
Developing an Automated Explosives Detection Prototype
Based on the AS&E 101ZZ System

Panagiotis J. Arvanitis

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Richard W. Conners, Chair

A. Lynn Abbott

Peter M. Athanas

September 22, 1997

Blacksburg, Virginia

Keywords: airport security, re-configurable computing, FPGA, device drivers

Copyright 1997, Panagiotis J. Arvanitis

Developing an Automated Explosives Detection Prototype
Based on the AS&E 101ZZ System

Panagiotis J. Arvanitis

Dr. Richard W. Conners, Chair

(ABSTRACT)

This thesis describes the development of a multi-sensor, multi-energy x-ray

prototype for automated explosives detection. The system is based on the American

Science and Engineering model 101ZZ x-ray system. The 101ZZ unit received was an

early model and lacked documentation of the many specialized electronic components. X-

ray image quality was poor. The system was significantly modified and almost all AS&E

system electronics bypassed: the x-ray source controller and conveyor belt motor were

made computer controllable; the x-ray detectors were re-positioned to provide forward

scatter detection capabilities; new hardware was developed to interface to the AS&E pre-

amplifier boards, to collect image data from all three x-ray detectors, and to transfer the

data to a personal computer. This hardware, the Differential Pair Interface Board (DPIB),

is based on a Field Programmable Gate Array (FPGA) and can be dynamically re-

configured to serve as a general purpose data collection device in a variety of applications.

Software was also developed for the prototype system. A Windows NT device

driver was written for the DPIB and a custom bus master DMA collection device. These

drivers are portable and can be used as a basis for the development of other Windows NT

drivers. A graphical user interface (GUI) was also developed. The GUI automates the

data collection tasks and controls all the prototype system components. It interfaces with

the image processing software for explosives detection and displays the results.

Suspicious areas are color coded and presented to the operator for further examination.

iii

Acknowledgments

I would like to thank Dr. Richard Conners, my committee chairman, for his advice

and guidance, and also for having given me the opportunity to work in many exciting

research projects during my years of employment in the Spatial Data Analysis Laboratory.

I also thank my committee members, Dr. Lynn Abbott and Dr. Peter Athanas, for their

assistance in writing this thesis and their teachings throughout my student years.

Several people in the Spatial Data Analysis Laboratory at Virginia Tech have

assisted in the completion of this research work. I would like to express my appreciation

to Dr. Thomas Drayer for his many suggestions in the art of digital design. I also like to

thank the following members of the SDA Lab for all these years of putting up with me:

Paul LaCasse, Yuhua Cui, Xinhua Shi, Qiang Lu, Srikathyayani Srikanteswara, Jinhuo

Shan, William King, and Chase Wolfinger. Finally, I thank Mr. Bob Lineberry and Mr.

Farooq Azam for all their help.

I would like to dedicate this thesis to my parents, Jason and Despina, and my

brother, Nicholas. Thank you for all your love and support… I love you guys ☺

http://mustang.ee.vt.edu
http://www.ee.vt.edu/faculty/conners.html
http://www.vt.edu
http://mustang.ee.vt.edu
http://www.ee.vt.edu/faculty/abbott.html
http://www.ee.vt.edu/faculty/athanas.html/

iv

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 1

1.1 MOTIVATION.. 1

1.2 RESEARCH OBJECTIVES .. 2

1.3 CONTRIBUTIONS TO THIS RESEARCH.. 3

1.4 SYSTEM OVERVIEW.. 4

CHAPTER 2. BACKGROUND.. 8

2.1 PRINCIPLES OF X-RAY IMAGING .. 8

2.2 SOPHISTICATED COMMERCIAL LUGGAGE INSPECTION SYSTEMS 10

2.2.1 Vivid Technologies ... 10

2.2.2 American Science and Engineering... 11

2.2.3 Invision Technologies ... 12

2.3 SUMMARY ... 13

CHAPTER 3. SYSTEM DESIGN .. 14

3.1 GENERAL INTRODUCTION ... 14

3.2 AS&E SYSTEM DESIGN.. 16

3.2.1 X-ray source and detector positioning .. 18

3.2.2 Flying-spot technology ... 19

3.2.3 Digitizing pre-amplifier boards .. 21

3.3 SYSTEM COMPONENTS ... 26

3.3.1 X-ray source controller... 26

3.3.2 Infrared luggage sensor.. 27

3.3.3 Conveyor belt ... 27

3.3.4 Copper Filter.. 28

3.4 WORKSTATION SETUP .. 29

v

CHAPTER 4. DPIB HARDWARE .. 31

4.1 DESIGN OVERVIEW .. 31

4.2 BOARD LEVEL DESCRIPTION... 35

4.2.1 Data Interface .. 35

4.2.2 Zee Bus Interface.. 37

4.2.3 ISA Interface .. 38

4.2.4 Sensor Signal Interface... 40

4.2.5 Memory Bank ... 41

4.3 LOGIC LEVEL DESCRIPTION .. 41

4.3.1 Data Interface Connector Modules (ACON, BCON, CCON)......................... 43

4.3.2 Zee Bus Connector Module (MCON) .. 43

4.3.3 Sensor Signal Connector Module (DCON).. 43

4.3.4 Control Signal Generator (CONTROL) .. 44

4.3.5 AS&E format to SUIT format conversion (ASE2SUIT).................................. 48

4.3.6 SUIT bus multiplexer (MULTIPLEX, MULTIPLEX4)................................... 51

4.3.7 Suit to Zee bus conversion (SUIT2ZEE_SLOW).. 52

4.3.8 Self-test (CHECK) .. 52

4.3.9 Control Registers.. 52

4.4 OTHER DPIB APPLICATIONS... 53

CHAPTER 5. SOFTWARE.. 56

5.1 OVERVIEW ... 56

5.2 DEVICE DRIVERS.. 58

5.2.1 Common driver functions.. 59

5.2.2 Installing and starting a device driver... 60

5.2.3 PCIDMA.SYS - A device driver for the MCPCI... 61

5.2.4 DPIB.SYS - A device driver for the DPIB.. 67

5.3 SOFTWARE LIBRARIES .. 70

5.3.1 HARDWARE.H - a library for device driver access 70

5.3.2 SENSOR.HPP - a library of prototype system control functions.................... 72

vi

5.4 UTILITIES ... 75

5.4.1 PROGALL .. 75

5.4.2 COLPUL .. 76

5.4.3 EDISP .. 78

5.5 GALAXIE - GRAPHICAL USER INTERFACE.. 79

CHAPTER 6. RESULTS .. 82

CHAPTER 7. FUTURE DEVELOPMENTS... 90

7.1 ORTHOGONAL X-RAY VIEW... 90

7.2 ACTIVE CONTROL... 91

7.3 DPIB MODIFICATIONS .. 92

CHAPTER 8. CONCLUSIONS.. 94

REFERENCES.. 97

APPENDIX A. DPIB BOARD LEVEL SCHEMATICS ... 101

APPENDIX B. DPIB LOGIC (FPGA) LEVEL SCHEMATICS 113

APPENDIX C. DEVICE DRIVER SOURCE CODE... 140

APPENDIX D. SOFTWARE LIBRARIES SOURCE CODE................................ 192

APPENDIX E. UTILITIES AND GUI SOURCE CODE 213

VITA.. 258

vii

LIST OF FIGURES

FIGURE 1.1 PROTOTYPE SYSTEM OVERVIEW... 7

FIGURE 2.1 ZEFF VS. DENSITY OF SELECTED MATERIALS .. 9

FIGURE 3.1 AS&E 101ZZ SYSTEM ... 17

FIGURE 3.2 MODIFIED SOURCE AND DETECTOR PLACEMENT ... 18

FIGURE 3.3 COLLIMATED X-RAY WITH SENSOR ARRAY... 19

FIGURE 3.4 FLYING-SPOT TECHNOLOGY OPERATION... 20

FIGURE 3.5 CHOPPER WHEEL SYNCHRONIZATION PULSES ... 21

FIGURE 3.6 DIGITIZING PRE-AMPLIFIER BOARD BLOCK DIAGRAM.................................... 22

FIGURE 3.7 AS&E PRE-AMPLIFIER BOARD SIGNAL ASSIGNMENT..................................... 23

FIGURE 3.8 AS&E PRE-AMPLIFIER BOARD WAVEFORM .. 25

FIGURE 4.1 DPIB BLOCK DIAGRAM .. 32

FIGURE 4.2 DATA INTERFACE CONNECTOR SIGNAL LOCATIONS...................................... 37

FIGURE 4.3 ZEE BUS SIGNAL LOCATIONS AND COMMANDS ... 38

FIGURE 4.4 MDS MULTI-LEVEL ARCHITECTURE.. 42

FIGURE 4.5 SIGGEN2 OUTPUT WAVEFORM... 45

FIGURE 4.6 PRE-AMPLIFIER BOARD TIMING DIAGRAM .. 47

FIGURE 4.7 DIFFERENTIAL BUS ARBITRATOR STATE MACHINE .. 50

FIGURE 4.8 BREAK-OUT BOARD EXAMPLE ... 54

FIGURE 5.1 HARDWARE ACCESS THROUGH A DEVICE DRIVER ... 59

FIGURE 5.2 PCIDMA FUNCTION CHART ... 62

FIGURE 5.3 FLOWCHART OF PCIDMA INITIALIZATION .. 63

FIGURE 5.4 PCIDMA.SYS INITIALIZATION FILE .. 66

FIGURE 5.5 DPIB FUNCTION CHART ... 67

FIGURE 5.6 DPIB.SYS INITIALIZATION FILE .. 69

FIGURE 5.7 SAMPLE COLPUL CONFIGURATION FILE (PCIDMA.CFG)........................... 77

FIGURE 5.8 FLOWCHART OF GALAXIE OPERATION.. 81

FIGURE 6.1 TRANSMISSION IMAGE AT 75KV.. 84

viii

FIGURE 6.2 TRANSMISSION IMAGE AT 150KV (A) WITHOUT FILTER, AND (B) WITH FILTER85

FIGURE 6.3 BACK SCATTER IMAGES AT (A) 75 KV, (B) 150KV WITHOUT FILTER, AND (C)

150KV WITH FILTER... 86

FIGURE 6.4 FORWARD SCATTER IMAGES AT (A) 75KV, (B) 150KV WITHOUT FILTER, (C)

150KV WITH FILTER... 87

FIGURE 6.5 GALAXIE SCREEN CAPTURE AT START-UP ... 88

FIGURE 6.6 GALAXIE SCREEN CAPTURE WITH PROCESSED IMAGE.................................... 89

ix

LIST OF TABLES

TABLE 3.1 AS&E SYSTEM TIMING VALUES .. 25

TABLE 3.2 X-RAY CONTROLLER REQUEST CODES ... 26

TABLE 3.3 X-RAY CONTROLLER COMMAND CODES... 27

TABLE 4.1 XC4000 FAMILY FPGA CHIPS ACCEPTED ON THE DPIB................................ 33

TABLE 4.2 ISA INTERFACE PORT DESCRIPTION .. 39

TABLE 4.3 SIGNAL ASSIGNMENT ON SSI CONNECTOR .. 40

TABLE 4.4 TIMING VALUES FOR CONTROL MODULE.. 46

TABLE 4.5 PRE-AMPLIFIER SIGNAL TIMES .. 47

TABLE 4.6 WSIGS BUS DESCRIPTION .. 48

TABLE 4.7 DPIB PORT LOCATIONS AND DESCRIPTION .. 53

TABLE 5.1 ELAS HEADER DESCRIPTION .. 78

1

Chapter 1. Introduction

1.1 Motivation

Over half a billion people fly in the United States each year, with the number of

worldwide travelers exceeding one billion [BOU94]. As the volume of passengers

increases, a rise in the number of terrorist attacks on commercial airlines is expected.

Since the first airline explosion attributed to plastic explosives in 1982, and after the 1988

tragedy of PanAm flight 103 over Lockerbie, Scotland, the Federal Aviation

Administration (FAA) has funded various research projects for the advancement of

explosive detection in airport luggage [NOV92].

Older airport security systems rely on human operators to recognize suspicious

luggage and then manually inspect it. The system simply presents a number of x-ray

images to the operator, who must then identify the shape and material of the contents.

The decision whether the luggage will be allowed on the aircraft or not rests solely with

the inspector. Although this approach was sufficient in the past, terrorists have found new

ways to conceal explosives and mislead security personnel [POL94]. Furthermore, the

tedious and repetitive nature of the task, as well as the adverse work conditions in busy

airports, have been shown to significantly reduce the ability of security system operators

to detect suspect material effectively [NRC96]. In the United States, inspection system

operators are hired by private companies and are usually paid only minimum wage; the

turn-over ratio of operators reaches 200-300% per year, as most prefer to switch to an

easier, better paid position at a local fast-food restaurant.

These facts dictate the need for an automated system that can detect explosives

reliably and without human intervention. This new system must have a high probability of

explosives detection, a low false alarm rate, and high luggage throughput [BOU94].

Although operators will still be required to analyze luggage that is marked dangerous by

the inspection system, the primary decision will rest with the computer. This will reduce

2

the number of bags that must be visually inspected and, combined with a friendly yet

functional user interface, can alleviate the task of the operator. The overall result will be a

highly effective security mechanism that will deter terrorism and dramatically improve the

safety of air travel.

1.2 Research Objectives

In 1994, the Spatial Data Analysis Laboratory (SDAL) at Virginia Tech, under a

grant from the Federal Aviation Administration, initiated a research project for the

development of a prototype airport security system for automated luggage inspection.

The prototype is based on an American Science and Engineering model 101ZZ system.

The 101ZZ was chosen because it utilizes multiple sensor technologies to collect

transmission and back scatter images. Transmission images are obtained from energy that

directly penetrates the luggage, whereas back scatter images are obtained from energy that

did not penetrate the luggage and was scattered back towards the x-ray source. The

101ZZ was modified in the SDAL to collect forward scatter images, by measuring energy

that penetrates the luggage but is scattered forward. Combining all three sensor

modalities can improve the probability of explosives detection and reduce false alarm

rates. The AS&E system was also chosen because of its “flying-spot” technology

(described in Chapter 2), which provides very high quality x-ray images from all three

sensors. Despite its advantages over conventional systems, “flying-spot” technology has

never been explored in airport security for automated explosives detection.

The purpose of the SDAL project is threefold: a) investigate new materials

characterization techniques using a multi-energy and multi-sensor approach, b) develop

image processing algorithms to detect overlapped objects, and c) design the hardware and

software to collect, display and process high-resolution images. The intended outcome of

the project is a prototype system that can reliably, quickly and automatically detect

explosives without the presence of a human operator. A computer will be used to host the

custom data collection hardware, execute the image processing and materials

http://mustang.ee.vt.edu
http://www.vt.edu
http://www.as-e.com

3

characterization software, display the processed results, and sound an alert if explosives

are detected. The system will be tested by the FAA to determine whether it can be

certified as an automated Explosives Detection System (EDS) for check-in luggage, but

can also be used to inspect carry-on luggage.

The technologies researched and the overall prototype system must be thoroughly

documented, so that they can later be used for the development of a commercial product.

The system must provide an easy-to-use operator interface to minimize the migration time

from existing technologies, and must be a financially competitive solution to existing

technologies and systems.

Finally, the results of this research effort will greatly benefit the scientific and

academic community, by providing information on subjects that have so far remained

proprietary and classified.

1.3 Contributions to this research

The 101ZZ system used provided very limited explosives detection features and

required complete manual control. Data collection and analysis was performed by a

human through the operator control panel. Furthermore, the system received by the

SDAL was itself a prototype manufactured in the late 1980s. It was controlled by an

outdated Intel 8086 based personal computer, and was equipped with mostly wire-wrap

boards, rather than printed circuit boards (PCB). No documentation was provided on the

operation of the system or the hardware used, and some of the features available on the

control panel were not functional.

The decision was therefore made to discard most AS&E system electronics and

develop custom hardware and software for the control of the prototype. Furthermore, the

original system was modified to better suit the objectives of this research activity. The

purpose of this thesis is to describe the following:

4

• Modifications to 101ZZ system. This includes the addition of a new forward

scatter detector, as well as changes made to provide computer control of all

system functions and develop an automated EDS.

• Hardware development. A hardware collection device was developed to

collect data from three input sources, pre-process the data and multiplex it on a

single high speed bus. Flexibility was maintained at the board level as well as

the logic level by using a Field Programmable Gate Array (FPGA). The FPGA

can be dynamically re-programmed and allows the same hardware to be

implemented in many different applications. The device has been used as a

general purpose collection board with CCD array and linescan cameras using

differential pair signals.

• Software development. Windows NT device drivers were developed for the

hardware described in this thesis, as well as a custom Multiple Channel PCI

board (MCPCI) used for bus master DMA transfers to the host computer.

Utilities to control the hardware were ported from DOS to Windows NT, and

a new utility was developed to display color and black and white images under

the Windows operating system. Finally, a graphical user interface (GUI) was

written as the front-end to the explosives detection system. The GUI

automates the collection process, interfaces to the image processing and

materials characterization software, analyzes the results, and displays the

processed images to the operator. It also sounds an alarm if explosives are

detected.

1.4 System Overview

The prototype system is based on the American Science and Engineering (AS&E)

101ZZ airport security system. The 101ZZ is originally equipped with two x-ray sources

and three detectors: a transmission and back scatter for one side of the luggage, and a

5

back scatter detector for the other side. The second x-ray source was removed from the

prototype, and its corresponding back scatter detector moved to create a forward scatter

detector. The advantages of this approach are explained in Chapter 2. The 101ZZ is

equipped with a computer controllable x-ray source controller, and two infrared beam

break sensors used to determine the position of the luggage on the conveyor belt. It also

uses a motor controller for the conveyor belt.

The 101ZZ uses a digitizing pre-amplifier board to convert the analog voltage

from an x-ray detector to a digital signal. These boards use a differential pair bus for

communications and require external control, since they contain no “intelligent” hardware

for autonomous operation. There are three pre-amplifier boards in the system, one for

each of the three detectors. The original AS&E pre-amplifier boards are used in the

prototype, since they provide a simple external interface and are integrated in the AS&E

system. Using this existing hardware reduces development time and cost.

To control the pre-amplifier boards and transfer data to the PC, a Differential Pair

Interface Board (DPIB) was developed. The DPIB interfaces to the three digitizing

boards and multiplexes the output on a single bus. To minimize development time and

cost the DPIB was designed as an ISA device. A re-programmable FPGA allows the

DPIB to be used in many different applications, of which the current AS&E system

configuration is only one example.

The Multiple Channel PCI (MCPCI) board, developed by Paul LaCasse in the

SDAL, is used to transfer image data to the host computer through the PCI bus. The

MCPCI is a PCI bus master DMA device and can achieve data rates over 100 times faster

than ISA hardware, allowing real-time system operation. The DPIB and the MCPCI

communicate over an external Zee bus, a high speed data bus developed for inter-board

communications [DRA97b]. Using the MCPCI and DPIB together, instead of developing

a PCI version of the DPIB, has numerous advantages:

6

a) Reduced system cost. An ISA device is cheaper to develop and implement

than PCI hardware, which requires special chipsets to operate.

b) Reduced development time. PCI hardware is more complex to design than

ISA hardware.

c) Reduced debugging time. The MCPCI existed and had already been tested in

other applications when the DPIB was being developed. The debugging effort

therefore concentrated on the simpler ISA device.

d) Future usability. In designs where real-time operation is not a necessity, the

DPIB can be used stand-alone to transfer data through the ISA bus, eliminating

the additional cost of the PCI hardware.

Furthermore, using the Zee bus allows the DPIB to interface to the MORRPH (Modular

Re-programmable Real-time Processing Hardware), which uses multiple FPGAs to

perform complex image processing tasks in real-time [DRA95a]. The DPIB-MORRPH-

MCPCI combination yields a powerful computing device that can be implemented in many

image processing and other data processing applications.

In the prototype system, the DPIB also interfaces to the conveyor belt motor and

infrared sensors of the 101ZZ. The on/off state and direction of the conveyor belt, as well

as the status of each infrared sensor are accessible through software on the host computer.

A single IBM compatible PC running Windows NT 4.0 is currently used for

system control and image processing. Windows NT was chosen for its stability, user

friendliness, and multi-tasking and multi-processor capabilities. All software for system

control, image processing, and the GUI execute on this PC. The GUI presents the

processed images to the operator and allows simple image manipulation functions, such as

zooming and inverting, to better interpret the results.

An overview of the system configuration using the custom hardware and the host

computer is shown in Figure 1.1. The modifications to the AS&E system are discussed in

7

Chapter 3. Hardware and software development are discussed in Chapter 4 and Chapter 5

respectively.

Transmission

Backscatter

Forward Scatter

A

S

&

E

IBM Compatible

DPIB MCPCI
Zee Bus

PCI Bus

IS
A

 B
us

X-ray source, Copper Filter Motor

Conveyor, Infrared Sensors

Figure 1.1 Prototype system overview

8

Chapter 2. Background

This chapter describes the physical principles used in x-ray scanning. The x-ray

imaging techniques used in the prototype luggage scanning system are explained. Also,

three commercially available airport security systems are examined, and their strengths and

weaknesses discussed.

2.1 Principles of x-ray imaging

There is a number of methods used in the detection of explosives in airport

luggage, including conventional x-ray imaging, vapor detection [CHU96], quadrupole

resonance analysis [RAY96], nuclear techniques [GOZ91] and x-ray based computed

tomography (CT) [ROD91]. X-ray imaging is the most widely used method.

A typical x-ray imaging system includes a radiation source to generate the x-ray

field, and a detector to convert x-ray energy to an electrical signal. The source and

detector are placed on opposite sides of the x-ray tunnel, directly across from each other.

The detector is used to measure the attenuation of the x-ray energy, called the

transmission energy, as it penetrates through the object of interest.

Early security systems used high energy x-ray for the detection of weapons. At

higher energy levels (over 100 KV), the absorbed energy depends primarily on the density

of the material: the higher the density, the more energy is absorbed by the object, therefore

the darker the image. A metal object, such as a weapon, or an explosive device, both

dense materials, would appear very dark in the transmission image and would be detected.

However, an explosive device could be concealed behind a denser material, making it

invisible to the system operator [VOU94].

To resolve this problem, luggage is scanned at two energy levels. At lower

energies (usually 80 KV), the absorption depends mainly on the effective atomic number

9

(Zeff), as well as the thickness of the material. Using multi-energy transmission images,

high density and low Zeff explosives can be identified. Figure 2.1 illustrates the density and

effective atomic number of materials of interest in luggage inspection systems. A system

that uses two x-ray energy levels for scanning is called a dual-energy system. Several

techniques exist for the collection of multi-energy images, including varying the input

energy of the x-ray source [EUR96], filtering the energy at the x-ray sensor [EIL92] and

using multiple sensors with different spectral responses [MIC93].

Yet another technique in x-ray imaging is to measure energy that is scattered due

to the Compton effect [FAI94]. Although some radiation penetrates the luggage in a

straight path and is measured by the transmission detector, some of the x-ray energy is

scattered either forward through the scanned object, or backwards, towards the x-ray

source. The images obtained by measuring scattered energy are called the forward scatter

and back scatter images. A single energy system using back scatter images for explosives

detection was developed by American Science and Engineering [SCH91].

Density

 E
ffe

ct
iv

e
at

om
ic

 n
um

be
r

(Z
ef

f)

ExplosivesDrugs

Organics

Metals

Figure 2.1 Zeff vs. Density of selected materials

10

The prototype system discussed in this thesis is a true dual-energy system that

collects transmission and scatter images. The x-ray energy is varied by changing the input

energy to the x-ray tube, rather than filtering. The transmission images are used to obtain

an estimate of Zeff. Using both high and low energy images provides a more accurate

estimate of the effective atomic number. Density information is obtained using the

forward and back scatter images. Scatter energy provides more useful density information

than any transmission image. The relationship between measured energy and material

density is rather complicated and is analyzed in other literature [ARE96].

2.2 Sophisticated Commercial Luggage Inspection Systems

There are several luggage inspection systems available in the market. Some use

single energy, transmission images and are considered outdated. Others use advanced

scanning techniques and provide automated luggage inspection. These systems do not

require a human operator and are used in a number of airports today. Three of the more

sophisticated airport security systems are examined in this section.

2.2.1 Vivid Technologies

Vivid Technologies was formed in July 1989, following the explosion aboard

PanAm 103. The company specializes in airport security systems for luggage inspection.

The most sophisticated system manufactured by Vivid Technologies is Model VIS,

introduced in 1993 and intended for the inspection of checked luggage. The VIS is a

dual-energy system and uses a transmission detector for image collection. It can scan 900-

1500 bags per hour without a human operator [VIV97].

To enhance the explosives detection capabilities of their systems, Vivid also offers

the Scatter Detection Enhancement (SDE) and SDE-2 modules. The SDE uses a forward

scatter detector, whereas the SDE-2 uses both a forward and back scatter detector. These

modules are available for certain Vivid systems, and are only used in the detection of sheet

explosives.

http://www.vividusa.com

11

Vivid systems are not very widely used in the United States. Although they are

capable of detecting many types of explosives, they do not meet FAA requirements for

EDS certification.

2.2.2 American Science and Engineering

American Science and Engineering (AS&E) is the inventor of flying-spot x-ray

technology, which eliminates the need for an expensive sensor array by using a

concentrated beam of x-rays and a few large photo-multipliers for detection (see

Chapter 3). Most AS&E systems are equipped with scatter detectors and can collect

back scatter images. Forward scatter detectors are an option on a limited number of

systems. Using these technologies, high Z (metallics) and low Z (organics, plastics)

images are simultaneously presented to the operator to help identify attempts to conceal

dangerous substances [ASE96].

Using flying-spot technology, AS&E systems can obtain very high quality scatter

images. Most conventional x-ray scanning systems provide good quality transmission

images, but suffer from poor quality scatter images, yielding mediocre density estimations.

With good transmission and scatter quality, materials characterization can greatly be

improved, increasing the probability of detection and reducing the number of false alarms.

Despite the advantages of the flying-spot technology, it has been implemented on

only a small number of airport security systems, none of which provide automated

explosives detection. AS&E, the only flying-spot developer, concentrates on systems for

car and truck (cargo) search to identify illegal substances, and personnel inspection

systems, to detect weapons. Airline luggage presents a much different problem:

explosives are present in smaller quantities and are better concealed.

http://www.as-e.com

12

2.2.3 Invision Technologies

Invision is the developer of a very sophisticated, automated airport security

system, the CTX 5000. This system uses computed tomography (CT) and a rotating x-ray

source and detector pair to obtain a three-dimensional view of the luggage. The typical

two-dimensional x-ray view provides no depth information and can be confusing. The

operator can be mislead when certain objects are used to conceal explosives. By

presenting a three-dimensional view, however, luggage contents are easily identified and

any ambiguous overlap is detected. This assists the human operator and also improves the

detection probability of the explosives detection algorithm.

The CTX 5000 scans luggage using a single energy x-ray source and a

transmission detector, and presents the projected luggage view to the operator. Areas that

might contain explosives are identified by a red vertical line on the image. To further

analyze a region, the operator clicks on one of the lines. The x-ray source and detector

are then re-positioned and the luggage scanned at the location selected by the operator.

The cross sectional view at the plane of the red line is then presented on a separate

monitor. Explosives are painted in red, and explosive type and quantity information is

displayed [INV96].

The CTX 5000 is the only system certified by the Federal Aviation Administration

as an Explosives Detection System (EDS). However, its excellent detection capabilities

come at a very high price: a single unit currently sells for over $1,000,000. Furthermore,

although a throughput of 300 bags per hour is claimed, actual airport trials have averaged

100-150 bags per hour, causing concerns whether the system can be integrated into

airports without causing significant delays. The large size of the system (14 ft. long, 9,350

lbs) has also been a problem in placing it in already crowded airports. Finally, an operator

trained to detect explosives on a typical, two-dimensional system requires several months

of training to identify luggage contents on the new CT images [NEW96].

http://www.invision-tech.com/

13

2.3 Summary

Of the three major airport security system manufacturers, the Invision CTX 5000

is the only true EDS. Other systems provide a good solution for inspection of carry-on

luggage with the assistance of a human operator, but are not robust enough to become the

primary detection technology in airports. However, the CTX 5000, despite its excellent

capabilities, remains slow, big, and very expensive. Although many foreign airports are

subsidized by government grants and can afford a CTX 5000, in the United States airport

security systems are purchased by individual airlines. The high cost of the Invision system,

as well as the large number required to maintain a minimum luggage inspection rate, has

prevented most domestic carriers from using this system.

None of the systems available has explored the high quality forward and back

scatter images provided using the flying-spot technology for automated explosives

detection. Using both scatter measurements is significantly less expensive than a

computed tomography system, and may also provide a “smarter” system, with a higher

probability of explosives detection and a lower false alarm rate. This research project

provides an automated, multi-sensor and multi-energy prototype to assist in the

development of new algorithms for explosives detection. The combination of these

techniques and the new image processing software could pave the road to a new approach

in aviation security technology.

14

Chapter 3. System Design

The purpose of this chapter is to describe the overall design of the AS&E 101ZZ

luggage inspection system, and the changes and additions made to the hardware for the

purpose of this research project. The type and positioning of the x-ray source and

detectors, the “flying-spot” technology, the detector pre-amplifier boards, as well as all the

computer controlled hardware are examined.

3.1 General Introduction

To develop new image processing algorithms for explosive detection in airport

luggage a system for exposing objects to x-ray radiation and collecting raw images is

necessary. The Federal Aviation Administration requested that the prototype be based on

the American Science and Engineering 101ZZ system. This system was chosen because of

its transmission and scatter collection capabilities, and also to further explore the

applications of flying-spot x-ray technology (see Section 3.2.2) in automated explosives

detection for airport luggage.

The hardware delivered to Virginia Tech was an early version of the 101ZZ. The

system electronics cabinet contained an outdated 8086 PC motherboard. The data

collection activity was controlled through an array of special purpose ISA hardware, some

of which were on wire-wrap, rather than printed circuit boards. No technical or other

documentation was provided about this specialized hardware. The images collected by the

system were of low resolution and rather poor quality, with obvious vertical striping.

There was no method of collecting raw, uncompensated images from the x-ray detectors,

and the nature of the image processing filters applied to the data remained unknown.. The

system provided no features for automatic control, and most system components had to be

accessed manually from the operator console. Furthermore, the system computer

provided only a simple, text-based user interface through a monochrome monitor.

15

The decision was therefore made to completely bypass the majority of the system

electronics and develop hardware and software to control the collection sequence, obtain

x-ray images and transfer them to a PC for processing. This new hardware provides high

resolution, high quality images that can be transferred to the PC either raw or after some

simple image processing filters. The thorough hardware documentation provided in this

thesis can be consulted to correct any system failures. If the original 101ZZ electronics

were used, determining the cause of any hardware problems and correcting them would be

an extremely difficult and time-consuming task. Bypassing the system electronics also

allows modification of other system components to eliminate the need for an operator

control panel and to completely automate the collection sequence through a personal

computer. Finally, the custom software integrates the new hardware with the existing

system, simplifies system control and provides an intuitive graphical user interface that

minimizes the chance of operator error.

Data is collected from the 101ZZ using the AS&E digitizing pre-amplifier boards.

These boards convert the analog x-ray detector signal to digital format, perform some

primitive processing, and transmit the output value over a differential pair bus. The

original digitizing boards were retained because they are simple in operation and could be

easily analyzed, and also because they are controlled completely through external signals

and operate autonomously without affecting other system components. Re-using the

digitizing hardware reduced development time and cost.

To control the AS&E pre-amplifier boards and retrieve image information, a

Differential Pair Interface Board (DPIB) was designed for the ISA bus. The DPIB uses a

Field Programmable Gate Array (FPGA) chip for re-configurable computing. The FPGA

can be dynamically re-programmed by the host computer, making the DPIB a general

purpose data collection and processing hardware, rather than restricting it to the AS&E

system application. The DPIB is paired with the Multiple Channel PCI board (MCPCI)

developed by Paul LaCasse, a bus master DMA device for the PCI bus, which allows real-

16

time data collection. The MCPCI also uses a FPGA for added versatility. Development

of the DPIB is analyzed in Chapter 4.

Other 101ZZ components that are also used in the prototype include the conveyor

belt motor, the infrared luggage sensors, and the x-ray controller, source and detectors.

Some modifications, which are explained later in this chapter, were performed to these

components to make them computer controllable. A retractable copper filter was added

to the system to filter the output energy at the x-ray source, as is discussed in

Section 3.3.4.

The prototype system is controlled by a Dell Optiplex P120 PC, running Windows

NT Workstation 4.0. This PC hosts the DPIB and MCPCI, and also interfaces to every

system component either through the DPIB (conveyor belt, infrared sensors), or through a

serial communications port (x-ray controller, copper filter motor). Software was

developed to control and automate the data collection sequence, interface with the

explosives detection algorithms and present the results to the system operator. Device

drivers were also developed to access the custom hardware (DPIB and MCPCI) under

Windows NT. The software development is discussed in Chapter 5.

3.2 AS&E System Design

The 101ZZ resembles a typical airport security system. It uses a conveyor belt for

the transport of luggage, and two black and white monitors to display the resultant

images. Most functions are available through the operator control panel: conveyor

direction control, x-ray power switch, and simple image processing functions, such as

invert and zoom. The system is controlled through an 8086 computer, enclosed in the

system electronics cabinet. All data collection and processing boards reside on the ISA

bus of the host computer. A keyboard and CGA monitor connector are available for

access to a text-only interface, allowing the user to alter system settings or save and

17

retrieve images. The original configuration of the AS&E 101ZZ system is illustrated in

Figure 3.1.

The AS&E system was originally equipped with two x-ray sources, one for each

side of the luggage. The first x-ray source is used to collect a transmission and back

scatter image for one side of the bag. The other is used to collect only a back scatter

image of the other side of the bag, to assist in overlapped object resolution.

The AS&E system is also equipped with three infrared beam break sensors, used

to detect the presence of luggage. The sensors are positioned in the front, middle and rear

of the tunnel. The conveyor belt and x-ray source are continuously turned on, and

collection begins when either the front or rear sensor is broken. The conveyor belt can be

controlled only from the operator panel. The x-ray source controls are found on a separate

panel, directly underneath the system electronics housing. Data collection with the 101ZZ

is hardly an automated task; a trained human operator is required.

Infrared Sensors
Conveyor Belt

X-ray
Image
Display CGA Display

Operator
Control Panel

Luggage In

System

Electronics

X-ray

Controller

Figure 3.1 AS&E 101ZZ System

18

3.2.1 X-ray source and detector positioning

The materials characterization algorithms developed for this project only require

image information from a single x-ray source. The second source, used to collect only

back scatter information, was removed. The back scatter detectors from the obsolete

source were then placed directly in front of the transmission detector, in order to

investigate forward scatter images. The digitizing board was connected to the new

forward scatter detector. Figure 3.2 illustrates the current placement of the x-ray source

and the sensing elements.

scatter detectors

transmission detector

conveyor

copper filte
r

x-ray tube

chopper wheel

Figure 3.2 Modified source and detector placement

19

3.2.2 Flying-spot technology

An x-ray source, much like any radiation source, generates a field of energy, rather

than a concentrated beam or plane. Most systems utilize a slit collimator to restrict the

output to a narrow plane of radiation. The collimator is commonly made of lead or

another shielding material, with a narrow vertical slit through which x-rays can pass. Only

a small portion of the luggage is viewed at a time; the collimator effectively partitions the

luggage into smaller vertical regions, or scan lines. An array of sensing elements is then

used to sub-divide the exposed region into smaller parts and effectively generate a

pixelated image. This configuration is shown in Figure 3.3. Using this approach, the

vertical image resolution is limited to the number of sensing elements in the array, whereas

the horizontal resolution can be controlled by varying the conveyor belt speed. Moreover,

the large number of sensors in the detector significantly increases overall system cost.

Detector with
sensor array

Generated X-ray field

Collimator

Columnated
X-ray field

Conveyor Belt

Figure 3.3 Collimated x-ray with sensor array

20

American Science & Engineering has developed a different, more flexible approach

to sampling the exposed object at discrete points. In addition to the collimator, a chopper

wheel fabricated of shielding material, is inserted in the x-ray path. The wheel has four

narrow slots and rotates at a constant speed. The effect of the wheel is to block the

collimated x-ray plane and create a narrow beam. As the wheel turns, the beam moves

from bottom to top, scanning an entire vertical line. The movement of the beam creates a

pixelated image, eliminating the expensive sensor array. Instead, a few large photo-

multiplier tubes are used. The operation of the flying-spot technology is shown in

Figure 3.4. Using a traveling beam allows control of both the horizontal and vertical

resolution, and reduces system cost by using a less expensive detector element.

Conveyor Belt

Photomultiplier
Detector

Index hole

Slot 4

Slot 1

X-ray beam

Chopper wheel

X-ray plane

Collimator

Generated
X-ray field

Figure 3.4 Flying-spot technology operation

21

To synchronize data collection with the position of the chopper wheel, two pairs of

incandescent lamps and photo-transistors are used. One pair is aligned with an index hole

on the chopper wheel (see Figure 3.4) and is used to identify Slot 1. A WHLRST (wheel

reset) pulse is generated by the chopper wheel logic when Slot 1 enters the field of view.

The other lamp-transistor pair is aligned to indicate when any of the four slots enters the

field of view and generates a WHLSYNC (wheel reset, also SLOTSYNC) pulse. Since

there are four chopper wheel slots, four WHLSYNC pulses are generated for every

WHLRST pulse. The chopper wheel rotates at 1800 RPM, generating the signals shown

in Figure 3.5. WHLSYNC indicates when the x-ray beam is at the lowest point of its

path, and is used to start the collection of a new line. WHLRST is used to start a new

frame, an operation that is further explained in Chapter 4.

3.2.3 Digitizing pre-amplifier boards

The signal obtained from the x-ray detectors is analog in nature and must be

converted to a digital value for image processing. The conversion process, as well as a

very primitive shading correction operation, is performed on the AS&E pre-amplifier

boards. Each x-ray detector uses a separate pre-amplifier board. These boards require

external control and contain no “intelligent” hardware, such as a micro-controller.

The data and control bus of the pre-amplifier boards are accessible through a 50-

pin protected header connector. There is an 8-bit bi-directional data bus, and a 4-bit,

input only control bus. Power is also supplied to the boards through the 50-pin protected

8.33 ms

33.33 ms

WHLSYNC

WHLRST

Figure 3.5 Chopper wheel synchronization pulses

22

header. These signals make up the Data and Control Interface (DCI) of the pre-amplifier

boards. The DCI uses differential pair signals.

The block diagram of the digitizing boards is shown in Figure 3.6. The incoming

analog signal first passes through sample and hold circuitry, which stores the current

analog pixel value. Shading correction follows. There, a DC offset is added to the analog

value. The purpose of this process is to correct for the non-linearity and slight geometrical

imperfections of the chopper wheel slots, allowing uniform image quality. A narrower

slot reduces the x-ray energy projected on the object and results in slightly darker pixel

values. Images that are not shade compensated contain visible vertical striping. The

shade compensation value for a pixel is placed on the DCI data bus by the external

hardware. A digital-to-analog converter is then used to convert the digital value to an

analog offset that is added to the sample-and-hold output.

Sample
& Hold

SH

Shading
Correction

/LE

Analog to
Digital

Conversion

/RD

Digital to
Analog

Conversion

Differential
Signal
Drivers

Differential
Signal
Drivers

/EN

Sampled
Analog
Value

Corrected
Analog
Value

D
ig

iti
ze

d
P

ix
el

 V
al

ue

DC Offset Value

Data Bus

Figure 3.6 Digitizing pre-amplifier board block diagram

23

The compensated value is then digitized by a digital-to-analog converter. The

output of the converter connects to a set of differential pair drivers for output on the DCI.

The drivers can either operate in high-impedance mode (while the pre-amplifier boards

read the shade compensation value from the DCI), or in output mode. The direction of

the data bus is controlled through an external control signal. An external pulse is also

used to initiate the conversion process.

Figure 3.7 shows the signal assignment on the DCI. The polarity of the incoming

and outgoing data bus signals is reversed, per AS&E convention.

DATA8+

DATA9+

DATA10+

DATA11+

/LE+

IN0+, OUT0-

IN2+, OUT2-

IN1+, OUT1-

IN3+, OUT3-

IN4+, OUT4-

IN6+, OUT6-

IN5+, OUT5-

IN7+, OUT7-

SH+

/EN+

/RD-

DATA8-

DATA9-

DATA10-

DATA11-

/LE-

IN0-, OUT0+

IN2-, OUT2+

IN1-, OUT1+

IN3-, OUT3+

IN4-, OUT4+

IN6-, OUT6+

IN5-, OUT5+

IN7-, OUT7+

SH-

/EN-

/RD+

1 2

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

4

6

8

10

NC

+12V

-12V

AGND

NC

+12V

-12V

AGND
41 +5V
43 NC
45 NC
47 DGND
49 DGND

42

44

46

48

+5V

NC

NC

DGND
50DGND

Figure 3.7 AS&E pre-amplifier board signal assignment

24

There are four control signals on the DCI that fully control the circuitry on the

digitizing boards. These are as follows:

• /EN: used to determine the direction of the differential pair data bus.

When high, the pre-amp board is in input mode and the shade compensation

value should be available on the bus. When low, the drivers are enabled, and

the digitized pixel value is placed on the data bus [MOT93].

• SH: gate pulse for the sample and hold circuitry. The incoming analog

value from the x-ray source is sampled on the rising edge of this pulse.

• /LE: latches the data compensation value on the data bus into the digital-

to-analog converter. This value is used to generate the offset added to analog

x-ray detector signal.

• /RD: controls the conversion process on the digital-to-analog converter.

The conversion is started on the falling edge of this pulse. After completion of

the process, the output of the DAC remains constant only while this signal is

low. The DAC output is placed in high-impedance mode when this signal is

high [ANA91].

The waveforms generated by the AS&E system electronics are shown in

Figure 3.8. The timing values for a vertical resolution of 128 pixels are shown in

Table 3.1.

25

Table 3.1 AS&E system timing values

tPER

tEN1

tSH1

tSH2

tLE2

tLE1

tRD2

tRD1

/EN

SH

/LE

/RD

Figure 3.8 AS&E pre-amplifier board waveform

Variable Time (µµs)

tPER 53.62

tEN1 53.28

tSH1 45.89

tSH2 46.32

tLE1 47.78

tLE2 49.99

tRD1 46.94

tRD2 53.62

26

3.3 System Components

3.3.1 X-ray source controller

The prototype system is intended to collect image data at multiple energy levels.

Therefore, computer control of source settings, such as x-ray voltage and current, is

necessary. The AS&E 101ZZ system is equipped with a Gemini 2000 x-ray controller,

manufactured by Gulmay, Inc. The controller features an operator panel, where system

settings can be changed, and an RS-232 serial port for data communications. A

comprehensive set of codes to either transmit commands or request system information is

provided [GUL95]. These commands are summarized in Table 3.2 and Table 3.3.

Table 3.2 x-ray controller request codes

All requests codes use a single character, followed by a carriage return. The result

is usually a question mark, followed by the same character, and then a three digit number.

The voltage, current, and time requests return the corresponding value of the x-ray

settings. The mode command, used to determine the state of the source, returns one of

the following values:

• 000: Key is in position 2, x-ray source can not be turned on

• 001: x-ray off

• 002: x-ray warming up

• 003: x-ray switching on or off.

• 004: x-ray on.

Command Description

?V X-ray voltage. Responds ?Vnnn<CR>

?I X-ray current. Responds ?Innn<CR>

?T Elapsed time. Responds ?Tnnn<CR>

?M Current mode. Responds ?Mnnn<CR>

27

Commands consist of a exclamation point, then a one character code, and are

terminated by a carriage return. A three digit numerical value is used with some

commands and follows the character code.

Table 3.3 x-ray controller command codes

3.3.2 Infrared luggage sensor

Imperative to a completely automated system is a sensor that can report the

position of the luggage in the x-ray tunnel. This information can be used to enable and

disable image collection, and also to turn the x-ray source on when luggage is present, and

off when the tunnel is empty.

The prototype system uses two of the three infrared beam break devices, located at

the front and rear of the tunnel. These devices are powered by the AS&E system and

return a binary value. A value of one (high) indicates that the path is clear, whereas a

value of zero (low) is returned when the beam path is broken.

3.3.3 Conveyor belt

Luggage is commonly transported by means of a conveyor belt. The AS&E

system is equipped with such a belt, a motor and a motor controller. However, the system

Command Description

!V Set voltage. Format: !Vnnn<CR>

!I Set current. Format: !Innn<CR>

!T Reset timer

!X Turn x-ray on.

!O Turn x-ray off.

28

motor controller could only be controlled through the operator control panel and provided

no data interface for computer control.

To allow for automatic control of the belt, the motor controller was modified. The

controller uses two lines for conveyor operation. If both lines are open, the conveyor is

stopped. By shorting one of the two lines, the conveyor can move in either the forward or

reverse direction. For the prototype system, these lines were interrupted and a relay

inserted in the current path. The relays are controlled by the DPIB and determine the on-

off state and direction of the belt. There is still no control of the motor speed, unless the

setting is altered on the motor controller housing.

3.3.4 Copper Filter

As discussed previously, the prototype system scans luggage at high and low x-ray

energy settings. The energy level of the output photons, however, is not limited to the

input energy, but is distributed over a range of frequencies. There is also significant

overlap between the low and high energy spectral distributions, and the total output

energy at 150 KV is much higher than at 80 KV, as shown by Xinhua Shi [DRA97a]. For

materials characterization purposes, it is desirable to minimize the overlap region between

the two energy spectrums and balance the total output energy. To achieve this, a copper

filter was added to the system, as shown in Figure 3.2. The filter is inserted only during

high-energy collection, and is removed at all other times. The subsystem was designed by

Jinhuo Shan, using a Velmex 8300 series stepper motor driver [VEL85]. The filter is

attached to the cylindrical motor mount, and can be rotated between the fully removed and

fully inserted position. Protection switches are installed on the assembly to prevent motor

damage if rotation is attempted outside the system boundaries.

The motor controller can be accessed either through the external control panel, or

an RS-232 serial port. The controller uses a BASIC interpreter to accept and run simple

programs to control the motor. In the prototype system, the control code is downloaded

29

through the serial port and then executed. The motor then awaits a numerical value

(followed by a line feed character), and moves the motor to the absolute angle designated

by the input value. The origin point (position of angle 0), is the filter position at the time

the controller code is executed.

3.4 Workstation Setup

The outdated 101ZZ host computer was replaced by a high performance personal

computer to reduce algorithm execution times and provide computer control of all the

prototype system components. The PC is equipped with a high resolution monitor and

video adapter to display the processed results to the system operator. The new computer

is used to control the system hardware, collect data through the custom hardware boards

(DPIB and MCPCI), process the x-ray images, and display the output. If explosives are

detected in the luggage, they are highlighted in the output image and an alarm is sounded.

A Dell Optiplex P120, running the Windows NT 4.0 Workstation operating system

is used. Windows NT was chosen for its reliability, availability and low cost. The multi-

processor capabilities of this operating system are also very important as plans exist to

move to a dual or even quad CPU system. The current image processing algorithms and

software structure support a high degree of parallelism. Moving to a symmetric

multiprocessing system will significantly reduce the time required to scan and process a

bag.

The PC hosts the DPIB and MCPCI boards. The DPIB resides on the ISA bus,

whereas the MCPCI uses the PCI bus for high speed transfers. Both devices are

controlled by the system software through devices drivers developed specifically for these

boards. The development of these drivers is discussed in Chapter 5. The DPIB is used to

interface to the AS&E pre-amplifier boards and collect image data. It is also used to

return luggage sensor information to the PC, and allow conveyor belt control.

30

All system automation is controlled by the graphical user interface, Galaxie. This

program controls the high and low energy collection sequence, interfaces to the image

processing and materials characterization programs, and outputs the processed data to the

operator, producing an alarm if dangerous substances are detected. The software

development effort is discussed in Chapter 5.

31

Chapter 4. DPIB Hardware

The purpose of this chapter is to describe the hardware structure of the Differential

Pair Interface Board. The DPIB is described at the board level, analyzing the functionality

of each external functional block, and the logic level, describing the operation of each

module in the FPGA. The information in this chapter is intended to aid in the initial setup

and configuration of the DPIB by the end user, as well as a reference guide to a hardware

designer wishing to modify the internal logic. Although the discussion focuses on the

DPIB design for the x-ray imaging system, the re-configurable nature of the board

supports many data collection applications with minimal developer effort. The re-

configurability of the DPIB is explored in Section 4.4.

4.1 Design Overview

The decision to discard the AS&E system electronics created the need for the

development of new hardware to collect data from the AS&E pre-amplifier boards and

transfer the data to the PC. The new hardware must meet the following design

requirements:

• Collect data from three input sources. Differential pair signals, with a bi-

directional data bus, are required. The data interface should be based on the

AS&E system protocol to simplify connection to the pre-amplifier boards.

• Multiplex data. The three input sources must be combined on a single output

bus and transferred to the PC.

• Control system components. Access must be provided to the conveyor belt

motor controller, the infrared sensors, and any other system devices that will

be controlled by the host computer.

• Interface to the PC. This interface will be used to access I/O ports to control

system components, and also to access image data.

32

• Programmability. Any system variables, such as timing signal parameters or

shading correction values, can be changed from the PC through IO ports.

• Flexibility. The hardware design, both at the board level and the logic level,

must be flexible and allow interfacing to other data sources, such as CCD or

linescan cameras. Designing a general purpose hardware device will increase

its applications and reduce development time and costs in other projects, by

eliminating the need to design specialized hardware.

To satisfy these requirements, the Differential Pair Interface Board (DPIB) was

created. The DPIB is designed to serve as a general purpose data collection device, as is

discussed in Section 4.4. It is based on a Xilinx XC4000 series Field Programmable Gate

Array (FPGA) chip. The FPGA can be re-programmed through the PC interface, allowing

the DPIB to be used for a variety of image processing and general data processing

applications. The flexibility of the DPIB continues at the board level to simplify

connection to different external data sources. A block diagram of the DPIB is shown in

Figure 4.1.

FPGA
(Xilinx PGA 223)

Channel A Channel B Channel C

Zee Output

 Differential Pair Signals

I
S
A

B
u
s

Memory
Bank

External
Signals

Figure 4.1 DPIB Block Diagram

33

The main processing unit of the DPIB is a Xilinx 4000 series FPGA. The FPGA is

a fully re-programmable computing resource consisting of Configurable Logic Blocks

(CLBs) and routing resources to connect the CLBs. The number of CLBs and their

propagation delay is determined by the family type, size and speed rating FPGA.

Each CLB uses two independent function generators (FG) to implement any

Boolean function of four variables. A third 3-input function generator is used to combine

the outputs of the two FGs with a third input from outside the CLB. Two edge-triggered

D-type flip-flops with a clock enable are also used as storage elements. The flip-flops can

be programmed to operate in synchronous or asynchronous mode and can be triggered on

either the rising or falling clock edge.

The DPIB uses a 223-pin PGA socket that can accept most FPGA chips in the

XC4000 family. The size and speed rating used on the DPIB is determined by the specific

application, rather than the architecture of the board. Smaller designs can use a slower,

smaller FPGA (such as the XC4005H), whereas large designs, such as the current AS&E

system design use larger, more expensive chips (XC4013). Table 4.1 lists some FPGA

chips that are compatible with the DPIB and their characteristics [XIL94a], [XIL94b].

Table 4.1 XC4000 Family FPGA chips accepted on the DPIB

FPGA type CLBs available Equivalent

Gates

Price

XC4005H 196 5,000 $266

XC4010E 400 10,000 $203

XC4013E 576 13,000 $393

XC4020E 784 20,000 $460

34

Communication with the external data sources is accomplished through the

differential pair channels. A 12-bit bi-directional bus and four output only control signals

are provided on each channel connector. The specific function of each pin on these

connectors is determined by the FPGA program and can be changed depending on the

current application. Also available on the DPIB are a memory bank for data storage and

an external signal interface. The latter provides access to TTL or other level signals that

can not be connected through the differential pair interface. Finally, the ISA interface

connects to the ISA bus of the host PC. It is used to upload the FPGA program during

initialization, or to communicate with FPGA I/O registers while the DPIB is in operation.

Image data can be transferred to the DPIB through this interface.

The Zee output connector is used to interface the DPIB to other image processing

hardware. The Zee bus was developed as a standard for inter-board communications by

Thomas Drayer and William King [DRA97b]. This bus can be used to connect the DPIB

to the MCPCI, for high-speed data transfers. The MCPCI accepts data from up to six

channels from a Zee connector. The data is de-multiplexed and then transferred to the

host PC using bus master direct memory access (DMA). The high throughput of the PCI

bus (up to 132 Mbytes/sec) [PCI93] compared to that of the ISA bus (up to 1 Mbyte/sec)

[EGG91] makes real-time system operation possible. The Zee output connector can also

be used to interface the DPIB to the MORRPH board (MOdular Re-programmable Real-

time Processing Hardware) [DRA97a]. The MORRPH is a general purpose, FPGA based

processing unit intended for real-time image processing. It can be used with the DPIB and

MCPCI in a variety of applications requiring real-time performance to collect data from

multiple input sources, process and transfer the data to a personal computer.

http://mustang.ee.vt.edu/morrph/morrph.html

35

4.2 Board Level Description

The structure of the DPIB may be divided into the following functional blocks:

a) data interface, which connects to the input data source, such as the

AS&E pre-amplifier boards,

b) Zee bus interface, which allows data processed by the DPIB to be

transferred to another device (MCPCI, MORRPH) for further

processing,

c) ISA interface, which provides communication with the host PC during

and after initialization of the hardware,

d) sensor signal interface, which makes external control signals available

to the DPIB, and

e) memory bank, which is used to store data compensation values for the

shading correction circuitry.

Each of these interfaces is discussed in further detail. A component location

diagram identifying the location of each connector and integrated circuit in the DPIB is

provided in Appendix A. The board level schematics of the DPIB are also included in

Appendix A.

The DPIB currently uses a 14.318MHz oscillator for the FPGA. The clock

frequency is determined by the FPGA speed and program, and can easily be changed by

inserting a new oscillator in the socket.

4.2.1 Data Interface

The data interface is a bi-directional data and control signal bus used to connect to

the image data source. The bus was designed using the AS&E pre-amplifier bus protocol

as a guide, although certain extensions have been made to allow for a wider variety of

input sources. The data interface uses RS-422 differential pair signals exclusively.

36

A total of twelve data bits and four control bits are available on each data interface

connector (J1, J2, and J3). The bi-directional data bus is used to receive image data and

transmit shading correction coefficients. A set of three DS26LS31 drivers and three

DS26LS32 receivers is used to convert between TTL level signals used on the DPIB and

RS-422 level signals used on each connector. When not used, the drivers are placed in

high impedance mode to prevent bus contention with the AS&E hardware. It should be

noted that, although the DPIB is configured for twelve bit operation, the current AS&E

system configuration can only accept eight bit data. The four higher order bits have been

used with other input data sources, such as B&W cameras.

The control bus is a unidirectional output bus. A single DS26LS31 driver is used

for each group of control signals. The output enable pins of these drivers are hardwired

and can not be used to select high impedance mode.

A set of resistor network packs is used with each data bit to allow impedance

matching between the DPIB and the input data source. Some data sources require the use

of termination resistors for noise reduction and line balancing. The resistor SIPPS should

remain empty when using the AS&E system, since termination resistors are provided on

the sending end.

The data interface bus is physically available through a 50-pin polarized protected

header. The pin assignment for this connector is shown in Figure 4.2. The polarity of the

lower eight data bits, as well as the polarity of the control signals, is determined by the

AS&E protocol. The change in polarity in the /RD signal (pins 31 and 32) is not a

typographical mistake, but rather the choice made by AS&E in the pre-amplifier board

connectors.

37

Figure 4.2 Data Interface Connector signal locations

4.2.2 Zee Bus Interface

The Zee bus was developed by Thomas Drayer and William King as a standard bus

for inter-board communication in an image processing system [DRA97b]. It is a

unidirectional, synchronous, 16-bit bus with an 8-bit data bus. The Zee bus connector on

the DPIB is used for communication with either the MCPCI board, to transfer image data

to the host PC via the PCI bus, or the MORRPH board, for real-time processing of the

data before transferring it to the PC. All Zee bus signals are buffered through two

74LS245 data buffers (U5 and U6).

The pinout of the 40-pin, polarized Zee bus connector (J4) is shown in Figure 4.3.

The lower eight bits are the data bus. The higher eight bits constitute the control bus,

Pin Name Function

DATA[11:0] Data Bus

/LE Latch enable

/EN Driver Enable

SH Sample & Hold

/RD Convert

NC No Connection

DATA8+

DATA9+

DATA10+

DATA11+

/LE+

DATA0+

DATA2+

DATA1+

DATA3+

DATA4+

DATA6+

DATA5+

DATA7+

SH+

/EN+

/RD-

DATA8-

DATA9-

DATA10-

DATA11-

/LE-

DATA0-

DATA2-

DATA1-

DATA3-

DATA4-

DATA6-

DATA5-

DATA7-

SH-

/EN-

/RD+

1 2

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

4

6

8

10

NC

NC

NC

NC

NC

NC

NC

NC
41 NC
43 NC
45 NC
47 NC
49 NC

42

44

46

48

NC

NC

NC

NC
50NC

http://mustang.ee.vt.edu/morrph/morrph.html

38

used for synchronization and transfer of Zee bus commands. All signals are valid during

the high portion of the clock. The channel select bits, CSEL[0:2], are used to determine

which channel is currently being transferred. The command bits, CMD[0:2], are used to

indicate a line start, a line end, or a marking cycle (a cycle during which nothing happens,

there is no valid data on the bus, nor is a Zee command being issued). Finally, the DV bit

is used to indicate valid data. The data bus should be sampled only when DV is high.

Zee Bus commands used

Figure 4.3 Zee bus signal locations and commands

4.2.3 ISA Interface

The ISA interface is used during initialization to program the Xilinx FPGA, but

also while in operation, to access registers connected to the luggage sensors and the

conveyor belt motor. The interface is based on an Altera EP324 EPLD and was

developed by William King for use on the MORRPH-ISA board. It has been modified by

the author to use the IORDY signal on the ISA bus [EGG91]. It was experimentally

observed that on some faster motherboards FPGA programming would occasionally fail.

The timing of two consecutive ISA write cycles is faster than the time required for an

DATA0

DATA2

DATA1

DATA3

DATA4

DATA6

DATA5

DATA7

1

2

3

4

5

10

11

12

13

14

15

16

17

18

19

20

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

22

23

24

25

21

6

7

8

9 CLOCK

CSEL1

CSEL0

CSEL2

CMD0

CMD2

CMD1

DV

NC

NC

NC

NC

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

if DV = 0

CMD = 000 marking cycle

CMD = 010 line start

CMD = 011 line end

If DV = 1

CMD = 100 valid 1 byte data

CMD = 101 valid 2 byte data

39

FPGA cell to be programmed and would result in data loss. By connecting the

RDY/BUSY line of the FPGA to the ISA IORDY signal, bus activity is suspended until

the FPGA cell has been programmed.

The ISA interface provides access to the DPIB through three consecutive ISA

ports: the address port, data port, and the program port. The address port holds the

address of the DPIB register to be accessed. The lower five bits of the address port are

used, allowing access to a total of 32 registers on the FPGA. The data port is used to

hold the data written to or read from the DPIB register. Finally, a write to the program

port selects the re-program line on the FPGA. This erases the current FPGA

configuration and prepares it to be re-programmed, possibly for a different application.

The operation of the ISA interface is summarized in Table 4.2 below. The ISA base

address of the DPIB is determined by the EPLD and can not be changed, unless a new

EPLD is used. The current base address is set at 0x0304.

Table 4.2 ISA Interface port description

To properly control the DPIB, the desired FPGA port address must first be written

to the address port, regardless of whether a read or write operation will be performed.

The ISA interface then performs a mapping of the contents of the address port to the

address select lines of the FPGA. The programmer can access the FPGA port by either

reading from the data port, which will return the data contained in the FPGA, or writing to

the data port, which will transfer the data to the FPGA register. Any port operation,

Port Offset from base ISA Description

address (W) 0 Address of FPGA port to access, only lower 5 bits are

used

data (RW) 1 Data read from or written to port

program (W) 2 Re-program FPGA, only bit 0 used

40

therefore, will take two ISA cycles to complete: a mandatory write cycle, followed by a

read or write cycle.

4.2.4 Sensor Signal Interface

The Sensor Signal Interface (SSI) is used to control outside devices, such as the

conveyor belt, and return information to the DPIB, such as luggage sensor information, or

chopper wheel synchronization signals. The SSI uses a 9-pin female D-sub connector

(J5). The signal assignments on the connector are shown in Table 4.3.

All signals coming into the DPIB pass through a potentiometer and a 74LS245

buffer (U7) before entering the FPGA. The potentiometer is used to lower the voltage of

certain incoming signals (such as the chopper wheel synchronization pulses) to appropriate

TTL levels. Any signals exiting the DPIB, such as the conveyor belt control signals, pass

through a relay, to isolate the board from the external device.

Table 4.3 Signal assignment on SSI connector

Pin Description

1 Wheel sync signal

2 Slot sync signal

3 Common ground

4 Relay input for conveyor reverse

5 Relay input for conveyor forward

6 Front infra-red sensor

7 Rear infra-red sensor

8 Relay output for conveyor reverse

9 Relay output for conveyor forward

41

4.2.5 Memory Bank

The memory bank of the DPIB is used to store a look-up table of shade

compensation values. In the current system configuration, shading correction is

performed by the pre-amplifier board using DPIB supplied offset values. The same

memory bank may be used to hold correction coefficients for digital shading correction,

performed on the DPIB.

There is one memory slot for each data interface, configured to use MCM6264

8Kx8 static RAMs [MOT92]. Due to the limited number of pins available on the FPGA,

the three memory chips share a common address and data bus. The output enable lines of

the memory ICs are used to access an individual memory bank and prevent bus contention.

4.3 Logic Level Description

This section describes the internal FPGA logic at the gate level for the prototype

system design. Some of the modules discussed here are specific to the AS&E system and

the digitizing pre-amplifier boards, but most modules can be re-used in a variety of

designs. The schematics for the AS&E design are available in Appendix B.

To facilitate the design of the DPIB and to have access to an extensive library of

commonly used components, the MORRPH Development System (MDS) was used to

compile this design [DRA97b]. MDS is a collection of software tools and hardware

libraries developed by Thomas Drayer for image processing applications. MDS modules

exist on several levels and are flattened by the MDS and Xilinx software. For example, an

ADDER module would require the following components:

• ADDER symbol, used on the top level schematics with other MDS modules.

Typically accepts and outputs data in SUIT bus format [DRA97b].

42

• ADDER schematic, which connects the ADDER symbol input signals and the

common clock and reset lines of the MDS design to the XADDER symbol.

Buses for FPGA IO registers also connect to the ADDER symbol here.

• XADDER symbol, which contains the actual XADDER schematics.

The MDS multi-level architecture is shown in Figure 4.4.

An FPGA register is automatically created by the MDS using the Architecture

Configuration File (.ACF) (see Section 4.3.9). Any pre-existing MDS modules are only

discussed briefly in this thesis. For a more detailed analysis of MDS, please refer to

[DRA97b].

ADDER

XADDER

DFF

CLOCK

XADDER schematic

SUIT IN SUIT OUT

CLOCK
RESET

SUIT IN SUIT OUT

IOREG0
IOREG1

TOP LEVEL
(SUIT Modules)

LOW LEVEL
(Logic Gates)

INTERMEDIATE
(SUIT Schematics)

Figure 4.4 MDS Multi-level Architecture

43

4.3.1 Data Interface Connector Modules (ACON, BCON, CCON)

The purpose of the ACON, BCON, and CCON modules is to interconnect the

FPGA to each of the data interfaces. There is no processing performed in these modules,

only a mapping of signal nets to Xilinx FPGA pins. Each outgoing signal passes through

an output buffer (OBUF) and then connects to a pad (PAD). Each incoming signal

connects to a PAD and then an input buffer (IBUF). Tri-state buffers are used with the

data bus, to allow bi-directional data transfer. Due to an error in the early documentation

of the AS&E pre-amplifier boards, which mislabeled the polarity of the signal connectors,

the incoming data bits must be inverted.

4.3.2 Zee Bus Connector Module (MCON)

The MCON module connects the FPGA to the Zee bus connector. All signals to

the Zee bus are registered to guarantee that they will remain unchanged during the high

portion of the clock.

4.3.3 Sensor Signal Connector Module (DCON)

The DCON module is used with to pass sensor signals into the FPGA, and output

control signals through the Sensor Signal Interface connector. Unlike the previous

connector modules, there is some signal conditioning performed.

The chopper wheel synchronization pulses and the infrared sensor signals are

registered through a D flip-flop (INFF), to meet the setup and hold times of any circuitry

using these signals. The chopper wheel signals are used in the data collection process,

whereas the beam-break sensor signals are connected to an ISA port for use with the

control software. There are two infrared sensor bits, one for the front and one for rear

beam-break devices. These bits are set when the beam path is clear, and are reset when

the path is interrupted.

44

The conveyor belt control signals pass through DCON and are connected directly

to the 74LS245 buffer and then the relays. These signals need not be registered, as they

are obtained directly from a registered ISA port.

4.3.4 Control Signal Generator (CONTROL)

The CONTROL module generates all timing signals required by the AS&E pre-

amplifier boards. Its inputs are the chopper wheel signals, available from DCON. Its

outputs are: a) WHLSIGS, the processed wheel signals, b) SIGS, the AS&E timing

signals passed to the back scatter and forward scatter detectors, and c) FASTSIGS, the

faster control signals used with the transmission detector. The vertical resolution of the

transmission image must be twice the resolution of the back scatter and forward scatter

images. The frequency of the transmission control signals is therefore doubled.

4.3.4.1 Control Signal Generator Sub-module (XCONTROL)

The lower level XCONTROL module accepts nine 8-bit data values, which are

used to generate the timing pulses. Although they are currently hardwired and defined at

compile time, an FPGA port may be used to dynamically program these values. The cost

of such a design is increased utilization of FPGA resources.

The XCONTROL module also accepts two 10-bit values: NUMPIXF, which is

the vertical resolution of the transmission image, and NUMPIXS, which is the resolution

of the back scatter and forward scatter images. Due to the nature of the pixel counting

circuitry, the resultant image size is actually less than these values by one pixel.

Therefore, for an image resolution of 450 pixels, these values should be set to 451.

4.3.4.2 Function Generator Sub-module (SIGGEN2)

The SIGGEN2 module is used to generate pulses with programmable period and

duty cycle. It uses three 8-bit input variables (LTIME, HTIME, RERIOD) to determine

45

the pulse shape. This module is composed of an 8-bit counter, three 8-bit comparators

and a flip-flop. The counter is used to count clock pulses.

The output of the SIGGEN2 module is low until LTIME pulses have been

counted. Once the LTIME count is reached, the output goes high and remains so until

HTIME pulses are counted. The output then falls and stays low until PERIOD is

reached, at which time the circuitry is reset and the cycle is repeated. The relationship

between the input values and the output waveform is shown in Figure 4.5. The SIGGEN2

module is also equipped with an output enable signal EN. When this signal is low, there is

no output from the SIGGEN2 module.

Figure 4.5 SIGGEN2 output waveform

A SIGGEN2 module is used for each AS&E timing signal. Since there are three

pre-amplifier boards with four control signals per board, a total of twelve modules should

be used. However, because the resolution and chopper wheel timing of the forward

scatter and back scatter images is equal, the same timing signals can be used for these

detectors. As a result, only eight SIGGEN2 modules are required. Their outputs are

combined in the CSIGSFAST and CSIGSNORM buses, and are output from the

CONTROL module.

The output waveform of the SIGGEN2 module depends on the clock frequency of

the design, as well as the value of the input variables. For a circuit operating at frequency

f, and for low, high and period times of Thigh, Tlow and Tperiod respectively, the

corresponding input values can be determined from the following equations:

LTIME

HTIME

PERIOD

46

PER
T

f
period

= (Eq. 4.1)

LTIM
T

f
low= (Eq. 4.2)

HTIM
T LTIM f

f
high

=
+ ⋅

(Eq. 4.3)

The values used with the 14.318 MHz DPIB oscillator are shown in Table 4.4.

The resultant timing signals is shown in Figure 4.6, and their timing values are shown in

Table 4.5. The function generator output is enabled only during the collection of a line.

Once the target line width has been reached, the SIGGEN2 output is disabled until the

collection of a new line.

Table 4.4 Timing values for CONTROL module

Variable Value (hex)

PERIOD 70

LTIM_EN 6C

HTIM_EN 70

LTIMSH 50

HTIMSH 52

LTIM_LE 5E

HTIM_LE 5F

LTIM_RD 59

HTIM_RD 70

47

Figure 4.6 Pre-amplifier board timing diagram

Table 4.5 Pre-amplifier signal times

tPER

tEN1

tSH1

tSH2

tLE2

tLE1

tRD2

tRD1

/EN

SH

/LE

/RD

Variable Transmission Time (µµs) Forward and Backward

Scatter Time (µµs)

tPER 15.64 31.28

tEN1 15.09 30.18

tSH1 11.17 22.34

tSH2 11.45 22.90

tLE1 13.13 26.26

tLE2 13.27 26.64

tRD1 12.43 24.86

tRD2 15.64 31.28

48

4.3.4.3 Variable Hysteresis Sub-Module (VARHYST)

Another function contained in the CONTROL module is the conditioning of the

chopper wheel synchronization signals. Because these are TTL signals traveling a long

path, they are prone to line noise and ringing. A VARHYST module is used to perform

hysteresis on these signals.

The module uses a programmable 4-bit value to determine how many clock cycles

the input signal must stay valid for the output state to change. The output of the

VARHYST module maintains its old value until HYSTVAL clock pulses have been

counted and the input signal has remained stable. The objective is to filter any glitches in

the input signal, which would reset the system logic and erroneously start the collection of

a new line. The processed chopper wheel signals are output on the WSIGS bus, which is

explained in Table 4.6.

Table 4.6 WSIGS bus description

4.3.5 AS&E format to SUIT format conversion (ASE2SUIT)

The purpose of this module is to synchronize the collection process, and output

incoming data in SUIT bus format. The SUIT bus is used at the top level of the DPIB

design for compatibility with the MDS, and to allow access to MDS library components.

The ASE2SUIT module has three input buses. It connects to a DCI Module

(ACON, BCON, CCON) for access to the pre-amplifier board signals. It also connects to

Net Name Description

WHLSIGS0 Slot sync pulse, after hysteresis and one-shot

WHLSIGS1 Wheel sync pulse, after hysteresis and one-shot

WHLSIGS2 Slot sync pulse, hysteresis only

WHLSIGS3 Wheel sync pulse, hysteresis only

49

the CONTROL module to obtain timing pulses (SIGS bus) and processed chopper wheel

signals (WHLSIGS bus). It only has one output, which is in 16-bit SUIT format.

4.3.5.1 AS&E to Suit Conversion Sub-module (XASE2SUIT)

The ASE2SUIT module connects to the pre-amplifier data bus to either output a

shading correction value, or input image data. The /EN signal is used to toggle the data

bus direction. When /EN is low, the AS&E system is in output mode and is driving the

differential pair bus. The DPIB then reads the digital pixel value. At all other times, the

DPIB is driving the bus and is transmitting the shading correction value.

A state machine is used to enable the differential pair drivers on the DPIB and

AS&E system and avoid bus contention. Simply using the /EN pulse to disable the AS&E

drivers and an inverted /EN to enable the DPIB drivers would result in brief periods of bus

contention. The EN pulse would turn on the DPIB drivers quickly, but would not have

propagated to the AS&E drivers to place them in high impedance. To avoid this situation,

a separate pulse is used on the DPIB and the AS&E. The DPIB drivers are first placed

off-line using the DRVEN signal. The output enable (/EN) is transmitted to the AS&E

two clock cycles later. Similarly, a two clock cycle delay is allowed between the signal to

disable the AS&E drivers and before the DPIB drivers are enabled. The operation of the

state machine is illustrated in Figure 4.7.

50

4.3.5.2 SUIT bus command generation

The ASE2SUIT module generates the necessary SUIT bus commands and data.

The data portion of the bus is simply the incoming data bus from the AS&E system. The

data is registered to assure stability during the active portion of the clock.

The SUIT bus commands are generated by a 4x8 multiplexer, which selects from

one of the following options: marking, start of line, end of line or valid data. A valid

data command is issued one clock cycle after the DPIB RS-422 receivers are enabled.

The one cycle delay is generated by a one-shot and allows for signal propagation on the

DPIB-AS&E connection. An end of line is signaled at every occurrence of the chopper

wheel reset pulse. The same pulse, delayed by two clock cycles, is used to indicate the

start of a new line. Any clock cycle where none of these conditions are met selects the

marking command.

The chopper wheel reset pulse (WHLRST), instead of the slot synchronization

pulse (SLOTSYNC) is used to start a new line. This results in a line of data that is four

times wider than the programmed width, and contains image information from all four

/EN

DRVEN

RCVEN

DPIB drivers ON
ASE drivers OFF

DPIB drivers OFF
ASE drivers OFF

DPIB driversOFF
ASE drivers ON DPIB drivers OFF

ASE drivers OFF

Figure 4.7 Differential bus arbitrator state machine

51

slots combined. Each slot information must be extracted on the PC. The purpose of using

the wheel reset pulse is to simplify the shading correction software. To correct for the

non-uniformity between the different chopper wheel slots, there must exist a method of

identifying the starting slot on a collected image. A solution would be to use a command

to start collection on the DPIB. However, this approach would significantly complicate

the DPIB and the MCPCI logic, as they are both designed for real-time operation. Using

the WHLRST pulse, a line of data always starts with Slot 1 and is followed by the other

three slots. Extracting image information only requires changing the file header, an

operation that can be performed very quickly in software.

4.3.6 SUIT bus multiplexer (MULTIPLEX, MULTIPLEX4)

The SUIT bus multiplexer is a standard library component of the MDS. It is used

to combine two SUIT buses on a single output bus. The module is used in the DPIB to

multiplex the outputs of the three ASE2SUIT modules onto a common bus for output to

the Zee connector.

The multiplexer includes a memory element (FIFO) for each incoming bus. A

SUIT bus command, other than a marking cycle, is first stored in the FIFO. The data

available flag of each FIFO and a priority arbitrator are then used to transfer data to the

output. Any data on the first FIFO is transferred on each consecutive clock pulse, until

that FIFO is empty. The second FIFO data is then transferred. If both FIFOs are empty, a

marking cycle is issued on the SUIT bus.

The standard FIFO depth of a multiplexer module is three. Experimental results

showed that a standard MULTIPLEX module was insufficient for the final stage

multiplexer and caused data drop-out, demonstrated by very bright pixels in the output

image. A larger multiplexer module (MULTIPLEX4) was therefore used to correct the

problem.

52

4.3.7 Suit to Zee bus conversion (SUIT2ZEE_SLOW)

The SUIT2ZEE_SLOW module is a modified version of SUIT2ZEE, an MDS

library component. It is used to convert the SUIT bus format to a clocked Zee bus,

suitable for output to other hardware. The SUIT bus is used for board level designs and

uses a common system clock. The Zee bus is used for inter-board communication and

adds a clock to the bus specification [DRA97b].

The SLOW qualifier was added to the module name to indicate that the speed of

the Zee bus clock is actually half of the DPIB logic clock. Operating at 14.318MHz, the

DPIB was transmitting data at 7.5MHz. This can cause problems with the MCPCI board,

which uses a 16MHz oscillator, but samples at 8MHz. Therefore, the Zee clock was

reduced to 3.25MHz to ensure reliable data transmission, achieving a data rate of 3.25

Mbytes/sec. The DPIB and MCPCI data rates will improve significantly when printed

circuit board (PCB) versions are manufactured (both boards currently exist only in wire-

wrap format).

4.3.8 Self-test (CHECK)

The CHECK module is used to verify the operation of the FPGA after it has been

configured. It is accessible through three FPGA registers: a write and read register pair,

use to write and read back a value, and a read-only register which should always return

the same check value (0x05a). It is recommended that these ports be read after FPGA

programming to verify that the operation was completed successfully.

4.3.9 Control Registers

The ISA ports available to the host computer are created by the MDS using an

Architecture Configuration File (ACF). The header of the ACF file used in the DPIB

design is included in Appendix B. A list of IO registers available on the DPIB and their

addresses is shown in Table 4.7.

53

Table 4.7 DPIB port locations and description

4.4 Other DPIB Applications

The discussion of the DPIB has so far concentrated on the its application to the

explosive detection system. The overall design of the hardware, however, is intended to

allow for the DPIB to operate as a general purpose data collection device with any

hardware that utilizes differential pair signals. A recent application where the DPIB was

used to collect image data from B&W cameras is briefly discussed here.

Using the DPIB with a different source must be addressed at two levels: the board

level, where the physical connection between the DPIB and the source is established, and

the logic level, where hardware modules are created to control the source and retrieve

data.

At the board level, the DPIB is equipped with three 16-bit busses, each with

twelve bi-directional bits and four output only signals. This allows for 8-bit data transfers

with eight control bits, or 12-bit transfers with four control bits. The on-board 50-pin

Port Name Module Address Type Bits Description

OUT CHK1 0 R 7:0 Check port, read back port 1

IN CHK1 1 W 7:0 Check port

CVAL CHK1 2 R 7:0 Check port, always 5A

CORVAL ASE1 3 W 7:0 Correction value to pre-amp

CORVAL ASE2 4 W 7:0 Correction value to pre-amp

CORVAL ASE3 5 W 7:0 Correction value to pre-amp

CBUS DCON 6 W 0 Conveyor forward

CBUS DCON 6 W 1 Conveyor reverse

CBUS DCON 7 R 2 Infra-red sensor, front

CBUS DCON 7 R 3 Infra-red sensor, rear

54

connectors were chosen to allow expandability. In the case that the input source uses a

different size connector, or a different pin assignment, a passive break-out board can be

quickly constructed to convert to the different format. This is illustrated in Figure 4.8.

The modular nature of the FPGA logic allows for easy modification of the existing

design. The primary purpose of the DPIB is to multiplex data sources on a single output

bus. The current design serves as an excellent basis for further development. A new

design can simply replace the ASE2SUIT module with one configured to convert the new

source data to the SUIT bus format. The rest of the design remains unchanged.

The re-configurable nature of the DPIB was recently explored in another research

project. Dalsa 9200 series black and white cameras were used for image collection of

hardwood lumber. These cameras use an 8-bit differential signal bus, with an additional

four control bits. The signals are available on two 20-pin protected header connectors.

The DPIB was used with an external break-out board that accepted 50-pin ribbon

cables from the DPIB and two 20-pin ribbon cables from each camera. These connectors

were wired to move Dalsa pin assignments to the appropriate pins on the DPIB

connectors. A new module, DALSA2SUIT (Appendix B) was created to convert Dalsa

Camera
 Power

50-pin Ribbon Cable

DPIB

20-pin

20-pin

Camera 1

Camera 2

Camera 3

Figure 4.8 Break-out board example

55

data to SUIT bus format. The only change to the current design was the replacement of

the ASE2SUIT with the DALSA2SUIT module.

56

Chapter 5. Software

This chapter describes the software developed for the prototype system. The

Windows NT device drivers that provide access to the hardware, the system utilities and

the user interface are presented. The source code for the software developed is included

in Appendix C and Appendix D.

5.1 Overview

The software development effort is divided into three areas: device drivers,

graphical user interface and system utilities.

Device drivers were developed to control the custom hardware. Windows NT is a

sophisticated, multi-tasking operating system where applications are executed in protected

mode. Functions commonly used to access hardware ports have no effect under Windows

NT, as allowing an application control of system devices would jeopardize the stability of

the operating system. Therefore, hardware ports can only be accessed through device

drivers. The drivers developed here were written for the DPIB and MCPCI, but are very

portable and can be used to control many other ISA or PCI devices. There is very limited

literature available on developing Windows NT device drivers for PCI hardware, and the

source code and documentation provided here will greatly reduce development time and

effort for future programmers.

The graphical user interface (GUI) was developed as the front-end of the entire

system. It is designed to accomplish the following tasks:

• automate the data collection process by controlling the AS&E and custom

hardware,

• interface with the image processing software that performs materials

characterization and explosives detection,

57

• analyze and combine the output of the processing software,

• present the results to the system operator in an easy to understand, graphical

form, and

• alert the operator if explosives are detected in the luggage.

The GUI provides the operator with enough functions to assist in identifying the

contents of the luggage, but eliminates screen clutter and repetitive user input by

automating the collection process.

System utilities were written to access the custom hardware (program the FPGA

chips, or collect data from the MCPCI into main memory), and also to display black and

white or color images under the Windows operating system. These utilities can be

executed either manually by the user, or through the graphical user interface.

Configuration files or command line options are used to set run-time parameters for each

application. Using separate utilities, instead of incorporating all the functions into a single

program, reduces the code size of the GUI and assists in code maintenance. Furthermore,

memory requirements are reduced, since the application is executed only when necessary,

and is unloaded from memory when not in use. Finally, debugging and upgrading can be

performed on the source code of the utility, rather than the source code of every

application that, for example, programs the FPGA chips.

The functions necessary to access the device drivers were grouped into the

hardware.h function library. The functions used to control the automated prototype

system were grouped in sensor.hpp. Creating libraries of commonly used functions allows

for code re-usability and maintenance, and also simplifies documentation.

58

5.2 Device Drivers

To allow access to the two custom hardware boards two device drivers were

developed for this research project: PCIDMA.SYS, which is used with the MCPCI, and

DPIB.SYS, which is used with the DPIB.

Any system level development for Windows NT requires the Windows NT

Software Developer’s Kit (SDK) [SDK96], and the Device Driver’s Kit (DDK) [DDK96].

They are available through an annual subscription service from Microsoft Corporation,

and are updated quarterly. These tools provide libraries and documentation for the

development of system level drivers.

The drivers developed for the MCPCI and the DPIB are kernel mode drivers and

bypass all operating system functions. They have full access to Windows NT Ring 0, the

lowest level functions of a PC. Figure 5.1 shows a diagram of how hardware devices are

accessed in Windows NT. The application, which runs in user mode (restricted access),

passes information to the driver through an I/O Request Packet (IRP). The IRP contains

the device driver path (name of device driver), and the I/O Control Code (IOCTL), which

is used to identify the function that the driver must perform. Also included in the IRP are

any values that will be passed to the device driver, such as the port address or data value.

The IRP is passed to the NT I/O Manager through the DeviceIoConrtol function. The I/O

Manager is part of the Windows NT kernel and handles device drivers as file objects that

can be opened, read from or written to, and closed. The final level between the hardware

and the NT kernel is the Hardware Abstraction Layer (HAL). The HAL exports routines

that abstract platform-specific hardware details about caches, I/O buses, interrupts, etc.,

and provides an interface between the platform's hardware and the system software

[DDK96]. The HAL communicates with the hardware device and returns any information

to the device driver. That information is passed back to the application by the I/O

Manager through the IRP. For a further analysis of the Windows NT device driver model,

please refer to [DDK96].

59

5.2.1 Common driver functions

There are some functions that are common to all device drivers. These are used by

the operating system during startup, and to dynamically load and unload a device driver.

They are as follows:

• DriverEntry: this is the “main” function of the device driver and is executed

upon startup. It initializes the driver and provides the operating system with a

pointer to the device object data structure. It also informs the operating

system of the location of the Dispatch routine. The return code of

DriverEntry is used to determine whether the device driver was loaded

successfully.

• Dispatch: when a request is made to a device driver by a user program, the

operating system passes the request to the driver in the form of an IRP (I/O

Request Packet) structure. It is the purpose of this routine to determine

whether the IRP contains a valid request and, if so, execute the appropriate

function to handle the request.

• Unload: this function is executed when a request is made to dynamically

unload the driver from memory. Although the earlier releases of Windows NT

(versions 3.5 and lower) required that the system be restarted to unload a

IRP

Driver Path

IOCTL

Parameters

Return value(s)

Application
(User Mode)

Kernel Mode

I/O Manager

Device Driver

HAL

Hardware

IR
P

DeviceIOControl

Figure 5.1 Hardware access through a device driver

60

device driver, drivers can now be dynamically loaded through the “NET

START” command, and unloaded with the “NET STOP” command. This

routine is called when a “NET STOP” request is made. Here, any memory

must be released, and the device driver object deleted.

5.2.2 Installing and starting a device driver

The executable file of a Windows NT device driver is appended the .SYS

extension by the compiler. In order for the driver to be loaded when the operating system

starts up, two requirements must be met:

a) the executable file must be placed in the Windows NT driver directory,

commonly \Winnt\System32\Drivers, and

b) a registry entry must exist for the device driver. The entry must have the same

name as the driver executable (without the .SYS extension) and should be

located in \System\CurrentControlSet\Services\<DriverName>. This field

must be placed in the HKEY_LOCAL_MACHINE key of the NT registry.

The Windows NT registry is a database of configuration entries for system and

applications settings. It can be viewed using the regedt32 utility. Manual changes to the

registry can only be performed by the system administrator and are highly discouraged. A

simple error in the registry hive can cause catastrophic system failure. Instead, an

initialization (.INI) file is provided with each device driver. Changes to the registry are

made with the regini utility, available with the SDK. Executing regini <ini filename> will

update the system registry with the fields provided in the .ini file.

An initialization file contains certain values used by Windows NT to determine the

type and parameters of the device driver. An explanation of these values is available in the

DDK. The only .INI entry of interest in this discussion is the Group entry. Windows NT

maintains a group order list, which determines the order in which device drivers are

61

loaded. This list is stored in the system registry, under

\System\CurrentControlSet\Control\ServiceGroupOrder. The Group entry is an

alphanumeric string identifying the group of the device driver. At system start-up, the

order list is examined and the device drivers belonging to the first group are loaded. The

other groups follow in order, until all drivers are loaded. The purpose of the group order

list becomes apparent in Section 5.2.3.3.

5.2.3 PCIDMA.SYS - A device driver for the MCPCI

The MCPCI is a sophisticated bus master DMA device residing on the PCI bus. It

is used to collect data from a single Zee bus connector and transfer the data to the host

computer using direct memory access (DMA). The incoming data stream may contain

information from up to six sources, identified by the channel select lines of the Zee bus

(please refer to Chapter 4 for a more detailed analysis of the Zee bus). The MCPCI

reconstructs the data and separates each channel, then stores the values on the on-board

memory bank. When enough data is received, the MCPCI initiates a DMA transfer and

places the image data from on-board memory onto system (PC) memory. This operation

is performed transparent to the PC and without any CPU intervention. Each of the six

incoming streams is placed on a separate block of system memory. The beginning address

of the memory blocks is loaded on the MCPCI by collection utility.

As with any PCI device, the MCPCI is completely software configurable and

supports Plug-n-Play configuration. The I/O address and interrupt line used by the

hardware is determined by the operating system at boot time. The MCPCI also requires

the allocation of a large DMA memory buffer under Windows NT. These features make

the MCPCI driver very sophisticated and complex. At the time of this writing, there were

no source code samples for a PCI bus master DMA device in the Windows NT DDK.

62

The MCPCI driver, named PCIDMA, supports the following functions: accessing

IO ports for reading or writing, mapping and un-mapping the DMA buffer memory into

user memory space, and also returning the physical address of the DMA buffer to the

application. A chart illustrating these functions is shown in Figure 5.2. The IRP is passed

to the device driver and is checked to ensure that it contains a valid IOCTL. If so, the

IOCTL is decoded and the appropriate function executed. The results are placed in the

IRP. A read or write port operation also performs range checking, to ensure that the

relative port address passed through the IRP is actually on the MCPCI. Any data is

passed from the device driver to the IRP and returned to the application layer.

The PCIDMA driver consists of the following files:

• pcidma.c: the source code of the device driver

• pcidma_dev.h: contains the device driver data structure

Application

Valid
Code? Return Error

Decode

Read
Port

Write
Port

Map
Address

Unmap
Address

Return
Physical Address

Within
range?

Within
range?

Perform
Mapping

Perform
Unmapping

Get
Address

Return Error

Place data in IRP

IRP

NO

NONO

Application

Device Driver

YES

YES

YES

IRP

Figure 5.2 PCIDMA Function Chart

63

• pcidma_ioctl.h: contains driver and device constants (vendor and device ID,

and DMA buffer size), as well as I/O Control Codes (IOCTLs) for the device

driver.

The source code of the PCIDMA driver is included in Appendix C.

5.2.3.1 PCIDMA function overview

This section provides an overview of some major PCIDMA driver functions. A

flowchart illustrating the initialization process of the PCIDMA is shown in Figure 5.3. For

further detail, please examine the source code or consult the NT DDK.

ProbePci

This function scans the PCI bus and locates all the MCPCI boards. The board is

identified by its unique vendor and device ID numbers, which are included in the

pcidma_ioctl.h header file. If a MCPCI board is found, a device for it is created.

Scan PCI Bus

Found?

Obtain Driver Resources

Configure MCPCI

Exit
No

Yes

Create NT structures

Allocate DMA Buffer

Figure 5.3 Flowchart of PCIDMA Initialization

64

CreateDevice

Creates a Windows NT device for a MCPCI board. First, a symbolic link is

created so that applications can access the device driver. Then, the Windows NT

Hardware Abstraction Layer (HAL) is notified of the device, and the appropriate

resources are reserved. This includes I/O ports and interrupts, as well as certain Windows

NT constants for a bus master device. The former are defined in the device description

structure (devDesc).

The DMA memory buffer is also allocated in this section. The maximum specified

buffer size (included in pcidma_ioctl.h) is requested as a contiguous memory block. The

MCPCI does not support scatter and gather, i.e. dividing the DMA buffer into smaller,

distributed blocks of memory. If memory allocation succeeds, the physical address of the

buffer is returned. Otherwise the function fails.

ServiceInterrupt

This routine is called when the interrupt assigned to the MCPCI occurs. Since the

interrupt might actually be shared with other devices, this function should check to

determine if the MCPCI device actually caused this interrupt. If the interrupt is not from

the MCPCI, the function should simply exit. The system does not currently support

interrupts, therefore this function simply returns to the caller without making any changes.

PPciDmaIoctlReadPort

This function reads a MCPCI port. It is called through the Dispatch routine

following an application request. There are three types of read operations supported:

byte, word and double word. The appropriate IOCTL code (READ_PORT_UCHAR,

READ_PORT_USHORT, or READ_PORT_ULONG) determines which type read will

occur. The port address passed to the function is actually the relative board address. The

base address of the MCPCI is assigned by the CreateDevice routine and is not known to

the application.

65

PPciDmaIoctlWritePort

Similar in operation to PPciDmaIoctlReadPort, this functions writes a value to an

I/O port. A byte, word or double word can is written, depending on the IOCTL code

used.

PPciDmaReturnMemoryInfo

Returns the DMA buffer physical address to the caller. This value is used to

program the MCPCI address registers with the appropriate start address for each channel.

From the device and the device driver point of view, the buffer is simply a large memory

pool. A memory block is assigned to each MCPCI channel by the application. If some of

the six MCPCI channels are not used, the memory pool can be divided into fewer, larger

blocks. It rests with the application to ensure that the maximum DMA buffer size is not

exceeded. If incorrect values are written to the MCPCI address registers, data might be

transferred to memory that is in use by other programs or even the operating system,

causing the system to crash.

PPciDmaMapBuffer

Maps the DMA buffer address returned by PPciDmaReturnMemoryInfo into user

space. Windows NT is a protected operating system and the application memory space

may or may not reside in actual RAM. The memory addresses seen by an application are

“virtual” and are mapped to RAM by the operating system. The operation performed by

this function allows the calling process to access the DMA buffer, by bringing the DMA

buffer address space into application address space.

5.2.3.2 PCIDMA Installation

The initialization file for the PCIDMA.SYS driver is shown in Figure 5.4. It

should be installed in the registry by running the REGINI utility. Please consult

Section 5.2.3.3 for additional instructions on the installation of the PCIDMA driver.

66

Figure 5.4 PCIDMA.SYS initialization file

5.2.3.3 Memory allocation considerations

Certain applications using the MCPCI, such as multiple channel color image

collection, require a large DMA buffer to store image data. DMA buffer sizes can easily

reach 10-20 MBs. The Windows NT memory manager makes no effort to “create” a

contiguous memory block. If an area of the requested size does not exist at the time the

driver is loaded, the device driver will fail.

The only solution to locking a large memory block is to request it early during the

boot sequence, when most device drivers and no applications have yet been loaded.

Windows NT allows the user to specify the order in which device drivers will be started

through the ServiceGroupOrder list, maintained in the registry (please refer to

Section 5.2.2). As shown in Figure 5.4, the PCIDMA device driver belongs to the

“PCIDMA Driver” group. This group does exist on a typical Windows NT operating

system and must be added to the group order list.

The procedure for adding the PCIDMA driver group to the existing execution

order requires extreme caution and can only be performed by the system administrator, or

a user with administrative privileges. The steps to this procedure are:

1) Run the regedt32 utility and open the HKEY_LOCAL_MACHINE hive.

2) Descend to the \System\CurrentControlSet\Control\ServiceGroupOrder field.

3) Edit the entry value. It is a text string containing all the device driver group

names. The “PCIDMA Driver” line should be added right after the “Event

\Registry\Machine\System\CurrentControlSet\Services\PciDma

 Type = REG_DWORD 0x00000001

 Start = REG_DWORD 0x00000001

 Group = PCIDMA Driver

 ErrorControl = REG_DWORD 0x00000001

67

Log” driver (because a failure to load the device driver can only show up in the

event log if this driver is started) and before the network drivers. The registry

can then be saved and the system restarted.

5.2.4 DPIB.SYS - A device driver for the DPIB

The DPIB is based on the sample source code for a generic ISA device driver

(genport.h) provided in the Microsoft DDK. The DDK licensing agreement allows

developers to modify the samples provided and distribute the executable freely.

A chart illustrating each DPIB driver function is shown in Figure 5.5. The driver

only supports reading from or writing to an ISA port. The DPIB does not use interrupts

or DMA, therefore reducing the complexity of the DPIB driver. An IRP is passed from

the application to the device driver and is first checked to ensure that the IOCTL is valid.

If it is, the read or write function is called, depending on the IOCTL. Range checking is

Application

Valid
Code? Return Error

Decode

Read
Port

Write
Port

Within
range?

Within
range?

Return Error

Place data in IRP

IRP

NO

NONO

Application

Device Driver

YES

YES

YES

IRP

Figure 5.5 DPIB Function Chart

68

performed in both functions, to ensure that the ISA address is within the DPIB. The data

and a return code, indicating success or failure of the function, are placed in the IRP and

are returned to the application.

The files used for the DPIB driver are as follows:

• dpib.c: the source code of the device driver

• dpib.h: an include file that contains the device name, default base port and

address range, and the device structure.

• dpib_ioctl.h: contains the IOCTL codes for the DPIB.

The source code for the DPIB driver is also included in Appendix C.

5.2.4.1 DPIB function overview

DriverEntry

This DriverEntry routine differs from most, because it also notifies the HAL of the

device properties and IO address. The DPIB IO address is first read from the device

driver entry in the system registry. If there is no such entry, the default hard-coded value

is used. If the address requested is in use by another device, the driver is not loaded.

Although the EISA bus is backwards compatible with ISA peripherals, Windows

NT does distinguish between devices installed on EISA and ISA buses. Therefore, if the

DPIB is installed in an EISA bus, the device driver will be unable to access the hardware.

To operate the DPIB on an EISA system, the InterfaceType value in the ResourceList

structure must be changed from “Isa” to “Eisa”. The source code must then be re-

compiled and the new executable installed on the system.

69

DpibIoctlReadPort

Reads a DPIB port and returns the value to the IRP. A byte, word, or double

word may be accessed. This function performs boundary checking to ensure that the

address requested is actually a DPIB address. If the requested relative address exceeds

the port count of the DPIB (defined through the registry, or set to 3 by default), an error

code is returned.

DpibIoctlWritePort

Write to a DPIB port, similar to DpibIoctlReadPort. Boundary checking is also

performed for a write operation.

5.2.4.2 DPIB.SYS installation

To install the DPIB driver, execute REGINI and provide the initialization file

shown in Figure 5.6.

The DPIB driver allows the user to set the base address and port count of the

hardware through the registry. The two keys are available in the Parameters field of the

DPIB registry entry and may be modified using the REGEDT32 registry editor. Using

address ranges that are not handled by the DPIB can cause hardware conflicts or a system

crash.

Figure 5.6 DPIB.SYS initialization file

\Registry\Machine\System\CurrentControlSet\Services\Dpib

 Type = REG_DWORD 0x00000001

 Start = REG_DWORD 0x00000002

 Group = Extended Base

 ErrorControl = REG_DWORD 0x00000001

 Parameters

 IoPortAddress = REG_DWORD 0x00000304

 IoPortCount = REG_DWORD 0x00000003

70

5.3 Software Libraries

In order to assist in the further development of the prototype system, a set of

libraries containing commonly used functions has been created. The hardware.h library

contains functions used with the MCPCI, DPIB or MORRPH device drivers. The

sensor.hpp library includes functions used to control the prototype system components,

such as the conveyor belt, and the x-ray and copper filter controller. The source code for

these libraries is included in Appendix D.

5.3.1 HARDWARE.H - a library for device driver access

This library contains functions to access the DPIB, MORRPH and PCIDMA

drivers. Each driver has a unique name, known as the device path. The device paths are

defined in hardware.h and are used to open a specific device driver. The IOCTL codes

for each driver are also provided in hardware.h.

A description of individual library functions follows. All functions return

STATUS_SUCCESS or STATUS_FAILURE upon exit. For more information, please

refer to the source code (Appendix D).

OpenDriverHandle

This function must be called before using any device driver. It opens a handle to

the device through which subsequent requests will be processed. Windows NT accesses a

device driver similarly to a file: it must be opened first, and then can be written to or read

from. Prior to exiting an application, all open handles must be freed using the

CloseHandle function.

WritePort

Writes a byte to a device IO port. The port used is the relative device port, as

applications are not allowed access to absolute hardware addresses. The IOCTL passed

to the function should match the code used for a UCHAR write to the device driver.

http://mustang.ee.vt.edu/morrph/morrph.html

71

These codes are found in the _ioctl include files for each device driver and are included in

hardware.h.

WritePortDouble

Writes a double word (32-bits) value to an IO port. Similar to WritePort.

ReadPort

Reads a byte from an IO port. The IOCTL passed must match the UCHAR read

code used with the device driver.

ReadPortDouble

Similar to ReadPort, but reads a double word (32-bit) from the hardware.

MapPciDmaBuffer

Maps the DMA buffer memory space into user space, to allow the application

access to the image data. There is no need to allocate a separate buffer when using the

DMA board; the buffer allocated for storage by the device driver will be used. Writing to

the mapped memory will also alter the contents of the DMA buffer.

UnMapPciDmaBuffer

Executed before an application exits, this function un-maps the previously mapped

DMA buffer. Memory is not actually freed, since the DMA buffer is allocated by the

device driver and not the application, but a handle to the memory is freed. There is a

limited number of handles available for applications and failing to un-map the memory can

exhaust the handle supply, rendering the operating system inoperable.

GetPciDmaAddress

Returns the physical address of the DMA buffer. This value can not be used to

access the memory pool. It is only used to program the MCPCI address registers with a

72

pointer to where image data should be stored. The application must divide the memory

pool into blocks for each MCPCI channel.

5.3.2 SENSOR.HPP - a library of prototype system control functions

The sensor.hpp library includes functions for controlling the prototype system.

The x-ray controller, copper filter motor controller, infrared sensors and conveyor belt are

controlled by functions available in this library.

The DPIB port addresses, as well as the configuration data for the serial ports are

included in the beginning of the file. For easy reference, changes should be made to the

constants in the #define statements, rather than be hard-coded in specific functions.

Any functions that write to the x-ray or the filter motor controller use the serial

port for communication. Neither controller provides handshake lines; they only echo the

transmitted data back to the sender. To avoid the complexity of reading and parsing the

returned data, a delay is inserted after the transmission of each character. This allows the

controllers time to accept and process the data. If a delay is not used, data dropout will

occur.

A description of the functions available in sensor.hpp follows. For more

information, please refer to the source code in Appendix D.

WaitSeconds

Delays program execution by the specified time, in seconds. The process is not

actually asleep when this function is called, but processor usage should be negligible.

WaitTSeconds

Delays program execution by the specified time, in tenths of a second. Similar to

WaitSeconds.

73

MoveBeltForward

Starts the conveyor belt in the forward direction. A handle to the DPIB device

driver must be available.

MoveBeltReverse

Starts the conveyor belt in the reverse direction by writing to the DPIB.

StopBelt

Stops the conveyor belt. This function must be executed before the conveyor belt

direction is changed.

BreakFrontSensor

Waits until the front infrared sensor is interrupted. A valid handle to the DPIB is

required.

BreakRearSensor

Waits until the rear infrared sensor is interrupted.

UnBreakFrontSensor

Assuming an object is interrupting the front infrared sensor, this function will wait

until the object is removed. If the sensor path is clear, this function returns immediately.

UnBreakRearSensor

Similar to UnBreakFrontSensor. Waits for the rear sensor path to be cleared of

any obstructions.

SetUpXrayController

Configures the serial port connected to the serial port controller (usually COM2).

The baud rate, parity and stop bits are set. This function returns a FALSE value if the

serial port could not be configured.

74

The x-ray controller can only be remotely controlled if it is placed in mode 800

from the operator control panel. For further information on setting the operating mode,

please refer to the controller documentation [LUM95].

SetUpMotorController

Configures the serial port connected to the copper filter motor controller

(presently COM1).

SetUpDPIB

Initializes the DPIB function generator with the appropriate timing values. This

function should be executed only if the design loaded in the DPIB supports programmable

timing signal generation.

ProgMotorController

Programs the filter motor controller. The BASIC program is downloaded to the

VELMEX controller and then executed. The controller is first placed in remote access

mode by this function.

SetKV75, SetKV150

Set the x-ray voltage to 75 and 150 KV, respectively. These are the two energy

levels used on the prototype system.

SetmA300

Set the x-ray current to 300mA. This is the only current setting used.

TurnXrayON, TurnXrayOFF

Turn the x-ray source ON and OFF respectively. The operator key must be

inserted in the x-ray controller and turned to position 3.

75

LowerFilter

Lowers the copper filter in front of the x-ray source. Unfortunately, the Velmex

motor controller can not provide information on the position of the motor. For this

function to operate, the filter must be in the low position when the controller is

configured. This sets the origin angle (position of zero degrees) to the lowest point of the

filter path.

RaiseFilter

Raises the copper filter and removes it from the field of view. The filter is

equipped with safety switches that will stop the motor controller if the angle requested

exceeds the maximum range. This can occur if the filter is not completely lowered when

the system is started.

SetUpCorrVal

Writes the data compensation values to the DPIB.

5.4 Utilities

A set of utilities was developed to control the prototype system and the custom

hardware. These can be executed as stand-alone programs, or through the graphical user

interface. The source code for these utilities is shown in Appendix E.

5.4.1 PROGALL

PROGALL programs the FPGA chips on the DPIB and MCPCI. A .POD file is

used to program an FPGA, and is obtained from the .MCS file output by the Xilinx XACT

software [INT90]. The two files used by PROGALL are named PCIDMA.POD and

DPIB.POD. There is no method to verify that the FPGA was programmed successfully; it

rests with the hardware designer to incorporate test circuitry in the FPGA logic.

76

5.4.2 COLPUL

Used to initiate and control a DMA transfer from the MCPCI, this is a Windows

NT port of a DOS collection utility written by Paul LaCasse. A newer version, named

COLPUL-SILENT, was created to eliminate user input and automate the collection

process.

Data collection is initiated by a “start” command issued to the MCPCI. The

program then probes the hardware to determine if the requested number of lines has been

transferred, and issues a “stop” command when this occurs. If a time-out period has

elapsed and collection has not yet been completed, the program exits and issues an error

code.

Since the MCPCI will only stop collection after an appropriate command is

received, but not when the requested number of lines is transferred, COLPUL should

never be abnormally terminated by the user. Doing so can cause memory outside the

DMA buffer to be overwritten, resulting in a system crash.

COLPUL is configured for six channel operation, and divides the DMA buffer into

six regions. The size of each region is determined by the requested width and length of

each image, derived from the COLPUL configuration file (see Section 5.4.2.1). The

output is stored in six files, named “one.img” through “six.img” using the ELAS file

format (see Section 5.4.2.2).

5.4.2.1 COLPUL Configuration File Format

A configuration file (PCIDMA.CFG) is used to determine the number of lines to

collect, and the resolution of each line. A sample configuration file is shown in Figure 5.7.

77

Figure 5.7 Sample COLPUL configuration file (PCIDMA.CFG)

The NUMFRAMES entry determines the length (number of lines) of the collected

image, whereas the following three WIDTH entries are the image width for the first three

channels. The remaining three channels are also of width WIDTH3. STARTPIX is used

to ignore a number of pixels at the beginning of a line and is commonly set when the first

few pixels fall outside the region of interest. Finally, CHANNELS is a 6-bit value that

enables a DMA channel. Setting a bit 0 enables channel 1 for collection, setting bit 1

enables channel 2, and so on.

5.4.2.2 ELAS Image File Format

The ELAS file format was developed by the National Aeronautics and Space

Administration (NASA) to store satellite images [ELA89]. It is suitable for image

processing applications because there is no compression or image quality loss. It has been

established as a standard in the Spatial Data Analysis Laboratory and is used with all data

collection devices.

The length of the image header is equal to the width of a line of data, but must be

at least 28 bytes wide. This produces seven 8-bit values, which provide image size

information, as shown in Table 5.1. Certain fields defined by the ELAS format are not

NUMFRAMES = 200

WIDTH1 = 1796

WIDTH2 = 896

WIDTH3 = 896

STARTPIX = 0

CHANNELS = 7

78

Table 5.1 ELAS header description

used and are assigned a constant value. The numframes and width fields indicate the size

of the image, whereas numchan is the number of channels. A black and white image has

one channel of data, whereas a true-color, 24-bit image uses three channels. Color image

data is arranged in lines: a line of red, followed by a line of green, then a line of blue

values.

5.4.3 EDISP

EDISP was developed to display color and black and white ELAS images under

the Windows operating system. It accepts the image file name as a command line

parameter and displays the image on the desktop. If the file is not a valid ELAS file, the

user is notified and the program terminates.

After some initialization tasks required by Windows, the ELAS file is read and

processed. To take advantage of hardware and software acceleration functions provided

for image display, the file is converted to Windows Device Independent Bitmap (DIB)

format. A DIB arranges pixel values as Blue-Green-Red, instead of RGB, and requires

that a line be padded to 32-bits. Furthermore, each pixel is handled as a triplet of BGR

values, whereas the ELAS format stores the entire line in red, then green and then blue.

Bytes Name Description

0-3 Always set to 0.

4-7 Always set to 0.

8-11 Always set to 1.

12-15 numframes Length of image (number of lines)

16-19 Always set to 1.

20-23 width Width of image (pixels per line)

24-27 numchan Number of channels, 1=BW, 3=color

79

The DIB image is then displayed using the BitBlt function. The same function is

called when the window must be redrawn, for example when it is moved to a different

location on the desktop. BitBlt is designed to take advantage of display driver hardware

and accelerate the display of DIBs. If the DIB is to be stretched to fill a box bigger than

it’s original size, the StretchBitBlt function should be used instead.

5.5 Galaxie - Graphical User Interface

Galaxie is the main interface between the system operator and the hardware. It is

designed to provide automated collection and processing, while also allowing the user

some control over the system. Galaxie was developed using Borland C++ 5.02 and is

packaged as a Win32 project [BOR96]. The source code shown in Appendix E is only a

portion of the overall application code, which includes a resource file for the GUI objects.

Upon start-up, Galaxie initializes the motor and x-ray controller, and the DPIB. It

also raises the copper filter and turns on the x-ray source. The main dialog box is then

presented and the application awaits user input. The user can select SCAN, to start image

collection for a new bag, DISPLAY, to display previously collected images, with or

without processing results, and EXIT, to exit the software. A set of radio buttons is also

provided to determine the image type that will be displayed. The high or low energy

transmission, and the back scatter and forward scatter images can be displayed. An

overlap selector is also provided: when ON, the processing results will be displayed and

the image is color coded to show explosives, detonators and thick objects. When OFF,

the raw x-ray image is displayed. Finally, a Status box is provided to inform the user of

the stage of an operation in progress.

When SCAN is selected, the x-ray source is set to low energy and turned on. The

conveyor belt is started and the program awaits for the front sensor to be broken. As

soon as the beam is interrupted, COLPUL-SILENT is executed in the background to

80

collect image data. Galaxie stops the conveyor belt when the luggage exits the field of

view (the rear sensor is broken and then cleared) and waits for the collection utility to

finish. The x-ray is then set to high energy, the copper filter lowered and the luggage is

reversed to its original position, before the front infrared sensor. The high energy x-ray

images are then collected and the luggage is allowed to exit the tunnel, since no more

images are necessary. The x-ray energy is then lowered, the copper filter raised and the

conveyor belt stopped.

Next, the collected images are processed. First, the chopper wheel slots are

separated. Because the system is configured to start a new line at each WHLRST pulse,

the images collected by COLPUL contain all four chopper wheel data in one line.

Imgconv is used to separate each slot in the ELAS file. The processing then continues in

two stages: first, process1.bat is executed to rotate, crop, resize and shade correct the raw

image. Shading correction is performed in software to further improve image quality.

The low energy transmission image is displayed when pre-processing is done and remains

on the desktop while the actual explosive and detonator detection algorithms execute in

the background. This is performed through process2.bat. When processing is finished,

the status display is updated and the user can view the processed results, or scan new

luggage.

Highlighting of dangerous or suspicious regions is performed in Galaxie, using

output data provided by the image processing algorithms. Three binary data files (defined

as EXPLOSIVEBITMAP, DETONATORBITMAP, and THICKNESSBITMAP in

galaxie.hpp) are overlapped on the original image. If a bit in the binary files is set, the

original pixel is substituted with a different color to indicate danger. A priority list is

established to highlight pixels that have been marked in two or three binary files. The

priority list, with the corresponding color coding is as follows:

• explosives receive highest priority and are marked red.

• detonators are marked blue

81

• thick areas are marked yellow.

Figure 5.8 shows a flowchart of the operation of the graphical user interface during the

collection process.

Wait for start command

X-ray On, Conveyor On

Wait for luggage

Scan luggage

Lower Filter, X-ray high Reverse Luggage

Scan Luggage

Rotate, Crop, Shade Correct

Process images

Display Results

Figure 5.8 Flowchart of Galaxie operation

82

Chapter 6. Results

This chapter contains results obtained from the prototype system. The images

displayed were collected using the hardware and software discussed in the previous

chapters. The three different sensor technologies are demonstrated through transmission,

back scatter and forward scatter images, collected at dual energy levels (75KV and

150KV). The difference in image quality with and without the copper filter is also

illustrated.

The images in Figure 6.1 through Figure 6.4 are raw, uncompensated images

collected with the DPIB. They have been cropped and rotated using Adobe Photoshop

3.0. Images collected with the DPIB are rotated by 90 degrees and are of fixed length,

containing static background information that is removed before processing.

Figure 6.1 shows the low energy transmission image obtained from a typical piece

of luggage. This luggage contained mainly articles of clothing, a shoe and a package of

chocolate squares used for testing. A belt buckle is also shown and appears dark, as it is

made of metal. Figure 6.2 shows two high energy transmission images of the same

luggage. Image 6.2a was collected without the copper filter. It is saturated and has a

much narrower histogram of pixel values, providing less useful information than image

6.2b. The latter was collected after the insertion of the copper filter and is clearer than

image 6.2a, especially in the upper portion of the luggage. All three images are 324x286

pixels. The actual image height of DPIB transmission images is 450 pixels, but a portion

of the image has been cropped as it only contained a dark background.

Figure 6.3 shows the back scatter images of the same luggage. Image (a) is the

low energy image, and images (b) and (c) are the high energy images. Using the copper

filter improves image quality dramatically in this situation. The chocolate squares, which

are placed in the middle of the bag and were visible in the transmission image, stand out in

image (c). Another object (a book), which also appeared in the transmission images as a

83

dark rectangular region, is not visible in any back scatter image, indicating that it is on the

other side of the bag and should therefore appear in the forward scatter images.

Figure 6.4 shows the low and high energy forward scatter images. Again, using

the copper filter improved image quality. The chocolate bars appear in image (c), as does

the book, indicating that it is on the side of the bag that is facing the forward scatter

detectors. The back scatter and forward scatter images are both 324x150 pixels. The

original image height was 225 pixels, half the height of a transmission image.

Figure 6.5 shows a screen capture of Galaxie, the graphical user interface, taken

immediately after Galaxie was started. The status bar indicates the current system state

and is updated during image collection and display. The Scan button is used to start the

collection sequence. When Scan is pushed, Galaxie waits for a luggage to enter the x-ray

tunnel and then collects all the necessary images through the DPIB and MCPCI. The

image processing software is then executed and an output displayed. The user can select

which image to view by using the Image Source and Energy Source areas. Pressing the

Display button shows the selected image on the screen.

Figure 6.6 is a screen capture of Galaxie after the processing software has been

executed. The results are overlapped on the image selected by the user, in this case the

back scatter, low energy image. The Overlap button can be used to toggle between the

raw and processed images, and a legend is provided for the meaning of each color. The

areas of this luggage painted in red contain honey and chocolate, two substances that were

used extensively to evaluate the system before x-ray simulants were supplied.

84

Figure 6.1 Transmission image at 75KV

85

(a)

(b)

Figure 6.2 Transmission image at 150KV (a) without filter, and (b) with filter

86

(a)

(b)

(c)

Figure 6.3 Back scatter images at (a) 75 KV, (b) 150KV without filter, and (c) 150KV

with filter

87

(a)

(b)

(c)

Figure 6.4 Forward scatter images at (a) 75KV, (b) 150KV without filter, (c) 150KV

with filter

88

Figure 6.5 Galaxie screen capture at start-up

89

Figure 6.6 Galaxie screen capture with processed image

90

Chapter 7. Future Developments

Although every effort has been made to produce a complete system, this research

effort focused on the development of a prototype. New algorithms and ideas are

continuously being examined and may be implemented in the future. The purpose of this

chapter is to examine certain concepts that can improve the operation of the original

system and discuss how they can be incorporated with the existing hardware and software.

7.1 Orthogonal x-ray view

A problem with typical x-ray imaging systems is that they project a three

dimensional object into a two dimensional image: any perception of depth is lost. This

restriction has been explored in the past by terrorists, to conceal explosives in areas that an

operator could not detect. Under certain circumstances, it might be possible to mislead an

automatic explosives detection system into missing the presence of explosives by carefully

placing them between other denser objects [KIT96].

A solution to this problem is to add another x-ray detector to obtain depth

information. This detector provides an orthogonal x-ray view and can be used to better

determine the thickness of the material. Furthermore, information will also be obtained

about the distance of each object from the scatter detector. Distance measurements can be

used to better interpret scatter image data [CON96].

Adding an orthogonal view to the current system requires some modifications.

Assuming that the new detector can indeed be positioned in the x-ray tunnel, it will

present another image source that must be controlled and collected. Therefore, a pre-

amplifier digitizing board must be built. Although another AS&E pre-amplifier board can

be used, developing a custom board with 12-bit resolution is greatly preferred. The new

board must use the same AS&E interface, with the extensions discussed in Chapter 4 for

12-bit transfers. The DPIB logic can then remain unchanged.

91

The new image data must somehow be transferred to the host computer. The

DPIB, due to ISA size limitations, can only support three data sources. Another DPIB

board must therefore be used. This presents an additional problem of transferring data

from two sources to the MCPCI, which only supports one Zee bus connection. A

MORRPH board can be used to multiplex the two Zee bus signals onto a single output

bus [DRA95a]. The output of the MORRPH can be directly connected to the MCPCI.

Adding an orthogonal view will raise the system cost, since new hardware must be

installed. Also, luggage processing time will increase due to the increase in the amount of

available data. However, the addition of the orthogonal view will improve the detection

capabilities of the system and reduce the false alarm rate.

7.2 Active Control

In the current system configuration luggage is scanned once at each energy level.

The same process is followed for every bag, regardless of whether it contains a threat or is

completely innocent. Active control is the ability to dynamically scan certain areas of the

luggage in detail, if the detection algorithms indicate a suspicious area. The luggage is

held in the tunnel until a final decision is made. If it must be re-scanned, the conveyor belt

is reversed and the luggage is returned to the front infrared sensor. The x-ray settings,

such as voltage, current and integration time, as well as the conveyor belt speed are

altered. Slowing down the conveyor belt increases the horizontal resolution of the image;

increasing the integration time results in lower vertical resolution, but improves image

quality, because the number of photons collected in the photo-multiplier is increased.

The current system can support most features required for active control with only

minor software modifications. Image processing algorithms must be developed to register

the different resolution images, but the control software only requires few changes. A

communications protocol must also be developed between the graphical user interface and

92

the image processing algorithms to indicate when luggage must be re-scanned and at what

settings. However, the major change in a system using active control will be a new motor

controller. The conveyor belt controller used on the AS&E system provides only manual

speed adjustment through a potentiometer. Although the controller can be researched and

modified to allow computer control, the effort involved in such as activity is tremendous.

Furthermore, the interface developed will be proprietary and will most likely be accessible

only through the DPIB. A new motor controller should be used that allows settings to be

altered through a serial communications port. This approach provides greater flexibility, a

standardized interface and is more durable.

7.3 DPIB modifications

Currently, the DPIB exists only on wire-wrap boards. Before a printed circuit

board is manufactured, the changes discussed here are recommended to improve the

modularity of the hardware.

First, the 9-pin sensor signal connector can be replaced with a wider 15 or 25 pin

connector. This will allow for more TTL level signals to enter (or exit) the DPIB.

Clamping diodes and TTL buffers should be used with each pin, and some pins should use

relays for isolation from external devices.

The application range of the DPIB can also be increased by substituting the 28-pin

DIP sockets used for a memory ICs with support sockets [DRA95b]. A support socket

provides a power and ground bus and a undefined array of pins that connect to the FPGA.

The power and ground connections are made by physically adding a jumper from the

appropriate bus to the pin. Pin sockets are placed in two columns and are spaced to hold

a DIP sized IC. The advantages of this approach is that any size IC in a DIP package can

be used, since the signal direction and function of the pins is defined in the FPGA.

Therefore, the current prototype system design can still use the existing memory ICs, but a

93

different DPIB design can use another IC, such as a multiplier or a FIFO, by simply

placing the IC on the socket and re-defining the FPGA pin assignment.

94

Chapter 8. Conclusions

The goal of the research project leading to this thesis was the development of a

prototype inspection system for airport luggage. This system will aid in the creation of

new image processing algorithms, as well as advanced materials characterization

techniques. It will allow automatic detection of explosives and detonators in passenger

luggage, and will serve as a basis for the development of a commercial system.

The prototype system is based on an American Science & Engineering 101ZZ

airport security system. The 101ZZ was analyzed and modified to fit the purposes of the

research project. The operation of the data collection and control hardware was

documented. Features were added for computer control of all major functions of the

system and all obsolete system hardware was removed. Only a minimum of the system

electronics was maintained to provide raw image information.

Hardware was researched to interface to the existing system and obtain image

data. A Differential Pair Interface Board (DPIB) was developed to connect to the system

electronics and obtain raw images. The DPIB multiplexes images from three different

sensors and outputs data through a high-speed bus to other image processing hardware. It

performs synchronization of all data collection activities and controls the operation of the

AS&E system. A library of hardware modules was also developed for the purposes of this

research activity. These modules are implemented on the DPIB through the MORRPH

Development System (MDS) and can interface to an existing library of components, to

reduce development time. Modules specific to the AS&E system design, but also general

purpose modules are provided to assist future hardware designers.

The DPIB was developed using Field Programmable Gate Arrays (FPGAs) and is

highly re-configurable. It can be used to interface to most data sources using a differential

pair bus, eliminating the need for additional hardware. The flexibility of the data

connectors supports an 8-bit to 12-bit bi-directional data bus, while also providing signals

95

for the control of the external device. Furthermore, two or three data connectors can be

combined to interface with a single device, allowing 32-bit data transfers.

Software was developed to control the prototype system and provide a user

interface, but also to provide access to hardware devices. A sophisticated device driver

for the Multiple Channel PCI board (MCPCI) was written for the Windows NT operating

system. The device driver can fully configure and control the hardware. Plug-n-play

capabilities are provided to automatically configure the MCPCI without user intervention.

The driver can allocate and handle very large DMA buffers despite operating system

limitations, and provides a robust interface to the MCPCI. It was also written to serve as

a general purpose example of Windows NT device drivers for PCI hardware and can be

used as a sample for development of other Windows NT drivers. A software library was

created to group all functions used to access device drivers. The library has been

documented and provides a common, simple interface to the hardware device, avoiding

the confusion of using standard operating system functions.

A utility for the display of ELAS images on a PC running the Windows 95 or

Windows NT operating system was also developed. This utility can display monochrome

or color images, and takes advantage of hardware acceleration techniques and intelligent

memory management to quickly draw and re-draw images. Utilities developed by other

members of the Spatial Data Analysis Laboratory were modified and ported to operate

under Windows NT. These utilities are used widely in any software development effort in

the SDA Lab and have shifted the development platform from MS-DOS to the advanced

environment of Windows NT.

Moreover, a graphical user interface was developed as the front-end of the

prototype system. It is used to automate the data collection task and incorporate all the

image processing and system control software in a single package. Another software

library was also developed, to provide access to all the functions necessary for the

computer control of the prototype system. Commonly used algorithms for the

96

initialization and control of the system are clearly documented and made available through

a simplified interface.

Finally, methods of improving the current system operation were discussed. The

modifications that should be performed to the existing hardware or software, as well as

any additions were examined.

The prototype system is presently in operation in the Spatial Data Analysis

Laboratory at Virginia Tech. It has been used to collect high quality x-ray images through

the sophisticated data collection hardware, and to develop image processing algorithms

for explosives detection. The system detection capabilities are being tested using

explosives simulants and real airport luggage and will soon be evaluated by the Federal

Aviation Administration Technical Center. Efforts continue for the improvement of the

detection algorithms and the expansion of the explosives database, and to provide real-

time computational capabilities.

97

References

[ANA91] “Data Conversion Reference Manual”, Analog Devices, Inc, 1992, Vol. I

[ARE96] Arendtsz, N., Hussein, E., “Compton Scattering for Density Imaging”,
Proceedings of the Second Explosives Technology Symposium and
Aviation Security Technology Conference, Nov. 1996, pp. 137-141

[ASE96] AS&E, Technology for Combating Illegal Drugs and Terrorism,
American Science and Engineering, 1996 Annual Report

[BOR96] Borland, “Borland C++ User’s Guide”, Borland International, Inc,
Version 5.0, 1996

[BOU94] Bouisset, J.-F., “Security Technologies and Techniques: Airport Security
Systems”, Journal of Testing and Evaluation, JTEVA, Vol. 22, No. 3,
May 1994, pp. 247-250

[CHU96] Chutjian, A., Darrach, M.R., “Improved, Portable Reversal Electron
Attachment (READ) Vapor Detection System for Explosives Detection”,
Proceedings of the Second Explosives Detection Symposium & Aviation
Security Conference, Nov. 1996, pp. 176-180

[CON96] Conners, R.W., Abbott, A.L., et. al., “Smart Multiple x-ray Sensor System
for Explosives Detection”, Proceedings of the Second Explosives
Detection Technology Symposium & Aviation Security Technology
Conference, Nov. 1996, pp. 254-259

[DDK96] Microsoft Corp., “Device Driver Developer’s Kit for Windows NT 4.0”,
Microsoft Corp, Professional MSDN Subscription, 1996

[DRA95a] Drayer, T.H., Tront, J.G., et. al., “A Modular and Reprogrammable Real-
time Processing Hardware, MORRPH”, Proceedings of FCCM ’95,
Napa, CA, April 1995, pp. 11-19

[DRA95b] Drayer, T.H., King W.E., et. al., “Using Multiple FPGA Architectures for
Real-time Processing of Low-level Machine Vision Functions”,
Proceedings of IECON, Nov. 95 (to be published)

98

[DRA97a] Drayer, T.H., Lu, Q., et. al., “Prototype Multiple Sensor Luggage
Inspection System for Explosives Detection”, Spatial Data Analysis
Laboratory, 1997

[DRA97b] Drayer, T.H., “A Design Methodology for Creating Programmable Logic
based Real-time Image Processing Hardware”, Ph.D. Dissertation, Bradley
Department of Electrical and Computer Engineering, Virginia Tech,
January 1997. Available at http://etd.vt.edu

[EGG91] Eggebrecht, L.C., Interfacing to the IBM Personal Computer, Second
Edition, Macmillan Computer Publishing, 1991, pp. 74-297

[EIL92] Eilbert, R.F., Krug, K.D., “Aspects of Image Recognition in Vivid
Technology’s dual-energy x-ray system for Explosives Detection”,
SPIE 1824, 1992

[ELA89] National Aeronautics and Space Administration - John C. Stennis Space
Science and Technology Laboratory, “ELAS”, Science and Technology
Laboratory Applications Software Programmer Reference, Volume I,
Report No. 183, May 1989, pp. 1-4, 20-22

[EUR96] Europ Scan, Inc, “Xcalibur, An innovative multi-energy x-ray Explosive
Device Detection System”, Proceedings of the Second Explosives
Detection Symposium & Aviation Security Conference, Nov. 1996,
pp. 230-235

[FAI94] Fainberg, A., “Explosives Detection for Aviation Security”, Science,
American Association for the Advancement of Science, vol. 255,
pp. 1531-1537

[GOZ91] Gozani, T., “Principles of Nuclear-Based Explosive Detection Systems”,
Proceedings of the First International Symposium on Explosive Detection
Technology, Nov. 1991, pp. 27-55

[GUL95] Gulmay, Ltd., “MP-1 Technical Manual”, Gulmay Ltd., May 1995

[INT90] Intel Corporation, “MCS File Format”

[INV96] Invision Technologies, CTX 5000 Product Literature, 1996
(URL: http://www.invision-tech.com

99

[KIT96] Kitzinger, D., Cheung S., “High Resolution 3D Geometric Modeling for
Improved Explosive Detection Simulation”, Proceedings of the Second
Explosives Detection Technology Symposium & Aviation Security
Technology Conference, Nov. 1996, pp. 113-117

[LUM95] LumenX, “Gemini 2000 x-ray Controller System Manual”, LumenX
Company, 1995

[MIC93] Michette, A.G., and Buckley, C.J., x-ray Science and Technology,
Institute of Physics Publushing, 1993, pp. 1-44

[MOT92] “Static Memory Databook”, Motorola, Inc, 1992

[MOT93] “Linear/Interface ICs Device Data”, Motorola, Inc., 1993, Vol. II,
pp. 7-25 to 7-27

[NEW96] Newsday, “Troublesome Trial of a Bomb Detector”, Sept. 3, 1997
(URL: http://www.newsday.com)

[NOV92] Novakoff, A.K., “FAA bulk technology overview for explosive detection”,
Proceedings of the SPIE, Vol. 1824, Nov. 1992, pp. 2-12

[NRC96] NRC, “Airline Passenger and Security Screening, New Technologies and
Implementation Issues”, National Research Council, Publication
NMAB-482-1, National Academy Press, Washington D.C., 1996

[PCI93] PCI Special Interest Group, “PCI Local Bus Specification”, Revision 2.0,
April 30, 1993

[POL94] Polski, P.A., “International Aviation Security Research and
Development”, Journal of Testing and Evaluation, JTEVA, Vol. 22,
No. 3, May 1994, pp. 267-274

[RAY96] Rayner, T., Thorson, B., et. al., “Explosives Detection Using Quadrupole
Resonance Analysis”, Proceedings of the Second Explosives Detection
Symposium & Aviation Security Conference, Nov. 1996, pp. 275-280

[ROD91] Roder, F.L., “The Evolution of Computed Tomography (CT) as an
Explosives Detection Modality”, Proceedings of the First International
Symposium on Explosive Detection Technology, Nov. 1991, pp. 297-308

[SCH91] Schafer, D., Annis, M., and Hacker, M., “New x-ray Technology for the
Detection of Explosives”, Proceedings of the First International
Symposium on Explosive Detection Technology, Nov. 1991, pp. 269-281

100

[SDK96] Microsoft Corp., “Software Developer’s Kit for Win32”, Microsoft Corp.,
Professional MSDN Subscription, 1996

[VEL85] Velmex, Inc., “8300 Series Stepping Motor Controller/Driver User’s
Guide”, Velmex, Inc, Jan. 1985

[VIV97] Vivid Technologies, “Corporate & Product Overview”, Vivid
Technologies, May 1997

[VOU94] Vourvopoulos, G., “Methods for the detection of explosives and
contraband”, Chemistry & Industry, April 18, 1994, pp. 297-300

[XIL94a] Xilinx, Inc., “The Programmable Logic Data Book”, Xilinx, Inc,
April 1995

[XIL94b] Xilinx Corporation, Components Price List, Sales Literature,
October 1994

101

Appendix A. DPIB Board Level Schematics

Appendix A contains the board level schematics of the Differential Pair Interface

Board. A component location diagram is first shown, with unit numbers to identify each

IC on the board. The DPIB schematics are then shown, with each component using the

same unit number as on the component location diagram.

102

U1

J4

J1J2J3

OSC

U
10

U
11

U
12

U
20

U
21

U
22

U
13

U
19

U
4

U
3

U2

U
30

U
31

U
32

U
33

U
40

U
41

U
42

U
5

U
6U

39

U
50

U
51

U
52

U
60

U
61

U
62

U
59

U
53

RP1

R
P

3

ISA Bus

Differential Pair Interface Board Component Location Diagram

Component Side

J5

103

RS-422 Drivers/Receivers for Data bus (Interface 1)

Board (DPIB)
Differential Pair Interface

VCC=16

VCC=16

VCC=16

VCC=16

VCC=16

VCC=16

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Date: April 4, 1996 Panos Arvanitis

AD26LS31
4

12

2

3

6

5

10

11

14

13

15

9

7

1

U10

AD26LS31

1

7

9

15

13

14

11

10

5

6

3

2

12

4

U11

AD26LS31

1

7

9

15

13

14

11

10

5

6

3

2

12

4

U12

AD26LS32

+

-

-

+

-

+

+

-

9

2

5

3

11

13

7

6

1

10

15

14

4 12

U20

AD26LS32

+

-

-

+

-

+

+

-

124

14

15

10

1

6

7

13

11

3

5

2

9

U21

AD26LS32

+

-

-

+

-

+

+

-

9

2

5

3

11

13

7

6

1

10

15

14

4 12

U22

I1DRVEN

I1RCVEN

I1RCVEN

I1DAT0

I1DAT1

I1DAT2

I1DAT3

I1DAT4

I1DAT5

I1DAT6

I1DAT7

I1DAT8

I1DAT9

I1DAT10

I1DAT11

I1DAT0

I1DAT1

I1DAT2

I1DAT3

I1DAT4

I1DAT5

I1DAT6

I1DAT7

I1DAT8

I1DAT9

I1DAT10

I1DAT11

GND=8

GND=8

GND=8

GND=8

GND=8

GND=8I1DRV_EN

I1RCV_EN

I1CD0+

I1CD1+

I1CD2+

I1CD3+

I1CD4+

I1CD5+

I1CD6+

I1CD7+

I1CD8+

I1CD9+

I1CD10+

I1CD11+

I1CD0-

I1CD1-

I1CD2-

I1CD3-

I1CD4-

I1CD5-

I1CD6-

I1CD7-

I1CD8-

I1CD9-

I1CD10-

I1CD11-

I1CD0-

I1CD1-

I1CD2-

I1CD3-

I1CD4-

I1CD5-

I1CD6-

I1CD7-

I1CD8-

I1CD9-

I1CD10-

I1CD11-

I1CD0+

I1CD1+

I1CD2+

I1CD3+

I1CD4+

I1CD5+

I1CD6+

I1CD7+

I1CD8+

I1CD9+

I1CD10+

I1CD11+

I1RCV_EN

Sheet 1 of 10

104

RS-422 Drivers/Receivers for Data bus (Interface 2)

Board (DPIB)
Differential Pair Interface

GND=8GND=8

GND=8

GND=8

GND=8

GND=8
VCC=16

VCC=16

VCC=16

VCC=16

VCC=16

I2RCVEN
Panos ArvanitisDate: April 4, 1996 DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

I2DRVEN
AD26LS31

4

12

2

3

6

5

10

11

14

13

15

9

7

1

U30

AD26LS31

1

7

9

15

13

14

11

10

5

6

3

2

12

4

U31

AD26LS31

1

7

9

15

13

14

11

10

5

6

3

2

12

4

U32

AD26LS32

+

-

-

+

-

+

+

-

9

2

5

3

11

13

7

6

1

10

15

14

4 12

U40

AD26LS32

+

-

-

+

-

+

+

-

124

14

15

10

1

6

7

13

11

3

5

2

9

U41

AD26LS32

+

-

-

+

-

+

+

-

9

2

5

3

11

13

7

6

1

10

15

14

4 12

U42

I2DAT0

I2DAT1

I2DAT2

I2DAT3

I2DAT4

I2DAT5

I2DAT6

I2DAT7

I2DAT8

I2DAT9

I2DAT10

I2DAT11

I2DAT0

I2DAT1

I2DAT2

I2DAT3

I2DAT4

I2DAT5

I2DAT6

I2DAT7

I2DAT8

I2DAT9

I2DAT10

I2DAT11

VCC=16

I2DRV_EN

I2RCV_EN

I2RCV_EN

I2CD0+

I2CD1+

I2CD2+

I2CD3+

I2CD4+

I2CD5+

I2CD6+

I2CD7+

I2CD8+

I2CD9+

I2CD10+

I2CD11+

I2CD0-

I2CD1-

I2CD2-

I2CD3-

I2CD4-

I2CD5-

I2CD6-

I2CD7-

I2CD8-

I2CD9-

I2CD10-

I2CD11-

I2CD0-

I2CD1-

I2CD2-

I2CD3-

I2CD4-

I2CD5-

I2CD6-

I2CD7-

I2CD8-

I2CD9-

I2CD10-

I2CD11-

I2CD0+

I2CD1+

I2CD2+

I2CD3+

I2CD4+

I2CD5+

I2CD6+

I2CD7+

I2CD8+

I2CD9+

I2CD10+

I2CD11+

I2RCVEN

Sheet 2 of 10

105

Differential Pair Interface
Board (DPIB)

GND=8

VCC=16

GND=8

VCC=16

GND=8

VCC=16

GND=8

VCC=16

GND=8

VCC=16

GND=8

VCC=16

Date: April 4, 1996 Panos ArvanitisDRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

I3DAT0

I3DAT1

I3DAT2

I3DAT3

I3DAT4

I3DAT5

I3DAT6

I3DAT7

I3DAT8

I3DAT9

I3DAT10

I3DAT11

I3DAT0

I3DAT1

I3DAT2

I3DAT3

I3DAT4

I3DAT5

I3DAT6

I3DAT7

I3DAT8

I3DAT9

I3DAT10

I3DAT11

I3RCVEN

I3RCVEN

AD26LS31
4

12

2

3

6

5

10

11

14

13

15

9

7

1

U50

AD26LS31

1

7

9

15

13

14

11

10

5

6

3

2

12

4

U51

AD26LS31

1

7

9

15

13

14

11

10

5

6

3

2

12

4

U52

AD26LS32

+

-

-

+

-

+

+

-

9

2

5

3

11

13

7

6

1

10

15

14

4 12

U60

AD26LS32

+

-

-

+

-

+

+

-

124

14

15

10

1

6

7

13

11

3

5

2

9

U61

AD26LS32

+

-

-

+

-

+

+

-

9

2

5

3

11

13

7

6

1

10

15

14

4 12

U62

I3DRVEN

I3DRV_EN

I3RCV_EN

I3RCV_EN

I3CD0+

I3CD1+

I3CD2+

I3CD3+

I3CD4+

I3CD5+

I3CD6+

I3CD7+

I3CD8+

I3CD9+

I3CD10+

I3CD11+

I3CD0-

I3CD1-

I3CD2-

I3CD3-

I3CD4-

I3CD5-

I3CD6-

I3CD7-

I3CD8-

I3CD9-

I3CD10-

I3CD11-

I3CD0-

I3CD1-

I3CD2-

I3CD3-

I3CD4-

I3CD5-

I3CD6-

I3CD7-

I3CD8-

I3CD9-

I3CD10-

I3CD11-

I3CD0+

I3CD1+

I3CD2+

I3CD3+

I3CD4+

I3CD5+

I3CD6+

I3CD7+

I3CD8+

I3CD9+

I3CD10+

I3CD11+

RS-422 Drivers/Receivers for Data Bus (Interface 3)

Sheet 3 of 10

106

RS-422 Drivers/Receivers for Control Signals

Board (DPIB)
Differential Pair Interface

Date: April 4, 1996

PWR

GND

VCC=16

GND=8

PWR

GND

VCC=16

GND=8

GND=8

VCC=16

GND

PWR

Panos ArvanitisDRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

I1CSIG_EN

I1CSIGSH

I1CSIG_RD

I1CSIG_LE

I1CCS_EN+

I1CCS_EN-

I1CCSSH+

I1CCSSH-

I1CCS_RD+

I1CCS_RD-

I1CCS_LE+

I1CCS_LE-

I2CSIG_EN

I2CSIGSH

I2CSIG_RD

I2CSIG_LE

I2CCS_EN+

I2CCS_EN-

I2CCSSH+

I2CCSSH-

I2CCS_RD+

I2CCS_RD-

I2CCS_LE+

I2CCS_LE-

I3CSIG_EN

I3CSIGSH

I3CSIG_LE

I3CCS_EN+

I3CCS_EN-

I3CCSSH+

I3CCSSH-

I3CCS_RD+

I3CCS_RD-

I3CCS_LE+

I3CCS_LE-

AD26LS31

12

4

14

13

15

10

11

9

6

5

7

2

3

1

U13

AD26LS31

1

3

2

7

5

6

9

11

10

15

13

14

4

12

U33

I3CSIG_RD

AD26LS31

12

4

14

13

15

10

11

9

6

5

7

2

3

1

U53

Sheet 4 of 10

107

C
O
N
V
B
A
C
K

C
O
N
V
F
W
D Xilinx FPGA Connections

Differential Pair Interface
Board (DPIB)

Date: April 4, 1996 Panos ArvanitisDRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4
RESISTOR

IN OUT

PROGRAM

GND

P
W
R RDBS

I1DRVEN

I1DAT0

I1DAT1

I1DAT2

I1DAT3

I1DAT4

I1DAT5

I1DAT6

I1DAT7

I1DAT8

I1DAT9

I1DAT10

I1DAT11

I2DRVEN

I3DRVEN

I2DRV_EN

I3DRV_EN

I2DAT0

I2DAT1

I2DAT2

I2DAT3

I2DAT4

I2DAT5

I2DAT8

I2DAT9

I2DAT10

I2DAT11

I2DAT7

I2DAT6

I3DAT0

I3DAT1

I3DAT2

I3DAT3

I3DAT4

I3DAT5

I3DAT6

I3DAT7

I3DAT8

I3DAT9

I3DAT10

I
S
A
D
A
T
0

I
S
A
D
A
T
1

I
S
A
D
A
T
2

I
S
A
D
A
T
3

I
S
A
D
A
T
4

I
S
A
D
A
T
5

I
S
A
D
A
T
6

I
S
A
D
A
T
7

I
S
A
A
D
D
R
0

I
S
A
A
D
D
R
1

I
S
A
A
D
D
R
2

I
S
A
A
D
D
R
3

I
S
A
A
D
D
R
4

I
S
A
W
S

I
S
A
R
S

C
S
0

I
1
C
S
I
G
_
E
N

I
1
C
S
I
G
S
H

I
1
C
S
I
G
_
R
D

I
1
C
S
I
G
_
L
E

M
E
M
1
D
A
T
0

M
E
M
1
D
A
T
1

M
E
M
1
D
A
T
2

M
E
M
1
D
A
T
3

M
E
M
1
D
A
T
4

M
E
M
1
D
A
T
5

M
E
M
1
D
A
T
6

M
E
M
1
D
A
T
7

M
E
M
1
A
D
D
R
0

M
E
M
1
A
D
D
R
1

M
E
M
1
A
D
D
R
2

M
E
M
1
A
D
D
R
3

M
E
M
1
A
D
D
R
4

M
E
M
1
A
D
D
R
5

M
E
M
1
A
D
D
R
6

M
E
M
1
A
D
D
R
7

M
E
M
1
A
D
D
R
8

M
E
M
1
A
D
D
R
9

M
E
M
1
A
D
D
R
1
0

M
E
M
1
A
D
D
R
1
1

M
E
M
1
A
D
D
R
1
2

M
E
M
1
_
R
D

M
E
M
2
_
R
D

M
E
M
1
_
W
R

M
E
M
2
_
W
R

M
E
M
1
_
E
N

M
E
M
2
_
E
N

M
E
M
3
_
E
N

M
E
M
3
_
W
R

M
E
M
3
_
R
D

I
1
R
C
V
E
N

I
3
R
C
V
E
N

I
1
R
C
V
_
E
N

I
2
R
C
V
_
E
N

I
3
R
C
V
_
E
N

I
2
R
C
V
E
N

MORRPHDAT7

MORRPHDAT6

MORRPHDAT5

MORRPHDAT4

MORRPHDAT3

MORRPHDAT2

MORRPHDAT1

MORRPHDAT0

CLK

MORRPHSIG7

MORRPHSIG6

MORRPHSIG5

MORRPHSIG4

MORRPHSIG3

MORRPHSIG2

MORRPHSIG1

MORRPHSIG0

I2CSIG_EN

I2CSIG_LE

I2CSIG_RD

I2CSIGSH

I3CSIG_EN

I3CSIG_LE

I3CSIG_RD

I3CSIGSH

WSYNC1

WSYNC2

WSYNC3

WRST1

WRST2

WRST3

I1DRV_EN

I3DAT11

PWR

B17CLK

I1DAT0F1

I1DAT1H2

I1DAT10J2

I1DAT11G2

I1DAT2D1

B6 I1DAT3

E1 I1DAT4

I1DAT5G1

I1DAT6H3

I1DAT7F2

I1DAT8B2

I1DAT9B3

R17 I1DRVEN

U15 I1DRV_EN

L
1
6

I
1
R
C
V
E
N

E
2

I
1
R
C
V
_
E
N

M
1
I
1
S
H

J
1
6

I
1
_
E
N

M
1
7

I
1
_
L
E

B
7
I
1
_
R
D

U13I2CSIGSH

D18I2CSIG_EN

A7I2CSIG_LE

A11I2CSIG_RD

H18 I2DAT0

L17 I2DAT1

J18 I2DAT10

H1 I2DAT11

L18 I2DAT2

J17 I2DAT3

G18 I2DAT4

F18 I2DAT5

K18 I2DAT6

H16 I2DAT7

K1 I2DAT8

J1 I2DAT9

R2 I2DRVEN

N2 I2DRV_EN

T18I3CSIGSH

C8I3CSIG_EN

N1I3CSIG_LE

P2I3CSIG_RD

A15 I3DAT0

B11 I3DAT1

B5 I3DAT10

A5 I3DAT11

A13 I3DAT2

A14 I3DAT3

B13 I3DAT4

C13 I3DAT5

A12 I3DAT6

A6 I3DAT7

A9 I3DAT8

A4 I3DAT9

V5 I3DRVEN

R18 I3DRV_EN

B
8
I
S
A
A
D
D
R
0

A
8
I
S
A
A
D
D
R
1

B
9
I
S
A
A
D
D
R
2

C
9
I
S
A
A
D
D
R
3

B
1
0

I
S
A
A
D
D
R
4

U
3
I
S
A
D
A
T
0

V
3
I
S
A
D
A
T
1

V
7
I
S
A
D
A
T
2

T
9
I
S
A
D
A
T
3

U
1
0

I
S
A
D
A
T
4

U
1
2

I
S
A
D
A
T
5

V
1
7

I
S
A
D
A
T
6

T
1
5

I
S
A
D
A
T
7

A
1
8

M
0

C
1
5

M
1

C
1
6

M
2

K
1
7

M
E
M
1
A
D
D
R
0

K
1
6

M
E
M
1
A
D
D
R
1

L
1

M
E
M
1
A
D
D
R
1
0

K
2

M
E
M
1
A
D
D
R
1
1

C
4

M
E
M
1
A
D
D
R
1
2

C
1
0

M
E
M
1
A
D
D
R
2

T
1
0

M
E
M
1
A
D
D
R
3

V
8

M
E
M
1
A
D
D
R
4

V
9

M
E
M
1
A
D
D
R
5

L
2

M
E
M
1
A
D
D
R
6

L
3

M
E
M
1
A
D
D
R
7

K
3

M
E
M
1
A
D
D
R
8

J
3

M
E
M
1
A
D
D
R
9

U
1
6

M
E
M
1
D
A
T
0

V
1
6

M
E
M
1
D
A
T
1

U
1
4

M
E
M
1
D
A
T
2

V
1
4

M
E
M
1
D
A
T
3

T
1
4

M
E
M
1
D
A
T
4

T
1
3

M
E
M
1
D
A
T
5

V
1
5

M
E
M
1
D
A
T
6

T
1
1

M
E
M
1
D
A
T
7

H
1
7

M
E
M
1
_
E
N

V
1
0

M
E
M
1
_
R
D

V
1
1

M
E
M
1
_
W
R

A
1
0

M
E
M
2
_
E
N

T
8

M
E
M
2
_
R
D

T
1
7

M
E
M
2
_
W
R

C
1
1

M
E
M
3
_
E
N

R
1

M
E
M
3
_
R
D

V
1
3

M
E
M
3
_
W
R

U8MORRPHCSIG0

A3MORRPHCSIG1

C6MORRPHCSIG2

U6MORRPHCSIG3

U7MORRPHCSIG4

G17MORRPHCSIG5

U11MORRPHCSIG6

N18MORRPHCSIG7

P1MORRPHDAT0

V4MORRPHDAT1

V6MORRPHDAT2

F17MORRPHDAT3

M2MORRPHDAT4

M18MORRPHDAT5

P18MORRPHDAT6

N17MORRPHDAT7

V
2
R
D
Y
/
~
B
U
S
Y

B18WRST1

P17WRST2

N16WRST3

C17WSYNC1

B12WSYNC2

C1WSYNC3

V
1
2

C
S
0

T
2
C
S
1

U
9
I
S
A
R
S

T
3
I
S
A
W
S

V
1
8

P
R
O
G
R
A
M

GND = G3, D4, C7, D9, C12, D15, G16, K15, M16, R16, T12, R9, T7, R3, M3, K4

VCC = J4, D3, D10, D16, J15, R15, R10, R4

PG223

XC4000 Family

I
2
R
C
V
E
N

C
1
8

I
2
R
C
V
_
E
N
E
1
8

I
3
R
C
V
E
N

B
1
5

I
3
R
C
V
_
E
N
D
2

I
R
F
R
O
N
T
D
1
7

I
R
B
A
C
K
F
1
6

C
O
N
V
F
W
D
A
1
6

C
O
N
V
R
E
V
A
1
7

I
R
F
R
O
N
T

I
R
B
A
C
K

Sheet 5 of 10

108

Board (DPIB)
Differential Pair Interface

Date: April 4, 1996 Panos Arvanitis

MEM1DAT7

MEM1DAT6

MEM1DAT5

MEM1DAT4

MEM1DAT3

MEM1DAT2

MEM1DAT1

MEM1DAT0

MEM1DAT7

MEM1DAT6

MEM1DAT5

MEM1DAT4

MEM1DAT3

MEM1DAT2

MEM1DAT1

MEM1DAT0

MEM1ADDR12

MEM1ADDR11

MEM1ADDR10

MEM1ADDR9

MEM1ADDR8

MEM1ADDR7

MEM1ADDR6

MEM1ADDR5

MEM1ADDR4

MEM1ADDR3

MEM1ADDR2

MEM1ADDR1

MEM1ADDR0

MEM1ADDR12

MEM1ADDR11

MEM1ADDR10

MEM1ADDR9

MEM1ADDR8

MEM1ADDR7

MEM1ADDR6

MEM1ADDR5

MEM1ADDR4

MEM1ADDR3

MEM1ADDR2

MEM1ADDR1

MEM1ADDR0

VCC

VCC

VCC

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

MEM1DAT0

MEM1DAT1

MEM1DAT2

MEM1DAT3

MEM1DAT4

MEM1DAT5

MEM1DAT6

MEM1DAT7

MEM1ADDR0

MEM1ADDR1

MEM1ADDR2

MEM1ADDR3

MEM1ADDR4

MEM1ADDR5

MEM1ADDR6

MEM1ADDR7

MEM1ADDR8

MEM1ADDR9

MEM1ADDR10

MEM1ADDR11

MEM1ADDR12

MEM1_RD

MEM1_WR

MEM1_EN

MEM2_RD

MEM2_WR

MEM2_EN

MEM3_RD

MEM3_WR

MEM3_EN

SIGNAL=VCC;28
SIGNAL=GND;14

DQ1

DQ2

DQ3

DQ5

DQ6

DQ7

DQ0

DQ4

G

W

E1

E2

A0

A2

A3

A1

A4

A5

A6

A7

A8

A9

A10

A11

A12

MCM6264

2

23

21

24

25

3

4

5

6

9

7

8

10

26

20

27

22

16

11

19

18

17

15

13

12

U59

SIGNAL=VCC;28
SIGNAL=GND;14

DQ1

DQ2

DQ3

DQ5

DQ6

DQ7

DQ0

DQ4

G

W

E1

E2

A0

A2

A3

A1

A4

A5

A6

A7

A8

A9

A10

A11

A12

MCM6264

12

13

15

17

18

19

11

16

22

27

20

26

10

8

7

9

6

5

4

3

25

24

21

23

2

U39

SIGNAL=VCC;28
SIGNAL=GND;14

DQ1

DQ2

DQ3

DQ5

DQ6

DQ7

DQ0

DQ4

G

W

E1

E2

A0

A2

A3

A1

A4

A5

A6

A7

A8

A9

A10

A11

A12

MCM6264

2

23

21

24

25

3

4

5

6

9

7

8

10

26

20

27

22

16

11

19

18

17

15

13

12

U19

Memory Bank

Sheet 6 of 10

109

ISA EPLD Interface and Connector

Differential Pair Interface
Board (DPIB)

CS0

PROGRAM

ISAADDR4

ISAADDR3

ISAADDR2

ISAADDR1

ISAADDR0

ISARS

ISAWS

RDBS

A9D0

A8D1

A7D2

A6D3

A5D4

A4D5

A3D6

A2D7

A31A0

A30A1

A29A2

A28A3

A27A4

A26A5

A25A6

A24A7

A23A8

A22A9

A11AEN

B13IOW

B14IOR

B20CLK

A10IORDY

I
S
A

B
U
S

Date: July 13, 1996 Panos ArvanitisDRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

ISADAT0

ISADAT1

ISADAT2

ISADAT3

ISADAT4

ISADAT5

ISADAT6

ISADAT7

74LS245

G

A1

A2

A3

A4

A5

A6

A7

A8

B7

B8

B6

B5

B4

B3

B2

B1

DIR

1

18

17

16

15

14

13

11

12

9

8

7

6

5

4

3

2

19

U3

7407

U4

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

CLK

D0

D1

D2

D3

D4

D5

D6

DMA

XA0

XA1

XA2

CS0

CS1

CS2

IOR

IOR_LATCH

IOW

IO_ON_CRD

PROG0

PROG1

PROG2

XIOR

XIOW

SIGNAL=VCC;13,33

SIGNAL=GND;8,28

5AC324

XA3

XA4 31

30

12

14

37

25

35

15

3

32

2

24

17

16

29

27

26

22

18

20

40

39

38

23

19

1

5

4

36

21

34

11

10

9

7

6

U2

Sheet 7 of 10

110

Board (DPIB)
Differential Pair Interface

I3CD0+

I3CD1+

I3CD2+

I3CD3+

I3CD4+

I3CD5+

I3CD6+

I3CD7+

I3CD8+

I3CD9+

I3CD10+

I3CD11+

I3CD0-

I3CD1-

I3CD2-

I3CD3-

I3CD4-

I3CD5-

I3CD6-

I3CD7-

I3CD8-

I3CD9-

I3CD10-

I3CD11-

I3CCS_LE-

I3CCS_EN+ I3CCS_EN-

I3CCSSH-I3CCSSH+

I3CCS_RD- I3CCS_RD+

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Date: July 4, 1996 Panos Arvanitis

I1CD0+

I1CD1+

I1CD2+

I1CD3+

I1CD4+

I1CD5+

I1CD6+

I1CD7+

I1CD8+

I1CD9+

I1CD10+

I1CD11+

I1CD0-

I1CD1-

I1CD2-

I1CD3-

I1CD4-

I1CD5-

I1CD6-

I1CD7-

I1CD8-

I1CD11-

I1CD9-

I1CD10-

I2CD0+

I2CD1+

I2CD2+

I2CD3+

I2CD4+

I2CD5+

I2CD6+

I2CD7+

I2CD8+

I2CD9+

I2CD10+

I2CD11+

I2CD0-

I2CD1-

I2CD2-

I2CD3-

I2CD4-

I2CD5-

I2CD6-

I2CD7-

I2CD8-

I2CD9-

I2CD10-

I2CD11-

I3CCS_LE+I1CCS_LE+ I2CCS_LE+I1CCS_LE- I2CCS_LE-

I1CCS_EN+ I2CCS_EN+I1CCS_EN- I2CCS_EN-

I1CCSSH+ I2CCSSH+I1CCSSH- I2CCSSH-

I1CCS_RD- I2CCS_RD-I1CCS_RD+ I2CCS_RD+

Connectors to pre-amplifier boards

SIGNAL
SIGNAL

P1 P2

P3 P4

P5 P6

P7 P8

P9 P10

P11 P12

P13 P14

P15 P16

P17 P18

P19 P20

P21 P22

P23 P24

P25 P26

P27 P28

P29 P30

P31 P32

P33 P34

P35 P36

P37 P38

P39 P40

P41 P42

P43 P44

P45 P46

P47 P48

P49 P50

9

87

6

50

5

49

4847

4645

4443

4241

40

4

39

3837

3635

3433

3231

30

3

29

2827

2625

2423

2221

20

2

19

1817

1615

1413

1211

10

1

J1

SIGNAL
SIGNAL

P1 P2

P3 P4

P5 P6

P7 P8

P9 P10

P11 P12

P13 P14

P15 P16

P17 P18

P19 P20

P21 P22

P23 P24

P25 P26

P27 P28

P29 P30

P31 P32

P33 P34

P35 P36

P37 P38

P39 P40

P41 P42

P43 P44

P45 P46

P47 P48

P49 P50

1

10

11 12

13 14

15 16

17 18

19

2

20

21 22

23 24

25 26

27 28

29

3

30

31 32

33 34

35 36

37 38

39

4

40

41 42

43 44

45 46

47 48

49

5

50

6

7 8

9

J2

SIGNAL
SIGNAL

P1 P2

P3 P4

P5 P6

P7 P8

P9 P10

P11 P12

P13 P14

P15 P16

P17 P18

P19 P20

P21 P22

P23 P24

P25 P26

P27 P28

P29 P30

P31 P32

P33 P34

P35 P36

P37 P38

P39 P40

P41 P42

P43 P44

P45 P46

P47 P48

P49 P505049

4847

4645

4443

4241

4039

3837

3635

3433

3231

3029

2827

2625

2423

2221

2019

1817

1615

1413

1211

109

87

65

43

21

J3

Sheet 8 of 10

111

GND

GND

CW

2

13
R?

PWR

CONTROL

IN1

IN2

OUT

RELAY

U?

Board (DPIB)
Differential Pair Interface

Date: August 29, 1997 Panos ArvanitisDRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

CONVFWD

Pin 3 is connected to ASE ground

PWR

PWR

GND

CW

2

13
R?

CW

3 1

2

R?

CW

3 1

2

R?

GND

CONVREV

WRST1

WSYNC1

IRFRONT

IRBACK

74LS245

G

A1

A2

A3

A4

A5

A6

A7

A8

B7

B8

B6

B5

B4

B3

B2

B1

DIR

1

18

17

16

15

14

13

11

12

9

8

7

6

5

4

3

2

19

U7

CONTROL

IN1

IN2

OUT

RELAY

U?

Sensor Signal Interface

P1

P2

P3

P4

P5

P6

P7

P8

P9

4

1

9

8

7

6

5

3

2

J5

Sheet 9 of 10

112

Board (DPIB)
Differential Pair Interface

Date: August 29, 1997 Panos Arvanitis

GND

MORRPHCSIG7

MORRPHCSIG6

MORRPHCSIG5

MORRPHCSIG4

MORRPHCSIG3

MORRPHCSIG2

MORRPHCSIG1

MORRPHCSIG0

MORRPHDAT7

MORRPHDAT6

MORRPHDAT5

MORRPHDAT4

MORRPHDAT3

MORRPHDAT2

MORRPHDAT1

MORRPHDAT0

MCONDAT7

MCONDAT6

MCONDAT5

MCONDAT4

MCONDAT3

MCONDAT2

MCONDAT1

MCONDAT0

MCONCSIG7

MCONCSIG6

MCONCSIG5

MCONCSIG4

MCONCSIG3

MCONCSIG2

MCONCSIG1

MCONCSIG0

PWR

PWR

GND

74LS245

G

A1

A2

A3

A4

A5

A6

A7

A8

B7

B8

B6

B5

B4

B3

B2

B1

DIR

19

2

3

4

5

6

7

8

9

12

11

13

14

15

16

17

18

1

U?

74LS245

G

A1

A2

A3

A4

A5

A6

A7

A8

B7

B8

B6

B5

B4

B3

B2

B1

DIR

1

18

17

16

15

14

13

11

12

9

8

7

6

5

4

3

2

19

U?

GND

DRAWN BY:

4

3

2

1

DCBA

A B C D

1

2

3

4

Zee Bus Interface

MCONDAT0

MCONDAT1

MCONDAT2

MCONDAT3

MCONDAT4

MCONDAT5

MCONDAT6

MCONDAT7

MCONSIG0

MCONSIG1

MCONSIG2

MCONSIG3

MCONSIG4

MCONSIG5

MCONSIG6

MCONSIG7

SIGNAL
SIGNAL

P1

P2

P3

P4

P5

P7

P8

P10

P11

P13

P12

P14

P15

P16

P17

P18

P19

P20 P40

P39

P38

P37

P36

P35

P34

P33

P32

P31

P30

P29

P28

P27

P26

P25

P24

P23

P22

P21

P9

P6

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4020

19

18

17

16

15

14

12

13

11

10

9

8

7

6

5

4

3

2

1

U?

Sheet 10 of 10

113

Appendix B. DPIB Logic (FPGA) Level Schematics

Appendix B contains the logic level schematics for the DPIB design. The

modules shown here are used in the prototype system DPIB design. The MDS top level

schematic is shown, followed by a more detailed schematic of each underlying symbol.

114

WHLSIGS[3:0],SIGS[3:0]

D-sub connector

WHLSIGS[3:0]

FAA
4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

backward scatter

CHECK

CHK1

output to MORRPH board

scatter and transmission system with MORRPH board.

FGPA circuitry for DPIB to interface AS&E

BC2ASE[31:0]

SIGS[3:0]

FASTSIGS[3:0]

Transmission

forward scatter

CON1

BCON

CON2

MCON
CON5

ZD[15:0]

AC2ASE[31:0]

CW[1:0]

FPGA circuitry for DPIB with AS&E system.

MBA[15:0]

MZ[15:0]

CCON

CON3

ASE2SUIT

CHAN[3:0]=0001

ASE2

CC2ASE[31:0]

SUIT2ZEE_SLOW

S3

BM[15:0]

DCON
CONTROL1

FASTSIGS[3:0]

SIGS[3:0]

SYNCS[1:0]

WSIGS[3:0]

CONTROL

CONTROL2

MULTIPLEX

MBC[15:0]

MULTIPLEX4

PASS

ASE2SUIT

CHAN[3:0]=0010

ASE3

CM[15:0]

ASE2SUIT

ASE1

CHAN[3:0]=0000

WHLSIGS[3:0],FASTSIGS[3:0]

WHLSIGS[3:0],SIGS[3:0]

Panos ArvanitisDate: August 1, 1996

Mod: THD 8/4/97

ACON

CON1

115

Sheet 1/1

Date: July 29, 1996 Panos Arvanitis

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

First level schematic for ACON partitioned for TRAVERSE software.

ACON

Connector A

AA[31:0]
AA[31:0]

XACON

XILINX

116

control signals for 422 drivers/receivers

Sheet 1/1

PAD F2

PAD H3

PAD G1

PAD E1

PAD B6

PAD D1

PAD H2

PAD F1

PAD B2

PAD G2

PAD B3

PAD J2

PAD J16

PAD M1

PAD B7

PAD M17

OBUF

OBUF

OBUF

OBUF

OBUF

Panos Arvanitis

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

PAD R17

PAD U15OBUF

OBUF

I1DRV_EN

I1RCV_EN

I1_EN

I1_LE

I1_RD

I1SH

OBUF

PAD L16I1RCVEN

I1DRVEN

PAD E2

AA28

AA29

I1DAT0

I1DAT6

I1DAT5

I1DAT4

I1DAT3

I1DAT1

I1DAT2

I1DAT7

I1DAT[7:0]

NAND2B1

T

I[7:0] O[7:0]

OBUFT8

I[3:0] O[3:0]

T

OBUFT4

Date: July 29, 1996

IBUF12

AA[11:0]

INV12

AAB[11:0]

AA[19:12]

AA[23:20]

I1DAT[11:0]

I1DAT11

I1DAT10

I1DAT9

I1DAT8

I1DAT[11:8]

AA31

AA30

AA29

AA28

AA27

AA26

AA25

AA[31:24]

AA24

Connector A

XACON

image data from 422 receivers

correction data to 422 drivers

control signals to 422 drivers

AA[31:24]

AA[23:12]

AA[31:0]

AA[11:0]

117

AA[31:0]

XBCON

XILINX

Connector B

Sheet 1/1

First level schematic for BCON, partitioned for TRAVERSE software

Date: July 29, 1996 Panos Arvanitis

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

AA[31:0]

BCON

118

Sheet 1/1

control signals for 422 drivers/receivers

control signals to 422 drivers

image data from 422 receivers

INV12

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

Panos ArvanitisDate: July 29, 1996

NAND2B1

AA28

AA29

T

I[7:0] O[7:0]

OBUFT8

I[3:0] O[3:0]

T

OBUFT4

I2DAT0

I2DAT1

I2DAT2

I2DAT3

I2DAT4

I2DAT5

I2DAT6

I2DAT7

I2DAT[7:0]

I2DAT[11:0]

I2DAT[11:8]

I2DAT11

I2DAT10

I2DAT9

I2DAT8

I2_EN

I2_LE

I2_RD

I2SH

I2DRVEN

I2DRV_EN

PAD LOC=H18

PAD LOC=L17

PAD LOC=L18

PAD LOC=J17

PAD LOC=G18

PAD LOC=F18

PAD LOC=K18

PAD LOC=H16

PAD LOC=K1

PAD LOC=J1

PAD LOC=J18

PAD LOC=H1

PAD LOC=D18

PAD LOC=A7

PAD LOC=U13

PAD LOC=R2

PAD LOC=C18

PAD LOC=N2

PAD LOC=A11

I2RCVEN

I2RCV_EN PAD LOC=E18

AA30

AA29

AA28

AA27

AA26

AA25

AA[31:24]

AA24

AA31

AA[11:0]

AA[23:12]

AA[31:0]

AA[31:24]

IBUF12

AAB[11:0]AA[11:0]

AA[19:12]

AA[23:20]

correction data to 422 drivers

Connector B

XBCON

119

Date: July 29, 1996 Panos Arvanitis

XCCON

AA[31:0]

XILINX

Connector C

First level shematic for CCON, partitioned for TRAVERSE software

Sheet 1/1

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

AA[31:0]

CCON

120

control signals for 422 drivers/receivers

control signals to 422 drivers

correction data to 422 drivers

image data from 422 receivers

AAB[11:0]AA[11:0]

IBUF12

Sheet 1/1

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

OBUF

OBUF

OBUF

OBUF

I[3:0] O[3:0]

T

OBUFT4

OBUF

OBUF

Panos ArvanitisDate: July 29, 1996

OBUF

OBUF

I3_EN

I3_LE

I3_RD

I3SH

PAD V5

PAD R18

PAD A15

PAD B11

PAD A13

PAD A14

PAD B13

PAD C13

PAD A12

PAD A6

PAD A9

PAD A4

PAD B5

PAD A5

PAD C8

PAD N1

PAD T18

PAD P2

I3DRVEN

I3DRV_EN

I3RCVEN

I3RCV_EN

PAD B15

PAD D2

I3DAT1

I3DAT2

I3DAT3

I3DAT4

I3DAT5

I3DAT6

I3DAT7

I3DAT0

I3DAT[7:0]

T

I[7:0] O[7:0]

OBUFT8

I3_EN

I3_LE

I3_RD

I3SH

XCCON

INV12

I3DAT[11:0]

I3DAT8

I3DAT9

I3DAT10

I3DAT11

I3DAT[11:8]

AA31

AA30

AA29

AA28

AA27

AA26

AA25

AA24

AA[31:24]

AA[31:0]

Connector C

AA[23:20]

AA[19:12]

AA29

121

Mod: THD

D-sub connector on right edge of ISA card

Sheet 1/1

First level schematic for BCON, partitioned for TRAVERSE software

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

Connector D

DCON

Date: August 9, 1997

AA[1:0]

CBUS[3:2]

CBUS[1:0]

CLOCK

CLK

CV[1:0]

IR[1:0]

XDCON

CW[1:0]

XILINX

122

Mod: THD

Panos Arvanitis

conveyor control output signals

CLK

CLK

FWD

REV

FRONT

BACK

RESET

RESET

infra-red beam-break sensor input signals

C

D

O

Q

INFF

C

D

O

Q

INFF

OBUF

OBUF

PAD

LOC=A16

PAD

LOC=A17

PAD

LOC=D17

PAD

LOC=F16

CLK

D

Q

RST

HYSTERYSIS-2

CLK

D

Q

RST

HYSTERYSIS-2

CLK

CLK

C

D

O

Q

INFF

C

D

O

Q

INFF

PAD C17

Sheet 1/1

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

Connector D

XDCON

Date: August, 7 1997

CV1

CV0

CV[1:0]
chopper wheel signals

SLOT_SYNC

WHEEL_SYNC PAD B18

CW0

CW1

CW[1:0]

IR0

IR[1:0]

IR1

123

Date: August 28, 1997 Panos Arvanitis

QQ[15:0]

XMCON

CLK

XILINX

First level schematic partitioned for TRAVERSE software

16-bit TTL I/O bus connection (to MORRPH board in ZEE bus format).

AA[15:0]

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

CLOCK

Sheet 1/1

MCON

Connection M

124

Panos ArvanitisDate: July 29, 1996

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

PAD N18

PAD G17

PAD U7

PAD U6

PAD C6

PAD U11

PAD A3

PAD U8

PAD P1

PAD V4

PAD V6

PAD F17

PAD M2

PAD M18

PAD N17

PAD P18

OO1

OO0

OO2

OO3

OO4

OO5

OO6

OO7

OO[7:0]

OO[15:8]

OO10

OO9

OO8

OO11

OO15

OO14

OO13

OO12

CLK

CLK

D[7:0]

Q[7:0]

OREG8B

CLK

D[7:0]

Q[7:0]

OREG8B

QQ[15:0]

QQ[7:0]

QQ[15:8]

Sheet 1/1

XMCON

Connection M

16-bit TTL I/O bus connection (to MORRPH board in ZEE bus format).

125

First level schematic partitioned for TRAVERSE software

Sheet 1/1

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:Date: September 4, 1996 Panos Arvanitis

CHAN[3:0]

CLOCK

RESET

CORRVAL[7:0]

ASE2SUIT

AS&E to SUIT bus Interface Module Schematic

AA[11:0]

AA[23:12]

AA24

AA25

AA26

AA27

AA28

AA29

AA30

AA31

AA[31:0]

QQ[15:0]

CHAN[3:0]

CLK

COMPVAL[7:0]

CSIGSH

CSIG_EN

CSIG_LE

CSIG_RD

DBIN[11:0]

DBOUT[11:0]

DRVEN

DRV_EN

RCVEN

RCV_EN

RST

SBUS[15:0]

SIGS[3:0]

XASE2SUIT

CWHEEL[3:0]

XILINX

SIGS[7:4]

SIGS[3:0]

SIGS[7:0]

126

DBIN[11:0]

CLK

D

Q

RST

SDELAY4

BUF4

CLK

RST

LINE_START

8-bit shade correction value

RST

CLK

DBIN[7:0] SBUS[7:0]

Sheet 1/2

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

The bus now output only 8-bit data,

Valid data

Start of line

Marking

Date: September 4, 1996 Panos Arvanitis

End of line

although the input data may be 12-bits wide.

DBOUT[7:0]COMPVAL[7:0]

XASE2SUIT

SUIT Bus Signal Generation

OR2

OR2

RCVEN

RCV_EN

CLK

RST

CLK

D

Q

RST

ONE-SHOT

LINE_START

PIXVAL

CWHEEL1

CWHEEL1

CWHEEL[3:0]

SBUS[15:0]

GND,GND,GND,GND

GND,GND,VDD,VDD

GND,GND,VDD,GND

VDD,VDD,GND,GND

SBUS[11:8]CHAN[3:0]

SBUS[15:12]

B[3:0]

C[3:0]

D[3:0]

SEL0

SEL1

A[3:0]

Y[3:0]

MUX4x4

CLK

D[7:0]

EN

Q[7:0]

RST

REG8ERB

BUF8

DBOUT[11:0]

Mod: THD

127

BUF

INV

NAND2CLK

VDD

RSTNHSYNC

OR2

AS&E control signals to 422 drivers

anabled, to avoid bus contention

Introduce a time delay before 422 drivers are

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

INV

BUF

BUF

HTIM_RD = 223

LTIM_RD = 176

HTIM_LE = 184

LTIM_LE = 182

HTIMSH = 172

LTIMSH = 169

HTIM_EN = 224

LTIM_EN = 215

SIGPER = 224

not halved.

assumming that CLK is off the oscillator, and

These are the timing values for a 14.318MHz oscillator

Panos ArvanitisDate: September 15, 1996

CSIGSH

CSIG_LE

CSIG_RD

BUF

SIGS0

SIGS[3:0]

SIGS2

SIGS3

SIGS1

Sheet 2/2

XASE2SUIT

Control Signal Generation

CSIGEN

FDCR

R

QD

CE

C

CWHEEL2

RST
RSTNHSYNC

RSTNHSYNC

VDD

CLK

AND2B2

PRE_EN

FDCR

R

QD

CE

C

OR2

AND2B1

AND2B2

CSIG_EN

DRVEN DRV_EN

INV

BUF

RCVEN

RCV_EN

control signals for 422 drivers/receivers

CSIG_EN

PRE_EN

128

Mod: THD

AS&E Board Control Signal Generation

01110000
01011001

01011111
01011110

01010010
01010000

01110000
01101100

01110000

The values are:

CLOCK

RESET

Date: April 9, 1997 Panos Arvanitis

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

FASTSIGS[3:0]

SIGS[3:0]

WSIGS[3:0]

GND,VDD,GND,VDD,GND,GND,GND,GND

GND,VDD,GND,VDD,GND,GND,VDD,GND

GND,VDD,GND,VDD,VDD,VDD,VDD,GND

GND,VDD,GND,VDD,VDD,VDD,VDD,VDD

SYNCS1

SYNCS0
SYNCS[1:0]

GND,VDD,GND,VDD,VDD,GND,GND,VDD

GND,VDD,VDD,VDD,GND,GND,GND,GND

GND,VDD,VDD,VDD,GND,GND,GND,GND

GND,VDD,VDD,GND,VDD,VDD,GND,GND

GND,VDD,VDD,VDD,GND,GND,GND,GND

Sheet 1/1

CONTROL

CLK

CSIGSFAST[3:0]

CSIGSNORM[3:0]

HTIMSH1[7:0]

HTIM_EN1[7:0]

HTIM_LE1[7:0]

HTIM_RD1[7:0]

LTIMSH1[7:0]

LTIM_EN1[7:0]

LTIM_LE1[7:0]

LTIM_RD1[7:0]

NUMPIXF[9:0]

NUMPIXS[9:0]

PERIOD1[7:0]

RESET

WSIGS[3:0]

XCONTROL

SLOTSYNC

WHEELSYNC

XILINX

GND,VDD,VDD,VDD,GND,GND,GND,GND,GND,VDD

GND,GND,VDD,VDD,VDD,GND,GND,GND,GND,GND

129

Mod: THD

ENSBAR

EQ

COMP10

A[9:0]

B[9:0]

AND2B1

C

CE

Q[9:0]

R TC

C10BIT

RSTNHSYNC

CLK

CLK

VCC
+5

OR2

COMP8

EQ

B[7:0]

A[7:0]

CLK

period generation for scatter detectors

OR2

Sheet 1/4

Date: April 9, 1997 Panos Arvanitis

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

XCONTROL

VCC
+5

CNTF[8:0]

CNTF[8:1]

CNTS[9:0]

CNTS[9:2]

RSTNHSYNC

C

CE

R TC

Q[8:0]

C9BIT

C

CE

Q[9:0]

R TC

C10BIT

RSTNHSYNC

RSTNHSYNC

CLK

C

CE

Q[9:0]

R TC

C10BIT

COMP8

EQ

B[7:0]

A[7:0]

PIXCNTS[9:0]

AND2B1

EQ

COMP10

A[9:0]

B[9:0]

NUMPIXS[9:0]

period generation for transmission detector

NUMPIXF[9:0]

PIXCNTF[9:0]

ENFBAR

ENF

ENS

INV

INV

PERIOD1[7:0]

PERIOD1[7:0]

130

Mod: THD

ENS

ENS

ENS

CNTS[9:2]

CNTS[9:2]

CNTS[9:2]

RESET

RESET

CLK

CLK

CLK

Date: April 9, 1997 Panos Arvanitis

HTIM_RD1[7:0]

LTIM_LE1[7:0]

EN

SIGGEN2

CLK

LTIME[7:0]

OUT

Signal Generator - V2

HTIME[7:0]

RST

CNT[7:0]

EN

SIGGEN2

CLK

LTIME[7:0]

OUT

Signal Generator - V2

HTIME[7:0]

RST

CNT[7:0]

INV

INV

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

LTIMSH1[7:0]

HTIMSH1[7:0]

Sheet 2/4

XCONTROL

CSIGSNORM[3:0]

CSIGSNORM3

CSIGSNORM2

CSIGSNORM1

CSIGSNORM0

AS&E Control Signal Generation for Scatter Signals

LTIM_RD1[7:0]

LTIM_EN1[7:0]

HTIM_LE1[7:0]

EN

SIGGEN2

CLK

LTIME[7:0]

OUT

Signal Generator - V2

HTIME[7:0]

RST

CNT[7:0]

CLK

RESET

EN

SIGGEN2

CLK

LTIME[7:0]

OUT

Signal Generator - V2

HTIME[7:0]

RST

CNT[7:0]

HTIM_EN1[7:0]

CNTS[9:2]

RESET

ENS

131

Mod: THD

ENF

ENF

ENF

ENF

CNTF[8:1]

CNTF[8:1]

CNTF[8:1]

RESET

RESET

RESET

CLK

CLK

CLK

Date: April 9, 1997 Panos Arvanitis

XCONTROL

LTIM_EN1[7:0]

LTIM_LE1[7:0]

HTIM_LE1[7:0]

LTIM_RD1[7:0]

HTIM_RD1[7:0]

INV

INV

EN

SIGGEN2

CLK

LTIME[7:0]

OUT

Signal Generator - V2

HTIME[7:0]

RST

CNT[7:0]

EN

SIGGEN2

CLK

LTIME[7:0]

OUT

Signal Generator - V2

HTIME[7:0]

RST

CNT[7:0]

EN

SIGGEN2

CLK

LTIME[7:0]

OUT

Signal Generator - V2

HTIME[7:0]

RST

CNT[7:0]

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

CSIGSFAST[3:0]

CSIGSFAST3

CSIGSFAST2

CSIGSFAST1

CSIGSFAST0

LTIMSH1[7:0]

HTIMSH1[7:0]

Sheet 3/4

AS&E Control Signal Generation for Transmission Sensor

CLK

EN

SIGGEN2

CLK

LTIME[7:0]

OUT

Signal Generator - V2

HTIME[7:0]

RST

CNT[7:0]

HTIM_EN1[7:0]

CNTF[8:1]

RESET

132

Mod: THD

Chopper wheel signal conditioning

RESET
RSTNHSYNC

XCONTROL

Panos ArvanitisDate: April 9, 1997

CLK

CLK

CLK

RESET

RESET

VDD,GND,VDD,GND

VDD,GND,VDD,GND

RESET

RESET

WHLSYNC

WHLRSTCLK

D

Q

RST

ONE-SHOT

CLK

D

Q

RST

ONE-SHOT

HYSTVAL[3:0]

IN

RST

CLK

OUT

VAR-HYST

HYSTVAL[3:0]

IN

RST

CLK

OUT

VAR-HYST

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

CLK

Sheet 4/4

SLOTSYNC

WHEELSYNC

WSIGS3

WSIGS1

WSIGS[3:0]

WSIGS2

WSIGS0

WSIGS0

OR2

133

Sheet 1/1

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

VCC
+5

COMPM8

LT

GT

B[7:0]

A[7:0]

Date: September 16, 1996

LTIME[7:0]

COMPM8

LT

GT

B[7:0]

A[7:0]

HTIME[7:0]

FDCR

R

QD

CE

C

OUT

RST

CLK

Panos Arvanitis

SIGGEN2

CNT[7:0]

Configurable Periodic Signal Generation

AND3B1

EN

134

Location: /igor/hardware/morrph/suit2

Sheet 1/1

Note: FIFOs are 2-words deep, input AA has priority.

a single SUIT output bus

This module multiplexes two input SUIT channels onto

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

.prt file

BB[15:0]

DATE: 7/19/95 Thomas H. Drayer

QQ[15:0]AA[15:0]

RESET

CLOCK

compiled performance: 45.1 ns FF-FF

FG = 181

FF = 168

CLB = 197
FG = 196

FF = 168

CLB = 132

AA[15:0]

BB[15:0]

CLK

QQ[15:0]

XMULTIPLEX4
RST

XILINX

MULTIPLEX4

135

Sheet 1/1

XMULTIPLEX4
4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

AV

CLK
EM

FL

RD

RST

WR

FIFO4x16

D[15:0]
Q[15:0]

SEL

A[15:0]

B[15:0]

Y[15:0]

MUX2x16
RST

RST

AND2B1
B_D15

CLK

CLK

CLK

DATE: 7/19/95 Thomas H. Drayer

CLK

A_D15

A_D14

A_D13

A_D12

B_D14

B_D13

B_D12

AND2B1

INV

RST

RST

AND2B1

AV_B

INV

OR4

BB[15:0]

AA[15:0]

B_F[15:0]

RST

CLK

Q[15:0]

EN

REG16E

D[15:0]
A_D[15:0] A_F[15:0]

RST

CLK

Q[15:0]

EN

REG16E

D[15:0]
B_D[15:0]

OR4

OR2

A[3:0]

B[3:0]

SEL

Y[3:0]

MUX2x4

AV_A

OCON[15:12],QQ[11:0]

QQ[15:0]

OCON[15:12]

GND,GND,GND,GND QQ[15:12]

AV

CLK
EM

FL

RD

RST

WR

FIFO4x16

D[15:0]
Q[15:0]

136

BY: Panos J. ArvanitisMODIFIED ON: 2/24/97

AA[15:0]

CLK

RST

QQ[15:0]

XSUIT2ZEE_SLOW

XILINX

.prt file

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

AA[15:0] QQ[15:0]

CLOCK

FG = 121

FF = 148

CLB = 153
FG = 167

FF = 156

CLB = 121

RESET

compiled performance: 25.3 ns FF-FF

SUIT2ZEE_SLOW

Thomas H. DrayerDATE: 3/27/96

This module uses an LUT to modify image pixel values.

MOD: Div. clock by 2 (cause Paul’s board can’t handle it :))

137

Modified: Panos Arvanitis

OR4

STATE5

STATE4

STATE3

STATE2

PQ8

STATE0

STATE1

STATE2

STATE3

STATE4

STATE5

STATE6

CLK

VDD

RST

AND4B4

AND4B4

RST

CLK

VDD

RST

CLK

VDD

QQ[15:0]

to the ZEE bus for interboard transfer.

This module is converts the SUIT bus

VDD

TRANS

DD15

Thomas H. Drayer

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

STATE0

DD14

DD13

DD12

TRANS

STATE3

VDD

TRANS

CLK

RST

RST

CLK

DATE: 4/10/96

TRANS

CLK

D[15:0]

EN

Q[15:0]

RST

REG16ERB

OR4

READ

OR2
AND2B1

FDCR

R

QD

CE

C

PQ[15:12],BLANK,PQ[11:9]

A[7:0]

B[7:0]

SEL

Y[7:0]

MUX2x8

GND,GND,GND,GND,GND,GND,GND,GND

AND2

CLK

RST

CLK

D[7:0]

EN

Q[7:0]

RST

REG8ERB
RST

CLK

STATE0

AND2

AA[15:0]

CLK

D[7:0]

EN

Q[7:0]

RST

REG8ERB

QZ[15:8]

QS[7:0]

DD[15:0]

PQ[15:0]

PQ[7:0]

SUIT-2-ZEE_SLOW

QS[15:8]

REG8ER

EN

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

D7

D6

D5

D4

D3

D2

D1

D0

CLK

RST

STATE7

STATE6

STATE5

STATE4

STATE3

STATE2

STATE1

STATE0

AND2

OR2

STATE7

CLK

D[15:0]

EN

Q[15:0]

RST

REG16ERB

QS[15:0]

AV

CLK
EM

FL

Q[15:0]

RD

RST

WR

FIFO6x16

D[15:0]

138

3/1/96
Thomas H. Drayer

4

3

2

1

DCBA

A B C D

1

2

3

4

DRAWN BY:

CHECK

This module supplies known data from a port

XCHECK

PINTYPE=ININCHK[7:0]PINTYPE=OUT
OUTCHK[7:0]

CHECK_VAL[7:0]

XILINX

CVAL[7:0]

IN[7:0] OUT[7:0]

139

B
U
F
8

4321

D
C

B
AA

B
C

D

1 2 3 4

D
R
A
W
N

B
Y
:
T
h
o
m
a
s

H
.

D
r
a
y
e
r

D
A
T
E
:

1
1
/
1
5
/
9
5

V
D
D
,
G
N
D
,
V
D
D
,
G
N
D
,
G
N
D
,
V
D
D
,
G
N
D
,
V
D
D

C
H
E
C
K
_
V
A
L
[
7
:
0
]

C
h
e
c
k

P
o
r
t

I
N
C
H
K
[
7
:
0
]

O
U
T
C
H
K
[
7
:
0
]

B
U
F
8

140

Appendix C. Device driver source code

Appendix C includes the source code for the PCIDMA and DPIB device drivers.

Any include files that are necessary to compile these drivers are also shown here.

141

/*

 *---

 *

 * Module Name:

 * pcidma.c

 *

 * Environment:

 * Kernel mode

 *

 * Version :

 * 1.0

 *

 * Author:

 * Panos Arvanitis, July 1996

 *

 *

 * Things to do:

 * Add error logging with EventViewer.

 *

 * Allow DMA buffer size to be read from registry entry and be

 * be changeable by the user.

 *

 * Fix dynamically loading and unloading of the driver (don't

 * forget to free the DMA buffer and unmap and user memory)

 *

 * Add the length of the buffer in the information returned by

 * PPciDmaReturnMemoryInfo, so that the application can

 * determined if it is adequate.

 *

 * Portions of this source code were taken from the Skeleton

 * PCI driver, the author of which could not be determined

 *---

 */

#include <ntddk.h>

#include <stdarg.h>

//Include header files

#include "ppcidma_ioctl.h"

#include "pcidma_dev.h"

//Static variables

static int nopens;

static int timeout_interval = 100;

//Function Prototypes

static NTSTATUS CloseDevice(IN PDEVICE_OBJECT devObj,

 IN PFILE_OBJECT fileObj);

static NTSTATUS Dispatch(IN PDEVICE_OBJECT devObj,

 IN PIRP Irp);

static NTSTATUS OpenDevice(IN PDEVICE_OBJECT devObj,

 IN PFILE_OBJECT fileObj);

static NTSTATUS ProbePCI(IN PDRIVER_OBJECT drvObj,

 IN PUNICODE_STRING regPath);

static BOOLEAN ServiceInterrupt(IN PKINTERRUPT Interrupt,

 IN PVOID ServiceContext);

static VOID StartIo(IN PDEVICE_OBJECT devObj, IN PIRP Irp);

static VOID Unload(IN PDRIVER_OBJECT);

NTSTATUS PPciDmaMapBuffer(

IN PSKELETON_DEVICE pLDI,

IN PIRP pIrp,

 PCIDMA.C

142

IN PIO_STACK_LOCATION IrpStack

);

NTSTATUS PPciDmaUnMapBuffer(

IN PSKELETON_DEVICE pLDI,

IN PIRP pIrp,

IN PIO_STACK_LOCATION IrpStack

);

NTSTATUS PPciDmaIoctlReadPort(

IN PSKELETON_DEVICE pLDI,

IN PIRP pIrp,

IN PIO_STACK_LOCATION IrpStack,

IN ULONG IoctlCode

);

NTSTATUS PPciDmaIoctlWritePort(

IN PSKELETON_DEVICE pLDI,

IN PIRP pIrp,

IN PIO_STACK_LOCATION IrpStack,

IN ULONG IoctlCode

);

NTSTATUS PPciDmaReturnMemoryInfo(

IN PSKELETON_DEVICE pLDI,

IN PIRP pIrp,

IN PIO_STACK_LOCATION IrpStack

);

//Under NT, we can specify the parts of the code that are no

//longer needed after initialization with the pragma alloc_text.

#if 0

#ifdef ALLOC_PRAGMA

pragma alloc_text(INIT,DriverEntry)

#endif

#endif

/*

 *---

 * DriverEntry --

 *

 * This routine is called at system initialization time to

 * initialize this driver.

 *

 * Arguments:

 * DriverObject - Supplies the driver object.

 * RegistryPath - Supplies the registry path for this

driver.

 *

 * Return Value:

 * STATUS_SUCCESS - Could initialize at least one

device.

 * STATUS_NO_SUCH_DEVICE - Could not initialize even one

device.

 * STATUS_UNSUCCESSFUL - For other errors?

 *---

 */

NTSTATUS

DriverEntry(IN PDRIVER_OBJECT drvObj, IN PUNICODE_STRING regPath)

{

 NTSTATUS status;

 KdPrint(("PPCIDMA.SYS : DriverEntry : Entering\n"));

 //Scan PCI bus for PCIDMA board

 status = ProbePCI(drvObj, regPath);

143

 if (NT_SUCCESS(status)) {

//Create dispatch points for NT service routine

drvObj->MajorFunction[IRP_MJ_CREATE] = Dispatch;

drvObj->MajorFunction[IRP_MJ_CLOSE] = Dispatch;

drvObj->MajorFunction[IRP_MJ_DEVICE_CONTROL] = Dispatch;

drvObj->MajorFunction[IRP_MJ_READ] = Dispatch;

drvObj->MajorFunction[IRP_MJ_WRITE] = Dispatch;

drvObj->DriverUnload = Unload;

drvObj->DriverStartIo = StartIo;

 }

 KdPrint(("PPCIDMA.SYS : DriverEntry : Exiting\n"));

 return status;

}

/*

 *---

 * Dispatch --

 *

 * This routine handles all IRPs sent to this device.

 *

 * Arguments:

 * devObj: Pointer to the device object

 * irp: Pointer to an I/O request packet

 *

 * Results:

 * Standard NT result

 *

 *---

 */

static NTSTATUS

Dispatch(IN PDEVICE_OBJECT devObj, IN PIRP irp)

{

 PIO_STACK_LOCATION irpStack;

 PVOID ioBuf;

 ULONG inBufLen;

 ULONG outBufLen;

 ULONG ioctlCode;

 NTSTATUS status;

 PSKELETON_DEVICE skelDev;

 ULONG key;

 skelDev = devObj->DeviceExtension;

 /*

 * enter device mutex to ensure one request at a time

 */

 ExAcquireFastMutex(&skelDev->IrpMutex);

 irp->IoStatus.Status = STATUS_SUCCESS;

 irp->IoStatus.Information = 0;

 irpStack = IoGetCurrentIrpStackLocation(irp);

 //This is the pointer to where the output data from the

apropriate device

 //control routine will be written

 //Only used in map and unmap requests.

 ioBuf = irp->AssociatedIrp.SystemBuffer;

 //Dispatch messages to appropriate routine

 switch (irpStack->MajorFunction) {

 //Create a new PCIDMA device

144

 case IRP_MJ_CREATE:

 KdPrint(("PPCIDMA.SYS: IRP_MJ_CREATE\n"));

 status = OpenDevice(devObj, irpStack->FileObject);

 break;

//Close the PCIDMA device

 case IRP_MJ_CLOSE:

 KdPrint(("PPCIDMA.SYS: IRP_MJ_CLOSE\n"));

 status = CloseDevice(devObj, irpStack->FileObject);

 break;

//Perform a control function, such as port read or write

 case IRP_MJ_DEVICE_CONTROL:

 ioctlCode= irpStack->Parameters. DeviceIoControl. \

IoControlCode;

 switch (ioctlCode) {

 case IOCTL_PPCIDMA_MAP_USER_PHYSICAL_MEMORY:

 status = PPciDmaMapBuffer(skelDev, irp, irpStack);

 break;

 case IOCTL_PPCIDMA_UNMAP_USER_PHYSICAL_MEMORY:

status = PPciDmaUnMapBuffer(skelDev,

 irp,

 irpStack

);

break;

 case IOCTL_PPCIDMA_RETURN_MEMORY_INFORMATION:

status = PPciDmaReturnMemoryInfo(skelDev,

irp,

irpStack);

break;

 case IOCTL_PPCIDMA_READ_PORT_UCHAR:

 case IOCTL_PPCIDMA_READ_PORT_USHORT:

 case IOCTL_PPCIDMA_READ_PORT_ULONG:

 status = PPciDmaIoctlReadPort(

skelDev,

irp,

irpStack,

irpStack-> \

Parameters.DeviceIoControl.IoControlCode

);

break;

 case IOCTL_PPCIDMA_WRITE_PORT_UCHAR:

 case IOCTL_PPCIDMA_WRITE_PORT_USHORT:

 case IOCTL_PPCIDMA_WRITE_PORT_ULONG:

status = PPciDmaIoctlWritePort(

skelDev,

irp,

irpStack,

irpStack-> \

Parameters.DeviceIoControl.IoControlCode

);

 break;

 default:

 KdPrint(("PPCIDMA.SYS: unknown IRP_MJ_DEVICE_CONTROL\n"));

 status = STATUS_INVALID_PARAMETER;

 break;

 }

 break;

145

 default:

 KdPrint(("PPCIDMA.SYS: unknown Major Function\n"));

 status = STATUS_INVALID_PARAMETER;

 }

 /*

 * Don't get cute and try to use the status field of

 * the irp in the return status. That IRP IS GONE as

 * soon as you call IoCompleteRequest.

 */

 if (status != STATUS_PENDING) {

irp->IoStatus.Status = status;

IoCompleteRequest(irp, IO_VIDEO_INCREMENT);

 } else {

IoMarkIrpPending(irp);

IoStartPacket(devObj, irp, &key, NULL);

 }

 ExReleaseFastMutex(&skelDev->IrpMutex);

 return status;

}

/*

 *---

 * Unload --

 *

 * Just delete the associated device and return

 *

 * Arguments:

 * drvObj: Pointer to the driver object

 *

 * Results:

 * None

 *---

 */

static VOID

Unload(IN PDRIVER_OBJECT drvObj)

{

 WCHAR devLinkBuf[] = L"\\DosDevices\\PPCIDMA0";

 UNICODE_STRING devLinkUniStr;

 WCHAR devNum;

 PDEVICE_OBJECT devObj, nextDev;

 PSKELETON_DEVICE skelDev;

 int tmp;

 CM_RESOURCE_LIST EmptyList;

 BOOLEAN ResourceConflict;

 /*

 * For each device that is on the machine:

 *

 * 1. Delete the symbolic links

 * 2. Turn off the board interrupts and disconnect the

interrupt.

 * 3. Unmap the board memory from system space.

 * 4. Unreport the resources that were assigned by

HalAssignSlotResources

 * 5. Delete the device object

 */

 for (devNum = 0, devObj = drvObj->DeviceObject; devObj !=

NULL;

 devObj = nextDev, devNum++) {

devLinkBuf[sizeof(devLinkBuf) - 1] = L'0' + devNum;

146

RtlInitUnicodeString(&devLinkUniStr, devLinkBuf);

IoDeleteSymbolicLink(&devLinkUniStr);

skelDev = devObj->DeviceExtension;

IoDisconnectInterrupt(skelDev->KIntrObj);

//MmUnmapIoSpace(skelDev->FrameBase, skelDev->MemLength);

/*HalFreeCommonBuffer(skelDev->AdaptorObj,

PPCIDMA_MAX_DMA_BUFFER_LENGTH, skelDev->LogicalAddress,

&skelDev-

>VirtualAddress, FALSE);*/

/* un-report any resources used by the driver and the

device */

EmptyList.Count = 0;

IoReportResourceUsage(NULL, drvObj, &EmptyList,

sizeof(ULONG),

 drvObj->DeviceObject, &EmptyList,

sizeof(ULONG),

 FALSE, &ResourceConflict);

nextDev = devObj->NextDevice;

IoDeleteDevice(devObj);

 }

 KdPrint(("PPCIDMA.SYS: unloading\n"));

}

/*

 *---

 * StartTransferTimeout --

 *

 * Starts a timer that can check on the DMA operation.

Hopefully,

 * it never goes off

 *

 * Results:

 * None

 *---

 */

static void

StartTransferTimeout(IN PDEVICE_OBJECT devObj, int msTimeout,

PVOID Ignore)

{

 PSKELETON_DEVICE skelDev = devObj->DeviceExtension;

KdPrint(("PPCIDMA.SYS : UhOh : StartTransferTimeOut

called.\n"));

 skelDev->TransferDone = FALSE;

 /*

 * Timer is in 100 ns units.

 */

 KeSetTimer(&skelDev->DeviceCheckTimer,

 RtlConvertLongToLargeInteger(-msTimeout * 10000),

&skelDev->TimerDpc);

 skelDev->TimerStarted = TRUE;

}

147

/*

 *---

 * CancelTransferTimeout --

 *

 * Remove a previously set DMA timeout timer.

 *

 * Results:

 * None

 *---

 */

static void

CancelTransferTimeout(PVOID Context)

{

 PDEVICE_OBJECT devObj = Context;

 PSKELETON_DEVICE skelDev = devObj->DeviceExtension;

KdPrint(("PPCIDMA.SYS : UhOh : CancelTransferTimeOut

called.\n"));

 skelDev->TransferDone = TRUE;

}

/*

 *---

 * ProgramDMAUtil

 *

 * Utility routine that starts the DMA transfer

 *

 * Results:

 * TRUE

 *---

 */

static BOOLEAN

ProgramDMAUtil(IN PVOID Context)

{

 PDEVICE_OBJECT devObj = Context;

 PSKELETON_DEVICE skelDev = devObj->DeviceExtension;

 ULONG bufLen;

 BOOLEAN writeOp;

 ULONG toMapLen, mappedLen;

 PHYSICAL_ADDRESS physAddr;

 PVOID virtualAddr;

 PIRP irp;

KdPrint(("PPCIDMA.SYS : UhOh : ProgramDmaUtil

called.\n"));

 irp = (PIRP) skelDev->syncParam1;

 bufLen = skelDev->IrpBufLen;

 virtualAddr = skelDev->VirtualAddress;

 writeOp = (skelDev->OperationType == IRP_MJ_READ) ? FALSE :

TRUE;

 toMapLen = bufLen;

 while (toMapLen > 0) {

mappedLen = (toMapLen >= 4096) ? 4096 : toMapLen;

physAddr = IoMapTransfer(NULL, irp->MdlAddress,

 skelDev->MapRegisterBase,

 virtualAddr, &mappedLen, writeOp);

/*

 * XXX: set addr on the board. This will be different

per board.

148

 * Maybe you don't even have to do anything.

 */

#if 0

board_write(start_address) =

LITTLE_ENDIAN_32(physAddr.u.LowPart);

#endif

toMapLen -= mappedLen;

virtualAddr = (((char *) virtualAddr) + mappedLen);

 }

 return TRUE;

}

/*

 *---

 * ProgramDMA

 *

 * This routine gets called back by NT when an adapter

channel

 * is free to use. It then uses ProgramDMAUtil to start the

 * actual transfer

 *

 * Results:

 *

 *---

 */

static IO_ALLOCATION_ACTION

ProgramDMA(IN PDEVICE_OBJECT devObj, IN PIRP irp,

 IN PVOID MapRegisterBase, IN PVOID Context)

{

 PSKELETON_DEVICE skelDev = devObj->DeviceExtension;

KdPrint(("PPCIDMA.SYS : UhOh : ProgramDma called.\n"));

 skelDev->MapRegisterBase = MapRegisterBase;

 skelDev->syncParam1 = (ULONG) irp;

 KeSynchronizeExecution(skelDev->KIntrObj, ProgramDMAUtil,

devObj);

 StartTransferTimeout(devObj, timeout_interval, NULL);

 /*

 * return a value that says we want to keep the map

registers.

 */

 return DeallocateObjectKeepRegisters;

}

/*

 *---

 * StartIo --

 *

 * This gets called when we are about to start a DMA

operation.

 * This can occur because another DMA operation just

completed,

 * or it can occur because this is the first DMA operation.

Either

 * way, we don't expect anything to interfere with its

operation.

 *

 * Results:

 * None

 *---

 */

149

static VOID

StartIo(IN PDEVICE_OBJECT devObj, IN PIRP irp)

{

 PIO_STACK_LOCATION irpStack;

 PVOID ioBuf;

 ULONG inBufLen;

 ULONG outBufLen;

 ULONG ioctlCode;

 NTSTATUS status;

 BOOLEAN writeOp;

 PSKELETON_DEVICE skelDev;

 skelDev = devObj->DeviceExtension;

 irpStack = IoGetCurrentIrpStackLocation(irp);

 KdPrint(("PPCIDMA.SYS(StartIo): Beginning irp %p\n", irp));

 switch (irpStack->MajorFunction) {

 case IRP_MJ_READ:

 case IRP_MJ_WRITE:

break;

 case IRP_MJ_DEVICE_CONTROL:

ioBuf = irp->AssociatedIrp.SystemBuffer;

inBufLen = irpStack-

>Parameters.DeviceIoControl.InputBufferLength;

outBufLen = irpStack-

>Parameters.DeviceIoControl.OutputBufferLength;

ioctlCode = irpStack-

>Parameters.DeviceIoControl.IoControlCode;

 switch (ioctlCode) {

 default:

 KdPrint(("PPCIDMA.SYS(StartIo): unexpected

IRP_MJ_DEVICE_CONTROL\n"));

 status = STATUS_INVALID_PARAMETER;

 break;

 }

if (status != STATUS_PENDING) {

 irp->IoStatus.Status = status;

 IoCompleteRequest(irp, IO_VIDEO_INCREMENT);

 IoStartNextPacket(devObj, TRUE);

}

return;

 default:

KdPrint(("PPCIDMA.SYS(StartIo): unexpected major

function\n"));

irp->IoStatus.Status = STATUS_INVALID_PARAMETER;

IoCompleteRequest(irp, IO_NO_INCREMENT);

IoStartNextPacket(devObj, TRUE);

return;

 }

 skelDev->OperationType = irpStack->MajorFunction;

 skelDev->IrpSystemBuffer = irp->AssociatedIrp.SystemBuffer;

 if (skelDev->OperationType == IRP_MJ_READ) {

skelDev->IrpBufLen = irpStack->Parameters.Read.Length;

 } else {

skelDev->IrpBufLen = irpStack->Parameters.Write.Length;

 }

 if (skelDev->IrpBufLen == 0 || irp->MdlAddress == NULL) {

irp->IoStatus.Status = STATUS_INVALID_PARAMETER;

IoCompleteRequest(irp, IO_NO_INCREMENT);

IoStartNextPacket(devObj, TRUE);

150

 }

 skelDev->VirtualAddress = MmGetMdlVirtualAddress(irp-

>MdlAddress);

 if (skelDev->TimerStarted) {

KeCancelTimer(&skelDev->DeviceCheckTimer);

skelDev->TimerStarted = FALSE;

 }

 writeOp = (skelDev->OperationType == IRP_MJ_READ) ? FALSE :

TRUE;

 KeFlushIoBuffers(irp->mdlAddress, !writeOp, TRUE);

 status = IoAllocateAdapterChannel(skelDev->AdaptorObj,

devObj,

 skelDev->DmaMapRegisters,

ProgramDMA, devObj);

 KdPrint(("PPCIDMA.SYS(StartIo): Exiting irp %p\n", irp));

 if (!NT_SUCCESS(status)) {

KdPrint(("PPCIDMA.SYS: Unable to allocate adaptor channel

for DMA\n"));

irp->IoStatus.Status = status;

IoCompleteRequest(irp, IO_NO_INCREMENT);

return;

 }

}

/*

 *---

 * TransferDPC --

 *

 * This routine is called at DISPATCH_LEVEL by the system at

the

 * ServiceInterrupt().

 *

 * This routine is protected against interrupts since it was

queued

 * by an interrupt, and the next DMA related interrupt won't

occur

 * until something else happens.

 *

 * This routine is called when a DMA transfer has not been

completed.

 * It sets everything up to continue the tranfer.

 *---

 */

static VOID

TransferDPC(IN PKDPC Dpc, IN PVOID Context, IN PVOID Arg1, IN

PVOID Arg2)

{

 PDEVICE_OBJECT devObj = Context;

 PSKELETON_DEVICE skelDev = devObj->DeviceExtension;

 PIRP irp;

 BOOLEAN writeOp;

 KdPrint(("PPCIDMA.SYS(TransferDPC): Finished irp %p\n",

 devObj->CurrentIrp));

 CancelTransferTimeout(devObj);

 irp = devObj->CurrentIrp;

151

 writeOp = (skelDev->OperationType == IRP_MJ_WRITE) ? TRUE :

FALSE;

 IoFlushAdapterBuffers(NULL, irp->MdlAddress,

 skelDev->MapRegisterBase,

 skelDev->VirtualAddress, skelDev-

>IrpBufLen, writeOp);

 IoFreeMapRegisters(skelDev->AdaptorObj, skelDev-

>MapRegisterBase,

 skelDev->DmaMapRegisters);

 if (skelDev->OperationType == IRP_MJ_READ) {

KeFlushIoBuffers(irp->MdlAddress, TRUE, TRUE);

 }

 irp->IoStatus.Status = skelDev->IrpStatus;

 if (skelDev->IrpStatus == STATUS_SUCCESS) {

irp->IoStatus.Information = skelDev->IrpBytesTransferred;

 }

 IoCompleteRequest(irp, IO_VIDEO_INCREMENT);

 IoStartNextPacket(devObj, TRUE);

 skelDev->DpcRequested = FALSE;

 return;

}

/*

 *---

 * ServiceTimeoutUtil --

 *

 * Utility routine for ServiceTimeout. Runs code that is

 * sensitive to interrupts.

 *---

 */

static BOOLEAN

ServiceTimeoutUtil(IN PCONTEXT Context)

{

 PSKELETON_DEVICE skelDev = (PSKELETON_DEVICE) Context;

KdPrint(("PPCIDMA.SYS : UhOh : ServiceTimeoutUtil

called.\n"));

 return TRUE;

}

/*

 *---

 * ServiceTimeout --

 *

 * Service a timeout. Is this a routine to check on the

board

 * if nothing happens after a little while? If so,

 * ddk/src/multimedia/soundlib/wave.c does something

similar.

 *

 * Results:

 * None

 *---

 */

void

ServiceTimeout(PDEVICE_OBJECT devObj)

{

152

 PSKELETON_DEVICE skelDev = devObj->DeviceExtension;

KdPrint(("PPCIDMA.SYS : UhOh : ServiceTimeout

called.\n"));

 KeSynchronizeExecution(skelDev->KIntrObj, ServiceTimeoutUtil,

skelDev);

 skelDev->IrpStatus = STATUS_UNSUCCESSFUL;

 skelDev->IrpBytesTransferred = 0L;

 skelDev->RequestDpc = TRUE;

 KdPrint(("PPCIDMA.SYS: ServiceTimeout calling

TransferDPC\n"));

 TransferDPC(NULL, devObj, NULL, NULL);

}

/*

 *---

 * TimeoutDPC --

 *

 * This routine gets called when a timeout occurs. We then

 * need to check plxDev->TransferDone to see if the transfer

 * finished before this timer went off. If is did, then we

 * can just ignore this DPC call. If not, we need to clear

 * everything up, fail the request, and move on.

 *

 * Results:

 * None

 *---

 */

static VOID

TimeoutDPC(IN PKDPC Dpc, IN PVOID Context, IN PVOID Param1, IN

PVOID Param2)

{

 PDEVICE_OBJECT devObj = Context;

 PSKELETON_DEVICE skelDev = devObj->DeviceExtension;

KdPrint(("PPCIDMA.SYS : UhOh : TimeOutDPC called.\n"));

 skelDev->TimerStarted = FALSE;

 if (! skelDev->TransferDone) {

/*

 * XXX: Clean up the hardware here if necessary.

 */

ServiceTimeout(devObj);

 }

}

/*

 *---

 * OpenDevice --

 *

 * Open the device. We will allow multiple opens to the

device.

 *

 * Results:

 * A standard NT result

 *---

 */

static NTSTATUS

OpenDevice(IN PDEVICE_OBJECT devObj, IN PFILE_OBJECT fileObj)

153

{

 PSKELETON_DEVICE skelDev;

 KdPrint(("PPCIDMA.SYS: OpenDevice called\n"));

 skelDev = devObj->DeviceExtension;

 ++nopens; /* inc global open */

 return STATUS_SUCCESS;

}

/*

 *---

 * CloseDevice --

 *

 * Close up device and free resources allocated by

OpenDevice

 *

 * Results:

 * A standard NT result

 *---

 */

static NTSTATUS

CloseDevice(IN PDEVICE_OBJECT devObj, IN PFILE_OBJECT fileObj)

{

 PSKELETON_DEVICE skelDev;

 skelDev = devObj->DeviceExtension;

 nopens--; /* decrement global open */

 return STATUS_SUCCESS;

}

/**

* PPciDmaUnmapBuffer

*

*/

NTSTATUS PPciDmaUnMapBuffer(

IN PSKELETON_DEVICE pLDI,

IN PIRP pIrp,

IN PIO_STACK_LOCATION IrpStack

)

{

PULONG pIOBuffer;

ULONG InBufferSize;

InBufferSize = IrpStack-

>Parameters.DeviceIoControl.InputBufferLength;

pIOBuffer = (PULONG) pIrp->AssociatedIrp.SystemBuffer;

if (InBufferSize < sizeof(PVOID)) {

KdPrint(("PPCIDMA.SYS : UnMapBuffer : Buffer too

small.\n"));

return(STATUS_BUFFER_TOO_SMALL);

}

KdPrint(("PPCIDMA.SYS : Trying to unmap at %x.\n",

*pIOBuffer));

return ZwUnmapViewOfSection((HANDLE) -1, *((PVOID *)

pIOBuffer));

}

154

/*

 *---

 * ResetBoard --

 *

 * Does a hard reset of the board

 *

 *---

 */

static VOID

ResetBoard(PSKELETON_DEVICE skelDev)

{

 PUCHAR base;

 /*

 * Reset the board

 */

KdPrint(("PPCIDMA.SYS : UhOh : ResetBoard called.\n"));

 base = skelDev->FrameBase;

 *((unsigned long *)(base + 0x7f0000)) = 0;

 KeStallExecutionProcessor(500);

 /*

 * Enable the board

 */

 *((unsigned long *)(base + 0x7f0000)) = LITTLE_ENDIAN_32(1);

}

/*

 *---

 * CreateDevice --

 *

 * Create a Skeleton device

 *

 *---

 */

static NTSTATUS

CreateDevice(IN PDRIVER_OBJECT drvObj, IN PUNICODE_STRING

regPath,

 ULONG busId, ULONG slotId, IN PPCI_COMMON_CONFIG

pciData)

{

 PDEVICE_OBJECT devObj = NULL;

 WCHAR devNameBuf[] =

L"\\Device\\PPCIDMA0";

 UNICODE_STRING devNameUniStr;

 WCHAR devLinkBuf[] =

L"\\DosDevices\\PPCIDMA0";

 UNICODE_STRING devLinkUniStr;

 NTSTATUS status;

 INTERFACE_TYPE interfaceType;

 ULONG busNumber;

 PCM_RESOURCE_LIST resourceList;

 PCM_PARTIAL_RESOURCE_LIST partialResourceList;

 PCM_PARTIAL_RESOURCE_DESCRIPTOR partialDescriptor;

 PHYSICAL_ADDRESS xlatedAddr;

 PHYSICAL_ADDRESS start;

 ULONG length;

 ULONG addressSpace;

 PSKELETON_DEVICE skelDev;

 ULONG i, j;

155

 BOOLEAN b;

 int found;

 DEVICE_DESCRIPTION devDesc;

 static WCHAR devNum = 0;

 devNameBuf[sizeof(devNameBuf) - 2] = L'0' + devNum;

 devLinkBuf[sizeof(devLinkBuf) - 2] = L'0' + devNum;

 devNum++;

 RtlInitUnicodeString(&devNameUniStr, devNameBuf);

 status = IoCreateDevice(drvObj, sizeof(SKELETON_DEVICE),

&devNameUniStr,

 FILE_DEVICE_SKELETON, 0, FALSE,

&devObj);

 devObj->Flags |= DO_DIRECT_IO;

 /*

 * 1. Create dispatch points for device control, create,

close.

 * 2. Create a symbolic link, i.e. a name that a Win32 app

can

 * specify to open the device. If this fails, delete the

 * device object.

 */

 if (! NT_SUCCESS(status)) {

 KdPrint(("PPCIDMA.SYS: IoCreateDevice failed\n"));

return status;

 }

 RtlInitUnicodeString(&devLinkUniStr, devLinkBuf);

 status = IoCreateSymbolicLink(&devLinkUniStr,

&devNameUniStr);

 if (!NT_SUCCESS(status)) {

KdPrint(("PPCIDMA.SYS: IoCreateSymbolicLink failed\n"));

goto error;

 }

KdPrint(("PPCIDMA.SYS : Entering

HalAssignSlotResources.\n"));

 resourceList = NULL;

 status = HalAssignSlotResources(regPath, NULL, drvObj,

devObj,

 PCIBus, busId, slotId,

 &resourceList);

 if (!NT_SUCCESS(status)) {

KdPrint(("PPCIDMA.SYS: HalAssignSlotResources

failed\n"));

goto error;

 }

KdPrint(("PPCIDMA.SYS : HalAssignSlotResources was

successful.\n"));

 /*

 * Now, we hopefully have an address for the card on the bus,

 * but who knows for sure. We need to translate the returned

 * address and map the address space into kernel space.

 */

 skelDev = devObj->DeviceExtension;

 skelDev->BusId = busId;

156

 skelDev->SlotId = slotId;

 KdPrint(("PPCIDMA.SYS : resourceList->Count = %x\n",

resourceList->Count));

 found = 0;

 for (i = 0; i < resourceList->Count; i++) {

 //Get the interface type (PCIBus) from the resource

list

 interfaceType = resourceList->List[i].InterfaceType;

 //Get the bus number from the resource list

 busNumber = resourceList->List[i].BusNumber;

 //Get the ith partial resource list

 partialResourceList = &resourceList-

>List[i].PartialResourceList;

 KdPrint(("PPCIDMA.SYS : partialResourceList->Count =

%x\n",

 partialResourceList->Count));

 //Go through each of the partial resource lists

 for (j = 0; j < partialResourceList->Count; j++) {

//Get the jth partial resource descriptor

 partialDescriptor = &partialResourceList-

>PartialDescriptors[j];

//Tell me what type of resource this is

KdPrint(("PPCIDMA.SYS : partialDescriptor->Type =

"));

switch (partialDescriptor->Type)

{

case CmResourceTypePort :

KdPrint(("Port.\n"));

break;

case CmResourceTypeInterrupt :

KdPrint(("Interrupt.\n"));

break;

case CmResourceTypeMemory :

KdPrint(("Memory.\n"));

break;

case CmResourceTypeDma :

KdPrint(("DMA.\n"));

break;

case CmResourceTypeDeviceSpecific :

KdPrint(("Device specific.\n"));

break;

}

/*

 if (partialDescriptor->Type == CmResourceTypeMemory)

{

 KdPrint(("PPCIDMA.SYS : partialDescriptorType =

CmResourceMemory\n"));

 addressSpace = 0; // Memory

 start = partialDescriptor->u.Memory.Start;

 length = partialDescriptor->u.Memory.Length;

 //Translate bus address to system logical

address

157

 b = HalTranslateBusAddress(interfaceType,

busNumber,

 start,

 &skelDev->FrameMemType,

 &xlatedAddr);

 if (!b) {

 KdPrint(("PPCIDMA.SYS: HalTranslateBusAddress

failed\n"));

 status = STATUS_UNSUCCESSFUL;

 goto error;

 }

 skelDev->MemStart = xlatedAddr;

 skelDev->MemLength = length;

 if (skelDev->FrameMemType == 0) {

 skelDev->FrameBase = MmMapIoSpace(xlatedAddr,

length, FALSE);

 } //else {

 //skelDev->FrameBase = (PUCHAR)

xlatedAddr.LowPart;

 //}

found++;

 } else*/ if (partialDescriptor->Type ==

CmResourceTypeInterrupt) {

/*

* Get the system interrupt vector for

IoConnectInterrupt

*/

ULONG level = partialDescriptor-

>u.Interrupt.Level;

ULONG vector = partialDescriptor-

>u.Interrupt.Vector;

ULONG affinity = partialDescriptor-

>u.Interrupt.Affinity;

KdPrint(("PPCIDMA.SYS : partialDescriptorType =

CmResourceTypeInterrupt\n"));

//Get mapped system interrupt vector for

IoConnectInterrupt

skelDev->KIntrVector =

 HalGetInterruptVector(PCIBus, busId, level,

vector,

 &skelDev->KIrql,

 &skelDev->KIntrAffinity);

devDesc.Version = DEVICE_DESCRIPTION_VERSION;

devDesc.Master = TRUE;

devDesc.ScatterGather = FALSE;

devDesc.DemandMode = FALSE;

devDesc.AutoInitialize = FALSE;

devDesc.Dma32BitAddresses = TRUE;

devDesc.IgnoreCount = FALSE;

devDesc.Reserved1 = FALSE;

devDesc.Reserved2 = FALSE;

devDesc.BusNumber = busId;

devDesc.DmaChannel = 0; /* ? */

devDesc.InterfaceType = PCIBus;

devDesc.DmaWidth = Width32Bits;

devDesc.DmaSpeed = Compatible;

158

devDesc.MaximumLength =

PPCIDMA_MAX_DMA_BUFFER_LENGTH;

devDesc.DmaPort = 0;

//You only get one interrupt vector, so it's OK to

put this here.

//Get pointer to DMA adapter object with given

description

skelDev->AdaptorObj =

 HalGetAdapter(&devDesc, &skelDev-

>DmaMapRegisters);

if (skelDev->AdaptorObj == NULL)

KdPrint(("PPCIDMA.SYS : HalGetAdapter

failed.\n"));

//Allocate common buffer for DMA.

//This must be done during initialization to have

a chance at getting

//a large buffer.

KdPrint(("PPCIDMA.SYS : Will attempt to allocate

buffer size %d bytes.\n",

devDesc.MaximumLength));

/* This stuff can probably go away for a PCI card

with no 24-bit address limitation

//Failed to get enough DMA map registers, i.e.

enough memory for the buffer

if (skelDev->DmaMapRegisters*4096 <

devDesc.MaximumLength)

{

KdPrint(("PPCIDMA.SYS : Not enough DMA map

registers available.\n"));

status = STATUS_INSUFFICIENT_RESOURCES;

goto error;

}

*/

//Allocate the common DMA buffer

//I don't know what the virtual address returned

is used for, other than MDLs

//and map registers, so I believe we can ignore

it.

skelDev->VirtualAddress =

HalAllocateCommonBuffer(skelDev-

>AdaptorObj, devDesc.MaximumLength,

&skelDev-

>LogicalAddress, FALSE);

skelDev->BufferLength = devDesc.MaximumLength;

//Failed to allocate contiguous memory for DMA

buffer

if (skelDev->VirtualAddress == NULL)

{

KdPrint(("PPCIDMA.SYS :

HalAllocateCommonBuffer failed.\n"));

status = STATUS_INSUFFICIENT_RESOURCES;

goto error;

}

159

KdPrint(("PPCIDMA.SYS : Common buffer allocated at

virtual address %x.\n", skelDev->VirtualAddress));

KdPrint(("PPCIDMA.SYS : Common buffer allocated at

physical (logical) address %x.\n", skelDev->LogicalAddress));

/* This stuff can probably go away for PCI

skelDev->Pmdl = IoAllocateMdl(skelDev-

>VirtualAddress, devDesc.MaximumLength,

FALSE,

FALSE, 0);

if (skelDev->Pmdl == NULL)

{

KdPrint(("PPCIDMA.SYS : IoAllocateMdl

failed.\n"));

status = STATUS_INSUFFICIENT_RESOURCES;

goto error;

}

MmBuildMdlForNonPagedPool(skelDev->Pmdl);

*/

found++;

} else if (partialDescriptor->Type ==

CmResourceTypePort) {

skelDev->FrameMemType = 1; //Use I/O

space

start = partialDescriptor->u.Port.Start;

length = partialDescriptor->u.Port.Length;

KdPrint(("PPCIDMA.SYS : Entering

HalTranslateBusAddress with start = %x\n", start));

b = HalTranslateBusAddress(interfaceType,

busNumber,

start,

&skelDev-

>FrameMemType,

&xlatedAddr);

KdPrint(("PPCIDMA.SYS : Returned from

HalTranslateBusAddress.\n"));

if (!b) {

KdPrint(("PPCIDMA.SYS:

HalTranslateBusAddress failed\n"));

status = STATUS_UNSUCCESSFUL;

goto error;

}

 skelDev->FrameBase = xlatedAddr.LowPart;

skelDev->PortCount = length;

KdPrint(("PPCIDMA.SYS : FrameBase (xlated)

= %x\n", skelDev->FrameBase));

found++;

 } //else if

 } //for j

 } //for i

 if (found < 2) {

160

 KdPrint(("PPCIDMA.SYS: Failed to find frame buffer

address or interrupt\n"));

 status = STATUS_UNSUCCESSFUL;

 goto error;

 }

 /*

 * Enable I/O Space and Bus Master control bits

 */

 pciData->Command = 5;

 HalSetBusDataByOffset(PCIConfiguration, busId, slotId,

 &pciData->Command,

 offsetof(PCI_COMMON_CONFIG, Command),

 sizeof(pciData->Command));

 //ResetBoard(skelDev);

 /*

 * 1. Initialize the device mutex

 * 2. Initialize the device spin lock to protect the DPC

routine

 * for callers to SynchronizeDPC.

 * 3. Initialize the DPC data and register with Io system

 * 4. Connect the interrupt

 */

 ExInitializeFastMutex(&skelDev->IrpMutex);

 KeInitializeSpinLock(&skelDev->DeviceSpinLock);

 KeInitializeTimer(&skelDev->DeviceCheckTimer);

 KeInitializeTimer(&skelDev->StartIoTimer);

 skelDev->TimerStarted = FALSE;

 KeInitializeDpc(&skelDev->TimerDpc, TimeoutDPC, devObj);

 skelDev->DpcRequested = FALSE;

 IoInitializeDpcRequest(devObj, TransferDPC);

 status = IoConnectInterrupt(&skelDev->KIntrObj,

ServiceInterrupt,

devObj, NULL,

skelDev->KIntrVector,

skelDev->KIrql, skelDev->KIrql,

LevelSensitive,

TRUE, /* ShareVector */

skelDev->KIntrAffinity, FALSE);

 if (!NT_SUCCESS(status)) {

KdPrint(("PPCIDMA.SYS: Unable to connect interrupt\n"));

status = STATUS_UNSUCCESSFUL;

goto error;

 }

 if (0) {

 error:

IoDeleteDevice(devObj);

 } else {

ExFreePool(resourceList);

 }

 return status;

}

161

/*

 *---

 *

 * ProbePCI

 *

 * Attempt to find all Skeleton adapters in PCI address

space

 *

 * Return Value:

 * STATUS_SUCCESSFUL if everything went OK,

STATUS_UNSUCCESSFUL

 * if not.

 *

 *---

 */

static NTSTATUS

ProbePCI(IN PDRIVER_OBJECT drvObj, IN PUNICODE_STRING regPath)

{

 PCI_SLOT_NUMBER slotNumber;

 PPCI_COMMON_CONFIG pciData;

 UCHAR buf[PCI_COMMON_HDR_LENGTH];

 ULONG i, f, j, bus;

 BOOLEAN flag;

 UCHAR vendorString[5] = {0};

 UCHAR deviceString[5] = {0};

 NTSTATUS status;

 ULONG total = 0;

 pciData = (PPCI_COMMON_CONFIG) buf;

 slotNumber.u.bits.Reserved = 0;

 flag = TRUE;

 for (bus = 0; flag; bus++) {

 for (i = 0; i < PCI_MAX_DEVICES && flag; i++) {

 slotNumber.u.bits.DeviceNumber = i;

 for (f = 0; f < PCI_MAX_FUNCTION; f++) {

 slotNumber.u.bits.FunctionNumber = f;

 j = HalGetBusData(PCIConfiguration, bus,

slotNumber.u.AsULONG,

 pciData, PCI_COMMON_HDR_LENGTH);

 if (j == 0) {

 /* out of buses */

 flag = FALSE;

 break;

 }

 if (pciData->VendorID == PCI_INVALID_VENDORID) {

 /* skip to next slot */

 break;

 }

 KdPrint(("PciData: ------------------------\n"

 " Bus: %d\n"

 " Device: %d\n"

 " Function: %d\n"

 " Vendor Id: %x\n"

 " Device Id: %x\n"

 " Command: %x\n"

 " Status: %x\n"

 " Rev Id: %x\n"

 " Pro`gIf: %x\n"

162

 " SubClass: %x\n"

 " BaseClass: %x\n"

 " CacheLine: %x\n"

 " Latency: %x\n"

 " Header Type: %x\n"

 " BIST: %x\n"

 " Base Reg[0]: %x\n"

 " Base Reg[1]: %x\n"

 " Base Reg[2]: %x\n"

 " Base Reg[3]: %x\n"

 " Base Reg[4]: %x\n"

 " Base Reg[5]: %x\n"

 " Rom Base: %x\n"

 " Interrupt Line: %x\n"

 " Interrupt Pin: %x\n"

 " Min Grant: %x\n"

 " Max Latency: %x\n",

 bus,

 i,

 f,

 pciData->VendorID,

 pciData->DeviceID,

 pciData->Command,

 pciData->Status,

 pciData->RevisionID,

 pciData->ProgIf,

 pciData->SubClass,

 pciData->BaseClass,

 pciData->CacheLineSize,

 pciData->LatencyTimer,

 pciData->HeaderType,

 pciData->BIST,

 pciData->u.type0.BaseAddresses[0],

 pciData->u.type0.BaseAddresses[1],

 pciData->u.type0.BaseAddresses[2],

 pciData->u.type0.BaseAddresses[3],

 pciData->u.type0.BaseAddresses[4],

 pciData->u.type0.BaseAddresses[5],

 pciData->u.type0.ROMBaseAddress,

 pciData->u.type0.InterruptLine,

 pciData->u.type0.MinimumGrant,

 pciData->u.type0.MaximumLatency));

/*

 * If we find the Skeleton id, create a device

 */

if (pciData->VendorID == PCIDMA_VENDORID &&

pciData->DeviceID ==

PCIDMA_DEVICEID)

{

 status = CreateDevice(drvObj, regPath, bus,

 slotNumber.u.AsULONG,

pciData);

 if (NT_SUCCESS(status)) {

total++;

 }

 }

 }

 }

 }

 if (total > 0) {

return STATUS_SUCCESS;

 } else {

163

return STATUS_NO_SUCH_DEVICE;

 }

}

/*

 *---

 * ServiceInterrupt --

 *

 * Service an interrupt from the Skeleton board

 *

 * Results:

 * TRUE if the interrupt was handled, FALSE otherwise.

 *---

 */

static BOOLEAN

ServiceInterrupt(IN PKINTERRUPT Interrupt, IN PVOID

ServiceContext)

{

//The following lines will not compile, since there

really is no

//interrupt service routine in this version of the device

driver.

#if 0

 PDEVICE_OBJECT devObj = (PDEVICE_OBJECT) ServiceContext;

 PSKELETON_DEVICE skelDev;

 skelDev = devObj->DeviceExtension;

KdPrint(("PPCIDMA.SYS : UhOh : ServiceInterrupt

called.\n"));

 /*

 * XXX: Check if this interrupt was really intended for your

board.

 * If not, return FALSE;

 */

 if (skelDev->RequestDpc) {

if (!skelDev->DpcRequested) {

 skelDev->DpcRequested = TRUE;

 IoRequestDpc(devObj, NULL, devObj);

} else {

 KdPrint(("PPCIDMA.SYS: dpc overrun\n"));

}

 }

 /*

 * Change this to TRUE when this routine does something

 */

 return TRUE;

#endif

return FALSE;

}

/**

* PPciDmaIoctlreadPort

* Handle read port IOCTLs

***/

NTSTATUS

PPciDmaIoctlReadPort(

 IN PSKELETON_DEVICE pLDI,

 IN PIRP pIrp,

 IN PIO_STACK_LOCATION IrpStack,

164

IN ULONG IoctlCode

)

/*++

Routine Description:

 This routine processes the IOCTLs which read from the ports.

Arguments:

 pLDI - our local device data

 pIrp - IO request packet

 IrpStack - The current stack location

 IoctlCode - The ioctl code from the IRP

Return Value:

 STATUS_SUCCESS -- OK

 STATUS_INVALID_PARAMETER -- The buffer sent to the driver

 was too small to contain the

 port, or the buffer which

 would be sent back to the driver

 was not a multiple of the data

size.

 STATUS_ACCESS_VIOLATION -- An illegal port number was given.

--*/

{

 // NOTE: Use METHOD_BUFFERED

ioctls.

 PULONG pIOBuffer; // Pointer to transfer buffer

 // (treated as an array of

longs).

 ULONG InBufferSize; // Amount of data avail. from

caller.

 ULONG OutBufferSize; // Max data that caller can

accept.

 ULONG nPort; // Port number to read

 ULONG DataBufferSize;

 // Size of buffer containing data from application

 InBufferSize = IrpStack-

>Parameters.DeviceIoControl.InputBufferLength;

//KdPrint(("PPCIDMA.SYS : ReadPort : InBufferSize =

%x\n", InBufferSize));

 // Size of buffer for data to be sent to application

 OutBufferSize = IrpStack-

>Parameters.DeviceIoControl.OutputBufferLength;

//KdPrint(("PPCIDMA.SYS : ReadPort : OutBufferSize =

%x\n", OutBufferSize));

 // NT copies inbuf here before entry and copies this to

outbuf after

 // return, for METHOD_BUFFERED IOCTL's.

 pIOBuffer = (PULONG)pIrp->AssociatedIrp.SystemBuffer;

 // Check to ensure input buffer is big enough to hold a port

number and

 // the output buffer is at least as big as the port data

width.

 //

 switch (IoctlCode)

 {

165

 //default: // There isn't really any

default but

/* FALL THRU */ // this will quiet the compiler.

 case IOCTL_PPCIDMA_READ_PORT_UCHAR:

 DataBufferSize = sizeof(UCHAR);

 break;

 case IOCTL_PPCIDMA_READ_PORT_USHORT:

 DataBufferSize = sizeof(USHORT);

 break;

 case IOCTL_PPCIDMA_READ_PORT_ULONG:

 DataBufferSize = sizeof(ULONG);

 break;

default:

KdPrint(("PPCIDMA.SYS : ReadPort : CAUTION -

default entered on switch (IoctlCode).\n"));

 }

 if (InBufferSize != sizeof(ULONG) || OutBufferSize <

DataBufferSize)

 {

 return STATUS_INVALID_PARAMETER;

 }

 // Buffers are big enough.

 nPort = *pIOBuffer; // Get the I/O port number

from the buffer.

/*

 if (nPort >= pLDI->PortCount ||

 (nPort + DataBufferSize) > pLDI->PortCount ||

 (((ULONG)pLDI->FrameBase + nPort) & (DataBufferSize - 1))

!= 0)

 {

 return STATUS_ACCESS_VIOLATION; // It was not legal.

KdPrint(("PPCIDMA.SYS : ReadPort : Access

violation.\n"));

 }

*/

 if (pLDI->FrameMemType == 1)

 {

 // Address is in I/O space

 //KdPrint(("PPCIDMA.SYS : ReadPort : Address is in IO

space.\n"));

 switch (IoctlCode)

 {

 case IOCTL_PPCIDMA_READ_PORT_UCHAR:

 *(PUCHAR)pIOBuffer = READ_PORT_UCHAR(

 (PUCHAR)((ULONG)pLDI->FrameBase +

nPort));

//KdPrint(("PPCIDMA.SYS : ReadPort : Read

port %x.\n", *((ULONG)pLDI->FrameBase + nPort)));

//KdPrint(("PPCIDMA.SYS : ReadPort : Value

returned = %x\n", *(PUCHAR)pIOBuffer));

 break;

 case IOCTL_PPCIDMA_READ_PORT_USHORT:

 *(PUSHORT)pIOBuffer = READ_PORT_USHORT(

 (PUSHORT)((ULONG)pLDI->FrameBase +

nPort));

 break;

 case IOCTL_PPCIDMA_READ_PORT_ULONG:

 *(PULONG)pIOBuffer = READ_PORT_ULONG(

 (PULONG)((ULONG)pLDI->FrameBase +

nPort));

 break;

166

 }

 } else {

 // Address is in Memory space

//KdPrint(("PPCIDMA.SYS : ReadPort : Address is in

memory space.\n"));

 switch (IoctlCode)

 {

 case IOCTL_PPCIDMA_READ_PORT_UCHAR:

 *(PUCHAR)pIOBuffer = READ_REGISTER_UCHAR(

 (PUCHAR)((ULONG)pLDI->FrameBase +

nPort));

 break;

 case IOCTL_PPCIDMA_READ_PORT_USHORT:

 *(PUSHORT)pIOBuffer = READ_REGISTER_USHORT(

 (PUSHORT)((ULONG)pLDI->FrameBase +

nPort));

 break;

 case IOCTL_PPCIDMA_READ_PORT_ULONG:

 *(PULONG)pIOBuffer = READ_REGISTER_ULONG(

 (PULONG)((ULONG)pLDI->FrameBase +

nPort));

 break;

 }

 }

 // Indicate # of bytes read

 //

 //KdPrint(("PPCIDMA.SYS : ReadPort : DataBufferSize = %x\n",

DataBufferSize));

 pIrp->IoStatus.Information = DataBufferSize;

 return STATUS_SUCCESS;

}

/**

* PPciDmaIoctlWritePort

* Handle write port IOCTLs

***/

NTSTATUS

PPciDmaIoctlWritePort(

 IN PSKELETON_DEVICE pLDI,

 IN PIRP pIrp,

 IN PIO_STACK_LOCATION IrpStack,

 IN ULONG IoctlCode

)

/*++

Routine Description:

 This routine processes the IOCTLs which write to the ports.

Arguments:

 pLDI - our local device data

 pIrp - IO request packet

 IrpStack - The current stack location

 IoctlCode - The ioctl code from the IRP

Return Value:

 STATUS_SUCCESS -- OK

 STATUS_INVALID_PARAMETER -- The buffer sent to the driver

 was too small to contain the

 port, or the buffer which

167

 would be sent back to the driver

 was not a multiple of the data

size.

 STATUS_ACCESS_VIOLATION -- An illegal port number was given.

--*/

{

 // NOTE: Use METHOD_BUFFERED

ioctls.

 PULONG pIOBuffer; // Pointer to transfer buffer

 // (treated as array of

longs).

 ULONG InBufferSize ; // Amount of data avail. from

caller.

 ULONG OutBufferSize ; // Max data that caller can

accept.

 ULONG nPort; // Port number to read or write.

 ULONG DataBufferSize;

 // Size of buffer containing data from application

 InBufferSize = IrpStack-

>Parameters.DeviceIoControl.InputBufferLength;

 // Size of buffer for data to be sent to application

 OutBufferSize = IrpStack-

>Parameters.DeviceIoControl.OutputBufferLength;

 // NT copies inbuf here before entry and copies this to

outbuf after return,

 // for METHOD_BUFFERED IOCTL's.

 pIOBuffer = (PULONG) pIrp->AssociatedIrp.SystemBuffer;

 // We don't return any data on a write port.

 pIrp->IoStatus.Information = 0;

 // Check to ensure input buffer is big enough to hold a port

number as well

 // as the data to write.

 //

 // The relative port # is a ULONG, and the data is the type

appropriate to

 // the IOCTL.

 //

 switch (IoctlCode)

 {

 default: // There isn't really any default

but

/* FALL THRU */ // this will quiet the compiler.

 case IOCTL_PPCIDMA_WRITE_PORT_UCHAR:

 DataBufferSize = sizeof(UCHAR);

 break;

 case IOCTL_PPCIDMA_WRITE_PORT_USHORT:

 DataBufferSize = sizeof(USHORT);

 break;

 case IOCTL_PPCIDMA_WRITE_PORT_ULONG:

 DataBufferSize = sizeof(ULONG);

 break;

 }

 if (InBufferSize < (sizeof(ULONG) + DataBufferSize))

 {

 return STATUS_INVALID_PARAMETER;

 }

168

 nPort = *pIOBuffer++;

 if (nPort >= pLDI->PortCount ||

 (nPort + DataBufferSize) > pLDI->PortCount ||

 (((ULONG)pLDI->FrameBase + nPort) & (DataBufferSize - 1))

!= 0)

 {

 return STATUS_ACCESS_VIOLATION; // Illegal port number

 }

 if (pLDI->FrameMemType == 1)

 {

 // Address is in I/O space

 switch (IoctlCode)

 {

 case IOCTL_PPCIDMA_WRITE_PORT_UCHAR:

 WRITE_PORT_UCHAR(

 (PUCHAR)((ULONG)pLDI->FrameBase + nPort),

 *(PUCHAR)pIOBuffer);

 break;

 case IOCTL_PPCIDMA_WRITE_PORT_USHORT:

 WRITE_PORT_USHORT(

 (PUSHORT)((ULONG)pLDI->FrameBase + nPort),

 *(PUSHORT)pIOBuffer);

 break;

 case IOCTL_PPCIDMA_WRITE_PORT_ULONG:

 WRITE_PORT_ULONG(

 (PULONG)((ULONG)pLDI->FrameBase + nPort),

 *(PULONG)pIOBuffer);

 break;

 }

 } else {

 // Address is in Memory space

 switch (IoctlCode)

 {

 case IOCTL_PPCIDMA_WRITE_PORT_UCHAR:

 WRITE_REGISTER_UCHAR(

 (PUCHAR)((ULONG)pLDI->FrameBase + nPort),

 *(PUCHAR)pIOBuffer);

 break;

 case IOCTL_PPCIDMA_WRITE_PORT_USHORT:

 WRITE_REGISTER_USHORT(

 (PUSHORT)((ULONG)pLDI->FrameBase + nPort),

 *(PUSHORT)pIOBuffer);

 break;

 case IOCTL_PPCIDMA_WRITE_PORT_ULONG:

 WRITE_REGISTER_ULONG(

 (PULONG)((ULONG)pLDI->FrameBase + nPort),

 *(PULONG)pIOBuffer);

 break;

 }

 }

 return STATUS_SUCCESS;

}

169

/***

* PPciDmaMapBuffer

* Map the DMA buffer into user memory space

**/

NTSTATUS

PPciDmaMapBuffer(

 IN PSKELETON_DEVICE pLDI,

IN PIRP pIrp,

IN PIO_STACK_LOCATION IrpStack

)

/*++

Routine Description:

 Given a physical address, maps this address into a user mode

process's

 address space

Arguments:

Ummm, I'll take care of this later.

Return Value:

 STATUS_SUCCESS if sucessful, otherwise

 STATUS_UNSUCCESSFUL,

 STATUS_INSUFFICIENT_RESOURCES,

 (other STATUS_* as returned by kernel APIs)

--*/

{

 INTERFACE_TYPE interfaceType;

 ULONG busNumber;

 ULONG length;

 UNICODE_STRING physicalMemoryUnicodeString;

 OBJECT_ATTRIBUTES objectAttributes;

 HANDLE physicalMemoryHandle =

NULL;

 PVOID PhysicalMemorySection =

NULL;

 ULONG inIoSpace, inIoSpace2;

 NTSTATUS ntStatus;

 PHYSICAL_ADDRESS physicalAddressBase;

 PHYSICAL_ADDRESS physicalAddressEnd;

PHYSICAL_ADDRESS xlatedAddressBase;

PHYSICAL_ADDRESS xlatedAddressEnd;

 PHYSICAL_ADDRESS viewBase;

 PHYSICAL_ADDRESS mappedLength;

 BOOLEAN translateBaseAddress;

 BOOLEAN translateEndAddress;

 PVOID virtualAddress;

ULONG OutputBufferLength;

PULONG pIOBuffer;

PSKELETON_DEVICE skelDev;

OutputBufferLength = IrpStack-

>Parameters.DeviceIoControl.OutputBufferLength;

pIOBuffer = (PULONG)pIrp->AssociatedIrp.SystemBuffer;

 if (OutputBufferLength < sizeof (PVOID))

 {

 KdPrint(("MAPMEM.SYS: Insufficient input or output

buffer\n"));

170

 ntStatus = STATUS_INSUFFICIENT_RESOURCES;

 goto done;

 }

//skelDev = pLDI-

>DeviceExtension;

 interfaceType = PCIBus;

 busNumber = pLDI->BusId;

 physicalAddressBase = pLDI->LogicalAddress;

 //inIoSpace = inIoSpace2 = ppmi->AddressSpace;

inIoSpace = inIoSpace2 = 0; //Always map memory,

not IO

 length = pLDI-

>BufferLength;

KdPrint(("PPCIDMA.SYS : MapBuffer : PhysicalAddressBase =

%x.\n", physicalAddressBase));

KdPrint(("PPCIDMA.SYS : MapBuffer : length = %x.\n",

length));

 //

 // Get a pointer to physical memory...

 //

 // - Create the name

 // - Initialize the data to find the object

 // - Open a handle to the oject and check the status

 // - Get a pointer to the object

 // - Free the handle

 //

 RtlInitUnicodeString (&physicalMemoryUnicodeString,

 L"\\Device\\PhysicalMemory");

 InitializeObjectAttributes (&objectAttributes,

 &physicalMemoryUnicodeString,

 OBJ_CASE_INSENSITIVE,

 (HANDLE) NULL,

 (PSECURITY_DESCRIPTOR) NULL);

 ntStatus = ZwOpenSection (&physicalMemoryHandle,

 SECTION_ALL_ACCESS,

 &objectAttributes);

 if (!NT_SUCCESS(ntStatus))

 {

 KdPrint(("PPCIDMA.SYS: ZwOpenSection failed\n"));

 goto done;

 }

 ntStatus = ObReferenceObjectByHandle (physicalMemoryHandle,

 SECTION_ALL_ACCESS,

 (POBJECT_TYPE) NULL,

 KernelMode,

 &PhysicalMemorySection,

(POBJECT_HANDLE_INFORMATION) NULL);

 if (!NT_SUCCESS(ntStatus))

 {

 KdPrint(("PPCIDMA.SYS: ObReferenceObjectByHandle

failed\n"));

 goto close_handle;

 }

171

 //

 // Initialize the physical addresses that will be translated

 //

 physicalAddressEnd = RtlLargeIntegerAdd (physicalAddressBase,

RtlConvertUlongToLargeInteger(

 length));

 //

 // Translate the physical addresses.

 //

KdPrint(("PPCIDMA.SYS : Attempting to translate

with\nphysicalAddress=%x\nphysicaladdressend=%x.\n",

physicalAddressBase,

physicalAddressEnd));

 translateBaseAddress =

 HalTranslateBusAddress (interfaceType,

 busNumber,

 physicalAddressBase,

 &inIoSpace,

 &xlatedAddressBase);

 translateEndAddress =

 HalTranslateBusAddress (interfaceType,

 busNumber,

 physicalAddressEnd,

 &inIoSpace2,

 &xlatedAddressEnd);

 if (!(translateBaseAddress && translateEndAddress))

 {

 KdPrint(("PPCIDMA.SYS: HalTranslatephysicalAddress

failed\n"));

 ntStatus = STATUS_UNSUCCESSFUL;

 goto close_handle;

 }

 //

 // Calculate the length of the memory to be mapped

 //

 mappedLength = RtlLargeIntegerSubtract (xlatedAddressEnd,

 xlatedAddressBase);

KdPrint(("PPCIDMA.SYS : MapBuffer : mappedLength =

%x.\n", mappedLength));

 //

 // If the mappedlength is zero, somthing very weird happened

in the HAL

 // since the Length was checked against zero.

 //

 if (mappedLength.LowPart == 0)

 {

 KdPrint(("PPCIDMA.SYS: mappedLength.LowPart == 0\n"));

 ntStatus = STATUS_UNSUCCESSFUL;

172

 goto close_handle;

 }

 length = mappedLength.LowPart;

 //

 // If the address is in io space, just return the address,

otherwise

 // go through the mapping mechanism

 //

/*

 if (inIoSpace)

 {

 *((PVOID *) IoBuffer) = (PVOID)

physicalAddressBase.LowPart;

 }

 else

 {*/

 //

 // initialize view base that will receive the physical

mapped

 // address after the MapViewOfSection call.

 //

 viewBase = xlatedAddressBase;

 //

 // Let ZwMapViewOfSection pick an address

 //

 virtualAddress = NULL;

 //

 // Map the section

 //

 ntStatus = ZwMapViewOfSection (physicalMemoryHandle,

 (HANDLE) -1,

 &virtualAddress,

 0L,

 length,

 &viewBase,

 &length,

 ViewShare,

 0,

 PAGE_READWRITE |

PAGE_NOCACHE);

 if (!NT_SUCCESS(ntStatus))

 {

 KdPrint(("PPCIDMA.SYS: ZwMapViewOfSection

failed\n"));

 goto close_handle;

 }

 //

 // Mapping the section above rounded the physical address

down to the

173

 // nearest 64 K boundary. Now return a virtual address

that sits where

 // we wnat by adding in the offset from the beginning of

the section.

 //

 (ULONG) virtualAddress +=

(ULONG)xlatedAddressBase.LowPart -

 (ULONG)viewBase.LowPart;

KdPrint(("PPCIDMA.SYS : virtualAddress is %x.\n",

virtualAddress));

 //*((PVOID *) IoBuffer) = virtualAddress;

*((PVOID *)pIOBuffer) = virtualAddress;

pIrp->IoStatus.Information = sizeof(ULONG);

//Size of output buffer

 //}

 ntStatus = STATUS_SUCCESS;

close_handle:

 ZwClose (physicalMemoryHandle);

done:

 return ntStatus;

}

/**

* ReturnMemoryInfo

* Returns to the caller the physical address and size

* of the DMA buffer allocated.

* The value returned is a 32-bit value, the lowest 32-bits

* of the physical address.

*/

NTSTATUS PPciDmaReturnMemoryInfo(

IN PSKELETON_DEVICE pLDI,

IN PIRP pIrp,

IN PIO_STACK_LOCATION IrpStack

)

{

ULONG OutputBufferLength;

PULONG pIOBuffer;

PHYSICAL_ADDRESS PhysicalAddress;

OutputBufferLength = IrpStack-

>Parameters.DeviceIoControl.OutputBufferLength;

pIOBuffer = (PULONG)pIrp->AssociatedIrp.SystemBuffer;

pIrp->IoStatus.Information = sizeof(ULONG); //The size

of the output buffer

 if (OutputBufferLength < sizeof (ULONG))

//This line too implies 32-bit address space

 {

 KdPrint(("PPCIDMA.SYS: Insufficient input or output

buffer\n"));

 return(STATUS_INSUFFICIENT_RESOURCES);

 }

174

PhysicalAddress = pLDI->LogicalAddress; //64-

bit value

*(PULONG)pIOBuffer = PhysicalAddress.LowPart;

//If we ever exceed 32-bits of addressable space, then

I'll uncomment the line below

//*(PULONG)(pIOBuffer + sizeof(PhysicalAddress.LowPart))

= PhysicalAddress.HighPart;

return(STATUS_SUCCESS);

}

/*

 * Overrides for Emacs to get consistency.

 * Emacs will notice this stuff at the end of the file and

automatically

 * adjust the settings for this buffer only. This must remain at

the end

 * of the file.

 * --

 * Local variables:

 * tab-width: 8

 * c-brace-imaginary-offset: 0

 * c-brace-offset: -4

 * c-argdecl-indent: 4

 * c-label-offset: -2

 * c-continued-statement-offset: 4

 * c-continued-brace-offset: 0

 * c-indent-level: 4

 * End:

 */

/*

 * This is the structure for Skeleton device info

 */

typedef struct {

 PVOID FrameBase; // Frame buffer address in system memory

//This is the base IO address for the

//PPCIDMA driver.

 ULONG FrameMemType; // Address space: 0x0 = mem, 0x1 = I/O

 ULONG PortCount; //Length occupied in IO space

 PKINTERRUPT KIntrObj; //Interrrupt object from

//IoConnectInterrupt

 ULONG KIntrVector; // Mapped system interrupt vector

 KIRQL KIrql;

 KAFFINITY KIntrAffinity; //The processor set this interrupt

//affects

 FAST_MUTEX IrpMutex; // Ensure 1 dispatch entry at a

//time

 KSPIN_LOCK DeviceSpinLock;

 ULONG BusId;

 ULONG SlotId;

 PHYSICAL_ADDRESS MemStart; //Physical address of the

//DMA buffer

 ULONG MemLength; //Length of the DMA buffer

 ULONG IntrLevel;

 ULONG IntrVector;

 ULONG IntrAffinity;

PCIDMA_DEV.H

175

 /* StartIo subroutine fields. Used by QueryVideo() */

 KDPC StartIoDpc; //Used by the query video routine

 KTIMER StartIoTimer; //Timer used in StartIo subroutine

 ULONG StartIoState; //Current state of StartIo subroutine

 PVOID StartIoBuffer; //Current buffer we are using

 /* Some DMA related fields */

 PADAPTER_OBJECT AdaptorObj; //Pointer to DMA adaptor object

 ULONG DmaMapRegisters; //Number of DMA map registers

 PVOID MapRegisterBase; //DMA map register base

 //DMA buffer related fields

 PVOID VirtualAddress; //Virtual address of MDL for DMA

//transfer, return from

//HalAllocateCommonBuffer

 ULONG BufferLength; //Length of the DMA buffer

 PHYSICAL_ADDRESS LogicalAddress; //Logical (sort of

//physical) address the

//device will

//use to transfer data

 PMDL Pmdl; //Pointer to MDL from IoAllocateMdl

 KTIMER DeviceCheckTimer; //Timer to check that DMA hasn't

//failed

 BOOLEAN TimerStarted; // Has the timer been started

 KDPC TimerDpc; // The DPC to run on timer trigger

 BOOLEAN TransferDone; // When the timeout occurs, find

//out if the tranfer was already

//done

 PVOID IrpSystemBuffer; // System buffer for the current

// IRP

 ULONG IrpBufLen; //Buffer length for the current IRP */

 NTSTATUS IrpStatus; //The status of the transfer

 ULONG IrpBytesTransferred; //Number of bytes that were

 //transfered

 CCHAR OperationType; //current command (ie IRP_MJ_READ)

 ULONG TotalTransferLength; //length of current transfer */

 BOOLEAN RequestDpc; //Set this if the routine wishes to

 BOOLEAN DpcRequested;

 ULONG RestoreChannel; //Channel was in use and needs

//restoring

 ULONG syncParam1; //Parameters for the synch routine

 ULONG syncParam2;

 ULONG syncParam3;

 union { //Return value if needed

ULONG ULong;

int Int;

long Long;

 } syncResult;

} SKELETON_DEVICE, *PSKELETON_DEVICE;

#define offsetof(type, field) ((ULONG) ((char *) &((type *) 0)-

>field))

#ifdef LITTLE_ENDIAN

define LITTLE_ENDIAN_16(x) (x)

define LITTLE_ENDIAN_32(x) (x)

static __inline unsigned short BIG_ENDIAN_16(unsigned short x)

{

 return (((x & 0x00FF) << 8) + ((x & 0xFF00) >> 8));

}

176

static __inline unsigned int BIG_ENDIAN_32(unsigned int x)

{

 return (((x & 0x000000FF) << 24) + ((x & 0x0000FF00) << 8) +

 ((x & 0x00FF0000) >> 8) + ((x & 0xFF000000) >> 24));

}

#else

define BIG_ENDIAN_16(x) (x)

define BIG_ENDIAN_32(x) (x)

static __inline unsigned short LITTLE_ENDIAN_16(unsigned short n)

{

 return (((n & 0x00FF) << 8) + ((n & 0xFF00) >> 8));

}

static __inline unsigned int LITTLE_ENDIAN_32(unsigned int n)

{

 return (((n & 0x000000FF) << 24) + ((n & 0x0000FF00) << 8) +

 ((n & 0x00FF0000) >> 8) + ((n & 0xFF000000) >> 24));

}

#endif

/*

 *---

 * Module Name:

 * pcidma_ioctl.h

 *

 * Abstract:

 * Include file for user and kernel space.

 *

 * Environment:

 * Kernel and user modes

 *

 * Revision History:

 *

 *---

 */

//This is the maximum buffer length required for DMA transfers.

//Since this is the amount of memory that will actually be

//allocated and since it does need to be contiguous, please make

//sure that you do not allocate more memory than you need.

//Version 1.0 of the driver requires that this option be changed

//at compile time.

#define PPCIDMA_MAX_DMA_BUFFER_LENGTH 4000 * 1024

//The vendor ID and device ID of the PCI device

#define PCIDMA_VENDORID 0x010e8

#define PCIDMA_DEVICEID 0x04750

/*

 * Define the various device type values. Note that values used

 * by Microsoft Corporation are in the range 0-32767, and 32768-

 * 65535 are reserved for use by customers.

 */

#define FILE_DEVICE_SKELETON 0x0000CBFC

/*

 * Macro definition for defining IOCTL and FSCTL function control

 * codes. Note that function codes 0-2047 are reserved for

 * Microsoft Corporation, and 2048-4095 are reserved for

 * customers.

 */

#define SKELETON_IOCTL_BASE 0x800

PPCIDMA_IOCTL.H

177

/*

 * Define the PciDma IOCTLs. There are two forms for these

 * defines: the NT ioctl name and the Skeleton ioctl name.

 */

#define IOCTL_SKELETON_NNN(offset, method, access) \

 (ULONG) CTL_CODE(FILE_DEVICE_SKELETON, SKELETON_IOCTL_BASE +

(offset), \

 (method), (access))

#define IOCTL_PPCIDMA_MAP_USER_PHYSICAL_MEMORY \

 IOCTL_SKELETON_NNN(0, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_PPCIDMA_UNMAP_USER_PHYSICAL_MEMORY \

 IOCTL_SKELETON_NNN(1, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_PPCIDMA_READ_PORT_UCHAR \

IOCTL_SKELETON_NNN(2, METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_PPCIDMA_READ_PORT_USHORT \

IOCTL_SKELETON_NNN(3, METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_PPCIDMA_READ_PORT_ULONG \

IOCTL_SKELETON_NNN(4, METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_PPCIDMA_WRITE_PORT_UCHAR \

IOCTL_SKELETON_NNN(5, METHOD_BUFFERED, FILE_WRITE_ACCESS)

#define IOCTL_PPCIDMA_WRITE_PORT_USHORT \

IOCTL_SKELETON_NNN(6, METHOD_BUFFERED, FILE_WRITE_ACCESS)

#define IOCTL_PPCIDMA_WRITE_PORT_ULONG \

IOCTL_SKELETON_NNN(7, METHOD_BUFFERED, FILE_WRITE_ACCESS)

#define IOCTL_PPCIDMA_RETURN_MEMORY_INFORMATION \

IOCTL_SKELETON_NNN(8, METHOD_BUFFERED, FILE_ANY_ACCESS)

typedef struct _PPCIDMA_WRITE_INPUT {

 ULONG PortNumber; // Port # to write to

 union { // Data to be output to port

 ULONG LongData;

 USHORT ShortData;

 UCHAR CharData;

 };

} PPCIDMA_WRITE_INPUT;

// Generic Port I/O driver for NT VERSION 1.0

// For the Eisa

#include "dpib.h"

#include "stdlib.h"

NTSTATUS

DriverEntry(

 IN PDRIVER_OBJECT DriverObject,

 IN PUNICODE_STRING RegistryPath

)

/*++

Routine Description:

 This routine is the entry point for the driver. It is

 responsible for setting the dispatch entry points in the

 driver object and creating the device object. Any resources

DPIB.C

178

 such as ports, interrupts and DMA channels used must be

 reported. A symbolic link must be created between the device

 name and an entry in \DosDevices in order to allow Win32

 applications to open the device.

Arguments:

 DriverObject - Pointer to driver object created by the

system.

Return Value:

 STATUS_SUCCESS if the driver initialized correctly, otherwise

 an error indicating the reason for failure.

--*/

{

 ULONG PortBase; // Port location, in NT's address form.

 ULONG PortCount; // Count of contiguous I/O ports

 PHYSICAL_ADDRESS PortAddress;

 PLOCAL_DEVICE_INFO pLocalInfo; //Device extension: local

 //information for each

device.

 NTSTATUS Status;

 PDEVICE_OBJECT DeviceObject;

 CM_RESOURCE_LIST ResourceList; //Resource usage list to

 //report to system

 BOOLEAN ResourceConflict; //This is set true if our

 //I/O ports conflict with

 //another driver

 // Try to retrieve base I/O port and range from the

Parameters

 // key of our entry in the Registry.

 // If there isn't anything specified then use the values

 // compiled into this driver.

 {

 static WCHAR SubKeyString[] =

L"\\Parameters";

 UNICODE_STRING paramPath;

 RTL_QUERY_REGISTRY_TABLE paramTable[3];

 ULONG DefaultBase = BASE_PORT;

 ULONG DefaultCount = NUMBER_PORTS;

 //

 // Since the registry path parameter is a "counted"

 // UNICODE string, it might not be zero terminated. For

 // a very short time allocate memory to hold the registry

 // path as well as the Parameters key name zero

terminated

 // so that we can use it to delve into the registry.

 //

 paramPath.MaximumLength = RegistryPath->Length +

 sizeof(SubKeyString);

 paramPath.Buffer = ExAllocatePool(PagedPool,

 paramPath.MaximumLength);

 if (paramPath.Buffer != NULL)

 {

 RtlMoveMemory(

 paramPath.Buffer, RegistryPath->Buffer,

 RegistryPath->Length);

179

 RtlMoveMemory(

 ¶mPath.Buffer[RegistryPath->Length / 2],

 SubKeyString,

 sizeof(SubKeyString));

 paramPath.Length = paramPath.MaximumLength - 2;

 RtlZeroMemory(¶mTable[0], sizeof(paramTable));

 paramTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT;

 paramTable[0].Name = L"IoPortAddress";

 paramTable[0].EntryContext = &PortBase;

 paramTable[0].DefaultType = REG_DWORD;

 paramTable[0].DefaultData = &DefaultBase;

 paramTable[0].DefaultLength = sizeof(ULONG);

 paramTable[1].Flags = RTL_QUERY_REGISTRY_DIRECT;

 paramTable[1].Name = L"IoPortCount";

 paramTable[1].EntryContext = &PortCount;

 paramTable[1].DefaultType = REG_DWORD;

 paramTable[1].DefaultData = &DefaultCount;

 paramTable[1].DefaultLength = sizeof(ULONG);

 if (!NT_SUCCESS(RtlQueryRegistryValues(

 RTL_REGISTRY_ABSOLUTE | RTL_REGISTRY_OPTIONAL,

 paramPath.Buffer, ¶mTable[0], NULL, NULL)))

 {

 PortBase = DefaultBase;

 PortCount = DefaultCount;

 }

 ExFreePool(paramPath.Buffer);

 }

 }

 PortAddress.LowPart = PortBase;

 PortAddress.HighPart = 0;

 // Register resource usage (ports)

 //

 // This ensures that there isn't a conflict between this

 // driver and a previously loaded one or a future loaded one.

 RtlZeroMemory((PVOID)&ResourceList, sizeof(ResourceList));

 ResourceList.Count = 1;

 ResourceList.List[0].InterfaceType = Isa;

 // ResourceList.List[0].Busnumber = 0; Already 0

 ResourceList.List[0].PartialResourceList.Count = 1;

 ResourceList.List[0].PartialResourceList. \

 PartialDescriptors[0].Type = CmResourceTypePort;

 ResourceList.List[0].PartialResourceList. \

 PartialDescriptors[0].ShareDisposition =

 CmResourceShareDriverExclusive;

 ResourceList.List[0].PartialResourceList. \

 PartialDescriptors[0].Flags =

 CM_RESOURCE_PORT_IO;

 ResourceList.List[0].PartialResourceList. \

 PartialDescriptors[0].u.Port.Start =

 PortAddress;

 ResourceList.List[0].PartialResourceList. \

 PartialDescriptors[0].u.Port.Length =

180

 PortCount;

 // Report our resource usage and detect conflicts

 Status = IoReportResourceUsage(

 NULL,

 DriverObject,

 &ResourceList,

 sizeof(ResourceList),

 NULL,

 NULL,

 0,

 FALSE,

 &ResourceConflict);

 if (ResourceConflict)

 Status = STATUS_DEVICE_CONFIGURATION_ERROR;

 if (!NT_SUCCESS(Status))

 {

 KdPrint(("Resource reporting problem %8X", Status));

 return Status;

 }

 // Initialize the driver object dispatch table.

 // NT sends requests to these routines.

 DriverObject->MajorFunction[IRP_MJ_CREATE] =

 DpibDispatch;

 DriverObject->MajorFunction[IRP_MJ_CLOSE] =

 DpibDispatch;

 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =

 DpibDispatch;

 DriverObject->DriverUnload =

 DpibUnload;

 // Create our device.

 Status = DpibCreateDevice(

 DPIB_DEVICE_NAME,

 DPIB_TYPE,

 DriverObject,

 &DeviceObject

);

 if (NT_SUCCESS(Status))

 {

 PHYSICAL_ADDRESS MappedAddress;

 ULONG MemType;

 // Convert the IO port address into a form NT likes.

 MemType = 1; // located in IO space

 HalTranslateBusAddress(Isa,

 0,

 PortAddress,

 &MemType,

 &MappedAddress);

 // Initialize the local driver info for each device

 // object.

 pLocalInfo = (PLOCAL_DEVICE_INFO)

 DeviceObject->DeviceExtension;

 if (MemType == 0)

 {

 // Port is accessed through memory space - so get

181

 // a virtual address

 pLocalInfo->PortWasMapped = TRUE;

 // BUGBUG

 // MmMapIoSpace can fail if we run out of PTEs,

 // we should be checking the return value here

 pLocalInfo->PortBase = MmMapIoSpace(MappedAddress,

 PortCount, FALSE);

 }

 else

 {

 pLocalInfo->PortWasMapped = FALSE;

 pLocalInfo->PortBase = (PVOID)MappedAddress.LowPart;

 }

 pLocalInfo->DeviceObject = DeviceObject;

 pLocalInfo->DeviceType = DPIB_TYPE;

 pLocalInfo->PortCount = PortCount;

 pLocalInfo->PortMemoryType = MemType;

 }

 else

 {

 //

 // Error creating device - release resources

 //

 RtlZeroMemory((PVOID)&ResourceList,

 sizeof(ResourceList));

 // Unreport our resource usage

 Status = IoReportResourceUsage(

 NULL,

 DriverObject,

 &ResourceList,

 sizeof(ResourceList),

 NULL,

 NULL,

 0,

 FALSE,

 &ResourceConflict);

 }

 return Status;

}

NTSTATUS

DpibCreateDevice(

 IN PWSTR PrototypeName,

 IN DEVICE_TYPE DeviceType,

 IN PDRIVER_OBJECT DriverObject,

 OUT PDEVICE_OBJECT *ppDevObj

)

/*++

Routine Description:

 This routine creates the device object and the symbolic link

 in \DosDevices.

 Ideally a name derived from a "Prototype", with a number

 appended at the end should be used. For simplicity, just use

 the fixed name defined in the include file. This means that

 only one device can be created.

182

 A symbolic link must be created between the device name and

 an entry in \DosDevices in order to allow Win32 applications

 to open the device.

Arguments:

 PrototypeName - Name base, # WOULD be appended to this.

 DeviceType - Type of device to create

 DriverObject - Pointer to driver object created by the

system.

 ppDevObj - Pointer to place to store pointer to created

 device object

Return Value:

 STATUS_SUCCESS if the device and link are created correctly,

 otherwise an error indicating the reason for failure.

--*/

{

 NTSTATUS Status; // Status of utility calls

 UNICODE_STRING NtDeviceName;

 UNICODE_STRING Win32DeviceName;

 // Get UNICODE name for device.

 RtlInitUnicodeString(&NtDeviceName, PrototypeName);

 Status = IoCreateDevice(// Create it.

 DriverObject,

 sizeof(LOCAL_DEVICE_INFO),

 &NtDeviceName,

 DeviceType,

 0,

 FALSE, // Not Exclusive

 ppDevObj

);

 if (!NT_SUCCESS(Status))

 return Status; // Give up if create failed.

 // Clear local device info memory

 RtlZeroMemory((*ppDevObj)->DeviceExtension,

 sizeof(LOCAL_DEVICE_INFO));

 //

 // Set up the rest of the device info

 // These are used for IRP_MJ_READ and IRP_MJ_WRITE which

 // we don't use

 //

 // (*ppDevObj)->Flags |= DO_BUFFERED_IO;

 // (*ppDevObj)->AlignmentRequirement = FILE_BYTE_ALIGNMENT;

 //

 RtlInitUnicodeString(&Win32DeviceName, DOS_DEVICE_NAME);

 Status = IoCreateSymbolicLink(&Win32DeviceName,

 &NtDeviceName);

 if (!NT_SUCCESS(Status)) // If we we couldn't create the

183

 // link then

 { // abort installation.

 IoDeleteDevice(*ppDevObj);

 }

 return Status;

}

NTSTATUS

DpibDispatch(

 IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp

)

/*++

Routine Description:

 This routine is the dispatch handler for the driver. It is

 responsible for processing the IRPs.

Arguments:

 pDO - Pointer to device object.

 pIrp - Pointer to the current IRP.

Return Value:

 STATUS_SUCCESS if the IRP was processed successfully,

 otherwise an error indicating the reason for failure.

--*/

{

 PLOCAL_DEVICE_INFO pLDI;

 PIO_STACK_LOCATION pIrpStack;

 NTSTATUS Status;

 // Initialize the irp info field.

 // This is used to return the number of bytes

transfered.

 pIrp->IoStatus.Information = 0;

 //Get local info struct

 pLDI = (PLOCAL_DEVICE_INFO)pDO->DeviceExtension;

 pIrpStack = IoGetCurrentIrpStackLocation(pIrp);

 // Set default return status

 Status = STATUS_NOT_IMPLEMENTED;

 // Dispatch based on major fcn code.

 switch (pIrpStack->MajorFunction)

 {

 case IRP_MJ_CREATE:

 case IRP_MJ_CLOSE:

 // We don't need any special processing on

 // open/close so we'll

 // just return success.

 Status = STATUS_SUCCESS;

 break;

 case IRP_MJ_DEVICE_CONTROL:

 // Dispatch on IOCTL

184

 switch (pIrpStack-

>Parameters.DeviceIoControl.IoControlCode)

 {

 case IOCTL_DPIB_READ_PORT_UCHAR:

 case IOCTL_DPIB_READ_PORT_USHORT:

 case IOCTL_DPIB_READ_PORT_ULONG:

 Status = DpibIoctlReadPort(

 pLDI,

 pIrp,

 pIrpStack,

 pIrpStack-

>Parameters.DeviceIoControl.IoControlCode

);

 break;

 case IOCTL_DPIB_WRITE_PORT_UCHAR:

 case IOCTL_DPIB_WRITE_PORT_USHORT:

 case IOCTL_DPIB_WRITE_PORT_ULONG:

 Status = DpibIoctlWritePort(

 pLDI,

 pIrp,

 pIrpStack,

 pIrpStack-

>Parameters.DeviceIoControl.IoControlCode

);

 break;

 }

 break;

 }

 // We're done with I/O request. Record the status of the

 // I/O action.

 pIrp->IoStatus.Status = Status;

 // Don't boost priority when returning since this took

 // little time.

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return Status;

}

NTSTATUS

DpibIoctlReadPort(

 IN PLOCAL_DEVICE_INFO pLDI,

 IN PIRP pIrp,

 IN PIO_STACK_LOCATION IrpStack,

 IN ULONG IoctlCode)

/*++

Routine Description:

 This routine processes the IOCTLs which read from the ports.

Arguments:

 pLDI - our local device data

 pIrp - IO request packet

 IrpStack - The current stack location

 IoctlCode - The ioctl code from the IRP

Return Value:

 STATUS_SUCCESS -- OK

 STATUS_INVALID_PARAMETER -- The buffer sent to the driver

 was too small to contain the

185

 port, or the buffer which

 would be sent back to the driver

 was not a multiple of the data

 size.

 STATUS_ACCESS_VIOLATION -- An illegal port number was given.

--*/

{

 // NOTE: Use METHOD_BUFFERED ioctls.

 PULONG pIOBuffer; // Pointer to transfer buffer

 // (treated as an array of longs).

 ULONG InBufferSize; // Amount of data avail. from caller.

 ULONG OutBufferSize; // Max data that caller can accept.

 ULONG nPort; // Port number to read

 ULONG DataBufferSize;

 // Size of buffer containing data from application

 InBufferSize = IrpStack-

>Parameters.DeviceIoControl.InputBufferLength;

 // Size of buffer for data to be sent to application

 OutBufferSize = IrpStack-

>Parameters.DeviceIoControl.OutputBufferLength;

 // NT copies inbuf here before entry and copies this to

 // outbuf after return, for METHOD_BUFFERED IOCTL's.

 pIOBuffer = (PULONG)pIrp->AssociatedIrp.SystemBuffer;

 // Check to ensure input buffer is big enough to hold a port

 // number and the output buffer is at least as big as the

 // port data width.

 //

 switch (IoctlCode)

 {

 default: // There isn't really any default but

/* FALL THRU */ // this will quiet the compiler.

 case IOCTL_DPIB_READ_PORT_UCHAR:

 DataBufferSize = sizeof(UCHAR);

 break;

 case IOCTL_DPIB_READ_PORT_USHORT:

 DataBufferSize = sizeof(USHORT);

 break;

 case IOCTL_DPIB_READ_PORT_ULONG:

 DataBufferSize = sizeof(ULONG);

 break;

 }

 if (InBufferSize != sizeof(ULONG) || OutBufferSize <

DataBufferSize)

 {

 return STATUS_INVALID_PARAMETER;

 }

 // Buffers are big enough.

 nPort = *pIOBuffer; // Get the I/O port number from

 // the buffer.

 if (nPort >= pLDI->PortCount ||

 (nPort + DataBufferSize) > pLDI->PortCount ||

 (((ULONG)pLDI->PortBase + nPort) & (DataBufferSize - 1))

!= 0)

 {

 return STATUS_ACCESS_VIOLATION; // It was not legal.

186

 }

 if (pLDI->PortMemoryType == 1)

 {

 // Address is in I/O space

 switch (IoctlCode)

 {

 case IOCTL_DPIB_READ_PORT_UCHAR:

 *(PUCHAR)pIOBuffer = READ_PORT_UCHAR(

 (PUCHAR)((ULONG)pLDI->PortBase +

nPort));

 break;

 case IOCTL_DPIB_READ_PORT_USHORT:

 *(PUSHORT)pIOBuffer = READ_PORT_USHORT(

 (PUSHORT)((ULONG)pLDI->PortBase +

nPort));

 break;

 case IOCTL_DPIB_READ_PORT_ULONG:

 *(PULONG)pIOBuffer = READ_PORT_ULONG(

 (PULONG)((ULONG)pLDI->PortBase +

nPort));

 break;

 }

 } else {

 // Address is in Memory space

 switch (IoctlCode)

 {

 case IOCTL_DPIB_READ_PORT_UCHAR:

 *(PUCHAR)pIOBuffer = READ_REGISTER_UCHAR(

 (PUCHAR)((ULONG)pLDI->PortBase +

nPort));

 break;

 case IOCTL_DPIB_READ_PORT_USHORT:

 *(PUSHORT)pIOBuffer = READ_REGISTER_USHORT(

 (PUSHORT)((ULONG)pLDI->PortBase +

nPort));

 break;

 case IOCTL_DPIB_READ_PORT_ULONG:

 *(PULONG)pIOBuffer = READ_REGISTER_ULONG(

 (PULONG)((ULONG)pLDI->PortBase +

nPort));

 break;

 }

 }

 // Indicate # of bytes read

 //

 pIrp->IoStatus.Information = DataBufferSize;

 return STATUS_SUCCESS;

}

NTSTATUS

DpibIoctlWritePort(

 IN PLOCAL_DEVICE_INFO pLDI,

 IN PIRP pIrp,

 IN PIO_STACK_LOCATION IrpStack,

 IN ULONG IoctlCode

)

/*++

187

Routine Description:

 This routine processes the IOCTLs which write to the ports.

Arguments:

 pLDI - our local device data

 pIrp - IO request packet

 IrpStack - The current stack location

 IoctlCode - The ioctl code from the IRP

Return Value:

 STATUS_SUCCESS -- OK

 STATUS_INVALID_PARAMETER -- The buffer sent to the driver

 was too small to contain the

 port, or the buffer which

 would be sent back to the driver

 was not a multiple of the data

 size.

 STATUS_ACCESS_VIOLATION -- An illegal port number was given.

--*/

{

 // NOTE: Use METHOD_BUFFERED ioctls.

 PULONG pIOBuffer; // Pointer to transfer buffer

 // (treated as array of longs).

 ULONG InBufferSize ; // Amount of data avail. from caller.

 ULONG OutBufferSize ; // Max data that caller can accept.

 ULONG nPort; // Port number to read or write.

 ULONG DataBufferSize;

 // Size of buffer containing data from application

 InBufferSize = IrpStack-

>Parameters.DeviceIoControl.InputBufferLength;

 // Size of buffer for data to be sent to application

 OutBufferSize = IrpStack-

>Parameters.DeviceIoControl.OutputBufferLength;

 // NT copies inbuf here before entry and copies this to

 // outbuf after return, for METHOD_BUFFERED IOCTL's.

 pIOBuffer = (PULONG) pIrp->AssociatedIrp.SystemBuffer;

 // We don't return any data on a write port.

 pIrp->IoStatus.Information = 0;

 // Check to ensure input buffer is big enough to hold a port

 // number as well as the data to write.

 //

 // The relative port # is a ULONG, and the data is the type

 // appropriate to the IOCTL.

 //

 switch (IoctlCode)

 {

 default: // There isn't really any default but

/* FALL THRU */ // this will quiet the compiler.

 case IOCTL_DPIB_WRITE_PORT_UCHAR:

 DataBufferSize = sizeof(UCHAR);

 break;

 case IOCTL_DPIB_WRITE_PORT_USHORT:

 DataBufferSize = sizeof(USHORT);

 break;

 case IOCTL_DPIB_WRITE_PORT_ULONG:

188

 DataBufferSize = sizeof(ULONG);

 break;

 }

 if (InBufferSize < (sizeof(ULONG) + DataBufferSize))

 {

 return STATUS_INVALID_PARAMETER;

 }

 nPort = *pIOBuffer++;

 if (nPort >= pLDI->PortCount ||

 (nPort + DataBufferSize) > pLDI->PortCount ||

 (((ULONG)pLDI->PortBase + nPort) & (DataBufferSize - 1))

!= 0)

 {

 return STATUS_ACCESS_VIOLATION; // Illegal port number

 }

 if (pLDI->PortMemoryType == 1)

 {

 // Address is in I/O space

 switch (IoctlCode)

 {

 case IOCTL_DPIB_WRITE_PORT_UCHAR:

 WRITE_PORT_UCHAR(

 (PUCHAR)((ULONG)pLDI->PortBase + nPort),

 *(PUCHAR)pIOBuffer);

 break;

 case IOCTL_DPIB_WRITE_PORT_USHORT:

 WRITE_PORT_USHORT(

 (PUSHORT)((ULONG)pLDI->PortBase + nPort),

 *(PUSHORT)pIOBuffer);

 break;

 case IOCTL_DPIB_WRITE_PORT_ULONG:

 WRITE_PORT_ULONG(

 (PULONG)((ULONG)pLDI->PortBase + nPort),

 *(PULONG)pIOBuffer);

 break;

 }

 } else {

 // Address is in Memory space

 switch (IoctlCode)

 {

 case IOCTL_DPIB_WRITE_PORT_UCHAR:

 WRITE_REGISTER_UCHAR(

 (PUCHAR)((ULONG)pLDI->PortBase + nPort),

 *(PUCHAR)pIOBuffer);

 break;

 case IOCTL_DPIB_WRITE_PORT_USHORT:

 WRITE_REGISTER_USHORT(

 (PUSHORT)((ULONG)pLDI->PortBase + nPort),

 *(PUSHORT)pIOBuffer);

 break;

 case IOCTL_DPIB_WRITE_PORT_ULONG:

 WRITE_REGISTER_ULONG(

 (PULONG)((ULONG)pLDI->PortBase + nPort),

 *(PULONG)pIOBuffer);

 break;

 }

 }

 return STATUS_SUCCESS;

}

189

VOID

DpibUnload(

 PDRIVER_OBJECT DriverObject

)

/*++

Routine Description:

 This routine prepares our driver to be unloaded. It is

 responsible for freeing all resources allocated by

 DriverEntry as well as any allocated while the driver was

 running. The symbolic link must be deleted as well.

Arguments:

 DriverObject - Pointer to driver object created by the

system.

Return Value:

 None

--*/

{

 PLOCAL_DEVICE_INFO pLDI;

 CM_RESOURCE_LIST NullResourceList;

 BOOLEAN ResourceConflict;

 UNICODE_STRING Win32DeviceName;

 // Find our global data

 pLDI = (PLOCAL_DEVICE_INFO)DriverObject->DeviceObject-

>DeviceExtension;

 // Unmap the ports

 if (pLDI->PortWasMapped)

 {

 MmUnmapIoSpace(pLDI->PortBase, pLDI->PortCount);

 }

 // Report we're not using any hardware. If we don't do this

 // then we'll conflict with ourselves (!) on the next load

 RtlZeroMemory((PVOID)&NullResourceList,

sizeof(NullResourceList));

 IoReportResourceUsage(

 NULL,

 DriverObject,

 &NullResourceList,

 sizeof(ULONG),

 NULL,

 NULL,

 0,

 FALSE,

 &ResourceConflict);

 // Assume all handles are closed down.

 // Delete the things we allocated - devices, symbolic links

 RtlInitUnicodeString(&Win32DeviceName, DOS_DEVICE_NAME);

 IoDeleteSymbolicLink(&Win32DeviceName);

190

 IoDeleteDevice(pLDI->DeviceObject);

}

//morrph.h

//Adapted from genport.h from the SDK

#include <ntddk.h>

#include <string.h>

#include <devioctl.h>

#include "dpib_ioctl.h" // Get IOCTL interface definitions

/* Default base port, and # of ports */

#define BASE_PORT 0x304

#define NUMBER_PORTS 3

// NT device name

#define DPIB_DEVICE_NAME L"\\Device\\Dpib0"

// File system device name. When you execute a CreateFile call

// to open the device, use "\\.\DpibDev", or, given C's

// conversion of \\ to \, use

// "\\\\.\\DpibDev"

#define DOS_DEVICE_NAME L"\\DosDevices\\DpibDev"

// driver local data structure specific to each device object

typedef struct _LOCAL_DEVICE_INFO {

 ULONG DeviceType; // Our private Device

Type

 BOOLEAN PortWasMapped; // If TRUE, we have to

 // unmap on unload

 PVOID PortBase; // base port address

 ULONG PortCount; // Count of I/O addresses

 // used

 ULONG PortMemoryType; // HalTranslateBusAddress

 // MemoryType

 PDEVICE_OBJECT DeviceObject; // The Gpd device object.

} LOCAL_DEVICE_INFO, *PLOCAL_DEVICE_INFO;

/********************* function prototypes *********************/

//

NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,

 IN PUNICODE_STRING RegistryPath);

NTSTATUS DpibCreateDevice(IN PWSTR szPrototypeName,

 IN DEVICE_TYPE DeviceType,

 IN PDRIVER_OBJECT DriverObject,

 OUT PDEVICE_OBJECT *ppDevObj);

NTSTATUS DpibDispatch(IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp);

NTSTATUS DpibIoctlReadPort(IN PLOCAL_DEVICE_INFO pLDI,

 IN PIRP pIrp,

 IN PIO_STACK_LOCATION IrpStack,

 IN ULONG IoctlCode);

NTSTATUS DpibIoctlWritePort(IN PLOCAL_DEVICE_INFO pLDI,

 IN PIRP pIrp,

 IN PIO_STACK_LOCATION IrpStack,

 IN ULONG IoctlCode);

DPIB.H

191

VOID DpibUnload(IN PDRIVER_OBJECT DriverObject);

// gpioctl.h Include file for Generic Port I/O Example Driver

//

// Define the IOCTL codes we will use. The IOCTL code contains

// a command identifier, plus other information about the device,

// the type of access with which the file must have been opened,

// and the type of buffering.

//

// Adapted from Microsoft's DDK by Panos Arvanitis, 9/13/96

// Device type -- in the "User Defined" range."

#define DPIB_TYPE 43425

// The IOCTL function codes from 0x800 to 0xFFF are for customer

// use.

#define IOCTL_DPIB_READ_PORT_UCHAR \

 CTL_CODE(DPIB_TYPE, 0xB00, METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_DPIB_READ_PORT_USHORT \

 CTL_CODE(DPIB_TYPE, 0xB01, METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_DPIB_READ_PORT_ULONG \

 CTL_CODE(DPIB_TYPE, 0xB02, METHOD_BUFFERED, FILE_READ_ACCESS)

#define IOCTL_DPIB_WRITE_PORT_UCHAR \

 CTL_CODE(DPIB_TYPE, 0xB10, METHOD_BUFFERED, FILE_WRITE_ACCESS)

#define IOCTL_DPIB_WRITE_PORT_USHORT \

 CTL_CODE(DPIB_TYPE, 0xB11, METHOD_BUFFERED, FILE_WRITE_ACCESS)

#define IOCTL_DPIB_WRITE_PORT_ULONG \

 CTL_CODE(DPIB_TYPE, 0xB12, METHOD_BUFFERED, FILE_WRITE_ACCESS)

typedef struct _DPIB_WRITE_INPUT {

 ULONG PortNumber; // Port # to write to

 union { // Data to be output to port

 ULONG LongData;

 USHORT ShortData;

 UCHAR CharData;

 };

} DPIB_WRITE_INPUT;

DPIB_IOCTL.H

192

Appendix D. Software Libraries Source Code

Appendix D includes the source code for the hardware.h and sensor.hpp libraries.

These header files contain functions to access hardware device drivers and to control the

prototype system components.

193

/**

* Module : hardware.h

* Purpose : A library of functions used with the Windows NT

* drivers developed in the SDA Lab. Functions to

* open drivers, read and write ports and special

* functions for the PCI board are provided.

* Author : Panos Arvanitis

* Date : July 1996

* Version : 1.0

* Revisions :

***/

//System includes

#include <windows.h>

#include <winioctl.h>

#include <stddef.h>

//Driver IOCTLs for each device driver

#include "\users\panos\progs\devdrv\morrph\morrph_ioctl.h"

#include "\users\panos\progs\devdrv\dpib\dpib_ioctl.h"

#include "\users\panos\progs\devdrv\pcidma2\ppcidma_ioctl.h"

//Function return codes

#define STATUS_SUCCESS 0

#define STATUS_FAILURE 255

//Path to driver (used to obtain handle)

#define STRING_MORRPHPATH "\\\\.\\MorrphDev"

#define STRING_PCIDMAPATH "\\\\.\\PPciDma0"

#define STRING_DIFFPAIRPATH "\\\\.\\DpibDev"

//.POD filenames used to program boards

#define STRING_MORRPH_FILENAME "MORRPH.POD"

#define STRING_PCIDMA_FILENAME "PCIDMA.POD"

#define STRING_DIFFPAIR_FILENAME "DPIB.POD"

//Relative port addresses for Will's ISA interface

//Used for MORRPH and DPIB

#define ADDRESS_PORT 0x00

#define DATA_PORT 0x01

#define PROGRAM_PORT 0x02

/***/

/* AMCC Operation Register Offsets

*/

/***/

#define AMCC_OP_REG_OMB1 0x000

#define AMCC_OP_REG_OMB2 0X004

#define AMCC_OP_REG_OMB3 0X008

#define AMCC_OP_REG_OMB4 0X00C

#define AMCC_OP_REG_IMB1 0X010

#define AMCC_OP_REG_IMB2 0X014

#define AMCC_OP_REG_IMB3 0X018

#define AMCC_OP_REG_IMB4 0X01C

#define AMCC_OP_REG_FIFO 0X020

#define AMCC_OP_REG_MWAR 0X024

#define AMCC_OP_REG_MWTC 0X028

#define AMCC_OP_REG_MRAR 0X02C

#define AMCC_OP_REG_MRTC 0X030

#define AMCC_OP_REG_MBEF 0X034

#define AMCC_OP_REG_INTCSR 0X038

#define AMCC_OP_REG_MCSR 0X03C

HARDWARE.H

194

#define AMCC_OP_REG_MCSR_NVDATA (AMCC_OP_REG_MCSR + 2) /* Data

in byte 2 */

#define AMCC_OP_REG_MCSR_NVCMD (AMCC_OP_REG_MCSR + 3) /*

Command in byte 3 */

//Structure used with WritePort functions to hold port and data

values

typedef struct _DRIVER_WRITE_INPUT {

ULONG PortNumber;

union {

ULONG LongData;

USHORT ShortData;

UCHAR CharData;

};

} DRIVER_WRITE_INPUT;

/**

* OpenDriverHandle

* Open a handle to a device driver.

*

* Arguments

* hndFile - handle to device driver object

* DriverPath - registry path to the device driver

*

* Return

* STATUS_SUCCESS - Handle opened successfuly

* STATUS_FAILURE - Error in opening handle

***/

int OpenDriverHandle(HANDLE *hndFile, char *DriverPath)

{

 //Open the device driver

 *hndFile = CreateFile(DriverPath, GENERIC_WRITE |

GENERIC_READ, 0,

 NULL, OPEN_EXISTING, 0, NULL);

 //Driver not opened, return error

if (*hndFile == INVALID_HANDLE_VALUE)

return(STATUS_FAILURE);

 //Driver opened OK

return(STATUS_SUCCESS);

}

/**

* WritePort

* Write a value to a port. The handle to the device

* driver must be already open.

*

* Arguments

* hndFile - Handle to device driver

* Port - Relative port address to write to

* Value - Value to write

* IoctlCode - IoctlCode for operation

* Return

* Standard Error Code

***/

int WritePort(HANDLE hndFile, int Port, int Value, LONG

IoctlCode)

{

DRIVER_WRITE_INPUT InputBuffer; //buffer

passed to driver

ULONG DataLength;

195

BOOL IoctlResult;

ULONG ReturnedLength;

//Place port address and value in structure

InputBuffer.PortNumber = (ULONG)Port;

InputBuffer.CharData = (UCHAR)Value;

//Determine size of data

DataLength = offsetof(DRIVER_WRITE_INPUT, CharData) +

sizeof(InputBuffer.CharData);

//Send write request to device driver

IoctlResult = DeviceIoControl(hndFile, IoctlCode,

&InputBuffer, DataLength,

NULL, 0, &ReturnedLength,

NULL);

if (IoctlResult)

return(STATUS_SUCCESS);

else

return(STATUS_FAILURE);

}

/**

* WritePortDouble

* Write a value to a port. The handle to the device

* driver must be already open.

*

* Arguments

* hndFile - Handle to device driver

* Port - Relative port address to write to

* Value - Value to write

* IoctlCode - IoctlCode for operation

* Return

* Standard Error Code

***/

int WritePortDouble(HANDLE hndFile, int Port, ULONG Value, LONG

IoctlCode)

{

DRIVER_WRITE_INPUT InputBuffer;

ULONG DataLength;

ULONG ReturnedLength;

BOOL IoctlResult;

//Place port address and value in structure

InputBuffer.PortNumber = (ULONG)Port;

InputBuffer.LongData = Value;

//Determine data size

DataLength = offsetof(DRIVER_WRITE_INPUT, LongData) +

sizeof(InputBuffer.LongData);

//Send write request to device driver

IoctlResult = DeviceIoControl(hndFile, IoctlCode,

&InputBuffer,

DataLength, NULL, 0,

&ReturnedLength, NULL);

if (IoctlResult)

return(STATUS_SUCCESS);

else

return(STATUS_FAILURE);

196

}

/**

* ReadPort

* Read a value from a port. The handle to the device

* driver must be open.

*

* Arguments

* hndFile - handle to the device driver

* Port - port to read from

* Value - value returned from port

* IoctlCode - IOCTL for port byte read

* Return

* Standard Error Code

***/

int ReadPort(HANDLE hndFile, int Port, UCHAR *Value, LONG

IoctlCode)

{

BOOL IoctlResult;

union {

ULONG LongData;

USHORT ShortData;

UCHAR CharData;

} DataBuffer;

ULONG DataLength;

DWORD ReturnedLength;

//Datermine data size

DataLength = sizeof(DataBuffer.CharData);

//Send read request to device driver

IoctlResult = DeviceIoControl(hndFile, IoctlCode, &Port,

sizeof(Port),

&DataBuffer,

DataLength, &ReturnedLength, NULL);

if (IoctlResult) {

//Place returned value in output if read was

successful

*Value = DataBuffer.CharData;

return(STATUS_SUCCESS);

}

else

return(STATUS_FAILURE);

}

/**

* ReadPortDouble

* Read a double byte from a port. The handle to the device

* driver must be already open.

*

* Arguments

* hndFile - Handle to device driver

* Port - Relative port address to write to

* Value - Value returned

* IoctlCode - IoctlCode for operation

***/

int ReadPortDouble(HANDLE hndFile, int Port, ULONG *Value, LONG

IoctlCode)

{

BOOL IoctlResult;

union {

197

ULONG LongData;

USHORT ShortData;

UCHAR CharData;

} DataBuffer;

ULONG DataLength;

DWORD ReturnedLength;

//Determine data size

DataLength = sizeof(DataBuffer.LongData);

//Send rear request to device driver

IoctlResult = DeviceIoControl(hndFile, (DWORD) IoctlCode,

&Port,

sizeof(Port),

&DataBuffer, DataLength,

&ReturnedLength,

NULL);

if (IoctlResult) {

//Place returned data in output, if read was

successful

*Value = DataBuffer.LongData;

return(STATUS_SUCCESS);

}

else

return(STATUS_FAILURE);

}

/**

* MapPciDmaBuffer

* Map the PCI DMA buffer to the calling process address

* space.

*

* Arguments

* hndFile - Handle to device driver

* VirtualAddress - mapped DMA buffer address (in user

space)

***/

int MapPciDmaBuffer(HANDLE hndFile, ULONG *VirtualAddress)

{

BOOL IoctlResult;

ULONG DataLength;

ULONG DataBuffer;

DWORD ReturnedLength;

//Determine size of data

DataLength = sizeof(DataBuffer);

//Send map request to PCI device driver

IoctlResult = DeviceIoControl(hndFile, (DWORD)

IOCTL_PPCIDMA_MAP_USER_PHYSICAL_MEMORY,

NULL, 0, &DataBuffer, DataLength, &ReturnedLength,

NULL);

if (IoctlResult) {

//Place virtual address in the output

*VirtualAddress = DataBuffer;

return(STATUS_SUCCESS);

}

else

return(STATUS_FAILURE);

}

198

/**

* UnMapPciDmaBuffer

* Unmap the DMA buffer from the calling process address

* space.

*

* Arguments

* hndFile - Handle to device driver

* VirtualAddress - The mapped DMA address

***/

int UnMapPciDmaBuffer(HANDLE hndFile, ULONG VirtualAddress)

{

BOOL IoctlResult;

ULONG InputBuffer;

ULONG DataLength;

ULONG ReturnedLength;

//Place the virtual address in the structure

InputBuffer = VirtualAddress;

//Determine length of data

DataLength = sizeof(VirtualAddress);

//Send unmap request to PCI device driver

IoctlResult = DeviceIoControl(hndFile,

(DWORD)

IOCTL_PPCIDMA_UNMAP_USER_PHYSICAL_MEMORY,

&InputBuffer, DataLength, NULL, 0,

&ReturnedLength, NULL);

if (IoctlResult)

return(STATUS_SUCCESS);

else

return(STATUS_FAILURE);

}

/**

* GetPciDmaAddress

* Get the physical address of the PCIDMA board. Used to

* program PCIDMA address registers.

*

* Arguments

* hndFile - Handle to device driver

* PhysicalAddress - Returned physical address

***/

int GetPciDmaAddress(HANDLE hndFile, ULONG *PhysicalAddress)

{

BOOL IoctlResult;

ULONG DataLength;

ULONG DataBuffer;

DWORD ReturnedLength;

//Determine size of buffer

DataLength = sizeof(DataBuffer); //size of input

buffer

#ifdef DEBUG

printf("GetPciDmaAddress sending IOCTL %x.\n", (DWORD)

IOCTL_PPCIDMA_RETURN_MEMORY_INFORMATION);

#endif

//Send request to PCIDMA device driver

IoctlResult = DeviceIoControl(hndFile, (DWORD)

 IOCTL_PPCIDMA_RETURN_MEMORY_INFORMATION,

199

NULL, 0, &DataBuffer, DataLength, &ReturnedLength,

NULL);

if (IoctlResult) {

//Return the physical address, if the request was

successful

*PhysicalAddress = DataBuffer;

return(STATUS_SUCCESS);

}

else

return(STATUS_FAILURE);

}

/**

* Module : sensor.hpp

* Purpose : A library of functions used in the FAA

* software for the AS&E System. Function to

* initiliaze and access the hardware and sensors

* are provided.

* Author : Panos Arvanitis

* Date : January 1997

* Version : 1.0

* Revisions :

***/

#include <conio.h>

//Constants used for DPIB ports

#define DPIB_MOTOR_PORT 0x06 //Conveyor motor port

#define DPIB_SENSOR_PORT 0x07 //Luggage sensor port

#define DPIB_MOTOR_FORWARD 0x01 //Conveyor move forward

command

#define DPIB_MOTOR_REVERSE 0x02 //Conveyor move reverse

command

#define DPIB_MOTOR_STOP 0x00 //Conveyor stop command

#define DPIB_SENSOR_FRONT 0x01 //Front sensor broken bit

#define DPIB_SENSOR_REAR 0x02 //Rear sensor broken bin

//Constants used to access the X-ray controller

#define XRAY_CONTROLLER_PORT "COM2" //Serial port for Ball

Controller

#define XRAY_CONTROLLER_BAUD 9600 //Baud rate

#define XRAY_CONTROLLER_BITS 8 //Data bits

//For these two constants, check the GetCommState help page, DCB

structure

#define XRAY_CONTROLLER_STOP 0 //1 Stop bit

#define XRAY_CONTROLLER_PARITY 0 //No Parity

//Constants used to access the filter motor controller

#define MOTOR_CONTROLLER_PORT "COM1" //Serial port for motor

controller

#define MOTOR_CONTROLLER_BAUD 1200 //Baud rate

#define MOTOR_CONTROLLER_BITS 8 //Data bits

//For these two constants, check the GetCommState help page, DCB

structure

#define MOTOR_CONTROLLER_STOP 0 //1 Stop Bit

#define MOTOR_CONTROLLER_PARITY 0 //No Parity

SENSOR.HPP

200

//

// Function : WaitSeconds

// Purpose : Wait the specified number of seconds.

// Arguments :

// SecWait = number of seconds to wait

// Return : None

void WaitSeconds(int SecWait)

{

 //Store start time and current time

 DWORD BeginTime, CurrTime;

 BeginTime = GetTickCount(); //Current system tick count

 //Wait until the given number of clock ticks has occured

 //This is not the best way to time delay, but it works

 //and can be set-up easily, unlike a Windows timer.

 do {

 CurrTime = GetTickCount();

 } while (CurrTime-BeginTime < SecWait * 1000);

}

//

// Function : WaitTSeconds

// Purpose : Wait the specified number of tenths of a

second.

// Arguments :

// TSecWait = number of tenths of second to wait

// Return : None

void WaitTSeconds(int TSecWait)

{

 //Start time and current time

 DWORD BeginTime, CurrTime;

 //Get the current tick count

 BeginTime = GetTickCount();

 //Wait until the specified number of clock ticks has

 //occured

 do {

 CurrTime = GetTickCount();

 } while (CurrTime-BeginTime < TSecWait * 100);

}

//

// Function : MoveBeltForward

// Purpose : Move the conveyor belt in the forward

direction.

// Arguments :

// hndFile = handle to the DPIB device driver

// Return : None

void MoveBeltForward(HANDLE hndFile)

{

 int status;

 //Write the address to the motor controller port on the DPIB

 status = WritePort(hndFile, ADDRESS_PORT, DPIB_MOTOR_PORT,

IOCTL_DPIB_WRITE_PORT_UCHAR);

 //Set the move forward bit

 if (status == STATUS_SUCCESS)

 status = WritePort(hndFile, DATA_PORT, DPIB_MOTOR_FORWARD,

201

IOCTL_DPIB_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

 ReportFailWrite(hndFile);

}

//

// Function : MoveBeltReverse

// Purpose : Move the conveyor belt in the reverse

direction.

// Arguments :

// hndFile = handle to the DPIB device driver

// Return : None

void MoveBeltReverse(HANDLE hndFile)

{

 int status;

 //Write the address of the motor controller port

 status = WritePort(hndFile, ADDRESS_PORT, DPIB_MOTOR_PORT,

IOCTL_DPIB_WRITE_PORT_UCHAR);

 //Set the move reverse bit

 if (status == STATUS_SUCCESS)

 status = WritePort(hndFile, DATA_PORT, DPIB_MOTOR_REVERSE,

IOCTL_DPIB_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

 ReportFailWrite(hndFile);

}

//

// Function : StopBelt

// Purpose : Stop the conveyor belt.

// Arguments :

// hndFile = handle to the DPIB device driver

// Return : None

void StopBelt(HANDLE hndFile)

{

 int status;

 //Write the address of the motor controller port

 status = WritePort(hndFile, ADDRESS_PORT, DPIB_MOTOR_PORT,

IOCTL_DPIB_WRITE_PORT_UCHAR);

 //Clear all bits

 if (status == STATUS_SUCCESS)

status = WritePort(hndFile, DATA_PORT, DPIB_MOTOR_STOP,

IOCTL_DPIB_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

ReportFailWrite(hndFile);

}

//

// Function : BreakFrontSensor

// Purpose : Wait until the front luggage sensor is

interrupted.

// Arguments :

// hndFile = handle to the DPIB device driver

// Return : None

void BreakFrontSensor(HANDLE hndFile)

202

{

 UCHAR sensorval; //Sensor status

 int status;

 //Write the address of the sensor port on the DPIB

 status = WritePort(hndFile, ADDRESS_PORT, DPIB_SENSOR_PORT,

 IOCTL_DPIB_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

ReportFailWrite(hndFile);

 do {

 //Read sensor port

 //and wait until the bit is cleared

 status = ReadPort(hndFile, DATA_PORT, &sensorval,

IOCTL_DPIB_READ_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

 ReportFailRead(hndFile);

 } while (sensorval & DPIB_SENSOR_FRONT);

}

//

// Function : BreakRearSensor

// Purpose : Wait until the rear luggage sensor is

interrupted.

// Arguments :

// hndFile = handle to the DPIB device driver

// Return : None

void BreakRearSensor(HANDLE hndFile)

{

 UCHAR sensorval;

 int status;

 status = WritePort(hndFile, ADDRESS_PORT, DPIB_SENSOR_PORT,

 IOCTL_DPIB_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

ReportFailWrite(hndFile);

 do { //Break rear beam

 status = ReadPort(hndFile, DATA_PORT, &sensorval,

IOCTL_DPIB_READ_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

 ReportFailRead(hndFile);

 } while (sensorval & DPIB_SENSOR_REAR);

}

//

// Function : UnBreakFrontSensor

// Purpose : Wait until the front luggage sensor is cleared.

// Arguments :

// hndFile = handle to the DPIB device driver

// Return : None

void UnBreakFrontSensor(HANDLE hndFile)

{

 UCHAR sensorval;

 int status;

 status = WritePort(hndFile, ADDRESS_PORT, DPIB_SENSOR_PORT,

 IOCTL_DPIB_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

203

ReportFailWrite;

 do { //"un"break front beam

 status = ReadPort(hndFile, DATA_PORT, &sensorval,

IOCTL_DPIB_READ_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

 ReportFailRead;

 } while (!(sensorval & DPIB_SENSOR_FRONT));

}

//

// Function : UnBreakRearSensor

// Purpose : Wait until the rear luggage sensor is cleared.

// Arguments :

// hndFile = handle to DPIB device driver

// Return : None

void UnBreakRearSensor(HANDLE hndFile)

{

 UCHAR sensorval;

 int status;

 status = WritePort(hndFile, ADDRESS_PORT, DPIB_SENSOR_PORT,

 IOCTL_DPIB_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

ReportFailWrite;

 do { //"un"break rear beam

 status = ReadPort(hndFile, DATA_PORT, &sensorval,

IOCTL_DPIB_READ_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

 ReportFailRead;

 } while (!(sensorval & DPIB_SENSOR_REAR));

}

//

// Function : SetKV75

// Purpose : Set the X-ray voltage to 75KV.

// Arguments :

// hCom = handle to the serial port

// Return : None

void SetKV75(HANDLE hCom)

{

 //This routine sends a command to the serial port controller

 //Although the baud rate is defined in the controller manual,

 //the controller is too slow to respond to consecutive

characters

 //sent at the defined baud rate. Therefore a time delay is

 //inserted between each character to ensure correct receipt by

 //the x-ray controller.

 //Serial port buffer, contains character to be sent out

 char buffer;

 unsigned long BytesOut = 5;

 buffer = '!';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = 'V';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

204

 WaitTSeconds(5);

 buffer = '0';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = '7';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = '5';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = 0x0D;;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

}

//

// Function : SetKV150

// Purpose : Set the X-ray voltage to 150KV.

// Arguments :

// hCom = handle to the serial port

// Return : None

void SetKV150(HANDLE hCom)

{

 //This routine sends a command to the serial port controller

 //Although the baud rate is defined in the controller manual,

 //the controller is too slow to respond to consecutive

characters

 //sent at the defined baud rate. Therefore a time delay is

 //inserted between each character to ensure correct receipt by

 //the x-ray controller.

 char buffer;

 unsigned long BytesOut = 5;

 buffer = '!';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = 'V';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = '1';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = '5';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = '0';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = 0x0D;;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

}

205

//

// Function : SetmA300

// Purpose : Set the X-ray current to 300mA.

// Arguments :

// hCom = handle to the serial port

// Return : None

void SetmA300(HANDLE hCom)

{

 //This routine sends a command to the serial port controller

 //Although the baud rate is defined in the controller manual,

 //the controller is too slow to respond to consecutive

characters

 //sent at the defined baud rate. Therefore a time delay is

 //inserted between each character to ensure correct receipt by

 //the x-ray controller.

 char buffer;

 unsigned long BytesOut = 5;

 buffer = '!';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = 'I';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = '0';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = '3';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = '0';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer = 0x0D;;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

}

//

// Function : TurnXrayON

// Purpose : Turn the X-ray source on.

// Arguments :

// hCom = handle to the serial port

// Return : None

void TurnXrayON(HANDLE hCom)

{

 //This routine sends a command to the serial port controller

 //Although the baud rate is defined in the controller manual,

 //the controller is too slow to respond to consecutive

characters

 //sent at the defined baud rate. Therefore a time delay is

 //inserted between each character to ensure correct receipt by

 //the x-ray controller.

206

 char buffer;

 unsigned long BytesOut = 5;

 buffer = '!';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(8);

 buffer = 'X';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(8);

 buffer = 0x0D;;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(8);

}

//

// Function : TurnXrayOFF

// Purpose : Turn the X-ray source off.

// Arguments :

// hCom = handle to the serial port

// Return : None

void TurnXrayOFF(HANDLE hCom)

{

 //This routine sends a command to the serial port controller

 //Although the baud rate is defined in the controller manual,

 //the controller is too slow to respond to consecutive

characters

 //sent at the defined baud rate. Therefore a time delay is

 //inserted between each character to ensure correct receipt by

 //the x-ray controller.

 char buffer;

 unsigned long BytesOut = 5;

 buffer = '!';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(8);

 buffer = 'O';

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(8);

 buffer = 0x0D;;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(8);

}

//

// Function : LowerFilter

// Purpose : Lower the copper filter.

// Arguments :

// hCom = handle to the serial port

// Return : None

void LowerFilter(HANDLE hCom)

{

 //A time delay is inserted between each character to

 //ensure proper receipt by the motor controller

207

 char buffer[10];

 unsigned long BytesOut = 5;

 strcpy(buffer, "0");

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

}

//

// Function : RaiseFilter

// Purpose : Raise the copper filter.

// Arguments :

// hCom = handle to the serial port.

// Return : None

void RaiseFilter(HANDLE hCom)

{

 //A time delay is inserted between each character to

 //ensure proper receipt by the motor controller

 char buffer[10];

 unsigned long BytesOut = 5;

 strcpy(buffer, "75");

 WriteFile(hCom, &buffer, 3, &BytesOut, NULL);

 WaitTSeconds(5);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

}

//This function is maintained for compatibility with older

//console mode applications and should no longer be used.

int GetCorVal()

{

 int RegVal;

 cout << "Please enter new value: ";

 cin >> RegVal;

 cout << endl;

 return(RegVal);

}

//

// Function : WriteRegister

// Purpose : Write a value to a DPIB, not an ISA, port

// Arguments :

// RegNum = port address

// RegVal = value to write

// hndFile = handle to device driver

// Return : None

void WriteRegister(UCHAR RegNum, int RegVal, HANDLE hndFile)

{

 int status;

 status = WritePort(hndFile, ADDRESS_PORT, RegNum,

 IOCTL_DPIB_WRITE_PORT_UCHAR);

208

 if (status != STATUS_SUCCESS)

ReportFailWrite;

 status = WritePort(hndFile, DATA_PORT, RegVal,

IOCTL_DPIB_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS)

 ReportFailRead;

}

//This function is maintained for compatibility with older

//console mode applications and should no longer be used.

BOOLEAN ShowMenu(int *LCorVal1, int *LCorVal2, int *LCorVal3,

 int *HCorVal1, int *HCorVal2, int *HCorVal3)

{

 char c;

 BOOLEAN ValidChoice;

 do {

 clrscr();

 ValidChoice = TRUE;

 cout << " C. Continue Collection" << endl << endl;

 cout << " 1. Modify Low KV Offset Value 1 (Currently

" <<

*LCorVal1 << ")" << endl;

 cout << " 2. Modify Low KV Offset Value 2 (Currently

" <<

*LCorVal2 << ")" << endl;

 cout << " 3. Modify Low KV Offset Value 3 (Currently

" <<

 *LCorVal3 << ")" << endl << endl;

 cout << " 4. Modify Hi KV Offset Value 1 (Currently

" <<

 *HCorVal1 << ")" << endl;

 cout << " 5. Modify Hi KV Offset Value 2 (Currently

" <<

 *HCorVal2 << ")" << endl;

 cout << " 6. Modify Hi KV Offset Value 3 (Currently

" <<

 *HCorVal3 << ")" << endl << endl;

 cout << " Q. Quit Program" << endl << endl;

 cout << "Please make a selection: " << endl;

 c = getch();

 switch (c) {

 case 'C', 'c' : return(TRUE);

 case '1' : *LCorVal1 = GetCorVal();

ValidChoice = FALSE;

break;

 case '2' : *LCorVal2 = GetCorVal();

ValidChoice = FALSE;

break;

 case '3' : *LCorVal3 = GetCorVal();

ValidChoice = FALSE;

break;

 case '4' : *HCorVal1 = GetCorVal();

ValidChoice = FALSE;

break;

 case '5' : *HCorVal2 = GetCorVal();

ValidChoice = FALSE;

break;

 case '6' : *HCorVal3 = GetCorVal();

ValidChoice = FALSE;

209

break;

 case 'Q', 'q' : return(FALSE);

 default : ValidChoice = FALSE;

 }

 } while (!ValidChoice);

}

//

// Function : SetUpCorrVal

// Purpose : Program the data compensation values into the

DPIB

// Arguments :

// CVal1 = correction value for channel 1

// CVal2 = correction value for channel 2

// CVal3 = correction value for channel 3

// hndFile = handle to DPIB

//

void SetUpCorrVal(int CVal1, int CVal2, int CVal3, HANDLE

hndFile)

{

 WriteRegister(1, CVal1, hndFile);

 WriteRegister(2, CVal2, hndFile);

 WriteRegister(3, CVal3, hndFile);

}

//

// Function : ProgMotorController

// Purpose : Program the filter motor controller.

// Arguments :

// hCom = handle to the serial port

// Return : TRUE = motor controller programmed

successfully

// FALSE = failed to program motor controller

BOOLEAN ProgMotorController(HANDLE hCom)

{

 //A time delay is inserted between each character to

 //ensure proper receipt by the motor controller

 char buffer[25];

 ULONG BytesOut;

 strcpy(buffer, "&");

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 strcpy(buffer, "E");

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 strcpy(buffer, "90 V1=800");

 WriteFile(hCom, &buffer, 9, &BytesOut, NULL);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 strcpy(buffer, "95 R1=3");

 WriteFile(hCom, &buffer, 7, &BytesOut, NULL);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

210

 WaitTSeconds(5);

 strcpy(buffer, "100 C1=0.023");

 WriteFile(hCom, &buffer, 12, &BytesOut, NULL);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 strcpy(buffer, "110 INPUT A1");

 WriteFile(hCom, &buffer, 12, &BytesOut, NULL);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 strcpy(buffer, "120 @:GOTO 110");

 WriteFile(hCom, &buffer, 14, &BytesOut, NULL);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

 strcpy(buffer, "RUN90");

 WriteFile(hCom, &buffer, 5, &BytesOut, NULL);

 buffer[0] = 0x0D;

 WriteFile(hCom, &buffer, 1, &BytesOut, NULL);

 WaitTSeconds(5);

}

//

// Function : SetUpXrayController

// Purpose : Configure the X-ray controller serial port.

// Arguments :

// hCom = returns handle to the serial port

// Return : TRUE = serial port configured properly.

// : FALSE = failed to configure port

BOOLEAN SetUpXrayController(HANDLE *hCom)

{

 DCB dcb1;

 //Open a handle to the COM port

 *hCom = CreateFile(XRAY_CONTROLLER_PORT, GENERIC_READ |

GENERIC_WRITE,

0, NULL, OPEN_EXISTING, 0, NULL);

 if (*hCom == INVALID_HANDLE_VALUE)

 return FALSE;

 //Get the DCB structure

 if (!GetCommState(*hCom, &dcb1))

 return FALSE;

 //Enter configuration values in the DCB structure

 dcb1.BaudRate = XRAY_CONTROLLER_BAUD;

 dcb1.ByteSize = XRAY_CONTROLLER_BITS;

 dcb1.Parity = XRAY_CONTROLLER_PARITY;

 dcb1.StopBits = XRAY_CONTROLLER_STOP;

 //Configure the serial port

 if (!SetCommState(*hCom, &dcb1))

 return FALSE;

 return TRUE;

}

211

//

// Function : SetUpDPIB

// Purpose : Set-up the initial port values for the DPIB.

// Arguments :

// hndDpib = returns a handle to the DPIB

// Return : TRUE = DPIB ports initialized successfully

// FALSE = Failed to initialize DPIB ports

BOOLEAN SetUpDPIB(HANDLE *hndDpib)

{

 int status;

 status = OpenDriverHandle(hndDpib, STRING_DIFFPAIRPATH);

 if (status == STATUS_SUCCESS)

 {

 //Setup the timing values for the DPIB

 /*WriteRegister(6, 0x070, hndDpib);

 WriteRegister(7, 0x06C, hndDpib);

 WriteRegister(8, 0x070, hndDpib);

 WriteRegister(9, 0x050, hndDpib);

 WriteRegister(10, 0x052, hndDpib);

 WriteRegister(11, 0x05E, hndDpib);

 WriteRegister(12, 0x05F, hndDpib);

 WriteRegister(13, 0x059, hndDpib);

 WriteRegister(14, 0x070, hndDpib);*/

 WriteRegister(8, 0x01, hndDpib);

 WriteRegister(9, 0x0C2, hndDpib);

 WriteRegister(10, 0x00, hndDpib);

 WriteRegister(11, 0x0E1, hndDpib);

 WriteRegister(12, 0x00, hndDpib);

 WriteRegister(13, 0x0E1, hndDpib);

 return TRUE;

 }

 else

 return FALSE;

}

//

// Function : SetUpMotorController

// Purpose : Configure the motor controller serial port.

// Arguments :

// hCom = returns a handle to the serial port

// Return : TRUE = Serial port configured properly

// FALSE = failed to configure the serial port

BOOLEAN SetUpMotorController(HANDLE *hCom)

{

 DCB dcb1;

 //Open a handle to the serial port

 *hCom = CreateFile(MOTOR_CONTROLLER_PORT, GENERIC_READ |

GENERIC_WRITE,

0, NULL, OPEN_EXISTING, 0, NULL);

 if (hCom == INVALID_HANDLE_VALUE)

 return FALSE;

 //Get the DCB structure

 if (!GetCommState(*hCom, &dcb1))

 return FALSE;

 //Load the DCB structure with the serial port operating

parameters

 dcb1.BaudRate = MOTOR_CONTROLLER_BAUD;

212

 dcb1.ByteSize = MOTOR_CONTROLLER_BITS;

 dcb1.Parity = MOTOR_CONTROLLER_PARITY;

 dcb1.StopBits = MOTOR_CONTROLLER_STOP;

 //Configure the serial port

 if (!SetCommState(*hCom, &dcb1))

 return FALSE;

 return TRUE;

}

//This function is used to report error conditions with a console

//application. It is maintained for backwards compatibility only

//and should no longer be used.

void ReportFailWrite(HANDLE hndFile)

{

 cout << endl << "ERROR: Failed to write to DPIB driver." <<

endl;

 cout << "Program will now terminate." << endl;

 CloseHandle(hndFile);

 exit(255);

}

//This function is used to report error conditions with a console

//application. It is maintained for backwards compatibility only

//and should no longer be used.

void ReportFailRead(HANDLE hndFile)

{

 cout << endl << "ERROR: Failed to read from DPIB driver." <<

endl;

 cout << "Program will now terminate." << endl;

 CloseHandle(hndFile);

 exit(255);

}

213

Appendix E. Utilities and GUI Source Code

Appendix E includes the source code for the following utilities: progall, colpul-

silent and edisp. Also included is the source code for Galaxie, the graphical user

interface. Galaxie is a Borland C++ 5.0 project and contains resource files which are not

shown in this appendix.

214

/**

* Program : progall.c

*

* Version : See progall.hpp

*

* Author : Panos Arvanitis

*

* Date : August 10, 1996

*

* Purpose : Program all the boards for the Stuart flooring

* project. This includes MORRPH, PCIDMA, DPIB.

*

* Options :

* -s : Silent mode (no output)

* -h : Display help

* -m <filename> : Alternate filename for MORRPH

* (default is MORRPH.POD)

* -p <filename> : Alternate filename for PCIDMA

* (default is PCIDMA.POD)

* -d <filename> : Alternate filename for DPIB

* (default is DPIB.POD)

* Return :

* 0 : Success

*/

/***************************************

**** TODO:

**** Fix Program_PciDma (and maybe others)

**** so that if anything fails, you still close

**** the handle to the device.

*/

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

//My libraries

#include "\users\panos\lib\hardware.h" //Access to ports through

 // device drivers

#include "progall.hpp" //Program specific

header

int Program_PciDma();

int Program_DiffPair();

int ProgCol(HANDLE hndFile, FILE *podfile, int column,

 LONG IoctlCode);

int main(int argc, char *argv[])

{

int status; //error code to return

#ifdef DEBUG

GetLocalTime(&TimeStart);

#endif

printf("ProgAll V%s\n", PROGRAM_VERSION);

#ifdef DEBUG

printf("\n------- DEBUG VERSION - DO NOT RELEASE -------

\n\n");

#endif

/*char

PROGALL.CPP

215

int numoptions; //number of command line

options

if (argc != 0) //have some command line options

for(numoptions=1; numoptions = argc; numoptions++)

switch

*/

//Program_Morrph();

printf("Begin programming PCIDMA board.\n");

status = Program_PciDma();

if (status != STATUS_SUCCESS) {

printf("ERROR : Failed to program PCIDMA.\n");

return(status);

}

printf("PCIDMA programmed succesfully.\n\n");

printf("Begin programming DPIB board.\n");

status = Program_DiffPair();

if (status != STATUS_SUCCESS) {

printf("ERROR : Unable to program PDPIB.\n");

return(status);

}

printf("DPIB programmed succesfully.\n");

#ifdef DEBUG

GetLocalTime(&TimeEnd);

printf("Program started at %d:%d.%d.\n",

TimeStart.wMinute,

TimeStart.wSecond, TimeStart.wMilliseconds);

printf("Program started at %d:%d.%d.\n",

TimeEnd.wMinute,

TimeEnd.wSecond, TimeEnd.wMilliseconds);

#endif

return(status);

}

/**

* Program_PciDma

* Program the PciDma board

*/

int Program_PciDma()

{

 int status;

 char a[3], b[5], byteval;

 ULONG DValue = 0;

 HANDLE hndFile;

 FILE *podfile;

 status = OpenDriverHandle(&hndFile, STRING_PCIDMAPATH);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : Unable to get handle to PCIDMA

driver.\n");

 return(STATUS_HANDLE_OPEN_FAIL);

 }

 //PCI Initiated, FIFO Bus Mastering Setup

 //PRE-RELEASE : Do I need to set this up?????

 status = WritePortDouble(hndFile, AMCC_OP_REG_INTCSR,

 0x000000000, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 if (status != STATUS_SUCCESS) {

216

 printf("ERROR : WritePort failed to PCI DMA board.\n");

 return(status);

 }

 status = WritePortDouble(hndFile, AMCC_OP_REG_MCSR,

 0x00E007400, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : WritePort failed to PCI DMA board.\n");

 return(status);

 }

 //Clear FIFO

 status = WritePortDouble(hndFile, AMCC_OP_REG_MCSR,

 0x00E007400, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : WritePort failed to PCI DMA board.\n");

 return(status);

 }

 podfile = fopen(STRING_PCIDMA_FILENAME, "r");

 if (podfile == NULL) {

 printf("ERROR : Unable to open %s.\n",

STRING_PCIDMA_FILENAME);

 return(STATUS_FAILURE);

 }

 while (fgets(a, 3, podfile) != NULL) {

 strcpy(b, "0x");

 strncat(b, a, 3);

 byteval = strtol(b, NULL, 0);

 WritePort(hndFile, AMCC_OP_REG_FIFO, byteval,

 IOCTL_PPCIDMA_WRITE_PORT_UCHAR);

 //Wait for empty PCI to ADD-ON FIFO

 do {

 status = ReadPortDouble(hndFile,

AMCC_OP_REG_MCSR, &DValue,

IOCTL_PPCIDMA_READ_PORT_ULONG);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : Read from AMCC FIFO

register failed.\n");

 return(status);

 }

 byteval = DValue & 0x004;

 } while (byteval == 0);

 } //while

 fclose(podfile);

 status = WritePort(hndFile, AMCC_OP_REG_FIFO, 0x0FF,

 IOCTL_PPCIDMA_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : Write to AMCC OP REG failed.\n");

 return(status);

 }

 status = WritePort(hndFile, AMCC_OP_REG_FIFO, 0x0FF,

 IOCTL_PPCIDMA_WRITE_PORT_UCHAR);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : Write to AMCC OP REG failed.\n");

 return(status);

 }

217

 if (!CloseHandle(hndFile)) {

 printf("ERROR : Failed to close device handle for

PCIDMA.\n");

 return(STATUS_FAILURE);

 }

 return(STATUS_SUCCESS);

} //Program_PciDma

/**

* Program_DiffPair

*

* Program the differential pair board. Currently only

* programs the first DMA board.

*

*/

int Program_DiffPair()

{

 int status; //error code to return

 HANDLE hndFile; //handle to driver

 FILE *podfile;

 status = OpenDriverHandle(&hndFile, STRING_DIFFPAIRPATH);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : Unable to get handle to DPIB

driver.\n");

 return(STATUS_FAILURE);

 }

 podfile = fopen(STRING_DIFFPAIR_FILENAME, "r");

 if (podfile == NULL) {

 printf("ERROR: Unable to open %s.\n",

 STRING_DIFFPAIR_FILENAME);

 return(STATUS_FAILURE);

 }

 //column = 0, 1, or 2

 status = ProgCol(hndFile, podfile, 0,

 IOCTL_DPIB_WRITE_PORT_UCHAR);

 if (!CloseHandle(hndFile)) {

 printf("ERROR : Failed to close device handle for

DPIB.\n");

 return(STATUS_FAILURE);

 }

 fclose(podfile);

 return(status);

}

/**

* ProgCol

* Program a column

*

218

* Arguments

* hndFile - handle to driver "file"

* podfile - pointer to .POD file

* column - column to program (must be 0, 1, or 2)

* IoctlCode - code to write to device driver

*/

int ProgCol(HANDLE hndFile, FILE *podfile, int column,

 LONG IoctlCode)

{

 char a[3], b[5], byteval, i; //Don't try to use column

 //instead of i

 int status;

#ifdef DEBUG

 BOOL DispVals = TRUE;

#endif

 switch (column) {

 case 0 : i = 1;

break;

 case 1 : i = 2;

break;

 case 2 : i = 4;

break;

 } //switch

 status = WritePort(hndFile, ADDRESS_PORT, i,

IoctlCode);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : WritePort to address with column

failed.\n");

 return(status);

 }

 Sleep(10);

 status = WritePort(hndFile, PROGRAM_PORT, i,

IoctlCode);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : WritePort to program with column

failed.\n");

 return(status);

 }

 Sleep(10);

 //Set PROGRAM pin low

 status = WritePort(hndFile, ADDRESS_PORT, column * 32,

IoctlCode);

 if (status != STATUS_SUCCESS) {

 printf("ERROR : WritePort with re-program failed.\n");

 return(status);

 }

 Sleep(10);

 while (fgets(a, 3, podfile) != NULL) { //loop to program

Xilinx

 strcpy(b, "0x"); //to convert from hex

 strncat(b, a, 3); //append hex value read in

 byteval = strtol(b, NULL, 0);

 status = WritePort(hndFile, DATA_PORT, byteval,

IoctlCode);

219

 if (status != STATUS_SUCCESS) {

 printf("ERROR : WritePort failed.\n");

 return(status);

 }

 } //while

#ifdef DEBUG

 printf("Last byte written %x.\n", byteval);

#endif

 //Write an extra byte to the Xilinx

 status = WritePort(hndFile, DATA_PORT, byteval, IoctlCode);

 if (status != STATUS_SUCCESS) {

 printf("ERROR: WritePort with extra byte failed.\n");

 return(status);

 }

 return(STATUS_SUCCESS);

}

//Program version

#define PROGRAM_VERSION "1.00a"

//Defines for returned error codes.

#define STATUS_IOCTLFAILED 10

#define STATUS_FILE_OPEN_FAIL 20

#define STATUS_HANDLE_OPEN_FAIL 30

/**

* ColPul

* A port of the PciDma collection utility for Windows NT

*

* Things to do:

* - Update the configuration file to include information

for all

* six channels. Then compute memory size for each

channel.

*/

#include <dos.h>

#include <stdio.h>

#include <stdlib.h>

#include <stddef.h>

#include <string.h>

//#include <conio.h> Maybe don't need?

#include "\users\panos\progs\lib\hardware.h"

//#define DEBUG

#define CONFIGURATION_FILENAME "PCIDMA.CFG"

#define HIGH_BYTE(ax) (ax >> 8)

#define LOW_BYTE(ax) (ax & 0x0FF)

int Read_Configuration(int *numframes, int *width1, int *width2,

int *width3, int *startpix, int *channel_enable);

void save_image(unsigned char *image, int numchan, int width, int

numframes, FILE *out1, FILE *sfile);

int read_timer(int subtimer, int maintimer, HANDLE hndFile);

void program_timer(int numframes, int width, int startpix, int

timer, HANDLE hndFile);

PROGALL.HPP

COLPUL-SILENT.C

220

void main ()

{

unsigned long dma_addr, sec_addr, tri_addr, me_addr,

bob_addr, JIM_addr;

 DWORD write_data[29];

int i, width, startpix, read_numframes[2][4];

int width1, width2, width3;

 int numframes;

 int memsize1, memsize2, memsize3;

BYTE j;

DWORD box;

 int channel_enable;

unsigned char *dmaptr, *secptr, *triptr, *meptr, *bobptr,

*jimptr;

FILE *outfile1, *outfile2, *outfile3;

FILE *outfile4, *outfile5, *outfile6, *outfile7,

*outfile8, *outfile9;

int status;

HANDLE hndFile;

ULONG PhysicalAddress;

ULONG VirtualAddress;

//Fix

width = width3;

outfile5 = fopen("sixchan.dat","wb");

outfile6 = fopen("four.img","wb");

outfile7 = fopen("five.img","wb");

outfile8 = fopen("six.img","wb");

outfile9 = fopen("strong.dat","wb");

outfile1 = fopen("one.img","wb");

outfile2 = fopen("two.img","wb");

outfile3 = fopen("three.img","wb");

outfile4 = fopen("string.dat","wb");

status = Read_Configuration(&numframes, &width1, &width2,

&width3, &startpix, &channel_enable);

if (status != STATUS_SUCCESS) {

printf("ERROR : Failed to read configuration

file.\n");

return(STATUS_FAILURE);

}

 width = width3;

#ifdef DEBUG

printf("----------- DEBUG VERSION - DO NOT RELEASE ------

----\n");

printf("Collection configuration (PCIDMA.CFG):\n");

printf("Numframes = %d\nWidth1 = %d\nWidth2 = %d\nWidth3

= %d\n", numframes, width1, width2, width3);

printf("Startpix = %d\nChannel_enable = %d\n", startpix,

channel_enable);

printf("End of read configuration data.\n");

#endif

status = OpenDriverHandle(&hndFile, STRING_PCIDMAPATH);

if (status != STATUS_SUCCESS) {

221

printf("ERROR : Failed to open driver handle.\n");

return(status);

}

status = GetPciDmaAddress(hndFile, &PhysicalAddress);

if (status != STATUS_SUCCESS) {

printf("ERROR : Could not get physical

address.\n");

goto finish2;

}

//printf("Buffer located at physical address %x.\n",

PhysicalAddress);

status = MapPciDmaBuffer(hndFile, &VirtualAddress);

if (status != STATUS_SUCCESS) {

printf("ERROR : Mapping failed.\n");

goto finish1;

}

//printf("Buffer mapped at virtual address %x.\n",

VirtualAddress);

//fix

memsize1 = (numframes * width1) + 50000; /* allocate

memory */

 memsize2 = (numframes * width2) + 50000;

 memsize3 = (numframes * width3) + 50000;

dma_addr = PhysicalAddress;

sec_addr = dma_addr + memsize1;

tri_addr = sec_addr + memsize2;

me_addr = tri_addr + memsize3;

bob_addr = me_addr + memsize3;

JIM_addr = bob_addr + memsize3;

dmaptr = (PUCHAR) VirtualAddress;

secptr = dmaptr + memsize1;

triptr = secptr + memsize2;

meptr = triptr + memsize3;

bobptr = meptr + memsize3;

jimptr = bobptr + memsize3;

/*

memset(dmaptr, 0x0A, memsize1);

memset(secptr, 0x0B, memsize1);

memset(triptr, 0x0C, memsize1);

memset(meptr, 0x0D, memsize1);

memset(bobptr, 0x0E, memsize1);

memset(jimptr, 0x0F, memsize1);

*/

/*PCI Initiated, FIFO Bus Mastering Setup */

WritePortDouble(hndFile, AMCC_OP_REG_INTCSR, 0x000000000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

/* Have to write from "on-board" to set board interrupts

*/

WritePortDouble(hndFile, AMCC_OP_REG_MCSR, 0x00F000700,

IOCTL_PPCIDMA_WRITE_PORT_ULONG); // 0x00e007400

WritePortDouble(hndFile, AMCC_OP_REG_MWAR, 0x03377AAEE,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

WritePortDouble(hndFile, AMCC_OP_REG_MRAR, 0x000000000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

WritePortDouble(hndFile, AMCC_OP_REG_MWTC, 0x0000000FF,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

222

WritePortDouble(hndFile, AMCC_OP_REG_MRTC, 0x000000000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

WritePortDouble(hndFile, AMCC_OP_REG_MCSR, 0x00E000700,

IOCTL_PPCIDMA_WRITE_PORT_ULONG); // 0x00e007400

/**

********/

/* SEND COMMAND

*/

/* 0x080000000 resets the flip-flops in the Xilinx

*/

/**

********/

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, 0x080000000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

//printf("Reset Flip-flops!\n");

/* Data for MAIL_ID command */

write_data[0]=0x01F000000; // Call for ID in Mailbox

(proof that Xilinx programmed correctly)

write_data[1]=0x01E000000; // Setup AMCC DMA transfer

- 3 steps

write_data[6]=0x01D000000; // Load address for DMA

into AMCC

write_data[2]=((dma_addr&0x0FFFF)|0x000000000); // low

low byte for Xilinx

write_data[3]=(((dma_addr>>16)&0x0FFFF)|0x001000000); //

low high byte for Xilinx

write_data[4]=((sec_addr&0x0FFFF)|0x002000000); // high

low byte for Xilinx

write_data[5]=(((sec_addr>>16)&0x0FFFF)|0x003000000); //

high high byte for Xilinx

 write_data[7]=0x01C000003; // Enable Transfer and Collect

write_data[8]=0x01C000000; // Disable Transfer and

Collect

write_data[14]=0x019000000; // Write to Dual Port Ram -

Buffer 0 (TEST - 0x019110000)

write_data[15]=0x019100000; // Clear write (for DP Ram)

- Buffer 0

write_data[16]=0x019330000; // Write to Dual Port Ram -

Buffer 1

write_data[17]=0x019320000; // Clear write (for DP Ram)

- Buffer 1

write_data[9]=((tri_addr&0x0FFFF)|0x004000000); // high

low byte for Xilinx

write_data[10]=(((tri_addr>>16)&0x0FFFF)|0x005000000); //

high high byte for Xilinx

write_data[18]=0x019340000;

write_data[11]=((me_addr&0x0FFFF)|0x006000000); // high

low byte for Xilinx

write_data[12]=(((me_addr>>16)&0x0FFFF)|0x007000000); //

high high byte for Xilinx

write_data[19]=((bob_addr&0x0FFFF)|0x008000000); // high

low byte for Xilinx

write_data[20]=(((bob_addr>>16)&0x0FFFF)|0x009000000); //

high high byte for Xilinx

write_data[21]=((JIM_addr&0x0FFFF)|0x00a000000); // high

low byte for Xilinx

write_data[22]=(((JIM_addr>>16)&0x0FFFF)|0x00b000000); //

high high byte for Xilinx

write_data[23]=0x019160000;

write_data[24]=0x019180000;

write_data[25]=0x0191A0000;

 write_data[26]=0x01C000004; // Gate for the timers - disable

with [8]

223

 write_data[27]=0x018000000; // Clock for the timers

/* Attempt to retrieve Internal Board ID */

 //printf(" data_written =

%lx\n",write_data[0]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[0],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

/* Check to see if BOARD is responding */

box = 0x0000;

i=0;

do {

ReadPortDouble(hndFile, AMCC_OP_REG_MBEF, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

box = box & 0x0000F0000;

//if (box != 0) printf(" Written to

successfully!\n");

i++;

} while (box!=0x0000F0000 && i<800);

/*printf(" LOCATION = %lx READ VALUE = %lx, i=%d

\n", ioaddr + 0x034, box, i);

 getchar();*/

if (box == 0)

printf("\n\nMailbox Not Written

To!!!!!!!!!!!!!!!!!!!!\n\n\n");

/* Is the data correct? */

ReadPortDouble(hndFile, AMCC_OP_REG_IMB1, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

if((box&0x0FFFF0000) != 0x0A1E90000)

printf("Incorrectly READ VALUE = %lx \n", box);

//else

//printf(" READ VALUE = %lx \n", box);

Sleep(1);

/* Start AMCC Setup Routine on board */

//printf(" Setup data_written = %lx\n",write_data[1]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[1],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

 /* Load BUFFER 0 low low DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[2]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[2],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

 /* Load BUFFER 0 low high DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[3]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[3],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

/* Load BUFFER 1 low low DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[4]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[4],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

/* Load BUFFER 1 low high DMA address in Xilinx */

224

//printf(" data_written =

%lx\n",write_data[5]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[5],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

/* Load BUFFER 2 low low DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[9]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[9],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

/* Load BUFFER 2 low high DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[10]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[10], IOCTL_PPCIDMA_WRITE_PORT_ULONG);

/* Load BUFFER 3 low low DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[11]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[11], IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

/* Load BUFFER 3 low high DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[12]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[12], IOCTL_PPCIDMA_WRITE_PORT_ULONG);

/* Load BUFFER 4 low low DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[19]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[19], IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

/* Load BUFFER 4 low high DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[20]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[20], IOCTL_PPCIDMA_WRITE_PORT_ULONG);

/* Load BUFFER 5 low low DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[21]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[21], IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

/* Load BUFFER 5 low high DMA address in Xilinx */

//printf(" data_written =

%lx\n",write_data[22]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[22], IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

//printf(" Switch address to buffer 0 - %lx\n",

write_data[17]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[17], IOCTL_PPCIDMA_WRITE_PORT_ULONG);

//getchar();

/* Load the First address into the AMCC */

//printf("Load the first address = %lx\n",write_data[6]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[6],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

225

Sleep(1);

/* Read the write address for the DMA transfer */

ReadPortDouble(hndFile, AMCC_OP_REG_MWAR, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

//printf("AMCC WRITE ADDRESS BUFFER 1!!! (%lx) \n", box);

if (box!=sec_addr){

printf(" WRONG WRITE ADDRESS!!! (%lx) \n",

sec_addr);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[8], IOCTL_PPCIDMA_WRITE_PORT_ULONG); //stop transfer

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[14], IOCTL_PPCIDMA_WRITE_PORT_ULONG); // Switch back

to buffer 0 if not already

 // exit(0);

}

/* Program Timer 0 for pulnix camera */

 program_timer(numframes+1, numframes+1, numframes+1, 0,

hndFile);

 program_timer(numframes+1, numframes+1, numframes+1, 1,

hndFile);

 /* Clock and Gate the new count values into the timers */

 //printf("Enable Gate\n");

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[26],

IOCTL_PPCIDMA_WRITE_PORT_ULONG); //gate=1

 //printf("Enable CLOCK for Timers\n");

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[27],

IOCTL_PPCIDMA_WRITE_PORT_ULONG); //clock pulsed

 //printf("Disable Gate\n");

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[8],

IOCTL_PPCIDMA_WRITE_PORT_ULONG); //gate=0

/* Read back the numframes programmed */

 for(i=0; i<2; i++){

for(j=1; j<4; j++){

read_numframes[i][j] = read_timer(j, i,

hndFile); // '3' is the third subtimer(of timer 0) which is

numframes

 //printf("read numframes = %d [i,j](%d,%d)\n",

read_numframes, i, j);

 }

 }

 //printf(" Which channels should be

enabled?(7=3enabled, 63=6enabled)\n");

 //scanf("%d", &channel_enable);

 //printf(" Enable Channels - %lx\n",

(0x01B000000|channel_enable));

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

(0x01B000000|channel_enable), IOCTL_PPCIDMA_WRITE_PORT_ULONG);

//printf(" Switch out of test mode - %lx\n",

write_data[14]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[14], IOCTL_PPCIDMA_WRITE_PORT_ULONG);

//getchar();

/* Enable Transfer and Collect enables */

//printf(" Enable Transfer - %lx\n",

write_data[7]);

226

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[7],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

/* Check for end of transfer via polling */

box = 0x0000;

i=0;

do {

ReadPortDouble(hndFile, AMCC_OP_REG_MBEF, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

box = box & 0x0000F0000;

i++;

 } while (box!=0x0000F0000 && i<300000);

 /* Disable collection and transfer */

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[8],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

/*

 if(box!=0){

printf(" LOCATION = %lx READ VALUE = %lx, i

= %d \n", 0x034, box, i);

 printf(" Interrupt occurred!!\n");

 }

 if(box==0){

 printf("Interrupt didn't occur!!! Press a key to

continue.\n");

 getchar();

 printf(" LOCATION = %lx READ VALUE = %lx, i = %d

\n", 0x034, box, i);

 }

*/

#ifdef DEBUG

printf("Reading Timer values");

#endif

 /* Read back the numframes programmed */

 read_numframes[0][3] = numframes - read_timer(3, 0, hndFile);

// '3' is the third subtimer(of timer 0) which is numframes

if(read_numframes[0][3]<1){ read_numframes[0][3]=10;}

 //printf("Numframes (Timer0, subtimer2)= %d\n",

read_numframes);

 //getchar();

 read_numframes[0][2] = numframes - read_timer(2, 0, hndFile);

// '3' is the third subtimer(of timer 0) which is numframes

if(read_numframes[0][2]<1){ read_numframes[0][2]=10;}

 //printf("Numframes (Timer0, subtimer1) = %d\n",

read_numframes);

 //getchar();

 read_numframes[0][1] = numframes - read_timer(1, 0, hndFile);

// '3' is the third subtimer(of timer 0) which is numframes

if(read_numframes[0][1]<1){ read_numframes[0][1]=10;}

 //printf("Numframes (Timer0, subtimer0) = %d\n",

read_numframes);

 //getchar();

read_numframes[1][3] = numframes - read_timer(3, 1,

hndFile); // '3' is the third subtimer(of timer 0) which is

numframes

if(read_numframes[1][3]<1){ read_numframes[1][3]=10;}

 //printf("Numframes (Timer1, subtimer2)= %d\n",

read_numframes);

 //getchar();

 read_numframes[1][2] = numframes - read_timer(2, 1, hndFile);

// '3' is the third subtimer(of timer 0) which is numframes

227

if(read_numframes[1][2]<1){ read_numframes[1][2]=10;}

 //printf("Numframes (Timer1, subtimer1)= %d\n",

read_numframes);

 //getchar();

 read_numframes[1][1] = numframes - read_timer(1, 1, hndFile);

// '3' is the third subtimer(of timer 0) which is numframes

if(read_numframes[1][1]<1){ read_numframes[1][1]=10;}

 //printf("Numframes (Timer1, subtimer0)= %d\n",

read_numframes);

 //getchar();

save_image(dmaptr, 1, width1 , read_numframes[0][1],

outfile1, outfile4);

save_image(secptr, 1, width2 , read_numframes[0][2],

outfile2, outfile5);

save_image(triptr, 1, width3 , read_numframes[0][3],

outfile3, outfile4);

save_image(meptr, 1, width1 , read_numframes[1][1],

outfile6, outfile4);

save_image(bobptr, 1, width1 , read_numframes[1][2],

outfile7, outfile9);

save_image(jimptr, 1, width1 , read_numframes[1][3],

outfile8, outfile4);

//printf("ID data_written = %lx\n",write_data[0]);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[0],

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

ReadPortDouble(hndFile, AMCC_OP_REG_MBEF, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

//printf(" MAILBOX = %lx \n", box);

ReadPortDouble(hndFile, 0x010, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

//printf("IMB1 READ VALUE = %lx \n", box);

/*Reset data count value and reset to buffer 0 */

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

write_data[15], IOCTL_PPCIDMA_READ_PORT_ULONG); //switch to

buffer 0

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, write_data[8],

IOCTL_PPCIDMA_READ_PORT_ULONG); //stop transfer

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, 0x080000000,

IOCTL_PPCIDMA_READ_PORT_ULONG);

//printf("Reset Flip-flops - 0x080000000\n\n");

// free(dmaptr);

// free(secptr);

// free(triptr);

// free(meptr);

// free(bobptr);

// free(jimptr);

// fclose(in_addr);

fclose(outfile1);

fclose(outfile2);

fclose(outfile3);

fclose(outfile4);

fclose(outfile5);

fclose(outfile6);

fclose(outfile7);

fclose(outfile8);

228

fclose(outfile9);

//printf(" END!!! \n");

finish1:

#ifdef DEBUG

printf("Attempting to unmap, at address %x\n",

VirtualAddress);

#endif

status = UnMapPciDmaBuffer(hndFile, VirtualAddress);

if (status != STATUS_SUCCESS)

printf("ERROR : Failed to unmap memory.\n");

finish2:

if (!CloseHandle(hndFile))

printf("ERROR : Failed to close handle.\n");

return(status);

}

/**

* Saveimage

* This routine will write the output image to a disk file

in the ELAS format

*

*/

void save_image(unsigned char *image, int numchan, int width, int

numframes, FILE *out1, FILE *sfile)

{

unsigned long int indx;

long int x[7];

unsigned char bytev, b[900];

unsigned int row, col;

//printf("\n Saving image to disk ...");

x[0] = 0;

x[1] = 0;

x[2] = 1;

x[3] = numframes;

x[4] = 1;

x[5] = width;

x[6] = numchan;

memcpy(b,x,28);

/* Copy the header to file */

for(indx=0; indx < width; indx++) fputc(b[indx], out1);

#ifdef DEBUG

printf("Save the string data - %x\n", image);

#endif

 for(row=0; row<200; row++){

col=0;

do{

 bytev = *(image + width*row + col);

fprintf(sfile, "%2x ", bytev);

col++;

} while(col<width);

fprintf(sfile, "__\n");

}

229

#ifdef DEBUG

printf("Next save the fourth file - %x\n", image);

#endif

for(row=0; row<numframes; row++){

for(col=0; col < width; col++){

fputc(*(image + width*row + col), out1);

}

}

//printf(" Images are stored to disk!!!\n");

}

/**

* ReadTimer

*

*/

int read_timer(int subtimer, int maintimer, HANDLE hndFile)

{

int i, low, high, number;

DWORD box, time, control;

if (maintimer==0) {

time = (subtimer<<19)|0x01A220000;

control = 0x01A430000;

}

if (maintimer==1) {

time = (subtimer<<19)|0x01A240000;

control = 0x01A450000;

}

/* Latch the timer values to be read (Counter Latch

Command)*/

if(subtimer==1) {

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

control|0x0E200, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 //getchar();

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, time,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

 //printf("time = %lx\n", time);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01F000000, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 //getchar();

/* Wait for BOARD to respond */

box = 0x0000;

i=0;

do {

ReadPortDouble(hndFile, AMCC_OP_REG_MBEF,

&box, IOCTL_PPCIDMA_READ_PORT_ULONG);

box = box & 0x0000F0000;

i++;

} while (box!=0x0000F0000 && i<4800);

if(box!=0x000F0000) printf("MAILBOX FLAG NOT

SET!\n");

Sleep(1);

/* Is the data correct? */

ReadPortDouble(hndFile, 0x010, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

230

 //printf(" READ VALUE = %lx \n", box);

low = box&0x0FF;

 //printf("low = %x \n", low);

 // getchar();

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

control, IOCTL_PPCIDMA_WRITE_PORT_ULONG); // 32 Timer 0 - counter

0

 // printf("Latched data for first timer =

0x01A430000\n");

} //if subtimer==1

if (subtimer==2) {

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

control|0x0E400, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 //getchar();

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, time,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

 //printf("time = %lx\n", time);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01F000000, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 //getchar();

/* Wait for BOARD to respond */

box = 0x0000;

i=0;

do {

ReadPortDouble(hndFile, AMCC_OP_REG_MBEF,

&box, IOCTL_PPCIDMA_READ_PORT_ULONG);

box = box & 0x0000F0000;

i++;

} while (box!=0x0000F0000 && i<4800);

if(box!=0x000F0000) printf("MAILBOX FLAG NOT

SET!\n");

Sleep(1);

/* Is the data correct? */

ReadPortDouble(hndFile, 0x010, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

 //printf(" READ VALUE = %lx \n", box);

low = box&0x0FF;

 //printf("low = %x \n", low);

 // getchar();

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

control|0x04000, IOCTL_PPCIDMA_WRITE_PORT_ULONG); // 32 Timer 0 -

counter 0

 // printf("Latched data for second timer = %x\n",

control|0x04000);

} //if subtimer==2

if (subtimer==3) {

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

control|0x0E800, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 //getchar();

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, time,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

 //printf("time = %lx\n", time);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01F000000, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 //getchar();

/* Wait for BOARD to respond */

231

box = 0x0000;

i=0;

do {

ReadPortDouble(hndFile, AMCC_OP_REG_MBEF,

&box, IOCTL_PPCIDMA_READ_PORT_ULONG);

box = box & 0x0000F0000;

i++;

} while (box!=0x0000F0000 && i<4800);

if(box!=0x000F0000) printf("MAILBOX FLAG NOT

SET!\n");

Sleep(1);

/* Is the data correct? */

ReadPortDouble(hndFile, 0x010, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

 //printf(" READ VALUE = %lx \n", box);

low = box&0x0FF;

 //printf("low = %x \n", low);

 // getchar();

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

control|0x08000, IOCTL_PPCIDMA_WRITE_PORT_ULONG); // 32 Timer 0 -

counter 0

 // printf("Latched data for third timer = %x\n",

control|0x08000);

} //if subtimer ==3

 //getchar();

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, time,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

Sleep(1);

 //printf("time = %lx\n", time);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, 0x01F000000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 //getchar();

/* Wait for BOARD to respond */

box = 0x0000;

i=0;

do {

ReadPortDouble(hndFile, AMCC_OP_REG_MBEF, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

box = box & 0x0000F0000;

 i++;

} while (box!=0x0000F0000 && i<4800);

if(box!=0x000F0000) printf("MAILBOX FLAG NOT SET!\n");

Sleep(1);

/* Is the data correct? */

ReadPortDouble(hndFile, 0x010, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

 //printf(" READ VALUE = %lx \n", box);

low = box&0x0FF;

 //printf("low = %x \n", low);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, time,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 //printf(" data_written = %lx\n",time);

Sleep(1);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO, 0x01F000000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 //getchar();

232

/* Wait for BOARD to respond */

box = 0x0000;

i=0;

do {

ReadPortDouble(hndFile, AMCC_OP_REG_MBEF, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

box = box & 0x0000F0000;

 i++;

} while (box!=0x0000F0000 && i<4800);

if(box!=0x000F0000) printf("MAILBOX FLAG NOT SET!\n");

/* Is the data correct? */

ReadPortDouble(hndFile, 0x010, &box,

IOCTL_PPCIDMA_READ_PORT_ULONG);

 //printf(" READ VALUE = %lx \n", box);

high = box&0x0FF;

 //printf(" high = %x \n", high);

number = (high<<8)|low;

 //printf(" number = %d \n", number);

return(number);

}

/**

* ProgramTimer

*

*/

void program_timer(int numframes, int width, int startpix, int

timer, HANDLE hndFile)

{

int offset;

if(timer==0) {

/* First program the Control Words */

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A433000, IOCTL_PPCIDMA_WRITE_PORT_ULONG); // 32 Timer 0 -

counter 0

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO, 0x01A437000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG); // 72 Timer 0 - counter 1

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO, 0x01A43B000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG); // B0 Timer 0 - counter 2

/* Next Program the count values */

offset = (numframes&0x0FF);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A4A0000+offset, IOCTL_PPCIDMA_WRITE_PORT_ULONG); // offset

(40 + startpix)

 offset = ((numframes>>8)&0x0FF);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A4A0000+offset, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 width = width;

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A520000+(width&0x0FF), IOCTL_PPCIDMA_WRITE_PORT_ULONG); //

width of window

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A520000+((width>>8)&0x0FF), IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A5A0000+(startpix&0x0FF), IOCTL_PPCIDMA_WRITE_PORT_ULONG);

//number of frames

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A5A0000+((startpix>>8)&0x0FF),

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

233

}

if(timer==1) {

/* First program the Control Words */

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO, 0x01A453000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG); // 30 Timer 0 - counter 0

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO, 0x01A457000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG); // 70 Timer 0 - counter 1

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO, 0x01A45B000,

IOCTL_PPCIDMA_WRITE_PORT_ULONG); // B0 Timer 0 - counter 2

 /* Next Program the count values */

offset = (numframes&0x0FF);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A4C0000+offset, IOCTL_PPCIDMA_WRITE_PORT_ULONG); // offset

(40 + startpix)

 offset = ((numframes>>8)&0x0FF);

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A4C0000+offset, IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 width = width;

WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A540000+(width&0x0FF), IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A540000+((width>>8)&0x0FF), IOCTL_PPCIDMA_WRITE_PORT_ULONG);

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A5C0000+(startpix&0x0FF), IOCTL_PPCIDMA_WRITE_PORT_ULONG);

//number of frames

 WritePortDouble(hndFile, AMCC_OP_REG_FIFO,

0x01A5C0000+((startpix>>8)&0x0FF),

IOCTL_PPCIDMA_WRITE_PORT_ULONG);

}

}

int Read_Configuration(int *numframes, int *width1, int *width2,

int *width3, int *startpix, int *channel_enable)

{

FILE *cfgfile;

int status;

cfgfile = fopen(CONFIGURATION_FILENAME, "r");

if(cfgfile == NULL) {

printf("ERROR : Unable to open %s.\n",

CONFIGURATION_FILENAME);

return(STATUS_FAILURE);

}

status = fscanf(cfgfile, "NUMFRAMES = %d\n", numframes);

if ((status == EOF) || (status == 0))

goto error;

status = fscanf(cfgfile, "WIDTH1 = %d\n", width1);

if ((status == EOF) || (status == 0))

goto error;

status = fscanf(cfgfile, "WIDTH2 = %d\n", width2);

if ((status == EOF) || (status == 0))

goto error;

status = fscanf(cfgfile, "WIDTH3 = %d\n", width3);

if ((status == EOF) || (status == 0))

234

goto error;

status = fscanf(cfgfile, "STARTPIX = %d\n", startpix);

if ((status == EOF) || (status == 0))

goto error;

#ifdef DEBUG

printf("Read STARTPIX = %d\n", *startpix);

#endif

status = fscanf(cfgfile, "CHANNELS = %d\n",

channel_enable);

if ((status == EOF) || (status == 0))

goto error;

#ifdef DEBUG

printf("Read CHANNELS = %d\n", *channel_enable);

#endif

fclose(cfgfile);

return(STATUS_SUCCESS);

error:

printf("ERROR : Invalid configuration file.\n");

fclose(cfgfile);

return(STATUS_FAILURE);

}

//

// EDISP

// A program to display ELAS images under Windows.

//

// Written by : Panos Arvanitis

// Date :

// Revised : 9/14/1997

// Version : 2.0

//

//

// DO NOT ERASE THE FOLLOWING LINES

// No, you don't know what they say, but I do. So, leave them

// there.

//

// Ìðïñåß íá ñùôÞóåé êáíåßò "ãéáôß ôï Ýãñáøåò óôá ÅëëçíéêÜ áõôü

// ñå, áöïý êáíÝíáò äå ìðïñåß íá ôï äéáâÜóåé;". ¸ëá üìùò ðïõ

// êÜðïéïò ôï äéáâÜæåé!!! ÊÜèïìáé åäþ êé áêïýù ÍôáëÜñá, êáé

// åßðá íá ðù: "×áßñå ÅëëÜäá, ðáôñßäá"

#include <windows.h>

#include <string.h>

#include <mem.h>

#include <math.h>

int numframes, width, numchan;

int BoxWidth, BoxHeight; //Dimensions of display box

int HScrollPos, VScrollPos; //Position of X and Y scroll bar

HBITMAP hBitMap;

LPVOID lpvBits;

HINSTANCE hCurrInst; //handle to current application instance

EDISP.CPP

235

HWND hDialog = NULL; //handle to dialog window

#include "edisp.rh"

#include "edisp.hpp"

#include "RGBVal_Dialog.h"

void DrawImage(HWND hWnd)

{

 HDC hdc, hMemDC;

 PAINTSTRUCT ps;

 hdc = BeginPaint(hWnd, &ps);

 hMemDC = CreateCompatibleDC(hdc);

 SelectObject(hMemDC, hBitMap);

 //BitBlt(hdc, 0, 0, width, numframes, hMemDC, 0, 0, SRCCOPY);

 /*SetStretchBltMode(hdc, HALFTONE);

 StretchBlt(hdc, 0, 0, BoxWidth, numframes, hMemDC, 0, 0,

 width, numframes, SRCCOPY);*/

 BitBlt(hdc, 0, 0, width, numframes, hMemDC, 0, VScrollPos-1,

SRCCOPY);

 DeleteDC(hMemDC);

 EndPaint(hWnd, &ps);

 return;

}

void InitBitMap(HWND hWnd, HANDLE hndFile, char *ElasName)

{

 HDC hdc;

 LPBITMAPINFOHEADER lpbih;

 DWORD BytesRead;

 HANDLE TempFile;

 int count1, count2, reslt, curraddr;

 unsigned char *ElasPtr; //pointer to convert color ELAS files

 unsigned char *ElasDat; //ELAS file

 unsigned char *TempDat; //RAW (.TMP) file

 char TempName[258]; //Temporary filename

 //append .TMP to input filename

 strcpy(TempName, ElasName);

 strcat(TempName, ".raw");

 //allocate memory for DIB structure

 lpbih = (LPBITMAPINFOHEADER)GlobalLock(GlobalAlloc(GHND,

1000));

 //set DIB structure fields for DIB

 lpbih->biSize = sizeof(BITMAPINFOHEADER);

 lpbih->biWidth = width; //bitmap width

 lpbih->biHeight = -numframes; //top-down bitmap

 lpbih->biPlanes = 1; //one bit plane

 lpbih->biBitCount = 24; //24-bit bitmap

 lpbih->biCompression = BI_RGB; //RGB mode (no palette)

 lpbih->biSizeImage = 0;

 lpbih->biXPelsPerMeter = 0;

 lpbih->biYPelsPerMeter = 0;

 lpbih->biClrUsed = 0;

 lpbih->biClrImportant = 0;

 //create device context for main window

 hdc = GetDC(hWnd);

236

 //create bitmap for DC

 hBitMap = CreateDIBSection(hdc, (LPBITMAPINFO) lpbih,

 DIB_RGB_COLORS, &lpvBits, NULL, 0L);

 ReleaseDC(hWnd, hdc);

 //move file pointer to beginning of ELAS file

 SetFilePointer(hndFile, 0, NULL, FILE_BEGIN);

 //Create a temporary file

 TempFile = CreateFile(TempName, GENERIC_WRITE, 0,

 NULL, CREATE_ALWAYS,

FILE_ATTRIBUTE_TEMPORARY, NULL);

 //Allocate memory for ELAS file including header

 ElasDat = new unsigned char[(numframes+1) * width * numchan];

 //Allocate memory for temporary DIB

 TempDat = new unsigned char[numframes*width*3];

 //read the ELAS file and header in ElasDat buffer

 ReadFile(hndFile, ElasDat, (numframes+1)* width * numchan,

&BytesRead, NULL);

 //Initialize for first loop iteration

 count2 = 0; //pixel counter

 reslt = fmod(width, 4); //bytes for padding

 //go down bitmap, line by line

 for(count1=0; count1<numframes; count1++)

 {

 //address to beginning of current line in TMP file

 curraddr = count1 * width;

 //go across bitmap, pixel by pixel in selected line

 for(count2=0; count2<width; count2++)

 {

 if (numchan == 1) //monochrome ELAS image

 {

 //place same value for RGB to get grayscale

 *(TempDat+curraddr) = *(ElasDat + width + count2

 + count1 * width);

 *(TempDat+curraddr+1) = *(TempDat + curraddr);

 *(TempDat+curraddr+2) = *(TempDat + curraddr);

 curraddr += 3; //increment address counter

 } // if

 else //color ELAS file

 {

 //reduce calculation by using this variable

 ElasPtr = ElasDat + count2 + (3 * count1 + 1) * width;

 //convert lines of RGB to pixels of BGR

 *(TempDat + curraddr) = *(ElasPtr + 2 * width);

 *(TempDat + curraddr + 1) = *(ElasPtr + width);

 *(TempDat + curraddr + 2) = *(ElasPtr);

 curraddr += 3; //increment address counter

 } // else

 } //for count2

 //write the current line of data to the temp file

 WriteFile(TempFile, TempDat+count1*width, 3*width, &BytesRead,

237

 NULL);

 switch (reslt)

 {

 case 0 : break;

 case 1 : WriteFile(TempFile,

TempDat+count1*width, 1,

 &BytesRead, NULL);

 break;

 case 2 : WriteFile(TempFile,

TempDat+count1*width, 1,

 &BytesRead, NULL);

 WriteFile(TempFile, TempDat+count1*width, 1,

 &BytesRead, NULL);

 break;

 case 3 : WriteFile(TempFile,

TempDat+count1*width, 1,

 &BytesRead, NULL);

 WriteFile(TempFile,

TempDat+count1*width, 1,

 &BytesRead, NULL);

 WriteFile(TempFile, TempDat+count1*width, 1,

 &BytesRead, NULL);

 break;

 default : break;

 } //switch

 } //for count1

 //close the temp file

 CloseHandle(TempFile);

 //re-open temp (DIB) file for reading

 TempFile = CreateFile(TempName, GENERIC_READ, 0,

 NULL,

OPEN_EXISTING,

 FILE_ATTRIBUTE_TEMPORARY, NULL);

 //read the raw image data

 ReadFile(TempFile, lpvBits, 3*numframes*width, &BytesRead,

NULL);

 //close the temp file

 CloseHandle(TempFile);

 //free memory

 delete(ElasDat);

 delete(TempDat);

 //delete temp file

 DeleteFile(TempName);

}

// WindowResize

// This function is executed when the window is resized.

// Scroll bar information must be updated.

void WindowResize(HWND hWnd, int BoxWidth, int BoxHeight)

{

 SCROLLINFO si;

 si.cbSize = sizeof(si);

 si.fMask = SIF_ALL;

 si.nMin = 1;

238

 si.nMax = numframes - BoxHeight - 1;

 si.nPage = BoxHeight;

 si.nPos = 1;

 SetScrollInfo(hWnd, SB_VERT, &si, TRUE);

 si.fMask = SIF_PAGE;

 SetScrollInfo(hWnd, SB_VERT, &si, TRUE);

 ShowScrollBar(hWnd, SB_VERT, TRUE);

 DrawImage(hWnd);

}

void VerticalScroll(HWND hWnd, int ScrollCode, int ScrollPos)

{

 int NewPos = 0; //new position

 int DeltaPos = 0; //change from previous pos

 SCROLLINFO si; //structure to hold scroll bar info

 switch (ScrollCode)

 {

 case SB_PAGEUP:

 NewPos = VScrollPos - 50;

 break;

 case SB_PAGEDOWN:

 NewPos = VScrollPos + 50;

 break;

 case SB_LINEUP:

 NewPos = VScrollPos - 5;

 break;

 case SB_LINEDOWN:

 NewPos = VScrollPos + 5;

 break;

 case SB_THUMBPOSITION:

 NewPos = ScrollPos;

 break;

 default:

 NewPos = VScrollPos;

 }

 //Do bound checking

 NewPos = max(0, NewPos); //0 is minimum value

 NewPos = min(numframes - BoxHeight + 1, NewPos); //max number

of lines

 if (NewPos == VScrollPos)

 return; //No scrolling

 //Update position

 DeltaPos = NewPos - VScrollPos;

 VScrollPos = NewPos;

 //Scroll the window

 ScrollWindowEx(hWnd, 0, -DeltaPos, (CONST RECT *) NULL,

 (CONST RECT *) NULL, (HRGN) NULL,

 (LPRECT) NULL, SW_INVALIDATE);

 //and update it (re-draw)

 UpdateWindow(hWnd);

 //Now tell Windows to re-position the scroll bar

 si.cbSize = sizeof(si);

 si.fMask = SIF_POS;

 si.nPos = VScrollPos;

 SetScrollInfo(hWnd, SB_VERT, &si, TRUE);

}

239

void LeftButtonPushed(HWND hWnd, int xPos, int yPos)

{

 //Create a dialog box if it doesn't already exist

 if (hDialog == NULL)

 hDialog = CreateDialog(hCurrInst,

MAKEINTRESOURCE(IDD_RGBVAL),

 hWnd, (DLGPROC) RGBValProc);

}

void CommandProc(HWND hWnd, int ControlID)

{

 if (ControlID == IDB_DISMISS)

 {

 DestroyWindow(hDialog);

 hDialog = NULL;

 }

}

//Read the ELAS header

//For PC, byte order is reversed, i.e. 5 is 5000, not 0005

//Check bytes 8-11 (should be 1) to decide whether to swap the

header

BOOL ReadHeader(HANDLE hndFile)

{

 DWORD BytesRead;

 char header[HEADERLENGTH];

 if (ReadFile(hndFile, &header, HEADERLENGTH, &BytesRead, NULL))

 {

 //Assign numframes

 memcpy(&numframes, &header[NUMFRAMESLOC], 4);

 //Assign width

 memcpy(&width, &header[WIDTHLOC], 4);

 //Assign numchan

 memcpy(&numchan, &header[NUMCHANLOC], 4);

 if ((numchan != 1) & (numchan != 3))

 {

 MessageBox(NULL, "Only grayscale images can be displayed",

 "Unsupported Feature",

MB_OK);

 return FALSE;

 }

 }

 return TRUE;

}

// WndProc

// Handles all messages to the main window

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam,

LPARAM lParam)

{

 switch (uMsg)

 {

 case WM_PAINT:

 DrawImage(hWnd);

240

 break;

 case WM_DESTROY:

 PostQuitMessage(0);

 break;

 case WM_SIZE:

 BoxWidth = LOWORD(lParam);

 BoxHeight = HIWORD(lParam);

 WindowResize(hWnd, BoxWidth, BoxHeight);

 break;

 case WM_VSCROLL:

 VerticalScroll(hWnd, (int) LOWORD(wParam),

 (int) HIWORD(wParam));

 break;

 case WM_LBUTTONDOWN:

 LeftButtonPushed(hWnd, (int) LOWORD(lParam),

(int) HIWORD(lParam));

 break;

 case WM_COMMAND:

 if ((int) HIWORD(wParam) == BN_CLICKED)

 {

 CommandProc(hWnd, (int) LOWORD(wParam));

 break;

 }

 default:

 return DefWindowProc(hWnd, uMsg, wParam, lParam);

 }

 return 0;

}

int WINAPI WinMain(HINSTANCE hCur, HINSTANCE hPrev, LPSTR

lpCmdLn, int CmdShow)

{

 MSG msg;

 HWND hWnd; //handle to main window

 HWND hDesktop; //handle to desktop

 HDC hDesktopDC; //Device Context to desktop

 HANDLE ImgFile; //handle to ELAS file

 WNDCLASS wndClass;

 SCROLLINFO si;

 int WinWidth, WinHeight; //dimensions of original window

 int ScreenRes;

 char ElasName[255]; //filename of ELAS file

 strcpy(ElasName, lpCmdLn); //command line is filename

 //Open the input file and optimize for sequential scan

 ImgFile = CreateFile(ElasName, GENERIC_READ, FILE_SHARE_READ,

 NULL, OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN,

 NULL);

 if (ImgFile == INVALID_HANDLE_VALUE)

 MessageBox(NULL, "Error opening input file", "Fatal Error",

 MB_OK);

 else

 {

 if (hPrev == NULL)

 {

 memset(&wndClass, 0, sizeof(wndClass));

 wndClass.style = CS_HREDRAW | CS_VREDRAW;

 wndClass.lpfnWndProc = WndProc;

241

 wndClass.hInstance = hCur;

 wndClass.hCursor = LoadCursor(NULL, IDC_NO);

 wndClass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);

 wndClass.lpszClassName = "ELASDISP";

 if (!RegisterClass(&wndClass)) return FALSE;

 }

 //Read the header of the ELAS file and check

 //Assumes that the images are in PC format

 if (!ReadHeader(ImgFile))

 //Error in reading header

 MessageBox(NULL, "Format Error", "Incorrect file format",

MB_OK);

 else

 {

 hDesktop = GetDesktopWindow(); //get handle to desktop

 hDesktopDC = GetDC(hDesktop); //get DC to desktop

 //check if image is wider than the screen

 ScreenRes = GetDeviceCaps(hDesktopDC, HORZRES);

 if (width > ScreenRes - 8)

 BoxWidth = ScreenRes - 20;

 else

 BoxWidth = width;

 //check if image is longer than the screen

 ScreenRes = GetDeviceCaps(hDesktopDC, VERTRES);

 if (numframes > ScreenRes - 30)

 BoxHeight = ScreenRes - 100;

 else

 BoxHeight = numframes;

 HScrollPos = 1;

 VScrollPos = 1;

 //Determine the dimensions of the window. We must allow

 //space for borders and title bars.

 WinWidth = BoxWidth + 2 * GetSystemMetrics(SM_CXBORDER) +

 GetSystemMetrics(SM_CXVSCROLL) + 10;

 WinHeight = BoxHeight + 2 * GetSystemMetrics(SM_CYBORDER) +

 //GetSystemMetrics(SM_CYHSCROLL) +

 GetSystemMetrics(SM_CYSIZE) + 10;

 hWnd = CreateWindow("ELASDISP", lpCmdLn,

 //WS_OVERLAPPEDWINDOW |

 //WS_HSCROLL |

 WS_OVERLAPPED | WS_CAPTION |

 WS_SYSMENU | WS_MINIMIZEBOX |

 WS_MAXIMIZEBOX |

 WS_VSCROLL,

 CW_USEDEFAULT, 0,

 WinWidth, WinHeight,

 NULL, NULL, hCur, NULL);

 hCurrInst = hCur;

 //ShowWindow(hWnd, CmdShow);

 ShowWindow(hWnd, SW_MINIMIZE);

 SetFilePointer(ImgFile, 0, NULL, FILE_BEGIN);

 InitBitMap(hWnd, ImgFile, &ElasName[0]);

 CloseHandle(ImgFile);

 UpdateWindow(hWnd);

242

 si.cbSize = sizeof(si);

 si.fMask = SIF_ALL;

 si.nMin = 1;

 si.nMax = numframes - BoxHeight - 1;

 si.nPage = BoxHeight;

 si.nPos = 1;

 SetScrollInfo(hWnd, SB_VERT, &si, TRUE);

 ShowWindow(hWnd, SW_RESTORE);

 si.fMask = SIF_PAGE;

 SetScrollInfo(hWnd, SB_VERT, &si, TRUE);

 ShowScrollBar(hWnd, SB_VERT, TRUE);

 while (GetMessage(&msg, NULL, 0, 0))

 DispatchMessage(&msg);

 return msg.wParam;

 } //else

 }

}

#define HEADERLENGTH 28

#define NUMFRAMESLOC 12

#define WIDTHLOC 20

#define NUMCHANLOC 24

//---

// Project Galaxie

//

// Copyright © 1997. All Rights Reserved.

//

// SUBSYSTEM: Galaxie Application

// FILE: glxdlgcl.cpp

// AUTHOR:

//

// OVERVIEW

// ~~~~~~~~

// Source file for implementation of TGalaxieDlgClient

// (TDialog).

//

//---

#include <owl/pch.h>

#include "galaxapp.h"

#include "glxdlgcl.h"

#include <stdlib.h>

#include <process.h>

#include "\users\panos\progs\lib\hardware.h"

#include "\users\panos\progs\lib\sensor.hpp"

#include "globals.h"

#include "galaxie.hpp"

//

// Build a response table for all messages/commands handled by

the application.

EDISP.HPP

GLXDLGCL.CPP

243

//

DEFINE_RESPONSE_TABLE1(TGalaxieDlgClient, TDialog)

//{{TGalaxieDlgClientRSP_TBL_BEGIN}}

 EV_BN_CLICKED(IDC_RADIOBUTTONXMISSION, BNClickedXMission),

 EV_BN_CLICKED(IDC_BUTTONSCAN, BNClickedScan),

 EV_BN_CLICKED(IDC_RADIOBUTTONBSCATTER, BNClickedBScatter),

 EV_BN_CLICKED(IDC_RADIOBUTTONEHIGH, BNClickedEHigh),

 EV_BN_CLICKED(IDC_RADIOBUTTONELOW, BNClickedELow),

 EV_BN_CLICKED(IDC_RADIOBUTTONFSCATTER, BNClickedFScatter),

 EV_BN_CLICKED(IDC_RADIOBUTTONOVOFF, BNClickedOvOFF),

 EV_BN_CLICKED(IDC_RADIOBUTTONOVON, BNClickedOvON),

 EV_BN_CLICKED(IDC_BUTTONDISPLAY, BNClickedDisplay),

//{{TGalaxieDlgClientRSP_TBL_END}}

END_RESPONSE_TABLE;

//{{TGalaxieDlgClient Implementation}}

//--

// TGalaxieDlgClient

// ~~~~~~~~~~

// Construction/Destruction handling.

//

TGalaxieDlgClient::TGalaxieDlgClient(TWindow* parent, TResId

resId, TModule* module)

:

 TDialog(parent, resId, module)

{

int CorrVal1, CorrVal2, CorrVal3;

 //Add a box here that will let the user know the status of the

initilization

 if(!SetUpMotorController(&hMotor))

 {

 MessageBox("Failed to initialize the motor controller",

"Fatal Error",

 MB_ICONHAND

| MB_OK);

 exit(EXIT_FAILURE);

 }

 ProgMotorController(hMotor);

 if (!SetUpXrayController(&hXray))

 {

 MessageBox("Failed to initialize the X-ray controller",

"Fatal Error",

 MB_ICONHAND

| MB_OK);

 exit(EXIT_FAILURE);

 }

 if (!SetUpDPIB(&hDpib))

 {

 MessageBox("Failed to initialize DPIB", "Fatal Error",

 MB_ICONHAND

| MB_OK);

 exit(EXIT_FAILURE);

 }

 StopBelt(hDpib);

 RaiseFilter(hMotor);

 SetKV75(hXray);

 SetmA300(hXray);

 TurnXrayON(hXray);

244

 CorrVal1 = CORRVAL1LOW;

 CorrVal2 = CORRVAL2LOW;

 CorrVal3 = CORRVAL3LOW;

 SetUpCorrVal(CorrVal1, CorrVal2, CorrVal3, hDpib);

}

TGalaxieDlgClient::~TGalaxieDlgClient()

{

 StopBelt(hDpib);

 LowerFilter(hMotor);

 TurnXrayOFF(hXray);

 CloseHandle(hMotor);

 CloseHandle(hXray);

 CloseHandle(hDpib);

 Destroy();

}

void TGalaxieDlgClient::BNClickedXMission()

{

 if (CurrAppStatus.ImgSource != Transmission)

 {

 CurrAppStatus.ImgSource = Transmission;

 }

}

void TGalaxieDlgClient::BNClickedScan()

{

 int CorrVal1, CorrVal2, CorrVal3;

 int childproc;

 //Start the conveyor belt

 SetDlgItemText(IDC_EDITSTATUS, "Starting conveyor belt...");

//Turn the Xray ON, just to make sure...

 SetKV75(hXray);

 SetmA300(hXray);

 TurnXrayON(hXray);

 //Wait for luggage

 SetDlgItemText(IDC_EDITSTATUS, "Waiting for luggage...");

 MoveBeltForward(hDpib);

 BreakFrontSensor(hDpib);

 StopBelt(hDpib);

 //Prepare to scan

 SetDlgItemText(IDC_EDITSTATUS, "Luggage Detected! Preparing to

scan...");

/* CorrVal1 = CORRVAL1LOW;

 CorrVal2 = CORRVAL2LOW;

 CorrVal3 = CORRVAL3LOW;

 SetUpCorrVal(CorrVal1, CorrVal2, CorrVal3, hDpib);

*/

//***

//***

 // Use CreateProcess instead of spawn

245

//***

//***

 childproc = spawnlp(P_NOWAIT, "COLPUL-SILENT", "COLPUL-SILENT",

NULL);

 SetDlgItemText(IDC_EDITSTATUS, "Start scanning...");

 WaitSeconds(1);

 MoveBeltForward(hDpib);

 BreakRearSensor(hDpib);

 UnBreakRearSensor(hDpib);

 SetDlgItemText(IDC_EDITSTATUS, "Waiting for collection to

finish...");

 StopBelt(hDpib);

 cwait(NULL, childproc, WAIT_CHILD);

 //Copy the files to new names

 WaitSeconds(5);

 spawnlp(P_WAIT, "imgconv", "imgconv one.img", NULL);

 spawnlp(P_WAIT, "imgconv", "imgconv two.img", NULL);

 spawnlp(P_WAIT, "imgconv", "imgconv three.img", NULL);

 CopyFile(CHAN1COLLECTED, XMISSIONLOWCOLLECTED, FALSE);

 CopyFile(CHAN2COLLECTED, BSCATTERLOWCOLLECTED, FALSE);

 CopyFile(CHAN3COLLECTED, FSCATTERLOWCOLLECTED, FALSE);

 SetDlgItemText(IDC_EDITSTATUS, "Lowering filter and raising

voltage...");

 LowerFilter(hMotor);

 SetKV150(hXray);

 WaitSeconds(4);

 SetDlgItemText(IDC_EDITSTATUS, "Moving back luggage and

preparing to scan...");

/* CorrVal1 = CORRVAL1HIGH;

 CorrVal2 = CORRVAL2HIGH;

 CorrVal3 = CORRVAL3HIGH;

 SetUpCorrVal(CorrVal1, CorrVal2, CorrVal3, hDpib);

*/

 MoveBeltReverse(hDpib);

 BreakRearSensor(hDpib);

 BreakFrontSensor(hDpib);

 UnBreakFrontSensor(hDpib);

 StopBelt(hDpib);

 SetDlgItemText(IDC_EDITSTATUS, "Start scanning...");

 childproc = spawnlp(P_NOWAIT, "COLPUL-SILENT", "COLPUL-SILENT",

NULL);

 WaitSeconds(1);

 MoveBeltForward(hDpib);

 BreakRearSensor(hDpib);

 UnBreakRearSensor(hDpib);

 SetDlgItemText(IDC_EDITSTATUS, "Raising filter and lowering

voltage...");

 SetKV75(hXray);

 RaiseFilter(hMotor);

 SetDlgItemText(IDC_EDITSTATUS, "Waiting for collection to

finish...");

246

 cwait(NULL, childproc, WAIT_CHILD);

 StopBelt(hDpib);

 TurnXrayOFF(hXray);

 WaitSeconds(5);

 spawnlp(P_WAIT, "imgconv", "imgconv one.img", NULL);

 spawnlp(P_WAIT, "imgconv", "imgconv two.img", NULL);

 spawnlp(P_WAIT, "imgconv", "imgconv three.img", NULL);

 CopyFile(CHAN1COLLECTED, XMISSIONHIGHCOLLECTED, FALSE);

 CopyFile(CHAN2COLLECTED, BSCATTERHIGHCOLLECTED, FALSE);

 CopyFile(CHAN3COLLECTED, FSCATTERHIGHCOLLECTED, FALSE);

 spawnlp(P_WAIT, "process1.bat", "process1.bat v150a.img

v75a.img v75c.img v75b.img",

 NULL);

 spawnlp(P_NOWAIT, "FaaDisp", "FaaDisp cut_lt.img", NULL);

 spawnlp(P_WAIT, "process2.bat", "process2.bat", NULL);

 SetDlgItemText(IDC_EDITSTATUS, "Processing finished!");

}

void TGalaxieDlgClient::BNClickedBScatter()

{

 if (CurrAppStatus.ImgSource != Backscatter)

 {

 CurrAppStatus.ImgSource = Backscatter;

 }

}

void TGalaxieDlgClient::BNClickedEHigh()

{

 if (CurrAppStatus.ESource != High)

 {

 CurrAppStatus.ESource = High;

 }

}

void TGalaxieDlgClient::BNClickedELow()

{

 if (CurrAppStatus.ESource != Low)

 {

 CurrAppStatus.ESource = Low;

 }

}

void TGalaxieDlgClient::BNClickedFScatter()

{

 if (CurrAppStatus.ImgSource != ForwardScatter)

 {

 CurrAppStatus.ImgSource = ForwardScatter;

 }

}

247

void TGalaxieDlgClient::BNClickedOvOFF()

{

if (CurrAppStatus.Over != Off)

 {

 CurrAppStatus.Over = Off;

 }

}

void TGalaxieDlgClient::BNClickedOvON()

{

if (CurrAppStatus.Over != On)

 {

 CurrAppStatus.Over = On;

 }

}

void TGalaxieDlgClient::BNClickedDisplay()

{

 if (CurrAppStatus.Over == On)

 {

 DoOverlap();

 switch (CurrAppStatus.ImgSource)

 {

 case Transmission :

if (CurrAppStatus.ESource == Low)

 SetDlgItemText(IDC_EDITSTATUS, "Low

energy transmission with overlap");

else

 SetDlgItemText(IDC_EDITSTATUS,

"High energy transmission with overlap");

 break;

 case Backscatter :

if (CurrAppStatus.ESource == Low)

 SetDlgItemText(IDC_EDITSTATUS, "Low

energy backscatter with overlap");

 else

 MessageBox("File not

available", "Unsupported Feature",

MB_ICONINFORMATION | MB_OK);

 break;

 case ForwardScatter :

if (CurrAppStatus.ESource == Low)

 SetDlgItemText(IDC_EDITSTATUS, "Low

energy forward scatter with overlap");

 else

 MessageBox("File not

available", "Unsupported feature",

MB_ICONINFORMATION | MB_OK);

 break;

 default :

break;

 }

 spawnlp(P_NOWAIT, "FaaDisp", "FaaDisp overon.img", NULL);

 }

248

 else

 {

 switch (CurrAppStatus.ImgSource)

 {

 case Transmission :

if (CurrAppStatus.ESource == Low)

 {

 SetDlgItemText(IDC_EDITSTATUS, "Low

energy transmission, no overlap");

spawnlp(P_NOWAIT,

"FaaDisp", "FaaDisp cut_lt.img", NULL);

 }

else

 {

 SetDlgItemText(IDC_EDITSTATUS,

"High energy transmission, no overlap");

 spawnlp(P_NOWAIT,

"FaaDisp", "FaaDisp cut_ht.img", NULL);

 }

 break;

 case Backscatter :

if (CurrAppStatus.ESource == Low)

 {

 SetDlgItemText(IDC_EDITSTATUS, "Low

energy backscatter, no overlap");

 spawnlp(P_NOWAIT,

"FaaDisp", "FaaDisp cut_bs.img", NULL);

 }

 else

 MessageBox("File not

available", "Unsupported Feature",

MB_ICONINFORMATION | MB_OK);

 break;

 case ForwardScatter :

if (CurrAppStatus.ESource == Low)

 {

 SetDlgItemText(IDC_EDITSTATUS, "Low

energy forward scatter, no overlap");

 spawnlp(P_NOWAIT,

"FaaDisp", "FaaDisp cut_fs.img", NULL);

 }

 else

 MessageBox("File not

available", "Unsupported feature",

MB_ICONINFORMATION | MB_OK);

 break;

 default :

break;

 }

 }

}

//---

// Project Galaxie

//

// Copyright © 1997. All Rights Reserved.

//

GLXDLGCL.H

249

// SUBSYSTEM: Galaxie Application

// FILE: glxdlgcl.h

// AUTHOR:

//

// OVERVIEW

// ~~~~~~~~

// Class definition for TGalaxieDlgClient (TDialog).

//

//---

#if !defined(glxdlgcl_h) // Sentry, use file only if

it's not already included.

#define glxdlgcl_h

#include "galaxapp.rh" // Definition of all

resources.

#include <owl/commctrl.h>

//{{TDialog = TGalaxieDlgClient}}

class TGalaxieDlgClient : public TDialog {

 public:

 TGalaxieDlgClient(TWindow* parent, TResId resId = IDD_CLIENT,

TModule* module = 0);

 virtual ~TGalaxieDlgClient();

//{{TGalaxieDlgClientRSP_TBL_BEGIN}}

 protected:

 void BNClickedXMission();

 void BNClickedScan();

 void BNClickedBScatter();

 void BNClickedEHigh();

 void BNClickedELow();

 void BNClickedFScatter();

 void BNClickedOverON();

 void BNClickedOvOFF();

 void BNClickedOvON();

 void BNClickedDisplay();

//{{TGalaxieDlgClientRSP_TBL_END}}

DECLARE_RESPONSE_TABLE(TGalaxieDlgClient);

}; //{{TGalaxieDlgClient}}

#endif // glxdlgcl_h sentry.

//---

// Project Galaxie

//

// Copyright © 1997. All Rights Reserved.

//

// SUBSYSTEM: Galaxie Application

// FILE: galaxapp.cpp

// AUTHOR:

//

// OVERVIEW

// ~~~~~~~~

// Source file for implementation of TGalaxieApp (TApplication).

//

//---

#include <owl/pch.h>

GALAXAPP.CPP

250

#include <owl/statusba.h>

#include <stdio.h>

#include "galaxapp.h"

#include "glxdlgcl.h" // Definition of

client class.

//{{TGalaxieApp Implementation}}

//

// Build a response table for all messages/commands handled

// by the application.

//

DEFINE_RESPONSE_TABLE1(TGalaxieApp, TApplication)

//{{TGalaxieAppRSP_TBL_BEGIN}}

 EV_COMMAND(CM_HELPABOUT, CmHelpAbout),

//{{TGalaxieAppRSP_TBL_END}}

END_RESPONSE_TABLE;

//--

// TGalaxieApp

//

TGalaxieApp::TGalaxieApp() : TApplication("Galaxie")

{

 // INSERT>> Your constructor code here.

}

TGalaxieApp::~TGalaxieApp()

{

 // INSERT>> Your destructor code here.

}

//--

// TGalaxieApp

// ~~~~~

// Application intialization.

//

void TGalaxieApp::InitMainWindow()

{

 if (nCmdShow != SW_HIDE)

 nCmdShow = (nCmdShow != SW_SHOWMINNOACTIVE) ? SW_SHOWNORMAL :

nCmdShow;

 TSDIDecFrame* frame = new TSDIDecFrame(0, GetName(), 0, true);

 frame->SetFlag(wfShrinkToClient);

 // Override the default window style for the main window.

 //

 frame->Attr.Style |= WS_BORDER | WS_CAPTION |

WS_CLIPCHILDREN | WS_MAXIMIZEBOX | WS_MINIMIZEBOX | WS_SYSMENU |

WS_VISIBLE;

 frame->Attr.Style &= ~(WS_CHILD | WS_THICKFRAME);

 // Assign icons for this application.

 //

 frame->SetIcon(this, IDI_SDIAPPLICATION);

 frame->SetIconSm(this, IDI_SDIAPPLICATION);

 SetMainWindow(frame);

251

}

//{{TSDIDecFrame Implementation}}

TSDIDecFrame::TSDIDecFrame(TWindow* parent, const char far*

title, TWindow* clientWnd, bool trackMenuSelection, TModule*

module)

:

 TDecoratedFrame(parent, title, !clientWnd ? new

TGalaxieDlgClient(0) : clientWnd, trackMenuSelection, module)

{

 // INSERT>> Your constructor code here.

}

TSDIDecFrame::~TSDIDecFrame()

{

 // INSERT>> Your destructor code here.

}

void TSDIDecFrame::SetupWindow()

{

 TDecoratedFrame::SetupWindow();

 TRect r;

 GetWindowRect(r);

 r.bottom += 30;

 SetWindowPos(0, r, SWP_NOZORDER | SWP_NOMOVE);

 // INSERT>> Your code here.

}

//--

// TGalaxieApp

// ~~~~~~~~~~~

// Menu Help About Galaxie command

//

void TGalaxieApp::CmHelpAbout()

{

}

int OwlMain(int , char* [])

{

 TGalaxieApp app;

 return app.Run();

}

//---

// Project Galaxie

//

// Copyright © 1997. All Rights Reserved.

//

// SUBSYSTEM: Galaxie Application

// FILE: galaxapp.h

GALAXAPP.H

252

// AUTHOR:

//

// OVERVIEW

// ~~~~~~~~

// Class definition for TGalaxieApp (TApplication).

//

//---

#if !defined(galaxapp_h) // Sentry, use file only if

it's not already included.

#define galaxapp_h

#include <owl/opensave.h>

#include "galaxapp.rh" // Definition of all resources.

//

// FrameWindow must be derived to override Paint for Preview and

Print.

//

//{{TDecoratedFrame = TSDIDecFrame}}

class TSDIDecFrame : public TDecoratedFrame {

 public:

 TSDIDecFrame(TWindow* parent, const char far* title, TWindow*

clientWnd, bool trackMenuSelection = false, TModule* module = 0);

 ~TSDIDecFrame();

//{{TGalaxieAppVIRTUAL_BEGIN}}

 public:

 virtual void SetupWindow();

//{{TGalaxieAppVIRTUAL_END}}

}; //{{TSDIDecFrame}}

//{{TApplication = TGalaxieApp}}

class TGalaxieApp : public TApplication {

 private:

 public:

 TGalaxieApp();

 virtual ~TGalaxieApp();

//{{TGalaxieAppVIRTUAL_BEGIN}}

 public:

 virtual void InitMainWindow();

//{{TGalaxieAppVIRTUAL_END}}

//{{TGalaxieAppRSP_TBL_BEGIN}}

 protected:

 void CmHelpAbout();

//{{TGalaxieAppRSP_TBL_END}}

DECLARE_RESPONSE_TABLE(TGalaxieApp);

}; //{{TGalaxieApp}}

#endif // galaxapp_h sentry.

BOOLEAN ReadHeader(HANDLE hndFile, int *numframes, int *width,

int *numchan)

{

 DWORD BytesRead;

 char header[HEADERLENGTH];

GALAXIE.HPP

253

 if (ReadFile(hndFile, &header, HEADERLENGTH, &BytesRead, NULL))

 {

 memcpy(numframes, &header[NUMFRAMESLOC], 4);

 memcpy(width, &header[WIDTHLOC], 4);

 memcpy(numchan, &header[NUMCHANLOC], 4);

 if ((*numchan != 1) && (*numchan != 3))

 {

 MessageBox(NULL,"Only grayscale or color images can be

displayed",

 "Unsuported

Feature", MB_OK | MB_ICONSTOP);

 return FALSE;

 }

 }

 return TRUE;

}

BOOLEAN DoOverlap()

{

 HANDLE ImgCut, ImgExpl, ImgDet, ImgThick, ImgOver;

 int numframes, width, numchan, curraddr;

 int count1, count2;

 unsigned char *CutData, *ExplData, *DetData, *ThickData,

*CombData;

 char SourceImage[255];

 DWORD BytesRead;

 switch (CurrAppStatus.ImgSource)

 {

 case Transmission :

if (CurrAppStatus.ESource == Low)

strcpy(SourceImage,

XMISSIONLOWCUT);

else

 strcpy(SourceImage,

XMISSIONHIGHCUT);

 break;

 case Backscatter :

if (CurrAppStatus.ESource == Low)

 strcpy(SourceImage,

BSCATTERLOWCUT);

 else

 strcpy(SourceImage,

BSCATTERHIGHCUT);

 break;

 case ForwardScatter :

if (CurrAppStatus.ESource == Low)

 strcpy(SourceImage,

FSCATTERLOWCUT);

 else

 strcpy(SourceImage,

FSCATTERHIGHCUT);

 break;

 default :

break;

 }

254

 //Open the explosives bitmap ELAS file

 ImgExpl = CreateFile(EXPLOSIVEBITMAP, GENERIC_READ,

FILE_SHARE_READ, NULL,

OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL |

FILE_FLAG_SEQUENTIAL_SCAN,

 NULL);

 if (ImgExpl == INVALID_HANDLE_VALUE)

 {

 MessageBox(NULL,"Error opening explosive bitmap image", "File

I/O error",

 MB_OK |

MB_ICONERROR);

 return FALSE;

 }

 //Open the detonator bimap ELAS file

 ImgDet = CreateFile(DETONATORBITMAP, GENERIC_READ,

FILE_SHARE_READ, NULL,

OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL |

FILE_FLAG_SEQUENTIAL_SCAN,

 NULL);

 if (ImgDet == INVALID_HANDLE_VALUE)

 {

 MessageBox(NULL,"Error opening detonator bitmap image", "File

I/O error",

 MB_OK |

MB_ICONERROR);

 return FALSE;

 }

 //Open the thickness bitmap ELAS file

 ImgThick = CreateFile(THICKNESSBITMAP, GENERIC_READ,

FILE_SHARE_READ, NULL,

OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL |

FILE_FLAG_SEQUENTIAL_SCAN,

 NULL);

 if (ImgThick == INVALID_HANDLE_VALUE)

 {

 MessageBox(NULL,"Error opening thickness bitmap image", "File

I/O error",

 MB_OK |

MB_ICONERROR);

 return FALSE;

 }

 else

 {

 //Open the cut (pre-processed) image

 ImgCut = CreateFile(SourceImage, GENERIC_READ,

FILE_SHARE_READ, NULL,

OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN,

NULL);

 if (ImgCut == INVALID_HANDLE_VALUE)

 {

 MessageBox(NULL,"Error opening cut image", "File I/O

error",

 MB_OK |

MB_ICONERROR);

 return FALSE;

 }

255

 else

 {

 //This step assumes that all ELAS headers are correct.

 //If there is a mismatch in any one, the program will yield

incorrect

 //results, and may even crash.

 ReadHeader(ImgCut, &numframes, &width, &numchan);

 ReadHeader(ImgExpl, &numframes, &width, &numchan);

 ReadHeader(ImgDet, &numframes, &width, &numchan);

 ReadHeader(ImgThick, &numframes, &width, &numchan);

 //Dynamically allocate memory for each of the images,

 //currently the memory buffer also includes the ELAS

header.

 CutData = new unsigned char[(numframes+1) * width];

 ExplData = new unsigned char[(numframes+1) * width];

 DetData = new unsigned char[(numframes+1) * width];

 ThickData = new unsigned char[(numframes+1) * width];

 CombData = new unsigned char[(3*numframes+1) * width];

 //Re-initialize the file pointers, to include the ELAS

header

SetFilePointer(ImgExpl, 0, NULL,

FILE_BEGIN);

SetFilePointer(ImgDet, 0, NULL,

FILE_BEGIN);

SetFilePointer(ImgThick, 0, NULL,

FILE_BEGIN);

 SetFilePointer(ImgCut, 0, NULL, FILE_BEGIN);

 ReadFile(ImgExpl, ExplData, (numframes+1)*width,

&BytesRead, NULL);

 ReadFile(ImgDet, DetData, (numframes+1)*width,

&BytesRead, NULL);

 ReadFile(ImgThick, ThickData, (numframes+1)*width,

&BytesRead, NULL);

 ReadFile(ImgCut, CutData, (numframes+1)*width, &BytesRead,

NULL);

ImgOver = CreateFile("overon.img",

GENERIC_WRITE, 0, NULL,

CREATE_ALWAYS,

FILE_ATTRIBUTE_NORMAL, NULL);

//Copy the ELAS header

for(count1 = 0; count1 < HEADERLENGTH;

count1++)

 *(CombData+count1) = *(ExplData+count1);

 //But indicate that this is a color file

 *(CombData+24) = 0x03;

 for (count1 = 0; count1 < numframes; count1++)

 for (count2 = 0; count2 < width; count2++)

 {

 curraddr = count2 + (count1+1)*width;

 if (*(ExplData + curraddr) != 0x00)

 {

 //Explosives overlap

 *(CombData+(3*count1+1)*width+count2) = 255; //255

 *(CombData+(3*count1+2)*width+count2) = 0;

 *(CombData+(3*count1+3)*width+count2) = 0;

 }

256

 else

 if (*(DetData + curraddr) != 0x00)

 {

 //Detonators overlap

 *(CombData+(3*count1+1)*width+count2) = 0;

 *(CombData+(3*count1+2)*width+count2) = 255; //255

 *(CombData+(3*count1+3)*width+count2) = 255; //255

 }

 else

 if (*(ThickData + curraddr) != 0x00)

 {

 //Thickness overlap

 *(CombData+(3*count1+1)*width+count2) = 255;

//255

 *(CombData+(3*count1+2)*width+count2) = 255;

//255

 *(CombData+(3*count1+3)*width+count2) = 0;

 }

 else

 {

 //No overlap

 *(CombData+(3*count1+1)*width+count2) =

*(CutData+curraddr);

 *(CombData+(3*count1+2)*width+count2) =

*(CutData+curraddr);

 *(CombData+(3*count1+3)*width+count2) =

*(CutData+curraddr);

 }

 } //for loop (count2)

 WriteFile(ImgOver, CombData, (3*numframes+1)*width,

&BytesRead, NULL);

 CloseHandle(ImgOver);

 CloseHandle(ImgCut);

 CloseHandle(ImgExpl);

 CloseHandle(ImgDet);

 CloseHandle(ImgThick);

 //Free-up memory

 delete(CutData);

 delete(ExplData);

 delete(DetData);

 delete(ThickData);

 delete(CombData);

 }

 }

 return TRUE;

}

//Filenames of images returned by the collection program

#define CHAN1COLLECTED "one.img"

#define CHAN2COLLECTED "two.img"

#define CHAN3COLLECTED "three.img"

//Filenames of low energy collected (unprocessed) images

#define XMISSIONLOWCOLLECTED "v75a.img"

#define BSCATTERLOWCOLLECTED "v75b.img"

#define FSCATTERLOWCOLLECTED "v75c.img"

//Filenames of high energy collected (unprocessed) images

#define XMISSIONHIGHCOLLECTED "v150a.img"

#define BSCATTERHIGHCOLLECTED "v150b.img"

GLOBALS.H

257

#define FSCATTERHIGHCOLLECTED "v150c.img"

//Filenames of low energy, pre-processed images

#define XMISSIONLOWCUT "cut_lt.img"

#define BSCATTERLOWCUT "cut_bs.img"

#define FSCATTERLOWCUT "cut_fs.img"

//Filenames of high energy, pre-processed images

#define XMISSIONHIGHCUT "cut_ht.img"

#define BSCATTERHIGHCUT

"NOTAVAILABLE"

#define FSCATTERHIGHCUT

"NOTAVAILABLE"

//

#define EXPLOSIVEBITMAP "result.img"

#define DETONATORBITMAP "and.img"

#define THICKNESSBITMAP

"suspect.img"

//Compensation values to use

#define CORRVAL1LOW 0x000

#define CORRVAL2LOW 0x000

#define CORRVAL3LOW 0x000

#define CORRVAL1HIGH 0x000

#define CORRVAL2HIGH 0x000

#define CORRVAL3HIGH 0x000

#define HEADERLENGTH 28

#define NUMFRAMESLOC 12

#define WIDTHLOC 20

#define NUMCHANLOC 24

//Global Structures

enum DetectorType {Transmission, Backscatter, ForwardScatter};

enum EnergySource {Low, High};

enum ProcessedType {None, PLow, PHigh, Both};

enum Overlap {On, Off};

struct StructAppStatus {

 DetectorType ImgSource;

 EnergySource ESource;

 Overlap Over;

 ProcessedType TProcess; //Indicates whether the

overlaped images have

 ProcessedType BProcess; //already been processed

 ProcessedType FProcess;

 STARTUPINFO SInfo;

 PROCESS_INFORMATION PInfo;

} CurrAppStatus;

HANDLE hXray, hMotor, hDpib;

258

Vita

Panagiotis (Panos) Jason Arvanitis was born in 1972 in Athens, Greece. He

graduated from Papagos 2nd Lyceum and moved to the United States in September 1990

for advanced studies. He received the degree of Bachelor of Science in Electrical

Engineering from Virginia Polytechnic Institute and State University in December 1994.

He continued his studies at the same university to obtain the degree of Master of Science

in Electrical Engineering with a Computer Engineering option. He was employed in the

Spatial Data Analysis Laboratory from May 1994 until July 1997.

In his spare time, Panos enjoys playing tennis, swimming, listening to music and

driving in the countryside.

	Title Page
	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Contributions to this research
	1.4 System Overview

	Chapter 2. Background
	2.1 Principles of x-ray imaging
	2.2 Sophisticated Commercial Luggage Inspection Systems
	2.2.1 Vivid Technologies
	2.2.2 American Science and Engineering
	2.2.3 Invision Technologies

	2.3 Summary

	Chapter 3. System Design
	3.1 General Introduction
	3.2 AS&E System Design
	3.2.1 X-ray source and detector positioning
	3.2.2 Flying-spot technology
	3.2.3 Digitizing pre-amplifier boards

	3.3 System Components
	3.3.1 X-ray source controller
	3.3.2 Infrared luggage sensor
	3.3.3 Conveyor belt
	3.3.4 Copper Filter

	3.4 Workstation Setup

	Chapter 4. DPIB Hardware
	4.1 Design Overview
	4.2 Board Level Description
	4.2.1 Data Interface
	4.2.2 Zee Bus Interface
	4.2.3 ISA Interface
	4.2.4 Sensor Signal Interface
	4.2.5 Memory Bank

	4.3 Logic Level Description
	4.3.1 Data Interface Connector Modules (ACON, BCON, CCON)
	4.3.2 Zee Bus Connector Module (MCON)
	4.3.3 Sensor Signal Connector Module (DCON)
	4.3.4 Control Signal Generator (CONTROL)
	4.3.4.1 Control Signal Generator Sub-module (XCONTROL)
	4.3.4.2 Function Generator Sub-module (SIGGEN2)
	4.3.4.3 Variable Hysteresis Sub-Module (VARHYST)

	4.3.5 AS&E format to SUIT format conversion (ASE2SUIT)
	4.3.5.1 AS&E to Suit Conversion Sub-module (XASE2SUIT)
	4.3.5.2 SUIT bus command generation

	4.3.6 SUIT bus multiplexer (MULTIPLEX, MULTIPLEX4)
	4.3.7 Suit to Zee bus conversion (SUIT2ZEE_SLOW)
	4.3.8 Self-test (CHECK)
	4.3.9 Control Registers

	4.4 Other DPIB Applications

	Chapter 5. Software
	5.1 Overview
	5.2 Device Drivers
	5.2.1 Common driver functions
	5.2.2 Installing and starting a device driver
	5.2.3 PCIDMA.SYS - A device driver for the MCPCI
	5.2.3.1 PCIDMA function overview
	5.2.3.2 PCIDMA Installation
	5.2.3.3 Memory allocation considerations

	5.2.4 DPIB.SYS - A device driver for the DPIB
	5.2.4.1 DPIB function overview
	5.2.4.2 DPIB.SYS installation

	5.3 Software Libraries
	5.3.1 HARDWARE.H - a library for device driver access
	5.3.2 SENSOR.HPP - a library of prototype system control functions

	5.4 Utilities
	5.4.1 PROGALL
	5.4.2 COLPUL
	5.4.2.1 COLPUL Configuration File Format
	5.4.2.2 ELAS Image File Format

	5.4.3 EDISP

	5.5 Galaxie - Graphical User Interface

	Chapter 6. Results
	Chapter 7. Future Developments
	7.1 Orthogonal x-ray view
	7.2 Active Control
	7.3 DPIB modifications

	Chapter 8. Conclusions
	References
	Appendix A. DPIB Board Level Schematics
	Component Location Diagram
	RS- 422 Drivers/ Receivers for Data bus (Interface 1)
	RS- 422 Drivers/ Receivers for Data bus (Interface 2)
	RS- 422 Drivers/ Receivers for Data Bus (Interface 3)
	RS- 422 Drivers/ Receivers for Control Signals
	Xilinx FPGA Connections
	Memory Bank
	ISA EPLD Interface and Connector
	Connectors to pre- amplifier boards
	Sensor Signal Interface
	Zee Bus Interface

	Appendix B. DPIB Logic (FPGA) Level Schematics
	FAA
	ACON
	XACON
	BCON
	XBCON
	CCON
	XCCON
	DCON
	XDCON
	MCON
	XMCON
	ASE2SUIT
	XASE2SUIT
	XASE2SUIT (page 2)
	CONTROL
	XCONTROL
	XCONTROL (page 2)
	XCONTROL (page 3)
	XCONTROL (page 4)
	SIGGEN2
	MULTIPLEX4
	XMULTIPLEX4
	SUIT2ZEE_ SLOW
	XSUIT2ZEE_SLOW
	CHECK
	XCHECK

	Appendix C. Device driver source code
	PCIDMA.C
	PCIDMA_DEV.H
	PPCIDMA_IOCTL.H
	DPIB.C
	DPIB.H
	DPIB_IOCTL.H

	Appendix D. Software Libraries Source Code
	HARDWARE.H
	SENSOR.HPP

	Appendix E. Utilities and GUI Source Code
	PROGALL.CPP
	PROGALL.HPP
	COLPUL-SILENT.C
	EDISP.CPP
	EDISP.HPP
	GLXDLGCL.CPP
	GLXDLGCL.H
	GALAXAPP.CPP
	GALAXAPP.H
	GALAXIE.HPP
	GLOBALS.H

	Vita

