**Experiments in Magnetic Flux Compression** 

**Using Plasma Armatures** 

**Matt Turner** 

Propulsion Research Center Department of Mechanical & Aerospace Engineering University of Alabama at Huntsville

#### A Cooperative Research Project between UAH/PRC and NASA/MSFC

Academic Advisor: Dr. Clark W. Hawk, PRC/UAH Research Mentor: Dr. Ron J. Litchford, NASA/MSFC





#### **Potential Space Thruster Applications**



#### **Magnetic Flux Compression with Plasmas**

#### Plasma Jet Characteristics

| conductivity | $\rightarrow$ |
|--------------|---------------|
| temperature  |               |
| velocity     |               |

| $\rightarrow$ | relatively low |
|---------------|----------------|
| $\rightarrow$ | very high      |
| $\rightarrow$ | very high      |

#### **Major Uncertainties**

- achieving sufficiently high electrical conductivity
- suppression of Rayleigh-Taylor surface instabilities

#### Magnetic Reynolds Number

$$R_{m} = \frac{B_{i}}{B_{0}} = \mathbf{m}_{0}\mathbf{s}uL \gg 1 \qquad \Rightarrow \qquad \text{low magnetic diffusivity} \qquad D_{m} = \frac{1}{\mathbf{s}m_{0}} \sim \frac{1}{R_{m}}$$
  
micro fusion detonation  $\rightarrow R_{m} \gg 1$   
pulsed plasma jet  $\rightarrow R_{m} > 1$   
high explosive detonation  $\rightarrow R_{m} > 1$ 

# **Fundamental Compression Experiments**



Research goal is to investigate scientific and technological feasibility using nonnuclear detonations...

Mark 1 Device

Radial-mode, magnetic flux compression reactor

- •Opposing HE charges
- •Radially expanding plasma armature
- •Moderate scale technology demonstrator
- •Low cost expendable unit
  - ... measurement of plasma electrical conductivity is a critical need



# **Measurement of Plasma Jet Conductivity**



# Inductive measurement technique provides a low cost direct measurement of plasma jet electrical conductivity ...



Lin, S-C., Resler, E. L., and Kantrowitz, A., "Electrical Conductivity of Highly Ionized Argon Produced by Shock Waves," *J. App. Phys.*, Vol. 26, No. 1, Jan. 1955.









# **Search Coil Design Considerations**

#### **Search Coil Parameters**

- 50-turns / No. 28 enamelled wire
- L = 8 mm / D = 5.7 cm
- dual 25-turn coil construction
  - standard option
  - push-pull option



Previous experience using inductive conductivity probes with shock layers has shown that a localized electrostatic charge can generate a signal in a standard configuration search coil due to finite capacitance between the coil and the ionized gas inside the tube

**Push-Pull Configuration** 

- $\checkmark$  cancels capacitive pick-up
- $\sqrt{R_d}$  is critical damping resistance ( $\approx 1000 \Omega$ )

UAH University of Alabama in Huntsville



- light gas gun for slug acceleration (150 psig He)
- 1-inch i.d. plastic barrel with 6-inch long glass test section
- aluminum slug (D = 1-inch / L = 4-inch /  $r = 3(10)^{-8}$  W-m)
- direct optical measurement of slug velocity
- automated solenoid actuation with high speed data capture



## Lin Coil Calibration – Timing Verification



## **Probe Calibration – Algorithm Verification**



#### **Shape Charge Plasma Jet Conductivity**



## **Preliminary HE Testing**

- Octol (75% HMX/25% TNT)
- Potassium-Carbonate Seeding
  - 0%, 1%, 2% by mass
- 15 gram shape charges
  - 1.25 inch diameter
  - 44° cone angle









### **Preliminary Test Results**









## <u>HE Testing – Analysis</u>

Integral Method Calculation:  $\frac{s}{s_c} = \frac{u_c^2 I_c \Phi}{U^2 I \Phi_c} \Psi_2$ 

| Test                                                                                         | 2-4 | 2-10 | 2-6 | 2-12 |
|----------------------------------------------------------------------------------------------|-----|------|-----|------|
| Seed<br>(%)                                                                                  | 0   | 0    | 2   | 2    |
| $\boxed{\frac{\boldsymbol{s}^{*}}{\boldsymbol{s}_{c}} \times 10^{-5}}$                       | 5.9 | 11   | 58  | 56   |
| $\frac{\boldsymbol{s}^{*}\boldsymbol{u}}{\boldsymbol{s}_{c}\boldsymbol{u}_{c}}\times10^{-2}$ | 2.5 | 5.1  | 26  | 24   |
| $s^*(kS/m)$                                                                                  | 1.9 | 3.6  | 19  | 18   |
| $\mathbf{m}_0 \mathbf{s}^* u(m^{-1})$                                                        | 22  | 46   | 228 | 210  |





## **Development of Pulsed Plasma Experiment**



#### **Pulsed Plasma Gun Design**









## **Experimental Set-Up**



#### <u>Design</u>

- four 2-mF capacitors (ONR surplus)
- configurable power bus (1, 2, 3, or 4 capacitors in parallel)



 capacitor bank and discharge circuit mounted on cart for portability





# **Conclusions**

- An electrode-less inductive probe for measuring plasma jet electrical conductivity was designed, calibrated, and tested
- Calibrated with slug of known conductivity Inversion algorithm marginally successful Assumed conductivity distribution with known solutions
- Laboratory experiments using seeded and unseeded shape charge explosives

Average jet velocity = 9-10 km/sec

Measured conductivities:

4 kS/m (unseeded) 26 kS/m (2% seed)

- Magnetic Reynolds numbers > 1 (for fractions of a meter scale)
  Mark 1 device has a good chance of being sucessful
- Inductive probing technique represents a very successful and reliable tool for investigating plasma jet characteristics
- High explosive plasma sources capable of producing high Re<sub>m</sub>





## **Future Plans**



- 1.Pulsed plasma gun / discharge circuit completed
  - tapered plasma gun designed, fabricated, and tested
  - high voltage discharge circuit operational
  - vacuum chamber, pump, feedthroughs assembled
  - high-purity aluminum magnet on its way
  - testing to begin very soon
- 2.Mark 1 Device, radial-mode magnetic flux compression reactor using high explosive shaped charges







