2-SAMPLE T TEST

This test is used to compare 2 means from a between groups design
The SAT scores of 13-year olds who took the test between 1980 and 1982 are below:

Group	n	x-bar	s
Males	19,883	416	87
Females	19,937	386	74

Determine if male scores are significantly higher than female scores at the $\alpha=.01$ level.
P) STATE POPULATION PARAMETERS:
$\mu_{\mathrm{m}}=$ the mean SAT math score of males
$\mu_{\mathrm{f}}=$ the mean SAT math score of females
H) STATE HYPOTHESES:
$\mathrm{H}_{0}: \mu_{\mathrm{m}}=\mu_{\mathrm{f}} \quad \mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{m}}>\mu_{\mathrm{f}}$
A) VERIFY CONDITIONS REQUIRED FOR TEST:

Normal population or large sample size or justification for normality after omitting outliers

Since $\mathrm{n}_{\mathrm{m}}>30$ and $\mathrm{n}_{\mathrm{f}}>30$, the Central Limit Theorem applies

T) PERFORM TEST USING

a) TABLE C:
i) Put data into lists and calculate x -bar/standard deviation (if necessary)
ii) Calculate t-statistic:

$$
\mathrm{t}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=37.06
$$

iii) Determine degrees of freedom:

Using smaller of n_{1} and $\mathrm{n}_{2}, \mathrm{df}=19,883-1=19,882$
iv) Locate critical t-value

Table $\mathrm{C}(\mathrm{df}=1000$ and $\alpha=.01)$, the critical t value is 2.326 .
Since $37.06>2.326$, the P -value $<.01$.
b) CALCULATOR:

STAT ---> TESTS ---> 4: 2-Samp T Test ---> P-value $=0$
$\operatorname{tcdf}(\min , \max , \mathrm{df})=(37.06,100,19882)=0$

S) STATE CONCLUSION IN CONTEXT:

There is very good evidence (P -value $<.01$) to reject H_{0} and conclude that 13 -year old males scored higher on the math SAT test than 13-year old females between 1980 and 1982

CONFIDENCE INTERVAL (Use PAIS):

A 95% confidence level for the mean difference in SAT math scores between males and females can be found using:
STAT ---> TESTS ---> 0: 2-Samp T Int = (28.4, 31.6)

We are 95% confident that 13-year old males scored between 28 and 32 points higher on the SAT math test than 13-year old females between 1980 and 1982.

