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The effect of a vertical gas flow on the dynamics of a coulombic granular material
moving over a horizontal rigid porous surface has been studied experimentally and
theoretically. The presence of a fluidizing gas significantly alters the granular flow
dynamics. When the gas velocity, ug , is below the minimum fluidization velocity, umf ,
the effect of the gas is to reduce the angle of repose θ from the value measured in the
absence of a gas flow. When material is poured from a point source onto a horizontal
surface it forms a pile, which adjusts through episodic avalanching to a self-similar
conical shape. Under these conditions, the development of the pile is determined by
the local force balance on individual particles and its extent may be expressed in
terms of the volume of particles added and the angle of repose. A volume of material
is poured continuously from a point source onto a surface according to Qtα. Below
the minimum fluidization velocity, a quasi-static description gives the encroachment

distance of the granular pile as l = (2Q/(2π/3)n−1 tan θ)
1
n+1 t

α
n+1 where n = 1 for a

planar release and n = 2 for an axisymmetric release.

A continuum description of fluidized granular flow has been developed by verti-
cally averaging the mass and momentum conservation equations and including the
momentum exchange between the gas and granular flow. The bulk movement is
driven along the ground by horizontal gradients of particle pressure and is resisted
by a viscous drag force due to the particles moving horizontally through a vertical
gas flow. Above the minimum fluidization velocity the character of the granular
flow is significantly altered and takes on fluid-like properties. The model predicts the
shape of the fluidized granular pile and that the encroachment distance grows as

l = λnα
(
Q
(
ug + umf

)
/ε
) 1
n+2 t

α+1
n+2 , where ε is the void fraction in the bed and λnα is a

constant. Below the conditions for fluidization (ug < umf), the pile of granular material

grows quasi-statically when t > t∗, where t∗ ∼ (εn+1Q(ug + umf)/µ
2+n(umf − ug)2+n)

1
1+n−α

corresponds to the critical time when frictional forces are comparable to gradients of
particle pressure and the drag force. Numerical solutions describing the granular flow
are presented.

Experimental observations of the shape and extent of planar and axisymmetric
granular flows when α = 1 compare well with theoretical predictions for various
values of particle volume flux Q, time t, and gas flow rate ug . The mathematical
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description of fluidized granular flows along rigid surfaces indicates a strong analogy
with buoyancy-driven flows in a porous medium. This analogy permits extension of
our description to include flows down slopes and the effect of internal stratification.

1. Introduction
Granular materials such as ores, agricultural grain, snow, and sand occur widely

in nature and industry. The transport of particles along solid surfaces is often
important. This can take place through the influence of gravity on the particles;
however a significant number of these flows are mediated by a gas flowing through
them. An example of where this takes place in industrial equipment is the operation
of fast-fluidized beds where a powder is transported pneumatically in a closed loop
under the influence of a gas flow passing through it. Particles may be deposited
in horizontal sections of pipes and it is common practice to introduce by-pass gas
along these sections so that the powder is fluidized and choking can be prevented.
Geophysical granular flows are often driven by buoyancy forces down slopes and can
represent a significant environmental hazard because the material, such as snow or
ash, is generally dense and travelling at speed (Hopfinger 1983). Some features of
the structure and behaviour of these flows suggest that they are fluidized through
the entrainment of air, the vaporization of water, or the production of gas from hot
rocks, which assists their propagation (Druitt 1998).

Flows of granular material can be complex owing to, for example, their scale, large
particle size distributions, or irregular particle shape, and these factors may have
a very important effect on a particular flow. In all cases the effect of a interstitial
gas flow has a significant effect on the propagation of the granular material. The
aim of this paper is to understand this effect when particles are released onto a
rigid, horizontal surface through which there is a vertical gas flow (see figure 1). The
complications described above that can occur in industrial and environmental flows
are eliminated by working on a small scale and using a well-characterized powder.
In tackling this problem, we are bringing together two bodies of work: granular flow
dynamics and fluidization. The flow of granular materials down a slope when there
is no external gas flow has been studied, e.g. Savage & Hutter (1989), Johnson &
Jackson (1987), and is of practical interest for describing the motion of avalanches
and pyroclastic flows. There is also a large body of work on fluidized beds, but only a
small fraction has considered the motion of fluidized material moving down a slope,
e.g. Nott & Jackson (1992), Brinkert & Davidson (1995), and these examples are
limited to steady channel flows.

Investigation of the flow along a horizontal surface allows the driving effect of
gravity to be isolated. A vertically averaged formulation for the granular flow is
proposed, derived from the continuity and momentum equations and a consistent
physical description of the fluidization process. A brief review of these physical
processes within flowing powders is given in § 2. In § 3 we develop a mathematical
description of cohesionless granular flows which includes momentum transfer from
the gas to the particulate flow. Expressions for the size and shape of a pile of material
below and above umf are derived. The apparatus used and the experiments performed
are described in § 4. The mathematical description is tested against experimental
results in § 5 and general conclusions are drawn in § 6.



Aerated granular flow over a horizontal rigid surface 171

y

g

Gas flow
rate ug

Streamlines of gas flow

h (x,t)

u x

Porous wall

Figure 1. Schematic diagram showing a granular flow over a rigid horizontal surface, through
which a gas flows.

2. Physical processes within granular flows
Four principal processes controlling a granular flow may be identified: cohesion,

collisional and frictional interaction between particles, and interaction between the
particles and the surrounding fluid. Cohesion may be important when inter-particle
forces generated by static electricity, the presence of moisture or van der Waal’s force,
for example, are large compared with particle weight. The suppression of bubbling
and uniform bed expansion above the point of minimum fluidization for fine material
is intimately related to the strong inter-particle forces, which are significant for glass
particles with diameters less than about 100 µm (Molerus 1982). The particles used
in the experiments below are significantly larger than this, and for the experimental
arrangement described in § 4, cohesive forces are negligible.

The collisional and frictional interaction between particles may be modelled at a
microscopic level by a system of springs, dashpots, and sliders (e.g. Tsuji, Tanaka
& Ishida 1992), but the number of particles whose interaction may be described in
this manner is limited, and the problem of incorporating the effect of interstitial fluid
is still unclear. A wide range of continuum descriptions of granular flows has been
proposed and for dense systems involving many particles the effects of interactions
can be modelled as bulk properties of the powder. Two effects in particular may
be considered to be important: inter-particle collisions due to the pseudo-thermal
motion of the particles, and friction between particles.

2.1. Inter-particle collisions

Collisions between particles provide a means of transferring momentum and exerting
an effective granular stress in the material. Many constitutive equations draw on an
analogy with kinetic gas theory and only strictly apply when particle volume fractions
are low. Lengthy expressions for the stress tensor analogous to those describing fluid
motion result from this, and an extra equation is necessary for describing particle
temperature, a measure of the strength of vibration of the particles. An authoritative
derivation may be found in Lun et al. (1984).

2.2. Inter-particle friction

In addition to momentum transfer by inter-particle collisions, frictional forces provide
another means of communicating momentum between adjacent particles. For dense
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flow friction can be modelled as a shear stress, that is dependent on normal stress.
When the material is static the simplest description of shear is the coulomb yield
criterion, which states that the shear stress τ varies linearly with σ, the normal stress,
so that

τ = µσ + c, (1)

where µ is the coefficient of internal friction and c is a yield stress describing cohesion.
For coarse, cohesionless materials c is negligible. The internal angle of friction φ is
defined by

φ = arctan µ, (2)

and it can be shown that for a static, cohesionless, coulombic powder, φ is equal to the
angle of repose. There are many empirical constitutive theories for frictional stress,
but a powder undergoing plane shearing and fully developed is in a critical state, and
all descriptions reduce to the Coulomb description (Johnson, Nott & Jackson 1990).

2.3. Fluidization

When a vertical stream of gas is passed through a granular bed, the jump in gas
pressure across the bed very often increases linearly with the gas velocity, ug (see
figure 2), because the drag exerted on the particles is dominated by viscous stresses,
which are proportional to the gas flow. We shall call a bed in this state ‘aerated’.
When the gas flow is increased further, the point of minimum fluidization is reached
where the entire weight of particles in the bed is just supported by the gas flow.
At this point particle mobility is greatly increased, the bed may be easily sheared
and superficially behaves as a fluid. One manifestation of this is that Archimede’s
Law appears to hold: a force is exerted on an immersed body equal to the mass of
particles displaced. For example, a beaker partially filled with particles and placed
in a fluidized bed will sink up to a level close to that of the particles in the beaker.
Above the point of minimum fluidization, the pressure drop over the bed does not
increase further and provided the particles are larger than a critical diameter (about
80 µm for glass beads fluidized by air), bubbles are generated on the distributor plate
and coalesce as they rise.

The superficial gas velocity corresponding to the point of minimum fluidization,
umf , may be estimated by considering the balance between the weight of the bed
and vertical drag. The average interstitial gas velocity through a packed bed of
particles is ug/ε, where ε is the voidage, so that the relative speed between the gas
and the particles is (ug/ε − v) where v is the particle velocity. The hydraulic radius
is estimated from the ratio of the cross-sectional area of the flow to the wetted
perimeter, dpε/(1 − ε), where dp is the surface-volume diameter of the particles. The
Reynolds number based on interstitial flow is Re = ugdpρg/εµg , where µg is the fluid
viscosity, and is typically less than 10 for the experiments described here, so drag
is dominated by viscous stresses on the particle surface and the appropriate scaling
for the drag per unit volume is O(µg|ug/ε − v|(1− ε)2/d2

pε
2). Momentum exchange

between the gas and particles under these conditions may be described by the first
term of the semi-empirical Ergun equation to give

fgs =
150µg(ug/ε− v)(1− ε)2

d2
p ε

2
. (3)

This expression differs from that proposed by Nott & Jackson (1992), who expressed
the drag in terms of the superficial difference of velocities rather than using the
superficial gas velocity explicitly, but is identical to that proposed by Geldart (1986,
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Figure 2. Pressure drop across a uniform bed of particles in a planar geometry as a function of
gas flow rate for different bed depths: 13.2 cm (�), 9.4 cm (N), 6.6 cm (•), 3.0 cm (�). The closed
symbols indicate pressure drop measurements as the gas velocity is increased and the open symbols
denote measurements made as the gas velocity is decreased.

p. 21). When the material is fluidized, the drop in gas pressure across a bed of depth
h is equal to the weight of powder per unit area within it:

∆p

h
= (1− ε)(ρp − ρf)g. (4)

When there is no mean flow of particles (v = 0), umf may be determined by balancing
the pressure gradient (4) with the first term of the Ergun equation (3):

umf =
d2
pε

3
mf(ρp − ρg)g

150µg(1− εmf) , (5)

where εmf corresponds to the voidage at the point of minimum fluidization (Davidson
& Harrison 1963).

The interactions between particles in a fluidized bed are usually expressed in terms
of bulk quantities. In particular, a gas-fluidized bed is often treated as a bubbling
Newtonian fluid and the effect of particle interaction is characterized by a viscosity.
Measurements of viscosity have been made using a variety of methods involving
several different types of viscometer or by inferring an apparent viscosity from
the shape of rising bubbles (Grace 1970). However, there are significant difficulties
associated with this (Brinkert & Davidson 1995) and it is based on an over-simplified
view of the nature of fluidized beds. Later, we shall demonstrate a closer analogy
between fluidized flows over rigid surfaces and buoyancy-driven flows in porous
media.

2.4. The combination of physical mechanisms

The relative importance of the different physical processes within granular flows,
especially when fluidized, is a challenging area of research. One approach has been to
use ad hoc expressions for pressure and viscosity in the stress tensor for the granular
material. At its most crude fixed values are applied, but a more sophisticated approach,
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which met some success, was used by Anderson, Sundaresan & Jackson (1995) for
modelling bubble formation within fluidized beds. The form of the selected expressions
and the parameters used accorded with the expected behaviour of the particles. An
alternative approach, adopted by Johnson & Jackson (1987) to model the plane shear
flow of particles, is to build up the constitutive relations from the physical processes
described previously. The stresses caused by pseudo-thermal motion and friction both
result from direct interaction between particles, but they may be distinguished by
duration of the contact: the pseudo-thermal motion results in brief collisions, while
the frictional contribution is caused by longer sliding and rolling contacts (Nott &
Jackson 1992). It is unlikely that the two stresses are independent; however, to make
the problem tractable Johnson & Jackson (1987) calculated the total granular stress
by simply adding the collisional stress σs and the frictional stress σf to give the
so-called frictional–collisional model. This is a convenient, crude formulation which
has the advantage of providing an accurate description in flows where either frictional
or collisional stresses are dominant. Johnson et al. (1990) applied their description to
particulate flows down inclined slopes and comparison with experiment showed that
many of the qualitative characteristics of the flow were reproduced by the model. Nott
& Jackson (1992) examined granular flows down slopes through which gas flowed up
to speeds just beyond the point of minimum fluidization. This required the addition
of a term in the momentum equation to describe momentum exchange between the
particles and aerating gas, although crucially the component of drag parallel to the
wall (which plays an essential role in our description) is absent from their final
formulation. Their model was sensitive to a number of empirical parameters, such as
a specularity constant.

Both σs and σf can be significant in granular flows. By comparing different
descriptions of the behaviour of a powder moving down an inclined plane, Anderson
& Jackson (1992) found that it could only be described realistically when friction
is included. The relative importance of collisional stresses compared with friction
in an aerated bed depends upon the degree of support of the particles, the particle
volume fraction, and the shear rate. In the experiments described in this paper, the
void fraction is close to packing density so that collisional stresses are negligible, and
the total granular stress is dominated by frictional stress σf . This may be further
justified through a scaling analysis of the pseudo-thermal energy equation. It can be
shown that production of pseudo-thermal stress by the wall is small compared to
the production by the fluidizing gas flow under similar conditions to those in the
experimental study, and the effect of thermal stress production is negligible compared
to drag and frictional components. This argument is presented in Appendix A.

3. Mathematical model of aerated and fluidized granular flows
The effect of a fluidizing gas on a granular flow along a horizontal surface can

be described by a continuum model developed by vertically averaging the mass
and momentum equations describing particulate flow. This approach was applied by
Savage & Hutter (1989) to describe coulombic material flowing down rough walls,
but the additional effect of the momentum exchange between the gas and particles is
included in this new description, which is tested experimentally.

The mass conservation equation describing granular flow is

−∂ε
∂t

+ ∇ · ((1− ε)v) = 0, (6)
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where ε is the void fraction. The momentum conservation equation describing the
particle phase is

ρp(1− ε)Dv

Dt
= (ρp − ρg)(1− ε)g− ∇ps + fgs + ∇ · σ, (7)

where ρp is the density of the granular material, g is gravitational acceleration, fgs
is the momentum exchange between the gas and particles, and we define σ as the
difference between the total stress and −psI . The particle pressure ps is analogous to
the hydrostatic pressure in a liquid and is proportional to the weight of the particles,

ps(y) = (h− y)(ρp − ρg)(1− ε)g. (8)

This term is important because it is the gradient of particle pressure along the
rigid surface that induces the material to flow. The rate of exchange of momentum
between the particles and the fluidizing gas is fgs and is described by (3). The gas
travels along the path of least resistance from the rigid surface (the distributor plate)
to the free surface. The granular flow along the horizontal rigid surface is dense and
negligible dilation was observed when bubbles were not present. As discussed above,
the collisional stress is negligible compared to the total stress, which is dominated
by a frictional component. The granular material is coulombic, so the tangential
frictional stress at the wall is proportional to the normal stress, Nf , which is equal to
the effective weight per unit area of the particles supported on the rigid surface:

Nf =
[
(ρp − ρg)(1− ε)g − fgs · ŷ

]
h, (9)

where ŷ is a unit vector normal to the rigid surface. For sloping layers of granular
material, the layer of material is aerated when

(ρp − ρg)(1− ε)g − fgs · ŷ > 0, (10)

and this condition reduces to ug < umf for a uniform layer of particles.
Equation (9) shows that as the gas flow rate increases, a larger fraction of the

weight of the particles is supported by the gas, and this results in a larger drop in gas
pressure across the bed. When the material is fully fluidized, the bed of particles is
supported by gas, and according to (9) the normal stress on the rigid surface is zero.
In practice the reaction on the wall is not identically zero because the pressure drop
across the bed fluctuates owing to the generation of bubbles on the distributor plate
and their eruption at the free surface. However this component is not included in our
description and we prescribe

Nf = 0, (11)

when the material is fluidized and (ρp − ρg)(1 − ε)g − fgs · ŷ < 0. Equations (6) and
(7) are solved subject to the stress conditions

ŷ · σ · x̂+ µNf = 0 (12)

on the rigid surface and

ŷ · σ = 0 (13)

perpendicular to the free surface.

3.1. Vertically averaged long-wave formulation

A vertically averaged formulation may now be developed based on the assumption
that the variation in the granular depth h is small over horizontal distances comparable
to the bed depth (|∂h/∂x| � 1). In a fluidized system we anticipate significant slip
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between the bulk material and the rigid surface, so that the flow is approximately
uniform with depth. Vertically averaging the equation describing the conservation of
mass yields

∂h

∂t
+

1

xn−1

∂

∂x
(xn−1hu) = 0, (14)

where n = 1, 2 for planar and axisymmetric flows respectively, and x represents
the planar or radial distance from the source of material, and u is depth-averaged
velocity. Integrating the horizontal momentum equation vertically and applying the
stress boundary conditions (12) and (13) yields

ρp(1− ε)
(
∂u

∂t
+ u

∂u

∂x

)
= −(ρp − ρg)(1− ε)g ∂h

∂x
− 1

h
µNf + fgs · x̂, (15)

See Appendix B for details of the derivation of equations (14) and (15). Averaging
the vertical component of the momentum equation across the depth of the granular
layer yields equation (9).

The gas travels along the path of least resistance from the distributor plate to the
free surface. The gas flow adjusts rapidly to the evolving granular flow providing the
time taken for gas to travel from the porous plate to the free surface, h/ug , is much
shorter than the advective time scale L/u associated with the granular flow (where L
is the horizontal length scale associated with the pile). Moreover, under the long-wave
restriction (|∂h/∂x| � 1) the gas flow will travel the shortest distance from the wall
to the granular surface so that

ug × n̂ = 0, (16)

where n̂ = −x̂ sin β+ ŷ cos β is normal to the surface of the granular layer. Under the
restriction h/L� ug/u the drag on the granular flow is therefore

fgs =
150µg(1− ε)2

d2
pε

2

((
−u− ug

ε
sin β

)
x̂+

ug

ε
cos βŷ

)
. (17)

The dominant terms in (15) are identified by estimating the relative magnitude of
the inertia, pressure gradient, friction and drag forces. Denoting the characteristic
velocity and vertical length scales by U and H respectively, the estimated magnitudes
of individual terms are

ρp(1− ε)
(
∂u

∂t
+ u

∂u

∂x

)
︸ ︷︷ ︸

O

(
ρpU

2

L

)
= −(ρp − ρg)(1− ε)g ∂h

∂x︸ ︷︷ ︸
O

(
ρpgH

L

)
− 1

h
µNf︸ ︷︷ ︸

O

(
ρpg|umf − ug|

umf

) +fgs · x̂.︸ ︷︷ ︸
O

(
ρpg|U − ug|

umf

) (18)

The relative magnitude of inertia and the frictional and drag forces is characterized
by the dimensionless parameter R, where

1

R =
Lg

U2
max

( |umf − ug|
umf

,
|U − ug|
umf

)
. (19)

The parameter R plays an analogous role to the Reynolds number in fluid flows.
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When R � 1 the flow is described by a balance between the frictional and drag
forces, which retard the granular flow, and horizontal gradients of particle pressure,
which drives the flow along the wall. In the opposing limit R � 1, the balance is
between the inertial force and gradients in particle pressure and this limit corresponds
closely to the problem described by Savage & Hutter (1989) for the release of dense
material down a slope. In our experimental study, we estimate R to be less than 10−2

and so describe the limiting case R � 1 applicable to our experimental observations.

In the limit R � 1, the granular flow is determined by a balance between horizontal
gradients of particle pressure and friction, and the horizontal component of drag
arising from the gas flow:

0 = −(ρp − ρg)(1− ε)g ∂h
∂x
− µ [(ρp − ρg)(1− ε)g − fgs · ŷ]+ fgs · x̂. (20)

When the material is aerated and (10) is satisfied, equation (20) may be rearranged
to give

u︸︷︷︸
O

(
L

t

) = −1

ε


ug(

1−
(
∂h

∂x

)2
)1/2

+ umf
(1− εmf)ε3

(1− ε)ε3
mf


∂h

∂x

︸ ︷︷ ︸
O

(
ug + umf

ε

H

L

)

+
µ

ε


ug(

1−
(
∂h

∂x

)2
)1/2

− umf (1− εmf)ε3

(1− ε)ε3
mf


︸ ︷︷ ︸

O

(
µ(ug − umf)

ε

)
. (21)

When the material is fluidized and (10) is not satisfied, the second term on the right-
hand side of (21), which corresponds to the frictional stress term, is zero because the
particles are supported by a vertical stream of gas.

Scaling analysis may now be applied to determine the appropriate dynamic balance
of terms in (21). The volume of granular material added to the system is Qtα ∼ LnH ,
where α is a constant describing the mode of release of the material. When frictional
stresses are negligible, the first term on the right-hand side of (21) describing fluid
drag may be balanced with the horizontal pressure gradients driving the flow along
the wall so that the encroachment length grows as

L ∼ Q 1
n+2 t

α+1
n+2 ((ug + umf)/ε)

1
n+2 . (22)

The relative strength of the frictional forces, compared to the pressure gradient,
increases with time as H/L decreases (according to (21)) so that after a critical time
t∗, frictional forces may no longer be neglected. The characteristic time when frictional
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forces and the pressure gradient terms are comparable occurs when

frictional forces

pressure gradient and drag
∼ µug − umf

ug + umf
Q

−1
n+2 t

n+1−α
n+2∗
(
ug + umf

ε

) n+1
n+2 ∼ 1,

whence

t∗ ∼
(
Qεn+1

µn+2

umf + ug(
umf − ug)n+2

) 1
n+1−α

. (23)

When t � t∗, an aerated granular material flows according to the scaling analysis
developed for the fully fluidized material given by (22). However, for t > t∗, frictional
stresses are important and the flow quickly develops according to a quasi-static balance
between friction and horizontal gradients of particle pressure. In the context of the
experimental study, t∗ has a typical value of O(2–5) s when ug = 0, depending on the
value of Q and n. This is much less than the characteristic time taken for the granular
layer to reach the end of the tank, indicating that the granular flows observed are
dominated by frictional stresses and the quasi-static description is applicable. When
ug/umf is increased above about 0.5, the value of t∗ increases rapidly. Close to the
minimum point of fluidization the time taken for the granular flow to propagate the
length of the tank, is less than t∗, and a quasi-static description is not applicable.

3.2. Quasi-static model for ug/umf < 1 and R � 1

When ug/umf < 1 and t > t∗, the granular pile grows quasi-statically because the ad-
justment of the pile occurs more quickly than the rate at which material is introduced
on the wall. The quasi-static growth is determined by substituting u = 0 into (21).
Equation (21) indicates that the gradient of the pile is independent of the depth of
the layer and so is constant. The angle to the horizontal, θ, may be found from (21)
using ∂h/∂x = − tan θ to obtain

tan θ = µ

(
umfε

3(1− εmf)− (ugε
3
mf(1− ε)) cos θ

umfε
3(1− εmf) + (ugε

3
mf(1− ε)) cos θ

)
. (24)

When ug = 0, the slope angle corresponds to the angle of repose φ, and in the limit
of incipent fluidization the slope angle tends to zero because the frictional stress is
not capable of supporting horizontal gradients of particle pressure.

Implicit in our continuum description is that the pile adjusts through bulk move-
ment when aerated. A static two-dimensional pile confined between rigid walls is
unable to adjust through bulk movement owing to frictional forces on the walls, and
adjustment occurs by particles sliding down the surface of the pile. This behaviour
may be understood by considering the forces on individual particles lying on the
surface of the granular pile. Such an approach was successfully used by Gilbertson &
Yates (1996) to describe the behaviour of tilted fluidized beds. The gas flow will tend
to take the shortest path from the distributor plate to the surface of the granular pile,
and will therefore be normal to the granular surface. It will exert a drag force on the
particles, reducing the reaction of the particle to the surface and therefore reducing
the frictional force that prevents it sliding. The component of the reaction force, R,
perpendicular to the surface of the pile is the difference between the component of
particle weight in that direction and the drag force:

R = 1
6
π(ρp − ρf)gd3

p cos θ − 1
8
ρfCD(Re)πd2

pug|ug|, (25)
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where CD , the drag coefficient, is a function of gas flow rate, particle volume fraction
and particle diameter.

Particle slippage occurs when the component of weight down the slope is balanced
by friction, or

mg sin θ = µR. (26)

Combining equations (25) and (26) yields

φ− θ = sin−1

(
CD(Re)ug|ug|
CD(Remf)u

2
mf

sinφ

)
(27)

where Remf is the particle Reynolds number at the point of minimum fluidization. The
two limiting cases of θ → 0 as ug → umf and θ → φ as ug → 0 are satisfied by (27).
Physically (27) describes when the mode of adjustment is by particle slippage down
the surface of the granular pile and (24) describes adjustment by bulk movement of
the pile. An interesting result of the above equations is that sucking gas through the
granular pile stabilizes the slope so that θ > φ.

When material is poured onto a horizontal surface, we observed that the granular
pile adjusts by episodic avalanching in a planar geometry or through continuous
avalanching, sometimes precessing around the apex of a conic pile, for axisymmetric
releases. The adjustment was quasi-static in the sense that the material stopped flowing
when pouring ceased. When the volume of material released is Qtα, conservation of
mass requires

Qtα
1− ε0

1− ε =

∫ l

0

h(x, t)(2πx)n−1dx =
1

2

(
2π

3

)n−1

lnh. (28)

The void fraction in the pile, ε, is a function of gas flow rate and may differ from the
voidage ε0 prior to pouring. The horizontal or radial extent of the granular pile can
then be shown to be

l =

2Q

(
1− ε0

1− ε
)

(
2
3
π
)n−1

tan θ


1
n+1

t
α
n+1 , (29)

where the condition that the slope has a constant gradient is applied. In the exper-
imental study described later, powder is poured at a constant rate (α = 1), and as
apparent dilation was negligible, it will be assumed that ε0 = ε. It is important to
note that close to the fluidization velocity (ug/umf → 1), the critical time t∗ increases
rapidly and time scales characterizing the adjustment of the granular pile and the rate
at which material is introduced are comparable. Under this condition, the quasi-static
description is no longer applicable, and a dynamic description of this motion must
be developed.

3.3. Dynamic model for R � 1

When the material is fluidized (ug/umf > 1), the weight of the particles is supported
by the gas flow and Nf = 0 in accordance with our mathematical description. As the
fluidized granular flow propagates, the gradient of the granular flow decreases with
time and we proceed to develop analytical solutions describing the flow for t � t∗,
under the long-wave approximation (|∂h/∂x| � 1) when equation (21), describing the
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propagation of the granular flow, reduces to

u = −1

ε

(
ug + umf

(1− εmf)ε3

(1− ε)ε3
mf

)
∂h

∂x
. (30)

Equation (30) may be coupled with the equation for the conservation of mass (14) to
obtain a nonlinear diffusion equation describing the dynamics of a fluidized granular
flow:

∂h

∂t
=

1

xn−1

∂

∂x

(
xn−1 1

ε

(
ug + umf

(1− εmf)ε3

(1− ε)ε3
mf

)
h
∂h

∂x

)
. (31)

The above equation may be solved in conjunction with the condition that the volume
of granular material poured onto the surface is∫ l

0

h(x, t)(2πx)n−1dx = Qtα
1− ε0

1− ε , (32)

where l denotes the lateral extent of the pile. Nonlinear diffusion equations such
as (31) are found to describe a wide range of fluid phenomena and are solved
using standard analytical and numerical methods. For instance, Huppert & Woods
(1995) studied two-dimensional buoyancy-driven flows in porous media and under the
condition that the permeability of the porous media is uniform, their set of equations
reduces to (31) (see Bear 1988). Similarity solutions to (31) may be constructed in
terms of similarity variables so that h(x, t) = Hh̃(x̃, t) where x̃ = x/L. The horizontal
and vertical length scales, H and L respectively, are determined by balancing terms
in (31) and terms in (32). This generates two simultaneous equations which may be
solved to derive the appropriate scalings for H and L. The similarity solution reduces
the nonlinear partial differential equation (31) to a nonlinear ordinary differential
equation

(2 + n)

x̃n−1

d

dx̃

(
x̃n−1h̃

dh̃

dx̃

)
= (2α− 1)h̃− (α+ 1)x̃

dh̃

dx̃
, (33)

which may be solved analytically or numerically. The length of the fluidized pile
is proportional to the horizontal length scale L, l = λnαL, where the coefficient λnα
depends on α and n and is determined uniquely from the condition h̃(λnα) = 0 and

from the constraint (32) which now reduces to
∫ λnα

0
(2πx̃)n−1h̃(x̃)dx̃ = 1. The lateral

extent of the granular pile is

l =
λnα

ε
1
n+2

(
ug + umf

(1− εmf)ε3

(1− ε)ε3
mf

) 1
n+2 (

Q(1− ε0)

(1− ε)
) 1

n+2

t
α+1
n+2 . (34)

The coefficient λnα may be determined numerically by solving (33); for a constant flux
release of particles, α = 1, we obtain λ11 = 1.48 and λ21 = 1.15.

The shape of a fluidized planar pile (n = 1) is described by a series expansion:

h

H
=
λ2

1α(α+ 1)

3

(
1− x

l

)
+
λ2

1α(α− 2)

12

(
1− x

l

)2 − αλ2
1α

72

(α− 2)

(α+ 1)

(
1− x

l

)3

+ · · · . (35)

When an instantaneous volume of material is released (α = 0), the solution to (35) is
given exactly by the first two terms of the above expansion. When α = 1 the difference
between the numerical calculation of the shape profile and the expansion truncated
after the third term is less than 1%. The shape profile for an axisymmetric flow is
obtained from the numerical solution of (33).
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When the material is aerated (ug/umf < 1) and t � t∗, the granular flow in
planar and axisymmetric geometries is calculated numerically by solving a nonlinear
advection/diffusion equation describing the evolution of the height of the granular
pile, which is obtained by substituting (21) into (14). The numerical solutions are
obtained by using a finite difference scheme explicit in time, and using a small time
step. The simulations were repeated using finer mesh sizes and time increments to
establish convergence. At each location, the criterion (10) was applied to determine
whether the layer was locally fluidized or aerated.

4. Experimental arrangement
We have developed a quasi-static description of granular flows corresponding to

ug/umf < 1, and a dynamic description when the material is fluidized or ug/umf > 1.
When ug/umf < 1, the lateral extent of the pile is described by (29), and the angle
of repose by (24) when adjustment occurs through bulk movement or (27) when
adjustment occurs through avalanching. When ug/umf > 1, the lateral extent of the
pile is described by (34) and its shape from (35). In the absence of bubbles, the
dilation of the powder was negligible and the assumption ε = ε0 = εmf applies. To
test these models a series of small-scale experiments was performed where the size
and shape of flows of aerated granular material were observed and measured.

The experiments were carried out in Perspex containers whose floors consisted of
porous sintered plastic sheeting (10 mm thick Vyon D sheeting from Porvair Ltd)
through which gas was passed. Two tank geometries were employed: a planar tank
291 mm wide with walls separated by 6 mm, and a cylindrical tank of diameter
290 mm. Particles were introduced into the containers through different sized funnels
according to the particle mass flux desired. The mass flux of particles through a
funnel is independent of the depth of powder within it (Nedderman 1992), and this
was verified experimentally for our system. The particles used were glass spheres,
90% of which had diameters within the range of 212 and 250 µm, and of density
2500 kg m−3 (Potters Ballotini grade AD). These particles may be classified as a Type
B powder in the Geldart classification, which corresponds to the property that dilation
of the powder is negligible for ug/umf < 1 and the bed bubbles for ug/umf > 1. The
motion of the particle flows was recorded on S-VHS videotape. Measurements were
made either directly from the images or they were captured from the tape using
a Data Translations DT3155 card and analysed using the UTHSCSA ImageTool
program.

The variation of pressure drop with superficial gas speed for the planar beds is
shown in figure 2 for different bed depths. The boundary between a packed bed and a
wholly fluidized state is not sharply defined and there is some smoothing of the curve
near the point of minimum fluidization. Conventionally umf is taken as the intersection
between the straight lines drawn through the aerated and the fluidized portions of
the pressure drop–gas velocity curve. We use a more physical definition of umf as
the gas velocity at which the entire weight of the bed is supported, i.e. the velocity
at which the curves in figure 2 become level. This corresponds to umf = 4.53 cm s−1

for the planar beds and this value is independent of bed depth. The value of umf
measured in the axisymmetric container is 5.75 cm s−1. Both measurements lie in the
range 4.4–6.5 cm s−1 predicted by (5).

Two sets of experiments were performed. In the first series the effect of gas flow on
the angle of repose of a granular pile was examined. These quasi-static experiments
permitted the particles to be characterized and demonstrated the effect of gas flow
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on friction between particles in the bed. The angle of repose of a fixed volume
of granular material was measured in both geometries. The particles were poured
through a funnel onto a horizontal porous surface to form a conical pile. The air
flow through the pile was increased incrementally and the shape recorded until the
powder was fluidized. The angle of repose was measured directly from recorded
images and found to be independent of the volume of powder introduced onto the
wall. In the second series of experiments, the effects of gas flow on the dynamic
behaviour of the particles were examined. Particles were introduced at a constant flux
directly onto the porous base of a container through which gas was being passed.
The development with time of the resulting flow of particles was then observed and
recorded.

5. Experimental results and comparison with theory

5.1. The angle of repose of fixed volumes of particles

When a granular material is poured onto a horizontal surface, the processes which
form the resulting pile of material depend upon the degree of friction between the
particles. When friction is high the pile develops through a series of avalanches until
equilibrium between the weight of the powder and friction between the particles is
reached. This results in a cone growing as a series of laminar layers and may be
described through the forces acting on a single particle giving rise to equation (27).
When interparticle friction is low, bulk movement of particles takes place as described
by equation (24). Both modes of adjustment generate a conical pile of material whose
angle of repose is uniquely related to the amount of friction between particles. When
the bed is aerated, internal friction is reduced owing to the partial support of particles
by the gas flow, and so a smaller angle of repose is observed than in the absence of a
gas flow. When the particles are fully fluidized, the friction between them is reduced
to such an extent that the pile is unable to support internal stresses and the bed
adjusts until its surface is level.

Figure 3(a) shows the measured angles of repose for a planar bed when it is aerated
compared with theoretical predictions for when the bulk movement of particles takes
place, equation (24), and when a force balance on a single particle close to the surface
of the pile is used, equation (27). Two lines have been plotted for the behaviour
described by equation (27), one corresponding to a low-Re description of drag force
for which CD(Rep)ug/CD(Remf)umf = 1 and one to a high-Re description of drag force
for which CD(Rep)/CD(Remf) = 1. There is good agreement between the experimental
measurements and the calculation of θ based on the high-Re version of equation
(27). This is surprising as the Reynolds number is expected to be small (Remf ∼ 2);
however the model does not account for a number of features such as the effect of
surrounding particles. Nevertheless, agreement is sufficiently good to suggest that the
behaviour of the particles in the planar case is controlled by the local balance of
forces on the surface of the pile, and the avalanching that results from it.

Similar measurements of the angle of repose for an axisymmetric pile of granular
material are compared in figure 3(b) with theoretical predictions based on the same
cases as in figure 3(a). These observations are in better agreement with (24) than (27),
suggesting that in the absence of the restraining influence of the walls, the particles
largely move as a bulk material rather than as individuals close to the surface. This
is what appeared to take place in the experiments.
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Figure 3. Measured angle of repose as a function of gas flow rate for aerated granular piles
for (a) Planar and (b) axisymmetric release of material. The symbols denote volume of particles
added: in (a) �, 26.3 ml; ×, 115.6 ml; �, 234.8 ml; +, 164.7 ml; ∗, 52.3 ml; and in (b) +, 100 ml; ×,
50 ml. The full and dotted curves correspond to prediction by (27), where CD(Re)/CD(Remf) = 1,
CD(Re)uf/CD(Remf)umf = 1 respectively; the dashed curve corresponds to (24). The angle of repose
in the absence of gas flow is φ = 26.1◦.

5.2. Shape and dynamics of granular flows

We have observed that as the gas flow rate is increased the conical shape of the
pile of granular material is distorted, partly because it can encourage different bulk
behaviour in different regions of a pile of material. This change is most clearly
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Figure 4. For caption see page 186.
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Figure 4. For caption see page 186.
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Figure 4. Sequences of images showing granular flow released at a rate Q = 0.88 cm2 s−1, at times
t (as shown) after the material is first released. (a) Planar flow in the absence of a fluidizing gas
(ug/umf = 0). (b) Aerated granular flow (ug/umf = 0.42). (c) Aerated granular flow (ug/umf = 0.84).
(d) Fluidized granular flow (ug/umf = 1.26).

illustrated by images from the planar bed in figure 4. Figure 4(a) shows the growth
of a granular pile in the absence of a gas flow (ug/umf = 0), where granular material
is poured in at the left-hand side of the sequence of images. The pile evolves a
wedge-shape with a uniform angle of repose except near the source. This is clearly
shown in figure 5(a) where the shapes of the piles are normalized to a fixed length
and height, and superimposed on one another. The pile is self-similar over the period
of the experiment and the angle of repose constant.

When granular material poured onto a rigid surface is aerated, the shape of the
developing pile of powder remains fairly self-similar, but the angle of repose is no
longer constant and decreases from a maximum value of θ as the leading edge of
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Figure 5. Profiles of the granular piles captured over a length of time and normalized with respect
to pile length and height. The profiles (a–d) correspond to the experiments shown in figure 4(a–d).

the moving pile is approached. This may be seen in figures 4(b) and 5(b) where
ug/umf = 0.42. Through the use of marker particles within the bed, it was seen that
the granular pile adjusted by material avalanching down the slope, and that the gas
flow rate altered the position at which this initiated. When there is no gas flow the
particles accumulate part way up the surface of the pile until their weight causes them
to be pushed down the slope; but as the gas flow rate increases, the point at which
this accumulation takes place moves down the slope until it reaches the leading edge
of the pile. This distorts its conical shape, as shown in figures 4(b) and 5(b).

Figures 6(a) and 6(b) show shape predictions for ug/umf = 0 and ug/umf = 0.42
respectively using (27) to describe the angle of repose and (29) to describe the length
of the pile. When ug = 0, agreement is good and any discrepancy is probably the
result of uncertainty in the measurement of Q, the volume flux of material introduced
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Figure 6. Comparison between measured profiles (dashed curves) and theoretical prediction (full
curves): (a), (b), (c) and (d) correspond respectively to ug/umf = 0, 0.42, 0.84, and 1.26, at times 80,
66, 19 and 11 s respectively, after material first introduced onto the wall. The theoretical prediction
for ug/umf < 1 is based on (27) for predicting the angle of repose θ (with CD(Re)/CD(Remf) = 1)
and the length from (29). For ug/umf > 1, the shape is described by (35) and length by (34).

onto the wall. While the model will not capture the concavity at the leading edge of
the pour when aerated, it does appear to successfully predict the shape of the rest
of it.

When the gas flow rate approaches umf , the behaviour of the granular flow changes
further. Figure 4(c) shows a granular pile when ug/umf = 0.84. The pile is much
shallower and its top surface is more concave than at lower gas speeds, becoming
more so with time as may be seen in figure 5(c). A careful examination shows that the
nose of the pile is convex. Observation of marker particles within the pile indicates
that there are two distinct regions: at the left-hand edge of the pour there is an
immobile, aerated, conical pile of particles, and this is submerged in a flowing sheet
of material. This sheet runs off the edge of the immobile region and forms a free-
flowing stream to the right of the pile. Because of the inhomogeneous nature of this
pour, we would not expect any one model to apply well. However, figure 6(c) shows
that despite this, the extent and height of the pile of material is quite well predicted by
(27) and (29). This suggests that despite its complex structure, the flow is dominated
by interparticle friction and the effect of the interaction between the particles and gas
upon it.

When ug/umf > 1, the shallow granular flow spreads rapidly along the rigid surface
(figure 4d). Figure 5(d) shows that the pile is now convex in shape and appears to
have a self-similar shape over the course of an experiment. The right-hand side of
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Figure 7. The encroachment distance of the granular layer as a function of time and gas flow rate
for (a) planar flow with Q = 0.88 cm2 s−1, and (b) axisymmetric flow with Q = 4.2 cm3 s−1. The
different symbols correspond to different gas flow rates, as indicated on each figure. Theoretical
predictions plotted for ug/umf < 1 are obtained from (29) using the angle of repose prediction (27)
for planar flows, and (24) for axisymmetric flows. When ug/umf > 1, the theoretical predictions
corresponding to (34) are plotted.

the granular flow in figure 4(c) is similar to that observed in figure 4(d), supporting
the view that close to fluidization, e.g. ug/umf = 0.84, the pile consists of fluidized and
aerated regions. Figure 4(d) corresponds to the case when the whole pile of material
is fluidized and bulk movement occurs. Figure 6(d) shows the prediction of the shape
described by equation (35). Again, the height and extent of the pile of material
is predicted well, but the exact shape of the pour is not captured. Nevertheless, the
spread of the particles appears to be dominated by the horizontal gradients of particle
pressure and the effects of the drag force exerted by the gas flow.

5.2.1. The rate of spreading of granular material

The spread of the granular pile is critically dependent on the gas flow rate. The
effect of aeration may be seen in figures 7(a) and 7(b) for a planar and axisymmetric
flow respectively: as the gas flow rate is increased, the speed of propagation increases
until umf is reached when the rate of increase is reduced. When the granular material
is aerated (ug/umf < 1) the spread of a pile is described by (29) and when fluidized
(ug/umf > 1) by (34). Both expressions indicate that the spread of the material
depends upon time t, gas flow rate ug , and volume flux of particles Q. According to

our continuum description, for fixed Q and ug and α = 1, l will vary as t
1
n+1 when

aerated and as t
1
n+2 when fluidized. Figure 7 shows a comparison between theoretical

and experimental measurements of the variation of the length of encroachment in
the absence of a gas flow and when the bed is fluidized. The agreement between the
predicted time exponents and those measured was confirmed by plotting the length
of encroachment of the piles against time on a log-log plot. The accuracy of the
predictions over a range of conditions is particularly good since there are no free
parameters in the model.

The variation of l with Q for fixed values of ug and t when the beds are fluidized is
shown in figures 8(a) and 8(b) for planar and axisymmetric flows respectively. In both
cases there is some scatter and at best satisfactory agreement. For the planar flows l
should vary as Q1/3 and there is good agreement between theory and experiment for
values of Q up to 8 cm2 s−1, but there is significant underprediction (∼30%) at higher
values of Q. For an axisymmetric flow l is predicted to vary according to Q1/4. In this
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Figure 8. The effect of varying volume flux Q on (a) the length of a planar current 1 s after
material is first released when gas flow rate is fixed at ug/umf = 1.26, and (b) the radial extent
of an axisymmetric granular flow 5 s after material is first released when gas flow rate is fixed at
ug/umf = 1.74. The curves correspond to the theoretical prediction (34).

case agreement is reversed with a large difference between experiment and prediction
at low values of Q and good agreement at high values of Q.

The variation of l with ug is shown in figures 9(a) and 9(b) for planar and
axisymmetric flows respectively. The curves for several different values of Q are
shown, but for each curve the value of l was measured at a time such that Qt was a
constant for all the experiments. Included on figures 9(a) and 9(b) are results from
the numerical simulations and the quasi-static descriptions; for ug > umf the results
of the numerical simulations are in agreement with the analytical expressions and for
this reason are not included. According to the quasi-static description, the length l
is dependent on the volume of material poured in the pile Qt, and independent of
the rate at which it is poured. The agreement between prediction and measurement
is quite good when ug/umf < 1 and no systematic dependence on Q was seen. As umf
is approached, the quasi-static description breaks down and predicts that the length
tends asymptotically to infinity as friction tends to zero. The failure of the quasi-
static description occurs because the characteristic time t∗, when frictional stresses are
comparable to gradients of particle pressure and fluid drag, is larger than the time
at which the length measurement was taken. Under these conditions, the dynamic
description is strictly applicable and results obtained by solving numerically (21) are
presented in figures 9(a) and 9(b). Experimental observations suggest that the flows
appear to accommodate the transition between the aerated and fluidized regimes
by becoming inhomogeneous and containing fluidized and non-fluidized regions.
Above the minimum point of fluidization l depends upon Q when Qt is fixed. This
was observed, though agreement is less good than when ug < umf; however, the
theoretical and experimental curves are broadly similar if the disagreement between
the predictions and measurements at some values of Q is discounted (figure 8).

6. Concluding remarks
The effect of a vertical gas flow on the motion of a granular material over a

horizontal surface has been investigated. A new vertically averaged description has
been developed, extending previous analysis such as that of Savage & Hutter (1989),
by explicitly including a coupling between the gas and particle flows. Below the
point of minimum fluidization, the effect of the gas flow is to reduce the angle of
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Figure 9. The effects of gas flow rate on encroachment distance for a fixed value of Qt: (a) planar
flow with Qt = 11.9 cm2, with the symbols corresponding to experiments with Q = 0.88 cm2 s−1

(4), 5.7(×), 11.9 (�); (b) axisymmetric flow with Qt = 25.4 cm3 and symbols corresponding to
Q = 0.84 cm3 s−1 (�), 5.7 (�) and 8.3 (4). Also plotted on each figure is the quasi-static description
given by (20) for ug/umf < 1. The results of numerical solutions to (21) are plotted for fixed values
of Qt corresponding to the experimental measurements. The analytical expressions for fluidized
flows are not included in this figure because they are in accord with the numerical solutions of (21).

repose and a quasi-static description of this has been developed. Above the point of
minimum fluidization a dynamic description has been developed from which a class
of unsteady solutions has been obtained. An important feature of these models is
that they do not contain any adjustable parameters, yet can describe reasonably well
the variation of size and shape of the granular flow with time. The dynamic model of
the fluidized granular flow is identical to the nonlinear advection–diffusion equation
which describes buoyancy-driven flows in homogeneous porous media. This result
may be expected because the drag force acts over the entire depth of the granular
flow (where the particles are mobile) in the same manner as the drag on a buoyancy-
driven flow in a porous medium (where the particles are fixed). This suggests that the
analogy of a flowing, dense fluidized bed with motion through a porous medium is
stronger than that more usually adopted with a Newtonian fluid.
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A series of experiments was undertaken to test the theoretical descriptions. The
models were in good qualitative agreement with the experimental measurements over a
wide range of conditions. In addition, theoretical predictions were often quantitatively
accurate without the use of any parameters which could not be measured directly. The
agreement is sufficiently good to confirm that when inertia forces are weak (R � 1), as
in our experiments, the horizontal momentum equation reduces to a balance between
a horizontal gradient of particle pressure, friction stress on the horizontal wall, and
the drag forces arising from particles moving in a gas flow. However, there were
instances when the comparison was poor, notably with respect to particle flow rates
when the particles were fluidized. The theoretical prediction is a simplified description
of the granular flow dynamics and a number of physically relevant contributions to
the stress are neglected in this treatment. The model assumes that the gas flow through
the moving particles is the same as that expected through a static pile of particles,
but a quickly moving granular flow will accelerate it, resulting in the particles moving
faster than anticipated. This effect could be accounted for by solving the momentum
equation describing the gas phase. In addition, to simplify our treatment, a viscous
drag force was assumed and no account was taken of the sidewall friction for planar
flows.

As well as instances where the terms within the model may be incomplete or
inaccurate, there are two cases when the model itself is inappropriate. First, the model
assumes that the flow is homogeneous and there are occasions when this is not true,
particularly when ug ∼ umf . Secondly, when the particles are strongly fluidized the
resulting layer of particles can be thin and the continuum assumption upon which the
model is based may break down. There are a number of extensions to the analysis and
experimental study which may be considered. The strong analogy between fluidized
granular flows and buoyancy-driven flows in porous media (in the limit R � 1)
permits the model to be extended to include the effect of gravity-accelerated granular
flows down slopes and the flow of internally vertically stratified granular flows along
horizontal walls. The effect of shape and size distribution of granular material will
affect both the fluidization process and the frictional drag, and this is currently being
investigated.
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Appendix A
A full treatment of the collisional stress term for the particulate phase requires an

additional conservation equation for granular temperature T . Granular temperature,
or particle kinetic energy, may be generated by particle–particle collisions, wall
interactions, and the effect of a fluidizing gas flow. Below the conditions for fluidization
(ug/umf < 1) particles in a granular bed are typically locked together and their
vibrational energy is low. However, when ug/umf > 1, particle mobility is greatly
increased, though in the absence of bubbles there is very little particle vibration
(Menon & Durian 1997). Bubbles disturb the particles and significantly increase the
granular temperature, and so the gas flow acts as a source for particle kinetic energy.
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This effect is represented by Qg which scales as ρgu
3
g/H . When this is added to the

granular temperature conservation equation given by Nott & Jackson (1992), which
is then vertically averaged,

3

2
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(
∂T
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+ u
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)
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(
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(
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(
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3/2

d
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O

(
ρgu

3
g

H

) (A 1)

where qpt is the flux of pseudo-thermal energy into the granular flow and I is the
dissipation rate due to particle–particle collisions.

Granular flows are strongly dissipative and their granular temperature is maintained
by a balance between generation and dissipation. The scaling analysis indicates that
when d � h, as in the experiments, dissipation due to particle collisions at the wall
will be negligible compared to that in the flow. From the point of view of generation
of pseudo-thermal energy, two extremes may be considered depending on whether it
is dominated by the wall or the gas flow. When production of pseudo-thermal energy
at the wall is much larger than that in the flow, then by balancing the terms describing
generation and dissipation in equation (A1), the pseudo-thermal energy is determined
to be T ∼ U2d/H; this in turn requires U/ug � (H/d)1/6(ρg/ρp)

1/3. When pseudo-
thermal energy production in the flow greatly exceeds that at the wall, then similarly
T ∼ u2

g(d/H)2/3(ρg/ρp)
1/3 and U/ug � (H/d)1/6(ρg/ρp)

1/3. In the experimental study
described in this paper, the ratio U/ug is typically O(H/L) and small for fluidized
flows and H/d is large, so that the gas flow is likely to be the principal source of
granular stress. Thus, as the speed of the granular flow increases, the generation of
pseudo-thermal energy by the wall dominates that of the fluidizing gas.

According to the analysis of Nott & Jackson (1992), the stress at the wall is

ŷ · σ · x̂+ µNf +
φ′
√

3πρp(1− ε)T 1/2U

6(1− ε0)
[
1− ((1− ε)/(1− ε0))1/3

] = 0. (A 2)

According to (A 2) and (18), the effect of collisional stresses generated by pseudo-
thermal motion are negligible compared to frictional and drag forces when

ρpT
1/2U � ρpgH |U − ug|

umf
. (A 3)

Substituting expressions for pseudo-thermal energy T for the case when pseudo-
thermal energy production is dominated by the gas flow results in

U

ug
� gH

u2
g

(
ρp

ρg

)1/3(
H

d

)1/3 |U − ug|
umf

. (A 4)

In the experiments described in this paper U/ug ∼ O(1), H/d ∼ 400, H ∼ O(1) cm,
ug ∼ 10 cm s−1, and ρp/ρg = 2080. Using these estimates for typical experimental
values, the right-hand side of (A 4) is nearly 1000 times larger than the left-hand side,
and so the inequality is clearly satisfied.
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When the production of pseudo-thermal energy is dominated by the wall rather
than the gas flow (which, from above, is unlikely in the experiments), then substituting
T ∼ U2d/H gives

U

ug
�
(
gH

u2
g

)1/2(
H

d

)1/4 |U − ug|
umf

. (A 5)

In this case the right-hand side is about fifteen times smaller than the left-hand side,
and so the inequality still holds.

Thus for the experiments considered in this paper, the collisional stress is negligible
compared to drag and friction. This assumption is likely to become unrealistic when
the granular flow is moving quickly compared with the speed of the gas flow through
it, such as flow down a steep slope. In addition, the inequalities will break down if
the particles in the flow are large compared with its depth; however, in such a case
the use of a continuum model would also be questionable.

Appendix B
Let vertically averaged variables be denoted by

fh =

∫ h

0

f dy, u2h = β

∫ h

0

u2 dy.

The coefficient β characterizes the velocity profile over the depth of the granular flow:
for a parabolic velocity profile β = 6

5
, and for a plug flow β = 1.

Integration of the equation describing the conservation of mass for the particulate
phase, (6), yields

∂((1− ε)h)
∂t

= (1− ε|y=h)

[
∂h

∂t
+ u|y=h

∂h

∂x
− v|y=h

]
− ∂

∂x

(∫ h

0

(1− ε)udy
)
,

for a planar flow where v = (u, v). Application of the kinematic condition for the
upper free surface of the granular flow yields

v|y=h =
Dh

Dt
=
∂h

∂t
+ u|y=h

∂h

∂x
,

and assuming that for a uniformly fluidized system the voidage is uniform, steady
and is set by the local gas flow, so that ∂ε/∂t = ∂ε/∂x = 0, equation (14) is obtained.

Integrating the inertial terms in the momentum equations across the fluid depth
gives, for planar flows,∫ h

0
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)
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]
,

(B 1)

where the approximation β = 1 has been invoked. The first term on the right-hand
side of the above expression is identically zero from the conservation of mass (14).
Vertically averaging the gradients of the stress tensor appearing in the horizontal
momentum equation across the depth of the flow, likewise, yields∫ h

0

(
∂σxx

∂x
+
∂σxy

∂y

)
dy = h

∂

∂x
σxx +

∂h

∂x
(σxx − σxx|y=h) + σxy|y=h

y=0. (B 2)
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Under the long-wave approximation, horizontal gradients of quantities are signifi-
cantly smaller than their vertical gradients, and the first term on the right-hand side
of (B 2) is negligible compared to the last term. In addition, the second term on the
right-hand side is negligible compared to the last term because the premultiplying
factor |∂h/∂x| is small compared to unity. Combining (B 1) and (B 2), in addition to
vertically integrating the particle pressure and the drag exerted from the gas flow,
yields (15).

REFERENCES

Anderson, K. & Jackson, R. 1992 A comparison of the solutions of some proposed equations of
motion of granular materials for fully developed flow down inclined planes. J. Fluid Mech.
241, 145–168.

Anderson, K., Sundaresan, S. & Jackson, R. 1995 Instabilities and the formation of bubbles in
fluidized beds. J. Fluid Mech. 303, 327–366.

Bear, J. 1988 Dynamics of Fluids in Porous Media. Dover.

Brinkert, J. & Davidson, J. 1993 Particle jets in fluidized beds. Trans. Inst. Chem. Engrs 71A,
334–336.

Brinkert, J. & Davidson, J. 1995 Fluidized bed behaviour: a new collisional model. In Fluidization
VIII (ed. J.-F. Large & Laguérie), pp. 419–426. Engineering Foundation, Tours.

Davidson, J. F. & Harrison, D. 1963 Fluidised Particles. Cambridge University Press.

Druitt, T. 1998 Pyroclastic density currents. In The Physics of Explosive Volcanic Eruptions
(ed. J. Gilbert & R. Sparks), vol. 145, pp. 145–182. The Geological Society.

Geldart, D. 1986 Gas Fluidization Technology (ed. D. Geldart). John Wiley & Sons Ltd.

Gilbertson, M. A. & Yates, J. G. 1996 The tilting fluidized bed: a re-examination. Powder Tech.
89, 29–36.

Grace, J. 1970 The viscosity of fluidized beds. Can. J. Chem. Engng 48, 30–33.

Hopfinger, E. J. 1983 Snow avalanche motion and related phenomena. Ann. Rev. Fluid Mech. 15,
47–76.

Huppert, H. E. & Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292,
55–69.

Johnson, P. & Jackson, R. 1987 Frictional-collisional constitutive relations for granular materials,
with application to plane shearing. J. Fluid Mech. 176, 67–93.

Johnson, P., Nott, P. & Jackson, R. 1990 Frictional-collisional equations of motion for particulate
flows and their application to chutes. J. Fluid Mech. 210, 501–535.

Lun, C., Savage, S., Jeffrey, D. & Chepurniy, N. 1984 Kinetic theories for granular flow: inelastic
particles in couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech.
140, 223–256.

Menon, N. & Durian, D. J. 1997 Particle motions in a gas-fluidized bed of sand. Phys. Rev. Lett.
79, 3407–3410.

Molerus, O. 1982 Interpretation of Geldart’s type A, B, C and D powders by taking into account
interparticle cohesion forces. Powder Tech. 33, 81–87.

Nedderman, R. M. 1992 Statics and Kinematics of Granular Materials. Cambridge University Press.

Nott, P. & Jackson, R. 1992 Frictional-collisional equations of motion for granular materials and
their application to flow in aerated chutes. J. Fluid Mech. 241, 125–144.

Savage, S. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough
incline. J. Fluid Mech. 199, 177–215.

Tsuji, Y., Tanaka, T. & Ishida, T. 1992 Lagrangian numerical simulation of plug flow of cohesionless
particles in a horizontal pipe. Powder Tech. 71, 239–250.


