MANN-WHITNEY U TEST

This test is used to compare the results of a treatment on a randomly assigned group of subjects (from a between groups design)

A researcher wants to know if extensive training will improve a participant's score obtained when firing arrows at a board.
The results are as follows:

Group 1 (No Training)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$		
Score	4	10	12	18	7	13	12	2	9	27		
Group 2 (Training)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	7	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Score	21	26	20	22	32	5	12	6	8	24	29	9

1. DETERMINE THAT CONDITIONS FOR TEST ARE ACCEPTABLE:

- Data can be ranked
- Distribution is not normal
- Each participant is allocated at random to one and only one condition

2. STATE NULL AND ALTERNATIVE HYPOTHESES:
H_{0} : Training has no effect on performance
H_{a} : Training improves performance
3. RANK SCORES FROM BOTH GROUPS TOGETHER (Lowest (1) to Highest (n))... USE MEAN OF RANKS FOR TIES:
```
1-2
2-4
3-5
4-6
5-7
6-8
7-9, 9 } Use 7.5
8-
9-10
10-12, 12, 12 } Use 11
1 1
1 2
13-13
14-18
15-20
16-21
17-22
18-24
19-26
20-27
21-29
22-32
```

Group 1 (No Training)	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$		
Score	4	10	12	18	7	13	12	2	9	27		
Rank	2	9	11	14	5	13	11	1	7.5	20		
Group 2 (Training)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Score	21	26	20	22	32	5	12	6	8	24	29	9
Rank	16	19	15	17	22	3	11	4	6	18	21	7.5

4. CALCULATE THE SUM OF RANKS (T) IN THE SMALLER SAMPLE GROUP:
$\mathrm{T}=$ Group 1 Sum of Ranks $=\mathbf{9 3 . 5}$
5. CALCULATE U FROM THE FOLLOWING FORMULA:
$\mathrm{U}=\mathrm{n}_{1} \mathrm{n}_{2}+\left[\mathrm{n}_{1}\left(\mathrm{n}_{1}+1\right)\right] / 2-\mathrm{T}=\mathbf{8 1 . 5}$
where $\mathrm{n}_{1}=$ number of participants in smaller sample and $\mathrm{n}_{2}=$ number of participants in larger sample
6. CALCULATE U^{\prime} :

$$
\mathrm{U}^{\prime}=\mathrm{n}_{1} \mathrm{n}_{2}-\mathrm{U}=\mathbf{3 8 . 5}
$$

7. USING THE SMALLER VALUE OF U AND U', DETERMINE CRITICAL VALUE FROM TABLE:

Tabled value for a one-tailed test at the 5% level is 34 (and 24 at the 1% level). Since $38.5>34$, there is insufficient evidence to reject the null hypothesis.
8. STATE CONCLUSION:

There is not enough evidence to conclude that training improves performance in this task.

