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Abstract. A contact discontinuity tracking method with a specially designed moving grid is developed to
eliminate the interface smearing completely. In order to precisely locate the contact surface, an updated
Riemann solver for unsteady one-dimensional inviscid flows is also developed to allow consideration of the
specific heat ratio change across the shock wave. These two new computational techniques are illustrated
in a high Mach number shock tube flow field computation.
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Nomenclature

C: sound speed
Cp: specific heat at constant pressure
Cv: specific heat at constant volume
e: internal energy
evi: vibrational energy of species i
h: enthalpy
p: pressure
qi: mass fraction of species i
Ri: gas constant of species i
t: time
T : temperature
u: velocity
U : general variable
W : shock Mach number
x: coordinate along the shock tube

Greek symbols

(∆hf
i )T : standard heat of formation of species i at tem-

perature T
φi: net production rate of species i
γ: specific heat ratio, Cp/Cv

µi: molecular weight of species i
θvi: characteristic vibrational temperature of species i
%: density
τvi: characteristic relaxation time of species i

Correspondence to: Y. Sheng

Superscript

*: intermediate states
‘: first order derivative
“: second order derivative

Subscript

l: left side
r: right side

1 Introduction

Renewed interest in hypersonics has created a demand for
short duration high-enthalpy ground test facilities which
are confined to hypervelocity flight regions. This special
requirement has spawned a number of exotic facilities
which represent in essence various extensions of the basic
shock tube flow. The present work investigates shock tube
and shock tunnel (without piston) flows, which represent
only a few of many different types of impulse facilities.
Numerical simulations of such flows are required to bet-
ter understand the test flow conditions, to determine test
duration time and supplement the results of experiments.
It is also useful to improve the shock tunnel operation
characteristics.

However, flow conditions in a shock tunnel are very
severe and put enormous strain on the accuracy and sta-
bility of the current numerical techniques. The unsteady
flow inside a high enthalpy shock tube and shock tun-
nel is significantly influenced by very strong shock waves,
chemically reacting and inert gas interfaces (contact dis-
continuities), high temperature effects, chemical reactions
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Fig. 1. Computation cell

and viscous interactions. These important flow features
take place in a few millimeters in the axial direction in a
facility that can be tens of meter long.

A number of researchers (see, for example, Refs. 1-
4) have performed numerical simulations of high enthalpy
pulse facilities to tackle the above mentioned challenges.
Cambier et al. (1992) describe the computational work
on the flow simulation of the NASA Ames 16” Shock
Tunnel Facility and describe the numerical problems en-
countered during the computation of various flow tran-
sients and the methods used to resolve them. Particular
attention is given to problems arising from extremely stiff
chemistry. Wilson (1992) presents a quasi-one-dimensional
methodology for numerically simulating the flow inside
high-enthalpy pulse facilities. The numerical approach
uses a finite volume TVD scheme for the Euler equations
coupled with finite- rate chemistry on a moving mesh. A
Riemann solver is incorporated for tracking contact dis-
continuities. A 4th order non-oscillatory scheme and flow
loss models are used by Itoh et al (1993) to study the
tuned operation of a free piston shock tunnel. The aim
of the present paper was to develop a numerical simula-
tion technique for shock tube and shock tunnel flows with
particular emphasis on predicting accurate test times by
accurately determining the contact surface motion sep-
arating the chemically active region of the flow from the
cold flow and taking into account the real gas effects on the
shock wave strengths with an improved Riemann solver.

The numerical approach taken in the present work has
been to solve the unsteady quasi- one-dimensional Euler
equations coupled to a detailed finite rate chemistry model
for high temperature air. The numerical scheme employed
is a modified version of the two-dimensional Godunov type
upwind non-oscillatory Euler solver proposed by Rodionov
(Rodionov 1987) for transient flows. Second order spatial
accuracy of smooth solutions is obtained by linear approx-
imation of the conservative variables within the control
volumes. The corresponding gradient of the flow variables
in the control volume determined by one sided deriva-
tives is chosen as the minimum of average gradients for
neighbouring control volumes (Colgan 1972). Second or-
der accuracy with respect to time is achieved by a two step
predictor-corrector technique. In the predictor step, inter-
mediate values at grid points are determined following the
above mentioned one-sided derivatives in conjunction with
the principle of minimum derivative. Using the arithmetic
average of the known variable value and the correspond-
ing intermediate value to replace the known value of grid
points an exact Riemann solver is used in the corrector
step to determine the flow variables at the control volume

Fig. 2. Four available wave patterns in the Riemann prob-
lem solution S – shock wave R – rarefaction wave C – contact
surface

interfaces. Note that the predictor step of the scheme in-
volves no Riemann solver and hence contributes to the
efficiency of the employed computational technique.

Two numerical issues are the focus of the present work.
The first issue relates to the solution of the exact Rie-
mann problem for very high Mach number shock tube or
shock tunnel flows involving very strong discontinuities
when the specific heat ratio becomes a function of tem-
perature. In these cases, it is inconsistent to use an exact
Riemann solver based on constant specific heat ratio when
chemical reactions are treated as temperature dependent.
An improved exact Riemann solver for unsteady one di-
mensional flows is presented which takes into account the
change of the specific heat ratio across shock waves.

The second issue concerns the smearing of cold and
very hot gas interfaces by numerical diffusion. This smear-
ing increases as the distance the interface travels becomes
greater. This is the case when the length of the shock tun-
nel being simulated becomes large. This large smearing
results in non-physical mass transfer of chemical species
and in non-physical chemical reactions across the inter-
face. Moreover, the performance of the shock tube and
the available maximum test time in the test section of the
shock tunnel are very closely related to the interaction
between the reflected shock wave from the end of of the
driven section and the contact discontinuity, the interface
between cold and reacting hot gases. Therefore, it is im-
perative to precisely locate the contact discontinuity at
any instant of time in the shock tube.

Tracking the contact discontinuity eliminates the inter-
face smearing completely. A contact discontinuity tracking
method is proposed in the present work by applying the
above described computational technique to a specially
designed moving grid, resulting in sharp, step-like varia-
tions of the flow parameters across it.
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2 An updated Riemann solver

Consider the grid shown in Fig. 1 with Uj as the known
value of the general variable U at grid point xj , and time
level tn. In order to find the value of Uj at time level tn+1,
Un

j , with a finite volume method, a certain discretization
scheme is needed to determine the values of the variable U
at the cell boundaries, Uj−1/2 and Uj+1/2. However, while
discontinuities exist in the flow field, the discontinuity be-
tween two adjacent points, say Uj at xj and Uj+1 at xj+1,
will break into leftward and rightward moving waves sep-
arated by a contact surface. Each wave can be either a
shock wave or a rarefaction wave and the physically avail-
able combinations produce four wave patterns as shown
in Fig. 2. The problem of determining the wave patterns
and the flow field in each region is called a Riemann prob-
lem and the algorithm to solve this problem is called a
Riemann solver. Therefore, while discontinuities exist in
the flow field, in order to determine the variable values
at the cell boundary, a Riemann problem must be solved.
Thus an efficient and precise Riemann solver is an impor-
tant part of a CFD method for supersonic and hypersonic
flows where the flow discontinuities must be considered.

Riemann problems were first introduced into computa-
tional fluid dynamics by Godunov (Godunov 1976). Since
then, various approximate solvers and “exact” solvers were
developed (see for example, Gottlieb, Groth 1988).

The exact Riemann solver developed by Gottlieb and
Groth is demonstrated to be an efficient and robust one.
The central concept of the solver is to choose the common
flow velocity of the intermediate state (u∗) as the iterate
and the pressure difference (p∗

l − p∗
r) across this contact

discontinuity is made equal to zero.
The initial guess (n= 0) for the flow velocity u∗ is given

by

u∗
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where εp is a prescribed infinitesimal (1e-7 in the present
work). In order to improve the convergence rate, second
order derivatives are also included in the Newton iterative
procedure. The successive iterates of u∗ will then be:
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where the double prime denotes the second derivative with
respect to u∗.

The detailed expressions for the four wave patterns in
Fig. 2 are given in [8] (Gottlieb, Groth 1988). These ex-
pressions are derived based on the assumption that the
specific heat ratio γ is constant across the shock wave. In
high Mach number shock tube and shock tunnel or any
other flow field with strong discontinuities, the tempera-
ture variation in the field is large, and the specific heat
ratio γ can not be considered constant as it is a function
of temperature. Sometimes, even the chemical reactions
must be considered. It is inconsistent to use the Riemann
solver based on constant specific heat ratio assumption
while the main program considers chemical reactions and
treats the thermodynamic properties as a function of tem-
perature. As an update to the mentioned Riemann solver,
further iteration is introduced to consider the specific heat
ratio change across the shock wave, if the shock wave
strength in the Riemann problem solution is very strong,
for example, the pressure ratio across the shock is greater
than 10 in the present work.

For non-constant specific heat ratio, we have
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Fewer mathematical operations will be needed for itera-
tions to consider the effect of non-constant specific heat
ratio, if the common pressure of the intermediate states
(p∗) is chosen as an iterate. The initial guess of pressure
p∗ should obviously be

p∗ = (pl + pr)/2 (1′)
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For the guessed p∗, based on constant γ calculate an as-
sumed T ∗ and then find the guessed γ∗. Once the guessed
p∗ and γ∗ are prescribed, the T ∗ can then be recalculated.
The successive iterates of p∗ is as follows.
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The iteration ends when a certain convergence criterion is
satisfied: ∣∣∣∣2(u∗
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(u∗
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∣∣∣∣ < εu, (3′)

where εu is a prescribed infinitesimal (0.001 in the present
work). All the corresponding terms involved in the calcu-
lation for the four wave patterns can be written as follows
when the specific heat ratio change across the waves is
considered.
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For the cases of rarefaction waves, the arithmetic average
specific heat ratio is used and the terms involved in the
calculation are shown in case 3 and 4.
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Fig. 3. Shock tube scheme

Driver Driven
Gas Species H2 Air
Length (m) 1 4
Pressure (ata) 1500 1
Temperature (K) 288 288

I.S – Incident Shock wave
R – Rarefaction wave
C – Contact surface
R.S – Reflected Shock wave
R.R – Reflected Rarefaction wave

Fig. 4. Grid distribution

3 Shock tube flow field numerical simulation

In shock tube flow field analysis, it is important to pre-
cisely locate the contact surface. A sketch of a shock tube
is shown in Fig. 3. When the diaphragm breaks, a strong
incident shock followed by a contact surface is produced
by the moving high pressure gas in the driver towards the
lower pressure driven tube. This shock wave travels down
to the end of the driven tube and then reflects back to
interact with the contact surface. The available maximum
test time is closely related to the interaction between the
reflected shock wave and the contact surface. In order to
obtain high Mach number and stagnation temperature in

the test section, hydrogen (or helium) with high pressure
is used as the driver gas; the driven gas is air (78.084%
N2, 20.946% O2, 0.97% Ar) at standard atmosphere pres-
sure. In such a case, the incident shock may be very strong,
and the temperature behind the shock is high enough that
the chemical reactions and non-constant thermal property
effect must be considered. A Riemann solver based on
constant specific heat ratio assumption is not acceptable.
In order to illustrate the appropriateness of the updated
Riemann solver, a high Mach number shock tube flow is
numerically solved. The shock tube scheme and detailed
input data are shown in Fig. 3.
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Fig. 5. Contour picture

3.1 Governing differential equations

Since the incident shock wave is quite strong, chemical
reactions must be considered for the driven gas. In this
work, five species in air (O2, N2, NO, N, O) are involved
and seventeen chemical reactions are considered. The re-
lated thermodynamic data and chemical reaction infor-
mation are taken from Ref. 9 and Ref. 10. The governing
differential equations for a non-equilibrium unsteady one
dimensional flow in a shock tube problem can be written
as follows:

∂%

∂t
+

∂%u

∂x
= 0, (5)

∂(%u)
∂t

+
∂(p + %U2)

∂x
= 0, (6)

∂
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Table 1. Chemical reactions involved

A(i,m)X(i) + A(i,m)X(i) == B(i,m)X(i) +B(i,m)x(i) +B(i,m)X(i)

1 O2 + N == 2O + N
2 O2 + NO == 2O + NO
3 O2 + O2 == 2O + O2

4 O2 + N2 == 2O + N2

5 O2 + O == 2O + O
6 N2 + N == 2N + N
7 N2 + NO == 2N + NO
8 N2 + O2 == 2N + O2

9 N2 + N2 == 2N + N2

10 N2 + O == 2NO + O
11 NO + N2 == N + O + N2

12 NO + N == N + O + N
13 NO + O2 == N + O + O2

14 NO + O == N + O + O
15 NO + NO == N + O + NO
16 O + NO == N + O2

17 O + N2 == N + NO

Cpi = 8314.0(ai1 + ai2T + ai3T
2 + ai4T

3 + ai5T
4),

Φi =
%

1000
µiΣm[(B(i, m)
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)Πi(
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−ABR(m)TBBR(M)exp(−DBR(m)
T

)

Πi(
1000µiqi

%
)B(i,m))],
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Σk

qk

µk
exp(Ai[T− 1

3 − 0.015( µiµk

µi+µk
)

1
4 ] − 18.42)

p
1.033e5Σk

qk

µk

,

Constants in the vibrational energy equations are as fol-
lows:
Species N2 O2 NO
Ai 220 129 168
θvi 3390 2270 2740
Constants related to chemical reactions see tables and
other data can be found in [9] (Sagnier, Marraffa 1991)
and [10] (Gupta, Yos, Thompson, Lee 1990).

3.2 Contact surface tracking

In a shock tube or a shock tunnel, the driver and the driven
gases are usually different. When the diaphragm breaks, a
contact surface separates the two different gases. Tracking
the contact surface to divide the computational domain
into two parts with two different gas species can greatly
simplify the computation work. It is especially important
when the incident shock is strong and the temperature is
high enough behind the incident shock wave that the real
gas effect must be considered. When the incident shock
reaches the tube end and a reflected shock wave is devel-
oped, the whole driven gas is under high temperature, the

Table 2. Chemical reaction rate coefficients

AFR BFR DFR ABR BBR DBR

1 3.6e18 -1 0.595e5 3.0e15 -0.5 0.0
2 3.6e18 -1 0.595e5 3.0e15 -0.5 0.0
3 3.249e19 -1 0.595e5 2.7e16 -0.5 0.0
4 7.2e18 -1 0.595e5 6.0e15 -0.5 0.0
5 9.0e19 -1 0.595e5 7.5e16 -0.5 0.0
6 4.08e22 -1.5 1.132e5 2.27e21 -1.5 0.0
7 1.9e17 -0.5 1.132e5 1.1e16 -0.5 0.0
8 1.9e17 -0.5 1.132e5 1.1e16 -0.5 0.0
9 4.7e17 -0.5 1.132e5 2.72e16 -0.5 0.0
10 1.92e17 -0.5 1.132e5 1.1e16 -0.5 0.0
11 3.97e20 -1.5 0.755e5 1.0e20 -1.5 0.0
12 7.8e20 -1.5 0.755e5 2.0e20 -0.5 0.0
13 3.97e20 -1.5 0.755e5 1.0e20 -1.5 0.0
14 7.8e20 -1.5 0.755e5 2.0e20 -1.5 0.0
15 7.8e20 -1.5 0.755e5 2.0e20 -1.5 0.0
16 3.18e9 1.0 1.968e4 1.3e10 1.0 3.58e3
17 7.0e13 0.0 3.8e4 1.56e13 0.0 0.0

real gas effects and the chemical reactions must be con-
sidered for the whole region. In the meantime, the driver
gas is under low temperature, even though the starting
temperature may be higher than the one in driven gas be-
cause of the rarefaction wave caused by the breakdown of
the diaphragm. The chemical reactions there can be ne-
glected. Tracking the contact surface to separate these two
regions can limit the consideration of real gas effects to the
driven gas only. In addition, the performance of the shock
tube and the available maximum test time, are closely re-
lated to the interaction between the reflected shock wave
and the contact surface. Therefore, it is also important to
precisely locate the contact surface.

Obviously, at time level t0= 0, the starting point of
the contact surface is at the location of the diaphragm,
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Fig. 6a,b. Field parameter variations at different time levels a current method, b conventional method
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Fig. 6a,b. (continued)
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x = xjs+1/2 = xjs + ∆x/2 as shown in Fig. 4. On the left
side is the uniform driver gas and on the right side is the
uniform driven gas; solving the Riemann problem gives
the location of the contact surface, the angle, α, in the
Fig. 4. Once the time interval, τ , is set, the starting point
for the new time level t1 = t0 + τ is determined. At this
new time level, the left-hand side and the right-hand side
of the contact surface are not uniform any longer. The ini-
tial values of the Riemann problem with no consideration
of gradients on both sides of the discontinuity are deter-
mined by the discretization scheme. Solving the Riemann
problem will give the location of the contact surface (angle
α) at the new time level. In this way, the contact surface
can be tracked for all time levels. The precision of the
contact surface depends on the precision of the Riemann
solver and the discretization scheme.

3.3 Grid distribution and discretization

The whole solution domain is divided into cells as shown
in Fig. 4.

For each cell, the differential equations can be con-
verted to algebraic equations using Green’s theorem. Ar-
ranging the grid line distribution by tracking the contact
surface can greatly improve the computational precision.
Obviously, at time level tn = 0, the starting point of
the contact surface is at the location of the diaphragm,
x = xjs+1/2 = xjs + ∆x/2 as shown in Fig. 4. The grid
intervals in the driver section and the driven section are
equal, ∆xL = ∆xR = ∆x. According to the Godunov-
Colgan method (Colgan 1972), an approximation using
one-sided derivatives in conjunction with the principle of
the minimum derivative provides a correct distribution of
variables in the cells when discontinuities are present, and
is of 0(h2) accurate for smooth solutions. Based on the
principle of the minimum derivative, the independent vari-
able values U at the cell boundary js + 1/2 from the left
cell ,js, should be

Ujs+1/2 = Ujs + Kjs ∗ ∆xL/2;

Kjs = min(
∣∣∣∣ ujs+1 − ujs

Xjs+1 − Xjs

∣∣∣∣,
∣∣∣∣ ujs − ujs−1

Xjs − Xjs−1

∣∣∣∣).
The independent variable values U at the cell boundary
js + 1/2 from the right cell, js + 1, should be

Ujs+1/2 = Ujs+1 − Kjs+1 ∗ ∆xR/2;

Kjs+1 = min(
∣∣∣∣ ujs+2 − ujs+1

Xjs+2 − Xjs+1

∣∣∣∣,
∣∣∣∣ ujs+1 − ujs

Xjs+1 − Xjs

∣∣∣∣).
Thus, a discontinuity exists at the cell boundary. A Rie-
mann problem based on these initial values with no con-
sideration of gradients on both sides of the discontinuity
is solved to determine the contact surface location angle,
α, and the cell boundary value. The maximum velocity
of propagation of disturbances generated in the Riemann
problem, Cw, is also recorded for the purpose of deter-
mining the time interval, τ . This discretization scheme is

proved to be first order accurate in marching direction
(time in this work) and second order accurate in the coor-
dinate x. It is stable if the following criterion is satisfied.

τ/∆x <= 0.5/Cw,

where Cw is the maximum velocity of propagation of dis-
turbances generated in the Riemann problem and τ is the
permissible time interval. Once the contact surface loca-
tion angle, α, and the time interval, τ , are determined, the
grid distribution for the new time level tn+1 = tn + τ can
be found geometrically as shown in Fig. 4.

In order to improve the accuracy in the marching direc-
tion, a modification developed by Rodionov is introduced
(Rodionov 1987). According to Rodionov, intermediate
values at grid points are determined following the above
mentioned one-sided derivatives in conjunction with the
principle of the minimum derivative before solving the Rie-
mann problem. Then the arithmetic average of the known
variable value and the corresponding intermediate value
is used to replace the known value at grid points and to
discretize the equations. This new scheme can provide an
accuracy close to second order in the marching direction.
When the grid distribution is determined, one follows the
same procedure to solve the Riemann problems for all the
cell boundaries to determine the cell boundary values and
the maximum velocity of propagation of disturbances gen-
erated in the Riemann problems, Cw. The final discretized
equations can be written as follows:

%n
j =

1
c

(
%j +

τ

hx

([
%(u − W ∗)

]
j− 1

2

−[
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,

(5′)
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Where

hx = xj+1/2 − xj−1/2,

hn
x = xn

j+1/2 − xn
j−1/2,

w∗
j−1/2 = (xn

j−1/2 − xj−1/2)/τ,

w∗
j+1/2 = (xn

j+1/2 − xj+1/2)/τ,

C = (w∗
j+1/2 − w∗

j−1/2)τ/hx,

S = 0.5,

S1 = 0.5,

S2 = 0.4.

3.4 Computational results

The high Mach number shock tube problem outlined in
Fig. 3 is solved with the contact discontinuity tracking
method and the updated Riemann solver. The results are
summarized in Fig. 5 and Fig. 6. Figure 5 shows the con-
tour picture of pressure, temperature, density and Mach
number. In order to assess the quantitative variations in
flow variables along the shock tube, the parameter varia-
tions at three typical time levels are shown in Fig. 6A. The
time level t= 0.5 msec. corresponds to the stage when the
incident shock and the rarefaction waves have not reached
the tube end; Time level t= 1 msec. corresponds to the
stage after the rarefaction waves have reached the tube

end, but the incident shock has not. Time level t= 1.6
msec. displays the case after the incident shock reaches
the wall and reflects from there. The same shock tube
problem is also solved by a conventional method with no
contact surface tracking and no chemical reaction consid-
ered. The specific heat ratio is considered to be constant
both in the main flow field computation and in the Rie-
mann solver. The results are shown in Fig. 6B. Comparing
these results, it can be seen that both methods can pre-
dict the incident shock by the sharp jump of pressure and
density profiles. However, only the present method can lo-
cate the contact surface by the sharp jump of the density
profile. There is a large smeared region around the contact
surface which makes it difficult to locate the contact sur-
face when the conventional method is used. Since the real
gas effects are considered in the current method, there is
no sharp jump for the reflected shock wave. The reflected
shock wave travels in a non-uniform reacting fluid inter-
medium, no sharp jump across the reflected shock will
appear. The sharp jump shown in Fig. 6B is caused by the
perfect gas assumption, it does not mean the conventional
method can precisely locate the reflected shock wave. For
the field behavior, the shock wave strength and location,
there are significant differences between the predicted re-
sults by these two methods. This is caused by real gas
effects considered in the present method. The computa-
tional technique such as the contact discontinuity track-
ing method and the Riemann solver can change the solu-
tion precision and the computation cost; however, only the
equations, including the chemistry models, viscous mod-
els will influence the field behavior. Therefore, the detailed
discussion of the field behavior is beyond the scope of this
article.

4 Conclusions

The Riemann solver developed by Gottlieb and Groth in
1987 is demonstrated to be an efficient and robust one.
Since it is based on constant specific heat ratio assump-
tion across the shock wave, it is not acceptable when a
strong discontinuity is present in the flow field. Espe-
cially, when chemical reactions are considered and ther-
modynamic properties are treated as functions of temper-
ature in the main code, it is inconsistent to take the con-
stant specific heat ratio assumption in the Riemann solver
subroutine. An update to consider the specific heat ratio
change across shocks in the solver must be introduced.
However, even if there are strong multi-discontinuities in
the whole flow field, most calls for the Riemann solver in
the code only handle a weak shock in the Riemann prob-
lem, therefore, the update is introduced in the solver as
an option only when it is necessary. This treatment can
keep the merit of the original solver and simplify the mod-
ification. The solver starts with the constant specific heat
ratio assumption and then processes further iterations to
consider the effect of variable specific heat ratio across the
shock wave when it is necessary. In this part of further it-
erations, the conventional way of choosing the common
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pressure of the intermediate states (p∗) as the iterate is
more convenient.

In shock tube or shock tunnel, the smearing of cold and
hot gas interfaces by numerical diffusion increases as the
distance that the interface travels becomes greater. Track-
ing the contact discontinuity can eliminate the interface
smearing completely so that the simulation precision is
greatly improved. Besides, in high Mach number shock
tube or shock tunnel, the driver gas and the driven gas
are usually different. When the diaphragm breaks, a con-
tact surface separates the two different gases. Tracking the
contact surface to divide the computational domain into
two parts with two different gas species can greatly sim-
plify the computational work. It is especially important
when the incident shock is strong so the real gas effects
and the chemical reactions must be considered. Tracking
the contact surface to separate these two regions can limit
the consideration of real gas effect in the driven gas only.
Obviously, similar tracking methods based on the perfect
gas assumption [11][12] do not provide this advantage and
their applications are therefore limited.
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