecemeal Learning of an
Unknown Environment. Memo 1474, MIT AI Lab, USA, 1994.

[BT95] E. W. Bonabeau and G. Theraulaz. Why do we need Artificial
Life? In C. G. Langton, editor, Artificial Life: An Overview, pages
303–326, The MIT Press, Cambridge, MA, 1995.

[BTC98] E. W. Bonabeau, G. Theraulaz, and F. Cogne. The Design of Com-
plex Architectures by Simple Agents. Working Paper 98-01-005,
SFI, USA, 1998.

[BW89] G. Beni and J. Wang. Swarm Intelligence. In Proceedings of the
Seventh Annual Meeting of the Robotics Society of Japan, pages
425–428, Tokyo, 1989.

[CD98] M. Colombetti and M. Dorigo. Evolutionary computation in be-
havior engineering. In X. Yao, editor, Evolutionary Computation:
Theory and Applications, pages 37–80, World Scientific, Singa-
pore, 1998.

[CDB96] M. Colombetti, M. Dorigo, and G. Borghi. Behavior analysis and
training � A methodology for behavior engineering. IEEE Trans-
actions on Systems, Man, and Cybernetics � Part B: Cybernetics,
26(3):365–380, 1996.

[CFK97] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. Cooperative mobile
robotics: Antecedents and directions. Autonomous Robots, 4(1):7–
27, 1997.

 ©2001 CRC Press LLC

[CFKM95] Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng. Cooperative
mobile robotics: Antecedents and directions. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 226–234, Pittsburgh, 1995.

[CM96] D. Cliff and G. F. Miller. Co-evolution of pursuit and evasion II:
Simulation methods and results. In P. Maes et al., editors, From An-
imals to Animats 4: Proceedings of the Fourth International Con-
ference on Simulation of Adaptive Behavior, pages 506–515, The
MIT Press, Cambridge, MA, 1996.

[DC94] M. Dorigo and M. Colombetti. Robot shaping: Developing
autonomous agents through learning. Artificial Intelligence,
71(2):321–370, 1994.

[DGF+91] J. C. Deneubourg, S. Goss, N. Franks, A. Sendova, A. Franks,
C. Detrin, and L. Chatier. The dynamics of collective sorting:
Robot-like ant and ant-like robot. In J.-A. Meyer and S. Wilson,
editors, From Animals to Animats 1: Proceedings of the First In-
ternational Conference on Simulation of Adaptive Behavior, pages
356–365, The MIT Press, Cambridge, MA, 1991.

[DJMW96] G. Dudek, M. Jenkin, E. E. Milios, and D. Wilkes. A taxonomy for
multiagent robotics. Autonomous Robots, 3(4):375–397, 1996.

[DJR93] B. R. Donald, J. Jennings, and D. Rus. Experimental information
invariants for cooperating autonomous mobile robots. In Proceed-
ings of the International Joint Conference on Artificial Intelligence,
Workshop on Dynamically Interacting Robots, Chambery, 1993.

[DLC89] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Trends in coopera-
tive distributed problem solving. IEEE Transactions on Knowledge
and Data Engineering, KOE-11(1):63–83, 1989.

[DMC96] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Opti-
mization by a colony of cooperating agents. IEEE Transactions on
Systems, Man and Cybernetics, 26(1):1–13, 1996.

[DN98] K. Dautenhahn and C. Nehaniv. Artificial Life and natural stories.
In Proceedings of the Third International Symposium on Artificial
Life and Robotics, pages 435–439, Beppu, Japan, 1998.

[DS91] M. Dorigo and U. Schnepf. Organization of robot behavior through
genetic learning processes. In Proceedings of the Fifth Interna-
tional Conference on Advanced Robotics, pages 1456–1460, Pisa,
1991.

 ©2001 CRC Press LLC

[Dye95] M. G. Dyer. Toward synthesizing artificial neural networks that
exhibit cooperative intelligent behavior: Some open issues in arti-
ficial life. In C. G. Langton, editor, Artificial Life: An Overview,
pages 111–134, The MIT Press, Cambridge, MA, 1995.

[FAAE98] T. Fujii, Y. Arai, H. Asama, and I. Endo. Multilayered reinforce-
ment learning for complicated collision avoidance problems. In
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2186–2191, Leuven, Belgium, 1998.

[FAvN+96] T. Fujii, H. Asama, T. von Numers, T. Fujita, H. Kaetsu, and
I. Endo. Co-evolution of a multiple autonomous robot system and
its working environment via intelligent local information storage.
Robotics and Autonomous Systems, 19(1):1–13, 1996.

[FBKT99] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. Collaborative multi-
robot localization. In Proceedings of the German Conference on
Artificial Intelligence and the 21st Symposium on Pattern Recogni-
tion, pages 255–266, 1999.

[FBKT00] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic
approach to collaborative multi-robot localization. Autonomous
Robots, 8(3):325–344, 2000.

[FFA99] T. Fukuda, D. Funato, and F. Arai. Recognizing environmental
change through multiplex reinforcement learning in group robot
system. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 972–977, Kyongju, Ko-
rea, 1999.

[FGM+98] D. Floreano, J. Godjevac, A. Martinoli, F. Mondada, and J.-D.
Nicoud. Design, control, and applications of autonomous mo-
bile robots. In S. G. Tzafestas, editor, Advances in Intelligent Au-
tonomous Agents, Kluwer Academic Publishers, Boston, 1998.

[FI95] T. Fukuda and G. Iritani. Construction mechanism of group be-
havior with cooperation. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 535–
542, Pittsburgh, 1995.

[FM96] D. Floreano and F. Mondada. Evolution of homing navigation
in a real mobile robot. IEEE Transactions on Systems, Man and
Cybernetics-Part B: Cybernetics, 26(3):396–407, 1996.

[FM97] M. Fontan and M. J. Mataric. A study of territoriality: The role
of critical mass in adaptive task division. In P. Maes et al., ed-
itors, From Animals to Animats 4: Proceedings of the Fourth In-
ternational Conference on Simulation of Adaptive Behavior, pages
553–561, The MIT Press, Cambridge, MA, 1997.

 ©2001 CRC Press LLC

[FM98] D. Floreano and F. Mondada. Hardware solutions for evolutionary
robotics. In P. Husbands and J.-A. Meyer, editors, Proceedings
of the First European Workshop on Evolutionary Robotics, pages
137–151, Springer-Verlag, Berlin, 1998.

[FMSA99] T. Fukuda, H. Mizoguchi, K. Sekiyama, and F. Arai. Group be-
havior control for MARS (Micro Autonomous Robotic System).
In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1550–1555, Detroit, 1999.

[FN87] T. Fukuda and S. Nakagawa. A dynamically reconfigurable robotic
system. In Proceedings of the International Conference on In-
dustrial Electronics, Control, and Instrumentation, pages 588–595,
Cambridge, MA, 1987.

[FN97] D. Floreano and S. Nolfi. Adaptive behavior in competitive co-
evolutionary robotics. In Proceedings of the Fourth European Con-
ference on Artificial Life, pages 378–387, Brighton, 1997.

[FP97] P. Funes and J. Pollack. Computer evolution of buildable objects.
In P. Husbands and I. Harvey, editors, Proceedings of the Fourth
European Conference on Artificial Life, pages 358–367, Brighton,
1997.

[FU98] D. Floreano and J. Urzelai. Evolution and learning in autonomous
robotic agents. In T. Mange and M. Tomassini, editors, Bio-
inspired Computing Systems: Towards Novel Computational Ar-
chitectures, pages 1–36, Presses Polytechniques et Universitaires
Romandes, Lausanne, 1998.

[FU00] D. Floreano and J. Urzelai. Evolutionary robotics: the next genera-
tion. In T. Gomi, editor, Evolutionary Robotics, Kluwer Academic
Publishers, Boston, 2000.

[GM99] D. Goldberg and M. J. Mataric. Coordinating mobile robot group
behavior using a model of interaction dynamics. In Proceedings of
the Third International Conference on Autonomous Agents, pages
100–107, Seattle, 1999.

[Gol89] D. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, Reading, MA, 1989.

[Har92] I. Harvey. Species adaptation genetic algorithms: The basis for a
continuing SAGA. In F. J. Varela and P. Bourgine, editors, To-
ward a Practice of Autonomous Systems: Proceedings of the First
European Conference on Artificial Life, pages 346–354, The MIT
Press/Bradford Books, Cambridge, MA, 1992.

 ©2001 CRC Press LLC

[Har96] I. Harvey. Artificial evolution and real robots. In M. Sugisaka,
editor, Proceedings of the International Symposium on Artificial
Life and Robotics (AROB), pages 138–141, Beppu, Japan, 1996.

[Har97] I. Harvey. Artificial evolution for real problems. In T. Gomi, ed-
itor, Evolutionary Robotics: From Intelligent Robots to Artificial
Life, pages 187–220, AAI Books, Ontario, 1997.

[Har00] I. Harvey. Robotics: Philosophy of mind using a screwdriver. In
T. Gomi, editor, Evolutionary Robotics: From Intelligent Robots to
Artificial Life, pages 207–230, AAI Books, Ontario, 2000.

[HBBC96] P. Hebert, S. Betge-Brezetz, and R. Chatila. Decoupling odometry
and exteroceptive perception in building a global world map of a
mobile robot: The use of local maps. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 757–
764, Minneapolis, 1996.

[HCH96] P. Husbands, D. Cliff, and I. Harvey. The artificial evolution of
robot control systems. In Proceedings of a Colloquium at The In-
stitution of Mechanical Engineers: Genetic Algorithms in Design
Optimisation, London, 1996.

[HH93] B. A. Huberman and T. Hogg. The emergence of computational
ecologies. In L. Nadel and D. Stein, editors, 1992 Lectures in Com-
plex Systems, Volume V of SFI Studies in the Sciences of Complex-
ity, pages 185–205, Addison-Wesley, Reading, 1993.

[HH95] B. A. Huberman and T. Hogg. Communities of practice: Perfor-
mance and evolution. Computational and Mathematical Organi-
zation Theory, 1:73–92, 1995.

[HHC92] I. Harvey, P. Husbands, and D. Cliff. Issues in Evolutionary
Robotics. Cognitive Science Research Paper 219, School of Cog-
nitive and Computing Sciences, University of Sussex, UK, 1992.

[HHC+96] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi.
Evolutionary robotics at Sussex. In Proceedings of the Interna-
tional Symposium on Robotics and Manufacturing, Montpellier,
1996.

[HHCM97] P. Husbands, I. Harvey, D. Cliff, and G. Miller. Artificial evolu-
tion: A new path for artificial intelligence? Brain and Cognition,
34:130–159, 1997.

[HKA+99] Y. Hirata, K. Kosuge, H. Asama, H. Kaetsu, and K. Kawabata.
Decentralized control of mobile robots in coordination. In Pro-
ceedings of the IEEE International Conference on Control Appli-
cations, pages 1129–1134, Hilo, 1999.

 ©2001 CRC Press LLC

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, 1975.

[Hor99] W. Hordijk. Dynamics, Emergent Computation, and Evolution
in Cellular Automata. Ph.D. Thesis, University of New Mexico,
USA, 1999.

[Hus98] P. Husbands. Evolving robot behaviors with diffusing gas net-
works. In P. Husbands and J.-A. Meyer, editors, Proceedings of
the First European Workshop on Evolutionary Robotics, pages 71–
86, Springer-Verlag, Berlin, 1998.

[IKW+97] A. Ishiguro, T. Kondo, Y. Watanabe, Y. Shirai, and Y. Uchikawa.
Emergent construction of artificial immune networks for au-
tonomous robots. In Proceedings of the IEEE International Con-
ference on Systems, Man and Cybernetics, pages 1222–1228, Or-
lando, 1997.

[IOH98] K. Inoue, J. Ota, and T. Hirano. Interactive transportation by coop-
erative mobile robots in unknown environment. In T. Lueth et al.,
editors, Distributed Autonomous Robotic Systems 3, pages 3–12,
Springer-Verlag, Berlin, 1998.

[Jak98a] N. Jakobi. The minimal simulation approach to evolutionary
robotics. In T. Gomi, editor, Evolutionary Robotics: From Intel-
ligent Robots to Artificial Life, AAI Books, Ontario, 1998.

[Jak98b] N. Jakobi. Minimal simulations for evolutionary robotics. D.Phil.
Thesis, University of Sussex, UK, 1998.

[JD87] V. Jagannathan and R. Dodhiawak. Distributed artificial intel-
ligence: An automated bibliography. In M. Huhns, editor, Dis-
tributed Artificial Intelligence, pages 341–390, Morgan Kaufmann
Publishers, 1987.

[JGC+97] J. A. Janet, R. Gutierrez, T. A. Chase, M. W. White, and J. C. Sut-
ton. Autonomous mobile robot global self-localization using Ko-
honen and region-feature neural networks. Journal of Robotic Sys-
tems, 14(4):263–282, 1997.

[JQ98] N. Jakobi and M. Quinn. Some problems (and a few solutions) for
open-ended evolutionary robotics. In P. Husbands and J.-A. Meyer,
editors, Proceedings of the First European Workshop on Evolution-
ary Robotics, pages 108–122, Springer-Verlag, Berlin, 1998.

[KE94] B. J. A. Krose and M. Eecen. A self-organizing representation
of sensor space for mobile robot navigation. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 9–14, Munich, 1994.

 ©2001 CRC Press LLC

[Kha85] O. Khatib. Real-time obstacle avoidance for manipulators and mo-
bile robots. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 500–505, St. Louis, 1985.

[Kha86] O. Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. The International Journal of Robotics Research,
5(1):90–98, 1986.

[Kha87] O. Khatib. A unified approach to motion and force control of robot
manipulators: The operation space formulation. IEEE Journal of
Robotics and Automation, 3(1):43–53, 1987.

[KK95] A. A. Kassim and B. V. K. V. Kumar. Potential fields and neural
networks. In M. A. Arbib, editor, The Handbook of Brain Theory
and Neural Networks, pages 749–753, The MIT Press, Cambridge,
MA, 1995.

[KLM96] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research,
4:237–285, 1996.

[Koh88] T. Kohonen. Self-organization and Associative Memory. Springer-
Verlag, New York, 1988.

[Koz92] J. R. Koza. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. The MIT Press, Cambridge,
MA, 1992.

[KR92] J. R. Koza and J. P. Rice. Automatic programming of robots using
genetic programming. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, pages 194–207, San Jose, 1992.

[KS60] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Springer-
Verlag, New York, 1960.

[KSO+97] J. H. Kim, I. H. Suh, S. R. Oh, Y. J. Cho, and Y. K. Chung.
Region-based Q-learning using convex clustering approach. In
Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 601–607, Grenoble, 1997.

[KZ97] C. R. Kube and H. Zhang. Task modeling in collective robotics.
Autonomous Robots, 4:53–72, 1997.

[Lan88] C. G. Langton. Artificial life. In Artificial Life: Proceedings of
an Interdisciplinary Workshop on the Synthesis and Simulation of
Living Systems, pages 1–47, Los Alamos, 1988.

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer, Norwell, MA,
1991.

 ©2001 CRC Press LLC

[LDK95] M. L. Littman, T. L. Dean, and L. Kaelbling. On the complexity of
solving Markov decision problems. In Proceedings of the Eleventh
Annual Conference on Uncertainty in Artificial Intelligence, Vol-
ume 11, pages 394–402, Montreal, 1995.

[LFB94] M. Lewis, A. Fagg, and G. Bekey. Genetic algorithms for gait
synthesis in a hexapod robot. In Y. Zheng, editor, Recent Trends in
Mobile Robots, pages 317–331, World Scientific, Singapore, 1994.

[LH94] D. M. Lyons and A. J. Hendriks. Testing incremental adaptation.
In Proceedings of the Second International Conference on AI Plan-
ning Systems, pages 116–121, Chicago, 1994.

[LHF+97] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler. Co-
evolving soccer softbot team coordination with genetic program-
ming. In Proceedings of the RoboCup-97 Workshop, the 15th In-
ternational Joint Conference on Artificial Intelligence, pages 115–
118, Nagoya, 1997.

[LHL97a] W.-P. Lee, J. Hallam, and H. H. Lund. Applying genetic pro-
gramming to evolve behavior primitives and arbitrators for mobile
robots. In Proceedings of the IEEE Fourth International Confer-
ence on Evolutionary Computation, pages 501–506, IEEE Press,
Piscataway, 1997.

[LHL97b] H. H. Lund, J. Hallam, and W.-P. Lee. Evolving robot morphology.
In Proceedings of the IEEE Fourth International Conference on
Evolutionary Computation, IEEE Press, Piscataway, 1997.

[Lin93] L.-J. Lin. Hierarchical learning of robot skills by reinforcement. In
Proceedings of the International Conference on Neural Networks,
pages 181–186, San Francisco, 1993.

[LK97] S. Lee and G. Kardaras. Elastic string based global path plan-
ning using neural networks. In Proceedings of the IEEE Interna-
tional Symposium on Computational Intelligence in Robotics and
Automation, pages 108–114, Monterey, 1997.

[LM92] L.-J. Lin and T. M. Mitchell. Reinforcement learning with hid-
den states. In J.-A. Meyer, H. L. Roitblat, and S. Wilson, editors,
From Animals to Animats 2: Proceedings of the Second Interna-
tional Conference on the Simulation of Adaptive Behavior, pages
271–280, The MIT Press, Cambridge, MA, 1992.

[LVCS93] G. Lucarini, M. Varioli, R. Cerutti, and G. Sandini. Cellular
robotics: Simulation and HW implementation. In Proceedings of
the IEEE International Conference on Robotics and Automation,
Volume 3, pages 846–852, IEEE Press, Piscataway, 1993.

 ©2001 CRC Press LLC

[MAAO+99] S. Marsella, J. Adibi, Y. Al-Onaizan, G. Kaminka, I. Muslea, and
M. Tambe. On being a teammate: Experiences acquired in the de-
sign of RoboCup teams. In O. Etzioni, J. Muller, and J. Bradshaw,
editors, Proceedings of the Third International Conference on Au-
tonomous Agents, pages 221–227, Seattle, 1999.

[Mae89] P. Maes. The dynamics of action selection. In Proceedings of
the International Joint Conference on Artificial Intelligence, pages
991–997, Detroit, 1989.

[Mae95] P. Maes. Modeling adaptive autonomous agents. In C. G. Lang-
ton, editor, Artificial Life: An Overview, pages 135–162, The MIT
Press, Cambridge, MA, 1995.

[Mat92a] M. J. Mataric. Behavior-based systems: Key properties and im-
plications. In Proceedings of the Workshop on Architectures for
Intelligent Control Systems, IEEE International Conference on
Robotics and Automation, pages 46–54, Nice, 1992.

[Mat92b] M. J. Mataric. Designing emergent behaviors: From local inter-
actions to collective intelligence. In J.-A. Meyer, H. L. Roitblat,
and S. Wilson, editors, From Animals to Animats 2: Proceedings
of the Second International Conference on Simulation of Adaptive
Behavior, pages 432–441, The MIT Press, Cambridge, MA, 1992.

[Mat92c] M. J. Mataric. Minimizing complexity in controlling a mobile
robot population. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 830–835, Nice, 1992.

[Mat93] M. J. Mataric. Synthesizing group behaviors. In Proceedings of
the Workshop on Dynamically Interacting Robots, International
Joint Conference on Artificial Intelligence, pages 1–10, Chambery,
1993.

[Mat94a] M. J. Mataric. Interaction and intelligent behavior. Ph.D. Thesis,
Department of Electrical Engineering and Computer Science, MIT,
USA, 1994.

[Mat94b] M. J. Mataric. Learning motor skills by imitation. In Toward Phys-
ical Interaction and Manipulation: Proceedings of AAAI Spring
Symposium, Stanford University, 1994.

[Mat94c] M. J. Mataric. Learning to behave socially. In D. Cliff, P. Hus-
bands, J.-A. Meyer, and S. Wilson, editors, From Animals to Ani-
mats 3: Proceedings of the Third International Conference on Sim-
ulation of Adaptive Behavior (SAB-94), pages 453–462, The MIT
Press, Cambridge, MA, 1994.

 ©2001 CRC Press LLC

[Mat94d] M. J. Mataric. Reward functions for accelerated learning. In W. W.
Cohen and H. Hirsh, editors, Proceedings of the Eleventh Interna-
tional Conference on Machine Learning, Morgan Kaufmann Pub-
lishers, San Francisco, 1994.

[Mat95a] M. J. Mataric. Designing and understanding adaptive group behav-
ior. Adaptive Behavior, 4(1):51–80, 1995.

[Mat95b] M. J. Mataric. Issues and approaches in the design of collective
autonomous agents. Robotics and Autonomous Systems, 16(2–
4):321–331, 1995.

[Mat96] M. J. Mataric. Learning in multi-robot systems. In G. Weiss and
S. Sen, editors, Adaptation and Learning in Multi-Agent Systems,
Lecture Notes In Artificial Intelligence, Vol. 1042, pages 152–163,
Springer-Verlag, Berlin, 1996.

[Mat97a] M. J. Mataric. Learning social behavior. Robotics and Au-
tonomous Systems, 20:191–204, 1997.

[Mat97b] M. J. Mataric. Reinforcement learning in the multi-robot domain.
Autonomous Robots, 4(1):73–83, 1997.

[Mat98] M. J. Mataric. Behavior-based robotics as a tool for synthesis of
artificial behavior and analysis of natural behavior. Trends in Cog-
nitive Science, 2(3):82–87, 1998.

[MB90] P. Maes and R. A. Brooks. Learning to coordinate behaviors. In
Proceedings of the Eighth National Conference on Artificial Intel-
ligence, pages 796–802, Boston, 1990.

[MB93] D. McFarland and U. Bosser. Intelligent Behavior in Animals and
Robots. The MIT Press, Cambridge, MA, 1993.

[MC92] S. Mahadevan and J. Connell. Automatic programming of
behavior-based robots using reinforcement learning. Artificial In-
telligence, 55(2-3):311–365, 1992.

[MC96] M. J. Mataric and D. Cliff. Challenges in evolving controllers for
physical robots. Evolutional Robotics, Special Issue of Robotics
and Autonomous Systems, 19(1):67–83, 1996.

[McF94] D. McFarland. Towards robot cooperation. In D. Cliff, P. Hus-
bands, J.-A. Meyer, and S. Wilson, editors, From Animals to An-
imats 3: Proceedings of the Third International Conference on
Simulation of Adaptive Behavior, pages 440–444, The MIT Press,
Cambridge, MA, 1994.

 ©2001 CRC Press LLC

[MFA+96] N. Mitsumoto, T. Fukuda, F. Arai, H. Tadashi, and T. Idogaki. Self-
organizing multiple robotic system. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, pages 1614–
1619, Minneapolis, 1996.

[MFM97] A. Martinoli, E. Franzi, and O. Matthey. Towards a reliable set-
up for bio-inspired collective experiments with real robots. In
A. Casals and A. T. de Almeida, editors, Proceedings of the Fifth
International Symposium on Experimental Robotics, Lecture Notes
in Control and Information Sciences, pages 597–608, Springer-
Verlag, Berlin, 1997.

[Mic92] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolu-
tion Programs. Springer-Verlag, Berlin, 1992.

[ML95] A. Murray and S. J. Louis. Design strategies for evolutionary
robotics. In E. A. Yfantis, editor, Intelligent Systems: Proceedings
of the Third Golden West International Conference, pages 609–
616, Kluwer Academic Publishers, Norwell, MA, 1995.

[MLN96] O. Miglino, H. H. Lund, and S. Nolfi. Evolving mobile robots in
simulated and real environments. Artificial Life, 2:417–434, 1996.

[MM95] A. Martinoli and F. Mondada. Collective and cooperative behav-
iors: Biologically inspired experiments in robotics. In Proceedings
of the Fourth International Symposium on Experimental Robotics,
pages 2–7, Stanford University, 1995.

[MMHM00] B. Minten, R. Murphy, J. Hyams, and M. Micire. A
communication-free behavior for docking mobile robots. In L. E.
Parker, G. Bekey, and J. Barhen, editors, Distributed Autonomous
Robotic Systems 4, Springer-Verlag, New York, 2000.

[MNS95] M. J. Mataric, M. Nilsson, and K. Simsarian. Cooperative multi-
robot box-pushing. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 556–561,
Pittsburgh, 1995.

[MOA+00] N. Miyata, J. Ota, Y. Aiyama, H. Asama, and T. Arai. Coopera-
tive transport in unknown environment — Application of real-time
task assignment. In Proceedings of the 2000 IEEE International
Conference on Robotics and Automation, pages 3176–3182, San
Francisco, 2000.

[Mor88] H. Moravec. Mind Children: The Future of Robot and Human In-
telligence. Harvard University Press, Cambridge, MA, 1988.

 ©2001 CRC Press LLC

[NF98] S. Nolfi and D. Floreano. How co-evolution can enhance the
adaptive power of artificial evolution: Implications for evolution-
ary robotics. In P. Husbands and J.-A. Meyer, editors, Proceedings
of the First European Workshop on Evolutionary Robotics, pages
22–38, Springer-Verlag, Berlin, 1998.

[NF99] S. Nolfi and D. Floreano. Learning and evolution. Autonomous
Robots, 7(1):89–113, 1999.

[NFMM94] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve
autonomous robots: Different approaches in evolutionary robotics.
In R. A. Brooks and P. Maes, editors, Proceedings of the Fourth
International Conference on Artificial Life, pages 190–197, The
MIT Press, Cambridge, MA, 1994.

[NID00] Y. Nagayuki, S. Ishii, and K. Doya. Multi-agent reinforcement
learning: An approach based on the other agent’s internal model.
In Proceedings of the Fourth International Conference on Multi-
Agent Systems, pages 215–221, Boston, 2000.

[NNS97] H. F. Nijhout, L. Nadel, and D. L. Stein. Pattern Formation in the
Physical and Biological Sciences. Addison-Wesley, Reading, MA,
1997.

[Nol98] S. Nolfi. Evolutionary robotics: Exploiting the full power of self-
organization. Connection Science, 10(3–4):167–183, 1998.

[NP95] S. Nolfi and D. Parisi. Evolving non-trivial behaviors on real
robots: An autonomous robot that picks up objects. In M. Gori and
E. Soda, editors, Proceedings of the Fourth International Congress
of the Italian Association of Artificial Intelligence, Springer-
Verlag, Berlin, 1995.

[NV92] A.E. Nix and M.D. Vose. Modeling genetic algorithms with
markov chains. Annals of Mathematics and Artificial Intelligence,
5(1):79–88, 1992.

[OJ96] G. M. P. O’Hare and N. R. Jennings. Foundations of Distributed
Artificial Intelligence. John Wiley and Sons, Inc., New York, 1996.

[Par94] L. E. Parker. Heterogeneous Multi-RobotCooperation. Ph.D. The-
sis, MIT, USA, 1994.

[Par95] L. E. Parker. The effect of action recognition and robot awareness
in cooperative robotic teams. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages
212–219, Pittsburgh, 1995.

 ©2001 CRC Press LLC

[Par97] D. Parisi. Artificial life and higher level cognition. Brain and
Cognition, 34:160–184, 1997.

[Par99] L. E. Parker. Cooperative robotics for multi-target observation.
Intelligent Automation and Soft Computing, 5(1):5–19, 1999.

[Par00] L. E. Parker. Current state of the art in distributed robot systems.
In L. E. Parker, G. Bekey, and J. Barhen, editors, Distributed Au-
tonomous Robotic Systems 4, pages 3–12, Springer-Verlag, Berlin,
2000.

[Per92] A. S. Perelson. Theoretical Immunology. Addison-Wesley, Read-
ing, MA, 1992.

[Pfe98] R. Pfeifer. Embodied system life. In Proceedings of the Interna-
tional Symposium on System Life, Tokyo, 1998.

[PM00] P. Pirjanian and M. J. Mataric. Multi-robot target acquisition using
multiple objective behavior coordination. In Proceedings of the
IEEE International Conference on Robotics and Automation, San
Francisco, 2000.

[PN96] D. Parisi and S. Nolfi. The influence of learning on evolution.
In R. K. Belew and M. Mitchell, editors, Adaptive Individuals in
Evolving Populations, pages 419–428, Addison-Wesley, Reading,
MA, 1996.

[Pra95] E. Prassler. Robot navigation: A simple guidance system for a
complex changing world. In H. Bunke, T. Kanade, and H. Nolte-
meier, editors, Modeling and Planning for Sensor Based Intelligent
Robot Systems, pages 86–103, World Scientific, Singapore, 1995.

[PS98] R. Pfeifer and C. Scheier. Embodied cognitive science: A novel
approach to the study of intelligence in natural and artificial sys-
tems. In T. Gomi, editor, Evolutionary Robotics: From Intelligent
Robots to Artificial Life, pages 1–35, AAI Books, Ontario, 1998.

[PT00] L. E. Parker and C. Touzet. Multi-robot learning in a cooperative
observation task. In L. E. Parker, G. Bekey, and J. Barhen, edi-
tors, Distributed Autonomous Robotic Systems 4, pages 391–401,
Springer-Verlag, Berlin, 2000.

[PY90] S. Premvuti and S. Yuta. Consideration on the cooperation of mul-
tiple autonomous mobile robots. In Proceedings of the IEEE Inter-
national Workshop on Intelligent Robots and Systems, pages 59–
63, Tsuchiura, 1990.

 ©2001 CRC Press LLC

[QK93] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning
and control. In Proceedings of the IEEE International Conference
on Robotics and Automation, Volume 2, pages 802–807, Atlanta,
1993.

[RABP94] A. Ram, R. C. Arkin, G. Boone, and M. Pearce. Using genetic
algorithms to learn reactive control parameters for autonomous
robotic navigation. Adaptive Behavior, 2(3):277–304, 1994.

[Rey92] C. Reynolds. An evolved, vision-based behavioral model of coor-
dinated group motion. In J.-A. Meyer, H. L. Roitblat, and S. Wil-
son, editors, From Animals to Animats 2: Proceedings of the Sec-
ond International Conference on Simulation of Adaptive Behavior,
pages 384–392, The MIT Press, Cambridge, MA, 1992.

[Rey94] C. Reynolds. Evolution of corridor following in a noisy world. In
D. Cliff, P. Husbands, J.-A. Meyer, and S. Wilson, editors, From
Animals to Animats 3: Proceedings of the Third International Con-
ference on Simulation of Adaptive Behavior, pages 402–410, The
MIT Press/Bradford Books, Cambridge, MA, 1994.

[Ros93] J. S. Rosenschein. Consenting agents: Negotiation mechanisms
for multi-agent systems. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 792–799, Chambery,
1993.

[RV00] P. Riley and M. Veloso. On behavior classification in adversarial
environments. In L. E. Parker, G. Bekey, and J. Barhen, editors,
Distributed Autonomous Robotic Systems 4, Springer-Verlag, New
York, 2000.

[SAB+00] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors,
S. Thrun, and H. Younes. Coordination for multi-robot exploration
and mapping. In Proceedings of the National Conference on Arti-
ficial Intelligence, Austin, 2000.

[SB93] D. J. Stilwell and J. S. Bay. Toward the development of a material
transport system using swarms of ant-like robots. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 766–771, Atlanta, 1993.

[SB98] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Intro-
duction. The MIT Press, Cambridge, MA, 1998.

[Sch94] A. C. Schultz. Learning robot behaviors using genetic algorithms.
In M. Jamshidi and C. Nguyen, editors, Proceedings of the First
World Automation Congress, pages 607–612, TSI Press, Albu-
querque, 1994.

 ©2001 CRC Press LLC

[Sch95] H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley and
Sons, Inc., New York, 1995.

[Sch99] S. Schaal. Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3:233–242, 1999.

[Sch00] S. Schaal. Robot learning. In M. A. Arbib, editor, The Handbook
of Brain Theory and Neural Networks, The MIT Press, Cambridge,
MA, 2000.

[SG94] A. C. Schultz and J. Grefenstette. Evolving robot behaviors. In
Proceedings of the Fourth International Workshop on the Synthesis
and Simulation of Living Systems, Boston, 1994.

[SH94] L. Spector and J. Hendler. The use of supervenience in dynamic-
world planning. In Proceedings of the Second International Con-
ference on AI Planning Systems, pages 158–163, Chicago, 1994.

[Sha94] M. Shanahan. Evolutionary automata. In R. A. Brooks and
P. Maes, editors, Artificial Life IV: Proceedings of the Fourth In-
ternational Workshop on the Synthesis and Simulation of Living
Systems, pages 387–393, The MIT Press, Cambridge, MA, 1994.

[Sha97] N. E. Sharkey. The new wave in robot learning. Robotics and
Autonomous Systems, 22:179–186, 1997.

[Sim94] K. Sims. Evolving 3D morphology and behavior by competition.
In R. A. Brooks and P. Maes, editors, Artificial Life IV: Proceedings
of the Fourth International Workshop on the Synthesis and Simula-
tion of Living Systems, pages 28–39, The MIT Press, Cambridge,
MA, 1994.

[SL93] T. Sugawara and V. Lesser. Learning coordination plans in dis-
tributed problem-solving environments. Computer Science Tech-
nical Report 93-27, University of Massachusetts, USA, 1993.

[SM00] G. S. Sukhatme and M. J. Mataric. Embedding robots into the
Internet. In D. Heidamann, editor, Communications of the ACM –
Special Issue on Embedding the Internet, Volume 43, pages 67–73,
2000.

[SP96] G. Saunders and J. B. Pollack. The evolution of communication
schemes of continuous channels. In P. Maes, M. J. Mataric, J.-
A. Meyer, J. B. Pollack, and S. Wilson, editors, From Animals to
Animats 4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, pages 580–589, The MIT Press,
Cambridge, MA, 1996.

 ©2001 CRC Press LLC

[Spi97] E. Spier. From reactive behavior to adaptive behavior: Motiva-
tional models for behavior in animals and robots. D.Phil. Thesis,
Oxford University, UK, 1997.

[SSH94] S. Sen, M. Sekaran, and J. Hale. Learning to coordinate without
sharing information. In Proceedings of the National Conference
on Artificial Intelligence, pages 426–431, Seattle, 1994.

[Ste90] L. Steels. Exploiting analogical representations. In P. Maes, edi-
tor, Designing Autonomous Agents, pages 71–88, The MIT Press,
Cambridge, MA, 1990.

[Ste94] L. Steels. Emergent functionality through on-line evolution. In
R. A. Brooks and P. Maes, editors, Artificial Life IV:Proceedings of
the Fourth International Workshop on the Synthesis and Simulation
of Living Systems, pages 8–14, The MIT Press, Cambridge, MA,
1994.

[Ste95] L. Steels. The artificial life roots of artificial intelligence. In C. G.
Langton, editor, Artificial Life: An Overview, pages 75–110, The
MIT Press, Cambridge, MA, 1995.

[Sut88] R. S. Sutton. Learning to predict by method of temporal differ-
ences. Journal of Machine Learning, 3(1):9–44, 1988.

[SV97] P. Stone and M. Veloso. Multiagent Systems: A Survey from a Ma-
chine Learning Perspective. Technical Report CMU-CS-97-193,
School of Computer Science, Carnegie Mellon University, USA,
1997.

[SV98] P. Stone and M. Veloso. A layered approach to learning client
behaviors in the RoboCup soccer server. Applied Artificial Intelli-
gence, 12(2-3):165–188, 1998.

[TA99] Y. Takahashi and M. Asada. Behavior acquisition by multi-layered
reinforcement learning. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, pages 716 – 721,
Tokyo, 1999.

[TFB98] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to
concurrent mapping and localization for mobile robots. Machine
Learning and Autonomous Robots (joint issue), 31(5):1–25, 1998.

[Thr00] S. Thrun. Probabilistic Algorithms in Robotics. Technical Report
CMU-CS-00-126, School of Computer Science, Carnegie Mellon
University, USA, 2000.

 ©2001 CRC Press LLC

[UAH98] E. Uchibe, M. Asada, and K. Hosoda. Cooperative behavior ac-
quisition in multi-mobile robots environment by reinforcement
learning based on state vector estimation. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages
1558–1563, Leuven, Belgium, 1998.

[UF00] J. Urzelai and D. Floreano. Evolutionary robots with fast adap-
tive behavior in new environments. In T. C. Fogarty, J. Miller,
A. Thompson, and P. Thomson, editors, From Biology to Hard-
ware: Proceedings of the Third International Conference on Evolv-
able Systems, Springer-Verlag, Berlin, 2000.

[UNA98] E. Uchibe, M. Nakamura, and M. Asada. Co-evolution for cooper-
ative behavior acquisition in a multiple mobile robot environment.
In Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 425–430, Victoria, BC, 1998.

[VBX96] J. Vandorpe, H. Van Brussel, and H. Xu. Exact dynamic map build-
ing for a mobile robot using geometrical primitives produced by a
2D ranger finder. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 901–908, Minneapolis,
1996.

[Ven94] J. Ventrella. Explorations in the emergence of morphology and lo-
comotion behavior in animated characters. In R. A. Brooks and
P. Maes, editors, Artificial Life IV: Proceedings of the Fourth In-
ternational Workshop on the Synthesis and Simulation of Living
Systems, pages 436–441, The MIT Press, Cambridge, MA, 1994.

[VG97] C. Versino and L. M. Gambardella. Ibots learn genuine team solu-
tions. In M. Van Someren and G. Widmer, editors, Proceedings of
the European Conference on Machine Learning, Lecture Notes in
Artificial Intelligence, Vol. 1224, pages 298–311, Springer-Verlag,
Berlin, 1997.

[Wan89] P. K. C. Wang. Navigation strategies for multiple autonomous mo-
bile robots. In Proceedings of the IEEE/RSJ International Work-
shop on Intelligent Robots and Systems, pages 486–493, Tsukuba,
1989.

[WB90] S. D. Whitehead and D. Ballard. Learning to Perceive and Act.
Technical Report TR-331, Department of Computer Science, Uni-
versity of Rochester, USA, 1990.

[WD92] C. Watkins and P. Dayan. Technical notes: Q-learning. Machine
Learning, 8:279–292, 1992.

 ©2001 CRC Press LLC

[WD99] G. Weiss and P. Dillenbourg. What is ‘multi’ in multiagent learn-
ing? In P. Dillenbourg, editor, Collaborative Learning. Cognitive
and Computational Approaches, pages 64–80, Pergamon Press,
Oxford, 1999.

[Wei96] G. Weiss. Adaptation and learning in multi-agent systems: Some
remarks and a bibliography. In G. Weiss and S. Sen, editors, Adap-
tation and Learning in Multi-Agent Systems, Lecture Notes in Arti-
ficial Intelligence, Vol. 1042, pages 1–21, Springer-Verlag, Berlin,
1996.

[Wei99] G. Weiss. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. The MIT Press, Cambridge, MA, 1999.

[WFP00] R. A. Watson, S. G. Ficici, and J. B. Pollack. Embodied Evolution:
Distributing an Evolutionary Algorithm in a Population of Robots.
Technical Report CS-00-208, Volen Center for Complex Systems,
Brandeis University, USA, 2000.

[Win90] A. T. Winfree. The Geometry of Biological Time. Springer-Verlag,
New York, 1990.

[WJ95] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory
and practice. The Knowledge Engineering Review, 10(2):115–152,
1995.

[WT99] D. Wolpert and K. Tumer. An Introduction to Collective Intelli-
gence. Technical Report NASA-ARC-IC-99-63, NASA Ames Re-
search Center, USA, 1999.

[Wya97] J. Wyatt. Exploration and Inference in Learning from Reinforce-
ment. Ph.D. Thesis, Department of Artificial Intelligence, Univer-
sity of Edinburgh, UK, 1997.

[XMZT97] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski. Adaptive
evolutionary planner/navigator for mobile robots. IEEE Transac-
tion on Evolutionary Computation, 1(1):18–28, 1997.

[YFO+00] A. Yamashita, M. Fukuchi, J. Ota, T. Arai, and H. Asama. Mo-
tion planning for cooperative transportation of a large object by
multiple mobile robots in a 3D environment. In Proceedings of
the IEEE International Conference on Robotics and Automation,
pages 3144–3151, San Francisco, 2000.

[YH95] M. Youssefmir and B. A. Huberman. Clustered Volatility in Mul-
tiagent Systems. Technical Report, XEROX PARC, USA, 1995.

 ©2001 CRC Press LLC

[YTY97] T. Yamaguchi, Y. Tanaka, and M. Yachida. Speed up reinforce-
ment learning between two agents with adaptive mimetism. In
Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 594–600, Grenoble, 1997.

[Zie98] T. Ziemke. Adaptive behavior in autonomous agents. Presence,
7(6):564–587, 1998.

 ©2001 CRC Press LLC

	2288fm.pdf
	Multi-Agent Robotic Systems
	Preface
	Acknowledgements
	Contents
	References

	2288ch01.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 1: Why Multiple Robots?
	1.1 Advantages
	1.2 Major Themes
	1.3 Agents and Multi-Agent Systems
	1.4 Multi-Agent Robotics
	References

	2288ch02.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 2: Toward Cooperative Control
	2.1 Cooperation-Related Research
	2.1.1 Distributed Artificial Intelligence
	2.1.2 Distributed Systems
	2.1.3 Biology

	2.2 Learning, Evolution, and Adaptation
	2.3 Design of Multi-Robot Control
	References

	2288ch03.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 3: Approaches
	3.1 Behavior-Based Robotics
	3.2 Collective Robotics
	3.3 Evolutionary Robotics
	3.4 Inspiration from Biology and Sociology
	3.5 Summary
	References

	2288ch04.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 4: Models and Techniques
	4.1 Reinforcement Learning
	4.1.1 Markov Decision Process
	4.1.2 Reinforcement Learning Algorithms
	4.1.3 Temporal Differencing Techniques
	4.1.4 Q-Learning
	4.1.5 Multi-Agent Reinforcement Learning

	4.2 Genetic Algorithms
	4.3 Artificial Life
	4.4 Artificial Immune System
	4.5 Probabilistic Modeling
	4.6 Related Work on Multi-Robot Planning and Coordination
	References

	2288ch05.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 5: Outstanding Issues
	5.1 Self-Organization
	5.2 Local vs. Global Performance
	5.3 Planning
	5.4 Multi-Robot Learning
	5.5 Coevolution
	5.6 Emergent Behavior
	5.7 Reactive vs. Symbolic Systems
	5.8 Heterogeneous vs. Homogeneous Systems
	5.9 Simulated vs. Physical Robots
	5.10 Dynamics of Multi-Agent Robotic Systems
	5.11 Summary
	References

	2288ch06.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 6: Multi-Agent Reinforcement Learning: Technique
	6.1 Autonomous Group Robots
	6.1.1 Overview
	6.1.2 Sensing Capability
	6.1.3 Long-Range Sensors
	6.1.4 Short-Range Sensors
	6.1.5 Stimulus Extraction
	6.1.6 Primitive Behaviors
	6.1.7 Motion Mechanism

	6.2 Multi-Agent Reinforcement Learning
	6.2.1 Formulation of Reinforcement Learning
	6.2.2 Behavior Selection Mechanism

	6.3 Summary
	References

	2288ch07.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 7: Multi-Agent Reinforcement Learning: Results
	7.1 Measurements
	7.1.1 Stimulus Frequency
	7.1.2 Behavior Selection Frequency

	7.2 Group Behaviors
	7.2.1 Collective Surrounding
	7.2.2 Cooperation among RANGER Robots
	7.2.2.1 Moving away from Spatially Cluttered Locations
	7.2.2.2 Changing a Target
	7.2.2.3 Cooperatively Pushing Scattered Objects
	7.2.2.4 CollectiveManipulation of Scattered Objects

	7.2.3 Concurrent Learning in Different Groups of Robots
	7.2.3.1 Concurrent Learning in Predator and Prey
	7.2.3.2 Chasing
	7.2.3.3 Escaping from a Surrounding Crowd

	References

	2288ch08.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 8: Multi-Agent Reinforcement Learning: What Matters?
	8.1 Collective Sensing
	8.2 Initial Spatial Distribution
	8.3 Inverted Sigmoid Function
	8.4 Behavior SelectionMechanism
	8.5 Motion Mechanism
	8.6 Emerging a Periodic Motion
	8.7 Macro-Stable but Micro-Unstable Properties
	8.8 Dominant Behavior
	References

	2288ch09.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 9: Evolutionary Multi-Agent Reinforcement Learning
	9.1 Robot Group Example
	9.1.1 Target Spatial Distributions
	9.1.2 Target Motion Characteristics
	9.1.3 Behavior Learning Mechanism

	9.2 Evolving Group Motion Strategies
	9.2.1 Chromosome Representation
	9.2.2 Fitness Functions
	9.2.3 The Algorithm
	9.2.4 Parameters in the Genetic Algorithm

	9.3 Examples
	9.4 Summary
	References

	2288ch10.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 10: Coordinated Maneuvers in a Dual-Agent System
	10.1 Issues
	10.2 Dual-Agent Learning
	10.3 Specialized Roles in a Dual-Agent System
	10.4 The Basic Capabilities of the Robot Agent
	10.5 The Rationale of the Advice-Giving Agent
	10.5.1 The Basic Actions: Learning Prerequisites
	10.5.2 Genetic Programming of General Maneuvers
	10.5.3 Genetic Programming of Specialized Strategic Maneuvers

	10.6 Acquiring Complex Maneuvers
	10.6.1 Experimental Design
	10.6.2 The Complexity of Robot Environments
	10.6.3 Experimental Results
	10.6.4 Lightweight or Heavyweight Flat Posture
	10.6.5 Lightweight Curved Posture
	10.6.6 Lightweight Corner Posture
	10.6.7 Lightweight Point Posture

	10.7 Summary
	References

	2288ch11.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 11: Collective Behavior
	11.1 Group Behavior
	11.1.1 What is Group Behavior?
	11.1.2 Group Behavior Learning Revisited

	11.2 The Approach
	11.2.1 The Basic Ideas
	11.2.2 Group Robots
	11.2.3 Performance Criterion for Collective Box-Pushing
	11.2.4 Evolving a Collective Box-Pushing Behavior
	11.2.5 The Remote Evolutionary Computation Agent

	11.3 Collective Box-Pushing by Applying Repulsive Forces
	11.3.1 A Model of Artificial Repulsive Forces
	11.3.2 Pushing Force and the Resulting Motion of a Box
	11.3.3 Chromosome Representation
	11.3.4 Fitness Function
	11.3.5 Examples
	11.3.5.1 Task Environment
	11.3.5.2 Simulation Results
	11.3.5.3 Generation of Collective Pushing Behavior
	11.3.5.4 Adaptation to New Goals
	11.3.5.5 Discussions

	11.4 Collective Box-Pushing by Exerting External Contact Forces and Torques
	11.4.1 Interaction between Three Group Robots and a Box
	11.4.2 Case 1: Pushing a Cylindrical Box
	11.4.2.1 Pushing Position and Direction
	11.4.2.2 Pushing Force and Torque

	11.4.3 Case 2: Pushing a Cubic Box
	11.4.3.1 The Coordinate System
	11.4.3.2 Pushing Force and Torque

	11.4.4 Chromosome Representation
	11.4.5 Fitness Functions
	11.4.6 Examples
	11.4.6.1 Task Environment
	11.4.6.2 Adaptation to New Goals
	11.4.6.3 Simulation Results
	11.4.6.4 Adaptation to Dynamically Changing Goals
	11.4.6.5 Discussions

	11.5 Convergence Analysis for the Fittest-Preserved Evolution
	11.5.1 The Transition Matrix of a Markov Chain
	11.5.2 Characterizing the Transition Matrix Using Eigenvalues

	11.6 Summary
	References

	2288ch12.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 12: Multi-Agent Self-Organization
	12.1 Artificial Potential Field (APF)
	12.1.1 Motion Planning Based on Artificial Potential Field
	12.1.2 Collective Potential Field Map Building

	12.2 Overview of Self-Organization
	12.3 Self-Organization of a Potential Field Map
	12.3.1 Coordinate Systems for a Robot
	12.3.2 Proximity Measurements
	12.3.3 Distance Association in a Neighboring Region
	12.3.4 Incremental Self-Organization of a Potential Field Map
	12.3.5 Robot Motion Selection
	12.3.5.1 Directional1
	12.3.5.2 Directional2
	12.3.5.3 Random

	12.4 Experiment 1
	12.4.1 Experimental Design
	12.4.2 Experimental Results

	12.5 Experiment 2
	12.5.1 Experimental Design
	12.5.2 Experimental Results

	12.6 Discussions
	References

	2288ch13.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 13: Evolutionary Multi-Agent Self-Organization
	13.1 Evolution of CooperativeMotion Strategies
	13.1.1 Representation of a Proximity Stimulus
	13.1.2 Stimulus-Response Pairs
	13.1.3 Chromosome Representation
	13.1.4 Fitness Functions
	13.1.5 The Algorithm

	13.2 Experiments
	13.2.1 Experimental Design
	13.2.2 Comparison with a Non-Evolutionary Mode
	13.2.3 Experimental Results

	13.3 Discussions
	13.3.1 Evolution of Group Behaviors
	13.3.2 Cooperation among Robots

	13.4 Summary
	References

	2288ch14.pdf
	Multi-Agent Robotic Systems
	Contents
	Chapter 14: Toolboxes for Multi-Agent Robotics
	14.1 Overview
	14.2 Toolbox for Multi-Agent Reinforcement Learning
	14.2.1 Architecture
	14.2.2 File Structure
	14.2.3 Function Description
	14.2.4 User Configuration
	14.2.5 Data Structure

	14.3 Toolbox for Evolutionary Multi-Agent Reinforcement Learning
	14.3.1 File Structure
	14.3.2 Function Description
	14.3.3 User Configuration

	14.4 Toolboxes for Evolutionary Collective Behavior Implementation
	14.4.1 Toolbox for Collective Box-Pushing by Artificial Repulsive Forces
	14.4.1.1 File Structure
	14.4.1.2 Function Description
	14.4.1.3 User Configuration
	14.4.1.4 Data Structure

	14.4.2 Toolbox for Implementing Cylindrical/Cubic Box-Pushing Tasks
	14.4.2.1 File Structure
	14.4.2.2 Function Description
	14.4.2.3 User Configuration
	14.4.2.4 Data Structure

	14.5 Toolbox for Multi-Agent Self-Organization
	14.5.1 Architecture
	14.5.2 File Structure
	14.5.3 Function Description
	14.5.4 User Configuration
	14.5.5 Data Structure

	14.6 Toolbox for Evolutionary Multi-Agent Self-Organization
	14.6.1 Architecture
	14.6.2 File Structure
	14.6.3 Function Description
	14.6.4 User Configuration
	14.6.5 Data Structure

	14.7 Example
	14.7.1 True Map Calculation
	14.7.2 Initialization
	14.7.3 Start-Up
	14.7.4 Result Display

	References

	2288ref.pdf
	Multi-Agent Robotic Systems
	Contents
	References

