#### **IB PSYCHOLOGY** (IA Criterion E: Descriptive Statistics)

## CALCULATING DESCRIPTIVE STATISTICS WITH MINITAB

# **OPEN MINITAB SOFTWARE**

*start*  $\rightarrow$  Programs  $\rightarrow$  Minitab Student 12

# TYPE DATA INTO LIST(S); NAME THE LIST(S)

## USING A MODIFIED BOX PLOT, CHECK FOR OUTLIERS; REMOVE FROM LIST(S)?

Graph  $\rightarrow$  Boxplot  $\rightarrow$  Options (Transpose X and Y)



### CALCULATE DESCRIPTIVE STATISTICS:

- a) Stat  $\rightarrow$  Basic Statistics  $\rightarrow$  Display Descriptive Statistics
- b) Copy and Paste Results:

| Descriptive Statistics  |               |                           |               |            |               |                |                  |  |
|-------------------------|---------------|---------------------------|---------------|------------|---------------|----------------|------------------|--|
| Variable<br>Test Scores | N<br>20       | Mean Median 23.650 23.000 |               | Trl<br>23  | Mean<br>3.556 | StDev<br>2.907 | SE Mean<br>0.650 |  |
| Variable<br>Test Scores | Minim<br>20.0 | um Maxi<br>00 29.0        | mum<br>000 21 | Q1<br>.000 | Q3<br>26.000  |                |                  |  |

# **GRAPHING DESCRIPTIVE STATISTICS:**

# **USING MINITAB SOFTWARE:**

- a) Graph  $\rightarrow$  Choose Graph (Histogram, Dotplot, Stem-and-Leaf Plot)
- b) Copy and paste

# **USING EXCEL:**

- a) Type Data Into A Column →Go to Insert → Chart → Choose Chart Type (Bar Graph, Pie Chart etc) → Save "As New Sheet"
- b) Modify scales as needed
- c) Copy and paste graph(s); reformat size as needed

### CHECKING IF YOUR DATA IS NORMALLY DISTRIBUTED:



#### MEANS

- a) Open Excel  $\rightarrow$  Type Data into List(s)
- b) Determine the Skewness Value and Kurtosis Value:

Insert  $\rightarrow$  Function (SKEW or KURT)

c) Calculate the Standard Error (SE) of skewness and kurtosis:

SE of skewness = 
$$\sqrt{\frac{6}{n}}$$
 where  $n$  = your sample size

SE of kurtosis = 
$$\sqrt{\frac{24}{n}}$$
 where *n*= your sample size

d) Calculate a normal interval for each:

Interval = (-2SE, 2SE)

If both your skewness/kurtosis values fall within this interval, then it is reasonable to assume that your data for means is normally distributed

#### PROPORTIONS

- a) Determine if  $n(p_0)>10$  and  $n(1-p_0)>10$
- b) Verify that N > 10n

If both conditions are met, then it is reasonable to assume that your data for proportions is normally distributed

### APPENDIX

#### DEFINITIONS

**Skewness** is a measure of asymmetry. Zero indicates a perfect symmetry; the normal distribution has a skewness of zero. Positive skewness indicates that the "tail" of the distribution is more stretched on the side above the mean. Negative skewness indicates that the tail of the distribution is more stretched on the side below the mean.

**Kurtosis** characterizes the relative peakedness of flatness of a distribution compared with the normal distribution; the normal distribution has a kurtosis of zero. Positive kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a relatively flat distribution.

#### FORMULAS USED BY EXCEL:

Skewness = 
$$\frac{n}{(n-1)(n-2)} \sum \left(\frac{x_i - xbar}{s}\right)^3$$

Kurtosis = 
$$\left(\frac{n(n+1)}{(n-1)(n-2)(n-3)}\Sigma\left(\frac{x_i - xbar}{s}\right)^4\right) - \frac{3(n-1)^2}{(n-2)(n-3)}$$

## **OTHER FORMULAS USED:**

Skewness = 
$$\frac{\sum (x_i - xbar)^3}{(n-1)s^3}$$

Kurtosis = 
$$\frac{\sum (x_i - xbar)^4}{(n-1)s^4} - 3$$

#### REFERENCES

Jones, Michael N. Assistant Professor at Indiana University, Bloomington.

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook

Pysdek, Thomas (2000). The Six Sigma Handbook. McGraw Hill Companies.

Yates, Daniel S., Moore, David S. and Starnes, Daren S. (2003). *The Practice of Statistics*. New York: W. H. Freeman and Company.