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The transition of a system of partial differential equations which describe the sta-
tionary flow behind the shock-wave front of a detonation complex upon detonation
of a cylindrical charge to a system of ordinary differential equations is performed by
means of the series expansion in terms of the radial variable. The necessary equations
for determination of the derivatives of solutions with respect to the parameters and
the initial conditions for them are formulated. Imposing the condition of continuous
extendibility of the solutions leads to equations that allow one to determine the shape
of a shock-wave front as a function of wave velocity.

The attempt is made to construct a consistent
method of determining the shape of the shock-wave
front of a detonation complex upon detonation of a
cylindrical charge of finite diameter in the case where
the detonation velocity deviates insignificantly from
the Chapman–Jouguet velocity. This problem can
be solved, disregarding the problems connected with
the description of the flow near the charge edge. This
problem was considered earlier (see, e.g., [1, 2]), but
in the solution of it, the authors restricted them-
selves only to the determination of the curvature of
the front, i.e., the first expansion coefficient of the
function describing the front shape in terms of the
powers of its argument. The distinguishing feature
of the proposed approach is the fundamental possi-
bility of determining the shape of the front with no
matter how high accuracy.

We write a system of equations that determines
the axisymmetric stationary flow in the presence of
a chemical reaction characterized by the unique vari-
able λ (fraction of the reacted substance) in the cylin-
drical coordinate system:
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Here u and v are the radial and axial velocity-vector
components, respectively, E is the internal energy per
unit mass, c is the velocity of sound with constant λ,
and R is the chemical-reaction rate which depends,
in the general case, on the pressure p, the density ρ,
and the variable λ (for brevity, the arguments of this
function are omitted).

We pass to the coordinate system (l, r) deter-
mined by the relation l = z − zf (r), where zf (r) is
a function describing the front surface in cylindri-
cal coordinates. In coordinates (l, r), the curvilinear
front is a plane l = 0, which simplifies the writing of
the initial boundary conditions. In these coordinates,
system (1) is reduced to the form
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where d = −z′f (r).
With the aim at finding the shape of the front at

a given velocity of the detonation wave, we expand
the function zf (r) in powers of r:

zf (r) =
∞∑
i=1

air
2i;

other functions:
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[Only the even powers of r in the expansion of p, ρ,
v, and λ and only the odd powers in the expansion of
u follows from the requirement for the analyticity of
these functions on the (r = 0) axis. We also note that
the functions with zero subscripts are the values of
the corresponding quantities on the axis, except for
u0(l) equal to ∂u/∂r for r = 0]. Substituting these
series into system (2) and grouping the coefficients
at the same powers of r, we obtain the system of
ordinary differential equations for the functions pi(l),
ρi(l), vi(l), ui(l), and λi(l):∑
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Here the prime denotes the derivative with respect to
the variable l; Rm(l), Km(l), and c2m(l) are the series
expansion coefficients of the following functions in
terms of the powers of r:
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We consider the dependence of the solutions of
this system on the coefficient ak and the detonation-
wave velocity D as the parameters. Resolving the
equations of system (3) relative to the derivatives,
one can note that, generally, the solutions of these
equations can be extended only up to the point
v0 = c0. We write, for example, the normalized
(i.e., resolved relative to the derivatives) equations
for m = 0:
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(The equations are similar for other values of m.)
The solutions of these equations are extendible
through the point v0 = c0 only if the expression
2c20ρ0u0 − K0 vanishes simultaneously with the ex-
pression v2

0 − c20. Precisely the condition of continu-
ous extendibility of solutions through this point (i.e.,
the absence of a singularity) determines the values of
ak (shape of the front) as a function of D.

To find the dependence ak(D), we do the follow-
ing. Let the coefficients ak be known at a certain
velocity D (ak = 0 for D = DCJ, where DCJ is the
velocity of the Chapman–Jouguet ideal detonation
in an unbounded medium, i.e., in the case of a plane
front). We find the derivatives dak/dD, d2ak/dD

2,
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etc., thus determining the dependence ak(D). To do
this, we note that the derivative

dpm
dD

=
∂pm
∂D

+
∑
k

∂pm
∂ak

dak
dD

(4)

(here one can use also the density or velocity deriva-
tive instead of pressure derivatives) is finite at the
point M0 ≡ v0/c0 = 1, whereas the derivatives
∂pm/∂D and ∂pm/∂ak tend to infinity in approach-
ing this point; this can be seen after normalization
of the differential equations for these functions (see
below). Equality (4) also allows us to find dak/dD.
We find these derivatives for ak = 0 and D = DCJ.
We write
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etc. As is shown below, ∂pm/∂ak and other deriva-
tives are different from zero only for m < k, and
∂pm/∂D is different only for m = 0. Whence, con-
sidering the limit M0 → 1, we find that dak/dD = 0
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da1

dD
= − lim

M0→1

∂p0/∂D

∂p0/∂a1
, (5)

i.e., in theD-linear approximation, only the first coef-
ficient of the expansion zf (r) in terms of the powers of
r (curvature of the front) depends on the detonation-
wave velocity. We consider the next approximation
to find d2ak/dD

2. By analogy with the previous case,
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etc. We show below that the derivatives ∂2pm/∂a
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2

is zero for m > 0; therefore, considering again the
limit M0 → 1, we obtain d2ak/dD
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Thus, to calculate da1/dD, it suffices to know
how to find the derivatives of the functions pm with
respect to the parameters ak and D (in this case, the
functions ∂p0/∂a1 and ∂p0/∂D), and, in addition,
the functions ∂2p0/∂D

2, ∂2p0/∂a
2
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∂p0/∂a2, ∂p1/∂a2, ∂2p1/∂a
2
1, and ∂2p1/∂a1∂D to

calculate d2a1/dD
2 and d2a1/dD

2.
Similarly, one can, in principle, find any deriva-

tive of the coefficients ak with respect to the detona-
tion velocity D, i.e., to determine the shape of the
front with required accuracy.

We now consider the procedure of calculation of
the above-mentioned derivatives of the functions pm
with respect to the parameters ak and D entering
formulas (5)–(7). To start with, we note that we
are interested in the derivatives at a fixed value of
M0 rather than at a fixed value of l; equations for
the latter can be derived by varying the equations of
system (3) relative to the parameters ak or D (see,
e.g., [3]). The relationship between these derivatives
has the following form:
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Here a denotes the set of coefficients ak, where k =
1, . . . ,∞. A similar relationship between the second-
order derivatives has the form
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As has already been mentioned, one can find the
equations for determination of the derivatives of the
functions pm(l,a, D) with respect to the parameters
ak or D by varying the equations of system (3) rel-
ative to the parameters ak or D. We write, for ex-
ample, the system of equations for determination of
∂pm/∂ak for ak = 0 and D = DCJ [here pm(l) ≡ 0,
ρm(l) ≡ 0, etc., for m > 1 and um(l) ≡ 0, and the
functions with zero subscripts are corresponding ex-
act functions in the plane case, i.e., upon detonation
in an unbounded medium]:
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The derivatives with respect to ρ, p, and λ are taken
for ρ = ρ0(l), p = p0(l), and λ = λ0(l), respectively.
Considering this system with the initial conditions
(see Appendix), one can conclude that ∂pm/∂ak and
the other derivatives are different from zero only for

m < k (by virtue of the fact that m > k, the ini-
tial conditions are zero, and the equations are homo-
geneous). The equations for ∂pm/∂D can be writ-
ten in the same way; their consideration allows us to
draw a conclusion that ∂pm/∂D = 0 for m 6= 0, and
∂um/∂D = 0 for any value of m.

We also present the system that determines
∂2pm/∂a
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Here
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for m > 0,

∂2Km/∂a
2
1 and ∂2c2m/∂a

2
1 have a similar form. One

can conclude from the consideration of this system
with the boundary conditions that ∂2pm/∂a

2
1 = 0

for m > 1. Similarly, we have ∂2pm/∂a1∂D = 0 for
m > 1 and ∂2pm/∂D

2 = 0 for m > 0.
Equations (8) and (9) and the initial conditions

formulated for them in the Appendix allow us to find
the derivatives of the solutions with respect to the
parameters ak and D, which, in turn, allow us to
find the shape of the shock-wave front in the form
of an expansion of the coefficients ak in terms of the
velocity D. A similar procedure can be performed to
find the derivative ak with respect to D of any order;
however, it is necessary to note that the complex-
ity of calculations rapidly increases with the order of
derivatives.

Thus, the problem of determining the shape of a
detonation wave front as a function of the detonation
wave velocity upon detonation of a charge of finite di-
ameter has been solved. In addition to the fact that
this problem is interest in itself, it is a necessary com-
ponent of the solution of the more general problem of
finding a relation between the basic quantities which
characterize the detonation of a cylindrical charge:
the detonation wave velocity, the radius of a charge,
and the shape of a wavefront.

The author thanks N. M. Kuznetsov and V. G.
Grudnitskii for valuable comments and discussions.

APPENDIX

We present the values of the density, pressure,
and velocity components behind the front of a curved
shock wave in the form

ρf (r,D,a) = ρid(D cosα),

pf (r,D,a) = pid(D cosα),

vf (r,D,a) = D cosϕ cosα
√

tan 2 α+ ρ2
b/ρ

2
id,

uf (r,D,a) = D sinϕ cosα
√

tan 2 α+ ρ2
b/ρ

2
id,

λ(r,D,a) = 0,

ϕ = arctan (tan α(ρid/ρb))− α,

where α is the angle between the normal to the front
at a given point and the direction of detonation-wave

propagation, tan α = z′f (r) =
∞∑
i=1

2iair2i−1, and ρid

and pid are, respectively, the density and the pressure
behind the front of a plane shock wave propagating
with the velocity D cosα in the same initial medium,
i.e., at the same values of ρb and pb (the density and
the pressure in front of the shock wave). The initial
conditions for system (3) have the form

pm|l=0 =
∂2mpf

(2m)!∂r2m

∣∣∣
r=0

,

ρm|l=0 =
∂2mρf

(2m)!∂r2m

∣∣∣
r=0

,

vm|l=0 =
∂2mvf

(2m)!∂r2m

∣∣∣
r=0

,

um|l=0 =
∂2m+1uf

(2m+ 1)!∂r2m+1

∣∣∣
r=0

.

The initial conditions for system (8) have the follow-
ing form:

∂pm
∂ak

∣∣∣
l=0

=
∂2m+1pf

(2m)!∂ak∂r2m

∣∣∣
ai=0,r=0

,

∂ρm
∂ak

∣∣∣
l=0

=
∂2m+1ρf

(2m)!∂ak∂r2m

∣∣∣
ai=0,r=0

,

∂vm
∂ak

∣∣∣
l=0

=
∂2m+1vf

(2m)!∂ak∂r2m

∣∣∣
ai=0,r=0

,

∂um
∂ak

∣∣∣
l=0

=
∂2m+2uf

(2m+ 1)!∂ak∂r2m+1

∣∣∣
ai=0,r=0

.

We modify their form. For example, for the pressure
and the radial velocity component, we write

∂pm
∂ak

∣∣∣
l=0

=
∂2m

(2m)!∂r2m

∂pf
∂ tan α

∂ tan α

∂ak

∣∣∣
ai=0,r=0

,

∂um
∂ak

∣∣∣
l=0

=
∂2m+1

(2m+ 1)!∂r2m+1

× ∂uf
∂ tan α

∂ tan α

∂ak

∣∣∣
ai=0,r=0

.

Since pf is an even function of tan α, and α = 0
for ai = 0, we have (∂pm/∂ak)|l=0 = 0. For
the same reasons, we have (∂ρm/∂ak)|l=0 = 0 and
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(∂vm/∂ak)|l=0 = 0. The velocity uf is an odd func-
tion of α; therefore,

∂uf
∂ tan α

∂ tan α

∂ak

∣∣∣
ai=0

∼ r2k−1,

i.e., only (∂uk−1/∂ak)|l=0 are different from zero.
Similarly, since

∂2p

∂ tan α2

∂ tan α

∂ai

∂ tan α

∂aj

∣∣∣
ak=0

∼ r2i−1r2j−1,

only (∂pi+j−1/∂ai∂aj)|l=0, (∂ρi+j−1/∂ai∂aj)|l=0,
and (∂vi+j−1/∂ai∂aj |l=0 are different from zero.
Using similar considerations, one can show that
among the derivatives ∂/∂D, only the derivatives
∂p0/∂D, ∂ρ0/∂D, ∂v0/∂D, ∂2p0/∂D

2, ∂2ρ0/∂D
2,

∂2v0/∂D
2,and ∂2u0/∂D∂a1 are not zero.

REFERENCES

1. W. W. Wood and J. G. Kirkwood, “Diameter effect in

condensed explosives. The relation between velocity

and radius of curvature of the detonation wave,” J.

Chem. Phys., 22, No. 11, 1920–1924 (1954).
2. J. B. Bdzill. “Steady-state two-dimensional detona-

tion,” J. Fluid Mech., 108, 195–226 (1981).
3. L. S. Pontryagin, Ordinary Differential Equations [in

Russian], Nauka, Moscow (1970).


