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Preface 

With the title Engineering Rock Mechanics, what is this book about? It is about 
the discipline, based on mechanics, which is used to design structures built 
on or in rock masses. These structures, which encompass building foun-
dations, dams, rock slopes, tunnel, caverns, hydroelectric schemes, mines, 
etc., depend critically on the rock mass properties and the interaction 
between the rock mass and the engineered structure. As a result, the 
distinct discipline of engineering rock mechanics has developed. The term 
'rock mechanics' refers to the basic science of mechanics applied to rocks; 
whilst the term 'rock engineering' refers to any engineering activity 
involving rocks. Thus, the term 'engineering rock mechanics' refers to the 
use of rock mechanics in rock engineering—within the context of civil, 
mining and petroleum engineering. Because rock mechanics can also be 
used to study structural geology, we emphasize through the title that it is 
the rock mechanics principles in the engineering context that we are 
presenting. 

The book is based on the content of the integrated engineering rock 
mechanics course given at Imperial College and on the authors' engi-
neering experience. Chapters 1-13 cover rock mechanics. Chapter 14 
discusses the principles of rock engineering systems, and Chapters 15-20 
cover major applications in rock engineering. The philosophy of the 
presentation is to provide comprehension of all the subjects discussed. In 
all aspects, and particularly in the mathematics, we have included some 
physical explanations of the meaning behind the relations. Also, our 
philosophy is that although rock mechanics and the associated principles 
are a science, their application is an art. To paint a good picture, one must 
know the basic techniques. Knowing these techniques will not necessarily 
make a good painter, but it will optimize everyone's attempts. 

Thus, the book is intended to be an understandable 'across-the-board' 
source of information for the benefit of anyone involved in rock mechanics 
and rock engineering: students, teachers, researchers, clients, consulting 
engineers and contractors. It will be of particular use in the civil, mining 
and petroleum subject areas: the objectives of the engineering may be 
different but the principles are the same. 



xii Preface 

We hope that everyone reading this book not only has a chance to experi-
ence the science and art of the subject, but also the romance. Rock engi-
neering occurs deep in the earth, high in the mountains and often in the 
world's wildest places. We engineer with rocks as we create structures, 
extract the primary raw materials for mankind and harness the forces of 
nature. It is the romance and the passion associated with rock engineering 
that has led us to communicate some of this excitement. 'Personal 
experience' is everything. So, we hope that you will have the opportunity 
to experience at first hand some of the principles and applications described 
in the book. 

Lecture notes prepared by the authors for undergraduate and post-
graduate students at Imperial College were the basis for the book. Some of 
the material, especially that of a fundamental nature, is partially based on 
earlier lecture notes prepared by our predecessors in the rock mechanics 
section at the college. We acknowledge this general debt with thanks and 
appreciation. We are also grateful to all our students and recent colleagues 
at Imperial College who have suggested improvements to the text during 
the pre-publication 'field-testing' period over the last few years. Finally, we 
thank Carol and Miles Hudson and Gwen Harrison for painstakingly 
correcting and compiling the penultimate version. The final text is, of 
course, our responsibility: if there is anything in the following pages that 
you do not understand, it is our fault. 

J. A. Hudson and J. P. Harrison 
Imperial College of Science, Technology and Medicine 

University of London 



] Introduction 

1.1 The subject of rock mechanics 

The subject of rock mechanics started in the 1950s from a rock physics base 
and gradually became a discipline in its own right during the 1960s. As 
explained in the Preface, rock mechanics is the subject concerned with the 
response of rock to an applied disturbance, which is considered here as an 
engineering, i.e. a man-induced, disturbance. For a natural disturbance, 
rock mechanics would apply to the deformation of rocks in a structural 
geology context, i.e. how the folds, faults, and fractures developed as 
stresses were applied to the rocks during orogenic and other geological pro-
cesses. However, in this book we will be concerned with rock mechanics 
applied to engineering for civil, mining, and petroleum purposes. 

Thus, rock mechanics may be applied to many engineering applications 
ranging from dam abutments, to nuclear power station foundations, to the 
manifold methods of mining ore and aggregate materials, to the stability 
of petroleum wellbores and including newer applications such as 
geothermal energy and radioactive waste disposal. Probably, the main 
factor that distinguishes rock mechanics from other engineering disciplines 
is the application of mechanics on a large scale to a pre-stressed, naturally 
occurring material. 

In the two photographs in Figs 1.1 and 1.2, we illustrate a typical full-
scale rock structure and a closer view of the rock material itself. It is quite 
clear from these illustrations that the nature of the rock mass and the rock 
material must be taken into account in both the basic mechanics and the 
applied engineering. This has been increasingly appreciated since the 
beginning of the discipline in the early 1960s. 

In the civil and mining engineering areas, the subject of rock mechanics 
flourished in the 1960s. In 1963, a particular landmark was the formation 
of the International Society for Rock Mechanics which has grown steadily 
to its current membership of about 7000 from 37 countries. The discipline 
of rock mechanics is universal in its application and the engineering is 
especially visible in those countries where the ground surface is predomi-
nantly composed of rock, for example, Chile, Finland, Scotland, Spain, and 
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Figure 1.1 Rock structure illustrating the complex nature of the material. 

the former Yugoslavia. In these and other similar 'rocky' countries, rock 
engineering is a way of life for civil engineering construction: invariably. 

Figure 1.2 A closer view of the breaks in the mechanical continuum, generically 
termed discontinuities. 
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Figure 1.3 Example of a bulk blast for production purposes in a quarry. 

highways and other features will have been blasted in rock. The two 
photographs in Figs 1.3 and 1.4 demonstrate this type of engineering. 

Naturally, there are many examples of rock engineering underground 
and these occur in civil engineering projects in rock-dominated countries 
and during underground mining in all countries. The ubiquitous road and 
railway tunnels can have quite different appearances depending on the 
engineering and architectural finish. In the two photographs in Figs 1.5 and 
1.6, the contrast is shown between a tunnel that required no lining so the 
bare rock is visible and a tunnel that required extensive support. 

There are often occasions when small or large surface excavations are 

Figure 1.4 Example of a rock face made by pre-split blasting to give a stable, 
relatively smooth finish. 
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Figure 1.5 Unlined tunnel excavated by a tunnel boring machine (tunnel face to 
left, tunnel wall to right of photograph). 

made in rock. Clearly, it is helpful to be able to evaluate the stability of the 
excavation—w^hatever size it may be. This highlights another crucial aspect 
which has only really been developed since the 1970s, and that is 
understanding the full role of the rock structure, i.e. not only the intact rock 
but also the rock fractures and their three-dimensional configuration. In 
general, the stability of near surface excavations is governed by the rock 
structure, w^hereas, deeper excavations can be more affected by the intact 
rock and pre-existing stresses. 

Thus, the rock structure is particularly important in civil engineering and 
open-pit mines and so it is necessary to be able to characterize and understand 
the mechanics of a discontinuum. This is w êll illustrated by the two pho-
tographs in Figs 1.7 and 1.8, the first showing how individual rock blocks are 
formed and the second showing a large open-pit mine with some instabilities. 

In fact, there are numerous applications for rock engineering and three 
are illustrated in Figs 1.9-1.11. Some of the most important are dam 
abutments and foundations, mining methods (whether as open-pit or as a 
whole variety of underground techniques) and now non-precedent 
applications for which there is no previous experience to guide us. These 
latter projects include geothermal energy, radioactive waste disposal and 
the general use of underground space for hosting a miscellany of low- and 
high-technology activities, such as domestic refuse treatment and large 
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Figure 1.6 Heavily supported tunnel excavated bv blastine. 

high-energy particle accelerators. For all of these applications, it is essen-
tial to understand the rock material and the rock mechanics so that 
engineering can be conducted in an optimal way. 

Figure 1.7 Rock fractures forming rock blocks within the rock structure (with 
1 m long white scale). 
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Figure 1.8 Open-pit mine with slope instabilities. 

The three photographs in Figs 1.9-1.11 also illustrate the large scale of 
some of the existing precedent practice projects: a dam, a mine, and a civil 
excavation. It is apparent from the pictures that there will be considerable 
economic benefit in designing and constructing these structures in the 
optimal way—given that we have the necessary rock mechanics principles 
and rock engineering experience. It is also evident that one ignores such 
information at considerable physical and financial peril. A good engineer 
is one who can do the same job with the same professionalism at a lower 
price: but this can only be achieved successfully by knowing the rock 
mechanics principles and applications. 

Figure 1.9 Large dam in Portugal. 
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Figure 1.10 Large open-pit mine in Chile. 

All these rock engineering projects, whether we have experience of them 
or not, can be summarized in the diagram in Fig. 1.12. In this diagram, there 
is appreciation of the three main aspects of such engineering projects: 

• the outer ring represents the whole project complete with its specific 
objective—and different projects can have widely differing objectives. 

• the middle ring represents the inter-relation between the various 
components of the total problem. For example, there will be relations 

Figure 1.11 Hydroelectric cavern in Portugal. 
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-Complete rock engineering problems-

—Analysis of coupled mechanisms — 

Analysis of individual subjects 

Foundation 
i i i 

]_ 

Boundary 
conditions: 
In situ stress, 
hydrogeological regime 

- e.g. block analysis or stress analysis -

Rock mechanics interaction matrices 

— Knowledge-based expert systems — 

Figure 1.12 Three-tier approach to all rock engineering problems. 

between rock stresses and rock structure in the rock mechanics context; 
and there will be relations between rock support systems and cost 
implications in the rock engineering context. 

• finally, the central ring represents the individual aspects of each project, 
such as a specific numerical analysis or a specific costing procedure. 

In the spirit of this diagram, we discuss the major rock mechanics aspects 
on an individual basis in Chapters 2-13. The method of studying the 
interactions between subjects is discussed in Chapter 14. Then, in 
Chapters 15-20, the main engineering techniques and applications are 
discussed. In engineering practice, the procedure is to enter the diagram 
in Fig. 1.12 from the outside having specified the objective, pass through 
the three rings conducting the necessary analyses at each stage, and then 
exit synthesizing the most appropriate design. 

We have already mentioned that in rock mechanics there was 
considerable emphasis in the 1960s on intact rock and in the 1970s on 
discontinuities and rock masses. In the 1980s the emphasis shifted to 
numerical analysis and we anticipate that, during the remaining part of the 
1990s and beyond, there will be combined emphases on material property 
determination, full-scale in situ experiments, enhanced use of the 
computer, and improved engineering implementation of the principles. 
Currently, our ability to compute has far outstripped our ability to measure 
the required input parameters and indeed to know whether the computer 
modelling is realistic. A good example of this is the theory of elasticity 
which considers stresses and strains in the rock. The vast majority of 
elasticity analyses have assumed that the rock is isotropic, i.e. it has the 
same elastic properties in all directions, which requires two elastic 
properties. We now recognize that it is more realistic to include further 
elastic properties, five elastic constants for transverse isotropy (the 
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properties are the same in a plane but different perpendicular to that plane) 
and nine elastic constants for the orthotropic case (where the properties are 
different in three perpendicular directions). However, for a fully 
anisotropic rock, 21 such constants are needed. To the authors' knowledge, 
these 21 constants have never been used in a numerical analysis and 
certainly have never been measured in a rock engineering project. 
Establishing the balance between not including enough rock property 
information and conducting unnecessarily complex analyses is difficult but 
made much easier if the engineering rock mechanics principles are 
understood. 

Generalizing the problem described above, one should ask 'What exactly 
is it that we wish to know for the design of engineering projects?' In this 
book, we consider both the principles and the applications and we have 
included discussions which address the question above and will assist in 
the design process. 

1.2 Content of this book 

This book is intended for anyone involved in rock mechanics and rock 
engineering. From the text in the previous section, the reader will have 
noted that we are making a special attempt to present the principles and 
then to place them in the engineering context. Thus, the book can be used 
for both introductory and advanced rock mechanics teaching, and by rock 
engineers of all persuasions. We feel that the rock mechanics subject does 
not have to be project-specific and can therefore be generally directed to 
all types of engineers working on or in rock masses. 

The layout follows a logical course from chapters on the basic subjects 
of rock mechanics such as stress, strain, discontinuities and permeability 
through the generic rock engineering aspects of excavation and support to 
specific engineering objectives and projects in the later chapters. 

Anyone who has worked in rock engineering will know that all projects 
have their own idiosyncratic components and are unique. Thus, whether 
an engineer is involved with a conventional or an unconventional project, 
it is always vital to understand and apply the principles presented in the 
first 13 chapters. 

This book is about the principles of engineering rock mechanics. The 
book is not intended to be truly comprehensive in the sense of including 
all information on the rock engineering subject. Readers requiring more 
information are referred to the five volume compendium Comprehensive 
Rock Engineering, edited by the first author and also published by Elsevier. 
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2 Geological setting 

In this chapter, we will set the scene for the consideration of engineering 
in the natural material, rock. Most of our engineering materials (with the 
exception of timbers and soil) are manufactured and tested to specification. 
Subject to correct quality control, we can then be sure that the engineering 
material in question has a given set of properties which are used in the 
design process. However, rock is extremely old compared to all other 
engineering materials: its age is measured in millions of years and it has 
undergone significant mechanical, thermal and chemical activity. 

We will describe in the following sections the ramifications of the rock's 
history for engineering, starting with rock as an engineering material and 
following with a discussion of the conditions in natural rock environments. 
In Section 2.3, we will discuss explicity the influence of geological history 
on five of the most important aspects of rock mechanics; and, later on, we 
will explain more directly (in the context of stresses and strains) the 
concepts of continuity, homogeneity and isotropy of rock material and rock 
masses. 

2.1 Rock OS on engineering mater ial 

One of the most important, and often frec|uently neglected, aspects of rock 
mechanics and rock engineering is that we are utilizing an existing material 
which is usually highly variable. This is demonstrated in Figs 2.1-2.3. The 
rock will be used either as a building material so the structure will be made 
of rock, or a structure will be built on the rock, or a structure will be built 
in the rock. In the majority of civil engineering cases, rock is removed to 
form the structure as in, for example, the excavation of rock for a 
hydroelectric machine hall chamber. In this sense, we are dealing with a 
reverse type of construction where the rock material is being taken away, 
rather than added, to form a structure. On the mining side, rock may be 
excavated in an open pit and we will then be concerned with the stability 
of the sides of the open pit. 

In these examples and all others in rock engineering, the material is 
natural. As engineers and in the context of mechanics, we must establish 
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Figure 2.1 Relatively consistent intact rock. 

Figure 2.2 'Layered' intact rock. 
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the properties of the material, the pre-existing stress state in the ground 
(which will be disturbed by engineering) and consider these in relation 
to our engineering objective. In civil engineering, the main objective is to 
create a structure by removing the rock. In mining engineering, it is to 
obtain the material being removed. A primary information base for these 
activities is a knowledge of the geological strata, any alteration to the 
rock material, the presence of large- and small-scale faulhng and jointing 
in the rock, and indeed any geological parameter that is relevant to 
the engineering. Clearly, the rock type, the rock structure, any alteration 
to the rock, the in situ stress state and hydrogeological regime will be 
important for all engineering. There are, however, many other aspects 
of the geological setting which could be of major, if not dominant, 
significance in the engineering design, construction and subsequent 
performance. Examples of these are the presence of large natural caverns 
in karstic regions, the presence of buried valleys encountered during 
tunnelling, wash-outs in coal seams during mining and the presence of 
major horizontal fracture zones in granitic masses for radioactive waste 
disposal. 

Figure 2.3 Zone of highly fractured rock. 
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In the photographs in Figs 2.4 and 2.5, the significance of the likely 
influence of rock structure on engineering can be imagined. The departure 
from an 'ideal' material through the existence of this structure can occur 
on all scales from very large faults to micro-fissures. Similarly, engineering 
in rock occurs in a variety of sizes and shapes. Examples are the 
Chuquicamata open-pit copper mine in Chile which is several kilometres 
long and planned to be 1 km deep, and a petroleum engineering wellbore 
which is a few tens of centimetres in diameter yet is several kilometres 
deep. It is the interpretation of this rock structure in conjunction with the 
size, shape and design requirements of the engineering that make rock 
engineering a unique discipline. 

Thus, rock mechanics applied to engineering is both an art and a science. 
We will be explaining the principles of engineering rock mechanics in this 
book, but it should never be forgotten that we cannot specify the rock 
properties and the rock loading conditions: they already exist because the 
rock is a natural material and in many cases is significantly stressed 
naturally before engineering commences. Hence, in the remainder of this 
chapter, we will develop these concepts by considering the natural rock 
environments within which the engineering occurs and the specific ways 
in which the geological setting directly affects both the rock mechanics and 
the engineering design. 

2.2 Natural rock environments 
In addition to the direct properties of the rock and rock masses as described 
above, we have to remember that the natural rock environment can also 
have a profound effect on the engineering. In general this is basically 
governed by the location of the engineering, i.e. whether a structure is 
being built on the surface, whether the structure is being created by 

Figure 2.4 Large-scale rock structure. 
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excavation of the surface rock, or whether the structure is underground. 
Of course, a particular project may involve two or, indeed, all of these main 
types, as in many hydroelectric schemes. 

It is generally found that the fractures in the rock govern the stability of 
near surface structures and the natural in situ stresses govern the stability 
of deep structures. For example, the stability of a dam foundation will 
depend critically on the deformability and permeability of the underlying 
rocks, which in turn are dictated by the nature and geometrical con-
figuration of the fractures in the rock mass. This, is also true for the stability 
of the side slopes of surface excavations and the roof and sides of near 
surface underground excavations. However, at medium depths in weak 
rocks (for example the Channel Tunnel between England and France) and 
at considerable depths in strong rocks (for example South African gold 
mines) the natural stress, which is altered by the engineering, can be the 
dominant problem. 

Furthermore, these effects will be influenced by other factors; e.g. 
whether the rock is wet or dry, cold or hot, stable or squeezing. Typical 
circumstances where these factors are important are the degradation of 
chalk and mudstones on either exposure to water movement or desicca-
tion, permafrost engineering, certain Japanese mines in which circulating 
groundwater can be above boiling point, the difficulty of inducing roof 
failure during longwall mining operations when the roof is too strong, and 
loss of tunnel boring machines as they have attempted to cross squeeze 
ground within major faults. It is the identification of these, and a whole host 
of other geological factors, which is one of the keys to successful site 
investigation and correct interpretation of the rock mass environment. Two 
examples of the effects mentioned are shown in Figs 2.6 and 2.7. 

Of course, different projects could be conducted in entirely different rock 
environments and this would be taken into account utilizing the three-tier 

Figure 2.5 Small-scale rock structure. 
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Figure 2.6 Tunnel in mudstone which has deteriorated over a period of several 
years after excavation. 

approach already shown in Fig. 1.12. Moreover, the explicit site conditions 
will be taken into account in the project design and analysis. So let us 
consider now what can be said generally about the influence of geological 
history on rocks and rock masses, ideas that will apply to all sites and all 
proposed site investigations, whether for civil or mining engineering. 

2.3 The influence of geological factors on 
rocks and rock masses 

Five main subjects are discussed below in terms of the influence of 
geological factors on rocks and rock masses. In the context of the mechanics 
problem, we should consider the material and the forces applied to it. 
We have the intact rock which is itself divided by discontinuities (the 
latter word being a generic term for all rock fractures) to form the rock 
structure. We find then that the rock is already subjected to an in situ 
stress. Superimposed on this fundamental mechanics circumstance are 
the influences of pore fluids/water flow and time. In all of these 
subjects, the geological history has played its part, altering the rock and 
the applied forces, and the engineer should be aware that these will 
have been significantly affected by the geological processes, as explained 
below. 

2.3.7 Intact rock 

Intact rock is defined in engineering terms as rock containing no signifi-
cant fractures. However, on the small scale it is composed of grains with 
the form of the microstructure being governed by the basic rock forming 
processes. Subsequent geological events may affect its mechanical 



The influence of geological factors on rocks and rock masses 17 

Figure 2.7 Tunnel deformation caused by high rock stresses at the Underground 
Research Laboratory, Manitoba, Canada. 

properties and its susceptibility to water penetration and weathering 
effects. 

The most useful single description of the mechanical behaviour is the 
complete stress-strain curve in uniaxial compression. This curve will be 
explained fully in Chapter 6, but is introduced here briefly to illustrate the 
very significant effect of the rock microstructure and history on the 
mechanical behaviour. In Fig. 2.8, a general complete stress-strain curve is 
shown for a sample of rock being compressed in one direction, i.e. in 
uniaxial compression. The reader should note that: the horizontal axis is 
strain, which is the relative change in length of the specimen; and the 
vertical axis is stress, which is the load per unit area. 

There are several features of interest, the first of which is the modulus 
of the rock, represented by the letter E on the diagram. For a high-modulus 
(i.e. stiff) material, this initial part of the complete stress-strain curve will 
be steep; for a low-modulus (i.e. soft) material, it will be gentle. 

The next feature is the compressive strength which is the maximum 
stress that can be sustained; this is illustrated by the dotted line in the 
figure. 

The third feature is the steepness of the descending portion of the curve 
which is a measure of the brittleness, as illustrated in Fig. 2.9. The two main 
cases shown are the behaviour after the compressive strength is reached 
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Stress 

Figure 2.8 Complete stress-strain curve illustrating the stiffness (or modulus, E), 
the strength, a^, and brittleness. 

Ductile 

Figure 2.9 Illustration of the difference between a brittle material and a ductile 
material. 

in the form of continuing strain at the same stress level (a ductile material) 
and a drop in the stress level to zero at the same strain value (a brittle 
material). The brittleness is indicated by the steepness of the curve betw^een 
these tw ô limits. In fact, the situation is more complicated than this because 
it is possible to have strain-hardening materials (a curve above the ductile 
line) and super-brittle materials (to the left of the brittle line). These cases 
will be discussed further in Chapter 6. 

Possible variation in the three main factors is illustrated for a suite of 
rocks in Figs 2.10-2.13. The figure legends describe the features quali-
tatively. As we have mentioned, the form of the complete stress-strain 
curve is dictated by the nature of the microstructure. For example, a high 
grain strength, fine grain basalt has a high stiffness, high strength and is 
very brittle. On the other hand, a limestone rock with a variation in the 
grain geometry has a medium stiffness, medium strength and a more gentle 
descending part of the curve caused by the gradual deterioration of the 
microstructure as it is progressively and increasingly damaged. 

There will be variations on this theme for the variety of microstructures 
that exist and the influence that they have on the shape of the curve—in 
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Figure 2.10 Complete stress-strain curve for basalt-
very brittle. 

-high stiffness, high strength. 

Figure 2.11 Complete stress-strain curve 
medium strength, medium brittleness. 

for limestone—medium stiffness, 

conjunction with the applied loading conditions and loading rates. The 
intact rock will also have such characteristics as inhomogeneity and 
anisotropy: these factors are discussed in Chapter 10. 

2.3.2 Discontinuities and rock structure 

In the previous section we have indicated one major characteristic of the 
intact rock, i.e. the stiffness, defined as Young's modulus, E. In the pre-peak 
portion of the curve in Fig. 2.8, the rock is behaving more or less elastically. 
When materials are truly elastic they do not absorb energy; they react to 
the loading instantaneously and they can sustain any stress levels. If rock 
behaved in this way, and assuming that one were able to excavate it, there 
would be no problem with either excavation, support or rock failure. 
However, as we noted in the previous section, the rock does break and it 
does have post-peak mechanical characteristics. The consequence of this is 
two-fold: 

(a) through natural processes, the in situ rock may have already failed and 
formed faults and joints; 

(b) these faults and joints may be the 'weak links' in the rock structure. 
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Figure 2.12 Complete stress-strain for chalk-
brittle. 

-low stiffness, low strength, quite 

During the lithification process and throughout geological history, there 
have been orogenic periods and other less severe loading processes applied 
to the rock. The result in terms of the rock fracturing is to produce a 
geometrical structure (often very complex) of fractures forming rock blocks. 
An example of such a structure is shown in Fig. 2.14. 

Because in the general uses of mechanics and stress analysis it is assumed 
that a material is continuous, these geological features such as faults, joints, 
bedding planes and fissures—all of which can be significant mechanical 
breaks in the continuum—are termed 'discontinuities' for engineering 
purposes. These discontinuities have many geometrical and mechanical 
features which often govern the total behaviour of the rock mass. The 
discontinuities will have certain shapes, certain sizes and be orientated in 
certain directions. The overall geometrical configuration of the discontinui-
ties in the rock mass is termed rock structure. For engineering purposes, 
it is vital that we understand this geometrical structure, as will be explained 
further in Chapter 7. 

Although the rock engineer is primarily concerned with the mechanical 
behaviour of the rock, it is very helpful to understand the way in which 
the discontinuities were formed and hence to have an initial idea of their 

Figure 2.13 Complete stress-strain curve for rock salt-
ductile. 

-low stiffness, low strength. 
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Figure 2.14 Illustration of the complex nature of a rock mass due to successive 
phases of superimposed fracturing. 

likely mechanical characteristics. There are three ways in which a fracture 
can be formed: one by pulling apart and two by shearing. These are 
illustrated in Figs 2.15-2.17 showing that this leads to two fundamentally 
different types of discontinuities: i.e. those which have been simply opened 
and are termed joints (as in Fig. 2.15); and those on which there has been 
some lateral movement and are termed shear zones or faults (as in Figs 2.16 
and 2.17). Given that such features exist in all rock masses at a variety of 
scales, it is hardly suprising that they will significantly affect the deform-
ability, strength and failure of rock masses. Moreover, other key char-
acteristics such as the permeability can be governed almost entirely by the 
rock structure configuration. 

It is found in practice that, indeed, the rock discontinuities have 
implications for all engineering. Failure is very often associated directly 
with the discontinuities, which are the weak links in our pre-existing, 

Figure 2.15 Tensile fracturing of rock (mode 1), 
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Figure 2.16 Shear fracturing of rock (mode 2). 

Figure 2.17 Shear fracturing of rock (mode 3). 

natural, engineering material. Furthermore, the distinction between joints 
and faults is important. If the two sides of the fracture have been pushed 
over one another, as in Figs 2.16 and 2.17, the discontinuities are likely to 
have a low resistance to any additional shear stresses induced by engi-
neering activities. For these and other reasons, it is most helpful if the 
engineer has a knowledge of structural geology and rock structure. 

Some examples of the way in which the discontinuity genesis leads to 
differing mechanical properties are illustrated in Figs 2.18-2.20. In Fig. 2.18, 
an open joint is shown; this is clearly a break in the continuum. As can be 
seen in the figure, stresses cannot be transmitted across this discontinuity 
because the two sides are not connected. Moreover, this aperture within 
the rock mass is an open conduit for water flow with a permeability many 
orders of magnitude greater than the adjacent intact rock. In Fig. 2.19, a 
particular type of discontinuity is shown which occurs in limestone and 
dolomitic rocks and which has a high resistance to shear because of the 
connecting material across the discontinuity, although this resistance will 
still be less than the intact rock. Also, such a discontinuity will have a 
permeability higher than the intact rock. In Fig. 2.20, there is a sketch of 
the surface of a slickensided fault, i.e. a discontinuity on which there has 
been slip movment under stress causing the discontinuity surfaces to 
become altered and, in particular, to have a slippery surface. In some cases, 
such discontinuities can be pervasive throughout the rock mass with the 
result that the engineer must expect that, in near surface regions, failure 
will always occur along the discontinuity surfaces. 
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Figure 2.18 Open joint which will allow free flow of water. 

Figure 2.19 Stylolitic discontinuity with high shear resistance. 

These are some examples of the way in which the discontinuities can 
have a dramatic effect on rock behaviour. A comprehensive explanation of 
the engineering approach to the geometry and mechanical behaviour of 
discontinuities is presented in Chapter 7. Later on, in Chapter 10, we will 
be discussing inhomogeneity and anisotropy with reference to the rock 
structure. It is quite clear from Fig. 2.20 that a slickensided feature in the 
rock mass will have a very significant effect on the local rock mass 
properties. In particular, it will cause the rock to have different properties 
in different directions and hence be a dominant factor causing anisotropy 
of the rock mass. These topics of inhomogeneity and anisotropy 
have ramifications throughout the book and for rock engineering in 
general. 

2.3.3 In situ pre-existing rock stress 

In a mechanics problem, one considers a body with certain mechanical 
properties and the effect of loading the body with certain forces or stresses. 
In Sections 2.3.1 and 2.3.2, we have discussed the material properties of the 
rock in terms of the intact rock and the overall rock structure. We remember 
the point that rock is a natural material. We now consider the loading 
conditions and again emphasize that there may already be an in situ pre-
existing state of stress in the rock. In some cases, such as a dam or nuclear 
power station foundation, the load is applied as in a conventional 
mechanics problem (Fig. 2.21). In other cases, such as the excavation of a 
tunnel or mine stope, no new loads are applied in unsupported 
excavations: it is the pre-existing stresses that are redistributed by the 
engineering activity (Fig. 2.22). In all cases, this will result in the stresses 
being increased in some areas, and decreased in others. Finally, there could 
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Figure 2.20 Slickensided fault surface with low shear resistance. 

be a combination of the two—as in a pressurized water tunnel—where the 
tunnel is excavated, the rock stress is redistributed and then a water 
pressure applied inside the tunnel (Fig. 2.23). The engineer has to consider 
the stability of the structure throughout this process. 

Thus, it is very important for the engineer to be aware of the types of 
stress state, both natural and applied, that can be present. In particular, 
there are two aspects of stress which are perhaps counter-intuitive at first 
sight: 

(a) in the case of a deep underground tunnel, the floor will be affected in 
the same way as the roof by the stresses around the tunnel; 

(b) in the majority of stress states measured throughout the world, one 
horizontal component of the stress field has greater magnitude than 
the vertical component. 

The result of (a) may be that in addition to rock bolting the roof, the floor 
may have to be bolted down. The result of (b) is often that our primary 
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Figure 2.21 Applying loads to a rock mass which may well already contain a pre-
existing stress state. 
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In situ 
stress 

Figure 2.22 Rock engineering construction of an unsupported tunnel in which no 
loads are applied. 

engineering defensive strategy is to support with respect to horizontal 
stresses rather than vertical stresses. Hence, we need to understand the 
concept of stress and its generation by natural mechanisms. 

Basically, the vertical stress component is caused by the weight of the 
overlying strata, whereas, the high horizontal stress is mainly due to 
tectonic forces. In some cases, the horizontal stress can be very large, as is 
illustrated in Fig. 2.24 showing the subduction zone between the Nazca and 
Pacific tectonic plates in South America. In Fig. 2.24(a) the location of the 
Chuquicamata open pit and the El Teniente underground mines in Chile 
are shown. Both are very significantly affected by the high horizontal stress 
which acts in a west-east direction: this stress component is perpendicular 
to the long axis of the essentially elliptical Chuquicamata open pit and has 
caused problems of stability. Such stress-associated problems have been 
dramatically manifested underground in the El Teniente mine in the 
Andes. In 1987, a major rockburst occurred during block caving develop-
ment at a height of 2700 m above sea level. Without a knowledge of the 

In situ 
stress 

Figure 2.23 Pressurized water tunnel involving load application to a rock mass in 
which the pre-existing stresses have been redistributed by excavation. 
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Figure 2.24 (a) Locations of the largest surface mine and largest underground mine 
in the world, (b) Subduction zone off the coast of Chile. 

rock stress environment, it would be impossible to understand the 
mechanics of this rockburst. 

Similar, although not so extreme, circumstances exist throughout the 
world due to the tectonic activity that is currently underway. Of course, 
there have been past orogenic events so that the rock has a stress history. 
Moreover, there are also factors such as surface topography and erosion 
which affect the in situ stress state. 

There are ways of estimating the in situ stress state from geological 
indicators and there are ways of measuring the stress directly by engi-
neering techniques. The subject of stress will be explained in detail in 
Chapter 3. The distribution of in situ stress values throughout the 
world will be discussed in Chapter 4. We cannot over-emphasize the 
importance of in situ stress because of its natural origin, ubiquity and 
because it is one of the boundary conditions for our mechanics 
considerations. 

2.3.4 Pore fluids and water flow 

In soil mechanics, the concept of pore fluid is fundamental to the whole 
subject. This is because most soils have been formed by the transportation 
and depostion of discrete particles with significant space around them for 
water to move through the soil. The water can be under pressure and hence 
reduce the effect of the applied stresses described in Section 2.3.3. This 
leads to the concept of effective stresses which have proved to be so 
important in soil mechanics, both from the theoretical and applied points 
of view. 

However, rock masses have not been reconstituted in the same way as 
soils, although rock masses are all fractured to a greater or lesser extent. 
This means that accounting for pore fluids and water flow is much more 
difficult in rock mechanics than in soil mechanics. Many rocks in their intact 
state have a very low permeability compared to the duration of the engi-
neering construction, but the main water flow is usually via the secondary 
permeability, i.e. through the pre-existing fractures. Thus the study of water 
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flow in rock masses will be a function of the discontinuities, their 
connectivity and the hydrogeological environment. 

Both the stress and the water flow are significantly affected by engineer-
ing activity. As will be explained later in greater detail, all excavation affects 
the stress state because all the unsupported excavation surfaces are principal 
stress planes and all excavations act as sinks because the in situ hydraulic 
pressure is reduced to atmospheric pressure on the excavation boundary. 
Thus, in the present context we need to understand the nature of perme-
ability and water flow in fractured rock mass systems. Moreover, as will be 
discussed in Chapter 14, there can be interactions between the stress and 
the permeability, both naturally and as they are affected by engineering 
activities. 

Depending on the engineering objective, the above considerations may 
be enough—but there are some applications in which an understanding of 
fluid flow through intact rock can be critical, e.g. in reservoir engineering 
for the petroleum industry. Alternatively, a case where the water flow 
through the fractures is particularly important is in hot dry rock geothermal 
energy projects where the success of the whole project depends on achieving 
the required borehole-to-borehole water flow. An extreme example is the 
case of radioactive waste disposal where the engineer can only state that the 
design of the waste repository is valid if the radionuclide dosage back to the 
biosphere can be calculated, and this can only be done if the three-dimen-
sional flow of water through fractured rock masses can be accurately 
modelled. Because of the long operational life in this latter application, the 
permeabilities of both the intact rock and the fractured rock mass must be 
understood as well as other factors such as sorption of radionuclides onto 
rock fracture surfaces. Many groups have studied the age of the water 
present in the rock to assist in the approach to this problem, again reinforcing 
the point that an understanding of the geological setting is fundamental. 

There are several other aspects of pore fluids and water flow that may 
be important in specific cases, such as groundwater chemistry, the 
formation of caves and rock alteration by fluid movement. The subject of 
water flow recurs throughout this book. 

2.3.5 Influence of time 

Another major factor of importance is the influence of time. On the one 
hand, our engineering material is millions of years old and, on the other, 
our engineering construction and subsequent activities are generally only 
designed for a century or less. Thus, we have two types of behaviour: the 
geological processes in which equilibrium will have been established, with 
current geological activity superimposed; and the relatively rapid engi-
neering process. Over the millions of years, in some areas, the /;/ situ rock 
stresses will have been continually in a stable state yet, in other areas, the 
stresses will have been continually altered by tectonic activity. Similarly, 
the pore pressures even in the most impermeable of rocks will have 
stabilized, but geological activity could be causing overall hydrogeological 
changes. In contrast, the reponse of the rock to engineering occurs over a 
very short time. 
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(b) 

Figure 2.25 (a) Joints caused by rapid brittle fracture, (b) Fold caused by slow ductile 
deformation. 

Although geological activity is essentially long term, there exist both brittle 
and ductile (i.e. rapid and gradual) behaviour which are manifested in quite 
different geological structures as shown in Fig. 2.25. 

In fact, one of our basic tools in mechanics is the theory of elasticity which 
links stresses and strains by the instantaneous response of the rock. Because 
there is no time component in elasticity, this theory is unlikely to fully 
explain geological processes. The theory is, however, likely to be of 
considerable assistance in engineering when we are interested in the initial 
redistribution of the stress field upon excavation. 

The influence of time is important additionally because of factors such 
as the decrease in rock strength through time, and the effects of creep and 
relaxation. Creep is increasing strain at constant stress; relaxation is 
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decreasing stress at constant strain. We might be considering processes 
which occur very rapidly, in particular, stress waves travelling through the 
rock. These could be caused by natural processes, as in earthquakes, or by 
artificial processes such as blasting or mechanical excavation using picks, 
discs or button cutters. Hence, throughout the time range from milliseconds 
to millions of years (say, 16 orders of magnitude), the engineer should have 
some understanding of rate effects. These time aspects will be discussed 
further in Chapter 13. 
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3 Stress 

Stress is a concept which is fundamental to rock mechanics principles and 
applications. For those encountering stress for the first time, it is not a 
straightforward concept to grasp—unless explained very clearly. For this 
reason, and at this stage in the book, we have adopted a key point approach 
to explaining the concept of stress. This is a direct precursor to Chapter 4 
on /// situ stress and provides a link with strain in Chapter 5. Further 
explanation of stress is given in Appendix A. 

3.1 W h y study stress in rock mechanics and 
rock engineering? 

There are three basic reasons for an engineer to understand stress in the 
context of rock mechanics. These are: 

1. There is a pre-existing stress state in the ground and we need to 
understand it, both directly and as the stress state applies to analysis and 
design. This has been discussed in Chapter 2 in the context of the 
geological setting. It is emphasized again here that there can be 
circumstances when, during the engineering, no new loading is 
applied, e.g. when driving an unsupported tunnel in rock. In this latter 
case, the pre-existing stresses are redistributed—which leads us to the 
next reason. 

2. When engineering occurs, the stress state can be changed dramatically. 
This is because rock, which previously contained stresses, has been 
removed and the loads have to be taken up elsewhere. In line with this 
fact, it is also noted in Section 3.9 that all unsupported excavation 
surfaces are principal stress planes, a concept we will explain. Further-
more, most engineering criteria are related to either the deformability 
or the strength of the rock or rock mass and the analysis of these subjects 
involves stresses. For example, almost all failure criteria are expressed 
as a function of certain stress quantities. 

3. Stress is not familiar: it is a tensor quantity and tensors are not 
encountered in everyday life. The second-order tensor which we will be 
discussing has, for example: 
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—nine components of which six are independent; 
—values which are point properties; 
—values which depend on orientation relative to a set of reference axes; 
—six of the nine components becoming zero at a particular orientation; 
—three principal components; and finally 
—complex data reduction requirements because two or more tensors 

cannot, in general, be averaged by averaging the respective principal 
stresses. 

All this makes stress difficult to comprehend without a very clear grasp of 
the fundamentals. 

3.2 The difference between a scalar, a vector 
and a tensor 

As alluded to above, there is a fundamental difference between a tensor 
and the more familiar quantities of scalars and vectors. We will explain this 
first conceptually before the mathematical treatment. 

A scalar is a quantity with magnitude only. Examples of scalars are 
temperature, time, mass and pure colour—they are described completely 
by one value, e.g. degrees, seconds, kilograms and frequency. 

A vector is a quantity with magnitude and direction. Examples of vectors 
are force, velocity, acceleration and the frequency of fractures encountered 
along a line in a rock mass—they are described completely by three values, 
for example, x, y, z components which together specify both direction and 
magnitude. 

A tensor is a quantity with magnitude, direction and 'the plane under 
consideration'. Examples of tensors are stress, strain, permeability and 
moment of inertia—they are described completely by six values, as 
explained in Section 3.7. 

It cannot be over-emphasized that a tensor quantity is not the same as 
a scalar or vector quantity. This applies both in a conceptual sense and in 
the mathematical sense. The reason why we emphasize this so much is that 
both mathematical and engineering mistakes are easily made if this crucial 
difference is not recognized and understood. 

3.3 Normal stress components and shear 
stress components 

On a real or imaginary plane through a material, there can be normal forces 
and shear forces. These are illustrated directly in Fig. 3.1(a). The reader 
should be absolutely clear about the existence of the shear force because it 
is this force, in combination with the normal force, that creates the stress 
tensor. Furthermore, it should be remembered that a solid can sustain such 
a shear force, whereas a liquid or gas cannot. A liquid or gas contains a 
pressure, i.e. a force per unit area, which acts equally in all directions and 
hence is a scalar quantity. 

The normal and shear stress components are the normal and shear forces 
per unit area as shown in Fig. 3.1(b). We have used the notation F^ and F^ 
for the forces, and a and rfor the corresponding stresses. However, many 
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Figure 3.1 (a) Normal forces and shear forces, (b) Normal stresses and shear 
stresses. 

different notations are in use and we encourage the reader not to be 
disturbed by such differences but to establish which notation is being used 
and then use it. There is no 'best' notation for all purposes: some types of 
notation have advantages in specific applications. 

We are now in a position to obtain an initial idea of the crucial difference 
between forces and stresses. As shown in Fig. 3.2(a), when the force 
component, fn, is found in a direction 6 from F, the value is F cos 0. 
However, and as shown in Fig. 3.2(b), when the component of the normal 
stress is found in the same direction, the value is a cos^ 0, 

The reason for this is that it is only the force that is resolved in the first 
case, whereas, it is both the force and the area that are resolved in the 
second case—as shown in Fig. 3.2(b). This is the key to understanding stress 
components and the various transformation equations that result. In fact, 
the strict definition of a second-order tensor is a quantity that obeys certain 
transformation laws as the planes in question are rotated. This is why our 
conceptual explanation of the tensor utilized the idea of the magnitude, 
direction and 'the plane in question'. 

3.4 Stress as a point property 
We now consider the stress components on a surface at an arbitrary orienta-
tion through a body loaded by external forces. In Fig. 3.3(a) a generalized 

(b) 

¥^ = Fcos0 

A. A 

Figure 3.2 (a) Resolution of a normal force, (b) Resolution of a normal stress 
component. 
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(b) 

Figure 3.3 (a) Arbitrary loading of any rock shape, (b) The normal force, AN, and 
the shear force, AS, acting on a small area, A4, anywhere on the surface of an 
arbitrary cut through the loaded rock. 

diagram of a body is shown, in this context a piece of intact rock loaded 
by the forces Fy F2, ..., f „. This is a generic illustration of any rock loaded 
in any static way. Consider now, as shown in Fig. 3.3(b), the forces that are 
required to act in order to maintain equilibrium on a small area of a surface 
created by cutting through the rock. On any small area AA, equilibrium can 
be maintained by the normal force AN and the shear force AS. Because 
these forces will vary according to the orientation of AA within the slice, it 
is most useful to consider the normal stress (AN/AA) and the shear stress 
(AS/AA) as the area AA becomes very small, eventually approaching zero. 
In this way, we develop the normal stress a and the shear stress r as 
properties at a point within the body. 

The normal stress and shear stress can now be formally defined as: 

normal stress, cr„ = lim 
AA^O A A 

1- AS shear stress, r = hm . 

There are obvious practical limitations in reducing the size of the small area 
to zero, but it is important to realize that formally the stress components 
are defined in this way as mathematical quantities, with the result that 
stress is a point property. 

3.5 The stress components on a small cube 
>vithin the rock 

It is more convenient to consider the normal and shear components 
with reference to a given set of axes, usually a rectangular Cartesian x-y-z 
system. In this case, the body can be considered to be cut at three 
orientations corresponding to the visible faces of the cube shown in Fig. 
3.4. To determine all the stress components, we consider the normal and 
shear stresses on the three planes of this infinitesimal cube. 

The normal stresses, as defined in Section 3.4, are directly evident as 
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Direct stress 

Shear stress 

• \ 

Acting on a 
plane normal 
to the X-axis 

Acting on a 
plane normal 
to the X-axis 

Acting in the 
y-direct ion 

Figure 3.4 The normal and shear stress components on an infinitesimal cube in the 
rock aligned with the Cartesian axes. 

shown in Fig. 3.4; however, the case of the shear stresses is not so direct, 
because the resulting shear stress on any face will not generally be aligned 
with these axes. To overcome this problem on any face, the shear force in 
Fig. 3.3(b) is resolved into two perpendicular components which are 
aligned with the two axes parallel to the edges of the face. Two components 
of shear stress are then defined on each of the planes in Fig. 3.4, as the 
diagrams shown in Fig. 3.5 demonstrate. Thus, we arrive at nine stress 
components comprised of three normal components and six shear 
components. 

It should be noted that this discussion has been related only to the 
development and definition of the nine stress components. So far, we have 
not discussed how these components are affected by rotation of the cube 
relative to the reference axes: we are only defining them. The next step, 
therefore, is to list the components in a logical way. We have adopted the 
convention that the first subscript refers to the plane on which the com-
ponent acts, and the plane is defined by the reference axis perpendicular 
to it, e.g. r.,/ acts on a plane perpendicular to the z-axis. The second subscript 
denotes the direction in which the stress component acts, e.g. r^^^ acts in the 
y-direction. 

Fience, it is convenient to collate the stress components in a matrix with 
the rows representing the components on any plane, and the columns 
representing the components acting in any given direction. This is 
illustrated as: 

r̂ , r.,̂  CT_ 

There are many conventions in use for designation of the matrix 
components. 

As an example, the component r̂ ,̂  in the middle of the top row could be 
designated as o"̂ ,̂ , G^if ^xnf P\yf or indeed any expression, say Q̂ /̂,. The most 
important aspect of the notation is that the reader should recognize which 
notation is being used and not be over-concerned about differences of 
nomenclature. 
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Figure 3.5 Illustration of the development of two shear stresses on each face of an 
infinitesimal cube. 

3.6 The symmetry of the stress matr ix 

From the text so far, we know that there are nine separate stress 
components at a point. We also assume that the body is in equilibrium and 
therefore there should be an equilibrium of forces and moments at all 
points throughout the body. Thus, after listing the nine components in the 
matrix above, we should inspect the equilibrium of forces at a point in terms 
of these stress components. 

In Fig. 3.6, we show the four stress components acting on the edges of 
a small square (which is a cross-section through a cube of edge length A/) 
at any given location and in any plane of given orientation in the body. 
We now define a local Cartesian system of axes, perpendicular and parallel 
to the edges of the square. Clearly, the forces associated with the normal 
stress components, (7̂ ^ and a"î î , are in equilibrium; however, for there to 
be a resultant moment of zero, then the two shear stress components have 
to be equal in magnitude. This is demonstrated by taking moments about 
the centre of the square: 

(A//2) X (A/)'r,, - (A//2) x (A/)-r,, = 0. 

Thus, by considering moment equilibrium around the x, y and z axes, we 
find that 

Al 

Al 

1 
lo 

Figure 3.6 Consideration of the rotational equilibrium about the z-axis of a small 
cubic element at any position in a body. 
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If we consider the stress matrix again, we find that it is symmetrical about 
the leading diagonal, i.e. the diagonal from top left to bottom right. The 
matrix below shows this symmetry after the equality of the respective shear 
components has been taken into account: 

^ v u ^uu ^ u : 

^ v : ^ . / : < ^ : 

It should be noted that we have considered only the stress components 
that exist at a point, their equilibrium, and the method of listing them in 
the matrix. We have not yet considered how the actual values of these 
components would change as the reference cube is rotated. We emphasize 
this because the discussion here is completely general and applies to the 
stress state at any point anywhere in any rock mass, or for that matter, in 
any material that can sustain shear stresses. 

3.7 The state of stress at a point has six 
independent components 

From our final listing of the stress components in the matrix at the end of 
Section 3.6, it is clear that the state of stress at a point is defined completely 
by six independent components. These are the three normal stress 
components and three shear stress components, i.e. a^^, Oyy, cr.̂ , r̂ î , 
Ty:- a n d r̂ .3. 

The fact that the state of stress is completely specified by six independent 
components is important and has direct ramifications for the stress 
measurement methods discussed in Chapter 4. Note that a scalar quantity 
can be completely specified by one value, and that a vector quantity can 
be completely specified by three values. However, the stress state at a point, 
which is a tensor quantity, requires six values. 

Furthermore, it should be noted that stress is not the same as pressure. 
The word 'pressure' should be reserved for a specific stress state in which 
there are no shear components and all the normal components are equal— 
as exists in a static fluid, which can sustain no shear stress. Pressure is a 
scalar quantity because it can be completely specified by one value; the 
stress state, on the other hand, requires six independent components. 

The stress state can be specified with reference to a given set of x-, y- and 
2-axes via the components we have explained, or via the magnitudes and 
directions of the principal stresses which are explained in Section 3.8. 
Whatever method is used to specify the stress state, there must be six 
independent pieces of information. 

3.8 The principal stresses 

The stress components in the stress matrix are the three normal stresses and 
the three shear stresses. The actual values of these components in a given 
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body subjected to given loading will depend on the orientation of the cube 
in the body itself. We should consider, therefore, the directions in which 
the normal stress components take on maximum and minimum values. It 
is found that in these directions the shear components on all the faces of 
the cube become zero. 

The principal stresses are defined as those normal components of stress 
that act on planes that have shear stress components with zero magnitude. 
It is convenient to specify the stress state using these principal stresses 
because they provide direct information on the maximum and minimum 
values of the normal stress components—but the orientation of these 
stresses must also be specified (remembering that six independent values 
are required to specify a stress state). 

The values cr̂ , as and 03 in the matrix in Fig. 3.7 are the principal stresses. 
The Arabic subscript notation is used in this book, but it should be noted 
that other notations can be used, e.g. G[, GH and <7ni. In our notation, we 
make the convention that C] > CTI > ^3-

The dramatic significance of this principal stress concept for rock 
engineering is explained in Section 3.9. 

3.9 All unsupported excavat ion surfaces are 
principal stress planes 

Not only are the principal stresses and their directions of fundamental 
significance in stress analysis, the concept of a principal stress also has 
particular significance for rock engineering. This is because all unsupported 
excavation surfaces, whether at the ground surface or underground, have no 

^xx ^xy '^ xz 

'̂ yx ^yy ^y/ 

^zx '̂ zv ^^/y 

(T, 0 0 

0 (72 0 

0 0 ij^ 

Figure 3.7 The stress components on the reference cube and the principal stress 
components. 



All unsupported excavation surfaces are principal stress planes 39 

shear stresses acting on them and are therefore principal stress planes. This 
results from Newton's Third Law ('to every action there is an equal and 
opposite reaction'). Furthermore, and also from Newton's Third Law, the 
normal stress component acting on such surfaces is zero. Thus, we 
know at the outset that the stress state at all unsupported excavation 
surfaces will be 

or in principal stress notation 

0 0 0 

0 a, 0 

0 0 (J. 

expressed, respectively, relative to an x-, y-, z-axes system with x 
perpendicular to the face, and the principal stresses acting as shown in 
Fig. 3.8. 

In Fig. 3.8(a), the pre-existing stress state is shown in terms of the prin-
cipal stresses. In Fig. 3.8(b) the stress state has been affected by excavation: 
both the magnitudes and directions of the principal stresses have 
changed. Neglecting atmospheric pressure, all stress components acting on 
the air-rock interface must be zero. 

It should also be noted that the air-rock interface could be the surface 
of an open fracture in the rock mass itself. Thus, as we will discuss further 
in Chapters 4, 7 and 14, the rock mass structure can have a significant effect 
on the local stress distribution. 

Element 

/-^ excavation 
surface 

Element 
on 
excavation surtace 

(T . . = 0 

Tv. = T, - 0 

(a ) (b ) 

Figure 3.8 (a) Before excavation, (b) After excavation. 
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3.10 Concluding remarks 
We emphasize again that stress is a tensor with six independent 
components. When a force, f, is resolved through an angle 0, the resulting 
components are F cos 0 and F sin 6. However, when a stress component, 
a, contributes to the normal and shear stresses on a plane inclined at an 
angle 0 to the direction in which the stress component acts, the resulting 
components are a cos^ 6 and a sin^ 6. It is crucial to note, as we showed in 
Fig. 3.7, that by suitably orientating the reference cube it is possible to 
eliminate all shear stresses. Conversely, it is not possible to determine an 
orientation for the complementary circumstance where all the normal 
stresses reduce to zero. An elegant method of directly indicating this result, 
that the normal stresses cannot be reduced to zero, is that the first stress 
invariant (a property of the second-order tensor), 

<̂vx + ŷy + <̂22 = CTi + 02 + a"3 = a coustaut, 

cannot be made equal to zero whatever the orientation of the cube— 
because it is a constant. The exception is when the constant is zero, i.e. a 
state of pure shear, for example, with normal stresses of 3, - 1 and -2 MPa, 
so that the first stress invariant is 3 - 1 - 2 = 0. 

The material that has been presented in this chapter, and that which 
follows in Chapter 4, is sufficient for a basic understanding of the nature 
of the state of stress. However, an Appendix on stress analysis has been 
included. The way in which the stress is taken into account in rock 
mechanics and rock engineering is described in succeeding chapters. 
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In this chapter, we will be describing why a knowledge of in situ rock stress 
is important for rock engineering, how the in situ stress data are determined 
and presented, what we would expect the in situ stresses to be, collating 
stress state data from around the world, and finally commenting on rock 
stress variability. 

4.1 W h y determine in situ stress? 

The basic motivations for in situ stress determination are two-fold. 
1. To have a basic knowledge of the stress state for engineering, e.g. in 

what direction and with what magnitude is the major principal stress 
acting? What stress effects are we defending ourselves and our struc-
tures against? In what direction is the rock most likely to break? All other 
things being equal, in what direction will the groundwater flow? Even 
for such basic and direct engineering questions, a knowledge of the 
stress state is essential. 

2. To have a specific and 'formal' knowledge of the boundary conditions 
for stress analyses conducted in the design phase of rock engineering 
projects. 
We have already emphasized that there are many cases in rock 

engineering where the stresses are not applied as such; rather, the stress 
state is altered by the engineering activities, e.g. in the case of excavating 
a rock slope or tunnel. 

4 .2 Presentation of in situ stress state data 

The stress state at a given point in a rock mass is generally presented in 
terms of the magnitude and orientation of the principal stresses (remem-
ber that the stress state is completely described by six parameters). In 
Fig. 4.1(a), we recall that the principal stresses have a certain orientation, 
and in Fig. 4.1(b) that the principal stresses have certain magnitudes. The 
orientations are often presented as in Fig. 4.1(c) via a stereographic 
projection. 
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(a) (b) (c) 

Figure 4.1 (a) Principal stresses acting on a small cube, (b) Principal stresses 
expressed in matrix form, (c) Principal stress orientations shown on a hemispherical 
projection. 

4 .3 Methods of stress determination 

Clearly, any system utilized for estimating the in situ stress state must 
involve a minimum of six independent measurements. There are methods 
of 'direct' stress measurement and there are methods of estimating the 
stresses via various 'indirect' or 'indicator' methods. In this book, we will 
concentrate on the four main methods recommended by the International 
Society for Rock Mechanics (ISRM), while recognizing that there are a 
multitude of direct and indicator approaches available. 

The four direct methods recommended by the ISRM (Kim and Franklin, 
1987) are: 

(a) the flatjack test; 
(b) the hydraulic fracturing test; 
(c) the United States Bureau of Mines (USBM) overcoring torpedo; and 
(d) the Commonwealth Scientific and Industrial Research Organization 

(CSIRO) overcoring gauge. 
Use of the overcoring method is shown in Fig. 4.2. 

Some of the indicator methods are: 

(a) borehole breakouts—damage to a borehole indicating principal stress 
orientations; 

(b) fault plane solutions—back analysis of principal stresses causing faults; 
(c) acoustic emission—the rock emits low-intensity 'noise' when it is 

stressed; 
(d) anelastic strain relaxation—core exhibits expansion/contraction on 

removal from the borehole; 
(e) differential strain analysis—pressurizing a piece of rock indicates its 

previous stress state through differential strain effects; 
(f) core discing—geometry of stress-induced core fracturing indicates 

stress components; 
(g) observations of discontinuity states, e.g. open discontinuities are not 

transmitting stress across the gap. 

The four direct ISRM recommended methods are described below; for 
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Figure 4.2 In situ stress determination in the Carmenellis granite. 

a fuller description of the indirect methods, the reader is referred to Dyke 
(1988). The key reference for the ISRM methods is Suggested Methods for Rock 
Stress Determination, produced by Kim and Franklin (1987). Here, we now 
go on to explain these methods in the context of their ability to determine 
the components of the stress tensor. 

In Fig. 4.3, we have shown four stress tensors and indicated the ability 
of each method to determine the six components of the stress tensor in one 
application. For the flatjack and with the x-axis aligned perpendicular to 
the flatjack, one normal component—in this case Oy^^—can be determined. 
It immediately follows that, to determine the complete state of stress, six 

Flatjack 

\ & ^'> 
^ ^ \ ^^W 

S y m i i i . \ v 

L 

"^x/ 

'^\/ 
v ^ / / 

One normal stress 
component 
determined, say 
parallel lo.v-axis. 

Hydraulic fracturing 

Svmm 

Principal stresses 
assumed parallel to 
axes i.e. plane of the 
fracture, two deter-
mined, say (J I and 
(F:.. one estimated, 
sav (f̂ . 

USBM overcoring torpedo 4. CSIRO overcoring gauge 

Svmm. 

Three cojiiponents 
in 2-D determined 
from three 
measurements of 
borehole diameter 

-I chamie. 
Svmm 

All six components 
determined from six 
(or more) measurements 
of strain at one time. 

Figure 4.3 The four ISRM suggested methods for rock stress determination and 
their ability to determine the components of the stress tensor with one apphcation of 
the particular method. 
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such flatjack measurements have to be conducted at six different orienta-
tions. Note that, in general, the reference axes will not be aligned with the 
flatjack orientation and separate transformations will have to be used for 
each flatjack measurement, because it is the normal stress perpendicular 
to the plane of the flatjack that is being determined, rather than a specific 
component of the stress tensor. In fact, it is interesting to note that whilst 
a normal stress can be determined directly, there is no equivalent method 
of determining a shear stress: the shear components in the tensor must be 
calculated from the measurements of normal stresses in different directions; 
they cannot be measured directly. It should also be remembered that this 
technique determines the stress tensor in an excavation wall and therefore 
determines the induced stress rather than the field stress. (A glossary of terms 
for in situ stress can be found in Section 4.10.) 

With reference to the top right-hand diagram in Fig. 4.3, the basic 
hydraulic fracturing method provides only two items of information—the 
breakdown pressure and the shut-in pressure. Thus, only two components 
of the stress tensor can be established by this technique: the shut-in 
pressure is assumed to give the minor principal stress, a3, whilst the major 
principal stress, a^ is given via the breakdown pressure, the value of 03 and 
the magnitude of the tensile strength of the rock. 

We have seen that, in the case of the flatjack, the six components can be 
determined by using the method at six different orientations. In general, 
this is not possible with hydraulic fracturing, because the tests are 
conducted deep in a borehole. The major advantage of hydraulic fractur-
ing is that it is the only method of determining part of the stress state more 
than a few hundred metres from man-access, and, indeed, may be used up 
to 5 or 6 km depth. However, the major disadvantage is that assumptions 
have to be made in order to complete the stress tensor. These assumptions 
are that the principal stresses are parallel and perpendicular to the borehole 
axis, and that the vertical principal stress can be estimated from the depth 
of overburden. As a result, in the hydraulic fracturing stress tensor in Fig. 
4.3, the two circled components are determined but the three zero values 
for the shear stresses are an assumption, as is the value (of what is taken 
here to be) 02-

In the case of the USBM overcoring torpedo, a two-dimensional state of 
stress is determined, i.e. the three circled components in the diagram in 
Fig. 4.3, giving three components of the three-dimensional stress tensor. 
Thus, two, and preferably three, non-parallel boreholes must be used to 
determine the complete state of stress. It should be noted that in the cases 
of the flatjack and hydraulic fracturing, the material properties of the rock 
have not been used except for the tensile strength which is required in 
hydraulic fracturing. For the flatjack, only the transformation equations are 
required; for hydraulic fracturing, only the stress concentration factors for 
a circular hole are required and these are independent of material 
properties (assuming ideal elasticity); but, for the USBM overcoring 
torpedo, in order to convert the measured displacements to stresses, the 
elastic properties of the rock are required. This introduces a whole new 
series of assumptions. 

Finally, in the case of the CSIRO overcoring gauge, as we have shown 
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in Fig. 4.3, the complete state of stress can be determined from measure-
ments of strain in six or more different directions taken during one 
application of the method. The material properties of the rock are also 
required for this method: a device which is equipped with nine or 12 strain 
gauges can determine the state of stress in a transversely isotropic rock with 
five elastic parameters. 

It is emphasized that the understanding of how the components of the 
stress tensor are established by these four different methods is crucial to 
the planning of an optimal strategy for stress measurement. There are other 
complicating factors which we will be discussing later, but the key is to 
understand the fundamental basis of the tests as described here. In this 
context, none of the indicator methods, with the possible exception of 
differential strain analysis, can estimate the complete stress tensor. It 
follows that invariably our strategy for stress determination will comprise 
of integrating all the information to hand. 

In the following sub-sections, the four main ISRM methods are outlined 
and discussed. The diagrams are those used in the ISRM Suggested 
Methods document. 

4.3.1 Flat jack 

In Fig. 4.4, the basic principle of the flatjack test is shown. Two pins are 
drilled and fixed into the excavation boundary. The distance, d, between 
them is then measured accurately. A slot is cut into the rock between the 
pins, as shown in the diagram. If the normal stress is compressive, the pins 
will move together as the slot is cut. A flatjack, which is comprised of two 
metal sheets placed together, welded around their periphery and 
provided with a feeder tube, is then grouted into the slot. On pressurizing 
the flatjack with oil or water, the pins will move apart. It is assumed that, 
when the pin separation distance reaches the value it had before the slot 
was cut, the force exerted by the flatjack on the walls of the slot is the same 
as that exerted by the pre-existing normal stress. There will be some error 
in this assumption, mainly due to jack edge effects, but these can be taken 
into account if the jack is suitably calibrated. The test provides a good 
estimate of the normal stress across the flatjack. 

The major disadvantage with the system is that the necessary minimum 
number of six tests, at different orientations, have to be conducted at six 
different locations and it is therefore necessary to distribute these around 
the boundary walls of an excavation. Invariably, these tests will be 
conducted under circumstances where the actual stress state is different at 
each measurement location. Hence, to interpret the results properly, it is 
also necessary to know the likely stress distribution around the test 
excavation. 

4.3.2 Hydraulic fracturing 

The hydraulic fracturing method of stress measurement basically provides 
two pieces of information via the breakdown pressure and the shut-in 
pressure (cf. the introductory text in Section 4.3 and part 2 of 
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Figure 4.4 The flatjack test (from Suggested Methods for Rock Stress Determination, Kim 
and Franklin, 1987). (a) Flatjack. (b) Test configuration, (c) Pin separation versus slot 
excavation time and flatjack pressure, (d) The flatjack tests in progress. 

Fig. 4.3). A length of borehole is chosen for the stress measurements and 
an interval, typically 1 m long, is located for the test and isolated using a 
straddle packer system. The isolated zone is pressurized by water until a 
fracture occurs in the rock. The tw ô measurements taken are the water 
pressure when the fracture occurs and the subsequent pressure required 
to hold the fracture open, known, respectively, as the breakdown and shut-
in pressures. 

In connection with this method, it is most important to realize the 
following. First, the packed-off section should be free from fractures so that 
a new fracture is in fact created: a method of establishing this is to use a 
borehole television camera. Second, it is obviously best if the water 
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pressures are measured at the test section, i.e. downhole rather than at 
the surface, if possible. Third, it is necessary to use an impression packer 
or equivalent system to establish the orientation and location of fracture 
initiation. Finally, it should be remembered that, using the basic 
technique, it has to be assumed that the borehole is parallel to a principal 
stress direction. 

A schematic representation of the test equipment (consisting of a straddle 
packer and an impression packer) is shown in Fig. 4.5, together with the 
interpretative calculations. In Fig. 4.6, an early stage in the hydraulic 
fracturing stress measurement procedure is shown. 

There are several problems inherent in the use of this equipment to 
measure the stress state. With reference to the four points mentioned 
earlier, it can often be difficult, if not impossible, to identify a i m length 
of borehole which is fracture free. Furthermore, there can be difficulties in 
measuring water pressures accurately, and in correctly identifying the 
breakdown and shut-in pressures. There is the question of whether the 
crack initiating at the borehole wall in fact propagates in the same direction 
(e.g. it may curl into the plane normal to the borehole axis). Lastly, it is 
often a completely unjustified assumption that the borehole is indeed 
parallel to a principal stress. Against all these points, however, is the fact 
that the hydraulic fracturing method is the only direct method available 
for stress measurement at any significant distance from the observer (i.e. 
distances greater than 100 m), and it has been used to depths of several 
kilometres. 
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Figure 4.5 (a) The hydraulic fracturing system and (b) associated calculations (from 
Suggested Methods for Rock Stress Determination, Kim and Franklin, 1987). 



4 8 In situ stress 

Figure 4.6 Hydraulic fracturing straddle packer system being lowered into a 
borehole during stress measurement tests in Cornwall, UK. 

In the calculation method shown in Fig. 4.5(b), it is assumed that the 
stress concentration of a principal stress component around the borehole 
in the horizontal plane shown has extreme values of -1 and 3. As shown, 
the shut-in pressure, Ps, is assumed to be equal to the minor horizontal 
principal stress, (Jh. The major horizontal principal stress, CJH, is then found 
from the breakdown pressure. In the formula in Fig. 4.5, the breakdown 
pressure, Pg, has to overcome the minor horizontal principal stress 
(concentrated three times by the presence of the borehole) and overcome 
the in situ tensile strength of the borehole rock; it is assisted by the tensile 
component of the major principal horizontal stress. Note that when a 
borehole is pressurized with water at a given pressure, a tensile stress 
component of the same value is induced in the borehole periphery. 
Moreover, we have also assumed that the crack has propagated in a 
direction perpendicular to the minor principal stress. 

All of these factors contain further tacit assumptions, in particular 
that the elasticity theory is valid. For this to be true, and the stress 
concentration factors of -1 and 3 around the circular borehole to be valid, 
the material of the borehole wall must be continuous, homogeneous, 
isotropic and linearly elastic. Furthermore, we have also assumed in this 
basic analysis that the rock is impermeable, so that borehole water has not 
penetrated the rock and affected the stress distribution. 
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If the elasticity assumptions are made, we find that the stress 
concentration factors do not depend on the elastic constants of the rock nor 
the diameter of the borehole. We do, however, need to know the tensile 
strength of the rock and this is a subject fraught with controversy. Suffice 
it to say, the best way to measure the tensile strength is under the 
conditions for which it is required, i.e. by pressurizing a hollow cylinder 
of rock. This is because the tensile strength (i.e. the stress causing tensile 
failure) is not a material property. A material property does not depend on 
the specimen geometry and loading conditions of the test: the tensile 
strength does. 

Against this background of many potential difficulties, a great deal of 
research effort is being expended on improving confidence in stress 
measurements made using this technique. There are ways of overcoming 
all the difficulties mentioned above, see Cuisiat and Haimson (1992). 

4.3.3 The USBM borehole deformation gauge 

As indicated in part 3 of Fig. 4.3, the USBM technique allows the complete 
stress state in a plane to be determined from three measurements of 
the change in different diameters of a borehole when the stresses are 
released by overcoring the borehole. The instrument is shown in Fig. 4.7. 
When the torpedo is inserted in a borehole, six 'buttons' press against 
the borehole wall and their diametral position is measured by strain gauges 
bonded to the sprung steel cantilevers supporting the buttons. When this 
borehole is overcored by a larger drill, the stress state in the resulting 
hollow cylinder is reduced to zero, the diameter of the hole changes, the 
buttons move, and hence different strains are induced in the strain gauges. 
From previous calibration exercises, the actual diametral changes are 
deduced. From these changes, and with the use of elasticity theory, the 
biaxial stress state in the plane perpendicular to the borehole axis is 
deduced. 

In this test, as in hydraulic fracturing, we are determining far-field 
stresses which have been concentrated around the measurement borehole. 
A useful aspect of the USBM technique is that it produces an annular core 

Figure 4.7 The USBM borehole deformation gauge. 
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which may be used in the laboratory to determine the elastic properties 
directly at the site where the test was conducted. Given the validity of the 
assumptions, the USBM gauge and its homologues are efficacious because 
they are reusable, permit measurements to be made many times within a 
borehole and are relatively cheap and robust. In Fig. 4.8, the raw data 
recorded during a USBM overcoring stress measurement test are shown. 
It can be seen that the effect of removing the pre-existing stress 
components has been to cause an expansion along all three diameters, with 
one of the deformations, W3, in the figure, being more than the other two 
deformations. 

The measurement of a diametral displacement is analogous to the use 
of a flatjack for measuring the normal stress component. In a similar way 
to the flatjack, each measurement of displacement effectively permits cal-
culation of one normal strain. Through the use of the stress transformation 
equations, it is possible to calculate the principal components of the biaxial 
stress state and their orientations. There is, however, the added com-
plication of the presence of the borehole, which perturbs the stress state 
from its natural in situ state. 

4.3.4 The CSIRO overcoring gauge 

This device operates on a similar principle to the USBM torpedo except that 
it is a gauge which is glued into the borehole and can measure normal 
strains at a variety of orientations and locations around the borehole wall. 
The gauge is glued into position within the pilot hole, initial readings of 
strain are taken and the gauge is then overcored. This destresses the 
resulting hollow cylinder and final strain gauge readings are taken. The 

The traces are the electrical output from the device 
plotted against time during overcoring and hence 

illustrate the evolution ol" diametral change during 
overcoring. 
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Figure 4.8 Data obtained during a USBM overcoring test. 
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(a) 

(b) 

(c) 

Figure 4.9 The CSIRO overcoring gauge, (a) The CSIRO gauge, (b) Installation of 
the gauge, (c) A sectioned hollow cylinder core containing a CSIRO gauge. 
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gauge has either 9 or 12 separate strain gauges, in rosettes of three, so there 
is some redundancy in the measurements—thus permitting statistical 
analysis of the data. Alternatively, if the rock is assumed to be transversely 
isotropic rather than completely isotropic, then the extra readings allow the 
stress state to be calculated incorporating the rock anisotropy. For a fuller 
discussion of anisotropy and the numbers of associated elastic constants, 
the reader is referred to Chapters 5 and 10. 

One major advantage of this and similar gauges is that the resulting 
hollow cylinder is retrieved from the borehole and can be subjected to 
laboratory testing under controlled conditions in order to determine both 
the functionality of the system (e.g. whether any strain gauges have 
debonded, whether the cylinder is composed of intact rock, etc.) and the 
necessary elastic constants. 

As with all the methods discussed, this technique has its limitations and 
disadvantages. One major problem is the environment within the 
borehole: prior to gluing the gauge in place, the surface of the wall can 
easily become smeared with material deleterious to adhesion; if the drilling 
fluid is at a different temperature to the rock, then thermal expansion or 
contraction of the hollow cylinder can lead to misleading strains being 
induced; and the long-term stability of the glue may not be compatible with 
the installed life of the gauge. Against this are the factors that the gauge is 
relatively cheap, it contains built-in redundancy (both electrical and 
mathematical) and, uniquely of the four methods described here, the 
complete state of stress can be established with one installation. 

4 .4 Statistical analysis of stress state data 

With repeated measurements of a variable, it is customary scientific practice 
to apply some form of statistical treatment for the purpose of establishing 
the accuracy and precision of the measurement system. Thus, when a scalar 
quantity is being measured, the mean and standard deviation are 
conventionally used as measures of the value and its variability. However, 
a scalar is defined by only one value, whereas, in the case of the stress 
tensor, there are six independent values. This has crucial ramifications for 
averaging a number of stress tensors and for specifying the variability of 
the stress state. 

We have explained that the stress state is normally specified via the 
magnitudes and orientations of the principal stresses. So, if a number of 
stress measurements have been made in a particular region, it is very 
tempting to estimate the average stress field by averaging the principal 
stresses and their orientations separately, as demonstrated in Fig. 4.10(b). 
This is incorrect: it is wrong to take the average of the major principal stresses 
in a number of stress tensors—because they may well all have different 
orientations. The correct procedure is to find all the stress components with 
reference to a common reference system, average these components, and then 
calculate the principal stresses from the six values of averaged components, 
as demonstrated in Fig. 4.10(b) and the box in the text. Note also that each 
of the six independent components of the stress tensor has its own mean 
and standard deviation: these will generally be different for each of the six 
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stress components. Thus, the variability (expressed via the six standard 
deviations of the components) is in itself a tensor with its own principal 
values and directions—which may not coincide with the mean principal 
stress directions. The subject of tensor statistics is, however, beyond the 
scope of this book. 

The point being made is that the correct procedure for determining mean 
stresses must be utilized. Also, the form of the variability of several 
measurements made in one location can in itself be diagnostic. The direct 
procedure for establishing mean principal stresses from two stress tensors, 
say, the results of two stress determinations, is shown in the box below. The 
method outlined in the box can, of course, be extrapolated to any number 
of tensors. 

Correct method for averaging fv/o stress 
tensors 

Two principal stress tensors resulting from stress measurement prog 
rammes are shown below and identified by the superscripts a and b: 

The principal stress components in these tensors will generally have 
different orientations. Before averaging can proceed, these must be 
transformed to a common set of reference axes, thus: 

When averaged, these tensors give a subsequent tensor , 

« , + ( T ; ; , ) / 2 ( r ; + r : ; ) /2 ( r ; + r : j / 2 

K,+c7;;„)/2 ( r ; + T;;)/2 

Symmetric ~~~-~-.-.̂  (o'L + at) / 2 

from which can be calculated the 'global' average principal stress tensor: 

a, 0 0 

0 (T, 0 

0 0 a, 

together with the directions of the principal stresses. 
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Figure 4.10 Demonstration of stress tensor averaging, (a) Principal stresses to be 
averaged, (b) Incorrect (A) and correct (B) methods of averaging. 

In Fig. 4.11 ŵ e also illustrate the addition of tw ô tw^o-dimensional tensors 
via the Mohr's circle representation of stress. This figure is particularly 
interesting because it provides a further intuitive understanding of the 
tensor concept—as being composed of one scalar component and one 
vector component. Thus, w^hen adding tw^o tensors one adds the 
hydrostatic components as scalars along the normal stress axis and the 
deviatoric components as vectors in r-O" space. This representation can also 
be extrapolated to any number of tensors. 

4.5 The representative elemental volume for 
stress 

Later on, and especially in Chapter 9 on permeability, we w îll be 
discussing the concept of the representative elemental volume (REV). 
When tests are conducted on rock there is a spread in the measured values. 
This spread will occur through natural inhomogeneity of the material but, 
more importantly in this context, the values will depend on how the 
pre-existing discontinuities have affected the measured values. The 
REV is the volume, for any given body, at which the size of the sample 
tested contains a sufficient number of the inhomogeneities for the 
'average' value to be reasonably consistent with repeated testing. This 
concept is illustrated in Fig. 4.12 where the variability versus volume is 
generically illustrated. 

As shown, with low specimen volumes, the absence or presence of 
discontinuities is highly variable but, as the specimen volume is increased, 
the sample of discontinuities becomes more and more statistically repre-
sentative, until the REV is reached. This concept applies to all rock 
properties and conditions which are affected by discontinuities, and is 
especially pertinent (and paradoxical) for stress measurements. The 



The representative elemental volume for stress 55 

(a) 

(b) 

0"H = (O"! + (^3)/2 

' O / 2 . O * 5^^^9.6<v>^2.4 
'7 ^ f 

Vector addition of 
deviatoric component 

Scalar addition of 
hydrostatic component 

Figure 4.11 Adding two stress tensors using Mohr's circle representation, (a) The 
hydrostatic and deviatoric components of the stress tensor, (b) Representation of 
the hydrostatic and deviatoric components in Mohr's circle. 

paradox occurs because stress is defined as a property at a point, i.e. the 
property of a sample with zero volume. The value at zero volume is plotted 
on the vertical axis in the top diagram of Fig. 4.12. It is immediately 
apparent that we should expect wide variations in measured in situ stress 
values because of the capricious effect of discontinuities at small volume. 
It should be recalled in this context that the strain gauges mentioned in 
Sections 4.3.3 and 4.3.4 measure strains only over distances of about 5 mm. 
The paradox arises because we are generally attempting to estimate the in 
situ stress which is being applied to a volume greater than the REV, but 
stress is a property at a point. Certainly, this super-REV stress is the one 
which we would require for input as a boundary condition to a numerical 
analysis of an engineering structure. In the design though, it could well be 
a local maximum in the stress field (the local sub-REV stress) acting on a 
small volume of rock which is critical for the stability of the structure as a 
whole. 

There are many ramifications of the diagram in Fig. 4.12. The variability 
of the stress state with sampled volume has strong implications for stress 
measurement strategies, data reduction and presentation. It immediately 
suggests the idea of measuring stresses on the super-REV scale through a 
method such as 'tunnel undercoring' using very long extensometers for 
strain measurement (Windsor, 1985). Also, the figure suggests that 
numerical stress analyses of fractured rock should consist of continuum 
methods for large volumes of rock and discontinuum methods for sub-REV 
volumes. Moreover, the existence of discontinuities, together with their 
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Figure 4.12 Variability in measured values w îth respect to sample volume, 
illustrating the REV. (a) General concept, (b) Example data scatter. 

past and present effects on the stress state, has led to a plethora of terms 
describing different types of stress. In order that clarity is preserved 
here, this chapter concludes with a glossary of terms associated v^ith in situ 
stress. 

4 .6 Predictions of natural in situ stress states 
based on elasticity theory 

We have mentioned that the in situ stress field is conveniently expressed 
via the orientations and magnitudes of the principal stresses. As a first 
approximation, therefore, let us assume that the three principal stresses of 
a natural in situ stress field are acting vertically (one component) and 
horizontally (two components). Following this assumption concerning 
orientations, it becomes possible to predict the magnitudes of these 
principal stresses through the use of elasticity theory. 

4.6.7 rfie vertical stress component 

We might expect that the vertical stress component increases in magnitude 
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as the depth below the ground surface increases, due to the weight of the 
overburden. As rules of thumb, taking the typical density of rock into 
account: 

1 MPa is induced by 40 m of overlying rock, or 
1 psi is induced by 1 ft of overlying rock. 

More generally, we should use the expression 

induced vertical stress, a^, = yz MPa 

where z is the depth, measured in metres, below the ground surface and 
/ i s the unit weight, measured in MN/m" .̂ Examples of /are : 

7 = 0.01 MN/m"^ for some coals, 
0.023 M N W for some shales, 
0.03 MN/m^ for gabbro. 

This approach is always used as an estimate of the vertical stress 
component unless, of course, the stress determination programme does 
include direct measurement of the vertical stress. We have seen, for 
example, that during the course of data reduction in hydraulic fracturing, 
the vertical stress component is estimated by this technique. Conversely, 
using the CSIRO gauge, the complete stress tensor is determined and so it 
is not necessary to estimate the vertical stress component. We will be 
discussing later in this chapter whether the measured stress states do 
correspond to such preconceived notions. 

4.6.2 The horizontal stress components 

We now consider the magnitudes of the horizontal stress components. 
Given that the vertical stress has a particular magnitude at a point in a rock 
mass, we might expect that a horizontal stress would be induced as a result 
of the vertical compression of the rock. To provide an initial estimate of this 
stress, based on elasticity theory and assuming isotropic rock, we must 
introduce the parameters Young's modulus and Poisson's ratio (a more 
detailed treatment of the elastic constants is given in Chapter 5 and a 
discussion of the validity of elasticity theory itself is given in Chapter 10). 

In Fig. 4.13, an illustration of an element of rock being uniaxially stressed 
is given—the applied axial stress is cr, and the resulting axial strain is e^. 
There is also a lateral strain induced, £\, because the element expands 
laterally as it is being axially compressed. From these values, we define the 
Young's modulus and Poisson's ratio as: 

. , , , 1 7 - axial stress cr, 
Young s modulus, E = = -^ 

axial strain e^ 

r^ . , .. lateral strain e, 
Poisson s ratio, v = = — .̂ 

axial strain e^ 

Utilizing these parameters, we can derive expressions for the strain along 
any axis for the small cube at depth in a rock mass illustrated in Fig. 4.13(c). 
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Figure 4.13 Strains on a small element of rock, (a) Axial strain and Young's 
modulus, (b) Lateral strain and Poisson's ratio, (c) Vertical and horizontal strains. 

In this case, the total strain along any given axis may be found from the 
strain due to the associated axial stress, with the induced strain 
components due to the two perpendicular stresses being subtracted. 

For example, the vertical strain, e^, is given by the expression 

E 
vcr̂  V^H2 

where aHi and aH2 are the two principal horizontal stress components. 
In the same way, the horizontal strain, £HI/ can be expressed as 

" £ ~ £ " £ • 

To provide an initial estimate of the horizontal stress, we make two 
assumptions: 

(a) the two horizontal stresses are equal; and 
(b) there is no horizontal strain, i.e. both £HI ^^^ %2 ^^^ zero. 

We began this analysis by considering an element within an isotropic rock 
mass, and so we would expect the two horizontal stresses induced by the 
vertical stress to be equal. Moreover, the element of rock cannot expand 
horizontally because it is restrained by similar adjacent elements of rock, 
each of which is also attempting to expand horizontally. If, therefore, we 
take £HI ^S zero in the second equation above we find 

0^ 
£ 

vcr. 
E 
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and so 

V 

1-v 

where (JH = CTHI = ^H2- This relation has been known for some time: 
according to Turchaninov et al (1979), it was first derived by Academician 
Dinnik in 1925. 

From this analysis, we find that the ratio between the horizontal stress 
and the vertical stress of v/(l - v) is only a function of Poisson's ratio. Hence, 
knowing the extremes of Poisson's ratio for rock-like materials, we can 
find the theoretical upper and lower bounds for the induced horizontal 
stress. 

We have 

V = 0, CTH = 0 

V = 0.25, CTH = 0.33av 

V = 0 .5, aH = CTv 

showing that the lower bound is for a value of Poisson's ratio of zero (i.e. 
the application of a vertical stress does not induce any horizontal strain), 
when there is no horizontal stress induced. At the other extreme, the upper 
bound is given for a Poisson's ratio of 0.5 (the value for a fluid) when the 
induced horizontal stress equals the applied vertical stress. In between, 
measured values of the Poisson's ratio for intact rock are typically around 
0.25, indicating that the induced horizontal stress might be approximately 
one third of the applied vertical stress. 

These calculations have indicated the likely values of the vertical and 
horizontal natural in situ stress components based on the application of 
elasticity theory to an isotropic rock. It is also implicit in the derivations that 
gravity has been 'switched on' instantaneously to produce the stresses: this 
is manifestly unrealistic. Nevertheless, we can now compare these predic-
tions with measured data collated from stress determination programmes 
worldwide. 

4.7 Collated >vorldvs^ide in situ stress data 

Because of the need to know the in situ stress state for engineering 
purposes, there have been many measurements made of the in situ stress 
state over the last two or three decades. In some cases, the programmes 
have been rather cursory and not all components of the stress tensor have 
been determined; in other cases, the programmes have specifically 
attempted to estimate all six independent components of the stress tensor. 
Some of these data were collected by Hoek and Brown (1980) and are 
presented in the two graphs shown in Figs 4.14 and 4.15. 

In Fig. 4.14, the line representing one of the equations intimated in 
Section 4.6.1, i.e. av = 0.0272, is also shown (here, the value of 0.027 has been 
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Figure 4.14 Collated worldwide in situ stress data: vertical stress component (after 
Hoek and Brown, 1980). 

adopted as a generic unit weight). It can be seen that the estimate of the 
vertical stress component is basically correct, but only in the sense of a 
regression, or best fit, line. In some cases, the measured stress component 
is almost exactly as predicted, but in other cases and especially at depths less 
than 1000 m, the measured stress component can be dramatically different 
to the predicted component. Note that there are cases near the surface 
where the measured vertical stress component is about five times the 
predicted component. Also, between depths of 500 and 1500 m, there are 
cases where the measured stress component is five times less than 
predicted. We can conclude, therefore, that whilst the equation provides 
a good predictive estimate of the average stress from all the data, it can 
certainly not be relied upon to provide a correct estimate at any specific 
location. This implies that, if at all possible, it is best to measure rather than 
estimate the vertical stress component. 

It should be noted that the horizontal axis in Fig. 4.15 is the mean of the 
two horizontal stress components, normalized by dividing by the vertical 
stress component. In this sense, the ratio on the horizontal axis is equivalent 
to the v/(l - v) coefficient calculated earlier: in engineering rock mechanics 
it is generally known as k. A particular point to remember is that by taking 
the average of the two horizontal stresses, which could well be the major 
and minor principal stresses, a large element of the more extreme variability 
may have been suppressed. However, the compilers found this was the 
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Figure 4.15 Collated worldwide /// situ stress data: mean horizontal stress 
component (after Hoek and Brown, 1980). 

best approach, because the complete stress tensor was not available in all 
cases. They suggested two formulae as envelopes for all the data in their 
compilation, viz. 

100 „ . , 1500 ^^ 
+ 0.3 < /c < + 0.5. 

Note that the shaded vertical column in Fig. 4.15 gives the range of /c-ratios 
from 0.33 to 1.00 that was predicted from simple elasticity theory and that, 
with increasing depth, the /c-ratios given by the envelope formulae 
above tend towards 0.3 < /c < 0.5. Thus, for significant depths, one 
could argue that the elasticity model provides some indication of the 
/:-value. 

It is manifestly clear from the data, however, that it is the rule rather than 
the exception that the horizontal stress component (defined as the mean 
of the two horizontal components) is larger than the vertical stress 
component. For example, at depths likely to be encountered in civil 
engineering, say 0-500 m, in 92% of the studied cases (100% of the cases 
outside Canada), the magnitude of the mean horizontal stress exceeds that 
of the vertical stress component. Also, at typical mining depths (say, 
anywhere between 0 and 1000 m), the same trend applies. Of course, we 
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would expect the highest ratios to occur very close to, or at, the surface 
because the vertical stress is zero at the surface. 

With reference to Fig. 4.14, we saw that the calculation for the vertical 
stress component gave a reasonable prediction of the overall trend. This 
cannot be said for the data presented in Fig. 4.15: the horizontal stress 
components do not follow the trends predicted by simple elasticity theory, 
except asymptotically at depths of several kilometres. We should consider 
the reasons for this large variation in what are universally higher /c-ratios 
than predicted. Furthermore, it is likely to be of interest in different regions 
of the world to plot the orientations of the maximum horizontal principal 
stress as has been done in Fig. 4.16 for North West Europe. From this map, 
it can be seen that there is a general trend of north west-south east for the 
maximum principal stress in the region. This leads us naturally into a 
discussion of the reasons for high horizontal stresses. 

4 .8 Reasons for high horizontal stresses 

High horizontal stresses are caused by factors which fall into the categories 
of erosion, tectonics, rock anisotropy, local effects near discontinuities and 
consequential scale effects. 

LEGEND 
\ Direction of maximum horizontal stress from in situ measurement. 

p . Horizontal stress equal in all directions as found 
^ from in situ measurement. 

\ Direction of maximum horizontal stress inferred 
from earthquake focal plane solution. 

1 1 Alpine fold belt. ^ 

^ Direction of maximum 
horizontal stress inferred 
from breakout analysis. 

V^ Direction of maximum 
horizontal stress as 
measured in BRE 
directed in situ stress 
programme. 

A. Carwynnen 
B. Morley Quarry 
C. Back Lane 
D. Wray 

Figure 4.16 Orientation of the maximum horizontal principal stress in North West 
Europe (after Hudson and Cooling, 1988). 
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4.8.1 Erosion 

The possibility that erosion of the ground surface causes an increase in the 
k-value is discussed by Goodman (1989). The basic idea is that the formula 
for v/(l - v) is valid for the initial rock mass. On erosion of the ground 
surface, however, the removal of the overburden and the consequential 
effect on both the vertical and horizontal stresses will cause an increase in 
the /c-value, including values above unity. Also, if the horizontal 
stresses become Tocked in', naturally, dividing by a lower vertical stress 
component will result in a higher /c-value. This subject is complex 
because of the prograde and retrograde modes of geological deformation, 
the time-dependent effects during this phenomenon, followed by erosion 
of a possibly uneven ground surface. Suffice it to say that the processes are 
certain to affect the magnitudes of the horizontal stress components. 

4.8.2 Tectonic activity 

We discussed under the Geological Sethng heading in Chapter 2, that there 
is significant current stress activity due to tectonic plate movement. 
Certainly, the data in Fig. 4.16 would indicate that some form of tectonic 
activity was responsible for a reasonably consistent trend of the maximum 
horizontal principal stress over such a large region. From the 1906 and 1989 
earthquakes along the San Andreas fault in California, USA, we know that 
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Figure 4.17 Subduction zone off the west coast of South America causing high 
horizontal in situ stresses (from Barros ct al, 1983). 
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high shear stresses can be present and result from tectonic activity. In Fig. 
4.17, we illustrate the subduction zone off the coast of Chile, the genesis of 
the Andes and hence the likely high horizontal normal stresses we would 
expect from such activity. In fact, both the largest surface and largest 
underground mines in the World are in Chile—and they both show strong 
signs of stress-related phenomena in terms of rock slope instability and 
rockbursts, respectively. 

4.8.3 Rock anisotropy 

In Section 4.6.2 we derived the expression v/(l - v) as the ratio between the 
horizontal and vertical stresses and noted that for v varying between 0 
and 0.5 the corresponding /c-ratio varied from 0 to 1. We will be discussing 
anisotropy in much greater detail in Chapter 5, on strain, and in Chapter 
10 on inhomogeneity and anisotropy. It is worth mentioning here, though, 
that there are three types of isotropy commonly considered in 
rock mechanics, namely: complete isotropy, transverse isotropy and 
orthotropy. 

Our earlier calculation was for a rock with complete isotropy (having the 
same properties in all directions). It is possible to calculate the /c-value for 
a material which is transversely isotropic (having different properties in the 
vertical direction to the horizontal directions), and for the orthotropic case 
(having different properties in three perpendicular directions). The 
explanation, both mathematical and intuitive, for these types of isotropy 
and the associated elastic material constants is given in Chapter 5. The 
important point is that the fc-values for each case are as shown in 
Fig. 4.18 by the terms in parentheses. 

As indicated by the sketches in the figure, transverse isotropy might well 
represent relatively unfractured sedimentary rocks, whereas, orthotropy 
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Figure 4.18 Relation between vertical and elastically induced horizontal stresses for 
the different types of isotropy. 
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could well be a good representation for rocks containing three mutually 
perpendicular sets of discontinuities. It can be seen from the expressions 
for k in Fig. 4.18 that the horizontal stress components can be different for 
certain values of the elastic constants in the orthotropic case. 

It is a consequence of the assumption of transverse isotropy that the two 
horizontal principal stresses will be equal. However, in the case of 
orthotropy, the horizontal stresses can take on different values. Thus, it is 
in this last case that we find the conditions as encountered in the natural 
rock mass. In fact, there is nothing surprising about having one component 
of the horizontal stress field being much higher than the other; the apparent 
inconsistency lies in the oversimplication of the rock mass as a purely 
isotropic material. This subject will be amplified in Chapter 8 on rock 
masses. 

4.8.4 Discontinuities 

The discussion in the earlier sections was about accuracy and precision, i.e. 
bias and spread in the measurements. We noted that, in the case of the 
vertical stress component, the prediction based on the overlying rock 
weight was more or less accurate—in the sense that the prediction was a 
good fit to the data—but there was a spread in the results. The situation 
with the horizontal stress component was more complicated because of the 
unexpectedly high values of the horizontal stress components and the large 
spread of values. One of the most important factors causing the spread of 
results in both cases is the fact that the rock is not a continuum. All rocks 
are fractured on various scales, so the rock mass is a discontinuum and the 
internal stress distribution reflects this geometry. Thus, we must ask the 
questions: 'To what extent is the stress state affected in the region of a rock 
fracture?', 'How is this affected by scale?', and 'How does this affect the 
results of a stress determination programme?' These are the subject of the 
discussion presented in the next section. 

4 .9 Effect of discontinuities on the proximate 
state of stress 

In Fig. 4.19 we show just one example of the influence that a rock fracture 
can have on the overall stress state, in this case illustrated for a plane strain 
case and a far-field hydrostatic (i.e. CT] = 0*2 = CJ3) stress state. It is clear from 
the figure that both the principal stress orientations and magnitudes are 
dramatically perturbed by the presence of the fracture. Note also that we 
have purposely not included any absolute scale in this figure. The elastic 
modelling used here could represent a fracture of any scale, from a very 
small flaw in a crystal, through a single rock joint in an otherwise 
unfractured rock mass, to a fault in a tectonic plate. This has major 
consequences for stress determination strategies and interpretation of 
results. Clearly, for a discontinuity of the order of 10 km long, all stress 
measurements in an adjacent proposed engineering site would be 
affected by the presence of the discontinuity—but perhaps this is the stress 
state that should be measured. Conversely, the single rock fracture could 
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Figure 4.19 Example of the effect of a discontinuity on the near-field stress state, 
for an applied hydrostatic two-dimensional stress with the discontinuity having a 
modulus of 10% of the host rock (from Hyett, 1990). The crosses represent the 
magnitudes and directions of the principal stresses. Note how the stress field close 
to the discontinuity is quite different from the far-field stress. 

be several metres long and only causing a perturbation in the region w^here 
the stress determination happens to be made. One can easily imagine the 
bias and the spread of results that w^ould be obtained by measuring the 
stresses in boreholes through the rock around the fracture in the diagram. 
We feel that the large spread of stress state data is mainly due to the 
combined effects of a hierarchy of such fracture systems, w^hich we know 
exists in all rocks. It foUow ŝ that a w îde spread in measured values is not 
necessarily due to bad experimental techniques: on the contrary, the spread 
itself can indicate a great deal about the in situ stress state. 

The discontinuity illustrated in Fig. 4.19 has an effective modulus of 10% 
of the host rock. It is interesting to consider the effect on the stress field 
w^hen the discontinuity modulus varies from zero to infinity. This is 
illustrated in Fig. 4.20, in which the principal stresses are altered in the 
vicinity of the discontinuity. In Case 1, we consider an open discontinuity, 
similar to the unsupported excavation surface described in Section 3.9. In 
this case, the major principal stress is diverted parallel to the discontinuity 
and the minor principal stress takes on a value of zero perpendicular to the 
discontinuity. In Case 1, the diagram could represent an open discontinuity 
or an open stope in an underground mine. 

In Case 2, in Fig. 4.20, the discontinuity is filled with a material having 
the same modulus as the surrounding rock. Under these circumstances, 
and assuming no slip, the discontinuity would be mechanically 
transparent, with the magnitudes and orientations of the principal 



Effect of discontinuities on the proximate state of stress 67 

Major 
principal cr 
stress 

Case 1 : 
Case 2 : 

Case 3 : Er> 

Discontinuity 
filling 

ED - Young's modulus 
of discontinuity 
filling 

E - Young's modulus 
of surrounding 
rock 

: 0 Open discontinuity 
: E Discontinuity filling has same 

modulus as surrounding rock 
^00 Discontinuity filling is 

effectively rigid 

Figure 4.20 Effect of stiffness of discontinuity filling material on the stress state. Two 
extreme cases are shown—where the discontinuity filling has a modulus of zero 
(Case 1) and infinity (Case 3)—together with an intermediate case where the 
discontinuity filling has the same modulus as the surrounding rock (Case 2). 

stresses being unaffected. At the other end of the spectrum, in Case 3, the 
discontinuity is filled by a rigid material. Then, the major principal stress 
is drawn in perpendicular to the discontinuity and the minor principal 
stress becomes parallel to the discontinuity. 

In general, for most engineering circumstances such as discontinuities 
or back-filled mine stopes, the stress distribution will be between those 
shown for Cases 1 and 2. A circumstance between Cases 2 and 3 could arise 
where a discontinuity in a soft rock is filled with a stiffer material, e.g. 
quartz veins in soft limestone or a volcanic pipe surrounded by softer rocks. 

We have mentioned that the discontinuities being considered could be 
on a variety of scales. In fact, we would expect effects such as those 
illustrated in Fig. 4.20 to be superimposed as a result of the existence of 
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Figure 4.21 Stress state-scale relations. 
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discontinuities at various scales. Naturally, the zone of influence of a 
discontinuity will depend on its size. Through such considerations, we 
again arrive at a concept similar to the representative elemental volume, 
as shown in Fig. 4.12. It is not possible to provide a coherent diagram 
covering all eventualities, but we show in Fig. 4.21 the type of relation that 
could exist between stress state and scale. 

In addition to the effects just described, we must expect that consider-
able deformation of rock masses has occurred during geological history. 
This results not only in alterations to the existing far-field stress, but also 
leads to the presence of residual stresses which are superimposed at 
different scales. We have attempted to illustrate these combined effects in 
Fig. 4.21, where the horizontal axis is domain size and the vertical axis 
represents some upper value of a chosen stress component. Indicated on 
the figure are stresses on the scales of a point, overcore strain gauge, 
borehole, engineered structure and an intraplate block. The reader should 
be aware that the curve shown in Fig. 4.21 is an envelope, not an explicit 
curve. The figure clearly demonstrates that a spread in the results of stress 
determination programmes must be expected, but this spread will reduce 
as the size of the sampled volume increases. 

4 . 1 0 Glossary of terms related to stress states 
in rock masses 

It should be clear by this stage that the determination of stress—and indeed 
the description of a stress state in words—is fraught with complications. 
As a result, a plethora of terms is used by many authors. Here, we provide 
a glossary of terms which are consistent with our explanations and the 
motivations for determining stress. The descriptive terms are defined for 
their further use throughout this book and are in part adapted from Hyett 
et al (1986). 

Natural stress. The stress state that exists in the rock prior to any artificial 
disturbance. The stress state is the result of various events in the 
geological history of the rock mass. Therefore, the natural stresses present 
could be the result of the application of many earlier states of stress. 
Synonyms include: virgin, primitive, field and active. 

Induced stress. The natural stress state, as perturbed by engineering. 
Residual stress. The stress state remaining in the rock mass, even after the 

originating mechanisms have ceased to operate. The stresses can be 
considered as within an isolated body that is free from external 
tractions. A synonym is remanent stress. 

Tectonic stress. The stress state due to the relative displacement of 
lithospheric plates. 

Gravitational stress. The stress state due to the weight of the super-
incumbent rock mass. A synonym is overburden stress. 

Thermal stress. The stress state resulting from temperature change. 
Physico-chemical stress. The stress state resulting from chemical and/or 

physical changes in the rock, e.g. recrystallization, absorption of fluid. 
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Palaeostress. A previously active in situ stress state which is no longer in 
existence, cf. residual stress which is currently active. Palaeostress can be 
inferred from geological structures but cannot be determined by stress 
measurement techniques. 

Near-field stress. The natural stress state within the vicinity of, and 
perturbed by, a heterogeneity (usually caused by engineering activities, 
e.g. a tunnel as a low-modulus inclusion). 

Far-field stress. The stress state that exists in the region beyond the 
near-field, where no significant perturbation due to the heterogeneity 
occurs. 

Regional stress. The stress state in a relatively large geological domain. 
Local stress. The stress state in a small domain—usually with the 

dimensions of, or smaller than, an engineered structure. 
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5 Strain 

Strain is a change in the relative configuration of points within a solid. One 
can study finite strain or infinitesimal strain—both are relevant to the 
deformations that occur in the context of the principles of rock mechanics 
and their engineering applications. Large-scale strain can be experienced 
underground as illustrated in Fig. 5.1, where there is severe deformation 
around a coal mine access tunnel. When such displacements are very small, 
one can utilize the concept of infinitesimal strain and develop a strain 
tensor directly analogous to the stress tensor. Thus, we will first discuss 
finite strain and then infinitesimal strain. 

5.1 Finite strain 

Strain may be regarded as normalized displacement. If a structure is 
subjected to a stress state, it will deform. However, the magnitude of the 
deformation is dependent on the size of the structure as well as the 
magnitude of the applied stresses. In order to render the deformation as a 
scale-independent parameter, the concept of strain (which in its simplest 
form is the ratio of displacement to the undeformed length) is utilized. Such 
displacements can also occur naturally in rock masses through the 
application of tectonic stresses resulting from past and present geological 
processes. Some excellent examples are shown in Ramsey and Huber 
(1983). 

The displacements, whether natural or artificial, can be complex; an 
example is shown schematically in Fig. 5.2. It should also be noted that 
strain is a three-dimensional phenomenon that requires reference to all 
three Cartesian co-ordinate axes. However, it is instructive, in the first 
instance, to deal with two-dimensional strain: once the fundamental 
concepts have been introduced, three-dimensional strain follows as a 
natural progression. 

In order to provide a structure for our analysis of two-dimensional strain, 
we will consider the separate components of strain. There are normal 
strains and shear strains, as illustrated in Fig. 5.3. 

As with normal stress and shear stress components, it is much easier to 
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Figure 5.1 Large displacements around an originally arch-shaped coal mine access 
tunnel (from Pan, 1989). 

grasp the concept of normal strain than shear strain. This is because the 
normal displacement and the associated strain occur along one axis. 
However, in the case of shear strain, the quantity of strain in say, the 
x-direction, also depends on the position along the y-axis. In other words, 
normal strain only involves one Cartesian axis, whereas, shear strain 
involves two (or three), i.e. it involves an interaction between the axes. 

One convenient simplification that can be introduced to aid the study 
of strain is the concept of homogeneous strain which occurs when the state 
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Figure 5.2 Example of the evolution of a complex displacement field (from Ramsey 
and Huber, 1983). 
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Figure 5.3 Normal strain and shear strain. 

of strain is the same throughout the solid. Under these circumstances: 

(a) straight lines remain straight; 
(b) circles are deformed into ellipses; and 
(c) ellipses are deformed into other ellipses. 

5.2 Examples of homogeneous finite strain 

We will now consider four examples of simple homogeneous finite strain. 
These are all important, both fundamentally and in terms of understanding 
strain. We will discuss strain components and thence also begin to 
introduce the notion of strain transformation, in terms of matrices. The four 
examples are shown in Fig. 5.4. 

In each of the examples in Fig. 5.4, we have given the equations relating 
the new positions (e.g. x') in terms of the original positions (e.g. x) of each 
point. The coefficients k and / indicate the magnitudes of the normal and 
shear strains, respectively. The final case in the figure, pure shear, is a result 
of extensional and contractional normal strains which will be explored later. 
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Figure 5.4 Four simple cases of homogeneous finite strain. 



74 Strain 

especially in terms of the perhaps unexpected relation between the shear 
modulus and Young's modulus and Poisson's ratio. 

We have noted earlier that there may have been successive phases of 
deformation of the rock mass during geological history. Thus, in decoding 
such compound deformation into its constituent parts, as illustrated by 
specific types of simple deformation in Fig. 5.4, we need to know whether 
strain phases are commutative, i.e. if there are two deformational phases A 
and B, and is the final result of A followed by B the same as B followed by 
A? Similarly, in engineering, does the sequence of excavation have any 
influence on the final strain state? Perhaps counterintuitively, the answer 
is that the final strain state is dependent on the straining sequence in those 
circumstances where shear strains are involved. An elegant example from 
Ramsey and Huber (1983) is shown in Fig. 5.5, wherein the non-
commutative nature of shear strains is illustrated, both graphically and 
mathematically. With reference to earlier emphasis on the significance of 
the off-diagonal terms of the strain matrices, the reader should note that 
it is these off-diagonal terms which give rise to the non-commutative 
phenomemon. In Chapter 14, the concept of interactions in the off-diagonal 
terms is introduced for a matrix with general state variables along the 
leading diagonal, in the context of rock engineering systems. 

It can be helpful to think about these strain operations in general and to 
be able to identify the components of a general strain transformation matrix 
for all circumstances. Such affine transformations are used in computer 
graphics and we mention here the case of distorting any two-dimensional 
shape. In order to introduce translation, i.e. movement of the entire 
shape (without rotation) within the plane of the figure, 'homogeneous 
co-ordinates' are used. These are three co-ordinates, simply the two 
Cartesian coordinates plus a third which allows translation to be intro-
duced. The transformation of co-ordinates is shown in Fig. 5.6. 
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Figure 5.5 Shear strain is not commutative (example from Ramsey and Huber, 1983). 
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Figure 5.6 The general transformation of a two-dimensional shape using 
homogeneous co-ordinates. 

Note that in the equation 

x' = ax -\- cy -\- m 

the coefficient a is related to extensional strain (as shown in Fig. 5.4), the 
coefficient c is an interaction term and related to shear, and m is related to 
the magnitude of the translation. Through such considerations, we can 
identify the strain components associated with different parts of the matrix, 
as shown below. 
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We will see later that the ability to determine which functions are 
performed by which parts of the transformation matrix is especially 
helpful when interpreting the compliance matrix. This matrix relates 
the strains to the stresses for materials with different degrees of 
anisotropy. 

5.3 Infinitesimal strain 
Infinitesimal strain is homogeneous strain over a vanishingly small 
element of a finite strained body. To find the components of the strain 
matrix, we need to consider the variation in co-ordinates of the ends of an 
imaginary line inside a body as the body is strained as illustrated in 
Fig. 5.7. By this means, we can find the normal and shear components in 
an analogous fashion to the finite case presented above. 

In this figure, the point P with co-ordinates (x, y, z) moves when the body 
is strained, to a point P**" with co-ordinates {x -f i/̂ , y -I- Uy, z + u^). The 
components of movement, u^., Uy and u. , may vary with location within 
the body, and so are regarded as functions of x, y and z. Similarly, the point 
Q (which is a small distance from P), with co-ordinates (x + 5x, y -^ dy, 
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P(x, y, z) 

Figure 5.7 Change in co-ordinates as a line PQ is strained to P*Q*. 

2 + Sz), is strained to Q'̂  which has co-ordinates (x + 5x + u^"^, y + Sy -\- Uy*, 
2 + & -h w/). If we now consider holding P in a constant position and Q 
being strained to Q*, the normal and shear components of strain can be 
isolated. 

The infinitesimal longitudinal strain is now considered in the x-
direction. Because strain is 'normalized displacement' (see Section 5.1), if 
it is assumed that u^ is a function of x only, as in Fig. 5.8, then 

£^^ = dujdx and hence du^ = £xx^^-

Considering similar deformations in the y- and z-directions, the normal 
components of the strain matrix can be generated as also shown in Fig. 5.8. 

Derivation of the expressions for the shear strains follows a similar 
course, except that instead of assuming that simple shear occurs parallel to 
one of the co-ordinate axes, the assumption is made initially that the shear 
strain (expressed as a change in angle) is equally distributed between both 
co-ordinate axes, i.e. du = du^ if dx = dy. This is graphically illustrated in 
Fig. 5.9. 
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Figure 5.8 Infinitesimal longitudinal strain. 
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First, we should note that the term y^y, i.e. 2a, is known as the 
engineering shear strain, whereas the term 7^i/2, i.e. a, is known as the 
tensorial shear strain. Second, although engineering shear strain is the 
fundamental parameter by which means shear strain is expressed, it is 
tensorial shear strain that appears as the off-diagonal components in the 
strain matrix in Fig. 5.9. 

5.4 The strain tensor 

Combining the longitudinal and shear strain components which have been 
developed above, we can now present the complete strain tensor—which 
is a second-order tensor directly analogous to the stress tensor presented 
in Section 3.5. The matrix is shown below: 

£ £ £ 
*-'.vv *^vi/ * ^ A ; 

£ £ £ 
^yx ^1 /1 / *^uz 

€r £^. £~~ 

Note that this matrix is symmetrical and hence has six independent 
components—with its properties being the same as the stress matrix 
because they are both second-order tensors. For example, at an orientation 
of the infinitesimal cube for which there are no shear strains, we have 
principal values as the three leading diagonal strain components. The 
matrix of principal strains is shown below: 

£ • ^ 0 0 

0 £, 0 

0 0 3̂ 

The strain component transformation equations are also directly 
analogous to the stress transformation equations and so the Mohr's circle 
representation can be utilized directly for relating normal and shear strains 
on planes at different orientations. Other concepts which we mentioned 
whilst discussing stress, such as the first stress invariant, also apply because 
of the mathematical equivalence of the two tensors. Thus, the first strain 
invariant is 

£xx + 1̂/1/ + ẑz - 1̂ + 2̂ + 3̂ - 3 constant. 

P, P='̂  dx 

Figure 5.9 Infinitesimal shear strain 
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The transformation properties of the strain matrix allow us to determine 
the complete in situ or laboratory strain tensor from measurements which 
are made with strain gauges and which are normal strain measurements 
only. In the same way that shear stresses cannot be measured directly, 
neither can shear strains, and hence the complete strain matrix must be 
established from normal strain measurements. 

5.5 The elastic compliance matr ix 

One may be tempted to ask, given the mathematical equivalence of the 
strain matrix developed in this chapter and the stress matrix developed in 
Chapter 3, whether there is any means of linking the two matrices together. 
Clearly, this would be of great benefit for engineering, because we would 
then be able to predict either the strains (and associated displacements) 
from a knowledge of the applied stresses or vice versa. As we will be 
discussing in Chapter 6, it is often critical to be able to consider whether it 
is stress, or strain, which is being applied and hence whether it is strain, or 
stress, which is the result. 

A simple way to begin would be to assume that each component of the 
strain tensor is a linear combination of all the components of the stress 
tensor, i.e. each stress component contributes to the magnitude of each 
strain component. For example, in the case of the ê ^ component, we can 
express this relation as 

Because there are six independent components of the strain matrix, there 
will be six equations of this type. If we considered that the strain in the x-
direction were only due to the stress in the x-direction, the previous 
equation would reduce to 

^A-.v — SjiCTvA-

or 

^xx = ^AA/SII = Ê YA, where E = l/Sn-

This form of the relation, where the longitudinal strain is linearly 
proportional to the longitudinal stress, as is the case for a wire under 
tension, was first stated by Robert Hooke (the first President of the Royal 
Society) in 1676. He published the relation as an anagram in The Times of 
London as CEIIINOSSSTTUU and three years later revealed this to mean 
UT TENSIO SIC UIS, i.e. as the extension so the force. For this reason, the 
more complete expression where ^ ĵ is related to all six components of stress 
is known as the generalized Hooke's law. 

Hence, the complete set of relations between the strain and stress 
components is: 
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1̂/1/ — S21CTV.Y + ^22^y\i + S230";3 + S24rYi/ + 5231,^; + S26^2.v 

6"--, = S3icr,.,. + S32C7,̂ ,/ + S33a3, + 5341,.,/ + 83311^- + S3(,r.,-

^Ai/ — S4|(J .̂Y + S42(Ji/î  + S43(7--- + 5441^1/ + 54311/- + 545!.;^. 

î/z = ^5\^xx + S32CJ1/,; + S53(7-~ + 5341^,/ + 533!,/-. + 535!^;^-

^zv — S^iCJvv + ^62^\i\i + 5^3(7--- + 5(^41^1/ + S^^^Ty:- + 8551.^. 

It is not necessary to write these equations in full. An accepted 
convention is to use matrix notation, so that the expressions above can be 
alternatively written in the abbreviated form 

where [s] — and [a] = 

kl [S][CTl 

and [S] = 
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The [S] matrix shown above is known as the compliance matrix. In 
general, the higher the magnitude of a specific element in this matrix, the 
greater will be the contribution to the strain, representing an increasingly 
compliant material. 'Compliance' is a form of 'flexibility', and is the inverse 
of'stiffness'. 

The compliance matrix is a 6 x 6 matrix containing 36 elements. However, 
through considerations of conservation of energy it can be shown that the 
matrix is symmetrical. Therefore, in the context of our original assumption 
that each strain component is a linear combination of the six stress 
components, we find that we need 21 independent elastic constants to 
completely characterize a material that follows the generalized Hooke's 
law. In the general case, with all the constants being non-zero and of 
different values, the material will be completely anisotropic. It is necessary, 
particularly for practical applications of the stress-strain relations, to 
consider to what extent we can reduce the number of non-zero elements 
of the matrix. In other words, how many elements of the compliance matrix 
are actually necessary to characterize a particular material? 

The key to this study is the architecture of the compliance matrix, and 
especially the off-diagonal terms, which have already been emphasized. 
For typical engineering materials, there will be non-zero terms along the 
leading diagonal because longitudinal stresses must lead to longitudinal 
strains and shear stresses must lead to shear strains. The isotropy of the 
material is directly specified by the interaction terms, i.e. whether a normal 
or shear strain may result from a shear or normal stress, respectively. This 
is illustrated conceptually in Fig. 5.10. 
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Figure 5.10 The architecture of the elastic compliance matrix. 

As a first approximation, and in relation to Fig. 5.10, let us assume that 
there is no coupling between the normal and shear components and that 
there is no coupling of shear components in different directions. This 
means that all of the elements designated by the symbols with dense cross-
hatching and left-inclined shading in Fig. 5.10 become zero. We know that 
the direct relation between a normal strain and a normal stress is given by 
l/£: this is because the definition of Young's modulus, £, is the ratio of 
normal stress to normal strain. Hence, all the elements designated by the 
vertical hatching will be reciprocals of Young's moduli. Following the 
definition for Poisson's ratio given in Section 4.6.2, and recalling that this 
parameter links orthogonal contractile and extensile strains (which are 
manifested by a negative sign in equations containing Poisson's ratio), all 
the elements designated by the wide-cross-hatching will be Poisson's ratios, 
V, divided by a Young's modulus. Finally, the elements designated in Fig. 
5.10 by the right-inclined shading, being the ratio of shear strain to shear 
stress, will be the reciprocals of the shear moduli, G. 

This results in the reduced elastic compliance matrix shown below: 

l / £ i -^21 / £ : 

l / E j 

symmetric 

- V 3 , / £ 3 

-Vn/E, 
l/E, 

0 

0 

0 

1/G,2 

0 

0 

0 

0 

1/G.3 

0 

0 

0 

0 

0 

1/G3 

A material characterized by this compliance matrix has nine independent 
elastic constants and is known as an orthotropic material. The nine material 
properties are the three Young's moduli, the three shear moduli and the 
three Poisson's ratios, i.e. 

El m ^23 ^31 V21 V32 V3I. 
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Such a material could arise from the microstructure of the intact rock, or in 
the case of rock masses when three mutually perpendicular sets of discon-
tinuities with different properties and/or frequencies are present. The double 
subscripts applied to the Poisson's ratios are required in order to differentiate 
the effects in the two different axial directions in each case.The reader should 
note that there are in fact six Poisson's ratios: the symmetry of the matrix 
ensures that there are three relations of the form V12/E1 = V21/E2. 

We can reduce the elastic compliance matrix even further by considering 
the case of transverse isotropy. This is manifested by a rock mass with a 
laminated fabric or one set of parallel discontinuities. In the case when the 
plane of isotropy is parallel to the plane containing Cartesian axes 1 and 2, 
we can say that 

El = E2 = E and E3 = E' 

V12 = V21 = V a n d Vi3 = V23 = v ' 

G12 ^ G23 and G23 = G31 = G\ 

The associated elastic compliance matrix is then 

1/E v/E 
UE 

-v'/E' 
-v'/F 
1/E' 

0 
0 
0 

2(1+ v) 

0 
0 
0 

n 

1/G' 

symmetric 

0 

0 

0 

0 

0 

1/G' 

Note that in the above matrix, the term 2(1 -h v)/E has been substituted 
for 1/G|2 because in the plane of isotropy there is a relation between the shear 
modulus and the Young's modulus and Poisson's ratio. It is vital, 
however, to realize that this relation, i.e. G = E/2(l + v), only applies for 
isotropic conditions and so we cannot make a similar substitution for either 
I/G23 or I/G31, which are out of the plane of isotropy. Thus, the number of 
independent elastic constants for a transversely isotropic material is not six 
but five, i.e. 

E' G' V . 

The final reduction that can be made to the compliance matrix is to 
assume complete isotropy, where 

E] = E2 = E3 = E 

V^2 = V23 = V31 = V 

G12 = G23 = G31 = G. 
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Note that, because we now have complete isotropy, the subscripts can 
be dispensed with, the shear modulus G is implicit and furthermore the 
factor 1/E which is common to all terms can be brought outside the matrix. 
Finally, we have 

1/E 

1 - V 

1 

symmetric 

-V 

-V 

1 

0 

0 

0 

2(1+ v) 

0 

0 

0 

0 

2(1 + v) 

0 

0 

0 

0 

0 

2(1+ v) 

Complete anisotropy was characterized via the elastic compliance matrix 
through 21 independent constants. By considering the architecture of the 
full matrix and making all 'cross-coupled' terms zero, we obtained the 
orthotropic case with nine independent constants. This was further 
reduced in the case of transverse isotropy to five constants, utilizing the 
relation between shear modulus and Young's modulus and Poisson's ratio. 
The ultimate reduction (also using the shear modulus relation) resulted in 
two elastic constants for the case of a perfectly isotropic material. One is 
reminded of the quotation given by Jacques Grillo in his book Form, 
Function and Design, that 'Tn anything at all, perfection is finally attained 
not when there is no longer anything to add, but when there is no longer 
anything to take away". 

5.6 Implications for in situ stress 

There are many ramifications of the elastic compliance matrix and the 
possible reductions which we have presented in Section 5.5. One 
particularly important corollary with reference to Chapter 4 on //i situ stress 
relates to the ratio of horizontal to vertical stress, as calculated by 
the 'switched on gravity' analysis presented in Section 4.6.2. Recall the 
ratio 

CTH = '^v 
(1-v) 

which meant that the horizontal stress could never exceed the vertical 
stress. Implicit in the derivation of this relation is the fact that the rock was 
assumed to be isotropic. We can generate similar relations for varying 
degrees of anisotropy, in particular for transverse isotropy and 
orthotropy. Using the matrices presented in Section 5.5, and for the case 
where axis 3 is vertical and plane 12 is horizontal, these are 

for tranverse isotropy a^ = 
1-v 



Implications for in situ stress 83 

and for orthotropy 0"̂  = ^V 

^ 1 : ^ 2 1 + ^ 2 3 

The reader should note that, in order to simplify these relations, use has 
been made of various complementary Poisson's ratios (e.g. v^i instead of 
V2i£i/E2)- These equations are from Amadei et al (1983) and demonstrate 
conclusively that, for certain combinations of the respective elastic 
constants, the horizontal components can be significantly different. In fact, 
an orthotropic model is probably a much better representation of a 
discontinuous rock mass with three perpendicular discontinuity sets than 
an isotropic model. 

A final point is that, given the 21 independent components of the 
compliance matrix, the correct engineering approach to the problem of 
modelling rock masses would be to establish to what extent the compliance 
matrix can validly he simplified. In other words, the logic would be to assume 
complete anisotropy unless we have reason to assume otherwise. 
However, because of cost constraints and the practicalities of engineering, 
of the order of 99% of all analyses that have been conducted have contained 
the assumption that the rock mass is fully isotropic with only two elastic 
constants. In the majority of the remaining cases, transverse isotropy has 
been assumed; and in a few isolated examples, orthotropy (with nine elastic 
constants) has been assumed. To the authors' knowledge, no one has either 
measured the 21 constants or conducted an analysis assuming a 
compliance matrix with non-zero components. There are lessons here 
concerning the relation between rock mechanics and its application to rock 
engineering, i.e. the theory and the practice. 
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6 Intact rock 

Having introduced the concepts of stress and strain, we can now consider 
how the rock reacts to given loads. It is convenient to consider first the 
intact rock, then the discontinuities and, finally, to consider how they com-
bine to determine the properties of rock masses. Thus, in this chapter, we 
will discuss the properties of intact rock; in Chapter 7, discontinuities, and 
in Chapter 8, rock masses. 

6.1 The background to intact rock testing 

In rock mechanics, since the early 1960s when it began, more attention has 
been paid to intact rock than to any other feature of the rock mass. This 
occurred for two main reasons: the subject has relied heavily on the general 
topic of the mechanics of solid materials (evolving from rock physics); and 
the main way in which samples are obtained remote from human-access is 
by diamond drilling to produce cylindrical cores of rock (which are emi-
nently suitable for testing). These two factors caused a concentration of work 
on intact rock testing because of the 'convenience' of a well-established back-
ground and readily available specimens. The circumstances were probably 
further reinforced by the general practice of engineers to establish the 
properties and behaviour of the materials with which they work. 

In this chapter, we will be concentrating on the deformability, strength 
and failure of intact rock. The early emphasis on this subject culminated 
in 1966 with the 'discovery' of the ability to obtain the complete 
stress-strain curve. The curve provided previously unknown information 
on the behaviour of rocks after their peak strength has been reached. The 
failure region has special significance in rock mechanics and rock engi-
neering because, in some circumstances, we can design an underground 
structure knowing that the rock will pass into the post-peak region. Such 
a design is very different from the traditional approach in all other forms 
of engineering, where the material must be kept in the pre-peak region, 
i.e. behaving essentially elastically. 

In situ, the high stresses that can lead to the material entering the post-
peak region either occur directly, as a result of excavation, or indirectly at 
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the corners and edges of rock blocks which have been disturbed by the 
process of excavation. Thus, the deformability, strength and failure of intact 
rock per se are critically important for understanding the basic mechanisms 
of excavation, whether by blasting or by machine cutting, and for 
understanding support requirements—whether to defend against direct 
stress failure or rock block failure. 

6.2 The complete stress-strain curve in 
uniaxia l compression 

In Chapter 5, we discussed strain and the complexities of a material which 
could potentially have 21 independent elastic constants, and could be 
subjected to any stress state. Here, in considering the behaviour of real rock, 
we will begin with the simplest form of loading, i.e. uniaxial compression. 
In the context of the elastic compliance matrix, we will therefore be 
studying S^ for loading uniaxially along the x-axis. The properties of the 
uniaxial test will be discussed first, before considering triaxial and other 
multiaxial loading cases. 

In its simplest form, the uniaxial compression test is conducted by taking 
a right cylinder of intact rock, loading it along its axis and recording the 
displacement produced as the force is increased. In Figs 6.1 and 6.2 we 
present a typical record of such a test (which also includes the post-peak 
region obtained using techniques to be discussed in Section 6.3). Note that 
the force and the displacement have been scaled respectively to stress (by 
dividing by the original cross-sectional area of the specimen) and to strain 
(by dividing by the original length). In the curve shown in the figure, the 
various aspects of the mechanical behaviour of intact rock tested under 
these conditions can now be identified. 

At the very beginning of loading, the curve has an initial portion which 
is concave upwards (the opposite of typical soil behaviour) for two reasons: 

• the lack of perfect specimen preparation, manifested by the ends of the 
cylinder being non-parallel; and 

• the closing of microcracks within the intact rock. 

After this initial zone, there is a portion of essentially linear behaviour, 
more or less analogous to the ideal elastic rock we discussed in Chapter 5. 

Axial stress, a 

Dependent 
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(the one we 
measure) 

[ Pre- ^ 
peak 1 

A, 
/ Linear 

Post-
peak 

Axial strain. 
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(the one we 

8 

variable 
control) 

1" 
F = ^ 

t" 

Figure 6.1 The complete stress-strain curve. 
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Figure 6.2 The complete stress-strain curve illustrating various mechanical 
parameters. 

Remembering that Young's modulus, £, is defined as the ratio of stress to 
strain (i.e. l/Sn), it can be determined in two ways: either by taking the 
slope of the stress-strain curve at a given point; or by taking the slope of a 
line connecting two points on this linear portion of the curve (Fig. 6.2). The 
two slopes are the tangent modulus and the secant modulus. The tangent 
modulus is conventionally taken as the gradient of the o-£ curve at a stress 
level corresponding to 50% of the peak stress; the secant modulus may be 
determined anywhere over the entire linear portion. Naturally, both of these 
are approximations to the real behaviour, but are useful and adequate for 
simple elastic applications. However, with increasing numerical and 
computing capabilities, we can represent the complete stress-strain curve 
more accurately as a piece-wise linear function if required. 

The variations in the tangent modulus and the secant modulus 
throughout the complete stress-strain curve are shown in Fig. 6.3. It should 
be noted that the portion of the curve after the peak stress has been reached 
is a failure locus and so the negative portion of the tangent modulus curve 
is not directly meaningful. For this reason, the secant modulus is often more 

Zero at peak strength 

Negative in 
post-peak region 

Secant 
modulus 

/Reducing secant modulus 
illustrated in figure 6.4 

Figure 6.3 Variation in the tangent and secant moduli throughout the complete 
stress-strain curve. 
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convenient and can be established by unloading and reloading the 
specimen from any point on the curve. This is illustrated in Fig. 6.4. 

The factors discussed so far have been concerned with the complete 
stress-strain behaviour and the link with Chapter 5 on the deformability 
of materials. Another important parameter highlighted in Fig. 6.2 is the 
maximum stress that the specimen can sustain. Under the loading 
conditions shown in the diagram, the peak stress is the uniaxial 
compressive strength, o^. 

It is important to realize that the compressive strength is not an intrinsic 
material property. Intrinsic material properties do not depend on the speci-
men geometry or the loading conditions used in the test: the compressive 
strength does. If a microphone is attached to a specimen during the gener-
ation of the complete stress-strain curve, significant acoustic emission is 
found to occur, starting from a stress level of about 50% of the compressive 
strength. Through these observations, and by obtaining sections through 
specimens that have been taken to various points on the complete 
stress-strain curve, it is observed that microcracking continually increases 
from this 50% a^ stress level until the specimen is completely destroyed. The 
compressive strength is an arbitrary stage in this continual microstructural 
damage process, representing the maximum sustainable stress. At the peak 
of the curve, the specimen has had many axial cracks induced within it, but 
macro-shear (i.e. on the scale of the specimen itself) does not take place until 
about halfway down the descending portion of the curve. 

In other forms of engineering, for example, the strength of concrete in 
structural engineering, if the applied stress reaches the compressive 
strength, there can be catastrophic consequences. This is not necessarily the 
case in rock engineering, which is why we are concentrating the 
discussion on the characteristics of the complete stress-strain curve, as 
opposed to the specific value of the compressive strength. However, the 
compressive strength is probably the most widely used and quoted rock 
engineering parameter and therefore it is crucial to understand its nature. 
Also, whether failure beyond the compressive strength is to be avoided at 

o 
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Figure 6.4 Repeated loading and unloading to illustrate the variation in secant 
modulus throughout the complete stress-strain curve (from Bieniawski, 1968). 
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all costs, or to be encouraged, is a function of the engineering objective, the 
form of the complete stress-strain curve for the rock (or rock mass), and 
the characteristics of the loading conditions. These features are crucial in 
the design and analysis of underground excavations. 

At this stage, we will consider whether the specimen is being loaded at 
a constant stress rate or a constant strain rate: in other words, is stress the 
cause and strain the effect, or vice versa? It is customary in science to plot 
the independent (i.e. controlled) variable along the x-axis and the 
dependent (or measured) variable along the y-axis. Stress-strain curves are 
usually plotted with strain on the x-axis, with the implication that the test 
is strain controlled. Yet, very often, it is the stress rate (say, expressed as 
MPa/minute) which is specified in standardized testing. It can clearly be 
seen from the diagrams of the complete stress-strain curve in this section 
that the inevitable consequence of conducting a test at a constant stress rate 
will be violent uncontrolled failure at the point of peak strength, when the 
machine tries to apply more stress than the specimen can sustain. 
Furthermore, the descending portion of the complete stress-strain curve 
is difficult to intrepret when stress is considered as the cause of strain, 
because a reduction in stress apparently causes an increase in strain. 
Conversely, if strain is considered as the cause of stress, the response of the 
material in the post-peak region can be interpreted simply as the fact that 
beyond a certain strain value (corresponding to the maximum stress) the 
rock continues to suffer further mechanical breakdown with an attendant 
loss of load-bearing capacity. This concept is amplified in Section 6.3. 

6.3 Soft, stiff and servo-controlled testing 
machines 

The effects of the two extreme options for loading, i.e. stress control and 
strain control, are illustrated in Fig. 6.5. Note that in this figure we have 
chosen the axes such that the independent variable is plotted along the 
X-axis. The first curve represents the application of an increasing load (for 
example, a series of weights) to the specimen. When the peak strength is 
reached, the deadweight causes a continous increase in strain at this peak 
stress level, i.e. the specimen is uncontrollably crushed. The second curve 
represents the continual compression of the specimen as the ends are 
moved together (for example, in a screw-controlled press); the stress 
associated with this movement can rise or fall without uncontrolled failure. 

£-, 4 

Figure 6.5 Stress- and strain-controlled stress-strain curves. 
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This situation can be considered as simply shortening the sample and 
measuring the associated load. The resultant curve, known as the strain-
controlled complete stress-strain curve, was first obtained in 1966. A list of 
the developments in materials science testing leading up to this time is 
given in Hudson et al. (1972). 

Because rock often has a higher stiffness than standard testing 
machines, even under strain control, the complete curve often cannot be 
obtained without modifying the machine. The testing techniques required 
for rock mechanics are thus unique, both in their requirements and their 
methodologies. For example, in soil mechanics testing, the soil usually has 
a low enough stiffness to allow the complete curve to be obtained as a 
matter of course. Also, in concrete testing there is not so much importance 
attached to obtaining the complete curve, because the peak strength is 
defined as failure. Therefore, we need to consider very carefully the 
consequences of different methods of testing and different stiffnesses of the 
applied loading device, whether in the laboratory or in the field. 

In Fig. 6.6, we illustrate both schematically and conceptually the testing 
machine and associated stiffnesses. The specimen has a certain stiffness and 
the machine has a certain stiffness. Whatever the load in the specimen, an 
equal and opposite load is applied to the machine. Thus, in the lower dia-
gram in Fig. 6.6, not only can we plot the axial force versus the axial 
displacement for the specimen, we can also plot the same parameters for the 
machine. Note that these two curves are drawn on adjacent sides of the axial 
force axis: this is because compression of the sample is regarded as positive, 
and the corresponding extension of the machine is negative (another way 
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Figure 6.6 Schematic and conceptual illustration of specimen and testing machine 
stiffnesses. 
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of thinking of the machine stiffness is to consider its axial force-extension 
curve were we to replace the specimen with a hydraulic jack). As the speci-
men is loaded, the machine is also loaded, as indicated by the arrows in the 
diagram. Also, as the specimen's load-bearing capability decreases in the post-
peak region, so the machine elastically unloads as the force is being reduced. 

Hence, as indicated in Fig. 6.6, the machine can be soft or stiff, and in a 
testing machine this stiffness will be a complex function of many of the 
component parts of the machine: these include the loading platens, the 
hydraulic system (the fluid, hoses and rams) and the frame. Were we to 
consider all these as an equivalent cylinder of cross-sectional area A, depth 
L and modulus £, the stiffness is given as AE/L. Thus, the machine stiffness 
will increase with increasing area A, decreasing length L and increasing 
modulus £. This means that the stiffness of the testing machine can be 
altered via these values. 

Figure 6.7 illustrates the same complete stress-strain curve for the rock. 
Here we have superimposed the assumed linear behaviour of a soft testing 
machine and a stiff testing machine at the point A, just beyond the peak 
strength: this is to consider whether the machine can unload purely 
elastically without any intervention from the operator. In the left-hand 
diagram in Fig. 6.7, the unloading curve for the machine in the direction 
AE is very similar to the deadweight mentioned earlier. The machine can 
unload along this line because at all points the axial force associated with 
the elastic unloading of the machine is greater than the specimen can 
sustain, resulting in 'explosive' failure. The failure occurs because, in an 
increment of axial displacement DC, the machine is capable of performing 
the amount of work corresponding to the area DCEA, whereas the 
maximum work the specimen can absorb is given by the area DCBA. This 
work is utilized in the continuing microstructural disintegration that occurs 
during the axial displacement increment DC. The work represented by the 
area AEB is liberated as energy, manifested especially as kinetic energy: 
particles of the specimen fly in all directions. 

We can now compare this with the right-hand diagram in Fig. 6.7, where 
the testing machine stiffness is represented by the steeper line AE. A similar 
argument to the previous one can be used to predict the response of the 
system. In this case, the machine cannot elastically unload of its own 
volition along AE, because the specimen requires more work to be done 
than is available. Consequently, the operator will have to increase the strain 
in order to follow the post-peak portion of the curve. 
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displacement 
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Figure 6.7 Machine stiffness and specimen stiffness in the post-peak region. 
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We arrive at the conclusion that if the testing machine stiffness is greater 
than the absolute value of the slope at any point on the descending portion 
of the stress-strain curve for the rock, the system will be continuously stable 
and it will be possible to obtain the complete stress-strain curve. Note also 
that, although we have expressed this argument in terms of a uniaxial 
compression test, it also applies to tensile tests, shear tests and any other 
configuration, such as the stability of a three-point loaded beam test. 

The most logical method, therefore, of obtaining the complete 
stress-strain curve (from the AE/L equivalent cylinder analogy) is to build 
a machine which is large, squat and utilizes only high-modulus materials 
(for example, mercury as the hydraulic fluid). One can go even further and 
have no moving parts: a solid frame is heated (i.e. expansion takes place), 
the specimen is inserted and the frame cooled (contraction results). The 
curves in Fig. 6.8 were obtained by this method. 

A further point to note, with respect to the curves in Fig. 6.8, is that they 
do not all monotonically increase in strain. Invoking the argument used 
previously for soft and stiff testing machines, we could not, therefore, 
obtain the curve for Charcoal Grey Granite II even in an infinitely stiff, i.e. 
rigid, testing machine. The stiffness of such a machine would be 
represented by a vertical line in Fig. 6.8. To obtain these curves, it was 
necessary to further modify the machine using a counter-acting hydraulic 
jack in the post-peak region. Wawersik and Fairhurst classified complete 
stress-strain curves into two types: Class I curves monotonically increase 
in strain; Class II curves do not (Wawersik and Fairhurst, 1970). 

Following the pioneering work by Cook, Bieniawski, Fairhurst and 
Wawersik in the late 1960s, it was realized that such stiff testing machines 
are inherently cumbersome and functionally inflexible. This led to the 
introduction of servo-controlled testing machines for obtaining the 
complete stress-strain curve for rock. It is important to note that the means 
by which a servo-controlled testing machine is able to follow the post-peak 
curve is different in principle and implementation from the stiff testing machines. 

- Charcoal gray granite I 
- Indiana limesldne 
• Tennessee marble i 
- Charcoal gray granite I 
• Basalt 
• Solenhoten limestone 
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Strain does not 
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Figure 6.8 Examples of complete stress-strain curves for different rocks (from 
Wawersik and Fairhurst, 1970). 
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Figure 6.9 (a) Principle of closed-loop control, (b) Schematic of fast-response, 
closed-loop servo-controlled testing machine (courtesy MTS Systems Corp.). 

The basic principle of closed-loop control is shown in Fig. 6.9(a) and the 
specific application for obtaining the complete stress-strain curve is shown 
in Fig. 6.9(b). The principle of closed-loop control is ubiquitous in 
mechanical, electrical and biological control systems. In our context, and 
with reference to Fig. 6.9(a), an experiment is being conducted in the top 
left-hand box. From this experiment, a choice of feedback signal is made, 
representing the value of a particular parameter at a specific time. In the 
top right-hand box, the feedback signal,/, is compared with a programmed 
signal, p, being generated in the lower right-hand box. If there is any 
difference between the feedback signal and the programmed signal, the 
hydraulic pressure in the experiment is adjusted to bring the feedback 
signal to the correct value. Thus there is continuous and automatic closed-
loop control by the continual comparison of the signals. The correction 
signal, c, can be expressed as 

c = k{p -f) 

where k is the gain, p is the programmed signal, and / is the feedback 
signal. 

From the closed-loop control equation, several aspects of machine control 
are immediately evident: 

(a) the programmed and feedback signals must be of the same polarity in 
order to enable the system to be brought to equilibrium (i.e. p -f = 0) 
through application of a control signal of correct sense; 

(b) alteration of the gain, k, will alter the magnitude with which the 
correction is applied; 

(c) if c < Cn,in (where c 
min is a given small difference in the control signal), 

we can make c = 0 in order to avoid 'dithering' (i.e. rapid, small 
oscillations about an equilibrium position); and conversely 

(d) if c > Cn-,ax (where Cm̂x represents, say, a control signal that can only 
be induced by a system malfunction), the system can be shut down to 
avoid damage. 
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Finally, it should be noted that the required experimental data can be 
monitored independently from the control system, as illustrated by the 
lower left-hand box in Fig. 6.9(a). 

The schematic diagram in Fig. 6.9(b) illustrates this closed-loop control 
with more direct reference to rock testing. Note the mode selector for the 
feedback signal. If the output from the load cell were to be taken as 
feedback and the programmed signal were to monotonically increase with 
time, then we would be programming a stress-controlled test, which would 
result in explosive failure at the peak of the complete stress-strain curve 
as the machine attempted to increase the stress beyond the rock's 
compressive strength. From the arguments already presented, it is the 
displacement transducer output that would be used as the feedback signal 
for an axial strain-controlled test. 

The tests that can be conducted with the closed-loop control technique 
are only limited by the imagination. The complete stress-strain curve can 
be obtained in tension, by using displacement feedback. By utilizing the 
load cell output and the displacement transducer output, we can program 
a linear increase in energy to be supplied to the specimen. In fact, any 
parameter or combination of parameters can be used as feedback. 

Note that, in the complete stress-strain curves shown in Fig. 6.8, the Class 
II curves do not monotonically increase in axial strain, and hence cannot be 
obtained utilizing axial displacement (or axial strain) as the feedback signal. 
To overcome this problem, and as a general principle, one takes as feedback 
the parameter most sensitive to the failure that will occur in the test in 
question: in this case the lateral displacement—which does monotonically 
increase. The complete Class II stress-strain curve, which does not mono-
tonically increase, is then independently monitored as it is generated. The 
lateral displacement is more sensitive to the axial cracking which occurs in 
a uniaxial compression test. Conversely, the axial displacement is more 
sensistive to the lateral cracking which occurs in a uniaxial tensile test. 

Moreover, as the test configuration can be of any type, we will generally 
choose the most sensitive indicator of failure as the feedback signal. For 
example, to consider the mechanics of a hydraulic fracturing test in which 
a hollow cylinder is internally pressurized to failure, the machine can be 
programmed to linearly increase the circumference of the internal hole by 
taking the output from a wire strain gauge bonded circumferentially 
around the hole as feedback. The hydraulic pressure is then adjusted by 
the closed-loop control such that the circumference linearly increases and 
the fracturing is controlled. Figure 6.10 illustrates a suite of rock mechanics 
tests and the corresponding optimal feedback signals. 

With the ability to control failure and generate a failure locus for a variety 
of testing configurations, the test can be stopped at any time to study stages 
in failure development. For example, under stress control, if the machine 
is programmed to 'hold' the stress constant, a creep test is performed: the 
analogue under strain control with a 'hold' is a relaxation test. Using stress 
or strain control, the rock can be fatigued with any frequency and stress 
or strain amplitude. It is even possible to record the three perpendicular 
components of earthquake motion in the field and apply these through 
three mutually perpendicular actuators under laboratory conditions. Even 
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Figure 6.10 Rock testing geometries and optimal feedback for closed-loop control 
of failure. 

today, the full potential of closed-loop control as described here has not 
been fully exploited in rock mechanics, particularly with respect to 
discontinuity testing and field testing. 

Perhaps the key reason why servo-control is so successful is that the 
overall response time of the control system is of the order of 5 ms, which 
is faster than the speed at which any significant cracking can develop. 
Although terminal crack velocity in rock is about one-third of the acoustic 
velocity (i.e. very high), it should be remembered that crack propagation 
must accelerate from zero: the high response time of the control system 
ensures that the loads applied to a specimen are only sufficient to permit 
slow crack propagation. 

6.4 Specimen geometry, loading conditions 
and environmental effects 

Having described how the complete stress-strain curve can be obtained 
experimentally, let us now consider the effects of the specimen size and 
shape, loading conditions, and time and temperature effects. 
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It is well known that many materials exhibit a size effect in terms of 
strength, with smaller specimens indicating a higher strength than larger 
specimens. This was probably first recognized by Leonardo da Vinci, who 
found that longer wires were not as strong as shorter wires of the same 
diameter. In more recent times, Griffith (1921) showed that thin filaments 
of glass displayed much higher tensile strengths than thick filaments. 
Similarly, there are ductility effects as the temperature of a material is 
increased. 

Thus, it is prudent to consider the effects of specimen geometry, loading 
conditions and environment on the complete stress-strain curve. This is 
because we need to understand the effects of these variables in order to 
be able to predict the mechanical behaviour of rock under conditions 
which may differ from those under which a specimen of the same rock 
was tested in the laboratory. The discussion below on these effects 
describes the general trends that have been observed in laboratory tests 
over the years. 

6.4.1 The size effect 

In Fig. 6.11, we illustrate how the complete stress-strain curve varies with 
specimen size, as the ratio of length to diameter is kept constant. The main 
effects are that both the compressive strength and the brittleness are 
reduced for larger specimens. The specimen contains microcracks (which 
are a statistical sample from the rock microcrack population): the larger the 
specimen, the greater the number of microcracks and hence the greater the 
likelihood of a more severe flaw. With respect to the tensile testing 
described earlier, it has been said (Pierce, 1926) that 'Tt is a truism, of which 
the ramifications are of no little interest, that a chain is only as strong as its 
weakest link''. 

The elastic modulus does not vary significantly with specimen size 
because the relation between overall stress and overall strain is an average 
response for many individual aspects of the microstructure. However, the 
compressive strength, being the peak stress that the specimen can sustain, 
is more sensitive to extremes in the distribution of microstructural flaws in 
the sample. A larger sample will have a different flaw distribution and, in 
general, a more 'extreme' flaw. Also, this statistical effect will influence the 
form of the post-peak curve. 

There have been many attempts to characterize the variation in 
strength with specimen size using extreme value statistics and, in partic-
ular, WeibuU's theory, but it should be remembered that this theory is based 
on fracture initiation being synonymous with fracture propagation, which 
is not the case in compression. Thus, if extreme value statistics are to be 
applied to the analysis of compressive strength, then some form of parallel 
break-down model is required, rather than the weakest-link Weibull 
approach. 

Naturally, a relation needs to be developed between strength and sample 
size when extrapolating laboratory determined values of strength to site 
scales. 
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Size increases, 
strength decreases 

Figure 6.11 The size effect in the uniaxial complete stress-strain curve. 

6.4.2 The shape effect 

In Section 6.4.1, we discussed the size effect, i.e. when the shape of 
the specimen is preserved but its size changes. Here, we discuss the 
complementary effect, the shape effect, when the size (i.e. volume) 
of the specimen is preserved but its shape changes. In Fig. 6.12, we illustrate 
the effect of shape variation in uniaxial compression. 

The trends in the curves show that the elastic modulus is basically 
unaffected by specimen shape, and that both the strength and the ductility 
increase as the aspect ratio, defined as the ratio of diameter to length, 
increases. The reason for these trends is different to that in the pure size 
effect case. When a specimen is loaded in uniaxial compression, end platens 
made of steel, and preferably of the same diameter as the specimen, are 
used. Because of an unavoidable mismatch in the elastic properties of the 
rock and the steel, a complex zone of triaxial compression is set up at 
the ends of the rock specimen as the steel restrains the expansion of the 
rock. 

This end effect has little significance for a slender specimen, but can 
dominate the stress field in the case of a squat specimen (Fig. 6.12). The 
same end effect does occur during size effect testing, but the influence is 
the same for different specimen sizes, because the aspect ratio remains 
constant. 

The effect of a confining pressure during the triaxial test has a dramatic 
effect on the complete stress-strain curve and it is essentially this 
confining effect which is causing the shape effect illustrated in Fig. 6.12. The 
problem is easily overcome in the laboratory by choosing an appropriate 
aspect ratio, greater than or equal to 2.5, but underground support pillars 
in situ are much more likely to be squat than slender. Thus, the shape effect 
has the converse effect to the size effect when the results are extrapolated 
to the field: an in situ squat pillar will be stronger than a slender laboratory 
specimen of the same rock, although there will be different loading 
conditions in the field which could mitigate the effect. 
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strength decreases 

Sample 
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Figure 6.12 The shape effect in uniaxial compression. 

To predict the strength of the rock in situ, and avoid the influence of the 
shape effect, we can proceed in one of two ways: improve the laboratory 
test procedures; or use empirical formulae to account for the shape effect. 
The main laboratory method is to use platens which reduce the confining 
effect, either through brush platens (which effectively load the specimen 
ends over a number of small zones, thereby reducing the volume of rock 
in triaxial compression) or flatjacks (which prevent shear stresses being 
transmitted between the platen and the specimen). Other laboratory 
techniques involve specimen geometries which reduce the effect, for 
example, axial loading of hollow cylinders. Empirical formulae are the main 
engineering approach, where a numerical relation is utilized to take into 
account the shape effect. In fact, these formulae can incorporate the 
diameter and the length separately and hence it may not be directly clear 
from the formula how to separate the size and the shape effects, should 
one wish to do so. 

6.4.3 Loading conditions 

We have seen, with reference to the shape effect, how the loading 
conditions can affect the rock behaviour in uniaxial compression. Let us 
now consider the many possibilities for rock testing and illustrate some of 
the terms in general use. The sketches in Fig. 6.13 show the loading 
conditions in the six main testing configurations. A particular point to note 
is the difference between triaxial and polyaxial compression. Over the 
years, triaxial compression has come to mean a test conducted using a 
pressure vessel, with the consequence that G2 = 0*3. This is not true triaxial 
compression in the sense that all three principal stresses can be 
independently applied: for this latter condition we use the term polyaxial 
compression. The application of three different principal stresses is quite 
difficult to achieve in practice, and hence the test is not used routinely in 
rock mechanics. 
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Figure 6.13 Specimen loading conditi ons in general laboratory use. 

We have discussed uniaxial compression; let us now consider uniaxial 
or direct tension, and also the generation of a tensile stress through 
compressive loading in indirect tensile tests. 

The uniaxial tension test, as illustrated in Fig. 6.13, is not as a rule used 
in engineering practice. There are two reasons for this: first, it is difficult to 
perform; and, second, the rock does not fail in direct tension in situ. Through 
the servo-controlled testing method, the complete stress-strain curve in 
tension has been obtained using axial displacement as feedback in the closed 
loop. This displacement is the most sensitive indicator of failure because a 
single main crack develops laterally. However, this curve is really only of 
academic interest because the essentially single crack failure mode leads to 
ultra-brittle behaviour. Even for establishing the tensile strength of rock 
itself, a state of pure tension with no applied or induced bending moments 
is difficult to achieve. Some irregularity in the compression test can be 
tolerated, but in tension any such irregularity leads to premature failure. 

For these reasons, the tensile strength is normally measured by indirect 
tests in which the tensile stress is generated by compressive loading. (The 
tensile strength of the rock is very much lower than the compressive 
strength, so that such indirect tests are possible; for the same reason, it is 
not possible to have indirect compression tests.) 

In Fig. 6.14, two indirect tensile tests are shown, with the point load test 
being the most widely used test on intact rock. In each case, through the 
testing configuration, the maximum tensile stress can be calculated from 
elasticity theory as a function of the compressive force and specimen 
dimensions. The tensile strength is, therefore, the maximum tensile stress 
calculated to be present in the specimen at failure. Such a calculation is based 
on ideal material assumptions and does not take account of different 
critically stressed volumes in each test. As might be expected from our 
earlier discussion, the tensile strength varies for a given rock type tested 
in these different ways and hence is not an intrinsic material property. 
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The tensile strength variation is of three main types: 

(a) variation with repeated testing; 
(b) variation with different volume; and 
(c) variation between tests. 

The first type of variation occurs because each rock specimen contains a 
statistical sample of flaws from the total microstructural flaw population. 
The severity of the worst flaw present in each specimen taken from a set 
of specimens, all obtained from the same rock block, will be highly variable. 
Thus, if, say, 50 tensile strength tests are repeated, there could well be a 
wide variation in the 50 values, from which we can determine the mean 
and standard deviation. 

The second type of variation occurs because the larger the statistical 
sample, the greater the likelihood of a more severe flaw. Hence, if we were 
to conduct another 50 tests on larger sized specimens, but utilizing the same 
type of tensile strength test, we would also obtain a distribution of test 
results, but both the mean and the standard deviation would be lower, as 
illustrated in Fig. 6.14. 

The third type of variation, the inter-test variation, occurs because the 
critically stressed volume in each test is different. So, if a set of tensile 
strength results obtained using one test is compared with those obtained 
from another test, again there is a difference between the histograms of test 
results, as also illustrated in Fig. 6.14. 

The curves in Fig. 6.14 can be related via statistical theories. For example, 
in Weibuirs theory, the probability of failure is integrated over the critically 
stressed volume, taking the variation in tensile stress into account. 
This enables the basic probability function for a test to be specified and 
hence the probability density curves in Fig. 6.14 to be characterized. The 
variation in the probability density function can be established as a function 
of test volume and hence the change in density curves with volume 

Frequency I " 1 
Beam test 

(small specimen) 

a, - tensile strength 

Figure 6.14 Tensile strength variation as a function of specimen volume and type 
of test. 
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may be predicted. Indeed, the probability density function for any 
test condition can be established and hence the inter-test variation can 
be predicted. One of the most useful formulae to arise from this approach 
is 

an/(Ja = (Vyv,)'" 

where a^i and Oa are the mean tensile strengths obtained for two sets of 
samples with different volumes (for any test configuration), Vi and V2 are 
the associated specimen volumes, and m is one of the three material 
constants used in Weibull's theory. This provides a direct relation between 
the mean tensile strength and the specimen volume. 

At this stage, we should like to caution the reader. WeibulFs theory is 
solely statistical and does not include any specific mechanism of fracture or 
failure. Moreover, the formula above is represented by the ubiquitous 
straight line in log-log space. There have been several published Verifica-
tions' of the theory, based on straight lines in log-log space, but these 
results alone do not isolate Weibull's theory. Indeed, any such confirmation 
for the validity of the formula in compression tests is highly unlikely to be 
valid because of the distinction between failure initiation and failure 
propagation in the compression test. 

This cautionary note related to the avoidance of blind acceptance 
of any particular theory based on power laws (and material constants 
which can be determined by curve fitting) applies to all rock testing, and 
particularly to failure criteria (which we will be discussing later in this 
chapter). 

Another factor altering the shape of the complete stress-strain curve in 
compression is the effect of the confining pressure applied during a 
test, which can be quite pronounced. The general trend is shown in 
Fig. 6.15. 

The most brittle behaviour is experienced at zero confining pressure: 
the curve demonstrates less brittle behaviour (or increasing ductility) 
as the confining pressure is gradually increased. At one stage in this 
trend, the post-peak curve is essentially a horizontal line, representing 
continuing strain at a constant stress level; or, in the interpretation 
of a strain controlled test, the strength is not affected by increasing 
strain. Below this line, the material strain softens: above this line strain 
hardening occurs. The horizontal line is termed the brittle-ductile 
transition. 

Although it may be thought that this transition would only be of interest 
to geologists considering rocks subjected to the high pressures and temper-
atures that exist at great depths, there can be engineering circumstances 
where the transition is of importance. This is because the confining pressure 
associated with the brittle-ductile transition varies with rock type and is 
low in some cases. Coupling this with the increasing depth at which some 
projects are undertaken can mean that the transition is important. Note that 
the transition also represents the boundary between instability with 
increasing strain (brittle behaviour) and stability with increasing strain 
(ductile behaviour). 
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Figure 6.15 The effect of confining pressure in the triaxial test and the 
brittle-ductile transition. 

An idea of the variability in the confining pressure associated with the 
transition is given in the table below (after Goodman, 1989). 

Rock type 

Rock salt 
Chalk 
Limestone 
Sandstone 
Granite 

Confining pressure 
(MPa) 

0 
<10 

20-100 
>100 
^100 

It is emphasized that these are representative values, chosen to illustrate 
the general trend. 

One would expect different post-peak behaviour around caverns 
excavated in a soft rock salt and a hard granite. On construction, the rock 
at the excavation periphery ceases to be under triaxial compression, because 
the normal and shear stresses on the rock wall have been reduced to zero. 
So, the rock will tend to behave in a more brittle fashion. In a rock salt 
cavern, we could have brittle failure visibly occuring in the walls, with more 
ductile behaviour occuring out of sight further into the rock. Similarly, in 
a chalk possessing a 10 MPa brittle-ductile transition, and because the 
overburden stress is approximately 1 MPa for every 40 m of depth, we 
might expect ductile behaviour in deep civil engineering in soft rocks, 
depending of course on a whole host of other factors. 

Finally, perhaps the most important aspect of this phenomenon is to 
understand the reason why the stress-strain curves take the form they do. 
As we have mentioned earlier, in compression the rock tends to fracture 
perpendicular to the least principal stress, i.e. parallel to the major principal 
stress. Consequently, the application of even a small confining pressure has 
a significant effect on inhibiting the development of these cracks, and 
indeed, the mechanism of crack formation, which gradually changes to 
shearing as the confining pressure is increased. 
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6.4.4 Environmental effects 

Other factors which affect rock behaviour, in particular moisture content, 
time and temperature, can be of importance in engineering and we have 
grouped them here under the general title of environmental effects. 

Moisture content. The moisture content is known to influence the 
complete stress-strain curve because of its effect, in certain rocks, on the 
deformability, the compressive strength and post-peak behaviour. For this 
reason, it is recommended, for example by the ISRM, that the moisture 
content be measured as an integral part of the compressive strength 
determination of rocks. It is beyond the scope of this book to provide a 
comprehensive discussion of all aspects of the influence of moisture content 
and saturation, but the reader is alerted to the following factors which can 
be particularly important in rock engineering. 

1. Some rocks, and in particular those with high clay mineral contents, may 
experience desiccation when exposed. In situ, the rock may possess a 
stable, but high, moisture content; on exposure after excavation, its 
properties may change as it dries out and it may become friable and 
hence crumble with very little applied stress. 

2. Similarly, the same types of rock could be saturated on excavation, and 
be subjected simultaneously to mechanical action as part of the excava-
tion process. This leads to slaking and there is an associated slake 
durability test to assess the susceptibility of a rock under these condi-
tions. The rock can then also break down and crumble under a very low 
applied stress. The reader should be aware that slaking behaviour is not 
dissolution. 

3. Another moisture related effect is the tendency to swelling as the 
moisture content is changed. This can lead to the generation of addi-
tional stresses, for example behind tunnel linings. In some cases, the 
stresses thus generated can be of a similar magnitude to those due to 
the in situ stress field, and can initiate failure. 

4. If the pore spaces in the rock are connected and the pore fluid is under 
pressure, we can subtract this pressure, or a proportion of it, from all the 
components of normal stress. This leads to the well-known concept of 
effective stress, widely used in soil mechanics and which we will discuss 
in Chapter 9. If the water pressure is increased sufficiently, the effective 
stress can be reduced to such an extent that failure occurs. In the case 
of rocks, the effective stress concept can apply well for materials such 
as sandstone, but be inappropriate for granites, especially over 
engineering rather than geological timescales. 

These are some of the main effects but there are many others which occur 
as water (or other pore fluids) move through the rock and cause alterations 
and effects of different kinds. For example, the chemistry of groundwater 
can be important, e.g. its acidity. In materials such as chalk and limestone, 
this results in dissolution of the intact rock with complete removal of the 
material to produce caves. Freeze-thaw cycles can also degrade intact rock, 
usually in a similar fashion to slaking. 
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Time-dependent effects. We have indicated that during the complete 
stress-strain curve, microcracking occurs from a very early stage in the pre-
peak region. For some purposes, it is convenient to assume that much of 
the pre-peak portion represents elastic behaviour. However, there is no 
time component in the theory of elasticity; yet, because of the continually 
increasing microstructural damage even in the 'elastic' region, we would 
expect some time-dependent behaviour. 

There are four main time-dependent effects which are discussed here. 

(a) strain rate—the total form of the complete stress-strain curve is a 
function of the applied strain rate; 

(b) creep—a material continues to strain when the applied stress is held 
constant; 

(c) relaxation—there is a decrease in stress within the material when the 
applied strain is held constant; 

(d) fatigue—there is an increase in strain due to cyclical changes in stress. 

These four effects are shown in Fig. 6.16 and are all manifestations of the 
time-dependent nature of microcrack development. 

The effect of a reduced strain rate is to reduce the overall elastic modulus 
and the compressive strength. Creep from a point A in Fig. 6.16 is indicated 
by the line AC. Relaxation is indicated by the line AR. Fatigue is indicated 
by the stress cycles. The relation between these effects can be seen 
especially from the form of the complete stress-strain curve at lower and 
lower strain rates. Depending on whether the control variable is stress or 
strain, the rock will be continually creeping or relaxing, respectively, during 
generation of the complete stress-strain curve. 

We have noted that stress cannot be used as the control variable to obtain 
the post-peak region of the curve; nor indeed, as indicated by the line BC 
in Fig. 6.16, can creep occur in the post-peak region without instantaneous 
failure. As indicated by the lines AR and BR, relaxation can occur on either 
side of the curve for a Class I curve. Also indicated in the figure are the lines 

Secondary 
creep 

^Primary creep 

Long term 
stability 

Figure 6.16 Time-dependent effects and the complete stress-strain curve. 
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AK and BK which represent time-dependent unloading along the stiffness 
line of the loading configuration, be it a laboratory testing machine or an 
in situ rock structure. The reader should note that the lines AK and BK are 
the same machine stiffness lines as those shown in Fig. 6.7. Thus, failure 
along the line BK can also be interpreted as a time-dependent effect, 
because the specimen cannot sustain the loads associated with BK for any 
significant length of time. 

Furthermore, at high stress levels, creep has often been studied and 
divided into three types of behaviour: primary, secondary and tertiary 
creep. These are indicated by the letters A, B and C in the inset diagram in 
Fig. 6.16. Primary creep is an initial period during which creep occurs at a 
high rate; secondary creep is a period during which the creep rate is very 
much diminished; and tertiary creep is a period during which the creep 
rate accelerates until failure occurs. These periods can be interpreted as the 
line ABC crossing from the pre-peak portion of the complete stress-strain 
curve to the post-peak failure locus. In other words, there is an initial period 
of rapid creep as the displacement moves away from the pre-peak curve; 
there is a quiescent period next; and finally the creep accelerates as the 
displacement approaches the post-peak curve. 

Finally, fatigue, whether the cycles are in stress or in strain, is a complex 
process in which the previous types of time-dependent, microstructural 
cracking described are occuring incrementally at different levels of stress 
and strain during the cycling process. 

In terms of long-term in situ structural stability, we would anticipate that 
for engineering purposes there is a long-term stability curve as indicated by 
the dotted complete stress-strain curve in Fig. 6.16. We know that 
underground excavations can remain open for thousands of years without 
any apparent time-dependent collapse. In this case, the stresses and strains 
associated with the rock around the excavation are on the long-term 
stability curve, and will have approached it through a combination of creep 
and relaxation over the years. We would expect different rock types to 
have different forms of long-term stability curves: the curve for a granite 
might be similar to the one obtained at relatively high strain rates in 
the laboaratory, whereas the curve for a rock salt could be very much 
lower than that obtained in the laboratory. Also, some rocks will suffer 
mechanical and chemical degradation which will be superimposed on 
the direct time-dependent effects. Conversely, if stresses applied to a 
rock structure in the short term are sufficiently high to cause the line AK 
in Fig. 6.16 to be above the long-term stability curve, then failure will be 
the inevitable consequence. The consequences for engineering design are 
manifold. 

It is for all these reasons that some degree of standardization is essential 
in laboratory testing, not only to provide coherency for comparative 
purposes, but also to be able to extrapolate to field strain rates from a 
constant worldwide measurement base. This is because the behaviour of 
rocks differs widely depending on the strain rate to which they are 
subjected—because of wide variations in the microstructure of rocks. For 
example, a limestone may exhibit brittle behaviour when subjected to the 
high strain rates developed by explosives, say 1 x 10^ , typical Class I 
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behaviour at a strain rate in the laboratory of 1 x 10"^ and very much more 
ductile behaviour when undergoing tectonic movements at strain rates of 
1 X 10~^ .̂ Note that this range is through 21 orders of magnitude. 

Temperature effects. Only a limited amount of information is available 
indicating the effect of temperature on the complete stress-strain curve 
and other mechanical properties of intact rock. The limited test data do 
however agree with one's intuition, that an increase in temperature 
reduces the elastic modulus and compressive strength, whilst increasing 
the ductility in the post-peak region. The complete stress-strain curves 
shown in Fig. 6.17 illustrate this trend. Also, very high temperatures can 
result in damage to the microstructure. At the other end of the 
temperature spectrum, there is increasing interest in the effect of very 
low temperatures on rock, within the context of liquified natural gas 
storage. 

4 6 8 

Strain in percent 

Figure 6.17 The effect of temperature on the complete stress-strain curve. 

6.5 Failure criteria 

We do not know exactly how a rock fails, either in terms of the precise 
details of each microcrack initiation and propagation, or in terms of the total 
structural breakdown as many microcracks propagate and coalesce. In both 
cases, the process is extremely complex and not subject to convenient 
characterization through simplified models. Nevertheless, as engineers we 
should like some measure of the failure properties and the ability to predict 
when failure will occur. It was mentioned earlier that stress has been 
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traditionally regarded as the 'cause' and strain as the 'effect' in materials 
testing: as a consequence, early testing and standards utilized a constant 
stress rate application. It was then natural to express the strength of a 
material in terms of the stress present in the test specimen at failure. Since 
uniaxial and triaxial testing of rock are by far the most common laboratory 
procedures in rock mechanics and rock engineering, the most obvious 
means of expressing a failure criterion is 

strength =/(CJI , CT2, ^3). 

With the advent of stiff and servo-controlled testing machines and the 
associated preference for strain rate control, perhaps the strength could be 
expressed in the form 

strength =/(£i, 82, £3). 

We also discussed the possibility of more eclectic forms of control such 
as constant rate of energy input, leading to more sophisticated possibilities 
for strength criteria expressed in the form 

strength = /(Ci, CJ2, (J3, ̂ i, £2, £?>)• 

Despite this possibility, the number and variation of the failure criteria 
which have been developed, and which are in some degree of everyday 
use, are rather limited. The Mohr-Coulomb criterion expresses the relation 
between the shear stress and the normal stress at failure. The plane Griffith 
criterion expresses the uniaxial tensile strength in terms of the strain energy 
required to propagate microcracks, and expresses the uniaxial compressive 
strength in terms of the tensile strength. The Hoek-Brown criterion is 
an empirical criterion derived from a 'best-fit' to strength data plotted in 
cr|-c73 space. 

We will be presenting outlines of these criteria below; for a full derivation 
and more complete explanation and discussion, the reader is referred to 
the text by Jaeger and Cook (1979) for the Mohr-Coulomb and the Griffith 
criteria, and to Hoek and Brown (1980), Hoek (1990) and Hoek et al (1992) 
for the Hoek-Brown criterion. 

6.5.1 The Mohr-Coulomb criterion 

The plane along which failure occurs and the Mohr envelope are shown 
in Fig. 6.18 for the two-dimensional case, together with some of the key 
expressions associated with the criterion. From the initial principal 
stresses, the normal stress and shear stress on a plane at any angle can be 
found using the transformation equations, as represented by Mohr's circle. 
Utilizing the concept of cohesion (i.e. the shear strength of the rock when 
no normal stress is applied) and the angle of internal friction (equivalent 
to the angle of inclination of a surface sufficient to cause sliding of a 
superincumbent block of similar material down the surface), we generate 
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BASIC EQUATIONS Rock tails at a critical combination of normal and shear stresses: 

III = I,) + |X{T_̂  

Xjj = cohesion |x = coeff. of friction 

IT! =T(CT, - a ^ ) sin 2(3 

± 

p 
T" iT^ =y(CT, + (j^) +^{iJ^ - a^) cos 2P 

The equation for IT! and a^ are the equations of a circle in 
(a, T) space: 

FUNDAMENTAL GEOMETRY 
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• P = 45 + ^ 

Figure 6.18 The Mohr-Coulomb failure criterion. 

the linear Mohr envelope, which defines the limiting size for the Mohr's 
circles. In other words, a-r co-ordinates below the envelope represent 
stable conditions; ch-z co-ordinates on the envelope represent limiting 
equilibrium; and o^r co-ordinates above the envelope represent conditions 
unobtainable under static loading. Because the criterion is developed for 
compressive stresses, a tensile cut-off is usually utilized to give a realistic 
value for the uniaxial tensile strength. 

We anticipate that this criterion is most suitable at high confining 
pressures when the material does, in fact, fail through development of 
shear planes. At lower confining pressures, and in the uniaxial case, we 
have seen that failure occurs by gradual increase in the density of 
microcracks sub-parallel to the major principal stress, and hence we would 
not expect this type of frictional criterion to apply directly. However, at the 
higher confining pressures, the criterion can be useful and it should be 
noted, with reference to Fig. 6.18, that the failure plane will be orientated 
at /? = 45° -h (0/2). 

The influence of a significant water pressure in porous materials (which 
is deducted from the normal stress components, but not from the shear 
stress component) is clear as the Mohr's circle is moved to the left by an 
amount equal to the water pressure, hence introducing the possibility of 
the Mohr's circle moving from a stable region to be in contact with the 
Mohr envelope. 

Despite the difficulties associated with application of the criterion, 
it does remain in use as a rapidly calculable method for engineering 
practice, and is especially significant and valid for discontinuities and 
discontinuous rock masses. 
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6.5.2 The plane Griffith criterion 

The essence of the Griffith criterion is that for a material to break in tension 
owing to the presence of an existing microcrack, sufficient energy must be 
released to provide the necessary new surface energy as the crack prop-
agates. The rate of strain energy release must be equal to or greater than 
the required surface energy increase. This results in the expression shown 
in Fig. 6.19 for the uniaxially loaded plate shown. It is possible to extend this 
criterion from the plane stress case shown to plane strain in both tension 
and compression, as the figure shows. The basic concept of supplying 
sufficient surface energy during fracturing also applies during crack prop-
agation. However, the formulae refer only to the onset of cracking because 
the geometry changes during crack propagation. In the case of a tensile test 
for engineering purposes, fracture initiation and specimen collapse may be 
considered as synonymous; in the case of compression, however, we have 
already noted that microstructural cracking occurs throughout the complete 
stress-strain curve and that the compressive strength is an arbitrary stage 
in the microstructural breakdown process. Thus, whilst it is interesting to 
utilize the Griffith criterion for studying microcrack intitiation under 
compressive loading, it is unlikely that the formula can provide a useful 
estimate of the engineering compressive strength. 

The formula for tensile failure is 

(Jt = {kaE/cf^ 

where cr̂  is the tensile stress applied to the specimen at failure, fc is a 
parameter that varies with the testing conditions, i.e. k = IJn for plane 
stress and fc = 2( 1 - v^ )/:7rfor plane strain, a is the unit crack surface energy, 
E isthe Young's modulus, and c is half the initial crack length. 

Thus, for a given rock and testing configuration, the tensile strength will 
vary inversely as the square root of the initial crack length. This provides 

Material fractures when sufficient strain energy is released to enable cracks to propagate 

unit thickness 

^t ~ / k a E k = ^ for plane stress 

= ^ (1 - v") for plane strain 

a = unit surface energy of the crack 

In compression: 

(a, - 0-3)" = 8T(j (a, + 0-3) when a, + 30-3 > 0 

0-3 = -T() when a, + 3a3 < 0 

Note: compression positive, T(̂  positive (-T^, = a^) 

Figure 6.19 The plane Griffith failure criterion. 
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a direct mechanical explanation of the size effect discussed earlier: the 
tensile strength decreases with increasing crack length, and larger 
specimens will tend to contain larger flaws (i.e. larger initial crack lengths). 

The Griffith criterion enables a relation to be derived between the 
uniaxial tensile strength and the triaxial compressive strength as 

(cji - (J3)̂  = 8To(ai -h a^) 

which for uniaxial compression with 03 = 0 gives a^ = STQ where TQ = -G^, 
This relation has been modified by various researchers for a variety of 
factors, particularly friction across the crack surfaces. 

6.5.3 The Hoek-Brown empirical failure criterion 

This empirical criterion is derived from a best-fit curve to experimental 
failure data plotted in Oi-a^ space as shown in Fig. 6.20. Hoek (1990) has 
noted that ''since this is one of the few techniques available for estimating 
the rock mass strength from geological data, the criterion has been widely 
used in rock mechanics analysis''. 

The criterion is expressed as 

cJi = 0-3 + (mcrecr3 + sa^Y^^ 

where a^ = the major principal stress, (73 = the minor principal stress, a^ 
= the uniaxial compressive strength of the intact rock, and m and s are 
constants for a specific rock type. 

Although the constants m and s arise from the curve-fitting procedure, 
there is an element of physical interpretation associated with them which 
is helpful for the engineer to consider. 

The parameter s relates to the degree of fracturing present in the rock 
sample: it is a representation of the cohesion of the rock. For completely 
intact rock, it takes the value 1 (which can be demonstrated by 
substituting 0^ = 0 into the criterion: o"i = a^s^^'^ and hence s = 1, noting 
that Gc is the intercept on the Oi axis in Fig. 6.20) and, for rock which is 
highly fractured, it reduces in value and tends towards zero as the strength 
is reduced from peak to residual. 

The parameter m is related to the degree of 'particle interlocking' present: 
for intact rock this is high, and reduces as the degree of brokenness 
increases. There are no clear limits to this parameter; it depends on the rock 
type and its mechanical quality. 

This criterion also provides a relation between the tensile and 
compressive strengths which can be found by substituting CTI = 0 and 
^t ~ -<^3 iî  the criterion to give 

a, = -G,{m - (m^ + Asfyi. 

Thus, the relation between the two strengths is a function of the rock's 
mechanical properties: for example, if s = 1 and m == 20 (a good-quality 
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Figure 6.20 The Hoek-Brown empirical failure criterion. 

intact granite, say), the compressive strength is found to be about 20 times 
the tensile strength. Note that these strengths are now the rock mass 
strengths, because not only the intact rock fracturing but also the large-scale 
rock mass fracturing is incorporated into this criterion via the parameter 
m. As we will see later in Chapters 8 and 12, relations can be postulated 
between the parameters m and s and other measures of rock mass quality 
using classification schemes. Also, inter-criteria relations can be found, in 
particular linking the Hoek-Brown criterion with the Mohr-Coulomb 
criterion, i.e. linking m and s with c and 0. 

The Hoek-Brown criterion has recently been recast (Hoek et al, 1992) to 
take into account the experience gained over the 10 years since its 
development. 

6.6 Concluding remarks 
We have presented three failure criteria that are extensively used in rock 
mechanics and rock engineering. The reader should be aware of the 
shortcomings of each of the criteria, and be prepared to make use of 
whichever is best suited to a particular application. Further criteria are 
available as listed in Fig. 6.21. None of the criteria take into account the 
specific structure of the rock mass, in particular its fracturing configuration. 
The occurrence of the natural pre-existing fractures in rock masses is the 
next subject to discuss because of their profound influence on the 
deformation, strength and failure of rock masses. 
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

Authors 

MuiTell(1963) 

Fairhurst(1964) 

Hobbs(1966) 

Hoek(1968) 

Franklin (1971) 

Bienlawski 
(1974) 

Yoshinaka & 
Yamabe(1980) 

Hoek and 
Brown (1980) 

Kim and Lade 
(1984) 

Johnston (1985) 

Desai and Salami 
(1987) 

Michelis(1987) 

The criteria 

T-j = 8r„(r ,. or: 7, = 47,,/,. 

if m ( 2 m - 1 ) 0 | + a , ^ 0 : (r^=K. 
it m(2m - l)o-| + a , < 0: 

(a ,+(T,) -"^ ' " ^ L ' ' ( ( T , + a , ) U 2 / MJ 

o , =fl(r , + (T,. or: r = A'-.cr]̂ . 

0 | - < r , = 2C + / \ ( a | + a , ) , 

"'̂ ' """max ~ """muxO ••" ^"nV 

o-| - a ^ = a', A{T| +0-,)'^. 

a^ = / f t r , + o , , 

or: T = fiV + 0. l a , . 

a , - OT = aA'(^)((j| + o^ + o,)*^. 

CT| -cT, = \/m(T.(r^ + so", 

or; x = A((j^ + Bi. 

(f--)(^r-,. 
a , f / V / a , 1» 

y'. = ( - ^ (/',)" + y(l\)-](!- (3S^)"'. 

l n ( ^ . a , p l - . a , r ) . 

/2q/pf„ + a - a , v 
a, In + In a,. 
' ^2q/pt„ + a , + u / ^ 

Constants 
involved 

One constant 
(3D criterion) 

Two constants 
(2D criterion) 

Two constants 
(2D criterion) 

Three parameters 
(2D criterion) 

Two constants 
(2D criterion) 

Three constants 
(2D criterion) 

Three parameters 
(3D criterion) 

Three parameters 
(2D criterion tor 
rocks and rock 
masses). 

Three parameters 
(3D criterion) 

Three parameters 
(2D criterion) 

More than six 
parameters 
(3D criterion) 

Four constants 
(3D criterion) 

Development of 
the criteria 

Extended 3D Griffith 
theory. 

Empirical generalisation 
of 2D Griffith theory 
for intact rock. 

Empirical test data fitting 
for intact rocks. 

Empirical curve fitting 
for intact rock. 

Empirical curve fitting 
for 500 rock specimens. 

Empirical curve fitting 
for 7(X) rock specimens. 
(5 types) 

Empirical lest data 
analysis for soft rocks 
(mudslone, etc). 

Appl. of Griffith theory 
and empirical curve 
filling for rock and rock 
mass. 

Analytical examination 
on test data (originally 
for soil and concrete). 

Empirical curve fitting 
for soft rock specimens. 

Polynominal expansion 
in terms of stress 
invariants to curve 
fitting. 

Analytical and 
experimental 
examination on yield 
surface (true triaxial 
test). 

Figure 6.21 Summary of rock failure criteria up to 1988 (from Pan, 1989). 



7 Discontinuities 

It is the existence of discontinuities in a rock mass that makes rock 
mechanics a unique subject. The word 'discontinuity' denotes any separa-
tion in the rock continuum having effectively zero tensile strength and is 
used without any genetic connotation (cf. the words 'joint' or 'fault' which 
describe discontinuities formed in different ways). 

The material comprising the intact rock is natural and has been 
subjected in most cases to millions of years of mechanical, thermal and 
chemical action. During these processes, the discontinuities have been 
introduced into the rock by geological events, at different times and as a 
result of different stress states. Very often, the process by which a 
discontinuity has been formed (e.g. a joint which has been pulled open or 
a fault which has been sheared) may have implications for its geometrical 
and mechanical properties, and so it is always important to have an 
understanding of the formation of discontinuities using structural geology 
principles (see Price and Cosgrove 1990). 

In the engineering context here, the discontinuities can be the single most 
important factor governing the deformability, strength and permeability 
of the rock mass. Moreover, a particularly large and persistent discontinuity 
could critically affect the stability of any surface or underground 
excavation. For these reasons, it is necessary to develop a thorough 
understanding of the geometrical, mechanical and hydrological properties 
of discontinuities and the way in which these will affect rock mechanics 
and hence rock engineering. 

In this chapter these subjects will be discussed explicity; in Chapter 8 the 
discontinuity properties will be incorporated in a study of rock masses; in 
Chapter 9 discontinuity networks and the associated secondary permeabili-
ty will be explained; and in Chapter 10 inhomogeneity and anisotropy are 
highlighted, remembering that these are often caused by variations in the 
occurrence of discontinuities. 
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7.1 The occurrence of discontinuities 

In Fig. 7.1, we illustrate just two examples of discontinuous rock masses. 
In fact, all rock masses are fractured, and it is a very rare case where the 
spacings between discontinuities are appreciably greater than the 
dimensions of the rock engineering project. In Fig. 7.2, we illustrate the fact 

(a) 

(b) 

Figure 7.1 Two examples of discontinuous rock masses. 
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that very often major discontinuities delineate blocks within the rock mass, 
and within these blocks there is a further suite of discontinuities. Such 
hierarchial systems of discontinuities may well be much more complex, but 
this will not affect the ideas presented in this chapter. The engineer should, 
however, realize the significance of, for example, the likelihood that most 
of the smaller discontinuities could either terminate within one of the larger 
blocks or at the boundary of a block. Also, as illustrated by the sketched 
outlines of the engineered structures shown in Fig. 7.2, in general we might 
expect that a relation of the form 

stability < 
number of discontinuities engineering dimension 

should exist. This idea is intimated in Fig. 7.2, where schematic outlines of 
a borehole, tunnel and large excavation have been overlain on a 
photograph of a rock face. 

Another factor which should be considered, and which has influenced 
development of the study of discontinuities, is to what extent they can be 
sampled. From Fig. 7.1 it is clear that a great deal of information can be 
obtained by field measurement on a rock exposure, but even this only 
provides an essentially two-dimensional sample slice through the three-
dimensional rock mass. In practice, we would like to have at least two such 
exposures at different orientations to feel confident that some estimate of 
the three-dimensional nature of the rock mass structure was being 
obtained. Unfortunately, it is often the case that no such exposures are 
available before the construction of a particular project. In this situation, 
we must rely on borehole core retrieved during the drilling process, scans 
using borehole television cameras or indirect methods using geophysical 
techniques. 

By far the most widely used method is to study the borehole core, but this 

Figure 7.2 Discontinuities in rock and the engineered structure (A, borehole; B, 
tunnel; C, large excavation). 
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is an essentially one-dimensional sample through the three-dimensional rock 
mass, with obvious limitations. For example, a borehole core will provide an 
excellent means of examining the discontinuity occurrence and hence 
frequency in the borehole direction, but will provide little information on the 
lateral extent of the intersected discontinuities. Thus, a key aspect of rock 
structure interpretation will be the extrapolation to three-dimensional 
properties from either one- or two-dimensional measurements. 

One of the most fundamental aspects of discontinuity occurrence is the 
mean value and distribution of spacings between discontinuities, and the 
associated indices of discontinuity frequency and Rock Quality Designa-
tion. These and several other aspects of rock structure geometry will be 
discussed in the next section. 

7.2 Geometrical properties of discontinuities 

In Fig. 7.3, we present a schematic representation of two planes within a 
rock mass. There are no assumptions about whether these planes are real 
or imaginary surfaces or sections. Also, the borehole or scanline could be 
real, or postulated solely for the purpose of analysis. This diagram shows 
the main features of rock mass geometry with, in particular, the following 
parameters being illustrated: 

1. Spacing and frequency: spacing is the distance between adjacent 
discontinuity intersections with the measuring scanline. Frequency (i.e. the 
number per unit distance) is the reciprocal of spacing (i.e. the mean of these 
intersection distances). 
2. Orientation, dip direction/dip angle: the discontinuity is assumed to be 
planar and so the dip direction (the compass bearing of the steepest line 
in the plane) and the dip angle (the angle that this steepest line makes to 
the horizontal plane) uniquely define the orientation of the discontinuity. 
3. Persistence, size and shape: the extent of the discontinuity in its own 

Figure 7.3 Schematic of the primary geometrical properties of discontinuities in 
rock (from Hudson, 1989). 
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plane, incorporating factors such as the shape of the bounded plane and 
the associated characteristic dimensions (e.g. the discontinuities could be 
assumed to be circular discs for the purpose of analysis and sampling). 
4. Roughness: although discontinuities are assumed to be planar for the 
purposes of orientation and persistence analysis, the surface of the 
discontinuity itself may be rough. Discontinuity roughness may be 
defined either by reference to standard charts or mathematically. 
5. Aperture: the perpendicular distance between the adjacent rock 
surfaces of the discontinuity. This will be a constant value for parallel and 
planar adjacent surfaces, a linearly varying value for non-parallel but planar 
adjacent surfaces, and completely variable for rough adjacent surfaces. 
6. Discontinuity sets: discontinuities do not occur at completely random 
orientations: they occur for good mechanical reasons with some degree of 
'clustering' around preferred orientations associated with the formation 
mechanisms. Hence, it is sometimes convenient to consider the concept of 
a discontinuity set (which consists of parallel or sub-parallel discon-
tinuities), and the number of such sets that characterize a particular rock 
mass geometry. 
7. Block size: as is illustrated in Fig. 7.3 and depending on the previously 
described characteristics, rock blocks can be present. In terms of 
excavation and support, it is helpful to have an estimate both of the mean 
block size and the block size distribution, which is an in situ analogue of 
the particle size distribution .used in soil mechanics. 

The degree of work that has been devoted to providing techniques for 
measurement, data reduction and presentation associated with each of 
these seven main aspects of the geometrical properties has been highly 
variable. There is no standardized, or indeed 'correct', method of measur-
ing and characterizing rock structure geometry, because the emphasis and 
the accuracy with which the separate parameters are specified will depend 
on the engineering objective. Therefore, initially we will describe the salient 
features of these parameters, taking each individually, and later invoke this 
information with respect to specific engineering themes. 

7.2. J Discontinuity spacing and frequency 

In Fig. 7.4, we illustrate a sampling line through a rock mass, which 
intersects a number of discontinuities. The length of the sampling line is L 
metres, the number of discontinuities it intersects is N, and thus, 

discontinuity frequency, A = N/L m~' 

and 

mean spacing, x = L/N m. 

The discontinuity frequency, being the number of fractures per metre, is 
the reciprocal of the mean spacing. 

We can also consider the distribution of the individual spacings 
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Figure 7.4 Quantifying discontinuity occurrence along a sampling line. 

between fractures, denoted by x^ in Fig. 7.4. When a sufficiently large 
sample of these individual spacing values (preferably more than 200 
individual measurements) is plotted in histogram form, a negative 
exponential distribution is often evident, as illustrated in Fig. 73. It should 
be noted that the general trend of this histogram is for there to be many 
small spacing values and few very large spacing values in the distribution. 

We utilize histograms when there is a finite number of values (i.e. the 
discrete case) and the data can be assigned to chosen class intervals. On 
approaching the limiting case of an infinite number of spacing values and 
infinitely small class intervals, the histogram tends to a continuous curve, 
which can be expressed as the probability density function. 

fix) = Ae -Xx. 

Note that the mean of this distribution is 1/A, and the standard deviation 
is also 1/A. It is a one-parameter distribution, with the mean and the 
standard deviation being equal. 

This negative exponential distribution is the spacing distribution 
associated with the Poisson process of random events. However, it must be 
emphasized that we are not treating the occurence of discontinuities as 
random events, rather we are using the equation because we expect it to 
apply and field data support its use. In some statistical cases, such as repeated 
sampling to determine the mean of a population with any distribution, there 
is convergence of the results to the well-known normal distribution: this is 
called the central limit theorem. The negative exponential distribution is an 
analogue to the normal distribution, except that it is the distribution to 
which the spacing values converge when successive spacing distributions 
of any type are superimposed on the sampling line. In other words, the 
occurrence of the negative exponential distribution is expected as the result 
of a suite of superimposed geological events, each of which produces 
fracturing of a given distribution. It should be noted that fracturing is 
deterministic in the sense that it occurs as the result of direct mechanical 
causes, but that in aggregate a probabilistic model is mathematically 
convenient to use, as will be explained in the next sub-section. 

7.2.2 The Rock Quality Designation, RQD 

As is evident in Fig. 73, a natural clustering of discontinuities occurs through 
this genetic process of superimposed fracture phases, each of which could 
have a different spacing distribution. An important feature for engineering 
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Frequency 
of 

occurrence 

f (x ) Discrete Continuous 

f{x) = Xe 

Spacing, x Spacing, x 

Figure 7.5 The negative exponential distribution of discontinuity spacing values. 

is that, although there are more small spacing values than large spacing 
values, a single large spacing value can be a greater proportion of the 
scanline length than many small spacing values added together. How^ever, 
the discontinuity frequency (or mean spacing value) does not give any 
indication of this phenomenon. For this reason, Deere (1963) developed, 
for borehole core, the concept of the Rock Quality Designation, 
universally referred to as RQD. This is defined as the percentage of the 
sampling line (or borehole core) consisting of spacing values (or intact 
lengths of rock) greater than or equal to 4 inches (or 100 mm). Expressed 
mathematically. 

RQD - lOOy ^ % 
tt L 

w^here x, = spacing values greater than 0.1 m, and n is the number of these 
intersected by a borehole core or scanline of length L. 

We are now^ in a position to relate the discontinuity frequency to the 
RQD utilizing the negative exponential distribution of spacing values. In 
Fig. 7.6 the shaded area shov^ ŝ those spacing values above the RQD 
threshold value. We can find the RQD by establishing the percentage of 
the sampling line that is represented by the spacing values in the shaded 
area. This is not represented just by the shaded area expressed as a percentage of 
the total area under the curve, because we must take into account the 
different contributions made by the different spacing values, as presented 
below^. 

The probability of the length of a piece of intact core being betw^een x 
and X + Sx is f{x)8x. Given that the total number of pieces of core is N, then 
the total number of pieces of core in this interval is Nf{x)5x and the length 
of all of these pieces is Nxf{x)dx. We can find the total length of all pieces 
w îth all values of x by summing: 
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Probability 
= f(x)6x 

Number of 
pieces = Nf(x)8x 

^x = 0.lm 

Figure 7.6 The contribution to the core length made by intact pieces of rock greater 
than 0.1 m in length. 

total length = ^ NxJ{x)Sx. 

For RQD, we consider only those pieces of core with a length greater than 
0.1 m and so, in the limit for the continuous case, we have 

total length of pieces > 0.1 m in length = j Nxf{x)dx. 
,v=0.1 

Now, substituting this into the previous (discrete) expression for RQD, we 
find that 

RQD'^ = 100(1/L) JNx/(x)dx 

where we have used the notation RQD* to represent the theoretical RQD 
calculated from the distribution of spacing values. 

However, we know that N/L = A, the discontinuity frequency, so for the 
general case with any distribution of spacing values we have 

RQD* = 100A }x/(x)dx. 

We can evaluate this integral explicitly for the negative exponential 
distribution. Thus, for a negative exponential distribution of spacing 
values. 

RQD*=:100A' jxe -^dx 

which gives 

RQD'^ - 100(0.U+l)e -0.1 A 
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Note that by using the negative exponential distribution in this way, the 
RQD* can be expressed solely in terms of the discontinuity frequency. In 
Fig. 7.7, we have plotted the RQD* against both the mean spacing, X, and 
the frequency, A. From these curves, it can be seen that the RQD* is most 
sensitive for spacing values in the range 0-0.3 m: above a mean spacing 
value of 0.3 m, the RQD'' is always greater than 95%. It can also be seen, 
from the plot of RQD* versus A, that the relation is approximately linear 
in the range 6 < A < 16. This leads to the simplified approximate formula 

RQD'^ = -3.68A+110.4. 

To overcome the lack of sensitivity of RQD"^ for large spacing values, we 
can use any threshold value, t, for calculating RQD'* ,̂ rather than 0.1 m. This 
results in the general formula 

RQD* = 100(Af + l)e-^^ 

We have plotted this relation for f=0.1 m (the conventional threshold 
value), f = 0.3 m and f = 1.0 m in Fig. 7.7. For rock masses with large mean 
discontinuity spacing values, it can be helpful to adopt a two-tier 
approach to the RQD calculation, utilizing the conventional threshold of 
0.1 m and a higher threshold of, say, 1.0 m. 

7.2.3 Variation of discontinuity frequency with 
sampling line direction 

From the definition of discontinuity frequency, as illustrated in Fig. 7.4, the 
measured discontinuity frequency is expected to vary with the direction 
of the sampling line relative to the orientation of the discontinuities. 
Because of the complexity of all potential three-dimensional discontinuity 
patterns, we introduce the method of calculating this variation, firstly with 
reference to a single set of planar, parallel and persistent discontinuities, 
and subsequently for any number of discontinuity sets. 

100 
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a 
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RQD y^ 
= 74% X R Q D = 74%^ 

/ X = 0.1 y\\ = 

/ X ^ 

Z- I \ L _ 

t = 0.1 

'^^t = {).?> 

--03 

^^1= 1.0 

1 1 

Approximately linear 6 < \ < 16 

0.1 0.2 0.3 0.4 
Mean spacing, x m 

10 20 30 40 
Frequency, \ m ' 

Figure 7.7 The relation between RQD'' and both mean spacing and frequency for 
a negative exponential distribution of spacing values, with different RQD* 
threshold values. 
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In Fig. 7.8, a sampling line intersects the traces of one idealized set of 
discontinuities: this may be a scanline on a rock surface, for example. Note 
that the discontinuity traces are parallel, persistent and linear, but are not 
regularly spaced. We assume that the length of the line perpendicular to 
the discontinuities has length L and intersects N discontinuities. The 
discontinuity frequency along the set normal. A, is equal to N/L Along the 
scanline, inclined at angle 0 to the discontinuity set normal, the 
discontinuity frequency is calculated by the same method: for the same 
number of intersected discontinuities, N, the length of the line is L/cos 0 
and the discontinuity frequency along the scanline, Â , is given by 

N N = —cos^ = XcosO. 
L/cosO L 

The discontinuity frequency is always positive and therefore we have 

As = A I cos ^ |. 

Because Â  is always positive, the discontinuity frequency, having 
magnitude and direction, may be considered to be two vectors rather than 
one, as illustrated in the right-hand part of Fig. 7.8. Note that the 
fundamental set frequency is given by the maximum distance from the 
origin to the outer dashed circle, i.e. in the 0° and 180° directions. 

Apart from the fact that discontinuity frequency must always be positive, 
it can be resolved like a force as illustrated in Fig. 7.8. As the scanline is 
rotated from ^ == 0° to ^ = 90°, Â  varies from its maximum value of A to 
zero: obviously. As = 0 occurs when the scanline is parallel to the 
discontinuities. However, as 6 is increased beyond 90°, the discontinuity 
frequency increases again, to a maximum of A when 6 = 180°. The resultant 
cusp in the locus at ^ = 90° has an important effect as we progress to 
considering more than one discontinuity set. 

The case illustrated in Fig. 7.8 is the most anisotropic case possible for 
the variation in discontinuity frequency, because the ratio of the greatest 
to the least frequency is infinite. Note also that the directions of maximum 

270 

180° 

Figure 7.8 Variation in discontinuity frequency for a sampling line passing through 
a single set of discontinuities—two-dimensional case. 
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and minimum discontinuity frequency are perpendicular for the case of 
one set: this is the only circumstance in which the two are perpendicular. 

If now two discontinuity sets are considered, as illustrated in Fig. 7.9, the 
contribution from each set is resolved onto the sampling line as 

As = Ai I cos Oi I + A21 cos 611. 

It can be seen from the associated polar plot that the rock mass is now far 
less geometrically anisotropic and that the directions of maximum and 
minimum discontinuity frequency are no longer orthogonal. 

This procedure can be readily extended to any number of discontinuity 
sets, n, with the result 

Ag = ^ A, I c o s 6^ I 
( = 1 

where A/ and Oi are the fundamental set frequency and the angle between 
the set normal and the sampling direction, respectively, for the ith set. In 
Fig. 7.10, the progression from one set to an infinite number of sets is 
illustrated for mutually symmetric set normals and where each set 
frequency is the reciprocal of the number of sets present (in order to keep 
the areal density of discontinuities constant). 

The progression from anisotropy to isotropy is elegantly demonstrated 
in the top row of polar plots as the discontinuity frequency locus changes 
from two circles (for one set), through various lobular shapes, to a single 
circle (for an infinite number of sets). The diagram shows how a rock mass 
with, say, four or five similar and equally spaced sets may be regarded as 
effectively isotropic. The discontinuity frequency variation has been shown 
for symmetrically orientated sets possessing equal frequencies: there will 
obviously be more anisotropy in the less-ideal and real cases. 

The lower row of stereographic plots in Fig. 7.10 shows the same 
variation for the same sets, but for the sampling direction being variable 
in three dimensions. The diagrams are contoured lower-hemisphere 
projections: a single set results in a single 'peak', and an infinite number 

Normal to 'M 
discontinuity * 
set 1 \^ = X|COS0 + X-,sinO 

< for acute 
angle a 

= Scanline 

" ^ ' 
Normal to 
discontinuity 
set 2 

Figure 7.9 Variation in discontinuity frequency for a sampling line passing through 
two sets of discontinuities—two-dimensional case. 
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Figure 7.10 Variation in discontinuity frequency for a sampling line passing 
through multiple sets of symmetrically orientated discontinuities—two- and three-
dimensional cases illustrated via polar and lower-hemispherical projection plots. 

of sets results in a 'peneplain'. The variation for one, two and three 
discontinuity sets (which are perpendicular and have equal frequencies) is 
represented by the three-dimensional polar plots shown as isometric 
sketches in Fig. 7.11. The format of this diagram is a 3 x 3 matrix with the 
individual set loci along the leading diagonal and the binary combinations 
of sets shown in the off-diagonal positions. The principle of this type 
of presentation is explained in Chapter 14. The shaded areas in each 
locus are equivalent to the 'horizontal' two-dimensional loci shown in 
Figs 7.9 and 7.10. 

Because of this variation in discontinuity frequency with direction, the 
RQD will also vary with direction, bearing in mind the relations given in 
Section 7.2.2. So, a statement such as 'the rock mass has an RQD of 80%' 
is inadequate: an RQD value can only apply to measurements made in a 
specific direction. In fact, the RQD is a vector-like quantity with both 
magnitude and orientation, directly calculable fom the discontinuity 
frequency. The variation with direction is particularly relevant to site 
investigation results containing the ubiquitous parameter RQD with the 
possibility that the RQD measured in a vertical borehole has been applied 
to, say, a horizontal tunnel. 

7.2.4 Discontinuity orientation, discontinuity sets and 
block sizes 

If we assume that a discontinuity is a planar feature, then its orientation 
can be uniquely defined by two parameters: dip direction and dip angle. 
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Figure 7.11 Variation in discontinuity frequency for a sampling line passing 
through one, two and three sets of mutually perpendicular discontinuities—three-
dimensional case (from Antonio, 1985). 

The dip angle is defined as the steepest line in the plane, i.e. the line down 
which a ball would roll; the dip direction is the compass bearing of this line, 
measured clockwise from North. Here, we will use the notation a//3 for dip 
direction/dip angle: the reader should be aware that there are a number of 
alternative nomenclatures in current usage. In the field, the use of a 
geological compass will provide direct readings of the dip direction and the 
dip angle. 

In general, a large number of cdp data pairs will be obtained during the 
course of a field survey. Consequently, it is useful to present these data in 
a graphical form to aid rapid assimilation and understanding. Thus, we 
wish to present information about planes in three-dimensional space on a 
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two-dimensional piece of paper. There are many possible techniques for 
this. In fact, the problem of plotting lines on the Earth's surface on a sheet 
of paper has been a problem since the early days of navigation. 

During the development of rock mechanics and rock engineering, there 
has been almost total acceptance of equal-angle lower-hemisphere 
projection. Here we will give a basic description of the plotting method, 
sufficient to allow the reader who is not familiar with the method to 
follow the discussion; a monograph on the subject has been produced by 
Priest (1985) and more detail is given here in Appendix B. 

In Fig. 7.12, we show the dip direction plotted as the compass bearing 
and the dip angle plotted inwards from the perimeter of the projection. This 
defines a point on the projection representing the line of maximum dip of 
the plane being plotted. As is also shown in Fig. 7.12, another line in the 
plane is the strike line, i.e. the line with zero dip: this is plotted as two 
diametrically opposed points on the perimeter of the projection. In the 
same way, all lines in the plane can be plotted using their particular a/(3 
values, resulting in the great circle shown in the figure. Thus, a line in the 
plane is plotted as a point, and the plane itself is plotted as a curve (for 
equal-angle projection, it is an arc of a circle). 

An alternative method of uniquely specifying the plane is to plot the 
position of a line which is perpendicular to the plane: this line is known 
as the normal and the associated point plotted on the projection is known 
as the pole. The pole of the plane is also plotted in Fig. 7.12. Note that the 
following two relations exist between the line of maximum dip and the 
normal: 

formal = ^̂ dip - 1^0° 

/̂ normal = 90° - ^dip-
Generally, we wish to plot many discontinuity planes, which means that 

plotting poles is preferred to plotting great circles. Also, once many poles 
have been plotted on the projection, the basic rock structure can be 
considered in terms of the clustering of these normals: this is conventionally 
studied by contouring the projection to locate the densest regions. More 
advanced techniques involve various clustering algorithms, based either on 

Disconti 

'S 

Figure 7.12 Discontinuity plane and the associated hemispherical projection. 
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statistical or fuzzy-set methods (Harrison, 1993). In Fig. 7.13, we show an 
example of plotted data, the resulting contoured plot and the main set 
directions. 

It is common to idealize a set of discontinuities as a collection of parallel, 
persistent and planar features. It is clear from Fig. 7.13 that in practice not 
only might a set consist of sub-parallel discontinuities, but also there might 
be difficulty in even distinguishing to which set a particular discontinuity 
belongs. Moreover, each discontinuity will have other geotechnical para-
meters of interest apart from its geometry, and it is likely that in the future 
a more comprehensive analysis of the clustering will evolve. 

One subject where the concept of discontinuity sets is important is in the 
formation of rock blocks and the distribution of their sizes. With the 
knowledge of the fracture frequency and orientation of the discontinuity 
sets in a rock mass, it is possible to determine a three-dimensional block 
volume distribution and associated two-dimensional block area distribu-
tions encountered on any plane through the rock mass. An example of the 
area size distribution is shown in Fig. 7.14, which has been generated by 
assuming that in one case the discontinuities are randomly orientated and 
positioned, and in the other case that there are two orthogonal sets, each 
with negative exponential spacing distributions. 

In both cases, it is possible to calculate the probability density function 
for the tessellated area as illustrated. Note that for these two cases, with 
the same two-dimensional fracture density, the block area distributions are 
very similar, indicating that, for this particular case, the orientation of the 
discontinuities does not significantly affect the sizes of the blocks. 

This type of analysis is important in rock engineering design, bearing in 
mind the earlier discussion on the significance of the scale of the engi-
neering project in relation to the rock mass geometry, whether this be 
considered along a line (i.e. a borehole or scanline), on a plane (i.e. one of 
the walls of an excavation) or within the rock volume. (Block volume 
distributions in the context of excavation are discussed in Chapter 15.) 

7.2.5 Persistence, roughness and aperture 

To some extent, the parameters of persistence, roughness and aperture 
reflect the deviation from the assumption of the idealized discontinuities 
discussed in Section 7.2.4. Note that even the plotting of a single great circle 

(a) Raw data (b) Contoured data (c) Main discontinuity sets 

Figure 7.13 Discontinuity orientation data plotted on the lower-hemispherical 
projection. 
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Figure 7.14 Probability density functions of rock block area sizes for rock masses 
containing random discontinuities and two orthogonal sets. 

or pole to represent a discontinuity does assume that it is a perfect plane 
but that the type of clustering shown in Fig. 7.13 could occur from many 
measurements made on an undulating surface. 

The word persistence refers to the lateral extent of a discontinuity plane, 
either the overall dimensions of the plane, or whether it contains 'rock 
bridges'. In practice, the persistence is almost always measured by the one-
dimensional extent of the trace lengths as exposed on rock faces. This is 
illustrated in Fig. 7.15. It is clear from this figure that no direct estimation 
of persistence is possible from borehole core, although geological inference 
based on the type of discontinuity observed is possible. Also, the 
distribution of trace lengths obtained from measurements made on an 
exposure will depend to a great extent on the orientation of the rock face, 
on the associated orientation of the scanline, and whether the measure-
ments are either truncated (values below a certain length are omitted) or 
censored (large values are either unobtainable because of limited rock 
exposure or because of equipment limitations). 

In practice, truncation and censorship always occur, contributing to the 
bias in the measurements. For example, there has been considerable 
discussion in the literature as to whether the distribution of trace lengths 
has a similar negative exponential distribution to that of spacings 
discussed earlier, or is a log-normal distribution. It is likely that some of the 
differences have arisen from trace length sampling bias, but further work 
is needed to clarify the situation. At the moment, there is no clear and 
coherent method of measuring trace length, despite its crucial importance. 

The word 'roughness' is used to denote the deviation of a discontinuity 
surface from perfect planarity, which can rapidly become a complex 
mathematical procedure utilizing three-dimensional surface characteriza-
tion techniques, whether these be by polynomials, Fourier series, noise 
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Figure 7.15 Diagrammatic representation of discontinuity traces intersecting a 
scanline set up on a rock face. 

waveforms or fractals. From the practical point of view, only one 
technique has any degree of universality and that is the Joint Roughness 
Coefficient (JRC) developed by Barton and Choubey (1977). This method 
involves comparing a profile of a discontinuity surface with standard 
roughness profiles and hence assigning a numerical value to the roughness. 
The chart of standard profiles is shown in Fig. 7.16. 

Despite the obvious limitations of reducing all roughness information to 
a single scalar value, the possibly subjective nature of the assessment and 
its wholly empirical nature, the JRC profiles have proved to be of significant 
value in rock engineering. The geometrical roughness is naturally related 
to various mechanical and hydraulic properties of discontinuities. On the 
purely geometrical side, it is possible to predict the amplitude of asperities 
from the JRC and profile length. On the mechanical side, shear strength 
can be predicted via JRC and other properties. Moreover, there are obvious 
implications for aperture and variation in aperture as a function of 
discontinuity roughness. 

The aperture is the distance between adjacent walls of a discontinuity, 
i.e. it is the openness of the discontinuity. This parameter has mechanical 
and hydraulic importance, and a distribution of apertures for any given 
discontinuity and for different discontinuities within the same rock mass 
is to be expected. A limited estimate of the JRC is possible from borehole 
core, but in general no indication of aperture is possible from the core itself, 
except where the fractures are incipient and the core is not separated. 

Current research in the hydraulic context indicates that a discontinuity 
cannot be approximated as two parallel planes because of the phenomenon 
of channel flow, where the fluid mainly flows through certain channels 
within the discontinuity created by tracks of larger local apertures. 

7.2.6 Statistical analysis and practical examples 

The reader will have noted the recurring theme that most of the topics 
being discussed are not deterministically tractable due to insufficient three-
dimensional characterization of the rock mass structure. Consequently, 
statistical techniques in the data reduction, presentation and analysis are 
helpful. We may not be able to specify all the discontinuities in the rock 
mass, but we might be able to provide an excellent engineering 
approximation via statistical generators which will allow repeated 
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Figure 7.16 Barton's Joint Roughness Coefficient profiles. Note reduced scale. 

simulations of sufficiently similar synthetic rock masses. Perhaps we can 
use well-known statistical techniques to answer such questions as, 'How 
long should a scanline be such that a reliable estimate of the mean 
discontinuity spacing value is obtained?' We have found, as discussed 
earlier, that the Poisson process and the associated negative exponential 
spacing distribution are good theoretical models for discontinuity 
occurrence, so it is appropriate to begin this explanation of the value of 
statistical techniques with the Poisson process. 

Poisson process. Describing rock mass structure in terms of the Poisson 
process (and hence implicitly assuming that the position of a discontinuity 
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along a scanline is independent of the position of other discontinuities), we 
can give the probability that k discontinuities will intersect a scanline 
interval of length x as 

P{K x) = e-^\^f/k\ 

For example, if the discontinuity frequency, A, along the scanline is 
8.43 m~\ then the probability that exactly two discontinuities will be 
intersected in a 0.3 m scanline interval is given by this equation as 

P(2,0.3) = e~^^^^^-^^(8.430.3)'/2! - 0.255. 

Hence, in about a quarter of all such possible intervals, two discontinuities 
will be intersected. Clearly, by repeated use of this formula we can 
determine the probability of such events as 'two or less', 'less than two' or 
'more than two' discontinuities being intersected: 

?{<k,x) = Y^?{l,x) P(<^,x) = | ;P ( / , x ) F{>k,x) = l-j^F{lx), 
1=0 /-O 1=0 

The usefulness of such calculations in designing, say, the length of rock 
bolts using criteria such as 'rockbolts should intersect more than three 
discontinuities' is evident. 

Cumulative probability distributions and the central limit theorem. The same 
type of information is of interest in other areas where we may wish to 
know, for example, for the design of tunnel boring machine bearings, what 
is the probability that the compressive strength of the rock will exceed a 
certain value. This can be established directly from a data set using the 
cumulative probability distribution, as illustrated in Fig. 7.17. In the left-
hand part of this figure, the results of a strength testing programme are 
tabulated, and these results are shown in the form of a cumulative 
probability distribution in the central part of the figure. Extracting values 
from the distribution allows statistical questions to be answered: in the 
example shown here, what is the probability that the strength will be less 
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Figure 7.17 Estimating the probability that the compressive strength will be greater 
or less than certain values. 
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than or equal to 50 MPa, less than or equal to 25 MPa, greater than 25 MPa, 
or greater than 25 MPa and less than or equal to 30 MPa? 

We can also establish, for example, how long a scanline should be in 
order to determine the discontinuity frequency, or mean spacing, to within 
specified tolerances. For this we utilize the central limit theorem, which 
states that the means of random samples of size N taken from a 
population of any distribution that has a mean x and a standard deviation 
G will tend to be normally distributed with a mean X and a standard 
deviation of o/N^^^. However, in the case of a negative exponential 
distribution, the standard deviation is equal to the mean: they are both X. Hence, 
utilizing the concept of confidence intervals in the normal distribution, we 
can find the appropriate scanline length for any desired confidence level. 

As an example, let us say that we wish to determine the mean spacing 
X with an 80% confidence that the error will be less than ±20%. The 80%o 
confidence implies that we require our sampled mean to be located within 
the zone which is 80% of the total area under the standardized normal 
probability density function. The half bandwidth of this zone for the 
standardized normal distribution is given by the standardized normal 
variable, z = 1.282 (found from statistical tables), so the half bandwidth for 
our parameters can then be calculated from za/N^^^. This half bandwidth 
is equated to the allowable proportional error, e, which in this example is 
0.2, i.e. 20% from the true value of the mean. Then we calculate N from the 
equality 

2CJ/N^/- = ex. 

As G = X for the negative exponential distribution, we have 

N = z"/e". 

In the example, N = 1.282^/0.2^ = 41. 
Alternatively, for 90% confidence that we will be within a ±10% error 

bandwidth, we find that N = 1.645^/0.1^ = 271. These two examples are 
highlighted by the dashed lines in Fig. 7.18. 

Sampling bias and mean orientation. From Section 7.2.3, we know that the 
discontinuity frequency. As, along a line subtending an angle 0 to the 
normal of a discontinuity set with frequency A is Â  = A cos 0. As 0 tends 
to 90°, so As tends to zero. Consequently, as the scanline is rotated to become 
nearly parallel to discontinuities, so the number of sampled discon-
tinuities per unit length of scanline reduces. This clearly introduces a 
sampling bias when A is being estimated, resulting from the relative 
directions of the discontinuities and the scanline. The bias can be removed 
by using a weighting factor: this weights the number of intersected 
discontinuities associated with each set to give an effective number of 
intersected discontinuities and hence removes the bias. The weighting 
factor, IV, is calculated from the expression 1/cos 0, where 6 is the angle 
between the normal to the discontinuity and the scanline for 
each set. 
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Figure 7.18 Determination of number of discontinuity spacings (and hence scanline 
length) to estimate the mean spacing value to within a given error at given 
confidence levels. 

In Fig. 7.19, we show^ the direction cosines associated w îth a unit vector. 
These are required for numerical calculation of the mean orientation of a 
number of discontinuities, using the procedure outlined below^. When 
many discontinuities w îth different orientations are intersected by a 
scanline and sampled, the mean dip direction and dip angle may be found 
by using the procedure outlined in tabular form in Fig. 7.20. This procedure 
corrects for orientational sampling bias through the introduction of 
weighted direction cosines. The first tw ô columns are the dip direction and 
dip angle as measured, a, p, and the follow^ing tvŝ o columns contain oc^, [i^, 
the trend and plunge of the normal to each discontinuity. The direction 
cosines of each of the normals are then evaluated in the next three columns 
using the formulae of Fig. 7.19. 

Vector geometry 

1 = sina cosp \ 

m = cosa cosp } Direction cosines 

n = sinp j 

Angle between 2 vectors: 

Down? 
z 

Figure 7.19 Direction cosines of a unit vector. 
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For each discontinuity intersected by a scanline of trend/plunge aj^^, 
measure dip direction/dip angle a/p, and then tabulate the calculations: 

Total no.of discons. = N Direction cosines of scanline = 1̂ ,, m̂ ,, n̂  

a p " n 

o ± l 8 0 

Pn 

90-(3 

"i 

sina^^ *-""̂ Pni 
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Figure 7.20 Evaluation of the mean orientation of a discontinuity set. 

By introducing the direction cosines of the scanline l^, m^, n^ we can 
calculate the corresponding value cos Oj. The reciprocal of this value is the 
weighting factor zv;, which is then scaled to iv'i in order that the overall 
measured discontinuity frequency is maintained. Via this procedure, we 
arrive at the last three columns, the weighted direction cosines. These 
values may then be summed, and the mean orientation of the normal 
computed. Obviously, if the aim of the analysis is to determine the mean 
orientation of a discontinuity set, the procedure should only be attempted 
on data likely to belong to a specific set of discontinuities. 

These last three topics of the Poisson process, central limit theorem, and 
sampling bias and mean orientation have illustrated the power and 
necessity of applying basic standard statistical techniques to manipulating 
discontinuity geometry and other rock property data. Indeed, it may be fair 
to say that no other techniques are available for answering the questions 
posed at the beginning of Section 7.2.6 and yet these have been solved 
directly and elegantly as illustrated. 

The use of statistical methods should always be an essential part of 
the rock engineer's analytical capabilities, because we will never have 
complete knowledge of the geometrical, mechanical and hydraulic 
properties of rock masses. Readers interested in a wider treatment of 
discontinuities are referred to Priest (1993). 

7.2 Mechanical properties 

7.3. / Stiffness 

In Chapter 6, we discussed the stiffness, strength and failure of intact rock 
via the complete stress-strain curve. We can consider the equivalent 
properties when a discontinuity is loaded in compression, tension or shear. 
These are illustrated in Fig. 7.21, with an indication of the type of complete 
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Figure 7.21 A discontinuity loaded in compression, tension and shear. 

stress-displacement curve that we would expect. The normal and shear 
forces applied across a discontinuity can be scaled by the nominal area of 
the discontinuity to give normal and shear stresses, respectively. However, 
there is no 'length' for scaling the displacement values to evaluate strain. 
For this reason, we plot stress-displacement curves, with the result that 
discontinuity stiffness has units of, say, MPa/m, rather than the MPa units 
of intact rock stiffness. 

The three curves in Fig. 7.21 are of three different types. In compression, 
the rock surfaces are gradually pushed together, with an obvious limit 
when the two surfaces are closed. The stiffness associated with this com-
pression process gradually increases with applied stress or displacement, 
again reaching a limit associated with the strength of the intact rock, as 
indicated in the figure. In tension, because by definition discontinuities are 
regarded as having no tensile strength, no tensile stress can be sustained 
and hence the displacement increases as indicated. Finally, when a discon-
tinuity is subjected to shear stress or shear displacement, the curve is rather 
like the complete stress-strain curve for compression of intact rock, except 
of course that all failure is localized along the discontinuity. There is an 
initial shear stiffness, a shear strength and a post-peak failure locus. 

We can consider the stiffnesses for the cases of compression and shear. 
As we have shown in Fig. 7.21, in neither case is there a linear relation 
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between stress and displacement. However, for analysis it is convenient to 
assume either one global linear stiffness value or a composite piecewise 
linear approximation. Goodman has proposed a hyperbolic relation to 
characterize the normal stress-displacement curve, viz.: 

V = 

where v and o^ are closure and normal stress, respectively, and c and d are 
constants. This equation provides a good model for the discontinuity 
closure curve illustrated in the upper diagram in Fig. 7.21. It is possible to 
extend this basic concept to consider loading and unloading and many 
other aspects of the joint behaviour. The comprehensive reference to the 
mechanical behaviour of a single joint is the Proceedings of the Rock Joints 
Symposium held in Norway (Barton and Stephansson, 1990). 

To characterize the shear stress-shear displacement curve in the lower 
diagram of Fig. 7.21, we can use the expression 

r = • 

where r and 5 are the shear stress and shear displacement, respectively, 
and a and b are constants. Again, there are many extensions to this basic 
formula and the reader is referred to the Rock Joints text referenced 
above. 

It is interesting to note that the expressions for normal displacement and 
shear displacement are mathematically similar, but have the stress and 
displacement terms reversed. Whereas the normal displacement must 
asymptote to a final closure value as the normal stress is increased, the shear 
displacement can continue indefinitely, usually with a reduced shear stress. 
Thus, the formula above refers to the deformation behaviour up to the peak 
shear strength. 

Despite the non-linearities of the two curves, as a first approximation we 
can consider the linear stiffness representations as /ĉ n for the normal case 
and k^^ for the shear case. We can also consider the possibility that a 
normal stress will cause a shear displacement, using a constant /Cns/ ^^^ that 
a shear stress will cause a normal displacement, using a constant /ĉ n- These 
stiffnesses have the dimensions of, for example, MPa/m, because they relate 
stress to displacement. With these linear approximations for the 
stiffnesses 

or, in matrix notation. 

r 
= 

5^ 
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or 
a = k5. 

This final expression also permits evaluation of the displacements when the 
stresses are known through use of the inverse of the matrix k. It should 
also be noted that this matrix, containing off-diagonal terms, provides a first 
approximation to the the coupling of normal and shear stresses and 
displacements, e.g. a term fc^^ relating to dilation. 

For the displacements of in situ discontinuities, the stiffness of the 
surrounding rock system will also need to be taken into account. There are 
many other practical aspects, such as the fact that the shear stiffness may 
be anisotropic in the plane of the discontinuity due to surface features like 
striations or lineations. We will discuss in Chapter 8 how the total /n situ 
rock mass modulus can be predicted from a knowledge of the intact rock 
stiffness and the discontinuity stiffnesses. 

7.3.2 Strength 

Deformability has been considered first following the logic of the complete 
stress-strain or stress-displacement curves for intact rock, and now we 
consider the strength of discontinuities in shear expressed via the cohesion 
and angle of friction. It is normally assumed that the shear strength is a 
function of the angle of friction rather than the cohesion. This is a conser-
vative assumption in the sense that discontinuities possess some, albeit low, 
cohesion. Basically, we assume that the strength of discontinuities is 
predicted by the reduced Mohr-Coulomb criterion, r = a tan 0: the 
basic Mohr-Coulomb criterion was explained in Section 6.5.1. Con-
sideration of any fluid that may be present and the generation of effective 
stresses will be discussed in Chapter 9. It is by no means clear that effective 
stresses and effective stress parameters can be used for rocks in this 
context. 

The bi-linear failure criterion illustrated in Fig. 7.22 results from the work 
of Patton (1966), who introduced the idea that the irregularity of 
discontinuity surfaces could be approximated by an asperity angle / onto 
which the basic friction angle (j) is superimposed. Thus, at low normal 
stresses, shear loading causes the discontinuity surfaces to dilate as shear 
displacement occurs, giving an effective friction of {(p 4- /). As the shear 
loading continues, the shear surfaces become damaged as asperities are 
sheared and the two surfaces ride on top of one another, giving a transition 
zone before the failure locus stabilizes at an angle (j). There are many 
'complicating' factors in this mechanism, such as the roughness of the 
surface and the strength of the asperities. This led Barton et al. (e.g. 1985) 
to propose the empirical relation 

T = CTntan[JRClogu)(JCS/cj) + 0,] 

where JRC is the Joint Roughness Coefficient illustrated in Fig. 7.16, JCS is 
the Joint Wall Compressive Strength, and (j)^ is the residual friction angle. 
The roughness component, /, is composed of a geometrical component and 
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Figure 7.22 Bi-linear Mohr-Coulomb failure criterion for rock discontinuities. 

an asperity failure component and 0r is the basic frictional component. We 
have already discussed the size effect in general, and the shear strength of 
discontinuities is no exception. Clearly, the roughness is not absolute as the 
magnitude of the geometrical component will vary according to the sample 
dimensions. 

These ideas have been extended to include mechanical versus hydraulic 
aperture and a coupling between the mechanical and hydraulic behaviour. 
Factors such as the degree and type of infilling will also have an effect on 
the strength of discontinuities. However, these effects have not yet been 
quantified beyond being able to say that the strength of a discontinuity 
approaches that of the filling when the filling is thick. 

Here we do not consider the post-peak failure of discontinuities, as this 
is included in the next chapter, particularly with respect to the shear 
strength of discontinuities. 

7.4 Discussion 

Developments are possible in both the geometrical and mechanical charac-
terization of discontinuities as a result of research currently underway. We 
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have described just the basic discontinuity geometry and behaviour here, 
but all the developments are likely to be extensions of conventional 
techniques (geometrical and mechanical) to allow for the idiosyncrasies of 
rock fractures. As this work is progressively extended in an attempt to 
provide more and more realistic representions of prototypical disconti-
nuities, the formulae must become more and more complicated, so that we 
are progressing into an increasingly labyrinthine cul-de-sac. 

The application of some of the newer mathematical and information 
technology techniques such as fractals, chaos theory and object-oriented 
programming for characterizing rock features may prove to be more 
elegant, succinct and practical means of achieving the rock mechanics and 
rock engineering objectives. It is essential in the long run that some form 
of simplified approach is developed, because all rock engineering problems 
will involve some degree of coupling of the rock discontinuities, the stress 
field, the water flow and the effects of construction (the interactions will 
be discussed in Chapter 14). In some cases, it may be sufficient to have a 
qualitative idea of the coupling; in other cases, such as radioactive waste 
disposal, it is essential to have a quantitative prediction of the coupled 
behaviour. This prediction will not be achieved by a complex extension of 
current methods. 
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B Rock masses 

In this chapter, we will concentrate on extending the ideas discussed in the 
previous chapter on discontinuities to provide a predictive model for the 
deformability and strength of rock masses. In Chapter 12, we will be 
discussing rock mass classification (which is a method of combining 
selected geometrical and mechanical parameters) to semi-quantitatively 
provide an overall characterization, mainly for assessing excavation 
support requirements. 

8.1 Deformability 
Consider first, as an initial step in the overall development of a deforma-
bility model, the deformation of a set of parallel discontinuities under the 
action of a normal stress, assuming linear elastic discontinuity stiffnesses. 
This circumstance is illustrated in Fig. 8.1. To calculate the overall modulus 
of deformation, the applied stress is divided by the total deformation. We 
will assume that the thickness of the discontinuities is negligible in com-
parison to the overall length under consideration, L. Additionally, we will 
assume that the deformation is made up of two components: one due to 

Intact rock 
(units of 
stress MPa) 

' 

^ 
-. 1 

, Discontinuities 
(units of stress/ 
length) 
MPa/m 

N discontinuities, 
frequency = X 

Figure 8.1 The modulus of deformation of a rock mass containing a discontinuity set. 
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deformation of the intact rock; the other due to the deformability of the 
discontinuities. 

The contribution made by the intact rock to the deformation. Si, is aL/E 
(i.e. strain multiplied by length). The contribution made by a single 
discontinuity to the deformation, S^, is O/£D (remembering that EQ relates 
stress to displacement directly). Assuming a discontinuity frequency of A, 
there will be XL discontinuities in the rock mass and the total contribution 
made by these to the deformation will be 5^, which is equal to oXL/Ex). 
Hence, the total displacement, 5j, is 

^ GL XOL 

E Eo 

with the overall strain being given by 

_ 5j a XG 

L E E^' 

Finally, the overall modulus, E^ASS/ is given by 

-MASS = G/£ = 1/[(1/E) + {X/Eo)l 

A suite of curves illustrating this relation is given in Fig. 8.2 for varying 
discontinuity frequencies and stiffnesses. It is simple to extend this formula 
for multiple intact rock strata with differing properties, discontinuity 
frequencies and discontinuity stiffnesses, and hence model stratified rock 
with discontinuities parallel to the bedding planes. 

-MASS 

Frequency, X 

Figure 8.2 Variation of in situ rock deformability as a function of the discontinuities 
(idealized case for a single set of discontinuities). 
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The case illustrated via the mathematics above and shown in Fig. 8.2 only 
involves loading parallel to the discontinuity normals. Clearly, even in 
these idealized circumstances, we need to extend the ideas to loading at 
any angle and the possibility of any number of non-parallel sets. An 
argument similar to that given above can be invoked in the derivation of 
shear loading parallel to the discontinuities, as succinctly described by 
Goodman (1989), to give 

GMAss=r/y=l/[( l /G) + (A/GD)]. 

The mathematics associated with further extensions to account for 
discontinuity geometry rapidly becomes complex. A complete solution has 
been provided by Wei (1988), which can incorporate the four stiffnesses of 
a discontinuity (normal, shear and the two cross terms), any number of sets 
and can approximate the effect of impersistent discontinuities. 

In the stress transformations presented in Chapter 3, the resolution of 
the stress components involves only powers of two in the trigonometrical 
terms, because the force is being resolved and the area is also being resolved. 
However, for the calculation of the deformability modulus, powers oifour 
are necessary because of the additional resolution of the discontinuity 
frequency (explained in Chapter 7) and the displacements. An example 
equation from Wei's theory, the roots of which provide the directions of 
the extreme values of the modulus, is 

(A tan^ a- B tan"̂  a-C tan^ a- D tan a-F) cos^ a = 0 

where A, B, C, D, £ and f are constants formed by various combinations 
of the discontinuity stiffnesses and a is the angle between the applied stress 
and one of the global Cartesian axes. The reader is referred to Wei's work 
for a complete explanation. 

The utility of this type of analysis is illustrated by the polar diagrams in 
Fig. 8.3 representing the moduli variations for two discontinuity sets in two 
dimensions. (It is emphasized that this figure is one example of a general 
theory.) When k is high, as in the left-hand diagram, the lowest moduli are 
in a direction at 45° to the discontinuity sets, and the highest moduli are 
perpendicular to the sets. Conversely, when k is low, as in the right-hand 

to 

k = 5 k = 2 k = l k -0 .25 

k is the ratio of the shear stiffnesses to normal stiffnesses 

Figure 8.3 Variation in rock mass modulus for two orthogonal discontinuity sets 
with equal frequencies and equal stiffnesses (from Wei, 1988). 
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diagram, the minimum moduli are in a direction perpendicular to the sets, 
and the maximum moduli are at a direction of 45° to the sets. Like the 
discontinuity frequency, the directions of maximum and minimum 
moduli are not perpendicular. 

A most interesting case occurs when k = 1, i.e. the normal and shear 
stiffnesses are equal, and the modulus is isotropic. The significance of even 
this very simple case of rock mass deformability for in situ testing and 
numerical modelling is apparent. 

8.2 Strength 
In the same way as we have considered the deformability of a rock mass, 
expressions can be developed indicating how strength is affected by the 
presence of discontinuities, starting with a single discontinuity and then 
extending to any number of discontinuities. The initial approach is via the 
'single plane of weakness' theory, attributable to Jaeger, whereby the 
strength of a sample of intact rock containing a single discontinuity 
can be established. Basically, the stress applied to the sample is resolved 
into the normal and shear stresses on the plane of weakness and the 
Mohr-Coulomb failure criterion (discussed in Chapter 6) applied to 
consider the possibility of slip. 

The strength of the sample depends on the orientation of the discon-
tinuity. If the discontinuity is, for example, parallel or perpendicular to the 
applied loading, it will have no effect on the sample strength. At some 
angles, however, the discontinuity will significantly reduce the strength of 
the sample. This is illustrated in Fig. 8.4 which shows that the lowest 
strength occurs when the discontinuity normal is inclined at an angle of 
45° + (072) to the major applied principal stress. The formula for the 
reduction in strength is found by establishing the normal and shear stress 
on the plane passing through the specimen and substituting these into the 
Mohr-Coulomb failure criterion. 

Given the geometry of the applied loading conditions in Fig. 8.4, 

|T| = y2 (cTi - 0-3) sin 2/J^ 

(a, - a.) 

45 + ^^ 
2" 

Figure 8.4 Effect of a discontinuity on the strength of a rock sample 

^^K 
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(Jn = y 2 ( a i + (J3) + y 2 ( a i - G^) COS 2j3^ 

Substituting these into the Mohr-Coulomb criterion, | T| = CW + CTn tan 0^ 
and rearranging gives 

( ^ 1 - ^ 3 ) = 
2(c^+o-3tan0v^) 

(1 - cot /3w tan 0vv) sin 2/J^ 

where Cw and 0vv are the cohesion and the angle of friction for the discon-
tinuity (i.e. plane of weakness), and j3w is illustrated in Fig. 8.4. The plot of 
the equation in Fig. 8.4 shows the minimum strength and also the angles 
at which the sample strength becomes less than that of the intact rock. 

An alternative presentation is via the Mohr's circle representation, as 
shown in Fig. 8.5. The Mohr-Coulomb failure loci for both the intact rock 
and the discontinuity are shown. We also show three Mohr's circles, A, B 
and C, representing the lowest strength, an intermediate case and the 
highest strength. 

• Circle A represents the case when the failure locus for the discontinuity 
is just reached, i.e. for a discontinuity at the angle 2/3w° = 90° + 0 .̂°. 

• Circle B is a case when failure can occur along the discontinuity for a 
range of angles, as indicated in the figure. 

• Circle C represents the case where the circle touches the intact rock 
failure locus, i.e. where failure will occur in the intact rock if it has not 
already done so along the discontinuity. 

The importance of these different failure mechanisms will be made clear in 
later chapters, when we consider the stresses around excavations in rock 
containing discontinuities. According to the circumstances, failure can either 
occur along the discontinuities or through the intact rock, depending on the 
relative orientations of the principal stresses and the discontinuities. 

T = c + a,, tancj) 
Intact rock 

Discontinuity 
T = c^ + a^ tan(})^ 

2P^ = 90 + (1)̂  Range of angles 2p^ = 90 + cj) 

Figure 8.5 Mohr's circle representation of the possible modes of failure for rock 
containing a single plane of weakness. 
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((7, - (TV) 

^3 

Figure 8.6 Strength of a rock mass containing multiple discontinuity sets. 

We can consider, on the basis of this single plane of weakness theory, 
what would happen if there were two or more discontinuities at different 
orientations present in the rock sample. Each discontinuity would weaken 
the sample as indicated in Fig. 8.4, but the angular position of the strength 
minima would not coincide. As a result the rock is weakened in several 
different directions simultaneously as shown in Fig. 8.6. The material tends 
to become isotropic in strength, like a granular soil. When plotting the 
superimposed curves, care should be taken in interpreting the magnitude 
of p^ correctly for each of the discontinuities concerned. 

The main advantage of the single plane of weakness theory is its 
simplicity and helpfulness in the interpretation of rock mass failure. We 
have presented here the two-dimensional case (applicable to plane stress) 
and one can imagine an extension to the general three-dimensional loading 
case in which none of the principal stresses is perpendicular to the discon-
tinuity normal. In reality, the situation is rather complicated because the 
stresses will not be transmitted directly through the discontinuity. 
However, despite these shortcomings the authors feel that the advantages 
gained by understanding such idealized models do help in interpreting the 
far more complex behaviour of real rock masses. 

We have already discussed the Hoek-Brown failure criterion in Chapter 
6 in terms of its application to intact rock. The criterion is especially 
powerful in its application to rock masses due to the constants m and s 
being able to take on values which permit prediction of the strengths of a 
wide range of rock masses. Recent publications, i.e. Hoek and Brown (1988), 
Hoek (1990) and Hoek et al (1992), provide an update of the failure criterion 
as it applies to rock masses, together with the relation between the 
Hoek-Brown and Mohr-Coulomb criteria. 

From the first of these publications, we have included Table 8.1 which 
indicates the relation between rock mass quality and the m and s material 
constants. The table also provides a guide to the relation between these 
constants and two commonly used rock mass characterization values, i.e. 
the CSIR and NGI classification ratings (the latter being described in 
Chapter 12) 
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Table 8.1 Approximate relations between rock mass quality and the material 
constants in the Hoek-Brown failure criterion (from Hoek and Brown (1988)). 
Undisturbed values are in italics 

ApproDcimate relationship between rock 

Disturbed rock mass m and « values 

EMPIRICAL FAILURE CRITERION 

<̂ i = <̂3 + \/m<rc^3 + »<rl 

ai as major principal stress 
<r3 s minor principal stress 

1 (Te s uniaxial comprcsstvt strcnfth 
of intact rock, and 

1 m and « arc empirical constants. 

1 INTACT ROCK SAMPLES 
1 Labofitory size sptdmtns fret 
1 from discontinuities 

CSIR ratine: RMR » 100 
NCI rating: Q » SOO 

1 VERY GOOD QUALITY ROCK MASS 
Tightly interlocking undisturbed rock 

1 with unwtithered joints at i to 3m. 
CSIR rating: RMR = 85 
NGi rating: Q ss 100 

1 GOOD QUALITY ROCK MASS 
Fresh to slightly weathered rock, slightly 

1 disturbed with joints st 1 to 3m. 
CSIR rating: RMR s 65 
NGI rating: Q = 10 

1 FAIR QUALITY ROCK MASS 
Several seu of modera tety weathered 

1 joints spaced at 0.3 to Im. 
CSIR rating: RMR » 44 
NG( rating: Q s 1 

1 POOR QUALITY ROCK MASS 
1 Numerous weathered joints at 30-500mm. 

some gouge. Clean compacted waste rock 
CSIR rating: RMR ss 23 
NGI rating: Q s 0.1 

1 VERY POOR QUALITY ROCK MASS 
1 Numerous heavily weathered joints spaced 

<50mm with gouge. Waste rock with fines. 
CSIR rating: RMR » 3 
NGI rating: Q s: 0.01 

m 
% 
m 
s 

m 
s 
m 
s 

m 
s 
m 
s 

m 
s 
m 
s 

m 
s 
m 
s 

m 
s 
m 
s 

> < Jt 

Hi 

§2.s' 
GO UJ P 
o: > J 
< iJi « u o ^ 

7.00 
1.00 
7.00 
1.00 

2.40 
0.082 
4.10 
0.189 

0.S75 
0.00293 
2.006 
0.0205 

0.128 
0.00009 
0.947 
0.00198 

0.029 
0.000003 
0.447 
0.00019 

0.007 
0.0000001 
0.219 
0.00002 

mass qtiality and material 

undisturbed rock 

= 11 

10.00 
1.00 
10.00 
1.00 

3.43 
0.082 
S.8S 
0.189 

0.821 
0.00293 
2.86S 
0.0205 

\ 0.183 
1 0.00009 

1.353 
0.00198 

0.041 
0.000003 
0.639 
0.00019 

0.010 
0.0000001 
0.313 
0.00002 

> UJ 

^< 
o 5 

X O < 
^ Q. lU 

< Z -J o 
Z O UJ w 
lu 2 > -g 
5 H "J 5 
< </) O S 

15.00 
1.00 
15.00 
1.00 

5.14 
0.082 
8.78 
0.189 

1.231 
0.00293 
4.298 
0.0205 

0.275 
0.00009 
2.030 
0.00198 

0.061 
0.000003 
0.959 
0.00019 

0.015 
0.0000001 
0.469 
0.00002 

constants 

mau m and M values 1 

V 1 

^ ^ « 
< U * 
QC O '^ 

^ « 5 

± UJ ^ 

^ -J -3 

S U J 
:5 '̂  ^ 
o o •« 
UJ UJ 8 
z 2: "o 
CVS § 

17.00 
1.00 
17.00 
1.00 

5.82 
0.082 
9.95 
0.189 

1.395 
0.00293 
4.871 
0.0205 

0.311 
0.00009 
2.301 
0.00198 

0.069 
0.000003 
1.087 
0.00019 

0.017 
0.0000001 
0.532 
0.00002 

a a ^ -c 
UJ O -O .O 
S o ^ ^ 
2 X tf 5 
«J QC ^ a 1 
O O ."1 «• 
*̂  2 •§. £' 

Ui 3 O ^ 

< UJ oi .» 

u ^ ^ «« 

25.00 
1.00 

1.00 

8.56 
0.082 
14.65 

2.052 
0.00293 
7.163 
0.0205 

0.458 
0.00009 
3.383 
0.00198 

0.102 
0.000003 
J.595 
0.00019 

0.025 
0.0000001 
a.7w 
0.00002 

8.3 Post-peak strength behaviour 
In Chapter 6, on intact rock, and in Chapter 7, on discontinuities, we have 
demonstrated that it is possible to describe the complete mechanical 
behaviour from initial deformation, via the peak strength, to the failure 
process. In the case of intact rock, the post-peak strength behaviour can be 
characterized using the shape of the complete stress-strain curve. 
Similarly, in the case of discontinuities, we can discuss the residual frictional 
value that is reached after the discontinuity has been fully sheared. 
However, it is much more difficult to provide any simple characterization 
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of the total failure behaviour of a rock mass: this is because of the presence 
of the discontinuities and the manifold ways in which the rock mass 
structure can break down. 

For example, a block might fall out of the rock mass during excavation 
and lead to a ravelling-type failure. Alternatively, discontinuities might be 
sheared in one direction in the plane but not in another direction. 
Individual blocks may fail due to high stresses. The collapse of the rock 
mass may occur through many such events, or through failure on one 
significant through-going discontinuity such as a fault. 

It is impossible to summarize all these possibilities in any simple 
quantitative fashion. Also, the failure of the rock mass and its interaction 
with the excavation process has links with the objective of rock 
engineering. The way in which one characterizes the failure will depend 
on the engineering objective. In civil engineering, the objective may be, for 
example, that the displacement in the rock mass nowhere exceeds a certain 
amount. In mining engineering, we may wish the rock to be in a continual 
state of imminent failure as, for example, in the block caving method of 
mining, where a large block of ore is undercut and allowed to collapse in 
a controlled way via ore passes. 

The only generic way of quantitatively characterizing rock mass failure 
is through the Hoek-Brown criterion and/or the rock mass classification 
systems. We have already described the former; the latter will be 
described in Chapter 12. The discussion of rock mass failure, with specific 
reference to applications, will be continued in Chapters 17-20. 



9 Permeability 

The subject of permeability is concerned with fluid flow through a material, 
or rocks and rock masses in our current context, and is one of the most 
difficult topics facing the practising rock engineer. There are formal 
definitions of permeability and the associated characteristics for continuous 
materials but, as is emphasized throughout this book, a rock mass contains 
discontinuities, and discontinuities are preferential flow paths. In this 
chapter, therefore, we will initially present the definitions of permeability 
and hydraulic conductivity and discuss the tensorial nature of permeability. 
We will then consider fluid flow in discontinuities and the associated ideas 
of primary and secondary permeability. The subject of the permeability of 
the rock mass can be studied in terms of the effective permeability of 
discontinuity networks: there is then the corollary of a natural scale effect 
and the representative elemental volume. Finally, we will discuss the 
difficulty of dealing with effective stresses in rock mechanics and the 
permeability-related applications of grouting and blasting. 

We should note in passing that the phenomenon of water flowing 
through rock has been observed since antiquity. In Creech's (1683) English 
translation of Lucretius' six books of Epicurean philosophy on the nature 
of things, in Book I are the lines, 

Tho free from Pores, and Solid Things appear. 
Yet many Reasons prove them to be Rare: 
For drops distill, and subtle moisture creeps 
Thro hardest Rocks, and every Marble weeps... . 

9.1 Fundamental definitions 

Permeability, /c/y, is a mathematical quantity directly analagous to stress and 
strain which we have already described. It is a second-order tensor, 
meaning that it is a quantity with magnitude, direction and a reference 
plane. Permeability has six independent components and follows mathe-
matical transformation equations when the orientation of the reference 
plane is changed. Permeability is formally defined as 
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^, 

where qi 
dP/dXj 

is the specific discharge, 
is the pressure gradient causing flow, 
is the fluid viscosity and 

y are the components of the permeability tensor. 
These components are schematically illustrated in Fig. 9.1 to show the 
analogy of permeability with stress and strain. Within the context of this 
book, it is inappropriate to pursue the full mathematical development of 
this subject further, because permeability is almost always regarded as a 
scalar value in engineering practice: the interested reader is referred to 
Raudkivi and Callander's (1976) book on groundwater flow for an 
excellent treatment of the subject. Consequently, we will concentrate on 
the semi-empirical approach that is utilized in engineering. As we will be 
describing later, there are major problems in considering a fractured rock 
mass as an effectively continuous permeable medium. 

Because in practice permeability has rarely been regarded in its full 
tensorial state, and because we will be considering one-dimensional flow 
through discontinuities, it is convenient here to consider the reduced forms 
of the above equations. Assuming permeability to be a scalar, we have 

9 = -
kdP 

judx 

The permeability, k, is independent of the fluid under consideration having 
the dimensions L .̂ 

Very often in rock engineering the percolating fluid is water and so we 
can alter the form of the above equation to 

k^„ water out 

k^ ,̂ water out 

k k 
•̂ xx ^xy 

k k 
^yx ^yy 

'^zx '^zy 

-yz 

General permeability matrix 
with respect to x,y,z axes 

Figure 9.1 Illustration of permeability as a tensor quantity. 
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KdP 

y^dx 

The term, X, is the coefficient of permeability (or hydraulic conductivity) 
with dimensions L/T, and the term /f is the fluid specific weight. The 
relation between k and K is therefore 

permeability, k = /jK/y^ (L") or 
hydraulic conductivity, K = yik/jj {L/T). 

In its most basic form, and for the case of laminar flow, Darcy's law links 
the water flow rate to the pressure gradient, i.e. 

Q = KAi 

where Q is the flow rate (dimensions of L^T~^), 
A is the cross-sectional area of the flow, and 
i is the hydraulic gradient, Ah/Al 

9.2 Primary and secondary permeability 
Because of the presence of discontinuities in a rock mass, we have the 
concepts of primary permeability and secondary permeability. Primary 
permeability refers to the rock matrix permeability, whereas, the secondary 
permeability refers to the rock mass permeability. In some circumstances, 
e.g. petroleum engineering, we will be specifically interested in the primary 
permeability, but in most rock engineering it is the secondary permeability 
which dominates the design and construction procedures. It has already 
been mentioned that there are interrelations between most of the rock 
properties: the flow of fluid through a fractured rock mass is no exception, 
as it will depend on: 

(a) the aperture of the fractures, which in turn will depend on 
(b) the normal stress acting across the fractures, which in turn will depend 

on 
(c) the depth below the ground surface. 

In the extreme case, at great depth, all the fractures may be effectively 
closed, so that the primary and secondary permeabilities are similar. 

Figure 9.2 illustrates the variabilities of primary and secondary hydraulic 
conductivity for different rock types. A key aspect of the primary hydraulic 
conductivity diagram is the extreme range—through at least 8 orders of 
magnitude. Similarly, for the secondary hydraulic conductivity, there is an 
even greater range—of 11 orders of magnitude—with limestones, 
dolomites and basalts covering the entire range. 

9.3 Flovf through discontinuities 
The development of the theory for considering fluid flow through a 
discontinuity is described by Hoek and Bray (1977) and is based on the flow 
between a parallel pair of smooth plates. Darcy's law can be rewritten as 
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Conductivity, m/s 10" 10 10 10" 10 
L 

-Shale-
-Sandstone-

-Limestone & Dolomite-
Volcanics 

-Metamorphics 

-—Salt—I 

—Granitics— 
Clay 

Conductivity, 
m/s 

Degree of 
conductivity 

Soil type 

Rock type 

10 10* 
-J L 

10" 10" 10 10 
_J I I L 

10" 10 10 10 10 
I I \ 

V. high High Moderate Low V. low 

Gravel Sands V. fine sands, silts, Homogeneous 
glacial tills, stratified clays 
clays 

-Fractured- -Sandstone-
- Shale -

-Soln.Cavities ^Limestone & Dolomite-Unfractured-
—Cavernous/Fractured Basalt ^Dense 

-^Fractured/Weathered—Volcanics excl. Basalt-
-^Weathered Metamorphics— 

-^-Bedded Salt-
-*—Weathered Granitic Rocks 

Figure 9.2 Pr imary a n d secondary hydraul ic conductivi ty for rocks a n d rock masses 
(after I sherwood , 1979). 

Q = cH^ 

where c is the conductance, given by ge^/12vL and 
Hi is the head loss between the two end sections. 

In the expression for c, e is the aperture between the pair of plates, v is 
the kinematic viscosity of the fluid (which for water may be taken as 
1.0 X 10~^m^/s) and L is the length of the plates in the direction of flow. 
Figure 9.3 illustrates this equation. 

Note that in the formula for the conductance given above, the flow rate 
is proportional to the cube of the discontinuity aperture. The flow rate is 
thus extremely sensitive to small changes in aperture: a doubling of 
aperture results in an eight-fold increase of flow rate. As a consequence, 
one very open discontinuity through a rock mass can totally dominate the 
water flow conditions. 

A natural extension of this formula for conductance is to consider a set 
of parallel discontinuities. The hydraulic conductivity parallel to the set is 
given by 

K = ^ 
12v 

(L/T) 

where A is the discontinuity frequency. 
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Q = 2-D flow quantity 
per unit time (m-^/sec) 

_^ Elevation 

Arbitrary datum level 

Flow is due to head: 

Pressure head = P/7 

Elevation head = z 

Kinematic head = v^/2g Ignore 

At©: H ,=^+z , P2 ., A t @ : H2 = - ' + Z 2 

Figure 9.3 Flow between two parallel surfaces. 

The variation in K with both the aperture and the discontinuity 
frequency for flow parallel to a single set of discontinuities is shown in 
Fig. 9.4. 

With reference to Fig. 9.4, Hoek and Bray pointed out that the perme-
ability of such a system is sensitive to the discontinuity apertures, and 
hence also to the presence of any in situ stress. They extend the idea to two 
orthogonal sets of discontinuities, and discuss pumping tests in a borehole 
traversing such an array. 

0.001 0.005 0.01 

Discontinuity aperture e - cm 
0.05 0.1 

Figure 9.4 Variation of discontinuity set permeability as a function of the aperture 
and discontinuity frequency (after Hoek and Bray, 1977). 
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9.4 Flow^ through discontinuity netvs^orks 

Often, in discontinuity arrays, one discontinuity will terminate against 
another and it is therefore of interest, not only to be able to compute the 
permeability of a set of parallel discontinuities, but also to analyse condi-
tions where two discontinuities meet, and indeed, to study the complex 
discontinuity networks that are contained within rock masses. 

To start, we can consider the flow at a node in a simple network, as 
illustrated in Fig. 9.5. This figure indicates the notation for node, channel 
and flow numbering, such that application of the continuity equation (i.e. 
'what goes in must come out') gives 

Qu + Q24 + Q34 = 0. 

The equation given earlier for flow through a single discontinuity, i.e. Q = 
cHi, can be generalized as Qij = c,y(H, - Hj) = CijHi - CijHj so that the 
hydraulic head at the ;th node can be expressed as 

H, 

Assuming the flow in the network is laminar, Bernoulli's equation 

P v' 
total head == — + 2 + — 

7 2g 

may be applied. Generally, the velocity of the flow will be sufficiently low 
to permit the velocity head term, i'V2g, to be ignored, giving 

total head = — + 2. 
7 

Thus, for a more complex discontinuity array, and applying this type of 
analysis, we can establish the hydraulic heads at nodal points by solving 

H| = Head at node i 
Q = Flow from i to j 
C-i = Conductance of channel ii 

Figure 9.5 Flow at a network node. 
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the resulting set of simultaneous equations, and finally computing the flow 
through each of the individual channels. An example of this calculation is 
given in Fig. 9.6. 

Figure 9.7 illustrates the results of an analysis of a simulated discon-
tinuity array. The numbers on the diagram indicate the total head at 
each node. From these it can be seen that the boundary conditions are such 
that overall flow is from left to right across the network: however, local 
idiosyncratic flows can be in an opposing direction, as the figure 
demonstrates. 

Obviously, for more complex networks, the use of a suitable computer-
based numerical solution is necessary. It should be noted that the analysis 
presented here is for an essentially two-dimensional network: the analysis 
cannot be simply extended into three dimensions because two dis-
continuity planes will meet along an intersection line, along which the 
hydraulic head may be changing. However, commercial computer 
programs are available for studying fluid flow through three-dimensional 
fracture networks (noting that the word 'fracture' is used instead of 
'discontinuity' in hydrogeological literature). 
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9.5 Scale effect 

There are no length dimensions in Fig. 9.7: the discontinuity array could 
represent small fractures over lengths of a few centimetres or master joints 
over lengths of many tens of metres. Imagine that a borehole had been 
drilled into this array to estimate the flow rate through the rock. In the case 
of short fractures, it may well be that the borehole would be approximately 
the same size as the diagram and hence the result be fairly reliable. In the 
case of joints, the borehole could well intersect no discontinuities, or 
perhaps one or two, at a number of discrete locations. Moreover, the hydraulic 
heads and flow directions at these points might in no way reflect the overall 
pattern of flow. This is an important practical consideration, and is 
generally termed the scale effect. 

The scale effect for fluid flow has been studied via computer simulation 
by Long (1983). In Fig. 9.8, we present one of her most illuminating 
diagrams illustrating the connectivity within a fracture network and the 
associated scale effect. The column of diagrams on the left-hand side of the 
figure shows different sized samples of the same simulated discontinuity 
network. The column of diagrams on the right-hand side shows the 
connected network within the samples to the left, i.e. those discontinuities 
through which water can flow throughout the network. The diagrams 
dramatically illustrate the effect of scale. In the top right-hand diagram, 
water can only flow from top to bottom through the sample. In the fourth 
diagram down, water can only flow laterally. Progressing through the suite 
of diagrams, one can see the permeability stabilizing as the number of 
discontinuities in the sample increases. So, estimation of the permeability 
from small samples can give almost any result but, as the sampled 

Figure 9.7 Nodal head values for flow through a simulated discontinuity array 
(from Samaniego and Priest, 1985). 
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Figure 9.8 The scale effect illustrated through computer simulation (from Long 
1983). 
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volume increases, so the measured values become more representative. 
This leads automatically to the concept of the representative elemental 
volume, or REV. 

In Fig. 9.9, we present the generalized figure foreshadowed in the 
discussion referring to Fig. 4.12 presented in Section 4.5. This illustrates that 
wide variations in permeability are expected when the measured sample 
volume is small. Also, we have seen directly in Fig. 9.8 how the permeability 
stabilizes with an increase in volume, despite the fact that earlier we 
mentioned that permeability is a tensor, and hence the property at a point, 
i.e. at 0 on the volume (horizontal) axis in Fig. 9.9. Clearly, like in situ rock 
stress, this presents a problem because the tensorial permeability concept 
can only apply to primary permeability: by definition, the secondary 
permeability must involve a non-zero volume. 

All this is summarized concisely in Fig. 9.9 and the REV introduced, inter 
alia, by Bear (1972), is the position on the volume axis when the between-
test variability of the permeability measurements is acceptably low. It has 
been tacitly assumed in this discussion that the discontinuity occurrence 
is statistically homogeneous in the region being measured: discontinuity 
inhomogeneity can also be a problem if the discontinuity geometry is 
changing within the REV volume scale. This is indicated by showing that 
it is possible for the mean permeability to be changing above the REV 
volume when the rock mass is inhomogeneous. A question that naturally 
arises is whether the mean of many measurements performed on sub-REV 
samples is in fact equal to the REV value of permeability. The answer will 
depend on the type of discontinuity inhomogeneity. 

We have intimated here some of the difficulties that will arise in any 
attempt to use the permeability concepts in a practical arena. However, the 
key to good rock engineering is to understand the principles of rock 
mechanics and then to make engineering decisions on the optimal course 
of action. For example, we can predict that, when a tunnel is constructed 
in rock, there will be local increases in the water flow rate into the 

Typical envelope of extreme values 

Typical variation for one rock mass sample 

Inhomogeneous 

Homogeneous 

REV Volume 

Figure 9.9 The representative elemental volume (REV) for permeability. 
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excavation as different discontinuities are traversed. We would predict that 
for almost all rock tunnels there will be lengths where there will be little 
inflow, and lengths where there could be high inflow. In general, we will 
not be able to predict the specific local water inflow: consideration of the 
diagrams in Fig. 9.8 makes this clear. Additionally, it will generally be 
unknown how such a network is connected to the regional hydrogeological 
regime. Thus, engineers know that during tunnel construction they should 
have defensive strategies against major local high water inflows, but that 
the precise location of these flows cannot be predicted. 

Given the discussion in this chapter, would the reader include 
permeability measurements in a site investigation for a particular project? 
If so, should the necessary tests be conducted using boreholes? If so, how 
are the results to be interpreted? Questions of scale effect and permeability 
anisotropy will not be answered using a borehole strategy and, as a 
consequence, many engineers have used full-scale prototype excavations 
to determine permeability, e.g. the water inflow into a section of tunnel. 
Much, of course, depends on the engineering objective. 

Of all of the subjects presented in this book, perhaps permeability and 
its corollaries are the prime examples of the fact that rock engineering is 
an art. We think we understand the scientific principles, we understand 
the difficulties of dealing with a natural rock mass, we may have large 
resources, but there is no simple procedure for establishing 'the' perme-
ability of a rock mass. 

9.6 A note on effective stresses 

In soil mechanics, wide use is made of the concept of effective stress, as 
developed by Terzaghi (1963). We recall the explanation in Chapter 3 that 
stress is a tensor, comprised of three normal and three shear components. 
If fluid is present in the material matrix, the pressure, u, exerted by the fluid 
will effectively reduce the normal components of stress in the stress tensor, 
because the fluid has a hydrostatic pressure acting in all directions. This 
hydrostatic pressure has no effect on the shear components of the stress 
tensor. Thus, when the fluid is present, we can modify the stress tensor to 
an effective stress tensor as follows: 

(T„ 

^ . . v 
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^™ 

^ . y 
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— 

Here we have considered the simple case where the full hydrostatic 
pressure has been subtracted; the reader should note that many 
suggestions have been made for modifying the full value by coefficients to 
account for the material microstructure and degree of saturation. 

In Fig. 9.10(a), the water pressure is acting within the material micro-
structure, i.e. in the context of primary permeability, resulting in the 
effective stress tensor given above. In Fig. 9.10(b) we show, via the Mohr 
circle diagram, the effect on strength of introducing water. Before water is 
introduced, the stress condition is as in Case 1 in the diagram. When a 
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Figure 9.10 Effective stresses for intact rock and discontinuities. 

water pressure of u is introduced, all normal components of the stress 
tensor are effectively reduced by w. In the Mohr's circle presentation, this 
results in the circle being moved to the left by an amount w, which could 
result in the circle then reaching the failure locus, which is Case 2. 

In Fig. 9.10(c), we show the more complex problem of dealing with a 
water pressure w in a rock discontinuity, i.e. within the context of secondary 
permeability. There are two problems as compared to the primary 
permeability: first, the water pressure does not, depending on the location 
of the element in question, act on all normal components of the stress 
tensor; second, the water pressure is a local phenomenon, i.e. it is only 
acting in the discontinuities (within the timescales of engineering 
changes). Thus, the presence of the water could well have a profound effect 
on the mechanical behaviour of the discontinuities, but a much lesser effect 
on the behaviour of the intact rock. In fact, we have two effective stress 
concepts: one for the intact rock and one for the discontinuities. It is difficult 
to integrate these into a global effective stress law, as is illustrated in Fig. 
9.10 (d), showing elements in proximity to a discontinuity: the stress tensors 
are different for each of these elements. 

9.7 Some practical aspects: grouting and 
blasting 

One of the main engineering solutions for reducing the permeability of a 
fractured rock mass is to inject a grout, which may be a suspension (e.g. 
cement grout), an emulsion (e.g. bitumens) or a solution (e.g. a silicate). 
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which subsequently blocks the flow paths through the rock mass. Luckily, 
during such a grouting process, the grout will follow the path of least 
resistance, generally along the discontinuities with greatest aperture and 
persistence—which are the very ones which conduct the most water. We 
will wish to optimize such a grouting process, bearing in mind the types 
of discontinuity array that may be present—as, for example, that 
illustrated in Fig. 9.8. 

Generally, such optimization will involve tailoring the location and 
orientation of the injection boreholes, together with the grout type, 
injection rates, pressures and volumes, to the discontinuity geometry. This 
is essentially an empirical process, but obviously considerations such as 
those described above are of great help in establishing the fundamental 
design principles. 

Blasting technology has also tended to be almost entirely empirically 
based: the type of blasting round, the quantity of explosive and the 
detonation procedures have been established by trial and error. A rock 
which has no discontinuities has to be fractured by the blasting; in a rock 
which is very heavily fractured, it may only be necessary to disaggregate 
the rock mass without actually inducing any failure of intact rock. This 
leads us to utilize the fact that, as the blasting causes firstly a 'stress wave' 
to travel through the rock followed by a buildup of gas pressure within the 
borehole, we ought to tailor the type of explosive to the discontinuity 
geometry. By varying the explosive, the proportionate energy associated 
with the stress wave and gas pressure can be varied according to whether 
we are trying to break the rock with the stress wave or disaggregate it with 
the gas pressure. 

There is an elegant extrapolation of this concept whereby, via the 
engineering, we can effectively create a large artificial discontinuity exactly 
where it is required. This technique is known as pre-split blasting and will 
be discussed in Chapter 15. The aim of the method is to create the final 
excavation surface before bulk blasting the remaining rock: this artificial 
discontinuity then prevents stress wave damage of the intact rock and 
disaggregation of the rock mass behind the final excavation surface. New 
and innovative engineering techniques can be developed if the principles 
of rock mechanics are known and understood. Here, within the pre-exist-
ing discontinuity pattern, an artificial discontinuity has been introduced 
having a greater, and yet more beneficial, effect than any others. One can 
imagine the extension of this concept to other subjects, such as controlled 
drainage and controlled rockbursts. 
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10 Anisotropy and 
inhomogeneity 

We have already emphasized the natural history of the rock material which 
is being used for engineering purposes. A consequence of the millions of 
years of mechanical, chemical and thermal processes to which the rock 
mass has been subjected is that it may well be anisotropic and inhomo-
geneous. In this chapter, we will first define these two terms in the context 
of rock engineering and then explain two useful acronyms, CHILE and 
DIANE, representing respectively the assumptions required for modelling, 
as opposed to the actual rock properties. We then discuss the concepts of 
anisotropy and inhomogeneity, and conclude with a section on the 
ramifications of the ideas for rock engineering analysis and design. 

10.1 Definitions 
An anisotropic rock has different properties in different directions. These 
properties may be of any type: for example, deformability modulus, 
strength, brittleness, permeability and discontinuity frequency. In some 
cases, the ability to deal with anisotropy is built into the fundamental 
definition of the property itself, e.g. the compliance matrix for intact rock 
can contain up to 21 elastic constants which represent all possible types of 
elastic anisotropy. In other cases, for example, the compressive strength, 
there is no such in-built capability and the engineers are left to decide on 
the optimal characterization of anisotropy commensurate with their 
requirements. If we measure the compressive strength parallel and perpen-
dicular to the laminations in a metamorphosed rock, is this sufficient to 
characterize the anisotropic variation? 

An inhomogeneous rock has different properties at different locations. 
Again, this refers to any of the properties which we may be measuring. 
However, the ability to characterize inhomogeneity is not built-in to any of 
the fundamental definitions of the properties and we have to have recourse 
to statistical techniques. Later on, we will distinguish between 'point 
properties' and 'volume properties', the former being essentially the 
properties of intact rock, and the latter being essentially the properties 
governed by the structure of the rock. 
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Thus, the type of anisotropy and/or inhomogeneity variation could be 
gradual within the intact rock or sudden as a discontinuity is crossed. In 
fact, there can be variation on all scales: within grains or crystals, within 
the microstructure, within laboratory-sized samples of intact rock, within 
engineering structure-sized volumes of rock, and so on. These scales will 
be incorporated in our discussions in the succeeding three sub-sections. 

However, an immediate distinction can be made now between the 
assumptions that are traditionally required for modelling and the real 
properties of the rock. This can be remembered by two acronyms: CHILE 
and DIANE. 

A Continuous, Homogeneous, Isotropic and Linearly-Elastic (CHILE) mate-
rial is one that is most commonly assumed for the purposes of modelling. 
Traditional stress analysis techniques are formulated in terms of these four 
attributes, simply for necessity and/or convenience for obtaining closed-
form solutions. In the past, limited computational techniques precluded 
any more sophisticated analysis. Nowadays, however, especially in 
consulting and research organizations, there are computer codes available 
which will routinely deal with violation of any of these traditional 
assumptions. This leads directly to the second acronym. 

A Discontinuous, Inhomogeneous, Anisotropic, Non-Elastic (DIANE) rock is 
the material with which the engineer has to deal.* We should therefore 
consider the significance of the difference between the CHILE material 
being modelled and the DIANE rock being engineered, and the likely error 
arising from the direct application of a model based on a CHILE material. 
Alternatively, the specific attributes of the DIANE rock can be modelled. 
Superb examples of the latter procedure are the development of block 
theory and the use of distinct element techniques in numerical analysis. 

There is a connection between each of the characteristics of discon-
tinuousness, inhomogeneity, anisotropy and non-elasticity. For example, 
in a cyclothem of repeating sandstone, mudstone and limestone strata, 
containing bedding plane separations and exhibiting time dependency, 
there will be inter-relations between the attributes—because of the 
physical characteristics and mechanisms. The rock is discontinuous 
because of the bedding plane separations and any other fracturing that may 
be present. It is inhomogeneous because of the existence of the different 
rock types. It is anisotropic because of its sedimentary nature. It is not elastic 
because there is hysteresis and time dependency, perhaps related to the 
presence of the bedding planes. Moreover, the rock is anisotropic because it 
is inhomogeneous, e.g. the deformation modulus for a suite of strata will 
be different parallel and perpendicular to the bedding planes. Also, the rock 
is anisotropic because it is discontinuous. The matrix showing example 
connections between these four main attributes is shown in Fig. lO.L 

There is little chance of any modelling based on CHILE assumptions 
being realistic. There are a few circumstances where all the assumptions 
would apply simultaneously, to the extent where the modelling would 
produce results of value in rock engineering analysis and design. 

*The acronym DIANE was coined by Branko Vukadinovic of Energoprojekt, 
Belgrade, Yugoslavia. 
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Figure 10.1 Connections between the attributes discontinuousness, inhomo-
geneity, anisotropy and non-elasticity. 

Examples are the South African goldmines and well-bores at great depth: 
in these circumstances the high stresses can effectively close all discon-
tinuities and the rock is more or less homogeneous and isotropic within 
the scale of the engineering being considered. 

It follows, therefore, that engineers must always question the results of all 
modelling in rock mechanics and rock engineering to consider for themselves 
to what extent they consider the DIANE rock is well represented by the 
CHILE material in the model. In some circumstances such representation 
may be valid, in others, it may be wrong, misleading and dangerous 
to use. The following discussion is designed to provide the reader with 
some background knowledge in order to address this problem with 
confidence. 

10.2 Anisotropy 
The word 'anisotropy' is derived from the two Greek words anisos (mean-
ing unequal) and tropos (meaning turning or direction). Directionality is one 
of the key aspects of rock engineering. If, for example, we conduct a site 
investigation using a vertical borehole, will the fracture data be useful for 
designing a horizontal tunnel? The answer to this question is that if the rock 
is fractured isotropically, the results will be most useful. However, if the 
rock is anisotropic, the results could well be misleading if used without care. 
We have already demonstrated in Chapter 7 that the discontinuity 
frequency can vary significantly with direction, and so the value derived 
from measurements made in the vertical borehole might be different to that 
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in a specific horizontal direction. We also noted that properties such as the 
rock mass deformability and permeability will be functions of the discon-
tinuity frequency, and hence will be anisotropic in nature. In the case of 
discontinuity frequency, we showed explicitly the variation with direction. 
For deformability, the architecture of the elastic compliance matrix takes into 
account the linking between stresses and strains and hence also explicitly 
quantifies some anisotropy. It was also explained in Chapter 9 that 
permeability is a second-order tensor with three principal permeabilities, 
again explicitly characterizing some anisotropy via the tensor. Figures 
illustrating these concepts have been included in Chapters 7-9. 

However, not all rock properties have anisotropy incorporated into their 
characterization. For example, as was asked at the beginning of the chapter, 
how do we characterize the anisotropy of compressive strength? 
Compressive strength is usually assumed to be a scalar value, which is by 
definition directionless: measurements of compressive strength should be 
qualified with information on the direction of loading relative to the rock 
structure. 

Figure 10.2 demonstrates the anisotropy of compressive strength 
recorded for a series of tests performed on a slate. In this case, the 
anisotropy can be characterized through application of the single plane of 
weakness theory (discussed in Chapter 8), which does have directionality 
built into its formulation. 

One should be very careful with the measurement of any assumed scalar 
property in rock mechanics and rock engineering, because there is no in-
built directionality in the characterization of such a property. The three 
most frequently measured parameters in rock mechanics and rock engi-
neering are discontinuity frequency, RQD and point load strength. These 
are almost always (but incorrectly) assumed to be scalar properties {and 
hence imply isotropy), whereas, they are actually higher-order parameters 
{implying anisotropy). 

Where it is economically viable, rock masses should always be assumed 
to be anisotropic unless it can be demonstrated that isotropy is a sufficient-
ly accurate representation for the particular rock mass and engineering 
objective. 

10.3 Inhomogeneify 
The word 'inhomogeneity' is derived from the two Greek words homos 
(meaning the same, with the Latin prefix in- forming the negative) and 
genos (meaning kind). Anisotropy means having different properties in 
different directions at a certain location, with the location unspecified. Now 
we consider inhomogeneify, which means having different properties at 
different locations given a certain measurement direction. It the measurement 
direction is not specified, then a compound of the two aspects could occur. 

We saw that anisotropy is intrinsic to the very definition of many 
geotechnical parameters. This is not the case for inhomogeneity, and so we 
must have recourse to statistical and geostatistical techniques. Under-
standing the inhomogeneity of rock can be important. Indeed, in many 
cases, we may be interested in the extreme values rather than the mean 
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Figure 10.2 Compressive strength anisotropy in dark grey slate (after Brown et al, 
1977). 

values of a rock property. For example, in choosing the type of cutters for 
a tunnel boring machine, not only the mean compressive strength would 
be required but also the range within which the top, say, 10% of strengths 
occur. 

In Fig. 10.3, we illustrate both the standard statistical procedure for 
characterizing a parameter through the full probability density curve {which 
does not explicitly take the distances between sample locations into account) and 
the semi-variogram of geostatistics {which does take these distances into 
account). 

Where we encounter rock properties varying with location within a rock 
mass, there are three main approaches to the characterization procedure: 
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Figure 10.3 Methods of quantifying inhomogeneify through statistics and 
geostatistics. 

(a) lump all the data into one histogram; 
(b) separate the site into a number of discrete 'structural regions' and create 

a histogram for each; and 
(c) use the techniques of geostatistics, specifically semi-variograms and 

kriging. 

Note that the use of these three different techniques represents three ways 
in which the locations of the sampling points are taken into account. When 
the data are lumped together, the information on location is suppressed, 
except that all samples came from an assumed single universe. In the 
second case, the location information is similarly suppressed, except that 
different probability density functions can now be distinguished in the 
different sampled areas, and hence statements can be made about 
whether there is any variation between the regions of the sampled uni-
verse. In the third case, the distances between the specific sampling points 
are explicitly taken into account in the creation of a semi-variogram, as 
shown in the top right of Fig. 10.3 and explained below. 

In this context of inhomogeneity, we should distinguish between accu-
racy and precision—which are our two main parameters for assessing the 
level of inhomogeneity using the lumped histogram approach. Accuracy 
is the ability to obtain the correct answer 'on the average': the sampled 
mean is, on the average, the true mean, i.e. there is no bias in the 
measurements. Precision, commonly measured by the standard deviation, 
is the degree of spread of the measurements, whether or not they are accurate. 
Considering the probability density function at the top left of Fig. 10.3, the 
material will be inhomogeneous if the spread of results is greater than that 
which would result from sampling error alone. In fact, this is our sole 
measure when the data are lumped together. However, if different prob-
ability density functions are constructed for the different structural 
regions, we can utilize the differences between their means as a measure 
of the inter-'structural region' inhomogeneity and the spread of individual 
histograms as a measure of the intra-'structural region' inhomogeneity. 
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The semi-variogram illustrated in the top right of Fig. 10.3 is derived from 
the equation 

2n ,.1 

where y{h) is the semi-variogram statistic for samples a distance 
h apart, 

n is the number of sample pairs, 
p{x) is the rock property at location x, and 
p{x + h) is the rock property at location x + h. 

Each statistic, /(//), refers to the overall variation for samples taken at a 
distance h from each other. In Fig. 10.3, this statistic is plotted against h to 
indicate the rock property variation as a function of distance between the 
observations. Naturally, when h tends to zero, we might expect /(/z) to tend 
to zero (although this is not always the case because of measurement 
inaccuracies and sudden differences in the rock property, the so-called 
'nugget effect'). More interestingly, as h increases, so y{h) will increase until 
it reaches a constant value—indicating no correlation between the data 
points making up each pair. This occurs at a distance h = a, which is the 
range of influence of a sample, and is at the value of /(/i) = C, termed the 
sill of the semi-variogram. 

Although the techniques of geostatistics and Geographical Information 
Systems have not been fully exploited in rock mechanics, it is clear that the 
approach does take the location of the sample into account and does 
provide a method for quantifying inhomogeneity. The concept of the range 
of influence is important in establishing the distance to which one can 
extrapolate borehole information. Also, one can examine anisotropy by 
constructing semi-variograms in different directions. 

Figure 10.4 shows simulated discontinuity patterns for both statistically 
homogeneous and statistically inhomogeneous cases. These patterns illus-
trate the need to account for inhomogeneity in order to develop a correct 
understanding of rock mass variability or rock mass structure at any site. 

10.4 Ramifications for analysis 
The overall validity of models has been discussed in terms of the CHILE 
and DIANE assumptions and, at this stage, it will be helpful to consider 
anisotropy and inhomogeneity in the modelling procedures. The models 
are either solutions for continuous materials or solutions for discontinuous 
materials, and in a few cases a combination of the two. 

In the first case, with 'classicaF solutions we have little room for manoeu-
vre. For example, as illustrated in Fig. 10.5, from Daemen's work, a set of 
'laminations' (i.e. one set of parallel, planar and persistent discontinuities) 
has been included. Daemen has assumed, by applying the Mohr-Coulomb 
failure criterion for potential slip along the discontinuities, that the presence 
of the discontinuities does not affect the fundamental stress distribution 
around the tunnel, but does affect the strength of the material. This 
approach provides a useful indication of the likely areas subject to failure 
under these circumstances, and hence also provides guidance on support 
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Figure 10.4 Computer-generated rock jointing patterns (from LaPointe and 
Hudson, 1985). (a) Statistically homogeneous, (b) Statistically inhomogeneous, 
having radial linear drift. 

requirements, but the possibilities for extending the classical solutions in 
this way are limited. This not only applies to the anisotropy of the material 
properties, but also to anisotropy of the problem geometry. 

With reference to the plane strain solution for the stresses around 
underground excavations, there are 'classical' solutions for circular and 
elliptical openings and, through the use of complex variables, various 
pseudo-rectangular shapes. How^ever, extensions to, for example, the inter-
action betw^een two parallel openings are not possible—this is the realm of 
engineering approximations. Thus, it is unlikely that our four main 'problem 
attributes' can be incorporated as extensions of classical solutions. 

Over the last two decades, there has been development in computer-
based numerical solutions which are specifically designed to deal with 
more complex geometry and material properties. These techniques include 
finite difference, finite element, boundary element and distinct element 
formulations, providing the capability of incorporating discontinuousness, 
anisotropy, inhomogeneity and more complex constitutive behaviour. With 
this capability, the types of rock properties that can occur need to be studied 
further. 

An initial step in dealing with the four attributes is to consider the 
distinction between rock properties at a point and rock properties over a 
volume. In other words, there are some properties, such as density, which 
can be considered as essentially point properties and do not depend on the 
discontinuites. There are other properties, such as secondary permeability, 
which are dictated by the presence of discontinuities and cannot be consider-
ed as point properties: these are associated with a certain volume of rock. In 
Table 10.1, we present examples of both point and volume properties. 

The distinction between the two types of property is not cut and dried. 
For example, the state of stress in a rock mass is, of course, influenced by 
the discontinuites; but considering the definition of stress at a point (which 
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Figure 10.5 Use of the classical Kirsch solution for plane strain stresses around a 
circular opening for studying the effect of anisotropy of rock strength (from 
Daemen, 1983). 

was given in Chapter 3), it is included as a point property. The key point 
about these two types of property is that, within the numerical analysis 
techniques which have been developed, variations in point properties can 
be accommodated relatively easily (although not necessarily compre-
hensively). For example, using the finite element technique we could 
incorporate variations in density, i.e. a form of inhomogeneity. 

Of the four attributes, all the numerical techniques can, to a greater or 
lesser extent, accommodate wide variations in problem geometry and the 
presence of discontinuites. This is not the case for the inhomogeneity, 
anisotropy and constitutive behaviour relating to volume properties, 
because the individual elements in these numerical formulations should 
not be assigned a single value relating to a volume property which may 
be varying on a scale commensurate with the elements themselves. 

Table 10.1 Examples of rock properties classified according to whether they are 
point properties or volume properties 

Point Property 

(not dependent on discontinuites) 

Density 

Primary porosity 

Permeability of intact rock 

Point load strength 

CuttabUity 

State of stress 

Volume Property 

(dependent on discontinuities) 

Modulus of deformation 

Secondary porosity 

Permeability of the rock mass 

Discontinuity frequency 

RQD 

Rock mass classification indices 
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Figure 10.6 Schematic of a hybrid computational scheme for excavation and 
support design in jointed rock media (from Lorig and Brady, 1984). 

Developments aimed at overcoming these difficulties are the use of 
hybrid numerical formulations v^hich recognize the advantages of the 
continuum and discontinuum component methods. An example is show^n 
in Fig. 10.6, from the w^ork of Lorig and Brady (1984). Here, a boundary 
element solution has been utilized for analysing the far-field, and a distinct 
element model used for the near-field. There are advantages in assuming 
the material to be a continuum in the far-field w^hile simultaneously 
modelling the discontinuities explicitly in the region of interest around the 
excavation. Via such a hybrid technique, we are able to model the 
discontinuities, tailoring the modelling to the engineering and design 
objectives. 

We leave further discussion of inhomogeneity and anisotropy until later 
chapters and concentrate now on the implications of all the subjects 
covered so far on rock mechanics testing techniques. 



7 1 Testing techniques 

In this chapter, the first two sections concern the practical aspects of obtaining 
access to the rock mass for testing, and the general philosophy of the testing 
requirements—bearing in mind the engineering objective. In the three sub-
sequent sections, there are overviews of tests on intact rock, discontinuities 
and rock masses. We conclude with a discussion on standardized tests. 

11.1 Access to the rock 

In Fig. 11.1, the main ways in which there is physical access to a rock mass 
are indicated. These are a rock exposure (whether at the surface or under-
ground), lengths of borehole core, and the borehole wall itself after the hole 
has been drilled. Because the amount of exposed rock is limited and possibly 
locally altered, testing has tended to be concentrated on the cylindrical 
lengths of borehole core that are obtained by drilling during a site investiga-
tion and by measurements made within the borehole. When studying the 
illustrations in Fig. 11.1, recall our discussions about intact rock, discon-
tinuities, rock masses, stresses, and the inhomogeneity and anisotropy factors 
in the previous chapters. What, exactly, is it that we wish to know about the 
rock mass in order to design and construct a rock engineered structure? 

From a rock exposure, it is relatively easy to measure any property of the 
intact rock. Similarly, the rock mass structure is evident and a good estimate 
of most discontinuity properties can be obtained. Also, flat jack stress 
determination tests and larger-scale modulus and permeability tests can be 
conducted. 

Considering borehole core, it is again evident that any mechanical 
property of the intact rock can be measured. The measurements of dis-
continuity properties are, however, immediately severely constrained. An 
excellent estimate of the discontinuity frequency in the direction of the 
borehole can be obtained, but virtually no information on the persistence 
of the discontinuities is revealed. One cannot measure the in situ stress from 
the borehole core (techniques such as anelastic strain recovery, differential 
strain analysis and the Kaiser effect are still questionable). Also, there is no 
possibility of measuring rock mass properties from the rock core. 



174 Testing techniques 

Reference mark 

i_ 

Aperture as 
determined b) 
camera 

Image of top of 
ellipse on borehol 
wall 

Figure 11.1 Access to the rock mass via a rock exposure (top), borehole core (mid-
dle) and the borehole wall (bottom—which is an image derived from video tape). 

What about tests that can be conducted on a borehole w^all? It is evident 
that, apart from directly viewing the rock, the testing w îll usually consist 
of indirect methods of assessing the rock mass properties—due to limita-
tions imposed by the borehole size. An example is show^n in the lower part 
of Fig. 11.1, where the dark sinusoidal wave indicates the trace of an 
inclined discontinuity intersecting the borehole wall, being viewed via the 
rotating mirror of a borehole camera. 

There are always constraints on resources, and so it is necessary when 
optimizing the rock characterization procedures to consider the require-
ments and to choose the rock access method and testing techniques in 
accordance with the engineering objective. Because there are many differ-
ent rock engineering objectives, there can be no standardized site 
investigation. Individual tests can—and indeed should—be standardized, 
but the total programme and number of tests cannot be specified 
independently of the objective. For example, the information requirements 
for designing a block caving mining operation and a radioactive waste 
repository are different. 

1 1.2 Tailoring testing to engineering 
requirements 

There are the three main methods of accessing the rock, and there are many 
tests that can be conducted. The objective is to tailor the testing to the 
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engineering objective. In Fig. 11.2, there is a histogram of the rock 
parameters that have been studied in association with the design of pressure 
tunnels for hydroelectric schemes worldwide. The parameters have been 
plotted in order of frequency of occurrence along the horizontal axis and 
indicate the perceived first 10 (for example) most important parameters 
involved in the design of pressure tunnels (this histogram has been 
constructed from a study of the literature, but could equally well have been 
obtained from existing design practice or numerical modelling require-
ments). It follows that we should design our testing programme accordingly 
in line with the design requirements. In this example, /?t situ stress is regarded 
as being of prime importance and should, therefore, definitely be 
determined. Conversely, it is assumed that in most cases the in situ stress is 
not an important parameter for surface blasting and slope stability, and 
therefore would not be determined to support these objectives. 

Standardized procedures are advantageous for measuring rock pro-
perties and site conditions, but we must decide whether we are going to 
make particular measurements on the basis of the overall objective. If a 
slope is being designed, there is a great deal of experience for guidance; if 
a new structure is being designed, such as the tunnels housing a super-
conducting energy storage magnet, the most relevant parameters have to 
be established. In the latter case, since the magnet expands and contracts 
on charging and discharging, it could well be the fatigue properties of the 
excavation-peripheral discontinuities that are of paramount importance, 
and there are no standardized tests for these. 

Finally, while discussing the overall strategy of approach, one has to 
consider whether emphasis is to be placed on index tests, fundamental 
tests, or a combination of the two. An index test is one that can be 
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Figure 11.2 Importance of rock mechanics parameters for hydroelectric scheme 
pressure tunnel design (as established from the literature and compiled by 
Arnold, 1993). 
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performed quickly, but may not determine an intrinsic property-the 
point load test and Schmidt hammer rebound tests are examples. A funda- 
mental test, on the other hand, measures a conventionally accepted 
intrinsic property, such as the compressive strength. One can estimate 
the compressive strength via the point load test in the field, or one 
can conduct direct compressive strength tests in the laboratory. The latter 
are more expensive and time consuming but do measure the property 
directly. Alternatively, one could conduct many tests using the point 
load apparatus, with fewer direct tests in the laboratory, or rely mainly on 
the point load test calibrated occasionally against direct tests in the 
laboratory. 

The example in the previous paragraph is illustrative of all rock mechan- 
ics testing. Consider the measurement of the in situ rock deformation 
modulus. Should one use a dilatometer in a borehole, or a tunnel jaclung 
test, or estimate the modulus using an analytical model and laboratory- 
determined values for the component parameters? In Fig. 11.3, we illustrate 
a 6 MN tunnel boring machine tunnel jachng test in chalk. The modulus 
determined by this means was between 7 and 10% of the laboratory, 
determined value, and of the same order as that determined from a finite 
element analysis back-calculation of ground settlement, back-analysis being 
yet another method available to the engineer. 

In the majority of cases, the rock mechanics information is obtained from 
tests on borehole core, so it is essential that the drilling report and 
borehole core logs are correctly completed and available. In this book we 
will not deal with borehole core loggng: instead we refer the reader to 
the Geological Society of London recommended procedures, the 
relevant British Standard, and, of course, all other relevant National 
Standards. With the advent of significantly increased microcomputing 
power, there is a move to provide more automation and immediate data 
acquisition and presentation in the field. In Fig. 11.4, one idea for auto- 
mated discontinuity location recording is presented; this was developed 
by Nordqvist (1984). 

Figure 11.3 A 6 MN tunnel loading test for estimating in sitzr rock modulus, frc 
Hudson et al. (1977). 
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1. Computer 
2. Automated tape 
3. Display 
4. Keyboard 
5. Printer 
6. Disk 

Figure 11.4 Automated discontinuity location measuring equipment (after 
Nordqvist, 1984). 

11.3 Tests on intact rock 

Tests on intact rock are associated with describing the character of the rock 
material, measuring the mechanical properties, and measuring other 
properties such as permeability. As rock mechanics has developed, 
following geological guidelines and soil mechanics experience, the 
description of rock has tended to be of a 'field-book entry' type of approach 
during borehole logging. One wishes to know the lithology, colour, etc, of 
the rock, but in classifying for rock engineering the mechanical properties 
are also required. 

In Fig. 11.5, there are photographs of the two most common field tests 
conducted in association with exposure examination and borehole 
logging in the field: these are the Schmidt rebound hammer and the point 
load test. Both of these are index tests in that they provide a measure of the 
'quality' of the rock; the fundamental properties are estimated from tables 
using the measured index values. 

The Schmidt rebound hammer is a portable device, by which a spring-
driven cylindrical hammer rebounds off the rock surface; the rebound 
distance is considered to be a measure of the rock quality. The hammer can 
be used directly on a rock surface, or on a rock core: in the latter case, a 
special support cradle is required. When the in situ block size is large, the 
Schmidt hammer does measure the properties of the intact rock; when the 
rock is fragmented, the use of the Schmidt hammer on the exposed rock 
surface will be a measure of the rock mass quality rather than the intact 
rock per se. In addition, by the very nature of the test, the condition of the 
tested rock surface will have a significant effect on the result, because of 
geometrical irregularities or because the surface itself has deteriorated and 
is not representative of the fresh, intact rock. For this reason, it is 
recommended that the Schmidt hammer is used repeatedly within the 
immediate vicinity of a measurement location. If it is suspected that 
variation in the results is occurring because of geometrical irregularity, the 
lower readings should be discarded. If the surface is weathered, then all 
the values will be significant. When measurements are made on 
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Figure 11.5 The Schmidt hammer and point load test equipment. 
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discontinuity surfaces, the condition of the surfaces is of particular 
importance. In Fig. 11.6, we show a series of empirically determined curves 
relating the Schmidt hammer readings for various hammer types and 
orientations to the unconfined compressive strength. Despite its apparent 
simplicity, the Schmidt hammer has proved to be one of the most useful 
indicators of rock strength. 

The point load test is used on small pieces of rock which are either borehole 
core or irregular lumps. The test is derived from the so-called Brazilian* test 
in which a disc is compressed diametrally between two loading platens and 
the tensile stress at failure, a"t, calculated from the breakdown load as 

Dt 

where P is the load on the disc at failure, 
D is the disc diameter, and 
t is the disc thickness. 

When the effect of the geometry of the disc is studied, it is found that the 
outside perimeter shape has little effect on the above formula: for example, 
a square shape loaded across opposite corners gives a similar result for the 
tensile strength. For this reason, and because the testing may be conducted 
on irregular lumps (as shown in Fig. 11.5), a point load index. Is, was 
developed by Franklin (1985): 

p 
I^ - —(uni ts of stress). 

D' 

This formula is directly related to the Brazilian test formula given earlier, 
except that the term D has replaced the term Dt because the specimen 
could be an irregular lump. The reader should note that a coherent set of 
units must be used in evaluating Jg: in order to produce a result with units 
of MPa, units of N and mm are required for P and D, respectively. 

The size effect was discussed earlier and the point load test is no 
exception to this phenomenon. The standard test is conducted on a core 
of 50 mm diameter, with correction methods being available to convert the 
measured index to the /s5o index if a different sized core or lump is used. 
There are also methods of characterizing the results for tests conducted 
parallel and perpendicular to the structure in anisotropic rock. In Fig. 11.6 
the calibration curve and a set of results for converting the point load index 
number to unconfined compressive strength (UCS) are given. 

The point load test is useful because hundreds of tests can be easily 
completed in a day with minimal sample preparation. Also, the prediction 
of compressive strength has proved to be remarkably accurate over a wide 
range of rocks. Bearing in mind that the sample can be irregular, that 
elasticity theory is unlikely to be the correct predictive model, that failure 
will probably occur under the loading platen, and that the compressive 

''̂ Readers may be interested to know the apocryphal tale surrounding the 
Brazilian test—that it was developed from the observation of a church being moved 
in Brazil on concrete rollers: when the rollers split, the idea of the test was born. 
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Figure 11.6 Schmidt hammer and point load test calibration curves. 
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strength is predicted from a calibration curve, then we should be grateful 
as engineers that the test does indeed prove to be useful. Over the years, 
the point load test has become the most widely used test for measuring the 
strength of intact rock. 

Other examples of index tests are the measurement of acoustic velocity 
and slake durability. The acoustic velocity can be measured easily using 
portable equipment, the P- and S-wave velocities either being used as an 
index in their own right (indicating anisotropy and/or inhomogeneity), or 
Young's modulus and Poisson's ratio can be estimated using relations 
developed from the theory of elasticity. Since the stress wave velocities 
depend on the elastic moduli of the rocks and there is an empirical 
correlation between rock moduli and rock strength, the UCS can also be 
estimated from acoustic testing. 

The degradability of rock is important when engineering in 'soft' rocks. 
A typical material that degrades is shale: a tunnel excavated in shale may 
initially be stable, only to collapse a few days later. It is useful, therefore, to 
be able to assess the degradability of the rock, for which purpose the slake 
durability test was developed by Franklin (1979). A piece of rock is placed 
in a copper cage which is rotated under water under specified testing 
conditions. The loss of sample weight is a measure of the susceptibility of 
the rock to the combined action of slaking and mechanical erosion. 

Fuller descriptions of these and other tests on intact rock are given in the 
standardized testing procedures published on behalf of the ISRM and 
National Standards bodies, such as the American Society for Testing and 
Materials (see Table 11.1). 

11.4 Tests on discontinuities 
The discussion in Section 11.3 is concerned with the rock material, i.e. the 
solid blocks in the rock exposure shown in the top photograph and the 
solid core pieces shown in the middle photograph of Fig. 11.1. Now we 
discuss testing the breaks in the continuum, the discontinuities. 

11.4.1 Geometrical attributes 

Referring to the middle photograph of Fig. 11.1, certain geometrical 
properties of the discontinuities can be measured easily from a length of 
core. The properties can be determined more accurately using a scanline 
set up on a rock surface, as in the top photograph of Fig. 11.1. A purpose-
designed logging sheet for borehole core, which can also be used for 
scanline work, is presented in Fig. 11.7. The specific contents of this logging 
sheet which should be noted are: 

(a) the fact that there is a photograph of the core; 
(b) there is an associated sketch of the discontinuties present within it; 
(c) the discontinuities are numbered; 
(d) the distance to each discontinuity is measured; 
(e) the angle of each discontinuity to the core axis is measured; 
(f) and there are comments on the discontinuity type (genesis) and surface 

condition and/or coating. 



182 Testing techniques 

Table 11.1 ISRM and ASTM published testing methods (as at 1992) 

ISRM TEST METHODS 

Pctrographic Description 

Hardness and Abrasivity 

Monitoring Rock Movements using 
Borehole Extcnsometers 

Determining Sound Velocity 

Quantitative Description of Discontinuities 

Tensile Strength 

Uniaxial Compressive Strength 
and Deformability 

Water Content, Porosity, Density, Absorption 

In Situ Deformability of Rock 

Pressure Monitoring using Hydraulic Cells 

Geophysical Logging of Boreholes 

Strength in Triaxial Compression 

Surface Monitoring of 
Movements across Discontinuities 

Rock Anchorage Testing 

Point Load Strength 

Deformability using a Large Flat Jack 

Deformability using a Rexible Dilatometer 

Rock Stress Determination 

Fracture Toughness 

Seismic Testing 
within and between Boreholes 

Laboratory Testing of 
Argillaceous Swelling Rocks 

Large Scale Sampling and 
Triaxial Testing of Jointed Rock 

ASTM TEST METHODS 

Laboratory Determination of Pulse Velocities and 
Ultrasonic Elastic Constants 

Creep in Uniaxial Compression 

Creep in Triaxial Compression 

Direct Tensile Strength 

Modulus of Deformation using 
Flexible Plate Loading 

Modulus of Deformation using 
Rigid Plate Loading 

Rockbolt Anchor Pul) Test 

Rockbolt Long-Term Load Retention Test 

In Situ Deformability and 
Strength in Uniaxial Compression 

Dimensional and Shape Tolerances 
of Rock Core Specimens 

In Situ Creep 

In Situ Shear Strength of Discontinuities 

Modulus of Deformation using a 
Radial Jacking Test 

Penneability Measured by Flowing Air 

Thermal Expansion using a Dilatometer 

Elastic Moduli of Intact Rock 
in Uniaxial Compression 

In Situ Stress by 
USBM Borehole Deformation Gauge 

Rock Mass Monitoring Using Inclinometers 

Specific Heat 

Splitting Tensile Strength of Intact Rock Core 

Transmissivity and Storativity 
of Low Permeability Rocks using the 

Constant Head Injection Test 

Transmissivity and Storativity 
of Low Permeability Rocks using the 

Pressure Pulse Technique 

Triaxial Compressive Strength 

Undrained Triaxial Compressive Strength 

Unconfined Compressive Strength 

Thermal Diffusivity 
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From the record, and the overview statistics, one can determine the 
discontinuity frequency (and hence mean spacing), the discontinuity 
spacing histogram and the RQD. 

This style of log sheet is designed for direct input to a computer and 
hence to be able to take advantage of modern developments in databasing 
and information technology. The log sheet is also designed to assist a 
structural geologist to interpret the information, because we advocate the 
use of a 'geological approach' whereby intelligence can be incorporated 
into the sampling process, resulting in a staged approach and hence 
optimal use of resources. Databasing the information contained on such log 
sheets is still in its infancy, as is the automated recording of values 
illustrated in Fig. 11.4. However, both these subjects will develop in the 
future. 

Once the information is contained within a database, a multitude of 
analyses can be conducted in various interrogative modes. For example, 
from the log sheets compiled from granite core, one can assess the 
occurrence of, say, 

(slickensided discontinuities) n (-30° dip) n (green coating) 

on the assumption that thrust faulting may be present. This is just one 
example of how the speed associated with interrogation of a computer 
database can assist—by showing the relevant relations contained within it, 
as determined by the engineer and geologist. Moreover, algorithms can be 
developed to produce the semi-variograms and associated criteria for 
partitioning the rock mass into different structural regions. 

We explained earlier that it is generally necessary to have 50 or so 
discontinuities for a reasonable estimate of discontinuity frequency, and of 
the order of 200 to provide a reasonably coherent histogram. If the 
information is contained within a database, algorithms can be used to assess 
directly the significance of the variety of discontinuity statistics that may 
be output. These ideas also apply to measurements on exposures, where 
other parameters such as trace length can be measured. 

We are not discussing in any further detail the use of borehole television 
cameras, as illustrated in the lower photograph of Fig. 11.1, except to say 
that we anticipate greater use of these as the technology of the video images 
improves. 

J 7.4.2 Mechanical attributes 

There is a variety of testing procedures for the mechanical attributes of 
discontinuities, ranging from the tilt test, through the field shear box and 
standard triaxial procedures to sophisticated tests on servo-controlled 
equipment. 

The tilt test, illustrated in Fig. 11.8, is used to estimate the angle of friction 
between the discontinuity surfaces, or indeed any two rock surfaces. The 
test can be either carried out simply by hand, or with increased sophistica-
tion using an elevating cradle. The test is simple, with the angle of 
inclination when slip occurs directly indicating 0y, but the process by which 
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Figure 11.8 The tilt test for measuring the angle of friction between discontinuity 
surfaces (after Barton et al, 1985). 

one irregular surface slides over another is complex. For good practical 
reasons, in the past it has been assumed that there is only one friction angle, 
i.e. there is no anisotropy in the roughness of the discontinuity. In fact, 
because of the mode of formation of most discontinuities, there will be 
anisotropy in the friction angle. The tilt test should be conducted in several 
different directions with respect to any visible directional structure. Also, 
if there is any stepping on the discontinuity surface, the friction angle will 
vary with the direction of relative slip across the discontinuity. The direc-
tion of faulting causing natural slickensiding on discontinuity surfaces can 
be detected by the roughness of the surface in different directions. 

The most widely used apparatus for rapid determination of discontinuity 
strength parameters is the field shear box, as illustrated in Fig. 11.9. A 
sample of rock containing a discontinuity is cast in plaster and set in the 
apparatus such that the discontinuity can be sheared between the two 
halves of the box. This can be conducted at varying levels of normal stress 
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Figure 11.9 The field shear box and typical results. 
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and rates of shearing, allowing a wide range of parameters to be obtained 
(c, <j), curvature of the failure locus, residual strength, variation with shear-
ing rate, and so on). 

In order to measure the more complex discontinuity stiffness behaviour 
described in Section 7.3.1 and to obtain more precise information on the 
strength and failure behaviour, it is necessary to use a laboratory-based 
shear or triaxial testing machine. Such tests are difficult to conduct, because: 

(a) of the possibility of sampling disturbance causing premature failure of 
the discontinuity; 

(b) a rock specimen containing a discontinuity does not manifest uniform 
behaviour in the triaxial cell, causing relative rotation of the specimen 
halves or puncturing of the sleeve, as illustrated in Fig. 11.10; 

(c) the discontinuity properties are likely to be anisotropic and so it is time 
consuming and difficult to establish, for example, the 3 x 3 stiffness 
matrix relating the normal and two shear stresses with the normal and 
two shear displacements. 

Notwithstanding these difficulties, it is important in many rock engineer-
ing projects to understand the mechanical behaviour of discontinuities in 
detail, and to study the combined thermo-hydro-mechanical properties. In 
the Hot Dry Rock geothermal energy project (where cold water is pumped 
down one borehole, passes through a fractured zone within the hot rock, 
and returns via another borehole), there is little experience to guide the 
work so it must be driven by numerical analysis. Determination of the 
discontinuity properties for these complex conditions is a vital ingredient 
in supporting the analysis process. The TerraTek testing machine 
illustrated in Fig. 11.11 has been used at Imperial College to study such 
behaviour. 

11.5 Tests on rock masses 

The determination of rock mass properties can be approached in two ways: 

(a) via the properties of the intact rock and the properties of the discon-
tinuities, which together make up the rock mass properties; or 

(b) via the properties of the rock mass as measured or estimated directly. 

•' t t 
Figure 11.10 Triaxial testing of discontinuities (after Brady and Brown, 1985). 
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Figure 11.11 TerraTek servo-controlled triaxial testing machine at Imperial 
College as used for thermo-hydro-mechanical testing of discontinuities. 

Sections 11.3 and 11.4 have separately included the items in (a) above, 
therefore direct testing of rock masses is now discussed. Always remem-
ber, though, that the measured properties and overall characterization will 
vary according to the project requirements. 

Testing rock masses is a large subject: we provide here an overview of 
deformability, strength and permeability testing: for more advanced 
treatment the reader is referred to the book by Dunnicliff (1988). 

A logical extension of the use of the site investigation borehole is to install 
some form of loading within the borehole, so that a force-displacement 
curve is obtained and the associated elastic parameters of the rock estimat-
ed. In soil mechanics, pressure meters and dilatometers are used exten-
sively and attempts are continually being made to develop similar 
instrumentation for rocks with higher moduli. Rock masses are usually 
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anisotropic and so an essential feature of such a device must be the ability 
to both apply load and measure displacement in different radial directions. 
One of the best of these types of device is the Goodman Borehole Jack, 
shown in Fig. 11.12 together with example results. The ability to estimate 
the modulus, varying both the position and direction of application of the 
load, is a major advantage. 

The development of this, and other similar, devices has not been without 
difficulties. A salutory paper published by Heuze and Amadei (1985) lists 
the interpretative problems encountered by several investigators and 
documents the evolution of the Goodman jack. For example, imagine 
estimating the overall rock mass modulus from a series of measurements 
made on a borehole wall, often in close proximity to discontinuities. There 
will be a range of moduli values as the jack alternately measures within 
intact rock blocks and at locations where discontinuities intersect the 
borehole wall. 

A similar circumstance occurs with a plate loading test conducted either 
on a surface rock exposure or underground. In this test, a large steel plate 
is set on a cement grout pad and loaded, usually by the application of dead 
weights or by means of a hydraulic ram reacting against an opposing 
tunnel wall or a system of rock anchors, as illustrated in Fig. 11.13. A 
force-displacement curve can be generated from the hydraulic pressure 

5 10 15 20 25 

10 

2 5 

60 

40 Cu 
O 

20 

EealcHO^Psi) 

3-D hydraulic hole line 
effect efficiency dia. pressure change 

= 0.86 0.93 • D - ^ - K(v',P). 

diameter Poisson's half contact 
change ratio angle 

which, for full contact O = 45°) in an 
NX-borehole, reduced to (English units): 

AQ, (psi) 

Figure 11.12 The Goodman Borehole Jack and example results. 
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Particle board pad 

4 restraint 
NX,76 mm diameter, columns 
core drill hole Tunnel rock surface 
approx. 6 flatjack 
diameters deep Base plate 

Tunnel diameter 
gage 

Prepared diameter 
1.5 to 2 times 
flatjack diameter 

Flatjack, approx 
I m diameter 

Concrete 
pad 

Data acquisition system 
4 screws for set 
up and removal 

MPBX measuring anchors 
(5 or more per hole) 

MPBX sensor head 

Rubber sleeve over 
lead wires 

Transducer lead wire 

Hydraulic hose 

69 MPa hydraulic pump 

Note timber platform 
for support during 
erection not shown 

0.205 0.305 0.406 
Deformation, mm 

Rock surface deformation as a function of bearing pressure 

Figure 11.13 The plate loading test for estimating rock mass deformability (after 
Brown, ISRM Suggested Methods, 1981). 

and displacement transducers located beneath the plate. It can be seen in 
Fig. 11.13 that there is hysteresis present in the loading-unloading cycles, 
with the attendant problem of establishing the actual modulus value. 
Usually, the hysteresis is directly associated with the presence of discon-
tinuities. Large tests have been attempted, such as the surface chalk moduli 
testing programme conducted using a water tank loading the rock surface 
at Munford, UK (Burland and Lord, 1969) or the underground chalk moduli 
testing using the reaction ring of a tunnel boring machine at Chinnor, UK 
(Hudson et a/., 1977), illustrated in Fig. 11.3. 

Testing the strength of a rock mass is also difficult because of the high 
loads involved. One seminal paper, illustrating the existence of the size 
effect in coal pillars up to 6 feet wide by testing them to destruction, was 
published by Bieniawski (1968). In this type of test, rock pillars in an under-
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(I q - quantity of water 
required to main-
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[-•-Casing 

Joint set 2 

Joint set 3 

Constant head test 

Figure 11.14 Borehole permeability testing (after Hoek and Bray, 1977). 

ground facility are formed to the desired size and loaded using hydraulic 
flat jacks or by further excavation, using the excavation periphery for 
reaction. 

Traditional methods of estimating permeability are summarized in Hoek 
and Bray (1977). These include the borehole falling-head test, the borehole 
recharge test and the borehole packer permeability test, as illustrated in 
Fig. 11.14. Although such estimations of the permeability suffer from all the 
deficiencies described in Chapter 9, the tests can be useful as indices. If, 
however, the permeability is required at the REV size, then one method is 
to isolate a large underground excavation, circulate air through it, and 
measure the change in air moisture content. 

We discussed stress measurement in Chapter 4, with devices for 
determining in situ stress being discussed in Section 4.3. As an exciting 
analogue to the large-scale deformation and permeability tests, large in situ 
stress determination tests are now being attempted by shaft and tunnel 
'undercoring', in which an excavation is driven through an instrumented 
zone of rock and the stress back-calculated from the measured responses. 
This is one way to deal with the REV problem, but there are limitations to 
the number of such tests that can be conducted in estimating the stress over 
the region of a large structure such as a hydroelectric scheme or 
radioactive waste repository. 

Because of the difficulties associated with rock mass testing which we 
have highlighted here, the subject is one of the most important research 
areas in rock mechanics and rock engineering. There are several surface 
and underground facilities around the world where tests are being 
conducted to solve the basic problem of rock mass characterization. The 
Underground Research Laboratory (URL) at Pinawa, Canada, operated by 
the Atomic Energy of Canada Ltd, has had an on-going research 
programme addressing these problems for the last decade. More stress 
measurements have been conducted at URL (at least 800 tests) than at any 
other single site in the world, and extensive work is being conducted on 
permeability estimation. We await the conclusions of these and other such 
programmes before recommendations can be made on 'the way ahead'. 
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11.6 Standardized tests 
Although the strategy of rock characterization is a function of the 
engineering objectives, the tactical approach to individual tests can be 
standardized. The advantages in doing this are that: 

(a) the standardization guidance is helpful to anyone conducting the test; 
(b) the results obtained by different organizations on rocks at different sites 

can be compared in the knowledge that Tike is being compared with 
like'; and 

(c) there is a source of recommended procedures for use in contracts, if 
required. 

Also, there is an increasing move towards paying contractors according to 
the quality of the rock, and it is only through the use of some form of stan-
dardized procedures that one can hope to determine the quality objectively. 

These are the practical advantages. There is no intention in the minds of 
those producing these standards that they should in any way inhibit the 
further development of rock mechanics and rock engineering. In fact, most 
research projects and many engineering projects will take the testing 
procedures beyond these standards. The International Society for Rock 
Mechanics Commission on Testing Methods has been producing 
Suggested Methods for rock testing and characterization since 1978, and 
these are widely used. There are also national bodies which produce 
standards for their own countries. In particular, the American Society for 
Testing and Materials (ASTM), via Committee D18.12, has produced an 
extensive series of methods for rock testing. There are many other countries 
which have their own wide range of standards. To illustrate the ISRM and 
ASTM test methods that are available for testing rock, we have compiled 
Table 11.1 (in which the publications are listed chronologically). 
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n Rock mass 
classification 

In earlier chapters there was discussion about the influence of the rock mass 
structure on the rock mass properties necessary for both the theory 
and practice of rock engineering. In Chapter 20, we will refer to block 
theory and to the fact that there is now a complete topological solution 
to the rock block geometry. This validity of the theory depends critically 
on the persistence of the discontinuities. We also mentioned that, 
given the discontinuity geometry and all the associated stiffnesses, the 
deformability of a rock mass can be calculated. But the ability to make this 
calculation depends on the availability of data on the discontinuity 
geometry and stiffnesses. 

It is evident that even with the most generous resources available for site 
investigation, there remain problems in applying the theories in practical 
engineering circumstances. As a consequence, several engineers have 
developed rock mass classification schemes—which are essentially a 
compromise between the use of a complete theory and ignoring the rock 
properties entirely. All the classification schemes consider a few of the key 
rock mass parameters, and assign numerical values to the classes within 
which these parameters lie for a given rock type. As we will see, the 
schemes provide a short-cut to the rock mass properties that are more 
difficult to assess (e.g. the prediction of rock mass deformability) and 
provide direct guidance for engineering design (e.g. in predicting the 
amount of support required for a tunnel). One of the pioneers of rock mass 
classification. Professor Z. T. Bienawski, has recently written a book 
Engineering Rock Mass Classifications (1989) on the subject. 

Here we will provide a brief review of the two main classification 
schemes which have been widely used. We will also be discussing the 
classifications within the overall philosophy of this book, noting their 
strengths and deficiencies. 

12.1 Rock Mass Rating (RMR) system 
The advantage of the Rock Mass Rating (RMR) system, in common with 
the Q-system described in the next section, is that only a few basic 
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parameters relating to the geometry and mechanical condition of the rock 
mass are used. In the case of the RMR system, these are: 

(a) the uniaxial compressive strength of the intact rock; 
(b) RQD; 
(c) discontinuity spacing; 
(d) condition of discontinuity surfaces; 
(e) groundwater conditions; and 
(f) orientation of discontinuities relative to the engineered structure. 

The way in which these parameters are used to provide an overall rating 
is shown in Table 12.1. 

Table 12.1 The rock mass rating system (after Bieniawski, 1989) 
Rock Mass Rating System 

A. CLASSIFICATION PARAMETERS AND THEIR RATINGS 

1 

2 

3 

4 

5 

Strength of 
intact rock 

material 

Drill core 
quality RQD 

(%) 

Spacing of 
discontinuities 

Condition of 
discontinuities 

Groundwater 

Point-load 
strength index 

(MPa) 

Uniaxial 
compressive 

strength (MPa) 

Rating 

Rating 

Rating 

Rating 

Inflow per 10m 
tunnel length 

(ymin) 

ratio 
(joint water 

pressurc)/(major 
principal stress) 

General 
conditions 

Rating 

Ranges of values 1 

>10 

>250 

15 

9 0 - 1 0 0 

20 

>2m 

20 

Very rough 
surfaces 

Not continoous 
No separation 

Unweathcrcd wall 
rock 

30 

None 

0 

Completely dry 

15 

4 - 10 

100 - 250 

12 

75 - 90 

17 

0.6 - 2m 

15 

Slightly rough 
surfaces 

Separation <lmm 
Slightly weathered 

wall rock 

25 

<10 

<0.I 

Damp 

10 

2 - 4 

5 0 - 1 0 0 

7 

5 0 - 7 5 

13 

200 - 600mm 

10 

Slightly rough 
surfaces 

Separation < I mm 
Highly weathered 

wall rock 

20 

10 -25 

0.1 -0 .2 

Wet 

7 

1-2 

2 5 - 5 0 

4 

25 - 50 

8 

60 - 200mm 

8 

Slickcnsided surfaces 
or 

Gouge <5mm thick 
or 

Separation 1 - 5mm 
Continuous 

10 

25 - 125 

0.2 - 0.5 

Dripping 

4 

For this low range, 1 
uniaxial compressive 1 

test is preferred 1 

5 - 2 5 

2 

1-5 

1 

<1 

0 1 

<25 

3 1 
<60mm 1 

5 

Soft gouge >5mm 1 
thick 

or 1 
Separation >5mm 1 

Continuous 1 

0 1 

>125 

>0.5 

Flowing 

0 1 
B. GUIDELINES FOR CLASSIFICATION OF DISCONTINUITY CONDITIONS | 

1 Parameter 

1 Discontinuity length (persistence) 

1 Separation (aperture) 

1 Roughness 

1 Infilling (gouge) 

1 Weathering 

Ratings 

<lm 

6 

None 

6 

Very rough 

1 ^ 
Hard Tilling 

None 

1 ^ 
Unweathcrcd 

1 6 

l - 3 m 

4 

<0.1mm 

5 

Rough 

5 

<5mm 

4 

Slightly weathered 

5 

3 -10m 

2 

0.1 - 1.0mm 

4 

Slightly rough 

3 

>5mm 

2 

Moderately 
weathered 

3 

10 - 20m 

1 

1 - 5mm 

1 

Smooth 

1 

Soft filling 

<5mm 

2 

Highly weathered 

1 

>20m 

0 1 
>5mm 

0 1 
Slickcnsided 

0 1 

>5mm 

0 

Decomposed 

0 1 
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Table 12.1 (cont) 
C.EFFECT OF DISCONTINUITY ORIENTATIONS IN TUNNELLING 

Strike perpendicular to tunnel axis 

Drive with dip 

Dip 45 - 90 

Very favourable 

Dip 20 - 45 

Favourable 

Drive against dip 

Dip 45 - 90 

Fair 

Dip 20-45 

Unfavourable 

Strike parallel to tunnel axis 

1 Dip 20 - 45 

Fair 

Dip 45 - 90 

Very unfavourable 

Inespcctive of strike 

Dip 0-20 

Fair 

D. RATING ADJUSTMENT FOR DISCONTINUITY ORIENTATIONS 

Orientations of Discontinuities 

Ratings 

Tunnels & mines 

Foundations 

Slopes 

Very Favourable 

0 

0 

0 

Favourable 

-2 

-2 

-5 

Fair 

-5 

-7 

-25 

Unfavourable 

-10 

-15 

-50 

Very Unfavourable 

-12 1 

-25 

-60 

E. ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS 

Rating 

Class no. 

£)escription 

100-81 

I 

Very good rock 

80-61 

II 

Good rock 

60-41 

III 

Fair rock 

40-21 

IV 

Poor rock 

<20 1 

V 

Very poor rock 

F. MEANING OF ROCK MASS CLASSES 

Class no. 

Average stand-up time 

Cohesion of rock mass (kPa) 

Friction angle of rock mass (deg) 

I 

20yrfor 15m span 

>400 

>45 

II 

lyrfor 10m span 

300-400 

35-45 

III 

Iwk for 5 m span 

200-300 

25-35 

IV 

lOh for 2.5m span 

100-200 

15-25 

V 

30minfor Im span 

<100 

<15 1 

RMR = ^(classification parameters) •»- discontinuity orientation adjustment 

In Section A of Table 12.1, with the first five of the classification 
parameters and their ratings, the parameters are grouped in five classes, 
each one covering a range of values appropriate to that parameter. When 
assessing a given rock mass, one establishes into which of these groups the 
parameter lies, and then sums the resulting numerical ratings for the five 
parameters. 

In Section B of Table 12.1, there are ratings for discontinuity character-
istics. The orientation of the discontinuities becomes progressively more 
important from tunnels and mines, through foundations, to slopes. Sections 
C and D. 

In Sections E and F of the table, the rock mass classes are given with a 
description from Very good rock' through to 'very poor rock', with 
estimates for tunnel stand-up time and the Mohr-Coulomb strength 
parameters of cohesion and friction angle for the rock mass. 

Despite the simplicity of approach when dealing with complex rock 
masses, considerable engineering benefit has accrued through the applica-
tion of this classification scheme and the resultant thinking that it has provoked. 
Bieniawski (1989) mentions 351 case histories covering 15 years. 

12.2 Q-system 

In a similar way to the RMR system, the Q-rating is developed by assigning 
values to six parameters. These are: 
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(a) RQD; 
(b) number of discontinuity sets; 
(c) roughness of the 'most unfavourable' discontinuity; 
(d) degree of alteration or filling along the weakest discontinuity; 
(e) water inflow; and 
(f) stress condition. 

The Q-value is expressed as 

Q = -
/n /a SRF 

where 
RQD = rock quality designation, 
/n = joint set number (related to the number of discontinuity sets), 
/r = joint roughness number (related to the roughness of the 

discontinuity surfaces), 
/a = joint alteration number (related to the degree of alteration or 

weathering of the discontinuity surfaces), 
/w = joint water reduction number (relates to pressures and 

inflow rates of water within the discontinuities), and 
SRF = stress reduction factor (related to the presence of shear zones, 

stress concentrations and squeezing and swelling rocks). 
The motivation in presenting the Q-value in this form is to provide some 
method of interpretation for the three constituent quotients. 

The first, RQD/Jn, is related to the rock mass geometry: Q increases with 
increasing RQD and decreasing number of discontinuity sets. RQD 
increases with decreasing number of discontinuity sets, so the numerator 
and denominator of the quotient mutually reinforce one another. 
Basically, the higher the value of this quotient, the better the 'geometrical 
quality' of the rock mass. We noted, in Chapter 7, that RQD determined 
using the conventional threshold of 0.1 m is insensitive to discontinuity 
frequencies less than about 3 m~\ so this quotient may also be insensitive. 
Moreover, there is also the problem (which is, in fact, common to both the 
RMR system and the Q-system) that RQD generally exhibits anisotropy, 
yet anisotropy is not considered. 

The second quotient, J^/J^, relates to the 'inter-block shear strength' with 
high values of this quotient representing better 'mechanical quality' of the 
rock mass: the quotient increases with increasing discontinuity roughness 
and decreasing discontinuity surface alteration. The different discontinuity 
sets in the rock mass may have different roughnesses and degrees of 
alteration, so the Q-system uses the worst case. 

The third quotient, /^/SRF, is an 'environmental factor' incorporating 
water pressures and flows, the presence of shear zones, squeezing and 
swelling rocks and the in situ stress state. The quotient increases with 
decreasing water pressure or flow rate, and also with favourable rock mass 
strength to in situ stress ratios. 

The Q-system is more complex to use than the RMR system. We are 
therefore including, in Table 12.2, the full range of classes for the six 
parameters involved in the system. 
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Table 12.2 Q-system parameters 

Q-system of 
Rock Mass Classification ^ 

RQJ) 

A 
Jr 

J. 

J. 
SRF 

1 Si 1 

\ ^^ 

fcT 

Z ^ « 

S"̂  
.9 1 o 

1 u 

^ Z 

2 w 

* 
1 o 
1 *n 

1 ^ 
1 
z 
1 -

1 

a: 
b: 
c: 
d: 
c: 

a: 
b: 
c: 
d: 
e: 
f: 
g: 
h: 

J: 

(i) 

Very poor 
Poor 
Fair 
Good 
Excellent 

Massive, none or few joints 
One joint set 
One joint set plus random 
Two joint sets 
Two joint sets plus random 
Three joint sets 
Three joint sets plus random 
Four or more joint sets, random, heavily jointed 'sugar 
cube', etc. 
Crushed rock, earthlike 

Rock wall contact and 
(ii) Rock wall contact before 20cm shear 
a: 
b: 
c: 
d: 
e: 
f: 
g* 

Discontinuous joint 
Rough or irregular, undulating 
Smooth, undulating 
Slickensided, undulating 
Rough or irregular, planar 
Smooth, planar 
Slickensided, planar 

(Hi) No rock wall contact when sheared 
h: 

J: 

(i) 
a: 

b: 
c: 

d: 

e: 

Zone containing clay minerals thick enough to prevent 
rock wall contact 
Sandy, gravelly, or crushed zone thick enough to prevent 
rock wall contact 

Rock wall contact 
Tightly heal6d, hard, nonsoftening. impermeable filling, 
i.e., quartz or epidote 
Unaltered joint walls, surface staining only 
Slightly altered joint walls. Nonsoftening mineral 
coatings, sandy particles, clay-free disintegrated rock. 
etc. 
Silty or sandy clay coatings, small clay fraction 
(nonsoftening) 
Softening or low-friction clay mineral coatings, i.e.. 
kaolinite, mica. Also chlorite, talc, gypsum, and graphite. 
etc., and small quantities of swelling clays (discontinuous 
coatings, l-2mm or less in thickness) 

\(ii) Rock wall contact before 10cm shear 
f: 
g: 

h: 

r 

Sandy particles, clay-free disintegrated rock, etc. 
Strongly over-consolidated, nonsoftening clay mineral 
fillings (continuous, <Smm in thickness) 
Medium or low over-consolidation, softening, clay 
mineral fillings (continuous, <5mm in thickness) 
Swelling clay fillings, i.e., montmorillonite (continuous. 
<Smm in thickness). Value of Ĵ  depends on percentage 
of swelling clay-sized particles, and access to water, etc. 

RQD 
0-25 

25-50 
50-75 
75-90 
90-100 

j ; 
0.5-1.0 

2 
3 
4 
6 
9 
12 

15 
20 

I 

4 
3 

2.0 
1.5 
1.5 
1.0 
0.5 

1.0 

1.0 

J! 

0.75 
1.0 

2.0 

3.0 

4.0 

4.0 

6.0 

8.0 

8.0-12.0 

Where RQD is reported or measured as 10\ 
(Including 0). a nominal value of 10 is used to\ 
evaluate Q 1 

RQD intervals of 5. i.e.. 100, 95, 90, etc.. arel 
sufficiently accurate 1 

For intersections, use (3.0 x J J. For portals. use\ 
(2.0 X J J 

Add 1.0 \fthe mean spacing of the relevant joint] 
set is greater than 3m. 1 
y, s 0.5 can be usedforpUmar slickensided joints] 
having lineation, provided the lineations are] 
favourably orientated. 
Descriptions btog refer to small-scale features] 
and intermediate-scale features, in that order. 

^, (&Pprox.) Values of ^, are intended as an 1 
approximate guide to the\ 
mineralogical properties of the 
alteration products, tf present 

25»-35» 

25'-30« 

lO'-lS" 

8"-16» 

is'-yy 

l6"-24» 

n'-l6' 

6»-12» 

When making estimates of the Rock Mass Quality (Q), munber of jointt per m' (RQDm 100 for y,<4.5). 7, is these features should be counted as a compleie joint 
ihefollowing guidelines should be followed, in addition evaluated u the sum of the number of jointt per set- if tbey are poorly developed or rarely visible, 
to the notes in the tables: metre for each Joint set then it will be more appropriate to count them as 
1. When borehole core Is unavailable, for the case of 2. The paiameter / , . representinf the number of Joint 'random Jointt' when evaluatinj J,. 

clay free rock masses RQD can be estimated from sett, will often be affected by foliation. Khistosity. 3. Tbepafameteny^andy^(representingshearstrength) 
RQD a 115-3.37^ (approx.) where y.Btotal slaty cleavage or bedding, etc. If strongly developed, shouldnormallyberelevanttotheweakestsigniricant 
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Table 12.2 (cont) 

Q-system of 
Rock Mass Classification 

ROD J, y , 
Q s X X 

7. / . SRF 

^ 1 -

r 
1 
00 

1 l-" 

1 
'A 

1 h 

a 
1 'I 

(Hi) No rock wall contact when sheared 
k: Zjoncs or bands of disintegrated or rock and clay (see g:. 

h:, j : for description of clay condition) 
1: Zones or bands of silty clay, small clay fraction 

(nonsoftening) 
m: Thick, continuous zones or bands of clay (see g:, h:, j : for 

description of clay condition) 

(i) Weakness zones intersecting excavation, which may cause 
loosening of rock mass when tunnel is excavated 

a: Multiple occurrences of weakness zones containing clay 
or chemically disintegrated rock, very loose surrounding 
rock (any depth) 

b: Single weakness zones containing clay or chemically 
disintegrated rock (excavation depth <S0 ro) 

c: Single weakness zones containing clay or chemically 
disintegrated rock (excavation depth >50 m) 

d: Multiple shear zones in competent rock (clay-free), loose 
surrounding rock (any depth) 

c: Single shear zones in competent rock (clay-free) (depth 
of excavation <S0 m) 

f: Single shear zones in competent rock (clay- free) (depth 
of excavation >S0 m) 

g: Looseopenjoints. heavily jointed or'sugar cube', etc. 
(any depth) 

(ii) Competent rock, rock stress problems 
h: Low stress, near surface 
j : Medium stress 
k: High-stress, very tight structure (usually favourable to 

stability, may be unfavourable for wall stability) 
1: Mild rock burst (massive rock) 
m: Heavy rock burst (massive rock) 

(Hi) Squeezing rock; plastic flow of incompetent rock under 
the influence of high rock pressures 

n: Mild squeezing rock pressure 
p: Heavy squeezing rock pressure 

(iv) Swelling rock; chemical swelling activity depending on 
presence of water 

q: Mild swelling rock pressure 
r: Heavy swelling rock pressure 

a; Dry excavations or minor inflow, e.g. 5 1/min locally 
b: Medium inflow or pressure, occasional outwash of 

joint fillings 
c: Large inflow or high pressure in competent rock with 

unfilled joints 
d: Large inflow or high pressure, considerable outwash of 

joint flllings 
e: Exceptionally high inflow or water pressure at 

blasting, decaying with time 
f: Exceptionally high inflow or water pressure continuing 

without noticeable decay 

6.0, 8.0 or 
8.0-12.0 

5.0 
10.0,13.0 or 

13.0-20.0 

SRF 

10.0 

5.0 

2.5 

7.5 

5.0 

2.5 

5.0 

2.5 
1.0 

0.5-2.0 
5-10 
10-20 

5-10 
10-20 

5-10 
10-15 

J . 

1.0 

0.66 

0.5 

0.33 

0.2-0.1 

0.1-0.05 

6»-24» 

Reduce these SRF values by 25-50% If the relevant] 
shear zones only influence but do not intersect the] 
excavation 1 

Few case records availablel 
n S \ l ..J^. wheredepthofcrownbelowl 
200-10 13-0.66 surface is less than spanl 

, « , «^^ «-,-, » '̂<'''"- Suggest SRF\ 

<2.5 <0.16 

For strongly anisotropic stressfield(ifmeasured):\ 
when 5^/aj^JO, reduce 0^ and Ô  to 0.8a^ and\ 
0.8o^- wheno/aj>10. reduce a^anda^to0.6a\ 
and 0.6a, (where Ô  » uncot^fmed compressive\ 
strength, a, s tensile strength (poira load), O) and 
a J B major and minor principal stresses) 

Approx. water pressure (kg/cm^) 
<1 

1.0-2.5 

2.5-10.0 Factors c to fare crude estimates. 
Increase J^ if drainage measures 

2.5-10.0 are installed 

>' "•" Special problems caused by ice 
formation are not considered 

>10.0 

joint set or clay filled discontinuity in a {iven zone, 
but the value of 7 / / , should relate to the surface most 
likely to allow failure to initiate. Thus, if the joint set 
or discontinuity with the minimum value of J/J^ is 
favourably orientated for stability, then a second, 
less favourably orientated joint set or diKOMinuity 
may sometimes be more significant, and its higher 
value ofJ/J^ should be used when evaluating Q. 

4. When a rock mass coouins clay, the factor SRF 
appropriate to 'loosening loads' should be evaluated. 
In such cases the sUengtb of the intact rock is of little 
interest However, when Jointing is minimal and clay 
Is completely absent, the strength of the intact rock 
may become the weakest link, and the stability will 
then depend on the ratio rock-stresi/rock-strength. A 
strongly anisotropic stress field is unfavourable for 

stability and is roughly accounted for as in the note in 
the table for SRF evaluation. 

5. The compressive and tensile strengths (o, and o,) of 
the inuct rock should be evaluated in the saturated 
condition if this is appropriate to present or future 
in situ conditions. A conservative estimate of strength 
should be made for those rocks that deteriorate when 
exposed to moist or saturated conditions. 

12.3 Applications of rock moss classification 
systems 

Using either of the classification systems described in the previous two 
sections, the engineering quality of a rock mass can be assessed. The RMR 
system gives a number between 0 and 100, and the Q-system gives a 
number between 0.001 and 1000. By these approaches, we are able to 
produce a description of the rock mass based on classes defined by the 
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10- 1 ()-' 

Stand-up time, hrs 

Figure 12.1 Excavation stand-up time for the RMR system. 

numbers in the classifications. For example, an RMR value of 62 is a 'good 
rock': similarly, a Q-value of 20 indicates a 'good rock'. The RMR value 
provides five such quality classes and the Q-system provides nine. 

Both the classifications described were developed for estimating the 
support necessary for tunnels excavated for civil engineering schemes. The 
engineer should be careful when using classification schemes for other 
projects. It is one thing to utilize the rock mass parameters in a taxonomic 
system for classifying and describing the rock; it is quite another to 
extrapolate the information to the general design of excavations and their 
support. Bieniawski (1989) has noted "it is important that the RMR system 
is used for the purpose for which it was developed and not as the answer 
to all design problems". 
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Figure 12.2 Support requirements for the Q-system (for fuller details see 
Bieniawski, 1989). 
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Using the rock mass parameters in each case to provide a quantitative 
assessment of the rock mass, and utilizing experience gained from 
previously excavated stable and unstable tunnels, design charts have been 
constructed, as shown in Figs 12.1 and 12.2, for estimating 'stand-up time' 
or support requirements. For a description of the complete technique for 
establishing the support requirements, the reader is referred to Bieniawski 
(1989), which expands on the fundamentals given here of the two 
systems. 

Attempts have been made to extend the classification system to slopes 
(Romana, 1985). Naturally, the six parameters utilized in the RMR system are 
relevant to slope stability, but the classification value needs to be adjusted 
for different engineering circumstances. The way in which Professor 
Romana numerically adjusted the RMR value was by considering the 
following factors: 

(a) f I associated with parallelism between the slope and the discontinuity 
strike direction; 

(b) F2 related to the discontinuity dip for plane failure; 
(c) F3 concerning the slope angle compared to the discontinuity dip angle; 

and 
(d) F4 relating to the method of excavation. 

The classification value is then found from the formula 

RMRsLOPE - RMRBASIC - ( FI X F2 X F3 ) + F4. 

Table 12.3 indicates the numerical values of the four factors required to 
adjust RMRBASIC to RMRSLQPE/ together with the SMR classes, the types of 
failure anticipated, and any remedial measures necessary to improve 
stability. 

Table 12.3 The SMR rating system (from Romana, 1985 and Bieniawski, 1989) 

Case Very Favorable 

P la, - a.| 
T l o j - a , - 1 8 0 * | 
P/T f , 

P iPil 
P F2 
T Fj 

P Pi - 3. 
T Pi + 3, 
PfT F3 

>30' 

0.15 

<20* 
0.15 
1 

>10' 
<110' 

0 

1 P - plane failure. a, • slope dip direction. 
T * toppling failure. 3, « slope dip. 

1 Method Natural Slope 

\ F* +15 

SMR » RMR - (f, X f , X fj) + Ft 

\ Class No. V 

1 SMR 0-20 

1 Description Very poor 

1 Stability Very unstable 

1 Failures Large planar or soil-like 

Support Reexcavation 

Pi 

Favorable 

30-20 ' 

0.40 

20-30* 
0.40 
1 

lO-O* 
110-120* 

- 6 

• joint dip direction. 
' joint dip. 

Presplitting 

+ 10 

Fair 

20-10* 

0.70 

30-35* 
0.70 
1 

0* 
>120* 
- 25 

SnvMth Blasting 

+8 

Tentative Description of SMR Classes 

IV III 

21-40 

Poor 

Unstable 

Planar or large wedges 

Extensive corrective 

41-60 

Fair 

Partially stable 

Some joints or many wedges 

Systematic 

Unfavorable 

10-5* 

0.85 

35-45* 
0.85 
1 

0*-(-10*) 

- 5 0 

Regular 
Blasting 

0 

II 

61-80 

Good 

Stable 

Some blocks 

Occask^nal 

Very 1 
Unfavorable | 

<5* 

1.00 

>45* 
1.00 
1 

< - 1 0 * 

- 6 0 

Deficient 
Blasting | 

- 8 

1 

81-100 

Very good 

Fully Stable 

None 

None 

1 ._ 1 
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In the same vein, extensions to the RMR and Q-classification systems 
have been made to estimate rippability, dredgeability, excavatability, cutta-
bility and cavability (Bieniawski, 1989). 

12.4 Links betv^een the classification systems 
and rocic properties 

The rock mass classification systems have some common parameters, so we 
might expect a link to exist between the RMR and Q-systems. The most 
well-known correlation is given by the equation 

RMR = 91ogeQ -H 44. 

Naturally, this has to be an approximation, because in situ stress and rock 
strength are not common to the two systems. 

Since the rock mass properties, e.g. deformabihty and strength, are also 
functions of the intact rock properties and the discontinuity properties, it 
follows that we may be able use the classification scheme values to estimate 
the modulus and strength of rock masses. Empirical relations are available 
for both of the systems described. 

Bieniawski (1989) has suggested that 

£MASS = 2 X RMR - 100 GPa (for RMR > 50). 

Another relation has been proposed by Serafim and Pereira (1983), which 
covers the entire RMR range, and is 

EMAss = 10<™''-""^*GPa. 

For the Q-system, Barton et al., (1985) proposed that 

10 logioQ < EMASS < 40 logio Q/ with EMEAN = 25 logio Q. 

Other expressions have been developed (Hoek and Brown, 1988). For the 
Hoek-Brown strength parameters m and s (see Section 6.5.3) as: 

undisturbed rock : m = m- exp 

disturbed rock : m = m^ exp 

RMR-100 

28 
exp 

^ (RMR-100)^ 

(RMR-100) 

V 

/ _ , _ A 

s = exp 
RMR -100 

14 ^ 

where RMR is the unadjusted rating from the system. 

12.5 Discussion 

It is important to place the value of rock mass classification schemes and 
the estimations described above within the context of practical rock 
engineering. It is easy to point to the value of the classifications when, often 
inexperienced, personnel have to make assessments of rock mass quality 
and support requirements, especially when faced with no other clear alter-
native. Similarly, it is easy to say that none of the techniques has any solid 
scientific foundation and can quite clearly be dangerously misleading if the 
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potential failure mechanism is not identified within the classification 
system. Stress is not included in the RMR system; the intact strength of rock 
is not included in the Q-system. Either of these parameters could be a 
fundamental cause of failure in certain circumstances. Even more 
severely, a shear or fault zone in the rock could exist which dominates the 
potential failure mechanism of, say, a cavern or slope. 

Because the perceived main governing parameters for rock engineering 
have been included in the RMR and Q-systems, their use must provide 
some overall guidance. However, the use of these systems as the sole 
design tool cannot be supported on scientific grounds. For example, the fact 
that the measured values of discontinuity frequency and RQD depend on 
the direction of measurement has been clearly explained in Chapter 7, yet 
this is not accounted for in either of the systems described. Similarly, 
because the rock mass modulus depends on the discontinuity stiffnesses 
to a large extent, the modulus is also anisotropic, yet the predictions of E 
only provide a single (i.e. isotropic) value. 

We feel, therefore, that despite its past contributions, the rock mass 
classification approach will be supplemented by other methods in due 
course, as the correct mechanisms are identified and modelled directly. 
Moreover, it is an unnecessary restriction to use the same classification 
parameters without reference to either the project or the site. For exam-
ple, in a hydroelectric scheme pressure tunnel, the in situ stress and proximity 
of the tunnel to the ground surface are two of the most important 
parameters. The RMR system cannot help under these circumstances. The 
Q-system cannot be used for predicting E below a dam if the stratified nature 
of the rock mass means that there is significant anisotropy of stiffness. 

12.6 Extensions to rock moss classification 
techniques 

Given our comments in the previous section, we believe that there are two 
main ways in which the rock mass classification approach can be improved. 
The first is a straightforward extension of the current systems, but 
incorporating fuzzy mathematics to account for variations in the individual 
component parameters. The second is to choose those parameters that are 
most relevant to a particular engineering objective and hence the classifi-
cation systems for different projects would involve different constituent 
parameters—using the RES (rock engineering systems) approach briefly 
described in Chapter 14 (Hudson, 1992). 

12.6.1 Use of fuzzy mathematics 

Engineers may encounter problems in using the current rock mass clas-
sification systems because the inherent variability of rock masses is difficult 
to take into account—for example, if mean discontinuity spacing varies from 
0.3 to 2.0 m, what value should be used in the system? By assigning a fuzzy 
number to such parameters, and then using the techniques of fuzzy arith-
metic to combine the numbers, it is possible to generate a fuzzy number 
representing the classification value. Such a number then embodies the 
'most certain' classification value, together with information regarding its 
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maximum and minimum values, and the manner in which it varies 
between the two. Hence, fuzzy mathematics permits the 'uncertainty' 
surrounding the assessment of parameters to be included. Also, the appli-
cation of this technique in rock mass classification is straightforward and 
direct, because fuzzy numbers may be assigned easily to the parameters in 
a rock mass classification scheme. 

Some examples of fuzzy numbers and fuzzy arithmetic are shown in 
Fig. 12.3. It is important to realize that the distributions of uncertainty illus-
trated in Fig. 12.3 are not probability density distributions. The parameters A 
and B illustrated in Fig. 12.3 are uncertain numbers: we know that A varies 
between 3 and 10, with a most likely value of 7—but we are uncertain as 
to which precise value it will take; similarly, B will vary between 12 and 20 
with a most likely value of 14. The fuzzy sum and fuzzy multiplicand of 
two fuzzy numbers are shown in Fig. 12.3. 

In Fig. 12.4, as an example we have applied fuzziness to the six para-
meters of the Q-system, presenting illustrations of the nature of fuzzy 
assessment of parameters. The assessment of RQD and /̂  are straight-
forwardly analogous to A and B in Fig. 12.3. However, in the case of 
parameter /^, its most likely value coincides with its maximum value—with 
the result that the skewed number shown is generated. Similarly, for/^ its 
most likely value also coincides with its minimum value. The two 
parameters /^ and SRF have been assessed as having only one value: these 
are crisp, i.e. conventional, numbers. 

Applying fuzzy arithmetic to the basic formula of the Q-system, given 
in Section 12.2, results in the fuzzy classification value shown in Fig. 12.4. 
Taking all of the most likely values of the individual parameters, and 
combining them, gives a value of 5.8, which is the most likely value of the 
classification value. Similarly, the maximum and minimum values of the 

5.0 10.0 15.0 20.0 25.0 30.0 

Addition of two fuzzy numbers 

1.0 

4 
^ 

\ B y^ ^ ^ ^ A C ) B 

k.. : ^ x ^ 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 

Multiplication of two fuzzy numbers 

Figure 12.3 Fuzzy numbers and their additive and multiplicative forms. 
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Figure 12.4 Application of fuzzy methods to the assessment of Q. 

classification of 8.0 and 1.1, respectively, are found from the corresponding 
values of the individual parameters. The distribution of the remaining 
values of the number are found by combining the values of the individual 
parameters at membership values of 0.1, 0.2 and so on. It is interesting to 
see that the result is a number in which the distribution of values is non-
linear: the 'flanks' of the number are curved. 

The conclusions to be drawn from this visual examination of the result are 
that there is more possibility of Q being less than the most likely value rather 
than being greater, and that the convex nature of the flanks has the effect of 
increasing the possibility that the conditions will be worse than a single-
valued calculation would imply. Lastly, it should be noted that the final 
distribution of Q and the associated conclusions are not at all obvious from 
an examination of the nature of the original fuzzy component parameters. 

12.6.2 Use of RES (Rock Engineering Systen^s) 

The principle behind the RES system (Hudson, 1992) is that the informa-
tion obtained should match the engineering objective. The two main 
classification systems—those of RMR and Q—utilize six main parameters 
which are not the same. The developers of these systems have decided on 
which parameters are most important for tunnel design, and designed their 
classifications accordingly. Both proponents of the systems have warned 
users not to attempt to extrapolate the classification methods without 
modification and not to make predictions outside the original subjects for 
which the classification schemes were intended. 

A more general approach is to consider for any specific project the 
relative importance of all rock engineering parameters, and then to 
concentrate on the most important, say, six or 10 parameters. One could 
go further and establish how many parameters contributed to, say, 95% of 
the design process, and allocate resources accordingly. To illustrate this 
point, we refer the reader to Fig. 11.2 in which the parameters associated 
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• Site parameters 

B Rock mass 

• Discontinuity 

D Intact rock 

Figure 12.5 Relative importance of rock engineering parameters in the design of 
large rock caverns (as established from the literature and compiled by Tamai, 1990). 

with pressure tunnel design are shown, and to Figs 12.5 and 12.6 which 
show the parameters in order of importance for large underground caverns 
and radioactive waste disposal, respectively. 

Such histograms can be compiled on the basis of past experience, current 
practice and recommended practice (the latter, perhaps, arising from 
modelling of design requirements). The histograms in Figs 11.2, 12.5 and 
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Figure 12.6 Relative importance of rock engineering parameters in the design of 
radioactive waste repositories (as established from the literature and complied by 
Arnold, 1993). 
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Table 12.4 Relative imporl 
neering activities 

WATER PRESSURE TUNNELS IN 

HYDROELECTRIC SCHEMES 

In situ stress 

Discontinuity persistence 

Topographic factors 

Presence of faults/folds 

Location of tunnel 

Discontinuity aperture 

Rock mass geometry 

Discontinuity fill 

Tunnel water pressure 

Pre-existing water conditions 

tance of rock engineering parameters in three engi-

LARQE UNDERGROUND CAVERNS 

Depth of cavern 

Discontinuity orientation 

In situ stress 

Presence of faults 

Rock type 

Discontinuity frequency 

Discontinuity aperture 

Pre-existing water conditions 

Intact rock elastic modulus 

Rock mass elastic modulus 

RADIOACTIVE WASTE REPOSITORIES 

In situ stress 

Induced displacements 

Thermal aspects 

Discontinuity geometry 

Permeability 

Time dependent properties 

Elastic modulus 

Compressive strength 

Porosity 

Density 

12.6 w^ere developed from literature reviews and could be different if they 
vŝ ere based on current practice or design-led practice. 

We present Table 12.4 w^hich lists the most important parameters for the 
three cases w^hich w^ere derived from their frequency of occurrence in the 
literature, reflecting the concentration of research effort. Forty-four papers 
w^ere studied for pressure tunnels, 70 for large underground caverns, and 
208 for radioactive waste disposal. The key point is that the list of most 
important parameters will not be the same for different types of 
engineering project, nor indeed will it coincide with one of the current 
classification schemes—as is clear from the table. Furthermore, we cannot 
divorce the rock mass properties from some of the site and operational 
characterisitics. The table includes not only the properties of intact rock, 
discontinuities and the rock mass, but also factors relating to the prevailing 
boundary conditions, site circumstances and project parameters. 

12.7 Concluding remarks 
In conclusion, it is clear that rock mass classification schemes have assisted 
engineers in the past especially in the absence of any other approach. There 
are pitfalls associated with the use of the schemes, primarily associated with 
the absence of what may be critical parameters for various projects. The 
classification systems can be enhanced by the use of fuzzy methods and 
strategic parameter selection. In the long term, perhaps beyond the 
lifetimes of the readers, and certainly the authors, rock mass classification 
systems will be superseded by direct solution of the engineering problems, 
although there will always be some comfort in using the classification 
schemes to ensure that modelling results do not contravene hard-earned 
practical experience. In the meantime, rock mass classification systems are 
useful but must be used with care. 



13 Rock dynamics 
and time-
dependent 
aspects 

In this chapter we will be discussing a variety of effects related to the 
different strain rates that occur throughout the range of rock mechanics 
processes and rock engineering applications. Following the introduction, 
highlighting the wide time ranges over which these effects are manifested, 
we discuss the basic theory of rock dynamics, obtaining dynamic rock 
properties and the relevance of the ideas in engineering. 

13.1 Introduction 
In Chapter 6, it was noted that the compressive strength is the maximum 
stress that can be sustained by a specimen of rock. Let us now say that 
the compressive strength is reached at 0.1% strain, i.e. 0.001. If this strain 
is developed in 1 ^s—for example, during an explosion—the strain rate is 
1 X 10^ s~\ If, on the other hand, this strain is developed over a period of 
30 years, the average strain rate is of the order of 1 x 10"^^ s~^ Between these 
two extremes, there are 15 orders of magnitude of strain rate, and so, if the 
rock exhibits any time-dependent behaviour, we would not expect to be 
able to use the same rock properties for an analysis of both cases. In Fig. 
13.1, we illustrate two manifestations of these extremes of strain rate. Fig. 
13.1(a) shows hackle marks that develop on rock fracture surfaces formed 
during high strain rate failure, in this case on the surface of a blast-induced 
fracture. Fig. 13.1(b) shows the effect of the gradual deterioration, and 
subsequent failure, of the pillars in an old mine in chalk beneath a main 
road. 

Within the rock mechanics principles, it is necessary to be able to account 
for time-dependent behaviour. In the development and discussion of the 
elastic compliance matrix in Chapter 5, when we considered the addition 
of the component strains caused by the component stresses, no time-
dependent behaviour was incorporated. Indeed, one aspect of the theory 
of elasticity is that there is no time component and that all strain energy 
is recoverable, i.e. all strain energy introduced into a material through 
loading will be subsequently liberated on unloading. However, when 
time dependency is involved, there is always hysteresis in the 
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(a) 

(b) 

Figure 13.1 Examples of visible effects of (a) high and (b) low strain rates on rock. 

loading-unloading stress-strain curve. The area under this curve 
represents energy, so the presence of such hysteresis loops indicates the 
non-recovery of energy, which causes an increase in entropy. 

13.2 Stress >vaves 

Stress waves are the manifestation of dynamic stress changes. They occur 
when the body is not in static equilibrium as described so far, and are 
essentially sound waves in solid material. The differential equations of 
equilibrium, represent the fact that, for any given axis, the resultant force 
on a body is zero when the body is in equilibrium. Considering now that 
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an infinitesimal cube of material is accelerating, and applying Newton's 
Second Law of Motion, these equations become the differential equations 
of motion: 

3cj, ^ at,, ^ 3T,, 

dx dy dz 

dx dy dz 

dr,. at da^ 

dx dy dz 

d'u^ 
= -p ^ 

_ ax 
ap 

Although these equations may appear daunting, they are quite simple to 
understand. The three components on the left-hand side of the equations 
are the increments of stress in each Cartesian direction—note that in each 
equation the last subscript in the numerators is the same, indicating that the 
stress increments are all in the same direction, p is the density, the u variable 
is for displacement and t is for time. In static equilibrium the right-hand 
side of the equations is zero, because the infinitesimal cube is static: in the 
equations above, the right-hand side is the equivalent of the mass x 
acceleration term associated with dynamics. 

If we consider a compressive stress wave travelling in the x-direction, 
independent of its position in the y-z plane, then the equations of motion 
reduce to 

ax 

dx 

^ 

d~u^ 

dt^ 

_ ^ d \ 

aP 

d~U. 

ax dt 

It is possible, through the differential forms of the constitutive relations, 
to modify the left-hand sides of these equations to give 

/ I n ^a^^/, a^w. 

- i ^ 

ax ' dt' 

d'U„ d'u„ 

dx' dt' 

d'u. d'u^ 

dx' dt' 

where A and ji are the Lame elastic constants, which are related to the 
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customary engineering constants £ and v for isotropic materials through 
A = Ev/[(1 + v)(l - 2v)] and ^ = E/2(l + v). 

We can write the one-dimensional wave equation in terms of displace-
ment for wave propagation in each of the x-, y- and z-directions as 

C 
0 d^u^ 9'rY, 

' dr dt' 

c: 
d^^u,, 3'w„ 

ax- dt' 

C: 
o d^u, d'^U, 

dr de 

where C ,̂ Cy and Q are the wave velocities for waves propagating in the 
x-direction and with particle motion in the x-, y- and z-directions, 
respectively. Two types of stress wave are propagated: one has particle 
motion in the x-direction {longitudinal or P-waves), the other has particle 
motion in the y- or z-directions {transverse or S-waves), with velocities given 
by Cp = (A + 2^)/p and C | = }Mp, respectively. A more complete analysis 
of this topic is presented in, for example. Stress Waves in Solids by H. Kolsky. 

Expressing these velocities as Vp and V5, and using the engineering elastic 
constants rather than Lame's constants, we find that 

£ (1-v) 

p (l + v) ( l -2v) 

£ 1 

p 2 ( l + v) 

ll/2 Also, with these relations, we find the ratio v^/vp = [(1 - 2v)/2(l - v)]' 
We are also interested in the velocities of these waves when they occur 

in thin bars. In this case, the longitudinal and shear wave velocities in a 
bar, respectively, are 

(Vp 
£ 

_P. 

£ 1 

_P 2(1+ v) 
(V^SBAR)' = 

with the velocity ratio being VSBAR/^PBAR = [1/2(1 + v)]̂ ^ .̂ 
The modes of transmission of the longitudinal and transverse waves are 

shown in Figs 13.2(a) and (b). Two other types of stress wave which are 
important are Rayleigh and Love waves. Both of these waves occur near 
interfaces and free surfaces and have elliptical particle motion which is 
polarized and perpendicular to the free surface: with Rayleigh waves the 
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Figure 13.2 Longitudinal, transverse, Rayleigh and Love waves. 

particle motion is parallel to the direction of v̂ âve propagation, as illus-
trated in Fig. 13.2(c); w îth Love vs^aves the particle motion is perpendicular 
to the direction of w^ave propagation, as illustrated in Fig. 13.2(d). 
Love waves are found to occur under certain conditions in a stratified 
solid, depending on the relative shear w^ave velocities in the different 
strata. 

It is instructive to consider the numerical value of the longitudinal and 
shear wave velocities and their ratios for an example rock. Taking p = 25 
kN/m^ £ = 20 GPa and v = 0.35, the various relations presented above give 
Vp = 1133 m s~\ V5 = 544 m s~\ Vg/vp = 0.48, VPBAR = 894 m s"\ VSBAR = 544 
m s~̂  and VSBAR/̂ PBAR = 0-61. In a site investigation, and with the assumption 
of a CHILE material, we might use the P-and S-wave velocities, together 
with a density assumption, to estimate the in situ values of E and v. 

In the laboratory the dynamic properties of rock can be studied 
with the Hopkinson bar, or by directly inputting P- and S-waves via 
piezoelectric transducers. These two tests are illustrated in Fig. 13.3. In the 
Hopkinson bar, a single controlled P-wave pulse passes along the first 
steel bar, through a cylindrical rock specimen, and into the second steel 
bar. Using strain gauges installed on both the steel bars, the amplitude of 
the wave can be studied both before and after it passes through the 
rock specimen. By steadily increasing the amplitude of the pulse, the 
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Figure 13.3 The Hopkinson bar and piezoelectric transducer methods for dynamic 
properties, (a) Hopkinson bar. (b) Piezoelectric transducers. 

way in which the energy is absorbed during the creation of the dynamic 
complete stress-strain curve can be studied. Alternatively, piezoelectric 
transducers can be used: these can be calibrated to directly indicate the 
elastic constants for the pre-peak portion of the stress-strain curve. The 
transducers are widely used, and apparatus is commercially available for 
its implementation. 

Since the wave propagation velocities are a function of the elastic rock 
properties, it follows that the P- and S-wave velocities and associated 
factors such as attentuation can be used to estimate the rock properties on 
a literally global scale. A shear wave can only travel through a material that 
can sustain a shear stress: consequently, shear waves do not travel through 
liquids. During the early recording of seismic waves generated by 
earthquakes at long distances from the foci, it was found that at certain 
points on the Earth's surface there would be an absence of early shear wave 
arrivals—normally the faster P-wave arrives first, followed by the slower 
S-wave, followed by the surface waves and a complex mixture of reflected 
and refracted waves. From the absence of the early shear wave arrivals, it 
was realized that the Earth has a liquid core. 

On a smaller scale, the manifold ways in which dynamic waves can be 
generated and recorded provides great potential for ground exploration 
techniques. Through the installation of a suitable array of geophones, and 
by measuring the wave transit times and hence estimating velocities, there 
is a powerful indicator method of establishing inhomogeneity, anisotropy 
and, indeed, continuity and linear elasticity—i.e. all the CHILE versus 
DIANE factors. Moreover, with the increasing sophistication of such 
techniques, e.g. the recent developments in tomography, there is the 
opportunity to use non-destructive testing to provide a three-dimensional 
mechanical characterization of a rock mass. This is one of the most exciting 
developments in rock characterization methods. 

Another ramification of the existence of stress waves is the importance 
of waves being reflected at a free face. In Fig. 13.4(a), we show the general 
circumstances when a stress wave encounters an interface between two 
continua with different elastic properties. In the general case, part of the 
wave will be refracted as it passes into the second medium and part of the 
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Figure 13.4 The behaviour of longitudinal stress waves at material interfaces, 
(a) Refraction and reflection at an interface, (b) Reflection at a free face. 

wave w îll be reflected back into the first medium. This has implications for 
the measurements of such weaves and the mechanisms of wave propaga-
tion and rock failure during blasting. 

However, the phenomenon of paramount importance is illustrated in 
Fig. 13.4(b)—i.e. a compressive longitudinal stress wave is reflected as a 
tensile longitudinal stress wave at a 'free face'. Such free faces occur 
regularly in rock masses, in the form of discontinuites, but the one that 
has greatest significance is formed by the rock-air interface. In fact, 
Fig. 13.4(b) is a special case of Fig. 13.4(a) where almost all the energy is 
reflected, with little being refracted into the air. The concept of the 'free 
face' is critical in the design of all blasting rounds, and forms the basis of 
the specialized pre-splitting and smooth-wall blasting techniques (see 
Chapter 15). 

In the next section, we consider the broad spectrum of material behav-
iour occurring over the wide range of strain rates likely to be encountered 
in engineering. 

13.3 Time-dependency 

We noted that no time component is incorporated in elasticity theory: it is 
assumed that the stresses and strains develop instantaneously on loading 
or unloading. However, we noted in Chapter 6 when discussing the 
complete stress-strain curve, that the exact form of the curve will depend 
on the strain rate at which it is determined. It is commonly observed at rock 
engineering sites, that the rock continues to deform after a stress change 
occurs—e.g. convergence of well bores and tunnels. So, it is evident that. 
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whilst the theory of elasticity is of assistance in understanding and 
analysing the mechanics of rock masses, a theory is also required for time-
dependent effects. 

Words used to describe time-dependent behaviour are clarified in the 
glossary below. 

Glossary of Terms 

Elastic 
Stresses are related to strains in a time-independent manner (i.e. a = Se, 
where S is the elastic compliance matrix). All strain energy is recoverable. 
It is assumed, in this context, that elastic materials remain elastic and so 
have infinite strength. 
Plastic 
Stresses are related to strains in a time-independent manner, but the 
material undergoes plastic flow when stressed (i.e. dcr = Pd^, where P is a 
6 x 6 plasticity matrix whose coefficients are stress- or strain-dependent). 
Deformation continues indefinitely without any further increase in 
stress. Strain energy is lost through permanent plastic straining. 
Generally, plastic behaviour is a function of distortional strains and 
deviatoric stresses. 
Viscous 
Stresses are related to strain rate (i.e. a = r\e, where 17 is a 6 x 6 viscosity 
matrix). Generally, viscous behaviour is also a function of distortional 
strains and deviatoric stresses. 
Elastoplasticity 
Time-independent theory combining elasticity and plasticity: materials 
behave elastically up to certain stress states and plastically thereafter. 
Viscoelasticity 
A generic term for a time-dependent theory in which strains are related to 
stresses and time. Instantaneously, viscoelastic materials have effectively 
infinite strength. 
Viscoplasticity 
Time-dependent behaviour in which the deviatoric stresses (or distortional 
strains) give rise to viscous behaviour, or plastic behaviour if the 
instantaneous strength of the material is temporarily exceeded. 
Elastoviscoplasticity 
This is the same as viscoplasticity, except that the instantaneous response 
of the material is purely elastic. 
Creep 
Under the action of a constant stress state, straining continues (see Fig. 6.16). 
Relaxation 
Under the action of a constant strain state, the stress within a material 
reduces (also see Fig. 6.16). 
Fatigue 
A generic term generally used to describe the increase in strain (or decrease 
in strength) due to cyclical loading. 
Rheology 
The study of flow. 
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Rheological models 
These are analogues of different material behaviour, formed from 
assemblages of mechanical components, usually springs, dashpots and 
sliders. They assist in understanding the material behaviour and allow the 
formulation of the various constitutive relations. 

Using just three rheological elements—spring (or Hookean substance), 
dashpot (or Nev^tonian substance) and slider (or St. Venant substance)— 
it is possible to produce a bew^ildering array of rheological models, 
depending on whether the elements are connected in series, parallel or a 
mixture. In Fig. 13.5, all of the two-element models are illustrated, together 
with their names. In Fig. 13.6, some multi-element models are shown. 

In Fig. 13.6, the top left-hand rheological model is a viscoelastic material 
(element 2,1 in Fig. 13.5) with an additional spring in series, producing what 
is known as the generalized Kelvin substance. In the top right-hand model 
of Fig. 13.6, another dashpot has been added in series to the generalized 
Kelvin model, producing Burger's substance. Note that this is an 
elastoviscous material in series with a viscoelastic material, i.e. a Maxwell 
model in series with a Kelvin model (cf. Fig. 13.5). The two lower substances 
of Fig. 13.6 are the behavioural models associated with the leading diagonal 
of Fig. 13.5, first in series (i.e. formed by working down the leading 
diagonal) and second in parallel. Note that a clockwise convention is used 
when connecting the elements on the leading diagonal in this matrix form 
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HUDH 
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•^A—Ih-
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Figure 13.5 Two-component rheological models. 
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Elastoviscoplastic (Bingham) substance Plastoviscoelastic substance 

Figure 13.6 Multi-component rheological models. 

of presentation. From the matrix structure, these substances are therefore 
termed elastoviscoplastic and plastoviscoelastic materials, respectively. Also 
note that the elastoviscoplastic substance's behaviour is dictated in turn by 
the spring, the dashpot and the slider, i.e. by its elastic, viscous and plastic 
elements in sequence. Conversely, when the elements are linked in parallel 
(the plastoviscoelastic substance), the total model behaviour is dictated in 
turn by the slider, dashpot and spring. The off-diagonal rheological 
substances above the leading diagonal in Fig. 13.5 are series models, 
whereas those below the leading diagonal are parallel models. 

With multi-component models there are many ways in which the com-
ponents can be combined in series and parallel sub-networks. In Fig. 13.6 
we have shown one extension of the Maxwell model, the combination of 
the Maxwell and Kelvin models, and the two simplest ways of combining 
the three basic rheological elements. In theory, and by analogy with 
electrical resistors, capacitors and fuses, we could generate any n-com-
ponent model and establish its global constitutive behaviour. Such time-
dependency models contain a large number of terms and so are lengthy 
and can be difficult to assimilate. It is, therefore, instructive to consider, 
mathematically, the simpler Maxwell (elastoviscous) and Kelvin (viscoelas-
tic) models (i.e. elements 1, 2 and 2,1 of the matrix in Fig. 13.5) as examples 
of time-dependent behaviour. 

The two fundamental elements, viscous and elastic, have basic uniaxial 
constitutive laws of a = Fde/dt and G = Ee, respectively, where F and E 
are the uniaxial constants of viscosity and elasticity. 

The Maxwell model consists of viscous and elastic elements in series. 
Consequently, the stress is identical in each of the elements and the strain 
developed in the material, ^s, is the sum of the strains developed in the 
elastic and viscous elements, i.e. e^ and £y, respectively. Thus, 
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which upon differentiation gives 

dt dt dt 

Differentiating the fundamental constitutive relation for an elastic 
element gives de/dt = {l/E)dG/dt. Substituting this, and the relation for the 
viscous element, into the above relation gives 

de^ 1 d(j 1 
^ = + - C T . 

dt E dt F 

This is the differential equation governing the behaviour of a Maxwell 
material. By considering two loading cases (constant stress and constant 
strain), it is possible to demonstrate its behaviour more clearly. For example, 
if we assume that from t = 0 to t = ti, a constant stress is applied, GQ, and 
then from t = ti constant strain is maintained, 

Ue = U^dt-,^\dt^C 
^ E^ dt f •' 

which after integration becomes, as the stress is constant, 

e = — + — f + C. 
£ f 

At f = 0, the material behaves instantaneously as an elastic material, with 
£ = OQ/E. Hence, C = 0. Consequently, under the action of constant stress, 
the behaviour of a Maxwell material is 

£ = — -\— t linear creep. 
£ F 

The strain that has accumulated at f = î is thus 

£, = — ^ + —^^. 

However, for constant strain, d£/dt = 0, so the basic differential equation 
becomes 

^ 1 dcT 1 

E dt F 

Rearranging and integrating gives 

l o g , c T - - - f + C. 
F 

Now, at t = ti, a = GQ with the result that C = logeCr 4- {E/F)ti, and hence 
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~(t-t^) 

non-linear relaxation. 

These two types of behaviour are illustrated in Fig. 13.7. 
The Kelvin model consists of viscous and elastic elements in parallel. 

Consequently, the strain is identical in each of the elements and the stress 
developed in the material, cJs, is the sum of the stresses developed in the 
elastic and viscous elements, o^ and Oy, respectively, 

Gc =o-p +crv =E£-\-F — . 
dt 

Again, considering a period of constant stress followed by constant strain, 

,d^ 
(Jn =E£-^F-

dt 

which, on rearranging, becomes 

Gn - Ee 
• + C. 

Integration and substitution of C = (l/£)logeOo (because att = 0,£=0) yields 

£ = 1-e non-linear creep. 

The strain that has accumulated at f = fi is thus 

^ , = ^ 1-e 

Figure 13.7 Linear creep and non-linear relaxation for the Maxwell substance. 
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However, for constant strain, d£/dt=0, the basic differential equation 
reduces to a = Ee, with the result that 

stepped relaxation. 

These two types of behaviour are illustrated in Fig. 13.8. 
The description which we have given of the Maxwell and Kelvin basic 

rheological models have only incorporated two components—in series 
for the Maxwell model and in parallel for the Kelvin model. One can 
consider three, four or indeed any number of such rheological elements 
connected in series and parallel networks: for example, combining the 
Maxwell and Kelvin models in series produces the Burger's substance 
illustrated in Fig. 13.6. These rheological models are models of one-
dimensional behaviour and to use them to analyse the behaviour of three-
dimensional continua, it is necessary to assume that the viscoelastic 
response is due only to the deviatoric and distortional components of stress 
and strain, respectively, with the spherical and dilatational components 
causing time-independent volume change. The fundamental differential 
equation for an isotropic Maxwell material in terms of the distortional and 
deviatoric components is 

2iJ 2G 

where the superscripted asterisk denotes deviatoric and distortional 
components, the overdot represents the first derivative with respect to time, 
and ju = f/3, G = £/2(l + v). 

In order to write this in terms of total strain, stress and stress rate, we make 
use of the relations between total, spherical and deviatoric components, i.e. 

=f 0 - ' ) 
.£r 

Eh 

= ?('-"^ ) 

1! Stress in viscous element 

Stress in elastic elemen t ^ 1 = ^ 0 ( ' - ^ ^ ) 

Figure 13.8 Non-linear creep and stepped relaxation for the Kelvin substance. 
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where the overbar represents spherical and dilatational components. 
Substituting and rearranging eventually leads to three expressions of 
the form 

E 

So the normal strain in any direction is then coupled with all three normal 
stresses and all three normal stress rates. There is a correspondence 
between the factors of Vz applied to the stress components and the factor 
of V applied to the stress rate components—because v = Vz for incom-
pressible materials, i.e. the spherical component of the stress tensor. 

The multi-component rheological models and the continuum analysis 
shown above can lead to complex relations with many material constants. 
In the practical application of rock mechanics it has been found convenient 
to simply use empirical relations which fit observed strain versus time 
curves. Some of many possibilihes have been collated by Mirza (1978) and 
are shown in Table 13.1. 

For applications in rock mechanics and rock engineering, the importance 
of viscoelasticity has either not been fully recognized, or has been neglected 
owing to the difficulty of developing closed-form solutions to even basic 
problems. This is now being redressed in the development of numerical 
methods which explicitly take viscoelasticity into account, as discussed by 

Table 13.1 Empirical creep laws (after Mirza, 1978) 
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n 
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£ = /lf + B [ l - e x p ( - C f ) ] 
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£ = log f + Bf + Ct 
£ = /llog[l-l-U/B)] 
£ = / l [ l - c x p ( B - a " ) ] 
£ = >l[ l -exp(-Br)] 
e = A exp(flr) 
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Pande et al (1990). Because time-dependency is ubiquitous in rock 
mechanics problems, these developments and the ability to incorporate the 
techniques in design are critical to the advancement of rock engineering. 

13.4 Time-dependency in rock engineering 

Engineers have found it convenient to consider phenomena as either 
associated with very high strain rates or very low strain rates. This is 
because the process of rock excavation (e.g. by blasting) occurs rapidly, 
whereas deformation (e.g. displacement occurring throughout the life of 
an excavation) occurs slowly. In the high strain rate category we include 
blasting, vibrations and fatigue; in the low strain rate category we 
include creep, subsidence and long-term displacements. We noted that the 
strain rates can be spread over 15 orders of magnitude, with the result 
that it is debatable whether any generic time-dependent model can be 
valid over such a large range. In the newer applications of rock 
engineering, such as radioactive waste disposal, the specified design lives 
can be large, of the order of 1000 years. Thus, not only is there concern 
with the time-dependent behaviour but we have to consider whether all 
the rock properties and mechanisms can be considered to be uniform 
over such an extreme time period. This is exacerbated by the fact that 
we can only conduct testing procedures in the range of medium to high 
strain rates. 

If the rock properties are determined by geophysical means, at very high 
strain rates, we should ask ourselves how valid is it to apply these to 
engineering applications of, say, a billion times greater duration than the 
test period? This question has profound implications for the validity of 
theoretical models, test results and the interpretation of field measure-
ments. We are led to the conclusion that engineering judgement must 
still play a large part in determining the type of time-dependent analysis 
that is used. 
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M Rock mechanics 
interactions and 
rock engineering 
systems (RES) 

In this chapter, we introduce a method of structuring all the ways in which 
rock mechanics parameters and variables can affect one another—the rock 
mechanics interactions. The method is presented within the wider context 
of an approach to integrate all the relevant information in rock engineering 
design and construction, rock engineering systems, Hudson (1992). The 
interaction matrix is explained first with examples and a general consid-
eration of the nature of matrix symmetry. Then larger matrices are 
discussed demonstrating the links between rock mechanics and rock 
engineering, especially the pre-construction and post-construction inter-
actions. Further example applications are given so that readers will feel 
confident in generating their own matrices for any problem. The RES 
approach aims to identify the parameters relevant to a problem, and their 
interactions, thus providing overall coherency in approaching rock 
mechanics and rock engineering problems. 

Referring back to Fig. 1.12, the three-tier approach to all rock engineering 
problems, the inner ring represents the analysis of individual subjects. The 
chapters in this book have so far followed such single-subject themes but 
this chapter is about interactions and coupled mechanisms (represented by 
the middle ring of Fig. 1.12). It is only through the understanding of these 
interactions that we can arrive at the outer ring of Fig. 1.12 and the 
corresponding solution of complete rock engineering problems using 
theory and experience. 

The need to study the interactions has always been present. Now we have 
much better computational capability and are being faced with increasingly 
large and complex problems in which it is by no means clear what the main 
factors are, how they interact, and how best to build the most appropriate 
conceptual, mathematical, numerical or mechanical models. 

14.1 Introduction to the subject 

In several of the earlier chapters, we have touched on the fact that one rock 
mechanics parameter can affect another. This is illustrated in Fig. 14.1, 
which shows the six binary interactions of in situ stress, rock structure and 
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Discontinuous rock mass 

Interaction 1: (Rock structure/stress) 
Local stress field affected by 

discontinuities 

Interaction 2: (Rock structure/water flow) 
Water flows along discontinuities ^ 

Interaction 3: (Stress/water flow) 
High normal stresses reduce 
discontinuity permeability 

Interaction 4: (Water flow/stress) 
Water pressure in the discontinuities 

reduces the normal stress 

Interaction 5: (Water flow/rock structure) -"""̂  
Continued water flow along a discontinuity ^^ 

could alter the mechanical and hydrogeological properties _^__ 

Interaction 6: (Stress/rock structure) 
^,-^ High stresses can alter 

the rock structure 

t t t 
Figure 14.1 Six of the main rock mechanics interactions. 

water flow. The interactions annotated (l)-(6) in the figure are listed below. 

• Interaction 1: Rock structure/stress—stress field affected by discontinuities. 
• Interaction 2: Rock structure/water flow—water preferentially flows along 

discontinuities. 
• Interaction 3: Stress/water flow—high normal stresses reduce discon-

tinuity permeability. 
• Interaction 4: Water flow/stress—water pressure in discontinuities reduces 

effective normal stress. 
• Interaction 5: Water flow/rock structure—water flow causes discontinuity 

surface alteration. 
• Interaction 6: Stress/rock structure—high stress can alter the rock structure. 

The figure shows the interactions occurring around an underground 
excavation but a similar diagram could be drawn for any rock engineering 
application. Also, these are only six of a large number of interactions which 
occur in rock mechanics and during rock engineering: we have chosen 
these because of their fundamental nature. 

Interaction matrices are used to provide a systematic approach to the 
interactions. Generally, matrices are used as assemblages of detached 
coefficients, subject to agreed manipulative procedures for mathematical 
utility. However, the basic presentational approach is also useful if the 
matrix components are concepts, or subjects, and the interactions between 
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these concepts or subjects. The matrix presentation is not merely a peda-
gogic device: it serves to identify and highlight the interactions between 
subjects, and forms the structure for coupled modelling. 

14.2 Interaction matrices 
The idea that there may be a relation between all things has been expressed 
by Francis Thompson, the English Victorian poet, who wrote the lines 

All things by immortal power, 
Near or far, 
Hiddenly 
To each other linked are. 
That thou canst not stir a flower 
Without troubling of a star. 

In fact, the concept of considering the relations between quantities which 
have the property of perpendicularity is extremely old. The margin sketch 
is from Ch'ou-pei Suan-king (an ancient Chinese treatise dating from circa 
1100 BC, which is housed in the British Museum), and is an early illus-
tration of the proof of what is now known as Pythagoras' theorem. In the 
history of mathematics there has been considerable development of the 
mathematics associated with orthogonality (n-dimensional perpendicular-
ity) via matrix and tensor analysis, so that the foundation for many subjects 
has already been laid. For example, when considering the variability of 
many different parameters, the subject of multivariate analysis is used, 
where n individual parameters are considered along n orthogonal axes in 
w-dimensional space, and there are other examples of subjects built on this 
mathematical foundation, e.g. Fourier analysis. 

The basic concept here is to study the combination, interaction or 
influence of one subject on another. We begin with 2 x 2 matrices, but it 
should be remembered that all the ideas can be extended to an n x n matrix. 
In Fig. 14.2, the main subjects, here denoted by A and B, are placed in the 
leading diagonal positions, i.e. from the top left to the bottom right of the 
matrix. A matrix is a list, and we are considering subjects, rather than the 
more usual numerical quantities. We are also considering the interactions— 
shown in the off-diagonal boxes—that are studied by clockwise rotation, 
as indicated by the arrows in the figure. 

In the construction of such matrices, the primary parameters are always 
listed along the leading diagonal, as in Fig. 14.2. The off-diagonal terms could 
represent the combination, influence or interaction of the primary para-
meters, as shown in Fig. 14.3. Combination can be demonstrated simply by 
inserting numbers in the leading diagonal with the off-diagonal terms being, 
for example, their sums. Similarly, influence is demonstrated by considering 
discontinuity aperture and water flow and, finally, interaction by consider-
ing how, for a given stress state, normal stresses give rise to shear stresses. 

In the first matrix of Fig. 14.3, the off-diagonal terms in the matrix repre-
sent the addition of the leading diagonal numbers. Because 3 + 2 = 2 + 3 
= 5, the two off-diagonal terms are the same and the matrix is therefore 
symmetrical about the leading diagonal. 
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Subject 
A 

1 

1 The influence 
1 of Bon A 

^ 1 

1 -̂ — 

The influence 1 
of A on B 1 

1 

1 Subjeet 1 

Figure 14.2 A 2 x 2 matrix illustrating the positioning of the primary variables and 
their interactions. 

In the second matrix of Fig. 14.3, one example of how two rock mechanics 
parameters can influence each other is shown. On the one hand, a larger 
discontinuity aperture leads to increased water flow on the other, 
increased water flow can lead to mineral deposition in the discontinuity, 
or erosion of the discontinuity surfaces, resulting in alteration of the 
aperture. In this matrix, instead of numbers there are rock mechanics 
quantities (albeit as words) as the primary parameters. Here, the influence 
of A on B is not the same as the influence of B on A, which means that the 
matrix is asymmetric. We will be discussing the significance of, and reasons 
for, symmetry and asymmetry of matrices later in this chapter. 

In the third matrix of Fig. 14.3, we have reproduced the two-dimensional 
stress tensor presented in Chapter 3. This is an example of interaction 
between the primary parameters. Given a specific stress state, defined, for 
example, in terms of principal stresses, the values of the normal stresses a^^ 
and Oyy uniquely define r̂ î  and T^^. We have already noted in Section 3.6 
that T̂-î  = Tyy^, and so the stress matrix is symmetrical. With the analogous 
normal strains and shear strains, we also noted at the end of Section 5.1 
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Figure 14.3 Example combination, influence and interaction matrices. 
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that shear strain involves an interaction between the axes because the 
amount of shear strain in the x-axis depends on the position along the y-
axis, cf. Fig. 5.3. 

Another example of the way in which interaction matrices can be used 
to present information is illustrated in Fig. 14.4. The leading diagonal terms 
are a square, a rectangle, a rhombus and a parallelogram. These are four 
geometrical shapes which can be converted into one another by either 
adding or subtracting the constraints of four equal sides or four equal 
angles. The condition boxes shown indicate the constraints necessary to 
produce the given shapes from a generic quadrilateral. The off-diagonal 
terms are condition icons representing the various transformations 
necessary to change one leading diagonal term into another—these 
conditions being added or subtracted. When transforming any pair of 
leading diagonal shapes from one to another, the same conditions are 
involved, whether one is in the upper half of the matrix or the lower half; 
only the sign of the condition is different, and hence the matrix is skew-
symmetric. The link with group theory is intimated in the Venn diagram 
also presented, but a full discussion of this subject is not necessary here. 

Four sided figures 

Condition boxes: 2 sets of 

sides 

4 equal 
sides 

2 equal 
angles 

4 equal 
angles 
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Figure 14.4 An interaction matrix demonstrating links between the leading 
diagonal terms. 
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14.3 Interaction matrices in rock mechanics 
In Fig. 14.5, we show the conceptual link between stress and strain. In 
Section 53, it was recalled that stress and strain are second-order tensors, 
and that each component of the strain tensor can be linearly related to the 
six components of the stress tensor, through an elastic compliance matrix 
with 36 terms, of which 21 are independent. This is a result of the 
application of linear elasticity. In the 2 x 2 matrix of Fig. 14.5(a), we show 
this same link, except that we have now introduced the concept of path 
dependency, i.e. how do we compute the strains from a knowledge of the 
stresses, or vice versa? The top right-hand box of this matrix illustrates the 
term Sn, or l/£, of the elastic compliance matrix. Alternatively, we can 
calculate the stresses from the strains as illustrated in the bottom left-hand 
box. Note that the stress-strain curves are drawn with the independent 
variable on the horizontal axis, in accordance with the conventions of 
scientific presentation. Thus, this 2 x 2 matrix is not symmetrical in the sense 
that the content of the off-diagonal terms are not equal, but is symmetric 
in terms of functionality: that is, one can travel around the matrix with no 
change occurring in the stress or strain state being represented. 

However, the 2 x 2 matrix in Fig. 14.5(b) represents constitutive behaviour 
which includes rock failure—and is therefore beyond simple linear elastic-
ity—with the result that the behaviour of the rock now critically depends on 
whether stress or strain is the independent variable. In some cases, 
standardized methods for rock testing will specify values for the rate of stress 
increase and, as illustrated in the top right-hand box of Fig. 14.5(b), this will 
result in uncontrolled failure because the stress cannot be increased beyond 
the compressive strength. Conversely, if the strain rate is specified then 
strain becomes the independent variable and the complete stress-strain 
curve is obtainable, as explained in Section 6.3. In every sense, therefore, this 
matrix is asymmetric: the off-diagonal stress-strain behaviour is different; 
and one cannot cycle repetitively through the matrix at all stress levels. 
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Figure 14.5 Stress-strain relations illustrated conceptually for elastic and inelastic 
conditions utilizing 2 x 2 interaction matrices. 
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In Fig. 14.6, we illustrate another 2 x 2 interaction matrix in which the 
parameters point load strength and compressive strength appear on the leading 
diagonal. In calculating the regression line linking these two parameters, 
we could consider either one as the independent variable, as is illustrated 
in the off-diagonal boxes. The data points are the same in each case: the 
axes have simply been exchanged, and a different regression line is 
obtained in each of the two cases. Regression analysis using these 13 data 
points produces 

CTc = -3.13 + 23311, 
and 

I, = 0.563 + 0.0367ac. 

These two equations are not the same line. They are plotted in the off-
diagonal boxes, with the solid line being the appropriate one in each case. 
The two off-diagonal boxes are not the same: the matrix is asymmetric— 
caused by the two estimation directions. The point is not the accuracy with 
which these two parameters are related, but the asymmetry of the matrix 
resulting from the path-dependency. 

In Fig. 14.7, there is a 4 x 4 matrix illustrating the inter-relations between 
the orientation, spacing, persistence and roughness of a discontinuity. 
These are four of the primary geometrical properties of discontinuities 
illustrated in Fig. 7.3. On examining the schematic in Fig. 7.3, it might 
appear at first sight that the four parameters are independent: however, 
as Fig. 14.7 illustrates, all four of these parameters are interdependent. This 
interaction matrix demonstrates the comprehensive identification of all of 
the binary interactions—some of which might otherwise be overlooked. 

14.4 Symmetry of interaction matrices 
We have seen that the stress tensor is symmetrical about the leading 
diagonal of the matrix because of the equilibrium conditions, as illustrated 
in Fig. 3.6. Both the stress and strain tensors, and other similar second-order 
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Figure 14.6 Point load strength-compressive strength relations, illustrating 
asymmetry of the interaction matrix induced by the estimation direction. 
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Figure 14.7 Interdependence between discontinuity geometry parameters. 

tensors, e.g. permeability and moment of inertia, are symmetrical: this is 
due to the basic equilibrium inherent in these quantities. If, now, we 
consider the first 2 x 2 matrix shown in Fig. 14.3, this is also symmetrical 
because of the commutative properties of addition. Note, however, that 
had we chosen to consider subtraction as the binary operator, the off-
diagonal terms would have had the same absolute value, but with different 
signs (e.g. 3 - 2 = 1, whereas 2 - 3 = -1), resulting in a skew-symmetric 
matrix. The second matrix of Fig. 14.3 is quite clearly asymmetric, because 
the influence of discontinuity aperture on water flow is not the same as the 
influence of water flow on discontinuity aperture. 

Considering further the other matrices we have presented. Fig. 14.4 is 
another skew-symmetric matrix, because the condition boxes are reversed 
in sign, depending on which shape conversion is being considered. The 
symmetry and asymmetry of the 2 x 2 matrices illustrating the stress-strain 
relations for elastic and inelastic materials, respectively, are a result of path-
dependency. This is also the case illustrated in Fig. 14.6, where the regression 
is different when different parameters are assumed to be the independent 
variable. Finally, the 4 x 4 matrix of Fig. 14.7, which shows the interdepen-
dence between discontinuity geometry parameters, is also asymmetric. 

Asymmetry of matrices is associated with path-dependency. An 
asymmetric matrix is shown in Fig. 14.8: this is an example of a transition 
probability matrix for a Markov chain of state changes. A parameter can 
have the states A, B or C. Once the parameter is in one of these states, the 
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Figure 14.8 Transition probability matrix for Markov chain of state changes. 

probability of it remaining in that state or moving to one of the other states 
is given by the transition probabilities show^n in the matrix. If the parameter 
is in state A, the probability that it w îll remain in that state is P^ ;̂ the 
probability that it will move to state B is P̂ ,̂; and the probability that it v^ill 
move to state C is P^c These probabilities are given in the first row of the 
matrix, and their sum is unity. The second and third rows of the matrix 
represent similar transition probabilities for parameters in states B and C. 
Such transition probability matrices are used for generating Markov chains 
of events and for studying the sensitivity of the occurrence of certain states 
as a function of the transition probabilities. One could, for example, 
consider in a geological analysis the types of sedimentary sequences that 
will occur as the result of different depositional states. 

The matrix illustrates symmetry and asymmetry conditions well. It may 
be that P^t = P^a or that P^̂  ^ Pi.^. Quite clearly, any asymmetry of the matrix 
results from directional dependence in the state change. 

Another excellent example of asymmetry is the formulae for the 
transformation of axes. In Fig. 14.9, the new co-ordinates x' and y' are given 
as a function of the old co-ordinates x and y and the angle 9 through which 
the axes have been rotated. It can be seen that the basic operation of 
rotating the axes produces a cos 0 term along the leading diagonal 
(representing the primary operation), and a sin 0 term in the off-diagonal 
positions (representing the interaction between the axes). However, the 
matrix is skew-symmetric because of the rotational nature of the 
transformation: if we were to rotate the axes in the opposite direction, the 
sign of the off-diagonal terms would be reversed. It should be noted that 
this axis interaction is directly analogous to the note in Fig. 5.4, where 
simple shear also involves an interaction between the axes. 

Finally, in Fig. 14.10, the axes are rotated through 45°, 90° and 180°. For 
the first case, the primary operation terms on the leading diagonal and the 
interaction terms in the off-diagonal positions have equal importance, but 
the matrix is still asymmetric. In the second case, the primary operation has 
been reduced to zero, because a rotation of 90° can be considered simply 
as an interchange of the axes with the signs of the off-diagonal 
components indicating the positive directions of the new axes relative to 
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Figure 14.9 Transformat ion matrix for rotat ion of axes. 

the old axes: the matrix is still asymmetric. On rotating through 180°, as 
shown in the third case, the axes remain in the same orientation, with only 
the positive directions changing. Thus, the primary operation is a multi-
plication by - 1 , and there is no interaction between the axes. This matrix 
is symmetric, because it does not matter whether we rotate clockwise or 
anticlockwise through 180°: i.e. there is no path-dependency in the 
transformation for this specific angle of rotation. 

This example has been included because of the importance of under-
standing the nature of the off-diagonal terms in the rock mechanics inter-
action matrices. Consideration of whether path dependency is inherent in 
any matrix will assist in determining the symmetry or otherwise of the terms. 

14.5 A rock mechanics-rock engineering 
interaction matr ix 

Referring again to Fig. 1.12 and the three-tier approach to all rock engi-
neering problems, the analysis of coupled mechanisms is necessary in 
extrapolating the analysis of individual subjects to the solution of 
complete rock engineering problems. In Fig. 14.11, the primary parameters 
on the leading diagonal are rock mass structure, in situ stress, water flow 
and construction. This is a 4 x 4 matrix, with four primary variables and 12 
interaction terms. The indentification and location of these interactions 
within the matrix is of help when interpreting the rock mechanics and rock 
engineering components. If we were to add two more leading diagonal 
terms—for example, thermal effects and time-dependency—the matrix 
would increase to a 6 x 6 size with six primary parameters and 30 inter-
action terms. It is unlikely that these interactions could be coherently 
identified and studied without the use of the interaction matrix or some 
similar approach. 

There are several points to be noted about this matrix. First, the boxes 
have been numbered according to conventional matrix notation, with the 
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Figure 14.10 Three examples of the transformahon matrix for rotation of axes. 

first number representing the row and the second number the column in 
which the term resides. Second, the matrix is asymmetric. Third, as 
illustrated in Fig. 14.12, the basic rock mechanics component is contained 
within the uppermost 3 x 3 sub-matrix, with the interaction between rock 
mechanics and rock engineering occurring in the fourth row and column. 
Note that with the clockwise directionality applied to this matrix, the 
effect of the rock mechanics on the rock engineering is contained in the 
fourth column, whereas the effect of the rock engineering on the rock 
mechanics (or rock properties) is given in the fourth row. These matrix 
component sets should therefore be seen as design (or pre-construction) 
considerations and engineering (or during and post-construction) effects, 
respectively. 

The interactive elements in Fig. 14.11 are self evident from the sketches. 
Well-known concepts arise and areas can be identified which need 
research. Element 32 shows the influence of the presence of water on the 
in situ stress, which is embodied in the well-known concept of effective 
stress: however, the complementary element, 23, is the influence of in situ 
stress on water flow—a subject still in its infancy. Similarly, we can point 
to elements 23 and 31. The first of these represents the influence of rock 
mass structure on water flow—i.e. the fact that discontinuities dictate 
permeability, a subject discussed in Chapter 9. The second of these is the 
influence of water flow on the rock mass structure, i.e. the weathering of 
discontinuities caused by water flow: almost nothing is known of the 
mechanics of this subject. 

The reader is encouraged to interpret the diagrams representing each 
element within the structure of the total interaction matrix. The technique 
can be used for all interactions, so it is helpful not only to understand the 
underlying structure of such matrices, but also to be able to create new 
matrices oneself. For example, the technique was used to present the 
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Figure 14.11 Rock mechanics-rock engineering interaction matrix. 

variation of discontinuity frequency for a sampling line passing through 
one, two and three sets of mutually perpendicular discontinuities in 
Fig. 7.11. Along the leading diagonal of the three-dimensional loci in the 
figure are illustrated the individual variations for each set; the binary 
combinations for of any two sets are shown in the off-diagonal terms. This 
matrix is symmetrical because the frequencies are added for each set—a 
process which is commutative. However, it is only when adding the three 
sets, as shown at the bottom of the figure, that we obtain the full three-
dimensional locus. 

Rock mechanics 
'basic science' 

component 

o 

Rock engineering 

Figure 14.12 Architecture of the rock mechanics-rock engineering matrix 
illustrated in Fig. 14.11. 
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14 .6 Further examples of rock mechanics 
interaction matrices 

The three modes of fracturing rock to produce a discontinuity are shown 
in Figs 2.15-2.17. In these figures, the modes are shown in isolation, although 
it may well be that the prevailing stress state at a given location is such that 
the mode of failure is a hybrid of one or more of these fundamental modes. 
In an attempt to understand the hybrid modes, an interaction matrix can 
be drawn in which the fundamental modes are placed on the leading 
diagonal. This is shown in Fig. 14.13—in which we have assumed, for the 
purposes of illustration, that there is no path-dependency. Also, in the 
sketch shown below the matrix, all three modes occur simultaneously. 

In Fig. 14.14, there is a related matrix in which the leading diagonal terms 
are normal, wrench and thrust faults, as dictated by the relative magnitudes 
of the three principal stresses causing the faulting. In this case, the presence 
of one type of fault will perturb the local in situ stress field, with the result 
that it could be reactivated as a different type of fault: the principal stresses 
will have changed and there will have been path-dependency introduced 
into the off-diagonal, double-faulting, elements. 
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Mode 2 

Mode 3 + 2 

Mode 1 + 3 

Mode 2 + 3 

Mode 3 

Mode 1 + 2 + 3 

Figure 14.13 Unary, binary and ternary combinations of the fundamental modes 
of rock fracture. 
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Figure 14.14 Binary combinations of normal, wrench and thrust faults (produced 
with help from Dr J. W. Cosgrove). 

We have also presented some information in parts of the book using the 
interaction matrix concept, as for example Fig. 10.1 to consider the 
connections between the attributes of discontinuousness, inhomogeneity, 
anisotropy and non-elasticity. 

14.7 Concluding remarks 
The interaction matrix is the basic device used in rock engineering systems. 
For a rock engineering project, the most important step in the RES 
methodology is to establish the objectives of the project and the analysis. 
Once that has been done, the relevant 'state variables' are chosen—i.e. the 
terms to place along the leading diagonal of the interaction matrix. In 
some problems, these variables have to be more conceptual in nature; 
in some problems, there may be enough information to use well-defined 
physical properties with definite units. Then, all the interactions are 
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established so that the problem structure is developed. Immediately, an 
information audit is possible considering what is known about the content 
of the interaction matrix boxes. 

If the state variables are conceptual in nature, the off-diagonal inter-
actions can be assessed using a semi-quantitative method of coding 
(Hudson, 1992). By summing the coding values in the matrix rows and 
columns, an estimate of each variable's interactive intensity and dominance 
in the system can be determined. This is known as the soft systems 
approach. 

If the state variables are physical variables, a new modelling technique 
known as the fully-coupled model can be used (Hudson and Jiao, 1996). 
The physical mechanisms linking the variables are identified for each off-
diagonal box and the relation quantified. A coupling algorithm is invoked 
to produce a new interaction matrix in which all the terms represent a fully-
coupled system response; in other words, the response for all mechanisms 
operating simultaneously. The new matrix allows quantitative prediction 
of the effect of any applied perturbation on the state variables, whether 
natural or by engineering. This is known as the hard systems approach. 
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75 Excavation 
principles 

In this chapter, we explain the fundamental principles of rock excavation. 
Initially, the excavation process is discussed in its most basic form, i.e. 
reaching the post-peak region of the complete stress-strain curve and 
altering the in situ block size distribution to the excavated fragment size 
distribution. Then the basic principle of blasting rounds is discussed; all 
blasting rounds involve a stress wave effect, stress wave reflections at free 
surfaces and a gas pressure effect. We highlight the pre-splitting method 
of near-surface excavation in which the final face is blasted before the bulk 
of the material is removed, in order to produce a boundary across which 
fragmentation is reduced. The complementary method for underground 
excavation, known as smooth-wall blasting, is also explained. 

The principles of excavation using mechanical means, such as picks, discs 
and buttons, on partial- and full-face excavation machines are explained. 
The use of such machines within the excavation system is considered to 
demonstrate how important it is to consider the machine excavation 
process within the context of the overall construction strategy. Finally, we 
introduce the concepts associated with assessing effects of vibrations 
emanating from the excavation process on other structures. 

15.1 The excavat ion process 

It is instructive to consider the fundamental objective of the excavation 
process—which is to remove material from within the rock mass resulting 
in an opening (the geometry of which is set by some operational criteria). 
Bear in mind that there are two potential objectives in removing the rock: 
one is to create an opening; the other is to obtain the material for its 
inherent value. Examples of the first case include civil engineering works, 
temporary or permanent mine accesses and petroleum wellbores. In the 
second case, the material may contain some valuable mineral, or may be 
required in toto as, for example, concrete and road building aggregate. 
There will be projects where some parts of the work involve permanent 
openings and some parts involve temporary openings, e.g. a mine in which 
the access/egress through shafts and tunnnels must be by permanent 
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openings, whereas the stopes (the openings left by mining ore) can be 
allowed to collapse during mining, as governed by the design process. 

There are different design considerations in civil and mining engineer-
ing, related to the operational life of the openings themselves. A 
radioactive waste repository might have to operate satisfactorily for 5000 
years, an undersea transport tunnel for 125 years, a mine shaft for 20 years, 
a metal mine stope for 1 year and a longwall mining opening for 1 week. 
These time spans relate to the discussion in Chapter 13 on the time-depen-
dent aspects of rock mechanics and the implementation of appropriate 
models in rock engineering projects. 

In order to remove part of a rock mass, it is necessary to introduce 
additional fractures over and above those occurring in situ. Three critical 
aspects of excavation are immediately introduced: 

(a) the post-peak portion of the complete stress-strain curve must be 
reached (cf. Fig. 6.1); 

(b) the in situ block size distribution must be changed to the required 
fragment size distribution; and 

(c) by what means should the required energy be introduced into the rock? 

We will discuss each of these aspects in turn. 

15. LI Attaining the post-peak portion of the complete 
stress-strain curve 

In Chapter 6, the complete stress-strain curve has a pre-peak portion of 
the curve which is mainly, although not completely, associated with linearly 
elastic behaviour. In this portion, there is little large-scale failure and little 
dissipation of energy on load cycling. In order to provide the necessary large-
scale fragmentation, a part of the intact rock must be taken into the post-peak 
portion of the complete stress-strain curve. Note that subsequently we wish 
to remain in the pre-peak portion of the curve for rock stability. It follows 
that an excavation boundary is an interface between two fundamentally 
different engineering objectives and materials, as illustrated in Fig. 15.1. 

Rock beyond excavation 
periphery remains intact: peak 

strength not reached 

Strain 

Rock within excavation 
fragmented: taken into 

post-peak region 

Figure 15.1 The complementary objectives of excavation and support, as related 
to the complete stress-strain curve. 
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A variety of considerations is involved, such as the brittleness of the 
material, as expressed via the complete stress-strain curve, and matching 
the explosive type and quantity to this for optimal fragmentation. In 
such an excavation process, is it best to break the rock in compression, 
tension or shear? Is there a choice? Because the tensile strength of rock is 
about one-tenth the compressive strength and the energy beneath the 
stress-strain curve is roughly related to the square of the peak strength 
of the rock, breaking the rock in tension requires only about one-hundredth 
of the energy required to break the rock in compression. So, not only 
do we need to match the explosive to the rock type, but we need to 
consider carefully how to use the energy in an optimal way to achieve the 
objective. 

75. J.2 The in situ rock block and excavated fragment 
size distributions 

Rock is naturally fractured and consists of rock blocks of certain sizes, which 
can be conveniently presented in an integrated way via a volumetric block 
size distribution, the concept of which was introduced via a cumulative 
block size distribution in Section 7.2.4. The fracturing of the rock during 
excavation changes this natural block size distribution to the fragment size 
distribution as illustrated in Fig. 15.2. 

The engineer can consider how best to move from one curve to the 
other in the excavation process. There is also the connection with the 
basic objective mentioned earlier. If production of the resulting 'hole in 
the ground' is the end product, the excavation is an end in itself, although 
naturally coupled with the construction system. If, however, the excavated 
material is the desired end product, then the primary mining excavation 
process is the first of many stages of comminution. The first of these 
problems would require the minimum of change between the pre- and 
post-excavation block distributions, whereas the second may not involve 
such a constraint. 
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Figure 15.2 The process of excavation interpreted as changing the pre-existing 
natural rock block size distribution to the debris fragment size distribution. 
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15.L3 Energy and the excavation process 

There has been considerable discussion over the years on optimizing the 
use of energy during excavation, traditionally expressed as the concept of 
specific energy, i.e. the amount of energy required to remove a unit volume 
of rock Q/nv'). The design of excavation machines may well incorporate the 
idea of minimizing specific energy in order to maximize energy savings and 
increases in penetration rate, and to minimize destructive vibrations in the 
machine. 

Seminal work, conducted many years ago at the US Army Cold Regions 
Laboratory, New Hampshire, involved a study of the specific energy values 
associated with different forms of ice fragmentation. These ran the whole 
gamut, from hand excavation, through conventional explosives, to machine 
excavation and more exotic techniques such as thermal lances. Predictably, 
perhaps, it was found that the more exotic forms of fragmentation were 
associated with higher specific energies, and hand excavation was asso-
ciated with the lowest specific energy. This was because man could take 
advantage of the pre-existing fractures, but all other forms of excavation 
failed to exploit this opportunity. 

In the history of mining, there have been few revolutionary advances in 
technology. The first of these was the application of explosives to rock 
excavation, with others being the ability to pump water from great depths 
and the development of self-guided tunnel boring machines—which are 
able to construct tunnels automatically to fine tolerances. 

There are only two fundamental ways of inputting energy into the rock 
for excavation: one is by blasting, the other is by mechanical means. The 
two methods are illustrated in Fig. 15.3, where energy input is plotted 
against time. The energy is either input in large quantities over very short 
durations, or in smaller quantities essentially continuously. So, from purely 
practical considerations, excavation has to utilize a cyclical method with 
periodic blasting or a continuous method by machine. As far as the authors 
are aware, no one has yet developed a technique for combining the meth-
ods, e.g. excavating by continuous blasting which takes place immediately 
ahead of a tunnel boring machine. 

Energy 
input 

Large magnitude, short duration 
pulses associated with blasting 

Blasting 
cycle time 

(of some hours) Small magnitude, 
essentialy continuous 
input associated with 

mechanized excavation 

Time 

Figure 15.3 Energy input rates for blasting and mechanized excavation. 
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In this section, we introduced the three basic concepts of 

(a) attaining the post-peak portion of the complete stress-strain curve; 
(b) changing the rock fragment size distribution; and 
(c) the only practical methods of inputting the required energy. 

These concepts were presented in order to provide an overall conceptual 
background to the discussions that follow on rock blasting, specific 
methods of blasting and mechanized excavation. The book's objective is to 
provide an understanding that allows for maximal creative engineering 
thinking, and rock excavation is one area ripe for advancement through 
the application of innovative developments. 

15.2 Rock blasting 

In Chapter 13 rock dynamics and stress waves were discussed. Here, we 
consider the specific application of stress waves (and the associated gas 
pressure that is generated during blasting) to the explosive breakage of 
rock. The technique of rock breakage using explosives involves drilling 
blastholes by percussive or rotary-percussive means, loading the blastholes 
with explosive and then detonating the explosive in each hole in sequence 
and in accordance with a programme which depends on the type of 
blasting round being used. 

The explosion generates a stress wave and significant gas pressure, 
resulting in complex reflections and refractions of stress waves at discon-
tinuities within the rock mass. However, even with this complexity, it is 
possible to isolate key features of the process which allow the blasting 
rounds to be designed successfully. 

15.2.1 The stress wave and gas pressure effects 

In Fig. 15.4, an idealized development of borehole radial stress with time 
after detonation is shown. The stress rapidly builds up to a peak—within 
a few microseconds—and then reduces as the gas pressure is dissipated 
through discontinuities. As indicated in the figure, it is convenient to 

Time 

Figure 15.4 Stress wave and gas pressure effects during an explosion. 
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consider this phenomenon as being composed of a 'stress wave effect' and 
a 'gas pressure effect'. The exact form of the curve in Fig. 15.4 will depend 
on the type of explosive, the charge size, the coupling between the 
explosive and the rock and the degree of fracturing of the rock around the 
blasthole, among other things. Although there are many different types of 
proprietary explosive, by far the most widely used explosive in the civil and 
mining industries is ANFO'—^Ammonium Mtrate and Fuel Oil. This 
material was found to be explosive when a ship, which had originally 
transported a consignment of fuel oil, was subsequently loaded with 
ammonium nitrate fertilizer and, unexpectedly, it exploded. An example 
of the maximum pressure generated in a blasthole after detonation of an 
ANFO charge density of 820 kg/m^ is 2490 MPa. 

A compressive stress wave is reflected at a free face as a tensile stress 
wave, see Fig. 13.4. Thus, after detonation of a borehole charge, there tends 
to be local pulverization due to the high compressive stresses caused by 
the blasthole pressure, followed by a dissipation of the stress wave. 
However, if there is a proximate free face, as illustrated in Fig. 15.5, the 
compressive stress wave is reflected at such a free face as a tensile stress 
wave, and surface spalling occurs due to the low tensile strength of the 
intact rock. This is because the rock is able to sustain a compressive wave 
at a given stress magnitude, but unable to sustain a tensile wave with 
stresses of the same magnitude. The energy remaining in the spalled 
fragment of rock is then liberated as kinetic energy—the fragment flies off 
the rock face. 

Following the local fracturing at the blasthole wall and the spalling at the 
free face, the subsequent gas pressure then provides the necessary energy 
to disaggregate the broken rock. It is emphazised that no one understands 
the precise way in which the stress wave effect and the gas pressure effect 
combine to break the rock, but our understanding of the phenomenon 
associated with the proximity of a free face is sufficient to allow us to 
design all blasting rounds. This has been well proven in practice, despite 
the difficulties incurred by the presence of discontinuities, illustrated 
in Fig. 15.6. 

Rock spalling due to 
stress wave effect 

\ Free face 
^ Tensile z o n e / / ^ - ^ ^ 

^ - ^ 'stress wavcs^ - / 

^o/npressx^^ 

zone 
_Wedge blown out by 

gas pressure effect 

"Explosive detonated 
in blasthole 7|\ 

Figure 15.5 Effect of stress waves and gas pressure adjacent to a free face. 



Rock blasting 245 
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Figure 15.6 Complex effect of discontinuities on stress waves and gas pressure. 

15.2.2 Blasting rounds 

One of the basic principles of designing all blasting rounds, i.e. the 
configuration and sequential detonation of blastholes in one blast, is the 
presence of a free face parallel or sub-parallel to the blast holes, as detonation 
occurs. In some cases, these free faces may be automatically present 
(benches in a quarry), but in other cases may need to be created by the blast 
itself (a tunnel face). 

It is interesting to consider what might be the 'most ideal' blasting round. 
When excavating a circular tunnel, a circular free face is required in the 
form of the final cylindrical tunnel outline, as illustrated in Fig. 15.7. Such 
a free face, or kerf, could be cut—in a weak rock—by a long, tungsten 
carbide-tipped chainsaw (Fig. 15.7(a)). Given the basic process of 
fragmentation which we have described, it might then be sufficient to 
detonate an explosive charge in a single blasthole at the centre of the free 
cylinder created by the kerfing. The compressive stress wave would radiate 
outwards, in a cylindrical form, and be reflected back towards the centre 

Annular kerf formed by 
\^) rock-cutting chainsaw 

All blasting energy retained 
within blasted cylinder 

Excavation 
cross-section 

(a) Before blasting 

Surrounding rock 
damage 

(b) After blasting 

Figure 15.7 Idealized blasting geometry using a circular kerf, (a) Before blasting, 
(b) After blasting. 
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at the kerfed free face as a tensile stress wave, resulting in complete frag-
mentation (Fig. 15.7(b)). This is the ideal form of the free face for the 
excavation geometry. Although this system has been used in chalk in the 
United States, it is not generally practical because of the difficulty of cutting 
the kerf and also because of the 'bulking factor'. Broken rock occupies a 
significantly greater volume than intact rock, and hence allowance must 
be made for dilation. 

Another way of generating the free face would be to drill a large diameter 
'relieving' borehole at the centre of the face, and leave it uncharged. As 
shown in Fig. 15.8, the geometry of the free face could then spiral out from 
this initial small free face as successive blastholes are initiated, using delay 
detonators. With reference to Fig. 15.8, blasthole 1 is detonated with the 
initial uncharged borehole being its free face, and the process of frag-
mentation occurs as shown in Fig. 15.5, but on a smaller scale. This creates 
a larger free face, at a different orientation, which can be used by blasthole 
2. The same process continues with blastholes 3, 4 and 5, demonstrating 
the important concept of progressively increasing the free face by the use 
of successive detonations. 

From these fundamental concepts it is clear that part of the practical 
optimization of blasting rounds should include strict control of the drilling, 
to ensure correct geometry of the blastholes, and the use of precision delay 
detonators, to ensure the correct initiation sequence. 

The face of a tunnel is a free face, but it is not parallel to any practically 
obtainable blasthole orientations because of drilling constraints: note from 
Fig. 15.5 that the free face should be parallel, and not perpendicular, to the 
blasthole. 

However, as illustrated in Fig. 15.9, one can compromise by having a 
sequence of inclined boreholes which are successively detonated. This is 
known as the wedge cut, detonated in concentric cones from the centre of 
the face to the periphery, gradually increasing the area and changing the 
orientation of the free face as detonation proceeds. Note again, that the use 
of delay detonators is critical: the fragmentation process would not operate 
if the blastholes were detonated simultaneously. 

Initial uncharged 
( ^ " " ^ - ^ ^ / borehole 

\ Blastholes 

Figure 15.8 Practical application of the free-face concept using one form of the 
burn cut. 
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Figure 15.9 Use of the free-face concept with delay detonators and the wedge cut. 

15.2.3 Explosives 

It is also important to tailor the type of explosive to the overall objective 
and the type of blasting round. In considering the type of explosive to be 
used for a particular purpose, v^e should take into account their various 
characteristics. These include: 

(a) strength: a function of the energy content (J/g) and the energy release rate; 
(b) density: varies from 800 to 1500 kg/m" ;̂ 
(c) velocity of detonation: speed at which the detonation wave passes 

through a column of explosive (the higher the velocity the greater the 
shattering effect), typically in the range of 3000-5500 m/s with extremes 
of 1500 m/s for ANFO and 6700 m/s for detonating cord; 

(d) sensitivity: ease of initiation; 
(e) sensitiveness: ability to maintain the detonation wave; 
(f) water resistance: capacity for detonation in wet conditions; 
(g) fume characteristics: applicability in zones of poor ventilation; 
(h) gas volume: gas liberated on detonation (1/kg); and 
(i) stability: includes chemical and storage stability. 

Some of these properties are related to one another and we take advan-
tage of the best combination for our particular circumstances. 

There are many types of explosive now available, the main types being: 

(a) gelatine explosives: nitroglycerine thickened with nitrocellulose to give a 
gelatinous consistency. These are the most widely used nitroglycerine-
based explosives; 

(b) semi-gelatine explosives: which have a consistency between a gelatine and 
a powder. These are special-purpose explosives for use in wet condi-
tions and small-diameter boreholes; 

(c) nitroglycerine powder explosives: these are made from ammonium nitrate 
with nitroglycerine as a sensitizer, have a moderate bulk strength and 
are economical; 

(d) ammonium nitrate-fuel oil mixtures: these are effective because ammo-
nium nitrate is a cheap chemical source of oxygen for the explosive 
reaction. They have a low bulk strength; 
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(e) detonators: electric detonators consist of an aluminium tube with an 
electrically activated fusehead which initiates a priming charge and 
then a base charge of high explosive. Generally, delay detonators are 
produced as either 'short delay', measured in milliseconds, or 'half-
second delay', measured in seconds. 

These are the basic principles of blasting and we have illustrated, with 
idealized and practical cases, how blasting rounds are designed. There has 
been much practical experience accumulated in this subject area, and all 
major manufacturers of explosives have produced Blasters' Handbooks 
which give excellent guidance on details of all technical matters, including 
safety, associated with the use of explosives. 

With the knowledge and understanding of the principles explained here, 
all this information is readily assimilated, and the reader can create a new 
type of blasting round for a new purpose. Without such understanding, 
these handbooks are simply series of instructions for technicians. 

In the military area, explosives have been developed for a variety of 
specialized techniques. The power of these explosives is specified by the 
heat generated in the explosion (Q-value, units of J/g) and the volume of 
gas produced (P-value, units of cm'^/g). The standard, taken as 100, is that 
of picric acid, which has a Q-value of 3745 J/g and a P-value of 790 cm^/g. 
On this scale, the power of other military explosives is: 

Picric acid 100 
Gunpowder 20 
TNT (trinitrotoluene) 110 
RDX (Research Department Explosive) 160 
Thermonuclear explosives > 1,000,000. 

The explosives currently available for civil purposes are adequate for rock 
fragmentation, and it is more important to consider the blasting technique 
itself than the explosive for optimal engineering. 

15.3 Specialized blasting techniques 
As illustrated in Fig. 15.6, the explosive damage may not only occur 
according to the blasting round design, but there may also be extra rock 
damage behind the borehole wall, particularly if there are major discon-
tinuities present which reflect and refract the stress waves and provide 
paths for the gas pressure. When blasting to produce a final rock surface, 
such damage is malignant because it is out of sight and alters the rock in 
the very region where we require optimal quality (cf. Fig. 15.1). 

For permanent rock faces at or near the ground surface, an elegant form 
of blasting has been devised which takes advantage of the principles we 
have outlined to minimize the damage to the rock. This technique is known 
as pre-splitting, and its fundamental function is to 'create the final plane first'. 
For permanent rock faces at depth, pre-splitting cannot generally be used, 
and because of the alteration of the local stress field during initial blasting, 
another technique known as smooth-wall blasting is used for the final 
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surface. Both of these techniques tend to be used only where it is essential 
to produce a high-quality, high-strength and low-maintenance final surface. 

There is considerable history in the modern development of blasting 
techniques, and indeed the cover of the 1963 book Rock Blasting by 
Langefors and Kihlstrom shows a perfect example of pre-splitting at a 
conduit wall in the Niagara project. Their book provides many examples 
of the application of blasting technology and, as we will be emphasizing 
later, the on-site problem is more one of blasting management rather than 
the requirement for new technology. 

75.3.1 Pre-split blasting 
In Fig. 15.10, we illustrate the excavation of a cutting through a rock 
outcrop. The primary purpose of the blasting is to remove the rock to form 
the cutting, but there are several operational reasons why a high-quality 
final slope profile may be required. This is the perfect circumstance for 
utilizing pre-split blasting. 

As shown in the figure, a series of small-diameter, parallel boreholes are 
first drilled in the planes of the required final slopes. The principle is then 
to tailor the explosive parameters such that detonation of the explosive in 
these initial holes will primarily create a plane intersecting the holes. Under 
these circumstances, no provision has been made for dilation, but a 
complete new fracture is formed in the rock. When, subsequently, the main 
body of rock is bulk blasted to form the cutting, the pre-split plane reflects 
the stress waves back into the rock being excavated and dissipates excess 
gas pressure, such that the bulk blast has little effect on the rock behind 
the pre-split plane. 

As Fig. 15.10 indicates, we have now used engineering knowledge to 
separate the two concepts, shown in Fig. 15.1, of excavation and support: 
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Figure 15.10 Use of the pre-splitting technique to create high-quality final surfaces 
(from Matheson, 1983). 
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the bulk blasting will be optimized through the use of blasting rounds; and 
the natural stability of the rock slopes will be optimized by minimizing the 
damage at and behind the slope surface through use of the pre-splitting 
technique. This latter point is particularly significant in a highway or 
railway cutting, where the lack of either any dilation of pre-existing 
fractures in the rock face or the creation of new fractures leads to a 
maintenance free slope. Bulk blasting alone could leave a highly damaged 
surface leading to potentially expensive post-excavation maintenance. This 
concept also applies to the final slopes of quarries and open pit mines. 

Mechanism ofpre-split blasting. As with regular blasting, the mechanisms 
by which the pre-split plane is created and the way in which the stress 
wave and gas pressure individually contribute to the process are not 
completely understood. Application of the principles of blasting does, 
however, enable us to produce an outline design of blasthole geometry and 
detonation sequence, such that the generation of a single pre-split plane is 
favoured. 

In Fig. 15.11, there are two stages in the detonation sequence of a series 
of coplanar blastholes: a few microseconds after detonation; and a few 
milliseconds after detonation. 

Initially, the stress wave effect generates radial fractures with some bias 
towards the plane of the blastholes, due to reflection from the nearest point 

Medium-polyester resin 
Expk)sive-4 grain/foot (0.8 gm/m) 
PETN eord 

Hole diam.-3/16" (4.8 mm) 
Hole spacing-5" (12.7 cm) 
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PETN cord 

Hole diam.-3/l6" (4.8 mm) 
Hole spacing-3" (7.6 cm) 

Figure 15.11 The progressive creation of a fracture plane during pre-split blasting 
(from Matheson, 1983). 
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of the adjacent blastholes. Second, there are dynamic and quasi-static 
effects of the gas pressure reinforcing this tendency. These are: 

(a) the gas travels along the fractures and causes further cracking in a 
manner similar to hydraulic fracturing; and 

(b) the pressurized blastholes and radial fractures induce high 'elastic' stress 
concentrations which contribute to failure of the rock along the plane. 

Thus, as illustrated in the lower diagram of Fig. 15.11, the fractures lying 
in the plane of the blastholes coalesce to form a continuous plane. Because 
the resultant plane is formed by the coalescence of these radial fractures, 
it will tend to be rather rough on the scale of the blastholes (a few centime-
tres) but will be smooth on the engineering scale (a few metres). Note that 
if the creation of the pre-split plane is successful, the half cylinders of the 
blastholes should be visible on the final slope, as shown in Fig. 15.12. 

Guidelines for successful pre-split blasting. From the discussion so far, it is 
possible to directly deduce the guidelines that govern the successful man-
agement of pre-split blasting. These are as follows. 

(a) The blastholes must be parallel and locally coplanar—so that the blast-
ing mechanisms occurring in each blasthole can interact to successfully 
form the desired final surface. 

(b) Use closely spaced boreholes—the distance between the blastholes should 
not exceed about 10 times the blasthole diameter. This is important to 
ensure that blastholes are, indeed, close enough to allow interaction. 

(c) The blastholes should be lightly charged and the charges decoupled from 
the blasthole wall—this is to ensure that local pulverization is minimized 
whilst maximizing the gas pressure effect (in the margin sketch we show 
the effect of decoupling an explosive charge on the stress-time curve). 

(d) Detonate simultaneously—this maximizes the interaction between 
adjacent holes, such that the preferred plane for fracturing is the pre-
split plane. 

Coupled 

/ \ Decouple Decoupled r̂  

Figure 15.12 A successful pre-split face. 
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(e) Ensure good site management—accurate surveying and setting out of 
blastholes followed by accurate drilling is essential if truly parallel and 
coplanar blastholes are to be achieved. 

If these guidelines are followed, successful pre-splitting will generally 
occur. The method is forgiving and robust. The authors have seen examples 
of successful pre-splitting under remarkably adverse conditions. 

There are three main factors which can mitigate against pre-splitting. 

1. To avoid the pre-split blasting degenerating into bulk blasting (as 
shown in Fig. 15.5), it is important that the blast occurs sufficiently 
far from a free face parallel to the blasthole plane, so that the 
blasting energy is preferentially guided into forming the pre-split 
plane. 

2. Discontinuities within the rock mass can act as free faces such that, if 
they are at a low enough angle, as shown in Fig. 15.13(a), a ragged pre-
split could result. Conversely, discontinuities which are almost perpen-
dicular to the pre-split plane have little effect on the outcome, as shown 
in Fig. 15.13(b). 

3. In situ stresses can induce an effect analogous to the proximity of 
discontinuities, because the rock will tend to fracture perpendicular to 
the least principal stress, as illustrated in Fig. 15.13(c). If the principal 
stresses are adversely orientated and of sufficient magnitudes, the pre-
splitting mechanisms may be rendered ineffective. 

Discontinuity Intended presplit 
planes 

Blasthole 

Blast-induced fractures 
parallel to major 
principal stress 

Figure 15.13 The effects of discontinuities and in situ stress on the creation of 
the pre-split plane, (a) Low-angle discontinuities, (b) High-angle discontinuities, 
(c) In situ stress. 
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Figure 15.14 Illustration of pre-splitting effect in model tests in Perspex with 
introduced discontinuities (from Worsey, 1981). 

The pre-split mechanism we have discussed, and the associated factors 
affecting the outcome, have been investigated and reported by Worsey 
(1981). In Figs 15.14 and 15.15 there are sets of three photographs illustrating 
the creation of pre-split planes in model tests utilizing Perspex (polymethyl-
methacrylate) and rock. These photographs illustrate many of the points 
discussed, and the reader should note the clear evidence, in the tests 
conducted using Perspex, of the reflected stress wave, and the robustness of 
the pre-splitting technique almost regardless of the discontinuity orientation. 

Figure 15.15 Illustration of pre-splitting effect in model tests in rock with 
introduced discontinuities (from Worsey, 1981). 
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Figure 15.16 A static pre-split formed using expanding grout (Isle of Lewis, 
Scotland). 

An extreme example of the robustness of the technique is illustrated by 
the rock face shown in Fig. 15.16, where pre-splitting has been successful 
using an expanding grout instead of explosive—in this case it took several 
weeks for the pre-split plane to be developed. This technique was used to 
avoid vibration damage to an immediately adjacent building. Note that 
there was a complete absence of the dynamic stress wave effect in this 
situation, i.e. one of the fundamental mechanisms was not invoked, and 
yet the pre-split plane formed. 

15.3.2 Smooth-wall blasting 

We have seen the advantages and effectiveness of the pre-split method of 
blasting as it applies to excavations at or near the ground surface. Can pre-
splitting be successful in an underground excavation? The answer is general-
ly no, because of the existence of the in situ stress field. The stress field is all 
pervasive, and hence encourages any fracturing to form linear features, thus 
not being conducive to assisting in the creation of a circular tunnel. There is, 
however, an elegant method of utilizing the stress field to assist in producing 
the geometry required—by post-splitting or smoothwall blasting. 

As shown in Fig. 15.17, once an initial opening has been created, the 
principal stress directions at the excavation boundary become radial and 
tangential. The radial principal stress is reduced to zero, and the tangential 
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Figure 15.17 Smooth-wall (or 'post-split') blasting. 

principal stress will be concentrated to become the major principal stress. So, 
we use this principle—by blasting twice (as with pre-split blasting but in the 
reverse order)—to produce the desired high-quality excavation boundary. 

First, an opening is created 'roughly' which is close to the desired size 
and shape, and hence the stress field is changed all around the opening. 
Second, using similar blasting principles to those required for pre-split 
blasting (i.e. closely spaced and lightly charged parallel holes, decoupled 
charges and simultaneous detonation), a smooth-wall blast follows. The 
fracturing will be perpendicular to the minor principal stress and reinforced 
by the adjacent blastholes, thus forming a 'perfect' excavation geometry. 

The techniques of, and distinction between, pre-splitting and post-
splitting illustrate clearly the application of rock mechanics principles to the 
enhancment of rock engineering. They show how, through the application 
of engineering principles, blasting can be a sophisticated excavation tech-
nique, rather than a series of uncontrolled explosions. 

15.4 Mechanical excavation 
When this book was written, the Channel Tunnel, providing a land link 
between Britain and Continental Europe, was under construction using 
many types of tunnel boring machines (TBMs). The project is the final 
realization of a long-standing dream of civil engineers: indeed, in 1882 Col. 
F. Beaumont, a director of the Submarine Continental Railway Company, 
drove 1.5 km of a tunnel towards France using a steam-driven full-face 
tunnel boring machine. In a similar way to blasting, the development of 
mechanized excavation has an interesting history. 

Mechanized excavation is considered first through an outline of the 
machines involved and then there is a discussion of the rock mechanics 
mechanisms involved. 

J5.4. J Tunnel boring machines 

There are two basic types of machine for underground excavation: partial-
and full-face machines, as illustrated in Fig. 15.18. Partial-face machines 
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Figure 15.18 Partial-face (top) and full-face (bottom) tunnel boring machines. 

have a cutting head on the end of a movable boom, the whole normally 
being track mounted. Full-face machines have a rotating head, armed with 
cutters, which fills the tunnel cross-section completely and hence excavates, 
almost invariably, circular tunnels. As the figure shows, the main compo-
nents of both machines are some form of cutters on the rotating head, the 
rotating head itself, the power unit (usually electro-hydraulic), steering and 
mucking mechanisms, and supply lines. 

The two machine types have different advantages: partial-face machines 
are cheaper, smaller and much more flexible in operation, whereas full-face 
machines—when used for relatively straight and long tunnels (radii 
exceeding about 500 m and length exceeding about 2 km)—permit high 
rates of advance in a smooth, automated construction operation. With 
respect to the rate of constructing tunnels, it is important to distinguish 
between 
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(a) cutting rate, C: the rate at which the tunnel is constructed when the 
tunnelling machine is operating; and 

(b) advance rate, A: the rate at which the tunnel is constructed. 

These are related through the utilization factor, U, which is the amount 
of time (expressed as a proportion) that the machine is cutting rock, as 
A = UxC. 

Machine manufacturers may specify the cutting rate, whereas the actual 
tunnel construction rate will depend on the utilization factor, which 
will itself depend on site conditions. There have been examples of such 
machines operating with U = 10% in bad ground conditions and even 
U = 0%, i.e. the machine has become stuck. It is unlikely that machines will 
ever run at li = 100% because of scheduled maintenance, but values around 
90% are possible when the total tunnelling system has been carefully 
designed. Factors contributing to low utilization rates are difficulties with 
ground support and steering, the need to frequently replace cutters, blocked 
chutes and conveyors, and a wide variety of other problems. 

Over the years, while these machines have been developed, there has 
been continuing discussion on the best philosophy of design. Should a 
robust machine be developed that will overcome almost any ground 
conditions encountered, or should the machine be tailored to the ground 
conditions at a specific site? The advantage of the former is that 'off-the-
shelf machines and components will be available; the disadvantage is that 
considerable over-expenditure may be incurred through the provision of 
unnecessary quality and/or components. The advantage of bespoke 
machines is that they represent optimal ground engineering; they are, 
however, susceptible to unexpected ground conditions (there have been 
examples of soft ground machines designed to excavate sand encounter-
ing granite boulders, and of hard rock machines encountering clay). 

The two main factors that will stop tunnel boring machines are either 
that the rock is too hard to cut or that the rock is too soft to sustain the 
reaction necessary to push the machine forward. Tunnel boring machines 
will operate within certain ranges of rock deformability and strength: the 
more the machine is tailored to the ground, the narrower these ranges (or 
suites of ranges) will be. All tunnelling engineers say that the one certain 
thing about tunnelling is the uncertain ground conditions. 

15.4.2 The mechanics of rock cutting 

One of the primary elements of the rock excavation system is the 
mechanism of rock cutting at the front of the machine. The four main types 
of device that are used as cutters, and their requirements in terms of applied 
forces, are shown in Table 15.1. The symbols F,-, and F̂  represent the forces 
acting normal and tangential to the rock face. In tunnelling terms, the F^ 
is related to the thrust and Ft is related to the torque applied by the TBM. 
The figures above are only intended as a guide, and indeed, on most 
machines, there will be a combination of two or more cutter types. For 
example, on a machine with discs, there may be button cutters on the rim 
of the cutting head to ensure a smooth sidewall; also, water jets can be used 
to assist all three of the directly mechanical devices. There are many exotic 



258 Excovation principles 

Table 15.1 Rock cutting devices and associated parameters 

Cutter type 

drag picks 

(conical or flat-bladed) 

discs 

(moun ted singly or multiply) 

button bits 

(mounted on discs or cylinders) 

water jets 

Rock strength 

<70MPa 

70-275MPa 

275-415MPa 

all strengths 

Applied forces 

F„^F, 

F„>f^t 

^ . ^ ^ r 

not applicable 

types of device used for rock excavation, including the use of flame 
cutters, but ŵ e are only considering the conventional and widely used 
devices here. 

The action of all four devices is show^n in Fig. 15.19. The top left-hand 
diagram illustrates the cutting action of a drag pick. As can be seen 
from the diagram, the cutting mode is likely to be a complex mixture 
of tensile, shear and compressive modes of failure. We noted the basic 
Mode I, Mode II and Mode III types of failure, together w îth their binary 
combinations, in Fig. 14.13. The actual failure mode will be far more 
complex than this, and it is questionable whether any directly practical 
modelling of the process can currently be undertaken. There are many 
extra factors such as the vibration of the cutting head, the stiffness of the 
cutting tools and holders, and the irregular nature of the cut face (which 
is comparable to the dimension of the cutting edge of the tools). 

In Fig. 15.20, we illustrate the tangential (i.e. cutting) forces recorded by 
a dynamometer, in which a drag pick was mounted, over a cutting distance 
of about 250 mm. It is tempting to assume that there will be a direct 
correlation between the peaks in this graph and the liberation of individ-
ual chips during the cutting process. However, deeper investigation reveals 
that this is not the case; nor do any of the suggested failure criteria or 
proposed cutting mechanisms adequately model the variation of forces 
illustrated. 

Because of the complex nature of the cutting process, with all the 
attendent micro-structural effects and external complicating factors, the 
pragmatic approach has been to use familiar strength parameters, e.g. 
compressive strength (as demonstrated in Table 15.1), to empirically predict 
cutting rates. Since most geomechanical rock properties are inter-related, 
this approach has achieved some success. Current research is exploring the 
possibility of modelling the cutting process as a chaotic system. 
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Figure 15.19 The action of four primary cutting devices. 

The engineer wishes to know which cutting tool is the best, in what way 
the tools should be configured on a machine cutting head, how to minimize 
the need to replace the cutters, how to avoid damaging the cutter mounts, 
and how to minimize vibration. This involves the use of experience, 
empirical criteria as we have described, and varying the operating charac-
teristics (such as torque and thrust) during tunnel construction. 

Villette limestone 
depth of cut: 0.25 mm 

50 100 150 
Displacement (mm) 

200 250 

Figure 15.20 Record of tangential force during 250 mm cutting traverse using a drag 
pick (after Almenara, 1992). 
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energy 
(J/m-'̂ ) 
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No interaction 
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at optimal spacing 

Distance between 
cutters, d 

Figure 15.21 Generic curve of specific energy versus cutter spacing. 

Considering the other three cutting mechanisms illustrated in Fig. 15.19, 
the same remarks and applications apply in practice. There has alw^ays been 
debate about the failure mechanisms operating beneath freely rolling disc 
cutters, and w^hether they should be mounted singly or in sets to take 
advantage of interaction during the cutting process. In Fig. 15.21 v^e illus-
trate a generic curve of distance betw^een the cutters on the horizontal axis 
and specific energy (the energy required to remove a unit volume of rock) 
on the vertical axis. When the distance betw^een the cutters is low ,̂ con-
siderable overcutting or accessory grinding takes place; w^hen the minimum 
specific energy is reached the cutters are positioned such that optimal inter-
action occurs during the breakage process; when the distance betw^een the 
cutters is large, the cutters are acting independently and hence there is no 
benefit gained from cutter interaction. One approach to the application of 
rock mechanics in TBM design has been to minimize specific energy require-
ments. In particular, this has the effect of reducing vibrations and 
increasing the life of the cutters and other machine components. How^ever, 
the construction process using mechanized excavation is a complete system, 
and the optimization of the system (either in terms of advance rate or cost) 
may or may not involve minimizing the specific energy of cutting. 

The action of w^ater jets, shown in the bottom right-hand diagram of 
Fig. 15.19, is a specialized subject beyond the scope of this book and the 
reader is referred to the publication by Hood et al (1990) for further details. 
High pressures, of the order of 70 MPa, are used. We also mentioned earlier 
that combinations of the cutter types shown in Fig. 15.19 could be used. 
This is especially so for water jets, because they can either be used for water 
jet assisted mechanical cutting, mechanically assisted hydraulic cutting or 
as an integral part of the overall cutting process, for example, in 
dust and spark suppression. Very high specific energies are likely to be 
associated with hydraulic cutting methods, but they do have the 
advantage that there is no mechanical link between the rock and the cutting 
machine. 

More rock is excavated by large tracked machines (flywheel power up 
to 0.5 MW) fitted with massive ripping tines (see Fig. 15.22) than by other 
mechanical means. The main method by which the appropriate machine 
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Figure 15.22 Large tracked-type tractor fitted with ripping attachment. 

is chosen to match the soil and rock conditions is using seismic wave 
velocity. The theory relating the different seismic wave velocities and rock 
properties was outlined in Section 13.2: these equations show how the 
seismic velocities are related to the elastic properties of the rock mass. There 
is a correlation between rock mass moduli and rock mass strength, which 
is why the method is so effective. 

In Fig. 15.23, there is a ripper performance chart for a Caterpillar DIO trac-
tor with multi- or single-shank rippers. The chart illustrates the consistency 
of the rippability estimation through the rock spectrum, based on seismic 
velocity. 

15.5 Vibrations due to excavation 

All rock excavation induces vibrations in the ground and surrounding 
structures: the vibrations may be very large when blasting is used; or they 
may be relatively small when mechanized techniques are used. It is of 
engineering benefit to understand the generation of these vibrations, how 
they travel through the rock mass, and their possible effect on adjacent 
structures. In Chapter 13, various types of stress wave were discussed. Here 
we concentrate on the engineering implications of the vibrations caused 
by excavation, in particular those due to blasting. 

In order to evaluate rock blasting effects, it is helpful to 

(a) estimate ground displacements resulting from the blast; 
(b) evaluate the response of engineered structures to the blast; and, hence, 
(c) establish tolerable limits to prevent damage. 

These three concepts are covered in Sections 15.5.1-15.5.3. 

15.5. / Estimating ground displacements 

First, the parameters involved in estimating ground displacements must be 
established. These fall into two categories: independent and dependent 



’c 15.23 

Seismic Velocity 0 1 2 3 4 I Meters Per Second x lo00 1 I I I 1 1 I I 1 

JFeet 7 Per Second x loo0 

1 -  
Rippabili ty 

GLACIAL TlLL 
IGNEOUS 

GRANITE 

BASALT 

TRAP ROCK 

SEDIMENTARY 
SHALE 

SANDSTONE 

SILTSTONE 

CLAYSTONE 

CONGLOMERATE 

BRECCIA 
CALICHE 

LIMESTONE 

METAMORPHIC 
SHlST 

SLATE 

MINERAL & ORES 
COAL 

IRON ORE 

0 1 2  3 4 5 6 7 8 9 1 0 1 1  1 2 1 3  1 4 1 s  

scismic 

1 I I 1 I 

0 1 2  3 4 5 6 7 8 9 1 0 1 1  1 2 1 3  1 4 1 s  

RIPPABE - MARGINAL 1-1 NON-RIPPAELE m 

velocity. From Cdtcrpillar I’erfornmdncc~ Handbook (1983) 

1 I I I I I I I 1 I I I I I I J 
RIPPABE - MARGINAL 1-1 NON-RIPPAELE m 

velocity. From Cdtcrpillar I’erfornmdncc~ Handbook (1983) 

N 
0. 
N 



Vibrations due to excavotion 263 

parameters. Independent parameters in some way control the blast; the 
dependent parameters relate to the ground response. 

The main independent parameters are: blasting energy (kg/delay), 
W; distance from the blast (m), R; wave propagation velocity in the rock 
mass (m/s), c; rock bulk density (kg/m"^), p; and time (s), t. 

The dependent parameters are: maximum ground displacement (m), u; 
maximum ground velocity (m/s), v; maximum ground acceleration (m/s ), 
a; and frequency (Hz), /. 

Dimensional analysis of these parameters results in the following six 
dimensionless variables: tc/R, YJ/pc^R?, u/r, vie, aRJc^, ft. The first two are 
independent variables; the final four are dependent variables. It is helpful 
to graphically present the ground displacement information using the 
dimensionless variables. 

One of the most important variables is v, the velocity of ground 
displacement (we note that this is a vector and should be considered as the 
resultant velocity, i.e. v = { v̂  + v̂  + vl}^'^).lo determine v, the maximum 
component of velocity, the maximum resultant velocity, or the vector sum 
of the maximum components (which may be temporally separated) can be 
used. The first of these formulations is, historically, the most used. In Fig. 
15.24(a), this velocity is plotted against RjW^, which is the inverse cube 
root of the dimensionless variable W/pĉ R"̂ , assuming that p and c are 
sufficiently constant to be neglected. The graph shows the advantage of the 
dimensionless approach, because of the coherency of the results from many 
different sites and blasting operations. 

An alternative approach is to plot the maximum value of v (the 
peak particle velocity, PPV) versus different distances from the source 
for various vibration inducing operations. In this case, as illustrated in 
Fig. 15.24(b), there is a suite of straight lines for the different operations. 
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Figure 15.24 Blasting characterization using (a) dimensionless and (b) dimensional 
methods (from Hendron, 1977). 
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15.5.2 Evaluation of structural response 

The next step in establishing the effects of vibrations due to excavation 
is to consider the tolerable limits of structures to the various wave char-
acteristics. These limits depend on the type of structure, the construction 
materials, the history of the structure and the use of the structure. Thus, 
factors such as the type of foundation, existence of any finishings and 
claddings, whether other types of strain have already occurred and indi-
viduals' perceptions are all important. Each structure will be susceptible 
in different ways, but general guidelines have been incorporated into 
design codes to assist engineers and to provide a basis for construction-
al operations. As an example, we list below some tolerable limits 
based on PPV, emphasizing that these are examples and not specific 
guidelines. 

Type of structure Tolerable PPV limits 
(mm/s) 

Residential masonry buildings 12-50 
Retaining walls, bridge abutments, 100 

industrial buildings 
Lined and unlined rock tunnels 500-600 

Further detailed discussion of this topic is beyond the scope of this book, 
but we refer the reader to Hendron (1977), New (1984) and Dowding (1985) 
for more information. 

Another factor determining the response of a structure is the range of 
frequencies present in the vibration with respect to the frequency response 
of the structure itself. The frequencies can be presented either as pre-
dominant frequency histograms or complete frequency spectra. Similarly, 
the response of a structure can be illustrated through a response spectrum. 
In Fig. 15.25(a), we show how the predominant frequencies, measured at 
a 'structure of concern', can change with the type of blasting operation. 
Figure 15.25(b) demonstrates the response of low-rise residential structures 
in terms of their natural frequency. 

The response of structures to ground vibrations can be quantified 
through the use of mathematical models, such as single degree of freedom 
models (as shown in the margin sketch). Such an approach can be difficult, 
given the difficulty of adequately determining values for the various 
components in such a model. Consequently, a pragmatic approach is 
usually adopted. 

15.5.3 Engineering approach to blast-induced 
vibrations 

Faced with the complexity of information which has been indicated in 
Section 15.5.2, some form of pragmatic guidance is required for engi-
neering. The four main steps in considering the effect of blasting 
vibrations on structures are: 
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Figure 15.25 (a) Examples of principal frequencies induced by blasting (from 
Siskind et al, 1980). (b) Examples of fundamental frequencies for low-rise residential 
structures (from Dowding, 1985). 
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Figure 15.26 Example ground motion and structure response spectra (from 
Dowding, 1985). 
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(a) establish the relation between the ground motions due to the blast and 
scaled distances (cf. Fig. 15.24); 

(b) determine the structural amplification of ground motions with mathe-
matical models such as a single degree of freedom model which 
incorporates attentuation due to the structure itself; 

(c) estimate the reponse spectrum from the two steps above; and 
(d) compare the natural frequency of structures with the response spectra 

in order to evaluate the structural response. 

Figure 15.26 demonstrates this procedure, with a predicted response spec-
trum and predicted peak ground motions plotted on four-axis tripartite 
paper. Tripartite paper is developed from a consideration of the sinusoidal 
approximation to ground wave motions, and is useful for the rapid 
assessment of blast-induced vibrations. At any given site, it is always 
advantageous to calibrate this approach using site trials, for various blast 
parameters and utilizing ground motion recording apparatus. 

The complementary subject to excavation (or rock removal) is reinforce-
ment and support (i.e. maintaining the engineering quality of the rock 
immediately adjacent to the excavation periphery). We will adopt an iden-
tical approach in describing the principles of reinforcement and support 
in the next chapter. 
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principles 

In the previous chapter on excavation principles, we discussed the idea of 
taking the rock into the post-peak region of the complete stress-strain curve 
for excavation. Here, we discuss the principles of stabilization—whether 
for staying in the pre-peak region, or for allowing the rock to pass into the 
post-peak region and utilizing its residual strength. 

Following the introduction on the form of the disturbances caused by 
the excavation process, we discuss the two fundamental methods of stabi-
lization: rock reinforcement and rock support. In each case, the behaviour 
of essentially continuous and discontinuous rock masses is discussed 
separately. Finally, we consider the principles of stabilization when the rock 
mass behaviour has attributes of both a continuum and a discontinuum 
(e.g. slip on planes of weakness). These principles are amplified and their 
practical application illustrated in the later chapters dealing with rock 
engineering. 

16.1 The effect of excavat ion on the rock 
mass environment 

There are two aspects of rock excavation that we will concentrate on here. 
The first is that 'one cannot prevent all displacements at the excavation 
boundary'. The second is that 'a mistake in excavation design can be a 
major problem'. In order to understand the displacements and avoid 
problems, we will consider the three primary effects of excavation and then 
decide on the ramifications for stabilizing excavations of all kinds. 

The three primary effects of excavation are: 

(a) displacements occur because stressed rock has been removed, allowing 
the remaining rock to move (due to unloading); 

(b) there are no normal and shear stresses on an unsupported excavation 
surface and hence the excavation boundary must be a principal stress 
plane with one of the principal stresses (of magnitude zero) being 
normal to the surface. Generally, this will involve a major perturbation 
of the pre-existing stress field, both in the principal stress magnitudes 
and their orientations; and 
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(c) at the boundary of an excavation open to the atmosphere, any previous 
fluid pressure existing in the rock mass will be reduced to zero (or more 
strictly, to atmospheric pressure). This causes the excavation to act as a 
'sink', and any fluid within the rock mass will tend to flow into the 
excavation. 

These three primary affects are illustrated in Fig. 16.1. 
With respect to the likely displacements (top right-hand diagram in 

Fig. 16.1), there is the choice of allowing them to occur or providing some 
method of stabilization to resist them. The engineering objective dictates 
the significance of any rock displacement and its maximum tolerable 
magnitude. It is important to know whether the displacements are 
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Figure 16.1 The three primary effects of excavation on the rock mass environment. 
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associated with entire rock blocks moving into the excavation, or whether 
the rock mass is deforming as a whole, or whether failure is occurring in 
the rock. It is possible for all three of these mechanisms to be operating 
simultaneously, and it is necessary to understand the mechanisms in order 
to decide on the stabilization strategy. 

The most significant consequence of the second effect—disturbance of the 
stress field (middle right-hand diagram of Fig. 16.1)—is that the rock is more 
likely to fail, owing to the increased magnitude of the deviatoric stresses. The 
increase in the deviatoric stresses arises from the change in the magnitude 
of the major principal stress, together with the fact that an arbitrary polyaxial 
stress state has become an effectively uniaxial or biaxial stress state. 

The third effect, that of increased water flow (bottom right-hand diagram 
of Fig. 16.1), is significant because there will be higher differential heads 
within the rock mass which will tend to push rock blocks into the 
excavation, with the attendant possibility of increased weathering and time 
dependent deterioration as the water flow increases. 

These three primary effects, and the optimal way in which the rock 
engineering strategy is developed to account for them, have one thing in 
common: we should not blindly attempt to maintain the original conditions 
(e.g. by installing massive support or reinforcement and hydraulically 
sealing the entire excavation); rather, we should treat these effects as pro-
viding the opportunity to understand the rock behaviour and to develop 
the engineering sympathetically. 

As the displacements occur, engineering judgement may determine that 
they can be allowed to develop fully, or be controlled later. Similarly, per-
haps the engineer can utilize the alteration of the stress field to advantage 
when designing the shape of the excavation to minimize the induced 
deviatoric stresses. Knowing that water will flow into the excavation means 
that the flow can be controlled in accordance with the engineering 
objective: some tunnels may be excavated as drainage or water-gathering 
systems; others may have to be totally dry. 

16.2 The stabilization strategy 
A categorization of rock reinforcement and rock support in continuous and 
discontinuous rock is required because rock reinforcement and rock sup-
port are not the same. In Fig. 16.2 we show this categorization based on 
the engineering viewpoint. 

If failure around an excavation, whether at the surface or underground, 
is due to blocks of rock moving into the excavation, two approach 
philosophies can be considered for stabilization: 

(a) the block displacements are occurring because the rock mass is a 
discontinuum, and hence the rock is reinforced so that it behaves like 
a continuum; or 

(b) direct support elements are introduced into the excavation in order to 
maintain block displacements at tolerable levels. 

The first option is known as rock reinforcement; the second is known as 
rock support, as presented in Fig. 16.2. Note that with rock reinforcement 
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Figure 16.2 Basic categorization of rock reinforcement and support. 

the engineering elements are inserted within the rock mass and with 
support they are inserted within the excavation. 

The hierarchical system shown in Fig. 16.2 is for the purpose of separat-
ing the stabilization concepts: in practice, two or more of the conditions 
shown in the bottom row may be operating concurrently. 

In the case of reinforcement, as illustrated in Fig. 16.3(a), steel cables or 
bars grouted within boreholes are used in an attempt to minimize displace-
ment occurring along the pre-existing discontinuities—so that the rock 
supports itself. An associated preventative measure is the spraying of 
concrete or cement mortar onto the rock surface immediately on exposure, 
not as a direct structural support, but in conjunction with the bolting in 
order to protect the surface and inhibit minor block movements. Other 
materials can be considered as reinforcing elements for particular purposes, 
e.g. wood or glass fibre, if it is necessary to subsequently excavate through 
the reinforced rock mass. 

In the case of support, structural elements—such as steel arches or 
concrete rings, as illustrated in Fig. 16.3(b)—are introduced to inhibit rock 
displacements at the boundary of the excavation. These elements, which are 
external to the rock mass, provide load carrying capability, with the result 
that the rock does not totally support itself: the rock is supported. Support 
does not directly improve the intrinsic strength of the rock mass, but does 
alter the boundary conditions. We will be discussing later how the utility 
of such support can be assessed by means of the 'ground response curve', 
and how developments such as using knuckle joints with pre-cast concrete 
segments (so that the applied loads are resisted as compressive hoop forces 
rather than bending moments) are helpful. At this stage, we note that the 
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Figure 16.3 Illustrations of (a) rock reinforcement and (b) rock support. 

basic principle of rock support is fundamentally different from rock 
reinforcement, as illustrated in Fig. 16.4. 

In Fig. 16.2, the concept of rock stabilization was defined in the top box, 
the two primary methods of achieving this objective in the middle boxes, 
and the way in which the two separate concepts of rock reinforcement and 
rock support apply to continuous and discontinuous rock masses in the 
bottom boxes. Each of the four elements shown in the bottom row of Fig. 
16.2 will now be described in detail. 

16.3 Rock reinforcement 
Rock reinforcement as applied to essentially continuous rock masses differs 
from that used in discontinuous rock masses because of the mode of action 
of the reinforcing elements. Sections 16.3.1 and 16.3.2 describe this 
difference. 



272 Stobilization principles 

Reinforcement induces 
stabilizing forces 
within the rock mass 

Rock bolts 

e.g. a bolted 
rock face 

Layer of 
shotcrete 

Discontinuities 

(a) 

Structural elements 
apply external 
stabilizing forces 
directly 

e.g. a ring of 
pre-cast concrete 
segments 

(b) 

Figure 16.4 Principles of (a) rock reinforcement and (b) rock support. 

16.3.1 Rock reinforcement in continuous rock 

It may be thought that the use of rock reinforcement, e.g. rock bolts, is only 
of use in discontinuous rock masses in order to prevent discrete block 
displacements. However, the use of rock reinforcement in a continuous 
medium can also be of benefit because of the reinforcement effect on the 
overall rock properties and hence rock behaviour. If a continuous rock is 
strong, it may w êll be capable of withstanding the induced stresses without 
further assistance. Conversely, if a continuous rock is weak, heavy direct 
support may be required, such as segmental pre-cast concrete rings. The 
case we are discussing here is where improvement to the intrinsic strength 
by the rock reinforcement is all that is required for rock stabilization. The 
mechanics of this problem are similar to those of reinforced concrete. 

Consider an element of reinforced rock adjacent to the excavation 
boundary (see margin sketch). The effect of the reinforcing elements is to 
produce an effective confining stress of 

Sketch of radially 
reinforced annulus 

Gj. = A'E'VGQ 

where A and E are the ratios of the cross-sectional areas and the Young's 
moduli of the reinforcing element to that of the rock being 
reinforced, respectively, 
V is Poisson's ratio for the rock, and 
OQ is the tangential stress. 

Note that the larger the ratios A' and E', i.e. for an increased rock bolt 
density and lower stiffness rock, respectively, the larger the effective 
confining pressure will be. As an example, consider a chalk (£ = 1 GPa) 
being reinforced with 25 mm diameter steel bars at a density of four bars 
per square metre of rock face, o^ = OAIGQ. Although the induced confining 
stress is only 12% of the tangential stress in this example, it will have a 
profound effect on the strength and failure properties of the chalk. Figure 
6.15 shows the marked effect of a small confining stress on the strength and 
shape of the complete stress-strain curve of rock in compression. Use of 
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this type of analysis provides a rapid means of determining the value of 
reinforcing continuous rock—which will clearly be most effective in low-
stiffness, low-strength, brittle rocks. 

16.3.2 Rock reinforcement in discontinuous rock 

The mode of action of the reinforcement in a discontinuous medium is 
somewhat different to that described in Section 16.3.1 because, not only 
are we considering improvement of the rock structure properties, but 
also the avoidance of large displacements of complete blocks. The method 
of analysis for the kinematic feasibility of rock blocks will be discussed 
in Chapters 18 and 20 for surface and underground excavations, respec-
tively: here we will highlight the factors relating to rock reinforcement 
principles. 

Two of the most important factors are whether the blocks are free to 
move, given the geometry of the rock mass and excavation, and the 
character (quantity, length and orientation) of the reinforcement. In Fig. 
16.5 we show the simplest case of reinforcing a discontinuous material: a 
single block on a rock surface is reinforced by a tension anchor. The tension 
anchor should be installed such that the block and the rock beneath act as 
a continuum, and block movement is inhibited. We may wish to know the 
optimal bolt length, orientation and tension, and indeed whether the 
reinforcement is required at all, cf. the engineering objective referred to in 
the uppermost box in Fig. 16.2. 

For the simple geometry shown in Fig. 16.5 without the rock bolt, basic 
mechanics indicates that the block will slide if the angle of the slope exceeds 
the angle of friction of the rock surfaces for a cohesionless interface. This 
is therefore the first criterion for indicating the potential for failure. 
Considering now the length and diameter of the bolt, these have to be 
sufficient to ensure that the strength of the bonds across the anchor-grout 
and grout-rock interfaces are capable of sustaining the necessary tension 
in the anchor, which in turn will depend on the fracturing of the rock mass. 
Finally, the anchor diameter may also be determined on the basis of the 
tensile strength of the anchor material. 

With respect to the bolt orientation and tension, it is not obvious at what 
angle the anchor should be orientated for optimal effect, taking into 
account the basic mechanics and the rock structure. If we regard the 

Block of 
rock 

Figure 16.5 Optimized rock reinforcement for the case of a block on a rock surface. 
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optimal orientation for the anchor as that which enables the anchor tension 
to be a minimum, then the angle between the anchor and the slope surface 
is equal to the friction angle between the block and the slope. Many other 
factors may be involved in this analysis: these will be covered in Chapter 
17. The intention here is to indicate the fundamental philosophy. 

The key point to be made is that, if the reinforcement inhibits block movement, 
and sufficient stress can be transmitted across the interface, then in principle the 
rock reinforcement has changed the rock discontinuum to a rock continuum. 

In practice, when rock anchors are installed in a discontinuous rock mass, 
the rock surface is often covered with wire mesh and then covered in shot-
crete (sprayed concrete). It is emphasized that the wire mesh and shotcrete 
are part of the rock reinforcement system: the purpose of the shotcrete is 
to provide a stiff coating to inhibit local block rotation and movement. 
Before rotation, forces may be being transmitted across complete block-to-
block interfaces; after even very small rotation, these forces become con-
centrated at the edges or vertices of the blocks, with high local stresses 
being developed. It is this sequence of block rotations that leads to the 
progressive failure of a discontinuous rock mass and subsequent loss of 
integrity of the engineered structure. 

16.4 Rock support 

The term 'rock support' is used for the introduction of structural elements 
into a rock excavation in order to inhibit displacements at the excavation 
boundary. As in the case of rock reinforcement, rock support is considered 
separately for continuous and discontinuous media. In reality, the 
distinction between continuous and discontinuous rock masses may 
not be quite as clear as implied; the transitional case is discussed in 
Section 16.5. 

76.4.7 Rock support in continuous rock 

Consider the stresses and displacements induced by excavating in a CHILE 
material. For example, the radial boundary displacements around a circular 
hole in a stressed CHILE rock in plane strain are 

u, = (K/E)[ai + 0-2 + 2(1 - v^)(ai - a2)cos 26- va^] 

where R is the radius of the opening, 
Gi and O2 are the far-field in-plane principal stresses, 
a'3 is the far-field anti-plane stress, 
0 is indicated in the margin sketch, and 
£ and v are the elastic constants. 

Recall that the stress concentrations around an opening in similar 
circumstances are independent of both R and the elastic constants—the stress 
concentrations around circular openings of different diameters and in 
different CHILE materials are the same. However, the magnitude of the 
radial displacement must depend on both the radius of the opening and the 
values of the elastic constants, as indicated in the equation above: 
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displacements are proportional to the radius of the opening and inversely 
proportional to Young's modulus. Moreover, any deviation from CHILE 
behaviour towards DIANE characteristics results in increased displacement 
values. 

The rock stabilization strategy can be based on the need to restrict the 
displacements as governed by the engineering objective. The ground 
response curve is a graph of the support pressure required to maintain 
equilibrium of the boundary at a given displacement value versus the 
displacement value. The ground response curves shown in Fig. 16.6 
illustrate this relation for the cases of linearly elastic, 'stable' non-elastic and 
'unstable' non-elastic behaviour. 

Where the elastic ground response curve intersects the boundary 
displacement axis in Fig. 16.6(a), the w^-value is found from the expression 
above: this point represents total elastic deformation of the boundary of 
the excavation and no support pressure is required, providing that the 
magnitude of this displacement is acceptable. For most rock engineering 
situations, such an elastic displacement will be less than 0.1% of the radius 
and will be acceptable. 

Considering the 'stable' non-elastic curve of Fig. 16.6(a), the intersection 
of the curve with the boundary displacement axis occurs at a higher 
displacement value, say up to 10% of the radius. Whether such a displace-
ment is acceptable or not depends on the engineering objective: for 
example, in a high-speed rail tunnel it may be unacceptable, whereas in a 
temporary mine opening it may be tolerable. 

Finally, the curve in Fig. 16.6(a) corresponding to 'unstable' non-elasticity 
definitely indicates the need for support, because the curve does not inter-
sect the boundary displacement axis, i.e. the opening will collapse without 
support. Because of the general nature of the ground response curve 
concept and the ability to study a variety of associated factors, it has become 
a widely used semi-empirical tool in the design of support for excavations. 

As an example of the utility of the ground response curve method, 
consider the curves in Fig. 16.6(b), which are similar to those in Fig. 16.6(a) 
but occur when the same rock mass is excavated by different methods. 
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Figure 16.6 Ground response curves in (a) different types of rock and (b) in the 
same rock type but excavated by different methods. 
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• Curve 1 represents the 'perfect' excavation case, in which there is no 
disturbance of the remaining rock and there is no deviation from CHILE 
behaviour. 

• Curve 2 may occur in a machine-driven tunnel, in which there is a slight 
disturbance to the remaining rock with the result of increased final 
displacement. 

• Curve 3 could represent high-quality blasting, where more disturbance 
is inevitable and the resulting displacements are increased yet further. 
All three of these curves intersect the boundary displacement axis which 
indicates that no support is required, providing the displacements are 
tolerable. 

• Curve 4, representing the response following poor-quality blasting, 
indicates that support is essential if stability of the excavation is to be 
maintained. This is another example of interaction within rock engi-
neering—in this case, the direct link between excavation technique and 
stabilization requirement. 

If support is required, we can gain an indication of the efficacy of partic-
ular support systems by plotting the elastic behaviour of the support, the 
available support line, on the same axes as the ground response curve. We 
have plotted a soft support and a stiff support (considered as a radial 
stiffness) together with ground response curves in Fig. 16.7. The points of 
interest are where the available support lines intersect the ground 
response curves: at these points, equilibrium has been achieved. 

There are other aspects of practical significance which can also be noted 
in relation to the ground response curve; two of these are also illustrated 
in Fig. 16.7. First, we remember that the support cannot be installed con-
temporaneously with excavation, and so some initial displacement must 
occur before the support is installed (and, strictly speaking, displacements 
will have occurred even before the excavation reaches the point in ques-
tion—because of the alteration of the complete stress, and hence strain, 
states within the rock mass). Thus, the available support line starts, as 
shown in Fig. 16.7, with a displacement offset. 

Another useful aspect of this approach is illustrated in Fig. 16.7, i.e. the 
concept of a yielding support. As shown in the diagram, the available 
support line for a yielding support has a maximum strength, which cannot 

Boundary displacement 

Figure 16.7 Ground response curves and available support lines. 
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be exceeded. This strength may be reached before equilibrium with the 
ground response curve is attained. Such an effect can be achieved by the 
use of compressible inserts placed between the knuckle joints of pre-cast 
concrete segments, or clamped joints in steel arch supports. In a more 
precise way, the yielding of the support can be determined by the control 
of the fluid pressure in hydraulic rams, a technique used effectively in 
longwall mining practice. 

There are other engineering conclusions to be drawn from a ground 
response curve diagram. No support is necessary to achieve equilibrium 
in the elastic and stable non-elastic cases: if support is used in these cases, 
the displacement at equilibrium is simply reduced. In the case of the unsta-
ble, non-elastic curve, support must be used. For the case illustrated in Fig. 
16.7, the stiff support (e.g. pre-cast concrete segments) will be successful, 
but the soft support (e.g. steel arches at 1 m centres) will not bring the 
system to equilibrium. Another point that is demonstrated by this diagram 
is that the engineer should never attempt to achieve zero displacement by 
introducing as stiff a support as possible—this is never possible, and will 
also induce unnecessarily high support pressures. The support should be 
in harmony with the ground conditions, with the result that an optimal 
equilibrium position is achieved. 

Through a knowledge of the mechanics of support as illustrated by the 
ground response curve and associated available support lines in Fig. 16.7, 
a purely observational approach to providing support can be utilized. It has 
been seen that it is unnecessary to install stiff support elements at an early 
stage: it is better to allow the rock to displace to some extent and then 
ensure equilibrium is achieved before any deleterious displacement of the 
rock occurs. In practice, it may not be possible to establish the exact form 
of the ground response curve, but we can measure the displacement that 
occurs, usually in terms of the convergence across an excavation. The 
ground response curve and and convergence curves are linked because 
they are different manifestations of a single phenomenon. 

The three curves in Fig. 16.8 serve as an aid to understanding this linkage. 
Commencing with a ground response curve and an available support line, 
the information is redrawn as a single curve of the pressure 'difference' 
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Figure 16.8 Link between ground response curves and observed convergence. 
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between the two (i.e. the pressure remaining to be equilibriated) versus 
displacement. Equilibrium is reached when the pressure difference is zero. 
Accepting that the pressure difference is a function of the displacement of 
the lining, and that the displacement of the tunnel wall is a function of time 
(because the displacement results from advancing the tunnel face), then a 
convergence-time curve can be drawn. This final curve is the one that is 
measureable in practice. 

Convergence occurs rapidly as excavation proceeds; subsequently the 
convergence rate decreases as equilibrium is approached. This leads direct-
ly to the observational method (sometimes referred to as the New Austrian 
Tunnelling Method), in which sufficient support is installed, after the 
period of initial high displacement rate. The disadvantage of this 
approach is that the rock-support mechanics is not precisely known; the 
advantage of the approach is that it is based on sound engineering prin-
ciples and can be tailored on site to the idiosyncrasies of the project. The 
technique was used in the Bochum metro (Fig. 16.9) and the Channel 
Tunnel sub-sea running tunnel crossover chambers. 

An extensive review of excavation support techniques with tunnel 
linings in the United Kingdom has been conducted by Craig and Muir 
Wood (1978). 

16.4.2 Rock support in discontinuous rock 

A directly analogous ground response curve approach can be considered 
for the use of rock support in discontinuous rock. As the rock becomes more 
and more fractured with the attendant loss of strength, the ground 
response curve would be expected to become progressively flatter, as 
illustrated in Fig. 16.10. This effect is similar to the reduction in rock 
mass modulus with increasing discontinuity frequency, as illustrated 
in Fig. 8.2. 

Figure 16.9 Construction of the Bochum metro in Germany. 



Stabilization of 'transitional' rock masses 279 
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Figure 16.10 Ground response curve in discontinuous rock masses. 

The two limiting cases of the suite of ground response curves in Fig. 16.10 
are the linearly elastic behaviour at the left part of the figure and the zero 
strength behaviour represented by the uppermost horizontal curve. Note 
that in order to achieve a zero displacement condition in either case, it is 
necessary for the introduced support pressure to equal the in situ rock 
pressure. However, equilibrium is reached when the available support line 
intersects the ground response curve, so that in most cases for a 
continuous rock it is not necessary to replace the in situ rock pressure with 
an equivalent support pressure. Nevertheless, considering Fig. 16.10, it can 
be seen that increasingly higher support pressures are required for 
equilibrium as the introduction of more and more discontinuities into the 
rock mass flattens the ground response curve. So, at the other limit, there 
is a zero-strength material in which it is always necessary to replace the in 
situ rock pressure with an equivalent support pressure. 

The circumstances are not only affected by the overall discontinuous 
nature of the rock mass, but are exacerbated by the existence of discrete 
rock blocks which will create point loads on the support elements. More-
over, there is the basic danger to personnel of rock blocks falling from the 
roof during construction and the difficulty of localized high water flows. 

16.5 Stabilization of ^transitional^ rock 
masses 

The previous four sub-sections have followed the lower boxes in Fig. 16.2, 
and have concentrated on the major features of the subjects. In practice, 
there will be a wide spectrum of rock media and associated rock 
behaviour. The term 'transitional' in the heading to this section is used to 
indicate that the rock mass around an excavation may have attributes 
associated with continuous and discontinuous rocks. There is a wide range 
of such attributes and consequential behaviour; here, we highlight one 
transitional case—slip on discontinuities in a layered rock. In such a case, 
the stress distribution around the opening can be found from a continuum 
analysis, but the mode of failure is due to the discontinuous nature of the 
rock. The '(j)j theory' described here was presented by Goodman (1989). The 
parameter (pj is the angle of friction between two discontinuity surfaces. 
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There are three basic concepts that permit consideration of the potential 
for interlayer slip and establishing the extent of the regions thus affected: 

(a) when rock is excavated and an opening formed, the excavation surface 
becomes a principal stress plane, with the result that the components 
of normal stress in the rock rotate to become parallel to the excavation 
surface (see Fig. 16.11(a)); 

(b) slip on a discontinuity can occur when the major principal stress (in 
the plane of the excavation surface) applied across the discontinuity 
acts at an angle greater than 0, to the discontinuity normal (see Fig. 
16.11(b)); 

(c) a convenient geometrical construction, utilizing (a) and (b) above, can 
be used for establishing the extent of the boundary of the opening over 
which the potential for interlayer slip exists (see Fig. 16.11(c)). 

In Fig. 16.11(c), the geometrical construction used involves drawing a 
construction line normal to the single discontinuity set under considera-
tion, followed by two further construction lines inclined at an angle 0j to 
the normal. Tangents to the excavation boundary, which are parallel to 
these two construction lines, are then drawn. The key to this construction 
is that between these two tangent points, criterion (b) above is fulfilled, and 
hence this is the region for potential inter-layer slip. This construction is 
valid for the entire excavation boundary. 

The construction applies to any concave shape of excavation. In Fig. 16.12, the 
construction is shown for a much more irregularly shaped excavation. It is 
not necessary to know the geometrical centre of the excavation shape; 
keeping the normal line of the construction and the discontinuity normals 
parallel, all three lines of the geometrical construction are moved until the 
outer lines touch the excavation boundary on both sides. In Fig. 16.12(a), 
the construction is shown for 0^=20°, whereas in Fig. 16.12(b) the construc-
tion is shown for 0^=50°. This not only demonstrates the construction 
method, but also shows that there is potential for inter-layer slip in the walls 
for the lower friction angle, but not for the higher friction angle. Such a 
reduction in the friction angle could result from deterioration of the 
discontinuity surfaces with time, with the result that previously stable 
zones of an excavation boundary become liable to instability. 
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Figure 16.11 Criteria associated with the (j), theory. 



Sfobilization of 'fronsitionol' rock masses 281 

Zones of potenti; 
instability will 

change as (})j changes 

Entire boundary is 
potentially unstable 

(a) (b) 

Figure 16.12 The use of the (pj construction for a non-circular opening with (a) 
0,-20° and (b) 0,=5O°. 

The analysis as presented assumes that the normal to the discontinuities 
is in the plane of the cross-section. If this is not the case then the angle project-
ed onto the plane of the cross-section will be an 'apparent (j)-. This angle can 
conveniently be determined using hemispherical projection methods. 

Considering the case when a support pressure is applied normal to the 
excavation boundary, it is possible to calculate the pressure required to 
inhibit inter-layer slip. In the plane of the cross-section, the stresses acting 
on an element of material immediately adjacent to the boundary are GQ and 
p, as shown in Fig. 16.13. Application of the stress transformation 
equations and utilization of the Mohr-Coulomb failure criterion results in 
the following expression for the required support pressure: 

tan(a - 0,) 
p = G, ^̂  ^ 0 , < a < 90. 

t ana 

In general, the tangential stress GQ will vary around the boundary. For 
simple geometries, closed-form solutions exist for the tangential stress, 
but for more complex shapes a numerical procedure is adopted. 

In situ stress 
a 

In situ stress 
0"u ^̂  Support 

pressure 
P 

Figure 16.13 The 0, theory applied to the calculation of support pressure. 
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Regardless of the technique used for determining the tangential stress, the 
formula above shows that the optimal support pressure varies around the 
excavation boundary. 

Although we have used only one discontinuity set in this example, it is clear 
that the same approach can be adopted for all the discontinuity sets present 
and the solutions superposed. If a particular region of excavation boundary 
is found to have the potential for inter-layer slip with respect to multiple dis-
continuity sets, then it will be particularly prone to failure. From the point of 
view of provision of support at any point on the boundary, then the highest 
calculated support pressure is the one required to inhibit slip on all sets. 

16.6 Further comments on rock stabil ization 
methods 

Following the explanations earlier in this chapter, it follows that the 
simplest way to stabilize a rock mass containing discontinuities is to install 
rock bolts in order to reduce the mechanical effect of the discontinuities. 
In the extreme case, were we able to eliminate these effects completely, the 
rock discontinuum would have been changed to a rock continuum. The 
excavation surface is a special case, requiring extra reinforcement and so, 
as mentioned earlier, a combined system can be used which would include 
shotcrete and wire mesh. This can be either a primary operation used for 
temporary protection, or it could be the final stabilizing operation. 

In Fig. 16.14, there is an example of a rock mass which has been 
reinforced by rock bolts alone, and an example in which rock bolts and 
shotcrete have been used together. The bolts can be either tensioned or 
untensioned: there are advantages and disadvantages to each. 

The advantage of a tensioned bolt is that it can provide extra force across 
the discontinuity surfaces and hence inhibit further block displacement. 
The disadvantage of such a bolt is that the tension may not be sustained, 
due to relaxation, over the design life. Hence, unless there is a continual 
monitoring programme, the engineer may not have sufficient continuing 
confidence that the bolting system is operating as designed and originally 
installed. When rock bolt heads have to remain accessible for monitoring 
following the installation of secondary reinforcement or support (in 
particular, further layers of shotcrete or cast in situ concrete), the extra 
complication will incur higher costs. 

The advantage of untensioned rock bolts is that block displacements 
induce the necessary tension within them, due to dilation of the shearing 
discontinuity: thus, they respond directly as required. The disadvantage 
of these bolts is that they do not possess the small amount of pre-tension 
which could inhibit the initial displacements. 

There are many proprietary types of rock bolt available, and many ways 
in which the tension is applied through the rock bolt-rock bond to create 
compression in the rock. There are also operational factors to be considered: 
tensioned rock bolts require the necessary equipment to be available, and 
time for its use to be scheduled; with untensioned bolts the engineer can 
never be certain that the rock bolt-rock bond has sufficient strength to 
allow the required tension to be induced. 
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Figure 16.14 Underground excavation stabilized by (a) rock bolts and (b) rock bolts 
and shotcrete. 

This form of rock stabilization, where the rock nnass 'supports itself, is now 
generally accepted by all aspects of the industry. When one is 
underground, however, it is an act of intellectual faith to believe that the 
rock is, in fact, being stabilized by the rock bolt technique—because there 
is little visual evidence of any engineering work. It is a good idea to explain 
the principles to all personnel in order to improve confidence and instill 
the necessary discipline to ensure correct installation. 

In recent years, reinforcement by the installation of long lengths of steel 
wire rope—cable bolting—has been introduced, thus enabling the reinforce-
ment to be of the same dimension as the structure. For example, installing 
cable anchors of sufficient length in a mine stope hanging wall prevents 
smaller blocks, reinforced by the shorter rock bolts, from becoming 
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Figure 16.15 Rock bolting in discontinuous rock masses, (a) Single set of discon-
tinuities in strong rock, (b) Single set of discontinuities in weak rock, (c) Multiple 
discontinuities. 

detached. 
Rock bolts can be installed on a fixed production pattern (designed 

according to the rock structure), or the pattern can be varied according to 
local conditions, or both. One extreme in the rock structure spectrum is a 
single set of parallel, persistent and planar discontinuities: the other end 
of the spectrum is the case of discontinuities at all orientations with many 
idiosyncratic features. Much can be established about the optimal rock 
bolting pattern from engineering judgement. 

If there were only one set of discontinuites, and the rock were strong, 
failure would not occur at all. The minimum number of faces required to 
form a discrete rock block is four: thus, a single set of discontinuities 
intersecting an excavation does not result in any rock blocks being formed, 
as illustrated in Fig. 16.15(a). Conversely, if the rock mass were weak, 
reinforcement would be needed and the optimal direction for the bolts 
could be determined, which would not be consistently radial to the 
excavation, as illustrated in Fig. 16.15(b). 

If the numbers and properties of the discontinuities tend to form a 
homogenous and isotropic rock mass structure, a standardized pattern can 
be adopted. This case is illustrated in Fig. 16.15(c). 

Shotcrete can be regarded as a rock reinforcement method, because it 
inhibits block movement rather than providing structural support. This 
method of operation may be understood if we consider that a thin (say 100 
mm) membrane of shotcrete may be sufficient to stabilize a 5 m diameter 
tunnel. Such a thin unreinforced concrete element is incapable of support-
ing large radial pressures without failing. The pressures do not develop 
because the slight lateral restraint offered to the rock around the excava-
tion by the shotcrete is sufficient to inhibit the block movement, and 
effectively increase the rock mass strength. It follows that the shotcreting 
is most effective when a complete ring is formed, and drainage holes 
should be provided if significant water pressures are likely to develop. 

The structural operation of a reinforcement system consisting of ten-
sioned rock bolts and a shotcrete membrane is conceptually analogous to 
that of a spoked bicycle wheel. In such wheels the thin spokes are tensioned 
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before the wheel carries any load, with the effect that the weight of the rider 
is transmitted by a reduction in tension through the spokes rather than 
compression. This allows use of thin spokes, which are capable of with-
standing significant tensile forces whilst being weak in compression. The 
alternative is to provide spokes with significant compressive strength, as 
in cumbersome timber cartwheels—in the context of rock excavations this 
is analogous to the engineer having to provide cumbersome concrete 
linings. 

Thin spokes 
in tension 

Thick spokes 
in compression 
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u Surface 
excavation 
instability 
mechanisms 

In this chapter, we discuss instability mechanisms in relation to slopes and 
foundations. It is possible, in an underground excavation, for the exca-
vation walls and floor to fail in a similar way to surface slopes and 
foundations, but these topics are covered in the next chapter. 

17.1 Slope instability 
In the history of rock mechanics and rock engineering, more attention has 
been paid to slope instability considerations than any other topic, and this 
topic remains one of the most important today. In Fig. 17.1, there are two 
slope failure mechanisms. Figure 17.1(a) illustrates slope instability when 
the rock is behaving as an equivalent continuum; Figure 17.1(b) illustrates 
slope instability when the rock is behaving as a discontinuum. One of our 
first considerations must be to identify the basic mechanisms of slope insta-
bility. The sketches in Fig. 17.1 also highlight the CHILE versus DIANE 
nature of the rock which was discussed in Chapter 10. 

Many discontinuities, weak rock: 
effectively a continuum 

Curvilinear /Sfev r-
failure surface /4^^?^W^^ 

1 (a) 

Few discontinuities, strong rock: 
a discontinuum 

Linear ~-^_y_ ^ \ 
failure surface /~~y^ >. 

(b) 

Figure 17.1 Slope failure mechanisms in (a) a continuum and (b) a discontinuum. 
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In Fig. 17.1(a), the failure surface has been created through the rock mass 
(behaving as a continuum), whereas, in Fig. 17.1(b), the failure surface is 
dictated more directly by the presence of specific pre-existing disconti-
nuities. It is also possible to have intermediate cases where the failure 
occurs partly along the discontinuities and partly through bridges of intact 
rock, but we are concentrating here on the essential differences between 
continuous and discontinuous behaviour. Although most soil slope insta-
bility is of the continuous nature, the majority of rock slope instability is 
caused by individual discontinuities. This is because the strength of the 
intact rock can be high, with the result that the pre-existing discontinuities 
are the weakest link. 

As an amplification of the sketches in Fig. 17.1, the four diagrams in 
Fig. 17.2 and associated photographs in Fig. 17.3 illustrate the mechanisms 
which are traditionally regarded as the four basic instability mechanisms 
for rock slopes. The geometry of the slip in Fig. 17.2(a) is a function of the 
geometry of the slope and the strength of the material forming the slope, 
but the slope instabilities in Figs 17.2(b)-(d) show how the boundaries of 
the instability are governed by the discontinuities, giving essentially planar 
faces to the sliding and toppling blocks. Each of these mechanisms is 
discussed separately in Sections 17.1.1-17.1.4. 

(a) 

(c) 

(b) 

(d) 

Figure 17.2 The four basic mechanisms of rock slope instability: (a) circular 
slip; (b) plane sliding; (c) wedge sliding; and (d) toppling ((b), (c) and (d) from 
Matheson, 1983). 
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Figure 17.3 Photographs illustrating the four basic mechanisms of rock slope 
instability shown in Fig. 17.2: (a) circular slip; (b) plane sliding; (c) wedge sliding; 
and (d) toppling. 

17. LI Curvilinear slip 

The term 'curvilinear slip' is used to describe the group of instabilities 
shown in Fig. 17.4. This term should be regarded as synonymous with the 
more usual one 'circular slip', which is normally understood to also include 
non-circular slips. Only in exceptional circumstances will instabilities 
occurring in a continuum have truly circular slip surfaces; they will usually 
be curvilinear. Hence, we will analyse general curvilinear slips, and present 
truly circular forms as a special case. 

The text in the following sub-section is based on lecture notes produced 
by Dr J.W. Bray (formerly of Imperial College and co-author with 
Professor E. Fioek of the seminal book Rock Slope Engineering), to whom we 
should like to express our gratitude here. 

In Fig. 17.4 there are five diagrams of geological circumstances under 
which curvilinear slips may develop. Experience indicates that with these 
materials, the slip surface is curved and usually terminates at a tension 
crack at the upper ground surface. The shape and location of the slip 
surface depends on the strength characteristics of the ground mass, which 
in turn depend on the structure—as indicated in Fig. 17.4. 

In analysing the potential for slip, one has to consider (a) the location of 
the slip surface and (b) determination of the factor of safety for a given slip 
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Isotropic material 

If the ground is reasonably 
isotropic, the surface tends 
to be circular in section. 

Tension crack 

Almost circular 
slip surface 

E.g. highly jointed rock, 
broken rock, weathered 
rock, tailings or soil. 

Anisotropic material 

If the ground has a bedded or 
laminated structure, or some 
other characteristic which 
makes it anisotropic, then the 
slip surface tends to be elongated 
in a direction parallel to the 
structural feature. 

Slip surface 
elongated parallel 

to anisotropy 

E.g. well laminated rocks 
(slates, mudstones, schists) 
regulary jointed rock, 
laminated soils. 

Major structural features present 

If their is a major discontinuity, 
fault or clay seam in the region 
of the instability, the slip surface 
will tend to follow this feature 
as far as possible. 

Slip surface 
follows major structural 

feature 

E.g. bedding planes, joints, faults, 
shear zones. 

Low cohesion, granular materials 

If the ground has a granular 
nature, with a low cohesive 
strength, the curvature of the 
slip surface is less marked (i.e 
the surface tends to be planar), 
and the tension crack is 
small or non-existant. 

Slip surface 
very nearly planar 

E.g. heavily broken rock, tailings and 
some soils. 

Inhomogeneous material 

For example, the presence of an 
underlying bed of hard, strong 
material can limit the extent of 
failure. 

Weak material 

material E.g. changes in lithology, igneous 
intrusion, mineralization. 

Figure 17.4 Development of curvilinear slips. 

surface. In practice, the factor of safety is determined for assumed slip 
surface locations. In the margin sketch, the slip surface is show^n discretized 
into four elements, each of w^hich has normal and shear forces applied to 
it. Each element has three unknow^ns associated w îth it: the normal (N) and 
shear (S) forces, and the location of the line of action of the normal force 
relative to the element itself (n). 

For the case shown, therefore, there is a total of 12 unknown parameters 
in the problem. However, there are only three equations of static equilibrium 
available to solve this problem: Sf, = 0, LF,, = 0 and I M = 0, where F^ are 
components of forces in the x-direction, F,, are components of forces in the 
y-direction and M are moments in the x-y plane. There are insufficient equa-
tions to determine the unknowns: i.e. the problem is statically indeterminate. 

To solve the problem, we have to make assumptions which reduce the 
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number of unknowns. The usual method of doing this is by sub-dividing 
the mass under consideration into 'slices', and analysing each slice on the 
basis that it is in limiting equilibrium, i.e. each N and S is linked through 
the strength criterion of the slip surface. 

The margin sketch shows a typical slice with the various forces applied 
to it, and equilbrium analysis leads to 

[{W -ub) tan (j) + be] sec a 

fIl + ( tanatan0) /F] 

which enables S to be expressed in terms of the other slice parameters. The 
analysis of the factor of safety, F, of the entire mass then depends on whether 
the slip surface is generally non-circular, or specifically truly circular. 

In the former case, resolving horizontally and vertically for all of the slices 
leads to 

F = -
^(FSsecor) 

^ (W tan a) + ^ (S sec a - W tan a) 

In the latter case, the equation is simpler, and reduces to 

F = 
I(fS) 

^ ( W s i n a ) + H2/R 

where H is the hydrostatic thrust from the tension crack and the other 
parameters are illustrated in the margin sketch. 

The anticipated location of the slip surface can now be found from analysis 
of the whole range of possible surfaces, and taking the actual surface to be 
that which gives the lowest factor of safety. Curvilinear slips are, in general, 
truly three-dimensional in that they resemble the bowl of a spoon, and hence 
the analysis here is an approximation. The seminal references for this type 
of two-dimensional analysis are Bishop (1955) for the circular slip surface and 
Janbu (1954) for the non-circular slip surface, with further explanation 
specifically related to rock slopes in Hoek and Bray (1977). 

17.L2 Plane sliding 

In Fig. 17.4, we showed the variety of curvilinear slips that can occur for 
different geological circumstances. In this section, we concentrate on the 
type of failure illustrated in the central diagram of Fig. 17.4, where major 
structural features are present which are much weaker than the rock on 
either side. Because the slip generally occurs on a major discontinuity, it 
will usually have a planar form—owing to the planar nature of the pre-
exisiting discontinuity. In fact, when the instability is dictated by the 
presence of pre-exisiting discontinuities, the instability takes the form of 
plane sliding, wedge sliding or toppling, as illustrated in elements (b)-(d) 
of both Figs 17.2 and 17.3. In this and the two following sub-sections, we 
deal with these in turn. 

The case of plane sliding is unlike that of curvilinear slip, in that it is 
statistically determinate. We can calculate the factor of safety for plane 

Typical slice 

E' 

X' 



292 Surface excovofion instability mechanisms 

sliding directly, and by making suitable assumptions to render the problem 
two dimensional, the solution is straightforward. 

The right-hand side of Fig. 17.5 shows an idealized form of the plane 
instability condition. This demonstrates two of the underlying assumptions 
in the analysis: the strikes of the plane of sliding and the slope face are 
parallel, and there are no end restraints caused by adjacent blocks of rock. 
The free body diagram shows the forces acting on the unstable block of 
rock. In the case shown, a partially water-filled tension crack has been 
included, with the result that there are water pressure distributions along 
the tension crack and the plane of sliding. The usual assumption for these 
distributions is that they are linear, and the water pressure on the plane of 
sliding is zero at the plane's intersection with the slope face. 

Making the assumptions that the rock mass is impermeable, the sliding 
block is rigid, the strength of the sliding plane is given by the 
Mohr-Coulomb criterion and that all forces pass through the centroid of 
the sliding block (so that moment equilibrium is automatically maintained), 
then by defining the factor of safety as the ratio between the forces resisting 
sliding and the forces driving the sliding, we have 

f = 
c'(H-z)cosecvAp +{Wcosy/p - U - y sini//p)tan0' 

Vcosi/A -h VVsini// 

Similar formulations can be derived for other cases, such as a horizontal 
sliding plane, no tension crack, a sloping upper surface or dry conditions. 
The last of these cases can over-estimate the stability of the slope and 
should only be used when there is confidence in the knowledge of the 
hydraulic regime. 

The effective stress parameters c and (j) have been used in the analysis 
above. It is by no means clear without further information whether, in fact, 
the most appropriate parameters are the traditionally used total stress 
parameters c and 0 of rock engineering which imply drained conditions, 
or the traditionally used effective stress parameters c and (j) of soil 
engineering which incorporate the effect of water pressure resulting from 
undrained conditions. This is a complex subject, and a thorough knowl-

Tension crack 

7 = unit weight of water 
7 = unit weight of rock 

Geometry Free body diagram 

Figure 17.5 Geometry of static analysis of plane instability. 
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Figure 17.6 Simplified analysis of plane failure demonstrating variation in factor 
of safety with (a) depth of water in tension crack varying and (b) angle of friction 
of sliding plane varying. 

edge of the history of the site, the nature of any infilling and the hydraulic 
conditions are required in order to determine w^hether total stress or 
effective stress parameters are to be used. 

To illustrate the utility of the equation presented above, Fig. 17.6(a) 
show^s how^ the factor of safety may vary for different depths of w^ater in 
the tension crack, indicating a possible significant effect of heavy and 
prolonged rainfall. It can be seen from this graph that, as the depth of w^ater 
in the tension crack varies from 0 to 15 m (the overall depth of the tension 
crack itself) and the angle of friction of the sliding plane remains constant 
at 30°, the factor of safety reduces from 1.30 to 0.72. 

In Fig. 17.6(b), ŵ e show^ the complementary case of variation of the 
effective angle of friction along the plane of sliding, for the instance of a 
dry slope and all other parameters remaining constant. In this case, the 
factor of safety reduces from 2.36 to 0.45 as the angle of friction varies from 
50° to 5° for the dry slope. 

The curves in Fig. 17.6 show how ,̂ for even a simple model, the factor of 
safety varies dramatically w îth just tw ô critical parameters. A more realistic 
analysis would have to include the manifold aspects of a real plane instability, 
such as the end restraints, the roughness and possible partial impersistence 
of the sliding plane, water pressures in the discontinuity network, the nature 
of any filling material in the discontinuities, and so on. It is unlikely though 
that the general thrust of the factor of safety variation trends shown in Fig. 
17.6 would be altered by the adoption of a more realistic model. In the 
following chapter we will present more thorough methods of analysing the 
instability of plane slides, both kinematically and statically. 
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Line of intersection 

/Slope face 
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Forces on wedge 

View perpendicular 
to line of intersection 

View along 
line of intersection 

View along line 
of intersection 
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the projection 

W cos \\f. 

Direction 
of sliding 

Figure 17.7 Geometry of static analysis of friction-only wedge instability. 

17.L3 Wedge sliding 

The previously presented method of analysing the basic mechanism of 
plane sliding can be adapted to the case of wedge sliding. Wedge sliding 
is illustrated in Figs 17.2(c) and 17.3(c), and the extension from plane sliding 
is to consider sliding on the two sliding planes simultaneously. In Fig. 17.7, 
the geometry of the wedge instability and the primary forces acting on the 
system are shown. The problem has been simplified to one in which there 
is no cohesion on either sliding plane, and both of the planes possess the 
same angle of friction. A solution to the comprehensive problem, in which 
both planes possess differing cohesion and angles of friction, as well as 
the existence of a water-filled tension crack, is presented by Hoek and 
Bray (1977). 

Assuming that the direction of sliding is parallel to the line of intersection 
of the two sliding planes, forces parallel to this line and perpendicular to 
the two sliding planes can be resolved in order to determine the factor of 
safety. This analysis leads to 

^ ^ ( R , + R e ) t a n 0 

W sin y/. 

and R^ + î B = 
Wcosy/^i sin^ 

sm: 
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The various forces and angles used in these formulae are shown in the 
individual parts of Fig. 17.7. Consolidating these formulae results in 

F = 
sin/3 tan0 

tani//, 

which provides a simple method of evaluating the effect of the main 
parameters on the factor of safety for wedge sliding. 

A direct insight into the fundamental mechanism of wedge instability is 
achieved by abbreviating the equation to 

t = kyj X rp 

i.e. 

wedge factor of safety = wedge factor x plane factor of safety. 

In Fig. 17.6, the factor of safety varied with two of the main parameters. 
For wedge sliding, we can study the effect of /cw, the wedge factor. This is 
a purely geometrical parameter, concerning how upright and how sharp 
the wedge is. 

In Fig. 17.8, we show how the factor of safety varies with the parameter 
5, the sharpness of the wedge, and /3, the verticality of the wedge. Again, 
the utility of the application of a simple model to a complex problem is 
clearly demonstrated. Considering the suite of curves in Fig. 17.8, it is not 
obvious that thin, upright wedges would have a higher factor of safety than 
thin, inclined wedges; nor, indeed, that the verticality of the wedge will be 
more critical for thin wedges than for thick wedges (remembering that in 
the diagram constant angles of friction and intersection line plunge have 
been used). 

Thin, 
upright 
wedges 

Wedge verticality 
(measured from 
the horizontal) 

Note: drawn for angle of friction 
of 30° and plunge of line of 
intersection of 45° throughout 

Thin, 
inclined 
wedges 

90° 
80° 
70° 
60° 
50° 
40° 
30° 
FoS= 1 

10 20 

Thick, inclined wedges 
J I I 

30 40 50 60 
Included wedge angle (8) 

70 80 90 

Figure 17.8 Simplified analysis of wedge failure demonstrating variation in factor 
of safety with included wedge angle and wedge verticality. 
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17.1.4 Toppling 
To complete the set of fundamental mechanical modes of structurally 
controlled instability, toppling failure is considered. Toppling failure has 
traditionally been regarded as occurring in two modes: direct toppling and 
flexural toppling. The former occurs when the centre of gravity of a block of 
rock lies outside the outline of the base of the block, with the result that a 
critical overturning moment develops. The latter occurs under certain cir-
cumstances when a layered rock mass outcrops at a rock slope, and the 
principal stress parallel to the slope face induces inter-layer slip which causes 
the intact rock to fracture and the resulting blocks to overturn. The distinction 
between these two toppling modes of instability is illustrated in Fig. 17.9. 

Direct toppling instability. Will a block resting on an inclined rock surface 
be stable, or slide, or topple, or simultaneously slide and topple? The nature 
of the instability, if any, is determined from considerations of the block 
geometry and the angle of friction between the block and the surface on 
which it is resting. The four possibilities are shown in Fig. 17.10, as the 
various regions in a graph of block aspect ratio versus friction angle. 

Sliding will only occur when the dip of a plane exceeds the angle of 
friction. This results in the vertical line dividing Fig. 17.10 into regions— 
with no sliding on the left and sliding on the right. 

To establish the equilibrium due to toppling, consider the location of the 
line of action of the force due to gravity. This passes through the centre of 
gravity of the block and will coincide with the lower apex of the block if 
b/h = tan y/, which is the limiting equilibrium condition. Thus, toppling will 
not occur if b/h > tan y/, and will occur if b/h < tan i//. 

The resulting four categories of equilibrium are 

(a) no sliding and no toppling: y/ < ({) and b/h > tan y/; 
(b) sliding but no toppling: y/> (}) and b/h > tan y/; 
(c) no sliding but toppling: y/ < (j) and b/h < tan y/; 
(d) sliding and toppling: y/> (j) and h/h < tan y/. 

These four fundamental categories represent the basic circumstances of 
toppling and related sliding, and enable a rapid initial analysis of whether 
direct toppling could take place and hence whether further analysis is 
necessary. 

Figure 17.9 Direct and flexural modes of toppling instability. 
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90 

Figure 17.10 Sliding and toppling instability of a block on an inclined plane (from 
Hoek and Bray, 1977). 

Flexural toppling instability. In Chapter 16, the stability of underground 
excavations was discussed in relation to the potential for inter-layer slip, 
the 0y theory (see Figs 16.11 and 16,12). Here we adopt an analogous 
approach to the potential for slope instablity. 

Remembering that the creation of a new excavation surface results in the 
principal stresses being parallel and perpendicular to the excavated face, 
we consider the potential for inter-layer slip given the geometry 
illustrated in Fig. 17.11(a). An analysis of instability will include these 
geometrical parameters as well as the angle of friction. In Fig. 17.11(b), the 
(pj theory is applied directly to inter-layer slip along the slope surface. The 
geometrical construction, which includes the normal to the discontinuities 

Discontinuity 
normal ^ 

(a) (b) 
Figure 17.11 Flexural toppling: (a) geometry and (b) (j)̂  analysis. 
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and the limiting lines at an angle of (pj on either side of this normal, is 
shown. By analysis of the geometry of this figure, the basic criterion for 
inter-layer slip potential can be established. 

Fig. 17.11(b) shows that for inter-layer slip to take place, the geometry of 
the system must be such that the triangle ABC will be formed: if the 
orientation of the discontinuities relative to the slope surface is such that 
AC and AB are parallel or diverging downwards, the conditions for inter-
layer slip will not be met. The inset diagram of Fig. 17.11(b) shows the 
geometry of triangle ACD, from which it can be seen that a - 0 > 0. The 
basic geometry of the system shows that a = I/A + /3 - 90, with the result 
by inspection that, for inter-layer slip to take place, 

V/>90 + 0 - /3 . 

Using these angles, we can utilize a 'geometrical factor of safety' to provide 
some indication of how close the slope conditions are to this criterion. If 
the factor of safety is defined as that factor by which tan 0 must be divided 
to bring the slope to limiting equilibrium, 

tan0 

tan(vA + i3-90) 

As an example, if we require F = 1.3 when 0 = 30° and ^ = 70°, then the 
limiting angle for i//is 44°. For steeper slopes the factor of safety is reduced; 
for shallower slopes it is increased. 

This concludes the descriptions of the basic mechanics of rock slope insta-
bilities. In Section 17.2, foundation instability is discussed, this being the 
other manifestation of surface excavation instability. The application of 
these basic analyses to the design of surface excavations, with additional 
techniques, is described in Chapter 18. 

17.2 Foundation instability 

Instabilities in slopes are caused by alteration of the rock mass geometry, 
whereas foundation instabilities are caused by the direct application of 
load. In Fig. 17.12, this fundamental difference between the two 
mechanisms is illustrated, with the distinction being reduced to one of 
gravitational versus applied load instability. Also shown in Fig. 17.12 is the 
fact that the foundation instability may result from the creation of new slip 
surfaces or from movement on a pre-exisiting discontinuity. Since the load 
is being applied by a structure, the rock-structure interaction has to be 
considered. This is summarized in the flow chart in Fig. 17.13. 

17.2. J Equlibrium analysis of foundations 

As an illustration of the equilibrium analysis approach to foundation insta-
bility, consider the plane two-dimensional case of a uniformly distributed 
line load inducing instability. Two different approaches exist to the solution 
of this problem: 
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Figure 17.12 Foundation instability. 
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(a) to postulate a geometry of discrete blocks and evaluate the associated 
forces and instability; and 

(b) to consider the sustainability of a postulated stress distribution 
beneath the loaded region. 

To demonstrate the fundamentals of the methods of solution, only loaded 
areas are being considered, and not loads applied through structures. In 
the latter case, the strength and stiffness of the structure must be taken into 
account and these have a marked effect on the results. 

These approaches have been used extensively in the study of plasticity. 
Two fundamental theorems exist for plastic analysis, and Brown (1987), 
with reference to the theory of plasticity, quotes these as: 
1. Upper bound theorem. If an estimate of the plastic collapse load of a 

body is made by equating the internal rate of dissipation of energy 
to the rate at which external forces do work in any postulated 
mechanism of deformation of the body, the estimate will be either high 
or correct. 

Load on (and applied by) superstructure 
of a given magnitude & distribution 

Stressing & deformation 
of superstructure 

If excessive 

Damage to superstructure 
or collapse 

Load on foundation 

/ \ 
Deformation of 
ground surface 

Stress in 
rock mass 

If excessive 

Failure of 
rock mass 

Figure 17.13 Simplified rock-s t ruc ture interact ion flow chart for founda t ion 
instability (from lecture notes by S. D. Priest). 
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2. Lower bound theorem. If any stress distribution throughout the struc-
ture can be found which is everywhere in equilibrium internally and 
balances certain external loads and at the same time does not violate the 
yield condition, those loads will be carried safely by the structure. 

An upper bound solution results from an analysis in which a geometry of 
discrete blocks is postulated and the associated forces then determined, and 
a lower bound solution results from an analysis in which the sustainability 
of a stress distribution is analysed. 

At the surface of a rock mass, the applied and in situ stresses are generally 
so low as to prevent ductile behaviour and plasticity theorems will be 
inapplicable. However, the concepts can be applied usefully to rock 
foundations by: 

(a) using the upper bound analysis in the study of foundations where the 
instability is governed by the movement of rigid blocks along pre-
existing discontinuities; and 

(b) using lower bound analysis in the study of foundations where the 
instability is governed by a general yielding of the rock material, which 
could occur for highly loaded weak rocks. 

Discontinuum analysis. In Fig. 17.14, there is a cross-section through a 
uniform line loading of width D on a rock foundation containing three 
discontinuities. For simplicity in this analysis, the discontinuities are 
assumed to have some cohesion but zero angle of friction, although the 
analysis can easily take account of a non-zero angle of friction. Application 
of the equations of static equilibrium to the forces shown acting on the free-
body diagrams of the two wedges (also shown in the figure) permits 
calculation of the applied load which will cause instability of the system 
and, for the geometry and discontinuity strength shown, this is p = 6c. 

The analysis refers to the problem of a discontinuous rock and the 
solution is mechanically correct. However, if the analysis were being 
considered as part of a plastic analysis of a continuum, then this solution 

Geometry 

Total load = Dp 

± 

SFy = 0,i+ve, block II: 

W + cDV2/\ /2 + cD-N,/V2 = 0 
=-N, =(W + 2cD)\/2 

2Fx = 0, —+ve, block II: 

N2-N,/V2-cDV2/V2 = 0 =^N2= W + 3cD 

SFx = 0, — -I- ve, block I: N3 = (W + 4cD)V2 

Free body diagrams ^p^ ^ ^ j ^ ^^ ^^^^^ j . p , 5 ^ 

Figure 17.14 Equil ibrium analysis of a foundat ion on d i scon t inuous rock. 
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would be one of many upper bound solutions to the actual collapse load. 
The geometry of the assumed plastic wedges would then require variation 
in an attempt to produce increasingly lower values of collapse load, with 
the result that each one would be closer to the actual plastic collapse load. 

An alternative approach which is more concise and less prone to error 
is to apply the concept of virtual work, allowing the equilibrium to be 
established by considering a small amount of work done by the forces 
involved. For example, in Fig. 17.15, we show three forces acting at a point. 
Considering the imposition of an imaginary displacement of magnitude u 
in the direction shown in Fig. 17.15, then 

work done by force = (force magnitude) x (component of displacement in 
direction of force) 

and 

virtual work = Z (work done by all forces). 

The magnitude of the virtual work will be zero if the system is in 
equilibrium—because the work done by the resultant force (which is zero 
for a system in equilibrium) must be zero. For the forces shown in Fig. 17.15, 
the inset table gives the calculation of the virtual work. 

The application of the concept of virtual work to a more complex 
foundation problem is illustrated in Fig. 17.16. Although this is intended 
to represent a system of discrete blocks formed by discontinuties, it may 
also be regarded as a refinement to the upper bound plastic problem shown 
in Fig. 17.14. In this case the angle of friction is non-zero. 

As a first stage in the analysis, the directions of the virtual displacements 
associated with the forces arising from the strength of the discontinuities 
are drawn on the diagram. These directions, shown by the vectors Vi, V2, 
V3, V12 and V23 in Fig. 17.16(a), are drawn inclined at an angle <p, the angle 
of friction, to the discontinuity. This results in each virtual displacement 
being orthogonal to the resultant force on each discontinuity. To evaluate 
the compatibility relations between the various virtual displacements, the 
polygon of displacements shown in Fig. 17.16(b) is constructed. This is 
initiated by assuming a unit magnitude for the virtual displacement Vy and 

F| = 20 

24.5°>s>. 

F2=20 

Unit virtual 
displacement, u 

/ / / 
/ / / 

F3=36.4 

Force 

F, = 20.0 
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20.5° 
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cos 20.5 = 0.9367 
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work components 

Work done 

7.00 
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0.00 

Figure 17.15 The principle of virtual work applied to the analysis of equilibrium. 



302 Surface excavation instability mechanisms 

Normal NstaiKb' <t>' 7 = 24 kN/m^ 
c' = 25 kN/m^ to V3 

Vi = 1.0 (arbitrary assumption) 

vi sin 20 
V2= =0.3473 

sin 100 v,v = V, sin 80 = 0.9848 

vi sin 60 
v,2= =0.8794 

sin 100 

vo sin 20 
V3= =0.1206 

sin 100 V3v = V3 sin 40 = 0.0775 

V2 sin 60 
V23 = . = 0.3054 

b' = 20° 

V2v = V2 sin 20 = 0.118 

sin 100 

/ 

Viv 

V3V 

80°\JL/80° 

/20°\ 

v , / \v i2 

/ ^̂ °̂/C\ 
/ ^^^^^'^t^^^^ tv2V 

' k^^^^' ^ r ^ » 
^ \ ) y^ 40° 
f 40°XX 

Datum 

V3 

(a) (b) 

Figure 17.16 Virtual work applied to rock foundation instability: (a) foundation 
geometry; and (b) associated virtual displacements. 

then vectorially adding the other virtual displacements triangle by trian-
gle. Thus, following from v ,̂ the triangle v̂  - V12 - V2 is completed, follow^ed 
by the triangle V2 - V23 - V3. The displacements may be determined either 
by trigonometrical calculation or by drawling the polygon accurately to scale 
and measuring directly. 

From these various virtual displacements, the virtual w^ork can be calcu-
lated. As an aid in considering the various components of virtual work, they 
can usefully be assigned to one of two categories: external virtual work, 
EVW (due to the applied forces and the weight of the rock blocks); and 
internal virtual work, IVW (due to the work done by forces arising from 
the strength of the discontinuities). Hence we have 

EVW = (rfpuB -h W3)v3v + W2V2V + W^Viv and 

IVW =(V| + V2 + V3 + V12 + V23)CXCOS0' 

with the result that, because EVW + IVW = 0 and solving for puB with 
d = 6 and the values indicated in Fig. 17.16, puB = 1629 k N W . 

When conducting this type of analysis one must ensure that the correct 
signs are maintained for the virtual displacements associated with the 
external forces: this applies for both the virtual displacement polygon and 
the calculation of virtual work. An inspection of Fig. 17.16 reveals that V3V 
is the only negative displacement in this example, resulting from an initial 
inherent assumption that displacements upwards are positive. 

Continuum analysis. Studying the sustainability of a stress distribution in 
terms of the lower bound theorem of plasticity is mostly applicable to rock 
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foundations under high loads and where the rock mass is effectively con-
tinuous and weak. Such circumstances will be rare, and so the simplified 
analysis presented here is included mainly for completeness. 

With the same loading geometry as for the discontinuum analysis illus-
trated in Fig. 17.14, but for a mesh of square elements, consider the stresses 
acting on the sides of the elements to determine whether and, if so, where 
local plastic failure occurs according to a suitable yield criterion. In the inter-
ests of simplicity, a Mohr-Coulomb criterion with 0 = 0 has been used here, 
with the added assumption that the sides of the elements have zero cohesion. 

Figure 17.17 illustrates the basic problem. The stresses acting on elements 
I and II can be estimated by considering the stresses resulting from the 
overburden and the applied load in conjunction with the yield criterion. 
Analysing elements I shows that the overburden stress acting at these 
locations—remote from the loaded area—is yz. It follows from inspection 
of the yield criterion that the horizontal stress cannot exceed 72 + 2c (see 
inset Mohr's circle in Fig. 17.17). By inspection, we see that at element II 
the vertical stress due to the applied load and the overburden is greater 
than the horizontal stress. However, the horizontal stress has the same 
magnitude throughout, i.e. yz + 2c, and hence the vertical stress acting on 
element II cannot exceed 72 + 2c + 2c, that is, yz + 4c. But, because we can 
approximate the vertical stress acting on element II as p + yz, it follows that 
p = 4c—which is a lower bound solution and should be compared to the 
result of p = 6c as an upper bound solution found earlier. 

In the case of a more realistic yield criterion and stress distribution, the 
analysis becomes much more complex. Closed form solutions exist for the 
simpler cases experienced in soil mechanics but, in general, numerical 
methods are required to produce solutions. 

17.2.2 Stress distributions beneath applied loads 

Two of the classic closed form solutions in stress analysis are for normal 
and shear line loads applied to the surface of a CHILE half-space. These 
are commonly attributed to Boussinesq (1883) and Cerruti (1882), respec-
tively. We illustrate these problem geometries and key aspects of the 
solutions in Figs 17.18(a) and (b). 
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Figure 17.17 A lower bound solution for foundation collapse load with associated 
Mohr's circle. 
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Figure 17.18 Boussinesq and Cerruti solutions for line loads on the surface of a 
CHILE half-space. 

The interest is in the application of a line load at an arbitrary angle to 
the surface. This can be obtained by resolving the force into its normal and 
shear components and then superposing the Boussinesq and Cerruti 
solutions, respectively. After some algebraic manipulation, the radial stress 
induced in the solid can be expressed with reference to the line of action 
of the inclined line load as 

2Rcos li 
^ r = -• 

Tvr 

For values of -7i/2 < P < 7i/2, cos /3 is positive and hence the radial stress is 
compressive, whereas, for angles outside this range, cos p is negative— 
giving tensile radial stress. 

The resulting locus of radial stress for an inclined load is shown 
in Fig. 17.19. The reader should verify that, in the extreme cases of Q = 0 
or P = 0, the locus would be that of the Boussinesq and Cerruti solutions, 
respectively. This interpretation assists in the understanding of the con-
tribution made by the normal and shear components to the inclined 
load solution. Note that the left lobe of the locus represents a tensile 
radial stress and the right lobe represents a compressive radial 
stress. 

In applying this solution to a real rock, it would be necessary to be able 
to sustain the induced tensile stress in order for the solution as shown to 
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2R 
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Figure 17.19 Contours of radial stress induced by line loading inclined at an 
arbitrary angle to the half-space surface (from Goodman, 1989). 

be valid. If the rock is laminated and inter-layer slip is possible (as has been 
discussed previously in connection with the 0, theory), then the rock may 
not be able to sustain the compressive and shear stresses either, even at 
very low magnitudes of applied loads. An idea of the regions in which 
inter-layer slip could occur can be obtained by applying the 0̂  theory to a 
contour of constant radial stress computed using the Boussinesq solution, 
as developed by Goodman (1989) and as shown in Fig. 17.20. 

The shape of these contours of radial stress, commonly known as 'bulbs 
of pressure', is then seen to be affected by the occurrence of inter-layer slip, 
with the result that the applied foundation load affects a greater depth of 
rock than in the case of a CHILE material. The modified contour is only 

Bulb of pressure 
for isotropic rock 

Bulb of pressure 
for the layered 
rock 

Figure 17.20 Modification of radial stress contours due to inter-layer slip (from 
Goodman, 1989). 
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approximate, because once an inter-layer slip failure criterion has been 
applied, the elastic Boussinesq solution itself is not valid. 

In applying these ideas in practice, it is prudent to study the influence 
of rock anisotropy. Dr Bray developed a solution for an 'equivalent isotrop-
ic medium' for a line load inclined at an arbitrary angle to the surface. The 
solution is developed by considering the effect of a single set of dis-
contintuies which have been subsumed into an equivalent transversely 
isotropic rock—but the solution does explicitly include the normal and 
shear stiffnesses and mean spacing of the discontinuities. The solution is 
given below and the geometry illustrated in Fig. 17.21: 

where 

^ r . - 0 . 
TIT 

Xcosfi + YgsinP 

(cos" ^ - ^ s i n ~ Pf -\-h~ sin^ /?cos" P 

1 + -
{l-v')K,x 

and h -
1 - v ' 

2(l + v) , 1 

E kx 
+ 2 

and where k^ and k^ are the normal and shear discontinuity stiffnesses, 
respectively, and x is the mean discontinuity spacing. 

The resulting contours of radial stress for an equivalent isotropic medium 
with the plane of anisotropy at various angles to the surface of the half-
space are shown in Fig. 17.22 (note that the forms of these contours 
will vary with the exact values of all the elastic constants, including the 
normal and shear discontinuity stiffnesses). Experimental data produced 
by Gaziev and Erlikhman (1971) are shown in Fig. 17.23 for comparative 
purposes. 

The significance of Figs 17.22 and 17.23 is clear: contours of radial stress 
can be deeper than those predicted with a CHILE solution; and they can 
be severely distorted, so that they are not only extended downwards 

Figure 17.21 Geometry of Bray's equivalent continuum solution (from Goodman, 
1989). 
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Figure 17.22 Radial stress contours produced using Bray's solution for an equiva-
lent anisotropic medium, with the plane of anisotropy at angles as shown (from 
Goodman, 1989). 

but also significantly sideways. Thus an understanding, even only in 
terms of qualitative trends, of the extent of the stress distribution within 
the rock will lead to the design of more appropriate site investigation 
procedures—because the effect of any proximate ground weaknesses must 
be evaluated. 
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a = 90° 

Figure 17.23 Model test data for loading on the surface of an artificial anisotropic 
material (after Gaziev and Erlikhman, 1971). 



]8 Design and 
analysis of 
surface 
excavations 

In the last chapter, some of the idealized models were presented that have 
been developed to provide a basic grasp of the instability mechanisms 
associated with slopes and foundations in rock. Although the models are 
highly simplified, they do assist understanding and indicate the important 
parameters, together with their sensitivity. When faced with the design and 
analysis of an actual surface excavation, one has to go beyond these 
primary models and match the model with the site reality and the nature 
of the rock. 

Thus we should ask what is the exact design objective, what mechanisms 
are likely to be operating, which data are required as a consequence, and 
does the model incorporate the discontinuous, inhomogeneous, anisotrop-
ic and non-elastic behaviour of the ground, together with factors such as 
the effects of blasting, rainfall, seismic risk and so on? The approach should 
therefore be to examine the potential for instability mechanisms and to 
gradually refine the design and analysis, from an initial skeletal approach 
through to a comprehensive finely-tuned design. In this book we are 
discussing principles and hence the techniques which may be applied 
during the initial approach to all projects. Any further development should 
be tailored to the rock, site and project circumstances—in the knowledge 
that the initial analyses have been performed thoroughly. 

18.1 Kinematic analysis of slope instability 
mechanisms 

One of the best examples of an initial approach is establishing the pos-
sibility of instability by the method of kinematic analysis of slopes. 'Kine-
matics' refers to the study of movement, without reference to the forces that 
produce it. For some geometries of slope and discontinuities, movement 
is possible (i.e. the system is kinematically feasible). For other geometries, 
movement is not possible (i.e. the system is kinematically infeasible). 

A method based on checking the kinematic feasibility of a rock slope-dis-
continuity system will provide a 'first pass' analysis, although kinematic 
feasibility checks are but the first in a long line of design and analysis tools. 
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Figure 18.1 Pole plot of discontinuities in the rock mass under consideration (case 
example data from Matheson, 1983). 

They do not provide a numerical measure of the degree of safety of the slope, 
but whether or not instability is feasible in the first instance. If the system is 
kinematically infeasible, a great deal has been established rapidly. 

The kinematic analysis of plane, wedge and toppling instabilities for rock 
slopes is explained next—in which the instability is governed by the geom-
etry of the slope and discontinuities. The method follows that presented 
by Hoek and Bray (1977), and refined by Matheson (1983) and Goodman 
(1989). The examples presented in the text use a data set based on field 
records, recorded by Matheson. 

In Fig. 18.1, the lower-hemispherical projection of the poles to the 
discontinuities in the rock mass is shown. The second Appendix covers the 
basics of hemispherical projection. The initial impression is that there are 
two main sets of sub-vertical discontinuities, one (set A) striking approxi-
mately E-W, another (set B) striking approximately N-S. There are four 
minor sets, some (sets C, D and F) being sub-horizontal, one (set E) being 
sub-vertical striking NW-SE. 

If necessary, we can return to these data to consider the dispersion of 
the poles within each set and the different strength parameters associated 
with each set. Firstly, however, consider the kinematic feasibility associated 
with constructing a proposed slope of dip direction 295° and dip angle 75°, 
assuming that all discontinuity sets follow a Mohr-Coulomb strength 
criterion with 0 = 30° and c = 0 kPa. 

18.1.1 Plane instability 

To consider the kinematic feasibility of plane instability, four necessary but 
simple criteria are introduced, as listed below. 
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(a) The dip of the slope must exceed the dip of the potential slip plane 
in order that the appropriate conditions for the formation of discrete 
rock blocks exist. 

(b) The potential slip plane must daylight on the slope plane. This is 
necessary for a discrete rock block formed by criterion (a) to be capable 
of movement. 

(c) The dip of the potential slip plane must be such that the strength of 
the plane is reached. In the case of a friction-only plane, this means that 
the dip of the plane must exceed the angle of friction. 

(d) The dip direction of the sliding plane should lie within approximately 
±20° of the dip direction of the slope. This is an empirical criterion and 
results from the observation that plane slides tend to occur when the 
released blocks slide more-or-less directly out of the face, rather than 
very obliquely. 

In Figs 18.2(a) and (b), the generation of hemispherical projection insta-
bility overlays based on the criteria above is shown. These will be used over 
a plot such as Fig. 18.1. There can be uncertainty about the directions on 
these overlays, and so it is important to understand the location of a slope 
in plan and the associated directions of the slope in these overlays, together 
with the kinematic criteria. 

Each family of lines or curves in the overlay of Fig. 18.2(a) represents one 
of the criteria listed above. The radial solid line pointing to the left is taken 
to be the slope direction. (Note that if the perimeter of the projection represented 
the plan of a circular projection, then the location on the crest of a slope dipping 
in this direction would be diametrically opposite, i.e. on the right-hand side of the 
perimeter). The two radial dashed lines to the right represent criterion (d), 
and serve to concentrate the search for instability within a region ±20° of 
the slope direction. Note that this overlay is to be used with pole plots. 
Therefore, concentric circular arcs within the sector—which represent 
criteria (a)-(c), the dips of the slope and the potential plane of sliding—are 
numbered away from the centre of the overlay and so provide the remaining 
bounding lines of the region of instability. 

Figure 18.2(b) shows the completed specific overlay for a slope dip of 
75° and an angle of friction of 30°. The innermost bounding arc is the 
friction angle (criterion (c)) and the outermost bounding arc is the slope 
angle (criterion (a)). Because pole plots are being used, the region of 
instability on the overlay is on the opposite side to the dip direction of the 
slope. 

The final step in assessing the kinematic feasibility for plane instability 
is to superimpose the specific overlay (in this case Fig. 18.2(b)) onto the 
projection representing the rock mass discontinuity data (in this case 
Fig. 18.1). The result for this example is shown in Fig. 18.3. 

The advantage of the overlay technique is immediately apparent. We can 
say directly that there is a severe potential for plane instability associated 
with discontinuity set B. Plane instability cannot occur on any other 
discontinuity set. The exact value of the innermost bound of the instability 
region, i.e. the friction angle, is not critical in the analysis—any variation 
between, say, 30° and 50° will not prevent instability. The dip of the slope 
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-20° 

+20° 

(a) Use with poles Lower angle limit: friction 
Upper angle limit: slope 

Design slope \_20° 
70° 

+20° 

(b) Use with poles Overlay for use with 
30° friction and 75° slope dip 

Figure 18.2 Construction of instability overlay for plane sliding. 

is critical: any major increase or decrease in the dip will significantly alter 
the degree of instability, because slope dip angles around this value 
coincide with the dip of the majority of discontinuities in set B. Finally, the 
orientation of the slope itself is critical: were we to be able to alter the dip 
direction of the slope by ±30°, the potential for plane instability would be 
reduced considerably. 
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-20° 

Figure 18.3 Example assessment for a slope of orientation 295775°—plane 
instability. 

Armed with this information, it is necessary to check that the data 
for discontinuity set B have been correctly recorded. Then, can the dip 
direction and dip angle of the slope be altered? If so, the potential for 
instability can be eliminated by re-orientating the slope. If not, further 
analysis has to be conducted to decide on the optimal excavation and 
support techniques. In the event of detailed numerical analyses being 
required, the variation associated with the orientation of the individual 
discontinuities within a set must always be considered. One might be 
tempted to try to produce one factor of safety using a single discontinuity 
orientation but, as the overlay method clearly demonstrates, the variation 
within a set means that such an approach is meaningless without 
qualification. 

There is also the interaction between the design process and the rock 
mass. There are three options: 

• the design can be altered to account for the rock mass; 
• a fixed design can be applied to the fixed rock mass and the structure 

engineered accordingly; and 
• the rock mass can be altered to account for the design. 

The power of the kinematic feasibility overlays lies in an 'immediate 
appreciation' of the primary parameters and design possibilities. 

18.1.2 Wedge instability 

An overlay for wedge instability potential can be constructed by the same 
method used for plane instability. Wedge instability can be considered as 
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a variation of plane instability, in that the sliding takes place on two 
discontinuity surfaces, as shown in Figs 17.2(c) and 17.3(c). The resultant 
sliding direction is assumed to be in a direction common to both surfaces, 
i.e. along their line of intersection. 

To consider the kinematic feasibility of wedge instability, we therefore 
need to consider only three criteria relating to the line of intersection, as 
listed below. The plane instability criterion relating to the ±20° variation 
in sliding direction is no longer required, as the sliding direction is uniquely 
defined by the line of intersection. 

(a) The dip of the slope must exceed the dip of the line of intersection of 
the two discontinuity planes associated with the potentially unstable 
wedge in order that the appropriate conditions for the formation of 
discrete rock wedges exist, in a similar fashion to criterion (a) of plane 
instability. 

(b) The line of intersection of the two discontinuity planes associated with 
the potentially unstable wedge must daylight on the slope plane. This 
is necessary for a discrete rock wedge formed by the first criterion to be 
capable of movement. 

(c) The dip of the line of intersection of the two discontinuity planes 
associated with the potentially unstable wedge must be such that the 
strengths of the two planes are reached. In the case of friction-only 
planes, each possessing the same angle of friction, the dip of the line of 
intersection must exceed the angle of friction. 

In an analogous fashion to the analysis of plane instability, in Figs 18.4(a) 
and (b), the generation of the hemispherical projection instability overlays 
based on the criteria above is shown. 

The radial solid line at the right but pointing to the left is taken to be the 
slope direction. (Note that, as before, if the perimeter of the projection 
represented the plan of a circular projection, then the location of the crest of a slope 
dipping in this direction would be on the right-hand side of the perimeter,) 
However, because we are analysing lines of intersection, this overlay is to 
be used with intersection plots and consequently the construction to locate 
the region of instability will be on the same side of the projection as the 
slope dip. 

Thus, criterion (a) is implemented using the series of great circles 
(because the slope is a plane, and planes are plotted as great circles) and 
criterion (c) is implemented by the series of concentric circles (because lines 
of equal dip form a concentric circle). Because this is a direct plot of dips 
and dip directions, the dips of the slope and the line of intersection are 
numbered towards the centre of the overlay. Because intersection plots are being 
used, the region of instability on the overlay is on the same side as the 
considered dip direction of the slope. 

Note the large size of the region of instability developed on the projec-
tion—often covering a range of dip directions as large as 150°. This 
means that attempting to vary the slope orientation as a means of 
reducing instability is not likely to be as effective as in the case of plane 
instability. 
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Use with intersections 

Low angle limit: 
Friction (concentric circles) 

High angle limit: 
Slope (great circles) (a) 

(b) 

Figure 18.4 Construction of instability overlay for wedge sliding. 
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Figure 18.4(b) shows the completed specific crescent-shaped overlay for 
a slope dip of 75° and an angle of friction of 30°. In the design process, it 
will probably be the innermost boundary of the crescent which is the most 
variable—i.e. how steep the slope can be without wedge instability 
occurring. 

The final step in assessing the kinematic feasibility for wedge instability 
is to superimpose the specific overlay (in this case Fig. 18.4(b)) onto a 
projection representing all the intersection possibilities for the rock mass 
discontinuity data. This is usually achieved by considering one represen-
tative plane from each discontinuity set and determining the set inter-
sections. A more accurate method would be to determine the intersections 
resulting from all inter-set combinations of discontinuities and treat these 
as a set of intersections. The result for this example, using the former 
method, is shown in Fig. 18.5. 

Once more, the advantages of the overlay technique are apparent. 
First, there are only two lines of intersection along which wedges 
are potentially unstable—these are formed by the intersection between 
discontinuity set B and sets A and E. Again, the exact value of the angle 
of friction (i.e. the position of the outermost boundary of the crescent) 
is unimportant, but the slope angle itself is paramount. By reducing 
the slope angle, and hence moving the innermost boundary of the 
crescent away from the centre of the projection, wedge instability can be 
minimized. Returning to the field, one can visually assess the nature of the 
lines of intersection /^B and /BE to establish the shape and size of the 
wedges. 

Figure 18.5 Example assessment for a slope of orientation 295775°—wedge 
instability. 
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From the pole plot of the discontinuities shown in Fig. 18.1, a basically 
orthogonally fractured rock mass was indicated, with the result that the 
intersections would be expected to be sub-vertical and sub-horizontal. 
Thus, wedge instability problems are only likely to arise for steep slopes 
or low angles of friction—as indicated in Fig. 18.5. Note, though, that an 
essentially orthogonally fractured rock mass which has undergone a tilting 
of only 30° or so will give rise to problems of wedge instability. 

What are the implications of having a different friction angle on the two 
discontinuity planes forming the wedge? Utilizing a 'generalized friction 
circle', Goodman (1989) presents a method of analysing wedge instability 
with different friction angles. He notes that "in view of the uncertainty 
with which friction angles are assigned in practice, it is more useful to 
express the degree of stability in terms of such a sensitivity study [referring 
to his stereographic method] than to force it to respect the factor of 
safety concept". So, although using a different method, Goodman is also 
of the opinion that an appreciation of the problem is more important 
than a rigid adherence to the factor of safety concept, as stated at the end 
of Section 18.1.1. 

18.L3 Toppling instability 

For the third mode of instability, toppling, both direct toppling and flexural 
toppling as illustrated in Fig. 17.9, will be studied. The same overlay 
technique that was presented for plane and wedge instability can be 
used, except that there is the need to analyse intersections (defining the 
edges of toppling blocks) and poles (defining the basal plane about which 
toppling takes place). An overlay is required which makes use of both 
pole and intersection plots, as a result of the feasibility criteria associated 
with toppling. It is also important to note (with reference to Fig. 17.10) 
that toppling instability is being considered in isolation. Plane and wedge 
instability, which may or may not be occurring contemporaneously, can be 
established from the instability analyses already presented. 

Direct toppling instability. In the case of direct toppling instability, the 
kinematic feasibility criteria will only relate to the geometry of the rock 
mass, rather than the geometry plus the strength parameters—although 
the latter can be used to establish the cut-off between toppling only and 
sliding plus toppling illustrated in Fig. 17.10. Therefore, the only two criteria 
required are as follows (see Fig. 17.2(d)). 

(a) There are two sets of discontinuity planes whose intersections dip into 
the slope, in order to provide the appropriate conditions for the forma-
tion of the faces of rock blocks. 

(b) There is a set of discontinuity planes to form the bases of the toppling 
blocks, so that, in association with criterion (a), complete rock blocks 
may be formed. 

Naturally, toppling is more likely if the basal planes dip out of the slope, but 
such a condition is not necessary. If the dip of the basal planes is less than 
the friction angle, then sliding will not occur in association with toppling. 
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From criterion (a) an overlay for an intersection plot is required; from 
criterion (b) an overlay for a pole plot is required. For this the intersection 
and pole plots are superimposed and a composite overlay is used. 

In an analogous fashion to the previous analyses of plane and wedge 
instability, in Figs 18.6(a) and (b) the generation of the hemispherical 
projection instability overlays based on the criteria above is shown. 

In Fig. 18.6(a), the radial solid line pointing to the left is again taken to 
be the slope direction. Because the interest is in the angles between the 
vertical and both the plunge of the lines of intersection (criterion (a) above) 
and the dip of the basal plane (criterion (b) above), the overlay will consist 
only of concentric circles. The concentric circles are numbered from the 
perimeter inwards for the intersections, and from the centre outwards for 
the poles. {Because the intersection lines are dipping into the slope, whereas the 
basal planes are dipping out of the slope, the overlay criteria are both on the same 
side of the composite generic overlay shown in Fig. 18,6{a)—and on the opposite 
side to the direction of the slope dip.) The two dashed radial lines represent a 
'sub-criterion', in that observations have indicated that toppling tends to 
occur within a ±20° sector of the slope dip, except for very steep slopes 
where the sector can be considerably enlarged. 

Given the criteria, the necessary bounds can be drawn and the overlay 
produced. Figure 18.6(b) shows the overlay for this example. There are 
many instability regions associated with a direct toppling overlay, 
depending on the combinations of the occurrences of overlaid poles and 
intersections. Figure 18.7 clarifies these possibilities. The upper suite of 
sketches refers to the basal plane occurrences; the lower suite of sketches 
refers to the intersection occurrences. In this sense, the occurrence of direct 
toppling instability is not so sharply focused as with the previous two 
overlays, but again illustrates the value of this approach. 

The many modes of toppling instability can be established from the 
sketches in Fig. 18.7 and any specific example can be interpreted with the 
aid of the overlay technique. Moreover, once a potential mode has been 
established from the analysis, the engineer can return to the field and 
consider the mechanism in situ. This provides a powerful technique for 
establishing the real likelihood of instability: attempting to establish the 
direct toppling modes without such a visual and integrating analysis would 
be most unsatisfactory. 

To assess the kinematic feasibility for direct toppling instability, the spe-
cific overlay (in this case. Fig. 18.6(b)) is superimposed onto a composite 
projection representing all the inter-set intersections and all the poles for 
the rock mass discontinuity data (in this case, the data shown in Fig. 18.1). 
This is shown in Fig. 18.8. 

It can be seen that the potential for toppling is not high. The main 
possibility is for set F to form the basal plane, and the block edges to be 
formed by intersection /ŷ Ê—a typical example of the need to return to the 
field and assess the mechanism visually. The circumstances are akin to a 
combination of the two left-hand sketches in Fig. 18.7, with oblique 
toppling occurring due to the intersections not falling within the main 
region of instability. In the specific example shown in Fig. 18.8, the potential 
toppling direction is diagonally southwards across the slope. 
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Use with poles 
and intersections 

(a) 

Normals 
Lower angle limit 0° 
Upper angle limit: friction or slope dip 

Intersections 
Lower angle limit: (90-0) or 0° 
Upper angle limit: 90° 

(b) 

Use with poles 
and intersections 

Normals 
Lower angle limit 0° 
Upper angle limit: friction or slope dip 

Intersections 
Lower angle limit: (90-0) or 0° 
Upper angle limit: 90° 

Figure 18.6 Const ruc t ion of instability overlay for direct toppl ing. 
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Basal planes: 
analysed using poles 

Figure 18.7 Illustration of the direct toppling instability modes. 

An interesting aspect of this analysis is that the slope angle is not 
explicitly used. The direction of the slope serves to indicate in which area 
of the projection one needs to look for poles and intersections as potential 
candidates for inducing instability. Similarly, although not shown in 
Fig. 18.8, it must be remembered that those basal planes whose dips lie 
outside the main region of instability must also be considered as candidates 
for defining toppling blocks. It is quite likely that oblique blocks formed by 
basal planes dipping into the slope will topple. 

Flexural toppling instability. In Figure 17.11, the analysis of flexural 
toppling was illustrated using the 0̂  theory. The geometrical analysis 
and the associated criteria for inter-layer slip can be used to form the basis 
of a kinematic feasibility analysis for flexural toppling using the overlay 
method. In fact, the angles and the criterion are clarified by the use of 
such a method. From Section 17.1.4, the geometrical criterion for inter-layer 
slip to occur is v/> 90 + 0 - /?, where i/̂ is the dip of the slope, 0 is the friction 
angle associated with the discontinuities and j3 is the dip of these 
discontinuities. 

The criterion was expressed in this way because we were interested in 
the slope angle at which inter-layer slip could occur. In terms of the 
projection overlay, we wish to know the positions of the discontinuity poles 
on the projection which would indicate the potential for inter-layer slip. 
Thus, the criterion above can be rewritten as j3 > 0 + (90 - i//). This allows 
not only the creation of the instability overlay for flexural toppling, but 
also identification of the various components of the criterion on the 
projection. 

The criteria are as follows. 

(a) There is one set of discontinuity planes dipping into the slope, at a 
sufficiently high angle to generate inter-layer slip, following the crite-
rion above. 
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-20° 

Figure 18.8 Example assessment for a slope of orientation 295775°—direct 
toppling instability. 

(b) The dip direction of the slip planes should lie within approximately 
±20° of the slope. As with plane instability, this is an empirical criterion 
and results from the observation that inter-layer slip tends not to occur 
when discontinuities occur obliquely to the slope. 

From criterion (a), an overlay is required which is constructed from great 
circles (representing the plane of the slope) and yet is used with a pole plot 
projection (to establish regions of instability associated with the dip of the 
discontinuity planes). 

In Figs 18.9(a) and (b), we illustrate the construction of the generic 
flexural toppling overlay, together with the specific overlay for these 
example data. In Fig. 18.9(a), the radial solid line directed to the left is 
again taken to be the slope direction and the great circles represent 
planes corresponding to both the slope and the friction angle of the 
slipping discontinuity planes. Location of the region of instability is 
best understood from an analysis of Fig. 18.9(b). The dip angle of the 
dotted great circle in Fig. 18.9(b)—representing the slope—is y/, and the 
complement of this angle (i.e. the angle to the vertical) is 90 - y/. Inter-layer 
slip will only occur for discontinuities dipping at an angle of 0 greater 
than this (the geometrical criterion above), giving a region of instability 
outside the solid great circle. Finally, using the second criterion above, 
we produce the shaded instability region—for superimposition on pole 
plots. 

Compare the construction of this overlay with that of Fig. 18.2 (plane 
instability), and note that, although both overlays are to be superimposed 
on pole plots and the direction of the slope dip relative to the overlay 
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Use with poles 

+20' 
Move towards perimeter though angle ^ 
to find new great circle representing 
boundary of failure criterion 

Lower angle limit 
(|> + (90-\|/) 

Upper angle limit: 
90° 

(a) 

Use with poles 

+20' 

Overlay for use with 
30° friction and 75° slope dip 

(b) 

Figure 18.9 Const ruct ion of instability overlay for flexural toppl ing. 

construction is the same, the location of the overlay is different in the 
two cases. This is because the discontinuities dip in the same direction as 
the slope for plane instability, but into the slope for flexural toppling 
instability. 
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Figure 18.10 Example assessment for a slope of orientation 295°/75°—flexural 
toppling instability. 

Thus, to assess the kinematic feasibility for direct toppling instability, we 
superimpose the specific overlay (in this case. Fig. 18.9(b)) onto a projection 
of the poles for the rock mass discontinuity data (in this case, the data 
shown in Fig. 18.1), with the result shown in Fig. 18.10. 

It can be seen that the potential for flexural toppling is low, as the region 
of instability coincides with the limit of the cluster associated with discon-
tinuity sets C (and B, bearing in mind that some of the discontinuities 
associated with this set appear within the region of instability). As before 
with the other instability mechanisms, however, we would wish to identify 
the precise nature of this geometry in the field to ensure that, indeed, the 
possibility of such an instability mechanism was low—e.g. are the relevant 
discontinuities sufficiently persistent, or are they a minor impersistent set 
with short trace lengths? 

18.2 Combined kinematic analysis of complete 
excavations 

When considering a proposed surface excavation in a rock mass, the 
kinematic feasibility of all of the four mechanisms described in Section 18.1 
must be established, and for all potential slope orientations. In some 
projects, the slope dip direction may be dictated by considerations other 
than rock mechanics, e.g. a fixed highway route requiring cuttings. Even 
the slope dip may be fixed, but the rock engineer will be able to make a 
contribution to optimizing the stability of the slope. In other projects, such 
as an open-pit mine or quarry, all slope dip directions may have to be 
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evaluated by an engineer who is expected to recommend the various slope 
dip values to ensure stability. In this case, we adopt an approach whereby 
all of the overlays in turn are rotated around the complete perimeter of the 
projection, indicating the regions of kinematic feasibility associated with 
the different mechanisms. 

Because discontinuities occur in sets, the analysis leads to identification 
of slope orientations which are kinematically infeasible and other orien-
tations which are kinematically feasible for the different mechanisms. The 
orientations then have to be considered together. We usually find that there 
are ranges of slope dip directions where steep (or even vertical) slopes are 
safe and other ranges which are susceptible to one or more mechanisms 
of instability. It must be remembered that the hemispherical projection 
technique only utilizes orientations and not locations. It follows that if the rock 
mass shows any degree of inhomogeneity, it may be necessary to consider 
the rock mass in 'structurally homogeneous' domains, each of which is 
analysed separately. 

The results of this type of complete analysis—performed using the data 
in Figure 18.1—are shown in Fig. 18.11, in which the steepest slope dips 
preventing the development of the relevant instability mechanism are 
tabulated, together with the net result which is the steepest safe slope. The 
associated diagram shows a plan of how the crest of an excavation with a 
circular floor would appear. 
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Figure 18.11 Example assessment for a circular floored excavation—plane, wedge 
and direct and flexural toppling instabilities. 
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The analysis indicates that, were a circular (in plan) quarry to be oper-
ating in this rock mass, then the absence of potential instability mechanisms 
for slopes with dip directions in the range 150-165 indicates that they could 
be steep, but slopes with dip directions in the ranges 90-120 and 180-240 
would be vulnerable to instability unless cut to shallow dip angles. Is this 
acceptable, or is an alternative solution required? One such alternative is 
to avoid creating slopes within these ranges of dip directions. A generalized 
corollary of the example is that circular excavations can never be optimal 
in terms of maximizing slope dip: an elliptical or irregular polygonal 
geometry will always be better, in that these allow the flexibility 
necessary to harmonize the engineering geometry with the rock structure 
geometry. A correctly orientated elliptical floor plan will always be better 
than a circular plan for a quarry based on these slope instability 
considerations. 

The entire analysis is based on the simple criteria established for each of 
the instability mechanisms. Further analysis is required to confirm that 
the failure mechanisms are likely to be operative. The strength of the tech-
nique lies in its underlying philosophy utilizing primary instability criteria. 
With the technique, it is possible to design a stable excavation without 
recourse to mathematical analysis and subsequent interpretation of 
factors of safety. 

18.3 Foundations: stress distributions beneath 
var iab ly loaded areas 

We have extended the slope mechanisms approach of Chapter 17 to the 
study of the kinematic feasibility of four different potential slope 
instability mechanisms. By analogy, we now extend the earlier considera-
tion of the stress distributions beneath point loads for foundations to the 
stress distributions that occur beneath variably loaded areas, i.e. consider-
ing the more realistic circumstances. In the next section of this chapter, we 
consider other factors as they relate to both slopes and foundations. 

18.3.1 Cartesian form of the Boussinesq and Cerruti 
solutions 

In Section 17.2.2, the cylindrical polar form of the solutions was given for 
the stress distributions associated with single normal and shear point loads 
on the surface of an infinite CHILE half-space, due respectively to 
Boussinesq and Cerruti. In order to give these solutions greater utility in 
the case of loaded areas and varying loads, it is helpful to first express them 
in Cartesian form so that loaded areas can be discretized as elemental 
components, each of a given magnitude, and then compute the total 
solution by integration of the components over the area in question. 

Poulos and Davis (1974) provide the solutions for various Cartesian 
components of stress and displacement in a form similar to those 
tabulated in Fig. 18.12. Given that these are available, and knowing from 
the theory of elasticity that the solutions for two or more separate loadings 
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Figure 18.12 Cartesian forms of the solutions to Boussinesq's and Cerruti's 
problems. 

can be superimposed, the stresses and displacements associated with any 
loading of the surface can be estimated. It is only necessary to be able to 
discretize the load into suitable component areas over which any normal 
and shear stresses acting can be considered to be uniform, as illustrated 
in Fig. 18.13. 

18.3.2 Analytical integration over loaded areas 

Flere we consider only the cases of stresses and displacements in the 
2-direction, for the Boussinesq solution, to demonstrate the principle of 
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Figure 18.13 Integration of Boussinesq and Cerruti solutions over each component 
element of a loaded area. 

determining influence functions for the component areas. This technique 
applies, with suitable variation, to all of the components of stress and 
displacement. 

In Figure 18.13, the area bounded by X ,̂ X2, Yi and Y2 is assumed to be 
loaded with a uniform normal stress, p, and we wish to consider the 
consequential stress component a^ and displacement component u^ at the 
point F at depth z below the surface of the half-space. These are found by 
integrating the relevant expressions given in Fig. 18.12 over the loaded area. 
Considering a small element dx - dy, as shown in Fig. 18.13, the equivalent 
point load is P = pSx x dy and thus the relevant expression for the stress 
component induced by this infinitesimal element is: 

a, = ——dxdy. 
~ 2KR' 

To calculate the total stress component at F, integrate between the 
appropriate limits in the x-y plane as follows: 

Although z is independent of x and y, R = {x^ + J/̂  + 2^), with the result 
that evaluating the integral is not straightforward. However, a standard 
form exists for the integral (ref. Handbook of Mathematical Functions, 
Abromovitch and Stegun, 1965) as 

JJ^^< ĵ̂ =*^"" Rz 
xyz_ 

R 

1 

X' + 2 " y +2-
iAx,y). 

The term ls{x,y) is referred to as a stress influence function and the stress itself 
is therefore given as 
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s, = {p/2p)mx2,y2) + hixvyi) - ^sfeyi) - 4(̂ i,y2)]-

Once all the influence functions have been evaluated (these being 
geometrical functions), the stresses and displacements at any point can be 
found as the result of any loading distribution—^by discretizing the surface 
loading appropriately and applying the relevant influence functions to 
summate the individual contributions made by each element. 

Exactly the same approach is used for the displacements. The total 
vertical displacement induced by the element 5x - 5y is given by 

a z' , 2 (1 -V) 

R' R 
dxdy 

from which the displacement influence function is evaluated as 

/d(x,i/) = 2(1 - v)[xloge(K-f y) + yloge(K+x)] - (1 - 2v)ztan~\xy/Rz). 

Again, the total displacement induced by the loading over the particular 
element is calculated as 

u, = (p/4;rG)[/d(x2ry2) + U^vyd - U^i^yi) - ^d(^i/y2)]-

As with the stresses, the displacement contributions from each of the 
individual uniformly loaded discrete component elements are added to 
give the total displacement at the point F. 

18.3.3 The sector method 

In the circumstances of an irregular boundary of a uniformly loaded area, 
analytical integration of the Boussinesq and Cerruti solutions may be either 
intractable or impossible, but a simplified form of the stress or displacement 

Uniform pressure p 
over irregular area 

(a) 

Sector 

b8e 

Typical sector 

Elemental 
load = pb808b 

Area of 
element 

(b) 

Figure 18.14 The sector method for loaded irregularly-shaped areas: (a) irregularly-
shaped areas are divided into sectors; and (b) geometry of a typical sector. 
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influence function may be developed and used through implementation 
of the sector method. The principle is that the uniformly loaded area is 
divided into sectors around the point of interest, analytical integration 
performed over each sector and the total effect found by summation of 
the sectorial contributions. The technique can be conducted in graphical, 
semi-graphical or numerical fashion. Figure 18.14 demonstrates the basic 
principle. 

A loaded area with an irregular boundary is shown in Fig. 18.14(a). 
Around some arbitrarily chosen point of interest a number of sectors have 
been drawn. Figure 18.14(b) shows a typical sector in detail, indicating 
an element over which the analytical integration will be performed. The 
subtended angle at the origin of the sector is assumed to be sufficiently 
small to enable adequate representation of the irregularity of the 
boundary. 

Considering the element shown in Fig. 18.14(b), 

elemental load = pb 56 8b. 

As an example, consider the formula for the vertical displacement due to 
a normal point load given in Fig. 18.12, i.e. 

K ) p o i n t = - — 
4;rG 

z' , 1 ( l - 2 v ) 

R' R R 

We then substitute the elemental load for the point load P at the elemental 
position 2 = 0 and R = b. This reduces to 

( « . ) e , e . e n . = ^ ^ 5 a * . 
/element ^ _̂, 

InG 

To obtain the displacement induced by loading over the complete sector, 
the above expression is integrated for J? = 0 to J? = r, giving 

2nG 

and finally, for the total loaded area, 

27iG 

Evaluation of the term LrSO involves either graphical, semi-graphical or 
numerical techniques to determine a value of r for each value of 6. In most 
cases, the number of sectors required to produce a result of acceptable 
accuracy is modest—as the reader can verify for the case of a circular 
area using the formula above, knowing that the analytical result to 
JlrdO is 27cr, 

The sector method is a simplified version of the stress influence function 
method, where the loading is uniform over the entire area and polar co-
ordinates have been used. Given the conditions of a uniform load, the 
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sector method could be used to develop expressions for any of the 
displacement or stress components that may be required through the use 
of the expressions listed in Fig. 18.12. 

Within the overall context of the design and analysis of surface 
excavations, discussions of the 'first pass' studies of slope design and 
foundation design have followed different approaches to slopes and 
foundations. With slopes, kinematic feasibility was used and it was found 
that a great deal of information could be obtained from the preliminary 
overview analysis. With foundations, we considered how to estimate the 
stresses and displacements beneath a non-uniformly loaded area. Again, 
this type of analysis would immediately highlight areas for concern 
and, if discontinuities were present, indicate the regions of potential 
instability. 

To extend both these approaches, one would need to consider the effects 
of stress in very high slopes and the effects of discontinuities on the stress 
distributions beneath foundations. Moreover, there is a range of site factors 
that should be taken into account in more extended analyses. These include 
overall rock anisotropy and inhomogeneity, local variation in material 
properties, the effects of natural factors such as groundwater, rainfall, 
seismic risk and the effects of engineering factors such as blasting. We have 
chosen, therefore, to present in the next section techniques for consider-
ing these together, rather than extend each of the analyses separately to 
account for the wide variety of deviations from the assumed CHILE 
circumstances. 

18.4 Techniques for incorporating variat ions in 
rock and site factors into the analyses 

There is a range of factors that can influence the instability of surface 
excavations. The techniques presented so far do not explicitly allow these 
factors to be taken into account, nor indeed can they all be taken into 
account quantitatively in a direct way—because there will never be 
complete knowledge of the rock mass. Also, considering the total energy 
balance of a rock mass system via thermodynamics, it can be shown that 
any excavation must result in an alteration of the rock properties (Hudson, 
1992). This means that even with complete knowledge of the rock 
properties before excavation as a result of a 'perfect' site investigation, the 
post-construction properties would still not be known—because the pre-
construction properties will have been altered by the excavation process. 
It can be predicted with certainty that some form of analysis that deals with 
uncertainty will be required. 

So far, the approach has been deterministic (i.e. estimated single values 
of each of the parameters involved have been used in order to produce a 
single result). This is because it is essential to understand the basic 
mechanics before superimposing methods which account for variability. 
There have been attempts during the development of rock mechanics to 
substitute probabilistic approaches for an understanding of the mecha-
nisms, i.e. to relegate the mechanics and solve the problem by treating 
some of the factors as random variables. 
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We believe that this probabilistic approach is fundamentally flawed: 
the basic mechanics must be understood first and then any variations in any 
properties, or any lack in our knowledge, dealt with via appropriate mathematical 
techniques. Such techniques are still being developed and are extensive. 
They range from the simple application of probability theory through to 
the development of new systems utilizing cognitive processes and neural 
networks. 

18.4.7 Sensitivity analysis 

In Figs 17.6 and 17.8, the variation in the factor of safety is shown for plane 
instability and wedge instability with the depth of water in a tension crack, 
the angle of friction and the included wedge angle. In all of the examples, 
as the factor of safety varied, it passed through unity—the interface 
between stability and instability. Qualitative examination of the graphs in 
these figures shows that, for certain ranges of the independent variables, 
the factor of safety is more sensitive to these variations than for other ranges 
(e.g. in Fig. 17.8 the range 10-20° for the included wedge angle). This 
behaviour can be expressed quantitatively through a formal definition of 
sensitivity, as follows: 

sensitivity = = slope of the factor of safety 
d(p / Pi) vs normalized parameter curve 

where p is any parameter involved in the analysis, and 
Pi is the value of this parameter which produces a factor of safety 
of unity (all other parameters remaining constant for this 
analysis). 

The use of a normalized parameter is a simple device whereby the curve 
is scaled around the region of interest. 

Normalised aperture, e/e p^, 
3 4 5 

For the normalised aperture value of I. the factor of 
safety is equal to 1 and factors of safety in this 

region are extremely sensitive to the aperture values 

7 = 22kN/m-^ 

c'=10kN/m- t 
4)' = 30° 

17m 

Figure 18.15 Illustration of sensitivity analysis applied to plane sliding. 
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In the example in Fig. 18.15, we show the sensitivity of the factor of safety 
for plane sliding of a rock slope to the aperture of a discontinuity. The inset 
sketch shows the geometry of the slope under consideration, together with 
the material properties. All of the discontinuities are assumed to be full of 
water, a drainage gallery is provided at E, and the block BCD is unstable 
and may slide along BC. Using the techniques described in Sections 9.4 
and 17.1.2, the hydraulic pressures in the discontinuity network can be 
determined and thence the factor of safety against plane sliding found, in 
this case, as a function of the aperture of BD. Note that in Fig. 18.15, 
this aperture has been normalized, as described above, and it is the 
sensitivity that has been plotted on the vertical axis and not the factor 
of safety. 

This illustrates that, for factors of safety around unity, the system is 
sensitive to changes in aperture of discontinuity BD. For this illustration 
we have taken a normalizing aperture related to a factor of safety of 1; any 
other factor of safety could equally well have been taken and produced 
similar curves to establish the different sensitivities under these other 
conditions. 

Sensitivity analysis is useful (not least, in the significance for site 
investigation), but is not the most convenient method for either analysing 
or communicating the effects of variation in, what could be, a large number 
of relevant parameters. For this, one must turn to other techniques, as 
described next. 

18.4.2 Probabilistic methods 

A traditional method of describing the many values a parameter may take 
is through the use of probability theory. The key difference between the 
deterministic and probabilistic approaches is that in the latter we do not 
actually know, or even assume, a specific value for the parameter in 
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Figure 18.16 Direct probabilistic approach, illustrated by sliding of a block on a 
plane. 
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question. Instead, it is said that the parameter can take on a range of values 
defined by a probability density function, with the result that statements 
can be made about the probability that the parameter will take on values 
within a certain range. Thus, given any mechanical model, the effect of the 
various parameters in the model can be considered as random variables 
taken from probability density functions. 

In those cases where only one or two parameters are considered as 
random variables, it is possible to use probabilistic statements to examine 
the system, and the method of solution may be by so-called direct methods. 
In those cases where a large number of parameters are considered to be 
random variables from different types of distribution, the mathematics 
associated with the direct probabilistic analysis becomes intractable, and 
so a numerical technique, e.g. the Monte Carlo method, must be used. 
Monte Carlo simulation involves repeatedly substituting generated ran-
dom variables into a deterministic model and collation of the results into 
a histogram. 

Direct approach. The direct approach is demonstrated in Fig. 18.16 for 
the simple case of a block sliding on a plane, where the angle of friction 
is considered as a random variable. Considering the left-hand histogram 
to represent the results of 133 shear box tests to determine the angle of 
friction, the histogram can either be used directly, or a normal distribution 
(for example) can be fitted to the results. In the former case, the probability 
density histogram is defined by the class intervals; in the latter case, it 
is defined by the mathematical expression for the function in question, e.g. 
the normal distribution with particular values of mean and standard 
deviation. 

The important distinction between the deterministic and probabilistic 
methods is illustrated by the fact that the class intervals in the probability 
density histogram are used and not the actual separate 133 test results. 
Inserting the mean value of each of the class intervals into the deterministic 
model in turn allows a cumulative distribution function to be generated, as 
illustrated in the right-hand graph of Fig. 18.16. Probabilistic statements 
can then be made about the factor of safety, e.g. what is the probability 
that the factor of safety will be above 1.25 for a case when the angle of 
friction is a random variable from the same population as that determined 
by the sample tests. The probabilistic analysis can be initiated by assuming 
a continuous probability density function, with or without reference to 
test data. 

Monte Carlo simulation. Monte Carlo simulation is a procedure which 
permits the variation in many parameters to be considered simultaneously. 
The calculation is performed many times for repeatedly generated sets of 
input data. Each calculation produces one value of the factor of safety, from 
which a histogram or cumulative distribution of factors of safety is generat-
ed. Figure 18.17 demonstrates the principle of the simulation, and Fig. 18.18 
shows how it may be applied to the analysis of a curvilinear slip in a poor-
quality rock mass, using the method of slices and following the procedure 
outlined by Priest and Brown (1983). 
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Figure 18.17 Mechanism of the Monte Carlo simulation procedure. 
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Figure 18.18 Monte Carlo simulation applied to slope instability in poor rock masses 
(from lecture notes by S. D. Priest). 



Techniques for incorporating variations in rock and site 335 

Modern computational facilities are such that large numbers of sim-
ulations can be conducted in a short period of time on a desktop computer. 
To perform Monte Carlo simulation, generation of random variables for the 
given probability density distribution is required. These are elegantly 
generated by consideration of a cumulative distribution plot. Every point 
on the vertical axis of a cumulative distribution plot has equal probability 
of occurring: thus, to generate the random variable, the equation for the 
cumulative distribution function is inverted so that the random variable is 
expressed as a function of the cumulative probability. Then, inserting a 
random number, taken from a uniform distribution, with a value between 
0 and 1 for P will give a random variable for the distribution desired. 
For example, with the negative exponential distribution, the cumulative 
probability, P, is given by P = 1 - e"'̂ ^ which upon inversion produces x 
= -(l/A)loge(l - P). Uniformly distributed random variables may now be 
substituted for P to provide x variables from a negative exponential 
distribution. This technique is valid for all probability density functions, 
although the inversion is not always as easy as the one demonstrated here. 

Interpretation of probabilistic analyses. Having conducted a probabilistic 
analysis in the manner just described, the resulting histogram of factor of 
safety values has to be interpreted for engineering purposes. The 
interpretation must take into account both the mean factor of safety and 
the spread of values about the mean. In Fig. 18.19, two tables are shown 
which can be used to assist in this interpretation. 

The first table categorizes slopes in terms of the mean factor of safety 
and the probability of the actual factor of safety being less than a specific 
value, in this case 1.0 and 1.5. These last two conditions are used to take 
into account the spread of the histogram about the mean. The second table 
in Fig. 18.19 considers the engineering consequences of the various 
combinations in which the three probabilistic criteria might be satisfied. 
There is a degree of subjectivity in the levels at which the various prob-
abilistic criteria are set and the associated interpretation. In practice, an 
engineer would have to consider the site-specific circumstances. 

To use these tables, the engineer initially assesses the consequences of 
failure of the slope and hence establishes the slope category (the first two 
columns of the upper table in Fig. 18.19). This sets values for the minimal 
mean factor of safety and the maximal probabilities of not exceeding a 
factor of safety of 1.0 or 1.5 (the three right-hand columns). Having 
established these criteria, and the degree to which they are satisfied for a 
specific slope (through the use of Monte Carlo analysis and compared with 
the left-hand column of the lower table in Fig. 18.19), the engineer can 
utilize the interpretation provided (the right-hand column). 

There are many potential variations on this probabilistic theme and 
many design techniques that can be based on alternative approaches to 
assessing instability. However, the basic methodology has been explained 
in this section and thus, by extrapolation, the reader can conceive how 
similar probabilistic approaches can be developed and adopted. We 
concentrate next on an alternative technique for assessing variations in rock 
and site factors using fuzzy mathematics. 
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Category 
of 

slope 

1 

2 

3 

Consequences 
of failure 

Not serious 

Moderately 
serious 

Very serious 

Examples 

Individual benches, small 
(height<50m) temporary slopes 
not adjacent to haulage roads. 

Any slopes of permanent or 
semi-permanent nature. 

Medium sized (50m<height 
<150m) and high (height>I50m) 

slopes carrying major haulage 
roads or underlying permanent 

mine installations. 

Acceptable values 
Mini-
mum 

Mean F 
1.3 

1.6 

2.0 

Maximum 

P(F<1.0) 
0.1 

0.01 

0.0003 

P(F<1.5) 
0.2 

0.1 

0.05 

Probabilistic slope design criteria 

Satisfaction of above criteria 

Satisfies all three criteria 

Exceeds minimum mean F but violates one or 
both probabilistic criteria 

Falls below minimum mean F but satisfies 
both probabilistic criteria 

Falls below minimum mean F and does not 
satisfy one or both probablistic criteria 

Slope performam 

Interpretation 

Stable slope 

Operation of the slope presents a risk which may 
or may not be acceptable. The level of risk can be 
assessed by a comprehensive monitoring 
programme. 

Marginal slope. Minor modifications of slope 
geometry are required to raise the mean F to a 
satisfactory level. 

Unstable slope. Major modifications of slope 
geometry are required. Rock improvement and 
slope monitoring may be necessary. 

e interpretation 

Figure 18.19 Interpretation of probabilistic design criteria (after Priest and Brown, 
1983). 

18.4.3 Fuzzy mathematics 

It may be that the parameters influencing the instability of a slope do not 
conform to any known probabilistic distribution, or that the resources 
necessary to determine the relevant distributions are unavailable. In such 
circumstances, the application of probabilistic methods is inappropriate. 
However, the analysis of 'uncertainty' (rather than probability) may be 
performed using fuzzy mathematics, as described in Section 12.6.1. 

The application of fuzzy mathematics to the analysis of slope instability 
through the use of standard equilibrium analysis is straightforward, but the 
interpretation of the resulting fuzzy factor of safety needs care. A 
procedure for this interpretation has been outlined by Sakurai and Shimizu 
(1987), who considered fuzzy cohesion and angle of internal friction in the 
analysis of plane sliding. The analysis is mechanically identical to that 
presented in Section 17.1.2, but in order to interpret the resulting 
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1.0 
Factor of safety 

(a) Unstable 

1.0 
Factor of safety 

(b) Poor 

0 1.0 
Factor of safety 

(c) Fair 

1.0 
Factor of safety 

(d) Stable 

Figure 18.20 Class of slope stability based on fuzzy analysis (after Sakurai and 
Shimizu, 1987). 

trapezoidal fuzzy number representing factor of safety, Sakurai and 
Shimizu defined a 'Stability Index', S.I., as 

S.I. = (f2-l)/(f2-/l) 

where/ i and/2 ^^e as indicated in Fig. 18.20, which shows four classes of 
slope stability based on the stability index. 

Using fuzzy mathematics to accommodate uncertainty in slope analysis 
presents no additional difficulty in an ordinary instability analysis, and so 
it is likely that its use will increase in the future together with experience 
of assessing instability in terms of the stability index or some similar 
measures. 
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19 Underground 
excavation 
instability 
mechanisms 

Chapters 19 and 20 of this book, on instability around underground 
excavations, are direct analogues of Chapters 17 and 18, which were con-
cerned with surface excavation instability. In this chapter, the underground 
instability mechanisms are presented. In Chapter 20, the design and 
analysis of underground excavations are discussed in the context of these 
mechanisms. 

In Section 16.2, the distinction between structurally-controlled and stress-
controlled instability mechanisms is explained. Accordingly, this chapter 
has been devoted to these two primary instability modes, considering also 
composite instability modes and the effect of time and weathering on 
excavation stability. 

19.1 Structurally-controlled instability 
mechanisms 

Structurally-controlled instability means that blocks formed by discon-
tinuities either fall or slide from the excavation periphery as a result of an 
applied force (usually the force due to gravity) or stresses induced by the 
process of excavation. Hence, we include the kinematic feasibility of 
tetrahedral blocks and, later, instability in stratified rock. 

79. J. 7 Kinematic feasibility analysis 

The minimum requirement to define a discrete block is four non-parallel 
planes, which give rise to a tetrahedral block. In terms of the analysis of 
instability around an excavation, such a block can be formed by three dis-
continuity planes and one plane representing the excavation periphery. Because 
we are limiting the analysis to the simplest case—that of tetrahedral 
blocks—the blocks themselves may be identified as spherical triangles on 
the hemispherical projection. This is because the plane of the projection 
represents a plane which is one face of the tetrahedral block and the 
remaining three planes which form block faces are given by the great circles 
representing the discontinuities. Thus, a study of instability mechanisms 
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in terms of kinematics may be conveniently conducted through the use of 
hemispherical projection techniques. Initially the analysis will be limited 
to horizontal roofs (so that the plane of the projection is parallel to the 
excavation surface); later the projection will be inclined to account for any 
orientation of the excavation periphery. 

Given that a tetrahedral block exists, there are three kinematic 
possibilities to be examined: the block falls from the roof; the block slides 
(either along the line of maximum dip of a discontinuity, or along the line 
of intersection of two discontinuities); or the block is stable. 

Falling. Falling occurs when a block detaches from the roof of an 
excavation without sliding on any of the bounding discontinuity planes. 
In the case of gravitational loading, the direction of movement is vertically 
downwards. This is represented on the projection as a line with a dip of 
90°, i.e. at the centre of the projection. Thus, if this point falls within the 
spherical triangle formed by the bounding discontinuities, falling is 
kinematically feasible, as illustrated in Fig. 19.1. 

Sliding. In Sections 18.1.1 and 18.1.2, plane and wedge instability analyses 
for a surface slope were discussed. A similar method is used here to 
consider blocks sliding from the roof, either on one discontinuity plane (as 
plane failure) or on a line of intersection (as wedge failure), as illustrated 
in Fig. 19.2 by consideration of the spherical triangle and whether any part 
of it has a dip greater than the angle of friction. 

Assuming that both discontinuity planes have the same friction angle, 
there are only two candidates for the sliding direction: either the line of 
maximum dip of one plane, or the line of intersection of two planes. No 
other part of the spherical triangle represents a line of steeper dip than 
these candidates. 

Not all lines of maximum dip can be candidates for the sliding direction. 
An example is afforded by the line of maximum dip, /J3, of plane 3 in 

Perimeter of projection Spherical triangle 
represents plane of representing a 
horizontal roof ^—' ^ - ^ ^ falling block 

Figure 19.1 Kinematic identification of a falling block. 
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Friction 
circle 

(a) 

Figure 19.2 Kinematic identification of sliding blocks. 

(b) 

Fig. 19.2(a) and the lines of maximum dip, Pi and 8̂3, of planes 1 and 3 in 
Fig. 19.2(b). In each of these cases, the planes, although dipping at angles 
greater than the friction angle, are not candidates for the sliding direction 
because the line of maximum dip is not included within the block. The spherical 
triangle represents the region of kinematically admissible directions of 
movement and any other direction represents directions directed into the 
rock surrounding the block. There are no restraints on the azimuth of slid-
ing direction from the horizontal roof: there will naturally be constraints 
on the azimuth when sliding is considered from the side walls. 

Hence, the shaded blocks in Figs 19.2(a) and 19.2(b) represent plane 
sliding along /32 and wedge sliding along /J31, respectively. Only one friction 
circle has been used because all discontinuities are assumed to have the 
same friction angle, but in the plane sliding case the analysis could easily 
be extended to cater for different friction angles with associated friction 
circles on the projection. In the case of wedge sliding, which may be 
regarded as plane sliding on two planes simultaneously, the direction of 
movement is parallel to the direction of the line of intersection of the planes 
themselves. If the two planes have different angles of friction, the line 
of intersection must lie within both friction circles for wedge sliding to 
occur. 

Stable. The final possibility, that the block is stable, is shown in Fig. 19.3. 
This occurs when a spherical triangle lies completely outside the friction 
circle. Again, a line of maximum dip which exceeds the angle of friction is 
not in itself sufficient to cause instability: it must lie on the perimeter of the 
spherical triangle under consideration to be part of a kinematically feasible 
block. 

19.L2 Use of Inclined hemispherical projection 
methods 

In Section 19.1.1, it was assumed that the blocks would move from the 
horizontal roof of an excavation. In order to use the simplicity and clarity 
of these graphical methods for any blocks—which may be moving from 
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Figure 19.3 Kinematic identification of stable blocks. 

surfaces which are not horizontal—the concept of inclined hemispherical 
projection can be used. 

The purpose of inclining the projection is to be able to identify tetra-
hedral blocks formed by three discontinuities and the excavation surface, 
the latter being retained as the perimeter of the projection. This is achieved 
by ensuring that the plane of projection is coincident with the plane of the 
excavation surface. Naturally, the position of the discontinuity planes and 
the point representing the vertical direction on the projection will change, 
and friction circles will no longer be concentric with the perimeter of the 
net but must be constructed as circles representing friction cones around 
the vertical. 

With the extended technique of the inclined projection, the block iden-
tification procedures can be retained and similar techniques for establishing 
kinematic feasibility used as for horizontal roofs. The details of the 
procedure required to construct an inclined hemispherical projection are 
given in the second Appendix, and so here we concentrate on the required 
angle of inclination and interpretation of the resulting diagram. 

Angle of inclination of the hemispherical projection. In Fig. 19.4, there is a 
generic excavation with five main excavation surfaces: the roof, the shoul-
der, the sidewall, the knee and the floor. The inclined hemisphere is shown 
as it relates to each of the excavation surfaces. The lower-hemispherical 
projection at the roof is inverted to an upper-hemispherical projection 
at the floor: between these extremes the hemisphere has been inclined 
by 45° at the shoulder, 90° at the vertical sidewall and 135° at the knee. 
The hemisphere can be inclined in this way to accommodate any required 
excavation surface. 

The key to the procedure is to incline the projection such that it becomes 
coincident with the outward directed normal to the excavation surface. This 
is achieved by performing the following steps. 

• First, plot on an overlay, the normal to the excavation surface in question 
(Nf in Fig. 19.5), the normals to the various discontinuity surfaces 
(Ni, N2 in Fig. 19.5) and the normal to the horizontal plane (N^ in Fig. 
19.5, which is coincident with the centre of the projection, i.e. vertical). 

• Then rotate the overlay such that Nf lies on the E-W line. 
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U7 />;LOWER 
HEMISPHERICAL 

PROJECTION 

In practice, the inclination as 
shown here should be conducted 
such that the point representing jŝ  , 
the outward-directed normal from 
the rock face moves to become 
the centre of the projection. 

UPPER 
HEMISPHERICAL 

PROJECTION 

Horizontal 
Inclination 
angle 

Inch nation 
angle 

•ax 
///^^^^S^lnchnation 

'^ '"-'V/'/angle 

Horizontal 
Inclination 
angle 

Figure 19.4 Inclination of the hemispherical projection to be coincident with the 
excavation surface. 

• The inclination is then applied (taking care to ensure that both the 
direction and magnitude are correct) to all normals by moving along 
small circles and replotting the points. 

The procedure is shown in Fig. 19.5 and explained in detail in the Appendix. 
The inclined normals are labelled N^, N^j, N^ and N^ in Fig. 19.5. Nfi is, 

by definition, coincident with the centre of the net. From these normals, 
the associated great circles representing the inclined projection of the 
various discontinuities are constructed, as shown by the solid great circles 
in Fig. 19.5. Similarly, the horizontal plane is derived from N^i and is shown 

GREAT CIRCLE 
REPRESENTING 
HORIZONTAL 

ALWAYS INCLINE NORMALS 
THEN DRAW ASSOCIATED GREAT CIRCLES 

Figure 19.5 Construction of an inclined hemispherical projection. 
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on the inclined projection by the dashed great circle. The relative positions 
of the inclined horizontal plane and N^i are used to distinguish between 
'up ' and 'down': any line which appears on the Nhi-side of the inclined 
horizontal plane is directed downwards (because we started with a lower-
hemispherical projection and N^ was initially coincident with the down-
wards directed vertical line). The requirement to be able to distinguish 
between up and down is essential in interpreting potential gravitationally 
induced instability! 

The elegance of this technique lies in the simple graphical transformation 
(illustrated by the curved lines representing, for example, the N^ to N^ 
inclination) which is the representation of an equivalent 3 x 3 matrix 
multiplication. Also, considering the associated D^ to Dn inclination, we see 
immediately that D^ does not correspond to the mid-point of the great 
circle, which is expected, in terms of a lower-hemispherical projection, to 
be the line of maximum dip. Relative to the global frame of reference, D^ 
remains the line of maximum dip. Relative to the local frame of reference 
(the inclined projection), the mid-point of the great circle is no more than 
the line on the plane which makes the maximum angle to the plane of the 
projection (which is the rock surface) and has no general engineering 
utility. 

Thus, the inclined hemispherical projection technique retains the inter-
pretive character of representing the three-dimensional rock structure 
geometry, whilst enabling rapid study equivalent to lengthy mathematical 
operations. 

In the following paragraphs, we demonstrate the method of identifying 
falling, sliding and stable blocks utilizing the inclined hemispherical 
projection technique. 

Identification of falling blocks. In Section 19.1.1, procedures were presented 
for identifying the kinematic feasibility of a falling block using the 
lower-hemispherical projection to represent a horizontal roof. These 
same basic procedures, shown in Fig. 19.1, can be used but with the inclined 
hemispherical projection accounting for excavation surfaces at any 
orientation. 

Figure 19.6 illustrates the identification of a block falling from an inclined 
surface. The various great circles and poles on this diagram have been 
constructed using the procedures shown in Fig. 19.5. Note particularly the 
great circle, H, representing the horizontal plane and the associated pole, 
Nhi, representing the vertical. This vertical line is also shown in the 
accompanying sketch of such a block. 

By comparison with Fig. 19.1, the highlighted spherical triangle in both 
cases contains the pole representing the vertical direction—and hence the 
block will fall from an overhanging surface, because the spherical triangle 
surrounds the downward directed vertical. The latter point is related to the 
following discussion on stable blocks, which cannot fall from non-
overhanging surfaces because they have upward directed verticals. 

Identification of sliding blocks. By comparison with Fig. 19.2, a similar 
procedure can be used for inclined projections to identify blocks which can 
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Figure 19.6 Identification of kinematically admissible falling blocks at an inclined 
surface. 

slide—either from an overhanging or a non-overhanging surface. Figures 
19.7 and 19.8 illustrate the identification of blocks sliding from inclined 
overhanging and non-overhanging surfaces, respectively. For the case of 
a falling block, note the great circle, H, representing the horizontal plane 
and the associated pole, N^i, representing the vertical. The blocks 
themselves and the vertical lines are also shown in the accompanying 
sketches of the geometry. For overhanging surfaces, N^i is directed 
downwards and for non-overhanging surfaces, N^i is directed upwards. 

In order to use the method illustrated in Fig. 19.2, the friction circle has 
to be included on the inclined projections. This circle is easily drawn, as it 
represents a cone of semi-angle (90 - 0)° around N^i for overhanging 
surfaces and (90 + 0)° for non-overhanging surfaces—as implied in Figs 
19.7 and 19.8 by the arrowed lines. 

Thus, for an overhanging surface, as shown in Fig. 19.7, if any point on 
the perimeter of the spherical triangle lies between NHI (the downward 
directed vertical) and the friction circle, sliding is kinematically feasible. 
Similarly, for a non-overhanging surface, as shown in Fig. 19.8, if any point 

Figure 19.7 Identification of kinematically admissible sliding blocks at an over-
hanging inclined surface. 
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Figure 19.8 Identification of kinematically admissible sliding blocks at a non-
overhanging inclined surface. 

on the perimeter of the spherical triangle lies beyond the friction circle 
drawn below the horizontal (i.e. has a dip steeper than 0), sliding is 
kinematically feasible. In essence, the two cases are the same: it has just 
been necessary to account comprehensively for the excavation surface 
orientation. 

For the case of a horizontal roof, the possible modes of sliding (parallel 
to the line of maximum dip of a plane or parallel to the line of intersection 
of two planes) can be identified from the projection geometry. The analo-
gous interpretation for a horizontal excavation surface has been discussed 
in Section 19.1.1, and the same techniques are used in these cases. 

Identification of stable blocks. The stable blocks will be those that do not satisfy 
any of the instability criteria described above. In particular, in Fig. 19.9, 
blocks are shown at both overhanging and non-overhanging surfaces 
which are stable because the friction angle is not exceeded on any relevant 
plane or block edge. The accompanying sketches show that the shape of 
the blocks is such that they can be removed from the excavation surface, 
but the orientation of the block faces relative to the friction angle is such 
that sliding cannot occur. 

The analysis refers only to the instability of a single block. We have not 
studied the potential instability of a suite of blocks, nor whether the 
instability of a single block will lead to one or more blocks also being 
unstable. It is important to know, for support considerations, whether an 
unstable block is an isolated event or whether it may trigger catastrophic 
ravelling of the rock mass. In Chapter 20, the support requirements of 
individual blocks are considered, but the analysis of a ravelling rock mass 
is beyond the scope of this book. However, the principles and techniques 
presented here do form the basis for an understanding of such an analysis. 

19.2 Stress-controlled instability mechanisms 

The instability mechanisms described in Section 19.1 are all driven by 
forces, and in particular the force due to gravity. Such a force is known as 
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Figure 19.9 Identification of kinematically stable blocks at overhanging and non-
overhanging inclined surfaces. 

a body force and is unidirectional. Consequently, the blocks either move 
vertically dow^nw^ards or along some preferred sliding direction. In this 
section, how^ever, instability mechanisms are discussed w^hich are stress 
controlled. Thus, the activating quantity is not a single force, but a tensor 
w îth six independent components and hence the manifestations of stress-
controlled instability are more variable and complex than those of 
structurally-controlled instability. 

For example, considering the stresses around a circular opening, the 
same stress concentrations can theoretically be experienced at opposite 
ends of any diameter of the opening, w^hich could be the floor and the 
roof—w^ith the result that both of these locations experience the same 
manifestation of instability. So it is not surprising that not only may the roof 
have to be supported, but the floor may also have to be supported. This 
illustrates one of the fundamental differences betw^een structurally- and 
stress-controlled instability mechanisms. 

Although in the case of structurally-controlled instability there is sim-
plicity in the mechanisms, it is necessary to consider the complexity of the 
three-dimensional geometry of the rock mass. On the other hand, in the 
case of stress-controlled instability, the fundamental 'complexity' of the 
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nature of stress has to be considered, but in CHILE materials there is a 
relative simplicity in the associated stress-controlled instability mechanisms. 

The analysis of stress-controlled instability must begin with a knowledge 
of the magnitudes and directions of the in situ stresses in the region of the 
excavation. The induced stresses can then be determined, i.e. the in situ 
stresses after perturbation by engineering. There exist closed form solutions 
for the induced stresses around circular and elliptical openings (and 
complex variable techniques extend these to many smooth, symmetrical 
geometries), and with numerical analysis techniques the values of the 
induced stresses can be determined accurately for any three-dimensional 
excavation geometry. Finally, a rock failure criterion expressed in terms of 
stresses is required; failure has already been discussed in Chapter 6 for 
intact rock, in Chapter 7 for discontinuities and in Chapter 8 for rock 
masses. 

It is now appropriate to consider stress distributions around under-
ground openings in order to determine the extent of stress-controlled 
instability mechanisms. In the text that follows a series of elastic solutions 
for various geometries will be presented, but the derivation of each solution 
is not included. 

All analytical closed form solutions must satisfy the following criteria. 

(a) Equations of equilibrium—three equations of the form 

ar,^ dr^^ da. ^ ^ 
— ^ + — ^ + — ^ + Z = 0. 
dx dy dz 

(b) Strain compatibility equations—three equations of the form 

dy~ 3x' dxdy 

and three of the form 

2^''-
dydz dx dx dy dz 

where the symbols are as defined in Chapters 3 and 5. 
(c) Boundary conditions—e.g. zero traction or uniform pressure on the 

excavation boundary. 
(d) Conditions at infinity—e.g. field stresses. 

It is from these conditions that the solutions for the circular and elliptical 
openings that follow have been derived. As the conditions require that the 
derivatives of various functions exist, openings with sharp corners cannot 
be exactly modelled, although solutions for openings with small radii 
corners have been developed using the theory of complex variables. The 
solutions can be cumbersome, inhibiting simple analysis of parameter 
variation, and it is for this reason that we do not present them here— 
concentrating instead on the simpler instructive solutions, of which the 
Kirsch equations are perhaps the paradigm. 
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79.2. J Stresses and displacements araund a circular 
excavation 

In rock mechanics and rock engineering, the Kirsch equations are the most 
widely used suite of equations from the theory of elasticity. They allow 
determination of the stresses and displacements around a circular excava-
tion, and are given in Fig. 19.10. The pre-eminent nature of these equations 
is due to the requirements of stress determination techniques in circular 
boreholes and consideration of the stability of circular tunnels. The 
equations apply to openings made in previously stressed CHILE materials, 
rather than the case of openings made in unstressed materials. The authors 
had considerable difficulty in reconciling the many different expressions 
given in the literature for ŵ  and UQ, but are confident that the expressions 
given in Fig. 19.10 are correct. The angle 6 is measured anticlockwise 
positive from the horizontal axis in the figure. 

Some special cases of interest are now given in which the Kirsch 
equations are used to demonstrate a number of important points. These 
occur at specific locations (i.e. the boundary of the excavation) and with 
specific stress fields (i.e. uniaxial and hydrostatic). 

Stresses at the boundary of a circular opening. We see from Fig. 19.10 that 
the stresses on the boundary (i.e. when r = a) are given by 

cj, = 0 

Ge = p,{(l + fc) + 2(1 - fc)cos2W 

and Tro = 0. 

Note that the first of the stresses is zero because there is no internal 
pressure, and the last of the stresses must be zero at a traction-free 
boundary (the excavation boundary is a principal stress plane). The 
variation in boundary tangential stress at the end points of horizontal and 
vertical diameters for 0 < fc < 1 is shown in Fig. 19.11. 

S " I / ^ {(I +k)l\ + ^ ) + (l -^)(l + 3 4 ) c o s 2 e } 

4G 
{\ +k)-(\ -A.) 4(1 - v ) - ^ cos 29 

""-^{^'-^^'-'-^•^^S""''} 

Figure 19.10 Stresses and displacements induced around a circular excavation in 
plane strain (for a CHILE material). 
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O Q / P , Boundary stresses at 6 = 0° and 180° 
09 = p,(3-k) 

Boundary stresses 
at e = 90° and 270°: CQ = p,(3k-l) 

0.4 0.6 1.0 k 

" Tension 

Figure 19.11 Stress concentration factors due to a circular opening. 

The highlights of this diagram are: 

(a) under all stress fields, the opening alters the pre-existing state of stress, 
i.e. the opening produces stress concentrations; 

(b) there is a linear variation with k of the stress concentrations at the points 
A and B (and, indeed, everywhere on the boundary); 

(c ) in a uniaxial stress field (k = 0), the maximum stress concentration is 
3 (i.e. compressive ), and the minimum stress concentration is -1 (i.e. 
tensile); 

(d) for a hydrostatic stress field {k = 1), the stress concentration is 2 
everywhere on the boundary (note that this may be demonstrated using 
the information in (c) above, where the superposition of two orthogonal 
and equal uniaxial stress fields results in the stress concentration of 
3 + -1 = 2); 

(e) tension on the boundary can only occur if fc < Vs. 

In the hydrostatic case {k = 1), the stress concentration around the 
excavation boundary is always 2p^. The solution for stresses anywhere 
within the rock mass for this stress state is similarly simplified because there 
are no shear stresses: the terms (1 - k) are all zero. Hence the equations for 
radial and tangential stress reduce to 

a, = p j l - ( aV)} and cr, = p,{l + (flV)}. 

For many practical applications, it is useful to superpose the solution for 
the stresses induced in the rock by a uniform internal pressure, p, with such 
a pressure being due to either fluid pressure (water or mud for boreholes) 
or support pressure (for tunnels and shafts). The contributions made by an 
internal pressure to the radial stress, tangential stress, radial displacement 
and tangential displacement are, respectively, 

Gr = p{a^/r^), OQ - -p{a^/r^), u^ = pa^/lGr and UQ={). 

If, again, we consider the case when k = I, but now the opening is inter-
nally pressurized, the superposition of the above solutions gives 

^r = Pz - (Pz - P)(« V ) and cj0 = Pz + (Pz - P)(fl V ) . 
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From these equations we can see that: 

(a) when p = p^, the internal pressure replaces the hydrostatic stress field 
present in the rock before excavation and then cr̂  = cĵ  = p; 

(b) considering p as a support pressure in a tunnel, the magnitude of p is 
typically very low compared to that of p^, and so has little influence on 
either a^ or OQ; 

(c) by pressurizing the fluid in a borehole, it is possible to produce 
conditions where p > p^, and if p > 2p^, then GQ will become negative, 
i.e. tensile, and, depending on the tensile strength of the rock, 
hydraulic fracturing may occur as shown in Fig. 4.5. 

Several special cases have been given here, and by extension the ideas 
developed can be considered for more complex situations. One concept 
that can be elegantly demonstrated from the Kirsch equations is the 
principle of the conservation of load. 

Conservation of load. Figure 19.12 shows, by means of sketches represent-
ing different stages in a hypothetical excavation process, how the distribu-
tion of vertical stress across a horizontal plane changes. The argument can 
be used to analyse the stress distribution on any plane—we have chosen 
the horizontal plane coincident with the centre of the excavation for the 
sake of convenience. Fig. 19.12(a) indicates this cross-section through a 
CHILE rock mass, with the future excavation shown as a dotted line, and 
the horizontal plane shown as a dashed line. Fig. 19.12(b) shows a free body 
diagram of the rock above this horizontal plane. In this case, the effect of 

(a) 

1 1 IJ 1 
(b) 

t I \-\ \ t F = p,A 

Pz 

(c) .z:̂ _ 

r - . i Tp^ 

7 
(d) 

Areas equal = p^a 

F = p,A 
Diameter = 2a 

Figure 19.12 Principle of conservation of load before and after excavation. 
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the lower mass of rock is replaced with a statically equivalent force PzA, 
where A is the area of the imaginary plane under consideration. If one 
now considers the case after the tunnel has been excavated, as shown in 
Fig. 19.12(c), it can be seen that the portion of rock mass excavated no 
longer transmits any stress, but the statically equivalent force must remain 
the same as in Fig. 19.12(b) to preserve equilibrium. However, this force 
now acts over a smaller area than before (because the rock which is in the 
location of the tunnel has been removed) and so the stress across the 
horizontal plane must be increased. 

The load no longer carried by the rock removed from the tunnel 
is pz X 2a, per unit length of tunnel, and, in order to preserve equilibrium, 
this must equal the load re-distributed into the surrounding rock (Fig. 
19.12(d)). This can be demonstrated by using the Kirsch equations for a 
uniaxial stress state (i.e. k = 0), and determining the vertical stress across 
the horizontal plane in question by taking the expression for tangential 
stress with ^ = 0, 

Go = p,{l + {a^/2r^) + (3flV2r')}. 

To obtain the total redistributed load, subtract p^ from this expression and 
integrate between the limits of a and oo (the Kirsch equations are defined 
for an infinite volume of rock, which implies the area A of the horizontal 
plane is also infinite) for both sides of the tunnel. 

redistributed load = 2f. f 
a 3a 

— + — 
2r' 2r' 

dr 

which reduces to 2^^^, the load bearing capability lost by tunnel 
excavation. 

By integrating between limits of a and 3a, or a and 5a, the percentage of 
the load is obtained which is re-distributed within one tunnel diameter and 
three tunnel diameters, respectively, on either side of the excavated tunnel. 
These are 81.5% and 89.6%, showing that it is the region close to the tunnel 
in which the load re-distribution occurs. For this example, the load 

2 3 4 5 6 7 

Tunnel diameters into the rock 
10 

Figure 19.13 Redistribution of vertical load adjacent to a circular tunnel. 
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redistribution over 10 tunnel diameters is shown in Fig. 19.13. Other 
interesting statistics related to this re-distribution are that 50% of the load 
is redistributed between the tunnel boundary and 0.23 tunnel diameters 
into the rock, and that 95% of the load is re-distributed between the tunnel 
boundary and 4.5 tunnel diameters into the rock. 

Note that the curve in Fig. 19.13 applies to the load re-distribution rather 
than the stress re-distribution. The curve shown is the cumulative load re-
distribution, i.e. the integration of the stress distribution represented by the 
shaded area in Fig. 19.12(d). 

19.2.2 Stresses around elliptical openings 

The stresses around elliptical openings can be treated in an analogous way 
to that just presented for circular openings. There is much greater utility 
associated with the solution for elliptical openings than circular openings, 
because these can provide a first approximation to a wide range of 
engineering geometries, especially openings with high width/height 
ratios (e.g. mine stopes and civil engineering caverns). From a design point 
of view, the effects of changing either the orientation within the stress field 
or the aspect ratio of such elliptical openings can be studied to optimize 
stability. 

Elliptical openings in isotropic rock. An elliptical opening is completely 
characterized by two parameters: aspect ratio (the ratio of the major 
axis to the minor axis) which is the eccentricity of the ellipse; and 
orientation with respect to the principal stresses (measured, for example, 
in terms of the angle between the major axis and the major principal stress). 
Bray (1977) derived a suite of equations for the state of stress around 
an elliptical opening in terms of these parameters and the Cartesian 
co-ordinates of the location of the point in question. These equations 
are given in Fig. 19.14, with reduced forms in Figs 19.15 and Fig. 19.16 for 
the cases of tangential stress on the boundary of an arbitrarily orientated 
excavation and the tangential stress on the boundary of an excavation 
orientated with its axes aligned with the principal stress directions, 
respectively. The diagram in Fig. 19.14 shows how the angle ^defines the 
orientation of the local reference axes /, m relative to the ellipse local axes 
Xi, Zi. In Fig. 19.15, the position on the boundary, with reference to the 
X-axis, is given by the angle x^ ^rid in Fig. 19.16 the ellipse is aligned by 
taking 3̂ = 0. 

It is instructive to consider the maximum and minimum values of the 
stress concentrations around the ellipse for the geometry of the ellipse in 
Fig. 19.16. It can easily be established that the extremes of stress 
concentration occur at the ends of the major and minor axes—points A and 
B in Fig. 19.16—and the corresponding stress magnitudes are as given by 
the equations in the figure. 

In a given engineering context, k cannot generally be altered and so any 
design optimization must be performed through a variation in q, which is 
usually possible. An optimal design can be defined as one in which the 
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maximum stress concentration is minimized. Fig. 19.17 shows how the 
stress concentrations at A and B vary with q, and demonstrates that the two 
concentrations are equal when q — k. Thus, an elliptical excavation has an 
optimal shape when the eccentricity of the ellipse is harmonized with the 
ratio of field stresses—an elegant result. 

Elliptical openings in anisotropic rock. In order to allow for the real nature 
of rock, the solution for the stresses around an elliptical opening can be 
extended to take into account the case of transversely isotropic rock. The 
extension is realistic for many rock types, because transverse isotropy is a 
good representation of sedimentary or metamorphic rocks. There are now 

1 \A 1 1 

kPz 

^ i r ^ ~ V ~ { ^ ' +A)(e>'- 1) +(1 -k)\i—{e-e,,)+ Ce) COS 2 (y]^ + ^)-C COS 2^^ 

^^mm = —{(1 + k){e~ - 1) + 2( 1 - k)c\]^e cos 2 (vl; + P) - cos 2^]} - a,, 

T//,, =^ ^'\ ^ 1(1 + A:) —^ sin 2 vj; + (1 - k)\c (e„ + e) sin 2(3 + e sin 2 (ifi - (3) - {^—{e,, - e) + e-e}jsm 2 (v|i + (3)]} 

where the following geometrical parameters are defined 

iW+H) . 4(.V|^-:r) 
^n = . h = !z '- , 

(W-H) (W~-H~) 

d = ^^. 
(W -̂rw-'-" = ''̂ Hŷ ^̂ -̂

e = u + -^^{ir - 1), v|; = 
^e- i^v, 

B = arctan 
e^\Y :, 

Figure 19.14 Stresses induced around an elliptical excavation in plane strain for a 
CHILE material (after Bray, 1977; from Brady and Brown, 1985). 
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kp. 

ae = ^ j ( l +^-)[(l + r ) + (l - ^2) cos 2 (X - p)] 
^^ 

where q 

-(1 - ^ ) [ ( 1 +(7)2cos2x + ( l - ^ 2 ) c o s 2 p ] } 

W 

Figure 19.15 Stresses induced on the boundary of an elliptical excavation in 
plane strain for a CHILE material (after Bray, 1977; from Brady and Brown, 
1985). 

three parameter groups describing the problem—these relate to the aspect 
ratio of the opening, the ratio of the in situ principal stresses, and the five 
elastic moduli for a transversely isotropic material. 

The cross-section through the elliptical excavation together with the salient 
geometrical parameters and the field stresses are shown in Fig. 19.18(a). The 
general three-dimensional stress field and the model chosen to represent the 
transversely isotropic rock are shown in Fig. 19.18(b). Note that the element 
shown in Fig. 19.18(b) represents the state of stress at a point, and the stress 
components indicated represent local stresses; this is in contrast to Fig. 
19.18(a) where the field stresses are indicated. 

Very often, long excavations have their longitudinal axis aligned with the 
strike of the plane of isotropy and therefore the problem can be simplified 
by assuming plane strain and hence only having to take into account four 
material properties—this is shown in Fig. 19.18(c). 

These ideas are used with associated equations in connection with 
discussion on zones of influence presented in Chapter 20. 

1 1 1̂ -1 1 

kPz 

/ / 2W \ 

1 • 

i where, for an ellipse, the radii of curvature are 

Tvr'"^P« = 277 
w 

Figure 19.16 Stresses induced on the boundary of an elliptical excavation 
(aligned with axes parallel and perpendicular to the principal stresses) in 
plane strain for a CHILE material (after Bray, 1977; from Brady and Brown, 
1985). 
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Figure 19.17 Optimal aspect ratio for an elliptical excavation. 

19.2.3 Analysis of instability around underground 
openings 
There are three main modes which will be addressed here: 

(a) fracture zones around the excavations caused by stress induced failure 
of the intact rock; 

(b) the possibility of slip on pre-existing discontinuities because of the 
induced stress field; and 

(c) the special case of slip within a stratified rock. 

Development of fracture zones. The discussion of fracture zones is 
illustrated with reference to circular excavations in plane strain, but 
the ideas apply to all excavations. In Fig. 19.19, there is a zone shown 
around the opening where the Mohr-Coulomb criterion for the intact 
rock has been satisfied. For the conditions of a hydrostatic field stress, 
as shown, this zone is circular and concentric with the centre of the 
opening. 

Closed form solutions for the radial extent of the fracture zone, the 
stresses within it, and the stresses within the remaining elastic zone 
can be derived from first principles for this geometry and stress state— 
with the usual CHILE assumptions. The solutions are given in 
Fig. 19.19. 

Although these equations apply for an idealized case, they can provide 
guidance to intact rock failure potential and to what extent the rock might 
be damaged. The expressions for stresses within the fractured zone and the 
radius of the fractured zone both contain the parameter p^, the internal 
pressure. This pressure may be a fluid pressure (water or drilling mud, for 
example) or may be produced by the installation of mechanical support. 
In the latter case, the equations enable one to examine the effect of support 
on the stability of an excavation. This theme will be continued in 
connection with the ground response curve in Chapter 20. 
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Figure 19.18 Elliptical openings in transversely isotropic rock. 

Slip on pre-existing discontinuities. Another possibility is that the rock has 
been weakened by the presence of a pre-existing discontinuity. Assume 
that this discontinuity does not affect the elastic constants in any way, and 
so the usual CHILE assumption is valid, but the strength of the rock is 
reduced on the discontinuity. The extent of any potential zone of instability 
can be established by considering whether the induced stresses locally 
satisfy the discontinuity shear strength criterion. 

In Fig. 19.20, there is a discontinuity in the vicinity of a circular opening. 
The specific procedure is then to take a point on the discontinuity to start 
(for computational convenience, we have chosen the closest point on the 
discontinuity to the centre of the opening), evaluate the stress components 
at the point using the Kirsch equations, transform these components into 
normal and shear stress components acting on the discontinuity, and finally 
substitute them into the Mohr-Coulomb (or any other suitable) criterion. 
This procedure enables a graph of the ratio of actual strength to required 
strength versus the parameter d to be drawn, and an example (for a 
cohesionless discontinuity) is also shown in Fig. 19.20. 

From this curve, there is an indication of the location and intensity of the 
damage the discontinuity might sustain as a result of the engineering. In 
the graph, the line representing tan 0 is drawn and hence the extent of 
the zone of potential slip is studied. The length of the zone will depend on 
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Figure 19.19 Development of fracture zones around circular openings. 

the orientation of the discontinuity with respect to the field stresses, the 
proximity of the discontinuity to the excavation, and the strength para-
meters of the discontinuity itself. 

The analysis, although idealized, is useful for evaluating the likely 
influence of the parameters on construction. 

Special case of stratified rock. There can be cases of composite instability in 
which the stress induces slip on pre-existing planes of weakness, with the 

^ ^ ^ 

For each d, calculate a, r, a,, a^, T̂ ^ 

Zone of slip 

Plot T/dn, v\v. d, compare to tan0 to determine 
zone of slip. Slip causes redistribution of 
elastic stresses, which may lead to further 

transform a^, a^ and T̂ ^ to a^, and T slip. This method is an approximation. 

Figure 19.20 Slip on pre-existing discontinuities. 



A note on time-dependency and weathering 359 

possibility of discrete blocks developing as a consequence. This is especially 
likely in the case of excavations in stratified rock, when the perturbed stress 
field causes interlayer slip, which in turn could lead to joints opening and 
the resulting possibility of blocks falling. This is illustrated in the suite of 
diagrams in Fig. 19.21. The slip is similar to the case described immediately 
above, except that the discontinuities may be regarded as ubiquitous, with 
the location of the slip being at the corners of such an excavation, where 
the angle between stress trajectories and the discontinuities is at its most 
adverse. 

19.3 A note on t ime-dependency and 
>veathering 
We have concentrated on the mechanisms and associated solutions for 
simple cases in order to demonstrate the value of understanding the basic 
principles. We have utilized idealized cases for a CHILE rock. The rock is 
actually discontinuous, but in the last two mechanisms we did consider the 
influence of introducing discontinuities. The effects of inhomogeneity and 
anisotropy will have to be explicitly studied through the use of numerical 
analysis, although in many cases the trends would be similar. 

The last of the differences between CHILE and DIANE rocks is that the 
latter do have mechanisms which are time-dependent. We would expect 
that the influence of time, creep and stress relaxation might assist 
engineering because stress concentrations would be reduced and displace-
ments are not instantaneous. However, the more insidious aspect of time-
dependency is that the material itself might lose strength: whilst the stress 
concentrations might reduce asymptotically to a given level, the strength 
of the rock might continue to decrease over the months and years through 
many processes, collectively termed weathering. 

Perturbed stress field can lead to interlayer slip: 

T ^ 

Zones of slip 

With low s/t, discontinuities may open: With high s/t, strata may sag and separates 

Figure 19.21 Composite instability around excavations in stratified rock. 
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There are index tests which assist in characterizing aspects of weather-
ing, such as the slake durability test, although it is difficult to present the 
information with the same impact as the purely mechanical concepts we 
have dealt with above. Many aspects of the subject of weathering can be 
raised, especially in connection with the interaction matrices introduced in 
Chapter 14. At this juncture, we seek only to remind the reader that time-
dependent mechanisms do exist and need to be modelled. 



20 Design and 
analysis of 
underground 
excavations 

In Chapter 19, we concentrated on the specific instability mechanisms 
relating to underground excavations. These were instability due to block 
movement, instability due to stress effects, and circumstances where both 
occur. In this chapter, we consider these mechanisms within the overall 
context of the design and analysis of underground excavations. One does 
not know, a priori, which mechanisms are the ones that will be operating, 
and hence the ones to defend the excavation against. 

There are two essential precursors to such design and analysis. The first 
is a mechanical understanding of the rock mass and the requirements of 
the project being undertaken; the second is the consideration of which 
mechanisms are relevant, including factors such as the presence of a nearby 
fault, which may or may not have been detected by site investigation. With 
these provisos, the subjects described in this chapter will provide 
guidance for the design and analysis of all underground excavations. 

20 .1 Design against structurally-controlled 
instability 

20.7. J Background—pragmatic design^ orientation and 
size effects 

In this section, the foundation laid in Section 19.1 is used to consider design 
against structurally-controlled instability. Even without detailed analysis 
of the blocks formed by discontinuities, a great deal can be achieved by 
pragmatic design of roofs and other excavation boundaries. The procedure 
is the intelligent general use of the principles already described. In Fig. 20.1, 
there are two cases where instability in the roof is apparent from under-
ground observations. One can make useful decisions on excavation 
location, orientation and support without detailed mechanical analysis— 
and one can 'design with the rock'. 

In the left-hand diagram of Fig. 20.1, the roof area is likely to be unstable 
and one option for improving stability would, if viable, be to ensure that 
the excavation were located in the massive rock. Similarly, in the right-hand 
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Figure 20.1 Assessing roof and sidewall structurally-controlled instability from 
visual observations. 

part of Fig. 20.1, the stippled area of rock blocks is likely to be unstable, and, 
if acceptable, changing the designed outline of the excavation to that show^n 
w^ould harmonize the structure w îth the rock and reduce the degree of 
instability. 

Another example is show^n in Fig. 20.2, in w^hich the excavation orien-
tation is considered. As a general principle, and as is clear from the 
figure, tunnels parallel to the strike of discontinuity sets are likely to have 
more instability problems. Similarly, w îth reference to Fig. 20.3, a large 
excavation vŝ ill be more unstable than a small excavation in the same rock 

mass. 
Much can be readily estimated by careful observation. It is apparent by 

direct observation vs^hether a rock type is susceptible to v^eathering. 
Similarly, visual assessment of rock discontinuity surfaces can provide 
guidance on their mechanical behaviour. This is not to say that ŵ e advocate 
abandoning more sophisticated forms of analysis: it is just that a great deal 
can be learnt from observation, especially once the rock mechanics 
principles are understood. 

20.1.2 Elastic analysis applied to stratified rock 

Beam analysis. Follow^ing the pragmatic design approach, more analyti-
cal approaches are now^ considered. One of the oldest problems that 
has been considered in rock engineering is that of roof beam flexure— 
because the main design factor for many excavations in stratified rock 
is the maximum acceptable unsupported roof span. In Fig. 20.4, there 
is an example of the flexure of a beam above an excavation. With this 
geometry ŵ e can calculate both the maximum tensile stress induced in such 
beams by their self-weight, and also the maximum deflection of the beams. 
In the case w^here the beams thin upwards, the strata will not separate 
directly above the opening—providing the elastic properties of the beams 
are equal. Conversely, if the beams thin downwards, strata separation will 
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Figure 20.2 The effect of excavation orientation in relation to discontinuity set 
orientation. 

occur immediately above the roof. A simple elastic analysis of beam flexure 
provides helpful indications of the stability of, and type of support that may 
be required for, a stratified roof. 

The equations resulting from this elastic analysis are shown in the lower 
part of Fig. 20.4. The analysis is two-dimensional and thus is most realistic 
for the cross-section of a long excavation. It must be remembered that these 
equations apply to a CHILE material with the only discontinuities being 
the planes of stratification. Furthermore, a high tensile strength for 
the rock is required, not only in small zones of the beams, but on the 
scale of the excavation itself. Despite these shortcomings, the equations 
provide useful insight into the mechanical behaviour of stratified rock 
structures. 

Block volume (& weight) 
proportional to cube of 
linear block dimension 

Figure 20.3 The effect of excavation dimensions on the size of potentially unstable 
blocks. 
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Figure 20.4 Deflection of roof strata assumed to act as elastic beams. 

Voussoir arch model The analysis in Fig. 20.4 is only valid for a CHILE 
material. However, it is possible to have a stable roof in a discontinuous 
medium. This is the reason why many of the ancient constructions using 
rock blocks have been possible. Figure 20.5 shows a photograph of an 
ancient bridge over a river in northern Turkey. The span of the bridge is 
comprised of a single set of rock blocks with no binding agent; this type of 
arch is called a voussoir arch—and examples are common in masonry 
structures. 

Figure 20.5 Masonry bridge demonstrating a voussoir arch comprised of a single 
set of rock blocks (northern Turkey). 
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The principle of the voussoir arch is open to some discussion, but a block 
will not fall from the arch providing the vertically acting resisting forces 
are greater than the sum of the weight of the block and any superimposed 
forces. These resisting forces are, in turn, generated by the frictional and 
dilational properties of the discontinuities between the blocks, which result 
from horizontal or sub-horizontal forces induced in the arch by the weight 
of the blocks themselves. Viewing the arch in Fig. 20.5, one can imagine 
how the weight of the central block of the arch is transmitted via the inter-
block frictional shear forces to the abutments of the arch. 

It is possible, as shown in the top of Fig. 20.6, to have an arch where the 
radius of curvature is large, with the result that the arch becomes essentially 
flat. A voussoir arch will have compressive stresses between all the blocks 
and between the abutments. Although the arch is stable, and examples such 
as that in Fig. 20.5 have survived for hundreds of years, the whole arch is 
vulnerable to any block perturbation, which will affect the total arch 
integrity: the voussoir arch is like a chain—all the elements have to be 
present in order for it to function. Thus, although the voussoir arch 
principle is elegant, the arch is not a robust design for underground 
excavation roofs. We can use the principle, but the inherent vulnerability 
of the arch needs to be overcome. 

To do this, it is necessary to have an understanding of the precise 
mechanics of the voussoir arch and its potential modes of instability which 
can involve either insufficient or excessive inter-block compressive stress. 
Underground, the voussoir arch is not built from masonry blocks: the arch 
comes into existence once the empty space beneath it has been created by 
excavation, with the result that there are thus two stability aspects to 
consider—is the arch stable in the first place, and will it remain so? 

In the event that the geometry of the arch is such that sufficient inter-
block compressive stress is not generated to mobilize sufficient frictional 
shear forces, a block will become unstable, leading to complete collapse of 
the arch. Such circumstances can arise from lateral movement of the 
abutments, highly compliant elements in the arch (for example, low 
modulus of elasticity of the intact rock and low stiffness discontinuities) or 
simply an inappropriate rock block geometry. Conversely, if the geometry 

A. 

Rock blocks within roof stratum 
assumed to act as voussoirs 

Compressive stresses 
, at abutments 

Compression arch 
in voussoirs 

k 
Figure 20.6 The voussoir arch in underground excavations. 
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of the arch is such that excessive inter-block compressive stress is 
generated, then instability v^ill arise because the strength of the rock blocks 
forming the arch elements is reached, the block integrity is prejudiced and 
the arch collapses. Finally, buckling instability can occur if the ratio of the 
induced compressive stress to the slenderness of the arch becomes too 
large—for example, if a thin, highly competent, and thus highly stressed 
stratum forms the rock structure. 

Rock bolting. Elastic materials do not fail (because the definition of elas-
ticity is that all strain energy is recoverable). If voussoir arch mechanics is 
assisting in the stability of the roof but the roof is vulnerable to pertur-
bations of stresses and strains, rock bolts can be installed in the roof strata, 
thus connecting the suite of potential voussoir arches and maintaining 
essentially elastic behaviour. This is illustrated in Fig. 20.7. Not only do the 
rock bolts reinforce the strata, but any block movement could lead to more 
stable conditions, due to the bolt forces being increased. 

A first estimate with a simple model of the induced rock bolt tension is 
obtained by assuming that each bolt supports the representative prism of 
rock surrounding it as shown in Fig. 20.7. If the bolts are arranged on a 
square grid with a spacing of s metres and the depth of the rock prism is 
D metres, then the tension, T, required is simply the rock prism weight, i.e. 
T = yDs^ kN, where / i s the unit weight of the rock (kN/m"^). For example, 
to support strata with a unit weight of 23 kN/m^ for a depth of 3 m using 
a rock bolt spacing of 1 m, a rock bolt tension of 69 kN (i.e. close to 7 tonnes) 
is indicated. 

The calculation tacitly assumes that the bolts are ungrouted and 
anchored solely at the end embedded in the rock. With bolts that are 
grouted along their length, the support mechanics are more complicated, 
but in terms of stabilizing the voussoir arches they are more effective. 

20.7.3 Support of falling and sliding blocks 

The idea of providing the necessary force to retain blocks in the roof can 
be extended to the falling and sliding blocks which were discussed in 
Chapter 19. The calculation is achieved by determination of the block 
weight for the case of a falling block, with a modification to account for the 
angle of sliding and the effect of frictional resistance in the case of a sliding 
block. The calculation can be made more rigorous by accounting for the 
effect of the stresses present in the rock adjacent to the boundary of the 
excavation. 

Simple falling and sliding analysis. The left-hand diagram of Fig. 20.8 shows 
a lower-hemispherical projection of three discontinuity planes which, 
together with the excavation surface, form a tetrahedral block in the roof 
of an excavation. In addition, diametral lines indicating the trend of a long 
excavation and the strikes of the three discontinuity planes are included. 
In the right-hand diagram of Fig. 20.8, there is a plan view of the associated 
largest block that can be formed by these foui ^larfaces, in the roof of an 
excavation with a specific width. Note that the dashed lines representing 
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Potentially 
unstable zone 

Figure 20.7 Simple model of rock bolts in stratified roofs. 

the excavation side walls in the right-hand diagram correspond to the trend 
of the excavation in the left-hand diagram. The dotted lines in both parts 
of Fig. 20.8 represent the base edges and upper edges of the block, as these 
are formed by the intersections of the discontinuity planes. This 
demonstrates the geometric congruence of the lower-hemispherical pro-
jection and the plan view. 

In a similar way to the calculation of the rock bolting requirements in a 
stratified roof (Fig. 20.7), a bolting configuration can now be established for 
any discontinuity geometry, assuming that the objective is to support the 
deadweight of individual blocks as calculated in Fig. 20.8. The circum-
stances may not be as simple as accounting for individual blocks because 
of the possibility of smaller blocks being formed behind the largest block 
identified and, hence, it is necessary to determine the bolt lengths by estab-
lishing the optimal anchorage positions. 

If the block is not falling but sliding then there is an element of constraint, 
and the calculations can be modified to account for this frictional resistance. 

/// 
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Block volume, V = \hA.. block weight, W = 7V support pressure, /? = 7^ =3 7^ 

thusA^= l().()7m', h = 1.48m, V = 4.97m\ W= 114.3kN and/? = 11.35kPa for the example here. 

Figure 20.8 Lower-hemispherical projection of three discontinuity planes, and the 
associated maximal tetrahedral block in the roof of an excavation with given width 
and orientation. 
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Sliding 
surface 

A = area of sliding surface 

= Coulomb strength parameters 

cA + {W cos \\f + Tcos 0) tan <\) 

Wsin vj/ - Tsin 6 

The effect of stresses in the rock has been ignored, and this analysis is 
for sliding on one discontinuity surface only. 

Figure 20.9 Analysis of a tetrahedral block sliding on one face. 

as illustrated in Fig. 20.9. This calculation is for sliding on a discontinuity 
surface, and hence is analogous to the plane sliding instability for slopes 
discussed in Chapters 17 and 18. The formula for the rock bolt force, F, in 
Fig. 20.9 is a modification to that presented in Section 17.1.2 and, from 
Section 16.3.2, this is minimized for these idealized circumstances when 
0=90-(p. 

Symmetric and asymmetric triangular roof prisms. To incorporate the effect 
of the stresses in the rock surrounding the excavation. Fig. 20.10 shows an 
extended analysis considering the forces in a symmetric triangular roof 
prism. The purpose of this analysis is to establish the influence of a hori-
zontal force HQ on the block, and its influence on the support force necessary 
to hold the block in place. The presence of any such compressive stress in 
the rock (and hence compressive force on the block) will affect the support 
force required: depending on the wedge apical angle and other mechanical 
parameters, the block will either tend to be squeezed out or be constrained. 
The support force, R, is given by ]N-P, where W is the block weight and P 
is the resultant of the frictional forces acting on the block, expressed as 
positive downwards. The expressions for P are given in Fig. 20.10. 

Assuming S = N tan <|) (i.e. no cohesion) and resolving forces vertically 

2N sin (<t)-a) 
P = 

cos (|) 

If Â  > 0, then P > 0 only if a < <t); if a >(|), then R>V/ 

Introducing discontinuity stiffnesses and rock stress: 

{k cos a + k sin a) 
P = 2H 

^ (k cos a cos <^ + k sin a sin (|)) 
sin (<j)-a) 

If A: » A : 

P = 2H^ - ^ ^ ^ ^ sin (4)-a) 
^ sin<|) 

Figure 20.10 Analysis of a symmetr ic t r iangular roof pr ism. 
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Under the circumstances of a compressive rock stress, it is noted in the 
figure that there will only be restraint, i.e. P > 0, if a < 0. This accords with 
the 0y theory which was discussed in Section 16.5, for very similar circum-
stances, i.e. slip around the boundary of an excavation. Also, the k^ and k^ 
referred to in Fig. 20.10 are the same as the /ĉ n and k^^ in Section 7.3.1, except 
that the second subscript has been omitted because there are no cross-
stiffnesses in this case. In Fig. 20.11, we show a variation in P/2Ho, as a 
function of the semi-apical angle for different ratios of normal to shear 
discontinuity stiffness. 

There are three interesting characterisitics indicated in Fig. 20.11: 

(a) regardless of the ratio of discontinuity stiffness, P is always zero when 
a=0; 

(b) there is a tendency for the prism to be expelled from the surface when 
the semi-apical angle exceeds the angle of friction, which is exacerbated 
for high values of kjk^; and, 

(c) the relation between P/2Ho and a becomes close to linear in the semi-
apical angle range of 20-60''. 

In the case of asymmetric triangular roof prisms, the analysis presented 
above has to be extended to include two different semi-apical angles, as 
shown in Fig. 20.12. A similar sensitivity analysis to the one illustrated in 
Fig. 20.11 can be generated to show how the components of the apical angle 
effect the stability of the roof prism. 

Tetrahedral blocks. To consider the stability of a general tetrahedral block, 
through a three-dimensional analysis and taking into account Coulomb 
friction on the three faces of the block that are in contact with the rock mass, 
the earlier simple sliding analysis illustrated in Fig. 20.9 can be extended. 
This extended analysis is shown in Fig. 20.13. 

The normal forces on each of the block faces shown in Fig. 20.13 can be 
obtained by transforming the stress state in the rock to obtain the normal 
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Figure 20.11 Effect of stress in the surrounding rock and discontinuity stiffness on 
the generation of constraining force for a symmetric triangular roof prism. 
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Taking into account both the two components a, and oĉ  of the apical angle, the discontinuity 
stiffnesses and rock stress, we have for the limiting vertical load: 

H ^ ^ H ^ ^ 
P = — - (ks cos-a, + kn sin-a,)sin((j), -a,) + — - (k,s^co^~a^ + kn^^'\n~a^)smi(^^-a^) 

where 

D =k,, cosa,cos(j),+ A'„|Sin(X|Sin(t)| and D^=/:v^cosa^cos(j)^+ /:„^sina^sin(t)^. ti . -> i in> . . - .111^1 < 

If k„ » ks and k,,^ » ks^, then we have 

H sina sin((j),-a,) // sina^sin((j)^-aV) 

which allows for different angles of friction on the two discontinuity surfaces. 

Figure 20.12 Analysis of an asymmetric triangular roof prism. 

stresses, with the result that the normal forces can be obtained by 
multiplying this stress by the area of the face of the block. As shown in 
Fig. 20.13, the shear force is obtained from the normal force through the 
application of the Coulomb friction criterion, which defines the analysis as 
being one of limiting equilibrium. 

In Figure 20.8, it has been seen how kinematic analysis may be used to 
determine the complete geometry of the block, and hence the orientations 
of the normals and the bisectors. 

It is necessary to check the limiting condition on each face to ensure that 
all individual frictional components are assisting in the maintenance of 
stability, i.e. are negative (when reckoned in accordance with the axes 
shown in Fig. 20.13). If this is not the case, it is prudent to assume that 
progressive failure may take place through initial rotation of the block. 

If the wedge is unstable, then the degree to which the weight is in excess 
of the constraining force can be used to indicate a factor of safety and the 
degree to which the block may require support. 

20. L4 Use of block theory 

A major advance was made by Goodman and Shi (1985) in the application 
of mathematical topology to rock blocks and their removability from the 
rock surrounding an excavation. The advantages of a complete mathe-
matical description of rock blocks are the ability to develop comprehensive 



Design against structurally-controlled instability 371 

Block falling 

from roof 

b. = bisector of Ip & l^, 

OAB = plane 1, OBC = plane 2, OCA = plane 3 
ABC = excavation roof 

Vertical force F = ̂ ;| Vertical components of S^,S^ and S^ 
^ I Vertical components of N^,N^ and /V̂  

The direction cosines of a line trend a and plunge p, 
using right hand axes, are 

a _ = cos a cos (3, a ,= sin a cos p, a_ = sin p 

Thus, assuming a friction-only material, on any 
face in contact with the rock there is a normal force Â  
and a shear force S, which can be expressed as Â  tan c|). 

If we can examine the vertical components of these forces 
for all three faces of the block, we have 

F =XN.{n + b tan c}) ) 
^ / = 1 ' ~ / ' / ' 

where h_ are the vertical direction cosines of the 
bisectors of the apical angle on each face in contact 
with the rock, n^ is the vertical component of the 

normal to the /th face. For wedge stability, F, + W < 0. 
otherwise the block will fall under the action of gravity. 

Figure 20.13 Analysis of a tetrahedral block subject to in situ stresses and the action 
of gravity. 

sophisticated analytical techniques based on computer methods and to 
incorporate all of the analyses we have discussed so far in one integrated 
approach. 

The underlying principle of block theory is the recognition that blocks 
are formed from the intersection of a number of non-parallel and non-
coincident planes. Any particular plane can be regarded as dividing the 
space occupied by the rock into two half-spaces: for the sake of simplicity 
these are called the 'upper half-space' and the 'lower half-space'. Thus, any 
great circle on a hemispherical projection, e.g. one of those in Fig. 20.8, also 
may be regarded as dividing space into these two half-spaces, and by 
convention they are coded with a numerical value of 0 for the upper half-
space and 1 for the lower half-space. This idea stimulates the concept of 
extending the hemispherical projection beyond the customary boundary 
(which represents a horizontal plane) such that the upper and lower half-
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spaces may be studied concurrently. A 'spherical projection' is shown in 
Fig. 20.14, with the extensions of the great and small circles into the upper 
half-space being clearly identifiable. 

The rock blocks in a rock mass are identified by numerical codes, 
according to how they are composed in terms of the upper and lower half-
spaces produced by the various discontinuity planes in the rock mass. For 
example, consider the block 010—which is formed by the great circles 
associated with planes 1, 2 and 3 shown in Fig. 20.15. The first digit of zero 
means that the block is formed by the upper half-space defined by plane 
1, i.e. is outside great circle 1 in the figure. Similarly, the second digit of 1 
indicates that the block is formed by the lower half-space defined by plane 
2, and hence is within great circle 2 in the figure. Finally, the third digit of 
zero represents the upper half-space defined by plane 3. In Fig. 20.15, all 
of the blocks defined by the three planes are shown, and it is clear from 
this diagram that block 111 resides within all three great circles, whereas 
block 000 resides outside all three great circles. 

In the preceding discussion, the specific locations of the discontinuity 
planes are not considered, and so it is convenient to consider the geometry 
of the block as it would be defined if all of the planes intersected at a point. 
Under these conditions, blocks would exist as pyramidal shapes called 'joint 

wsss^^^^mm iM«r ^mm 

i t tr f frnm^^inff iT 
lllllllllllWf^W^'^^JPTTT-i'i 

Figure 20.14 Composite upper- and lower-hemispherical projection, i.e. the 
spherical projection. 
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Reference circle 

Upper half space = 0 
Lower half space = 1 

Figure 20.15 Illustration of rock blocks formed by the intersection of rock planes, 
using block theory notation. 

pyramids', JP. Similarly, the planes that make up the boundary of an 
excavation can be considered in the same way, except that these planes 
divide space into rock and non-rock half-surfaces. By convention, when 
these planes are considered as intersecting at a point, the rock side is 
termed the excavation pyramid, EP. It follows that if the joint pyramid and 
the excavation pyramid do not intersect, i.e. JP n EP = 0 , then the block 
is removable. Such a case is illustrated in Fig. 20.16. 

At the left of Fig. 20.16, there are two discontinuity planes, 1 and 2, and 
two excavation planes, 3 and 4, which together delineate a rock block. From 
this diagram, and using the notation regarding upper and lower half-spaces 
presented earlier, the block is coded as 0100. If the diagram is transformed 
such that all of the planes intersect at a point, the diagram shown at the 
right of the figure is obtained. The joint and excavation pyramids are clearly 

TRANSFORMS 

Figure 20.16 Example of block removability using the block theory concepts of joint 
and excavation pyramids. 
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shown in this diagram, and are mathematically defined as 

Lii n L2 = JP 
1/301/4 = EP 

and, from this diagram because JP and EP have no common sector, 
JP n EP = 0 and hence the block is removable. By an extension of this 
procedure, the removability of all blocks with respect to all potential excava-
tion planes can be established. The power of the method lies in its ability 
to convert three-dimensional polyhedra (i.e. the blocks of rock) into 
mathematically defined sets, and to use mathematics to establish 
kinematic feasibility. 

The mathematics of block theory is beyond the scope of this work but is 
well presented in the seminal book by Goodman and Shi (1985). 

2 0 . 2 Design against stress-controlled 
instability 

In the introduction to the chapter, we mentioned that rock instability 
around an excavation can occur due to block movement, stress 
effects or sometimes both mechanisms can occur concurrently. In this 
section, we describe design against stress-controlled instability through 
an understanding of the stress field around excavations, and how one 
can defend against the development of high stresses on the boundary 
of an excavation. Also described are the effect of rock bolting on the 
stress field and the use of the ground response curve to understand both 
the rock response to excavation and the potential need for installed 
support. 

20.2. J Zone of influence 

When studying elastic stress distributions around underground openings, 
as described in Section 19.2.1, we note that the excavation affects the 
stresses and displacements for an infinite distance away from the opening. 
This is because, in the mathematical derivation of the various equations, 
the assumption has been made that material surrounding the opening 
extends to infinity. As engineers, we are only interested in significant 
changes to the stress field and displacements: below a certain level, it can 
be assumed that the changes have no significant engineering influence. 
This leads to the concept of the zone of influence, which is the zone around 
the excavation in which the stresses are perturbed from their in situ values 
by more than a defined amount. 

For example, we could define the zone of influence around the excava-
tion as the zone within which at least one component of the stress tensor 
is perturbed by greater than, say, 5% of its /;/ situ value, expressed 
mathematically as 

I ^induced ~ ^^ndtuml I ^ O-O^^^nntural 
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where crirĵ ĵ êd represents any component of induced stress, and 
the number 0.05 represents 5%—but may be any other percent-
age value relevant to the engineering objective. 

Considering the stresses around a circular excavation (see Figs 19.10 and 
19.11), the perturbation to the tangential stress component on the horizon-
tal plane through the centre of the excavation can be calculated from the 
second of the equations shown in Fig. 19.10. For the example oik = 1, the 
equation reduces to 

Ge = Pz (1 + ^ V ) 

and, by substituting this expression into the equation above, the 5% zone 
of influence is given by r^% = aVZO. Thus, the 5% zone of influence is 4.47a 
(as measured from the centre of the excavation) or 3A7a measured from 
the wall of the excavation. In this case, the vertical and horizontal in situ 
stress components are equal, i.e. k = I, and so this distance to the boundary 
of the zone of influence applies in all directions. 

For other components of the stress field, and for other values of /c, similar 
calculations can be made. For example, when r = 5a and k = 1, a,. = 0.96^2 
and GQ = 1.04f>2/ indicating that the 4% zone of influence (based on these 
components) then extends to r = 5a. 

This principle of the zone of influence and the method of establishing 
its extent is directly applicable to any stress distribution, whether obtained 
by a closed form solution or numerically. 

Elliptical approximation. In the case of a circular excavation when k ^1, 
the zone of influence is not circular in shape. The shapes of the zones of 
influence associated with each component of induced stress may be very 
different, as demonstrated by Fig. 20.17, but an approximation to the overall 
zone of influence may be found by drawing a circumscribed ellipse to the 
various perturbation contours. For the example shown in the figure, where 
k = 0.5, the major and minor axes of the ellipse are 11.76a and 7.98^, 
respectively. The circumscribed ellipse in Fig. 20.17 does not indicate the 
magnitude of the stresses per se, but rather the magnitude of the 
perturbations to the in situ stress components. Thus, although the induced 
stresses would be expected to be greatest along the horizontal axis (for this 
value of k), this is not the case for the perturbations. 

Similarly the value of the concept of the zone of influence is not in 
assessing the likelihood of inducing stresses which will lead to failure of 
the rock, but in determining—for the purposes of design—at which 
locations the induced stress field may be regarded as being unperturbed 
from the in situ stress field, and hence at what separations proximate 
excavations can be positioned. This is our next subject. 

Multiple openings. In the case of adjacent circular openings, the stress dis-
tribution due to the two excavations can be approximated by summing the 
distributions due to the two single excavations. This provides two items of 
information for design: the stresses induced by multiple excavations; and the 
locations where the individual zones of influence overlap (or, are distinct). 
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Figure 20.17 Elliptical approximation to the 5% zone of influence from the two-
dimensional stress analysis of a circular excavation (from chapter by J. W. Bray in 
Brown, 1987). 

Figure 20.18 shows the two main possibilities for the interaction of 
stresses be tween two proximate excavations. The first case shows h o w 
stresses m a y be amplified be tween excavations. The second case shows 
h o w stresses may be a t tenua ted , wi th the produc t ion of a so-called 'stress 
shadow' . In the first of these cases, the stresses at a point b e t w e e n the 
excavations can be h igher than the m a x i m u m stress induced by any single 
excavation, demons t ra t ing an over lap of the zones of influence associated 
wi th the two excavations. This is also the case for the stress shadow, except 
then the overlap represents a reduct ion in the in situ stress. 

For two proximate circular excavations wi th different d iameters , the 
zones of influence associated with a given level of per turba t ion will have 
different extents for each excavation, and hence different effects on their 
ne ighbours . Consider the case of two circular excavations, one larger t han 

Stress increases 

1 i I i / i I i 

o ^o 
A A A • A A A Dominant 
I I I I I I I field stress 

Stress 
shadow 

QZVO 
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Figure 20.18 Amplification and attentuation of stresses between multiple excavations. 
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the other, as in Fig. 20.19. The zone of influence (in this case 5%) associated 
with the larger of the two excavations extends beyond the location of the 
smaller one, but this larger excavation is outside the zone of influence of 
the smaller excavation. Hence, Excavation I does influence the stresses 
around Excavation II, whereas Excavation II does not influence the stresses 
around Excavation I—at the 5% engineering level. 

This concept suggests a means of obtaining a first approximation to the 
stress state that exists between the two excavations. The stresses induced 
by Excavation I can be calculated at both a point of interest and at the centre 
of Excavation II, and this latter stress state is used to calculate the stresses 
induced at the point of interest by Excavation 11. It is essential to understand 
that when this procedure is undertaken, the perturbation due to each 
excavation must be determined and added to the field stresses, rather than adding 
the two absolute induced stresses. If the latter procedure is used, the field 
stresses are effectively duplicated. 

Not only are these zones of influence helpful to designers in indicating 
zones of high and low stresses, they also indicate the optimal excavation 
sequencing of design layouts. For example, considering the two circular 
excavations in Fig. 20.19, the question to be answered is, 'Should we create 
Excavation I or Excavation II first?' The advantage of creating I first is that 
the final stress field acting on Excavation II will be in place before that 
excavation is made, and the process of creating Excavation II will not 
appreciably affect Excavation I. The advantage of creating Excavation II first 
is that the excavation is made in an unperturbed stress field, and the tunnel 
can be supported in anticipation of the stresses that will be induced 
following the creation of Excavation I. 

This indicates two design alternatives, so through the use of the concept 
of the zone of influence the engineer has a method of considering the 
excavation sequencing alternatives. Of the two alternatives presented, the 
first is likely to be preferred, as both excavations will be created in stress 
fields that will not be subsequently disturbed. Very often, there can be a 

5V( zone 
of influence for 

II 

Figure 20.19 Mutual interaction between 5% zones of influence for two differently 
sized, circular excavations. 
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complex set of caverns and tunnels, so that these considerations become 
increasingly important. Operational requirements may dictate other, non-
optimal (from the point of view of rock mechanics design) sequencing 
arrangements and the consequences of adopting these can be assessed 
using the concept of zone of influence. 

In Figure 20.20, there are two cases of multiple excavation schemes, one 
referring to a common mining layout, and the other to a three-tunnel civil 
engineering railway scheme. In the mining layout, the footwall access drives 
have to be excavated before the process of stoping can begin. From the 
figure, it is directly evident that whilst the zones of influence of the footwall 
access drives are unlikely to significantly affect the stress field applied to 
the stope, the excavated stope will definitely significantly affect the stresses 
applied to the footwall access drives, which may have to be protected for 
this eventuality. In the case of the railway scheme, however, the primary 
criterion may be to accurately establish the ground conditions by excavating 
a small-diameter service tunnel before excavating the main large-diameter 
running tunnels. Such a procedure may be thought necessary if there were 
any doubt about the suitability of the rock for specific tunnel boring 
machines which may be used to excavate the running tunnels. Although 
the stresses applied to the service tunnel will change as the running tunnels 
are excavated, the known situation may be preferable to excavating the 
running tunnels in an unknown geomechanical environment. 

Elliptical openings. Apart from a circle, the only other excavation shape 
for which a closed form stress solution is available is an ellipse. In a similar 
way to that illustrated in Fig. 20.17, contours of stress perturbation can be 
derived around excavations and hence the extent of the zone of influence 
can be determined. The calculation of the zone of influence on this basis is 
time consuming, and in a similar fashion to that illustrated in Fig. 20.17, 
we can adopt an elliptical approximation to the zone of influence for an 
elliptical opening. 

In Fig. 20.21 are the equations for the circumscribing elliptical 
approximation for a zone of influence. The similarity between the diagram 

Mining engineering Civil engineering 

Up-dip / "" ) Running 
advance / / Pi tunnels 

Mined & 
filled 

O 

Service 
tunnel 

Figure 20.20 Illustration of zone of influence and excavation sequencing in different 
circumstances of multiple excavations. 
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in this figure and that shown in Fig. 20.17 is clear, except that now we are 
considering the excavation shape itself to be an ellipse, rather than a circle. 
The principle is that a percentage value, c, is chosen for the zone of 
influence, and then the width and height of the circumscribing zone of 
influence ellipse are determined from the equations in Fig. 20.21. 

The value of c provides the value of A, and then the values of W, and H, 
can be directly evaluated from the equations in Fig. 20.21, using the values 
of k, q and a and the criteria given. Although in Fig. 20.21 the elliptical 
approximation to the zone of influence is indicated with its major axis in 
the vertical direction, this will not always be the case because the aspect 
ratio of this ellipse will depend on the parameters just described. 

In Figure 20.22, two examples of this zone of influence are presented, 
both having a VV/H value of 2, but with differing stress ratios k. The two 
cases have been chosen for comparison because they illustrate the use of 
the criteria presented in Fig. 20.21. In the left-hand diagram, the limits of 
the zone of influence are determined by the 5% contours—given by 1.05 
and 0.95—associated with the vertical stress component. In the right-hand 
diagram, the limits of the zone of influence are determined by the 0.95 
contours (associated with the vertical stress component) and, now, the 0.15 
contour (associated with the horizontal stress component). 

The 5% zone of influence produces the 0.95 and 1.05 contours for the 
perturbation to the vertical stress in both diagrams in Fig. 20.12. In the 
case of the horizontal stress component, we consider the criterion 
I ^3 ~ Vm\n I > 0-05f7rnax ^^^ SO, because ^̂ mj,-, = ^̂ max/ the required contours 
are for 
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Figure 20.21 Elliptical approximation to the zone of influence around an elliptical 
excavation (from chapter by ]. W. Bray in Brown, 1987). 
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W/H = 2 k = 0.5 
W/H : k = ().l 

Figure 20.22 Illustration of the variation in the 5% stress perturbation contours for 
different ratios of vertical to horizontal stress for an elliptical opening (from chapter 
by J. W. Bray in Brown, 1987). 

giving contour values of 0.45 and 0.55 in the left-hand diagram, and 0.05 
and 0.15 in the right-hand diagram. 

20.2.2 Approximations for other excavation shapes 

The closed form solutions presented above, namely for circular and ellip-
tical openings, can be used to give valuable engineering approximations 
for stress distributions in two important classes of problem: shapes other 
than truly circular or elliptical; and complicated boundary profiles. 

Other excavation shapes. In Fig. 20.23, the upper diagram illustrates an 
ovaloid opening, in which the roof and floor are planar, and the ends are 
semi-cylindrical (but note that a vertical cross-section is being considered 
through a long excavation). Then, W/H == 3 and radii of curvature p^ = H/2 
and PB = "̂ ^ As a method of approximately determining the circumferential 
stresses at A and B (and hence an indication of the maximum and minimum 
induced boundary stresses), the equations shown in Fig. 19.16 can be 
applied which give the stresses induced on the boundary of an elliptical 
excavation in terms of the radius of curvature of the boundary. For the 
stress at point A in terms of the radius of curvature at that point, the 
magnitude of the circumferential stress is 3.96 ;̂. 

By similar means, at point B the value is -0.17;; if we take a value for the 
radius of curvature appropriate for the ellipse inscribed to the ovaloid. As 
a means of determining a more exact answer to the boundary stresses for 
this geometry, the boundary element method was applied, with the result 
that the stresses at A and B were found to be 3.60;; and -0.15^^, respectively. 
Thus, the approximation is seen to be good for a preliminary estimation. 
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3.14 

Figure 20.23 Application of elliptical approximation to other excavation shapes. 

Our second example concerns a square opening with rounded corners 
in a hydrostatic stress field, as shown in the lower diagram of 
Fig. 20.23. In this case of a hydrostatic stress field, we anticipate that the 
maximum stress will be associated with the smallest radius of curvature, 
i.e. at the rounded corners. Thus, using the geometry of the opening with 
PA = 0.2D, we take W = 1.25D, and this gives ox = 3.53p. The more accurate 
value determined by the boundary element method was 3.14p—again, the 
approximation gives a good preliminary estimate. 

Approximation to complex boundary profiles. To show how the approach can 
be extended to complex boundary profiles, we show a typical underground 
hydroelectric scheme machine hall geometry in Fig. 20.24. From the equa-
tions shown in Fig. 19.16, one would expect: 

(a) the radii of curvature at points A, B and C are very small, and hence 
the stress concentration will be very high at these points; 

(b) the radius of curvature is negative at point D, and the induced stress 
might also be negative, i.e. tensile. 

For the appropriately inscribed ellipse, the ellipse equations give the 
following values: sidewall stress = 1.83p2; and crown stress = 0.72^2-
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When these values are compared to those in Fig. 20.24 determined from 
a boundary element analysis, the approximation is found to have provided 
a good early indication of the appropriate stress concentrations. In fact, 
from both this and the examples above, simple closed form solutions do 
provide a valuable insight into the stress distributions around complex 
excavation shapes. 

20.2.3 Effect of rock bolting on the stress field 

Rock bolts serve two purposes: they act to ensure that the rock around an 
opening behaves as a continuum; and they modify the stress field induced 
around the opening. Earlier in the book, we discussed the use of rock bolts 
to enhance the mechanical integrity of the rock mass. Here, we indicate the 
direct influence of installing a rock bolt on the stress field around a circular 
opening. 

In Figure 20.25 the circumferential stress component on the boundary 
of the opening is shown, induced solely by a tensioned rock bolt anchored 
at points A and B. The geometry of the installation is shown in the upper 
left-hand diagram of Fig. 20.25, and the distribution of the induced 
tangential stress component is shown in the upper right-hand diagram. The 
maximum induced stress is at the bolt head, where a tensile stress with a 
magnitude of 0.99P/a is developed, and at an angular distance of 90° the 
induced stress has effectively diminished to zero. When a circular opening 
is subjected to an internal pressure of magnitude p, the corresponding 
induced tangential stress is -p. Thus, the effect of installing a rock bolt is 
similar, given that the applied load of P has been normalized by dividing 
by fl, the radius of the opening. 

In the lower part of Fig. 20.25, the tangential and radial stress distri-
butions in the rock mass along the rock bolt length are shown . There is a 

0.82/7 Stresses shown are 
from BEM analysis 

k = 0.5 

Region of 
high stress 

Figure 20.24 Application of closed form solutions to the analysis of a complex 
boundary shape. 
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high compressive radial stress induced beneath the bolt head (theoretically, 
the magnitude is infinite beneath a point load), but this dissipates rapidly 
as the distance along the bolt increases. At point A, the tangential stress is 
tensile, ameliorating the effects of a compressive tangential stress induced 
by the in situ stress field. At point B both the radial and tangential stresses 
are high, and the sign of these stresses changes passing from the left-hand 
side of the anchor point to the right-hand side. There are high deviatoric 
stresses in the rock at this point which may be sufficient to induce failure 
in the rock mass, a fact that is not often appreciated. 

When rock bolts are used to counteract any anticipated structurally 
controlled instability, consideration should always be given to the stresses 
induced by the bolts, whether they be mechanically anchored or fully 
grouted bolts. 

20.2.4 Ground response curve 
In Section 16.4, we introduced the concepts of the ground response curve 
and available support lines, illustrated in Figs 16.6-16.8. The philosophy 
behind the ground response curve is that, under the action of the in situ 
stress field, stresses may be induced around an opening that cause failure 
of the rock material, either through the development of new discon-
tinuities, by yield of the intact rock, or damage to existing discontinuities. 

Rock bolts anchored at 
A & B 

Distribution of boundary stress 

0.99-

Stress distribution along bolt 

Figure 20.25 The influence of a tensioned rock bolt on the stress distribution around 
a circular opening (from chapter by J. W. Bray in Brown, 1987). 
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The design objective is to study the form of the ground response curve for 
any particular situation, and develop the support methods accordingly. We 
now discuss how to produce a ground response curve. 

Development of a ground response curve. Consider the mechanical behav-
iour of the rock round a circular excavation in a hydrostatic stress field. We 
model the material first as an idealized elastic-brittle-plastic material, as 
shown by the complete stress-strain curve illustrated in Fig. 20.26. The 
associated relation between the major and minor principal strains and the 
related volumetric strain are also shown in the figure. 

From the data in the figure, a ground response curve can be constructed 
by the following steps: 

(a) substitute successive values of p, into equation (2) to obtain a series of 
values for r^; 

(b) substitute r^, into equation (4) with r = a to obtain values of r̂ ; 
(c) plot values of p, against corresponding values of 5/ = -Uj to obtain the 

ground response curve; 
(d) the critical support pressure below which a fracture zone develops is 

given by equation (1); 
(e) this procedure applies to the sidewalls. More support pressure is 

required to limit the measured displacments to these calculated values 
in the roof, and less in the floor. The roof and floor ground response 
curves are found from 

Proof = P ,+7(^ . -«) l for each p,. 

a|-CT3 (T3 = constant 

^1 

Gradient r^, = a 

CTi = /7CT3 + Co 

• (J\ = J (T3 

P\ = 1 + h 

2p-
(1 + 

- t -Q 

b)Pi 

(1) 

(2) 

Displacement at elastic-plastic interface (r = r .̂): 

-(P-P\)re 
^r,,--

2G 

General displacements: 

P-P\ 
G{\ + / ) 

(f-\) 

(3) 

(4) 

Figure 20.26 Material behaviour assumed in development of the ground response 
curve, and the related equations. 
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Following this procedure allows the production of three ground response 
curves (one each for the floor, sidewall and roof) in radial stress-radial 
displacement space. In itself, such a ground response curve is of limited use: 
to be of utility to an engineer, it is important to see how the ground 
response curve interacts with the curve representing the behaviour of a 
supporting element (see Brady and Brown, 1985, for more information). 

Available support lines. For all elements that are used for reinforcement or 
support, it is possible to determine (either using closed form solutions, or 
by numerical calculation) the radial stress-radial displacement behaviour 
of the support system. To illustrate this, a concrete lining, as an example, 
provides a specific support line depending on its geometry and material 
properties. These support lines are commonly known as available support 
lines. 

In Fig. 20.27, there is a cross-section through a shotcrete or plain concrete 
circular lining. By approximating this lining to a thick-walled elastic 
cylinder subject to an external pressure, a standard solution can be used 
to determine the radial stiffness of the lining, k^ona ^rid hence to determine 
the available support line through application of the formula pi = KonSu 
where pi is the support pressure and w, is the support displacement. Such 
a lining has a maximum strength, and thus the maximum radial stress that 
the lining can withstand without crushing is also required. The terms in 
the formulae in Fig. 20.27 are: Econc " Young's modulus of the shotcrete or 
concrete; v̂ onc = Poisson's ratio of the shotcrete or concrete; fconc = lining 
thickness; rj = internal tunnel radius; and cr̂ ^̂  ̂  = uniaxial compressive 
strength of the shotcrete or concrete. 

There are many different types of supporting elements—for example, 
blocked steel sets, rock bolts and other types of anchor—and support 
stiffness formulae can be established for all these. To present the full range 
of the associated formulae is beyond the scope of this book, but interested 
readers are referred to Hoek and Brown (1980) for a more comprehensive 
list. Using such formulae, the support pressure associated with a given 
ground response curve can be explicitly evaluated, and in Figure 20.28, the 
available support lines for five different types of support are shown, in 
conjunction with the ground response curves for the roof, sidewall and 
floor of a tunnel. 

Support stiffness: 

K 
1 Ec, 

[[^^-(^/•-^concrj 

( l +v , „n , ) | ( l -2v ,onc) ''^ (n-tconc) 

Maximum support pressure: 

2 
(^/ ~ ^conc) 

Pco 

Figure 20.27 Formulae for the available support line of a shotcrete or plain concrete 
circular excavation lining. 
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Figure 20.28 shows a wide range of principles associated with the ground 
response curve, as illustrated in the following points. 

• The ground response curve for different locations on the periphery of 
the excavation is different. 

• The ground response curves indicate that at, some locations, support 
is not necessary (because the displacements equilibriate at zero support 
pressure), and in other locations support is essential (because the 
ground response curve does not intersect the zero support pressure 
axis). 

• Attempting to achieve zero radial displacement is impractial: to do so 
would require extremely high support pressures and support stiffnesses. 

• The support cannot be installed at zero radial displacement, because the 
elastic response of the ground, on excavation, is instantaneous. 

• Different types of support have different stiffnesses, and these result 
from the material of construction, the geometry of the support system, 
and the quality of construction: as a result, these different supports will 
offer different degrees of support to the excavation, and will support the 
rock with different support pressures. 

• It is possible for supports to attain their peak strength (including some 
degree of yielding) and still be effective in supporting the excavation. 

In conjunction with a given ground response curve, three variables 
determine the mechanical efficacy of a given support scheme: its time of 
emplacement, its stiffness, and its peak strength. The ground response 
curve itself can also be a function of construction techniques. Hence, the 
engineer has to optimize the overall interaction between the ground 

1: Steel sets with good blocking. 

2: Steel sets with poor blocking. 

3: 50mm thick shotcrete. 

4: Early installed mechanically anchored rock bolts. 

5: Late installed mechanically anchored rock bolts. 

25 50 75 100 125 
Radial displacement, h. (mm) 

Figure 20.28 Available support lines and ground response curves (from Brady and 
Brown, 1985, and Hoek and Brown, 1980). 
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response curve and the available support line, such that practical support 
pressures are generated at tolerable radial displacements. With reference 
to Fig. 20.28: 

(a) support type 3 (the shotcrete ring) may be both too stiff and installed 
too early, as it generates unnecessarily high support pressures; 

(b) support type 4 (early installed rock bolts) is ideal for the roof; 
(c) support type 1 (well installed steel sets) is similarly successful; 
(d) support type 2 (poorly installed steel sets) is insufficent because the sets 

yield at a support pressure less than that required to support the 
roof; 

(e) support type 5 (late installed rock bolts) is unsatisfactory because of 
the danger of the bolts being unable to maintain equilibrium of the 
excavation periphery at sufficiently low radial displacments, i.e. the 
support line may not intersect the ground response curve. 

Note that in the preceding discussion, we have been discussing the 
effectiveness of the support with respect to roof stability, rather than 
the need to restrict sidewall and floor displacements. It is clear from 
Fig. 20.28 how one would use this technique to determine other such 
support criteria. 

Pillar-country rock interaction. A natural extension to the analysis above 
is to consider other excavation shapes and natural support methods. Using 
the rock itself as the support element, rather than introducing artificial, and 
hence more expensive, materials is an elegant engineering solution to rock 
engineering projects. This is not always possible, but the concept of the 
ground response curve and available support lines can be successfully 
extended to the case of supporting the roof and floor during the excava-
tion of a wide rectangular opening (as, for example, occurs during mining 
operations in a horizontal tabular ore body). 

Consider the support of a slot-like excavation with a large width-to-
height ratio, as illustrated in Fig. 20.29. We proceed according to the 
following steps: 

(a) first, the displacement that would result should the entire excavation 
be opened are determined; 

(b) second, the displacement induced by the application of a unit normal 
stress over the anticipated support area is determined; 

(c) third, the two results are used to produce the ground response curve, 
assuming that the rock proximal to the excavation remains linearly 
elastic; 

(d) fourth, the stress-strain behaviour of a natural pillar is considered, this 
being the supporting element; 

(e) finally, the analysis described earlier is used to study the stability of the 
total structure, as shown in Fig. 20.30. 

The ground response curve for the country rock is a straight line frori a 
support pressure of 19.3 MPa at zero displacement, to a support pressure 
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Figure 20.29 The ground response curve concept illustrated through the analysis 
of a tabular excavation with and without a natural supporting pillar. 
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of zero at a strain of 0.0116, which is equivalent to a displacement of about 
70 mm. The ground response curve is linear, because it has been developed 
on the basis of linear elasticity theory. The complete available support 
line is equivalent to the complete stress-strain for the pillar material, 
under conditions of plane strain (we discussed the complete stress-strain 
curve in Section 6.1, and noted the importance of the relative stiffnesses 
of the loading system and the descending, post-peak, portion of the 
curve). 

The two curves in Fig. 20.30 now allow study of the stability of the entire 
structure. The operating point, indicated by the intersection of the two 
curves, represents a stage in the mechanical breakdown of the pillar that 
is almost complete. The displacement at the operating point is almost the 
displacement that would be reached without the pillar being present— 
when the excavation would be stable anyway. The conclusion is clear: the 
pillar is both ineffective and unnecessary. 

There are many variations on this theme, and the way in which natural 
supporting elements in mining geometries can be used optimally to ensure 
stability whilst maximizing the amount of excavated material can be 
studied. Our purpose here is to demonstrate one specific case where the 
ground response curve analysis provides a clear conclusion, remembering 
that these analyses have been in two dimensions but rock engineering is 
always conducted in three dimensions. 

20.2.5 Three-dimensional analysis 

An additional level of complexity is introduced by the three-dimensional 
nature of the rock engineering geometry compared to studies for two-

Country rock 

Operating 
point 

At the operating point 

/?3 = 0.6MPa 6^=11.3 E-3 

The pillar is in an advanced stage of 
breakdown and is ineffective. 

Figure 20.30 Ground response and available support lines for the tabular excava-
tion illustrated in Fig. 20.29. 
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dimensional geometries. This is elegantly demonstrated by the stress 
distribution around a spherical opening in a uniaxial stress field, in which 
the magnitude of the induced stress on the boundary is given by the 
equation shown in Fig. 20.31. As an analogue to the maximum stress 
around a circular opening in a uniaxial stress field, the stress at 

^ = 0 is a . = 
9 - 5 v 

7-5v 

with numerical values of 2.00p when v = 0.20 and 2.02p when v = 0.25. 
There are two key points to note. First, the stress concentration depends 

on one of the elastic constants, i.e. Poisson's ratio (note that in the two-
dimensional case the maximum stress concentration was 3.00 for any 
isotropic elastic material, and independent of all elastic properties). 
Second, the stress concentration in the three-dimensional case is signif-
icantly different from that of the two-dimensional case. This means that one 
cannot validly approximate the three-dimensional geometry by a two-
dimensional geometry—unless part of the three-dimensional geometry is 
well represented in two dimensions, which has tacitly been assumed in all 
of the two-dimensional solutions presented heretofore. 

Even so, in cases where the geometry more accurately reflects 
engineering structures, and is therefore more complex, two-dimensional 
approximations can be successfully used in locations where these are likely 
to be valid. Two such cases are shown in Fig. 20.32. 

The first of these, in the upper diagram, is a T-shaped intersection 
between two circular tunnels. At a distance of 3r from the centreline of the 
branch tunnel, the magnitude of the discrepancy between the maximum 
boundary stress computed using a three-dimensional analysis and a two-
dimensional plane strain analysis is less than 10%. Moving further away 
from the intersection, to a distance of 5r from the centreline of the branch 
tunnel, the magnitude of the discrepancy has reduced to less than 5%. So, 
the two-dimensional approximation will be sufficient for engineering 
purposes at sufficiently large distances from the line of intersection. 

3 ( lOcos- ' e - l -Sv) 

^ 2 (7-5v) 

P,=P 

Figure 20.31 Boundary stress around a spherical opening in an isotropic material 
subjected to a uniaxial stress field. 
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At y = 4r 

P3D-^Psh^-^^ 

Figure 20.32 Comparison between two-dimensional and three-dimensional stress 
analyses for two engineering geometries. 

The second example, shown in the lower diagram, represents the con-
ditions at the end of a borehole or circular tunnel. At a distance of 0.75r from 
the end of the tunnel, the discrepancy between the plane strain two-
dimensional solution and the full three-dimensional solution is already less 
than 20%. At a distance of 4r from the end of the tunnel, this discrepancy 
is reduced to less than 5%. So, in the latter case, not only does the two-
dimensional approximation provide an excellent estimate of the stresses 
over most of the tunnel length, it also indicates directly how rapidly the 
three-dimensional geometry effectively changes to a two-dimensional 
geometry during tunnel construction. This can be of use in determining 
design aspects such as the installation time of tunnel support elements and 
instrumentation. 

In cases such as that shown in Fig. 20.32, where a two-dimensional 
approximation is adequate, there is benefit in restricting the analyses to two 
dimensions. However, there are circumstances where the intersections of 
such underground excavations—and the general engineering layout— 
cannot be adequately represented in two dimensions. For example, com-
plex engineering structures such as hydroelectric schemes and most 
methods of mining cannot be adequately represented in two dimensions. 
We are fortunate today to have full three-dimensional analysis capabilities, 
both for discontinuous and continuous materials, readily available on 
desktop computers. 

There are off-the-shelf codes now available for three-dimensional 
discrete element, finite element and boundary element methods of analy-
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sis. Moreover, there are also codes available for three-dimensional analysis 
of fluid flow through fracture networks. In addition to these off-the-shelf 
codes, there are manifold proprietary programs in which, for example, 
hybrid discrete element and finite element analyses are combined with the 
analysis of fluid flow. 

In the early days of these programs, the computing was often difficult 
for the average user. We are now experiencing a major development in the 
ease of use of these methods through the use of improved graphical 
interfaces, so there is now every reason to apply such programs to all 
projects. However, it is of paramount importance to be certain that the rock 
mechanics and rock engineering principles are fully understood, and that 
the output from the computer programs is in accordance with these 
principles. 

The nature of a complete rock engineering project is that it will contain 
components of many different kinds which need to be integrated. Our final 
remarks consider integrated design procedures and how they have evolved 
over the years. 

20.3 Integrated design procedures 
There is currently no overall standard procedure for the design and 
construction of a rock engineering project. In this book, we have presented 
a range of principles relating to engineering rock mechanics. The rock may 
well be inhomogeneous and anisotropic, in short, not always ideally suited 
for analysis. Indeed, we may well not have sufficient information about the 
site geology itself. A variety of contributing factors may influence our 
decisions: these can be in the areas of finance, environment, management 
and so on. Thus, we have a suite of well-understood supporting modules 
for the rock engineering (cf. Hudson, 1993), but not a universally utilized 
overall design methodology. 

Techniques are presented in the books by Hoek and Brown (1980), 
Franklin and Dusseault (1989) and Bieniawski (1989). The Hoek and Brown 
methodology is concerned with identifying whether instability is likely to 
be the result of rock structure, rock stress, weathering or time. The Franklin 
methodology provides an extensive introduction to all the techniques 
available. The Bieniawski approach is more in line with classic management 
type charts. The rock engineering systems approach introduced in Chap-
ter 14 enables the structure of the system to be generated and its operation 
to be studied in terms of critical mechanisms and hazards (Hudson and 
Jiao, 1996). It must be borne in mind that each of these methods has 
different advantages and values, depending on the engineering context 
and objectives. 

Thus, the engineer should make an informed choice as to which, if any, 
of these methodologies is appropriate to their circumstances. In order to 
make an informed choice, the engineer must be fully conversant with the 
principles of engineering rock mechanics—which is what has been present-
ed in this book. 
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Appendix A: 
Stress and strain 
analysis 

Stress analysis 

We do not talk about 'internal forces' when we are dealing with solid 
bodies, we refer to stresses instead. The reason is simple. Consider a stack 
of concrete blocks of different sizes supporting a heavy weight. 

Heavy weight 

W 

^ ^ ^ 1 

^ 

b ^ 

This block supports W 

The area it presents to the weight is 4ab 

These blocks support W/2 each 

The area they present to the weight is 2ab each 

These blocks support W/4 each 

The area they present to the weight is ab each 

As we can see, when the size of the solid body being considered changes, 
so the force changes. But if we use stress, defined as 

stress = 
force 

area 

then we can see that in the example above each block is subject to a stress 
of W/4:ab—stress is independent of block size. Hence, if we were to divide 
a solid body into 'elements', providing we work in terms of stresses the size 
of the individual elements will not affect the stress values. 
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Notation 

Stress is a property that needs three values to fully describe it in the two-
dimensional case: the magnitude of the force, the direction of the force and 
the area it acts on. 

It is known as a tensor property, cf. scalars with one value and vectors 
with two. Stress analysis is only possible if we work in components, 
like this: 

Force applied at 
an arbitrary angle 
to the face of an 
element. 

Force resolved 
into normal and 
shear components. 

Shear component 
resolved into two 
Cartesian 
components. 

After we have resolved the force into three Cartesian components, 
we can define the associated stresses, and not before. In this example 
we have 

o. = 

and in general we have: 

a , Gy G^ 

normal stresses 

act normal to face 

^rl/ ^yz ^zx 

^yx ^zy ^xz 

shear stresses 

8' 

act along a face, parallel to 
an edge of the element. 

Only the stresses on the visible 
faces have been shown here 

This is the geomechanics, or compression-positive, convention for 
right-handed axes. 
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Remember the notation: 

normal stress, — 

shear stresses,— 
^ ^ G v ' * ^ ^ 

^y 

—acting on a plane normal to the x-axis 

—acting on a plane normal to the x-axis 

-—acting in the y-direction 

and also, remember the sign convention: 

for normal stresses, 

for shear stresses. 

compression is positive; 

positive stresses act in 
positive directions on 
negative faces. 

The shear stress convention is difficult to remember. It is made easier by 
realizing there are always two pluses and a minus: 

on a + face a -(- stress acts in a - direction 

on a + face a - stress acts in a -f direction 

on a - face a + stress acts in a + direction. 

If we consider moment equilibrium of the cube around the three axes, 
we find that 

^xi/ ^yx ^yz ^zy ^zx Trr 

and so the state of stress at a point (as 5 is reduced to zero) is defined by 
six independent qualities 

^xf ^yf ^z' ^xxff n/2/ ^2,v 

These stresses are usually written in matrix form: 

^ v ^y. -r.v 

^^y ^y ^.y 

T,. r,,, a. 

stress tensor. 

Note that because of the complementary shear stresses (i.e. T^y = Ty^^, etc.) 
the stress tensor is symmetric about the leading diagonal. 

General stress field in three dimensions 

It often happens that each component of the stress tensor varies in 
magnitude from point to point within a body—they are functions of x, y 
and 2. If this is the case, then an element will be in equilibrium if 
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dx 

^ + ^ 

+ —— 
dz 

. ^ 

+ X--

+ Y--

= 0 

= 0 
dx dy dz 

d^r^ ^^vz 3cr. ^ ^ 

dx dy dz 

the equilibrium equations. 

Each equation contains increments of the stress components in one 
direction. In these equations the vector (X, Y and Z) is the body force vector, 
that is the force (mass x acceleration) produced by the body itself. Normally 
we will be dealing with bodies at rest in the Earth's gravitional field, with 
the z-axis vertically downwards. In this case the body force vector is 
simply (0, 0, rJ. 

Transformation of the stress tensor 

It is often the case that we may know applied stresses relative to one set 
of axes (the global axes), but may wish to know the stress state relative to 
another set (the local axes). For example, suppose we are dealing with a 
discontinuity in a rock mass: 

X' ̂̂
^^ yx 

V. 
Given c^ and Xy^, what are Oy' and "yx-

~ ^ T ^ 

Unfortunately, stresses are tensors, not vectors like forces, and so cannot 
be simply resolved: they must be transformed. We will limit ourselves to 
this case: 

The global system is x, y, z. 
The local system is x', y', z\ 
In this case z and z' are coincident. 



If the global stresses are 

what are the local stresses? 
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a^ 

^^y 

0 

^.. 

^ y 

0 

0 

0 

o. 

r.y CT, 0 

0 0 a . 

If we think in terms of a small cubic element rotating about the z-axis, 
we can see that a^ = cĵ '. 

Calculating cj '̂, a^^ and z^'y^ is more difficult and is done like this: 

The rotated element is positioned 
over the original element such that 
the vertical sides (remember it is a 
cube) A and B touch two of the 
original faces. If we now cut off the 
prism OAB from the original ele-
ment and examine the resulting 
free body diagram resolving stress 
components onto resolved areas: 

As usual, write down the equations of static equilibrium: 

I f X' = 0 
{GJ, 5^cos a)cos e + {Gy 5^sin ^)sin 6 + {r^y 5^cos ^)sin 0 + 

{Ty^ 5^sin a)cos e- G^'5^ = 0. 
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Cancelling the S^ term, and remembering that r^y = ty^, then 

Gx' = <7y cos^ 0 -^ CFy sin^ 0 + 2Tyv sin 0 cos 6. 

Notice that each term has a trigonometric identity of order 2 associated 
with it: this is because in the transformation force is resolved once and area 
is resolved once. 

XF,̂  = 0 

- (cT̂  5^cos ^)sin 0 + {Oy Shin 0)cos 6 +fT^ 5^cos O)cos 6 -
{Ty^ shin 6) sin 6 - r^y S^ = 0. 

Again, cancelling the S^ term, and putting ty^ = T^, we find that 

^xY - -^x cos BsinO -^ Oy sin 0 cos 0 -\- T^ cos^ 0 - r^y sin^ 6 

or 

^xY= ^xy (cos^ 0 - sin^ ^) - (G^ - Gy) sin ^ cos 0. 

Determining Gy' can be done either by cutting a prism parallel to the 
X-axis, or simply by replacing 0 with {0 + n/2) and G^^ with cTy' in the 
expression for G^^ on the previous page (this is valid because we know Gy^ 
is perpendicular to (jy): 

sin [6 + (7i/2)] = cos ^ and cos [6 4- (7i/2)] = - sin ^ 

so 

G^' = CTy cos^ 0 + Gy sin^ ^ + Ix^y sin ^ cos ^ 

becomes 

Gy' = (j^ sin^ ^ + ^y cos^ ^ - 2 T ^ sin 0 cos 0 

so the three equations are: 

oi-

Oy 

^xy 

= Gx COS^ 

= Gx sin^ 

= T^y (COS^ 

0+ Gy sin^ 

0 + OTy COS^ 

0- s in^e ) 

^ 4- 2 T^ sin ^ cos 0 

6-2 txySin 0cos 0 

- {GX - Gy) sin 0 cos ^. 

stress transfoimation equations 
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Example 

20-

ia=_ 

10 

10 
Stresses 
in MPa 

20 

10 
10 

10 

\ 
Rotate \ 

.0 \ 
\ 
\ 
\ 
\ 
>Lr: i 

0 = 30° =» sin 0 = 0.500, cos 6 = 0.866 

.-. a^ = 20 X (0.866)^ + 10 x (0.500)^ + 2 x 10 x 0.500 x 0.866 = 26.16 MPa 

Oy' = 20 X (0.500)^ + 10 X (0.866)^ - 2 x 10 x 0.500 x 0.866 = 3.84 MPa 

T,y = 10 (0.866^ - 0.500^) - (20 - 10) x 0.866 x 0.500 = 0.67 MPa. 

An interesting check of the arithmetic is that 

So in this case 

and 

CT̂  + (T̂  = 30 MPa 

(J,' + a,^ = 26.16 + 3.84 = 30.00 MPa. 

Notice that r^y is very low in comparison to r̂ -̂ . We may be tempted to 
ask whether there exists for x'y' an orientation such that T^^^ = 0. Well 
there is. 

Principal directions and principal stresses 

From this - To this -
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The principal directions are the directions of the co-ordinate axes such 
that for any given stress state the shear stresses are zero. The only stresses 
acting on the elemental cube in this new direction are the principal 
stresses. 

In the rotated diagram above we want T/^' = 0, i.e. 

Vy' = ^xy (cos^ a - sin^ a) - {0^ - Gy) cos a sin a = 0 

.*. Tyy (cos^ a - sin^ a) = {0^- <7y)cos a sin a 

or 

inverting: 

cos a sin a Vz sin 2a 1 

( c r ^ - a j cos^a - s in^a cos 2a 2 
tan 2a 

a = V2 tan"^ 
' 2r ' 

V^-v-^,y 

When T^y = 0, x' and y' are the principal directions and errand a^are the 
principal stresses. 

Example. Continuing from before 

r =10 , cT, = 20, a, = 10 

so 

a = V2 tan 
' 2r ^ 

x 1/ V2 tan" 
2x10 

20-10 
= 72 tan-^(2) 

I.e. 

a = 31.7°. 

This gives the principal directions. The principal stresses are found as 
before, with 6= 31.7^ 

e = 31.7° => sin a = 0.526, cos 6 = 0.851 

cr,' = 20 X (0.851)^ 4- 10 (0.526)^ + 2 x 10 x 0.526 x 0.851 = 26.18 MPa 

Oy' = 20 X (0.526)^ + 10 X (0.851)^ - 2 x 10 x 0.526 x 0.851 = 3.82 MPa. 

Check: a,^ -fa,- = 26.18 + 3.82 = 30.00 MPa. 
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Note: the largest of these stresses is the major principal stress, Oi. The 
smallest is the minor principal stress, 02-

Note that becauese {a^ + (Jy) = (cr̂ ' + dy) = (cJi + G2) which is a constant, 
there can be no principal shear stresses, i.e. planes on which no normal 
stresses act 

Mohr^s circle of stress 

This is a graphical method of transforming the stress tensor. It is easy to 
use and remember, and is the best way of remembering the transformation 
equations. 

If we choose the global x- and y-axes to coincide with the principal 
directions (and because we can choose the axes arbitrarily there is nothing 
to prevent this), then the transformation equations become 

a^^ = Gi cos^ 0+ a2 sin^ 0 (A) 

Gy^ = Gi sin^ 0+ G2 cos^ e (B) 

T^Y = -{GI- 02) COS 6 sin 0 (C) 

where Gi and O2 are now the principal stresses, and 0 is measured 
anticlockwise from the principal direction x to the local direction x\ 

These new equations can be simplified still further, by making use of 
trigonometric identities. 
Let 

then 

sin 0 = sin {0 -\- 0) = sin 6 cos 0 + cos QsinO = 2 sin 0 cos 6 

:. cos ^ sin ^ = yi sin 0 (D) 

and 

cos 0 = cos {6 -\- 6) = cos 0 cos 0 - sin ^ sin Q = cos^ 0 - sin^ 6 

but 

cos^ e + sin^ e = 1 

so 

cos (j) = cos^ ^ - ( 1 -cos^ 6) = 2 cos^ O-l 
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f rom which 

COS^ 6=^2(1 -\- COS 0) 

or 

from which 

cos 0 = (1 - sin^ 9) - sin^ 6=1-2 sin^ 6 

sin^ 0 = y2 (1 + cos 0). 

Substituting (D), (E) and (F) into equations (A), (B) and (C): 

cĵ ^ = (Ji (y2(l + cos 0)) + a2(y2(l + cos (j))) 

(E) 

(F) 

I.e. 

cr̂ ' = y2 (cTi + 02) + y2(ai + 02) cos 0 

T ŷ = - y2 (<7i + 02) sin 0. 

These two equations are simply the equations of a circle centred at 
y2 (cTi + 02) on the cr-axis in a-z space: 

y(a - a,)sin0 

The a-axis and the 
X-axis are parallel 

To use Mohr's circle you must understand and remember: 
1. Positive shear stresses and positive rotations have been used in 

developing the equations for a point (a, r), but the r co-ordinate is 
negative. This means the r-axis is upside down: 



Stress analysis 409 

positive shear stresses plot below the a-axis. 

2. The trigonometric relations used to simplify the equations resulted in 
0 = 2a-

whatever rotation takes place in real life, twice 
the rotation takes place on Mohr's circle. 

3. Each point on the circumference of the circle represents the (cr, r) stress 
state on a plane of specific orientation. The points where the circle inter-
sects the a-axis represent planes on which r = 0: the principal planes. 
The associated cr-values are the principal stresses. Mohr's circle shows 

the principal stresses are the maximum and 
minimum values of normal stress in the body. 

4. The points representing the principal planes lie at opposite ends of a 
diameter: in real life planes are perpendicular. 

Two perpendicular planes are 
represented on the circle by points at 

opposite ends of a diameter. 

5. The maximum shear stress is given by Vi (o"i - O2) and occurs when 
0 = 90° (i.e. e = 45°). Thus 

the planes of maximum shear stress are 
orientated at 45° to the principal planes. 

Using Mohr's circle to determine principal stresses 

1. Draw x-y-axes on the element, draw an element with positive normal 
and shear stresses on it, and so write down (a^, tj^y) and {Cy, Tyx). 

2. Draw cr-r-axes (same scale on each) with the cr-axis parallel to, and in 
the same direction as, a^. Plot (o^, r^y) bearing in mind the positive shear 
stresses plot below the a-axis. Then plot (cr̂ , ty^) on the other side of the 
CT-axis. Draw the diameter between the two points, and then draw the 
circle. 

3. Calculate the radius as 

iJ(cT.-a,)%(2rJ^ 

and the a-value of the centre as ¥2(0 .̂ + Gy). 
4. Calculate the principal stresses and the maximum shear stress: 

(Ji = c + r, G2 = c-r, Tn,ax = r-
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5. Calculate the rotation angle and direction from O"̂  to cJi. Remember that 
rotations on the circle are twice real life rotations (0 = positive rotation). 

0 = tan 
V ^ x - ^ y 

but be aware that 0° < 0 < 180°. 
6. Finally, draw the element on which the principal stresses act, in the 

correct orientation. 

Example 

20 

10 
10 _ ^ 

-̂1 

10 Convention: 

stresses 
in MPa 

20 

10 

K ' V = (20, 10) 

^ ^ ( V V = 1̂0' ^̂ ^ 

- " ! 

10 4 ^. 

10 

.T^(ay,TyJ = (lO, 10) 

((T,,0) o-

(a^,T ) = (20, 10) 

radius = | /(20 - 10)̂  + (2 x 10)̂  = ll.lSMPa centre = ^(20 + 10) = 15MPa 

(T. = 15+ 11.18 = 26.18MPa a , = 1 5 - 11.18 = 3.82MPa T = 11.18MPa 
I 2 max 

0 = t a n " ' 1 - ^ = 63.43° .•.8 = 31.72° 
2 0 - 10 

a, =26.18MPa 

82MPa 
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Using Mohr's circle to determine stresses on a plane 

Follow points 1,2,3 and 5 of the method for determining principal stresses, 
then: 
4. Draw an element of the correct orientation relative to the x-y-axes, and 

mark on positive cr ,̂ Gy', r^y and Tŷ '- Write down the sense (positive 
anticlockwise) and the magnitude of the rotation x-axis to x'-axis. 

5. Mark this rotation on the circle, measuring from the (o"̂ , T^y) point, 
remembering that you do twice as much on the circle as you do in real 
life. 

6. The new point is (or ,̂ r^^y). Draw the diameter to determine (cy, Tyv)-

Example. What are the stresses on an element rotated 30° anticlockwise 
relative to the element in the previous example? 

a^ = c + r cos(0 - 60) 
= 26.16MPa 

CT . = c - r cos(0 - 60) 
= 3.84MPa 

T̂ .̂ ,. = r sin(0 - 60) 
' = 0.67MPa 

((T̂ ,T̂ )̂ = (20,10) 

Strain analysis 

If we apply stresses to a body, by how much does it deform? Obviously, it 
depends on the stress state, the material the body is composed of, and the 
size of the body. This last problem is resolved if, instead of absolute 
deformations, we talk about relative deformations, relative to the body. This 
is what strain is: deformation normalized to make it independent of the 
size of the body. 

Analysis of displacement 

Consider this situation: 

y f 

/ •Q j Loading 

( • P / " 
^^—^ Applied 

L 

\ 

/ 

X 

• p ' / 

/ 

\ 
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P moves to P', Q moves to Q'. The vector P'Q' may have a different 
magnitude and direction to the vector PQ. Is it possible for us to determine 
P'Q' knowing PQ and the general form deformation in this body takes? 
Providing we make some assumptions, yes. 

Assume that displacement varies with position in the body—it is a 
function of x and y. Then say that: 

function describing displacements in the x-direction = u{x, y) 
function describing displacements in the y-direction = v{x, y). 

To simplify the working, we will refer to these functions as u and v. 
Now, let us use these functions to analyse the displacements of P and Q: 

dx 

y k 

dy 

Q' (x + dx + u + du, 
y + dy + V + dv) 

t P' (x + u, y + v) 
Q (x + dx, y + dy) 

P(x,y) 

P and Q are separated by a small distance (dx, dy). The deformation causes 
P to move from {x, y) to (x + w, y + v) [we calculate this by substituting the 
values of x and y into the functions u and z;]. 

These deformations vary with position within the body, so they are 
different at Q: here they are {u + du) and (v + dv). The initial co-ordinates 
of Q are also a little different from those of P: they are (x + dx, y + dy). 
This means the co-ordinates of Q' are: 

([x + dx] -f [u + du], 
initial X X 

co-ordinate displacement 

[y + dy] + [v + dv]y 
initial Y Y 

co-ordinate displacement 

Both u and v are functions of x and y, and so calculating the derivatives is 
awkward: the functions are surfaces, not curves, and each derivative 
contains components due to dx and dy. We can calculate du (and similarly 
di;) like this: 

Change in 
u as 

X changes 

(a) 

X X + dx 

Constant y 

u 
1 

Change in 

u as 
y changes 

= ^ - d y 

(b) 

i 

Constant 

1 dy 

y y + 

X 

dy 

Gradient 

y 
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The total change in u (i.e. du) is given by the sum of these components: 

dw = (change in w as x changes) + (change in w as y changes) 

hence 

similarly 

du 
du , 3u , 

= —dx-\- — dy 
dx dy 

_, dv , dv , 
dv = —dx + — ay. 

dx dy 

ions into matrix form: 

du 

dv 
du/dx du/dy 
3i;/3x 3y/3yj 

\dx 

[dy 

This shows how the displacements {du, dv) are functions of the original 
separation of P and Q {dx, dy). The problem is, we need the displacement 
independent of this separation: i.e. we need strain. 

Strain in terms of displacement functions 

In general, when a body deforms, the following components of defor-
mation take place: 

z: _ J ^ 

Rigid body 
translation 

Rigid body x-direction 
normal strain 

y-direction 
normal strain 

Shear 
strain 

We can ignore rigid body rotation—we are only interested in the 
displacement of points relative to each other. Now all we have to do is 
analyse each component individually, and then combine them. 

(a) Rigid body rotation. 

The element does not change 
shape: it rotates by Q radians such 
that P and P' remain coincident 
and Q moves to Q'. Hence 

du - - sin Qdy 
dv = sin Qdx. 
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For small rotations sin Q = Q, so that 

du = - Qdy 

or 

(b) Normal strain 

du 

dv 

0 -Q 

Q 0 

dx 

dy 

J 

dx 1 du 1 
- * 1^-^ ^ 

Because we use compression 
(and hence contraction) positive, 
we have 

£r =--
du 

dx 

from which we obtain 

or 

(c) Shear strain 

di( = ~ e^dx 
du = - £y dy 

du 
dv 

-e, 0 1 
0 -e,\ 

Idx 
[dy 

This is negative shear strain: P'Q' 
is longer than PQ, and extension 
is negative. For small angles, to a 
good approximation we have 

du = dy sin a -\- dx cos a- dx 

but for small angles sin a = a and cos a = 1, so that dw = a dy + dx - dx = 
a dy and similarly dv = adx. 

The definition of shear strain is the change in angle between two lines 
originally perpendicular to each other, i.e. y^^y = (/?- Y2). 

V2 = j3 + 2a 2a = p-^^/i = y^ 
xy 
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Hence 

dw = -1/2 7,j, dy 
dv = -V2 y^y dx 

or 

dw 

dv 

0 '/2 y . 

0 

dA: 

Ldy. 

Note that the tensorial shear strain is half the engineering shear strain. 
(d) Combined strain and rotation. We can now add together cases (a), (b) 

and (c) to form a single set of equations. It is useful to keep strain and 
rotation separate though: 
This is because only the strain matrix represents distortion. The rotation 

dw 

dv 

strain matrix 

dx 

.dy. 

0 -a 
a 0 

dx 

.dy. 

rotation matrix 

matrix is just that: a rotation of the rigid body. 

However, in the analysis of displacement we found that 

so 

du 

dv 

du/dx du/dy 

dv/dx dv/dy 

du/dx du/dy 

[3i;/3x dv/dy] 

dx 

dx 

V2 r , , £y 
+ 

0 

Q 

-Q. 

0 

Writing these equations in full gives: 

du/dx = - Sx du/dy = Vi Yj^y - Q 

3z;/3x = V2 y^y + Q dv/dy = - £y 

From which we find 

3î /3x + 3w/3i/ = - Vi y^y -h Q- Vi y^^ - Q = - ŷ ^ 

and 

3z;/8x - 3w/9i/ = - V2 7̂ ^ + Q + Vz /̂ ^ + 12 = 2Q. 
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Collecting these expressions together: 

I xy 

du/dx, 

dv du 

2 

dv/dy 

dv du 

^dx dyj 

These are the equations of strain in terms of displacement. 

Example. Say that 

innnV ^ ^1 1000^ 

and 

v = ix^ -^y^\ 
1nnn \ / 1000 

What are the strains and rigid body rotation at (1,1)? Taking the necessary 
derivatives and substituting x = 1 and y = 1: 

dx 1000 ^ 

8 

1000 

du = Uxy + 3xA = — 
dy 1000^ ' ^(^r 1000 

dv 

dx 1000 

dv 

U2. 

dy 1000 ̂  ' 

1000 

2 

1000' 

Substituting into the analytical formulae: 

-0.008 _ ^" _ 
dx 1000 

dv 2 

3y 
= -0.002 

1000 

/ xy 

2 

du dv 
dy dx^ 

dv du 

dx dy 

7 2 
+ 

1000 1000 

1000 1000 

1000 

5 

= -0.009 

= -0.0025 rad. 
1000 
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Note that strains are dimensionless. 

Transformation of displacement (plane strain) 

Say point P moves to P' when deformation takes place. If we know u and 
V, can we calculate u' and v' on the new axes x'y' in terms of 01 

u' = u cos6 + V sin6 

v' = V cos9 - u sin6 

Transformation of strain (plane strain) 

Given e^, ty and y^y (i.e. global components) how do we calculate e'^, £y and 
y'^y (the local components)? 
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Now 

du dv J 
£ , = - — , e,=-— and 7,^ = 

ax ay 

du dv 
— + — dx dy 

J 

so 

dx' 
/ K=-— a n d y ' 

du' dv' I 
+ . dx' dy'^ 

By convention 
e^' = decrease in length/unit length in x' direction 
€y' = decrease in length/unit length in y' direction 
y'xy = increase in angle between x' and y' axes. 

Thus we need expressions for 

du' dv du' , dv' 
, , and — . 

ax' dy' dy' dx' 

From the previous notes, 

u' = u cos ^ + i; sin ^ 

and 

v' = V cos ^ + w sin 0. 

Now, le t / = any function of x and y. Then 

dx' dx dx' dy dx' 

COS 0 + — sin 0 
ay 

and 

dy' dx dy' dy dy' 

= ^ s i n . . ^ c o s e . 
dx dy 
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Negative 
shear 
strain 

Now, if we replace/with u\ v' and y'xy iri turn: 

sin^ 
5y 

— = — C O S 0 + — s i n ^ 
dx' dx 

= cosO — (wcos^ + i;sin^) + sin^ — (wcos^ + i^sin^) 
dx dy 

du 

dx 

dz) 
cos^ 0-\- — sin^ 0 + 

dv du 
— + — dy dx dy 

cos ^ sin ^ 

e'^ = Ex cos^ ^ + ŷ sin^ 0 + y^^ cos 0 sin 0. 

Note the similarity with o-'̂ . 
Similarly, 

e^y = £;̂^ sin 0 -\- £y COS 6 - y^^ cos Q sin B 

Note the similarity with o-'. 

^'' dy'^ dx' 

^du: „ du[ . ^^ ^ 

dx V 9y 
—^cos0 + —^sm0 
dx dy 

but u' = u cos 0 + u sin 6and u' = y cos 6- u sin ft 
Substituting and rearranging: 

a / . . .\ . ._a 
ax 

7 ' = cos ft — (wcosft + ys in f t | - s in0— ucosft + Dsin^l 
9yV / ;)v\ / 

+cosft—|ucos0-usinft l + sin0—z;cos0-Msinft) 
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— COS 6-\- — cos0sin0 cos^sin^ sin d-\-—cos 9 
5y dy dx dx dx 

cos0sin0 + —cos^s in^ sin 6 
dx dy dy 

du dv 
— + — dy dx 

cos 'e -s in^e - 2 
du dv 

dx dy 
COS ^ sin 0 

•'• 7xy = Yxy (cos^ ^ " Sin 6) - 2{£^ - Sy) COS 6 sin 6. 

Note the similarity with T^ 
xy 

The strain tensor 

Let 

Then 

and 

e^j, = e^, Cyy = ey, and e^y = Vi Yxy 

Yxy is referred to as engineering shear strain. 
Cj^y is referred to as mathematical shear strain. 

du dv 1 

dx dy 2 

du dv 

^dy dx^ 

so 

^ v v - - -

du' 

dx'' 
e,.,. = - -

dv^ 

'••—2 

3t/ at/ 

dy' dx' 

^xx 

^xy 

= 

= 

= 

^xx 

^xx 

^xy 

COS^ 

sin^ 

(cos 

a-h 

6 + 

'6-

^yy 

^yy 

sin^ 

cos^ 

sin^ 0) 

e + 2e,y 

e-2e,y 

- {exx - ^ 

cos 

cos 

e sin 

a sin 

yy) ^ ^ ^ e 

0 

0 

sin e 

Note that these are identical to the stress transformation equations. 

Example. Given 
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£ = = 8000 /IS or e^^ = 8000 /as 
125 

£= = 2000//s or e,, = 2000//S 
' 500 

y^y = 7~7 = 9000 /IS or e,̂  = 4500 /is. 
1000 

Compute the local components of strain ii 0 = 30° (cos 6 = 0.866, sin 0 
= 0.5) 

ei;, = (8000 X 0.750) + (2000 x 0,250) + (2 x 4500 x 0.866 x 0.500) 
= 10400 //s 

eyy = (8000 x 0.250) + (2000 x 0.750) - (2 x 4500 x 0.866 x 0.500) 
= -400 /IS 

e' = 4500(0.750 - 0.250) - (8000 - 2000) x 0.866 x 0.500 

or 

= -350 /IS 

r ; , = -700/IS. 

Principal directions and principal strains 
Just as for stresses, does there exist a value of 0 for which ê ^ (or / ^ = 0? 
There is, and let us call us the angle /J. 

By analogy with the stress tensor. 

l3 = -tan-
2 

2e., 

e — e 
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The directions x' and y' corresponding to this value of /J are known 
as principal directions of strain. These directions are orthogonal. The 
longitudinal strains e'^x and e'̂ ^ in the principal directions are known as 
principal strains. 
In the example. 

2e. 

\~xx ^yy I 

2 X 4500 

(8000-2000 
-1 .5 

.-. fi= 1/2 tan "M.5 = 28.2°. 

Mohr's circle of strain 

If the global axes x and y are chosen to coincide with the principal 
directions, the strain transformation equations become 

e' =e, ,cos^0 + e„„sin'e 
"^XX ^ XX 

eyy=e,,sm'e^e^^cos'e 

<v = -(^.x-^vy)cosasin'0 

compare to the stress transformation 
equations. 

Now let (j) = 26.By analogy with the stress tensor. 

^xx = V2 {e^x + ^yy) + ¥2 (e^x - eyy) cos . 

e'xy = - V2 {e^x - eyy) sin 0. 

By analogy with Mohr's circle of stress, each point on the circle represents 
a direction in the material in which the longitudinal strain is e'^^-
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Example. Continuing from before, with e^^^ - 8000 jis, Cyy = 2000 jis, 
e^y = 4500 /IS: 

P at (8000, 4500) 
~ ^ XX' xy ' 

V3000' + 4500^ = 5410/is = maximum mathematical shear strain 

Maximum engineering shear strain = 2 x 5410 = 10,820 ^s. 

Principal strains are (5000 + 5410) = 10,410 ;Us 

(5000 - 5410) = -410 jUs. 

Determination of principal strains from measured 
strains 
This is the practical use of the two-dimensional strain transformation 
equations. 
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It is not possible to measure shear strains in practice, so for two-
dimensional strain three normal strains are measured at known relative 
angles. This permits solution of the strain transformation equation for three 
unknowns—€i, 82 and the angle between one gauge and £1. 

Strain gauge rosettes are the devices used to measure strain. They consist 
of three strain gauges mounted on an epoxy backing, such that the mutual 
angles between the gauges is 45° or 60° (so-called rectangular and delta 
rosettes): 

Three-element (rectangular) 
rosette, 45° planar, foil 

Three-element (delta) 
rosette, 60° shear planar, foil 

£9 

For the purposes of analysis we can 
assume this geometry, where 

a = (3 = 45° for rectangular rosette 
a = P = 60° for a delta rosette. 

P / 

We measure e^, EQ and e^, we know a and /J, and hence we can calculate 
£ir £2 a n d 6. 

Substituting £1 = £^, £2 = £y and y^y = 0 into the strain transformation 
equation for direct strain gives us three equations: 

£p = V2 {£1 4- £2) + ¥2 (£1 - £2)C0S 20 

£Q = Vi {£1 + £2) + 1/2 {£1 - £2)cos 2(0-\- a) 

ER = 1/2 (£i + £2) + 1/2 (̂ 1 - e2)cos 2(0 + a + j3). 

In general we have 

£0 = c -\- r cos 20 

where c = centre distance of Mohr's circle = Vi {£1 + £2) 
r = radius of Mohr's circle = V2 {£1 - 2̂) 
0 = angle between gauge and £1. 
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£p = c -\- r cos 20 
£Q = c + rcos {20 + 120) 
£R = c + r cos {20 + 240). (1) 

Using the double angle formulae on the expressions for eg and £^\ 

EQ = C -^ r {cos 20 cos 120 - sin 20 sin 120} 
= c-\-r{-V2 cos 20-^3/2 sin 20} 

£R = C 4- r {cos 20 cos 240 - sin 20 sin 240} 
= c -h r {- 1/2 cos 20 + ^/2 sin 2 ^ . 

(2) 

(3) 

Adding (1), (2) and (3): 

hence 

Subtracting (2) from (3): 

£p + £Q + £R — DC 

C = 1/3 (Cp + £Q + £R). 

% - ^Q "= ^^3 sin 20 (4) 

2 x ( l ) - ( ( 2 ) + (3)): 

2ep - (EQ + £R) = 3r cos 26. (5) 

Dividing (4) by (5): 

^R ^ Q 

2ep-(£Q + e,) V3 
= — t a n 20 

hence 

tan 20: 
2 £ P - ( £ Q + £ ^ ) 
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rearranging (4) gives 

^ _ ^ R ^ Q 

V 3 sin 20 

(b) Rectangular rosette 

£p = c + r cos 26 
EQ = c + rcos {26 + 90) 
e^ =c + rcos {26 + 180). (1) 

Using the double angle formulae on the expressions for EQ and e^: 

£Q = c + r {cos 26 cos 90 - sin 26 sin 90} = c + r {- sin 26} (2) 

£^ = c + r {cos 26 cos 180 - sin 26 sin 180} = c + r {- cos 26}. (3) 

Adding (1) and (3): 

£p + % = 2c 

hence 

C = Vl (fcp + gR). 

Subtracting (3) from (1): 

€p~e^ = 2r cos 26, (4) 

((l) + (3 ) ) -2x (2 ) : 

{€p + £p) - 2 £ Q = \ - \ + 2r sin 26 (5) 

Divide (5) by (4): 

i^£^-\-£^j-2£r 
— = tan2a 

£p £j^ 

Rearranging (4): 

V = ^ P ^ R 

2COS20* 
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In summary then: 

Delta rosette 

tan2e = 

£p -r £Q -\' £^ 

^ R ^ Q 

V 3 sin 20 

Rectangular rosette 

tan 20 = 
(^P + ^ R ) - 2 ^ Q 

2 COS20 

Example. In a delta rosette the three measured strains are £p = 8E-4, 
£Q = -8E-4 and ER = 2E-4. What are the principal strains and their 
orientation to £p? 

V 3 ( 2 E - 4 - - 8 E - 4 ] 
tan 20 = ^ , ^ = 0.7873 

2 x 8 E - 4 - - 8 E - 4 + 2 E - 4 

hence 

2 0 = 38.2° or-141.8° remember 
-180 < 0 < 180 

c = V3 (8 - 8 + 2)E-4 = 0.667E - 4 

2 E - 4 - - 8 E - 4 

V3sin(38-2) 
= 9.333E-4. 

Use whichever value of 20 gives positive r. 
Hence 

and 

e^ = c -\- r = lO.OOOE-4 

£2 = c-r = -8.667E-4. 

Now choose the value of 0 which is compatible with these values 
of £1 and £2. In this case, 0 = 19.1° puts £1 near to £p, which seems 
reasonable. 0 = -70.9° puts £1 midway between £Q and %, which cannot 
be correct {£^ = lOE-4, £Q = -8E-4, ^R = 2E-4). Hence 0 = 19.1° and the 
solution is: 
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£2 = -8.67E - 4 4 / EQ = -8E - 4 

Niohr' circle of strain for strain gauge rosettes 

Consider three arbitrarily orientated gauges, and their associated Mohr's 
circle: 

I +a + 3 

^e +a + p ^e +a 

The points P, Q, R represent the state of strain in the directions of the 
gauges. Of particular interest are the dotted lines to the point X, and the 
angles PXQ = a and QXR = p. These angles arise from the geometry of a 
circle, and allow us to construct Mohr's circle when the angle ^is unknown. 
The procedure is: 

(a) draw the shear strain axis and a temporary horizontal axis; 
(b) mark off the strains % EQ^^ ^rid £0+a+p on this axis, and draw vertical 

construction lines through them; 
(c) select any point X on the line through £e+af ^rid draw lines inclined at 

a and [3 to intersect the other construction lines at P and R, 
respectively; 

(d) draw the perpendicular bisectors to PX and RX, and mark their 
intersection. This is the centre of Mohr's circle; 

(e) the true direct strain axis can be drawn through the centre of the circle, 
and £|, €2 and 0 measured off. 
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Example. Solving the previous numerical example. 

- 8 E - 4 

- 8 E - 4 2 E - 4 8 E - 4 
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Appendix B: 
Hemispherical 
projection 

Hemispherical projection methods 

These methods enable three-dimensional orientation data to be displayed 
in two dimensions and manipulated graphically. 

Fundamental geometry 

Directions are vectors with unit length. We assume that these vectors 
emanate from the origin of a Cartesian co-ordinate system. It is conveni-
ent to use east/north/down for rock mechanics. 

Directions are measured in terms of 
the angles 

a = trend 
P = plunge 

a is measured with a compass, 
j3 is measured with a clinometer. 
Note that OB = sin a cos (i 

OC = cos a cos P 
AD = sin /?. 

Because every vector has unit length, the tips lie on the surface of a 
sphere. We are usually only interested in downward-directed vectors, 
lying on the lower hemisphere. 

Projection onto two dimensions 

One way to form a two-dimensional plot associated with vectors on the 
lower hemisphere is to project the tips of the vectors onto the horizontal 
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plane that passes through the origin (i.e. the centre of the sphere), assuming 
the point of projection is the North Pole of the sphere: 

North Pole 

Horizontal 
plane of 

projection Projection of 
tip of vector 
onto horizontal 
plane 

Lower 
hemisphere 

All points on the lower hemisphere can be projected in this way. This type 
of projection is called equal angle projection and is used exclusively in rock 
mechanics for engineering. 

Equal angle projection of a plane: great circles 

We regularly use planes in rock mechanics analyses and so it is important 
to determine the projection of such features. 

The mathematics of the projection are tedious, but the result is simple: 
a circular arc is developed. 

Inclined plane 
passing through 

origin of 
sphere 

Plane of projection 

Circular arc ' 
representing 
projection of plane, called a great circle 

Lower 
hemisphere 

Generation of small circles 

If, instead of the plane itself, we consider a single vector on the plane, we 
see that this vector traces a circular path on the surface of the hemisphere 
as the inclination of the plane changes. The projection of this trace is 
called a small circle. 
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Inclined plane 

Trace of P on surface of 
hemisphere, as inclination of 

plane varies 

Small circle results on 
projection 

Rather than draw great and small circles for every application, we use 
pre-printed grids showing these circles at angular separations of, say, 2°. 
These grids enable us to plot and measure lines and planes of all 
orientations. They are called equal angle equatorial projections (because 
they look like a globe viewed from a point above the equator), but 
commonly are known as hemispherical projection nets. 



434 Appendix 6; Hemispherical projection 

Using a hemispherical projection net: plotting vectors 

Never write on the net: always use a piece of tracing paper over it. 
Carefully pierce the centre of the projection with a drawing pin, and then 
push the pin through from the reverse side of the net. Use the point of the 
pin to hold a sheet of tracing paper in place. Mark the north point as a 
datum. 

Mark, with a tick on the perimeter 
of the net at the correct azimuth, the 
vector to be plotted. Write on the 
projection the orientation. Only 
write on the tracing paper, not the 
net. 

219/68 

Rotate the tracing paper so that 
the tick is on the E-W line. Count 
in an amount equal to the dip of 
the vector. Mark the position of 
the vector. Only write on the 
tracing paper, not the net. 

219/68 

Rotate the tracing paper back to the 
datum: the position of the vector is 
now correct relative to north. 

219/68 
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Using a hemispherical projection net: plotting planes 

Start by marking a tick on the perimeter of the projection in the same way 
as for 'plotting a vector'. The azimuth should correspond to the dip 
direction of the planes. 

Rotate the tracing paper so that 
the tick lies on the E-W line, and 
count in an amount equal to the 
dip amount of the plane. Count a 
further 90° along the E-W line, 
and mark this new position. 

149/37 

Trace the great circle that passes 
over the first point: this represents 
the plane. The second point rep-
resents the normal to the plane 

149/37 (i.e. the vector that is perpendic-
ular to the plane). The first point 
represents the line of maximum 
dip; the second point is termed 
the pole. 

Rotate the tracing paper back to the 
datum: the positions of the plane 
and the normal are now correct 
relative to north. 

149/37 
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Determining the line of intersection of two planes 

For any pair of planes, there is a line 
of intersection: it is where the two 
great circles cross. Finding its 
orientation is easy. 266/36 

146/59 

266/36 

Tick 

Rotate the tracing paper so that the 
intersection of the great circles lies 
on the E-W line. Mark the azimuth 
of this with a tick on the perimeter 
of the projection. Measure the 
plunge of the line by counting in 
from the perimeter, along the E-W 
line. 

146/59 

Rotate the tracing paper back to the 
datum, and measure the azimuth of 
the intersection. Thus we can see 
that the planes 266/36 and 146/59 
have an intersection of 219/26. You 
should be able to measure graphi-
cally all such angles to the nearest 
degree. 

266/36 

146/59 

219/26 
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Determining the bisector of two vectors 

Any two orientation vectors have a bisector (the line that is halfway 
between the two of them). Because the bisector must lie in the same plane 
as the other two vectors, finding its orientation is straightforward. 

326/31 

We start with the two points 
plotted on the projection (note that 
these are the normals to the planes 
used in the previous example). 

086/54 

326/31 

Rotate the tracing paper so that 
both the vectors lie on the same 
great circle: this is the plane that 
they lie in. Using the small circles, 
count along the great circle to 
determine the angle between the 
vectors. Divide this by 2, and count 
from one vector to find the 
bisector. Mark it. 

086/54 

008/60 

Rotate the tracing paper so that 
the bisector lies on the E-W line, 
mark its azimuth and measure its 
plunge. Rotate the tracing paper 
back to the datum and measure 
the azimuth of the bisector. Thus 
we see that the bisector of 326/31 
and 086/54 is 008/60. 

326/31 

086/54 
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Rotation about an arbitrary axis 

Consider this scenario: a borehole is drilled with a trend of 305° and a 
plunge of 65°, it intersects a plane with orientation 145/73, but the core has 
rotated through 55° clockwise (looking down the hole) during recovery. 
What is the apparent orientation of the discontinuity as it emerges from 
the hole? The simplest way of solving these sorts of problems is to use the 
net to perform the various rotations. 

Start by plotting and labelling the 
data: here it is BH for the vector 
corresponding to the direction of 
the borehole, D corresponding to 
the line of maximum dip of the 
plane, and N for the normal to the 
plane. 

BH 
305/65 

145/73 

BH 
305/65 

145/73 

Rotate the tracing paper so that 
the borehole is on the E-W line. 
Then move BH to the centre of 
the net—in this case through an 
angle of 90 - 65 = 25°. Move the 
normal N through the same 
angle, but along the small 
circle. Label the new points 
BH' and N'. In effect, the net 
has been inclined to be perpen-
dicular to the borehole. 

Rotate the tracing paper so 
that N' is on the the E-W line. 
Mark its azimuth and mea-
sure its dip. Count round the 
perimeter the amount of the 
rotation (55° in this case), and 
put a new tick: call this N". 

145/73 
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145/73 

Rotate the tracing paper so that the 
tick for N " is on the E-W line, and 
count in to get the rotated normal 
N". In effect, we have modelled the 
rotation of the core. 

BH 
305/65 

145/73 

BH 
305/65 

Now put the point BH on 
the E-W line, and move the 
point N " along the small 
circle by the same amount 
but in the opposite direc-
tion to that used in step 2. 
This puts the projection 
back to its starting position, 
and N " moves to N^: the 
rotated normal. 

Put N^on the E-W line, count across 
90°, and mark DR. Measure the dip 
of DR and mark its azimuth. Finally, 
put the tracing paper back to the 
datum and measure the azimuth of 
DR. Thus, we see that the apparent 
orientation of the discontinuity is 
187/58. 

145/73 

BH 
305/65 

Points to remember 

1. Never write on the projection itself: you should always write on the 
tracing paper. 

2. Use pencil, not pen, as you will make mistakes that need to be erased. 
3. Adopt—and use always—a simple but clear naming convention for 
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vectors. For example, N for normals, D for lines of maximum dip, 
superscript R for rotation (about the drawing pin), superscript prime or 
I for inclination (i.e. movement along the small circles), subscript 
numbers to identify particular vectors (or planes). 

4. Make notes on the tracing paper as you go: this helps others 
understand what youVe done, and gives you a valuable revision guide. 

5. When rotating/inclining planes, always use the normal to the plane, 
never the line of maximum dip (this is because the normal is unique, 
whereas the line of maximum dip is arbitrary). 

6. Never write on the projection itself: you should always write on the 
tracing paper. 
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