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Note to Instructors

The input files for Spice, which are used in various examples within this
book, are available from http://eecs.oregonstate.edu/ karti/book/spicefiles as
well as springer.com. Instructors can also request the solutions manual from
springer.com.



Preface

Second Edition

Since the first edition of this book, there has been a significant growth in
the communication integrated circuits (ICs) market. Radio frequency (RF)
ICs with operating frequencies of several GHz or higher are commonplace for
wireless communication applications. Several excellent text books on RFIC
design are also available now. The focus of these books is on design using first-
order analysis techniques with little or no simulation to back up the analysis.
This lack of emphasis on simulation is due to the fact that Spice cannot be
efficiently used to simulate RF circuits operating in the GHz frequency regime.
Furthermore, simulation programs that can be used to simulate these high fre-
quency circuits are not available in the public domain. In several cases, it is not
even clear as to which RFIC simulator is the best for a particular application
and how a circuit can be accurately simulated. This can be frustrating, parti-
cularly so, for a student new to the analysis and design of RF circuits.

The strength of the first edition of this book was in the tight coupling
between the first-order circuit analysis and Spice simulation results. This is
also the focus of this edition and, therefore, the book continues to address
lower frequency circuits incorporating classical amplitude and frequency mod-
ulation schemes. The concepts governing these circuits are the same as those
for the higher frequency circuits. For this reason the content does not devi-
ate significantly from the first edition. Also, some of the circuit examples that
were more representative of discrete implementations have been retained since
the focus is on basic concepts.

Although noise and distortion are both important issues in communication
circuits, the primary focus of this book is on distortion. The topic of noise
in RF circuits is adequately covered in several books on analog and RFIC
design and has been omitted here. This was a difficult decision for us and we
recognize that this omission may not be appealing to some readers.
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The changes to the second edition include a new Chapter 1 that covers
the basics and provides a foundation for the rest of the book. As a result,
some of the earlier chapters from the first edition have been revised. Also,
the text and explanations in other chapters have been modified where nec-
essary to reflect the new organization of the book. The text and equations
for other chapters have been updated as well to remove errors and improve
the presentation. Chapter 15 from the first edition has been eliminated. A
discussion on compression/intercept points and matching networks has been
added. In addition, several problems have been included at the end of every
chapter. These problems emphasize the concepts presented in the chapter and
give students an opportunity to put in practice these concepts.

Professor Pederson and I had started a discussion on the revisions to this
book several years back. However, due to other commitments at my end the
second edition could not be completed earlier. While working on this edition,
I have fond memories of the wonderful collaboration that we had writing
the first edition. Although Professor Pederson is no longer with us, the new
edition is in keeping with the modifications he wanted to see. He was an
exceptional teacher, researcher, mentor, colleague, friend, and visionary who
is sorely missed.

I thank Professors Robert Dutton, Terri Fiez, and Yannis Tsividis for their
suggestions and encouragement. I have tried to incorporate as many of their
suggestions as possible. As with any revision, the intent has been to eliminate
errors from the previous edition. However, new errors may have crept in during
the revision process. I would appreciate the readers making me aware of errors
they find in this edition.

Corvallis, OR Kartikeya Mayaram
July 2007



Preface

First Edition

This book deals with the analysis and design of analog integrated circuits
that form the basis of present-day communication systems. The material is
intended to be a textbook for class use but should also be a valuable source
of information for a practicing engineer. Both bipolar and MOS transistor
circuits are analyzed and many numerical examples are used to illustrate the
analysis and design techniques developed in this book. A set of problems is
presented at the end of the book which covers the subject matter of the whole
book.

The book has originated out of a senior-level course on nonlinear, analog
integrated circuits at the University of California at Berkeley. The material
contained in this book has been taught by the first author for several years
and the book has been class tested for six semesters. This along with feedback
from the students is reflected in the organization and writing of the text. We
expect that the students have had an introductory course in analog circuits
so that they are familiar with some of the basic analysis techniques and also
with the operating principles of the various semiconductor devices. Several
important, basic circuits and concepts are reviewed as the subject matter is
developed.

The approach taken is as follows: first-order analysis techniques are de-
veloped first using basic principles and simple device models. Then circuit
simulation is used to corroborate the analysis techniques. This procedure pro-
vides insight into the operation of circuits and a systematic way of getting
an initial design of a circuit. The circuit simulation program SPICE has been
extensively used to verify the results of first-order analyses, and for detailed
simulations with complex device models. In this manner the student can ap-
preciate the shortcomings of the hand analysis and can resort to simulations
when necessary. Simulation results can only be interpreted once one has an
understanding of how a circuit operates and this is reflected by the manner in
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which the material is presented. SPICE input files are given for all the circuits
that have been analyzed so that the students can quickly duplicate the input
file and verify the results.

The material contained in this book is covered in a 15-week semester course
at the University of California at Berkeley. A chapter-by-chapter summary of
the topics covered is given below.

Chapter 1 considers the large-signal performance of emitter-coupled pair
and source-coupled pair circuits. The concept of harmonic distortion is intro-
duced and series expansions are used as a method for obtaining the distortion
components and the results are verified with SPICE simulations.

Another technique is introduced in Chapter 2 for computing the distor-
tion components. The transfer characteristic of an amplifier is described by a
power series and the harmonic distortion factors are derived. The concept of
intermodulation distortion is also developed.

In Chapter 3 the distortion modification/generation due to source resis-
tance and nonlinear beta in bipolar transistor circuits is considered.

Chapter 4 describes how distortion is modified in feedback amplifiers. The
concept of feedback is reviewed and applied to several example circuits with
particular attention to establishing correctly the appropriate loop-gain value.

Distortion and power transfer calculations in the basic IC output stages
are the concern in Chapter 5. Class A, Class B, and Class AB output stages
are described. An alternate method for distortion calculation is also presented.

Chapter 6 deals with transformers which are essential components in many
baseband output stages and which also form the basis for tuned circuits and
bandpass amplifiers. The basic low-frequency transformer is developed to-
gether with the circuit models and parameters which describe its electrical
performance. In this chapter the analysis of transformer-coupled amplifiers
and output stages is provided.

Tuned circuits are reviewed in Chapter 7. Elementary circuits and evalua-
tion techniques are introduced. Major emphasis is given to circuits employing
inductive transformers.

The design of simple bandpass amplifiers is considered in Chapter 8. Syn-
chronous tuning, cascading, and bandwidth shrinkage are described and ap-
plied to the design of a multistage bandpass amplifier. The concept of cross
modulation is also introduced.

Chapter 9 describes basic electronic oscillators. Simple and special circuits
are used as a basis to provide insight into the design of oscillator circuits. The
development is based both on the negative-resistance approach to oscillator
analysis as well as the feedback approach.

The concept of bias-shift limiting is introduced in Chapter 10. Steady-state
operation of the oscillator corresponds to Class C operation. Single device
bipolar and MOS circuits are described.

Chapter 11 deals with relaxation and voltage-controlled oscillators. A
graphical analysis of the basic oscillator is used to develop ideas that are
helpful in understanding the operation and the design of these oscillators.
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Relaxation oscillator examples in both BJT and MOS technologies are pre-
sented and techniques for controlling the period of oscillation are also described
leading to voltage (current) controlled oscillators.

Analog multipliers, mixers, and modulators are considered in Chapter 12.
The emitter-coupled pair is first introduced as a simple analog multiplier
and extended to explain the development and operation of a four-quadrant
multiplier. The concepts of mixing and modulation are developed and various
examples are given.

Chapter 13 deals with demodulators and detectors which form an inte-
gral part of any communication circuit. Various techniques for AM and FM
demodulation are described.

Phase-locked loops which are extensively used as frequency synthesizers
and demodulators are examined in Chapter 14. The basic operation of a phase-
locked loop is described using macromodels suitable for SPICE simulations.

Chapter 15 describes rectifier, regulator, and voltage-reference circuits.
Simple rectifier circuits are introduced. The concept of regulation is developed
and series and switching regulators are described. The regulator circuits use
voltage references and some basic reference circuits are presented.

We are pleased to acknowledge the many comments and suggestions pro-
vided by our colleagues and students, especially Professor R. G. Meyer. We
also appreciate the contributions of Ms. Elizabeth Rhine, Ms. Susie Reynolds,
and Ms. Gwyn Horn for their excellent formatting and compositing of the
manuscript.

Donald O. Pederson
Kartikeya Mayaram
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1

Review of Communication Systems, Transistor
Models, and Distortion Generation

1.1 Introduction

The purpose of any communication system is the transmission of information
(speech, video, data) from a source to a receiver through a medium or channel.
The channel for transmission can be wires as in wired communications (tele-
phone lines, cable television) or free space (air) as in wireless communications
(commercial radio and television, cell phones, pagers). The focus of this book
is on wireless communication systems. The transmitter broadcasts the source
information through free space using radiated power from an antenna. This
power is picked up at the receiving end by an antenna and is processed by the
receiver block.

Since the information signals occupy similar frequency bands (the base
band), one cannot transmit these signals over a single communication chan-
nel without resorting to multiplexing the signals either in the time domain
or frequency domain. Amplitude modulation (AM) and (frequency modula-
tion FM) are two analog techniques for multiplexing signals in the frequency
domain and are used extensively in commercial radio broadcast systems, AM
and FM radios, respectively. The base band signals are translated to different
locations (channels) at higher frequencies in the frequency spectrum using
these modulation techniques. A secondary signal called the carrier is used for
the frequency translation. Another benefit of the modulation schemes is that
the low frequency base band signals are up converted to a higher frequency
with the aid of the carrier and this makes their transmission through free
space easier.

1.2 Amplitude and Frequency Modulations

The operation of modifying some property or characteristic of a carrier
signal with an information signal is called modulation and the modified
carrier is called a modulated signal. The process of recovering the original
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information signal is referred to as demodulation. Details on various modula-
tion/demodulation techniques can be found in [1], [2]. Consider the carrier to
be a sinusoidal voltage signal of amplitude Vc and radian frequency ωc. The
carrier signal is then given by Equation (1.1).

v(t) = Vc cos ωct (1.1)

The carrier can be modulated by varying its amplitude resulting in ampli-
tude modulation or frequency which corresponds to frequency modulation.1

Consider AM, then

v(t) = Vc (1 + m cos ωmt) cos ωct (1.2)

where the carrier has been modulated with a single-tone sinusoid of frequency
ωm. In the above equation, m is referred to as the modulation index and is
the ratio of the amplitude of the modulating signal to the carrier amplitude.2

The time-domain waveform of an amplitude modulated signal is shown in
Figure 1.1a.

t

(a)

ω
ωcωc - ωm ωc + ωm

(b)

t

v(t)

Fig. 1.1. (a) An amplitude modulated signal in the time domain. (b) Frequency
spectrum of the signal.

Applying trigonometric identities, Equation (1.2) can be rewritten as

vi = Vc cos ωct +
Vcm

2
cos (ωc − ωm) t +

Vcm

2
cos (ωc + ωm) t (1.3)

From the above expression, it is clear that two AM sidebands appear in the
frequency spectrum as shown in Figure 1.1b. The sideband at ωc−ωm is called
the lower sidedband and the sideband at ωc +ωm is called the upper sidedband.
1 Another property of the carrier that can be varied is the phase which results in

phase modulation (PM). Both FM and PM belong to the general class of angle
modulation. Our focus here is only on frequency modulation.

2 In order to properly demodulate the original signal, the modulation index must
be less than one.
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To achieve amplitude modulation as in Equation (1.2), a multiplication is
needed and circuits for performing this operation are described in Chapter 13.

In FM, the frequency of the carrier is modulated and the modulated signal
is given by

v(t) = Vc cos
(

ωct +
∆ω

ωm
cos ωmt

)
(1.4)

where ∆ω/ωm is defined as the modulation index (MDI) and ∆ω is the max-
imum frequency deviation. A FM signal is shown in the time and frequency
domains in Figures 1.2a and 1.2b, respectively. From the frequency spectrum
in Figure 1.2b it is clear that the bandwidth of the signal increases as the
modulation index increases.

(a) (b)

t

v(t) MDI = ∆ω
ωm

 = 0.1

0.5

1.0

8.0

∆ω
ωc

ω

ω

ω

ω

Fig. 1.2. (a) A frequency modulated signal in the time domain. (b) Frequency
spectrum of the signal.

For FM broadcast in the United States, the FCC has allocated a 20 MHz
band from 88 MHz to 108 MHz divided into 100 channels. Each channel
has a bandwidth of 200 kHz. The maximum frequency deviation ∆f is 75
kHz and the maximum modulating frequency fm is 15 kHz resulting in a
modulation index of 5. The bandwidth for an angle-modulated signal can be
approximated by Carson’s rule and is 2(∆f + fm). For FM broadcast the
maximum bandwidth is 180 kHz which is within the FCC specified limits.

1.3 The Super-Heterodyne Receiver

There are several radio receiver architectures which are described in [4],
[5]. The most common form is the superheterodyne configuration shown in
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Figure 1.3. The signal input, with a frequency ωs, is usually first amplified in
a tunable, bandpass amplifier, called the radio-frequency (RF) amplifier, and
is then fed into a frequency-translation circuit called the mixer along with an
oscillator signal,3 which is ‘local’ to the receiver, having a frequency ωlo. The
local oscillator (LO) is also tunable and is ‘ganged’ with the input bandpass
amplifier such that the difference between the input signal frequency and that
of the local oscillator is (approximately) constant.

RF
Amp

Mixer IF
Amp Demod

Local
Osc

coupled
tuning

ωs ωs ωs - ω lo

ωlo

Fig. 1.3. The superheterodyne receiver configuration.

In operation, the mixer circuit produces sum and difference frequency com-
ponents (ωs ±ωlo) at the output, cf., Chapter 13. Usually, the sum frequency
is rejected by sharply tuned circuits and the difference frequency component is
subsequently amplified in a fixed-tuned bandpass amplifier. The difference fre-
quency is called the intermediate frequency (IF) and the fixed-tuned amplifier
is called the IF amplifier. The advantage of this superheterodyne configura-
tion is that most amplification and outband rejection occurs with fixed-tuned
circuits which can be optimized for gain level and rejection. Another advan-
tage is that the fixed-tuned amplifier can provide a voltage-controlled gain to
achieve automatic gain control (AGC) with input signal level.

Commercial AM broadcast in the United States occupies the 535 kHz-
1605 kHz band (with an AM expanded band from 1605 kHz to 1705 kHz).
The channel bandwidth is 10 kHz and the IF frequency is 455 kHz. For an
AM radio station at 770 kHz the LO frequency for a superheterodyne receiver
will be 770 + 455 = 1225 kHz assuming that the LO is at a higher frequency
than the input signal (referred to as high-side injection).

1.4 Transistor Models

Circuit simulators, such as Spice [3], are routinely used for analyzing inte-
grated circuits. These simulators rely on accurate models for semiconductor
devices to predict the performance of a circuit. In this book, simplified de-
vice models are used for a first-order analysis of circuits. Advanced and more

3 The process of frequency translation with the aid of another signal is called mixing
or heterodyning.
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accurate models can be used in the circuit simulator for a detailed final analy-
sis. An excellent discussion of the different semiconductor devices and models
frequently used in integrated circuit design can be found in [6], [7]. A brief de-
scription of the simplified large-signal and small-signal models for the bipolar
junction transistor (BJT), and metal oxide semiconductor field-effect transis-
tor (MOSFET) is provided in this section.

1.4.1 Bipolar Junction Transistor (BJT) Model

A circuit symbol for a NPN transistor including the terminal currents and
voltages is shown in Figure 1.4a. The collector current IC in a BJT is a
function of the base-emitter voltage VBE

IC = IS exp
(

VBE

Vt

)
(1.5)

where IS is the saturation current and Vt is the thermal voltage and is given
by

Vt =
kT

q
(1.6)

At room temperature, T = 300◦K, Vt ≈ 25.85 mV. From Equation (1.5), VBE

can be expressed as

VBE = Vt ln
(

IC

IS

)
(1.7)

It is useful to remember that for a factor of 10 change in collector current,
VBE changes by 25.85 mV×2.303 ≈ 60 mV.

The relationships between the base, collector and emitter currents are
given by the following equations.

IB =
1
β

IC (1.8)

IC =
β

β + 1
|IE | ≈ |IE |

where IE is a negative quantity for the npn transistor operated in the normal
active region and β is the dc beta.4

In Figure 1.4b, the simplest form of the Ebers-Moll model for the bipolar
transistor is shown [3], [8]. Note that the ohmic base resistor, rb (Spice pa-
rameter RB), the ohmic collector resistor, rc (Spice parameter RC), and the
effects of base-width modulation (VA, ro, and rµ) have been neglected. In this

4 In this book, the ratio of the dc collector current and the dc base current is defined
as dc beta, β = IC/IB . The ratio of ic, the change of IC , and ib, the change of
IB , is defined as ac beta, βac = ic/ib = ∆IC/∆IB .
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B

C

B

C

E

B

C

E

E

(a) (b) (c)

+

-

+

-

IB

IC

IE

Ib

Ib = IS

βF

exp( VBE
Vt

)

IC = ISexp VBE
Vt

)

= βFIb
VBE

+

-
VBE

VCE
(βFIb - βRIa) (

Fig. 1.4. (a) Circuit symbol for a NPN bipolar junction transistor. (b) Ebers-Moll
large-signal model for the bipolar transistor. (c) Simplified large-signal model.

figure βF and βR are the forward and reverse current gains, respectively. Since
the base-collector junction is reverse biased in the forward active region, Ia is
small and the simpler large-signal model for the BJT as shown in Figure 1.4c
can be used.

The small-signal model is useful to establish a variational response of
the transistor at a given operating point. The small-signal circuit model is
derived from the large-signal characteristics and the complete intrinsic small-
signal model (ignoring the parasitic elements) for the BJT is shown in Figure
1.5. The details of the model can be found in [6] and equations for the various
circuit elements are provided in (1.9).

gm =
IC

Vt
(1.9)

rπ =
βac

gm

ro =
VA

IC

Cπ = gmτF + Cje

where IC is the collector current at the dc operating point, VA is the Early
voltage (Spice parameter VA), τF is the forward transit time (Spice parameter
TF). Cje and Cjc are the depletion region capacitances associated with the
base-emitter and base-collector junctions, respectively.

1.4.2 MOSFET Model

A circuit symbol for a N-channel MOSFET including the terminal currents
and voltages is shown in Figure 1.6a. In this book, a simplified model is used
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Cjc

rπ Cπ rovx

+

-

gmvx

B C

E

Fig. 1.5. Small-signal circuit model for the bipolar transistor.

for the MOS transistor and more advanced MOSFET models are described
in [9], [10], [11]. The MOSFET has three distinct regions of operation - the
off region (cut off), the resistance region (linear or triode), and the saturation
region. The idealized drain current versus voltage equations for these three
regions of operation are:

For VGS < VT , the off region, (1.10)
ID = 0

For VDS < VGS − VT , the resistance region, (1.11)

ID = k′ W

L

[
(VGS − VT ) VDS − 1

2
V 2

DS

]

For VDS > VGS − VT , the saturation region, (1.12)

ID =
k′

2
W

L
(VGS − VT )2

where VT is the threshold voltage of the MOS device, k′ is called the gain
factor of the device (KP in Spice), and W

L is the width-to-length ratio of the
specific device. The VBS dependence of the drain current is included through
the body effect, and the threshold voltage for a nonzero body bias (VBS �= 0)
is given as

VT = VT0 + γ
(√

VSB + 2φf −
√

2φf

)
(1.13)

where VT0 is the threshold voltage for a zero body bias (VTO in Spice), γ is the
body effect parameter (GAMMA in Spice), and 2φf is the surface potential
at strong inversion with VSB = 0 (Spice parameter PHI). The drain current
equations are also modified to include the effect of channel-length modulation,
λ, (LAMBDA in Spice) [6]. In addition more advanced MOSFET models that
adequately model small geometry transistors, such as BSIM3 or BSIM4 [10],
[11] can be used in Spice. For our purposes, as we did for the BJT devices,
these additional effects are initially neglected and are brought in later, often
using circuit simulation. Note that gate current for a MOS transistor is zero
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under dc operation. A simplified large-signal equivalent circuit model in shown
in Figure 1.6b.

G

D

S

G

D

S

(a) (b)

B

B

+

-

+

-

+ ID (VGS,  VDS,  VBS)
VGS

VDS

VBS

IG

ID

IS

Fig. 1.6. (a) Circuit symbol for a N-channel MOS transistor. (b) Simplified large-
signal model for the transistor.

To establish the variational response of the MOSFET at a given operating
point it is helpful to assume that operation is restricted to the saturation
region. The small-signal circuit model for a MOS transistor (only the intrinsic
transistor) is shown in Figure 1.7. Once again, the details of the model can be
found in [6], whereas equations for the various circuit elements are provided
in (1.14).

gm = k′W

L
(VGS − VT ) =

√
2IDk′ W

L
=

2ID

VGS − VT
(1.14)

gmb =
γ

2
√

2φf + VSB

gm

ro =
1

λID

where ID, VGS , VSB are the drain current, gate-source voltage, and source-
bulk voltage at the dc operating point, respectively. Cgs and Cgd are the
gate-source and gate-drain capacitances, respectively.

1.5 Distortion Generation and Characterization

The above current-voltage relationships for the semiconductor devices show
that these characteristics are not linear. The inherent nonlinearity of tran-
sistors results in an output which is a “distorted” version of the input. The
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+

-
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S B
+-
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Cgd

gmvgs gmbvbs

vbs

vgs

Fig. 1.7. Small-signal circuit model for the MOS transistor.

distortion due to a nonlinear device is illustrated in Figure 1.8. For an in-
put voltage v the output current is i = F (v) where F denotes the nonlinear
transfer characteristics of the device; the dc operating point is given by V0.
Sinusoidal input signals of two different amplitudes are applied and the output
responses corresponding to these inputs are also shown.

v

i = F(v)

v(t)

ω1t

ω1t

V0

i1(t) i2(t)

Fig. 1.8. I-V characteristics of a nonlinear device with input and output waveforms.
The output is distorted for a large amplitude input signal.

For an input signal of small amplitude the output faithfully follows the
input, i.e., the output signal waveform is an amplified version of the input
waveform. However, for large amplitude signals the output is distorted; a
flattening occurs at the negative peak value. The distortion in amplitude re-
sults in the output having frequency components that are integer multiples of
the input frequency, harmonics, as shown in Figure 1.9. These harmonics are
generated by the device or circuit nonlinearity and this type of distortion is
referred to as harmonic distortion.
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Fig. 1.9. Frequency spectrum of (a) the input, and (b) the output of a nonlinear
device or circuit.

A quantitative measure of the distortion ‘generation’ can be obtained with
a Fourier analysis of the input and output waveforms. A direct comparison
of the magnitudes (amplitudes) and phases of the Fourier components illus-
trates the distortion produced by a circuit block. An established procedure
to accomplish this specifies that the input be a single sinusoid, i.e., a pure
‘tone.’ In actual measurements of an amplifier stage, the fundamental out-
put is measured and compared to the magnitudes of the harmonics which
are generated. Harmonic analyzer instruments are available to accomplish the
measurement and consist of sensitive electronic voltmeters and tunable, very
selective filters.

Harmonic distortion parameters, or factors, of a waveform are defined in
terms of the ratio of the amplitude of a harmonic and the amplitude of the
fundamental. The second-harmonic distortion factor, HD2, is

HD2 =
|b2|
|b1|

(1.15)

where |b2| is the magnitude of the amplitude of the second harmonic and b1

is the amplitude of the fundamental. The third-harmonic distortion factor is

HD3 =
|b3|
|b1|

(1.16)

where b3 is the amplitude of the third harmonic.
The total harmonic distortion (THD) of a waveform is defined as the ratio

of the root-mean-square (rms) amplitude of the sum of the upper harmonics
to the amplitude of the fundamental.

THD =

√
b2
2 + b2

3 + . . .

|b1|
(1.17)

The root mean square of the harmonics must be taken, since the effective value
of a sum of components, each with a different frequency, is needed. THD can
also be expressed in terms of the individual harmonic distortion factors.
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THD =
√

HD2
2 + HD2

3 + . . . (1.18)

It must be emphasized that the distortion and distortion components are
dependent upon the level of the input signal. If a larger-input sinusoid is used
in the example above, the distortion is greater since a greater range of the
nonlinear characteristic is traversed.

One way to investigate distortion is to use one of the Spice simulators.5

An input waveform can be specified, usually of only certain pre-programmed
types, and a desired output waveform as well as the input waveform can be
plotted. A direct comparison illustrates the distortion. Often, it is helpful to
choose appropriate scaling of the waveforms in making the comparison.

Distortion calculations in Spice are commonly performed with a Fourier
analysis using the .FOUR command. A transient analysis6 using the .TRAN
statement is first performed for a sufficiently long time interval to ensure that
all the startup transients die off. The circuit waveforms are then periodic
and the circuit is said to be in a periodic steady state. The determination
of the steady state is done by the user and could be subject to errors. A
good check is to make sure that the time-domain waveform of interest is
periodic. Then a discrete Fourier transform (DFT) is applied to the last time
period of the simulated time-domain waveform data (.FOUR analysis). A
fundamental frequency is specified and Spice reports the magnitude and phase
of the harmonics of this fundamental frequency.7

As is brought out in the following chapters, great care must be taken
in using the Spice programs to determine small distortion components. Dis-
tortion calculations using transient analysis can result in several errors. An
excellent discussion of these can be found in [12]. It is important that the cir-
cuit settles to a periodic steady state for some fundamental frequency before
Fourier analysis is used. This may require a long simulation time interval for
circuits that exhibit widely separated time constants, or for which the spec-
ified fundamental frequency is very small. The time-domain simulation must
be performed with tight tolerances when low power harmonics are of inter-
est. The default value of the accuracy parameter, RELTOL, in Spice is 0.001
or 0.1%. Thus, simulated distortion components below 1% must be accepted
with caution. Since the DFT algorithm introduces interpolation and aliasing
errors a sufficient number of time points must be used within one time period.

5 Several versions of Spice are used in this book: Spice2, Spice3. The choice depends
on the features to be emphasized.

6 A sinusoidal source at a given frequency is used as an input for an amplifier
circuit.

7 In Spice2, the dc component and the first nine harmonics are printed. This is
also the default number in Spice3. A different number of harmonics (N) can be
requested in Spice3 using NFREQS = N in the interactive mode.
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When sufficient time points per period are used8 together with a small value
of RELTOL, say 1 × 10−6, accurate values for small harmonic components
can be obtained with Spice.

Furthermore, simulation of several communication circuits (mixers, oscil-
lators) in the time-domain may not be possible when there is a wide spread in
the signal frequencies and the circuit time constants. In such cases, frequency-
domain simulations based on the harmonic-balance method are preferred [13],
[14], [15].

In addition to the harmonic distortion factors, there are other measures of
distortion that are described in later chapters.

1.6 Noise

Noise from semiconductor devices plays a very important role in the design of
communication circuits. The dynamic range of a receiver is limited by noise at
the low end of a signal and by the circuit nonlinearities (distortion) for large
signals.

Circuit noise calculations are typically performed by linearizing the circuit
at a dc operating point and calculating the noise contributions from each
noise source based on a small-signal analysis [6]. The linear noise analysis
is applicable only to amplifiers or circuits operating linearly where small-
signal analysis is appropriate. However, circuits such as mixers and oscillators
operate under large-signal conditions as discussed in later chapters. The circuit
nonlinearities have a direct influence on the noise performance of the circuit.
In a mixer, nonlinearities result in an up/down conversion of noise [16] which
affects the overall noise performance of the circuit. For oscillators the noise
manifests itself as phase noise or jitter [17]. Phase noise is an indicator of the
spectral purity and timing accuracy of a signal. Although techniques have been

8 The parameters of the .TRAN statement in the Spice input file must be carefully
selected. This statement is given by

.TRAN TSTEP TSTOP TSTART TMAX

The last two parameters in the above command (TSTART and TMAX) are op-
tional. The analysis time interval is 0 to TSTOP and the results can be saved
or viewed from a user defined time TSTART which has a default value of 0.
TSTEP is the time increment used for printing or plotting the output results and
TMAX is the maximum allowed time step for the simulator. Spice uses an inter-
nal time step for solving the circuit equations based on accuracy requirements.
When TMAX is not specified, the step size cannot exceed the smaller of TSTEP
or (TSTOP-TSTART)/50. If TMAX is defined, then TSTART must also be set
as the order of these parameters in the .TRAN statement is important. It is useful
to specify TMAX when time steps smaller than TSTEP are needed for accuracy.
In this book, typically 20 to 100 time points per period have been used.
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developed for analyzing noise in mixers [16] and oscillators [18], one typically
uses a commercial circuit simulator, such as Spectre, for these analyses. The
interested reader is referred to the other textbooks [17], [19] for details on
both linear and nonlinear noise analyses.

Problems

1.1. Read the paper by Razavi [4]. Based on this paper answer the following
questions
(a) Explain the problem of the image frequency in a superheterodyne receiver
architecture.
(b) If the input signal is at a frequency of 800 kHz and the intermediate
frequency is 455 kHz then what are the LO and image frequencies?
(c) List two receiver architectures that do not suffer from the image problem.

1.2. Draw the block diagram for a homodyne (direct conversion) receiver ar-
chitecture. List the advantages and disadvantages of both superheterodyne
and homodyne receivers. Refer to the paper by Razavi [4].

1.3. For a mixer in a superheterodyne receiver there are two possible LO
frequency choices fRF + fIF (high-side injection) or fRF − fIF (low-side in-
jection). For an AM radio (530 kHz to 1610 kHz with an IF of 455 kHz),
calculate the tunable range of the LO for both low- and high-side injections.

1.4. For the GSM (European cellular system) standard the receive band is
925-960 MHz. What should the tunable range of the LO be for
(a) one IF at 71 MHz,
(b) two IF, the first one at 250 MHz and the second at 10.7 MHz.

1.5. The output spectrum (first five harmonics) of a nonlinear circuit with
a sinusoidal input of 1 V at 100 kHz is listed in Table 1.1. Using this data
answer the following questions.
(a) What is the percentage HD2?
(b) What is the percentage HD3?
(c) What is the percentage THD?

Frequency (kHz) Magnitude

100 0.800
200 0.040
300 0.100
400 0.020
500 0.050

Table 1.1. Frequency spectrum of output signal for Problem 1.5.
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1.6. A waveform has only second and third harmonics. If HD2 = 3% and
HD3 = 4% what is THD?

1.7. Study the usage of the Spice .TRAN and .FOUR statements from [3] or
the Spice User’s Guide. Apply these commands to the analysis of a simple
transistor circuit.
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Large-Signal Performance of the Basic Gain
Stages in Analog ICs

2.1 The Emitter-Coupled Pair

The basic stages of analog integrated circuits are the emitter-coupled pair
(ECP) and the emitter follower (EF) for bipolar circuits and the source-
coupled pair (SCP) and the source follower (SF) for MOS circuits. In the
next several chapters, these basic stages are examined from the standpoint
of their large-signal performance. Of particular interest is the distortion pro-
duced in the output waveforms relative to the inputs. In a later chapter,
available power output and efficiency of dc power conversion are considered
for output stages.

A primitive EC pair (ECP) is shown in Figure 2.1a and consists of two
(hopefully) matched bipolar transistors, a current source, two load resistors
and a voltage source, VCC . These are the essential elements of this circuit.
(The current source IEE is returned to a voltage source −VEE .) The input
can be applied at either or both of the two base leads of the transistors. The
output voltage can be taken from either of the two collectors, separately, or the
difference voltage, Vo = Vo1−Vo2, can be obtained. At the input, a differential
input voltage, VD, can be used together with a common-mode input voltage,
VC , These arrangements are also illustrated in the figure.

In Figure 2.2, an actual ECP is shown such as might be used in an inte-
grated circuit. Note that the lower npn transistor-resistor circuitry supplies
the IEE current-source function, while the upper pnp transistors supply the
load and load biasing elements. For the purposes of this chapter, as well as
most of this book, it is not necessary to treat the entire practical stage, at least
not initially while the basic large-signal performance of the circuit is under
examination. In fact, our usual procedure when investigating an actual circuit
will be to examine carefully the function of all elements, replacing them with
idealized elements if possible, and to retain and concentrate on the essential
large-signal aspects of the circuit.
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IEE

Q1 Q2V1

RC RC

+ VCC

- VEE

V2

Vo1

Vo2

(a)

(1) (2)

(1) (2)

   V1      V2    VC

  VD

(b) (c)

Fig. 2.1. (a) A primitive EC pair circuit. (b) and (c) Input voltage arrangements.

Vi1 Vi2

Vo1 Vo2

Q1 Q2

Q3 Q4Q5

Q7

Iref1 Iref2

Q6

+ VCC

- VEE

Fig. 2.2. An actual EC pair circuit.
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2.2 The Large-Signal DC Transfer Characteristic
of the ECP

In this section, the basic electrical performance characteristics of the EC pair
are developed. First, the bias state and the small-signal properties of the ECP
about a typical operating point are reviewed. The large-signal properties then
are developed. In both cases, only the low-frequency behavior is examined.
The effects of charge storage on the time and frequency responses can be
examined later using circuit simulation programs.

Consider the ECP of Figure 2.3. Values for the two essential transistor
parameters, β (dc beta) and IS , are given in the figure. The signal inputs,
(V1, V2), are two ideal voltage sources, and we let both have static (dc bias)
values of 0 V. If the transistors are identical, the 1 mA common-emitter current
source draws from each emitter a current of 0.5 mA. If we assume that the beta
of the transistors is large and, therefore, that IB is negligible, the collector
currents are also 0.5 mA. For the values of RC1 = RC2 = 10 kΩ and VCC = 10
V, the dc values of the collector voltages are VCC − ICRC = 10 − 0.5 mA ×
10 kΩ = 5 V. The voltage at the common emitters will be −VBE . From Figure
2.3, IS = 1 × 10−16 A and

VBE = Vt ln
(

IC

IS

)
= 25.85 mV × ln

(
0.5 × 10−3

1 × 10−16

)
(2.1)

= 0.756 V

The IB approximation above must be stressed. We use this approximation
constantly and often forget the fact.

Next, incremental (small-signal) components, v1 and v2, are added to V1

and V2, respectively. The input voltages can then be expressed as Vi1 = V1+v1

and Vi2 = V2 + v2. For the situation at hand, V1 and V2 remain equal to zero,
and v2 is also assumed to be zero. To establish the variational response of
the stage at the given operating point, it is helpful to introduce the simple
small-signal circuit model for the transistors as shown in Figure 2.4. Note
that the independent voltage sources are short circuits for this case, while the
independent current source is an open circuit. Consistent with the assumption
of an idealized ECP, we neglect for now the presence in each transistor of the
ohmic base resistor, the ohmic collector resistor, and the effects of base-width
modulation. The input resistance Rin is calculated simply to be

Rin =
v1

iin
= 2rπ = 2βac

1
gm

= 10.3 kΩ (2.2)

where 1/gm = 25.85 mV/IC = 51.7 Ω. For this example, the value of βac, the
ac beta, is assumed a constant. Therefore, βac = β = 100 (from Figure 2.3).

The incremental voltage gain from v1 to vo2 is
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IEE

Q1 Q2

V1

RC R C

+ VCC

- VEE

V2

Ic1 Ic2

Vo1 Vo2

β = 100

IS = 10 -16A

1 mA

Fig. 2.3. An EC pair circuit.

  RC2

vb
v1   va

 RC1

+

-

rπ rπ

Q1 Q2

+

-

v2 = 0

vo1 vo2iin

gmva gmvb

Fig. 2.4. Small-signal circuit of the EC pair.

av =
vo2

v1
(2.3)

=
1
2
gmRC2

= 96.7

(Often, a notation for the transconductance of the ECP itself, Gm, is used.
For the present example, Gm = gm

2 ).
The output resistance looking back into the stage including RC2 is simply

RC2, since ro and rµ are assumed absent (infinite). The effects due to a finite
value of ro are considered in Chapter 5.

The output resistance with respect to the output vo1, looking back at RC1,
is again RC1. The small-signal voltage gain from v1 to vo1 is −96.7.
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Return now to the dc input voltage V1 and change its value. The output
voltage variation with V1 could be determined by actual measurements or, for
our purposes, can easily be determined using a circuit simulator such as Spice.
It is to be recognized that even for the idealized circuit of Figure 2.3 and even
with assumed simple device models, we are faced with the solution of a set
of nonlinear algebraic equations which describe the circuit. In Figure 2.5, the
circuit is shown with the simplest form of the Ebers-Moll model (Figure 1.4a).
Although the setting up of the equilibrium circuit equations is straightforward,
the solution of the nonlinear equations to obtain values, say, of Vo2 for a set
of values of V1, is tedious to say the least. Fortunately, for the restricted case
where no saturation of the BJTs is permitted, a closed-form solution of the
circuit equations can be found. This aspect is taken up in Section 2.4. In
general, however, computer programs or circuit simulators must be used to
solve (approximately) these equations.

  RC2 RC1

V1

IEE

Vo1 = V(3) Vo2 = V(6)

V2 = 0

+ VCC + VCC

- VEE

Ib

Ib = IS

βF

exp(VBE
Vt

)

Ia

(βFIb + βRIa)

Fig. 2.5. Large-signal circuit of the EC pair.

The Spice input file for the ECP of Figure 2.3 is shown in Figure 2.6a.
(A second ECP is included to permit easy comparison of common-output
variables for two different situations.) Shown in Figure 2.6b are the dc node
voltages in the circuit for input voltages of 0 V.

For the top circuit of Figure 2.6a, V1 could initially be chosen to range
from −VEE = −10 V to VCC = 10 V with a calculation interval of 0.1 V.
However, the output plots for Vo1 and Vo2 are virtually piece-wise-linear step
functions. The region near the breaks is illustrated in Figure 2.7. The input
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EMITTER-COUPLED PAIR, FIG 2.6
V1 1 0 0 
.DC V1 -0.1 0.1 0.01
.PLOT DC V(6) V(3) V(16) V(13) (0,10)
.PLOT DC V(3,6) (-10,10) V(3) V(6) (0,10)
.TF V(6) V1
Q1 3 1 4 MOD1
Q2 6 0 4 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
RC1 5 3 10K
RC2 5 6 10K
VCC 5 0 10
IEE 4 8 1M
VEE 8 0 -10
E1 12 0 1 0 10
Q3 13 12 14 MOD1
Q4 16 0 14 MOD1
RC3 5 13 10K
RC4 5 16 10K
IEE2 14 8 1M
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.END

(a)

(b)

 NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

(  1)    0.0000    (  3)    5.0495    (  4)   -0.7560    (  5)   10.0000        
(  6)    5.0495    (  8)  -10.0000    ( 12)    0.0000    ( 13)    5.0495     
( 14)   -0.7560    ( 16)    5.0495        

 
 ****     SMALL-SIGNAL CHARACTERISTICS

      V(6)/V1                                  =  9.578D+01
      INPUT RESISTANCE AT V1                   =  1.044D+04
      OUTPUT RESISTANCE AT V(6)                =  1.000D+04

IEE

+ VCC = 10 V

- 10 V

E1

Vo1
'

Vo2
'

Q3 Q4

10 kΩ 10 kΩ

   V1

IEE

+ VCC = 10 V

Vo1

Vo2

- 10 V

Q1 Q2

10 kΩ 10 kΩ

Fig. 2.6. (a) ECP circuit and Spice input file. (b) Dc operating point and small-
signal characteristics of EC pair.

voltage source ranges from -0.1 V to 0.1 V with an increment of 10 mV and
provides the output curves, A and B. For the other ECP (Q3, Q4), the voltage-
controlled voltage source multiplies this range by 10, -1 V to +1 V with an
increment of 0.1 V and provides output plots C and D. (After Vo1 drops near
V1 = 0, it ultimately starts to increase as V1 increases due to saturation of
transistor, Q1.) The output plots A and B for the ±100 mV input range are
clearly better to study the details of the nonlinear output response. Notice
that the outputs “clamp” for input voltages of about ±0.1 V. This is to be
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expected. From the observation that VBE changes by 60 mV for each decade
change of IC , it is reasonable to expect that V02 will range from near VCC to
near zero for only a few decades of current change. For only two decades the
corresponding change in V1 should be only 120 mV. This aspect is treated
in more detail in a following section. From the voltage-transfer characteristic,
A of Figure 2.7, which is repeated with a printout of values in Figure 2.8,
the voltage gain, av, of the stage at the operating point of V1 = 0 V is the
slope of the plot at that point. From the figure, av = 94.6, which compares
well with the small-signal value calculated earlier. This result, as well as the
previous small-signal calculations, can be checked with values obtained from
a .TF Spice simulation as given in Figure 2.6b: av = 95.8, Rin = 10.4 kΩ,
and Rout = 10 kΩ.

A

C

B

D

0.100.050.00-0.05-0.10
0

2

4

6

8

10

V1 (V)

V
ou

t 
(V

)

Fig. 2.7. Output voltages of EC pair.

V
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),
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(6
) 

(V
)

0.100.060.02-0.02-0.06-0.10
0

1

2

3

4

5

6

7

8

9

10

V1 (V)

V(6)V(3)

Fig. 2.8. V(3) and V(6) shown on an expanded scale.

As mentioned in Chapter 1, Spice can also be used to predict the distortion
component generation. The input file for the circuit is specified to be a pure
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tone as listed in Figure 2.9. Again, two ECPs are simulated, with the lower
listing having an input voltage which is 10 times that of the upper ECP
listing due to the scaling parameter of E1. For the upper ECP listing, V1 is
assumed to be a sinusoid with a frequency of 100 kHz and a zero-to-peak
amplitude of 10 mV. The frequency specification is arbitrary since no energy
storage elements are included in the circuit or the devices. A new control line
in the circuit input file, the .FOUR line, is also introduced. As shown, the
line contains the value of the input frequency and the name of the outputs for
which the Fourier analysis is requested. The output waveforms V (6) and V (16)
from the Spice2 output are shown in Figure 2.10. V (6) is also multiplied by
5 to achieve a better comparison. V (6) is seen to be most sinusoidal in form;
however, V (16) for the large drive is ‘squashed’ at the extremes. In Figure
2.11, from Spice2, are the amplitudes and (relative) phase of the first nine
harmonics of the output waveform of V (6) as well as the values relative to
the fundamental. It is clear from the values of Figure 2.11 that the harmonic
content of the output waveform of the ECP is very small. Accurate values for
the small harmonic contents were obtained by using sufficient time points per
period together with a small value of RELTOL of 1 × 10−6 in Figure 2.9.1

From Figure 2.11, the value of HD2 is nearly zero. This is to be expected.
The shape of the dc transfer characteristics of Figures 2.7 and 2.8 are antisym-
metrical about the quiescent operating point (V1 = 0 V, Vo2 = 5 V). Thus,
the even harmonics should not be generated. This aspect is developed more
fully below. From Spice2 for a sinusoidal input of 10 mV, HD3 = 0.295%.

Distortion in a sinusoidal waveform below a few percent is difficult to
observe, as seen in this example from the waveform V (6) in Figure 2.10.
It must be emphasized that the distortion and distortion components are
dependent upon the level of the input signal. If a larger-input sinusoid is
used in the example above, the distortion is greater since a greater range of
the nonlinear characteristic is traversed. In Figure 2.10, the output voltage
waveform V (16) from a Spice2 run is shown where the input is a sinewave with
an amplitude of 0.1 V. (See the Spice input file of Figure 2.9.) The output
voltage is severely distorted with respect to a sine wave, and a very distinct
flattening of the peaks of the output excursion is produced. This phenomenon
occurs very often in nonlinear circuits. The Fourier components of the output
waveform are given in Figure 2.12. Again notice that only the odd harmonics
are appreciable due to the antisymmetrical nature of the transfer characteristic
and as expected from the equal top and bottom flattening of the output
voltage waveform in Figure 2.10. From Figure 2.12, HD3 = 15.6% and HD5 =
3.1%.

1 For this simulation, TSTEP in the .TRAN statement is set to 0.1 µs resulting in
100 time points per period.
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EMITTER-COUPLED PAIR, FIG 2.9
V1 1 0 0 SIN 0 10M 100K
.TRAN 0.1U 20U
.PLOT TRAN V(6) V(16)
.FOUR 100K V(6) V(16)
Q1 3 1 4 MOD1
Q2 6 0 4 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
RC1 5 3 10K
RC2 5 6 10K
VCC 5 0 10
IEE 4 8 1M
VEE 8 0 -10
E1 12 0 1 0 10
Q3 13 12 14 MOD1
Q4 16 0 14 MOD1
RC3 5 13 10K
RC4 5 16 10K
IEE2 14 8 1M
.OPTIONS RELTOL=1E-6
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.END

IEE

+ VCC = 10 V

- 10 V

E1

Vo1
'

Vo2
'

Q3 Q4

10 kΩ 10 kΩ

 V1

IEE

+ VCC = 10 V

Vo1

Vo2

- 10 V

Q1 Q2

10 kΩ10 kΩ

Fig. 2.9. Circuit and Spice input file for transient simulation of EC pair.
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Fig. 2.10. Transient response of EC pair.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(6)   
 DC COMPONENT =   5.049D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   9.432D-01     1.000000     0.000       0.000
     2      2.000D+05   2.016D-05     0.000021    81.879      81.879
     3      3.000D+05   2.783D-03     0.002951    -0.092      -0.092
     4      4.000D+05   8.276D-06     0.000009   -84.203     -84.203
     5      5.000D+05   1.453D-05     0.000015   -24.081     -24.080
     6      6.000D+05   4.856D-06     0.000005   -54.029     -54.029
     7      7.000D+05   4.817D-06     0.000005   -66.910     -66.909
     8      8.000D+05   5.779D-06     0.000006   -63.846     -63.846
     9      9.000D+05   5.961D-06     0.000006   -52.771     -52.771

     TOTAL HARMONIC DISTORTION =      0.295120  PERCENT

V1A = 10 mV,  Tstep = 0. 1 µs

Fig. 2.11. Fourier components of V(6).

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(16)  
 DC COMPONENT =   5.049D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   5.453D+00     1.000000    -0.005       0.000
     2      2.000D+05   4.578D-04     0.000084   -79.883     -79.878
     3      3.000D+05   8.519D-01     0.156230    -0.028      -0.023
     4      4.000D+05   3.488D-04     0.000064   -67.455     -67.450
     5      5.000D+05   1.711D-01     0.031378    -0.131      -0.126
     6      6.000D+05   3.626D-04     0.000066   -60.112     -60.107
     7      7.000D+05   3.396D-02     0.006228    -0.609      -0.604
     8      8.000D+05   3.754D-04     0.000069   -53.168     -53.164
     9      9.000D+05   6.618D-03     0.001214    -2.802      -2.797

     TOTAL HARMONIC DISTORTION =     15.947613  PERCENT

V1A = 100 mV,  Tstep = 0. 1 µs

Fig. 2.12. Fourier components of V(16).

2.3 Large-Signal Circuit Analysis of the ECP

If the ECP is designed properly and if the input voltage is small, the transis-
tors do not enter saturation during an input cycle. For the idealized stage, the
equivalent circuit reduces to that shown in Figure 2.13. In turn, the equilib-
rium equations of the circuit can be solved to provide a closed-form solution
for the voltage transfer characteristic.

The necessary condition to avoid saturation of the transistors is, for V2 = 0,

V1 − (VCC − ICRC) < VBCon ≈ 0.8 V (2.4)

The value 0.8 V is an appropriate zero-order model for currents of the order
of mA. If V1 is constrained to be less than, say, 1 V, the required relation is
approximately

VCC − ICRC ≈ 0 (2.5)

For the values of IEE , RC1, and RC2 of Figure 2.9, no saturation will occur.
The following equations describe the circuit.



2.3 Large-Signal Circuit Analysis of the ECP 25

  RC2 RC1

V1

IEE

Vo1 Vo2

V2

+ VCC + VCC

- VEE

+

-

+

-

VBE1 VBE2IC1 IC2

Fig. 2.13. Large-signal equivalent circuit of EC pair.

V1 = VBE1 − VBE2 (2.6)

The relation between the collector current and its VBE is next used

IC1 = IS exp
(

VBE1

Vt

)
(2.7)

IC2 = IS exp
(

VBE2

Vt

)
(2.8)

V1 = Vt ln
(

IC1

IC2

)
(2.9)

IC1 = IC2 exp
(

V1

Vt

)
(2.10)

If the base currents are negligible, the expressions for the two collector
current outputs as a function of the differential input voltage are

IC1 + IC2 ≈ IEE (2.11)

IC1 = IEE − IC2 =
IEE

1 + exp
(
−V1

Vt

) (2.12)
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=
IEE

1 + exp(−d)

=
IEE

2

[
1 + tanh

(
d

2

)]

IC2 = IEE − IC1 =
IEE

1 + exp
(

V1
Vt

) (2.13)

=
IEE

1 + exp(d)

=
IEE

2

[
1 − tanh

(
d

2

)]

where d = V1/Vt. The third expressions of (2.12) and (2.13) are obtained by
adding and subtracting 1

2 and by multiplying and dividing by exp( V1
2Vt

) =
exp(d

2 ) or exp(−V1
2Vt

) = exp(−d
2 ). Plots of these expressions are given in Figure

2.14. The output voltages can be obtained from Vo = VCC − ICRC . Note in
the figure that the input voltage is scaled with respect to Vt.

6420-2-4-6
0.00

0.25

0.50

0.75

1.00

IC1
IEE

IC2
IEE

d = V1/VT

IC1
IEE

 , IC2
IEE

Fig. 2.14. IC1 and IC2 as a function of d.

As expected, the nature of the plots is the same as that produced by the
Spice simulation of the last section. Spice has accomplished the same thing
using numerical methods. The Ebers-Moll model in Spice is the same as those
of Figure 2.13 when no transistor enters saturation. In Figure 2.14, the slopes
of the curves at V1 = 0 V provide the small-signal gains (transconductances)
of the circuit.

Another output of interest is the differential output voltage. For RC1 =
RC2 = RC ,

Vo1 − Vo2 = (VCC − IC1RC) − (VCC − IC2RC) (2.14)
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= −RC(IC1 − IC2)

= −IEERC

[
1

1 + exp(−d)
− 1

1 + exp(d)

]

where again d = V1/Vt. Using alternate forms of (2.12) and (2.13), we obtain

Vo1 − Vo2 = −IEERC tanh
(

d

2

)
(2.15)

The plot of this function obtained from Spice2 is shown in Figure 2.15.
Also shown are plots of the two single-ended output voltages with a different
scaling. The shapes of the differential and the single-ended outputs are the
same, as expected.
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Fig. 2.15. V(3), V(6) and V(3, 6) as a function of V1.

2.4 Series Expansions to Obtain Distortion Components

For small values of V1 with respect to Vt, the exponential functions of (2.12)
and (2.13), or the tanh functions of (2.12), (2.13) and (2.15), can be expanded
in a power series, and only the first few terms will be significant. For IC2,

IC2

IEE
=

1
1 + exp(d)

=
1
2
− 1

4
d +

1
48

d3 − 1
480

d5 + . . . (2.16)

We now introduce a sinusoidal input and include it in the power series.
For a dc value of V1 = 0,

v1 = V1A cos ω1t (2.17)

where V1A is the zero-to-peak amplitude of the input sinusoidal tone, ω1.
The powers of the sinusoidal terms using (2.17) in (2.16) can be converted to
harmonic terms using trigonometric identities, e.g., cos3 x = 1

4 cos 3x+ 3
4 cos x

and cos5 x = 1
16 cos 5x + 5

16 cos 3x + 5
8 cos x. The result is
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IC2

IEE
=

1
2
− 1

4
V1A

Vt
cos ω1t +

1
48

(
V1A

Vt
cos ω1t

)3

+ . . . (2.18)

=
1
2
− 1

4

[
V1A

Vt
− 3

48

(
V1A

Vt

)3
]

cos ω1t (2.19)

+
1

4 × 48

(
V1A

Vt

)3

cos 3ω1t + . . .

Equation (2.19) can be expressed as

IC2

IEE
= b′0 + b1 cos ω1t + b2 cos 2ω1t + b3 cos 3ω1t + . . . (2.20)

where the amplitudes of the Fourier coefficients are

b′0 =
1
2

b1 = −1
4

[
V1A

Vt
− 1

16

(
V1A

Vt

)3
]

b2 = 0

b3 =
1

192

(
V1A

Vt

)3

The use of the notation b′0, rather than b0, is explained in the next chapter.
Notice that a compression term appears in the fundamental due to the cubic
term. The distortion factors are

HD2 =
|b2|
|b1|

= 0 (2.21)

HD3 =
|b3|
|b1|

≈ 1
48

(
V1A

Vt

)2

(2.22)

THD =

√
b2
2 + b2

3 + . . .

|b1|
(2.23)

The compression terms in b1, are neglected for simplicity. Again, more atten-
tion is given to this aspect in later chapters.

From the previous example where V1A = 10 mV, the value of HD2 is zero
and HD3 = 0.315% from (2.22). This is close to the value determined from
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Spice2, 0.295%, using RELTOL = 1 × 10−6. Notice that HD3 goes up as
the square of V1A, the input amplitude, although the compression term in b1

ultimately comes into the scene. From the developments above, all even-order
harmonics should be zero. In a Spice output, these even-order harmonics are
small, but not zero. The nonzero values are due to ‘numerical noise’ in the
Fourier calculations.

The same results for HD3 are obtained for the other two output possibil-
ities, Vo1 and Vo = Vo1 − Vo2. The only change occurs in the sign (phase) of
the components of the Fourier expansion of the outputs.

For a large sinusoidal input, Spice simulations must be used to obtain
values of the harmonics, or a special computer program can be written to
produce the results. The results from the latter investigation are plotted as a
family of curves as shown in Figure 2.16. Again an input voltage normalized
with respect to Vt is used, and the plots of the Fourier coefficients, bi, are made
in terms of a normalized collector current, IC/IEE . It is to be emphasized that
these curves apply only to the cases where the transistors never saturate and
where the effects of internal ohmic resistances and basewidth modulation in
the transistors are negligible.

20181614121086420
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b1

b3

b5
b7
b9

N
or

m
al

iz
ed

 h
ar

m
on

ic
s

d = V1/VT

Fig. 2.16. Normalized harmonics of the collector current in ECP.

As an example in the use of the curves, assume an input of d = V1/Vt =
4.0 (V1A ≈ 100 mV). A truncated series expression of (2.16) is not appropriate
for this large drive. From the curves of Figure 2.16, using d = 4, the normalized
value of the fundamental component of collector current is b

′

1 = 0.56. The
normalized value of the third harmonic is b

′

3 = 0.09. The value of HD3 is thus
16.1%, which compares well with the value of 15.6% from the Spice2 data of
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Figure 2.12. A closed-form expression for the total harmonic distortion factor
THD is not available.

In Section 11.1, the small- and large-signal aspects of the ECP with an
input offset voltage, V1 = 0 and V2 > 0 are introduced in conjunction with
the evaluation and design of a near-sinusoidal oscillator.

2.5 The Source-Coupled Pair

The source-coupled pair (SCP) is the basic gain stage for MOS analog ICs.
A typical stage including representative biasing elements is shown in Figure
2.17. As with the ECP, it is helpful in establishing the small- and large-signal
performance of the SCP to simplify the stage and retain only the essential
components. Such an idealized stage is shown in Figure 2.18. As expected, the
same bias and load elements are present as for the bipolar case. The common-
ality of bipolar and MOS circuit configurations is achieved when the different
devices both have the same polarity and are enhancement-type devices.

 M1 M2

  M3   M4

 vo

   Ibias

 M5

M6

M7

 vi

+VDD

+

–

 −VSS

M8

Fig. 2.17. A typical MOS source-coupled pair stage.

In this section, the basic electrical performance characteristics of the SC
pair are developed. The same procedure is followed that is used in studying the
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 V1

1 mA    ISS

 M1 M2

+VDD = 10 V

W
L

= 10

 ID2  ID1

V2= 0

RD1 RD2

–VSS 

Vo1

Vo2

VT = 1.0  V
k' =30 µA/V2

10 kΩ 10 kΩ

Fig. 2.18. An idealized SC pair circuit.

ECP in the earlier sections of this chapter. First, the bias state and the small-
signal properties of the SCP about a typical operating point are reviewed.
The large-signal properties are then developed. In both cases only the low-
frequency behavior is examined. The effects of charge storage on the time and
frequency responses can be examined later using circuit simulation programs.

For the SCP of Figure 2.18, values for two essential MOS device parameters
(VT , k′) are given in the figure and are described below. The width-to-length
ratios (W/L) of the devices are also given. The signal input is taken to be a
single voltage source on the left. For now it is assumed to have a static (dc
bias) value of 0 V. Consequently, V1 can be considered to be a differential input
signal with a zero common-mode component. If the transistors are identical,
the common-source current source, ISS = 1 mA, draws from each MOS source
a current of 0.5 mA. Since the gate currents are zero, the drain currents are
also 0.5 mA. For the values of RD1 = RD2 = 10 kΩ and VDD = 10 V, the
dc values of the drain voltages are VDD − IRD = 10 − (0.5 mA)(10 kΩ) = 5
V. The voltage at the common sources is −VGS . For the quiescent, no input
signal case, the gate-to-source bias voltage is denoted VGG. Therefore, the
quiescent value of the common-source voltage is −VGG.

Next an incremental (small-signal) value of v1 is added to V1. To establish
the variational response of the stage at the given operating point it is helpful
to assume that operation is restricted to the saturated region of operation.
The small-signal circuit model for a MOS transistor, as used in Figure 2.19a,
consists only of a dependent-current generator gmva, where gm is given by
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vb  gmvb
v1   va

+

-

  gm  va

+

-

v2 

vo1 vo2

RD1 RD2

v1

  gmvb

  RD2

-

+

 vo

vb

  
1

gma

(a)

(b)

Fig. 2.19. (a) Small-signal equivalent circuit of SC pair. (b) Modified small-signal
circuit for determining the incremental voltage gain.

gm =

√
2IDk′W

L
(2.24)

The calculated value of gm is 0.55 mA/V for the device and circuit values of
Figure 2.18, for V1 = V2 = 0 and W

L = 10.
As usual, in Figure 2.19a the independent voltage sources are short circuits

for the incremental case while the current source is an open circuit.
The input resistance Rin of the SCP is infinite. The output resistance with

respect to the output node vo2, looking back into the stage across RD2, is
simply RD2 since the device output resistance, ro, is infinite because channel-
length modulation has been neglected. (The effects of ro are taken up in
Chapter 5.)

The incremental voltage gain from v1 to vo2 is easily determined from a
modification of the small-signal circuit, as shown in Figure 2.19b. On the left,
a Thevenin equivalent for the common-drain transistor is used. (In effect, the
left-hand transistor is a source follower driving the right-hand transistor).
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av =
vo2

v1
= 0.5gmRD2 (2.25)

(For the SCP itself, as for the ECP, the transconductance is Gm = gm

2 .)
For the values of gm and RD of Figure 2.18, av = +2.7. This is a modest

value relative to the earlier ECP example. The small value is due to the much
smaller value of gm for the MOS device relative to a BJT for the same current
level.

The output resistance with respect to the output node vo1 looking back
at RD1 is again RD1. The small-signal voltage gain from v1 to vo1 is −2.7.

Return now to the dc input voltage V1 and change its value. The output
voltage variation with V1 can be determined by actual measurements, using
circuit simulation, or for a special restriction by circuit analysis. Although
setting up the equilibrium circuit equations is straightforward, the solution of
piece-wise, nonlinear equations to obtain values, say, of Vo2 for a set of values
of V1 is tedious to say the least. Fortunately, for the special case where the
MOS devices are restricted to operation in the saturation region, a closed-form
solution of the circuit equations can be found. This development is taken up
shortly.

For the general case, computer programs must be used to solve (numer-
ically) the circuit and device equations, i.e., circuit simulation is used. The
Spice input file for the SCP of Figure 2.18 is shown in Figure 2.20. Several
input and output possibilities are made available with comment lines. The
node voltages of the dc (quiescent) operating state are also shown in Figure
2.20. The output voltage plot of Vo2 versus V1, which is a voltage-transfer
characteristic, with an input voltage range of ±5 V is shown in Figure 2.21.
Notice that the level of the input voltage to achieve clamping of the output
voltage is ±2 V, much greater than the ±0.1 V for the ECP. The small-signal
voltage gain of the stage is the slope of the transfer characteristic at the qui-
escent operating point, av = 2.71, approximately the same as the calculated
value for the small-signal analysis above. The small-signal characteristics of
this SCP, obtained from the .TF command in Spice, are also given in Figure
2.20.

For bipolar devices, a single equation can be used for both the off and nor-
mal active regions. This is not case for MOS devices. None-the-less, a closed-
form solution for the transfer characteristic of the SCP can be developed if
operation is restricted to the saturation region of operation. As is common
for nonlinear situations, the ease of the solution of nonlinear simultaneous
equations depends upon the sequence of operations. The following equations,
together with the drain current equation for the saturated region, describe
the circuit.

V1 = VGS1 − VGS2 (2.26)

ID1 + ID2 = ISS (2.27)
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SOURCE-COUPLED PAIR, FIG 2.20
V1 1 0 0 SIN 0 0.2 100K
.DC V1 -5 5 0.5
.PLOT DC V(6) V(16)
.TF V(6) V1
*.TRAN 0.1U 20U
*.PLOT TRAN V(6) V(16)
*.FOUR 100K V(6) V(16)
M1 3 1 4 8 MOD1 W=100U L=10U
M2 6 0 4 8 MOD1 W=100U L=10U
.MODEL MOD1 NMOS VTO=1.0 KP=30U
RD1 5 3 10K
RD2 5 6 10K
VDD 5 0 10
ISS 4 8 1M
VSS 8 0 -10
E1 12 0 1 0 10
M3 13 12 14 8 MOD1 W=100U L=10U
M4 16 0 14 8 MOD1 W=100U L=10U
RD3 5 13 10K
RD4 5 16 10K
ISS2 14 8 1M
.OPTIONS RELTOL=1E-6
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.END

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    0.0000    (  3)    5.0000    (  4)   -2.8257    (  5)   10.0000   
 (  6)    5.0000    (  8)  -10.0000    ( 12)    0.0000    ( 13)    5.0000   
 ( 14)   -2.8257    ( 16)    5.0000

 ****     SMALL-SIGNAL CHARACTERISTICS

0     V(6)/V1                                  =  2.739D+00
0     INPUT RESISTANCE AT V1                   =  1.000D+20
0     OUTPUT RESISTANCE AT V(6)                =  1.000D+04

 V1

1 mA    ISS

 M1   M2

W
L

= 10−VSS

Vo1

Vo2

VT = 1.0 V
k' =30 µ A / V2

k' =30 µ A / V2

+VDD = 10 V

1 mA    ISS

W
L

= 10−VSS 

VT = 1.0 V

+VDD = 10 V

M3 M4

V'
o1

V'
o2

E1

10 kΩ 10 kΩ 

10 kΩ 10 kΩ

-

Fig. 2.20. Circuit and Spice input file for SC pair simulations. The dc operating
point and small-signal transfer characteristics are also shown
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Fig. 2.21. Dc characteristics of SC pair.

Equation (1.12) is first solved for the gate-to-source voltages.

VGS1 = VT +

√
ID1

k′

2
W
L

(2.28)

VGS2 = VT +

√
ID2

k′

2
W
L

The (differential) input voltage is from (2.26):

V1 = VGS1 − VGS2 (2.29)

=

√
ID1

K
−

√
ID2

K

where a constant, K = k′

2
W
L , is introduced for convenience. Equation (2.27)

is introduced by noting that each drain current can be considered having a dc
component and an incremental component.

ID1 = IDA + id1 = IDA + id (2.30)

ID2 = IDA + id2 = IDA − id

As shown the incremental components of the two drain currents, id1 and
id2, are equal and opposite because of (2.27).

ISS = ID1 + ID2 = IDA + id + IDA − id (2.31)
= 2IDA

IDA =
1
2
ISS
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Using these relations in (2.29), we obtain after a bit of manipulation,

V 2
1 =

ISS

K

{
1 −

√(
1 +

id
IDA

)(
1 − id

IDA

)}
(2.32)

id =

√
KISS

2
V1

√
1 − KV 2

1

2ISS
(2.33)

id
ISS

=
d

2

√
1 −

(
d

2

)2

(2.34)

where d is the normalized input voltage.

d =
V1

VGG − VT
(2.35)

=

√
2

ISS

K

V1

As noted earlier, VGG is the quiescent value of the gate-to-source voltage and
is defined by the following:

IDA = K (VGG − VT )2 (2.36)

For the example of Figures 2.18 and 2.20, VGG = V (4) = +2.83.
The value of (VGG − VT ) can be considered to be the net drive above

the threshold voltage. Expression (2.34) is plotted in Figure 2.22 and has the
expected shape with respect to the voltage transfer characteristics obtained
from circuit simulation. The total drain currents are obtained by adding or
subtracting id from IDA = ISS

2 . The output voltages can be obtained from
Vo = VDD − IDRD.

1.50.90.3-0.3-0.9-1.5
-0.5

-0.3

-0.1

0.1

0.3

0.5

id
ISS

d = V1/ VGG - VT

Fig. 2.22. id as a function of d (Equation (2.34)).
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In Figures 2.23 and 2.24, output voltage waveforms and harmonic outputs
from Spice simulations are given for two input amplitudes, 0.2 V and 2 V,
both with a quiescent input (no incremental input signal) of 0 V. As with
the ECP, the transfer characteristic of the SCP is antisymmetric about the
operating point; therefore, even harmonics are not present in the output even
for heavy overdrive (clipping of the output waveform). For V1A = 2 V, the
negative-going excursion of V (6) reaches the resistance region of operation,
VDS = 0.44 < VGS − VT = VGG − VT = 2.83 − 1.0 = 1.83. For the sinusoidal
input level of 0.2 V, HD3 = 0.035% and for the 2 V input, HD3 = 4.8%.
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V(16)

9*V(6)-40V
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Time  (µs)

Fig. 2.23. Transient response of SC pair.

2.6 A Series Expansion to Obtain Distortion
Components for the SCP

For small values of V1 with respect to VGG − VT , the square-root function
of (2.34) can be expanded in a power series and only the first few terms are
significant.

f(x) =
√

1 − x (2.37)

= 1 − 1
2
x − 1

8
x2 − 1

16
x3 − . . .

Using this expansion with (2.34), we obtain

id
ISS

=
d

2

[
1 − 1

2

(
d

2

)2

− . . .

]
(2.38)

We next introduce a sinusoidal input voltage and include it in the power
series. For a dc value of V1 = 0,
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(6)   
 DC COMPONENT =   5.000D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   5.442D-01     1.000000     0.000       0.000
     2      2.000D+05   1.216D-05     0.000022    82.459      82.460
     3      3.000D+05   1.925D-04     0.000354    -0.702      -0.702
     4      4.000D+05   4.882D-06     0.000009   -85.351     -85.351
     5      5.000D+05   3.879D-06     0.000007   -56.312     -56.312
     6      6.000D+05   2.566D-06     0.000005   -52.444     -52.444
     7      7.000D+05   2.541D-06     0.000005   -68.088     -68.087
     8      8.000D+05   3.129D-06     0.000006   -64.488     -64.488
     9      9.000D+05   3.236D-06     0.000006   -52.681     -52.680

     TOTAL HARMONIC DISTORTION =      0.035480  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(16)  
 DC COMPONENT =   4.994D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.779D+00     1.000000     0.000       0.000
     2      2.000D+05   1.145D-02     0.002397    89.602      89.602
     3      3.000D+05   2.279D-01     0.047692    -0.031      -0.031
     4      4.000D+05   8.565D-03     0.001792   -90.372     -90.371
     5      5.000D+05   1.128D-02     0.002361  -180.000    -180.000
     6      6.000D+05   4.908D-03     0.001027    89.405      89.405
     7      7.000D+05   3.492D-03     0.000731    -0.659      -0.658
     8      8.000D+05   1.905D-03     0.000399   -87.883     -87.882
     9      9.000D+05   7.303D-04     0.000153  -171.094    -171.093

     TOTAL HARMONIC DISTORTION =      4.786271  PERCENT

V1A = 0. 2 V,  Tstep = 0. 1 µs

V1A = 2. 0 V,  Tstep = 0. 1 µs

Fig. 2.24. Fourier components of the output voltage for two input amplitudes. V(6)
for an input of 0.2 V and V(16) for an input of 2 V.

v1 = V1A cos ω1t (2.39)

where V1A is the zero-to-peak value of the input sinusoidal tone. The powers
of the sinusoidal terms using (2.39) in (2.38) can be converted to harmonic
terms using trigonometric identities. The result, adding in the dc component
of ID2, is:

ID2 = IDA − id (2.40)

= ISS

[
1
2

+
1
2

V1A

VGG − VT
cos ω1t

− 1
64

(
V1A

VGG − VT

)3

cos 3ω1t − . . .

]

where compression and expansion terms from higher-order terms are ne-
glected.

The above expression is of the form

ID2 = b′o + b1 cos ω1t + b2 cos 2ω1t + b3 cos 3ω1t + . . . (2.41)
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The bi are the coefficients of the harmonic terms. As expected, the even har-
monics in (2.40) are not present. The distortion factors are:

HD2 =
|b2|
|b1|

= 0 (2.42)

HD3 =
|b3|
|b1|

=
1
32

[
V1A

(VGG − VT )

]2

(2.43)

=
1
16

K

ISS
V 2

1A

In the previous Spice example where V1A = 0.2 V, VT = 1 V, K =
0.15 mA/V2 and ISS = 1 mA, the value of HD2 is zero and HD3 = 0.0375%
which compares well with the Spice result. For V1A = 2 V, the Spice result is
HD3 = 4.8% while the predicted value from (2.43) is 3.75%. As noted earlier,
this level of input drives the transistors into the resistance region of operation
and the analysis above is suitable only for a rough approximation.

Problems

2.1. Two emitter-coupled pairs are shown in Figure 2.25.

Q1 Q2

V1

Vo

+9 V

-9 V

Q1 Q2

V1

Vo

+9 V

-9 V

npn

IS =

βF = 100

pnp

IS = 10-15 A 10-16 A

βF = 30
VA = 50 V

(a) (b)

30 kΩ

30 kΩ 30 kΩ

30 kΩ

Fig. 2.25. Emitter-coupled pairs for Problem 2.1.

(a) For the resistive load circuit of Figure 2.25a, determine the bias state of
the circuit for V1 = 0 V.
(b) Repeat (a) for the circuit with an active load as in Figure 2.25b. Note
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that VA = 50 V for the pnp units.
(c) Determine the small-signal performance of the circuit of (a) about the
quiescent bias point.
(d) Estimate the small-signal gain of the active-load circuit.
(e) Verify your results with appropriate Spice runs.
(f) Estimate the harmonic distortion of the circuit of Figure 2.25a with an
input sinusoidal amplitude of 50 mV.
(g) Check your distortion estimate with a Spice run.
(h) Use Spice to determine the distortion for the circuit of Figure 2.25b with
a 1.5 mV sinusoidal input.
(i) Use Spice to investigate the distortion generation of the active-load circuit
if the parameter VA = 100 V is added for the npn transistors. For the input,
use an offset voltage of 5 mV and a sinusoidal amplitude of 1.5 mV.

2.2. An emitter-coupled pair is shown in Figure 2.26.

Q1 Q2

V1

Vo

+9 V

-9 V

Q3

Q4

V2

IS = 10 -16 A

βF = 100

30 kΩ

30 kΩ30 kΩ

3 kΩ 3 kΩ

Fig. 2.26. Emitter-coupled pair for Problem 2.2.

(a) For V1 = V2 = 0 V, determine the quiescent bias state of the circuit.
(b) If the signal input is V1 and the output voltage is Vo as shown, what
are the input and output resistances and the small-signal voltage gain of the
circuit?
(c) Verify your estimates of (a) and (b) with Spice.
(d) Plot the (large-signal) voltage-transfer characteristic of the circuit. Check
the value of gain estimated in (b) both from the above plot and from a .TF
output of Spice.
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(e) Estimate the harmonic distortion of the circuit with a sinusoidal input
amplitude of 60 mV. Verify your estimate with Spice.
(f) Repeat Parts (a) through (e) with V2 = 0.03 V.

2.3. An emitter-coupled pair is shown in Figure 2.27.

Q1 Q2

V1

Vo

+10 V

-10 V

Q3

Q 4

βF = 100

Vo2+ -

5 kΩ

10 kΩ

5 kΩ

IS = 10-16 A

Fig. 2.27. Emitter-coupled pair for Problem 2.3.

(a) Determine the bias state of the circuit for V1 = 0 V.
(b) Calculate the small-signal gain from the input V1 to the output Vo2.
(c) For V1 = 20 mV cos(2π104t), estimate the large-signal output response for
both Vo2(t) and Vo(t).
(d) Estimate the harmonic distortion of Vo2(t) and Vo(t) using the series ex-
pansion method and graphical data (Figure 2.16) for an input amplitude of
20 mV.
(e) Verify Parts (a) through (d) with Spice.

2.4. A MOS source-coupled pair is shown in Figure 2.28.
(a) Determine the voltage transfer characteristic of the stage.
(b) Estimate the small-signal voltage gain and the level of HD3 for an input
amplitude of 1 V.
(c) Verify the results of (b) with Spice.

2.5. For the MOS source-coupled pair shown in Figure 2.29,
(a) Determine the bias state of the circuit for Vi = 0 V.
(b) Estimate the small-signal voltage gain and the level of HD3 for an input
amplitude of 1 V.
(c) Verify the results of (a) and (b) with Spice.
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Vo

+5 V

-5 V

-5 V

Vi

M1 M2

0.6 mA

  VT = 0.5 V,   W
L

 = 12

10 kΩ10 kΩ

k' = 30 µA/V2,

Fig. 2.28. MOS source-coupled pair for Problem 2.4.
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20 kΩ

k' = 30 µA/V2,

Fig. 2.29. MOS source-coupled pair for Problem 2.5.
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Amplifier Power Series and Distortion

3.1 General Power Series Description

In the previous chapter, a power-series expansion of the transfer characteristics
of a stage is obtained from the circuit analysis of the stage using simplified
circuit models for the transistors. In order to use a truncated set of first
few terms of the power series, a restriction must be made to relatively small
input-signal amplitudes, e.g., for the ECP stage, V1/Vt � 1.

In general, the transfer characteristic of an amplifier can be described by
a power series. The coefficients of the series can be obtained from an analysis
such as those of the earlier examples, from actual measurements of the transfer
characteristics of an amplifier, followed by a polynomial approximation (see
Section 3.4) or from the results of a circuit simulation, again with a polynomial
characterization. In the following, we assume that the general amplifier is
as illustrated in Figure 3.1, where we use for convenience a voltage-source
input, Vi, to a lowpass amplifier, and the output variable is taken to be Vo.
The presence and effects of a source resistance and/or a load resistance are
assumed to be incorporated into the amplifier itself. Energy-storage effects
within the amplifier are neglected. Therefore, the developments and results
are valid only for low frequencies in the case of a dc-coupled amplifier or for
the “midband” frequency region for an ac-coupled amplifier.

 Vi  VoAmplifier

Fig. 3.1. A general amplifier configuration.

In general, the input and output variables include both static (dc) and
time-variable components. In the absence of an incremental input signal, the
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state of the amplifier is referred to as the quiescent situation, and the input
and output variables are at their quiescent values. For the development of this
section, interest is primarily in the incremental input, vi, and the incremental
response, vo, about the quiescent operating point, VI and VO, respectively.
For completeness, however, we start the development with total variables.
The output can be written as a function of the input as follows:

VO + vo = F (VI + vi) (3.1)
= ao + a1vi + a2v

2
i + a3v

3
i + . . .

where ao = F (VI) = VO(VI) is the quiescent output voltage which is a function
of the quiescent input voltage. The incremental output is

vo = a1vi + a2v
2
i + a3v

3
i + . . . (3.2)

The number of terms of the power series which must be retained for an
adequate description of the amplifier depends upon the amplifier itself and
the amplitude of the input. Whatever the case, ultimately the higher-order
terms must become insignificant if a truncated series is to be used.

We now assume that the incremental input voltage is a pure sinusoidal
tone,

vi = ViA cos ω1t (3.3)

where the amplitude (zero-to-peak value) is ViA and the frequency of the tone
is f1 = ω1/2π. The procedure to establish the distortion in the output is to
insert this input into the various terms and to use trigonometric identities to
establish the output voltage as a sum of terms of the harmonics.

vo = b0 + b1 cos ω1t + b2 cos 2ω1t + . . . (3.4)

This is a form of a Fourier expansion of vo. (For the cosine input, and with
no energy storage within the amplifier, only cosine terms appear in the output
vo. Had the input been assumed to be a sine function, the Fourier expansion
of vo has alternating sines and cosines.) The values of the bi in terms of the
amplifier coefficients ai and the sinusoidal input magnitude for terms through
the third harmonic are

b0 =
a2

2
V 2

iA + . . . (3.5)

b1 = a1ViA +
3
4
a3V

3
iA + . . . ≈ a1ViA + . . .

b2 =
a2

2
V 2

iA + . . .

b3 =
a3

4
V 3

iA + . . .

. . .
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For each term in (3.5), only the initial term from the power-series expan-
sion is usually included.

Notice that a dc term, b0, is present even though the quiescent value,
ao = VO, has been eliminated. This term represents a dynamic shift in the
operating point of the amplifier due to distortion generation. Contributions
to b0 are produced by each even-powered term of (3.2). The expression for b0

in (3.5) is due to a2v
2
i . In the developments in Section 2.5, the term b′0 is the

label for the complete dc value, VO + b0.
From a3v

3
i , an expansion/compression term in b1, the fundamental, can be

added as shown in (3.5) depending on the sign of a3. If higher-order terms are
included in (3.2), new components are added to each bi above, as symbolized
with the notation, + . . ..

The harmonic distortion factors can again be introduced as is done in the
previous chapters. If only the leading terms in (3.5) are used,

HD2 =
|b2|
|b1|

(3.6)

≈ 1
2

a2

a1
ViA

HD3 =
|b3|
|b1|

(3.7)

≈ 1
4

a3

a1
V 2

iA

. . .

A general expression for THD is usually too cumbersome for easy use.

3.2 Common-Emitter Stage Example

For an example in the use of the technique above, consider the simple common-
emitter stage shown in Figure 3.2a. This circuit is simplified to concentrate
on the essential nonlinear aspects by first identifying the bias elements and
replacing them with pure sources. Finally, the ‘ground point’ is shifted to
the emitter and a Thevenin equivalent is used at the output to obtain the
‘essential’ circuit configuration shown in Figure 3.2b. In the latter, it is to be
noted that the input voltage is of the form

V1 = VBB + v1 (3.8)

The dc component, VBB , is equal to 0.774 V for a collector current of 1 mA
and for Is = 10−16 A. The signal source resistance is assumed to be very small;
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   Q
1

  Q
2

  Q
3

R1  R2

− VEE

 Vo

 Vo

   V1

 IC

+ VCC

R3

RC

(a) (b)

RL

+ VCC
′

V1
′

Fig. 3.2. (a) A simple common-emitter stage. (b) ‘Essential’ circuit configuration.

therefore, Vbe = V1. In the next chapter the effects of the source resistance on
the distortion generation are considered.

A circuit model for the transistor is next introduced as shown in Figure 3.3.
The transistor parameter beta is assumed constant, β = βac. Once again it

+

-

V1

Ib

V1 = VBB +v1

Vbe

Vo

+ VCC

RC

IS

β

Ic = ISexp(Vbe
Vt

) = βIb

Fig. 3.3. Equivalent circuit of CE stage with simple device models.

is assumed that the transistor never enters saturation; thus, only a single
nonlinearity (pn junction) is included. The output voltage is
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Vo = VCC − RCIc (3.9)

where

Ic = IC + ic = IS exp
(

Vbe

Vt

)
= IS exp

(
VBB + v1

Vt

)
(3.10)

=
[
IS exp

(
VBB

Vt

)] [
exp

(
v1

Vt

)]

= ICA exp
(

v1

Vt

)

The quiescent value of the collector current, IC , is labeled ICA for empha-
sis.

ICA = IS exp
(

VBB

Vt

)
(3.11)

A power series expansion of exp
(

v1
Vt

)
is next introduced using exp(x) =

1 + x + 1
2x2 + 1

6x3 + . . ..

Ic = ICA

[
1 +

(
v1

Vt

)
+

1
2

(
v1

Vt

)2

+
1
6

(
v1

Vt

)3

+ . . .

]

Ic = ICA

[
1 + a′

1v1 + a′
2v

2
1 + . . .

]
(3.12)

Primed variables are used above, in relation to Equation (3.1), since ICA

is a multiplier of the series expansion, ai = ICAa′
i. Also it is convenient to use

Ic as the output variable rather than the output voltage. The two variables
are simply related from (3.9). The coefficients of the power series for Ic are

a0 = Ic(VBB) = ICA (3.13)

a1 = a′
1ICA = ICA

(
1
Vt

)

a2 = a′
2ICA =

1
2
ICA

(
1
Vt

)2

a3 = a′
3ICA =

1
6
ICA

(
1
Vt

)3

The input voltage variation is next taken to be

v1 = V1A cos ω1t (3.14)
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From the results of the last section, the coefficients of the Fourier expansion
of the output, including only the leading term of each, are

b0 ≈ ICA

4

(
V1A

Vt

)2

(3.15)

b1 ≈ ICA

(
V1A

Vt

)

b2 ≈ ICA

4

(
V1A

Vt

)2

b3 ≈ ICA

24

(
V1A

Vt

)3

Note that the nonzero value for b0 indicates that a shift in the bias value
of VO or ICA occurs. In the examples of the previous chapter the b0 term was
not present because the voltage transfer characteristic of the balanced ECP
or SCP is antisymmetrical about the operating point for V1 = V2.

The approximate expressions for the distortion factors are

HD2 ≈ 1
4

(
V1A

Vt

)
(3.16)

HD3 ≈ 1
24

(
V1A

Vt

)2

For a numerical example, let VBB = 0.774 V. For IS = 1 × 10−16 A and
operation at 300◦ K,

Vt = 25.85 mV and ICA = 1.0 mA (3.17)

For V1A = 10 mV, the Fourier components of the collector current are found
from Equation (3.15). The corresponding amplitude values for the output
voltage are obtained by multiplying by −RC = −5 kΩ. For the latter, and
neglecting the sign change,

b0 = 0.19 V (3.18)
b1 = 1.93 V
b2 = 0.19 V
b3 = 0.012 V

The estimated harmonic distortion factors are
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HD2 = 9.8% (3.19)
HD3 = 0.62%

The input file for this circuit for a Spice simulation is given in Figure 3.4a.
For this example, VCC = 15 V and RC = 5 kΩ. The input bias voltage VBB

is included in the V1 specifications. The node voltages and the small-signal
parameters for the quiescent state are given also in Figure 3.4a. The dc voltage
transfer characteristic is given in Figure 3.4b. The output voltage waveform
for a 10 mV sinusoidal input is shown in Figure 3.4c, and the harmonic outputs
are given in Figure 3.4d. The output coefficients are

b0 = 10.05 − 9.855 = 0.185 V (3.20)
b1 = 1.942 V
b2 = 0.1835 V
b3 = 0.0114 V

(In b0, the actual collector current is 0.99 mA. Therefore, the estimated
quiescent value of V (3) is 15 − (0.99 mA)(5 kΩ) ≈ 10.05 V.) The distortion
factors from the Spice2 output are HD2 = 9.5% and HD3 = 0.59%. The
comparison of simulated and estimated values is very close.

As an exercise for the reader, the single-ended, single-device, ac-coupled,
and bypassed stage of Figure 3.5 should be analyzed. In particular, the bias
elements, including the average (dc) values of the coupling and bypass capac-
itors as voltage sources, should be combined to obtain the ‘essential’ stage
configuration of Figure 3.2b. Again, a shift of ground point is necessary. The
conclusion can be drawn that it is usually possible to reduce a practical im-
plementation of a stage into the essential configuration.

3.3 The Ideal CE Stage with a Large Sinusoidal Input
Voltage

If the amplitude of the input sinusoid is not small with respect to Vt, a trun-
cated portion of the power series expansion of Ic is not adequate. However,
the function exp(d cos ω1t) has a known expansion.

exp(d cos ω1t) = I0(d) + 2I1(d) cos ω1t + 2I2(d) cos 2ω1t + . . . (3.21)
+ 2In(d) cos nω1t + . . .

where the In(d) are modified Bessel functions of order n [20]. A table of values
of these functions as well as normalized plots are given in Figures 3.6a and b. If
we introduce the sinusoidal input of (3.14) in the collector current expression
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CE STAGE, FIG 3.4 
V1 1 0 0.774 SIN(0.774 10M 100KHZ)
.TF V(3) V1
 .DC V1 0.6 0.9 .01
 .PLOT DC V(3)
*.TRAN 0.5U 20U
*.PLOT TRAN V(3)
*.FOUR 100K V(3)
Q1 3 1 0 MOD1
RC 5 3 5K
VCC 5 0 15
.MODEL MOD1 NPN BF=100 IS=1.0E-16
.OPTIONS NOPAGE NOMOD
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    0.7740    (  3)   10.0401    (  5)   15.0000

 ****     SMALL-SIGNAL CHARACTERISTICS

       V(3)/V1                                  = -1.918D+02
       INPUT RESISTANCE AT V1                   =  2.607D+03
       OUTPUT RESISTANCE AT V(3)                =  5.000D+03

900800700600
0

5

10

15

V1 (mV)

V
(3

) (
V

)

(a)

(b)

(d)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   9.853D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.943D+00     1.000000   179.996       0.000
     2      2.000D+05   1.838D-01     0.094586    90.006     -89.990
     3      3.000D+05   1.147D-02     0.005900     0.583    -179.413
     4      4.000D+05   4.154D-04     0.000214   -94.482    -274.479
     5      5.000D+05   1.292D-04     0.000066   119.519     -60.477
     6      6.000D+05   1.177D-04     0.000061   114.839     -65.157
     7      7.000D+05   1.162D-04     0.000060   118.313     -61.683
     8      8.000D+05   1.161D-04     0.000060   122.005     -57.992
     9      9.000D+05   1.153D-04     0.000059   126.664     -53.332

     TOTAL HARMONIC DISTORTION =      9.477058  PERCENT

20151050
7

8

9

10

11

12

V
(3

)  
(V

)

(c)

Time  ( µs)

Fig. 3.4. (a) Spice input file for CE stage, dc operating point and small-signal
characteristics. (b) Dc voltage transfer characteristic of CE stage. (c) Transient
output voltage waveform of CE stage. (d) Fourier components of output voltage.
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+ VCC

Fig. 3.5. A single-ended, single device, ac bypassed CE stage.

in (3.10) and use the Bessel function expansion of (3.21), the Fourier expansion
of Ic is obtained directly.

Ic = ICA[I0(d) + 2I1(d) cos ω1t + . . . + 2In(d) cos nω1t + . . .] (3.22)

= ICAI0(d)
[
1 +

2I1(d)
I0(d)

cos ω1t + . . . +
2In(d)
I0(d)

cos nω1t + . . .

]

= Idc

[
1 +

2I1(d)
I0(d)

cos ω1t + . . . +
2In(d)
I0(d)

cos nω1t + . . .

]

where d = V1A

Vt
is the normalized amplitude of the input sinusoid.

In the last expression, the dc collector current under any drive amplitude
is identified.

Idc = ICAI0(d) (3.23)

= IS

[
exp

(
VBB

Vt

)]
I0(d)

As mentioned above, all even-ordered terms of the power-series expansion
of Ic contribute to the dc shift of the quiescent bias point and are included in
I0(d).

Expression (3.22) can be equated to the Fourier expansion of (3.4). The
Fourier coefficients of the collector current are

ICA + b0 = Idc (3.24)
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0.0    1.0000   0.0000   0.0000   0.0000      0.000   0.000   0.000
0.1    1.0025   0.0501   0.0013   0.0000      0.050   0.001   0.000
0.2    1.0100   0.1005   0.0050   0.0002      0.100   0.005   0.000
0.4    1.0404   0.2040   0.0203   0.0013      0.196   0.020   0.001
0.6    1.0920   0.3137   0.0464   0.0046      0.287   0.043   0.004
0.8    1.1665   0.4329   0.0844   0.0111      0.371   0.072   0.010
1.0    1.2661   0.5652   0.1357   0.0222      0.446   0.107   0.018
1.2    1.3937   0.7147   0.2026   0.0394      0.513   0.145   0.028
1.4    1.5534   0.8861   0.2875   0.0645      0.570   0.185   0.041
1.6    1.7500   1.0848   0.3940   0.0999      0.620   0.225   0.057
1.8    1.9896   1.3172   0.5260   0.1482      0.662   0.264   0.074
2.0    2.2796   1.5906   0.6889   0.2127      0.698   0.302   0.093
2.2    2.6291   1.9141   0.8891   0.2976      0.728   0.338   0.113
2.4    3.0493   2.2981   1.1342   0.4079      0.754   0.372   0.134
2.6    3.5533   2.7554   1.4337   0.5496      0.776   0.404   0.155
2.8    4.1573   3.3011   1.7994   0.7305      0.794   0.433   0.176
3.0    4.8808   3.9534   2.2452   0.9598      0.810   0.460   0.197
3.2    5.7472   4.7343   2.7883   1.2489      0.824   0.485   0.217
3.4    6.7848   5.6701   3.4495   1.6119      0.836   0.508   0.238
3.6    8.0277   6.7927   4.2540   2.0661      0.846   0.530   0.257
3.8    9.5169   8.1404   5.2325   2.6326      0.855   0.550   0.277
4.0    11.302   9.7595   6.4222   3.3373      0.864   0.568   0.295
4.2    13.442   11.706   7.8684   4.2120      0.871   0.585   0.313
4.4    16.010   14.046   9.6258   5.2955      0.877   0.601   0.331
4.6    19.093   16.863   11.761   6.6355      0.883   0.616   0.347
4.8    22.794   20.253   14.355   8.2903      0.889   0.630   0.364
5.0    27.240   24.336   17.506   10.331      0.893   0.643   0.379
5.2    32.584   29.254   21.332   12.845      0.898   0.655   0.394
5.4    39.009   35.182   25.978   15.939      0.902   0.666   0.409
5.6    46.738   42.328   31.620   19.742      0.906   0.677   0.422
5.8    56.038   50.946   38.470   24.415      0.909   0.687   0.436
6.0    67.234   61.342   46.787   30.151      0.912   0.696   0.448
6.2    80.718   73.886   56.884   37.187      0.915   0.705   0.461
6.4    96.962   89.026   69.141   45.813      0.918   0.713   0.472
6.6    116.54   107.30   84.021   56.383      0.921   0.721   0.484
6.8    140.14   129.38   102.08   69.328      0.923   0.729   0.495
7.0    168.59   156.04   124.01   85.175      0.926   0.736   0.505
7.2    202.92   188.25   150.63   104.57      0.928   0.742   0.515
7.4    244.34   227.17   182.94   128.29      0.930   0.749   0.525
7.6    294.33   274.22   222.17   157.29      0.932   0.755   0.534
7.8    354.68   331.10   269.79   192.75      0.933   0.761   0.543
8.0    427.56   399.87   327.60   236.08      0.935   0.766   0.552

x I0(x)I 1(x)I 2(x)I 3(x)
I1(x)
I0(x)

I2(x)
I0(x)

I3(x)
I0(x)

Equation for higher order terms:   In+1(x) = In-1(x) - 2n
x  In(x)

Fig. 3.6. (a) Values of modified Bessel functions for n = 1, 2, 3.
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Fig. 3.6. (b) Plot of normalized Bessel functions for n = 1 to 8.
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b1 = Idc

[
2I1(d)
I0(d)

]

b2 = Idc

[
2I2(d)
I0(d)

]

bn = Idc

[
2In(d)
I0(d)

]

Note that the quiescent value ICA is added to the b0 term to obtain Idc. The
harmonic distortion factors are

HD2 =
|b2|
|b1|

=
I2(d)
I1(d)

(3.25)

HD3 =
|b3|
|b1|

=
I3(d)
I1(d)

In the table of Figure 3.6a, values for the In(x)(= In(d)) are given for
n = 1, 2 and 3. Values are also given for the ratios of I1(d)

I0(d) ,
I2(d)
I0(d) , and I3(d)

I0(d) . In

Figure 3.6b, plots of the ratios In(d)
I0(d) are given for n up to 8. The largest value

of d ≈ 20 corresponds to an input sinusoidal amplitude of approximately 0.5
V.

For a numerical example, let d = 1, corresponding to an input amplitude
of approximately 26 mV. From Figure 3.6a, I1(1)

I0(1)
≈ 0.45 and I2(1)

I0(1)
≈ 0.11.

Therefore, from (3.25), HD2 = 24%. From (3.16), the results from the simple
power series expansion, HD2 for d = 1 is estimated to be 25%. From the curves
of Figure 3.6b, the HD3 is estimated from the ratio of the third harmonic to
the fundamental for d = 1. The result is HD3 ≈ 0.02

0.48 = 4% . The value from
(3.16) is 4.1%.

The Bessel functions have simple asymptotic values. For d very small,

I0(d) |d�1 = 1 + 0.25d2 (3.26)
I1(d) |d�1 = 0.5d

I2(d) |d�1 = 0.12d2

These approximations lead to an expression for HD2 approximately equal
to that of (3.16).

From the curves of Figure 3.6b, it is evident that I1(d)
I0(d) approaches a value

of 0.97 for large d.

3.4 Power Series and Fourier Series Characterizations

In Section 3.1, a general power-series expansion is proposed. In the example
of the bipolar, common-emitter stage, the coefficients of the power series are
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obtained from a circuit analysis using simplified models for the transistor. In
the general situation, such an approach may not be possible or appropriate. In
that circumstance, a transfer characteristic may be available, say from mea-
surements with an actual amplifier. The coefficients of the truncated power
series (a polynomial) can be obtained from a solution of a set of simultaneous
equations.

A transfer characteristic is illustrated in Figure 3.7a. A polynomial to
approximate this curve can be established starting with a general polynomial
of a desired degree. For a cubic,

vo = a1vi + a2v
2
i + a3v

3
i (3.27)

Note that variations about the quiescent operating point are taken as the
variables rather than the total input and output variables. For a third-order
polynomial, the three coefficients are not known. Therefore, we choose three
different values of the variational input voltage, (vi1, vi2, vi3), and determine
from the transfer curve the corresponding variational output voltage values
(vo1, vo2, vo3). These values are successively used in the polynomial.

vo1 = a1vi1 + a2v
2
i1 + a3v

3
i1 (3.28)

vo2 = a1vi2 + a2v
2
i2 + a3v

3
i2

vo3 = a1vi3 + a2v
2
i3 + a3v

3
i3

We now have three linear equations in the three unknowns, a1, a2, a3. The
solution for the coefficients is straightforward, albeit tedious.

Another technique to obtain the values of the harmonic components of
the output waveform is to accomplish a simplified form of Fourier analysis,
again starting with a set of input voltage values and the corresponding output
voltage values from the transfer characteristic. We do not find the ai but
obtain the bi directly; and in particular, we choose a convenient set of input
voltages. Again the input is assumed to be a sinusoid of zero-to-peak amplitude
ViA. Choose for the set of input voltages the maximum value ViA (for a cosine
input this occurs at ω1t = 0), the half maximum (at ω1t = 60o), the zero value
(at ω1t = 90o), the half minimum (at ω1t = 120o), and the input minimum (at
ω1t = 180o). These choices are illustrated in Figure 3.7b. From the transfer
characteristic, the corresponding set of output voltages, V2, V1, V0, V3, and
V4 can be obtained. (These values may all be total values or incremental,
variational values.) The output waveform with these values of time (really
ω1t) are plotted in Figure 3.7c.

We now propose that the output waveform be expressed as a truncated
Fourier series of cosine terms only.

VO + vo = (VO + b0) + b1 cos ω1t + b2 cos 2ω1t + b3 cos 3ω1t + . . . (3.29)
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Fig. 3.7. (a) A voltage transfer characteristic. (b) Choices of input voltages for
calculating harmonic components. (c) Output voltage waveform and the values of
output voltage for the chosen time instants.

where for completeness the total output variable is included, i.e., the quiescent
output voltage VO is introduced. Each value of output voltage is inserted
into the equation with the corresponding value of ω1t. The result is a set of
equations in the unknown values of the Fourier coefficients.

The above choices of the input for a third-order situation lead to a five-
point analysis; the five input time values described above lead to a corre-
sponding set of output values, V2, V1, V0, V3, and V4 as shown in Figure 3.7b.
The results for the solution for the bi are
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VO + b0 =
1
6

(V2 + 2V1 + 2V3 + V4) (3.30)

b1 =
1
3

(V2 + V1 − V3 − V4)

b2 =
1
4

(V2 − 2V0 + V4)

b3 =
1
6

(V2 − 2V1 + 2V3 − V4)

b4 =
1
12

(V2 − 4V1 + 6V0 − 4V3 + V4)

For a numerical example, the following output voltage values have been
obtained from the transfer characteristic of an output stage for the five input
times.

V2 = 11.09 V (3.31)
V1 = 5.29 V
V0 = −0.27 V
V3 = −5.84 V
V4 = −10.37 V

The Fourier coefficients are found from Equation (3.30).

VO + b0 = −0.063 V (3.32)
b1 = 10.86 V
b2 = 0.315 V
b3 = −0.13 V
b4 = 0.12 V

The harmonic distortion factors are

HD2 = 2.9% (3.33)
HD3 = 1.2%

. . .

THD ≈ 3.3%

The transfer characteristic used in the above example was obtained from a
Spice simulation of an amplifier. A transient run which included a Fourier
analysis yielded THD = 3.1%.
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A simpler analysis can be obtained if only three input points are used. The
three input time points are usually taken to be the ω1t values of 0, 90◦, and
180◦. The corresponding output voltage values are V2, V0, and V4 and are the
same as shown in Figure 3.7. The solution for the bi leads to

VO + b0 =
1
4

(V2 + 2V0 + V4) (3.34)

b1 =
1
2

(V2 − V4)

b2 =
1
4

(V2 − 2V0 + V4)

HD2 =
b2

b1
=

1
2

(
V2 − 2V0 + V4

V2 − V4

)
(3.35)

From the voltage values in Equation (3.31),

VO + b0 = 0.045 V (3.36)
b1 = 10.73 V
b2 = 0.315 V

HD2 = 2.9% V

These values compare closely with the results from the five-point analysis
above except for the dc term, VO + b0.

Another example illustrates that care must be taken in using the three-
point estimation. Three output voltage values obtained from the transfer char-
acteristic of a MOS amplifier stage are

V2 = 4.234 V (3.37)
V0 = 2.5 V
V4 = 0.49 V

The Fourier coefficients from the three-point analysis are

VO + b0 = 2.431 V (3.38)
b0 = −0.069 V
b1 = 1.87 V
b2 = −0.07 V

The estimated value of the second harmonic factor is HD2 = b2/b1 =
3.7%. From a Spice2 simulation of the same circuit for which the transfer
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characteristic is obtained, the Fourier outputs from a transient run for an
input amplitude which reaches the proper extremes are

b0 = −0.04 V (3.39)
b1 = 2.016 V
b2 = 0.084 V
b3 = 0.125 V
b4 = 0.039 V

The harmonic distortion factors are

HD2 = 4.18% (3.40)
HD3 = 6.20%

. . .

THD = 7.90%

For this example, clearly the three-point analysis is not sufficient even if it
predicts adequately HD2.

3.5 The Common-Source MOS Amplifier Stage

For circuits involving MOS devices, it is useful to duplicate the developments
of Section 3.2 for the single-stage MOS circuit. In the circuit of Figure 3.8a,
the driver or ‘inverter’ transistor is an NMOS device, and the load element is
a PMOSFET. The simplified, ‘essential’ circuit is shown in Figure 3.8b and
simply replaces the load device with a resistor RD. A simple circuit model
for the driver device next is introduced which substitutes a dependent current
source ID. The three drain current equations for the dependent current source
are given in Section 1.4.2, and the equation for operation in the saturation
region is repeated below.

Assume now that operation is restricted to an operating point in the nor-
mal active region (MOS saturation) and that the amplitude of the sinusoidal
input voltage is sufficiently small so that operation is restricted to the satu-
ration region. The total input voltage is V1 = VGS = VGG + v1. VGG is the
quiescent value of VGS and in this case is also the value of the dc bias source
voltage at the gate node. The output drain current is

Id =
k′

2
W

L
(VGS − VT )2 (3.41)

Id =
[
k′

2
W

L
(VGG − VT )2

] [
1 +

v1

VGG − VT

]2
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RD

(a) (b)

M2

+VDD

  

M1V1

Vo

+VDD

  

V1

Vo

MOS CS STAGES, FIG 3.8
V1 1 0 1.5 SIN(1.5 0.05 100K)
.TF V(2) V1
.DC V1 1.1 1.8 0.025
.PLOT DC V(2) (0,5)
*.TRAN .1U 20U
*.PLOT TRAN V(2) (0,5)
*.FOUR 100K V(2)
VDD 3 0 5
VSS 5 0 -5
M1 2 1 0 5 MOD1 W=80U L=8U
RD 3 2 66.7K
.MODEL MOD1 NMOS VTO=1 KP=30U
.OPTIONS NOPAGE NOMOD RELTOL=1E-6
.WIDTH OUT=80
.END

(c)

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    1.5000    (  2)    2.4987    (  3)    5.0000    (  5)   -5.0000    

 ****     SMALL-SIGNAL CHARACTERISTICS

      V(2)/V1                                  = -1.000D+01
      INPUT RESISTANCE AT V1                   =  1.000D+20
      OUTPUT RESISTANCE AT V(2)                =  6.670D+04

(d)

M1

VGGG

Fig. 3.8. (a) Common-source stage with PMOSFET load. (b) Simplified ‘essential’
circuit of CS stage. (c) Spice input file. (d) Dc operating point and small-signal
characteristics.



3.5 The Common-Source MOS Amplifier Stage 61

The first term in brackets is the quiescent drain current which we denote
IDA. If the square of the second term is taken, the result has the form of a
quadratic polynomial:

Id = IDA

[
1 + 2

v1

VGG − VT
+

(
v1

VGG − VT

)2
]

(3.42)

= IDA

(
a′
0 + a′

1v1 + a′
2v

2
1

)
where

a0 = IDAa′
0 (3.43)

= IDA

a1 = IDAa′
1

= IDA
2

VGG − VT

a2 = IDAa′
2

=
IDA

(VGG − VT )2

The input voltage variation is now assumed to have a sinusoidal variation

v1 = V1A cos ω1t (3.44)

and this is introduced into the drain current expression to obtain the coef-
ficients of the Fourier series description of the output current. However, we
have done this earlier and can use the results directly. The coefficients of the
Fourier series are

b0 =
1
2

[
IDA

(VGG − VT )2

]
V 2

1A (3.45)

b1 = 2
[

IDA

(VGG − VT )

]
V1A

b2 =
1
2

[
IDA

(VGG − VT )2

]
V 2

1A

The second-harmonic distortion factor is

HD2 =
|b2|
|b1|

=
1
4

V1A

VGG − VT
(3.46)

There are no higher-order coefficients since the mathematical model of the
transfer characteristic is a quadratic.
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For a numerical example, the device parameters and circuit element values
are shown in Figure 3.8c, the input file for a Spice run. For the basic circuit,
the circuit values are VDD = 5 V, RD = 66.7 kΩ, and VGG = 1.5 V. The
input bias voltage is included in the V1 specification. The sinusoidal input
amplitude is 50 mV. The estimated dc state, for VGG = 1.5 V, is ID = 37.5 µA
and VO = V (2) = VDD − IDRD = 2.5 V. From the Spice data of Figure 3.8d,
VO = 2.5 V. Values of magnitudes of the bi for the output voltage are obtained
by multiplying the expressions of Equation (3.45) by −RD. These estimates,
neglecting the minus signs, are

b0 = 0.0125 V (3.47)
b1 = 0.50 V
b2 = 0.0125 V

HD2 =
|b2|
|b1|

= 2.5%

The dc transfer characteristics of the stage is presented in Figure 3.9a.
The transient output waveform for V1A = 50 mV, is shown in Figure 3.9b and
the Fourier outputs are shown in Figure 3.10. For the basic stage, the Fourier
coefficients and the harmonic factors are

b0 = 2.486 − 2.50 = −0.014 V (3.48)
b1 = 0.500 V
b2 = 0.0122 V

HD2 = 2.46%
. . .

THD = 2.46% (3.49)

The comparison with the estimates is close, as expected, since the Level-1
MOS model in Spice for saturated operation has the same square-law charac-
teristic as used above.

3.6 Intermodulation Distortion

To this point, the variational input has been restricted to a single sinusoidal
tone. The distortion produced by the nonlinearities of the circuit are harmon-
ics of the input. Additional distortion components are produced when two or
more different sinusoids are present in the input. Intermodulation (IM) is de-
fined to occur when two or more sinusoidal signals are applied to a nonlinear
circuit. In addition to the fundamentals of the input signals as well as their
harmonics, the development which follows shows that a great number of other
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Fig. 3.9. (a) Dc transfer characteristics of CS stage. (b) Transient output voltage
waveform.

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(6)    
 DC COMPONENT =   2.486D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.976D-01     1.000000   179.999       0.000
     2      2.000D+05   1.224D-02     0.024600    90.012     -89.987
     3      3.000D+05   9.620D-06     0.000019    87.905     -92.094
     4      4.000D+05   1.164D-05     0.000023   102.248     -77.751
     5      5.000D+05   1.083D-05     0.000022   114.173     -65.826
     6      6.000D+05   9.718D-06     0.000020   116.985     -63.014
     7      7.000D+05   9.650D-06     0.000019   117.157     -62.842
     8      8.000D+05   1.003D-05     0.000020   120.667     -59.332
     9      9.000D+05   1.006D-05     0.000020   126.858     -53.141

     TOTAL HARMONIC DISTORTION =      2.460027  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =   2.460D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   2.016D+00     1.000000  -179.988       0.000
     2      2.000D+05   8.432D-02     0.041819    89.726     269.714
     3      3.000D+05   1.250D-01     0.061973   179.820     359.807
     4      4.000D+05   3.853D-02     0.019111   -89.767      90.221
     5      5.000D+05   2.632D-02     0.013052     0.658     180.646
     6      6.000D+05   1.723D-02     0.008547   -91.597      88.391
     7      7.000D+05   7.343D-03     0.003642    -2.471     177.517
     8      8.000D+05   1.212D-02     0.006012    90.894     270.882
     9      9.000D+05   7.516D-04     0.000373   -22.342     157.646

     TOTAL HARMONIC DISTORTION =      7.904223  PERCENT

Basic Circuit  (Tstep = 0.1 µs)

Typical Circuit  (Tstep = 0.1 µs)

Fig. 3.10. Fourier components of output voltage for the basic MOS common-source
stage.
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spurious components appear in the output. The output frequency spectrum is
illustrated in Figure 3.11, where for the plot shown, ω2 > ω1 > 2

3ω2. The new
components are the result of the original signals and their harmonics ‘beating’
with each other.

Let the bias state of an amplifier support appropriate active region oper-
ation of all devices. The circuit input and output variables of the amplifier
are taken to be the variations about the bias state. Let the output variable
be labeled vo, and the input vi. The transfer characteristic of the amplifier is
described by a power series.

vo = a1vi + a2v
2
i + a3v

3
i + . . . (3.50)

The variational input is assumed to consist of two sinusoids of different
frequencies.

vi = V1A cos ω1t + V2A cos ω2t (3.51)

Inserting this expression into the output series yields

vo = a1 (V1A cos ω1t + V2A cos ω2t) + (3.52)

a2 (V1A cos ω1t + V2A cos ω2t)
2 +

a3 (V1A cos ω1t + V2A cos ω2t)
3 +

. . .

For the moment, we consider only the second-order term

a2v
2
i = a2 (V1A cos ω1t + V2A cos ω2t)

2 (3.53)

= a2V
2
1A cos2 ω1t + a2V

2
2A cos2 ω2t (3.54)

+2a2V1AV2A cos ω1t cos ω2t

=
1
2
a2

(
V 2

1A + V 2
2A

)
+

1
2
a2V

2
1A cos 2ω1t +

1
2
a2V

2
2A cos 2ω2t (3.55)

+a2V1AV2A cos(ω1 + ω2)t + a2V1AV2A cos(ω1 − ω2)t

The final result shows that this second-order term produces in the output
dc (bias) shift factors, the harmonics of the two input signals, and sum and
difference frequency sinusoidal terms. The last are often referred to as the
‘beat’ terms. These sum and difference terms are also defined as the second-
order intermodulation (IM2) terms. In the general case where higher-order
terms are included in the power-series expression, IM2 contributions are also
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produced by each even term of the power series. For low input levels, second-
order IM is produced primarily by the second-order term.

The distortion factor IM2 is taken as the ratio of the amplitude of one of
the beat terms to the amplitude of the fundamental output component.

IM2 =
a2V1AV2A

a1V1A
=

a2

a1
V2A (3.56)

Notice that IM2 is directly proportional to the signal level for low dis-
tortion values. For simplicity it is often assumed in defining IM2 that the
magnitudes of the two sinusoidal inputs are equal. In this case, V2A can be
replaced by the common amplitude V1A.

V1A = V2A (3.57)

Notice from a comparison of Equations (3.6) and (3.56) using (3.57) that IM2

in this case is twice the value of HD2 for the same amplifier.
IM2 can also be expressed in terms of the output fundamental component.

Let the amplitude of the fundamental component be labeled VoA. For small
distortion VoA ≈ a1V1A. Therefore, again for equal input signal amplitudes,

IM2 =
a2

a2
1

VoA (3.58)

We next turn to the third-order terms in the power series of (3.50) and in-
vestigate and define third-order intermodulation distortion (IM3). The third-
order term in the power-series expansion is

a3v
3
i = a3 (V1A cos ω1t + V2A cos ω2t)

3 (3.59)
= a3V

3
1A cos3 ω1t + 3a3V1AV 2

2A cos ω1t cos2 ω2t

+3a3V
2
1AV2A cos2 ω1t cos ω2t + a3V

3
2A cos3 ω2t

It is clear that the output contains the third harmonics of the fundamentals
as well as expansion/contraction components at the fundamental frequency of
each. In addition, third-order IM3 (beat) terms are produced at the sum and
difference frequencies of the fundamental of each with the second harmonic
of the other signal. In the following, only the cross products of (3.59) are
included.

a3v
3
i = . . . a32 cos(ω1t ± 2ω2t) + a33 cos(2ω1t ± ω2t) (3.60)

where a32 and a33 represent the constants below.

a32 =
3
4
a3V1AV 2

2A (3.61)

a33 =
3
4
a3V

2
1AV2A
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The method of specifying IM3 depends upon the application. For broad-
band amplifiers, a common test condition is to adjust for equal output
amplitudes at ω1 and ω2. For this case, V1A = V2A if compression and/or
contraction of the fundamentals are negligible. In this case, the amplitude for
the third-order IM3 components is

Vo(IM3) =
3
4
a3V

3
1A (3.62)

The expression for IM3 in terms of the input signal level is

IM3 =
3
4

a3V
3
1A

a1V1A
=

3
4

a3

a1
V 2

1A (3.63)

In terms of the amplitude of the output fundamental, VoA, and for small
distortion,

IM3 =
3
4

a3

a3
1

V 2
oA (3.64)

Similar to HD3, IM3 varies as the square of the signal level for low dis-
tortion. Note that IM3 = 3HD3 from (3.7).

The distortion products produced by the nonlinearity of the circuit with
two input signals are summarized in Figure 3.11 for ω2 > ω1 > 2

3ω2. Note that
the third-order IM components in the output, i.e., those with frequencies of
2ω1 −ω2 and 2ω2 −ω1, may fall close to the fundamentals if ω1 is close to ω2.
This commonly occurs with broadcast receiver applications. The IM3 terms
may fall in the passband of the receiver and cannot be filtered out.

M
ag

ni
tu

de

ω2 > ω1 > 2
3

ω2

(ω1 - ω2) (2ω1 - ω2) (2ω2 - ω1) 2ω2 3ω12ω1ω1 ω2 (ω1 + ω2)

Fig. 3.11. Output frequency spectrum.

For receivers, in contrast to broadband amplifiers, a common test condition
for IM3 is to apply a small desired signal with a frequency ω1 and a larger
interfering signal at a suspect ω2. The amplitude of the interfering signal is
increased until the IM3 component reaches a predetermined fraction of the
desired signal, often 1%. The human ear can usually detect the presence of
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the interfering signal above 1%. The amplitude, V2A, of the interfering signal
at ω2 is a measure of IM3. For this case,

IM
′

3 =
3
4

a3V1AV 2
2A

a1V1A
=

3
4

a3

a1
V 2

2A (3.65)

IM
′′

3 =
3
4

a3V
2
1AV2A

a1V1A
=

3
4

a3

a1
V1AV2A

The IM
′

3 specification above is independent of the magnitude of the desired
signal. (The largest IM3 component of (3.65) is usually the one of interest.) An
example of the use of this type of IM3 specification is presented in Chapter 9.

The Spice .FOUR command can also be used to simulate intermodula-
tion distortion with a proper choice of the fundamental frequency. For Fourier
analysis, the signals must be periodic, implying that the tones must be com-
mensurate.1 Intermodulation is determined by simulating the circuit with two
closely spaced tones at frequencies f1 and f2 = f1+∆f . For example, consider
f1 = 50 kHz and f2 = 51 kHz. The third-order IM terms are at 2f1 − f2 = 49
kHz and 2f2 − f1 = 52 kHz. The slowest varying component is at f2 − f1 = 1
kHz, while another component of interest is at a much higher frequency of
2f2 − f1 = 52 kHz. In this case, the ratio of the fastest (52 kHz) to slowest
(1 kHz) frequencies is 52:1. Using a conventional transient analysis, at least
one period of the slow 1 kHz component must be simulated. To resolve the
fastest signal, a sufficient number of time points must be chosen in one period
of the 52 kHz third-order IM term. The fundamental frequency for the .FOUR
command is 1 kHz since all frequencies of interest are exactly divisible by this
frequency. Thus, the two IM products are the 49th and 52nd harmonics of
the fundamental frequency, respectively. Since Spice2 only provides the first
nine harmonics of a fundamental frequency, these intermodulation terms can-
not be directly calculated from Spice2 and Spice3 must be used. Simulators
based on the harmonic-balance method [14], [15] are ideal for intermodulation
calculations.

When energy storage effects can be ignored, the analysis frequency is not
important. In this case, the intermodulation terms can be calculated from
Spice2 by selecting appropriate frequencies for the two input tones. For the
above example, one can choose f1 = 7 kHz and f2 = 8 kHz in Spice2. The
two third-order IM terms are at 2f1 − f2 = 6 kHz and 2f2 − f1 = 9 kHz.
The slowest varying component is still at f2 − f1 = 1 kHz while the highest
frequency signal is at 9 kHz. With this selection of input frequencies and
a fundamental frequency of 1 kHz for the .FOUR analysis, the third-order
intermodulation terms are the 7th and 9th harmonics of the fundamental
frequency.

1 All frequencies must be exactly divisible by a single common frequency.
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When three or more input signals are present at the input of an amplifier,
more and more beats are obtained. For the case of three input signals, a ‘triple
beat’ results. These components of the output are

VO(TB) =
3
2
a3V1AV2AV3A cos (ω1 ± ω2 ± ω3) t (3.66)

A total of four terms are generated by Equation (3.66). The triple beat dis-
tortion factor TB is defined with equal input amplitudes.

TB =
3
2

a3

a1
V 2

1A (3.67)

Of particular importance is that this value is twice that of IM3. Note
that if the three frequencies are close, the triple beats also lie close to the
fundamentals and may be difficult to filter out.

Another form of distortion is cross modulation. For this case, one of the
two inputs is assumed to be amplitude modulated. Because of the nonlinearity
of the amplifier, the carrier and sidebands of the modulated signal beat with
the other signal, and the modulation of the carrier is transferred to the other
signal. This problem is also brought up in Chapter 9.

3.7 Compression and Intercept Points

For high-frequency circuits distortion is specified in terms of compression and
intercept points using extrapolated small-signal output power levels. The 1 dB
compression point is defined as the input power for which the fundamental
output power is 1 dB below the extrapolated small-signal fundamental power
as shown in Figure 3.12a. Considering the power series expansion in (3.5) the
fundamental term is

b1 ≈ a1ViA +
3
4
a3V

3
iA (3.68)

where gain compression occurs for a3 < 0.
The 1 dB compression point can be calculated from the power series ex-

pansion. The fundamental output power (Pfund), in dBs, is given by

Pfund = 20 log
(

a1ViA − 3
4
|a3|V 3

iA

)
(3.69)

whereas the extrapolated small-signal output power, Pss, (in dBs) is

Pss = 20 log (a1ViA) (3.70)

From the definition of the 1 dB compression point, Pfund = Pss − 1 dB,
we have
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20 log
(

a1ViA − 3
4
|a3|V 3

iA

)
= 20 log (a1ViA) − 1 dB (3.71)

= 20 log
(

a1ViA

1.12

)

Upon simplification, it can be shown than the input voltage amplitude corre-
sponding to the 1 dB compression point is

ViA =

√
0.145

∣∣∣∣a1

a3

∣∣∣∣ (3.72)

(a) (b)

Pout (dB)

Pin (dB)P1dB

IP2
IP3

IM3

IM2

IIP3

OIP2

Pout (dB)

Pin (dB)

1 dB

fundamental

Fig. 3.12. Output power as a function of the input power for a nonlinear circuit.
(a) 1 dB compression point. (b) Second- and third-order intercept points.

The intercept points (IP ) are defined as the intercept of the extrapo-
lated small-signal power of the intermodulation terms with the fundamental
as shown in Figure 3.12b. An important specification for narrow-band sys-
tems is the third-order intercept (TOI or IP3). This is the point at which
the extrapolated small-signal power of the fundamental and the third-order
intermodulation term are identical. In general, the nth-order intercept point,
IPn, for n ≥ 2, is the output power at which the extrapolated small-signal
power of the fundamental and the nth intermodulation term intersect. The
intercept points can be defined in terms of input power (IIPn) or output
power (OIPn).

Problems

3.1. The voltage transfer characteristic for an output stage is shown in Figure
3.13. For a bias input of 2 V and a sinusoidal input voltage of 4 V, estimate
the value of THD in the output voltage waveform.
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1050-5-10
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Fig. 3.13. Voltage transfer characteristic for Problem 3.1.

3.2. A MOS stage is shown in Figure 3.14.

Vo

Vi

+ 10 V

10 kΩ

VT = 1 V

k' = 30 µA/V2

W
L

 = 
40 µm
3 µm

Vi = VGG + ViACosωt

Fig. 3.14. MOS stage for Problem 3.2.

(a) Use Spice to establish the dc transfer characteristic of the stage.
(b) Choose a quiescent input bias voltage and an input sinusoidal amplitude
to achieve ‘just clipping’ of the peaks of the output voltage.
(c) For the conditions of Part (b), use the three-point distortion analysis to
estimate the value of HD2. Verify with Spice.

3.3. A MOS stage is shown in Figure 3.15.
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Vo

Vi

M1

M2

VT = 0.8 V

W
L

 = 2

W
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 = 10

+5 V

k' = 30 µA/V2

Fig. 3.15. MOS stage for Problem 3.3.

(a) Use Spice to establish the dc transfer characteristic of the stage.
(b) Choose a load resistor to approximate the actual stage loading and achieve
an idealized, basic stage.
(c) Choose a quiescent input bias voltage and an input sinusoidal amplitude
to achieve ‘just clipping’ of the peaks of the output voltage. Estimate the
values of HD2 and HD3. Verify with Spice.
(d) For the input conditions of (c) using the dc transfer characteristic of
(a), use a three-point distortion analysis to estimate HD2, and a five-point
distortion analysis to estimate HD2 and HD3. Verify your estimates with
Spice.

3.4. A common-emitter amplifier circuit is shown in Figure 3.16.

+

-

vs

VBB

 Vo

+ 9 V

3 kΩ
1.5 mA

IS = 10 -16 A

βF = 100

Fig. 3.16. Common-emitter amplifier for Problem 3.4.

(a) Determine the value of the input bias voltage.
(b) Estimate the amplitude of the input signal for an output voltage amplitude
of 1.75V.
(c) Estimate the values of HD2 and HD3 for the input of Part (b) using the
power series expansion method. Verify your results with Spice.
(d) If the input amplitude is doubled, what is the output voltage amplitude?
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(e) Estimate the values of HD2 and HD3 for the input of Part (d) and verify
your results with Spice.
(f) Determine the value of IM3 for the condition of Part (b) assuming that
the corrupting signal has an input amplitude of one half of that of the desired
input signal. Verify your result with Spice.

3.5. For the emitter-follower output circuit shown in Figure 3.17,

V1

+ 10 V

1 mA

- 10 V

Vo

10 kΩ

IS = 10 -16 A

βF = 100

Fig. 3.17. Emitter-follower stage for Problem 3.5.

(a) Determine the bias state of the circuit.
(b) For V1 = 4.4 cos(2π104t), estimate the large-signal output response for
Vo(t).
(c) Estimate the harmonic distortion of Vo(t) for the condition of Part (b)
using the five-point method for distortion analysis.
(d) Verify the results of Parts (a) - (c) with Spice.

3.6. For the circuit in Problem 2.3 estimate the harmonic distortion of Vo2(t)
and Vo(t) using the five-point method for an input amplitude of 20 mV. Use
the information from the large-signal output response estimated in Problem
2.3 (c).

3.7. For the circuit in Problem 2.4 estimate the harmonic distortion of Vo(t)
using the five-point method for an input amplitude of 1 V. Use the information
from the voltage transfer characteristic determined in Problem 2.4 (a).

3.8. Derive Equation (3.72) and show that the input voltage corresponding

to the third-order intercept point is given by ViA =
√

4
3

∣∣∣a1
a3

∣∣∣



4

Distortion Generation with Source Resistance
and Nonlinear Beta

4.1 Linearization of a Bipolar Stage Due to Source
Resistance

For a basic MOS stage, whether ‘single-ended’ or differential, the input re-
sistance at low frequencies is extremely large because of the insulated- gate
structure of the device. Therefore, the presence of a finite resistance of a sig-
nal source has no effect on the performance of the stage. Only at very high
frequencies is there an interaction between the signal source and the input
capacitance.

This is not the case, however, for bipolar stages. The distortion generated
by the nonlinear characteristic of base-emitter junctions of these devices is
modified significantly by the presence of a source resistance. To illustrate this,
assume that the signal source is a pure current source with an infinitely large
signal-source resistance. The exponential nonlinearity of the input does not
enter the scene, since the variational collector current output is beta times the
input current. To the extent that beta is a constant, no distortion is present
in the output. In Section 4.4, we consider the case where beta is not constant
with the operating point and this results in distortion.

The linearization of the transfer characteristic of the stage due to the
source resistance is easily appreciated by constructing a series of input V-I
characteristics. A simple, common-emitter BJT stage including a signal source
resistance, RS , is shown in Figure 4.1a. A portion of the exponential IB−VBE

characteristic of the transistor is shown in Figure 4.1b. We wish to construct
the nonlinear characteristic presented to the Thevenin-equivalent, open-circuit
voltage source, Vs, of Figure 4.1a. From this combined characteristic, the input
current to the device can be obtained, which multiplied by beta provides the
output collector current.

We first sketch the inverse input characteristic of the transistor, the VBE−
IB curve shown in Figure 4.1c. The V-I characteristic of the source resistance,
RS , is the straight line shown in Figure 4.1d. The total V-I characteristic
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 Vo

+ VCC

IB

VBE

+

-

RC

RS

Vs

VBE

IB
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IB

RSslope =

(c) (d)
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AB

IB (µA)

VBE (V)

(a) (b)

IB (µA)

VBE (V)

(f )(e)

VBE

IB

Fig. 4.1. (a) A simple CE stage including a signal-source resistance. (b) Exponen-
tial input characteristics of the transistor. (c) Inverse input characteristics of the
transistor. (d) V-I characteristic of the source resistance. (e) The sum of the two
components (c) and (d). (f) The inverse total characteristics shows linearization of
the circuit.
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presented to Vs is the addition of these last two characteristics, since the
current IB is common to both. The sum of the two components is illustrated
in Figure 4.1e. Because the voltage source is assumed to be the independent
variable, the inverse of the total characteristic is used, i.e., the IB −Vs plot as
shown by Curve A in Figure 4.1f. For reference, the original IB − VBE curve
is also included as Curve B. From Figure 4.1e or Figure 4.1f, it is clear that
a ‘linearization’ of the device characteristic is produced. The output collector
current is the input current multiplied by beta. For a constant beta, there is
less distortion generated for the same input signal amplitude in relation to
the situation for RS = 0. Of course, the incremental voltage gain of the stage,
vo/vs, is reduced by the presence of RS . However, as brought out below, for
the same output level, there is less distortion generated when RS is present.

To illustrate the linearization of a BJT stage with RS , a numerical exam-
ple is used with the circuit shown in Figure 4.2a. The Spice input file is given
in Figure 4.2b, in which the transistor parameters are also included. Differ-
ent possible values for RS are indicated by the use of comment lines with a
leading ∗. For RS = 1 Ω and for a dc, quiescent input voltage of 0.78 V to
produce IC = 1.25 mA, the output voltage is 10 V − 4 kΩ(1.25 mA) = 5.0
V. The predicted voltage gain of the stage is 193, and for an input amplitude
of 15 mV, HD2 = 14.5% using (3.16). Values of the node voltages for the
quiescent bias state are given in the Figure 4.2c. The waveform of Vo = V (3)
is given in Figure 4.2d. The small-signal voltage gain of the stage is given
by the results from a .TF run in Figure 4.2c. The large-signal gain and the
output harmonic components with a sinusoidal excitation are obtained from
the Fourier outputs given in Figure 4.2e. The Spice results are Vo = 4.57 V,
a voltage gain of 3.01/.015 = 201, HD2 = 14.1%, and HD3 = 1.3%. Notice
that IC has changed to (10 − 4.57)/4 kΩ = 1.36 mA due to large input drive
conditions (b0 effects).

For RS = 2 kΩ, the dc input voltage must be increased to 0.805 V
(= 0.78 V + IBRS) to maintain the same VBE = 0.78 V. For RS = 2 kΩ,
the Fourier output components are listed in Figure 4.2f. Notice that the volt-
age gain of the stage has decreased from 201 to 98. The predicted gain is
98. The second-harmonic distortion has decreased from 14.1% to 3.69%, by
approximately a factor of four.

4.2 Distortion Reduction with Source Resistance

To obtain a measure of the linearization of a bipolar stage due to RS > 0, we
start with the basic stage shown in Figure 4.2a. It is assumed that operation is
restricted to the normal active region. Therefore, an elementary circuit model
for the BJT can be introduced as in Figure 4.3a. The no-signal, quiescent
transistor state is
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CE STAGE, FIGURE 4.2 
VS 1 0 SIN(0.78 15MV 100KHZ)
*VS 1 0 SIN(0.805 15M 100K)
*VS 1 0 SIN(0.805 30.8M 100KHZ )
.TF V(3) VS
*.TRAN 0.1U 20U
*.PLOT TRAN V(3)
*.PLOT TRAN V(2)
*.FOURIER 100K V(3) V(2)
RS 1 2 1
*RS 1 2 2K
Q1 3 2 0 MOD1
RC 5 3 4K
VCC 5 0 10
.MODEL MOD1 NPN BF=100 IS=1.0E-16
.OPTIONS NOPAGE NOMOD 
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    0.7800    (  2)    0.7800    (  3)    4.9985    (  5)   10.0000

 ****     SMALL-SIGNAL CHARACTERISTICS

      V(3)/VS                                  = -1.933D+02
      INPUT RESISTANCE AT VS                   =  2.070D+03
      OUTPUT RESISTANCE AT V(3)                =  4.000D+03

 MODEL     MOD1    
 IB        1.25E-05
 IC        1.25E-03
 VBE           .780
 VBC         -4.219
 VCE          4.999
 BETADC     100.000
 GM        4.83E-02
 RPI       2.07E+03
 RX        0.00E-01
 RO        1.00E+12
 CPI       0.00E-01
 CMU       0.00E-01
 CBX       0.00E-01
 CCS       0.00E-01
 BETAAC     100.000
 FT        7.69E+17

(b)

(c)

(a)

+

-

vs

VBB Vs = VBB + vs

 Vo

+ VCC

RC

RS

Fig. 4.2. (a) Circuit to illustrate linearization due to RS . (b) Spice input file.
(c) Dc operating point and small-signal characteristics.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   4.570D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   3.007D+00     1.000000   179.995       0.000
     2      2.000D+05   4.229D-01     0.140667    90.006     -89.989
     3      3.000D+05   3.936D-02     0.013092     0.374    -179.621
     4      4.000D+05   2.473D-03     0.000822   -91.676    -271.671
     5      5.000D+05   3.447D-04     0.000115   134.658     -45.337
     6      6.000D+05   2.632D-04     0.000088   114.203     -65.792
     7      7.000D+05   2.546D-04     0.000085   118.293     -61.702
     8      8.000D+05   2.536D-04     0.000084   122.294     -57.700
     9      9.000D+05   2.510D-04     0.000083   126.573     -53.422

     TOTAL HARMONIC DISTORTION =     14.127785  PERCENT

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   4.943D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.463D+00     1.000000   179.998       0.000
     2      2.000D+05   5.400D-02     0.036903    90.009     -89.989
     3      3.000D+05   1.211D-03     0.000828   178.136      -1.862
     4      4.000D+05   7.187D-05     0.000049    98.416     -81.582
     5      5.000D+05   4.468D-05     0.000031   117.818     -62.180
     6      6.000D+05   3.955D-05     0.000027   116.330     -63.668
     7      7.000D+05   3.952D-05     0.000027   117.485     -62.513
     8      8.000D+05   4.029D-05     0.000028   121.362     -58.636
     9      9.000D+05   4.022D-05     0.000027   126.515     -53.484

     TOTAL HARMONIC DISTORTION =      3.691198  PERCENT

RS = 1 Ω, VSA = 15 mV (Tstep = 0.1 µs)

RS = 2 KΩ, VSA = 15 mV (Tstep = 0.1 µs)

(e)

(f)

20151050
0

2

4

6

8

V
(3

) 
(V

)

Time (µs)

(d)

Fig. 4.2. (d) Transient output voltage waveform. (e) Fourier components of the
output voltage for RS = 1Ω. (f) Fourier components of the output voltage for
RS = 2 kΩ.
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VBE = VB (4.1)
VBS = RSIB + VB (4.2)

where IB is the dc value of the base current at the operating point, VB is the
dc value of the base voltage, and VBS is the value of the bias source voltage.
It is assumed in the following development that the bias point is maintained
constant even if RS is changed. Therefore, with changes of RS , VBS will have
to be changed to maintain IB and VB constant. The total input and output
circuit variables, including both bias and incremental values, are written as
follows:

Ib = IB + ib (4.3)
Vb = VB + vb

Vo = VO + vo = VCC − RCIc

Ic = IC + ic

From the circuit model of Figure 4.3a,

Ic = βIb (4.4)

= IS exp
(

Vb

Vt

)

In terms of the input diode of the circuit model,

Ib =
IS

β
exp

(
Vb

Vt

)
(4.5)

Note that β is defined as the dc beta, cf., Section 1.4.1. The analysis procedure
is to write the KVL equation at the input, to introduce a series expansion
for the logarithmic relation of Vb and Ib, and to employ a technique called
harmonic balance to obtain expressions for the harmonics generated in Ib and
Vb when the signal input is a sinusoid. At the input

vs + VBS = (IB + ib)RS + VB + vb (4.6)

For no input signal, VBS = IBRS + VB. Therefore,

vs = ibRS + vb (4.7)

vb is logarithmically related to ib. For the total variables,

IB + ib =
IS

β
exp

(
VB + vb

Vt

)
(4.8)
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+

-

Ib

Vbe

Vo

+ VCC

RC

RS

Vs

Ib = IB + ib

Vs = VBS + vs

Vbe = VBE + vbe

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   4.767D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   2.981D+00     1.000000   179.997       0.000
     2      2.000D+05   2.260D-01     0.075824    90.007     -89.990
     3      3.000D+05   9.871D-03     0.003312   179.112      -0.885
     4      4.000D+05   7.003D-04     0.000235    93.512     -86.485
     5      5.000D+05   2.520D-04     0.000085   144.005     -35.992
     6      6.000D+05   1.452D-04     0.000049   116.785     -63.212
     7      7.000D+05   1.527D-04     0.000051   118.427     -61.570
     8      8.000D+05   1.525D-04     0.000051   122.084     -57.913
     9      9.000D+05   1.514D-04     0.000051   126.589     -53.408

     TOTAL HARMONIC DISTORTION =      7.589709  PERCENT

RS = 2 KΩ, VSA = 30.8 mV (Tstep = 0.1 µs)

RS = 2 KΩ, VSA = 30.8 mV (Tstep = 0.1 µs)

(c)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =   7.788D-01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.573D-02     1.000000     0.002       0.000
     2      2.000D+05   1.131D-03     0.071864    90.003      90.000
     3      3.000D+05   4.955D-05     0.003149   179.267     179.265
     4      4.000D+05   3.226D-06     0.000205    93.428      93.426
     5      5.000D+05   1.057D-06     0.000067   147.990     147.988
     6      6.000D+05   5.867D-07     0.000037   114.121     114.119
     7      7.000D+05   6.233D-07     0.000040   119.930     119.927
     8      8.000D+05   5.894D-07     0.000037   124.055     124.053
     9      9.000D+05   5.765D-07     0.000037   126.356     126.354

     TOTAL HARMONIC DISTORTION =      7.193342  PERCENT

(b)

(a)

Ic = ISexp(Vbe
Vt

) = βIb

Fig. 4.3. (a) Equivalent circuit of CE stage with simple BJT model. (b) Fourier
components of the output voltage. (c) Fourier components of the transistor input
voltage.
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=
[
IS

β
exp

(
VB

Vt

)]
exp

(
vb

Vt

)

= IB exp
(

vb

Vt

)

Dividing through by IB , we obtain

1 +
ib
IB

= exp
(

vb

Vt

)
(4.9)

vb = Vt ln
(

1 +
ib
IB

)

This expression is used in the (variational) circuit equation (4.7).

vs = ibRS + Vt ln
(

1 +
ib
IB

)
(4.10)

It is next assumed that the variational current change is less than the dc
value, ib � IB . A series expansion of the ln function has the form

ln(1 + x) = x − 1
2
x2 +

1
3
x3 − . . . (4.11)

This leads to

vs = ibRS + Vt

[
ib
IB

− 1
2

(
ib
IB

)2

+
1
3

(
ib
IB

)3

− . . .

]
(4.12)

The variational signal source is assumed to be a single-tone sinusoid with an
amplitude VsA and a radial frequency ω1.

vs = VsA cos ω1t (4.13)

We now express ib as a sum of the Fourier harmonic components. For (4.13),
since no energy storage is included, only cosine terms are needed.

ib = bi1 cos ω1t + bi2 cos 2ω1t + bi3 cos 3ω1t + . . . (4.14)

The above series expression for ib is used in the circuit equation, Equation
(4.12), and the required squaring, cubing, etc. is accomplished. The princi-
ple of harmonic balance states that each harmonic must satisfy the circuit
equation independently. Thus, a set of equations is obtained from the circuit
equation, one for each harmonic.

For the fundamental, if contributions from higher-order terms are ne-
glected,

VsA cos ω1t = RSbi1 cos ω1t + Vt
bi1

IB
cos ω1t (4.15)



4.2 Distortion Reduction with Source Resistance 81

This equation yields

bi1 =
VsA

RS + Vt

IB

(4.16)

=
IB

1 + E

VsA

Vt
(4.17)

A parameter E is introduced.

E = RS
IB

Vt
= RS

gm

β
=

RS

rπ
(4.18)

where gm = IC/Vt and rπ = β
gm

. Note that beta is assumed constant; there-
fore, βac = β. The parameter E is related to the voltage gain from vs to
vo.

av =
vo

vs
= −gmRC

1 + E
(4.19)

E is also comparable to the loop-gain parameter of feedback amplifiers. This
is brought out in the next chapter.

For the second harmonic, the left-hand side of Equation (4.12) is zero since
the excitation of the stage is a single sinusoid.

0 =
(

RS +
Vt

IB

)
bi2 cos 2ω1t −

1
2

Vt

I2
B

(bi1 cos ω1t + . . .)2 + . . . (4.20)

The cos2 ω1t term, on the basis of cos2 x = 1
2 cos 2x + 1

2 , produces a
second-harmonic term as well as a dc term that can be neglected in this
equation for only second harmonics. Higher-order even terms also produce
second-harmonic contributions. It is assumed that the input excitation and the
variational response is small relative to the dc state; therefore, these higher-
order terms can be neglected for this analysis. However, in actual practice
the higher-order terms do produce significant contributions. (In general, the
harmonic equations must be solved simultaneously.) In the example below,
an inspection of the dc and fundamental components of output voltages and
currents in a Spice simulation shows when the higher-order terms are appre-
ciable.

The solution of Equation (4.20), using (4.17) for bi1, yields

bi2 =
1
4

IB

(1 + E)3

(
VsA

Vt

)2

(4.21)

For the third harmonics, contributions come from the first term directly,
from the beat sum in the second term and from the cube of the fundamental
in the third. Again, the contributions for higher-order terms are neglected.
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(It can be asked why this beat term is not neglected along with the other
higher-order terms. In general, bi1 > bi2 > bi3 · · ·. Therefore, the first beat
term must be included.) From the circuit equation,

0 =
(

RS +
Vt

IB

)
bi3 cos 3ω1t (4.22)

−Vt

2
1
I2
B

bi1bi2 cos(ω1t + 2ω1t) (4.23)

+
Vt

3
1
I3
B

b3
i1

1
4

cos 3ω1t (4.24)

The result using (4.17) and (4.21),

bi3 =
1
24

(1 − 2E)IB

(1 + E)5

(
VsA

Vt

)3

(4.25)

From the expressions above, the harmonic-distortion parameters for the
CE stage with RS > 0 can be found.

HD2 =
|bi2|
|bi1|

=
1
4

1
(1 + E)2

VsA

Vt
(4.26)

=
1

(1 + E)2
HD2

∣∣∣∣
RS=0

HD3 =
|bi3|
|bi1|

=
1
24

| 1 − 2E |
(1 + E)4

(
VsA

Vt

)2

(4.27)

=
| 1 − 2E |
(1 + E)4

HD3

∣∣∣∣
RS=0

The possibility of a cancellation of HD3 for the CE stage should be noted if
E = 1

2 .
The harmonic components of the variational collector current, ic, are sim-

ply those above for ib multiplied by β. The components of the output voltage,
vo, are found by multiplying by −βRC .

At times it is necessary to inspect the harmonics of the transistor input
voltage. This is simply accomplished using the input circuit equation.

vb = vs − ibRS (4.28)

For the fundamental component, vb1,
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vb1 = VsA −
RSIB

VsA

Vt

1 + E
(4.29)

=
VsA

1 + E

For the second harmonic, vb2,

vb2 = −RSbi2 (4.30)

= −1
4
Vt

E

(1 + E)3

(
VsA

Vt

)2

The second-harmonic factor for the base voltage is

HD2 =
1
4

E

(1 + E)2
VsA

Vt
(4.31)

Notice that this is E different than the corresponding value for the input
current and the output variables.

Similarly, the third harmonic follows from vb3 = −RSbi3. The third har-
monic factor for vb is that of the input current, ib, multiplied by E.

We return now to the circuit example of the last section and Figure 4.2a.
For RS = 2 kΩ, E = 0.967, the predicted voltage gain of the stage is 98.
The predicted value of HD2 from Equation (4.26) is 3.75%. The simulation-
value from Figure 4.2f is 3.69%. The predicted value of HD3 is 0.087%, while
the simulation yields 0.083%.

On the basis of (4.19), VsA should be increased by (1 + E) = 1.967 to
produce the same fundamental output voltage with RS = 2 kΩ relative to the
case for RS = 1 Ω. Therefore, VsA should be 29.5 mV. This value, however,
only produces a fundamental output amplitude of 2.87 V, rather than the 3.02
V value for RS = 1 Ω, due to compression effects of higher-order terms.

If the value of the sinusoidal input is increased to 30.8 mV, approximately
the same output level is attained as for RS = 1. The Fourier components of
the output voltage are given in Figure 4.3b. Notice that the distortion factors
are reduced by approximately (1 + E) in relation to the values for RS = 1 Ω
and at the same output level. Clearly, the voltage gain has been reduced, as
has the distortion. The linearization of the stage has been accomplished at
the expense of voltage gain.

Also notice in Figure 4.3b that the values of the dc component of the
output voltage has changed from 4.57 V for RS = 1 Ω to 4.77 V. This effect
is the result of higher-order terms in the nonlinearity introducing expansion
and contraction components in the lower harmonics.

For completeness, the harmonic components for the transistor input volt-
age are given in Figure 4.3c for 30.8 mV drive and RS = 2 kΩ.

In the next chapter, the effects of negative feedback on distortion are
considered. It is pointed out that the same reduction of distortion is obtained
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with reduction of voltage gain whether the reduction is due to the presence of
RS or the application of negative feedback. In fact, approximately the same
expressions for HD2 and HD3 are obtained with the proper substitution of a
modified source resistance for the feedback resistance.

4.3 The ECP with Source Resistance

If an ECP is presented with a signal-source resistance, the small-signal voltage
gain of the stage from the open-circuit voltage source to the output voltage
is reduced. In addition, a linearization of the transfer characteristic is also
produced with an attendant lowering of harmonic-distortion generation. The
expressions for distortion reduction developed in the last section cannot be
used directly because the even terms of the power series expansion are not
present if the ECP is biased in a symmetric manner, i.e., if common-mode
biasing is used.

The development of the expressions for the distortion components and
HD3 again use a series expansion involving logarithm expansions. Initially,
RS is assumed equal to zero. For the ECP of Figure 4.4a, the (differential-
mode) input voltage, is

V1 = VBE1 − VBE2 (4.32)

The base-emitter voltages have the general form

VBE = VBB + vbe1 (4.33)

where VBB is the (common-mode) quiescent bias voltage and vbe is the incre-
mental variable. Using this form in (4.32), we obtain

V1 = vbe1 − vbe2 (4.34)

The exponential base-current, emitter-base voltage characteristic of the
BJT is now introduced.

Ib = IB + ib (4.35)

=
IS

β
exp

(
VBE

Vt

)

=
IS

β
exp

(
VBB + vbe

Vt

)

=
[
IS

β
exp

(
VBB

Vt

)]
exp

(
vbe

Vt

)

= IB exp
(

vbe

Vt

)
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 V1

 Q1  Q2

RC1 RC2

+ VCC

Ic1 Ic2
Ib1 Ib2

IEE

EMITTER-COUPLED PAIR WITH RS
V1 1 0 0 SIN(0 10MV 100K)
*V1 1 0 25M SIN(0 25M 100K)
*.TF V(6) V1
.TRAN 0.1U 20U
.PLOT TRAN V(6)
.FOURIER 100K V(6)
RB1 1 2 1K
Q1 3 2 4 MOD1
Q2 6 7 4 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
RC1 5 3 10K
RC2 5 6 10K
VCC 5 0 10
RB2 7 9 1K
V2 9 0 0
IEE 4 8 1M
VEE 8 0 -10
.OPTIONS NOMOD RELTOL=1E-6
.END

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(6)   
 DC COMPONENT =   5.049D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   7.947D-01     1.000000     0.000       0.000
     2      2.000D+05   1.734D-05     0.000022    82.154      82.154
     3      3.000D+05   1.394D-03     0.001755    -0.149      -0.148
     4      4.000D+05   7.041D-06     0.000009   -84.741     -84.740
     5      5.000D+05   7.131D-06     0.000009   -43.007     -43.006
     6      6.000D+05   3.932D-06     0.000005   -53.342     -53.342
     7      7.000D+05   3.891D-06     0.000005   -67.600     -67.600
     8      8.000D+05   4.729D-06     0.000006   -64.133     -64.133
     9      9.000D+05   4.884D-06     0.000006   -52.731     -52.731

     TOTAL HARMONIC DISTORTION =      0.175482  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(6)   
 DC COMPONENT =   5.049D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.931D+00     1.000000     0.000       0.000
     2      2.000D+05   3.550D-05     0.000018    79.693      79.694
     3      3.000D+05   2.096D-02     0.010857    -0.032      -0.031
     4      4.000D+05   1.599D-05     0.000008   -80.371     -80.371
     5      5.000D+05   2.010D-04     0.000104    -4.088      -4.088
     6      6.000D+05   1.255D-05     0.000007   -57.390     -57.390
     7      7.000D+05   1.278D-05     0.000007   -62.019     -62.018
     8      8.000D+05   1.415D-05     0.000007   -62.294     -62.294
     9      9.000D+05   1.448D-05     0.000008   -53.010     -53.009

     TOTAL HARMONIC DISTORTION =      1.085716  PERCENT

V1A =10 mV (Tstep = 0.1 µs)

V1A =25 mV (Tstep = 0.1 µs)

(c)

(d)

(a) (b)

RB1
RB2

Fig. 4.4. (a) An EC pair with source resistance. (b) Spice input file. (c) and (d)
Fourier components of output voltage.
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where Ib is the total value of the base current, IB is the quiescent value and
ib is the incremental value. The first and last expressions can be manipulated
to obtain

1 +
ib
IB

= exp
(

vbe

Vt

)
(4.36)

vbe = Vt ln
(

1 +
ib
IB

)
(4.37)

The ln function can be expanded and only the first few terms retained for
ib

IB
� 1.

ln(1 + x) = x − 1
2
x2 +

1
3
x3 − . . . (4.38)

Using this in (4.37) and (4.34), we obtain

V1 = Vt

[
(ib1 − ib2)

IB
− 1

2
(i2b1 − i2b2)

I2
B

+
1
3

(i3b1 − i3b2)
I3
B

+ . . .

]
(4.39)

We now note that ib1 = −ib2. This is verified from

Ic1+Ic2 = (IC1 + ic1) + (IC2 + ic2) = IEE (4.40)
ic1+ic2 = βib1 + βib2 = 0
ib1=−ib2

The result is

V1 = Vt

[
2
(

ib1
IB

)
+

2
3

(
ib1
IB

)3

+ . . .

]
(4.41)

Note that the even terms of the two series cancel. Only the odd terms remain.
For RS > 0, the differential-mode, input voltage of the ECP of Figure 4.4a

must now include the voltage drops across the two source resistances, RS .

V1 = RS(ib1 − ib2) + Vt ln
(

1 +
ib1
IB

)
− Vt ln

(
1 +

ib2
IB

)
(4.42)

As in the earlier development, series expansions of the ln functions are
introduced. For common-mode biasing, ib1 = −ib2, and the even terms of the
series cancel. The result has the form

V1 = 2
(

RS +
Vt

IB

)
ib1 + 0 +

2
3
Vt

(
ib1
IB

)3

+ . . . (4.43)

A pure input sinusoid is assumed and the base current is expressed as a
Fourier series.
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V1 = V1A cos ω1t (4.44)

ib1 = bi1 cos ω1t + bi2 cos 2ω1t + bi3 cos 3ω1t + . . . (4.45)

The harmonic-balance procedure is next used starting with the fundamen-
tal terms. Compression and expansion terms from the cubic and higher-order
odd terms are neglected.

bi1 =
1
2
IB

V1A

Vt

1 + E
(4.46)

where the earlier-defined E parameter is again used.

E = RS
IB

Vt
(4.47)

=
RS

rπ

It can be seen by inspection of (4.43) that all even-order terms are not
present. When V1 from (4.44) is incorporated into (4.43), higher-order odd
terms produce potential even components. However, these components equate
to zero. In particular, bi2 = 0.

The third-order term from (4.43) and (4.44) is

bi3 =
1
96

IB

(
V1A

Vt

)3

(1 + E)4
(4.48)

HD3 for the ECP with RS > 0 is

HD3 =
|bi3|
|bi1|

(4.49)

=
1
48

1
(1 + E)3

(
ViA

Vt

)2

=
1

(1 + E)3
HD3

∣∣∣∣
RS=0

In the last expression, HD3 from (2.22) without a compression term is
used. The expressions of (4.49) should be compared with (4.27) for the CE
stage with RS .

Often symmetrical signal-source resistances are not used. That is, a second
resistance equal to the signal-source resistance is not present or added to the
‘other’ side of the ECP. If the transistors are unilateral with no external or
internal feedback, the above results still hold. The source resistance can be
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assumed to be symmetrically divided into two equal resistances, RS

2 . The

value of the E parameter is found from E =
RS
2

rπ
. In effect, the input circuit-

equation loop consists of V1, two external resistances of RS

2 and the ECP
differential-mode input.

For a numerical example, circuit and device values for the ECP of Fig-
ure 4.4a are given in the Spice input file of Figure 4.4b. The amplitude of
the input sinusoid is 10 mV or 25 mV, and the value of the two equal source
(base) resistances, RB1 and RB2, is 1 kΩ. For the 10 mV input, the Fourier
components of the output voltage are given in Figure 4.4c. HD3 is equal to
0.18%. For the circuit, the value of the E parameter is 0.19. The estimated
value of HD3 from (4.49) is 0.18%. The nonzero values of the even harmonics
are due to ‘numerical noise’ of the time integration in Spice.

If the amplitude of the input is increased to 25 mV, the estimated value of
HD3 is 1.15%. The Fourier components for this drive are given in Figure 4.4d.
HD3 is 1.09%. Contributions from the higher-order terms are now present in
the value of the fundamental. This can be seen from a comparison of the ratio
of the input amplitudes and the amplitudes of the output fundamentals, i.e.,
from the values of the large-signal gain.1

4.4 Nonlinear Beta and Distortion

As brought out in Section 4.1, output distortion due to the exponential non-
linearity of the idealized bipolar transistor decreases as the resistance of the
source increases. In the limit, the source becomes a pure current source, and
harmonic distortion due to the input nonlinearity disappears. Unfortunately,
another nonlinearity is present in bipolar transistors. The short-circuit cur-
rent gain (beta) of the transistor is not constant. Therefore, for a pure current
source input, the output current and output voltage excursions are not am-
plified versions of the input excursions.

In Figure 4.5a, two plots of IC versus IB are shown. If beta is a constant,
β = β0, the collector current is a linear relation of the input current, as illus-
trated by the straight Line A in the figure. For an actual transistor, the current
transfer characteristic is more like Curve B in the figure. In Figure 4.5b, the
difference between the two curves is shown. It is clear that for Curve B, an
input signal with equal positive and negative excursions about an operating
point produces an output with unequal excursions. Corresponding plots of the
dc beta with collector current are given in Figures 4.5c and d. In Figure 4.5c,
log (beta) versus log (IC) is plotted. In Figure 4.5d, beta versus log (IC) is
plotted with a reduced range for IC .

The above distortion situation is readily studied with a Spice simulation.
The circuit is shown in Figure 4.6a. The input circuit file is also given in
1 The large-signal gain is defined as the ratio of the amplitude of the fundamental

component of the output to the amplitude of the sinusoidal input signal.
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Fig. 4.5. (a) Plots of collector current as a function of base current. (b) Difference
of the two collector currents A and B. (c) Log-log plot of the dc beta as a function
of the collector current. (d) Plot of dc beta as a function of the collector current
(log scale).
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Figure 4.6a. The circuit is a parallel combination of two simple common-
emitter stages each with a current-controlled, current source input consisting
of a dc component and a sinusoidal variation. For transistor Q1, the .MODEL
definition includes several new parameters. These parameters, described be-
low, introduce a nonlinear modeling of beta. The dc current transfer char-
acteristic for Q1 is that presented as Curve B of Figure 4.5a. The transfer
characteristic of transistor Q2, which has a constant β, is that of Curve A in
Figure 4.5a. In Figure 4.6b, the harmonic components of the output current
of Q1 are given for a dc bias input current of 50 µA and a sinusoidal input
current with an amplitude of 40 µA. The harmonic distortion, 6.2%, is cer-
tainly not negligible. Further details of this example are introduced in Section
4.5.

Many factors can produce the nonlinear behavior of beta. Two of the ma-
jor ones are introduced in this section to illustrate the situation. In Figure
4.7, a semilog plot is given of IB and IC versus VBE of a small-sized bipo-
lar transistor, in the normal operating region (reverse-biased collector-base
junction and forward-biased emitter-base junction). For an idealized situation
with beta constant, both curves are linear and have the same slope of value
1/Vt. For an actual device, the base current breaks away from the linear region
at a value of IC ≈ IL and approaches with ever lower current a new linear
curve with an asymptote slope of 1/(2Vt). This is due to the dominance at
low base currents of a component due to hole-electron recombination in the
emitter-base junction itself [7]. At high currents, high-level injection effects at
the emitter-base junction cause the collector current to break away from the
linear region at a value of IC ≈ IK and approaches a new linear curve with a
slope of 1/(2Vt) [6], [7]. The combination of these effects leads to the curves
of beta versus IC as shown in Figure 4.5c or Figure 4.5d. (Note that a log
scaling is used for IC .)

The base current can be modeled as having two components.

IB = IB1 + IB2 (4.50)

=
IS

β0
exp

(
VBE

Vt

)
+ ISE exp

(
VBE

NEVt

)

IB1 represents the base current that flows to support the hole-electron recom-
bination in the base region, outside of the junction regions, and β0 is assumed
to be a constant. The second term represents the junction recombination men-
tioned above. The latter has a factor of NE in the exponent factor. In this
book, NE = 2 is used for convenience. Another parameter, ISE , is also used
to characterize this component. In Spice, the corresponding parameters are
denoted NE and ISE. Both Spice model parameters are used in the input
file of Figure 4.6a for the MOD1 model.

At high currents, IB1 is dominant, while at low currents IB2 is dominant.
The two base-current components are defined to be equal at a value of IC = IL,
which leads to the following relation.
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NONLINEAR BETA, FIGURE 4.6
I1 0 1 50U SIN( 50U 40U 100K)
.TRAN 0.1U 20U
.PLOT TRAN I(VC1) I(VC2)
.FOUR 100K I(VC1)
*.DC I1 5U 0.1MA 5UA
*.PLOT DC I(VC1)  I(VC2) (0,10M)
*.PLOT DC V(8,2) (-1,1)
V1 1 0 0
F1 0 3 V1 1
Q1 2 3 0 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=230 
+ISE=2E-12 NE=2 
+IKF=10M
RC1 4 2 .5K
VC1 5 4 0
VCC 5 0 10
F2 0 6 V1 1
Q2 8 6 0 MOD2
VC2 5 7 0
RC2 7 8 0.5K
.MODEL MOD2 NPN BF=100 IS=1E-16
.OPTIONS NOMOD NOPAGE
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

+ VCC + VCC

I1 V1 F1 F2

RC1RC2

+

-

+

-
VC1 VC2

Q1 Q2

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC1)  
 DC COMPONENT =   4.771D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   3.674D-03     1.000000     0.002       0.000
     2      2.000D+05   2.278D-04     0.061996    90.002      90.001
     3      3.000D+05   1.505D-05     0.004097   179.507     179.505
     4      4.000D+05   3.973D-06     0.001081    90.573      90.571
     5      5.000D+05   3.099D-06     0.000843   177.901     177.899
     6      6.000D+05   1.317D-06     0.000358   -92.111     -92.113
     7      7.000D+05   5.313D-07     0.000145    11.930      11.928
     8      8.000D+05   3.275D-07     0.000089   101.821     101.819
     9      9.000D+05   1.772D-07     0.000048   147.876     147.874

     TOTAL HARMONIC DISTORTION =      6.214777  PERCENT

(a)

(b)

Fig. 4.6. (a) Circuit and Spice input file for studying distortion due to nonlinear
beta. (b) Fourier components of the output current.



92 4 Distortion Generation with Source Resistance and Nonlinear Beta

IC = IK

IC = IL

ln I

ln IS

Ideal

Ideal

IC

IB

slope = 1
2VT

slope = 1
2VT

slope = 1
VT

VBE

(linear scale)

Fig. 4.7. Plot of collector and base currents (log scale) as a function of the base-
emitter voltage (linear scale).

IL =
(β0ISE)2

IS
(4.51)

β0 is the value of beta well above IL.
The general value of dc beta is labeled β. If only the base current and the

normal collector current are considered, β can be written as

β =
IC

IB
(4.52)

=
IC

IB1 + IB2

=
IS exp

(
VBE

Vt

)
IS

β0
exp

(
VBE

Vt

)
+ ISE exp

(
VBE

2Vt

)

This can be manipulated to obtain

β =
β0

1 +
√

IL

IC

(4.53)

where IL is as given above in Equation (4.51). A plot of the log of Equation
(4.53) versus the log of IC , obtained from a Spice simulation, is shown in
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Figure 4.8a. Also shown are the low-current and high-current asymptotes of
(4.53). Notice that because of the square-root dependency with IC , the beta
curve does not approach quickly the low-current asymptote and constant beta
(horizontal) asymptote for currents well removed from IL. This is in marked
contrast to the situation for the bode plots of circuit analysis where a square-
law relation for the magnitude functions is present and the asymptotes are
approached quickly as the variable departs from the ‘corner frequencies’. At
IL, beta is down by a factor of two from the maximum value (not the square
root of two for bode plots).

-1.5-2.0-2.5-3.0-3.5
1.8

1.9
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2.4

Low current
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High current
asymptote

IC = IL

β0 = 230 = βF

IL = 2.12 mA
nE = 2. 0

log (β)

log (IC)

(0.32 mA,  β = 64)

(31.6 mA,  β = 183)

-1.5-2.0-2.5-3.0-3.5
1.6
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2.2

2.4 Low current
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High current
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IC = IK
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log (β)
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(31.6 mA,  β = 55)

(b)

(a)

β = 
β0

1 + IL

IC

β = 
β0

1 + IC

IK

Fig. 4.8. (a) Plot of Equation (4.53) versus collector current (log scale). (b) Plot
of Equation (4.56) versus collector current (log scale).
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For large collector currents, IC breaks away from the linear variation of
lower currents as shown in Figure 4.7. The mid-current variation has a linear
asymptote with a slope of 1/Vt. However, the curve for the new high cur-
rent region approaches a linear asymptote (for a semilog plot) with a slope
of 1/(2Vt). As mentioned earlier, the phenomena which produces this effect
is high-level injection into the base region from the emitter region. For large
injection, the minority carrier density can no longer be considered negligible
with respect to the majority carriers. In effect, the diffusion constant for mi-
nority carriers is reduced by two. Hence, there is a change in the slope relation
to 1/(2Vt).

It is not possible to model the collector current as the sum of two compo-
nents as is done for the base current. Instead we note that for large currents,
IC and IB have the following asymptotic behavior:

IC ∼ exp
(

VBE

2Vt

)
(4.54)

IB ∼ exp
(

VBE

Vt

)

From Equation (4.54), it is seen that at large currents β = IC/IB is inversely
proportional to IC .

β ∼
exp

(
VBE

2Vt

)

exp
(

VBE

Vt

) ∼ 1

exp
(

VBE

2Vt

) ∼ 1
IC

(4.55)

Therefore, the overall variation of beta considering only the high current ef-
fects for IC can be modeled as

β =
β0

1 + IC

IK

(4.56)

where β0 is the value of β for values of IC well below IK , and IK is a constant.
A Spice plot of the dc beta with the log of IC for (4.56) is shown in Figure
4.8b, (only the mid-current component for IB, IB1, is included.) As illustrated,
IK is defined as the collector current where the high-current asymptote and
constant-beta (horizontal) asymptote meet. (IKF is the corresponding beta
parameter in Spice, cf., Figure 4.6a). Because of the inverse linear relation
in Equation (4.55), the actual curve approaches the asymptotes quicker with
variation of IC away from the ‘corner current,’ IK , than is the case for the
low-current situation considered above.

When both base current and collector effects are present, it can be shown
that [8]
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β =
β0

1 + IL

IC

(NE−1)
NE

(
1 + IC

IK

) 1
NE + IC

IK

(4.57)

For NE = 2,

β =
β0

1 +
√

IL

IC
+ IL

IK
+ IC

IK

(4.58)

≈ β0

1 +
√

IL

IC
+ IC

IK

A Spice plot of the log of beta with the log of IC is given in Figure 4.8c.
Note that there are now three regions: one for the low-current region, one for
the middle region where beta may be almost flat with IC , and one for the
high-current region. When IL and IK are at least several decades of magni-
tude apart, a flat beta region is obtained, and the maximum value of beta
is unambiguous, βmax = BF ; however, when IL and IK are close, as is the
situation in Figure 4.8c, the midregion asymptote is not clear, and appro-
priate values for BF, ISE, and IKF for a Spice simulation are not easily
established. The usual procedure is to obtain, for a transistor type, curves
of dc beta with IC plotted on log-log coordinates. The low- and high-current
regions are investigated relative to possible asymptotic slopes. If a substantial
flat portion of the beta curve exists, the value of βmax = BF is apparent.

β0 = 230 = βF

IL = 2.12 mA

nE = 2. 0
IK = 10 mA

 
 **** BIPOLAR JUNCTION TRANSISTORS

             Q1        Q2     
 MODEL     MOD1      MOD2   
 IB        5.00E-05  5.00E-05
 IC        5.01E-03  5.00E-03
 VBE          0.826     0.816
 VBC        -13.673   -13.684
 VCE         14.499    14.500
 BETADC     100.129   100.000
 GM        1.45E-01  1.93E-01
 RPI       6.26E+02  5.17E+02
 BETAAC      90.825   100.000

-1.5-2.0-2.5-3.0-3.5
1.5

2.0

2.5

(0.31 mA,  β = 63)

IL IK

log (IC)

log (β)

(31.6 mA,  β = 49)

β = 101

β = 
β0

1 + IL

IC
 + IC

IK

Fig. 4.8. (c) Plot of Equation (4.58) versus collector current (log scale) and model
parameter values determined by Spice.
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If the middle portion of the beta curve is rounded, a trial choice of a
flat portion, with a value of BF greater than βmax, the maximum value of
beta, is made. Note from the example above that the maximum value of β is
approximately 100 while the value of BF is 230. At a low collector current
value, well in the lower region, the value of β is noted and Equation (4.53)
and then (4.51) are used to determine IL and ISE . Similarly, a value well in
the upper region is chosen, and Equation (4.56) is used to obtain a value of
IK = IKF . A Spice run can then be used to determine if βmax is obtained.
If not, an iteration of the above procedure is necessary.

The Spice BJT parameters that were used to generate the curve of Figure
4.8c are BF = 230, IKF = 10 mA, IS = 1 × 10−16 A, NE = 2.0, and
ISE = 2 × 10−12 A (IL = 2.12 mA). Also shown in the upper right-hand
corner of the figure are the model values determined by Spice. Note that for
the transistor of interest, Q1, the dc beta equals 100 at the operating point,
while the incremental or ac beta equals 90.8. Transistor Q2 has a constant
beta of 100.

4.5 Example of Distortion due to Beta(IC)

A single-stage amplifier is used as an example to illustrate the generation
of distortion due to beta variations. The circuit is a simple CE stage with
a current source input. The circuit values and device parameters are given
in the earlier-used Spice input file, Figure 4.6a. The parameters of beta are
those which pertain to Figure 4.8c: BF = 230, IKF = 10 mA, NE = 2.0,
and ISE = 2 × 10−12 A (IL = 2.12 mA). The plot of the collector current
versus base current is given in Figure 4.9.

0.100.080.060.040.020.00
0

2

4

6

8

10
β = β0

IC (mA)

IB (mA)

Fig. 4.9. Plot of collector currents versus base current with and without nonlinear
beta. The values used for distortion calculation are shown by the dotted lines.

The signal-source conductance is assumed very small and can be neglected.
The dc input current is IB = 50 µA. From Figure 4.9, the corresponding value
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of IC is 5.0 mA. For a sinusoidal input signal amplitude of 40 µA, the collector
current excursion is very large. The Spice output harmonics are given in Figure
4.6b. From these results, HD2 = 6.2% and HD3 = 0.41%.

It is interesting to compare the Spice results with a simple three-point
distortion analysis. From (3.34) in Section 3.4, the second-harmonic distortion
factor is

HD2 =
1
2

(
IC2 − 2IC0 + IC4

IC2 − IC4

)
(4.59)

where a translation to collector-current maximum, mid, and minimum values
has been made. For the sinusoidal input amplitude of 40 µA, the IC values
from Figure 4.9 are 8.24 mA, 5.01 mA, and 0.85 mA. The estimated value for
HD2 is 6.2%.

If only the log(β) versus log(IC) curve is available, in contrast to a beta-
versus IB curve, a trial-and-error procedure usually is necessary to estimate
the values of collector current at the extremes of the input drive.

The upper harmonics are not available from the simplified analysis used
above. An alternative analysis, the differential-error analysis technique is in-
troduced in Chapter 6. It is also very simple, uses small-signal values in con-
trast to dc (total) values, and also provides an estimate of HD3.

Problems

4.1. A common-emitter stage with a finite source resistance is shown in Figure
4.10. The bias state of IC = 2 mA is maintained for any value of RS .

+10 V

RS

Vo

2 mA

   V1 

1 kΩ

IS = 10 -16 A

βF = 100

Fig. 4.10. Common-emitter stage for Problem 4.1.

(a) The input voltage is V1 = VBB + V1A cos ω1t. VBB establishes the given
quiescent collector current. For V1A = 30 mV, determine the value of RS to
achieve a fundamental output voltage amplitude of 2 V.
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(b) Determine HD2 for the conditions of Part (a).
(c) For RS = 1 kΩ and a fundamental output voltage amplitude of 1 V,
determine the values of V1A and HD2.

4.2. A bipolar stage is shown in Figure 4.11.

RS

Vo

IS = 10 -16 A

βF = 100
-5 V

+5 V

RB

V1

1 mA

2 kΩ

Fig. 4.11. Bipolar stage for Problem 4.2.

(a) Develop for the stage an idealized, basic configuration.
(b) For RS = 0.5 Ω, estimate HD2 and HD3 for a sinusoidal input amplitude
of 15 mV. The input bias voltage must be chosen to achieve the specified bias
state of the stage, IC = 1 mA. Verify with Spice.
(c) For RS = 0.5 Ω, what is the practical maximum of input amplitude to
achieve a reasonable output voltage waveform.
(d) For RS = 1.5 kΩ, estimate HD2 and HD3 with an input amplitude to
achieve the same fundamental output voltage as in (b). Compare results.
Note that the input bias voltage must be also adjusted to maintain the same
quiescent collector current.
(e) For RS = 100 kΩ, and with IKF = 8 mA and IL = 0.04 mA, determine the
THD for the stage if the input amplitude is adjusted to achieve ‘just clipping’.
The quiescent bias state of the circuit should remain the same as that of Part
(b).

4.3. A common-emitter stage including a signal-source resistance is shown in
Figure 4.12.
(a) For RS = 100 kΩ and with Vs = VBB + VsA cos ω1t, determine HD2 and
HD3 if the quiescent bias state is IC = 0.5 mA and the fundamental output
voltage amplitude is 4 V. Use Spice as appropriate.
(b) For RS = 10 kΩ, re-establish the same quiescent bias state and determine
the necessary input drive to achieve the same fundamental output voltage am-
plitude. Compare the values of HD2 and HD3 for the transistor parameters
of Figure 4.12 and for the case where beta is constant at the value of βF .
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+10 V

RS

Vo

0.5 mA

Vs

IS = 10 -16 A

IKF = 4 mA
IL = 0.05 mA

βF = 200

10 kΩ

Fig. 4.12. Common-emitter stage for Problem 4.3.

4.4. A common-emitter amplifier with a signal-source resistance is shown in
Figure 4.13.

+

-

vs

VBB

 Vo

+ 9 V

3 kΩ
1.5 mA

IS = 10 -16 A

βF = 100

RS

Fig. 4.13. Common-emitter amplifier for Problem 4.4.

(a) For RS = 2 kΩ estimate HD2 and HD3 for a sinusoidal input amplitude
that produces an output voltage amplitude of 3.5 V. Note that the input bias
must be selected to provide the quiescent bias state of IC = 1.5 mA. Use Spice
to verify your results.
(b) For RS = 100 kΩ, and with IKF = 6 mA and IL = 0.05 mA, use Spice to
determine the THD with an input amplitude to achieve ‘just clipping’. The
quiescent bias state of the circuit should remain as that in Part (a).

4.5. An emitter-coupled pair with source resistances is shown in Figure 4.14.
(a) For V1 = 0 + 0.1 cos ω1t, determine the value of RS1 = RS2 to produce a
HD3 level of 1%.
(b) If the input level of V1 is doubled to that of Part (a), what is the value of
HD3?
(c) With IKF = 6 mA and IL = 0.05 mA, use Spice to determine HD3 for
the conditions of Part (a) and (b).
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Q1 Q2

V1

Vo

+10 V

-10 V

IS = 10 -16 A

βF = 100

1 mA

RS1 RS2

5 kΩ5 kΩ

Fig. 4.14. Emitter-coupled pair for Problem 4.5.
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Distortion in Feedback Amplifiers

5.1 Effects of Negative Feedback

Negative feedback applied to an amplifier linearizes the transfer characteristic
of the amplifier and reduces the distortion of the input signal that is generated
by the nonlinearity. The gain of the amplifier at an operating point is also
reduced accordingly. These aspects are illustrated using the amplifier block
diagram of Figure 5.1a. The transfer characteristic of the amplifier without
feedback is taken to be that of Curve A in Figure 5.1b. Notice that the output
variable of the plot is −vo. Initially, we are interested in negative feedback.
Either the amplifier or the feedback must provide a net phase reversal. For
plotting convenience here, −vo is used. For Curve A there is a significant
nonlinearity. When feedback is applied, the slope at each point along the
transfer characteristic is reduced by the corresponding amount of the ‘loop
gain,’ i.e., the feedback, at that point. The slope of Curve B, at any input value
in the figure, is the closed-loop gain at this point and tends to remain constant,
even though the amount of feedback may be reduced at this operating point
of interest when there is a falloff of gain of the original amplifier.

The above aspects are brought out algebraically by inspecting the closed-
loop gain expression which is developed from the block diagram of Figure
5.1a. The gain of the original amplifier is

a =
vo

vi
(5.1)

With feedback, the amplifier input voltage is

vi = vs − vfb = vs − fvo (5.2)

where f is the fraction of the output voltage, vo, which is fed back to the input.
It is to be emphasized that, in Figure 5.1a and in (5.2), the input to the basic
amplifier is the difference of the source voltage and the feedback voltage. Using
this in Equation (5.1), we obtain the closed-loop gain function A.
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Basic Amplifier

Feedback Amplifier

a

f

+
-

vi
vs

vfb

vo

vi, vs

A
B

(a)

(b)

-vo

Fig. 5.1. (a) Block diagram of an amplifier with feedback. (b) Transfer character-
istics of amplifier without (A) and with (B) feedback.

A =
vo

vs
=

a

1 + af
(5.3)

‘af ’ is the amount of feedback, i.e., the amount of the ‘loop gain.’ For a large
magnitude of ‘af ’, the closed-loop gain expression can be expanded as follows,
retaining only the first few terms.

vo

vs
=

1
f

(
1 − 1

af
+ . . .

)
(5.4)

As long as the magnitude of ‘af ’ is large and for f constant, the slope of
the closed-loop transfer characteristic is almost the constant, 1/f . Therefore,
a linearization of the amplifier is achieved. Consequently, distortion in the
amplifier output is reduced with negative feedback.
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To establish expressions for the amount of distortion that is produced in
an amplifier with negative feedback, we again start with the idealized block
diagram situation shown in Figure 5.1a. With no feedback, the transfer char-
acteristic of the basic amplifier can be characterized by the usual power series
in terms of the incremental values of the input and output variables.

vo = a1vi + a2v
2
i + . . . (5.5)

where the expansion is taken about an operating point and the quiescent term
of the power series is not included. With feedback, the amplifier input voltage
is given in Equation (5.2). The output voltage becomes,

vo = a1(vs − fvo) + a2(vs − fvo)2 + . . . (5.6)

We next define a new power series for the closed-loop amplifier in terms
of the source voltage.

vo = a′
1vs + a′

2v
2
s + . . . (5.7)

Expressions for the a′
i are obtained by interpreting the power series as a

Taylor’s series

vo =
dvo

dvs

∣∣∣∣
0,0

vs +
1
2

d2vo

dv2
s

∣∣∣∣
0,0

v2
s + . . . (5.8)

where the necessary derivatives are evaluated at the operating point, vs =
0, vo = 0. This leads to the following expressions:

dvo

dvs

∣∣∣∣
0,0

= a′
1

d2vo

dv2
s

∣∣∣∣
0,0

= 2a′
2

d3vo

dv3
s

∣∣∣∣
0,0

= 6a′
3

Taking the derivatives of (5.6) and using the fact that vo = 0 when vs = 0,
we obtain

a′
1 =

a1

(1 + a1f)
(5.9)

a′
2 =

a2

(1 + a1f)3

a′
3 =

a3(1 + a1f) − 2a2
2f

(1 + a1f)5
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From Chapter 3, the harmonic distortion factors for the open-loop ampli-
fier are

HD2 ≈ 1
2

a2

a1
VsA (5.10)

HD3 ≈ 1
4

a3

a1
V 2

sA

where contributions from higher-order terms of the series are neglected, for
simplicity, and where VsA is equal to the amplitude of the input sinusoid.
Similarly, for the closed-loop amplifier,

HD2 ≈ 1
2

a′
2

a′
1

VsA =
1
2

a2

a1
VsA

1
(1 + a1f)2

≈ 1
(1 + a1f)2

HD2|w/o fb

HD3 ≈ 1
4

a′
3

a′
1

V 2
sA =

1
4

a3

a1
V 2

sA

∣∣∣1 − 2a2
2f

a3(1+a1f)

∣∣∣
(1 + a1f)3

≈

∣∣∣1 − 2a2
2f

a3(1+a1f)

∣∣∣
(1 + a1f)3

HD3|w/o fb

Magnitude signs are added to the last expression to conform to the mag-
nitude definition of the distortion factors in the previous chapters, e.g.,
HD3 = |b3|/|b1|. An alternate form for HD3 for a simple CE stage with
local feedback is given in Section 5.4.

As pointed out in Chapter 3, it often is desired to establish the distortion
of an amplifier when the amplitude of the output fundamental is held con-
stant. The small-signal gain expression of the original amplifier is used for the
fundamental frequency component,

vo = a1vi (5.11)

The resulting expressions for HD2 and HD3 for the open-loop amplifier where
VoA is the amplitude of the output fundamental are

HD2 ≈ 1
2

a2

a2
1

VoA (5.12)

HD3 ≈ 1
4

a3

a3
1

V 2
oA

For the closed-loop amplifier,
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HD2 ≈ 1
2

a′
2

a′2
1

VoA =
1
2

a2

a2
1

VoA
1

1 + a1f

≈ 1
1 + a1f

HD2|w/o fb

HD3 ≈ 1
4

a′
3

a′3
1

V 2
oA =

1
4

a3

a3
1

V 2
oA

∣∣∣1 − 2a2
2f

a3(1+a1f)

∣∣∣
1 + a1f

≈

∣∣∣1 − 2a2
2f

a3(1+a1f)

∣∣∣
1 + a1f

HD3|w/o fb

Notice that HD2 is reduced by (1 + a1f)2 when the input voltage is held
constant and is reduced by (1+a1f) when the output voltage is held constant.
In effect, for the former, HD2 is reduced once by the reduction of the output
voltage and reduced again by the linearization of the transfer characteristic.
In the latter case, only the linearization is present.

In the HD3 expressions a subtraction appears possible. Cancellation of
the third-order distortion occurs if

2a2
2f

a3(1 + a1f)
= 1 (5.13)

This cancellation can be very important when IM3 needs to be eliminated
(reduced) in high-performance broadband amplifiers.

If no a2 term in the amplifier power series exists, as is the case for a
balanced emitter-coupled pair, no second-order distortion is present, and HD3

is reduced by (1 + a1f)3 when the input is held constant and is reduced by
(1 + a1f) when the output is held constant.

5.2 Feedback for a General Amplifier

The block diagram approach used in the last section to establish the effects of
feedback is quite simple and leads to appropriate closed-loop expressions for
the closed-loop gain, the amount of linearization, desensitization, etc. How-
ever, problems can arise in the general case in introducing properly the com-
bining (subtracting) of signals at the input, in defining and working with the
proper gain functions of the basic amplifier and the overall combination, and
in establishing the correct ‘open-loop’ gain. Other potential problems occur
with the loading of the source and load resistances on the basic amplifier as
well as of the feedback elements.

Sections 8.5 and 8.6 of [6], and others have addressed these problems by
treating the closed-loop amplifier as a combination of two-port networks. As
brought out in [6], this technique is possible for most practical feedback con-
figurations. In this section, one amplifier configuration is studied to illustrate
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the problems and a solution. Another two-port combination is studied in
Section 5.4.

As an introduction to the two-port approach, a simple evaluation is first
made of the typical amplifier shown in Figure 5.2a. It is assumed that the
‘original’ amplifier supplies both voltage and current gain and a phase reversal,
i.e., a negative gain. As brought out below, it is helpful to replace the signal
source with its Norton equivalent, as done in Figure 5.2b. The current through
Rf from the input to the output is labeled if and subtracts from is, the short-
circuit available current from the signal source. Therefore, the current in the
amplifier is ia = is − if analogous to the voltage notation of Figure 5.1a.

In Figure 5.2c, a circuit model for the original amplifier is introduced.
Note that its input resistance is ri, its output resistance is ro, and its trans-
fer function is characteristized by a transconductance Gm. (The open-circuit
voltage gain of the original amplifier is −Gmro. However, the actual gain of
the amplifier is modified by the loading at its input and output due to RS ,
RL and Rf .)

The ‘basic’ amplifier is defined as the original amplifier including the load-
ing of RS in shunt at the input and of RL in shunt at the output as shown
in Figure 5.2c. Finally, we assume for now that the combined input resistance
at the input, RS‖ri, where the symbol ‖ denotes the parallel combination,
is much smaller than the feedback resistor. Therefore, loading effects of Rf

at the input can be neglected. However, the loading at the output by Rf is
added to the basic amplifier as shown in the figure. The total configuration is
labeled the ‘basic open-loop amplifier’ and can be considered the a block of
the feedback configuration.

In general, the current through Rf is if = (v1 − v2)/Rf . For the assumed
small input resistance of the total amplifier, this is simply

if ≈ − v2

Rf
(5.14)

This current through Rf is identified in Figure 5.2c.
The gain of the overall feedback configuration can now be developed similar

to that obtained for the block diagram of Figure 5.1a. The output voltage can
be written

v2 = za
21(is − if ) (5.15)

Remember that RS‖ri is assumed to be very small with respect to Rf . In
(5.17), za

21 is the transfer impedance (resistance) of the basic open-loop am-
plifier of Figure 5.2c.

za
21 = −(RS‖ri)Gm(ro‖RL‖Rf ) (5.16)

Including (5.16) in (5.17), we obtain an expression for the closed-loop gain
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is = vs
RS

ia

if

vo

RS        

Rf

RLAmplifier

is = vs
RS

v1

va RL RfroriRS

v2

Gmva

if

+

-

initial amplifier
basic amplifier

basic open-loop amplifier

vo

vs

RS

     RLAmplifier

Rf

(a)

(b)

(c)

Rf loading

Fig. 5.2. (a) A typical amplifier with feedback. (b) Amplifier with signal source
replaced with its Norton equivalent. (c) Circuit model of the initial and basic am-
plifiers.
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v2

is
=

za
21

1 − za
21

Rf

(5.17)

= zT
21

Notice that the closed-loop ‘gain’ expression is not a voltage or current
gain but an overall, total transfer impedance, zT

21. Expression (5.19) has the
desired closed-loop feedback form of the last section.

A =
a

1 + af
(5.18)

Comparing (5.19) and (5.20), we can identify

A = Az = zT
21 (5.19)

a = az = za
21

f = fy =
−1
Rf

Thus, Az and az are not gains and fy is not a voltage or current ratio.
aL is defined as the loop-gain of this configuration, i.e., the gain of the loop

which has been opened. It can be identified as the ratio of the current, if ,
and the (Norton-equivalent) current from the signal source, is, as identified
in Figure 5.2c.

aL =
if
is

(5.20)

=
v2

is

if
v2

= za
21

(
−1
Rf

)

= azfy

The loop gain, aL, can be expressed as the product of azfy, i.e., the product
of the basic amplifier ‘gain’ and the feedback function. The loop gain, aL, is
a current gain for this configuration. However, it is not the product of two
current gains. Rather it is the product of a transimpedance and a conductance.

If the basic amplifier provides a phase reversal, as in the case for Figure 5.2c
when Gm is positive, za

21 is negative and aL is a positive number. Conversely,
if aL < 0, the feedback is positive. The value of (1 + aL) determines the
reduction of gain of the overall amplifier as feedback is applied, and also the
reduction of distortion and the amount of linearization, and the desensitivity
of the amplifier.

It is often convenient to deal directly with the voltage gain of the basic
and overall amplifiers rather than with the transimpedances. The open-circuit
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available voltage from the signal source (the Thevenin-equivalent voltage), vs,
can be introduced, using

vs = isRS

The closed-loop voltage gain can then be written

Av =
v2

vs
=

Az

RS
=

v2
vs

∣∣∣
a

1 + aL
=

av

1 + aL
(5.21)

where the notation v2
vs

∣∣∣
a

pertains to the gain function of the a block and where
the open-loop voltage gain av and the loop gain aL can be defined as

av =
v2

vs

∣∣∣∣
a

=
va
2

isRS
=

za
21

RS
(5.22)

aL =
−za

21

Rf
= −av

RS

Rf

Note that av is the voltage gain from vs (not vin of the amplifier) to the output
voltage including the loading effects of the source, the load and feedback
resistances. The loop gain, aL, can now be identified as the product of a gain
and a loss function. Again, for this feedback amplifier configuration, the basic
gain without feedback must provide a phase reversal to produce a positive
value of aL and negative feedback.

To extend these results to avoid the initial input resistance assumption, cf.
(5.16), a shunt resistance equal to Rf must be included at the input and output
of the amplifier without feedback when determining za

21 or av = v2/vs|a. This
aspect is brought out in the following.

The configuration of Figure 5.2a is called a shunt-shunt feedback amplifier
since the feedback resistance Rf can be considered a two-port network as
shown in Figure 5.3a. The overall configuration can be treated as two two-
ports in parallel since the input and output voltages of the ports are common.
The appropriate two-port parameters to describe this situation are the short-
circuit admittance parameters, yij , where,

i1 = y11v1 + y12v2 (5.23)
i2 = y21v1 + y22v2

An equivalent circuit for the short-circuit admittance description is shown in
Figure 5.3b.

The ‘natural’ source description of Figure 5.3a is a Norton-equivalent cur-
rent source, is. The ‘natural’ overall gain description is then the transim-
pedance of the combination, i.e., the ratio of the common output voltage, v2,
to the current source input which drives the common input node pair.
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is

v1

v2

RS RL

Rf

v1

+

-

+

-

+

-

f

a

v1 v2

y12v2 y21v1

y11 y22

is
ia

if

v1 v2

RS RL

Rf

ri ro

Rf

+

-

va

y12
a  = 0

y12
f  = - 1

Rf

y21
f  = 0

y21
a va

(a)

(b)

(c)

Fig. 5.3. (a) A two-port representation of the amplifier with shunt-shunt feedback.
(b) Equivalent circuit for the short-circuit admittance parameters. (c) Loading ef-
fects of the source and load resistances.
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v2

is
= zT

21 (5.24)

=
−yT

21

yT
11y

T
22 − yT

21y
T
12

where the short-circuit two-port parameters of the amplifier and the feedback
circuit are added to provide the two-port parameters for the combination.

yT
ij = ya

ij + yf
ij (5.25)

The loading effects of the source conductance 1/RS and the load conduc-
tance 1/RL are included in ya

11 and ya
22 of the basic amplifier (the a block)

as illustrated in Figure 5.3c. If the numerator and denominator of (5.26) are
divided by yT

11y
T
22, the resulting function has the general form of a closed-loop

gain function.

Az = zT
21 =

−yT
21

yT
11yT

22

1 +
(

−yT
21

yT
11yT

22

)
yT
12

(5.26)

=
az

1 + azfy

With two approximations, appropriate gain and feedback circuits and func-
tions can be defined for this general situation. The first approximation is that
the forward transmission through the feedback resistance is much less than
that for the amplifier. The second is that the reverse transmission through
the amplifier is much less than that through the feedback resistance. In terms
of the two-port parameters:

ya
21 	 yf

21 and ya
12 � yf

12 (5.27)

For most amplifiers employing feedback deliberately, these criteria are usually
well satisfied.

In Figure 5.3d, a circuit model for the a block is shown. Note that it is
assumed that ya

12 = 0. In the f block, an equivalent circuit is used where yf
21

is assumed equal to zero.
The loading effects of the feedback resistance (circuit) are included in the

expression az, the ‘gain’ expression for the basic amplifier.

az =
v2

is

∣∣∣∣
no fb

= za
21 = − ya

21

yT
11y

T
22

(5.28)

For the example of Figure 5.3c,



112 5 Distortion in Feedback Amplifiers

RS RLri ro

+

-

v1 v2Rf Rf

+

-

y21
a v1

v2
Rf

+

-

i 1
f

(d)

(e)

Fig. 5.3. (d) Circuit model for the a block. (e) Definition of the short circuit
parameter y12.

yT
21 = ya

21 + yf
21 ≈ ya

21 (5.29)

yT
11 = ya

11 + yf
11

=
1

RS‖ri‖Rf

yT
22 =

1
ro‖RL‖Rf

From (5.28), the feedback function is

fy = yT
12 ≈ yf

12 ≈ − 1
Rf

(5.30)

In terms of the definition of the short-circuit two-port parameter, y12 is the
ratio of the input current, if1 , through a short circuit and the output voltage,
v2, as shown in Figure 5.3e. The defined positive feedback current is the flow
in Rf from the input to the output.

The loop-gain function, aL, is defined as

aL = azfy =
(

−ya
21

yT
11y

T
22

)
yf
12 (5.31)

Therefore, we have now a set of identifiable a, f , and aL functions in terms
of particular circuit configurations. Care must be taken with respect to the
signs of az, fy, and aL. The closed-loop gain function appears as Equation
(5.28). The denominator of the gain function is (1 + azfy) = (1+aL), and the
loop-gain function is aL = azfy. The effects of feedback are calculated from
(1 + aL), a positive number for a negative feedback situation.
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We return now to the nonlinear situation. It must first be emphasized that
the above developments strictly hold only for a linear amplifier. Therefore, we
must restrict attention to only reasonably small variations about a quiescent
operating point. For the total open-loop amplifier, including necessary load-
ing conditions of Rf , RS , and RL, a power series can be used to describe
the transfer characteristic. For a shunt-shunt configuration, the output vari-
able, v2, is the output voltage of the combination as shown in Figure 5.3c,
while the input variable, is, is the signal-source current (the short-circuit avail-
able current). The I/O variables are increments about the operating point, V2

and Is.

5.3 A CE Stage with Shunt Feedback

As an example to illustrate the material of the last section, consider the simple
one-stage, common-emitter amplifier shown in Figure 5.4a. The frequency of
interest is assumed to be sufficiently high so that the effects of the coupling
capacitor Cf can be neglected. A bias state of 1 mA is established by the dc
(quiescent) value of the input source voltage. A circuit to determine the small-
signal, ‘open-loop’ gain is shown in Figure 5.4b. Note that the signal-source
resistance, the load resistance, and the feedback resistance are included. For
the values given in the Spice input file of Figure 5.5,

av =
−gmRL

1 + RS

rπ‖Rf

(
1 +

RL

Rf

)−1

≈ −87 (5.32)

where the symbol ‖ indicates the parallel combination of two resistances, and
gm = IC/Vt = (1/25.85) � for the assumed operating point value of 1 mA for
IC . The value of the loop gain is obtained from Equation (5.34), by multiplying
by −RS/Rf , cf. (5.24).

aL = −(−87)
1 kΩ

10 kΩ
= +8.7 (5.33)

1 + aL = 9.7 is the amount by which the gain is reduced with feedback, e.g.,
Av = −87/9.7 = −8.97 and the amount by which the HD2 is reduced for
constant output amplitude, as described in the Section 5.1. These values of
gain and distortion reduction compare favorably with results obtained using
a Spice simulation.

For the Spice input file given in Figure 5.5, three stages are included in
the simulation. The first is the closed-loop amplifier, the second is an open-
loop stage including the proper loading of Rf as above, and the third is for
an open-loop stage without feedback loading. The Fourier output harmonic
voltages are given in Figures 5.6a, b, and c. From the values of Figure 5.6b
for the basic amplifier without feedback but with Rf loading,
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RS

Vs

Cf

Rf

1 mA

+ VCC

RL

Vo

RS RL Rfis = vs
RS

gmv1

v1 v2 = vo

(a)

(b)

Rf rπ

Fig. 5.4. (a) A simple one-stage common-emitter amplifier. (b) Circuit to determine
the small-signal ‘open-loop’ gain.

| av | = 85.98 (5.34)
HD2 = 4.73%

From Figure 5.6a for the stage with feedback,

| Av | = 8.91 (5.35)
HD2 = 0.050%

The gain is reduced by a factor of 9.65 by the feedback. The distortion
is reduced by 95.3 = (9.76)2, which is approximately the square of the gain
reduction, since the input amplitude is held constant.

From Figure 5.6c for the stage without Rf loading, the open-loop gain is a
factor of 15.5 larger than the closed-loop gain. The value of HD2 for the open-
loop stage without Rf loading is 4.9% and is larger than the corresponding
value of Figure 5.6b primarily because of the removal of the loading of Rf at
the input. The predicted level of HD2 for the closed-loop stage on the basis
of the gain reduction of 15.5 is 0.02%. Thus, the third stage does not provide
a correct estimate of the loop-gain.
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RL1 RL2 RL3

RS

RS2

RS3

Cf

Cf1

Rf1

Q1

Q2

Q3

Rf2

Cf2

VS

1 mA

1 mA 1 mA

+ 10 V

CE STAGE WITH SHUNT FB, FIGURE 5.5
V1 1 0 0.784 SIN(0.784 10M 100K)
RS 1 2 1K
CF 2 3 16NF
RF 3 4 10K
RL 5 4 5K
VCC 5 0 10
Q1 4 2 0 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
.TRAN 0.1U 20U
.PLOT TRAN V(4)
.FOUR 100K V(4)
RS2 1 6 1K
CF1 6 7 16N
RF1 7 0 10K
Q2 8 6 0 MOD1
RL2 5 8 5K
CF2 8 9 16N
RF2 9 0 10K
.PLOT TRAN V(8)
.FOUR 100K V(8)
RS3 1 10 1K
Q3 11 10 0 MOD1
RL3 5 11 5K
.PLOT TRAN V(11)
.FOUR 100K V(11)
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

Rf

(8)

(11)

(4)

NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    0.7840    (  2)    0.7741    (  3)    5.0290    (  4)    5.0290
 (  5)   10.0000    (  6)    0.7741    (  7)    0.0000    (  8)    5.0290
 (  9)    0.0000    ( 10)    0.7741    ( 11)    5.0290
    

Fig. 5.5. Circuit, Spice input file, and dc operating point of three amplifier stages.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(4)    
 DC COMPONENT =   5.028D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   8.913D-02     1.000000   179.468       0.000
     2      2.000D+05   4.416D-05     0.000496    89.616     -89.852
     3      3.000D+05   5.394D-07     0.000006    80.662     -98.806
     4      4.000D+05   9.548D-07     0.000011   100.561     -78.907

    TOTAL HARMONIC DISTORTION =       .049595  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(8)    
 DC COMPONENT =   4.983D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   8.598D-01     1.000000   179.771       0.000
     2      2.000D+05   4.066D-02     0.047295    89.706     -90.064
     3      3.000D+05   4.459D-04     0.000519     4.132    -175.639
     4      4.000D+05   7.797D-05     0.000091    57.615    -122.155

     TOTAL HARMONIC DISTORTION =      4.729808  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(11)   
 DC COMPONENT =   4.959D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.383D+00     1.000000   179.998       0.000
     2      2.000D+05   6.829D-02     0.049393    90.008     -89.990
     3      3.000D+05   5.127D-04     0.000371     5.318    -174.680
     4      4.000D+05   1.156D-04     0.000084    96.468     -83.530

     TOTAL HARMONIC DISTORTION =      4.939443  PERCENT
 

(b)

(c)

(a)

Fig. 5.6. Fourier components of the output voltage for (a) closed-loop amplifier, (b)
open-loop amplifier including feedback loading, and (c) open-loop amplifier without
feedback loading.

In Section 9.1, another feedback circuit is studied using the parallel two-
port configuration.

5.4 The CE Stage With Emitter Feedback

In Figure 5.7a, a common-emitter stage is shown including an external resistor
Re in series with the emitter. Negative feedback is produced by the series
(feedback) resistor. As pointed out in [6], Section 8.6.1, this simple feedback
circuit can be recognized as a degenerate form of a series-series combination
of an amplifier two-port and a feedback resistive two-port. The two-port
combination is developed by redrawing the stage including floating dc voltage
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sources as in Figure 5.7b. When a small-signal circuit model is included, the
result is that of Figure 5.7c. Note that iT1 = ia1 = if1 and that v1 = va

1 + vf
1 or

va
1 = v1 − vf

1 .

 Vo

+ VCC

RS

V1

RL

Re

 VCC

RL

Re

RS

+ -

+-

v1

vo

i2
T

+ -

VBB

v2 = 0

(short circuit)

(a)

(b)

Fig. 5.7. (a) A common-emitter amplifier with emitter feedback. (b) Two-port
representation of the amplifier.

The natural two-port description of the series-series combination is the
mathematical dual of that of the shunt-shunt combination used in Section 5.2.
The open-circuit impedance parameters are now used in place of the short-
circuit admittance parameters for the shunt-shunt combination.
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+

-+
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+

-

i2
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gmvxrπ

RS RL

Re

v2 = 0(a)

(f)

v1 v2

i1 i2

z11 z22

+

-

+

-

z12i2 z21i1

(d)

+

-

+ -

RS

Re

RL

Re

v1

vf

vx i2
arπ gmvx

(e)

(c)

for ' a ' :  z12
a  ≈ 0

for ' f ' :  z21
f  ≈ 0

Fig. 5.7. (c) Small-signal two-port network representation. (d) An equivalent circuit
for the open-circuit impedance parameters. (e) Open-loop small-signal circuit used
for calculations.
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v1 = z11i1 + z12i2 (5.36)
v2 = z21i1 + z22i2

An equivalent circuit is given in Figure 5.7d.
As shown in Figures 5.7b and c, if the amplifier load resistance RL is

included in the basic amplifier, the load of the combination is an equivalent
short circuit and v2 = vT

2 = 0. The output variable is taken as the short-circuit
output current i2 = iT2 . Similarly, the signal-source resistance is included in
the basic amplifier and v1 is the input variable. The desired input voltage-to-
output current transfer function is yT

21.

i2
v1

= yT
21 =

−zT
21

zT
11zT

22

1 +
(
− zT

21
zT
11zT

22

)
zT
12

(5.37)

≈ ay

1 + ayfz

≈ ay

1 + aL

where

ay =
ia2
v1

= ya
21 =

−za
21

zT
11z

T
22

(5.38)

fz =
vf

ia2
= zf

12 = Re

aL = ayfz

= ya
21z

f
12

Similar to the shunt-shunt case, note that f is not a fraction of the output
variable. The necessary conditions to identify these functions simply are:

za
21 	 zf

21 = zf
12 (5.39)

za
12 � zf

12

The open-loop, small-signal circuit with which to calculate the functions
in (5.40) is shown in Figure 5.7e. Note that the loading of the feedback resistor
is included in both the input and output segments of the circuit. The ‘open-
loop’ feedback voltage, vf , appears across the Re in the output segment of
the circuit as shown in the figure. If the transistor does not provide a finite
output resistance, i.e., if ro = VA/IC = ∞, the loading effects of Re on the
output segment are absent. However, the voltage drop across this Re is vf as
mentioned above.
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It is often convenient to work with the voltage-gain function, vo

vs
. This is

easily obtained noting in Figure 5.7b that vo = −RLi2.

Av =
vo

vs
=

−RLi2
v1

(5.40)

=
av

1 + aL

where

aL = avf ′ (5.41)
av = −ayRL

f ′ =
zf
12

RL
=

Re

RL

where f ′ is the original fz divided by RL and can be identified as an output
voltage ratio. From Figure 5.7e,

av = −gm
RL(

1 + RS+Re

rπ

) (5.42)

f ′ =
Re

RL

aL = gm
Re(

1 + RS+Re

rπ

)

For (RS + Re) � rπ, the loop gain is gmRe as expected.
As brought out in Section 5.1, HD3 can be eliminated in some cases.

For the CE stage with an emitter resistance, the condition is very simple if
(RS + Re) � rπ and aL ≈ gmRe. For this circuit, the incremental collector
current is first expressed as a power series. From Chapter 3,

ic =
(

ICA

Vt

)
vi +

(
ICA

2V 2
t

)
v2

i (5.43)

+
(

ICA

6V 3
t

)
v3

i + . . .

= a1vi + a2v
2
i + a3v

3
i + . . .

Substitution of these coefficients into (5.11) yields

HD3|w fb =
|1 − 2aL|
(1 + aL)4

HD3|w/o fb (5.44)
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The coefficients of (5.45) for the BJT lead to a very simple form for HD3.
The condition for the cancellation of HD3 is

aL =
1
2
≈ gmRe (5.45)

Equation (5.46) for HD3 has the same form as (4.27) for the CE stage with
RS . Because of the similarity of (5.46) and (5.27), the condition to eliminate
HD3 is similar, aL = 1

2 and E = 1
2 . The equivalence in terms of circuit

parameters is particularly simple for the situation where the loop gain is
approximately equal to gmRe. The equivalent resistance of the signal source
to reduce the voltage gain by (1+gmRe) is RS = (β+1)Re. Using this relation
in the expressions for HD2 and HD3, we find that the two stages are the same
if βac = β.

For a numerical example of the HD3 elimination; the reference CE stage
without feedback or without a source resistance is that associated with Q1

in the Spice input file of Figure 5.8a. The quiescent collector current is ap-
proximately 1 mA for the bias voltage of 0.774 V. Three other stages are
also included in Figure 5.8a. Associated with Q2 is the emitter resistor,
Re2 = 1

2gm
= 12.92 Ω. For this stage aL = 1

2 and HD3 should be eliminated.
Associated with Q3 is a source resistance of RS3 = (β +1)Re2 = 1.305 kΩ. As
noted above, and from Chapter 4, this stage should also eliminate HD3. For
Q4, Re4 and RS4 are one-half of the values of Re2 and RS3. Again, HD3

should be eliminated.
Care must be taken in using (4.27) and (5.46) simultaneously. Both the E

parameter and the loop gain aL depend in general on RS and Re. The best
procedure is to use one or the other by reflecting Re to an equivalent addition
to RS or by reflecting RS to an equivalent addition to Re, i.e., use either an
equivalent total E or an equivalent total aL.

For a 10 mV sinusoidal input amplitude, the Spice waveforms of the output
voltage are virtually identical. The Spice Fourier outputs for all four stages
are given in Figure 5.8b. HD3 has been significantly reduced for the last three
configurations. The HD3 values for the last three cases are in the ‘numerical-
noise level’ of the simulation. Note that HD2 has been reduced in each of the
last three cases by (1 + 0.5)2, as expected.

As mentioned in Chapter 1, great care must be taken when requesting very
small numbers from the Spice programs. An adequate number of points per
period must be chosen for harmonic distortion analyses. Further, the value of
RELTOL, the accuracy parameter in Spice, must be made small.

To return to the example, if a 20 mV drive is used, the reduction of HD3

is not as large as for 10 mV, only about 140 instead of 197. Contributions
from higher-order terms account for this difference.
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RL

RL2

RL3

RL4

RS3

RS4

Re2

Re4

VBS1

VBS2

VBS3

VBS4

+-

+-
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Q1
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V(15)

V(11)

V(8)

V(4)

v1

CE STAGE WITH SERIES FB, FIGURE 5.8
V1 1 0 0 SIN(0 10M 100K)
VBS1 1 2 -0.774
RL 5 4 5K
VCC 5 0 10
Q1 4 2 0 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
.TRAN 0.1U 20U
.PLOT TRAN V(4) V(8) V(11) V(15)
.FOUR 100K V(4)
VBS2 1 6 -0.787
Q2 8 6 7 MOD1
RE2 7 0 12.92
RL2 5 8 5K
*.PLOT TRAN V(8)
.FOUR 100K V(8)
VBS3 1 9 -0.787
RS3 9 10  1.305K
Q3 11 10 0 MOD1
RL3 5 11 5K
*.PLOT TRAN V(11)
.FOUR 100K V(11)
VBS4 1 12 -0.787
RS4 12 13 0.652K
Q4 15 13 14 MOD1
RE4 14 0 6.46
RL4 5 15 5K
*.PLOT TRAN V(15)
.FOUR 100K V(15)
.OPTIONS NOPAGE NOMOD
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    0.0000    (  2)    0.7740    (  4)    5.0401    (  5)   10.0000
 (  6)    0.7870    (  7)    0.0130    (  8)    5.0330    (  9)    0.7870
 ( 10)    0.7740    ( 11)    5.0331    ( 12)    0.7870    ( 13)    0.7805
 ( 14)    0.0065    ( 15)    5.0324
  

Fig. 5.8. (a) Circuit, Spice input file, and dc operating point for common-emitter
amplifier with series feedback.

5.5 Alternative Loop-Gain Calculations

It is to be emphasized that the combined two-port technique is not a necessary
method of solution. But it does provide the setting to establish the necessary
and fundamental assumptions to employ the feedback equation as well as to
include properly the loading effects of the feedback network.

If the loop gain is of primary interest, it is sometimes possible to ‘break’
or open the loop at a location convenient for a simple circuit evaluation. As
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(4)    
 DC COMPONENT =   4.853D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.943D+00     1.000000   179.996       0.000
     2      2.000D+05   1.838D-01     0.094586    90.007     -89.990
     3      3.000D+05   1.147D-02     0.005900     0.584    -179.412
     4      4.000D+05   4.156D-04     0.000214   -94.510    -274.506

     TOTAL HARMONIC DISTORTION =      9.477044  PERCENT

 
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(8)    
 DC COMPONENT =   4.978D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.273D+00     1.000000    179.998      0.000
     2      2.000D+05   5.353D-02     0.042066     90.009    -89.989
     3      3.000D+05   3.830D-05     0.000030     95.737    -84.261
     4      4.000D+05   8.810D-05     0.000069     96.754    -83.244

     TOTAL HARMONIC DISTORTION =      4.206633  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(11)   
 DC COMPONENT =   4.978D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.272D+00     1.000000    179.998      0.000
     2      2.000D+05   5.353D-02     0.042065     90.009    -89.989
     3      3.000D+05   3.830D-05     0.000030     95.828    -84.170
     4      4.000D+05   8.809D-05     0.000069     96.754    -83.244

     TOTAL HARMONIC DISTORTION =      4.206517  PERCENT

 
 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(15)   
 DC COMPONENT =   4.978D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.273D+00     1.000000    179.998      0.000
     2      2.000D+05   5.355D-02     0.042073     90.009    -89.989
     3      3.000D+05   3.828D-05     0.000030     95.221    -84.777
     4      4.000D+05   8.813D-05     0.000069     96.754    -83.245

     TOTAL HARMONIC DISTORTION =      4.207286  PERCENT

RS = Re = 0

RS, Re > 0

Re > 0

RS > 0

Fig. 5.8. (b) Fourier components of the output voltages.
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an example, consider the feedback configuration of Figure 5.7c. The output
is driven by the dependent current source, gmvx. The feedback loop can be
opened by returning gmvx to ac ground (or to a dc bias voltage source) as
shown in Figure 5.9a. The current to ground is the loop response current,
labeled io. The loop can be excited by an independent current source ii as
shown in the figure. Since the circuit relations and interactions are unchanged,
the loop gain is the negative of the ratio of io/ii.

aL = − io
ii

=
gmRe(

1 + RS+Re

rπ

) (5.46)

This is the same as that obtained for the two-port approach, (5.44).

v1 = 0

+

-

RS RL

Re

rπ
vx

ii

+

-

RS RLrπ vx gmvxis = vs
RS

 = 0

Rf

io

ii

(a)

(b)

io = gmvx

Fig. 5.9. (a) Feedback loop broken by returning gmvx to ac ground. (b) Small-signal
circuit for common-emitter amplifier with shunt-shunt feedback.

As a second example, consider the CE stage with shunt-shunt feedback, as
in Figure 5.4a. The small-signal model is given in Figure 5.9b. Note that the
feedback loop is broken at the gmvx dependent current source by returning
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it to ac ground. The loop is excited by a new independent current source, ii.
The loop gain from simple circuit analysis is:

aL = − io
ii

=
Ri

RL + Rf + Ri
gmRL (5.47)

The loop gain obtained from the two-port approach can be determined for
Figure 5.4b.

aL =
Rf

(Ri + Rf )
Ri

(RL + Rf )
gmRL (5.48)

The difference between (5.49) and (5.50) is due to the forward transmission
to the output through Rf , which is neglected in the two-port approach. The
two expressions are approximately equal if RLRi

Rf
< (Ri + RL + Rf ) which is

usually satisfied for a practical amplifier stage.

5.6 Emitter Feedback in the ECP

Negative feedback can be introduced into the emitter-coupled pair by adding
in each emitter lead a series resistor, as shown in Figure 5.10a. The expected
effects of negative feedback are realized, e.g., linearization of the transfer char-
acteristic as shown in Figure 5.10b and the reduction of distortion at the
expense of reduced overall gain. At the input,

V1 = VBE1 − VBE2 + (IE1 − IE2)Re (5.49)

Once again it is assumed that the transistor parameter β is large and that
the base currents can be neglected in relation to the collector currents. This
leads to

IC1 ≈ | IE1 | (5.50)
IC2 ≈ | IE2 |

IC1 + IC2 ≈ IEE

V1 = Vt ln
IC1

IC2
+ (2IC1 − IEE)Re (5.51)

The first term of (5.53) is the earlier result of Chapter 2. The second term
brings in the effects of feedback. For large values of Re,

V1 ≈ (2IC1 − IEE)Re (5.52)
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V1

 IEE

+ VCC

−VEE

+

V2 = 0

Vo
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IEERC

−IEERC

Vo

V1

IEERE = 0

IEERE =10VT

IEERE =20VT

−20VT −10VT 10VT 20VT

(a)

(b)

−

Fig. 5.10. (a) EC pair with series resistance in each emitter lead. (b) Linearization
of the transfer characteristics of the EC pair by use of emitter resistances.
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IC1 =
1
2

(
V1

Re
+ IEE

)

IC2 =
1
2

(
− V1

Re
+ IEE

)

IC1 and IC2 are now approximate linear functions of the input voltage for
current values near the quiescent state as shown in Figure 5.10b. However, for
increasing values of IC1 (decreasing values of IC2) the ‘ln’ term in Equation
(5.53) takes over. Since the output voltages and thus the voltage gains are
linearly proportional to the collector currents, it is clear that as the slope of
the transfer characteristic is reduced by Re, the voltage gain is reduced with
the feedback, as expected.

The distortion reduction due to the emitter feedback can be estimated
using the results obtained in Section 4.3. For the ECP with emitter feedback,
the input voltage expression can be written

V1 = VBE1 + Re(β + 1)IB1 − Re(β + 1)IB2 − VBE2 (5.53)

Expressing the variables in terms of the dc and incremental components
yields

v1 = (β + 1)Re(ib1 − ib2) + vbe1 − vbe2 (5.54)

This is the same as (4.42) if RS is replaced with (β + 1)Re. Thus, the
developments of Section 4.3 can be used directly after making the resistance
substitution. For the present case

aL = E = (β + 1)
Re

rπ
(5.55)

=
β + 1

β
gmRe

≈ gmRe

HD3 =
1
48

1
(1 + aL)3

(
V1A

Vt

)2

(5.56)

=
1

(1 + aL)3
HD3

∣∣∣∣
Re=0

The input file for a Spice simulation is shown in Figure 5.10c. The circuit
values include IEE = 2 mA, VCC = 10 V, Re = 25.85 Ω, RC1 = RC2 = 5 kΩ.
The amplitude of the input sinusoid is chosen to be 10 mV. (A second ECP
is also included, which does not have emitter feedback, to provide reference
values.) The estimated gain values are
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gm =
1

25.85
(5.57)

gmRe = 1
1 + aL = 2
gmRC = 192

Av = 48

The expected amplitude of the output excursion is (10 mV)(48) = ±0.48
V. From the values of Figure 5.10d, HD3 without feedback is 0.295%. With
feedback, the estimated value of HD3 should be 23 = 8 times less than
the value without feedback, or 0.295% ÷ 8 = 0.037%. From Figure 5.10e,
HD3 = .037%. As shown in the outputs from Spice in Figures 5.10d and
e, the amplitude of the fundamental output component without feedback is
0.943 V and 0.476 V with emitter feedback, a decrease of approximately 2.

5.7 Internal Feedback in the ECP and the SCP

Inherent, internal feedback is present in the ECP and the SCP due to several
mechanisms. In terms of the circuit elements of the small-signal circuit model
of a BJT, feedback arises due to resistive elements such as r′b and ro as well as
to the capacitive elements such as Cjc. In this section, attention is given
to the feedback effects due to basewidth modulation in bipolar transistors
and channel-length modulation in MOS devices. These effects are modeled in
Spice by the parameters, VA and LAMBDA, respectively [3]. In circuit terms,
basewidth or channel-length modulation introduces an output resistance, ro,
in the circuit model of the transistor; for the BJT this element is connected
from the collector to emitter, as shown in Figure 5.11a.

The effects of the feedback for several different situations involving dif-
ferent load and feedback resistances from Spice simulation data are given in
Table 5.1. The device and circuit values are given in the Spice input file of Fig-
ure 5.11b. For the moment, actual resistors Ro1 and Ro2 are used rather than
the internal ro of the transistors in order to keep separate the components of
the collector current.

In the first row of the table are the values from a .TF run of the voltage
gain, input and output resistance for an ideal ECP, i.e., with the Roi absent.
In Row 2 are the data from a .TF run for an ECP with Ro1 = Ro2 = 50 kΩ,
corresponding approximately to including VA = 50 V in the transistor models.
Because of the change in collectors currents due to the addition of the resis-
tors, normalizations of the .TF values are made with respect to IC-dependent
parameters, as shown in the headings of the last three columns. Note that
for this balanced situation the normalized voltage gain drops by 10%, the
normalized input resistance remains unchanged, and the normalized output
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RE

IEE

Q1 Q2

Q3 Q4

V1

RC RC

RC RC

IEE

RE

+ VCC

+ VCC

- VEE

- VEE

V(4)

V(10)

EC PAIR WITH RE, FIGURE 5.10
V1 1 0 0 SIN  0 10M 100K
Q1 2 1 3 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
RC1 5 2 5K
VCC 5 0 10
RC2 5 4 5K
Q2 4 0 3 MOD1
IEE1 3 20 2M
VEE 20 0 -10
Q3 6 1 7 MOD1
RC3 5 6 5K
RC4 5 10 5K
Q4 10 0 9 MOD1
RE1 7 8 25.85
RE2 9 8 25.85
IEE2 8 20 2M
.TRAN 0.1U 20U
*.DC V1 -0.2 0.2 0.01
*.PLOT DC V(10) V(4)
.PLOT TRAN V(10) V(4)
.FOUR 100K V(10) V(4)
.OPTIONS RELTOL=1E-6
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.END

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    0.0000    (  2)    5.0495    (  3)   -0.7740    (  4)    5.0495
 (  5)   10.0000    (  6)    5.0495    (  7)   -0.7740    (  8)   -0.7998
 (  9)   -0.7740    ( 10)    5.0495    ( 20)  -10.0000    

Fig. 5.10. (c) Circuit and Spice input file for EC pairs with and without emitter
resistances.

resistance drops by 5%. For a balanced ECP, the output voltages, Vo1 and
Vo2, are out of phase; thus, for equal ro for the two transistors, the feedback
currents through the resistors into the common emitter node are equal and
opposite. The feedback due to the ro is negative for Q1 and positive for Q2.
On a normalized basis, the input resistance should remain unchanged because
of the negative and positive feedback introduced to the common-emitter node.
The overall voltage gain of the ECP is reduced by

(
1 + RL

ro

)
. To appreciate
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(4)    
 DC COMPONENT =   5.049D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   9.432D-01     1.000000     0.000       0.000
     2      2.000D+05   2.016D-05     0.000021    81.879      81.879
     3      3.000D+05   2.784D-03     0.002951    -0.092      -0.092
     4      4.000D+05   8.276D-06     0.000009   -84.203     -84.203
     5      5.000D+05   1.454D-05     0.000015   -24.079     -24.078
     6      6.000D+05   4.857D-06     0.000005   -54.029     -54.029
     7      7.000D+05   4.817D-06     0.000005   -66.910     -66.909
     8      8.000D+05   5.779D-06     0.000006   -63.846     -63.846
     9      9.000D+05   5.961D-06     0.000006   -52.771     -52.771

     TOTAL HARMONIC DISTORTION =      0.295136  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(10)   
 DC COMPONENT =   5.049D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.756D-01     1.000000     0.000       0.000
     2      2.000D+05   1.063D-05     0.000022    82.456      82.457
     3      3.000D+05   1.750D-04     0.000368    -0.676      -0.675
     4      4.000D+05   4.265D-06     0.000009   -85.345     -85.345
     5      5.000D+05   3.385D-06     0.000007   -56.439     -56.438
     6      6.000D+05   2.243D-06     0.000005   -52.454     -52.454
     7      7.000D+05   2.222D-06     0.000005   -68.084     -68.083
     8      8.000D+05   2.735D-06     0.000006   -64.485     -64.484
     9      9.000D+05   2.829D-06     0.000006   -52.681     -52.681

     TOTAL HARMONIC DISTORTION =      0.036889  PERCENT

(d)

(e)

Fig. 5.10. (d) Fourier components of output voltage without emitter resistances.
(e) Fourier components of output voltage with emitter resistances.

the latter, recognize that with both feedback paths present, a balanced pair
is obtained. The gain can then be calculated from a differential half-circuit.
The resulting RL is loaded by ro. There is a 5% decrease in the normalized
value of Rout.

If RC1 is reduced to a very low value, say 0.1 Ω , the negative feedback
due to Ro1 is negligible and only the positive feedback effects, due to Ro2,
remain. This circumstance often occurs in bandpass amplifier stages where
high-frequency performance is critical, cf., Chapter 9. Notice that in relation
to the balanced circuit, the normalized voltage gain in Row 3 of the table
increases by about 5% as does the input resistance. The normalized output
resistance is unchanged in relation to the balanced case. An evaluation of this
feedback situation is given below. In the last row of the table, data is given
for the case where Ro1 is removed. The same relative data is obtained as that
of Row 3; however, the actual values of Av, etc., are different because of the
change of quiescent bias-current levels.
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FIGURE 5.11
V1 1 0 0 SIN 0 10M 100K
.TF V(4) V1
Q1 2 1 3 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
*+VA=50
RC1 5 2 5K
*RC1 5 2 0.1
RO1 2 3 50K
VCC 5 0 10
RC2 5 4 5K
Q2 4 0 3 MOD2
.MODEL MOD2 NPN IS=1E-16 BF=100
*+VA=50
RO2 4 3 50K
IEE1 3 20 2M
VEE 20 0 -10
*.TRAN 0.5U 20U
*.DC V1 -0.2 0.2 0.01
.PLOT DC V(4)
.PLOT TRAN V(4)
.OPTIONS NOPAGE NOMOD
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    0.0000    (  2)    5.0437    (  3)   -0.7708    (  4)    5.0437
 (  5)   10.0000    ( 20)  -10.0000 

  RC2

vb  gmvb
v1   va

 RC1

+

-

  gm  varπ ro rπro

Q1 Q2

ve
Ro1 Ro2

+

-

(a)

(b)

.

vo2

Fig. 5.11. (a) Small-signal circuit of EC pair with ro. (b) Spice input file and dc
operating point of EC pair with ro.
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RC1 RC2 Ro1 Ro2 IC2 Av Rin Rout
Av

0.5gmRC2

Rin
2rπ

Rout
RC2

5 5 - - 0.990 95.7 5.23 5 1.00 1.00 1.00
5 5 50 50 0.875 76.9 5.91 4.77 0.91 1.00 0.95
0.1 5 50 50 0.824 75.8 6.59 4.76 0.95 1.05 0.95
0.1 5 - 50 0.935 86.0 5.80 4.76 0.95 1.05 0.95

Table 5.1. Circuit element values, bias current, and small-signal circuit parameters
showing the effect of feedback. All values are in kΩ or mA, as appropriate.

It is helpful to inspect the collector currents as VA is introduced (Ro in the
examples above). For the simple Ebers-Moll model of the BJT, the collector
current including base-width modulation is [6]

IC =
[
IS exp

(
VBE

Vt

)] (
1 +

VCE

VA

)
(5.58)

= I ′C

(
1 +

VCE

VA

)

where I ′C is the current with VA effects not present. Notice that IC increases
as VA is introduced if VBE is kept constant. In an ECP, however, as VA is
included, the total collector current is kept constant by the common-emitter
current source. Therefore, I ′C and VBE must be reduced. This is observed in
the data of Row 2 in Table 5.1.

The reciprocal of the value of the output resistor, ro, is found from (5.60)
by taking the differential with respect to VCE .

1
ro

=
I ′C
VA

(5.59)

=
IC

VA

1 + VCE

VA

For a MOS device, the corresponding drain current and output resistance
expressions are for the Level-1 MOSFET (Shichman-Hodges) model [6]:

ID = I ′D (1 + λVDS) (5.60)

I ′D =
k′

2
W

L
(VGS − VT )2

1
ro

=
λID

1 + λVDS

where λ is the Spice model parameter LAMBDA.
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The change of ECP or SCP performance with ro can be estimated from
both an ordinary circuit analysis and by using the feedback approach of this
chapter. First, we include the output resistance, ro, of only the right-hand
transistor. (If the output resistance of Q1, on the left, is included for RC1 = 0,
its ro is effectively in shunt with the common-emitter current source. The
small-signal, node-to-ground resistance across the current source is very low
because of the emitters of the two transistors.)

In the ECP circuit model of Figure 5.11a, v1, ve and vo2 are all in phase.
Therefore, the ro of Q2 introduces positive feedback. To set up the feedback
situation more clearly, the first transistor can be viewed as an emitter follower
feeding a common-base stage with shunt-shunt positive feedback. On the basis
of the conclusions made earlier in this chapter, we can expect that the input
and output resistances as well as the voltage gain should increase with 1

(1−|aL|)
since aL has a negative value for positive feedback. The feedback analysis is
given below.

For a conventional circuit analysis, the incremental circuit model of the
ECP of Figure 5.11a can be reduced to that of Figure 5.12a by introducing
a Thevenin equivalent for Q1 acting as an emitter follower. In Figure 5.12b,
a common-base model is introduced for Q2. For the resulting circuit, the
conventional circuit analysis leads to

Av =
vo

vi
≈ 1

2
gmRL

1(
1 + RL

2ro

) (5.61)

where the approximation is made that gm 	 1
ro

.
The input resistance looking into the emitter of Q2 is

R
′

in ≈ 1
gm2

(
1 +

RL

ro

)
(5.62)

The input resistance looking in the base of Q1 is

Rin ≈ 2rπ

(
1 +

RL

2ro

)
(5.63)

Notice that the voltage gain of the ECP is reduced by (1 + RL

2ro
) relative

to the value for ro = ∞. The input resistance of the ECP is increased by the
same amount. The output resistance looking back into the circuit from RC2

can be determined directly from Figure 5.12b. However, it is simpler to use
the approximate configuration of Figure 5.12c. From the figure, the feedback
current ia splits into two equal parts of ia

2 each at the common-emitter node.
Since Q2 can be considered to be a common-base stage for an input at its
emitter with a current gain of approximately unity, the current out of the
collector of Q2 contains the component, ia

2 , as shown in the figure. Summing
currents at vo2, we obtain
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RL

1
gm1

1
gm2

+
-

vi

ve
ro

RLgm2ve

(b)

+ VCC

IEE

Q1 Q2

vo2

RL

ro

ia

ia
2

ia
2

ia
2

1
gm1

+
-

vi

ro-

+

gm2vb

vb

vo2

rπ2

(a)

(c)

RL

Fig. 5.12. (a) Equivalent small-signal circuit for the EC pair. (b) Modified circuit
for (a) using a common-base model for Q2. (c) Circuit for calculation of output
resistance of EC pair.
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io = iRL
+ ia − ia

2
(5.64)

where

iRL
=

vo

RL

ia =
vo − ve

ro
≈ vo

ro

The resistance seen by vo is

vo

io
= RL‖Rout (5.65)

where Rout = 2ro

If the ECP has a finite source resistance of RS at the base input of Q1, an
additional factor in Rout appears.

Rout ≈ 2ro

(
1 +

RS

2rπ

)
(5.66)

The output resistance of the ECP is modified for the active-load, current-
mirror situation shown in Figure 5.13. This load arrangement is often referred
to as a balance-to-unbalance converter. The voltage gain of an ECP from the
base of Q1 to the output at Q2 with this type of load is twice that obtained
with equal collector resistance loads.

The output resistance can be estimated using an extension of the feedback
current technique leading to (5.66) above. As in Figure 5.12c, the feedback
current due to ron of Q1 can be neglected because of the very small value of
the ‘load’ resistance presented to Q1 due to the diode-connected Q3 in Figure
5.13. The feedback current from ron of Q2, labeled ia, is again approximately,
ia ≈ vo/ron. This current divides into two equal components, as shown in the
figure. The emitter input to Q2 provides a component of ia/2 into the output
node. The emitter input into Q1 becomes the input to Q3, which is mirrored
and becomes an output current of ia/2 out of the vo node and into Q4. Finally,
due to the presence of rop in Q4, another current component from the output
node flows into Q4 with a value ib = vo/rop

The total output current is

io = ia − ia
2

+
ia
2

+ ib = ia + ib =
vo

ron
+

vo

rop
(5.67)

from which the output resistance is

Rout =
vo

io
= ron‖rop (5.68)
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  Q2

  Q3 Q4

V1 V2

IEE

Vo

ia
2

ia
2

ia
2

ia
2

ia
2

ia

Q1

ron

Rout

ib
rop

+ VCC

Fig. 5.13. EC pair with current-mirror active load.

Problems

5.1. A common-emitter stage with series feedback and with a finite source
resistance is shown in Figure 5.14.

+10 V

RS

Vo

Vs

IS = 10 -16 A

βF = 80

Re

10 kΩ

Fig. 5.14. Common-emitter stage for Problem 5.1.

(a) For RS = 0 and with VBB chosen to produce IC = 0.5 mA, estimate the
value of Re needed to eliminate HD3. Verify with Spice for the case where the
input signal amplitude is 20 mV.
(b) What value of RS with Re = 0 provides the same estimated cancellation
at the same quiescent bias state? Compare Spice results with those of (a).
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5.2. A common-emitter stage is shown in Figure 5.15.

+10 V

Vo

Vs

1 kΩ

1 kΩ

50 Ω

IS = 10 -16 A

βF = 100

Fig. 5.15. Common-emitter stage for Problem 5.2.

(a) Determine the dc input voltage to achieve a bias collector current of 1 mA.
(b) For a sinusoidal input voltage that produces a fundamental output voltage
of 0.5 V, estimate the value of HD2.
(c) Verify the results of (b) with Spice.

5.3. A MOS stage is shown in Figure 5.16.

vs

Vo

VGG

1 µF

Rf

VDD = 12 V

VTO = 1 V

k' = 30 µA/V2

γ = λ = 0

RS = 50 kΩ

RD = 50 kΩ

Fig. 5.16. MOS stage for Problem 5.3.

(a) Use Spice to establish the dc transfer characteristic of the stage.
(b) Confirm that the values of VGG = 1.7 V and VsA = 0.4 V are suitable
values at the input.
(c) For Rf = ∞, estimate the value of HD2 for the drive of (b). Confirm your
estimates with Spice.
(d) For Rf = 200 kΩ, estimate THD for the same drive. Confirm with Spice.
(e) For Rf = 200 kΩ and RS = 0, what is HD2?
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5.4. A MOS circuit is shown in Figure 5.17.

+5 V

Vo
Vi

10 kΩ

k' = 250 µA/V2

VT = 0.5 V

W
L

 = 
20 µm
5 µm

Fig. 5.17. MOS circuit for Problem 5.4.

(a) Using feedback ideas calculate HD2 for a sinusoidal input of 1 V. The
input bias voltage establishes a drain current of 200 µA.
(b) Verify the result of (a) with Spice.
(c) Will there be any HD3 for this circuit? Explain your answer and estimate
the value of HD3.
(d) How does the result in (c) compare with Spice?

5.5. A emitter-coupled pair with emitter resistances is shown in Figure 5.18.
Determine HD3 for V1 = 0 + 50 mVcosω1t.

Q1 Q2

V1

Vo

+10 V

-10 V

IS = 10 -16 A

βF = 100

1 mA

20 Ω 20 Ω

10 kΩ10 kΩ

Fig. 5.18. Emitter-coupled pair for Problem 5.5.
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Basic IC Output Stages

6.1 Requirements for an Output Stage

In this chapter, the performance is studied of typical output stages for analog
integrated circuits. In general, the output stage should be able to drive heavy
loads, resistive and capacitive. This implies that the output stage should have
a very low output resistance. At the input, the input resistance should be
large so that the loading on a previous stage is as small as possible. Voltage
gain, per se, is usually provided by the preceding ‘gain’ stages and is not
necessary in the output stage. However, power gain (and thus current gain)
is required. Of course, the transfer characteristic of the stage should be as
linear as possible in order not to introduce harmonic distortion. All of these
considerations point to the use of a feedback amplifier. In particular, a series-
shunt combination is appropriate for the high input resistance, the low output
resistance, the linearity, and reduced voltage gain. The simplest form of such
amplifiers are the ‘follower’ stages, e.g., an emitter follower (EF) for bipolar
transistors and the source follower (SF) for MOS devices. (The follower stages
can be considered as forms of two two-port combinations of the series-shunt
variety. Note that a CE or CS stage with resistance in the common input-
output lead is a series-series configuration.) Finally, any output stage should
convert the dc power from the bias sources into ac power as efficiently as
possible. Therefore, power-conversion efficiency must be given attention.

The first basic output stage to be investigated is the emitter follower. In
later sections of this chapter, the source follower and various push-pull, parallel
combinations of emitter followers and of source followers are introduced. A
new method of estimating distortion of very linear stages is also presented.

6.2 The Emitter Follower

The schematic diagram of a typical emitter follower as used in an analog
integrated circuit is shown in Figure 6.1a. Devices Qa and Qb together with
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resistors Ra, Rb, Re are part of the bias circuitry. As usual, we initially replace
these elements with an ideal source element, in this case a current source,
IEE , as shown in Figure 6.1b. The symbol, (−VEE), is included to keep in
mind the actual source of Figure 6.1a. For the idealized circuit, a small-signal

V1

Ra

Rb

IR

IEE

Io

VoRL

Q1

Qa

Qb

+ VCC

- VEE

+

-

(a)

Io

VoRL

Q1

+ VCC

+

-

V1

IEE

- VEE

(b)

Re

Fig. 6.1. (a) Schematic diagram of a typical emitter follower. (b) Idealized circuit
for the emitter follower.

equivalent circuit is shown in Figure 6.2a, where a quiescent operating point
in the normal active region of the transistor is assumed. At the input, the
small-signal input resistance is

Rin = rπ + (βac + 1)RL ≈ βac

(
1

gm
+ RL

)
(6.1)

At the output, a Thevenin equivalent circuit is shown in Figure 6.2b. The
small-signal output resistance is

Ro ≈ rπ + Rs

βac
=

1
gm

+
Rs

βac
(6.2)

where Rs is the value of the signal-source resistance presented to the follower.
From the figure, it is clear that the open-circuit, small-signal voltage gain is
unity. For any reasonable value of the load resistance, the voltage gain is close
to one.
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1
gm

 + RS

β

RL

vo

v1

+

-

rπRS

ia

va

vo

RL

gmva = βia

(a) (b)

v1

Fig. 6.2. (a) Small-signal equivalent circuit for the idealized emitter follower.
(b) Thevenin equivalent circuit at the output.

For the large-signal case, the above results must be used with caution.
However, we know from Chapter 5 that there is significant negative feedback
for operation in the normal operating region. Thus the small-signal gain and
resistance features of the follower should be achieved over a large input and
output operating range.

An expression relating the input voltage and the output voltage is readily
obtained using the idealized large-signal equivalent circuit and equations for
the BJT. However, the result is not that useful.

V1 = Vt ln

⎡
⎣

β
β+1

(
IEE + Vo

RL

)
IS

⎤
⎦ + Vo (6.3)

where β is the dc beta. This expression can be plotted. However, it is simpler
to use the Spice circuit simulator to produce the dc transfer voltage char-
acteristic. To obtain this characteristic from the circuit of Figure 6.1b, the
following values are chosen: VCC = 10V, RL = 10 kΩ and IEE = 1 mA. For
IS = 10−16 A and BF = β = βac = 100, the quiescent input voltage should
be 0.774V. The circuit schematic diagram and the Spice input file are given in
Figure 6.3a. Note that three circuits are included to permit simulation with
three different values of RL, simultaneously.

The dc transfer characteristics are shown in Figure 6.3b. The linearity
of the input-output relation is evident, and for RL ≥ 10 kΩ the linearity
holds over almost the output range of VCC = +10V down to −VEE = −10V.
The slope of the transfer characteristic is approximately unity. The transfer
characteristic for RL = 20 kΩ is similar to that for 10 kΩ. For RL = 5 kΩ,
the minimum value of output voltage is −5V. The emitter current of the BJT
is equal to zero and the transistor is cutoff when IEE = −Vo/RL. (For the
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EF OF FIGURE 6.3
V1 1 0 0.774 SIN(0.774 100M 100K)
*V1 1 0 0.774 SIN(0.774 9 100K)
*.TRAN 0.1U 20U
*.PLOT TRAN V(4) (-10,10)
*.FOUR 100K V(4)
.DC V1 -10 10 1
.PLOT DC v(4) (-10,10) 
Q1 5 1 4 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
RL1 4 0 10K
VCC 5 0 10
RA 0 3 9.2K
QB 3 3 6 MOD1
QA 4 3 6 MOD1
VEE 6 0 -10
.OPTIONS NOPAGE NOMOD
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

V1

1 mA

1 mA

1 mA

V(24)

V(14)

V(4)

+ 10 V

+ 10 V

+ 10 V

Q1

Q2

Q3

1050-5-10
-12

-8

-4

0

4

8

12

V(4)

V(14)

V(24)

V
(4

),
 V

(1
4)

, V
(2

4)
 (

V
)

RL = 5 KΩ

RL = 10 KΩ
RL = 20 KΩ

V1 (V)

(b)

(a)

5 kΩ

10 kΩ

20 kΩ

Fig. 6.3. (a) Circuit and Spice input file for the emitter follower. (b) Dc transfer
characteristics of the emitter follower.
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actual stage of Figure 6.1a, one must also consider when the device Qa enters
saturation. This can occur above −IEERL.)

As a check on the distortion components that are generated by the tran-
sistor, Spice runs were made for input sinusoids with amplitudes of 100 mV
and 9V, the latter is shown in the commented line of the Spice input file of
Figure 6.3a. For RL = 10 kΩ, the output Fourier responses from Spice2 are
given in Figures 6.4a and b. The emitter follower is clearly a low distortion
stage. In the next section, methods to estimate the low values of distortion
are presented.

(a)

(b)

TOTAL HARMONIC DISTORTION =      0.137456  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(4)    
 DC COMPONENT =   7.404D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   8.922D+00     1.000000    -0.008       0.000
     2      2.000D+05   1.007D-02     0.001129   -81.314     -81.306
     3      3.000D+05   5.344D-03     0.000599     4.617       4.625

V1A = 9 V

20151050
-10

-5

0

5

10

V(4)

V(14)

V
(4

),
 V

(1
4)

  (
V

)

Time (µs)

RL = 5 KΩ

RL = 10 KΩ

TOTAL HARMONIC DISTORTION =      0.002380  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(4)    
 DC COMPONENT =   4.677D-05
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   9.922D-02     1.000000     0.000       0.000
     2      2.000D+05   1.612D-06     0.000016    79.597      79.597
     3      3.000D+05   7.696D-07     0.000008  -146.478    -146.478

V1A = 100 mV

(c)

Fig. 6.4. Fourier components of output voltage for (a) V1A = 100 mV, (b) V1A =
9 V. (c) Output voltage waveforms for a sinusoidal input of 9 V.
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The output voltage waveforms for a sinusoidal input of 9V and with RL =
5 kΩ and 10 kΩ are shown in Figure 6.4c. For RL = 5 kΩ, the output voltage
waveform exhibits severe clipping due to the earlier turnoff of the transistor.
For optimum results, the design of the EF must include the proper choice and
relations between the input amplitude, VCC , RL, IEE , and VEE .

For reference, the input file, the dc transfer characteristic, the output volt-
age waveform and the output voltage harmonics for the original circuit of
Figure 6.1a are given in Figure 6.5 for V1A = 9 V and RL = 10 kΩ.

EF OF FIGURE 6.1
V1 1 0 0.774 SIN(0.774 9 100K)
.TRAN 0.1U 20U
.PLOT TRAN V(4) (-10,10)
.FOUR 100K V(4)
*.DC V1 -10 10 1
*.PLOT DC v(4) (-10,10)
Q1 5 1 4 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
RL1 4 0 10K
VCC 5 0 10
RA 0 3 9.2K
QB 3 3 6 MOD1
QA 4 3 6 MOD1
VEE 6 0 -10
.OPTIONS NOPAGE NOMOD
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)   0.7740     (  3)   -9.2262    (  4)    0.0005    (  5)  10.0000
 (  6)  -10.0000

1050-5-10
-10

-5

0

5

10

V
(4

) 
(V

)

V1 (V)

(b)

(a)

Fig. 6.5. (a) Spice input file for the emitter follower. (b) Dc transfer characteristics
and dc operating point of the emitter follower.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(4)    
 DC COMPONENT =   9.179D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   8.920D+00     1.000000     0.000       0.000
     2      2.000D+05   1.024D-02     0.001148   -89.851     -89.851
     3      3.000D+05   4.270D-03     0.000479    -0.559      -0.558

     TOTAL HARMONIC DISTORTION =      0.126817  PERCENT

20151050
-10

-5

0

5

10

V
(4

) 
 (

V
)

Time (µs)

(c)

(d)

Fig. 6.5. (c) Output voltage waveform for V1A = 9 V and RL = 10 kΩ. (b) Fourier
components of output voltage.

6.3 Distortion Calculation using Differential Error

The excellent linearity of the emitter follower, as with other negative feedback
amplifiers, makes difficult the calculation and estimation of the harmonic dis-
tortion which is generated by the stage. The method of Differential Error
which is introduced in this section is a technique to estimate HD2 and HD3

for these small-distortion situations.
In the differential-error approach, we find the expression for the small-

signal gain at the quiescent operating point and at input/output levels corre-
sponding to the positive and negative-peak excursions. These determinations
include the effects of the different instantaneous operating-point conditions.
A pair of new parameters is defined from which HD2 and HD3 can be deter-
mined.

At an operating point, express the output voltage as a power series, omit-
ting the quiescent terms,

vo = a1vi + a2v
2
i + a3v

3
i + . . . (6.4)

The derivative of the variational output voltage at this operating point is
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a =
dvo

dvi
= a1 + 2a2vi + 3a3v

2
i + . . . (6.5)

Note that the coefficient a1 is the small-signal voltage gain. Let the input
sinusoidal variation be

vi = ViA cos ω1t (6.6)

The amplitude, ViA, is the zero-to-peak input excursion. The negative
maximum excursion is −ViA. These two values are used in the equations above
to obtain the coefficients a2 and a3.

a+ = a1 + 2a2ViA + 3a3V
2
iA + . . . (6.7)

a− = a1 + 2a2(−ViA) + 3a3(−ViA)2 + . . .

Notice that a+ and a− are used to denote the output derivative expressions
at the extremes of the input variation. We next take the difference between
these expressions and the gain for a linear amplifier, a1, and normalize this
difference with respect to the linear gain. Two new coefficients are defined as
follows:

E+ =
a+ − a1

a1
(6.8)

=
2a2ViA + 3a3V

2
iA + . . .

a1

E− =
a− − a1

a1

=
−2a2ViA + 3a3V

2
iA + . . .

a1

The sum and difference of these new quantities isolates either quantities
containing only a2 or a3.

E+ − E− ≈ 4a2ViA

a1
(6.9)

E+ + E− ≈ 6a3V
2
iA

a1

where the higher-order terms have been neglected. The coefficients a2 and a3

are

a2 =
a1(E+ − E−)

4ViA
(6.10)

a3 =
a1(E+ + E−)

6V 2
iA
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To relate these constants to the harmonic-distortion factors, remember that

HD2 ≈ 1
2

a2

a1
ViA (6.11)

HD3 ≈ 1
4

a3

a1
V 2

iA

where contributions from the higher-order terms of the power-series are neg-
lected. Therefore,

HD2 =
E+ − E−

8
(6.12)

HD3 =
E+ + E−

24

For a numerical example, the emitter follower shown in Figure 6.6a is used.
The values of the circuit components and the transistor parameters are given
in the Spice input file of Figure 6.6b. At the quiescent state, Vo = V (4) = 0V
and Vi = V1 = 0.80V for IC = 2.86 mA. The input is taken to be a 10V
sinusoid. The small-signal voltage gain at any operating point in the normal
active region is

av =
1

1 + β
β+1

1
gmRL

=
1

1 + VT

|IE |RL

(6.13)

Because of accuracy considerations, β + 1 is retained and not approximated
as β, and |IE | is used rather than IC .

For the circuit and device parameter values of Figure 6.6,

a1 = 0.99910 (6.14)

Note that several digits of accuracy are used. (For this accuracy, the appropri-
ate value of VBE for IEE = 2.86 mA is 0.80095V. To illustrate the procedure,
iteration for VBE accuracy is omitted). At the positive peak of the input, the
output voltage is

Vo ≈ V1 − VBE = 10.8 − 0.8 = 10.0 V (6.15)

For this example, a correction is not made for a change of VBE . The corre-
sponding value of |IE | is 2.86 mA + 10 V

10 kΩ = 3.86 mA. The voltage gain from
(6.13) is

a+
v = 0.99933 (6.16)

At the negative peak input,
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Q1V1

V(4)

+ 15 V

2.86 mA

- 15V

EMITTER FOLLOWER, FIG 6.6
V1 1 0 0.8 SIN(0.8 10 100K)     
.TRAN 0.1U 20U  
.PLOT TRAN V(4) 
.FOUR 100K V(4) 
.DC V1 -10 10 1
.PLOT DC V(4)       
Q1 5 1 4 MOD1   
.MODEL MOD1 NPN IS=1E-16 BF=100 
RL1 4 0 10K     
VCC 5 0 15      
IE1 4 0 2.86M   
.OPTIONS NOPAGE NOMOD   
.OPTIONS RELTOL=1E-6    
.WIDTH OUT=80   
.END 

(a) (b)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(4)    
 DC COMPONENT =  -5.751D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   9.938D+00     1.000000     0.000       0.000
     2      2.000D+05   6.025D-04     0.000061   -87.232     -87.231
     3      3.000D+05   5.357D-05     0.000005   -53.428     -53.427

     TOTAL HARMONIC DISTORTION =      0.006267  PERCENT

(d)

1050-5-10
-12

-8

-4

0

4

8

12

V
(4

) 
(V

)

V1 (V)

(c)

10 kΩ

Fig. 6.6. (a) Emitter-follower circuit. (b) Spice input file. (c) Dc transfer charac-
teristics. (d) Fourier components of the output voltage.
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Vo ≈ −10.0 V (6.17)

|IE | = 2.86 mA − 10 V
10 kΩ

= 1.86 mA

a−
v = 0.99861

The E parameters are

E+ = 23 × 10−5 (6.18)
E− = −49 × 10−5

These lead to the estimations

HD2 = 0.0090% (6.19)
HD3 = 0.0011%

Surprisingly, if iteration of VBE and |IE| is used to obtain greater accuracy,
almost the same results are produced. The results from a Spice run with the
input file of Figure 6.6b are given in Figures 6.6c and d: HD2 = 0.0061% and
HD3 = 0.0005%.

The differential-error technique can also be used in many other circum-
stances. As a second example of this technique, the simple CE stage of Section
4.5 is used which includes nonlinear beta for the transistor. The circuit dia-
gram is repeated as Figure 6.7a. The circuit values and transistor parameters
are given in the Spice input file of Figure 6.7b. Notice that a second transistor
with a constant beta is also included, for reference. In Figure 6.8, the current
transfer characteristics are shown for the two transistors. For the stage con-
taining Q1, the chosen problem is to estimate the harmonic distortion with
a quiescent operating condition of IC = 5 mA and a sinusoidal input ampli-
tude of 40 µA, zero-to-peak. The source conductance is assumed small enough
to ignore. As developed in Chapter 4, the distortion is due primarily to the
nonlinearity of the current transfer characteristic.

At the desired quiescent operating point of IC = 5 mA, the base-current
input from the transfer characteristic is approximately IB = 50 µA. For the
sinusoidal input excursion of 40 µA, the input current extremes are 10 µA
and 90 µA.

The small-signal current gains can be estimated at the quiescent and ex-
treme operating points. These values can be obtained by taking values in
Figure 6.8a of output currents from adjacent points about the specified input
values. At the quiescent point the small-signal current gain is

a1 =
(5.187 − 4.824) × 10−3

(5.2 − 4.8) × 10−5
= 90.75 (6.20)

The corresponding values at the input extremes are
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+ VCC + VCC

I1 V1 F1 F2

R C1 R C2

V(2) V(8)

Reference
Circuit

FIGURE 6.7 
I1 0 1 50U SIN( 50U 40U 100K)
*.TRAN 0.1U 20U 0 0.1U
*.PLOT TRAN  I(VC1)
*.FOUR 100K I(VC1)
.DC I1 0 0.1MA 2UA     
.PLOT DC I(VC1) I(VC2)  (0,8M) 
V1 1 0 0     
F1 0 3 V1 1
Q1 2 3 0 MOD1   
.MODEL MOD1 NPN IS=1E-16 BF=230 
+ISE=2E-12 NE=2 
+IKF=10M
RC1 4 2 .1K     
VC1 5 4 0       
VCC 5 0 15      
F2 0 6 V1 1     
Q2 8 6 0 MOD2   
VC2 5 7 0       
RC2 7 8 0.1K    
.MODEL MOD2 NPN BF=100 IS=1E-16 
.OPTIONS RELTOL=1E-6    
.OPTIONS NOPAGE 
.WIDTH OUT=80   
.END

             Q1        Q2      
 MODEL     MOD1      MOD2    
 IB        5.00E-05  5.00E-05
 IC        5.01E-03  5.00E-03
 VBE          0.826     0.816
 VBC        -13.673   -13.684
 VCE         14.499    14.500
 BETADC     100.129   100.000
 GM        1.45E-01  1.93E-01
 RPI       6.26E+02  5.17E+02
 RX        0.00E-01  0.00E-01
 RO        1.50E+12  1.00E+12
 CPI       0.00E-01  0.00E-01
 CMU       0.00E-01  0.00E-01
 CBX       0.00E-01  0.00E-01
 CCS       0.00E-01  0.00E-01
 BETAAC      90.825   100.000
 FT        2.31E+18  3.08E+18

(a)

(b)

Fig. 6.7. (a) Simple common-emitter stage. (b) Spice input file and transistor pa-
rameters with nonlinear beta.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC1)  
 DC COMPONENT =   4.771D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   3.674D-03     1.000000     0.002       0.000
     2      2.000D+05   2.278D-04     0.061996    90.002      90.001
     3      3.000D+05   1.505D-05     0.004097   179.507     179.505

     TOTAL HARMONIC DISTORTION =      6.214777  PERCENT

0.100.080.060.040.020.00
0

2

4

6

8

10

IC (mA)

IB (mA)

Q1
Q2

β = β0

(a)

(b)

Fig. 6.8. (a) Current transfer characteristics for transistors with and without non-
linear beta. (b) Fourier components of the collector current show distortion due to
nonlinear beta.

a+
i =

(8.389 − 8.097) × 10−3

(9.192 − 8.792) × 10−5
= 73.00 (6.21)

a−
i =

(1.075 − 0.630) × 10−3

(1.208 − 0.808) × 10−5
= 111.30

The E parameters are

E+ = −0.1956 (6.22)
E− = +0.2264

The harmonic distortion factors are

HD2 = 5.3% (6.23)
HD3 = 0.13%

The values obtained from a Spice2 run are HD2 = 6.2%, HD3 = 0.41%. From
Section 4.5, the result from a three-point analysis is HD2 = 6.2%. Clearly, for
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large distortion situations, the differential-error technique must be used with
caution.

6.4 Power-Conversion Efficiency

As mentioned in Section 6.1, the output stage must deliver power to a given
load. This power must come primarily from the dc power supplies, and it is of
interest to establish the efficiency of the conversion process of dc to ac power.
It is assumed that the output stage has a large ac power gain and that the
ac power input from the preceding stage can be neglected. For an emitter
follower, the voltage gain is approximately unity while the ac current gain is
approximately βac. Thus, the ac power gain can be 100 or more.

For the EF of Figure 6.1b, repeated in Figure 6.9a, and for maximum
unclipped output, the results from Section 6.2 indicate that the values of the
supply voltage, the current source and the load resistance should obey the
rule

VCC = IEERL (6.24)

where VCEsat ≈ 0. The maximum output voltage excursion is then ±VCC .
Therefore, the rms value of the maximum output voltage, assuming that it is
a pure sine wave, is

Vo|rms =
VCC√

2
(6.25)

The ac power developed in RL is then

Pac =
1
2

V 2
CC

RL
=

1
2
VCCIEE . (6.26)

The dc power for the EF of Figure 6.9a is supplied by sources, V1, VCC , and
IEE . The dc power for the ‘input’ signal source V1 for Vo = 0 is V1IB = VBEIC

β .
For VBE � VCC and/or β 	 1, this dc input power can be neglected. For
the circuit of Figure 6.9a, with Vo = 0, IEE has zero dc volts across it and
supplies no dc power to the circuit. (See below for additional comments on
this dc power.) The voltage source VCC supplies the dc power VCCIC . For
IC ≈ IEE , the dc power supplied to the circuit is

Pdc ≈ VCCIEE (6.27)

The conversion efficiency is the ratio of the ac power developed in RL under
maximum output excursion to the dc power.

ηmax =
Pac

Pdc
=

1
2

= 50% (6.28)
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(a) (b)

Vo

RL

Q1

+ VCC

V1

IEE

Vo

RL

Q1

+ VCC

V1

- IEERL

(c) (d)

Vo

RL

Q1

+ VCC

+

-

v1

VBB

Q1

RL

v1
'

+ VCC + IEERL

Fig. 6.9. (a) Emitter-follower circuit. (b) Emitter-follower circuit with Thevenin
equivalent of IEE and RL. (c) Emitter-follower circuit with VCC and VBB as the
only dc sources. (d) Ground point of emitter-follower circuit moved to obtain a
common-emitter configuration.
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Equations (6.27) and (6.28) only apply to Figure 6.9a and can be mislead-
ing. For the circuit of Figure 6.1a, the IEE source is realized with a transistor
current source. The dc power required to produce IEE is VEE(IR + IEE) ≈
2IEEVEE for IR = IEE . For VCC = VEE and VEE = IEERL, Pdc = 3VCCIEE

and ηmax = 16.7%. Finally, note that if a Thevenin equivalent of IEE

and RL in Figure 6.9a is used to produce Figure 6.9b, the dc power sup-
plied by the equivalent voltage source IEERL(= VEE) is VEEIC . Therefore,
Pdc = 2VCCIEE and ηmax = 25%.

Since in Figure 6.1a, the current defining elements Ra, Rb and Qb may be
shared with other stages, an appropriate value for ηmax is approximately 20%
for an IC emitter follower.

Finally, consider the circuit of Figure 6.9c where VCC and the bias value of
V1 are the only dc sources. For VCEsat ≈ 0, the quiescent value of Vo is chosen
to be VCC/2, one half of the collector supply voltage. The quiescent value of
IC is VCC/2RL and the corresponding quiescent value of V1 is VBB + VCC/2.
VBB is the needed value of VBE to support IC .

The total dc input power is

Pdc =
V 2

CC

2RL
+

V 2
CC

4RLβ

(
1 +

2VBB

VCC

)

For large β, the second term can be neglected. The maximum limiting
output excursion occurs for VCE = VCEsat or VCE = VCC . For VCEsat ≈ 0,
the amplitude of the input sinusoid can be V1A = VCC/2. But this leads to a
peak value of V1 of VCC + VBB . It is common to limit the peak value of V1 to
VCC . Therefore, V1A = (VCC/2 − VBB). The ac power developed in RL is

Pac =
1
2

(VCC/2)2

RL

(
1 − 2VBB

VCC

)2

The maximum conversion efficiency is

η =
Pac

Pdc
= 25%

(
1 − 2VBB

VCC

)2

For the previous example where VBB = 0.8 V and VCC = 10V, η = 18%.
Next we look at the power dissipated in the EF device. To do this, the

IC −VCE characteristic of the transistor is helpful. For convenience, move the
ground point of the emitter follower in Figure 6.9b to obtain the common-
emitter configuration of Figure 6.9d. The plot of the load line for this arrange-
ment is shown in Figure 6.10. Let the value of input voltage V1 of Figure 6.9a
or b be such that for quiescent conditions the output voltage of the EF is 0.
The quiescent operating point in Figure 6.10 is then IEE and VCC , as shown.
This point is independent of the value of the load, and the load line passes
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through the point. From an inspection of several load lines, it is obvious if
VCEsat ≈ 0 that the maximum excursions of VCE and IC are obtained with
VCC = IEERL.

IEE

VCC

IC

VCEVCC + IEERL

Fig. 6.10. Transistor output characteristics and dc load lines.

The dc power dissipated in the transistor is VCCIEE at the quiescent
condition. We now show that the quiescent state is the condition for maximum
dissipation in the transistor. With a sinusoidal input signal, both the collector
current and the collector-emitter voltage, ideally, will also vary sinusoidally.
For maximum input, VCE(t) = VCC(1 + sin ω1t) and IC = IEE(1 − sin ω1t).
The instantaneous power in the transistor is

Pdev = VCE(t)IC(t) (6.29)
= VCC(1 + sinω1t)IEE(1 − sin ω1t)

=
VCCIEE

2
(1 + cos 2ω1t)

The average value of Pdev is VCCIEE/2. Therefore at maximum output,
the power dissipated in the transistor is only one half of the amount at the
quiescent state. A study of the instantaneous power in the device shows that
the maximum power is developed in the device at the quiescent operating
point and that instantaneous power is less the further away the instantaneous
operating point is along the load line.

For a numerical example, we return to the circuit and values of Figures
6.6a and 6.6b. The load line for the original values of the circuit does not lead
to optimum conversion or maximum power output. The limiting condition
is the negative output voltage swing, cf., Figure 6.10. The maximum output
voltage excursion is 15 V, and the maximum variation of the collector current
excursion is 15/10 kΩ = 1.5 mA. The power developed in RL is then Pac =
1/2 × 152/10 kΩ = 11.25 mW. The power supplied by the sources including
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the −IEERL source corresponding to Figure 6.9b is 2VCCIEE = 85.8 mW.
Therefore, the efficiency of conversion is only 13%.

If RL is lowered to VCC/IEE = 5.25 kΩ, the optimum condition is reached.
The maximum output power increases to 21.4 mW with a conversion efficiency
of 25%. The power dissipated in the device under maximum output is 21.4
mW.

6.5 The Source Follower

As brought out earlier, an enhancement-mode MOS device is similar in oper-
ation and required biasing to a bipolar transistor of the same polarity. Just
as the configuration of a source-coupled pair follows directly from an emitter-
coupled pair, an emitter follower leads directly to the source follower of Figure
6.11a. For proper operation of the NMOS transistor, the bulk connection must
be returned to the lowest dc potential in the circuit, −VSS in this example.
The principal differences in performance result from the lower value of gm

obtainable from the MOS device for the same current levels. For the follow-
ers, the output resistance and voltage gains are directly related to the value of
1/gm. For normal active-region operation with a collector current of 1 mA, the
value of 1/gm for a bipolar device is 25.85 Ω. For the MOS device, from Sec-
tion 1.4.2, and for operation in the normal active region, gm =

√
2k′(W/L)ID.

For k′ = 30 µA/V2 and W/L = 100, the value of 1/gm is ≈ 400 Ω for a drain
current of 1 mA.

The Thevenin equivalent of the SF is the same as that of the EF shown in
Figure 6.2b. Therefore, with a large value of 1/gm the small-signal voltage gain
of the source follower is not close to unity for a small value of load resistance.
Usually, then, a large value of RL must be used for MOS circuits.

Similarly, for the same load resistance and device current, the loop gain of
the SF is not as great as that for the EF, and the improvement of the linearity
of the source follower is less in comparison with the bipolar case. However, the
original nonlinearity of the MOS device (square-law) is not as severe as that
of the bipolar device (exponential). Finally, the maximum voltage swing with
small distortion is less for the SF than for the EF since the ‘resistive’ region
of operation, which corresponds to the saturation region of a BJT, occurs at
larger values of device voltage (VDS).

As an example, the circuit of Figure 6.11a is simplified to that of
Figure 6.11b. In Figure 6.12a, circuit values and MOS parameters are in-
cluded in a Spice input file. For the simplest MOS model in Spice, including
only parameters KP and V TO, the voltage transfer ratio of the circuit ob-
tained from a Spice run is shown in Figure 6.12b. From this curve, it is seen
that very linear operation is obtained for an input excursion from V1 = −4
V to V1 = VDD = +5 V. The slope of the transfer characteristic in the linear
region is ≈ 0.92. The maximum unclipped output voltage is obtained with a
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+ VDD

- VSS

V1

VB

Vo

RL

V1

ISS

+ VDD

- VSS

- VSS

(a) (b)

Fig. 6.11. (a) A typical MOS source-follower circuit. (b) Simplified circuit for the
source follower.

dc input bias of V1 = 0.5 V with an input amplitude of 4.5 V. The output
voltage excursion is then also approximately ±4.5 V centered at −0.94 V.

SOURCE FOLLOWER,  FIGURE 6.12
V1 1 0 0 SIN(0.5 4.5 100K)
.TRAN 0.1U 20U
.PLOT TRAN V(3) I(VDD)
.FOUR 100K V(3) I(VDD)
.DC V1 -5 5 0.5
.PLOT DC V(3)
M1 2 1 3 4 MOD1 W=800U L=8U
.MODEL MOD1 NMOS KP=30U VTO=0.7
RL 3 0 5K
VDD 2 0 5
ISS 3 0 1MA
VSS 4 0 -5
.OPTIONS RELTOL=1E-6
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.END

531-1-3-5
-6

-4

-2

0

2

4

V
(3

) 
 (

V
)

V1 (V)

(a) (b)

Fig. 6.12. (a) Spice input file for source follower. (b) Voltage transfer characteristics
of the source follower.
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With a 4.5 V sinusoidal input voltage biased at 0.5 V, a transient analysis
with Spice leads to the waveform and the distortion components listed in
Figure 6.13. The large-signal voltage gain is obtained from the ratio of the
amplitude of the fundamental output to the input amplitude.

av =
b1

V1A
=

4.054
4.5

= 0.90 (6.30)

From the output listing, HD2 = 1.63% and THD = 1.72%.

20151050
-5.0

-2.5

0.0

2.5

5.0

V
(3

) 
 (

V
)

Time (µs)

 
 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =  -8.763D-01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.054D+00     1.000000    -0.001       0.000
     2      2.000D+05   6.591D-02     0.016258   -89.986     -89.985
     3      3.000D+05   2.106D-02     0.005195    -0.122      -0.121

     TOTAL HARMONIC DISTORTION =      1.722526  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VDD)  
 DC COMPONENT =  -8.247D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   8.109D-04     1.000000   179.999       0.000
     2      2.000D+05   1.318D-05     0.016258    90.014     -89.985
     3      3.000D+05   4.213D-06     0.005195   179.878      -0.121

     TOTAL HARMONIC DISTORTION =      1.722526  PERCENT

(b)

(c)

(a)

Fig. 6.13. (a) Output voltage waveform for the source follower. (b) Fourier compo-
nents of the output voltage. (c) Fourier components of the drain current.

Also from the output listings, the ac power in RL can be calculated.
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Pac =
(4.054)2

2

(
1

5 kΩ

)
= 1.64 mW (6.31)

The average input current from the voltage source VDD is obtained from
the Spice runs, cf. Figure 6.13c, and equals 0.825 mA. The dc input power
from both VDD and ISS is

Pdc = 0.825 mA × 5 V + 1.0 mA × 0.88 V = 5.0 mW (6.32)

where the dc value for Vo is taken from the values of Figure 6.13b. The con-
version efficiency for this SF is η = 33%. As brought out in Section 6.4, this
value of η is an idealized value. For an actual SF, as in Figure 6.11a, the dc
power input is larger by an approximate factor of two to three. Therefore,
ηmax ≈ 10 − 20%.

Other output stages using MOS devices are introduced in a later section
of this chapter.

6.6 Push-Pull Emitter Followers

If one parallels devices in an emitter or source follower, the current drive ca-
pability into a low load resistance is improved. However, the distortion gener-
ation remains the same and the conversion efficiency is the same. Through the
use of complementary devices, a ‘push-pull’ drive situation can be achieved
in which distortion cancellation is obtained together with the possibility of
better conversion efficiency.

In Figure 6.14, both npn and pnp transistors are used in a ‘parallel’
arrangement. Because of the opposite polarity of the devices, as V1 is in-
creased, the input voltage of Q1, the npn unit, is increased while the input
voltage is reduced for Q2, the pnp unit. As is seen in the development below,
while Q1 pushes more current toward RL as it turns ‘on,’ Q2 turns toward
‘off’ and rejects current, again forcing more current into RL. At the positive
input extreme, Q1 is fully on and ‘pushing’ current into RL. At the negative
input extreme, Q2 is fully on and ‘pulling’ current from RL. The load current
thus sustains a push-pull excitation.

To evaluate the performance of this circuit, it is helpful initially to as-
sume that the load resistance is extremely small. Therefore, the inputs to the
transistors are approximately

VBE1 ≈ V1 + VBB (6.33)
VBE2 ≈ V1 − VBB

We next introduce simple nonlinear circuit models for the transistors, as-
suming operation only in the off and normal active regions. The circuit model
for the push-pull follower is then that of Figure 6.15. The load current is
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Fig. 6.14. A ‘push-pull’ circuit configuration.

the sum of the two emitter currents, which for devices with large betas is
approximately the sum of the two collector currents.

IL = −IE1 − IE2 ≈ IC1 + IC2 (6.34)

+

-

+

-

VBB

VBB

V1
RL

Vo

+VCC

- VEE

IC1

IC2

Fig. 6.15. Push-pull circuit with nonlinear transistor models.

Remember that all transistor currents are defined as positive into the tran-
sistor. The actual currents must carry their sign. The collector currents in
terms of the input voltage are

IC1 = IS exp
(

VBE1

Vt

)
(6.35)

IC2 = −IS exp
(
−VBE2

Vt

)

Notice that both the coefficient and the exponential have negative signs for
the pnp unit. Equal devices are assumed, for simplicity, except for the different
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polarity. Thus, the magnitudes of the device parameters are the same. At the
quiescent operating point, V1 = 0, Vo = 0, the current in each transistor is
labeled ICA where ICA = IS exp

(
VBB

Vt

)
. The collector currents in terms of

this value are

IC1 = ICA exp
(

V1

Vt

)
(6.36)

= ICA

[
1 +

V1

Vt
+

1
2

(
V1

Vt

)2

+ . . .

]

IC2 = −ICA exp
(
−V1

Vt

)

= −ICA

[
1 +

(
−V1

Vt

)
+

1
2

(
−V1

Vt

)2

+ . . .

]

= ICA

[
−1 +

V1

Vt
− 1

2

(
V1

Vt

)2

+ . . .

]

In the above expressions, the exponentials have been expanded in power
series, and it is to be noted that the signs of the even terms are opposite,
while the signs of the odd powers are the same. Thus, in the expression for
the load current, which is the algebraic sum of the two collector currents, the
even powers cancel and do not appear.

IL ≈ IC1 + IC2 (6.37)

= ICA

[
0 + 2

(
V1

Vt

)
+ 0 +

2
6

(
V1

Vt

)3

+ . . .

]

In particular, there is no dc power dissipated in the load resistance, and
there are no even harmonics generated. For a sinusoidal input, the third-
harmonic distortion factor for the output voltage remains the same as for one
device, since both the fundamental and the third harmonic are increased by
two.

For a nonzero value of RL, we can expect the usual properties of negative
feedback. The small-signal voltage gain approaches unity, and the harmonic
distortion is reduced. If the output voltage is held constant, HD3 is reduced
by (1 + aL) where aL is the loop gain. Higher-order odd harmonics are also
reduced significantly.

For a numerical example, the push-pull emitter follower of Figure 6.14
is evaluated using Spice. The input file is given in Figure 6.16. As shown
in the schematic diagram, two circuits are included, one for the situation
where the models for transistors, Q1 and Q2 are the same except for the
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V(3)

V(13)

BJT CLASS AB, FIGURE 6.16
VIN 1 0 0 SIN (0 9.9 100K)
VB1 6 1 0.774
VB2 1 7 0.774
.TRAN .1U 20U
.PLOT TRAN V(3) V(13)
.PLOT TRAN I(VCC1) I(VEE1) (-10M,10M)
.PLOT TRAN I(VCC2) I(VEE2) (-10M,10M)
.FOUR 100K V(3)
.FOUR 100K I(VCC1)
.FOUR 100K I(VEE1)
.PLOT DC V(3) V(13)
.DC VIN -10 10 0.5
Q1 5 6 3 MOD1
Q2 4 7 3 MOD2
VCC1 5 0 10
VEE1 4 0 -10
RL 3 0  1K
.MODEL MOD1 NPN BF=100 IS=1E-16 RB=1
.MODEL MOD2 PNP BF=100 IS=1E-16 RB=1
.MODEL MOD3 PNP BF=20   IS=1E-15 RB=1
VB3 16 1 0.774
VB4 1 17 0.714
Q3 15 16 13 MOD1
Q4 14 17 13 MOD3
RL2 13 0 1K
VCC2 15 0 10
VEE2 14 0 -10
.FOUR 100K V(13) I(VCC2) I(VEE2)
.OPTIONS RELTOL=1E-6
.END

Fig. 6.16. Circuit and Spice input file for push-pull emitter follower.

npn or pnp designation; the other where the two transistors have different
parameters, to check on the situation where the npn and pnp transistors differ.
For the top circuit, the value of VBB is chosen to be 0.774 V corresponding
to quiescent collector currents of 1 mA for IS = 10−16 A. Other choices
are VCC = VEE = 10 V. The dc voltage transfer characteristic is shown in
Figure 6.17. Excellent linearity and a near-unity voltage gain are achieved
over the range V1 ± VCC = ±10 V.

In the bottom circuit, the model for Q4 has beta reduced from 100 to
20 and IS increased to 10−15 A. The dc transfer characteristic is coincident
with the curve for equal parameters. Note that for this pnp transistor, VBB =
0.714 V. The change in linearity is small because of the large value of negative
feedback even for a weak pnp unit.

In order to check on the distortion generation, transient analyses of the
circuits of Figure 6.16 have been made with an input sinusoidal amplitude of
9.9 V. The Fourier components of the two output voltages, V (3) and V (13),
are given in Figure 6.18. As usual for cases of small distortion, extreme care
must be taken in setting up the simulation. The parameter RELTOL is made
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Fig. 6.17. Dc voltage transfer characteristics of BJT class-AB push-pull stage.

1 × 10−6. Notice in Figures 6.18a and b, the very small values of even-order
harmonics in both cases.

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)      Equal Transistors
 DC COMPONENT =  -2.699D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   9.782D+00     1.000000     0.000       0.000
     2      2.000D+05   2.289D-04     0.000023    83.476      83.477
     3      3.000D+05   8.400D-03     0.000859  -179.795    -179.795

     TOTAL HARMONIC DISTORTION =      0.089799  PERCENT
        

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(13)     Unequal Transistors
 DC COMPONENT =  -4.292D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   9.782D+00     1.000000     0.000       0.000
     2      2.000D+05   1.558D-04     0.000016    80.349      80.349
     3      3.000D+05   8.313D-03     0.000850  -179.790    -179.790

     TOTAL HARMONIC DISTORTION =      0.088813  PERCENT

(a)

(b)

Fig. 6.18. Fourier components of output voltage with (a) equal transistors, and
(b) unequal transistors.

For the situation of unequal transistor parameter values, the values of the
odd harmonics are close to those of the equal-beta-magnitude case.

If we monitor the collector currents for the transient runs, the waveforms
shown in Figures 6.19a and b are obtained. Note that the devices turn off
during a portion of a cycle. This is called Class-AB operation. As is clear
from the data of Figure 6.18, the output voltage waveform is very sinusoidal.
The cancellation phenomenon is the explanation. The Fourier components of
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the collector currents are shown in Figure 6.20. The richness in harmonics in
the collector current waveforms is evident.
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Fig. 6.19. Collector current waveforms with (a) equal transistors, and (b) unequal
transistors.

To check on the power-conversion efficiency for the case of equal beta
magnitudes, we look at the dc components of the two circuits. From the values
of Figure 6.20, the dc currents from the two voltage sources are IC1 = 3.32
mA and IC2 = −3.32 mA. Therefore, the dc power supplied by VCC and
VEE is Pdc = 66.4 mW. From the value of the output fundamental voltage
in Figure 6.18, 9.78 V, the fundamental output power developed in RL is
(9.78)2/2(1 kΩ) = 47.8 mW. The conversion efficiency is then η = 72%.
There is a significant improvement in conversion efficiency in relation to the
single-ended emitter follower.

For the case of unequal transistors, the corresponding numbers from Fig-
ures 6.18 and 6.20 lead to Pdc = 65.2 mW, Pac = 47.8 mW and η = 73%.

The fact that excellent performance can be achieved with distorted collec-
tor current waveforms leads us to push the limit. If we remove the bias sources,
VBB , in Figure 6.14, both transistors are off for the quiescent state. The Spice
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VCC1) 
 DC COMPONENT =  -3.318D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.841D-03     1.000000   179.963       0.000
     2      2.000D+05   1.836D-03     0.379234    90.015     -89.948
     3      3.000D+05   3.725D-06     0.000769    55.630    -124.333

     TOTAL HARMONIC DISTORTION =     38.373638  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VEE1) 
 DC COMPONENT =   3.319D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.843D-03     1.000000  -179.964       0.000
     2      2.000D+05   1.838D-03     0.379453   -89.987      89.977
     3      3.000D+05   5.412D-06     0.001118   -34.003     145.961

     TOTAL HARMONIC DISTORTION =     38.391306  PERCENT
 
 
 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VCC2) 
 DC COMPONENT =  -3.322D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.842D-03     1.000000   179.963       0.000
     2      2.000D+05   1.833D-03     0.378566    90.015     -89.948
     3      3.000D+05   3.578D-06     0.000739    58.548    -121.415

     TOTAL HARMONIC DISTORTION =     38.302514  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VEE2) 
 DC COMPONENT =   3.196D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.657D-03     1.000000  -179.964       0.000
     2      2.000D+05   1.765D-03     0.378895   -89.987      89.977
     3      3.000D+05   5.309D-06     0.001140   -32.989     146.975

     TOTAL HARMONIC DISTORTION =     38.331377  PERCENT

Fig. 6.20. Fourier components of collector currents for Class-AB push-pull stages
with equal and unequal transistors.

input file is shown in Figure 6.21a. The voltage transfer characteristics for this
situation are shown in Figure 6.21b for both equal and nonequal transistor
parameter values. A distinct nonlinearity near zero input volts is seen. This
produces the kink in the output voltage waveform as shown in Figure 6.22a
which is called crossover distortion. However, the output voltage is quite low
in harmonics as is shown in the Fourier outputs shown in Figure 6.22b; for
the equal-beta case, THD = 4.45%. The odd harmonics fall off very slowly,
from HD3 = 3.6% to HD9 = 0.9%. This harmonic content can be appreci-
ated by looking at the waveform of the difference of the output voltage and
the fundamental of the output. This is shown in Figure 6.23a. This difference
waveform is clearly rich in harmonics.

The collector currents flow for less than half of the input cycle as is shown
in Figure 6.23b. According to a strict definition, this corresponds to Class-C
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BJT CLASS B, FIGURE 6.21
VIN 1 0 0 SIN(0  9.9 100K)
VB1 6 1 0
VB2 1 7 0
.TRAN .1U 20U
.PLOT TRAN V(3) V(13)
.PLOT TRAN I(VCC1) I(VEE1) (-10M,10M)
.PLOT TRAN I(VCC2) I(VEE2) (-10M,10M)
.FOUR 100K V(3)
.FOUR 100K I(VCC1)
.FOUR 100K I(VEE1)
.PLOT DC V(3) V(13)
.DC VIN -10 10 0.5
Q1 5 6 3 MOD1
Q2 4 7 3 MOD2
VCC1 5 0 10
VEE1 4 0 -10
RL 3 0  1K
.MODEL MOD1 NPN BF=100 IS=1E-16 RB=1
.MODEL MOD2 PNP BF=100 IS=1E-16 RB=1
.MODEL MOD3 PNP BF=20   IS=1E-15 RB=1
VB3 16 1 0
VB4 1 17 0
Q3 15 16 13 MOD1
Q4 14 17 13 MOD3
RL2 13 0 1K
VCC2 15 0 10
VEE2 14 0 -10
.FOUR 100K V(13) I(VCC2) I(VEE2)
.OPTIONS RELTOL=1E-6
.END
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Fig. 6.21. (a) Spice input file for BJT Class-B stage. (b) Dc voltage transfer char-
acteristics of Class-B stage.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   1.306D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   8.805D+00     1.000000     0.017       0.000
     2      2.000D+05   4.035D-03     0.000458    32.309      32.292
     3      3.000D+05   3.203D-01     0.036380   179.653     179.636

     TOTAL HARMONIC DISTORTION =      4.452303  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(13)   
 DC COMPONENT =  -2.719D-02
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   8.843D+00     1.000000     0.014       0.000
     2      2.000D+05   6.221D-03     0.000703    56.498      56.483
     3      3.000D+05   3.081D-01     0.034840   179.719     179.705

     TOTAL HARMONIC DISTORTION =      4.264578  PERCENT
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Fig. 6.22. (a) Output voltage waveforms for Class-B stage. (b) Fourier components
of output voltage with equal and unequal transistors.

operation. It is conventional, however, to refer to this case as Class B, where
each device conducts for approximately one-half of an input cycle. The
corresponding Fourier components of the collector current waveforms are given
in Figures 6.23c and d.

From the dc values in the Fourier current outputs, the dc power supplied
by VCC and VEE is Pdc = 54.4 mW for equal betas. The ac power developed
in RL is Pac = 38.8 mW. The conversion efficiency is 71%. Of course, the
dc power from the VBB sources is now absent. For the unequal transistor
example, Pdc = 53.6 mW, Pac = 39.1 mW, and η = 73%.

In practice, a push-pull emitter follower stage is designed to include a small
voltage bias for the devices; equivalent values of VBB lead to quiescent values
of collector current of 0.1 to 1 mA.
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Fig. 6.23. (a) Harmonic content in the output voltage waveform. (b) Collector
current waveforms.

In the output stage of many analog ICs, improved performance of the push-
pull EF can be obtained by using composite transistors, as shown in Figure
6.24. Composite device Q1 is the combination of a small-area npn transistor,
Q1a, driving a large-area pnp, Q1b. Composite device Q2 is the combination
of a small-area pnp transistor driving a large-area npn transistor. From the
input to the output, each of two parallel paths involve the effective cascade
of two devices with complementary-polarity. In particular, the current gain
at an operating point of each path is the product of a poor gain device and a
high-gain device. Over the range of large-signal operation, the nonlinear beta
characteristics are partially compensated by the other polarity device in its
path and by the composite beta characteristic of the parallel path. Because of
the adequate current gains, the output resistance of both paths is significantly
smaller than that provided by a two-device, push-pull EF over the full input
voltage variation.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VCC1) 
 DC COMPONENT =  -2.718D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.360D-03     1.000000  -179.867       0.000
     2      2.000D+05   2.023D-03     0.464091    90.076     269.943
     3      3.000D+05   1.572D-04     0.036056    -3.388     176.479

     TOTAL HARMONIC DISTORTION =     47.561413  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VEE1) 
 DC COMPONENT =   2.717D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.358D-03     1.000000   179.901       0.000
     2      2.000D+05   2.025D-03     0.464706   -90.019    -269.921
     3      3.000D+05   1.604D-04     0.036804     2.633    -177.269

     TOTAL HARMONIC DISTORTION =     47.637512  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VCC2) 
 DC COMPONENT =  -2.718D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.360D-03     1.000000  -179.867       0.000
     2      2.000D+05   2.023D-03     0.464091    90.076     269.943
     3      3.000D+05   1.572D-04     0.036056    -3.388     176.479

     TOTAL HARMONIC DISTORTION =     47.561413  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VEE2) 
 DC COMPONENT =   2.641D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.229D-03     1.000000   179.897       0.000
     2      2.000D+05   1.951D-03     0.461405   -90.020    -269.917
     3      3.000D+05   1.427D-04     0.033743     3.012    -176.884

     TOTAL HARMONIC DISTORTION =     47.283488  PERCENT

(c)

(d)

Fig. 6.23. Fourier components of collector currents with (c) equal transistors, and
(d) unequal transistors.

6.7 The Push-Pull Source Follower

A schematic diagram for a push-pull source follower is directly obtained from
the BJT push-pull emitter follower by substituting n-channel and p-channel
enhancement-mode MOS devices for the npn and pnp (enhancement-mode)
transistors. The resulting circuit configuration is shown in Figure 6.25a. Of
course, the values of the circuit parameters must be changed. The values of
VG1 and VG2, shown in the Spice input file of Figure 6.25b, provide Class-
AB performance. The voltage transfer characteristic is that of Figure 6.25c.
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Fig. 6.24. Push-pull emitter follower with composite transistors.

There is some crossover distortion present, and the output range with respect
to the values of the supply voltages is not as large as obtainable for a BJT
configuration. The maximum input sinusoid to achieve just clipping at the
output is 5 V zero-to-peak. However, the maximum gate potential of M1 is
5.7 V. The harmonic components of the output voltage are given in Figure
6.26. Note that HD2 = 1.31%,HD3 = 2.85% and THD = 3.43%. These
results are significantly worse than those for the BJT circuit.

The harmonic components of the supply voltage currents are given in
Figures 6.27a and b. From the values of the dc components, the dc power
supplied to the source followers is Pdc = 2.5 mW. The power delivered to the
load is Pac = 1.6 mW. The conversion efficiency is 64%. The results are not
as good as those obtainable for the BJT.

6.8 Push-Pull, Single-Polarity Output Stages

Output stages have been developed for both analog MOS and bipolar circuits
that employ devices of only one polarity and also have a push-pull action.
In Figure 6.28a, a two-stage MOS configuration is present. The first stage is
a normal inverter with an enhancement-mode load. The output of this stage
drives the upper transistor in the final stage. This transistor may be either
enhancement-mode (with a very small or zero value of VT ) or depletion-mode
(VT < 0) and operates as a source follower. The input signal is also fed
directly to the lower final-stage enhancement-mode transistor. Both paths
to the output involve a net phase reversal and the gain characteristic of a
common-source stage.

For the circuit and device values given in the Spice input file of Figure
6.28b, the voltage transfer characteristic of the MOS output stage is shown in
Figure 6.29. The input voltage range must be limited to less than the supply
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+ VDD

- VSS

V1 Vo

RL

M1

M2

VG1 = VGG

VG2 = VGG

+

-

+
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SOURCE FOLLOWER, PP, FIGURE 6.25
V1 1 0 0 SIN(0 5 100K)
.TRAN 0.1U 20U
.PLOT TRAN V(3) I(VDD) I(VSS) 
.FOUR 100K V(3) I(VDD) I(VSS) 
.DC V1 -5 5 0.5
.PLOT DC V(3) (-5,5)
VG1 6 1 0.7
VG2 1 7 0.7
M1 5 6 3 4 MOD1 W=800U L=8U
M2 4 7 3 5 MOD2 W=800U L=8U
.MODEL MOD1 NMOS KP=30U VTO=0.7
.MODEL MOD2 PMOS KP=15U VTO=-0.7
VDD 5 0 5
VSS 4 0 -5
RL 3 0 5K
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

5.02.50.0-2.5-5.0
-5.0

-2.5

0.0

2.5

5.0

V1  (V)

V
(3

) 
 (

V
)

(c)

(a) (b)

Fig. 6.25. (a) A push-pull source-follower circuit. (b) Spice input file. (c) Dc voltage
transfer characteristics for the source follower.

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   9.722D-02
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.001D+00     1.000000     0.011       0.000
     2      2.000D+05   5.260D-02     0.013146   -90.170     -90.181
     3      3.000D+05   1.139D-01     0.028469   179.612     179.601

     TOTAL HARMONIC DISTORTION =      3.432367  PERCENT

Fig. 6.26. Fourier components of the output voltage.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VDD)  
 DC COMPONENT =  -2.618D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   4.149D-04     1.000000   179.939       0.000
     2      2.000D+05   1.846D-04     0.444848    90.027     -89.911
     3      3.000D+05   1.009D-05     0.024314     2.425    -177.514

     TOTAL HARMONIC DISTORTION =     45.368813  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VSS)  
 DC COMPONENT =   2.423D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   3.853D-04     1.000000  -179.911       0.000
     2      2.000D+05   1.741D-04     0.451747   -89.961      89.950
     3      3.000D+05   1.272D-05     0.033000    -2.619     177.291

     TOTAL HARMONIC DISTORTION =     46.012688  PERCENT

(a)

(b)

Fig. 6.27. Fourier components of the supply currents. (a) Positive supply, and (b)
negative supply.

voltage. The linearity of the characteristic is not good and distortion genera-
tion is significant. The Spice results for a sinusoidal input with an amplitude
of 0.75 V and a bias value of 1.05 V are shown in Figure 6.30. The total har-
monic distortion is 6.0%. Clearly, this stage should be used primarily within
a feedback amplifier. Some improvement is obtained when a resistance is used
in the source leads of M1 and M3.

From the Fourier outputs of the output voltage and current of Figure 6.30,
Pac = 7.0 mW, Pdc = 16.74 mW, and η = 42%.

A bipolar push-pull circuit can also be developed with only one polarity-
type of device. An example is the so-called totem-pole circuit shown in Figure
6.31a. This output stage was developed originally for digital logic circuits, in
particular for TTL circuits. For digital circuits, a diode-connected transistor is
also included in the emitter lead of Q2, leading to a stack of three transistors,
hence the name totem pole. The voltage transfer characteristic for this circuit
is obtained from a Spice run. For the circuit values and device parameters
shown in Figure 6.31b, the transfer characteristic is that shown in Figure
6.31c. The characteristic is quite linear, while transistors Q1 and Q3 are in
the normal active region. Here, transistor Q1 operates simultaneously as an
emitter follower feeding Q3 and a common-emitter stage (with Re = RB2

feedback) feeding the emitter follower, Q2. The Q1 stage is often called a
phase splitter, since the two outputs are out of phase. Notice that both paths
to the output load include a common emitter stage and an emitter follower.
Near the bottom of the transfer curve, Q3 begins to conduct significantly.
Then Q1 saturates and pulls up the output through Q2. In design, the choice
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V1 M1

M2

M3

M4

+ VDD

- VSS

RL

V(3)

MOS TOTEM, FIGURE 6.28
V1 1 4 0 SIN(1.05 0.75 100K)
R1 1 0 1E9
C1 1 0 1P
.TRAN 0.1U 20U
.PLOT TRAN V(3) I(VDD) I(VSS)
.FOUR 100K V(3) I(VDD) I(VSS)
.DC V1 0 2 0.1
.PLOT DC V(3) (-5,5)
M1 2 1 4 4 MOD1 W=80U L=8U
M2 5 5 2 4 MOD1 W=18U L=80U
M3 3 1 4 4 MOD1 W=800U L=8U
M4 5 2 3 4 MOD2 W=800U L=8U
C2 2 0 1P
VDD 5 0 5
VSS 4 0 -5
RL 3 0 1K
.MODEL MOD1 NMOS KP=30U VTO=0.25 LAMBDA=0.01
.MODEL MOD2 NMOS KP=30U VTO=-1.5 LAMBDA=0.01
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

(a)

(b)

Fig. 6.28. (a) A two-stage MOS output stage. (b) Spice input file for the MOS
output stage.

of the resistors is critical to achieve a linear characteristic. In use, the input
voltage excursion must be limited if significant distortion is to be avoided.

For a sinusoidal input voltage with an amplitude of 0.4 V, zero-to-peak,
and a quiescent bias of 1.1 V, a transient Spice run provides the output wave-
form of Figure 6.32 and the Fourier output components given in Figure 6.33.
The Fourier components of the separate voltage supply for the phase split-
ter are also given. The distortion of the output voltage, V (6), is 3.9%. The
power-conversion properties of the circuit can be estimated by inspecting the



174 6 Basic IC Output Stages

2.01.51.00.50.0
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Fig. 6.29. Dc voltage transfer characteristics of the MOS output stage.

dc terms in the harmonic components of the current supplied by VCC . The
dc power supplied to the totem-pole stage is (5 V)(2.01 mA) ≈ 10.0 mW.
The ac power delivered to RL is 1.24 mW. The conversion efficiency is only
12%. This is very low relative to what can be obtained from the push-pull
emitter-follower output stage operated in near Class B.

Problems

6.1. The dc current transfer characteristic for a BJT stage is shown in Figure
6.34. For a dc input which provides a collector current of 4 mA and an input
sinusoidal voltage of 2.0 V, use the method of differential error to estimate
HD2 in the output waveform.

6.2. An emitter-follower stage is shown in Figure 6.35.
(a) Estimate the maximum value of V1A for a reasonable output voltage wave-
form.
(b) For V1A = 9 V, use Spice to establish THD. Check results with differential
error estimation.
(c) Can feedback ideas and formulations be used to estimate the THD for the
drive condition of (b)?
(d) For the drive of (b), determine the average power delivered to the load, the
average power supplied by the dc voltage sources, and the power-conversion
efficiency.

6.3. A source-follower stage is shown in Figure 6.36. The input voltage is
0+5 cos ωt. At the zero input, the positive peak input, and the negative peak
input, the corresponding values of the drain current are 0.85 mA, 1.32 mA,
and 0.38 mA, respectively. Use the differential error method to estimate HD2
in the output voltage.

6.4. A source-follower stage is shown in Figure 6.37.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   2.472D-01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   3.753D+00     1.000000   178.777       0.000
     2      2.000D+05   1.745D-01     0.046504  -112.230    -291.007
     3      3.000D+05   1.289D-01     0.034339  -166.331    -345.108

     TOTAL HARMONIC DISTORTION =      5.985200  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VDD)  
 DC COMPONENT =  -1.797D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.758D-03     1.000000    -2.537       0.000
     2      2.000D+05   6.007D-04     0.341630    83.753      86.290
     3      3.000D+05   1.111D-04     0.063162    16.087      18.624

     TOTAL HARMONIC DISTORTION =     34.880506  PERCENT

(b)

(c)

(a)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VSS)  
 DC COMPONENT =   1.550D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.995D-03     1.000000     0.002       0.000
     2      2.000D+05   4.355D-04     0.218250   -89.966     -89.968
     3      3.000D+05   1.842D-05     0.009230     0.113       0.111

     TOTAL HARMONIC DISTORTION =     21.847090  PERCENT

(d)

Fig. 6.30. (a) Output voltage and supply current waveforms. Fourier components
of (b) output voltage, (c) positive supply current, and (d) negative supply current.



176 6 Basic IC Output Stages

RL

RB1

RB2
RE3

Q1

Q2

Q3

V1

Vo

+ VCC+ VC1

NPN TOTEM, FIGURE 6.31
V1 1 0 1.1 SIN(1.1 0.4 100K)
.TRAN 0.1U 20U
.PLOT TRAN V (6) I(VCC) I(VC1)
.FOUR 100K V (6) I(VCC) I(VC1)
.DC V1 0.5 2 0.05
.PLOT DC V(6)
Q1 2 1 3 MOD1
Q2 5 2 6 MOD1
Q3 6 3 11 MOD1
RE3 11 0 26
.MODEL MOD1 NPN BF=100 IS=1E-16 RB=1
RL 6 0 1K
RB1 10 2 15K
RB2 3 0 3K
VCC 5 0 5
VC1 10 0 5
.OPTIONS RELTOL=1E-6 ITL5=0
.WIDTH OUT=80
.END

2.01.51.00.5
0

1

2

3

4

V
(6

) 
 (

V
)

V1 (V)

(c)

(b)(a)

Fig. 6.31. (a) A totem-pole bipolar npn output stage. (b) Spice input file for bipolar
output stage. (c) Dc voltage transfer characteristics for the totem-pole output stage.

(a) Establish the value of VGS to produce Vo = 0 V.
(b) For VsA = 2 V, estimate HD2 and HD3 using an analysis technique of your
choice. Verify with Spice. What is the maximum value of VsA for adequate
operation?
(c) For VsA = 2 V, determine the average power delivered to the load, the
average power supplied by the dc voltage sources, and the power-conversion
efficiency.

6.5. A push-pull emitter-follower is shown in Figure 6.38.
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Fig. 6.32. Output voltage waveform for a sinusoidal input amplitude of 0.4 V.

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(6)    
 DC COMPONENT =   1.982D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.572D+00     1.000000   179.999       0.000
     2      2.000D+05   5.876D-02     0.037384    90.006     -89.993
     3      3.000D+05   7.965D-04     0.000507     1.492    -178.507

     TOTAL HARMONIC DISTORTION =      3.943662  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC1)  
 DC COMPONENT =  -1.487D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.063D-04     1.000000   179.999       0.000
     2      2.000D+05   4.178D-06     0.039314    90.006     -89.993
     3      3.000D+05   4.000D-08     0.000376     2.226    -177.773

     TOTAL HARMONIC DISTORTION =      4.100335  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VCC)  
 DC COMPONENT =  -2.008D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   1.468D-03     1.000000    -0.001       0.000
     2      2.000D+05   1.884D-05     0.012831    89.979      89.980
     3      3.000D+05   6.044D-05     0.041171    -0.020      -0.019

     TOTAL HARMONIC DISTORTION =      5.017887  PERCENT

(b)

(c)

(a)

Fig. 6.33. Fourier components of (a) output voltage, (b) collector current of Q2,
and (c) collector current of Q1.
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Fig. 6.34. Dc transfer characteristics for Problem 6.1.
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Fig. 6.35. Emitter-follower stage for Problem 6.2
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Fig. 6.36. Source-follower stage for Problem 6.3
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Fig. 6.37. Source-follower stage for Problem 6.4
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IS = 10
-15 A

npn

IS = 10-15 A
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Fig. 6.38. Push-pull emitter-follower for Problem 6.5

(a) For IC = 0.5 mA determine the value of VBB for quiescent operation.
(b) Determine the necessary zero-to-peak level of Vi to achieve ‘just clipping’
of both the positive and negative peaks of Vo.
(c) Estimate the efficiency of power-supply conversion and the THD for the
conditions of Part (b).
(d) Reduce VBB by 60 mV. Recalculate the estimates of Part (c).

6.6. A push-pull emitter-follower is shown in Figure 6.39.

+5 V

-5 V

Q1

Q 2

Q a

Qb

Q3

RL

Vo

V1

RB IBB

IBB

βF = 200

npn

βF = 30

pnp

IS = 10-16
 A

IS = 10-15
 A

Fig. 6.39. Push-pull emitter-follower for Problem 6.6

(a) Replace transistor Q3 with a voltage source, Vs, the quiescent value of
which produces a dc current of 1 mA in the transistors. Note that all the tran-
sistors of the same type have the same IS . Determine the necessary sinusoidal
input amplitude to achieve ‘just clipping’ of the output voltage waveform.
(b) Use the method of differential error to estimate THD for VsA = 4.5 V.
(c) Estimate the efficiency of power-supply conversion for the conditions of
Part (b).
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(d) Replace Vs with Q3 and V1. Find the necessary value of the bias of the
input voltage to produce currents of 1 mA in the transistors. Determine the
necessary sinusoidal drive to achieve the output amplitude of (b). Comment
on the difficulties of this request. Establish the distortion in the output voltage
waveform for your choice of drive.



7

Transformers

7.1 Introduction

Within an integrated circuit, active devices such as bipolar and MOS transis-
tors can be realized readily along with certain passive devices such as resis-
tors and capacitors. Inductors and transformers cannot be realized except for
high-frequency applications [21], [22]. Although tuned, bandpass frequency
responses can be realized with ICs containing feedback amplifiers, resistors
and capacitors only, for many moderate-frequency applications, an inductor
is needed and an element external to the IC must be utilized. Often, it is al-
most as convenient to achieve a two-winding ‘coil’ as one-winding; therefore,
the transformer is available.

In the next two chapters, tuned circuits and bandpass amplifiers that uti-
lize inductors and transformers are studied. Oscillators including these ele-
ments are studied later. In other chapters, transformers are often a necessary
component of demodulation and rectifier circuits. Amplifier-RC configurations
to achieve the necessary bandpass responses are also briefly included in the
next few chapters.

In this chapter, the basic low-frequency transformer is presented together
with the circuit models and parameters which characterize its electrical per-
formance. Not only is the transformer valuable and important in its own right
as a circuit component, but also the concept of voltage, current, and resistance
transformations are important tools and concepts in the design and evaluation
of integrated circuit functions.

7.2 Elementary Coupled Coils

Figure 7.1a shows a sketch of a simple coil of wire wound about a closed mag-
netic medium, such as a ferrite torroid or a laminated set of iron-compound
sheets, producing a continuous magnetic path, with a permeability, µ, much
larger than unity. Note that positive input current and voltage polarities are
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defined. For such an arrangement, a magnetic flux φ is established in the ‘core’
for an input dc current. If the input current I1 is increased, an induced voltage
V1 arises with the polarity shown in Figure 7.1a, in a direction as to oppose
the change in flux linkage, λ, which produces it (Lenz’s Law). The relation
between the voltage and the changing flux linkage is Faraday’s Law.

I1

φ

V1

+

-

B

H

Rs

Rsh C L

(a) (b)

(c)

Fig. 7.1. (a) A simple coil of wire wound about a closed magnetic medium. (b) A
typical BH curve for an iron core. (c) Circuit model representation for the coil.

V1 =
dλ

dt
=

dNφ

dt
(7.1)

where λ is the magnetic flux linkage between the flux and the coil. For a simple
situation, λ can be considered to be the product Nφ of the turns of the coil
N and the flux φ produced by the current I1 flowing through the wire, i.e., a
single turn. Again for a simple case, the flux produced by I1 is

φ = KNI1 (7.2)

where K is a constant. This is the equivalent of Ohm’s Law for a simple
magnetic element, particularly if one identifies NI1 as the magnetomotive
force, mmf. Using this expression, one obtains
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V1 = KN2 dI1

dt
= L

dI1

dt
(7.3)

Note that the inductance of the coil is defined by

L = KN2 (7.4)

In general, and usually, the magnetic media is not linear. The relation
between flux φ and the magnetomotive force, NI1, is not a linear curve. It
is more fundamental in studying the linearity relation to deal with the flux
density B and the magnetic field H rather than with the flux and the mmf. A
typical B-H curve for an iron core has the shape of the curves of Figure 7.1b
for small and large driving levels. Note that both a hysteresis effect is present
as well as a saturation phenomenon. The area within the hysteresis loop can
be shown to represent an energy loss due to the flow of eddy currents in the
magnetic media and is comparable to the loss in a resistor. Of course, for a
dc input current there is no core loss. The loss problem is certainly present
for a sinusoidal time excitation.

The saturation effects in a magnetic media lead to a nonlinear response in
the circuit using the inductor. There is also a loss mechanism in the resistance
of the wire. If the effects described above are combined into a circuit, the coil
can be represented by the circuit model shown in Figure 7.1c. Notice that
a shunt capacitor C has been added across the inductance element. This
represents the (distributed) electrostatic coupling of the turns of the coil with
each other.

From the circuit model of Figure 7.1c, it is seen that at a particular fre-
quency a parallel resonance occurs. These resonant circuits are studied in
detail in the next chapter. For now, note that operation of the coil must be at
frequencies well below the resonant frequency if it is to be considered a simple
inductance.

If two coils are used as in Figure 7.2a, there are two induced voltages for
a change of the flux. For the moment, assume that the right side, which is
labeled for now the output, is open-circuited (I2 = 0). The signal input is
assumed to be applied to the left side, which is called the input side. For
simplicity, the effects of the wire and core losses are neglected. In addition,
it is assumed that all of the flux produced by the input current couples with
the secondary winding, i.e., there is no ‘leakage’ flux. A current at the input
establishes the magnetic flux. For a change of the input current, the induced
voltage at the input is

V1 =
dN1φ

dt
(7.5)

where N1 is the number of turns of the input winding. At the terminals of the
output winding, the change of flux also produces an induced voltage.
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Fig. 7.2. (a) Two coils of wire wound on a core. (b) Two windings arranged on the
same side of the core.

V2 =
dN2φ

dt
(7.6)

A different turns number N2 is assumed for the output winding. The relation
between the flux and the input current is next applied as in Equation (7.2)
leading to

V2 = KN1N2
dI1

dt
(7.7)

The product KN1N2 is defined as the mutual inductance M of the coupled
coils.

V2 = M
dI1

dt
(7.8)

Note that the ratio of the input and output induced voltages is equal to the
ratio of the turns of the input to output windings of the coils.

V1

V2
=

N1

N2
= n (7.9)

where n is called the turns ratio of the coupled coils.
In Figure 7.2b, the two windings are arranged on the same side of the core.

Notice that the two windings are shown to have the same winding sense. Using
the ‘right-hand rule’ of basic electrical physics, one has an increasing flux in the
up direction for an increasing input current. This produces a positive induced
voltage for the defined port polarities of the figure for each coil. To denote the
winding sense of the coupled coils, we usually pole the coupled coils with a dot
notation. As shown in the figure, the dot is placed at the node of each pair
which provides the same polarities of the two ports. If the two windings are in
fact the same winding with a ‘tap’ connection, the arrangement is called an
autotransformer. It is clear that since the two windings have the same winding
sense, the voltage across the combination must have the same polarity as the
two separate ports.
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Next, we consider the case of three windings as illustrated in Figure 7.3.
The two output windings have the opposite winding senses; the top coil has
the same winding sense as the input, while the lower coil has the opposite
sense. Notice that the location of the dot polarity notation is different for the
two output coils. For an increasing input current, the two output voltages
are of opposite polarity from the top node to bottom node of each node pair.
Finally, we place a very large load resistor RL across each output. Because
of the induced voltages, currents in these loads must flow for a change in
the magnetic flux, i.e., a change in the input current. Each of these currents
produces a ‘back’ flux which opposes the changing flux. In spite of the different
winding senses of the two output coils, the direction of the back flux is the
same as shown in the figure. This can be verified by using the right-hand rule
for both coils for an assumed input current increase with resulting output
voltages and load currents.

I1 V1

V2

+

-

+

-

+

-
V3

RL

RL

Primary
flux

Back
flux

Fig. 7.3. Three windings on a core.

We return to a two coupled-coil situation as shown in Figure 7.4a, where
the portrayal of the core and of the winding sense of the coils are not shown.
It now is understood that a core material is present, which may not be an iron
compound. The relative winding sense of the two coils is included with the
dot polarity notation. The ratio of the number of turns of the two windings is
introduced with the turns ratio, n. By definition, the winding associated with
the parameter n is called the primary side of the coupled coils and the other
winding is referred to as the secondary side. This nomenclature holds even if
n < 1, i.e., the primary winding has less turns than the secondary winding.
Figure 7.4a is the schematic diagram of a two-winding transformer. We have
seen above that the open-circuit input to output voltage ratio for a change of
input current and with no leakage flux is n. The ratio of the currents in the
two windings now is investigated. First, it is necessary to establish the voltage-
current relations for this ‘inductive two-port.’ For an open-circuit output, the
relations of the voltages to the input current are

V1 = L1
dI1

dt
(7.10)
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V2 = M
dI1

dt

+

-

+

-

n:1

V1

I1

V2

I2

+

-

+

-

n:1

V1

I1

V2

I2

RLRin

(a) (b)

Fig. 7.4. (a) Schematic diagram of a two-winding transformer. (b) Transformer
with a load resistance attached to the secondary side.

A new notation is now used. L1 is defined as the self inductance of the
input winding. It is proportional to N2

1 , as brought out above. The parameter
M is called the mutual inductance of the coil set. It is proportional to N1N2,
the product of the two turns. The ratio of V1 to V2 is equal to n = N1/N2

only if there is no leakage flux, i.e., if the total flux produced by I1 couples
with the secondary and vice versa. In general, L1 includes a component of
leakage. Therefore, the multiplier constant, K, for L1 is not identical to the
constant for M .

The next possibility is that an ‘input’ current is also present at the out-
put (secondary). Note in Figure 7.4a that an assumed positive direction for
this current is chosen in accordance to the usual network-theory practice.
Positive node-pair voltages are also defined. The output current drive also
produces flux. For an assumed linear core material, superposition of the flux
due to the primary winding and due to the secondary can be used. At the
input, the voltage is the sum of the self excitation and the mutual excitation
from the secondary.

V1 = L1
dI1

dt
+ M

dI2

dt
(7.11)

At the output node pair,

V2 = M
dI1

dt
+ L2

dI2

dt
(7.12)

The mutual excitation parameter M is the same for both sides. This is a
fundamental property of passive, linear networks and can be derived either
from network theory or directly from energy considerations [23]. A new self-
inductance parameter, L2, for the secondary is also used and, in general,
includes leakage inductance for that winding.



7.2 Elementary Coupled Coils 187

The two equations above are examined in more detail shortly. For now,
we establish the relations of the two currents I1 and I2 under special circum-
stances. In Figure 7.4b, a load resistance has been added at the secondary
side of the transformer. The V−I relation of the load resistance is

V2 = −I2RL (7.13)

Using this, one obtains

0 = M
dI1

dt
+ L2

dI2

dt
+ RLI2 (7.14)

Consider now that either the values of the inductances, L2 and M , are
very large or that RL is very small. In either case, the RL term above can be
neglected. The equation can be integrated to obtain

I1

I2
= −L2

M
= −N2

N1
= − 1

n
(7.15)

where it is assumed that there is no leakage component in L2. The current
ratio of the primary to the secondary sides is the negative inverse of the turns
ratio of the transformer.

It is convenient to define an ideal circuit element on the basis of the results
and assumptions made in the above developments. The ideal transformer is
defined to be a perfectly coupled set of coils without leakage, without winding
or core losses, and with a mutual inductance which is infinitely large. The
symbol for this element is shown in Figure 7.5, which also includes the defining
voltage and current relations:

V1

V2
= n (7.16)

I1

I2
= − 1

n
Lm = ∞

k = 1

+

-

+

-

n:1

V1

I1

V2

I2

Lm = ∞
k = 1

V1 = nV2

I1 = - 1nI2

Fig. 7.5. An ideal transformer.
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The magnetizing inductance Lm and the coefficient of coupling k are de-
scribed below. If the ideal transformer is loaded at the output (secondary)
with a load resistance RL, the input resistance is

Rin =
V1

I1
=

nV2
1
nI2

= n2RL (7.17)

If the input side is loaded with a resistance RS , the output resistance is

Rout =
1
n2

RS (7.18)

Thus, the ideal transformer provides voltage, current, and resistance transfor-
mation.

The ideal transformer is used as a basic element of a circuit model for a
general transformer as is developed in the next section.

For the main flux (and flux linkage) of the core without leakage, we note
that only two parameters or elements are needed: the self inductance of the
idealized coupled coils (without leakage and losses) and the mutual induc-
tance, which are related simply.

L1 = KN2
1 (7.19)

L2 = KN2
2

M = KN1N2

M2 = L1L2

where now the constants K are equal, since leakage is assumed zero.
The two parameters to characterize ideally coupled coils are the primary

side inductance which is called the magnetizing inductance of the coupled
coils, Lm, and the turns ratio of the idealized situation (without leakage.) A
circuit model for ideally coupled coils is shown in Figure 7.6 and consists of
an ideal transformer and a single inductor, Lm. (The magnetizing inductance
and the turns ratio can also be taken from the ‘low’ side. Thus, care must be
used in establishing a consistent pair of parameters.)

n:1

+

-

V1

I1

+

-

V2

I2

Ideal

Lm

Fig. 7.6. Circuit model for ideally coupled coils.
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7.3 Circuit Model for a Transformer

The ideal transformer and the several effects present in an actual transformer
can be included in a circuit model of the transformer as shown in Figure
7.7a. The wire losses of the input and output windings are represented by Rs1

and Rs2, respectively. The input-side and output-side leakage inductances
are denoted Ll1 and Ll2. The magnetizing inductance of the coupled coils is
modeled by Lm, while the ‘internal ideal transformer’ has a turns ratio of n1.
A new notation for the turns ratio is introduced here to avoid confusion with
the parameter for actual coupled coils. A polarity must also be assigned to the
ideal transformer to include different connection possibilities. The secondary
winding has a degree of freedom with respect to the output polarity of the
induced voltage. Across Lm is shown a shunt resistor, Rsh, which models the
core losses due to eddy currents. Two capacitors are also included. Cc models
the electrostatic coupling of the two windings. Cm represents the turn-to-turn
electrostatic coupling of each winding to itself. Because of the presence of the
ideal transformer, the shunt capacitances of the two windings can be combined
into a single capacitor.

Simplifications can be made to the circuit model of Figure 7.7a. First, we
restrict operation to frequencies below the open-circuit resonant frequency of
Lm and Cm. Further, we assume that the coupling effects of Cc are small with
respect to that of the ideal transformer. (The frequency restriction corresponds
to a time-domain restriction to slow transients. This will be discussed later.)
Cm and Cc can then be omitted. Next, the effects of wire loss and leakage
inductance can be combined on one side of the transformer model. The new
values are not just the sum of the two initial values. This aspect is treated
later in this chapter. Nonetheless, the effects of wire loss and leakage can be
included in a more gross modeling sense. Finally, for the reduced circuit model,
assume that Rsh, Rs1, and Rs2 are removed from the model and incorporated
in the source and load resistances presented to the transformer. (Of course, if
leakage inductance is appreciable, the removal of Rsh introduces inaccuracy.)
The resulting inductive circuit model is that shown in Figure 7.7b. Notice
that three elements or parameters describe completely this inductive ‘two-
port,’ Li, Lm and n1. Alternately, the two port can be described by L1, L2

and M , cf., (7.11) and (7.12).

7.4 Inductive Two-Port Parameters

Alternate, equivalent inductive two ports can be used in place of that of
Figure 7.7b. These include the ‘T’ of inductors of Figure 7.7c and the ‘pi’
circuit shown in Figure 7.7d. The inductive two port can also be described
in terms of open-circuit inductive parameters, lij , and short-circuit reciprocal
parameters, Γij . For the former, the two-port equations are
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Rsh

Rs1 Ll1

Cm Lm

Cc

Ll2 Rs2

n1:1

(a)

Lm

Li La

Lb

Lc

Lx

Ly

Lz

(b) (c)

(d)

n1:1

Fig. 7.7. (a) Circuit model for an actual transformer. (b) Simplified inductive model
of the transformer. (c) ‘T’-circuit equivalent of (b). (d) ‘Pi’-circuit equivalent of (b).

v1 = sl11i1 + sl12i2 (7.20)
v2 = sl12i1 + sl22i2

v1 = jωl11i1 + jωl12i2

v2 = jωl12i1 + jωl22i2

(Lower-case variables are now used since small-signal, steady-state variations
about a quiescent state are required.) In the second equation the parameter
l21 is the proper constant, but for passive reciprocal devices l12 = l21.

For the short-circuit description,

i1 =
Γ11

jω
v1 +

Γ12

jω
v2 (7.21)
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i2 =
Γ12

jω
v1 +

Γ22

jω
v2

The assumed polarities are shown in Figure 7.8. For the first set of equa-
tions above, if the output is open, i2 is equal to zero, and the ‘open-circuit’
input impedance is

z11 =
v1

i1
= jωl11 (7.22)

l11 is called the open-circuit input inductance. Similarly, l22 is called the open-
circuit output inductance. The transfer impedance from the input to the open-
circuit output is

z21 = z12 =
v2

i1
= jωl12 (7.23)

Therefore, l12 is referred to as the open-circuit transfer inductance. If sinu-
soidal variables are assumed in (7.11) and (7.12), the equations in the steady
state become the same as (7.20) and L1 = l11, L2 = l22,M = l12.

+

-

+

-

v1 v2

i1 i2

li j

Γi j

Fig. 7.8. Assumed polarities for the short-circuit description.

In terms of the parameters of Figure 7.7b, by inspection,

l11 = Li + Lm (7.24)

l12 =
Lm

n1

l22 =
Lm

n2
1

In relation to the developments in Section 7.2, the turns ratio n of the
coupled coils is defined as n =

√
l11
l22

. A parameter can be defined to portray
the relative effects of the leakage inductance. This is the coefficient of coupling,
k. By definition,

k =
|l12|√

l11 × l22
(7.25)
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In terms of the parameters of the circuit model of Figure 7.7b,

k =
1√

Lm+Li

Lm

(7.26)

If the leakage is zero, Li = 0, cf., Figure 7.7b, l212 = l11l22, and k = 1.
This is another definition of perfectly coupled coils. For this case, n = n1. The
circuit model for this case is shown in Figure 7.6.

It is left as an exercise for the reader to repeat the developments for the
other two inductive circuit models of Figures 7.7c and d to obtain

l11 = La + Lb (7.27)
l12 = Lb

l22 = Lb + Lc

k =
Lb√

(La + Lb)(Lb + Lc)

Γ11 =
1

Lx
+

1
Ly

(7.28)

Γ12 =
−1
Ly

Γ22 =
1
Ly

+
1
Lz

k =
|Γ12|√

Γ11 × Γ22

If the coefficient of coupling is introduced, the inductive circuit model of
the transformer can be represented as in Figure 7.9a. It is to be noted that
the correct turns ratio for this circuit model is n, not n1. For the model where
leakage is included on only one side, as in Figure 7.7b, the appropriate model
is that shown in Figure 7.9b. Note the presence of the k2 parameter in the
latter. Again, n is used, not n1.

As a final exercise, we investigate what happens in coupled coils with
a linearly increasing input current. To solve this case, use the simple circuit
model of Figure 7.10a where leakage and losses have been neglected. The input
current is a ramp function with a slope value of A. If the output resistance
is transformed to the primary side, the simpler circuit of Figure 7.10b is
obtained. The circuit equation for this circuit is

v1 = Lm
d

dt

(
i1 −

v1

n2RL

)
(7.29)

If one uses transform notation, the voltage function v1(s) is
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(1 - k)l11 (1 - k)l22

(1 - k2)l11

kl11

k2l11

k = l12

l11l12

n = l11
l22

(a)

(b)

n : 1

n : 1

Fig. 7.9. (a) Inductive circuit model for the transformer with leakage. (b) Circuit
model with leakage included on only one side.
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n:1

+

-

i1(t)

i2(t)
i1(t)

t

v2RL Lm

+

-

i1(t) v1(t)

(b)(a)

At

t

v1(t)

At

i1(t)

(c)

Fig. 7.10. (a) Circuit model with ramp input. (b) Simplified circuit. (c) Voltage
response in the time domain.
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v1(s) = Lm
s

1 + s
s1

i1(s) (7.30)

where s1 = n2RL/Lm.
The Laplace transform of the ramp function is A/s2. Therefore, v1(s) can

be written

v1(s) = C1
1
s

+ C2
1

s + s1
(7.31)

The voltage response in the time domain is shown in Figure 7.10c. This is
also the time-response form of v2(t) and i2(t) = −iL(t). For even a perfectly
coupled set of coils, the input/output current ratio is not a constant even if
the voltage ratio is n. Only for the ideal transformer are both the voltage and
current ratios a constant.

In the next section, a transformer is used in a simple output stage. The
different parameters and approximations above are illustrated with actual
numerical values.

7.5 A Transformer-Coupled, Class-A BJT Output Stage

A bipolar output stage including an input transformer and an output trans-
former is shown in Figure 7.11a. Both transformers are assumed to have co-
efficients of coupling of k ≈ 1. Because the input transformer usually has
very low wire losses, relative to the input resistance of the diode-connected
transistor Qb, normal diode biasing of the transistor input occurs. If a re-
striction is made to input frequencies for which the inductive effects of the
transformer are negligible, the equivalent input to the transistor base is that
shown in Figure 7.11b. Note that at the secondary side of the transformer,
the open-circuit, signal-source voltage is divided by ni while the source re-
sistance is divided by n2

i . The bias source VBB , which is the quiescent value
of VBE , is the ‘diode’ voltage VD and is established by the current through
RB. A dashed-line inductor is placed across the reflected source resistance to
remind us that for dc, a short-circuit path through the secondary-transformer
winding is present. Therefore for dc,

ID =
VCC − VD

RB
≈ VCC

RB
(7.32)

The approximation is valid if VCC 	 VD. For convenience in the following,
a dc voltage source, VBB , is used in place of RB and the bias diode. A set of
circuit and device values for Figure 7.11a is given in the Spice input file of
Figure 7.12. Notice that each transformer is characterized by two inductances,
the open-circuit input and output inductances, and a coefficient of coupling.
The turns ratio of the transformer is the square root of the ratio of the induc-
tances. For a desired value of quiescent collector current, say ICA = 1 mA,
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VD

RL

Q1

Qb

vo

+

-

+

-

+ VCC

ni:1

no:1

VBB

1
ni

vs

1
ni

2
RS

+ VCC

no2RL novo

-

+

(b) (c)

(a)

Fig. 7.11. (a) A BJT output stage with input and output transformers. (b) Equiva-
lent input to the transistor base. (c) Equivalent circuit at the output of the transistor.
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the base-bias voltage VBB = 0.774 V. (Actually, ICA ≈ 0.99 mA due to the
base currents.)

SINGLE STAGE XSFMR, FIGURE 7.12
VS 1 0 0 SIN(0 19M 1MEG)
*VS 1 0  0 SIN( 0 26.2M 1MEG)
.TRAN 0.01U 2U 
.PLOT TRAN V(30)
.PLOT TRAN I(VC2)
.FOUR 1MEG V(30) I(VC2)
RS1 1 2 1
*RS1 1 2 1000
L1 2 0 .1
L2 3 4 .1
VBB 4 0 0.774
KA L1 L2 1
Q1 5 3 0 MOD1
VC2 5 8 0
LA 8 20 .1
LC 30 0 1M
KF LA LC 1
RL 30 0 100
VCC 20 0 10
.MODEL MOD1 NPN IS=1E-16 BF=100 
.WIDTH OUT=80
.OPTIONS RELTOL=1E-6
.OPTIONS NOPAGE NOMOD
.END

Fig. 7.12. Spice input file for the transformer coupled BJT output stage.

At the transistor output, the load resistor RL can be transferred across
to the transformer primary, as shown in Figure 7.11c by a resistor n2

oRL.
Note that the voltage across the reflected resistance is no times the actual
output voltage. Due to the polarity assumption for the output transformer,
novo is inverted relative to vo. Again a dashed-line inductor is placed across
the reflected load to illustrate the dc path in the primary winding from VCC to
the collector. The load line for this situation is shown in Figure 7.13. For the
quiescent condition (no signal input voltage), the operating point is ICA and
VCC . Remember there is a dc path across n2

oRL. For frequencies sufficiently
high so that the reactance of Lm is very large, the slope of the load line
through the operating point is −1/n2

oRL. The x-axis intercept of the load
line is VCC + ICAn2

oRL. The y-axis intercept is ICA + VCC/n2
oRL. Because of

transistor saturation, the maximum negative voltage swing at the collector is
VCC − VCEsat . Usually, VCEsat is small relative to VCC and can be neglected.
The maximum positive voltage swing at the collector is VCC + ICAn2

oRL −
VCC = ICAn2

oRL.
As is done in Chapter 6, assume that no distortion of the input signal is

generated and that the collector current and collector voltage are both pure
sinusoids for a sinusoidal input. For a maximum drive to the transistor input
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VCC

IC

VCE

ICA

VCC + ICAn0
2RL

ICA + VCC

n0
2RL

VCEsat

dc load line,  slope = ∞

ac load line,  slope = - 1
n0

2RL

ic+

Fig. 7.13. Transistor output characteristics with dc and ac load lines.

without clipping of the collector voltage and current, i.e., with the transistor
operating exclusively in the normal active region, maximum power is devel-
oped in n2

oRL, for

n2
oRL =

VCC

ICA
(7.33)

The ac output power is

Pac =
1
2
VCCICA (7.34)

The dc power delivered from the source to the output circuit is

Pdc = VCCICA (7.35)

The ideal maximum conversion efficiency is η = 50%
This value is significantly larger than can be obtained for the ‘resistive’

CE stage of Chapter 3. However, in common with a simple CE stage, the
output voltage and current variables for maximum output excursions are very
nonsinusoidal, and the harmonic distortion is not small. In addition, there
may be new frequency and transient degradation effects that are introduced
by the magnetizing inductance of the transformers. These aspects are brought
out below.

The actual conversion efficiency obtainable and the effects of the magne-
tizing inductances can be brought out with Spice simulations. In the input
Spice file of Figure 7.12, typical transformer parameters have been chosen.
Note that for both transformers, the coefficient of coupling, k, is set equal to
1 for an assumed closely coupled situation. (For some Spice-type simulators, k
should be chosen to be 0.999.) The turns-ratio parameter is not used explicitly
in the Spice input. Rather the open-circuit input and output inductances are
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used. As brought out in the last section, this specification is equivalent. Given
l11 and l22, and for k = 1,

Lm = l11 (7.36)

n =
√

l11
l22

l22 =
l11
n2

=
Lm

n2

For the input transformer of the circuit of Figure 7.11a, ni = 1, and at the
output, no = 10. The value for the open-circuit, primary input inductances
(the magnetizing inductance values) of both transformers is chosen to be 0.1
H. This is a typical, small value for inexpensive coupling transformers. We see
below that this value is often not large enough to permit adequate operation
at low frequencies.

For a small value for Rs, the input voltage to the base of the transistor is
the signal input, since the turns ratio is unity. We expect then the same har-
monic generation as encountered with the simple resistive CE stage of Chapter
3, due to the exponential input and transfer characteristics of the transistor.
The input signal-source voltage to achieve maximum output conditions can
be estimated using the small-signal voltage gain of the stage at the quiescent
state.

av =
vo

v1
= − 1

Rs + rπ
βn2

o

RL

no
(7.37)

For Rs = 1Ω and with rπ = 2585Ω (for an approximate 1 mA bias),
av = −38.5. With VCC = 10 V, a 10 V collector voltage swing is the largest
possible value for just clipping. This corresponds to an output voltage with a
zero-to-peak amplitude of 1 V and an input voltage amplitude of 26 mV. If this
signal level is used in the Spice simulation, the output is severely distorted.
Definite negative peak clipping is observed in the Spice output waveforms. In
effect, the gain for the negative excursion is larger than that predicted by the
small-signal calculation at the quiescent point.

A value of the maximum amplitude of a sinusoidal input drive to produce
‘just clipping’ can be obtained using the Bessel function curves of Chapter 3,
Figure 3.6. An estimate can be made considering only the first two terms of
the power series expansion for IC .

ic = IC − ICA ≈ ICA

[
v1

Vt
+

1
2

(
v1

Vt

)2
]

(7.38)

where ICA is the quiescent value of IC . For a sinusoidal input voltage with an
amplitude V1A
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ic = ICA

[
V1A

Vt
sin ω1t −

1
4

(
V1A

Vt

)2

cos 2ω1t +
1
4

(
V1A

Vt

)2
]

(7.39)

Notice that the dc shift term is included. For a positive input excursion of
ic, the maximum of ic occurs at ω1t = 90◦. The peak value is

ic
+ = ICA

V1A

Vt

[
1 +

2
4

V1A

Vt

]
(7.40)

The input amplitude is

V1A = Vt

⎡
⎣−1 +

√
1 + 2

ic
+

ICA

⎤
⎦ (7.41)

For an example, refer first to the load line of Figure 7.13. If n2
oRL >

VCC/2ICA, ic
+ = VCC/n2

oRL − ICA. For n2
oRL < VCC/ICA, ‘off clipping’

occurs before ‘saturation clipping’. For the maximum excursion of ic, ICA =
VCC/2RC , ic

+ = ICA.

V1A = Vt

√
−1 + 3

= 18.9 mV

The output-voltage and collector-current waveforms for VsA = 19 mV are
given in Figures 7.14a and b. Notice that the output voltage shows some
compression at the positive peaks, which corresponds to low values of VCE .
The collector current, measured by voltage source VC2 in the Spice input
file, shows more clearly that transistor saturation is encountered. Harmonic
outputs for Vo and Ic are given in Figure 7.15. The second harmonic distortion
of vo is HD2 ≈ 17%. The other harmonic components are small but not
negligible. Note that the average value of the collector current is 1.13 mA.
This is significantly larger than the quiescent value of 0.99 mA. Therefore, at
this signal level, significant expansion/contraction of the dc and fundamental
components are being produced by the higher-order terms of the power series
of the nonlinearities.

From the two sets of output, the ac power in the load and the dc power
from VCC are

Pac =
(0.774)2

2 × 100
= 3.0 mW (7.42)

Pdc = (1.13 mA)(10 V) = 11.3 mW

The conversion efficiency is η = 27%. This is almost a factor of two lower
than the 50% value of the idealized case.
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Fig. 7.14. Waveforms of (a) output voltage, and (b) collector current.

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(30)   
 DC COMPONENT =  -1.053D-01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   7.702D-01     1.000000  -179.087       0.000
     2      2.000D+06   1.296D-01     0.168221    91.200     270.287
     3      3.000D+06   8.214D-03     0.010665     0.239     179.326

     TOTAL HARMONIC DISTORTION =     16.903684  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC2)  
 DC COMPONENT =  -1.126D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   7.669D-04     1.000000  -179.998       0.000
     2      2.000D+06   1.296D-04     0.168995    90.012     270.010
     3      3.000D+06   9.331D-06     0.012167     0.281     180.279

     TOTAL HARMONIC DISTORTION =     16.992872  PERCENT

RS = 1 Ω, VSA = 19 mV

Fig. 7.15. Fourier components of the output voltage and collector current.
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For a larger value of Rs, say Rs = 1 kΩ, the distortion is reduced due
to the linearization of the input characteristic, as brought in Chapter 4. The
output voltage is also reduced because of the voltage division between Rs and
rπ. The signal input voltage must be increased in relation to the last example
to achieve just clipping of the output. (In this transformer-coupled stage, it is
not necessary to adjust the bias input level to compensate for the bias effects
of Rs. The secondary of the input transformer provides a constant dc path.)

From the results of Chapter 4, the value of the parameter E = Rs/rπ =
1000/2585 = 0.38. Therefore, the input should be increased by (1+E) = 1.38,
i.e., V1A = 26.2 mV. For a zero-to-peak input voltage of 26.2 mV, just clipping
is obtained. (Because of expansion effects which affect the value of the dc
collector current and therefore rπ, the small-signal calculation of E may not
provide exact results.) The Fourier components of the output voltage, across
RL, and the collector current are shown in Figure 7.16. The value of HD2 is
seen to be 12.5%. The estimated value of HD2 from the results for Rs = 1Ω
is 17%/1.38 = 12.3%. For Rs = 1 kΩ, the conversion efficiency is: η = 24.7%.

Problems with a transformer occur when the reactance of the magnetizing
inductance at a given frequency has a magnitude comparable to the resistances
presented to the transformer. At the primary of the input transformer, the
ac circuit is shown in Figure 7.17a. Notice that the input resistance of the
transistor, rπ, is reflected across the input transformer by n2

i . The parallel
resistance presented across Lmi is

Ri = Rs ‖ n2
i rπ (7.43)

where for the present example, ni = 1. The reactance of Lmi should be large
relative to this value. If the input frequency is ωi,

ωiLmi > Rs ‖ n2
i rπ (7.44)

In terms of the constraint on the input frequency,

fi ≥
Rs ‖ n2

i rπ

2πLmi
= f−3dB (7.45)

As noted in (7.45), the RL ratio is equal to the -3 dB corner frequency of
the high-pass circuit of Figure 7.17a. The signal input frequency must be at
least three times greater than this highpass corner frequency for no more than
a 10% effect in the (linear) frequency response. The signal input frequency
should be greater than 10 times for a negligible effect.

In Figure 7.12, two values of Rs are given. For Rs = 1 Ω, f−3dB = 1.6
Hz. For this small-signal-source resistance, little frequency effects should be
encountered even at the low audio frequencies.

For Rs = 1 kΩ, f−3dB = 1.1 kHz. Therefore, for a reasonable value of
source resistance and even with a reasonable value of magnetizing inductance,
frequency effects due to the input transformer can be expected in the audio
frequencies.
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SINGLE STAGE XSFMR, FIG 7.16 
*VS 1 0 0 SIN(0 19M 1MEG)
VS 1 0  0 SIN( 0 26.2M 1MEG)
.TRAN 0.01U 2U 
.PLOT TRAN V(30)
.PLOT TRAN I(VC2)
.FOUR 1MEG V(30) I(VC2)
*RS1 1 2 1
RS1 1 2 1000
L1 2 0 .1
L2 3 4 .1
VBB 4 0 0.774
KA L1 L2 1
Q1 5 3 0 MOD1
VC2 5 8 0
LA 8 20 .1
LC 30 0 1M
KF LA LC 1
RL 30 0 100
VCC 20 0 10
.MODEL MOD1 NPN IS=1E-16 
BF=100 
.WIDTH OUT=80
.OPTIONS RELTOL=1E-6
.OPTIONS NOPAGE NOMOD
.END

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(30)   
 DC COMPONENT =  -7.073D-02
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   7.301D-01     1.000000  -179.031       0.000
     2      2.000D+06   9.159D-02     0.125447    91.248     270.279
     3      3.000D+06   1.107D-03     0.001516     1.325     180.356

     TOTAL HARMONIC DISTORTION =     12.546613  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC2)  
 DC COMPONENT =  -1.086D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   7.280D-04     1.000000  -179.941       0.000
     2      2.000D+06   9.163D-05     0.125862    90.098     270.039
     3      3.000D+06   1.857D-06     0.002552     1.761     181.702

     TOTAL HARMONIC DISTORTION =     12.589112  PERCENT

RS = 1 k Ω, VSA = 26.2 mV

(a)

(b)

Fig. 7.16. (a) Spice input file for transformer coupled stage. (b) Fourier components
of the output voltage and collector current.
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v1

Rs
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2rπ no2RLnivb

(a) (b)

Lmo

Fig. 7.17. (a) Ac circuit at the primary of the input transformer. (b) Ac circuit at
the output.

At the output side of the stage, the ac small-signal circuit is shown in
Figure 7.17b. For small frequency effects due to Lmo,

ωiLmo > n2
oRL (7.46)

The corresponding highpass corner frequency for the element values of the
Spice input file of Figure 7.12 is

f−3dB =
n2

oRL

2πLmo
= 15.9 kHz (7.47)

Again, the signal frequency must be at least three times this frequency for
no more than 10% effect on the fundamental components. For the present
example, the output side of the stage clearly determines the lowest frequency
at which degradation occurs, even for Rs = 1 kΩ.

If one must operate with an input frequency equal to or smaller than
the corner frequencies above, severe frequency distortion will occur. For the
present simulation example, an input frequency of 1 MHz is chosen as shown in
the Spice input file, Figure 7.12, to avoid such problems. If the frequency of the
input sinusoid is decreased, the reactances (energy storage) of the magnetizing
inductances come into play. In Figure 7.18 are shown the harmonic distortion
factors of the output voltage for input frequencies of 10 kHz, 100 kHz, and 1
MHz. The input signal amplitude remains at 26.2 mV and Rs1 = 1 kΩ. For
Rs = 1 kΩ, 10 kHz is below the high-pass corner frequency produced by the
output transformer and above the input corner frequency. It is clear that a
significant increase of HD2 is introduced as the input frequency is lowered.

Of course, using transformers with larger magnetizing inductances is a pos-
sibility. But this involves greater component expense. Further, one must also
be concerned about the fact that with a larger Lm, the self-resonant frequency
of the transformer may be less, leading to another possible frequency degra-
dation. Finally, as brought out below with larger values of Lm, nonlinearity
of the transformers usually becomes a new source of distortion.
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Frequency

1 MHz 12.7 % 0.17 %

100 kHz 14.4 % 0.40 %

10 kHz 20.7 % 0.75 %

v1 = 26.2 mV  RS = 

HD2 HD3

1 kΩ

Fig. 7.18. Harmonic distortion factors for various input frequencies.

7.6 Maximum Power Transfer

For the transformer-coupled output stage, new problems may enter the scene
primarily due to the output transformer. First, for the quiescent condition,
a dc current flows through the primary which ‘biases’ the transformer on its
B-H characteristic. Most practical transformers exhibit a nonlinear B-H curve;
thus, more distortion is produced (for excursions about the operating point)
than if the transformer is biased at the origin of the B-H characteristic. A
Spice run will not show this unless a nonlinear model for the transformer is
introduced.1

A second problem concerns the core losses of a transformer, which have not
been included in the above examples. The reflected load resistance, n2

oRL, is
usually large. If the core loss modeled by Rsh of the transformer is included,
the efficiency results above must be corrected. Similarly, for large no, the
output resistance of the transistor, ro, must also be included.

In general, for maximum power transfer to the load, the reflected load
resistance must equal the parallel combination of Rsh of the transformer and
ro of the transistor.

n2
oRL = Rsh ‖ ro (7.48)

As an example, let ro at the quiescent operating point be 10kΩ (corre-
sponding to a collector current of 6 mA and VA = 60 V). Let the value of core
loss characterized at the transformer primary also be 10kΩ. The equivalent
input resistance at the primary side presented to the reflected load resistance,
n2

oRL, is 5 kΩ. For a load resistance of 100Ω , the value of no for maximum
power transfer should be 7.07.

For the case where no is chosen to obtain maximum power transfer, the
efficiency of conversion is reduced by one half. This follows because at the pri-
mary side of the output transformer, the reflected load is equal to the load-
ing supplied by Rsh and ro. Only one half of the ac power developed at

1 Several Spice-type simulators provide a nonlinear transformer model, cf., Pspice
[24]. A model for the nonlinear transformer is introduced with the addition of
a model name in the coefficient-of-coupling element and the inclusion of a new
.MODEL line. The parameters of the .MODEL description can include trans-
former core material, shape, and size.
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this point is transformed to RL. Since the earlier ideal maximum is 50%, the
idealized maximum for maximum power transfer is 25%. It can be expected
that the maximum obtainable conversion is less than this.

7.7 Class-A Push-Pull Operation

Just as two windings, rather than one for the coil, leads to a transformer, so
a center-tap connection can be introduced to obtain a more versatile trans-
former. The use of center-tapped transformers in an output stage is shown in
the bipolar output stage shown in Figure 7.19. This is a push-pull, parallel
situation comparable to the push-pull emitter-followers and source-followers
of Chapter 6. For the push-pull stage, a common bias arrangement uses a
bias resistance from VCC and a diode-connected transistor as shown in Figure
7.19b. In effect, this provides a simple voltage-bias source, VBB , as used in
the Figure 7.19a. VBB is then the quiescent value of VBE . The input drive
in this section is restricted to values for which the collector currents always
flow, i.e., for Class-A operation. (The voltage sources, VC1 and VC2, are used
to monitor the collector currents).

For the center-tapped input transformer, care must be taken with respect
to labeling the primary and secondary sides. For convenience in this example,
the turns ratio of the input transformer is given as the ratio of one-half of
the right-hand-side (RHS) voltage to the left-hand-side (LHS) voltage. Each
transistor input has an incremental base-emitter voltage of one-half of the
total RHS voltage.

Similarly, for the output transformer, the turns ratio is taken as one-half of
the LHS voltage to the RHS voltage, (which in this case is the output voltage
vo).

Assume for the moment that Rs is small. Because of the center-tap in
the RHS of the input transformer which is at ac ground, equal and opposite
voltage signals are delivered across the transformer to the inputs of the two
transistors. The RHS winding of the input transformer is continuous with the
same sense of winding. The incremental transferred voltage from point a to
b is equal to that from b to c, i.e., the voltage from c to b is the negative of
that from a to b. The two transistors have the same base-bias voltage; thus,
the same quiescent collector currents. For an increase of input voltage, v1, the
collector current of the top transistor, Q1, increases while that of the bottom
transistor, Q2, decreases. The variations of the two collector currents are ‘out
of phase.’

Notice also that there is no net dc flux in the input transformer. The base
currents flowing to each transistor from VBB produce equal and opposite dc
fluxes. Thus the quiescent bias point for the input transformer occurs at the
origin of its B-H characteristic. Similarly, at the output, the LHS, the primary,
of the output transformer is assumed to be a center-tapped single winding.
For the same bias, there is no net primary flux for the quiescent condition,
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Fig. 7.19. (a) A bipolar push-pull output stage with center-tapped transformer.
(b) Bias arrangement for the push-pull stage.

since the collector currents flow ‘out’ of the primary windings at the top and
the bottom. Consequently, this transformer is also ‘biased’ at the origin of the
B-H characteristic. (The above description presupposes that the base currents
are equal as are the collector currents. For an ideal transformer situation, an
inconsistency exists if this is not true. The circuit equations then become
indeterminate and the solution ‘blows up.’ In practice, the resistive properties
of the transistors and transformers provide a circuit equilibrium.)

For the increase of input signal voltage, the increase of collector current of
Q1 increases the transformer flux in one direction. Since the transistor current
of Q2 is decreasing but in the opposite direction, the change in flux due to
it is in the same direction as the change in flux due to the top transistor.
The change of flux then is increased by two and effective, parallel operation is
obtained. Since the dc currents in the primary of the transformers cancel and
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the incrementals, or fundamentals, add, we expect in this push-pull configu-
ration for all even harmonics of the output to cancel and all odd harmonics
to add.

A harmonic generation analysis can be made to establish the harmonic
generation and cancellation, such as done in Chapter 6. This is quite straight-
forward for the case where the signal-source resistance is very small. The
variation of the collector current of the upper transistor for the case where
the reflected source resistance is very small is

ic1 = Ic1 − ICA = IS exp
(

V1

Vt

)
− ICA (7.49)

= ICA

[
v1

Vt
+

1
2

(
v1

Vt

)2

+
1
6

(
v1

Vt

)3

+ . . .

]

where V1 = VBB + v1 and ICA = IS exp(VBB/Vt) is the quiescent value of
Ic1 and Ic2. Notice that a series expansion is introduced for the exponential
relation of the collector current to the transistor input voltage. For the lower
transistor

ic2 = Ic2 − ICA = IS exp
(

V2

Vt

)
− ICA (7.50)

= ICA

[
v2

Vt
+

1
2

(
v2

Vt

)2

+
1
6

(
v2

Vt

)3

+ . . .

]

For Q2 the incremental input voltage is v2 = −v1. If this is inserted in
Equation (7.50), and if a comparison is made with Equation (7.49), it is seen
that the even terms of the two series expansions have the same sign.

In the transformer, the net flux is produced by the difference of the two
currents. In terms of incremental currents, ic1 pulls current out of the top
node of the primary while ic2 pulls current out of the bottom node. The
output current in the secondary of the transformer can be obtained from
superposition of these two ‘input’ currents, since we assume a linear circuit.
The load current in the output load resistance is

iL = −noic1 + noic2 = −no(ic1 − ic2) (7.51)

Using v1 = −v2 in (7.50) and using (7.49) and (7.50) in (7.51), we can
observe that all even harmonics in iL cancel. For the odd harmonics, and in
particular for the fundamental,

iL = −2noic1 (7.52)

HD2 in iL and vo is thus eliminated, while HD3 is the same as for a
single-ended stage. (Again, if the collector currents are not exactly equal in
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magnitude, an inconsistency exists unless there is resistance in parallel with
the outputs of each transistor.)

For a numerical example, the Spice input file for the circuit of Figure
7.19a is given in Figure 7.20a. The signal-source resistance is 1Ω for the first
example. The maximum input signal amplitude for the push-pull situation is
not the same as that of the single-ended stage.

BJT PP, FIGURE 7.20
V1 1 0 0 SIN(0 9.5M 1MEG)
*V1 1 0 0 SIN(0 12.8M 1MEG)
.TRAN 0.05U 2U 0 0.02U
.PLOT TRAN V(12)
.PLOT TRAN I(VC1) I(VC2)
.FOUR 1MEG V(12) I(VC1) I(VC2)
RS 1 2 1
*RS 1 2 1K
LA 2 0 0.1
LB 3 4 0.1
LC 4 5 0.1
KA LA LB 1
KB LA LC 1
KC LB LC 1
VBB 4 0 0.774
Q1 6 3 0 MOD1
Q2 7 5 0 MOD1
.MODEL MOD1 NPN BF=100 IS=1E-16
VC1 8 6 0
VC2 9 7 0
LD 8 10 0.1
LE 10 9 0.1
LF 12 0 1M
KD LD LE 1
KE LD LF 1
KF LE LF 1
VCC 10 0 10
RL 12 0 100
.OPTIONS RELTOL=1E-6
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.END

Fig. 7.20. (a) Spice input file for the circuit of Figure 7.19a.

In order to estimate the maximum input signal amplitude to provide just
clipping of the collector voltage, the load resistance presented to the transis-
tors is needed. For Q1, this is the input resistance looking into the top half of
the primary (LHS) of the output transformer. From Equation (7.52), for the
fundamental,

Rin =
novo
1

2no
iL

= 2n2
oRL (7.53)
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This is one-half of the total resistance appearing across the primary,
(2no)2RL. Note that the resistance presented to Q1, Rin, is twice the value
pertaining to the single-ended stage having the same turns ratio as each trans-
former half, cf., Figures 7.11 and 7.12. Therefore, the required current drive
to produce a given voltage excursion for the Class-A push-pull stage is only
one-half of that for the single-ended stage. 19 mV is the voltage drive for the
single-ended stage of Figure 7.11 to obtain an output amplitude of 0.74 V. We
need only 9.5 mV for the present push-pull stage of Figure 7.20a to obtain the
same output excursion. (Because of the cancellation of the second harmonics
for the push-pull stage, a larger drive can be used before severe distortion is
encountered. See the example below.)

The output Fourier components from a Spice simulation with a sinusoidal
input amplitude of 9.5 mV are given in Figure 7.20b. The even harmonics are
very small as expected. For this example, the value of the output fundamental
voltage is 0.74 V, HD2 ≈ 0%, and HD3 = 0.57%. The conversion efficiency
is η = 13%. The waveforms of the output voltage and collector currents are
shown in Figures 7.20c and d.

To produce a fundamental output voltage of 1 V, corresponding to a
collector voltage excursion of 10 V, the input drive should be increased at
(1.0/0.74)(9.5 mV) = 12.8 mV. The output voltage and collector current
waveforms with this drive are shown in Figure 7.20e and the harmonic com-
ponents are given in Figure 7.20f. Note that VoA = 1.003 V, HD2 = 0.4%,
HD3 = 0.31%, and THD = 1.1%. The ac power output is 5.3mW and the
conversion efficiency is 25%. By achieving full output, we have regained the
power conversion efficiency of the single-ended stage. (Remember that the dc
power of the push-pull stage is twice that of the single-ended stage.)

Significantly higher efficiency is obtained using Class-AB operation, as
described in the next section, but at the expense of higher distortion.

For the case where the signal-source resistance is not zero, linearization of
the transistor exponential characteristics occur. However, the use of the lin-
earization formulas of Chapter 4 to the remaining odd terms of the power series
of Equations (7.49) and (7.50) cannot be used directly to estimate the odd
harmonic distortion. There is a new interaction at the right-hand side of the
input transformer (the inputs of the transistors). Because of the finite reflected
load at this side of the input transformer, distortion components generated in
the base currents of the two transistors develop new distortion voltages across
the transistor inputs. These are amplified by the transistors and appear in the
collector and load currents.

The estimation of the distortion components of vo is not as easy as for the
single-ended stage. As a first guess, we ignore the harmonics in the base volt-
ages. The input voltages are reduced from the signal-source voltage because
of the voltage division between (2ni)2Rs and the series combination of both
rπ.



210 7 Transformers

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC1)  
 DC COMPONENT =   1.026D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   3.700D-04     1.000000    -0.009       0.000
     2      2.000D+06   3.369D-05     0.091060   -89.818     -89.809
     3      3.000D+06   2.054D-06     0.005551  -179.270    -179.261
     4      4.000D+06   9.192D-08     0.000248    89.101      89.110

     TOTAL HARMONIC DISTORTION =      9.122958  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC2)  
 DC COMPONENT =   1.026D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   3.700D-04     1.000000  -179.996       0.000
     2      2.000D+06   3.369D-05     0.091050   -90.177      89.819
     3      3.000D+06   2.048D-06     0.005534    -1.455     178.541
     4      4.000D+06   1.007D-07     0.000272    90.402     270.398

     TOTAL HARMONIC DISTORTION =      9.121806  PERCENT

RS = 1 Ω, VSA = 9.5 mV

2.01.51.00.50.0
-1.0

-0.5

0.0

0.5

1.0

V
(1

2)
  (

V
)

Time (µs)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(12)   
 DC COMPONENT =   1.012D-02
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   7.396D-01     1.000000  -179.093       0.000
     2      2.000D+06   5.766D-05     0.000078   154.538     333.631
     3      3.000D+06   4.207D-03     0.005688     0.298     179.391
     4      4.000D+06   8.272D-05     0.000112    24.191     203.284

     TOTAL HARMONIC DISTORTION =      0.569323  PERCENT

RS = 1 Ω, VSA = 9.5 mV

(b)

(c)

Fig. 7.20. (b) Fourier components of the output voltage and collector currents.
(c) Output voltage waveform for V1A = 9.5 mV.
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Fig. 7.20. (d) Collector current waveforms for V1A = 9.5 mV. (e) Output voltage
and collector current waveforms for V1A = 12.8 mV.
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FOURIER COMPONENTS OF TRANSIENT RESPONSE V(12)   
 DC COMPONENT =   1.193D-02
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   1.003D+00     1.000000  -179.100       0.000
     2      2.000D+06   4.001D-03     0.003991    92.795     271.895
     3      3.000D+06   3.103D-03     0.003095    -6.581     172.520
     4      4.000D+06   3.350D-03     0.003341   -85.082      94.018

     TOTAL HARMONIC DISTORTION =      1.107031  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC1)  
 DC COMPONENT =   1.053D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   5.035D-04     1.000000    -0.015       0.000
     2      2.000D+06   6.004D-05     0.119232   -89.948     -89.933
     3      3.000D+06   3.287D-06     0.006528   179.260     179.275
     4      4.000D+06   1.301D-06     0.002584   -84.436     -84.421

     TOTAL HARMONIC DISTORTION =     11.960218  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC2)  
 DC COMPONENT =   1.051D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   4.996D-04     1.000000   179.995       0.000
     2      2.000D+06   5.607D-05     0.112232   -90.303    -270.299
     3      3.000D+06   4.888D-07     0.000979  -132.604    -312.600
     4      4.000D+06   4.673D-06     0.009353   -86.220    -266.215

     TOTAL HARMONIC DISTORTION =     11.375026  PERCENT

RS = 1 Ω,  VSA = 12.8 mV

Fig. 7.20. (f) Fourier components of the output voltage and collector currents.

vb

v1
= ni

1
1 + 2E

(7.54)

where E = n2
i Rs/rπ. In effect, 2E appears since n2

i Rs ‘sees’ rπ/2, not rπ.
As an example to illustrate these aspects, a source resistance of 1 kΩ is

included in the circuit of Figure 7.19a. (Again as for the earlier, single-ended
transformer-coupled case, the bias voltage does not change as Rs is added.)
The Spice input file of Figure 7.20a includes this resistance as a comment
line. The new input file is given in Figure 7.21. For the quiescent collector
current of approximately 1 mA, rπ ≈ 2585Ω and the value of 2E is 0.76. The
input voltage to maintain the same output voltage excursion as in the earlier
example of this section should be 1.76 × 12.8 mV = 22.5 mV. This input
level leads to some clipping of the output voltage and the collector currents
as shown in Figures 7.22a and b. The output harmonic generation is listed in
Figure 7.22c. A series of simulations of both the single-ended stage and the
push-pull stage with equivalent drive for unclipped output voltage shows that,
in addition to the cancellation of the even harmonics for the push-pull stage,
there is also significant harmonic interaction in this stage at the transistor
inputs.
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BJT PP, FIGURE 7.21
*V1 1 0 0 SIN(0 12.8M 1MEG)
V1 1 0 0 SIN(0 22.5M 1MEG)
.TRAN 0.05U 10U 8U 0.02U
.PLOT TRAN V(12)
.PLOT TRAN I(VC1) I(VC2)
.FOUR 1MEG V(12) I(VC1) I(VC2)
*RS 1 2 1
RS 1 2 1K
LA 2 0 0.1
LB 3 4 0.1
LC 4 5 0.1
KA LA LB 1
KB LA LC 1
KC LB LC 1
VBB 4 0 0.774
Q1 6 3 0 MOD1
Q2 7 5 0 MOD1
.MODEL MOD1 NPN BF=100 IS=1E-16
VC1 8 6 0
VC2 9 7 0
LD 8 10 0.1
LE 10 9 0.1
LF 12 0 1M
KD LD LE 1
KE LD LF 1
KF LE LF 1
VCC 10 0 10
RL 12 0 100
.OPTIONS RELTOL=1E-6
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.END

Fig. 7.21. Spice input file with RS = 1 kΩ.

7.8 Class-AB Operation

Class-AB operation of the push-pull, transformer-coupled output stage of
Figure 7.19a is also possible by lowering the quiescent operating bias volt-
age, VBB , relative to the input signal level and the maximum peak collector
currents. An improvement in conversion efficiency is obtained, while the can-
cellation of the even harmonics is maintained. It is seen below that the price
paid is of greater distortion.

To illustrate the results that can be obtained with AB operation, the circuit
of Figure 7.19a is used with the Spice input file of Figure 7.23a. A bias voltage
of VBB = 0.753 V is used. The input voltage was varied to determine the
level to obtain just clipping of the collector voltage waveforms. This value is
approximately 33 mV, as given in Figure 7.23a. The output voltage waveform
is shown in Figure 7.23b. The collector current waveforms are shown in Figure
7.23c. The harmonic components of Vo and the two collector currents are given
in Figure 7.23d. Although cancellation of the even harmonics is obtained, the



214 7 Transformers

10.09.59.08.58.0
-1.0

-0.5

0.0

0.5

1.0

V
(1

2)
  

(V
)

Time (µs)

10.09.59.08.58.0
0.5

1.0

1.5

2.0

I(VC1)

I(VC2)

I(
V

C
1)

, 
I(

V
C

2)
  

(m
A

)

Time (µs)

(b)

(a)

Fig. 7.22. (a) Output voltage waveform. (b) Collector current waveforms.

distortion level is not as low that for Class-A operation. From the values of
Figure 7.23d, HD3 = 2.4%, Pdc = 10.8mW, Pac = 4.1mW, and η = 38%.

Although estimates of performance for the AB stage can be developed,
the accuracy is limited because of the new nonlinearities which are involved.
Results from a series of Spice simulations can quickly provide the necessary
design information.

Problems

7.1. Derive Equations (7.27) and (7.28).

7.2. A transformer-coupled amplifier is shown in Figure 7.24. The transformer
turns ratios are to be determined. Both transformers have a primary-side mag-
netizing inductance of 1 H and a core loss modeled by a shunt 10 kΩ resistance
at the primary. The coefficient of coupling for each unit is approximately one.
(a) For no feedback, Rf = ∞, design the circuit to achieve the desired dc
state. Specifically state the quiescent operating point of each transistor.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(12)   
 DC COMPONENT =   6.376D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   9.886D-01     1.000000  -179.042       0.000
     2      2.000D+06   1.486D-03     0.001503    96.027     275.069
     3      3.000D+06   2.073D-03     0.002097    -1.549     177.492
     4      4.000D+06   1.369D-03     0.001384   -85.585      93.456

     TOTAL HARMONIC DISTORTION =      0.590674  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC1)  
 DC COMPONENT =   1.051D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   4.946D-04     1.000000     0.040       0.000
     2      2.000D+06   5.903D-05     0.119339   -89.790     -89.830
     3      3.000D+06   1.351D-06     0.002732  -178.619    -178.659
     4      4.000D+06   2.725D-07     0.000551   -87.390     -87.430

     TOTAL HARMONIC DISTORTION =     11.943904  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC2)
 DC COMPONENT =   1.051D-03  
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   4.943D-04     1.000000  -179.944       0.000
     2      2.000D+06   5.756D-05     0.116437   -90.027      89.917
     3      3.000D+06   6.643D-07     0.001344   -10.118     169.826
     4      4.000D+06   1.654D-06     0.003345   -87.781      92.163

     TOTAL HARMONIC DISTORTION =     11.668364  PERCENT

RS = 1 kΩ, V1A = 22.5 mV

Fig. 7.22. (c) Fourier components of the output voltage and collector currents.

(b) For Rf = ∞, determine the turns ratio of the transformers to achieve
maximum power transfer.
(c) For an approximate maximum unclipped output voltage, estimate η, the
power-conversion efficiency, and HD2 of the output voltage.
(d) If the turns ratio of the output transformer is adjusted, can a better con-
version efficiency be obtained?
(e) Above what input frequency is proper high-pass operation produced?
(f) Choose Rf so that a loop gain of 20 dB is obtained for the design condi-
tions of (b). How are the values of η and HD2 changed if the fundamental of
the output voltage is maintained?

7.3. A MOS transformer-coupled amplifier is shown in Figure 7.25.
(a) For no feedback, Rf = ∞, estimate the maximum unclipped output volt-
age for a sinusoidal input voltage.
(b) What is the input voltage for the condition of (a)?
(c) Calculate the value of output voltage HD2 for the input voltage of (b)
(d) For Rf = 10 kΩ, and with the same input voltage level as in (b), what is
the value of HD2 in the output voltage?
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BJT PP, CLASS AB, FIGURE 7.23
V1 1 0 0 SIN(0 33M 1MEG)
.TRAN 0.05U 2U 0 0.01U
.PLOT TRAN V(12)
.PLOT TRAN I(VC1) I(VC2)
.FOUR 1MEG V(12) I(VC1) I(VC2)
RS 1 2 1K
LA 2 0 0.1
LB 3 4 0.1
LC 4 5 0.1
KA LA LB 1
KB LA LC 1
KC LB LC 1
VBS 4 0 0.753
Q1 6 3 0 MOD1
Q2 7 5 0 MOD1
.MODEL MOD1 NPN BF=100 IS=1E-16
VC1 8 6 0
VC2 9 7 0
LD 8 10 0.1
LE 10 9 0.1
LF 12 0 1M
KD LD LE 1
KE LD LF 1
KF LE LF 1
VCC 10 0 10
RL 12 0 100
.OPTIONS RELTOL=1E-6
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.END 

(a)
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Fig. 7.23. (a) Spice input file for Class-AB push-pull stage. (b) Output voltage
waveform.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(12)   
 DC COMPONENT =   1.327D-02
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   9.045D-01     1.000000  -179.025       0.000
     2      2.000D+06   2.263D-04     0.000250   -31.932     147.093
     3      3.000D+06   2.175D-02     0.024043     0.560     179.585
     4      4.000D+06   1.103D-04     0.000122    24.723     203.748

     TOTAL HARMONIC DISTORTION =      2.404959  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC1)  
 DC COMPONENT =   5.394D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   4.521D-04     1.000000     0.062       0.000
     2      2.000D+06   9.924D-05     0.219524   -89.863     -89.925
     3      3.000D+06   1.080D-05     0.023880  -179.714    -179.776
     4      4.000D+06   1.259D-07     0.000279   -88.803     -88.865

     TOTAL HARMONIC DISTORTION =     22.081917  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC2)  
 DC COMPONENT =   5.405D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+06   4.530D-04     1.000000  -179.931       0.000
     2      2.000D+06   9.939D-05     0.219419   -89.874      90.057
     3      3.000D+06   1.081D-05     0.023871     0.062     179.993
     4      4.000D+06   1.123D-07     0.000248   -89.874      90.057

     TOTAL HARMONIC DISTORTION =     22.071371  PERCENT
 

RS = 1 k Ω, V1A = 33 mV

Fig. 7.23. (c) Collector current waveforms. (d) Fourier components of the output
voltage and collector currents.
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Fig. 7.24. Transformer-coupled amplifier for Problem 7.2.
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Fig. 7.25. Transformer-coupled amplifier for Problem 7.3.

7.4. A push-pull transformer-coupled stage employing MOS devices is shown
in Figure 7.26.
(a) Determine the input voltage level to provide the maximum unclipped
output voltage.
(b) What is the ac power output and the THD for the input of (a)?

7.5. A push-pull transformer-coupled stage employing BJT devices is shown
in Figure 7.27. Assume Lm is large for both transformers.
(a) For a low-frequency input voltage amplitude of 25 mV, determine the
fundamental power output and THD.
(b) What is the maximum power output that can be obtained?
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Fig. 7.26. A push-pull transformer-coupled amplifier for Problem 7.4.
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Fig. 7.27. A push-pull transformer-coupled stage for Problem 7.5.
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Tuned Circuits in Bandpass Amplifiers

8.1 Introduction

Bandpass amplifiers can be operated both as small-signal circuits and as large-
signal amplifiers, similar to the situation for lowpass amplifiers. For a small-
signal amplifier, the desired overall gain (transfer) function should provide a
magnitude versus frequency response such as that shown in Figure 8.1. The
peak-magnitude response occurs at what is labeled the center frequency, fo. By
definition, the frequencies where the magnitude is ‘down’ from the peak value
by a given amount are called the passband edges, and the interval between
these is the bandwidth of the passband. Commonly, the bandedges are defined
in terms of the −3 dB points and the bandwidth is then called the −3 dB
bandwidth. These aspects are developed in greater detail in the next section.

f0
ω

mag

Pass band
Center frequency

Fig. 8.1. Frequency response of the overall gain.

In this book, only a brief review of the small-signal situation for lowpass
amplifiers is necessary because of the prerequisite courses. For bandpass am-
plifiers, it is necessary to treat in some detail the properties of the basic tuned
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circuits, both for their proper use in bandpass amplifiers and to the extensive
use of tuned circuits in many other nonlinear analog integrated circuits, such
as those introduced in the following chapters of this book. In the remainder
of this chapter, elementary circuits and analysis and evaluation techniques
are introduced. In the next chapter, bandpass amplifiers are introduced which
illustrate the use of these ideas in evaluation and design. The major emphasis
is given to bandpass amplifiers employing inductive transformers. However,
basic types of tuned amplifiers using only active elements (transistors and op
amps) and resistors and capacitors are also included. The latter configura-
tions are especially useful in their IC realization. Two examples of this type
of tuned amplifier are given in Section 9.1.

8.2 The Single-Tuned Circuit

The parallel combination of an inductor L and a capacitor C fed from a
signal source with a source resistance Rs is shown in Figure 8.2a. If a Norton

Rs

CL
+

-

vovs

Rsvs
Rs

CL
+

-
voiin = vs

Rs

G = 1
Rs

1.0

0.707 = -3 dB

ω1 ω0 ω2 ω

ω

G
C

 = bandwidth

vo
vs

(jω)

arg vo
vs

(jω)

π
2
π
4

0

- π
4

- π
2

(a) (b)

Fig. 8.2. (a) A parallel-tuned circuit. (b) Magnitude and phase as a function of
frequency.
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equivalent of the source is used, as shown in the figure, a parallel-tuned circuit
results. For reasons that will be clear later, this circuit is referred to as a
‘single-tuned’ bandpass or resonant circuit. (A series resonant circuit has the
same properties and is considered in the next section.) The voltage transfer
function of this circuit is taken as the ratio of the output voltage to the signal-
source voltage. For the Norton equivalent, the corresponding network function
is the input impedance of the circuit. In the small-signal transform domain,

av(s) =
vo

vs
=

G
C s

s2 + G
C s + 1

LC

(8.1)

=
G
C s

(s − s1)(s − s2)

where G = 1/Rs. The zeros of av(s) are located at the origin and at infinity.
The poles of av(s) are located at

s1, s2 = − G

2C
± j

√
1

LC
−

(
G

2C

)2

(8.2)

In the sinusoidal steady state, s = jω,

av(jω) =
jωωb

(ω2
o − ω2) + jωωb

(8.3)

where two constants are introduced for convenience:

ωb =
G

C
(8.4)

ω2
o =

1
LC

An alternate form is

av(jω) =
1

1 − j ωo

ωb

(
ωo

ω − ω
ωo

) (8.5)

The magnitude function is

|av(jω)| =
ωωb√

(ω2
o − ω2)2 + (ωωb)2

(8.6)

=
1√

1 +
(

ωo

ωb

)2 (
ωo

ω − ω
ωo

)2
(8.7)

The phase function is
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� av(jω) =
π

2
− tan−1

(
ωωb

ω2
o − ω2

)
(8.8)

The plots of the magnitude and phase functions with frequency are shown
in Figure 8.2b. The peak magnitude response occurs at the resonant frequency
of L and C,

ωo =
1√
LC

(8.9)

The value of the peak response of the magnitude function is one since the
effects of L and C cancel at ωo. This is also the frequency where the phase
response is zero.

The bandedges, ωi, of the passband are defined in terms of the frequencies
where the magnitude response is down by 0.707 or −3 dB of the peak value,
1. Setting |av(jωi)| = 0.707 and solving for ωi yields

ωi = ω2, ω1 = ±ωb

2
+

√
ω2

o +
(ωb

2

)2

(8.10)

At the bandedge frequencies, the phase of the response function is +π/4 =
+45◦ at ω1 and −π/4 = −45◦ at ω2. The difference of the two bandedges is
the −3 dB bandwidth, ωb,

ωb = ω2 − ω1 =
G

C
=

1
RsC

(8.11)

Notice for this simple circuit that the geometric mean of the bandedge fre-
quencies is the center frequency.

√
ω1ω2 = ωo (8.12)

For a numerical example, choose Rs = 2.43 kΩ, C = 341.5 pF, and L =
0.66 µH. These values provide

fo =
1
2π

ωo = 10.6 MHz (8.13)

bw =
1
2π

ωb = 0.192 MHz

Notice that the cyclic values are defined and given in contrast with radian
values.

The transfer-function magnitude in Equation (8.7) is useful in determin-
ing quickly the response for frequencies other than the center and bandedge
frequencies. The quantity ωo/ωb is called the Q (quality factor) of the tuned
circuit.
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Q =
ωo

ωb
=

fo

bw
(8.14)

=
Rs√
L/C

An alternate expression for Q for this RLC circuit is also given. For this
single-tuned circuit, Q is equal to 2π times the ratio of the energy stored at
ωo to the loss per cycle of the sinusoidal response. The larger the value of
Q, the sharper is the magnitude response, i.e., the smaller the bandwidth of
the response relative to the center frequency. In terms of Q, the magnitude
response can be written as

|av(jω)| =
1√

1 + Q2
(

ωo

ω − ω
ωo

)2
(8.15)

For a ‘high-Q’ situation, i.e., a narrowband situation, the magnitude re-
sponse for frequencies well beyond the passband is approximately

|av(jω)| ≈ 1

Q
∣∣∣ωo

ω − ω
ωo

∣∣∣ (8.16)

≈ 1

2Q
(

∆ω
ωo

)

where ∆ω is the difference of the frequency of interest and ωo. To obtain the
last approximation,

ωo

ω
− ω

ωo
=

(ω + ωo)(ω − ωo)
ωωo

≈ 2ω∆ω

ωωo
=

2∆ω

ωo

For a numerical example, let fo = 560 kHz and fx = 610 kHz, the center
frequencies of two local AM radio stations. For a Q of 50, the −3 dB bandwidth
of the tuned circuit is 11.2 kHz. The relative response at fx, which is 50 kHz
away from the center frequency, is 0.112 (−19 dB) for the approximation and
0.116 from an exact calculation.

8.3 Lowpass Equivalents

Simple lowpass circuits, such as those shown in Figure 8.3, also can provide
a bandpass response when properly designed. The responses are not identical
to the response of the parallel GLC circuit of the last section. However, the
circuits provide in many circumstances an easy way to achieve a suitable
bandpass approximation.
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Fig. 8.3. (a) A series resonant RLC circuit. (b) Another simple lowpass circuit.
(c) A lowpass circuit with two resistors.

The circuit of Figure 8.3a is just a series resonant RLC circuit. A voltage
signal source is used, and the capacitor is shown with one terminal connected
to the reference (ground) potential. In circuits employing electronic devices,
a shunt capacitance to ground is a usual occurrence. The output quantity for
the circuit of Figure 8.3a is taken as the voltage across the capacitor. The
transfer function of the circuit is of lowpass type, i.e., zero transmission to
the output occurs only at infinite frequency.

av(s) =
vo

vs
=

1
LC

s2 + R
L s + 1

LC

(8.17)

The transmission zeros of av(s) are both at infinity. The pole-zero plot for
Equation (8.17) is shown in Figure 8.4a. The lowpass nature of the circuit
is clear. For the parallel circuit of the last section, the pole-zero plot based
upon (8.1) and (8.2) is that of Figure 8.4b and has a zero at the origin. In the
lowpass circuit, if the pole pair is located very close to the jω axis relative to
the distance to the origin, the magnitude responses of the two circuits near
ω = ωo are very similar.

The response of (8.17) for the sinusoidal steady state is

av(jω) =
ω2

o

(ω2
o − ω2) + jωωb

(8.18)

where it has been recognized that the peak response occurs at the resonance
of L and C, ω2

o = 1/LC, and that the −3 dB bandwidth of the response is
ωb = R/L, both values in radian measure. (Note that the bandwidth is not
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Fig. 8.4. (a) Pole-zero plot for Equation (8.17). (b) Pole-zero plot for a parallel-
tuned circuit.

equal to G/C as for the pure bandpass circuit of the last section.) The peak
magnitude response at ω = ωo is

|av(jωo)| =
ωo

ωb
= Q (8.19)

The values of the phase responses for ω = ωo are quite different. From Equa-
tion (8.18), � av(jωo) = −90◦, while for the parallel circuit, � av(jωo)=0◦.

It is often convenient to express the transfer function of the lowpass circuit
in terms of the exact bandpass function multiplied by a correction function.
For the lowpass example of Figure 8.3a, multiplication and division by the
variable s and arranging the constants leads to

av(s) = No(s)Na(s) (8.20)

where

No(s) =
ωbs

s2 + ωbs + ω2
o

(8.21)

Na(s) =
ω2

o

ωbs
(8.22)

For the sinusoidal response, s = jω,

Na(jω) =
∣∣∣∣ ω2

o

ωbω

∣∣∣∣ � − 90◦ (8.23)

Na(jω) introduces a phase shift and also a ‘tilt’ in the magnitude response
relative to the true bandpass response, No(s).

Another simple lowpass circuit is that of Figure 8.3b. The voltage transfer
function for this arrangement is
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av(s) =
vo

v1
=

ω2
o

s2 + ωbs + ω2
o

(8.24)

where ωb = G/C as in the pure bandpass circuit and ω2
o = 1/LC. In the

sinusoidal steady state, the peak-magnitude response occurs at ω = ωo and
has the value Q = ωo/ωb. The correction function for this circuit in relation
to the response for the pure bandpass case is

Na(s) =
ω2

o

ωbs
(8.25)

This is the same function as for the series resonant circuit of Figure 8.3a.
A somewhat more complicated circuit is the lowpass circuit of Figure 8.3c

where two resistors are present. The voltage transfer function for this circuit
is

av =
vo

vs
=

1
LC

s2 +
(

R1
L + G2

C

)
s + 1+R1G2

LC

(8.26)

where G2 = 1/R2. The center frequency of the peak-magnitude response is
not 1/

√
LC but occurs at

ωo =

√
1 + R1G2

LC
(8.27)

The −3 dB bandwidth of the response is likewise changed.

ωb =
R1

L
+

G2

C
(8.28)

The correction function relative to the pure simple bandpass circuit is

Na(s) =
1

1 + R1G2

ω2
o

ωbs
(8.29)

The center-frequency magnitude is Q/(1+R1G2) where Q is defined as ωo/ωb.
The values of ωo and ωb must be calculated from Equations (8.27) and (8.28).

An approximate technique for analyzing circuits of the type shown in
Figures 8.3b and c is presented in Section 8.7.

8.4 Transformer-Coupled Single-Tuned Circuits

Since an inductor is used in the simple bandpass circuit of the Section 8.2,
it is natural to consider a two-winding coil to implement the inductor and to
achieve the transformation properties as well as the dc blocking of the trans-
former. For the case where the coefficient of coupling of the two windings
is very close to unity, i.e., for the case of almost perfectly coupled coils, the
resulting expressions for the transfer function, the center frequency, and the
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bandwidth are easily modified from the earlier results by introducing appro-
priately the turns ratio.

The circuit of Figure 8.5a is one example of the use of a transformer. The
magnetizing inductance Lm is assumed to be characterized on the primary
side of the transformer, and the turns ratio from the primary to the secondary
is n. The capacitor can be transferred across the ideal transformer from right
to left as shown in Figure 8.5b, and the circuit configuration of Section 8.2
is obtained. The center frequency and the bandwidth expressions must now
include (1/n)2C rather than C. The center-frequency magnitude response at
the center frequency is

|av(jωo)| =
1
n

(8.30)

LmvS

RS

vo
n : 1

k ≈ 1

LmvS

RS

novo

1
n2

 C

(a)

(b)

C

Fig. 8.5. (a) A transformer-coupled single-tuned circuit. (b) Circuit with capacitor
transferred across the ideal transformer.

It is also possible to achieve the same results by transferring the primary-
side elements across to the secondary. It is sometimes helpful in understanding
the process first to use a Norton equivalent for vs and Rs. Each parallel element
on the primary side is transferred across in turn. The current source moves
as n(vs/Rs), the conductor as n2(1/Rs), and the inductor as (1/n)2Lm.

8.5 Single-Tuned, Bandpass Circuits with Loosely
Coupled Transformers

Above audio frequencies, core materials for transformers in order to achieve
closely coupled coils are increasingly expensive or not available. Often, then,
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the transformers in a tuned circuit have a coefficient of coupling less than
unity. In this section, this situation is explored for approximate single tuning.
In the next section, double tuning of these stages is briefly introduced. For the
latter, a coefficient of coupling less than one is usually a necessary condition.

In Figure 8.6a, the circuit of a transformer-coupled tuned circuit is shown.
Because k, the coefficient of coupling, is less than one, an equivalent with only
one inductor cannot be used. One suitable equivalent circuit for the coupled
coils is developed in Figure 7.9b of Section 7.4 and is included in the circuit
of interest in Figure 8.6b. Note that the ‘high’ side, the primary side, of the
transformer is taken as the left side. The values for the transformer elements
are

L1 = k2l11 (8.31)
L2 = (1 − k2)l11

where l11 is the open-circuit inductance of the primary side. The ‘original’
turns ratio of the transformer is

n =
√

l11
l22

(8.32)

The new internal, equivalent turns ratio in Figure 8.6b is

n′ = kn (8.33)

Our procedure is first to transfer the source elements across the trans-
former and then to inspect the value of Rs relative to the reactances of the
inductances at frequencies near the center frequency. The result is an approx-
imate single-tuned equivalent circuit.

In Figure 8.6c, the signal voltage source, the source resistor, and the in-
ductors have been brought across the internal ideal transformer.

R′
s =

Rs

(kn)2
(8.34)

L′
2 =

L2

(kn)2

L′
1 =

L1

(kn)2

This circuit has three independent energy storage elements and thus has
three natural frequencies. A possible set is illustrated in Figure 8.6d. In Section
8.3, it is shown that a lowpass circuit can approximate a single-tuned band-
pass circuit near the peak-magnitude frequency if a complex pair of natural
frequencies is designed to occur at the same locations as for a single-tuned,
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vS

RS

vo

vS

RS

n : 1
k < 1

RL
C

vo

RLCL1

L2 kn : 1(n' = kn)

(a)

(b)

vS RLC

vo

RS
'

L1
'

L2
'

jω

σ

Region of
approximate
single-tuned
response

(c) (d)

Ckn vS
RS

RS

(kn)2
l11

n2
 = l22

RL

vo

(e)

Fig. 8.6. (a) Single-tuned circuit with a loosely coupled transformer. (b) Single-
tuned circuit with a circuit model for the transformer. (c) Signal source and resistor
transferred across the ideal transformer. (d) A possible set of natural frequencies.
(e) A parallel RLC circuit.
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bandpass circuit. The present, more general band-pass response can also ap-
proximate a single-tuned response, as illustrated in Figure 8.6d.

For a high-Q resonant circuit and for an appropriate resistance matching,
as described below, the reactance of L′

2 near ωo is much less than the value of
R′

s. The necessary condition is approximately Q 	 2(1 − k2)n. Thus, L′
2 can

be neglected relative to R′
s, and we obtain a parallel RLC circuit, as shown

in Figure 8.6e, where a Norton equivalent has been used.
For a numerical example, we design a bandpass stage having the config-

uration of Figure 8.6a to achieve a center frequency of 1 MHz with a Q of
20. The source resistance is 0.1 kΩ, and the load resistance is 10 kΩ. The
coefficient of coupling of the coupled coils is k = 0.9. However, we start by
assuming that the coefficient of coupling is 1.0.

In order to achieve a resistance match with the transformer,

1
n2

=
RL

Rs
= 100 (8.35)

Therefore, n = 1
10 . From the results of Section 8.2, the −3 dB bandwidth

must be fo/Q = 50 kHz. The pole locations must be

s1, s2 ≈ −0.157 × 106 ± j6.28 × 106 (8.36)

where the real part is equal to the radian measure of one-half of the bandwidth
and the imaginary part is taken to be 2πfo, without a correction for the square
of the real part, cf., (8.2).

From (8.2), the real part of s1, s2 is equal to one half of the total conduc-
tance divided by the capacitance.

1
2

(
1

RpC

)
= 0.157 × 106 (8.37)

where Rp is the parallel combination of 1
n2 Rs and RL. This leads to

C = 0.636 nF (8.38)

The required value of the output (secondary) inductance is

l22 =
1

(2πfo)2C
= 39.8 µH (8.39)

With the overall turns ratio of 1
10 ,

l11 = n2l22 = 0.398 µH (8.40)

The voltage transfer ratio at the center frequency is 5.
A Spice input file is given in Figure 8.7a where R1 = Rs and R2 = RL, etc.

Note that two circuits are included, one for k = 1, the other for k = 0.9. The
output is requested to be the poles and zeros of the voltage transfer function
and the magnitude response about the center frequency. As expected, the
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correct results are obtained for k = 1, as shown in Figures 8.7b and c. The
pole locations for k = 0.9 are also given in Figure 8.7b. The magnitudes of

BANDPASS EXAMPLE
V1 1 0 0 AC 1.0
.AC LIN 21 .95MEG 1.05MEG 
.PZ 1 0 3 0 VOL PZ
*.PZ 1 0 6 0 VOL PZ
R1 1 2.1K
L1 2 0 0.398U
L2 3 0 39.8U 
K1 L1 L2 1
C2 3 0 0.636N
R2 3 0 10K
R3 1 5 0.1K
L3 5 0 0.398U
L4 6 0 39.8U
K2 L3 L4 0.9
C4 6 0 0.636N
R4 6 0 10K
.WIDTH OUT=80
.END

k = 1, n = 1
10

k = 0.9, n = 1
10

(a)

(b)

1.050e+61.025e+61.000e+69.750e+59.500e+5
2

3

4

5

vm
(3

),
 v

m
(6

) 
 (
V

)

Frequency (Hz)

k = 1

k = 0.9

vm(3)
vm(6)

(c)

POLE(1) = -1.32227E+09, 0.000000E+00
POLE(2) = -1.42308E+05, 6.284048E+06
POLE(3) = -1.42308E+05, -6.28405E+06
--------------------------------------------------
POLE(4) = -1.57233E+05, 6.283389E+06
POLE(5) = -1.57233E+05, -6.28339E+06

k = 1.0

k = 0.9

Fig. 8.7. (a) Spice input file. (b) Poles of the circuits. (c) Frequency response for k
= 0.9 and 1.0.

the real part of the poles are smaller than with k = 1, indicating that the
loading reflected from the input is too light. In order to obtain the design
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specification, the overall turns ratio of the coupled coils must be reduced by
(1/k). The value of l11 is then 0.491 µH, and n is changed accordingly to 0.11
as given in the Spice input file of Figure 8.8a. In Figure 8.8b, it is seen that the
desired dominant pole locations are closely realized. The magnitude response
function as shown in Figure 8.8c is coincident with that for k = 1.

BANDPASS EXAMPLE
V1 1 0 0 AC 1.0
.AC LIN 21 .95MEG 1.05MEG 
.PZ 1 0 3 0 VOL PZ
*.PZ 1 0 6 0 VO1 PZ
R1 1 2 .1K
L1 2 0 0.398U
L2 3 0 39.8U 
K1 L1 L2 1
C2 3 0 0.636N
R2 3 0 10K
R3 1 5 0.1K
L3 5 0 0.491U
L4 6 0 39.8U
K2 L3 L4 0.9
C4 6 0 0.636N
R4 6 0 10K
.WIDTH OUT=80
.END

k = 1, n = 1
10

k = 0.9, n = 1
9

POLE(1) = -1.07177E+09, 0.000000E+00
POLE(2) = -1.57196E+05, 6.283851E+06
POLE(3) = -1.57196E+05, -6.28385E+06
--------------------------------------------------
POLE(4) = -1.57233E+05, 6.283389E+06
POLE(5) = -1.57233E+05, -6.28339E+06

k = 0.9

k = 1.0

(a)

(b)

1.050e+61.025e+61.000e+69.750e+59.500e+5
2

3

4

5

vm(3)
vm(6)

vm
(3

),
 v

m
(6

) 
 (
V

)

Frequency  (Hz)

(c)

Fig. 8.8. (a) Spice input file. (b) Locations of the poles. (c) Frequency response for
k = 0.9 and 1.0.
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In the development above, the transformer equivalent circuit is chosen so
the L2 and RS are in series. If the capacitor C is located on the left side of the
transformer, the primary and secondary sides should be reversed as shown in
Figure 8.9. In this figure l′11 = l22 of Figure 8.6a, n′ = 1

n , etc. (Remember that
the primary side of a transformer has the l11 inductance parameter.) For a
high-Q situation, (1 − k2)l′11ωo � RL, and again the simplified configuration
of Figure 8.6e is achieved with different element values. If capacitors appear
across both sides of the transformer, the simple approximations of this section
do not hold well. The results can be used, however, to provide a first estimate,
followed by iteration using circuit simulation.

(1 - k2)l11

vS

vo

RL

'

k2 l11
'

l22
'

RS

C'

1 : kn'

n' = 1n
l11
'  = l22

Fig. 8.9. Circuit representation for the single-tuned circuit when the capacitor is
located on the left side of the transformer.

8.6 Double-Tuned Stages

If two single-tuned bandpass stages, as shown in Figure 8.10a, are loosely cou-
pled, a double-tuned situation is produced. The transfer response can provide
more gain and/or a better selectivity characteristic. The subject of double-
tuned circuits can be extensive in itself. Only a simple case is considered here
to illustrate the possibilities.

In the transformer-coupled bandpass stage of Figure 8.10a, in contrast to
the example of the last sections, two capacitors are present. Our procedure is
to tune (design) the input and output stages for the same center frequency
and the same Q (bandwidth). With a small coefficient of coupling of the
transformer, the interaction between the two tuned circuits is not great and
can be adjusted to achieve a desired overall performance. It is seen that, in
spite of a small value of k, the overall results are impressive in the selectivity
and transfer ratio obtained.

In Figure 8.10b, a pi equivalent for the transformer is used, cf., Figure
7.7d. For a small coupling, k is small and the inductive element Ly is large.
It can be shown that
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iS G1 G2C1 C2

Γi j

(a)

iS G1 G2C1 C2Lx

Ly

Lz

(b)

Fig. 8.10. (a) A double-tuned circuit obtained by two loosely coupled single-tuned
bandpass stages. (b) Circuit with a ‘pi’-equivalent circuit model used for the trans-
former.

Ly =
l11(1 − k2)

nk
(8.41)

A large value of Ly permits a significant simplification in the analysis which
follows. From the datum-node circuit equations, the determinant has the form

∣∣∣∣Y1(s) −Γ12
s−Γ12

s Y2(s)

∣∣∣∣ (8.42)

where Γ12 is the short-circuit, transfer reciprocal-inductance parameter (=
−1/Ly), cf. (7.28). Yi(s) is the input admittance of the input or output single-
tuned circuits, including the loading effects of Ly.

Yi(s) = sCi + Gi +
Γii

s
(8.43)

Expressions for Γij from (7.28) are Γ11 = (1/Lx + 1/Ly), Γ12 = −1/Ly,
and Γ22 = (1/Ly + 1/Lz). We now require that the input and output Yi

are equal. (This can be eased later to require the same center frequency and
bandwidth for the two tuned circuits.) An alternate form Yi is

Y (s) =
C

s

[
s2 + 2as + ω2

o

]
(8.44)

where the i subscript is removed and two constants are introduced.
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a =
G

2C
(8.45)

ω2
o =

Γ11

C
=

Γ22

C

ωo can be recognized as the resonant frequency of each of the single-tuned
circuits, taken alone but including the loading of Ly. Notice now that the
determinant has a simple form

P (s) =
∣∣∣∣p q
q p

∣∣∣∣ (8.46)

= (p + q)(p − q)

where P (s) is the characteristic polynomial of the circuit. Using this equation,
one obtains

P (s) =
(

C

s

)2 [
s2 + 2as + ω2

o +
Γ12

C

] [
s2 + 2as + ω2

o − Γ12

C

]
(8.47)

Remember that the degree of P (s) is four due to the multiplication of the
two factors, one involving the +, the other the −. The right-hand elements
of Equation (8.47) can be put into a convenient form using the resonant fre-
quency of the tuned circuits, ω2

o = Γ11/C = Γ22/C.

Γ12

C
=

Γ12

Γ11
ω2

o = kω2
o (8.48)

The second form results because k = Γ12/
√

Γ11Γ22 = Γ12/Γ11 for equal
input and output tuned circuits. This leads to

P (s) =
(

C

s

)2 [
s2 + 2as + ω2

o (1 + k)
] [

s2 + 2as + ω2
o (1 − k)

]
(8.49)

The zeros of P (s) are the natural frequencies of the complete circuit.

s1, s2, s3, s4 = −a ± jωo

√
1 ± k −

(
a

ωo

)2

(8.50)

The a/ωo term can be neglected for cases where the bandwidth is small
relative to the center frequency. Since k is assumed to be small, the square-
root function can be expanded in a power series retaining only the first two
terms.

si = −a ± jωo

(
1 ± k

2

)
(8.51)
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A locus of the natural frequencies, that are the poles of the voltage transfer
function, is given in Figure 8.11a as k is changed. Notice that the real part of
the poles is the same as those of the single-tuned circuit, −a = − G1

2C1
= − G2

2C2
.

As k is increased from 0, the poles of the two separate single-tuned circuits,
which are coincident initially, move apart parallel to the jω axis as shown
in the figure; in the third quadrant one moves up, the other down. If k is
sufficiently large, one can anticipate a double-humped magnitude response
for |vo/is(jω)|.

jω

σ

movement with k

- a = - G
C

jω0

a

a

jω0
450

(a) (b)

j(ω0 + a)

j(ω0 - a)

Fig. 8.11. (a) Locus of the natural frequencies as k is changed. (b) Poles with equal
real and imaginary parts.

A commonly desired response for the double-tuned circuit is achieved when
the real and imaginary parts of the complex poles have equal values when
measured from jωo. This is illustrated in Figure 8.11b. This leads to a simple
requirement for k.

a = ωo

(
1 +

k

2

)
− ωo (8.52)

k =
2a

ωo
(8.53)

For this condition, the response is called the maximally flat magnitude
(MFM) response.

For a numerical example, the input and output circuits are designed to
have the same center frequency and bandwidth values used in the example of
the last section. Each circuit is tuned to fo = 1 MHz with a −3 dB bandwidth
of 50 kHz. The Spice input file is given in Figure 8.12a. For convenience in
making comparisons, a single-tuned circuit having the same tuning is also
included. Because the total shunt resistance for the single-tuned circuit is
Rs‖RL = 5 kΩ, the input and output resistors for the double-tuned circuit
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are lowered to 5 kΩ to obtain the required bandwidths. A voltage signal source
is used for convenience. In effect, a Thevenin equivalent of is and R1 = 1

G1
in

Figure 8.10 is used. For a MFM response and with 2a/ωo = 1/20, k = 0.05.
The values of the poles and zeros of the voltage transfer function are given in
Figure 8.12b. It is clear that the design has been realized closely. The difference
in the magnitude of the imaginary parts of the poles and jωo is 1.64 × 105

whereas the magnitude of the real part is 1.57 × 105.
The magnitude response for s = jω for both the double-tuned and single-

tuned circuits are shown in Figure 8.12c. A flat magnitude response near fo

is obtained for the double-tuned circuit. In addition, the magnitude response
outside of the passband is much steeper for the double-tuned circuit. The
latter is said to have a steeper skirt selectivity than the single-tuned circuit.
Notice that the value of the center frequency ‘gain’ is 0.5. Thus, in spite of the
small value of the coefficient of coupling, maximum power transfer is achieved
at fo.

In practice, the expected results of a design are often masked by effects
due to internal feedback of the associated gain stages of a complete bandpass
amplifier. Therefore, great design precision is often not warranted.

8.7 Parallel-to-Series/Series-to-Parallel Transformations

A simple approach for analyzing a RLC circuit that is not a parallel or se-
ries resonant circuit is based on the parallel-to-series (or series-to-parallel)
transformations. As an example consider the circuit of Figure 8.3b which is
reproduced as Figure 8.13a. This circuit cannot be directly analyzed as a se-
ries or parallel tuned circuit. However, in a narrowband around the resonance
frequency, ωo, the parallel RC branch can be transformed into a series RC
branch as shown in Figure 8.13b.

With the parallel-to-series transformation, the original circuit is trans-
formed into a series RLC network as shown in Figure 8.14. The advantage
of this transformation is that the analysis for a series resonant circuit can
now be used. This transformation is also useful in the analysis of impedance
transforming or matching networks as described in the next section.

The parallel-to-series transformation can be derived by ensuring that the
impedances of the series and parallel branches are equal. Upon equating the
impedances of the two branches in Figure 8.13b one obtains,

Rp

1 + jωoRpCp
= Rs +

1
jωoCs

=
1 + jωoRsCs

jωoCs
(8.54)

or,

jωoRpCs = (1 + jωoRpCp)(1 + jωoRsCs) (8.55)
= 1 + jωo(RpCp + RsCs) − ω2

oRpCpRsCs
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C1 C2L1 L2

L3 C3

v1

(a)

POLE(1) = -1.57233E+05, -6.44672E+06
POLE(2) = -1.57233E+05, 6.446722E+06
POLE(3) = -1.57233E+05, -6.13186E+06
POLE(4) = -1.57233E+05, 6.131864E+06
---------------------------------------------------------
POLE(5) = -1.57233E+05, -6.28339E+06
POLE(6) = -1.57233E+05, 6.283389E+06

Double-tuned

Single-tuned

(b)

DBL-TUNED BANDPASS EXAMPLE
V1 1 0 0 AC 1.0
.AC LIN 41 .90MEG 1.10MEG 
.PZ 1 0 3 0 VOL PZ
R1 1 2 5K
C1 2 0 0.636N
L1 2 0 39.8U
L2 3 0 39.8U 
K L1 L2 0.05
C2 3 0 0.636N
R2 3 0 5K
R3 1 5 10K
L3 5 0 39.8U
C3 5 0 0.636N
R4 5 0 10K
.WIDTH OUT=80
.END

Double-tuned

Single-tuned

5 kΩ

10 kΩ

5 kΩ

10 kΩ

Fig. 8.12. (a) Spice input file and circuit for double-tuned bandpass example.
(b) Poles of the voltage transfer function.
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1.10e+61.05e+61.00e+69.50e+59.00e+5
0.0

0.1

0.2
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0.5

vm(3)
vm(5)
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(3
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m
(6

) 
 (
V

)

Frequency  (Hz)

Double-tuned

Single-tuned

Fig. 8.12. (c) Magnitude response for single-tuned and double-tuned circuits.

C

L

vs R

vo

(a) (b)

Rp

Rs

Cs

Cp

Fig. 8.13. (a) Lowpass circuit. (b) Parallel-to-series transformation applied on the
parallel RC branch converts it to a series RC branch.

L

vs

L

vsRp

Rs

CsCp

Fig. 8.14. Original circuit transformed into a series RLC resonant circuit.

By equating the real and imaginary parts of Equation (8.55), one obtains,

0 = 1 − ω2
oRpCpRsCs (8.56)

and,
ωoRpCs = ωoRpCp + ωoRsCs (8.57)

Equation (8.56) can be rearranged as

1
ωoRsCs

= ωoRpCp = Q (8.58)

It is seen from Equation (8.58) that the Qs of the series and parallel circuits
are the same. Thus, Q is automatically preserved during the transformation.
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From Equations (8.57) and (8.58)

ωoRpCs = Q +
1
Q

=
Q2 + 1

Q
(8.59)

Noting that ωoCs = 1
QRs

, Equation (8.59) can be written as

Rp

QRs
=

Q2 + 1
Q

(8.60)

from which the relationship between Rs and Rp is obtained

Rs =
Rp

1 + Q2
(8.61)

The relationship between Cs and Cp is derived by observing that ωoRp = Q
Cp

and substituting in (8.59). Then

Cs =
Q2 + 1

Q2
Cp =

(
1 +

1
Q2

)
Cp (8.62)

A similar analysis can be performed with an inductor as the reactive ele-
ment. In general, it can be shown that in the series-to-parallel transformation
the resistances and reactances are related by,

Rp = Rs(1 + Q2) ≈ RsQ
2 (8.63)

and,

Xp =
Q2 + 1

Q2
Xs =

(
1 +

1
Q2

)
Xs ≈ Xs (8.64)

The above equation indicates that the reactances remain approximately
the same for circuits with a high Q.

8.8 Tuned Circuits as Impedance Transformers

Tuned circuits are widely used as matching networks or impedance transfor-
mation networks. Here we look at a very simple example of a matching net-
work, that of an L-match network. The two forms of an L-match are shown
in Figure 8.15.

In the circuit of Figure 8.15a using a series-to-parallel transformation it
can be shown that

Rp = Rs(1 + Q2) ≈ RsQ
2 (8.65)

Since Rp > Rs, this circuit is referred to as an upward impedance transformer.
On the other hand, for the circuit of Figure 8.15b, Rs = Rp

1+Q2 , i.e., Rs < Rp.
The circuit of Figure 8.15b is a downward impedance transformer.
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L

RpRs Cp

Ls

Rs = 
Rp

1+Q2

Q = ωoLs
Rs Q = ωoRpCp

Rp = Rs(1+Q2)

C

(a) (b)

Fig. 8.15. (a) Upward impedance transforming L-match circuit. (b) Downward
impedance transforming L-match circuit.

L

1 Ω 1 Ω
50 Ω 50 Ω

L match

(a) (b)

Cp

Fig. 8.16. (a) Example of downward impedance transformer. (b) Realization of
L-match circuit.

As a numerical example, consider a downward transformation of a 50 Ω
resistance to 1Ω at 1 GHz as shown in Figure 8.16a. The realization of the
matching network is shown in Figure 8.16b where the values of L and C have
to be determined from the given specifications.

Since,

Rs =
Rp

1 + Q2
⇒ Q =

√
Rp

Rs
− 1 (8.66)

From Equation (8.66) the value of Q can be determined.

Q =

√
50
1

− 1 = 7 (8.67)

With Q = ωoRpCp, C = Q
ωoRp

and

Cp =
7

2π × 109 × 50
= 22.28 pF (8.68)

Next L is obtained from the resonance frequency of 1 GHz.

L =
1

ω2
oCp

=
1

(2π × 109)2 × 22.28 × 10−12
= 1.14 nH (8.69)
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The Spice input file is given in Figure 8.17a and the frequency response
around the resonant frequency is shown in Figure 8.17b. It is seen that the
input resistance is approximately 1 Ω as desired.

L-MATCH OF FIG 8.16B 
IIN 0 1 AC 1
L 1 2 1.14NH
CP 2 0 22.28PF
RP 2 0 50
.AC LIN 51 0.95G 1.05G
*.PLOT AC VM(1)
*.PLOT AC VP(1)
.WIDTH OUT=80
.END

1.051.000.95
1.0

1.1

1.2

1.3

Frequency (GHz)
V

M
(1

) 
(V

)

(a) (b)

Fig. 8.17. (a) Spice input file for L-match example. (b) Frequency response of
L-match circuit.

For the above example, it is seen that once the impedance transformation
ratio and the frequency have been selected, the Q of the circuit is fixed. If the
50 Ω resistance has to be matched to a 5 Ω resistance at 1 GHz, the Q would
be a low value of 3. If it is desired to meet a given value of Q, a π-match or
a T-match network must be used [19]. For additional matching networks the
reader is referred to [19].

Problems

8.1. The center frequency of a bandpass tuned circuit is 500 MHz. The Q of
this circuit is 50. What is the -3 dB frequency of the circuit?

8.2. Derive Equation (8.24).

8.3. For the parallel resonant circuit of Figure 8.2a, show that the current in
the inductor (or capacitor) at resonance is a factor of Q larger than the input
current.

8.4. For the series RLC circuit of Figure 8.3a, show that the voltage across
the inductor (or capacitor) at resonance is a factor of Q larger than the source
voltage.

8.5. Design a bandpass stage having the configuration shown in Figure 8.18
to achieve a center frequency of 3 MHz with a -3 dB bandwidth of 50 kHz.
Determine the pole locations. Use Spice to find the frequency response for
transformer couplings of k = 1.0 and k = 0.8.
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vS

vo

n : 1
k < 1

C 100 Ω

1 kΩ

Fig. 8.18. Bandpass stage for Problem 8.5.

8.6. Derive the equations for the series-to-parallel transformation of the cir-
cuit shown in Figure 8.19.

Rp

Rs

Lp

Ls

Fig. 8.19. Series-to-parallel transformation circuit for Problem 8.6.

8.7. Design a L-matching network that transforms a resistive load of 10 Ω to
50 Ω at a frequency of 900 MHz. What is the Q of this network. Verify your
design with Spice.

8.8. Design a L-matching network that transforms a resistive load of 100 Ω
to 10 Ω at a frequency of 2.4 GHz. What is the Q of this network. Verify your
design with Spice.

8.9. A BJT circuit is shown in Figure 8.20.
(a) What is the center frequency of the tuned circuit at the output?
(b) Determine the amplitude of the output voltage at the center frequency of
the tuned circuit for Iin = 0.25 cos(2π5 × 106t) mA.
(c) What is the amplitude of the output voltage at a frequency of 1 MHz?
(d) Can you identify the function of the circuit?
(e) Verify your analysis with Spice.
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vo

+10 V

1 mA
Large

-10 V

1 kΩ

2 kΩ
112 pF

IS = 10
 -16 A

 βF = 200

Iin

1 µH

Fig. 8.20. Circuit for Problem 8.9.
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Simple Bandpass Amplifiers

9.1 Simple Active RC Bandpass Amplifiers

In addition to the RLC tuned circuits of Chapter 8, highly selective band-
pass circuits can be achieved with lowpass amplifiers together with resistor-
capacitor combinations in overall negative or positive feedback configurations.
These active RC configurations are a most interesting study in themselves. In
this section, only two basic types are introduced to illustrate the realization
techniques.

In Figure 9.1a is shown the classical ‘ring-of-three’ configuration consisting
of three lowpass amplifiers and two RC lowpass filters. The amplifiers for
the moment are assumed to have negative gain, very large input resistances
and low output resistances. A series-shunt feedback amplifier provides these
characteristics [6]. With an odd number of negative-gain stages, a negative
feedback configuration exists. If the feedback loop is opened, the poles and
zeros of the open-loop gain function may be as shown in Figure 9.1b. With
the loop closed and as the lowpass gain of the system is increased from zero, the
natural frequencies of the system move as shown in the root-locus plot. If
the natural frequencies, which are the poles of the closed-loop system, move
sufficiently far from the original open-loop locations, a bandpass response
is produced in the neighborhood of the complex natural frequencies. This is
comparable to the situation provided by a lowpass filter configuration properly
designed, as brought out in Section 8.3. It is easily shown that the closed-loop
voltage gain is:

vo

vs
=

−Aω2
1

s2 + 3ω1s + (2 + A)ω2
1

(9.1)

where A is the magnitude of the open-loop gain (the product of the three
gains a1a2a3 in Figure 9.1a) and ω1 = 1/RC. For A large, the center fre-
quency is approximately

√
Aω1 and the -3 dB bandwidth is approximately

3ω1. The effective Q of this system is
√

A
3 and the peak magnitude of the
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R

C

R

C

- a1 - a2 - a3

jω

σ
- 1
RC

- 2
RC

open-loop poles

closed-loop poles

v1

(a)

(b)

5e+64e+63e+62e+61e+6
.1

1

10

100

Frequency  (Hz)

V
M

(7
) 
 (
V

)

RING OF THREE, FIGURE 9.1C
V1 1 0 0 AC 1.0
R1 1 2 10K
C1 2 0 159PF
E1 3 0 2 0 -10
R2 3 4 10K
C2 4 0 159PF
E2 5 0 4 0 -10
R3 5 6 1
R4 6 0 10K
E3 7 0 6 0 -10
R5 7 2 10K
.AC LIN 41 1MEG 5MEG
.PLOT AC VM(7)
.WIDTH OUT=80
.END

(c)

R

R3

R4

Fig. 9.1. (a) A ‘ring-of-three’ configuration. (b) Poles and zeros of the open-loop
gain function and root-locus plot. (c) Spice input file and magnitude response.
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closed-loop voltage gain is approximately
√

A
3 . The sensitivity of the effective

center frequency of the response is dependent upon the square root of the
open-loop gain. However, the open-loop gain can be the value of a cascaded
gain of feedback amplifiers. Therefore, the gain value is often the product of
ratios of two resistors.

The Spice input file for this configuration is given in Figure 9.1c. Each ideal
amplifier is realized as a voltage-controlled voltage source and is chosen to
provide a voltage gain of −10. The resistors, R3 � R4, provide an established
interstage circuit. The parameter ω1 = 1

RC = 2π × 100 kHz. The magnitude
response of the output voltage is shown in the same figure. The predicted
peak magnitude of the gain is approximately 10. The simulated value is 10.2.
The predicted center frequency is 3.16 MHz. The simulated value is 3.2 MHz.
Notice that the outband rejection at low frequencies is only 0.1 relative to the
peak value.

A modification of the system is shown in Figure 9.1d. The lowpass feedback
amplifiers now may be shunt-shunt configurations which together with the
feedback capacitors serve as integrators. The third negative-gain amplifier
again is necessary to achieve overall negative feedback.

R
C

v1

R R R
RC

Fig. 9.1. (d) A modified ‘ring-of-three’ configuration.

A positive feedback configuration to obtain a bandpass response is shown
in Figure 9.2a. The amplifier must provide a precise small-valued positive
gain. An opamp with a large negative feedback can produce the well-defined
positive gain. The precision is needed in order to insure that this positive
feedback configuration does not become unstable. This aspect is considered
below and in Chapters 10 and 11.

A simpler model of the positive gain amplifier is shown in Figure 9.2b. In
relation to the opamp of Figure 9.2a, A ≈ 1 + Ra

Rb
for an opamp voltage gain,

a 	 1.
The locii of the natural frequencies of the system of Figure 9.2b as the

magnitude of the open-loop gain is changed are shown in Figure 9.2c. Notice
that the open-loop response provides a transmission zero at the origin. The
locii on the real axis occur to the left of an even number of singularities for
a positive-feedback situation, rather than to the left of an odd number for
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R R

C

C

a

Ra

Rb

vo

v1

R R
vo

v1

C

Cvs Av1

(a)

σ

open-loop poles

closed-loop poles
jω

zero

(b) (c)

Fig. 9.2. (a) A positive feedback configuration. (b) A simpler model of the positive
gain amplifier. (c) Locii of the natural frequencies.

negative feedback. For identical Ri and Ci, the locii cross into the right-half
plane for A = 3, i.e., a loop-gain of 3. This is the condition for instability of
the system.

For the configuration of Figure 9.2a, the overall voltage gain is

vo

vs
=

Aω2
1

s2 + (3 − A)ω1s + ω2
1

(9.2)

where ω1 = 1/RC. The center frequency of the response occurs at ω1 with a
-3 dB bandwidth of (3 − A)ω1. The effective Q of the closed-loop system is
approximately 1/(3 − A). The value of the peak magnitude is A/(3 − A).

A realization of the positive feedback configuration using a single ECP
with an EF output stage is shown in Figure 9.2d. The Spice input file for this
circuit is given in Figure 9.2e. Negative feedback is introduced to the base of
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Q2. The value of the gain parameter A is changed by adjusting the feedback
resistors RB4 and/or RF2. The input resistance presented to C1 is very large
because of the negative feedback. The (logarithmic) magnitude response of
the overall voltage gain is shown in Figure 9.2f. For this response, the peak
magnitude is 90, corresponding to a value of A = 2.967. The value of Q of the
response is approximately 30.

Another positive feedback configuration is shown in Figure 9.2g. The feed-
back circuit is now the series combination of R1 and C1. The ω2

1 term in the
numerator of (9.2) is replaced by ω1(s+ω1). Approximately the same response
can be obtained with this circuit as with that of Figure 9.2b. This circuit is
sometimes called a Wien-type circuit and is the basis of the Wien-type oscil-
lator studied in Chapter 10.

The feedback configuration of Figures 9.1a and 9.2a are shunt-shunt com-
binations. It is an interesting exercise to use the procedures of Section 5.2,
including the loading effects of the feedback circuit, to develop the loop gain,
the closed-loop gain functions, and the locii of the natural frequencies with
loop gain.

Another technique to produce bandpass and other filter responses is based
upon the use of MOS transistors as switches together with capacitors and
opamps. For an introduction to this topic, see [6].

9.2 An ECP Bandpass Amplifier

In this section, simple bandpass amplifiers using emitter-coupled pairs of bipo-
lar transistors and conventional RLC tuned circuits are investigated to illus-
trate the design to achieve a desired passband. First, a very simple example
is designed to bring out the aspects of bandwidth shrinkage. The effects of
internal feedback in the gain elements next are studied, making use of circuit
simulation. Finally, a multistage amplifier is designed and evaluated with loss
and charge storage included in the transistors models.

In the amplifier of Figure 9.3a, notice that one ECP ‘stage’ is used to
provide the gain for the amplifier, as well as isolation between the tuned
circuits. There are two tuned circuits: one at the input and one at the output.
Therefore, care must be taken in referring to this circuit; it may be called
a one-stage amplifier with respect to the gain stage or a two-stage amplifier
with respect to the number of tuned circuits.

Rather than analyze a predetermined circuit, a design problem is chosen.
The desired value of the center frequency of each tuned circuit is 0.5 MHz with
a −3 dB bandwidth of 20 kHz (Q=25). As shown in Figure 9.3a, dc voltage
supply levels of ±10 V are given with a common-emitter ‘tail’ current of 2
mA. The signal-source resistance is 1 kΩ and the load resistance is 100 Ω. A
limit of 10 is specified for the largest value of turns ratio of the transformers.

We design first the input tuned circuit. The coefficient of coupling of
both transformers is assumed to be unity. Therefore, the transformer can
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Q1 Q2

v1

vo

Q3

15.9 pF

1 mA

15.9 p

+ 10 V

1 mA

(d)

A = 3 CIRCUIT, FIGURE 9.2D
V1 1 0 AC 1.0
*.AC DEC 11 0.1MEG 10MEG
.AC LIN 41 0.95MEG 1.1MEG
*.AC LIN 41 0.90MEG 1.1MEG
.PLOT AC VM(9)
*.TF V(9) V1
RB1 1 2 10K
C1 2 9 15.915P
C2 3 0 15.915P
RB2 2 3 10K
Q1 4 3 6 MOD1
Q2 7 8 6 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
RC1 5 4 10K
RC2 5 7 10K
Q3 5 7 9 MOD1
RB3 9 10 4.2K
RB4 8 10 20.5K
RF2 8 0 11K
VCC 5 0 10
IEE1 6 0 1M
IEE2 10 0 1M
.END

 **** BIPOLAR JUNCTION TRANSISTORS

             Q1        Q2        Q3      
 MODEL     MOD1      MOD1      MOD1    
 IB        4.80E-06  5.11E-06  9.87E-06
 IC        4.80E-04  5.11E-04  9.87E-04
 VBE          0.755     0.757     0.774
 VBC         -5.302    -4.888    -5.206
 VCE          6.057     5.645     5.980
 BETADC     100.000   100.000   100.000
 GM        1.86E-02  1.98E-02  3.81E-02
 RPI       5.39E+03  5.06E+03  2.62E+03
 BETAAC     100.000   100.000   100.000

(e)

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    0.0000    (  2)   -0.0479    (  3)   -0.0959    (  4)    5.2062
 (  5)   10.0000    (  6)   -0.8511    (  7)    4.7942    (  8)   -0.0942
 (  9)    4.0203    ( 10)   -0.1652    
 

10 kΩ

10 kΩ10 kΩ

10 kΩ

11 kΩ

20 kΩ

4.2 kΩ

Fig. 9.2. (d) A circuit for the positive feedback amplifier. (e) Spice input file,
transistor model parameters, and dc operating point.
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Fig. 9.2. (f) Magnitude response of the overall voltage gain. (g) Another positive
feedback configuration.

be modeled with a simple Lm and an ideal transformer. For this input circuit,
the open-circuit inductance at the primary side (right side in this case), is
the magnetizing inductance, as shown in Figure 9.3b. This element is labeled
Lmi = L1. From the definitions of Chapter 8, this is l11i of the coupled coil.
We retain the notation that the primary side is that where n is specified.
This is also then the side where the magnetizing inductance is specified. The
Thevenin equivalent of the input source is also brought across the ideal trans-
former with the values of nivs and n2

i Rs, as shown in the figure. The total
resistance, R1, across L1 and C1, is the parallel combination of the transferred
source resistance and the input resistance of the ECP, Ri.

R1 = n2
i Rs ‖ Ri (9.3)

where

Ri = 2rπ
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vs C1

C2

RS = 1 kΩ

RL = 100 Ω

+ VCC = 10 V

- VEE = -10 V

IEE = 2 mA

Lmi

Lmo

E1

vo

1 Ω

V(20)
Q1 Q2

k = 1

1 : ni

k = 1

(a)

nivs

n i
2RS

L1 C1 Ri L2 C2

v1 novo

L1 = l11i = Lmi L2 = l11o = Lmo

R2 = no
2RL

(b) (c)

no : 1

Fig. 9.3. (a) An amplifier circuit. (b) Equivalent circuit at the input. (c) Equivalent
circuit at the output.

For IEE = 2 mA, each collector current is approximately 1 mA (assuming
that betas of the transistors are large and that the devices are identical). For
β = βac = 100, the value of rπ is 2.585 kΩ, and

Ri = 5.17 kΩ (9.4)

The input turns ratio, ni, is not specified. One criteria that can be used is
to achieve maximum power transfer from the signal source to the pair. This
leads to

n2
i Rs = Ri (9.5)

ni =

√
5.17 kΩ

1 kΩ
= 2.27 (9.6)



9.2 An ECP Bandpass Amplifier 255

In Figure 9.3b, the total resistance, R1, appearing across L1 and C1 is

R1 =
(

1
2

)
2rπ = rπ = 2.59 kΩ (9.7)

To obtain the necessary values of L1 and C1, we start with the bandwidth
specification. In radian values, ωb = 2π × 20 kHz.

ωb =
1

R1C1

This leads to

C1 =
1

R1ωb
(9.8)

= 3.08 nF

With this value, L1 is found from the center-frequency specification.

ωo =
1√

L1C1

L1 =
1

ω2
oC1

=
R1

ωoQ
(9.9)

= 32.9 µH = Lmi

Note that the parameter Q can be used in determining L1, since Q =
ωo/ωb. L1 is the open-circuit inductance of the primary, l11i. The open-circuit
inductance of the secondary, l22i is L1 divided by the square of the turns ratio.

l22i =
1
n2

i

l11i =
1
n2

i

Lmi = 6.37 µH (9.10)

In the design of the output tuned circuit, it is convenient to work with
the equivalent circuit shown in Figure 9.3c. For the output circuit, the load
resistance is transferred to the primary side of the ideal transformer, and the
inductance L2 is the open-circuit inductance of the primary, which is also
the magnetizing inductance parameter of the transformer, Lmo. No output
conductance for the ECP is present, since the parameter VA for the transis-
tors is not specified. Similarly, a loss conductance has not been specified for
the transformers. For this case, then, we are at liberty to choose the output
turns ratio, no, independently of the maximum-power-transfer criterion. It is
a simple matter to show that the largest voltage transfer is obtained with the
largest value of no. However, the specifications include that the turns ratio
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can be no larger than 10. For no = 10, the value of resistance presented to
the primary side of the transformer, R2, is

R2 = n2
oRL = 10 kΩ (9.11)

Using Equations (9.8) and (9.9), we obtain for the same bandwidth and
center frequency specifications,

C2 = 0.796 nF (9.12)

L2 = 127 µH = l11o (9.13)

l22o =
L2

n2
o

= 1.27 µH

For the complete amplifier of Figure 9.3a, the center frequency of both
the input and output tuned circuits has been designed to be equal. At this
frequency, the reactances of the inductances and capacitances cancel and the
gain calculation is the same as that for a calculation of the small-signal gain
at dc for a lowpass amplifier.

vo

vs
≈

(
1
2

)
ni

(
1
Ri

)
βR2

(
1
no

)
(9.14)

=
(

1
4

)
(nino) (gmRL)

= 21.98

The circuit input file for Spice is given in Figure 9.4a. Also included are the
simulated values of the dc state and the transistor model parameters at the
quiescent operating point. The ac magnitude responses of the ECP input
voltage and the output voltage are shown in Figure 9.4b. From the Spice
results of Figure 9.4b, vo

vs
(jωo) = 21.84.

The width of the overall passband is not 20 kHz, the −3 dB bandwidth of
the individual tuned circuits. A shrinkage of the overall bandwidth is produced
because of the multiplicative nature of the gain function. This is illustrated
by the frequency-response plots obtained from circuit simulation.

Note in Figure 9.4a that a special voltage-controlled, voltage source, E1, is
included in the circuit. This permits us to compare the responses of the input
circuit and the overall amplifier, both having the same peak value. The relative
selectivity of the responses is then easily observed. The scaling parameter of
E1 is the ratio of the overall center-frequency transfer responses of the output
voltage and the ECP input voltage. From the earlier calculations,
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BANDPASS AMPLIFIER, FIGURE 9.4A
VS 1 0 0 AC 1
RS 1 2 1K
L22I 2 0 6.37U
L11I 3 0 32.9U
K1 L11I L22I 1
E1 20 0 3 0 19.3
RX1 20 0 1
C1 3 0 3.08N
Q11 6 3 10 MOD1
Q12 5 0 10 MOD1
VCC 6 0 10
IEE 10 13 2MA
VEE 13 0 -10 
C2 6 5 0.796N
L11O 5 6 127U
L22O 7 0 1.27U
K2 L11O L22O 1
RL 7 0 100
.MODEL MOD1 NPN BF=100 IS=1E-16
*+RB=100
*+VA=100
*+ TF=0.3N
*+CJC=0.5P CJE=0.5P
.AC LIN 21 480K 520K
.PRINT AC VM(7) VM(20) 
.END

  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    0.0000    (  2)    0.0000    (  3)    0.0000    (  5)   10.0000
 (  6)   10.0000    (  7)    0.0000    ( 10)   -0.7740    ( 13)  -10.0000
 ( 20)    0.0000    

 **** BIPOLAR JUNCTION TRANSISTORS

             Q11       Q12     
 MODEL     MOD1      MOD1    
 IB        9.90E-06  9.90E-06
 IC        9.90E-04  9.90E-04
 VBE          0.774     0.774
 VBC        -10.000   -10.000
 VCE         10.774    10.774
 BETADC     100.000   100.000
 GM        3.83E-02  3.83E-02
 RPI       2.61E+03  2.61E+03
 BETAAC     100.000   100.000

(a)

vm(20)

5.2e+55.1e+55.0e+54.9e+54.8e+5
1

10

100

vm(7)

V
M

(7
),
 V

M
(2

0)
  
(V

)

Frequency  (Hz)

vo
vs

v1
vs

(b)

Fig. 9.4. (a) Spice input file, transistor model parameters, and the dc operating
point. (b) Ac magnitude response of the EC pair.
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E1 =
21.98
1
2ni

(9.15)

=
21.98
1.14

= 19.3

The relative input response, V(20), is taken from E1.
From the magnitude frequency responses of Figure 9.4b, it is clear that

for frequencies away from the center-frequency, the overall response drops
faster than what occurs for the input circuit alone. A bandwidth shrinkage
occurs in the overall response relative to the response of either tuned circuit.
From the printout of the magnitude responses given in Figure 9.4c and simple
interpolations to establish frequencies for 0.707 of peak magnitude, the input
circuit response provides a −3 dB bandwidth of approximately 20 kHz while
the overall response has a −3 dB bandwidth of only 13 kHz, about 65% of
the bandwidth of the two individual tuned circuits. In the next section, we
show that this is the expected result from the cascading of two stages, each
tuned the same. In passing, notice that the selectivity factor, Q, of the overall
amplifier is approximately 38 relative to Q = 25 for the individual tuned
circuits.

     FREQ           VM(7)      VM(20)      
 

  4.80000E+05     4.122E+00   9.672E+00
  4.82000E+05     4.878E+00   1.053E+01
  4.84000E+05     5.831E+00   1.152E+01
  4.86000E+05     7.039E+00   1.267E+01
  4.88000E+05     8.572E+00   1.399E+01
  4.90000E+05     1.050E+01   1.550E+01
  4.92000E+05     1.287E+01   1.716E+01
  4.94000E+05     1.562E+01   1.888E+01
  4.96000E+05     1.845E+01   2.047E+01
  4.98000E+05     2.078E+01   2.163E+01
  5.00000E+05     2.184E+01   2.206E+01
  5.02000E+05     2.122E+01   2.161E+01
  5.04000E+05     1.919E+01   2.046E+01
  5.06000E+05     1.648E+01   1.890E+01
  5.08000E+05     1.374E+01   1.722E+01
  5.10000E+05     1.131E+01   1.561E+01
  5.12000E+05     9.300E+00   1.416E+01
  5.14000E+05     7.688E+00   1.288E+01
  5.16000E+05     6.410E+00   1.176E+01
  5.18000E+05     5.397E+00   1.080E+01
  5.20000E+05     4.589E+00   9.966E+00

Fig. 9.4. (c) Printout of the magnitude response.

9.3 Synchronous Tuning, Cascading, and Bandwidth
Shrinkage

In the amplifier of the last section, a multiplication (cascading) of the
responses of the input and output tuned circuits occurs which leads to
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bandwidth shrinkage. For an amplifier with several cascaded gain stages, this
multiplication effect is enhanced. In this section, the overall response for a
particular type of tuning is treated in greater detail.

In synchronous tuning of an amplifier, such as the cascade of ECPs shown
in Figure 9.5, each tuned circuit is designed (and adjusted) to produce the
same center frequency and the same bandwidth. The values of the circuit
elements of the tuned circuits may not have identical values. Therefore, one
tuned circuit may contribute more to the center-frequency gain than another.

vs

RS

C1

IEE

+ VCC

- VEE

IEE

+ VCC

- VEE

Q11 Q12 Q21 Q22
v1 v2

v3

vo = 1
n3

v3

n1 : 1

n2 : 1 n3 : 1

Fig. 9.5. A cascade of EC pairs.

Synchronous tuning is not the only method of tuning an overall amplifier,
but it is the simplest and leads to easy estimation of performance and simple
adjustment or tuning of an actual amplifier circuit.

Another common method of overall tuning is called stagger tuning. For
this technique, each tuned circuit is assigned a different, but definite center
frequency and an individual −3 dB bandwidth according to a specific de-
sign criterion. Usually, a flatter magnitude response in the passband can be
produced with steeper ‘skirts’ outside of the passband. Therefore, better se-
lectivity and rejection of signals outside of the passband are obtained relative
to the response obtained for synchronous tuning. Because of the inevitable
presence of feedback both within the gain stages (devices), as well as within
the overall amplifier implementation, precise realization of the desired cen-
ter frequencies and bandwidths is very difficult, and true stagger tuning is
seldom achieved. In practice, even if synchronous tuning is desired, because
of the aforementioned feedback effects, an informal stagger tuning is almost
always realized in the actual tuning of an amplifier.

We now turn to the estimation of bandwidth shrinkage for a synchronously
tuned amplifier. The cascaded amplifier of Figure 9.5 is modeled as in Figure
9.6 to emphasize the tuned circuits as one-port impedance blocks, Zi. For



260 9 Simple Bandpass Amplifiers

simplicity, only the first two stages are considered for the moment, and each
tuned circuit is assumed to be a single-tuned parallel RLC circuit. The overall
voltage-gain function can be developed as follows:

av =
v2

vs
=

(
n1

Rs

)
Z1

(gm

2

)
Z2

(
1
n2

)
(9.16)

=
(

1
2

)(
n1

n2

)(
gm

Rs

)
Z1Z2

where the source voltage and resistance are transferred from left to right across
n1 and Z1 includes the transferred loading of the source. Z2 at the collector
of Q12 includes the transferred loading of RL (or Rin2 for the general case).
The output voltage v2 includes the division by n2.

vs

Rs

n1 : 1

z1 z2 z3

+ v1 + n2v2 + n3vo

gm

2
 v1

gm

2
 v2

f(R1, L1, C1, n1) f(R2, L2, C2, n2) f(R3, L3, C3, n3)

Fig. 9.6. A model for the cascaded amplifier of Figure 9.5.

The multiplicative feature of the gain in (9.16) is clear. For parallel RLC
circuits, the two impedances have the form

Zi(s) =
1

Ci
s

s2 + Gi

Ci
s + 1

LiCi

(9.17)

Zi(jω) =
jRiωbω

(ω2
o − ω2) + jωωb

(9.18)

=
Ri

1 + jQ( ω
ωo

− ωo

ω )

=
Ri

1 + jQX

where Ri is the total shunt resistance of the tuned circuit, Ci is the capacitance
and Li is the inductance.

ω2
o =

1
LiCi

(9.19)
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ωbi =
Gi

Ci

Q =
ωo

ωbi

X =
[

ω

ωo
− ωo

ω

]

The last form of Equation (9.18) is convenient in establishing the −3 dB
bandwidth of the overall response of a cascade of synchronously tuned stages.

For a cascade of N tuned stages, the gain-magnitude function, normalized
with respect to the value at the center frequency, has the form

| av(jω) |
| av(jωo) |

=
1

(1 + Q2X2)
N
2

(9.20)

Remember that N is the number of ‘tuned stages,’ not gain stages. At the
bandedge frequencies, the magnitude response is down to 0.707 of its value
at the center frequency. There are four −3 dB frequencies of the magnitude
response, since there are upper and lower bandedges for both positive and
negative frequencies. At these frequencies,

1

(1 + Q2X2
i )

N
2

= 0.707 =
1√
2

(9.21)

where Xi are the values which satisfy the equation. Both sides of Equation
(9.21) are now raised to the power ( 2

N ) and the equation is solved for the Xi.

Xi = ±
(

a

Q

)
(9.22)

where

a =
√

2
1
N − 1 (9.23)

The actual frequency variable, ω, is next reintroduced, and a quadratic
equation is solved to obtain the normalized values of the four bandedge fre-
quencies.

ω1

ωo
,
ω2

ωo
,
ω3

ωo
,
ω4

ωo
= ± a

2Q
± j

√
1 +

1
4

(
a

Q

)2

(9.24)

The bandwidth of interest for positive frequencies is

ωb = ω1 − ω2 = a × ωbi (9.25)
where ωbi is the −3 dB bandwidth for an individual stage. The parameter a
is therefore the bandwidth shrinkage factor. In Table 9.1, values of this factor
are given for several values of N , the number of tuned stages in the cascade.

As expected from the example of the last section, the bandwidth for the
simple amplifier with two tuned circuits is 64% of the bandwidths of the
individual stages.
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N a

1 1.00
2 0.64
3 0.51
4 0.43
5 0.39

Table 9.1. Bandwidth shrinkage factor a as a function of the number of tuned
stages in the cascade N .

9.4 Effects of Internal Feedback

Because of the presence of sharply tuned circuits, the effects of internal feed-
back in a gain stage can drastically modify the performance of a bandpass
amplifier. We first illustrate this with a simple common-emitter stage and
then return to the emitter-coupled pair as the gain stage. Figure 9.7a shows a
variational model of a common-emitter stage at a quiescent operating point.
The capacitor Cjc is brought out explicitly to emphasize the feedback. The
output load is a simple parallel tuned circuit. At frequencies below the reso-
nant frequency of the tuned circuit, the load appears inductive. For simplicity,
only L is retained for the moment, as shown in Figure 9.7b to evaluate this
circumstance. In Figure 9.7b, a simple circuit model for the transistor is also
included. Of particular interest is the effective admittance Yx(s) presented to
the rπ − Cπ combination, due to the feedback effects of Cjc. Simple ‘Miller-
effect’ reasoning leads to

Yx(s) =
ix
v1

= sCjc (1 + gmsL) (9.26)

Yx(jω) = jωCjc − ω2gmCjcL (9.27)

Due to the inductive load, a frequency-dependent negative conductance
appears across rπ. Naturally, when a parallel resistance is included in the
load, the negative conductance effect is minimized. But for high Q loads and
for frequencies below the center frequency where the tuned circuit appears
inductive, a negative conductance is produced at the input of the transistor,
and the feedback produced by Cjc is positive. Therefore, the tuning of a
resonant circuit at the transistor input is affected. In some cases, instability
and oscillation can occur. These aspects are pursued below for the ECP and
also in Chapter 10.

For the emitter-coupled pair, internal feedback arises from several sources.
Almost every element of the circuit model of a bipolar transistor, as illustrated
in Figure 9.8, produces feedback, rb, ro, Cje, Cjc and Cπ = CB + Cje where
CB = gmτF . In Section 5.7, the feedback effects of ro = VA/IC are developed.
The input admittance of an ECP is multiplied by (1+aL), one plus the loop-
gain function. Thus, the tuning of an input circuit definitely is affected by the
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Cjc

is

is

Cjcv1

rπ Cπ L

ix

gmv1

(a)

(b)

Fig. 9.7. (a) A variational model for the common-emitter stage at an operating
point. (b) Circuit with a simple model for the transistor.

internal feedback. In this section, circuit simulation is used to illustrate the
effects of the feedback due to the different parameters of the transistors.

IEE

- VEE

+ +

rb

roQ1 Q2

τF,  Cjx

rb

ro

τF,  Cjx

Fig. 9.8. Elements of the circuit model of a bipolar transistor that produce internal
feedback.

To illustrate the effects of feedback in an ECP, the circuit of Figure 9.9
is simulated with Spice, initially without internal feedback. In the figure, the
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input circuit file also is included, as are the transistor model parameters at
the quiescent operating point with only BF and IS specified. The required
output response is the current through the voltage source, vs. Note that its ac
value is −1. This provides the current out of vs and into the circuit. This i(vs)
provides the input admittance, Yin(jω) = i(vs)/(−vs). The real and imaginary
parts of Yin indicate the loading and changes of loading with frequency across
an input circuit.

FIGURE 9.9
VS 1 0 0 AC -1
RS 1 2 1
C1 2 0 0.1P
Q11 6 2 10 MOD1
Q12 5 0 10 MOD1
VCC 6 0 10
IEE 10 13 2MA
VEE 13 0 -10 
C2 6 5 0.796N
L3 6 5 127U
RL 6 5 10K
.MODEL MOD1 NPN BF=100 IS=1E-16
*+RB=100
*+VA=100
*+TF=0.3N
*+CJC=0.5P CJE=0.5P
.WIDTH OUT=80
.OPTION NOPAGE NOMOD
.AC LIN 41 450K 550K
*.AC LIN 21 480K 520K
*.PLOT AC VM(5) 
*.PRINT AC VM(5) 
.PLOT AC IR(VS) II(VS)
.END

 **** BIPOLAR JUNCTION TRANSISTORS

             Q11       Q12     
 MODEL     MOD1      MOD1    
 IB        9.90E-06  9.90E-06
 IC        9.90E-04  9.90E-04
 VBE          0.774     0.774
 VBC        -10.000   -10.000
 VCE         10.774    10.774
 BETADC     100.000   100.000
 GM        3.83E-02  3.83E-02
 RPI       2.61E+03  2.61E+03
 BETAAC     100.000   100.000

vs C1

IEE

C2 L3 RL

Q11 Q12

+ VCC

- VEE

Fig. 9.9. Circuit, Spice input file, and transistor model parameters.

In Figure 9.9, a single-tuned circuit is present at the output. The values
of the elements correspond to the output tuned circuit of Figure 9.3a and
produce a center frequency of 500 kHz and bw = 20 kHz. A small capacitance
C1 is added at the ECP input to provide a reference. The real and imaginary
parts of the input admittance over the frequency range 450 − 550 kHz are
given in Figure 9.10. As expected for this initial example without feedback,
the input conductance is constant and equal to 0.5/rπ. The slope of the input
susceptance is constant and equal to the added capacitance 0.1 pF.
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Fig. 9.10. Input admittance of the EC pair versus frequency.

In Figure 9.11a, the feedback effects of ro = VA/IC are observed. The
sharp dip in Re(Yin), because of the feedback due to ro and the sharply tuned
output circuit, appears troublesome. However, if we inspect the values, only a
4% drop occurs at the resonance frequency. From Equation (5.65) in Section
5.7, the expected change due to ro is approximately RL/2ro = 5% for our
values.

The input capacitance of the ECP, which is the slope of the imaginary part
of the response, is very much modified by the inclusion of ro. In the vicinity
of the resonant frequency of the output circuit, the slope of the imaginary
part is approximately 50 pF, but well outside of the passband the slopes are
negative.

In Figure 9.11b, the effects due to both VA and rb are included. The
feedback due to rb has lowered the input conductance further, but the effects
due to the high Q loading still are only 4%. The input capacitance appears
worse than for VA only, but this is due to the scaling of the plots. The input
capacitance near the resonant frequency is again approximately 50 pF.

In Figure 9.12, the feedback effects of τF and Cjx (Cje and Cjc) without
VA and rb are shown. The input conductance is not affected by either, and
the equivalent input capacitances are constant and equal to approximately 37
pF and 4.6 pF, respectively.

In Figure 9.13, the effects of all of these parameters is shown. Again the
input conductance varies sharply but by only 4%. The input capacitance is
approximately 70 pF over the passband of the output tuned circuit. The input
susceptance is almost constant outside of the passband.

In the design of the amplifier of Figure 9.3a, only 2rπ from the ECP in-
put, is included. To incorporate the effects of the many transistor parameters,
equivalent input and output conductances and capacitances need to be es-
tablished. The values of the Ci and Li can then be adjusted to incorporate
the loading effects. The usual procedure is to start with the conductances at
the input and the output of the ECP, together with the values of the source
and load resistances. Iterative calculations using circuit simulation may be
necessary to obtain the proper values incorporating the feedback effects. The
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Fig. 9.11. Frequency response of Yin with (a) ro(VA), and (b) ro and rb.

necessary turns ratios of the transformers can then be established. The values
of the total capacitance at the ECP input and output are next determined to
provide the desired bandwidth of the passband. The actual value of Ci to be
added as an external element is the total value at a port minus the input or
output capacitive loading. Finally, the Li are calculated, and the transformer
parameters are set. Circuit simulation is then needed to validate the design.
Usually, some final design changes are necessary to achieve the specifications.
Often, for the ECP, the internal feedback effects are not too severe. This is
not the case for common-emitter stages unless a neutralization technique is
used.

9.5 Multistage Bandpass Design Example

To bring together several of the aspects introduced in the earlier sections,
a design example is used. The specifications are to realize a three tuned-
stage, synchronously tuned bandpass amplifier illustrated in Figure 9.14 with
a center frequency of 0.5 MHz and an overall Q of 25. Emitter-coupled pairs
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Fig. 9.12. Frequency response of Yin with (a) Cjx, and (b) τF .

are to be used for the gain stages as shown in Figure 9.14. The input should
include a tuned circuit incorporating a signal-source resistance of 2 kΩ. The
output should be a tuned, transformer-coupled circuit with a load resistance
of 300 Ω. Thus, three tuned circuits are necessary: the input stage, an interior
or interstage, and an output stage. Single-tuned transformers are to be used
each with a loss equivalent to 10 kΩ on the primary side. Maximum power
transfer is to be achieved, if possible. The positive dc voltage source has a
value of +9 V. The common-emitter currents are to be implemented with
10 kΩ resistors returned to VEE = -20 V. The available transistor parameters
are those listed in the Spice input file given in Figure 9.14.

At the quiescent state, the common-emitter supply currents are

IEE ≈ VEE − 0.8
RE

(9.28)

= 1.92 mA

The dc collectors currents, including β effects, are approximately
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 **** BIPOLAR JUNCTION TRANSISTORS

             Q11       Q12    
 MODEL     MOD1      MOD1   
 IB        9.01E-06  9.01E-06
 IC        9.91E-04  9.91E-04
 VBE           .772      .772
 VBC        -10.000   -10.000
 VCE         10.772    10.772
 BETADC     110.001   110.001
 GM        3.83E-02  3.83E-02
 RPI       2.87E+03  2.87E+03
 RX        1.00E+02  1.00E+02
 RO        1.11E+05  1.11E+05
 CPI       1.23E-11  1.23E-11
 CMU       2.08E-13  2.08E-13
 CBX       0.00E-01  0.00E-01
 CCS       0.00E-01  0.00E-01
 BETAAC     109.975   109.975
 FT        4.86E+08  4.86E+08

5.50e+55.25e+55.00e+54.75e+54.50e+5
1.60e-4

1.63e-4
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II
(V

S)
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)

Frequency  (Hz)

Slope ≈ 70 pF

Fig. 9.13. Frequency response of Yin with ro, rb, Cjx, and τF , and transistor model
parameters at the operating point.

IC = 0.95 mA (9.29)

The corresponding value of the small-signal parameters are

1
gm

= 27.2 Ω (9.30)

rπ = 2720 Ω

The simulated values are given in Figure 9.14.
We can start the design at the signal input. As shown in the Spice input

file, a 10 kΩ resistor, RM1, is included across the primary of the transformer to
simulate the loss of the transformer. (In practice, the loss is usually specified
across the ‘high’ side of the transformer, i.e., the side where n : 1 is defined).
The total resistance presented to the primary side is Rs = 2 kΩ in parallel
with 10 kΩ or 1.67 kΩ. At the ECP input, the input resistance, without
including feedback effects due to ro and rb, is 2rπ. We neglect for the moment
feedback effects and study them using circuit simulation after the initial design
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vs

RS

C1

+ VCC + VCC

- VEE

Q11 Q12 Q21 Q22
n1 : 1

n2 : 1

E1 1 Ω

V(30)

1 Ω

V(20)

n3 : 1

vo

RLC2 C3

E2

l111

l112 l113

RE

- VEE

RE

BANDPASS AMPLIFIER, FIGURE 9.14
VS 1 0 0 AC 1
RS 1 2 2K
RM1 2 0 10K
L11I 2 0 20.8U
L221 3 0 67.9U
K1 L11I L221 1
E1 20 0 3 0 1076
RX1 20 0 1
C1 3 0 1.49N
Q11 6 3 10 MOD1
Q12 5 0 10 MOD1
RE 10 13 10K
VEE 13 0 -20 
RM2 6 5 10K
L112 6 5 126U
L222 7 0 67.9U
K2 L112 L222 1
E2 30 0 7 0 15.9
RX2 30 0 1
C2 7 0 1.49N
Q21 6 7 11 MOD1
Q22 8 0 11 MOD1
RE2 11 13 10K 
RM3 6 8 10K
L113 6 8 125U
L223 9 0 3.74U
K L113 L223 1
C3 9 0 27N
RL 9 0 300
VCC 6 0 9
.MODEL MOD1 NPN BF=100 IS=1E-16
*+RB=100
*+VA=100
*+TF=0.3N
*+CJC=0.5P CJE=0.5P
.AC LIN 21 480K 520K
.PLOT AC VM(9) VM(30) VM(20) (100,1000)
.PRINT AC VM(9) VM(3) VM(7) VM(30) VM(20)
.END

 **** BIPOLAR JUNCTION TRANSISTORS
      (WITH ONLY BF AND IS)

             Q11       Q12       Q21       Q22    
 MODEL     MOD1      MOD1      MOD1      MOD1   
 IB        9.52E-06  9.52E-06  9.52E-06  9.52E-06
 IC        9.52E-04  9.52E-04  9.52E-04  9.52E-04
 VBE           .773      .773      .773      .773
 VBC         -9.000    -9.000    -9.000    -9.000
 VCE          9.773     9.773     9.773     9.773
 BETADC     100.000   100.000   100.000   100.000
 GM        3.68E-02  3.68E-02  3.68E-02  3.68E-02
 RPI       2.72E+03  2.72E+03  2.72E+03  2.72E+03
 RX        0.00E-01  0.00E-01  0.00E-01  0.00E-01
 RO        1.00E+12  1.00E+12  1.00E+12  1.00E+12
 CPI       0.00E-01  0.00E-01  0.00E-01  0.00E-01
 CMU       0.00E-01  0.00E-01  0.00E-01  0.00E-01
 CBX       0.00E-01  0.00E-01  0.00E-01  0.00E-01
 CCS       0.00E-01  0.00E-01  0.00E-01  0.00E-01
 BETAAC     100.000   100.000   100.000   100.000
 FT        5.86E+17  5.86E+17  5.86E+17  5.86E+17

           (SEE ALSO FIG. 9.17)

Fig. 9.14. Cascade of EC pair gain stages, Spice input file, and transistor model
parameters at the operating point.
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is complete. To achieve maximum power transfer to the ECP input resistance
of 2rπ = 5.440 kΩ, the input turns ratio must be

n1 =

√
1.67
5.44

= 0.56 (9.31)

The total shunt resistance, R1, at the input of the ECP is then 2.72 kΩ. In the
last section, it is determined that for similar frequency specifications on the
tuned output circuit, a 4-5% increase of Rin is obtained in the passband. For
the present case, where transformer loss must be included, the feedback effects
will be only one-half of this, since the effective center-frequency resistance of
the ECP output will be 5 kΩ due to resistance matching with the transformers.

The bandwidth of each stage for synchronous tuning with three tuned
stages and an overall amplifier bandwidth, bwT = fo/Q = 20 kHz, is from
Table 9.1:

bwi =
bwT

0.51
= 39.2 kHz (9.32)

The required capacitance is

C1 =
1

2π(bwi)R1
= 1.49 nF (9.33)

At this point, one can estimate the capacitive input effects from the ECP.
The actual added capacitance at this node can be the value of C1 minus the
contribution from the input of the ECP. From the results of the last section, for
similar load and transistor conditions, the input capacitances in the passband
is of the order of 70 pF. This is much smaller than the required 1490 pF and
can be neglected for this initial design.

To obtain a center frequency of 500 kHz,

L1 =
1

ω2
oC1

= 67.9 µH (9.34)

This is also the value of l221, the open-circuit inductance at the secondary of
the input transformer. The primary side inductance is n2

1 times this value.

l111 = 20.8 µH (9.35)

The voltage transfer ratio from vs to the ECP input is needed for the circuit
simulation to obtain (normalized) equal values of the magnitude responses at
the center frequency. Note the uses of the voltage-controlled voltage sources,
Ei, in the schematic diagram and input file of Figure 9.14.

v(3)
vs

=
(

10
12

) (
1
2

)(
1

0.56

)
= 0.744 (9.36)
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For the interior (interstage) tuned circuit, a resistance match is needed
between the transformer resistance and the input resistance of the second
ECP, neglecting for the moment the loading of ro = VA

IC
.

n2 =

√
10k

5.44k
= 1.36 (9.37)

The tuned circuit element values at the input to Q21 are

R2 = 2.72 kΩ (9.38)
C2 = 1.49 nF
L2 = 67.9 µH

L2 is the open-circuit inductance of the secondary, l222. At the primary,

l112 = (n2)2L2 = 126 µH (9.39)

The voltage transfer ratio from vs to the input of the second ECP is

v(7)
vs

= −0.744
(

1
2

)(
1

27.2

)
5k

(
1

1.36

)
= −50.7 (9.40)

where 0.744 is from Equation (9.36).
For the output tuned circuit, a resistance match is needed between the

transformer loss resistance at the primary, again neglecting ro loading, and
the specified load resistance of 300 Ω. With a match, the values of the tuned
circuit at the secondary side of the transformer are

n3 = 5.77 (9.41)
R3 = 150 Ω

C3 = 27.0 nF
L3 = 3.74 µH = l223

l113 = 125 µH

The overall center-frequency voltage gain of the amplifier is

| av(jωo) |=
v(9)
vs

= 50.7
(

1
2

) (
1

27.2

)
5k

(
1

5.77

)
= 807.5 (9.42)

The values of the Ei, the voltage-controlled voltage sources, to obtain the
same center-frequency values of voltage transfer are
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E1 =
807.5
0.75

= 1076 (9.43)

E2 =
807.5
50.7

= 15.9

The results from a Spice simulation are shown in Figure 9.15 with only the
initial transistor parameters, i.e., BF and IS. The desired center frequency of
500 kHz is achieved, as is the overall −3 dB bandwidth of 20 kHz. The gain
magnitude at the center frequency is 828 and at the −3 dB frequencies should
be 0.707×828. Linear interpolation can be used to check out the bandedges.
It is also seen that approximately equal normalized center frequency values
from the Ei are obtained.

     FREQ           VM(9)       VM(3)       VM(7)      VM(30)      VM(20)          
 
  4.80000E+05     2.599E+02   5.164E-01   2.407E+01   3.827E+02   5.556E+02
  4.82000E+05     3.046E+02   5.445E-01   2.675E+01   4.253E+02   5.858E+02
  4.84000E+05     3.564E+02   5.738E-01   2.970E+01   4.722E+02   6.174E+02
  4.86000E+05     4.154E+02   6.039E-01   3.288E+01   5.228E+02   6.497E+02
  4.88000E+05     4.811E+02   6.341E-01   3.624E+01   5.763E+02   6.823E+02
  4.90000E+05     5.515E+02   6.635E-01   3.967E+01   6.308E+02   7.139E+02
  4.92000E+05     6.232E+02   6.909E-01   4.300E+01   6.837E+02   7.434E+02
  4.94000E+05     6.912E+02   7.148E-01   4.602E+01   7.317E+02   7.691E+02
  4.96000E+05     7.490E+02   7.338E-01   4.849E+01   7.709E+02   7.896E+02
  4.98000E+05     7.901E+02   7.465E-01   5.016E+01   7.976E+02   8.032E+02
  5.00000E+05     8.089E+02   7.518E-01   5.088E+01   8.089E+02   8.089E+02
  5.02000E+05     8.031E+02   7.493E-01   5.055E+01   8.037E+02   8.063E+02
  5.04000E+05     7.737E+02   7.395E-01   4.924E+01   7.828E+02   7.957E+02
  5.06000E+05     7.252E+02   7.231E-01   4.709E+01   7.488E+02   7.781E+02
  5.08000E+05     6.638E+02   7.016E-01   4.435E+01   7.051E+02   7.550E+02
  5.10000E+05     5.959E+02   6.765E-01   4.123E+01   6.556E+02   7.279E+02
  5.12000E+05     5.270E+02   6.490E-01   3.797E+01   6.037E+02   6.984E+02
  5.14000E+05     4.611E+02   6.206E-01   3.472E+01   5.520E+02   6.677E+02
  5.16000E+05     4.007E+02   5.920E-01   3.161E+01   5.025E+02   6.370E+02
  5.18000E+05     3.467E+02   5.640E-01   2.870E+01   4.563E+02   6.069E+02
  5.20000E+05     2.995E+02   5.371E-01   2.603E+01   4.139E+02   5.779E+02
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Fig. 9.15. Simulated magnitude responses with only βF and IS .

Figures 9.16a, b, and c show plots of the magnitude responses of the three
voltage-transfer functions as first, transistor parameters VA and rb are added;
then, just τF and Cje and Cjc; and finally, with all of these parameters.
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A printout of the magnitude responses for the last case is given in Figure
9.17, together with a listing of the transistor parameters at the quiescent
operating point. From the listing, the center frequency gain is 828. From a
linear interpolation, the final overall −3 dB bandwidth is 19.3 kHz, a 3.5%
decrease over the initial design. Redesign of the amplifier in this case may not
be necessary.

For an ECP amplifier, the combined ro effects on Rin = 2rπ(1 + RL

2ro
) and

on Rout = 2ro(1 + RS

2rπ
) usually demand an iterative solution, cf., (5.62) and

(5.63).
For higher frequency specifications, the internal feedback effects of the

transistors are more severe. In particular, the effects due to charge storage
in the transistors are troublesome. For the example above, the charge-storage
effects are small for this relatively low-frequency application, fo = 0.5 MHz �
fT = 484 MHz. In general, a sequential trial-and-error design procedure must
be used, since detailed analysis is very cumbersome. In the initial design,
a first-order estimate of both resistive and capacitive loading by the ECPs
is included. Spice then is used to investigate the response down the cascade.
This provides information concerning what adjustments might be made, being
careful, of course, to insure that each tuned circuit remains tuned to the center
frequency. Otherwise, the tuning procedure becomes very involved. Even with
care, an informal stagger tuning, as mentioned in Section 9.3, rather than
synchronous tuning, is the usual result.

9.6 Cross Modulation

In Chapter 3, it is shown that harmonic distortion is produced due to the
nonlinearity of the gain stages of an amplifier. For a broadband lowpass am-
plifier to which two or more signals are introduced, not only are the harmonics
of each signal produced by the nonlinearities, but also ‘beats’ are produced
between the signals and their harmonics. The latter is the intermodulation
distortion. For a bandpass amplifier, the frequency response may attenuate
undesired signals and their harmonics, unless a lower-frequency signal happens
to be an integral divisor of the desired signal. However, the beat terms, such
as those developed in intermodulation distortion, may occur within the pass-
band. These distortion components cannot then be eliminated with further
filtering.

In this section, we consider the case of two signals, one of which is a pure
sinusoid and the other a sinusoidally modulated sinusoidal carrier. A transfer
of the modulation of one signal to the unmodulated carrier occurs due to the
amplifier nonlinearities and is four times worse than the effects produced by
IM3.

Let the input to an amplifier be
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Fig. 9.16. Magnitude responses with (a) VA and rb, (b) τF , Cje, and Cjc, and (c)
VA, rb, τF , Cje, and Cjc.
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 **** BIPOLAR JUNCTION TRANSISTORS

             Q11       Q12       Q21       Q22     
 MODEL     MOD1      MOD1      MOD1      MOD1    
 IB        8.74E-06  8.74E-06  8.74E-06  8.74E-06
 IC        9.53E-04  9.53E-04  9.53E-04  9.53E-04
 VBE           .772      .772      .772      .772
 VBC         -9.000    -9.000    -9.000    -9.000
 VCE          9.772     9.772     9.772     9.772
 BETADC     109.001   109.001   109.001   109.001
 GM        3.68E-02  3.68E-02  3.68E-02  3.68E-02
 RPI       2.96E+03  2.96E+03  2.96E+03  2.96E+03
 RX        1.00E+02  1.00E+02  1.00E+02  1.00E+02
 RO        1.14E+05  1.14E+05  1.14E+05  1.14E+05
 CPI       1.19E-11  1.19E-11  1.19E-11  1.19E-11
 CMU       2.14E-13  2.14E-13  2.14E-13  2.14E-13
 CBX       0.00E-01  0.00E-01  0.00E-01  0.00E-01
 CCS       0.00E-01  0.00E-01  0.00E-01  0.00E-01
 BETAAC     108.975   108.975   108.975   108.975
 FT        4.84E+08  4.84E+08  4.84E+08  4.84E+08

     FREQ           VM(9)       VM(3)       VM(7)      VM(30)      VM(20)          
 
  4.50000E+05     3.279E+01   2.659E-01   6.189E+00   9.841E+01   2.861E+02
  4.52500E+05     3.783E+01   2.791E-01   6.816E+00   1.084E+02   3.003E+02
  4.55000E+05     4.387E+01   2.934E-01   7.532E+00   1.198E+02   3.157E+02
  4.57500E+05     5.115E+01   3.091E-01   8.354E+00   1.328E+02   3.326E+02
  4.60000E+05     5.998E+01   3.262E-01   9.303E+00   1.479E+02   3.510E+02
  4.62500E+05     7.075E+01   3.450E-01   1.040E+01   1.654E+02   3.712E+02
  4.65000E+05     8.397E+01   3.657E-01   1.168E+01   1.857E+02   3.935E+02
  4.67500E+05     1.003E+02   3.885E-01   1.318E+01   2.095E+02   4.180E+02
  4.70000E+05     1.205E+02   4.136E-01   1.493E+01   2.373E+02   4.451E+02
  4.72500E+05     1.458E+02   4.414E-01   1.698E+01   2.700E+02   4.749E+02
  4.75000E+05     1.772E+02   4.720E-01   1.940E+01   3.084E+02   5.079E+02
  4.77500E+05     2.165E+02   5.056E-01   2.223E+01   3.535E+02   5.441E+02
  4.80000E+05     2.654E+02   5.424E-01   2.554E+01   4.060E+02   5.836E+02
  4.82500E+05     3.254E+02   5.820E-01   2.935E+01   4.667E+02   6.263E+02
  4.85000E+05     3.977E+02   6.241E-01   3.366E+01   5.352E+02   6.715E+02
  4.87500E+05     4.820E+02   6.674E-01   3.839E+01   6.103E+02   7.181E+02
  4.90000E+05     5.750E+02   7.099E-01   4.329E+01   6.884E+02   7.639E+02
  4.92500E+05     6.692E+02   7.487E-01   4.799E+01   7.630E+02   8.056E+02
  4.95000E+05     7.525E+02   7.799E-01   5.190E+01   8.252E+02   8.391E+02
  4.97500E+05     8.096E+02   7.994E-01   5.439E+01   8.648E+02   8.601E+02
  5.00000E+05     8.280E+02   8.043E-01   5.497E+01   8.741E+02   8.654E+02
  5.02500E+05     8.036E+02   7.939E-01   5.355E+01   8.514E+02   8.542E+02
  5.05000E+05     7.429E+02   7.701E-01   5.042E+01   8.017E+02   8.286E+02
  5.07500E+05     6.595E+02   7.365E-01   4.619E+01   7.345E+02   7.925E+02
  5.10000E+05     5.678E+02   6.972E-01   4.148E+01   6.596E+02   7.502E+02
  5.12500E+05     4.789E+02   6.558E-01   3.678E+01   5.847E+02   7.056E+02
  5.15000E+05     3.990E+02   6.146E-01   3.237E+01   5.147E+02   6.613E+02
  5.17500E+05     3.304E+02   5.753E-01   2.842E+01   4.518E+02   6.190E+02
  5.20000E+05     2.733E+02   5.386E-01   2.495E+01   3.967E+02   5.795E+02
  5.22500E+05     2.265E+02   5.048E-01   2.195E+01   3.490E+02   5.432E+02
  5.25000E+05     1.885E+02   4.740E-01   1.938E+01   3.081E+02   5.100E+02
  5.27500E+05     1.577E+02   4.460E-01   1.718E+01   2.732E+02   4.799E+02
  5.30000E+05     1.327E+02   4.206E-01   1.530E+01   2.432E+02   4.526E+02
  5.32500E+05     1.124E+02   3.976E-01   1.368E+01   2.175E+02   4.278E+02
  5.35000E+05     9.583E+01   3.767E-01   1.229E+01   1.954E+02   4.053E+02
  5.37500E+05     8.220E+01   3.577E-01   1.109E+01   1.764E+02   3.849E+02
  5.40000E+05     7.095E+01   3.404E-01   1.005E+01   1.598E+02   3.663E+02
  5.42500E+05     6.159E+01   3.246E-01   9.145E+00   1.454E+02   3.493E+02
  5.45000E+05     5.377E+01   3.101E-01   8.353E+00   1.328E+02   3.337E+02
  5.47500E+05     4.719E+01   2.969E-01   7.657E+00   1.217E+02   3.194E+02
  5.50000E+05     4.163E+01   2.847E-01   7.043E+00   1.120E+02   3.063E+02

Fig. 9.17. Transistor model parameters at the operating point and printout of the
magnitude responses.
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vi = v1 + v2 = V1A cos ω1t + V2A(1 + m cos ωmt) cos ω2t (9.44)

where m is the modulation index. Following the same procedure as used in
Chapter 3, we characterize the incremental output response of an amplifier in
terms of a power series.

vo = a1vi + a2v
2
i + a3v

3
i + . . . (9.45)

Consider the quadratic term of vo after the input has been included.

a2v
2
i = a2V

2
1A cos2 ω1t (9.46)

+ V1AV2A(1 + m cos ωt) cos(ω1 ± ω2)t
+ V 2

2A(1 + m2 cos2 ωmt + 2m cos ωmt) cos2 ω2t

Notice that the unmodulated carrier is not modulated by the ωm term.
That is, the modulation has not been transferred. From the cubic term of vo,
we are interested particularly in the component due to the multiplication of
v1 and the square of v2.

a3v
3
i = . . . (9.47)

+ 3a3 [V1A cos ω1t]
[
V 2

2A(1 + m cos ωmt)2 cos2 ω2t
]

= . . . + 3a3V1AV 2
2A cos ω1t ·[

(1 + 2m cos ωmt + m2 cos2 ωmt)
(

1
2

)
(1 + cos 2ω2t)

]
+ ..

= . . . 3a3V1AV 2
2Am cos ωmt cos ω1t + . . .

The modulation of the ω2 carrier has been transferred to the ω1 carrier by
the cubic term of the nonlinearity.

The cross-modulation index, CM , is defined as the ratio of the transferred
modulation index to m, the original modulation index. The newly modulated
ω1 component is

a1V1A

(
1 +

3a3V
2
2Am

a1
cos ωmt

)
cos ω1t (9.48)

The CM index is

CM =
3a3V

2
2A

a1
(9.49)

From the results of Chapter 3, it can be seen that CM defined in terms of
equal inputs is four times larger than IM3 and is 12 times greater than HD3,
all due to the same cubic term of the nonlinearity.

CM is usually specified in terms of the maximum allowable second signal
for a given level of CM, often 1%.
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For a numerical example, assume that the gain stage is a simple common-
emitter stage (BJT). The desired signal has a center frequency of 560 kHz
while the interfering modulated signal has a center frequency of 610 kHz. The
Q of the tuned circuit is 25. Therefore, the second signal is rejected by the
tuned circuit at the stage input by 4.37. From Equation (3.13) in Section 3.2,
the coefficients of the power series are

a1 = ICA

(
1

VT

)
(9.50)

a3 =
1
6
ICA

(
1

VT

)3

where ICA is the quiescent value of the collector current. For an allowable CM
of 1%,

0.01 = 3

(
V2A

VT

)2

6
(9.51)

V2 = 3.66 mV

for Vt = 25.85 mV. This is the allowed signal level at the nonlinearity. Because
of the rejection of the tuned circuit, the maximum allowable input signal at
610 kHz is

vin(610 kHz) = (4.37)(3.66 mV) = 16 mV (9.52)

Any signal larger than this will introduce unacceptable modulation trans-
fer to the desired signal. Again this modulation cannot be eliminated by fur-
ther filtering. This example illustrates why design attention in amplifiers is
spent on reducing the third-order nonlinearities.

Problems

9.1. Derive Equations (9.1) and (9.2).

9.2. A bandpass amplifier based upon an active RC circuit is shown in Fig-
ure 9.18. Design the circuit to provide an approximate single-tuned bandpass
response with a center frequency of 10 MHz with a Q of 30. Confirm your
design values with Spice simulations.

9.3. A simple bandpass amplifier using a SCP is shown in Figure 9.19.
(a) Design the amplifier for a center frequency of 0.5 MHz with a Q of 20.
Provide maximum power transfer at the output.
(b) What is the value of the center frequency voltage gain?
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vo

+ 10 V
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C2

C1

Ra

Rc
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 = 10
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32 kΩ
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Fig. 9.18. Active RC bandpass amplifier circuit for Problem 9.2.
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0.5 mA
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10 kΩ

300 Ω

k ≈ 1

vo
VTO = 0.7 V

k' = 30 µA/V2

λ = 0.015
W
L

 = 30

Fig. 9.19. SCP bandpass amplifier circuit for Problem 9.3.

(c) By how much is a signal at 600 kHz rejected by the amplifier relative to a
signal at the center frequency?
(d) Verify your analysis results with Spice.

9.4. Derive Equation (9.16).

9.5. A bandpass amplifier is shown in Figure 9.20a.
(a) Design the amplifier to produce a center frequency of 1 MHz with a -3 dB
bandwidth of 50 kHz. Provide maximum power transfer at the output.
(b) What is the value of the center frequency voltage gain?
(c) What is the rejection of a signal at 1.5 times the center frequency?
(d) Redo Part (a) including a tuned circuit at the EC pair input as illustrated
in Figure 9.20b.
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Q1 Q2
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vo

10 kΩ
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Fig. 9.20. Bandpass amplifier circuit for Problem 9.5.

9.6. A simple bandpass amplifier is shown in Figure 9.21.
(a) Design the input tuned circuit to produce a center frequency of 10 MHz
with a -3 dB bandwidth of 0.5 MHz.
(b) What is the value of the center frequency voltage gain of the amplifier (L2

is not to be included here)?
(c) If L2 is added across the 50 kΩ resistor to achieve resonance at the center
frequency, how is the value of the midband gain affected? How is the value of
the overall bandwidth affected?
(d) Verify your analysis results with Spice.

+10 V

-10 V

0.5 mA

vo

vs

Lm1

1 : 4

C1

Lz

C2 = 5 pF1 kΩ

50 kΩ

VTO = 0.7 V

k' =30 µA/V2

λ = 0
W
L

 = 10

Fig. 9.21. Bandpass amplifier circuit for Problem 9.6.

9.7. A bandpass amplifier is shown in Figure 9.22. Design the circuit to obtain
a synchronously tuned response with a center frequency of 10 MHz and a -3
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dB bandwidth of 300 kHz. For the transformers n ≤ 8 and k = 0.9. Achieve
maximum power transfer if possible.

+10 V

-10 V

0.5 mA

no : 1

10 kΩ

vo

vs

VTO = 0.7 V

k' = 30 µA/V2

λ = 0.01
W
L

 = 30
10 kΩ

ni : 1

Fig. 9.22. Bandpass amplifier circuit for Problem 9.7.

9.8. Design the MOS bandpass amplifier in Figure 9.23 to provide a center
frequency of 10 MHz with an overall Q of 30. The turns ratios of the transform-
ers are limited to 1/10 ≤ n ≤ 10 with a coefficient of coupling approximately
1. Confirm your design values of center frequency and bandwidth with Spice
simulation.

vs C1

n1 : 1

n2 : 1 n3 : 1

+10 V

1
2
 mA 1

2
 mA

-10 V -10 V

C2 C3 600 Ω

vo

VTO = 0.7 V

k' = 30 µA/V2

W
L

 = 10

λ = 0.02

3 kΩ

50 kΩ

Fig. 9.23. MOS bandpass amplifier circuit for Problem 9.8.
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Basic Electronic Oscillators

10.1 Instabilities, Oscillations and Oscillators

The possibility of instabilities in amplifiers has been introduced earlier. Be-
cause of internal feedback in the active devices, external feedback paths, or
connections in the amplifier, a feedback signal proportional to the output is
produced. If this feedback signal is in phase with the input, a regenerative
situation exists, and if the magnitude of the feedback is large enough, an un-
stable circuit is obtained. That is, if any input, including noise, is applied to or
is present in a circuit which is initially at rest, growing transients occur. After
a period of time, these growing transients are sufficiently large to produce
a nonlinear response of the circuit elements, and these nonlinearities finally
stop the growth of the signals. Eventually, then, steady-state oscillations can
occur, and the circuit becomes an (unwanted) oscillator.

The problem in amplifiers is to avoid the possibilities of oscillation by
proper design. Ideally, we desire an absolutely stable circuit; however, we may
have to settle for a potentially unstable situation. In the latter, cf., Section
9.1, oscillations are possible for some tuning or operational conditions which,
of course, are to be avoided for our amplifier.

To achieve the oscillator circuit function, in contrast to the amplifier sit-
uation, we must insure an unstable situation. However, we cannot be content
with the mere fact that a circuit will oscillate. Our task also includes the devel-
opment of the oscillatory power at a desired frequency, with a given, adequate
amplitude, and with excellent constancy of envelope amplitude and frequency.
Therefore, even though an oscillation of some kind is relatively easy to pro-
duce, the task of realizing a true oscillator can be even more difficult than
for an amplifier. This is true at least for one important reason: nonlinearities
are a basic necessity in the oscillator, as indicated above; thus, the governing
equations of an oscillator are nonlinear, differential equations. On the other
hand, for the amplifier, the basic description can be linear, at least initially,
and nonlinearities can often be introduced as perturbations. As a consequence,
oscillator analysis and design cannot be as advanced as that for linear circuits.
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By and large, typical oscillator analysis involves reasonably simple approxi-
mate analyses of linearized or piece-wise-linear-circuit models of the oscillator
together with perturbation and power-series techniques. However, there are a
few oscillator circuits for which the nonlinear equations can be solved, at least
approximately. These are the emphasis of the next two chapters. The results
from these special cases provide guides, checks, and insight into the operation
and design of all oscillators.

The introduction above implies that the feedback approach is the key issue
in oscillators. Feedback, however, is not the entire story. Devices such as
the tunnel diode exist which produce a negative-conductance characteris-
tic. These devices, associated with resonant circuits or even RC circuits, can
produce oscillations and oscillators. In addition, circuits such as potentially
unstable feedback amplifiers can be viewed on the basis of the negative conduc-
tance that appears at a port. The situation is, in some respects, like the famil-
iar ‘chicken-and-egg’ controversy. We have two points of view, both of which
can be used to achieve and to study oscillators. By suitable manipulation, one
can always move from one basis to the other for a given circuit. Nonetheless,
each approach has its advantages, and it is helpful to have an appreciation for
both. To this end, we consider, in the next section, the negative-conductance
(negative-resistance) approach to oscillators. The feedback approach is used
with other examples later in the chapter.

For the active devices in this chapter, the bipolar junction transistor
(BJT) and the MOS field effect transistor (MOSFET) are used, as well as
one negative-conductance device, the tunnel diode. The analysis techniques
in this chapter include linear, piece-wise linear and nonlinear analyses. In this
chapter, two basic oscillators are considered that, in a sense, operate in an
almost Class-A manner. The excursion into the ‘off’ regions of the device be-
havior is not great. In the last example in this chapter and in the next chapter,
operation corresponding to Class-C behavior is introduced. Deep penetration
into the off region of the devices usually is present. From the study of both
classes of oscillator, a general oscillator situation usually can be explored lead-
ing to adequate design and operational information.

10.2 The Ideal Electronic Oscillator

An electrical model of an ideal, harmonic oscillator is shown in Figure 10.1a
and is a lossless LC circuit. Since the circuit is lossless, energy is conserved
once the circuit is excited and alternates between electrical and magnetic
forms. The voltage and current are pure sinusoids.

The electrical-circuit equations for this circuit lead to the differential equa-
tion

d2v

dt2
+ ω2

ov = 0 (10.1)
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Fig. 10.1. (a) An electronic model of an ideal harmonic oscillator. (b) Natural
frequencies of the ideal oscillator. (c) Natural frequencies of an oscillator with losses.

where
ω2

o =
1

LC
(10.2)

The solutions of this equation have the form

v = V1 exp (jωot) + V2 exp (−jωot) (10.3)
= V sin ωot

where for the latter expression, the time origin is chosen to produce a zero
phase angle.

In the frequency domain, the characteristic equation of the circuit is

s2 + ω2
o = 0 (10.4)

The natural frequencies of this linear situation are the roots of this equation

s1, s2 = ±jωo (10.5)

These lie on the imaginary axis of the complex frequency plane as shown in
Figure 10.1b.

An actual resonator includes losses, and ideal behavior cannot be achieved.
After an initial excitation a damped sinusoid is the time-domain response of
the circuit. In the frequency domain, the characteristic equation includes a
linear term, for the simplest case,

s2 + 2αs + ω2
o = 0 (10.6)

The natural frequencies lie in the left-half plane as shown in Figure 10.1c. For
ωo > α,
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s1, s2 = −α ± j
√

ω2
o − α2 ≈ −α ± jωo (10.7)

If oscillations are to be maintained, energy must continuously be supplied
to the circuit on a time average, i.e., average real power must flow into the
circuit to compensate for the circuit losses. This power usually is supplied
by dc bias sources to the electronic devices that convert the bias power into
signal power in the form of either a negative, nonlinear conductance presented
to the lossy resonator or as regenerative feedback. As mentioned above, both
a negative conductance approach or a feedback approach may be used in
analyzing, evaluating, and designing electronic oscillators.

10.3 A Tunnel-Diode Oscillator

For a first example of the analysis of a simple, nonlinear oscillator, the tunnel-
diode oscillator of Figure 10.2a is used. The I-V characteristic of a tunnel diode
is typically that of Figure 10.2b. If the diode is biased at VDD as shown, the
incremental input conductance presented to the passive resonant circuit is
negative and can compensate for the positive losses of the inductance, ca-
pacitance, leads, etc. Such losses are modeled for this example with a single
conductance, G = 1/R.

It is convenient for the analysis to introduce a new variable which shifts
the origin of the diode I-V characteristic to the quiescent operating point, Io,
VDD. The shift in the characteristic is shown in Figures 10.2c and 10.2d. The
new voltage variable is

v′ = V − VDD (10.8)

The original diode I-V characteristic is described functionally as

I = f1(V ) (10.9)

and is illustrated in Figure 10.2b. The translated diode-current variable is

i′ = I − Io = I − f1(VDD) (10.10)

The functional description of the shifted diode I-V characteristic is

i′ = f2(v′) = f1(V ) − f1(VDD) (10.11)

The circuit equation in the original variables is

1
L

∫
(VDD − V ) dt = GV + C

dV

dt
+ f1(V ) (10.12)

In terms of the new variables,

1
L

∫
v′dt + Gv′ + C

dv′

dt
+ f2(v′) + GVDD + Io = 0 (10.13)
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I - I0

slope = -a
(p)

(q)

(c) (d)

Fig. 10.2. (a) A tunnel diode oscillator. (b) I-V characteristics of the tunnel diode.
(c) (d) I-V characteristics with a shifted origin.

where the following are used:

dv′

dt
=

dV

dt
(10.14)

Io = f1(VDD)

Both sides of Equation (10.13) are next differentiated and multiplied by L to
obtain

LC
d2v′

dt2
+ L

d

dt
[Gv′ + f2(v′)] + v′ = 0 (10.15)

Equation (10.15) is the present, desired form of the differential characteris-
tic equation of this oscillator. Note in particular the combined first-order term
of the equation. It is shown below that this combined entity can be viewed as
the net nonlinearity of the oscillator. This form of the characteristic equation
appears in many of the oscillators to be studied in this and the next chapter.
(It is to be noted that VDD and Io = f1(VDD) are assumed in (10.13) to be
constant. As brought out in Chapter 11, if v′(t) in the steady-state has a dc
harmonic component, a shift in the effective bias point must occur, i.e., Io

must change since VDD is fixed.)
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We now investigate the starting conditions for the oscillator. That is, we
conduct an analysis of the quiescent state of the circuit and determine whether
oscillations can build up for an initial excitation.

From another point of view, we need to determine whether the equilibrium
point of the circuit is unstable. At the quiescent bias point, which is the
equilibrium point, an incremental analysis is made. For the diode, the slope
of the translated I-V characteristic at v′ = 0, as illustrated in Figure 10.2d, is
designated −a

df2

dv′ |v′=0= −a (10.16)

The characteristic equation at the bias point and in the frequency domain is

LCs2 + L(G − a)s + 1 = 0 (10.17)

The natural frequencies of the linearized circuit about the bias point are

s1, s2 = −G − a

2C
± j

√
1

LC
−

(
G − a

2C

)2

(10.18)

= −α ± jβ

where it is assumed that s1, s2 are complex.
If the magnitude of the slope of the diode characteristic at the bias point,

a, is greater than G, the loss conductance of the oscillator, the natural frequen-
cies lie in the right-half plane. Therefore, given an excitation, the oscillatory
response grows exponentially. If one assumes that the natural frequencies are
complex, as expressed in Equation (10.18), the response is an exponentially
growing sinusoid. The voltage variable has the form:

v′(t) ≈ Ae+|α|t cos βt

This growth cannot continue indefinitely. As the diode voltage excursion gets
large, the end points, p and q, of the negative slope region of the diode I-V
characteristic, as illustrated in Figure 10.2d, are encountered, and the diode
introduces more loss into the system. The voltage response can be illustrated
as in Figure 10.3. For very small excursions of the bias point, an exponential
growth is produced. As the oscillatory response becomes larger, the total losses
introduce a limiting condition, and a steady-state oscillation is produced. The
output cannot be a pure sinusoid. The tips of the voltage output must be
compressed, and the output waveform must contain harmonics. For the tunnel-
diode oscillator, the output voltage will be quite nonsinusoidal in the best of
cases, since the nonlinear I-V characteristic is not antisymmetrical about the
bias point in the negative-conductance region. This aspect is brought out in
greater detail later in this chapter.
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Time

v'

Fig. 10.3. Voltage response of the oscillator.

One might ask: why not adjust the value of G to just equal a, the magni-
tude of the negative slope of the diode? From Equations (10.4) and (10.17), it
is seen that this circumstance produces an ideal resonator. The answer is that
the I-V characteristic is not linear at the bias point, or anywhere. Thus, for
any excitation, the equality condition is not satisfied over an excursion of the
variable. However, even if the characteristic is linear at the bias point, exact
cancellation of the losses is not possible, since the characteristic is undoubtedly
temperature and age sensitive, and the cancellation is only temporary.

The question now is: oscillations may build up, but what is the frequency
and the magnitude of the steady-state behavior? Three different approxima-
tion techniques to answer this question are introduced in this chapter. Another
estimation procedure is developed in the next chapter for a different class of
electronic oscillators. A numerical example of the approximate analysis of a
tunnel-diode oscillator is given in Section 10.5.

10.4 The van der Pol Approximation

B. van der Pol, in the late 1920s, evaluated electronic oscillators using vac-
uum tubes that provided a negative conductance characteristic [25] [26]. He
proposed to model the essential features of the I-V characteristic in the sim-
plest possible manner. About the bias point of the total I-V characteristic, he
proposed a cubic polynomial approximation as illustrated in Figure 10.4. The
slope at the bias point is equal in magnitude to the total conductance. The
cubic term of the approximation produces the essential limiting action.

For the tunnel-diode oscillator of the last section, the nonlinear differential
equation is repeated for easy reference.

LC
d2v

dt2
+ L

d

dt
[Gv + f(v)] + v = 0 (10.19)

where for convenience the voltage variable is labeled v, not v′, and the trans-
lated I-V characteristic is labeled simply f(v). Again notice that the first-order
term combines the effects of the passive conductance and of the diode’s I-V
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Fv(v)

Fv(v) = - a1v + b1v3

slope = - a1

- Vx Vx

v3

v

Fig. 10.4. I-V characteristics represented by a cubic polynomial.

characteristic. It is convenient next to introduce a time scaling (normaliza-
tion). The dimensionless independent variable is

T =
t√
LC

(10.20)

With this variable, the differential equation becomes

d2v

dT 2
+

√
L

C

d

dT
[F (v)] + v = 0 (10.21)

where the total device and conductance function is defined

F (v) = Gv + f(v) (10.22)

A plot of the total function is the addition of f(v), as shown in Figure
10.2d, and a linear curve, Gv, drawn through the bias point of the I-V plane.
Examples of this composite curve are given shortly. (Remember that in setting
up the analysis, a change to incremental voltage and current variables has been
made with respect to the bias point.) The slope of this total function at the
origin (the bias point of the oscillator) is −(a−G) where −a is the slope of the
diode characteristic alone at the bias point. The van der Pol approximation
for F (v) is labeled Fv(v).

Fv(v) = −a1v + b1v
3 (10.23)

For v = 0, the slope of the approximation is set equal to the slope of the
actual total characteristic.

−a1 = −(a − G) (10.24)

To determine an appropriate value for b1, note that the crossover points on
the voltage axis, ±Vx, for the van der Pol approximation are
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Vx = ±
√

a1

b1
(10.25)

This leads to

b1 =
a1

V 2
x

(10.26)

Van der Pol continued his oscillator analysis by transforming the oscillator
equation containing the cubic approximation into a standard form and then
showed that an approximate closed-form solution for this equation is possible
for the situation where the output is nearly sinusoidal, e.g., has low harmonic
content. To obtain the van der Pol Equation, introduce first the parameter ε,
which is called the van der Pol parameter. This is the negative of the slope

of the normalized total nonlinear function at the origin, multiplied by
√

L
C .

ε =

√
L

C
a1 =

√
L

C
(a − G) (10.27)

Next, a scaling of the voltage variable is introduced.

v = hu (10.28)

where
h2 =

ε

3b1

√
L
C

(10.29)

Using these parameters, we obtain the standard form of the van der Pol Equa-
tion [25].

d2u

dT 2
− ε

(
1 − u2

) du

dT
+ u = 0 (10.30)

Notice that about the equilibrium (bias) point, u = 0, the differential equation
of the system becomes the following characteristic equation

p2 − εp + 1 = 0 (10.31)

where p is the normalized complex frequency variable, p =
√

LCs. The natural
frequencies of the linearized, normalized system are

p1, p2 =
ε

2
± j

√
1 −

( ε

2

)2

(10.32)

For positive ε, the natural frequencies are in the right-half plane (RHP) and
are complex if ε < 2. For the case ε > 0 but very small, the buildup of
oscillation has the form

u(T ) = A exp
(

εT

2

)
cos T (10.33)
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We expect that after a steady state has been reached, the form of the response
should be

u(T ) = const × cos T (10.34)

Van der Pol used this type of reasoning to propose a form of the solution
that is then substituted back into the nonlinear differential equation. After
making several reasonable assumptions and simplifications, which are valid
for near-sinusoidal oscillations, the solution in terms of the original variables
becomes

v(t) =
√

4
3

a1

b1

1√
1 + exp

{
−(t−to)ε√

LC

} cos
[

1√
LC

t + φo

]
(10.35)

In this equation, a phase angle φo is introduced to provide the proper
phase for the cosine term in relation to the choice of the constant to. For
small values of time, the envelope of the oscillation grows exponentially, as
expected from (10.33). After a long period of time, the zero-to-peak amplitude
reaches a maximum value.

Vmax =
√

4
3

a1

b1
(10.36)

From (10.26), the maximum amplitude is related simply to the value of the
nearest crossover voltage.

Vx =
√

a1

b1
=

√
a − G

b1
(10.37)

Vmax =

√
4
3
Vx = 1.15Vx (10.38)

Since the value of the voltage at the negative peak of the total characteristic
is

V =
√

a1

3b1
(10.39)

Vmax = 2V (10.40)

The maximum amplitude is twice the value of the voltage at which the nega-
tive maximum occurs. These relations are illustrated in Figure 10.5.
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V- Vx Vmax

I

v

Fig. 10.5. Definitions of V , Vx, and Vmax.

10.5 Tunnel-Diode Oscillator Example

For a numerical example of a tunnel-diode oscillator and the use of the van der
Pol analysis, consider the diode I-V characteristic sketched in Figure 10.6a.
The quiescent bias point is chosen to be VDD = 0.45 V. At this bias point, the
slope of the characteristic is estimated from the curve to be approximately

−a = −2.8 × 10−3 (10.41)

The tuned circuit is chosen to have an inductor of L = 1 µH and a capacitor
of C = 30 pF. The loss in the tank circuit is assumed to be modeled with a
shunt resistor, R = 1 kΩ. For this circuit the van der Pol parameter ε is

ε =

√
L

C

(
a − 1

R

)
= 183(2.8 − 1) × 10−3 = 0.33 (10.42)

The value of ε is small and positive. Therefore, we can expect that os-
cillations will build up and be sinusoidal in nature, with a frequency fo =
1/(2π

√
LC) = 29 MHz.

To estimate the steady-state oscillation voltage magnitude, we construct
the ‘total’ I-V characteristic, i.e., we plot F (v) from Equation (10.15) or
(10.22) in Figure 10.6a by first plotting the 1

Rv′ = Gv′ line through the bias
point and then adding the two characteristics. The average crossover voltage
of the total characteristic, with the origin translated to the bias point, is Vx.
Therefore, the estimated voltage amplitude of the steady-state oscillation is
1.15 Vx. Since the Spice programs do not contain a device model for the tunnel-
diode, we cannot verify an estimate with circuit simulation. We can, however,
use the polynomial characteristics available for controlled sources in the Spice
programs to produce a ‘van der Pol’ negative-conductance characteristic and a
negative-conductance oscillator. The schematic diagram of such an oscillator
is the same as that of Figure 10.2a, where the tunnel diode is replaced with a
dependent current source. The controlling node pair of this current source is
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V

I

v' 0.3 V

0.45 V

slope = -2.8×10-3
Gv' = 10-3v'

1.0 mA

F(v')
f2(v')

(a)

FIG 10.6
* DEVICE CHARACTERISTICS
V1 1 0 0 PULSE 0.3 0 0 0 0 1
*.TRAN 2N 900N 800N
*.PLOT TRAN V(2)
*.FOUR 29.4MEG V(2)
L1 1 2 1U
R1 2 0 1K
C1 2 0 30P
VD 2 3 0
G11 3 0 POLY(1) 2 0 0 -2.8M 0 20M
*G12 3 0 POLY(1) 2 0 0 -2.8M 2M 20M
*THE FOLLOWING ELEMENT IS NEEDED FOR SPICE3
*IN PLACE OF G11 IN SPICE2
*B12 3 0 I = -2.8E-3*(V(3)-V(0)) + 20E-3*((V(3)-V(0))^3)
.DC V1 -.4 .4 .02
.PLOT DC I(VD) I(VD1)
*TOTAL CHARACTERISTIC
L11 1 21 1U
R21 31 0 1K
C11 21 0 30P
VD1 21 31 0
G11T 31 0 POLY(1) 2 0 0 -2.8M 0 20M
G12T 31 0 POLY(1) 2 0 0 -2.8M 2M 20M
.WIDTH OUT=80
.OPTIONS ITL5=0 LIMPTS=2001
.OPTIONS RELTOL=1E-5
.END

(b)

Fig. 10.6. (a) Diode I-V and total characteristics. (b) Spice input file for the oscil-
lator.
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made the node pair of the element; therefore, a nonlinear conductance char-
acteristic can be produced. The Spice input file for the oscillator is given in
Figure 10.6b. Note that the new element has the description:

G11 3 0 poly(1) 3 0 0 −a 0 b1 (10.43)

The current through this element flows from node 3 to node 0 and is
described by a polynomial of one dimension. The polynomial is chosen to
have the form of the van der Pol approximation.

I(G11) = 0 −a v(3) + 0 + b1(v(3))3 (10.44)

The coefficients a and b1 are found from a cubic approximation of one
of the given nonlinear characteristics in Figure 10.6a. The van der Pol cu-
bic approximations for both the device characteristic, f2(v′), and the total
characteristic, F (v′), are

f2v(v′) = −av′ + b1(v′)3 (10.45)
Fv(v′) = −a1v

′ + b1(v′)3

where a1 = (a−G). Note that the b1 coefficient is the same for both approx-
imations. From the slope at the bias point of Figure 10.6a, a = 2.8 × 10−3.
From the voltage crossover of the total characteristic of 0.3V, we obtain
b1 = 1.8 × 10−3/(0.3)2 = 20 × 10−3. The corresponding voltage crossover
of the device characteristic alone should be Vx =

√
a/b1 = 0.37V.

A plot of the approximation can be obtained by monitoring the current
through the sensing voltage source VD as V1 is varied and is shown in Figure
10.6c. The slope of the approximation at the bias point is −2.8 × 10−3 and
the voltage crossovers are ±0.374V. A plot of the approximation of the total
characteristic can be obtained by moving the resistor, R, from nodes 2 and
0 to nodes 3 and zero, and again monitoring the current through VD as V1

is varied. The plot is also shown in Figure 10.6c. The slope of the curve at
V = 0 is −1.8 × 10−3 and the voltage crossovers are ±0.3V.

The other elements of the oscillator are those used in the example above,
except that VDD = 0.45V is not needed since the nonlinear characteristic has
been chosen to have a bias of V (3) = 0V. To initiate the oscillation, a step
(pulse) voltage is applied at the VDD node. The waveform of the oscillator
voltage and its Fourier components are given in Figure 10.6d. The amplitude
of the fundamental is 0.34 V, which is the estimated value = 1.15 × 0.30 V.

The results for additional Spice runs are given in Figures 10.6e through h.
In Figure 10.6e, the I-V characteristic is given when a quadratic term is added
to the polynomial. The characteristic is no longer antisymmetrical about the
origin, V (3) = 0. The oscillator output voltage waveform and its Fourier
components are given in Figure 10.6f. Notice that the amplitude of the funda-
mental is approximately unchanged. However, a dc shift of the bias point has
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(A
) Device

Total

(c)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =  -6.221D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      2.940D+07   3.437D-01     1.000000    62.371       0.000
     2      5.880D+07   5.242D-03     0.015254    37.011     -25.360
     3      8.820D+07   1.511D-02     0.043964    94.637      32.266
     4      1.176D+08   2.255D-03     0.006561    48.773     -13.598

     TOTAL HARMONIC DISTORTION =      4.757739  PERCENT

0.900.880.860.840.820.80
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Time (µs)

(d)

Fig. 10.6. (c) Dc transfer characteristics. (b) Oscillator voltage waveform and its
Fourier components.

occurred and that the harmonic content of the output voltage has increased
significantly. In Figures 10.6g and h, the corresponding plots are given when
an input offset voltage is applied at VDD, with the initial nonlinearity (with-
out the quadratic term). For this case the amplitude of the fundamental has
decreased considerably, the dc shift of the bias point is large and the total
harmonic content of the output voltage is much larger. The results from these
last two examples can be used to illustrate the nature and effects of bias-point
shift in the next chapter.
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FIG 10.6E
* DEVICE CHARACTERISTICS WITH QUADRATIC
V1 1 0 0 PULSE 0.3 0 0 0 0 1
*.TRAN 2N 900N 800N
*.PLOT TRAN V(2)
*.FOUR 29.4MEG V(2)
L1 1 2 1U
R1 2 0 1K
C1 2 0 30P
VD 2 3 0
*G11 3 0 POLY(1) 2 0 0 -2.8M 0 20M
G12 3 0 POLY(1) 2 0 0 -2.8M 2M 20M
*THE FOLLOWING ELEMENT IS NEEDED FOR SPICE3
*IN PLACE OF G11 IN SPICE2
*B12 3 0 I = -2.8E-3*(V(3)-V(0)) + 20E-3*((V(3)-V(0))^3)
.DC V1 -.4 .4 .02
.PLOT DC I(VD)
.OPTIONS ITL5=0 LIMPTS=2001
.OPTIONS RELTOL=1E-5
.END

Fig. 10.6. (e) Spice input file and dc characteristics for device with quadratic term.

10.6 Wien-Type Oscillators

A classic oscillator is the Wien-bridge configuration shown in Figure 10.7a. In
this oscillator, a positive-gain, differential input, differential output amplifier
is used to provide positive feedback of the proper magnitude for regeneration
at a single frequency. The frequency selectivity is produced by a RC bridge
circuit in the feedback path. From an impedance-bridge viewpoint, the bridge
is in balance at a single frequency. For the case where R1 = R2, C1 = C2, and
Ra = 2Rb the balance occurs at ωo = 1

RC . The voltage, Vin is then in phase
with Vout, i.e., the feedback to the amplifier input is positive. If the resistive
arms of the bridge satisfy the condition Ra ≥ 2Rb, the voltage gain around
the loop at ωo is equal to or greater than one, and instability results.

To evaluate the performance of the oscillator, it is convenient to redraw
the bridge configuration to that shown in Figure 10.7b. In the new circuit, the
high-gain differential amplifier can be identified as an operational amplifier.
The resistors Ra and Rb provide negative feedback. The subcircuit shown
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0.900.880.860.840.820.80
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Time (µs)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =  -4.726D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      2.940D+07   3.467D-01     1.000000    36.194       0.000
     2      5.880D+07   1.842D-02     0.053118    67.262      31.067
     3      8.820D+07   1.843D-02     0.053144    27.969      -8.226
     4      1.176D+08   5.418D-03     0.015627    40.836       4.641

     TOTAL HARMONIC DISTORTION =      7.878759  PERCENT

Fig. 10.6. (f) Voltage waveform and its Fourier components.

in dashed lines in Figure 10.7b, can be identified as a precise, positive gain,
voltage amplifier. For Ra ≈ 2Rb and with a high differential amplifier gain,
the negative feedback (the loop gain) is very large. The closed-loop amplifier
therefore has a very precisely set positive voltage gain in the active region of
the amplifier, a = 1 + Ra

Rb
. This is the slope of the v2 - v1 characteristic of

Figure 10.7c at the origin. The slope of the characteristic is approximately
zero outside of the active region of the differential amplifier. The negative
feedback amplifier in the active region also has a high input impedance and
a very low output resistance. The amplifier can then be modeled as an ideal
voltage-controlled piece-wise-linear voltage source as shown in Figure 10.7d,
where the controlled voltage-source parameter, av(v1) = f(v1), is described
by the characteristic shown in Figure 10.7c.

The configuration of Figure 10.7d is referred to as a Wien-type oscillator.
The circuit equations which describe the Wien-type configuration are

v1

R2
+ C2

dv1

dt
= i1 (10.46)

i1R1 +
1
C1

∫
i1dt = v2 − v1 = f(v1) − v1

where the output voltage of the gain block, v2, can also be designated as the
function f(v1), a plot of which has the shape of Figure 10.7c. It is assumed
that v1 and v2 are incremental variables about the quiescent bias state. For
a good op amp with little or no offset, the incremental and total input or
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FIG 10.6G
* DEVICE CHARACTERISTICS WITH 0.1V OFFSET
V1 1 0 0 PULSE 0.3 0 0 0 0 1
*.TRAN 2N 900N 800N
*.PLOT TRAN V(2)
*.FOUR 29.4MEG V(2)
L1 1 2 1U
R1 2 0 1K
C1 2 0 30P
VD 2 3 0
G11 3 4 POLY(1) 2 0 0 -2.8M 0 20M
VDD 4 0 -0.1
*G12 3 0 POLY(1) 2 0 0 -2.8M 2M 20M
*THE FOLLOWING ELEMENT IS NEEDED FOR SPICE3
*IN PLACE OF G11 IN SPICE2
*B12 3 0 I = -2.8E-3*(V(3)-V(0)) + 20E-3*((V(3)-V(0))^3)
.DC V1 -.4 .4 .02
.PLOT DC I(VD)
.WIDTH OUT=80
.OPTIONS ITL5=0 LIMPTS=2001
.OPTIONS RELTOL=1E-5
.END
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Fig. 10.6. (g) Spice input file and dc transfer characteristics.

output variables are the same. The equations of (10.46) can be manipulated
to obtain the nonlinear differential equation of the oscillator.

d2v1

dt2
+

d

dt

[(
1

R1C1
+

1
R2C2

+
1

R1C2

)
v1 −

1
R1C2

f(v1)
]

+
v1

R1R2C1C2
= 0

(10.47)
For convenience, we let

R1 = R2 = R (10.48)
C1 = C2 = C

T =
t

RC
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =   1.078D-01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      2.940D+07   2.817D-01     1.000000   -46.247       0.000
     2      5.880D+07   3.427D-02     0.121657   -70.229     -23.982
     3      8.820D+07   2.092D-03     0.007426   171.483     217.730
     4      1.176D+08   2.417D-03     0.008582    37.960      84.207

     TOTAL HARMONIC DISTORTION =     12.294816  PERCENT

0.900.880.860.840.820.80
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
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) 
 (

V
)

Time (µs)

Fig. 10.6. (h) Output voltage waveform and its Fourier components.

In the last expression, a time normalization is introduced, similar to what is
done in the van der Pol oscillator analysis. The oscillator differential equation
becomes

d2v1

dT 2
+

d

dT
[3v1 − f(v1)] + v1 = 0 (10.49)

Notice the nonlinearity of the gain block’s transfer characteristic appears
only in the first-order term. A total, composite, nonlinear characteristic is
defined as

F (v1) = 3v1 − f(v1) (10.50)

and can be developed and drawn as shown in Figures 10.8a and 10.8b. The
voltage gain of the gain block at the bias point of the amplifier is the slope of
the gain characteristic at v1 = 0 and is labeled a.

df(v1)
dv1

∣∣∣∣
v1=0

= +a (10.51)

The slope of the total characteristic at v1 = 0 is, for the choices of R1, R2, C1

and C2 in Equation (10.48),

dF (v1)
dv1

∣∣∣∣
v1=0

= −(a − 3) (10.52)
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Fig. 10.7. (a) Wien-bridge configuration. (b) A convenient representation of the
Wien-bridge oscillator. (c) Dc voltage transfer characteristics of the amplifier. (d)
Amplifier modeled by an ideal voltage-controlled piece-wise-linear voltage source.

From an inspection of the final differential equation, (10.49), it is clear that
it has exactly the same form as that obtained for the tunnel-diode oscillator
of Section 10.3. We have a mathematically dual situation. Of course, the
total nonlinearities are not identical. However, by proper design of the circuit
elements and device operation and biasing, both oscillators can provide a total
characteristic which has a shallow ‘n-type’ shape with a negative slope at the
origin and positive-slope regions at large positive and negative excursions.
Given an excitation, we can expect that oscillations will build up, and that a
steady-state oscillation will be obtained, provided that the equilibrium point
of the oscillators is properly unstable.

Following the notation of the van der Pol analysis, we correlate the mag-
nitude of the slope of the total characteristic F (v1) at the equilibrium point
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v1

v2

v1

v2

3v1

F(v1)

slope = - (a - 3)

(a) (b)

f(v1)-

slope = 3 slope = 3

Fig. 10.8. (a) Dc characteristics of the amplifier and resistors. (b) Total composite
nonlinear characteristics.

to the parameter ε. Since for the present case, F (v1) in (10.46) has a unit
multiplier, the slope at v1 = 0 is ε.

ε = a − 3 (10.53)

The normalized characteristic equation at the equilibrium is then

p2 − εp + 1 = 0 (10.54)

The normalized natural frequencies at this point are

p1, p2 =
ε

2
± j

√
1 −

( ε

2

)2

(10.55)

For ε positive and less than 2, the natural frequencies are complex and lie
in the RHP. For ε small, they lie close to the jω axis. If the oscillator at the
equilibrium point receives a small excitation, we expect an oscillatory buildup
of circuit variables.

The van der Pol approximation of the total characteristic is not an ap-
propriate approximation of the virtual piece-wise-linear characteristic of the
Wien-type oscillator as shown in Figure 10.8b. Studies of the oscillator per-
formance, such as those described below using circuit simulation, show that
severe top and bottom flattening or ‘squashing’ of the voltage waveforms is
obtained if ε is greater than approximately 0.1. As brought out in the next
chapter, the frequency selectivity of the RC feedback circuit is not sufficient
to damp out the harmonics which are introduced by the flattening due to
the piece-wise-linear amplifier characteristic. Therefore, the design procedure
must be to achieve a small ε. The steady-state amplitude of the amplifier in-
put voltage is then approximately equal to the ‘peak’-point values of F (v1),
the total nonlinear characteristic.
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For a numerical example, the block diagram of a Wien-type oscillator using
a 741 opamp is the same as that shown in Figure 10.7b. The Spice input circuit
file is given in Figure 10.9a where the Wien-type oscillator circuit elements
are identified. For the values R1 = R2 = 1 kΩ and C1 = C2 = 0.159 µF, the

R1 C1

R2 C2

Rb

Ra

UA741 CKT - WIEN OSCILLATOR
CO2 1 0 .0159U
RO1 1 31 1K
CO1 31 24 0.0159U
.WIDTH OUT=80
.OPT NOPAGE NOMOD 
.OPTIONS RELTOL=1E-4
.DC VIN -5 5 .5
.PRINT DC V(24)
*.TRAN 50U 8000U 6000U 20U
.PRINT TRAN V(24) 
*.FOUR 993 V(24)
VCC 27 0 15 
VEE 26 0 -15
VIN 30 0 0 PULSE 3 0 0 0 1
RB 2 0 1K 
RO2 1 30 1K
RA 24 2 2.05K
R1 10 26 1K 
R2 9 26 50K 
R3 11 26 1K 
R4 12 26 3K 
R5 15 17 39K
R6 21 20 40K
R7 14 26 50K
R8 18 26 50 
R9 24 25 25 
R10 23 24 50
R11 13 26 50K 
COMP 22 8 30PF
Q1 3 1 4 QNL
Q2 3 2 5 QNL
Q3 7 6 4 QPL
Q4 8 6 5 QPL
Q5 7 9 10 QNL 
Q6 8 9 11 QNL 
Q7 27 7 9 QNL 
Q8 6 15 12 QNL
Q9 15 15 26 QNL 
Q10 3 3 27 QPL
Q11 6 3 27 QPL
Q12 17 17 27 QPL
Q14 22 17 27 QPL
Q15 22 22 21 QNL
Q16 22 21 20 QNL
Q17 13 13 26 QNL
Q18 27 8 14 QNL 
Q19 20 14 18 QNL
Q20 22 23 24 QNL
Q21 13 25 24 QPL
Q22 27 22 23 QNL
Q23 26 20 25 QPL
.MODEL QNL NPN(BF=80 RB=100 VA=50 RC=10
*+CCS=2P TF=0.3N TR=6N CJE=3P CJC=2P
.MODEL QPL PNP(BF=10 RB=20 VA=50 RC=10)
*+TF=1N CJE=6P CJC=6P 
.END

R1

R2

C2

C1

Rb

Ra

v2 = V(24)

f0 = 993 Hz

Fig. 10.9. (a) Circuit and Spice input file for Wien-bridge oscillator.

frequency of oscillation should be 1 kHz. The negative feedback resistors are
chosen to be Rb = 1 kΩ and Ra = 2.05 kΩ and should provide ε = 0.05. The



302 10 Basic Electronic Oscillators

closed-loop voltage-transfer characteristic of the 741 with negative feedback is
obtained from a Spice simulation and is plotted in Figure 10.9b. As expected,

5.02.50.0-2.5-5.0
-15

-10

-5

0

5

10

15

VIN  (V)

V
(2

4)
  
(V

)

quiescent operating
point

v2 = av(v1) = f(v1)

VIN = v1

V(24) = v2

Fig. 10.9. (b) Closed-loop voltage transfer characteristics.

the slope at the bias point is + 3.05, since the ratio of the negative feedback
resistors is 2.05. The value of ε is therefore 0.05. The expected period of the
oscillation is

1
fo

= 2πRC = 1 ms (10.56)

and the frequency of oscillation is 1 kHz. The amplitude of the steady-state
output voltage should be approximately equal to the break points of the trans-
fer characteristic which in turn should be the magnitude of the voltage sup-
plies for a nominal opamp. From the plot of Figure 10.9b, the extremes of the
dc output voltage obtained from the Spice simulation of the voltage transfer
characteristic of the closed-loop amplifier are -13.4 and +11.7. The amplitude
of the output oscillation voltage should be approximately the average of these
magnitudes, 12.5 V.

In the input file for a transient Spice simulation of the oscillator, note that
a voltage input pulse is used to set up an initial excitation of the oscillator;
otherwise, the slow buildup of oscillations leads to excessive simulation time
and cost. The steady-state output voltage waveform is shown in Figure 10.10a.
It is seen that the peak-to-peak magnitude is 27.44 V, or a zero-to-peak value
of 13.72 V. From the output voltage waveform, the period of oscillation is 1.007
ms, which is very close to the predicted value of 1 ms. It is essential to use
a close estimate of the oscillation frequency for the Fourier series analysis in
Spice. A ±0.1% difference produces a noticeable change in harmonic content.
For a frequency of 993 Hz, the Fourier components of the output voltage, are
given in Figure 10.10b. The fundamental has a magnitude of 14.34V, and the
output waveform has a total harmonic distortion of 2.88% with HD2 = 0.03%
and HD3 = 2.2%.

If C is decreased by a factor of 10 to produce a design frequency of 10
kHz, the value of the simulated period is 108 µs, not 100 µs, for an oscillation
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(24)   
 DC COMPONENT =   5.581D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      9.930D+02   1.435D+01     1.000000   108.085        .000
     2      1.986D+03   5.007D-03      .000349  -132.161    -240.246
     3      2.979D+03   3.202D-01      .022319   -66.199    -174.284
     4      3.972D+03   6.258D-03      .000436   -53.848    -161.933

     TOTAL HARMONIC DISTORTION =      2.893581  PERCENT

8.07.57.06.56.0
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Fig. 10.10. (a) Steady-state output voltage waveform. (b) Fourier components of
the output voltage.

frequency of 925.9 Hz. The drop in frequency is due to the small lagging phase
shift of the opamp, even with its large negative feedback. The negative phase
shift must be compensated by a leading phase shift from the RC feedback
circuit. Because of the low Q of this RC circuit, an appreciable shift in fre-
quency is necessary to obtain the needed leading phase shift. The impact of
the broad resonance of the RC feedback circuit is commented upon further in
Section 11.2.

To study the effects of the choice of ε, it is convenient to use a macromodel
for the 741 opamp [27]. A series of simulations of the complete 741-oscillator
circuit can be quite costly. The gain block of the 741 with negative feedback
can be modeled with a simple voltage-controlled, voltage source as shown in
Figure 10.11a which includes the Spice input file. At the output of the model
are clamping diodes and voltage sources to provide the desired piece-wise-
linear, voltage-transfer characteristic of Figure 10.7c. These clamp diodes are
driven very hard into the forward region since no diode resistance is used, but
this is not a problem for the simulator. We can expect that the extremes of
the output voltage are approximately equal to the values of the clamp voltage
sources, ±14V, plus or minus the forward diode drop. In Figure 10.11b, the
voltage transfer characteristic of the gain block is given. The slope at the bias
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point is equal to 3.05, as expected, and the extremes have values slightly larger
than ±15V.

MACROMODEL OF WIEN-TYPE OSC
V1 1 0 0 PULSE 4 0 0 0 0 1000U
*.DC V1 -10 10 1
*.PRINT DC V(7)
.TRAN 5U 800U 600U 2U
.PLOT TRAN V(7)
.FOUR 10K V(7)
R1 1 2 1K
C1 2 0 0.0159U
R2 2 6 1K
C2 6 7 0.0159U
EO 5 0 2 0 3.2
RO 5 7 1
DCL1 7 8 MOD1
VBCL1 8 0 14
DCL2 0 9 MOD1
VCL2 9 7 14
.MODEL MOD1 D IS=1E-16 
.OPTIONS RELTOL=1E-4
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.END

1050-5-10
-20

-10
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20

V1  (V)

V
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 (
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)

(a)

(b)

R2

C2

R1 C1

Eo

V(2)
Ro

Fig. 10.11. (a) Circuit and Spice input file for a simple gain block model. (b) Dc
voltage transfer characteristics of the gain block.

The Spice input file in Figure 10.11a includes the oscillator feedback ele-
ments and the oscillator excitation voltage source. The output voltage wave-
form and the harmonic components for ε = 0.05 are shown in Figure 10.11c.
The oscillation period for the macromodel is approximately 100 µs and the
amplitude of the fundamental is 15.6 V. The harmonic output components
for ε = 0.1 and 0.2 are given in Figures 10.11d and e. As ε is increased, the
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clipping of the output waveform increases, and the harmonic distortion in-
creases. It is clear that ε must be small to obtain a nearly sinusoidal output.
Note in Figure 10.11d that for ε = 0.1, a smaller THD is obtained for a Fourier
frequency of 10.1 kHz. A similar situation occurs for ε = 0.2.

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(7)    
 DC COMPONENT =  -4.623D-02
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+04   1.560D+01     1.000000   118.047       0.000
     2      2.000D+04   3.854D-02     0.002470   140.119      22.072
     3      3.000D+04   3.262D-01     0.020906   -39.821    -157.868
     4      4.000D+04   9.419D-03     0.000604  -161.375    -279.422

     TOTAL HARMONIC DISTORTION =      2.677468  PERCENT
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ε = 0.05

Fig. 10.11. (c) Output voltage waveform and Fourier components for ε = 0.05.

An alternate form of the Wien-type configuration is that of Figure 9.2b
which is used there as the basis of a bandpass amplifier. In the latter, the
closed-loop gain at the equilibrium point is restricted to be less than 3. If
A > 3, (a = A in the analysis of Section 9.1), a simple effective oscillator is
achieved.

10.7 Transformer-Coupled ECP Oscillators

Another example of a simple electronic oscillator is a transformer-coupled
configuration which uses an emitter-coupled pair (ECP) as the gain stage.
The circuit is shown in Figure 10.12a. For simplicity, an emitter-bias current
source of 4 mA is used, and only a very small resistor is included with the
collector of Q1. Once more, the nonlinear differential equation which describes
this oscillator has the same form as obtained for the two previous oscillators.
Again, the van der Pol approximation cannot be used to predict the amplitude
of the steady-state output.

From our earlier developments for the ECP, the input voltage-to-output
current transfer characteristic is that shown in Figure 10.12b. The slope of this
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(7)    
 DC COMPONENT =  -1.066D-01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+04   1.598D+01     1.000000   107.857        .000
     2      2.000D+04   9.705D-02      .006075   122.596      14.739
     3      3.000D+04   6.376D-01      .039910   -65.581    -173.438
     4      4.000D+04   2.336D-02      .001462  -177.986    -285.843

     TOTAL HARMONIC DISTORTION =      4.772156  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(7)    
 DC COMPONENT =  -2.560D-01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.010D+04   1.591D+01     1.000000   109.831        .000
     2      2.020D+04   2.330D-01      .014645   126.734      16.902
     3      3.030D+04   5.921D-01      .037211   -62.608    -172.439
     4      4.040D+04   5.832D-02      .003666  -167.804    -277.635

     TOTAL HARMONIC DISTORTION =      4.693735  PERCENT

Fig. 10.11. (d) Output voltage waveform and Fourier components for ε = 0.1.

characteristic at a zero-volt bias point is −gm/2. The extremes of the current
excursion are +IEE and 0 that are attained at input voltages of approximately
±4Vt ≈ ±0.1V . In Figure 10.12c, a translation is made of Ic2 and V1 to
incremental variables, ic2 and v1, about the quiescent values, Ic2 = IEE/2
and V1 = 0. This translated characteristic is labeled as the function f(v1).

ic2 = f(v1) (10.57)

(The case where an offset, input bias is present is considered in Section 11.1.
For the present, the translated characteristic can be assumed to be anti-
symmetrical about the quiescent operating point.)

A circuit equation for the oscillator in the transform domain is obtained
from KCL applied at the collector of Q2, as illustrated in Figure 10.12d.

−ic2 = G(nv1) + Cs(nv1) +
1
sL

(nv1) +
1
n

ib1 (10.58)
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(7)    
 DC COMPONENT =  -2.762D-01
0HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+04   1.646D+01     1.000000    79.840       0.000
     2      2.000D+04   2.943D-01     0.017877    65.942     -13.899
     3      3.000D+04   1.173D+00     0.071232  -142.973    -222.813
     4      4.000D+04   6.151D-02     0.003736   105.342      25.502

     TOTAL HARMONIC DISTORTION =      8.087821  PERCENT
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Fig. 10.11. (e) Output voltage waveform and Fourier components for ε = 0.2.

where (1/n)ib1 is the input current transferred across the transformer and L
is the magnetizing inductance, l11, of the transformer. The ECP variational
input current, ib1, if transistor operation is restricted to the normal active and
off regions, and for large beta, can be easily related to ic2 (assuming β = βac).

ib1 ≈ − 1
β

ic2 (10.59)

These equations can be rearranged to obtain the usual oscillator equation,

LCs2v1 + sL

[
Gv1 +

1
n

(
1 − 1

nβ

)
f(v1)

]
+ v1 = 0 (10.60)

A time normalization is introduced with T = t/
√

LC. In the normalized time
domain the oscillator equation is

d2v1

dT 2
+

√
L

C

d

dT
[F (v1)] + v1 = 0 (10.61)

where

F (v1) = Gv1 +
1
n

(
1 − 1

nβ

)
f(v1) (10.62)

≈ Gv1 +
1
n

f(v1)

where the second version is valid for nβ 	 1. The oscillator equation in (10.61)
has the same form as that obtained for the other oscillators of this chapter.
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Fig. 10.12. (a) Transformer-coupled EC pair oscillator circuit. (b) Dc transfer
characteristics of the EC pair. (c) Dc transfer characteristics with a translation of
the origin.

Only the first-order term contains the nonlinearity. We can use the results
obtained for the earlier oscillators of this chapter to study the performance of
the present circuit.

Typical plots of the two components of F (v1) are shown in Figure 10.12e,
as well as a plot of the combined total nonlinearity. Again, a shallow N-
shaped characteristic is produced with peak points occurring at approximately
v1 = ±0.1 V.



10.7 Transformer-Coupled ECP Oscillators 309

+ VCC

C G Lnv1

+

-

iC2 = f(v1) 1
n ib1

ib1

n : 1

Gv1

F(v1)

v1

i

1
n f(v1)

-0.1V

+ 0.1 V

(d) (e)

Fig. 10.12. (d) Circuit at the collector of Q2. (e) Plots of F (v1) and its two com-
ponents.

The starting condition of the oscillator is determined by the value of the
van der Pol parameter, ε, which is based on the normalized characteristic
equation.

p2 − εp + 1 = 0 (10.63)

From (10.61) and (10.62),

ε =

√
L

C

[
1
n

(
1 − 1

nβ

)
gm

2
− G

]
(10.64)

≈
√

L

C

(gm

2n
− G

)

≈ 1
Q

(
gmR

2n
− 1

)

where −gm/2 is the slope of f(v1) at the bias point, R = 1/G and Q = R/
√

L
C .

The last two forms of (10.64) are valid for large nβ. In the last expression of
(10.64), the Q of the tuned circuit, independent of the loading of the oscillator,
is introduced. If ε is positive and small, an exponentially increasing sinusoid
results, following a small excitation. (It is to be noted that the same expression
for ε is obtained from an incremental circuit analysis about the bias point
including Gm = gm

2 , Ri = 2rπ, L, C,R and the transformer turns ratio, n.)
From the smooth shape of F (v1), it might seem reasonable to assume that

the van der Pol approximation can be applied to this ECP oscillator. On the
basis of the tunnel-diode example of Section 10.5, an estimate of the amplitude
of the steady-state oscillation for a small value of ε is somewhat larger than
the value of the input at the peaks of F (v1) or the Vx crossover voltages of
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F (v1) (≈ 0.1V for the present example).1 However, this estimate is poor. The
magnitude of the input voltage in steady-state is much larger. The problem
can be appreciated by comparing the plot of F (v1) with its normalized van
der Pol approximation, Fv(v1) = (−a1v1 +b1v

3
1), as in Figure 10.13. Although

the slopes at the equilibrium point are the same, and the crossover points
are also equal, the two curves are significantly different. For the van der Pol
approximation, the advent of limiting for large voltage excursions is gradual,
but increasingly strong as the cubic term predominates. For the actual ECP
circuit, the limiting action of the positive slope regions of the approximation,
due to the linear I-V characteristic of G, is not as severe as that of the cubic
term. We can expect, then, a larger voltage excursion for the actual circuit in
order to produce the necessary loss per cycle in the steady state.

F(v1)

v1

van der Pol

EC  pair

Fig. 10.13. Comparison of nonlinear characteristics of the EC pair and van der
Pol’s equation.

To investigate the steady-state amplitude, we first look at the transfer
characteristic of the ECP alone, Figure 10.12b. For a small input voltage
excursion, the collector current waveform is as shown in Figure 10.14a. Since
both transistors are always on, we can label this Class-A operation. For a large
input voltage amplitude, the output collector current is definitely clipped and
can approach a square wave, as shown in Figure 10.14b. Class-AB operation
is the result when one device or the other is off during a portion of the input
excursion. Because of the almost linear nature of F (v1) in the active region
of the devices, an increasingly growing response can be expected during the
excursion across the active region. (The design of the ECP must be such that
the transistors are not driven into saturation.)

As a simplification to achieve an estimate of the steady-state behavior,
the waveform of the collector current in the steady state is assumed to be a
square wave. The Fourier representation of a square wave is

1 The output voltage at the collector of Q2 is n times this value.
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(a) (b)

IC2

IEE

IEE
2

IC2

Time Time

Fig. 10.14. Collector current for (a) small input voltage, and (b) large input voltage
amplitude.

ic2(t) = IEE

[
1
2

+
2
π

(
cos ωot +

1
3

cos 3ωot + . . .

)]
(10.65)

The fundamental component has a magnitude of

ic2(t) |ωo
=

2
π

IEE = 0.64IEE (10.66)

The estimate of the steady-state amplitude of the output voltage is therefore

Vo |ωo
≈ 0.64IEER (10.67)

where it is assumed that the high-Q tuned circuit, resonant at the oscillation
frequency, rejects all upper harmonics. (This estimate of the fundamental can
be justified from results of an analysis of the ECP with a sinusoidal input. This
is brought out at the end of this section.) From the circuit values of Figure
10.12a, IEE = 4 mA, and R = 3 kΩ. The predicted amplitude of the output
voltage is then approximately 7.7 V. The frequency of oscillation should be
10 MHz.

The Spice input file for the circuit is given in Figure 10.15a. Notice that
IEE has a step, oscillator-excitation function. The waveforms of the output
voltage and the collector current of Q2 are shown in Figures 10.15b, c and d.
In the first, the buildup of oscillation is shown. In Figure 10.15c, it can be
assumed that a steady-state condition exists, and the output voltage ampli-
tude is seen to be approximately 7.5 V. The waveform of the collector current
in Figure 10.15d shows definite clipping although it is not a perfect square
wave. From the Fourier components of the collector current, given in Figure
10.15d, the ratio of the fundamental current to IEE is 0.63. Also listed in
Figure 10.15c are the harmonics of the output voltage for two different esti-
mates of the period of oscillation (oscillation frequency) which differ by only
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ECP OSCILLATOR, FIGURE 10.15
L22 1 0 5.98NH
L11 5 6 2.39UH
K1 L11 L22 1
RC1 6 2 1
Q11 2 1 10 MOD1
Q12 9 0 10 MOD1
VC2 5 9 0
CL 5 6 106PF
RL 5 6 3K
IEE 10 13 4MA PULSE 3MA 4MA 0 0 0 1S
VEE 13 0 -10
*.TRAN 5N 300N
.TRAN 5N 5000N 4800N 5N
.PLOT TRAN V(9)
.PLOT TRAN I(VC2)
.FOUR 10MEGHZ V(9)
.FOUR 10MEGHZ I(VC2)
VCC 6 0 10
.MODEL MOD1 NPN BF=100 IS=1E-16
*+ TF=0.3N
*+CJC=0.5P CJE=0.5P
*+VA=50
*+RB=100
.WIDTH OUT=80
.OPTION NOPAGE NOMOD LIMPTS=1000
.OPTIONS RELTOL=1E-6 ITL5=0
.END

3 mA

4 mA

Time

3002001000
9.5

10.0

10.5

11.0

11.5

1.0

1.5

2.0

2.5

3.0
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I(VC2)

Time  (ns)

V
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) 
 (

V
)

I(
V

C
2)

  
(m

A
)

(b)

(a)

Fig. 10.15. (a) Spice input file for EC pair oscillator. (b) Waveforms of the output
voltage and collector current.
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1%. For 10 MHz, THD ≈ 0.59%. Thus, the input ECP voltage is also very
sinusoidal. The turns ratio of the transformer is 20. (The ratio of L11 and
L22 is 400.) The corresponding amplitude of the input voltage of the ECP is
7.5 rmV /20 ≈ 0.38 V which is sufficiently large to provide a large overdrive
and an approximate square wave for the output collector current.

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(9)    
 DC COMPONENT =   9.998D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+07   7.494D+00     1.000000   152.947       0.000
     2      2.000D+07   5.042D-03     0.000673   174.092      21.145
     3      3.000D+07   4.113D-02     0.005488     8.506    -144.442
     4      4.000D+07   2.002D-03     0.000267  -169.423    -322.371

     TOTAL HARMONIC DISTORTION =      0.585557  PERCENT

5.004.954.904.854.80
0

5

10

15

20
V

(9
) 

 (
V

)

Time (µs)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(9)    
 DC COMPONENT =   1.000D+01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      9.990D+07   7.492D+00     1.000000   152.739       0.000
     2      1.998D+07   4.047D-03     0.000540   -12.285    -165.024
     3      2.997D+07   4.614D-02     0.006158     7.225    -145.514
     4      3.996D+07   1.354D-03     0.000181     4.307    -148.432

     TOTAL HARMONIC DISTORTION =      0.649306  PERCENT

Fig. 10.15. (c) Steady-state output voltage waveform and its Fourier components.

The design of this oscillator can proceed as follows: assume that VCC and
IEE are chosen; to avoid transistor saturation, the output voltage amplitude
should be less than VCC ; from Equation (10.67),

R ≤ 1.5
VCC

IEE
(10.68)

In the example above, R should be less than 3.75 kΩ. A choice of 3 kΩ was
made. For circuit simulation, one does not want too large a Q, since excessive
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC2)  
 DC COMPONENT =   1.981D-03
0HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+07   2.501D-03     1.000000   -27.463       0.000
     2      2.000D+07   1.021D-06     0.000408    31.527      58.990
     3      3.000D+07   7.816D-04     0.312565   -82.424     -54.961
     4      4.000D+07   8.301D-07     0.000332   -27.229       0.234

     TOTAL HARMONIC DISTORTION =     37.281453  PERCENT

5.004.954.904.854.80
0

1

2

3

4

I(
V

C
2)

  
(m

A
)

Time (µs)

Fig. 10.15. (d) Steady-state collector current waveform and its Fourier components.

CPU time can be consumed reaching the steady state. Also in practice, large
Qs are not readily available. This limits the value of

√
L/C.

Q =
R√

L
C

(10.69)

√
L

C
=

R

Q

For the example, a Q of 20 was chosen which leads to
√

L/C = 150. From
the desired oscillation frequency,

fo =
1

2π
√

LC
(10.70)

C =
1

2πfo

√
L
C

= 106 pF

L11 =

(√
L

C

)2

C = 2.39 µH

The turns ratio of the transformer follows from a specification of ε, the
van der Pol parameter.
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ε =

√
L

C

(
IEE

4Vtn
− 1

R

)
(10.71)

n =
IEE

4Vt

ε√
L/C

+ 1
R

For an ε of approximately 0.3, the required value of n is 16.6; a value of
20 is chosen and ε = 0.24. This leads to a value L22 = 2.39 µH/400 = 5.98
nH as used in the example.

In Figure 10.16, a family of curves is plotted, a repeat of Figure 2.16,
giving the values of the Fourier harmonics of the output collector current of
an ECP with varying zero-to-peak sinusoidal input voltages normalized with
respect to Vt. Notice that for large values of V1A/Vt, the magnitude of the
fundamental approaches 0.64IEE . Values from these curves can be used in
an iterative fashion to obtain a closer estimate of the output voltage of the
oscillator than provided by (10.67). From an assumed output voltage, the
input voltage is obtained by dividing by the turns ratio, n. The corresponding
value of the fundamental of Ic2 is obtained from the curve of Figure 10.16.
This leads to new value for the output voltage, etc. For the example above,
the input drive to the ECP is sufficiently large to use the approximate 0.64
multiplier.

Referring to the ECP oscillator configuration of Figure 10.12a, we can
propose another configuration in which the transformer and ECP inputs are
changed as in Figure 10.17. The ECP transfer characteristic and the trans-
former polarity are both changed to maintain the required positive feedback
for the oscillator.

On the basis of our earlier investigations of ECPs and the correspond-
ing source-coupled pairs, it is clear that transformer-coupled SCP oscillators
can also be readily designed. Although the voltage-to-current transfer char-
acteristic of the SCP does not limit as sharply as for the ECP, the square
wave approximation to the drain current can be used to obtain an estimate
of the steady-state amplitude of the SCP oscillator. Additional details on the
analysis of transformer-coupled SCP oscillators can be found in [29].

10.8 Transformerless ECP Oscillators

As brought out in Chapters 7 and 9, transformers have both a lower and an
upper frequency limit. The latter is due to the inherent resonant frequency
of the magnetizing inductance and the capacitances of the coil windings. A
single winding coil usually has a higher resonant frequency. In this section two
ECP oscillator configurations are introduced which eliminate the need for the
transformer feedback connection. In the first, a capacitor divider is used to
achieve the feedback connection. In the other a direct dc connection is used.
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Fig. 10.16. Normalized harmonics of the collector current.
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+ VCC

- VEE

n : 1
k = 1

Q1 Q2

IEE

L = l11

C

R

Fig. 10.17. An alternate configuration for the EC pair oscillator.

In Figure 10.18a, an ECP oscillator configuration is shown in which the
capacitance of the tuned circuit is the series combination of two capacitors,
C1 and C2. The interior connection is returned to the base of transistor Q1. In
Figure 10.18b, the capacitor subcircuit is shown. Assume for the moment that
the input voltage va is a pure sinusoid. If no load element is present across
C2, the amplitude of the voltage vb is

vb =
C1

C1 + C2
va (10.72)

C1 and C2 in the sinusoidal steady state produce a voltage divider. This
divider can be modeled with a step-down transformer as illustrated in Figure
10.18c. The capacitors do not transfer dc voltages or currents, but do provide
an ac connection as well as resistance transformation. It is readily shown that
if a resistance R2 is placed across C2, the input resistance seen by v1 is

Rin = n2
eR2 (10.73)

where

ne =
C1 + C2

C1
(10.74)

This relation can also be proven by circuit analysis and illustrated by
circuit simulation, where the latter is useful to substantiate the transformation
for more complicated load situations.

In the ECP oscillator, a bias return resistance, RB1, must be used at the
base of Q1. To achieve a balanced dc state, an equal resistance, RB2, may be
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+ VCC

Q1 Q2

IEE

R L

RB1 RB2

C1

C2

ne : 1

Ce

ne = 
C1 + C2

C1
Ce = C1C2

C1 + C2

C1

C2

(b)

(a) (c)

ECP OSCILLATOR WITH C DIVIDER, FIGURE 10.18
LL 6 5 2.39UH
RC1 6 2 1
RB1 1 0 1K
Q11 2 1 10 MOD1
Q12 5 7 10 MOD1
RB2 7 0 1
VCC 6 0 10
CL2 6 1 2120P
CL1 1 5 111.58P
RL 6 5 3K
IEE 10 13 4MA PULSE 3MA 4MA 0 0 0 1S
VEE 13 0 -10
*.TRAN 5N 300N
.TRAN 5N 5000N 4800N 5N
.PLOT TRAN V(9)
.PLOT TRAN I(VC2)
.FOUR 10MEGHZ V(5)
.MODEL MOD1 NPN BF=100 IS=1E-16
*+ TF=0.3N
*+CJC=0.5P CJE=0.5P
*+VA=50
*+RB=100
.WIDTH OUT=80
.OPTION NOPAGE NOMOD LIMPTS=1000
.OPTIONS RELTOL=1E-4 ITL5=0
.END

(d)

Fig. 10.18. (a) An EC pair oscillator. (b) The capacitor divider subcircuit. (c) An
equivalent circuit model for the capacitor divider. (d) Spice input file for EC pair
oscillator.
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placed from the base of Q2 to ground. In order not to affect the nonlinear
transfer function of the ECP, it is best to bypass RB2 with a capacitor. As
brought out in Section 11.6, the value of this bypass capacitor cannot be too
large. The loading of resistance RB1 on the tuned circuit of the ECP oscillator
can be included in the oscillator equation by replacing RL with RL‖n2

eRB1.
All of the results of Section 10.7 can be now used directly.

In Figure 10.18d, the Spice input file for the modification of the ECP
oscillator of the last section is shown. The transformer is deleted and the
capacitor voltage divider is used. For bias return resistors, RB1 = RB2 = 1 kΩ,
and the latter is not bypassed, for convenience. The collector voltage waveform
and its harmonic content are given in Figure 10.18e. Approximately the same
performance is achieved as for the ECP oscillator of the last section.

In Section 11.1, it is shown that the bias resistor RB2 is not needed. Al-
though the dc bias state is not the same as for the balanced case, a dynamic
shift of the bias state occurs and often approximately the same steady-state
behavior of the oscillator is obtained. (See also the results with the van der
Pol oscillators of Section 10.5.) For the circuit of Figure 10.18a, the output
voltage waveform and its harmonic content are given in Figure 10.18f for the
case where RB2 = 1 Ω. Little change from the earlier results is noted.

In Figure 10.19a, a configuration of an interesting ECP oscillator is shown.
IC designers from the Sony Corporation first published the use of this con-
figuration in 1982 [28]. Note that an ECP is the basis of the oscillator and
that dc coupling exists from each collector to the base of the other transistor.
In effect, the basic configuration without the tuned circuit is a dc bistable
configuration related, but not identical, to the famous Schmitt circuit.

To evaluate and design this ‘Sony Oscillator’, we establish the output I-
V characteristic of the circuit looking back into the circuit from the tuned
circuit. In effect, we establish the output conductance characteristic into this
node pair. If the base currents are neglected, the circuit equations are:

VBE1 = Vo − Ve (10.75)
VBE2 = VCC − Ve

VBE1 − VBE2 = Vo − VCC = Vo
′

IC1 + IC2 = IEE

where Vo
′ is the voltage across the tuned circuit. Solution of these equations

provides:

Io = IC2 = f(Vo) =
IEE

2

[
1 − tanh

(
V ′

o

2Vt

)]
(10.76)

Io − Vo
′ is the desired output I-V characteristic and has the same form

as the transfer characteristic of the ECP in Chapter 2. A plot of this charac-
teristic is drawn in Figure 10.19b. Of critical importance again is the region
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(5)    
 DC COMPONENT =   9.971D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+07   7.344D+00     1.000000    36.627       0.000
     2      2.000D+07   6.488D-02     0.008834    28.310      -8.317
     3      3.000D+07   6.608D-02     0.008997    12.997     -23.630
     4      4.000D+07   2.483D-02     0.003381    26.112     -10.515

     TOTAL HARMONIC DISTORTION =      1.388551  PERCENT

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(5)    
 DC COMPONENT =   9.971D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+07   7.371D+00     1.000000    36.518       0.000
     2      2.000D+07   5.692D-02     0.007722    16.329     -20.188
     3      3.000D+07   7.308D-02     0.009914    11.025     -25.493
     4      4.000D+07   2.771D-02     0.003759    21.587     -14.931

     TOTAL HARMONIC DISTORTION =      1.413080  PERCENT
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(f)

RB2 = 1 kΩ

Fig. 10.18. (e) Collector voltage waveform and its Fourier components for (e) RB2

= 1 kΩ, and (f) RB2 = 1 Ω.
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SONY OSCILLATOR, FIGURE 9.19
Q1 6 2 4 MOD1
VCC1 6 0 5 PULSE 0 5 0 0 0 1
VC2 2 20 0
Q2 20 6 4 MOD1
IEE 4 0 0.2M
LI 5 2 2.39U
CI 5 2 106P
RI 5 2 5K
.MODEL MOD1 NPN BF=100 IS=1E-16
+RB=50
*+VA=50
VCC 5 0 5
.TRAN 5N 1U 0.8U
.FOUR 10MEG V(2)
.PLOT TRAN V(2,4)
.PLOT TRAN I(VC2)
.WIDTH OUT=80
.END

(c)

R

Fig. 10.19. (a) Another EC pair oscillator circuit. (b) Dc characteristics of the
circuit. (c) Spice input file.
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of the characteristic with a negative slope. In effect, the input conductance
looking into the ECP from the output node pair is negative in this region. It
is possible to develop an oscillator using the negative-conductance concepts
of the tunnel-diode oscillator, as brought out in Section 10.3.

Although the oscillator of Figure 10.19a can be now described as a
negative-conductance oscillator, the basic oscillator differential equation is
the same as those of the other oscillators of this chapter, cf., (10.15) and
(10.61). Using the latter, we can design an oscillator based upon the choices
of the ECP oscillator of the last section for the van der Pol parameter and
the steady-state frequency.

The Spice input file for the circuit of Figure 10.19a is given in Figure
10.19c. The expression for ε is ε =

√
L/C[IEE/(4Vt) − 1/RL]. The values of

L and C are the same as those used in the ECP oscillator of the last section.
For RL = 0.8 kΩ, ε = 0.10, the waveform of the output voltage is shown in
Figure 10.19d. Clearly, a very sinusoidal output is produced with an output-
voltage amplitude across the tuned circuit of approximately 0.092V. Note that
THD = 1.2%. The waveform for the collector current of Q2 is shown in Figure
10.19e.

If RL is increased to 5 kΩ, ε is still small (0.26), but the output voltage
amplitude has increased to 0.65 V. The waveform is still very sinusoidal as
shown in Figure 10.19f. The waveform of the collector current, IC2, is shown in
Figure 10.19g. This waveform is almost a rectangular pulse train. An overdrive
situation exists as is encountered with the ECP oscillators of Section 10.7.
Again, the high-Q tuned circuit provides the sinusoidal output voltage with
THD = 0.61%.

Returning to the original configuration of the Sony circuit, note that the
dc voltage supply can be translated to produce a ground at the top of the
tuned circuit. This is a very important practical consideration since parasitic
elements can be eliminated. Oscillators with a tuned circuit which has one
node grounded are called ‘one-pin’ oscillators.

In Chapter 12, it is shown that a relaxation (nonsinusoidal) oscillator can
be realized starting from the configuration of a basic dc bistable circuit. With
appropriate biasing changes and resistive loading, a sinusoidal oscillation can
also be achieved. This aspect is illustrated with a variant of the Sony circuit,
as shown in Figure 10.20a. As brought out in Chapter 12, a loop-coupled,
dc bistable circuit is the same basic circuit as that of an emitter-coupled dc
bistable circuit with a change of the ground point of the circuit and with
minor changes in the biasing elements.

In the circuit of Figure 10.20a, the basic configuration is the loop-coupled
dc bistable circuit. The ‘output’ node pair of this circuit is chosen to be the
collector-collector node pair of the circuit. Again the input I-V characteristic
of this node pair can be obtained from simple circuit analysis. The circuit
equations and the final result, neglecting the base currents, are:
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =   4.999D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)
 
     1      1.000D+07   9.226D-02     1.000000   115.304       0.000
     2      2.000D+07   8.850D-04     0.009592    49.135     -66.169
     3      3.000D+07   5.184D-04     0.005619   -74.647    -189.951
     4      4.000D+07   2.778D-04     0.003011    39.009     -76.295

     TOTAL HARMONIC DISTORTION =      1.225898  PERCENT
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RL = 0.8 kΩ

Fig. 10.19. (d) Output voltage waveform and its Fourier components. (e) Collector
current waveform.

Io = IC1 − I1 = −IC2 + I1 (10.77)
Vo = VBE1 − VBE2

Io = f(Vo) = −I1 tanh
(

Vo

2Vt

)
(10.78)

The same type of negative conductance characteristic is obtained, differing
from the original Sony circuit only in a dc shift. The Spice input file of the
circuit of Figure 10.20a is given in Figure 10.20b. Note that the dc collector
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =   4.997D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+07   6.513D-01     1.000000   134.576       0.000
     2      2.000D+07   3.278D-03     0.005033   142.392       7.816
     3      3.000D+07   1.109D-03     0.001703   -85.537    -220.113
     4      4.000D+07   8.833D-04     0.001356   173.600      39.024

     TOTAL HARMONIC DISTORTION =      0.607797  PERCENT
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Fig. 10.19. (f) Output voltage waveform and its Fourier components for RL = 5
kΩ. (g) Collector current waveform for RL = 5 kΩ.

current sources are realized with VCC − RC combinations. The total load
resistance for the tuned circuit is RL‖2RC . The output voltage waveform for
RL = 1 kΩ providing ε = 0.14 is shown in Figure 10.20c and is comparable
to that produced by the original Sony circuit.
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+ VCC

Q1 Q2

RC RL

C

L

RC

FIGURE 10.20
Q1 3 2 0 MOD1
RC1 6 3 50K
*VCC1 6 0 5 PULSE 6 5 0 0 0 1
VCC1 6 0 5
Q2 2 3 0 MOD1
LI 3 2 2.39U
CI 3 2 106P
RI 3 2 1K
RC2 5 2 50K
.MODEL MOD1 NPN BF=100 IS=1E-16
+RB=50
*+VA=50
VCC 5 0 5 PULSE 0 5 0 0 0 1
*VCC 5 0 5
.OPTIONS NOPAGE NOMOD
.WIDTH OUT=80
.TRAN 5N 2U 1.8U
.FOUR 10MEG V(2,3)
.PLOT TRAN V(2,3)
.END

(a) (b)

+ VCC1

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2,3)  
 DC COMPONENT =   3.284D-04
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+07   8.704D-02     1.000000   -47.725       0.000
     2      2.000D+07   5.317D-04     0.006109   -16.557      31.169
     3      3.000D+07   4.863D-04     0.005588   101.574     149.299
     4      4.000D+07   1.917D-04     0.002202     6.240      53.965

     TOTAL HARMONIC DISTORTION =      0.925347  PERCENT
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Fig. 10.20. (a) Another oscillator circuit. (b) Spice input file. (c) Output voltage
waveform and its Fourier components.
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Problems

10.1. A RC oscillator is shown in Figure 10.21.
(a) Find Rx to achieve a van der Pol parameter ε of 0.1.
(b) Estimate the frequency of the buildup of oscillation. Estimate the fre-
quency of steady-state operation.
(c) Estimate and justify the amplitude of the output voltage for steady-state
operation.
(d) What is the amplitude of Vin in steady-state operation?

Ra

Rb

Vout

Vin

Ca

Cb

+12 V

-12 V

Rx

Ca = 12
 Cb = 100 pF

Ra = 2Rb = 10 kΩ

opAmp:  av ≈ 105

2 kΩ

Fig. 10.21. RC oscillator circuit for Problem 10.1

10.2. An EC pair oscillator with transformer feedback is shown in Figure
10.22.
(a) Choose the polarity of the transformer to achieve positive feedback.
(b) Determine whether oscillations will build up from the quiescent state and,
if so, with what van der Pol parameter.
(c) Assuming oscillations build up to steady state, estimate the value of the
steady-state amplitude of the output voltage.
(d) Verify your analysis results with Spice.

10.3. An EC pair oscillator is shown in Figure 10.23a.
(a) Design the oscillator to achieve a steady-state output with a frequency of
10 MHz. The maximum turns ratio for the transformer is 10. Estimate and
confirm the value of the steady-state output voltage.
(b) Use Spice simulation to investigate the effects of the BJT parameters
VA = 100 V, RB = 100Ω, and CJC = 1 pF.
(c) Can oscillation be achieved if one winding of the transformer is reversed
and feedback connection is made to the base of Q2 as shown in Figure 10.23b.
If so, how do your results compare with those of Part (a).
(d) Replace the BJTs of Figure 10.23a with MOS devices, having the size and
parameter values of Figure 10.23c. Adjust the circuit parameters to achieve
oscillations. Compare your results with those of Part (a).
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100 pF

Q1 Q2

+10 V

-10 V

2 mA

1:8

3 kΩ

vo

IS = 10-16 A

βF = 100

2.5 µH

Fig. 10.22. EC pair oscillator circuit for Problem 10.2

Q1 Q2

-10 V

+10 V

C l11

vo

βF = 100

IS = 10-16 A

Turns ratio
n : 1 : 1

Q1 Q2

-10 V

+10 V

C l11

vo

βF = 100

IS =10-16A

Turns ratio
n : 1 : 1

(b)

-10 V

W
L

 = 20

k' = 30 µA/V2

VTO = 0.5 V

γ = λ = 0

(c)

100 Ω 100 Ω

(a)

10 kΩ 10 kΩ

Fig. 10.23. EC pair oscillator circuit for Problem 10.3

10.4. An SC pair oscillator with transformer feedback is shown in Figure
10.24.
(a) Design this oscillator for a frequency of 10 MHz. The Q of the tuned circuit
is 20 and the desired value of the van der Pol parameter is 0.25.
(b) Estimate the value of the steady-state amplitude of the fundamental of
the output voltage.
(c) Verify your analysis results with Spice.
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k = 1

-10 V

1 mA

+10 V

Q = 20

n:1k' = 30 µA/V2

W
L

 = 30

λ = γ = 0

VT = 0.8 V 20 kΩ

Fig. 10.24. SC pair oscillator circuit for Problem 10.4

10.5. An emitter-coupled pair oscillator is shown in Figure 10.25.
(a) Determine whether oscillations will build up from the quiescent state and,
if so, with what van der Pol parameter.
(b) What is the frequency of steady-state oscillations?
(c) Estimate the value of the steady-state amplitude of the fundamental of
the output voltage.
(d) Verify your analysis results with Spice.
(e) Using Spice, estimate the effects of charge storage in the BJT on the build
up and steady-state performance of the oscillator. Take CJC = CJE = 0.02
pF and TF = 0.1 ns.
(f) What changes would be required in your design to keep the performance
with charge storage the same as that without charge storage.

vo

-5 V

+5 V

5 : 1

Q1 Q2

12 µH

10 pF

10 pF

1 kΩ

5 kΩ

30 kΩ

5 kΩ

IS = 10 -16 A

βF = 100

Fig. 10.25. EC pair oscillator circuit for Problem 10.5
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10.6. A source-coupled pair oscillator is shown in Figure 10.26.
(a) Design the oscillator to achieve a steady-state output with a frequency
of 10 MHz. The Q of the tuned circuit including the load resistance cannot
exceed 20. Justify your choice of the ratio of Ca and Cb and of the values of
RG1 and RG2.
(b) Can RG2 be reduced to zero?
(c) Estimate and confirm the value of the steady-state output voltage.
(d) Use Spice simulation to investigate the effects of MOS parameters λ =
0.02, Cgd0 = Cgs0 = 50 fF.

M1 M2

RG1 RG2

Ca

Cb

vo

0.5 mA

-10 V

+10 V 8 : 1

k' = 30 µA/V2

VTO = 1.0 V
W
L

 = 50

λ = 0

300 Ω

Fig. 10.26. Source-coupled pair oscillator circuit for Problem 10.6.

10.7. An oscillator circuit is shown in Figure 10.27.
(a) What is the minimum value of the current ISS for oscillations to build up
from the quiescent state?
(b) What is the frequency of steady-state oscillations?
(c) What is the Q of the tuned circuit at the drain of the MOSFETs.
(d) Will oscillations build up from the quiescent state for ISS = 6 mA? If so,
estimate the value of the steady-state amplitude of the fundamental of the
output voltage.
(e) Verify your analysis results with Spice.
(f) What is the minimum value of the current ISS for oscillations to build
up from the quiescent state, when the MOSFETs are replaced by BJTs with
β = 100 and IS = 10−16A?
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+3 V

W
L

 = 1000

λ = γ = 0

k' = 250 µA/V2

VT = 0.5 V

10 pF 10 pF

1 nH 1 nH

2 Ω 2 Ω

   ISS

Fig. 10.27. Oscillator circuit for Problem 10.7.
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Electronic Oscillators with Bias-Shift Limiting

11.1 Bias Shift during Oscillator Buildup in an ECP
Oscillator

In this chapter a major, yet simple oscillator prototype is studied, together
with several derivative configurations. Of particular interest is the fact that
although the basic differential equation which describes the oscillator has the
same form as that encountered in the last chapter, there is now a new limiting
phenomenon. The essential limiting of the growth of oscillatory buildup is due
to the shift of the virtual or dynamic operating point of the configuration.
That is, the effective bias point of the oscillator shifts from the initial values
at the quiescent state in the active region of the device(s) to equivalent bias
values corresponding to a near-off state of the devices. Steady-state operation
of the oscillator corresponds to Class-C operation wherein the devices are off
during more than one-half of the period of the oscillation.

In the next section, an alternate oscillator equation is established which is
helpful in studying the new prototype and its derivatives. First, in this section,
an ECP oscillator similar to that of Section 10.7 is examined when an offset
bias voltage is applied. A definite and favorable shift of the virtual operating
point of the oscillator is produced as oscillations build up to a steady state.
An understanding of this shift aids us in the study of the new oscillators of
this chapter.

In Figure 11.1a, a transformer-coupled oscillator is shown including a bias
voltage source, VB2, at the base of transistor Q2. This voltage source provides
an offset voltage for the balanced pair. The operating point of the input-
voltage-to-output-current transfer characteristic moves to the left with the
offset, as illustrated in Figure 11.1b. (Alternately, the characteristic moves
down and to the right with the offset.) At the new operating point with an
offset voltage of VB2, the collector current of Q2 and the transconductance of
the ECP are
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IC2 =
IEE

1 + exp(−d)
(11.1)

Gm =
dIC2

dV1
= −IEE

VT

(
exp(−d)

[1 + exp(−d)]2

)

where d is the normalized offset voltage = VB2
Vt

. For a bias offset of 60
mV, a thermal voltage of 25.85 mV, and an emitter source current of
IEE = 4 mA, d = 2.32, IC2 = 3.64 mA and Gm = 0.0124 � assuming that
β 	 1. The values at the original bias point without offset are d = 0, IC2 = 2
mA and Gm = gm/2 = 0.0387 �.

For the total nonlinear characteristic, F (v1), for the oscillator a corre-
sponding shift of the quiescent bias point is produced as sketched in Figure
11.1c. Clearly, the quiescent bias point is very close to one of the off regions of
the characteristic, corresponding to Q1 off and Q2 full on, and the value of IC2

is close to IEE . Because the slope of the characteristic is smaller in magnitude
at the shifted bias point, the value of the van der Pol parameter ε is smaller
unless the oscillator is redesigned. In terms of the equations of Section 10.7,
cf., (10.61),

ε =
1
Q

(
GmRL

n
− 1

)

For the original balanced oscillator, ε = 0.24. At the new quiescent bias
point, ε = 0.043. Since ε > 0 oscillations will build up. After some buildup,
note that the positive excursions of v1 remain mainly in the negative slope
region while the negative excursions soon encounter the positive slope region
on the left. It can be expected, then, that the negative portions of iC2 will
continue to grow while the positive portions will be clamped to IEE . As in the
previous large-signal studies of amplifiers, a shift of the effective dc or average
value of the collector current is produced because of the growing negative
portions of the current waveform. This constitutes a shift of the bias state.
Simulations of the oscillator illustrate these aspects easily.

In Figure 11.1d, the Spice input file is given. This file pertains to the same
circuit as studied in Section 10.7 except for the offset voltage VB2. Several new
control lines are also included. The dc transfer characteristic is obtained by
introducing a voltage source VB1 while ‘removing’ the inductance l22 and is
shown in Figure 11.1e. The values for a .TF run are also shown in the figure.
As estimated above, Gm at the quiescent operating point is 0.012 �.

With l11 reintroduced, the growth of the oscillation for IC2 is shown in
Figure 11.1f. It is clear that the positive excursions of IC2 clamp to IEE .
From the harmonic components of Figure 11.1g, the dc component of IC2 has
moved toward IEE

2 . In Figure 11.1h, the growth of the ECP input voltage is
seen to remain a sinusoidal growth, while the waveform of VBE1 = V (1, 10)
becomes very distorted. Waveforms of Vo = V (9) and IC2 = I(V C2) are
shown in Figures 11.1i and j for a near steady-state condition. The harmonic
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+ VCC

- VEE

n : 1

+

-

k = 1

Q1 Q2

ib1

IEE

L = l11

nv1 v1

+

-

C R

+

-
VB2

(a)

IC2

Operating point
for VB2 = 0

Operating point
for VB2 > 0

- VB2

F(v1)

VB2 = 0

VB2 > 0

(b) (c)

v1

f(v1)

V1

v1

Fig. 11.1. (a) A transformer-coupled oscillator. (b) Movement of the operating
point with offset. (c) The total nonlinear characteristic.
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ECP OSCILLATOR WITH BIAS OFFSET
*L22 1 0 5.98NH
L11 5 6 2.39UH
*K1 L11 L22 1
VB1 1 0 0
RC1 6 2 1
Q11 2 1 10 MOD1
Q12 9 20 10 MOD1
VB2 20 0 0.06
VC2 5 9 0
CL 5 6 106PF
RL 5 6 3K
IEE 10 13 4MA
.TF I(VC2) VB1
.DC VB1 -0.2 0.2 .01
.PLOT DC I(VC2)
*IEE 10 13 4MA PULSE 3MA 4MA 0 0 0 1S
*VEE 13 0 -10 
*.TRAN 10N 3000N 0 5N
*.PLOT TRAN V(1,10) V(9) I(VC2)
*.TRAN 5N 5000N 4800N 5N
*.FOUR 10MEGHZ V(9) V(1,10) I(VC2)
VCC 6 0 10
.MODEL MOD1 NPN BF=100 IS=1E-16
*+ TF=0.3N
*+CJC=0.5P CJE=0.5P
*+VA=50
*+RB=100
.OPTIONS RELTOL=1E-4 ITL5=0 LIMPTS=1000
.END

(d)

0.20.10.0-0.1-0.2
0

1

2

3

4

VB1  (V)

I(
V

C
2)

  
(m

A
)

Quiescent
op. point

     SMALL-SIGNAL CHARACTERISTICS

     I(VC2)/VB1                               = -1.248D-02
     INPUT RESISTANCE AT VB1                  =  8.014D+03
     OUTPUT RESISTANCE AT I(VC2)              =  9.103D+11

(e)

Fig. 11.1. (d) Spice input file. (e) Dc transfer and small-signal characteristics.



11.1 Bias Shift during Oscillator Buildup in an ECP Oscillator 335
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(f)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC2)  
 DC COMPONENT =   2.237D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+07   2.423D-03     1.000000   -98.568       0.000
     2      2.000D+07   4.599D-04     0.189826  -106.685      -8.117
     3      3.000D+07   5.842D-04     0.241149    63.655     162.223
     4      4.000D+07   3.337D-04     0.137735    55.957     154.525
     5      5.000D+07   1.768D-04     0.072993  -137.352     -38.785
     6      6.000D+07   1.988D-04     0.082057  -143.630     -45.062
     7      7.000D+07   3.969D-05     0.016383     6.194     104.762
     8      8.000D+07   1.005D-04     0.041502    10.042     108.610
     9      9.000D+07   9.800D-06     0.004045    93.317     191.884

     TOTAL HARMONIC DISTORTION =     35.668725  PERCENT
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Fig. 11.1. (f) Growth of oscillation for IC2. (g) Fourier components of IC2.
(h) Growth of the input voltages.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(9)    
 DC COMPONENT =   9.968D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+07   7.302D+00     1.000000    41.153       0.000
     2      2.000D+07   4.402D-02     0.006029   -19.006     -60.159
     3      3.000D+07   6.390D-02     0.008751    23.776     -17.377
     4      4.000D+07   2.878D-02     0.003941    12.966     -28.186

     TOTAL HARMONIC DISTORTION =      1.208141  PERCENT

5.004.954.904.854.80
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE I(VC2)  
 DC COMPONENT =   2.200D-03
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)
 
     1      1.000D+07   2.448D-03     1.000000  -139.746       0.000
     2      2.000D+07   4.050D-04     0.165453   169.998     309.744
     3      3.000D+07   6.427D-04     0.262562   -59.409      80.338
     4      4.000D+07   3.205D-04     0.130933  -110.751      28.995

     TOTAL HARMONIC DISTORTION =     36.738048  PERCENT

5.004.954.904.854.80
0
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V
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2)
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Time (µs)
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(j)

Fig. 11.1. Steady-state waveform and Fourier components of (i) output voltage,
and (j) collector current.
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components of the waveforms are also given. The ratio of the amplitude of
the fundamental of IC2 in the steady state to the value of IEE = 4 mA is
0.61. This is close to the ratio of 0.64 from the simple square-wave estimate of
Section 10.7 for a balanced ECP and to the ratio 0.63 for the actual simulated
balanced oscillator.

Because of the constraints imposed by the circuit configuration and its
bias supplies including the fact that F (v1), the net or total nonlinearity of the
oscillator, is not antisymmetrical about the quiescent operating point, a bias
shift occurs which provides very effective steady-state operation. In developing
the differential equation of this oscillator in Section 10.7, cf., (10.57) through
(10.62), a translation is made of the transfer characteristic of the ECP. This
involves the quiescent bias state of the circuit. As mentioned for the tunnel-
diode oscillator in Section 10.3, and as noted above, the effective bias point
of the oscillator must shift as the oscillation grows. Thus, a new term or
consideration must be added. This is developed further in the next section.

11.2 The Basic Oscillator Equation

In the last chapter, three seemingly different oscillator configurations are an-
alyzed and evaluated: a negative-conductance (tunnel-diode) circuit, an RC
feedback, positive gain block (Wien-type) configuration, and a transformer-
feedback, emitter-coupled pair arrangement. With simple device models, all
three are described by the same nonlinear differential equation and produce
the same linearized characteristic equation at the equilibrium point (the quies-
cent bias point). However, the nature of the total nonlinearity of the oscillator
for each is different, leading to different methods to estimate the steady-state
oscillation magnitude. In addition, the selectivity of the tuned circuits is not
the same for the three oscillators, even though each can be designed to provide
the same natural frequencies of the linearized circuit at the equilibrium point.
This aspect is developed further in this chapter.

By a slight manipulation of the differential equation describing the oscil-
lators, another basic form can be established that is helpful in studying other
configurations. The tunnel-diode, negative-conductance configuration is used
to illustrate the procedure.

For the tunnel-diode oscillator, used as an example, from Section 10.3 and
Figure 10.2a, the circuit equation is now used without translated variables.

1
L

∫
(V − VDD) dt + GV + C

dV

dt
+ f(V ) = 0 (11.2)

Notice that the bias voltage source is included. Multiply through by L and
take the derivative of this equation with respect to time.

V − VDD + GL
dV

dt
+ LC

d2V

dt2
+ L

d

dt
f(V ) = 0 (11.3)
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In operator form, this equation, after some manipulation, becomes

(LCs2 + LGs + 1)V + Lsf(V ) = VDD (11.4)

Alternatively, the following can be obtained.

V + N(s)f(V ) = No(s)VDD (11.5)

where

N(s) =
Ls

LCs2 + LGs + 1
(11.6)

No(s) =
1

LCs2 + LGs + 1

The oscillator equation in the form of Equation (11.5) is defined as the
‘total basic oscillator equation.’ It pertains to the class of oscillators studied
in the last chapter, where one nonlinear function is encountered in the first-
order term of the differential equation. In particular, take note in Equation
(11.5) that the nonlinear function appears only once and is operated on by a
linear time-invariant network function.

Both N(s) and No(s) pertain to passive networks. The right-hand side of
Equation (11.5) represents the transient response of the circuit when the power
supply VDD is applied. Considered separately, this function in the transform
domain represents the response of a passive system (poles in the left-half
plane) and for large elapsed time (the steady-state, i.e., s = 0) becomes simply
VDD, since No(0) = 0.

The ‘basic oscillator equation for the steady-state,’ or just the ‘basic os-
cillator equation’ then has the form

x + N(s)f(x) = Ao (11.7)

where f(x) is a real nonlinear function of the variable x, N(s) is the network
function of a linear, time-invariant network, and Ao is a ‘constant’ and repre-
sents the dc power source to the oscillator in the steady state. (In the case of
an effective bias point shift, Ao becomes a function of the dc component of a
steady-state oscillator variable. This is taken up in the next section.)

The ‘basic oscillator equation’ can be represented by the block diagram
of Figure 11.2a. The oscillator feedback configuration contains a nonlinearity,
f(x), the linear, time-invariant circuit characterized by the ‘transfer function,’
N(s), and the power source, Ao. For near-harmonic oscillations, N(s) needs
to provide a magnitude function |N(jω)| with a peaked response at jωo as
illustrated in Figure 11.2b. The loop gain of the system at this frequency must
have a magnitude greater than one with a zero-degree phase. The magnitude
response of the loop gain, due to |N(jω)|, should fall off rapidly away from
jωo, so that other frequencies are not provided with a condition for oscillatory
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buildup. In addition, the loop gain should not support appreciable harmonics.
In this regard, the RC Wien-type feedback circuit, studied in Section 10.6,
does provide a bandpass response with transmission zeros at the origin and
at infinity. The basic oscillator equation for this Wien-type oscillator is

V1 +
−s/RC

s2 + 3s/RC + (1/RC)2
f(V1) = 0 (11.8)

The poles of its transfer function are on the real axis as shown in Figure
11.2b, and the passband is very broad as sketched in the figure. It is clear
that little rejection of the harmonics produced by the nonlinearity of the
amplifier occurs. Further, the phase function of the bandpass response of the
RC feedback circuit is very flat, as illustrated in Figure 11.2b. Therefore, a
significant shift in oscillation frequency is necessary to compensate for phase
shift in the transfer function of the amplifier.

The basic oscillator equation can also be developed for the other oscillator
circuits presented in Chapter 10. Throughout this chapter, it is used as other
oscillators are investigated. The basic oscillator equation permits us to see the
critical similarities of the several seemingly different oscillator configurations.

11.3 Single-Device, Transformer-Coupled Oscillators

Figure 11.3a shows an oscillator configuration containing a single bipolar tran-
sistor (BJT) with transformer coupling from the collector to the emitter.
Although an important oscillator configuration in its own right, the circuit
provides the basic foundation for an entire class of practical oscillators. Our
procedure is to establish first the basic oscillator equation for the configura-
tion and to investigate the starting conditions. This is followed by a study of
the means by which limiting and a steady-state situation are achieved.

It is convenient to redraw the transformer-coupled circuit as in Figure
11.3b. The coupling capacitor is assumed for the moment to be large and
can be modeled as a dc voltage source, VEX . The RE − VEE combination is
modeled as a dc current source, IEE . The transistor is operated in common-
base and can be modeled as shown in Figure 11.3c under the restriction that
operation is limited to the off and normal active regions. For a npn transistor,
the emitter current is modeled as

IE = −IC

α
= −IS

α
exp

(
VBE

Vt

)
=

−IS

α
exp

(
−VEB

Vt

)
(11.9)

= f(VEB)

Notice that the nonlinear I-V characteristic f(VEB) is defined in terms of the
emitter-base voltage, VEB, (VEB = −VBE). At the collector, the circuit and
device equations are developed.
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Fig. 11.2. (a) Block diagram of the ‘basic oscillator equation’. (b) Magnitude re-
sponses for N(s) and poles of the transfer functions. (v) Phase responses for N(s).
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Fig. 11.3. (a) A single BJT transformer-coupled oscillator. (b) A convenient rep-
resentation of the oscillator. (c) Model for the transistor.

IC = −αIE = −αf(VEB) (11.10)

V1 = VEB + VEX

V2 = nV1 = n(VEB + VEX)

where VEX is the voltage source due to the charged capacitor, IX = IEE + IE

is the current through it, and V2 is the voltage drop across the parallel RLC
circuit. For the transformer, a perfectly coupled set of coils is assumed, i.e.,
k ≈ 1. Using transform notation for convenience, we obtain
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(
α − 1

n

)
IE = G(nVEB + nVEX) + Cs(nVEB + nVEX) (11.11)

+
1
Ls

(nVEB + nVEX) +
1
n

IEE

After some manipulation, the result is

VEB + N(s)f(VEB) = −VEX − 1
n2

Ls

LCs2 + LGs + 1
IEE (11.12)

where

N(s) = − 1
n

(
α − 1

n

)
Ls

LCs2 + LGs + 1
(11.13)

Equation (11.12) is in the form of the ‘total basic oscillator equation.’ In
the steady state, the right-hand side becomes −VEX .

VEB + N(s)f(VEB) = Ao = −VEX (11.14)

For the stability analysis of this circuit, incremental variables are introduced
about the quiescent operating point.

ve = dVEB, ie = dIE (11.15)

and the differential of the nonlinearity is taken.

dIE = ie = df(VEB) =
df

dVEB
dVEB =

df

dVEB
ve (11.16)

where from Equation (11.9),

df

dVEB
=

1
α

IC

Vt
=

gm

α
(11.17)

The basic oscillator equation in terms of the incremental variables is

ve + N(s)
gm

α
ve = 0 (11.18)

The characteristic equation is obtained by multiplying through by the denom-
inator of N(s) and rearranging.

LCs2 + L

[
G − 1

n

(
α − 1

n

)
gm

α

]
s + 1 = 0 (11.19)

The frequency variable is next normalized with respect to
√

LC, p = s
√

LC.
(This is the same as introducing the time normalization T = t/

√
LC.) The

characteristic equation becomes

p2 − εp + 1 = 0 (11.20)
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where the van der Pol parameter ε is

ε =

√
L

C

[
1
n

(
α − 1

n

)
gm

α
− G

]
(11.21)

=

√
L
C

RL

[
1
n

(
α − 1

n

)
gmRL

α
− 1

]

=
1
Q

[
1
n

(
α − 1

n

)
gmRL

α
− 1

]

where Q = RL√
L
C

. This is the selectivity factor for the tuned circuit alone with-

out loading from the transistor. Notice that an equivalent total conductance
can be identified in the brackets in the first expression.

Thus far in this development, the basic oscillator equation has been ob-
tained, and, as established in the last chapter, for ε positive and small, si-
nusoidal oscillations will buildup from a small excitation. However, for this
oscillator which has a dc current source for bias, the effective bias point of
the oscillator shifts as the amplitude of oscillation grows. This bias point shift
involves a change of VEX = −Ao; the dc voltage across the coupling capacitor,
CE . It is this shift which limits the growth of the output amplitude. This is
comparable to the bias shift observed for the ECP oscillator of Section 11.1. It
is to be remembered that the transformer-coupled, single-device oscillator has
three independent energy storage elements, L, C and CE . In this section, we
have modeled the oscillator with a second-order differential equation involv-
ing only L and C. The effects of CE are slow changing effects, but must be
included in determining the effective bias point. The bias shift for the present
oscillator is developed further in the next section and in Section 11.6.

11.4 Bias Shift and Harmonic Balance

To understand the bias shift during oscillation buildup in the single-device,
transformer-coupled configuration, it is helpful to sketch the total nonlinear
characteristic of the first-order term of the oscillator differential equation.
From Equations (11.13) and (11.14) and changing to the normalized time
domain,

d2VEB

dT 2
+

√
L

C

d

dT
F (VEB) + VEB = Ao (11.22)

where

F (VEB) = GVEB − 1
n

(
α − 1

n

)
f(VEB) (11.23)

Equation (11.22) has the same form as the oscillator equations of Chapter 10.
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Representative plots of f(VEB) for a npn transistor and F (VEB) are shown
in Figures 11.3d and e. Note that a N-type shape is not present for F (VEB) as
observed for the oscillators of the last chapter. The dashed, vertical portion
of the curve on the left in Figure 11.3e, which does complete a N-type plot,
is a representation of what occurs if the device is driven into saturation. If
saturation is encountered, the simple nonlinear circuit model for the BJT of
Figure 11.3c is not valid. A second independent nonlinearity is present, and
the differential equation describing the oscillator has a different form than
that of Equation (11.22).

Bias point

IE

VEB

f(VEB)

1
n α - 1n f(VEB)

(OFF)

(d)

IE

VEB

- 1n α - 1n f(VEB)

F(VEB) = - 1n α - 1n f(VEB) + GVEB

Saturation limit

Bias point shift

(OFF)

(ON)
GVEB

(e)

Fig. 11.3. Representative plots of (d) f(VEB), and (e) F (VEB).

Also note that for the simple nonlinearity in Figure 11.3e, the upward
portion of the characteristic in the second quadrant has an increasing neg-
ative slope with a decrease of the input voltage (increasing in the negative
direction). Thus, incrementally, the effective ‘negative conductance’ of the
oscillator increases in magnitude as one moves out to the left from the equi-
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librium point. It is clear intuitively that during the oscillatory buildup, the
positive peaks of −IE ≈ IC have larger magnitudes than the negative peaks,
as illustrated in Figure 11.4a.

IC

IEE

Time

IC

IEE

Time

(a) (b)

Fig. 11.4. (a) Collector current waveform during buildup of oscillations. (b) Steady-
state collector current waveform.

During buildup, the distorted waveform of IC develops significant even
harmonics. Of particular interest, a zero-order harmonic is produced; that is,
a dc component. If the bias arrangement is for a constant VBE , the average dc
collector current increases, and the growth in oscillations continues until the
transistor saturates during the positive peaks of IC = −IE . The introduction
of this new nonlinearity limits the growth, and a distorted waveform of the
output voltage results in the steady state. (If the tuned circuit has a high Q,
the output voltage is a distorted sinusoid with a frequency comparable to the
resonant frequency of the tuned circuit even though the saturated transistor
provides a short across the tuned circuit for a small portion of the cycle.)

In the present case, the dc collector and emitter currents are fixed by the
bias circuit, i.e., by IEE . There is still the ‘tendency’ for the average collector
current to increase. Since it cannot increase, the effective, average value of the
base-emitter voltage must decrease and VEX , the average value of the voltage
of the coupling capacitor, CE , must decrease. In effect, the bias current can
be viewed as having two components: one from the bias state of the circuit,
the other from the harmonic generation. The sum of the two is constant.
Since the harmonic component increases from zero as the oscillation builds
up, the other component, due to the bias state, must decrease. The effective
bias state moves toward an off state, as VBE becomes less positive and VEX

changes accordingly. From the standpoint of the I-V plot of Figure 11.3d,
the effective bias point moves to the right toward the off region of transistor
operation.

The aspects of steady-state operation are brought out in the analysis
which follows. For the moment, assume that the buildup of oscillations con-
tinues until a steady-state equilibrium is reached, where the bias state shifts
toward the off region and the subsequent ‘gain and loss’ compensates on a
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cycle-by-cycle basis for the growth of the oscillation during the positive peaks
of the collector current. As seen below, this can occur before the transistor
saturates. The waveform for the collector current takes the form of a pulse
train as shown in Figure 11.4b. The average value of the pulse train, assuming
that the transistor beta is large, is the value IEE , the bias current source. In
effect, we have a Class-C operation where the transistor is off for over 180
degrees of the fundamental cycle. This type of operation is very efficient in
the conversion of dc power to fundamental ac power. Examples using Spice
simulation which illustrate these aspects are given shortly.

The following analysis of the steady-state operation is based on a major
assumption. The GLC resonant circuit of the oscillator at the collector of the
BJT is assumed to be highly resonant, i.e., to have a very high Q. Therefore,
the voltage across this resonant circuit contains primarily the fundamental
component, even though the driving collector current is a pulse train, as il-
lustrated in Figure 11.4b. The higher harmonics of the voltage are inhibited.
(This is the same circumstance as occurs for the ECP oscillators of Sections
10.7 and 11.1). Of course, the currents in the L and C are still rich in harmon-
ics. The voltage transformed by the transformer to the emitter-base is also
then almost a pure sinusoid.

With an ideal exponential I-V characteristic for the emitter-base, a known
mathematical relation can be used to obtain the Fourier coefficients of the
emitter-current waveform. This is done for the CE stage in Section 3.3. We
include here portions of the same development. We start the analysis with an
assumed form of the emitter-base voltage, based on the high-Q assumption.

VEB = Va − Vb cos ωot (11.24)

where ω2
o = 1/(LC), Va is the average value of VEB in the steady state, and Vb

is the amplitude of the fundamental. (The ‘-’ sign is used for later convenience
and ties this development closely to that of Section 3.3). This expression is
used in the basic oscillator equation for this circuit.

Va − Vb cos ωot + N(s)f(Va − Vb cos ωot) = −VEX (11.25)

The nonlinear function from (11.9) is

f(Va − Vb cos ωot) = − 1
α

IS exp
[
− (Va − Vb cos ωot)

Vt

]
(11.26)

= −IS

α
exp

(
−Va

Vt

)
exp

(
Vb cos ωot

Vt

)

The exponential containing the sinusoid can be rewritten as

exp
(

Vb cos ωot

Vt

)
= exp(d cos ωot) (11.27)
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where d = Vb/Vt. The right-hand side has a known expansion in terms of a
Fourier series of cosines.

exp(d cos ωot) = Io(d) + 2I1(d) cos ωot + . . . (11.28)
. . . + 2In(d) cos nωot + . . .

where the In(d) are modified Bessel functions of order n. Using this expansion
in (11.26), we obtain

f = Idc + Idc

[
2I1(d)
Io(d)

cos ωot +
2I2(d)
Io(d)

cos 2ωot + . . .

]
(11.29)

where

Idc =
−IS

α
exp

(
−Va

Vt

)
Io(d) (11.30)

This expression for f(VEB) is now inserted into the basic oscillator equa-
tion, and harmonic balance is used. That is, the equation is solved for like
frequency components, in increasing harmonic order. This is similar to the
procedure in Section 4.2, although in the latter, an approximation concerning
higher-order terms had to be made. For dc, N(0) is equal to zero.

Va + (0 · Idc) = −VEX (11.31)

This is the capacitor bias voltage, as expected. For the fundamental terms,

−Vb cos ωot +
−1
n

(
α − 1

n

)
jωoL

−1 + jωoLG + 1
Idc

2I1(d)
Io(d)

cos ωot = 0 (11.32)

This leads to (solving for the magnitude)

Vb =
1
n

(
α − 1

n

)
|Idc |
G

2I1(d)
Io(d)

(11.33)

d =
Vb

Vt
=

1
n

(
α − 1

n

)
RL

|Idc |
Vt

2I1(d)
Io(d)

where for later convenience the load resistance, RL = 1/G, is introduced. The
last equation can be solved by iteration to obtain the value of d in the steady
state. Values of the ratios of these special Bessel functions are plotted in
Figure 3.6 which is repeated here as Figure 11.5. One starts with an assumed
value of d. The ratio I1(d)/Io(d) is found from the plots and used in Equation
(11.33). From the new value of d from the right-hand side, the procedure is
continued until a solution is reached. For large magnitudes of the fundamental
(d > 6), the value of I1(d)/Io(d) ≈ 0.95 and the value of the amplitude of the
emitter-base voltage is approximately
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Vb ≈
1.9
n

(
α − 1

n

)
RLIEE (11.34)

where IEE = −Idc =|Idc |. The variational output voltage amplitude, VoA, is

VoA = nVb ≈ 1.9
(

α − 1
n

)
RLIEE (11.35)

Since α ≈ 1 and n > 1, a first approximation for VoA is

VoA ≈ 1.9RLIEE (11.36)

The upper harmonics of Vo(t) are assumed to be inhibited by N(s), i.e., the
resonant circuit at the output.

For a numerical example, let α = 0.99 and the dc current source IEE =
2 mA. Also choose L = 5 µH, C = 450 pF, RL = 750 Ω, and n = 10.
The oscillation frequency, both for the buildup and for the steady state is
approximately the resonant frequency of the tuned circuit.

fo =
1

2π
√

LC
= 3.36 MHz (11.37)

and the time period is T = 0.3 µs. The value of ε for the startup condition
from Equation (11.21) is

ε =

√
L

C

[
1
n

(
α − 1

n

)
gm

α
− 1

RL

]
(11.38)

= 0.6

In the steady state, the simple estimate for the value of the output voltage
using Equation (11.36) is VoA = 2.85 V. If actual values for α and n are used,
Equation (11.35) yields VoA = 2.54 V. For this value, d = 2.5/(10Vt) = 9.67.
Clearly, from Figure 11.5, the approximation is good.

The input file for a Spice simulation is given in Figure 11.6a, and the
output waveforms of IC and Vo = V (2) are given in Figure 11.6b for the
steady state. The period of oscillation is observed to be approximately 295ns.
As brought out in Chapter 10, care must be used in specifying the frequency
of oscillation for a Fourier analysis. For this example, fo = 1/295 µs = 3.39
MHz. The harmonics of the steady-state output voltage are given in Figure
11.6c. (If the frequency in the .FOUR specification is decreased by 1 − 2%,
the value of the second harmonic drops while the third harmonic increases.)
The amplitude of the output voltage is 2.55 V.

Notice from the waveform of the collector current in Figure 11.6b, that
the peak current is approximately 15 mA, and that the transistor is ‘on’ for
only 100ns, while it is ‘off’ for over 190ns. Class-C operation is obtained. The
conversion efficiency is, for an ideal current source IEE ,
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Fig. 11.5. Plot of normalized Bessel functions.
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XSFMR-COUPLED OSCILLATOR, FIGURE 11.6
.TRAN 15N 10U 9.3U 15N
.PLOT TRAN V(2) I(VC)
.FOUR 3.39MEGHZ V(2)
*.TRAN 30N 12U 10U 15N
*.PLOT TRAN V(3,5)
R1 1 0 1
Q1 7 1 3 MOD1
VC 2 7 0
VCC 4 0 10 
RL 4 2 750
*RL 4 2 2.6K
CT 4 2 450PF
L1 4 2 5UH
L2 0 5 0.05UH
K1 L1 L2 1
CE 5 3 5.0NF
RE 3 6 4.65K
VEE 6 0 -10 PULSE -15 -10 0 0 0 1S 
.MODEL MOD1 NPN IS=1E-16 BF=100 RC=10
.OPTIONS NOPAGE NOMOD ITL5=0
.OPTIONS LIMPTS=5000 RELTOL=1E-6
.WIDTH OUT=80
.END

+ VCC

n : 1
k = 1

RL L1 L2

CE
RE

- VEE

CT

(a)

10.009.759.509.25
6
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V(2)
I(VC)

V
(2

) 
 (

V
)

I(
V

C
) 

 (
m

A
)

Time (µs)

(b)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =   9.999D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      3.390D+06   2.550D+00     1.000000     6.159       0.000
     2      6.780D+06   2.128D-01     0.083452    28.243      22.084
     3      1.017D+07   8.597D-02     0.033711   124.262     118.103
     4      1.356D+07   4.004D-02     0.015701  -128.261    -134.420

     TOTAL HARMONIC DISTORTION =      9.203121  PERCENT

(c)

Fig. 11.6. (a) Circuit and Spice input file. (b) Steady-state output voltage and col-
lector current waveforms. (c) Fourier components of the steady-state output voltage.
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η =
V 2
orms /RL

IEE(VCC + VBE)
(11.39)

=
(0.707×2.53)2

750

2(10 + 0.8)
= 20%

If the current source IEE is produced with a RE − VEE combination, η
drops to 11%. Another simulation run of the circuit choosing VBE as the
output shows that the average bias shifts from approximately 0.79 V to 0.59
V over the buildup of oscillations.

The maximum amplitude of the output voltage is approximately VCC if
transistor saturation is to be avoided. From (11.35), the maximum value for
RL in this example is 2.96 kΩ. However, simulation shows that this value is
too large. The output voltage waveform for RL = 2.6 kΩ is shown in Figure
11.7. The output voltage waveform varies from zero to twice VCC . Clipping is
not observed.

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =   1.010D+01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      3.390D+06   9.832D+00     1.000000   -84.416       0.000
     2      6.780D+06   2.649D-01     0.026942  -150.904     -66.487
     3      1.017D+07   1.408D-01     0.014318  -149.119     -64.703
     4      1.356D+07   9.245D-02     0.009402  -145.223     -60.807

     TOTAL HARMONIC DISTORTION =      3.342086  PERCENT

10.009.759.509.25
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m
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)
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RL = 2.6 KΩ

Fig. 11.7. Output voltage and collector current waveforms and Fourier components
of the output voltage.

Another transformer-coupled oscillator can be produced by coupling
back from the collector to the base as illustrated in Figure 11.8. For the
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resistor-voltage source-bypass capacitor arrangement as shown, a fixed bias
current is established, and bias-shift limiting can be achieved. An analysis
similar to that above can be used to establish the starting conditions and
the estimate of the steady-state output. The result is approximately that of
Equation (11.36). If a voltage source in the base circuit is used for biasing,
or if diode current-mirror biasing is used in the base circuit, no voltage bias
shift can occur, and transistor saturation performs the limiting of the oscilla-
tion voltage.

+ VCC

CRLL1L2

RE

- VEE

1: n

Fig. 11.8. Another transformer-coupled oscillator.

As a final comment in this section, it must be stressed that a shift in
the quiescent bias point occurs for any oscillator for which the total F (v)
characteristic is not anti-symmetrical about the bias point. In such cases,
the increasing positive and negative peaks are not equal in magnitude as the
oscillation builds up and produce a dc component which shifts the virtual bias
point. As mentioned earlier, the tunnel-diode oscillator of Section 10.3 displays
this effect. Except for special circuits, such as studied in this chapter, the
estimation of the steady-state oscillation output is in general either difficult
or very crude.

11.5 Transformer-Coupled MOS Oscillators

A MOSFET version of the BJT oscillator of the last section can be simply
realized by direct substitution of the same polarity, same mode device and
by adjusting the bias levels. A transformer-coupled configuration using a n-
channel MOS device is shown in Figure 11.9. The Spice input file of Figure
11.10 provides the circuit and device parameters for the circuit. The output
voltage waveform is given in Figure 11.11.
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n : 1

RL

- VSS

+ VDD

CT Lm

IS

ISS

CS

Fig. 11.9. A transformer-coupled NMOS oscillator.

MOS XSFRMR-COUPLED OSCILLATOR, FIG 11.10
.OPTION ITL5=0 LIMPTS=60000 RELTOL=1E-6
VDD 1 0 10
LH 9 1 43.76UH
VL 9 2 0
LL 8 0 2.735UH
KA LH LL 1
CL 1 7 5.78845885PF
VC 7 2 0
RL 1 6 27.5K
VR 6 2 0
VM 2 5 0
M1 5 0 3 3 MODN W=100U L=10U
ISS 3 4 .25M PULSE .5M .25M 1NS 0 0 1M
VSS 4 0 -10
CC 3 8 30PF
.MODEL MODN NMOS LEVEL=1 KP=30U VTO=.45
.TRAN 5N 6U 5.8U UIC
.PLOT TRAN V(2)
.FOUR 10MEG V(2)
.END

Fig. 11.10. Spice input file for NMOS oscillator.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =   9.988D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+07   8.409D+00     1.000000   -13.123       0.000
     2      2.000D+07   2.442D-01     0.029036   -14.028      -0.905
     3      3.000D+07   3.670D-02     0.004364   113.468     126.591
     4      4.000D+07   1.740D-02     0.002069  -157.303    -144.180

     TOTAL HARMONIC DISTORTION =      2.961371  PERCENT

6.005.955.905.855.80
0
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15

20
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 (

V
)
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Fig. 11.11. Output voltage waveform and its Fourier components.

The estimation of the steady-state oscillation amplitude is not as simple
as for the BJT configuration. In contrast to the Bessel-function series for the
BJT with a sinusoidal drive, a single expression for the MOS device is not
available to model the transfer characteristic in both the off and normal active
regions of operation. A piece-wise solution is needed.

A solution for the steady-state oscillation amplitude has been developed
[29]. The result is a set of curves in terms of new variables f1(θc) and f2(θc).
The variables are related to the circuit parameters of the oscillator as follows:

f1(θc) =
d

nVT

(
1 − 1

n

)
RLIM (11.40)

where IM = k′

2
W
L V 2

T and VT is the threshold voltage of the device. The variable
d = VGA/VT is the normalized value of the assumed sinusoidal amplitude at
the gate of the MOS device. The amplitude of the output voltage is Vout =
ndVT .

f2(θc) =
ISS

1
IM

[
nVT

(1− 1
n )RL

]2

A study of these curves has lead to simple linear approximations [29].
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f1(θc) = 1.83f2(θc) − 0.186, f2(θc) ≤ 2.0 (11.41)
f1(θc) = 1.89f2(θc) − 0.3, 2 ≤ f2(θc) ≤ 7.0

The independent variable, θc, can be described as a cutoff angle. The device
is off for θc < θ < (2π − θc) where θ = ωot.

For a numerical example, choose the values given in Figure 11.10: ISS =
0.25 mA, RL = 27.5 kΩ,n = 4, VT = 0.45 V,W/L = 10, and VDD = 10 V. For
the circuit and device values, the calculated value of the van der Pol parameter
is ε = 0.1 and the oscillation frequency should be 10 MHz. The value of
IM = 30.38 µA leads to a value f2(θc) = 0.997. Using the first approx-
imation of (11.41), we obtain f1(θc) = 1.64. From (11.40), d = 4.71 and
Vout = ndVT = 8.48 V. From the waveform of Figure 11.11, the amplitude of
the output obtained from the simulation is 8.41 V.

11.6 Squegging

The transformer-coupled oscillators described and analyzed in the last two sec-
tions may exhibit an output such as shown in Figure 11.12. After a buildup in
oscillations, a collapse is suffered which is due to a large change in the charge
on the coupling capacitor, CE . This sequence of events means that we have
two oscillatory phenomena present at the same time. One is the near-sinusoidal
oscillation studied in the last two sections; the other is a relaxation-mode oscil-
lation produced by the charging and discharging of the bias coupling capacitor.
The combination of the two modes of oscillations is called ‘squegging’ [20]. In
this section, we analyze the situation and come up with a criterion to avoid
the squegging.

Time

Vout

off off

Fig. 11.12. Output from a single-device transformer-coupled oscillator that exhibits
squegging.

The circuit diagram of a BJT transformer-coupled oscillator is repeated in
Figure 11.13. We concentrate our attention now on the charging and discharg-
ing of CE . There is a change of charge of CE due to the pulsed current flowing
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through it. The current flowing out of the emitter, −IE = IC , has larger and
larger peaks as the oscillation builds up. This current must flow into CE from
left to right, since IEE is a constant bias source, and discharge CE . At the
quiescent bias state, CE is charged as illustrated in the figure. (VEX = VBE

across CE is positive from right to left at the quiescent bias point.) After a
period of time while the oscillation is building up to a steady-state level, the
average voltage across CE becomes sufficiently small to turn the transistor
off. The near-sinusoidal oscillation dies down as illustrated in Figure 11.12.
The capacitor voltage then charges because of the current source IEE . When
the average voltage, VEX , has built up sufficiently, the transistor reenters the
active region and near-sinusoidal oscillations again grow. With time, there is
the simultaneous existence of two modes of oscillation.

+ VCC

n : 1
k = 1

C RL L1 L2

CE

- VEE

IEE

VEX
+-

Fig. 11.13. A BJT transformer-coupled oscillator.

To avoid squegging, the value of CE must be small. From the above argu-
ment, as CE is made larger and larger, the change of charge will be slower,
but more and more certain. Little charge will decay during each cycle of the
near-sinusoidal buildup. We cannot expect that the charge of CE should de-
cay completely during a cycle of the near-sinusoidal oscillation. This would
defeat the need for ac coupling. But we can achieve a balance in the buildup
with the ‘free’ (transient) response of the circuit. In essence, we make the
time constant for the free response of the oscillator approximately equal to
the time constant for the buildup of charge on CE . Therefore, the charge on
CE during the buildup of oscillations can gradually approach the value needed
for bias-shift limiting without turning the oscillations off.
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The basic oscillator equation of the circuit of Figure 11.13 is from Equation
(11.12):

VEB + N(s)f(VEB) = −VEX − N1(s)IEE (11.42)

where N1(s) describes the free response of the circuit, after the application of
the bias sources.

N1(s) =
1
n2

Ls

LCs2 + LGs + 1
(11.43)

The characteristic equation for the free response alone is

s2 +
G

C
s +

1
LC

= 0 (11.44)

The natural modes of the free response are

exp(s1t), exp(s2t) (11.45)

and the natural frequencies of the free response are the roots of Equation
(11.44),

s1, s2 = − G

2C
± j

√
1

LC
−

(
G

2C

)2

(11.46)

The time constant, Tf , of the exponential decay envelope of the free response
is the reciprocal of the real part of the si.

Tf =
2C

G
= 2RLC (11.47)

Inspecting the charging of CE , one can propose that the time constant for the
buildup of charge during initial growth of the oscillation is

Tg =
1

gm
CE (11.48)

where the input resistance of the transistor, looking into the emitter, is ap-
proximately 1

gm
and gm is the small-signal transconductance of the transistor

at the quiescent bias point, i.e., the value during the startup of oscillations.
When the steady state has been attained or at least when the steady state
is approached, a ‘large-signal’ value of the device transconductance must be
used to investigate the buildup of charge on CE .

Ts =
1

Gm
CE > Tg (11.49)

where Gm is the ratio of the amplitude of the fundamental component of the
collector current, IcA, and the fundamental component of the base-emitter
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voltage [20]. From the developments of Section 11.3, the base-emitter voltage
in the steady state is VBE = −VEB = −Va + Vb cos ωot. Gm is

Gm =
IcA

Vb
(11.50)

We next introduce the fundamental of the output voltage, VoA.

VoA =
(

α − 1
n

)
RLIcA = nVb (11.51)

Therefore,

Gm =
n(

α − 1
n

)
RL

(11.52)

To avoid squegging, Ts ≈ Tf . Since squegging occurs during the buildup of
oscillation, (11.49) is too large an estimate and an intermediate value between
(11.48) and (11.49) is more appropriate, leading to

CE <
2nC(

α − 1
n

) (11.53)

For the circuit and device values of the example of Figure 11.6a, CE < 10
nF. The results of Figures 11.6b and c are obtained with CE = 5 nF. For
CE = 6 nF, squegging occurs as illustrated in Figure 11.14. Two periods of
oscillation are observed. After a cessation of near-sinusoidal oscillation, the
collector current builds up rapidly at the expected oscillation period ≈ 300
ns. The output voltage grows quickly. However, the transistor quickly turns
off and the collector current is negligible while the voltage across the tuned
circuit decays passively with a period of approximately 300 ns. After 3.2 µs,
the relaxation is over, and the collector current is again observed producing
a new burst of output voltage. For the circuit values of Figure 11.6, CE must
lie in the range 3 − 5 nF.
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Fig. 11.14. Output voltage and collector current waveforms.
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For a high-Q resonant circuit, the buildup of oscillations is very slow. In
these cases, squegging may be missed during a simulation run unless a large
transient simulation time is used.

From an analysis of MOS oscillators of the same transformer-coupled con-
figuration, the identical criterion to avoid squegging is obtained. In practice,
however, the squegging phenomenon is less severe because the square-law
nonlinearity of the MOS device in the active region produces less-strong har-
monics in the drain and source currents. Therefore, the pulse-type waveform
is not as effective in charging the coupling capacitor, and squegging is less of
a problem. Nonetheless, the coupling capacitor definitely cannot be too large,
and its value should satisfy Equation (11.53) with α = 1.

Some oscillators which are equivalent to or can be modeled by transformer-
coupled, single-device configurations are not plagued with squegging. An ex-
ample is the Colpitts oscillator which is studied in a later section.

11.7 Phase-Shift Oscillators

A useful technique to develop, study, and categorize oscillator configurations
is to concentrate on the stability condition at the equilibrium point. In par-
ticular, the positive-feedback arrangement for the linearized circuit about a
quiescent operating point is investigated. As an example, for the Wien-type
configuration of Section 10.6, the amplifier (gain block) at the quiescent bias
point provides positive gain with zero phase shift. The RC feedback circuit
provides a zero phase shift at the ‘resonant’ frequency. At the frequency of
interest, if the loop gain magnitude is greater than one with a phase shift of
zero, or a multiple of 360 degrees, the conditions for the build up of oscilla-
tions exist. The natural frequencies of the linearized oscillator are then in the
right-half plane. If they are also complex, a sinusoidal buildup of oscillations
occurs. Of course, whether a near-sinusoidal steady state is achieved depends
upon the limiting situation as described in the last sections.

A zero-phase loop gain is also provided by the transformer-coupled ECP
oscillator of Section 10.7. In the transformer-coupled, single-device circuit of
this chapter, the common-base transistor in Figure 11.3b again provides a
zero-phase current gain, and the transformer coupling also provides zero phase
shift. If the circuit is modified to provide collector-to-base feedback, as in
Figure 11.8, the common-emitter stage provides a net phase reversal and the
polarity of the transformer must be such as to provide another phase reversal
to achieve a phase for the loop gain of 180◦ + 180◦ = 360◦.

Phase-shift oscillators are those that provide a positive loop gain con-
dition at the quiescent-bias state, but do not use transformers directly. The
Wien-type oscillator is then a phase-shift oscillator. Another example is shown
in Figure 11.15a, where biasing elements are not shown for simplicity. The
common-emitter transistor provides a net phase reversal and a lowpass, one
L, two C filter can produce at infinite frequency a total of −270 degrees phase
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shift. The magnitude and phase characteristics for the sinusoidal steady state
are sketched in Figure 11.15b. At a finite frequency, ωo, the phase shift is -180
degrees, and the phase condition for the buildup of oscillations is present. If
the loop-gain magnitude exceeds one, build up occurs. This configuration is
one form of the Colpitts oscillator and is studied in the next section.

ω

ω

ω0

mag

arg

-270o

-180o

(a) (b)

Fig. 11.15. (a) A phase-shift oscillator. (b) Magnitude and phase responses for the
sinusoidal steady state.

In Figure 11.16a, the phase-shift network is a high-pass filter, with two L
and one C. As shown in Figure 11.16b, a total of +270 degree of phase shift
is available near dc, and at one frequency the phase shift is 180◦. This circuit
is one form of the configuration of the Hartley Oscillator.

In Figure 11.17a, a bandpass filter is present. This circuit can be arranged
to obtain the configuration shown in Figure 11.17b. This circuit is called the
tuned-input, tuned-output oscillator. Notice that the series capacitor of the
filter becomes the feedback capacitor from output to input.

Of course, MOS devices can be used in place of the BJT to obtain other
phase-shift oscillators.

As a final example of phase-shift oscillators, RC filters can be used to
provide the necessary phase shift as in the Wien-type oscillator. A lowpass
version is shown in Figure 11.18a. At least three capacitors are needed to
provide a phase shift greater than 180 degrees as illustrated in Figure 11.18b.
Because of the loss due to the RC filter, the gain element must provide more
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ω

ω

ω0

mag

arg

(a) (b)

180o

270o

Fig. 11.16. (a) Oscillator with a high-pass filter phase network. (b) Magnitude and
phase responses for the sinusoidal steady state.

gain magnitude at the 180 degree-phase frequency than is usually needed for
an LC filter. A distributed RC delay line can also be used in place of the
lumped filter, as illustrated in Figure 11.18c. Often, this is the configuration
usually referred to when the term phase-shift oscillator is used without other
qualifiers.

Continuing the above line of reasoning, one can also propose to use an LC
distributed structure, i.e., an LC delay line, to produce the desired phase shift
at a given frequency.

It should now be clear that innumerable oscillator configurations can be
proposed using the phase-shift approach as the vehicle. This is particularly
helpful when ac coupling elements are present or desired. For dc coupled cir-
cuits, and including transformer-coupled circuits in which the transformers
have close coupling, circuit manipulations can be used to provide a negative
conductance I-V characteristic to the resonant circuit. Alternately, a differen-
tial equation of the type developed in the last chapter can be obtained. For
either case, it is often possible to utilize the evaluation and design techniques of
the tunnel-diode, the Wien-type or the transformer-coupled ECP oscillators
of the last chapter. Alternately, a form of the basic oscillator equation can
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gain block Filter

(a)

(b)

Fig. 11.17. (a) Oscillator with a band-pass filter phase network. (b) An alternate
representation.

be developed, often using approximations to obtain simple desired network
functions together with multiplying modifiers, as used in Section 8.3.

In the next section, the nonlinear analysis technique of the present chapter
is used for one of the phase-shift circuits. In the last section of this chapter,
phase-shift arguments are used to study crystal-controlled oscillators, oscilla-
tors which provide a very precise steady-state output frequency.

11.8 The Colpitts Oscillator

In the last section, the Colpitts configuration is introduced from the stand-
point of a phase-shift oscillator using a lowpass filter to provide −180◦ phase
shift at the desired oscillation frequency. In this section, we relate this con-
figuration to the single-device, transformer-coupled circuit in order to use its
steady-state results.

The circuit presented in the last section for the Colpitts oscillator is re-
peated in Figure 11.19a, where the loss element (the resistor) has been relo-
cated across the inductance. Again, biasing elements are not included. One
rearrangement of the circuit is that of Figure 11.19b. In this figure, bias
arrangements are also included. The current source, IEE , is usually realized
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ω
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ω0
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arg

-270o

-180o

(a) (b)

(c)

Fig. 11.18. (a) A RC lowpass phase network. (b) Magnitude and phase responses.
(c) A distributed RC delay line filter.

with a resistor, negative-voltage-supply combination. Another circuit re-
arrangement is shown in Figure 11.19c. The transistor is now shown in the
common-base connection, and the feedback to the emitter lead is via a capac-
itor voltage divider. This use of a capacitive voltage divider is comparable to
that of the transformer-less ECP oscillator of Section 10.8. If the circuit of
Figure 11.19c is compared with the configuration of Figure 11.3b, it is seen
that for the present circuit, the capacitive voltage divider takes the place of the
single capacitor and the (ideal) transformer. As in Section 10.8, we model the
two capacitors with this combination as shown in Figure 11.19d and Figure
11.20. The equivalent turns ratio is determined by the voltage-divider ratio.

ne =
C1 + C2

C1
(11.54)
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+ VCC

RL L1

- VEE

C1

C2

(a)

(b)

+ VCC

GIEE

C1

C2

V2

(c)

+ VCC

G LIEE

V2

Ce

ne : 1

Ideal

(d)

IEE

L

Fig. 11.19. (a) Colpitts oscillator circuit. (b) One rearrangement of the circuit.
(c) Another circuit rearrangement. (d) Equivalent circuit with the capacitor divider
replaced by a transformer.

The equivalent tuned-circuit capacitor is the input capacitance of the volt-
age divider.

Ce =
C1C2

C1 + C2
=

C2

ne
(11.55)

The modeling is confirmed with the simulations of Section 10.8 and is
further confirmed through the use of the basic oscillator equation with the
exact circuit of Figure 11.19c. This is done later in this section.

With the circuit of Figure 11.19d, we have returned to the oscillator con-
figuration of Section 11.3 and can use the results of that section directly in
evaluation and design.
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C1

C2

ne : 1

Ce

ne = C1 + C2
C1

Ce = C1C2
C1 + C2

Ideal

Fig. 11.20. Equivalent circuit model for the capacitor divider.

For a numerical example, consider the circuit in Figure 11.21a. The circuit
and device values are given in the Spice input file of Figure 11.21b. The
quiescent bias state is

IC ≈ IEE =
(10 − .8)

4.65k
= 1.98 mA (11.56)

VCE = 10 − (−.8) = 10.8 V

The equivalent turns ratio and the tuned-circuit capacitance are

ne = 10 (11.57)
Ce = 450 pF

For the starting condition of oscillation, we calculate ε from (11.21).

ε =
√

L

Ce

[(
α − 1

n

)
gm

αn
− 1

RL

]
(11.58)

For the numerical values, 1/gm has the value of 13.2, and α = 0.99.

ε =

√
5 × 10−8

4.5 × 10−12

(
1

147
− 1

750

)
= 0.58

Therefore, we expect an oscillatory buildup with the rate ε/2 = 0.29. The
oscillation frequency should be approximately

fo =
1

2π
√

LCe

= 3.36 MHz (11.59)

The period of the oscillator waveform should be 1/fo = 298 ns.
In the steady state, we assume initially that the emitter-base drive is large,

and that the parameter d > 6. The output voltage magnitude is

VoA = 1.9
(

α − 1
n

)
RLIEE = 2.5 V (11.60)

The ac power output developed in RL is
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BJT COLPITTS OSC, FIG 11.21
.TRAN 15N 10U 9.3U 15N
*.TRAN 15N 3U
*.PLOT TRAN V(3,1)
.PLOT TRAN V(2) I(VC1)
.FOUR 3.39MEGHZ V(2)
R1 1 0 1
Q1 9 1 3 MOD1
VC1 2 9 0
VCC 4 0 10
RL 4 2 750
*RL 4 2 2.6K
C1 2 3 500P
C2 4 3 4500P
L1 4 2 5UH
RE 3 6 4.65K
VEE 6 0 -10 PULSE -15 -10 0 0 0 1S
.MODEL MOD1 NPN IS=1E-16 BF=100 RC=10
.OPTIONS LIMPTS=5000
.OPTIONS RELTOL=1E-6 ITL5=0
.WIDTH OUT=80
.END

+ VCC

RL L1

RE

- VEE

C1

C2

IEE

(a) (b)

Fig. 11.21. (a) Colpitts oscillator circuit. (b) Spice input file.

Pac = 4.2 mW (11.61)

The dc power input to this circuit depends on how the current source is
realized. For the VEE = −10 V and REE = 4.65 kΩ combination,

Pdc = (VCC + VEE)IEE = 39.6 mW. (11.62)

The estimated conversion efficiency is then

η = 11% (11.63)

For the Spice simulation of this circuit, the collector voltage and collector
current waveforms are as shown in Figure 11.22a. In the steady state, the
observed period of the oscillation is approximately 295 ns. From the harmonic
components of the output voltage in Figure 11.22b, VoA = 2.55 V, HD2 =
8.4% and THD = 9.2%. Another simulation run shows that the average bias
shifts from 0.79 V to 0.59 V over the buildup of oscillations. The collector
current waveform is also shown in Figure 11.22a. It is clear that the operation
is definitely Class C with a high peak current.

It is shown easily that squegging is not a problem for the Colpitts oscillator
in spite of the ac (capacitor) coupling from the tuned circuit to the gain
element input (emitter). Using Equation (11.53), we note that the coupling
capacitor in this case can be considered to be C1 while the tuned-circuit
capacitor is Ce = C1C2/(C1 + C2). Therefore from (11.53), C1 must be less
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(a)

(b)
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(2)    
 DC COMPONENT =   1.000D+01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      3.390D+06   2.551D+00     1.000000     2.504       0.000
     2      6.780D+06   2.139D-01     0.083874    21.122      18.618
     3      1.017D+07   8.662D-02     0.033959   113.031     110.527
     4      1.356D+07   3.886D-02     0.015234  -144.288    -146.792

     TOTAL HARMONIC DISTORTION =      9.241260  PERCENT

Fig. 11.22. (a) Steady-state collector voltage and current waveforms. (b) Fourier
components of the output voltage.

than 2neCe = 2C2. This condition is usually true, and squegging does not
occur.

To check on the voltage-divider, transformer approximation, the basic os-
cillator equation for the circuit of Figure 11.19b can be developed. From the
circuit equations, the result has the form

v1 + N(s)Na(s)f(VEB) = No(s)Ao (11.64)

where Ao represents the bias sources, and

N(s) =
−1
ne

s/Ce(
s2 + G

Ce
+ 1

LCe

) (11.65)

Na(s) = α − 1 − 1
s2LC1

− G

C1s

Ce = (C1C2)/(C1 + C2) is the pertinent capacitance of the passive, resonant
circuit consisting of L, Ce, and G, and the parameter ne = (C1 + C2)/C1

can be identified as the turns ratio of the equivalent transformer introduced
in the earlier development. N(s) is the function developed on the basis of
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an equivalent transformer except for the absence of the constant multiplier
(α − 1/ne).

The function Na(s) for the ideal transformer-coupled oscillator is

Na(s)|ideal =
(

α − 1
n

)
(11.66)

For the present circuit, we investigate Na(jωo), the response of Na(s) at
the resonant frequency of the tuned circuit, ω2

o = 1/(LCe). The result is

Na(jωo) =
(

α − 1
ne

)
+ j

(
ne − 1

ne

)
1
Q

(11.67)

where Q is the quality factor of the passive tuned circuit

Q =
RL√

L
Ce

(11.68)

For large Q and for ne > 1, the reactive term in Equation (11.67) is
negligible, and the basic oscillator equation for the transformer-coupled ap-
proximation is valid.

The Hartley oscillator configuration also can be modeled with a trans-
former, and the results of Section 11.3 can be used to evaluate and design the
Hartley oscillator. For this circuit, the rearrangement of the circuit leads to
that of Figure 11.23a. The inductive combination L1 and L2 constitutes a volt-
age divider that can be replaced with an equivalent inductance Le = L1 +L2,
and an ideal transformer of turns ratio, ne = (L1+L2)/L2, as shown in Figure
11.23b. The evaluation and design proceed as above for the Colpitts.

MOS transistors can be used in place of the BJT to obtain the MOSFET
versions of the Colpitts and Hartley oscillators. A solution for the steady-state
oscillation amplitude for the MOS Colpitts oscillator that includes the cutoff,
triode, and saturation regions of operation is available in [30].

11.9 Crystal-Controlled Oscillators

The piezoelectric crystal is an electro-mechanical device which exhibits a sharp
frequency selective response. Equivalent Q values in excess of 10,000 are avail-
able. When used in bandpass amplifiers and oscillators, the very sharp reso-
nances produce excellent frequency rejection for amplifiers and very sinusoidal
outputs for oscillators with little harmonic content.

The piezoelectric crystal (often abbreviated xtal) is a material such as
quartz. The xtal is precisely ground and polished to achieve exact dimen-
sions. Two opposite sides of the xtal are plated and thus act as the plates of
a capacitor. When excited by a voltage, the xtal displays a mechanical res-
onance. This resonance is coupled back into the electric circuit and can be
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Fig. 11.23. (a) Hartley oscillator circuit. (b) An equivalent circuit.

modeled as an electrical resonant circuit. The schematic diagram of a xtal
and the electric circuit model of a xtal and its ‘holder’ or plates are shown
in Figures 11.24a and b. The series resonant circuits model the mechanical
resonances, one for each harmonic of the structure. The value of the series-
loss resistors can be as low as 10 Ω. The shunt capacitor, Co, represents the
capacitance of the ‘holder.’

R C L

Co

(a) (b)

Fig. 11.24. (a) Schematic diagram and (b) circuit model of a crystal.

For a typical xtal which is series resonant at its fundamental of 1.59 MHz,
the values of the circuit elements of the model are

R = 125 Ω,L = 250 mH, C1 = 0.04 pF, Co = 4 pF (11.69)

The Q of the series resonance is
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Q =
1
R

√
L

C1
= 20, 000 (11.70)

For another example, a xtal resonant at 20 MHz has a value of R of 16.3 Ω,
C1 = 0.009 pF with a Q of 54,600. The value of Co is 2.3 pF.

The Pierce oscillator is a common configuration for a xtal-controlled os-
cillator. To evolve a MOS version, we start with a phase-shift version of the
Colpitts circuit shown in Figure 11.25a. Next, the inductance of the filter is
replaced with a xtal as illustrated in Figure 11.25b. A bias and load arrange-
ment for the inverter is shown in Figure 11.25c. Note that a depletion-mode
MOS device is used as a load resistor. Bias resistors R1 and R2 can also be
realized with small MOS devices. The xtal, for a frequency very near the se-
ries resonance of the xtal and just above resonance, will provide the necessary
inductance for the feedback filter. The circuit can be redrawn as in Figure
11.25d to obtain the usual Pierce configuration for a MOS oscillator [31],
[32]. An alternative configuration of this type of oscillator is shown in Figure
11.25e. One side of the xtal is grounded for this circuit. In this circuit, the gain
transistor is M1 while M2 provides a current source. M3 is a high-resistance
coupling element connecting the gate of M1 to the voltage divider, R1 and
R2. By a change of ground point, the relation to the Pierce oscillator can be
established.

A xtal-controlled oscillator for a bipolar circuit is shown in Figure 11.25f.
The amplifier element of the oscillator is an emitter-coupled pair. As used in
the circuit of Figure 10.18a, a capacitive voltage divider is included in the
resonant circuit. Feedback to the ECP input is provided by the xtal. Because
of the very sharp resonance property of the xtal, feedback is only effective very
near the series resonance of the xtal. Thus, although the ‘tank’ circuit is tuned
close to the desired oscillation frequency, the actual oscillation frequency is
set by the xtal. If two balanced bias resistors are used with the ECP, the one
on the right is bypassed with a capacitor which cannot be made too large, or
squegging can occur.

From these examples, it is clear that xtal-controlled oscillators can be
achieved starting from a large variety of oscillator configurations, using either
the series resonance or the shunt resonance of the xtal to provide the necessary
reactance or to inhibit or permit oscillation at the xtal frequency. Usually the
design of an oscillator for steady-state performance starts without the xtal.
The xtal is then introduced, and the design modified as needed [32], [33].

In commercially available ICs, the equivalent circuit within the IC contains
many more devices than shown in the circuit diagrams of the last two chapters.
Usually, very precise bias circuits are included so that the oscillator is not
supply-voltage or temperature dependent. Terminals are made available to
connect a desired resonant circuit, e.g., a LC tuned circuit or a xtal.
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Fig. 11.25. (a) Phase-shift version of the Colpitts oscillator. (b) Inductance replaced
by a crystal. (c) Bias and load arrangement for the inverter. (d) A rearrangement
of the circuit.

Problems

11.1. An oscillator configuration is shown in Figure 11.26.
(a) Design the circuit to achieve an oscillation frequency of 100 MHz with a
van der Pol parameter of 0.3.
(b) Establish the effects on the performance of the circuit if the transistor
parameters include VA = 100 V, RB = 100 Ω, Cje0 = Cjc0 = 0.1 pF and
τF = 0.1 ns.

11.2. A transformer-coupled oscillator configuration is shown in Figure 11.27.
(a) Determine whether oscillations will build up from the quiescent state and,
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Fig. 11.25. (e) An alternate configuration for the Pierce oscillator. (f) A crystal-
controlled bipolar oscillator circuit.

if so, with what van der Pol parameter.
(b) What is the frequency of steady-state oscillations?
(c) Estimate the value of the steady-state amplitude of the fundamental of
the output voltage.
(d) Verify your analysis results with Spice.

11.3. An oscillator configuration is shown in Figure 11.28. The quiescent col-
lector current is 2 mA.
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Fig. 11.26. Oscillator circuit for Problem 11.1.
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Fig. 11.27. Oscillator circuit for Problem 11.2.

(a) Design the circuit to achieve an oscillation frequency of 100 MHz with a
van der Pol parameter of 0.5.
(b) Estimate the value of the steady-state amplitude of the fundamental out-
put voltage.
(c) Determine the ac power dissipated in the 10 kΩ resistor.
(d) Verify your analysis results with Spice.

11.4. Design a BJT Colpitts oscillator for an oscillation frequency of 30 MHz.
The power supply is ±10 V and the average power dissipation cannot exceed
20 mW. The BJT parameters are β = 100, IS = 10−16 A.
(a) Estimate the value of the steady-state amplitude of the output voltage.
(b) Redesign the oscillator with the BJT replaced by a MOSFET with k′ =
30 µA/V2, VT = 0.5 V.
(c) Verify your analysis results with Spice.

11.5. An oscillator configuration is shown in Figure 11.29.
(a) Find the minimum value of ISS for which oscillations will build up from
the quiescent state.
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C1

C2

βF = 100

10 kΩ

L

IS = 10-16 A

Fig. 11.28. Oscillator circuit for Problem 11.3.

(b) What is the frequency of steady-state oscillations?
(c) Estimate the value of the van der Pol parameter and the steady-state
amplitude of the fundamental of the output voltage for ISS = 1 mA.
(d) Verify your analysis results with Spice.

+10 V

-10 V

vo

ISS

0.45 µH 10 kΩ

28.125 pF

112.5 pF

W
L

 = 10

VT = 0.7 V
k' = 30 µA/V2

λ = γ = 0

Fig. 11.29. Oscillator circuit for Problem 11.5.

11.6. An oscillator circuit is shown in Figure 11.30.
(a) Derive an expression for the start-up condition of this oscillator.
(b) What is the frequency of steady-state oscillations?
(c) What is the Q of the tuned circuit?
(d) For the given bias conditions will oscillations build up from the quiescent
state?
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(e) Calculate the amplitude of the voltage at the gate. Assume that the fun-
damental of the drain current is 1.9ISS .
(f) Verify your analysis results with Spice.

+3 V

-3 V

W
L

 = 200

λ = γ = 0

k'  = 250 µA/V2

VT = 0.5 V

10 kΩ

200 nH
100 pF

400 pF
0.1 mA

Fig. 11.30. Oscillator circuit for Problem 11.6.

11.7. An oscillator circuit is shown in Figure 11.31.
(a) Derive an expression for the start-up condition of this oscillator.
(b) What is the frequency of steady-state oscillations?
(c) What is the minimum value of the resistance R for this circuit to oscillate?
(e) Calculate the amplitude of the voltage at the gate. Assume that the fun-
damental of the drain current is 1.9ISS and R = 10 kΩ.
(f) Verify your analysis results with Spice.

+3 VW
L

 = 62.5

λ = γ = 0

k' = 250 µA/V2

VT = 0.5 V

211 nH

100 pF

400 pF
0.2 mA

120 pF

+1.5 V

R

Fig. 11.31. Oscillator circuit for Problem 11.7.

11.8. An oscillator circuit is shown in Figure 11.32a. Assume the inductor is
on chip and has a series resistance, RS .
(a) Show that the equivalent impedance between the drain and gate of the
MOSFET, ZDG(s) is given by the equivalent circuit representation of Figure
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11.32b.
(a) Derive an expression for the start-up condition of this oscillator.
(b) What is the frequency of steady-state oscillations?
(c) What is the minimum value of the inductor Q for this circuit to oscillate?
(e) Calculate the amplitude of the voltage at the drain of the MOS transistor.
Assume that the fundamental of the drain current at the oscillation frequency
is 1 mA and the series resistance of the inductor is 2 Ω.
(f) Using the result of (d) calculate the amplitude of the gate voltage.
(g) Verify your analysis results with Spice.

+3 V

100 pF

400 pF

1 mA

W
L

 = 200

λ = γ = 0

k' = 250 µA/V2

VT = 0.5 V

200 nH

C1

C2

D

G

(a) (b)

ZDG(s)

1
sC1

1
sC2

gm

s2C1C2

Fig. 11.32. Oscillator circuit for Problem 11.8.
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Relaxation and Voltage-Controlled Oscillators

12.1 Relaxation-Mode Oscillations

In the last two chapters, oscillators that were studied can be described or
modeled in the steady state with the basic oscillator equation,

x + N(s)f(x) = Ao (12.1)

where f(x) is a device and/or circuit nonlinearity and Ao represents a constant
voltage or current source.

The nonlinear, time normalized, differential equation describing these os-
cillators has the form

d2x

dT 2
+ α

d

dT
F (x) + x = A′

o (12.2)

where F (x) is the combined, total nonlinearity and α and A′
o are constants.

In Chapter 10, oscillators are studied for which the total effective nonlin-
earity, F (x), is antisymmetric about the quiescent operating point. For these
oscillators, near-harmonic oscillations are obtained in the steady state partic-
ularly if the van der Pol parameter ε of the characteristic equation at the
equilibrium point is positive and small.

The normalized characteristic equation is

p2 − εp + 1 = 0 (12.3)

ε = −α
dF (x)

dx

∣∣∣∣
x=0

(12.4)

For a small value of ε, the natural frequencies (p1, p2) of the linearized
system about the equilibrium point are complex and lie in the right-hand
plane near the jω axis, as illustrated in Figure 12.1a. For a small excitation,
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jω

σ Time

(a) (b)

P1

P2

Time

(c) (d)

P1 P2

jω

σ

+ VCC

- VEE

n : 1

+

-

k = 1

Q1 Q2

ib1

IEE

L = l11

nv1 v1

+

-

C R

(e)

Fig. 12.1. (a) Natural frequencies of the system. (b) Buildup of oscillations. (c)
Natural frequencies for ε > 2. (d) Exponential growth of the oscillation. (e) An EC
pair oscillator circuit.
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the buildup of oscillations is a sinusoidal growth, as sketched in Figure 12.1b
and as illustrated by the examples of the last two chapters.

If the ε parameter is positive and greater than 2, the natural frequencies of
the linearized system at the equilibrium point are real, as illustrated in Figure
12.1c, and the growth of the oscillation is exponential as shown in Figure
12.1d. The ever-increasing exponential grows until a loss portion of the total
nonlinearity is reached. The growth of the circuit variable then stops. If the
positive-slope regions of F (x) are not steep, the passive circuit can provide an
almost half cycle, slightly damped sinusoidal response. The complete cycle of
steady-state operation is a distorted sinusoid. This type of response is explored
more fully in the next section but can also be illustrated with circuit simulation
using an ECP oscillator, such as that given in Figure 10.12a and repeated in
Figure 12.1e. In the Spice input circuit file of Figure 12.1f, the inductance
and capacitor values are such as to provide ε = 3.84. The output voltage
response is shown in Figure 12.1g, together with the harmonic components of
the output voltage waveform. As noted on the waveform, exponential growth
segments can be identified, followed by a resonant half-cycle response. The
oscillation period is 105 µs, somewhat longer than 2π

√
L2C = 100 µs. The

even harmonics of Vo(t) are very small and HD3 = 9.1% is the major harmonic
distortion factor. The behavior of this oscillator is described further in the next
section.

If during the exponential growth of the voltage or current variable, new
nonlinear regions of device operation are encountered, e.g., BJT saturation,
the initial nonlinear differential equation, (12.2), is no longer valid. However,
the oscillation frequency can remain close to the resonant frequency of the
tuned circuit.

Usually, tuned circuits per se are not included in a relaxation oscillator
although energy-storage elements are essential and govern the recovery peri-
ods. In a relaxation oscillator, the active devices of the oscillator act more
like on-off switches rather than piece-wise-linear amplifiers. The major time
segments of the oscillation period occur when the devices are off or full on
rather than in the active regions.

Initially, in this chapter, a graphical analysis of a basic oscillator is used
to develop further the ideas presented above. Relaxation oscillator examples
are then brought in for both BJT and MOS devices. The concepts which
are gained from the graphical analysis are very helpful in understanding the
fundamentals of the operation of these examples. However, the steady-state
operation of the oscillator can be established directly from the understanding
of the circuit operation, and the recovery periods can be evaluated indepen-
dently. The exponential growth segments of the oscillation period are treated
separately or are assumed to be very short and are neglected.

The chapter concludes with an examination of oscillators with periods that
can be easily controlled by voltage or current sources.
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ECP OSCILLATOR, FIG 12.1
L22 1 0 95.68N
L11 5 6 38.24U
K1 L11 L22 1
RC1 6 2 1
Q11 2 1 10 MOD1
Q12 9 7 10 MOD1
VB2 7 0 0.0
VC2 5 9 0
CL 5 6 6.625P
RL 5 6 3K
IEE 10 13 PULSE 3MA 4MA 0 0 0 1S
VEE 13 0 -10
.TRAN 5N 4U 3.8U 5N
.FOUR 9.524MEGHZ V(9)
.PLOT TRAN V(9)
VCC 6 0 10
.MODEL MOD1 NPN BF=100 IS=1E-16
.OPTIONS RELTOL=1E-4 ITL5=0 LIMPTS=1000
.END

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(9)    
 DC COMPONENT =   9.996D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      9.524D+06   7.469D+00     1.000000   172.923       0.000
     2      1.905D+07   3.336D-02     0.004466  -175.348    -348.271
     3      2.857D+07   6.808D-01     0.091148    67.138    -105.785
     4      3.810D+07   2.110D-03     0.000282   121.612     -51.311
     5      4.762D+07   1.996D-01     0.026721    28.293    -144.630
     6      5.714D+07   8.066D-03     0.001080  -159.719    -332.642
     7      6.667D+07   8.335D-02     0.011158    -6.956    -179.879
     8      7.619D+07   7.018D-03     0.000940   141.051     -31.871
     9      8.572D+07   4.643D-02     0.006216   -44.142    -217.064

     TOTAL HARMONIC DISTORTION =      9.595365  PERCENT

(g)

(f)

4.003.953.903.853.80
0

5

10

15

20

V
(9

) 
 (

V
)

Time (µs)

eat eat

Fig. 12.1. (f) Spice input file. (g) Output voltage waveform and its Fourier com-
ponents.
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12.2 Oscillator Graphical Analysis

To obtain a graphical representation of the growth and steady-state nature
of the oscillation, we start with the nonlinear, time normalized, differential
equation of the oscillator (12.2) and introduce state variables and plots on
the state plane. The state-variables are labeled x and y where

y =
dx

dT
(12.5)

From (12.2) and (12.5), using incremental variables whereby A′
o can be ne-

glected, we obtain

dy

dT
+ α

dF (x)
dT

+ x = 0 (12.6)

Alternately,

dy

dT
+ α

dF (x)
dx

dx

dT
+ x = 0

Equations (12.5) and (12.6) can be rearranged to obtain the usual state-
equation form

dx

dT
= y (12.7)

dy

dT
= −

[
α

dF (x)
dx

y + x

]
(12.8)

The state plane is the x− y plane. A plot of the locus of the oscillation in
the state plane provides a graphical portrait of the response.

At a point in the state plane, (x1, y1), the ratio of the two state equations
gives the slope of the oscillatory trajectory of the response when it is at that
point.

slope |(x1,y1) =
dy

dx

∣∣∣∣
(x1,y1)

=
dy
dT
dx
dT

(12.9)

= −αF ′(x1)y1 + x1

y1

where

F ′(x1) =
dF (x)

dx

∣∣∣∣
x1

(12.10)

The slope, (12.9), can be plotted as shown in Figure 12.2a. The locus of
the response of the oscillator, following an initial state or excitation, can be
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estimated by choosing a sequence of points, choosing each new point a short
distance along the slope line of the previous point. This can be a tedious
procedure since a new calculation and slope plot are needed at each point. But
the principal value of the technique lies in the insight the procedure provides.
In particular, notice that for a steady-state oscillation, the trajectory of the
response (the locus) must be a closed path as illustrated in Figure 12.2b.

y

x

y

x

y

x

y1

x1

(a) (b) (c)

slope

Fig. 12.2. (a) Plot of the slope. (b) The trajectory of the response for a steady-state
oscillation. (c) Locus of the state at steady state.

It is necessary to stress that no bias-point shift is permitted during the
build up of oscillations, such as encountered with the oscillators of Chapter
11. With a virtual bias-point shift, A′

o changes and the incremental variables
have a new reference, modifying the plot.

For an ideal resonator, it is a simple matter to show that the state-plane
locus is a circle. This fact can be used to evaluate the performance and char-
acteristics of other oscillators. For the ideal resonator, the total nonlinear
function in (12.2) is absent, F (x) = 0. The oscillator differential equation and
the corresponding state equations are

d2x

dT 2
+ x = 0 (12.11)

dx

dT
= y (12.12)

dy

dT
= −x (12.13)

The solution of these equations is

x(T ) = C cos T (12.14)
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y(T ) = −C sinT (12.15)

Notice that

x2 + y2 = C2
[
cos2 T + sin2 T

]
= C2 (12.16)

Therefore, the locus of the state with time in the x − y plane is circular
for any initial excitation. This is illustrated in Figure 12.2c. In general, it is
clear from the locus and from the corresponding time responses for x(T ) and
y(T ), if the closed locus for an oscillator is almost circular, near-harmonic
oscillation is realized.

It is convenient to plot αF (x) on the state plane as shown in Figure 12.3.
The slope of αF (x) at the equilibrium point, x = 0, is equal to −ε. We know
from the results of the last two chapters that if the parameter ε is small, the
plot of αF (x) is very shallow as shown by Curve A in the figure. It follows
that if ε is small, the steady-state oscillation is near sinusoidal, and that the
locus of the state-plane trajectory is almost circular.

xA

AB

B

B'

B'

slope = - ε

αF(x)

Fig. 12.3. Plot of αF (x) on the state plane.

For ε > 2, we expect that the plot of αF (x) is not shallow. In some cases
a sharp N-type characteristic is obtained as illustrated by Curve B in Figure
12.3. However, the positive slope regions may be quite flat, as in Curve B′.
The latter is the case for the oscillator of Figure 12.1e. If no bias point shift
is to be produced during the buildup of oscillations, the plot of αF (x) should
be antisymmetric about the quiescent bias point, i.e., the origin of the state
plane with incremental variables.

Although we can continue to deal with the regular state plane, it is more
convenient for ε > 2 cases to use a ‘modified state-plane.’ An auxiliary vari-
able, rather than the usual state variable, is chosen.

y =
dx

dT
+ αF (x) (12.17)

The modified state equations from the original equation, (12.2), are
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dx

dT
= y − αF (x) (12.18)

dy

dT
= −x (12.19)

where incremental variables are used and A′
o can again be neglected. The slope

of the response trajectory in the new plane at a point x1, y1 is

dy

dx

∣∣∣∣
(x1,y1)

= − x1

y1 − αF (x1)
(12.20)

Lienard [34] proposed a very simple graphical technique to obtain the slope
of the trajectory in this new plane. It is shown easily that the slope in (12.20)
is the negative normal of the straight line drawn from the point (x1, y1) to
the point (xa = 0, ya = αF (x1)). This is illustrated in Figure 12.4a. As a
consequence, the desired slope of the trajectory is the tangent of the arc of a
circle drawn through (x1, y1) with a center at (xa, ya).

x

y

αF(x)

y1

x1

(a)

x

y

Lienard plane

(b)

(xa = 0,  ya)

Fig. 12.4. (a) Graphical technique to obtain the slope. (b) Locus of the oscillator
response in the Lienard plane.

In the modified state plane, usually referred to as the Lienard plane, the
construction of the locus of the oscillator response starts with the plot of the
total nonlinearity multiplied by the constant, α, as shown in Figure 12.4b. An
arbitrary point can be chosen, the points xa and ya are determined from the
plot, a circular arc is drawn through x1, y1 and a new point is chosen near the
first along the arc and a new arc center is established. Ultimately, we expect
to achieve a closed locus for the steady-state situation.

The above construction is of course only possible and valid if the bias point
does not shift due to even-ordered harmonic generation. The plot must remain
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fixed with respect to the equilibrium point. Nonetheless, the portrait of the
oscillator in the state plane or the Lienard plane is valuable in establishing
the nature of the oscillator behavior.

For typical relaxation oscillators, the parameter ε is greater than 2 and the
positive slope regions are steep as shown in Figure 12.5a. A typical Lienard-
plane locus is also shown in Figure 12.5a. It can be shown from an investigation
of the instantaneous angular velocity of a point on the closed locus that the
locus is very close to the steep positive slope regions of αF (x). In the positive
slope segments, the active devices are passive. If the slopes of these segments
are steep, the circuit is in a slow recovery segment of the oscillation. The locus
is almost horizontal at the top and the bottom of the locus, moving from one
passive region to the other. These last segments of the locus are due to the
fast regenerative switching intervals. For relaxation oscillators, the locus for
the steady-state response is almost a parallelogram in the Lienard plane.

regenerative

recovery

x

y

a

b

c

d

(a) (b)

Fig. 12.5. (a) A typical Lienard-plane locus for a relaxation oscillator. (b) A dif-
ferent shape for the Lienard-plane locus.

If ε > 2, but the positive regions are shallow, as for Curve B’ in Figure
12.3, the Lienard-plane locus can have a shape as sketched in Figure 12.5b. As
brought out in the Spice simulations leading to Figure 12.1g, a fast exponential
growth occurs during Segments a and c of the locus in Figure 12.5b. During
Segments b and d, the damping of the tuned circuit is small and a ‘fly wheel’-
type of response is produced for approximately one-half cycle for each segment.
The locus is somewhat circular.

As a final point, it is to be noticed from (12.5) and (12.18) that the state
plane is a distorted Lienard plane with respect to the x axis, and vice versa.
In the Lienard plane, the x axis for the state plane is the αF (x) curve. The
closed locus in the state plane for a relaxation oscillator can be deduced from
this fact. The state-plane locus corresponding to that of Figure 12.5a is shown
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in Figure 12.6. Clearly in the state plane, the geometric form of the locus of
a relaxation oscillation is not a simple parallelogram.

y

x

αF(x)

limit cycle in
phase plane

Fig. 12.6. State-plane locus corresponding to Figure 12.5 (a).

12.3 Regenerative Switching in a Relaxation Oscillator

As pointed out in the earlier sections, in a relaxation oscillator, exponential
growth is produced rather than a growing sinusoidal response when the circuit
is in the ‘active’ region of operation, i.e., the negative conductance region, or
when the devices are in the active region. This type of response is referred to
as the ‘regenerative-switching’ mode. In this section, this type of switching is
examined for the typical loop-coupled (which can also be redrawn as cross-
coupled) circuit shown in Figure 12.7a. For this circuit, it is assumed that
the bias resistors, RB and RC , are such that without capacitor coupling, both
devices are in the active region of operation. With coupling and for reasonably
large values of capacitances, the capacitors can be considered to be dc voltage
sources (generalized short circuits). Clearly, a positive feedback connection
exists.

We now ‘follow through’ the response of the circuit where it is assumed
that both transistors are in the normal operating region. A small voltage or
current perturbation at the base of Q1 is amplified by Q1 with a voltage
phase reversal. This is coupled directly to the base of Q2 where again an
amplification occurs with another phase change leading to positive feedback at
the base of Q1. If the loop gain is greater than one, regenerative buildup occurs
until one or the other transistor leaves its active region and enters saturation
or cutoff. We show below that the regenerative switching is very fast, and
therefore the voltages of the coupling capacitors do not change significantly
during regeneration.

After regeneration, the bias arrangement of the circuit attempts to return
the circuit to the bias state of the circuit without capacitors. However, when
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Q1 Q2

RC RC

+ VCC

RB RB

C C

+

-

G1 CbVx gmVx

(a) (b)

gmv1 gmv2G1 C1

RB RC

G1 C1

RB RC

+ VCC + VCC + VCC + VCC

(c)

+ VCC

R

(d)

gmv1 gmv2Gi Cb

v1 v2

Gi Cb

(e)

VCC
R G = 1

R

Fig. 12.7. (a) A typical loop-coupled circuit. (b) Circuit model for the BJT. (c)
Coupling capacitors modeled as dc voltage sources. (d) Norton equivalent circuit.
(e) Circuit model of the oscillator for the variational response.
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the off or saturated transistors re-enter the active region, the loop gain is
again greater than unity, and regenerative switching again occurs, but this
time in the opposite direction until the transistors once more enter their off or
saturated condition. Another recovery takes place, and the cycle starts over
again. A steady-state oscillation exists.

From the follow through of the operation of the circuit, it is seen that the
circuit has no stable states but does have two ‘quasi-stable’ states, i.e., the
two recovery periods. This is the definition of an astable circuit.

The recovery segments of the steady-state oscillation are analyzed in the
next section. In the present section, a simplified analysis of the regenerative
switching is made. For the analysis, assume that both transistors are in their
active regions and can be modeled with linear circuit elements as in Figure
12.7b. The capacitor Cb models the charge storage in the base region and the
emitter-base junction of the transistor.

Cb = gmTt (12.21)

where Tt is the equivalent transit time of the base region and includes effects
of charge storage in the base and emitter-base depletion regions of the tran-
sistors. Charge storage in the collector-base depletion regions is neglected for
the moment. The conductance G1 models recombination effects (G1 ≈ 1/rπ).

G1 =
gm

β
(12.22)

The ohmic base resistance and the collector resistance are neglected for
simplicity.

In Figure 12.7c, the coupling capacitors are modeled as dc voltage sources.
The bias voltage source VCC and resistor RC or RB combinations can be
replaced with Norton equivalents. The latter are shown in Figure 12.7d. With
these models, the circuit model of the oscillator for the variational response
during regenerative switching is that of Figure 12.7e. In this circuit, all dc
sources are reduced to zero. Voltage sources are short circuits and current
sources are open circuits. The conductances are combined:

Gi = GB + G1 + GC (12.23)

where GB = 1/RB and GC = 1/RC . The nodal circuit equations for this
reduced situation are

0 = (Gi + sCb) v1 + gmv2 (12.24)
0 = gmv1 + (Gi + sCb) v2

The zeros on the left-hand side are the result of omitting the dc sources and
the initial voltages on the capacitors. The characteristic polynomial for this
situation is
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P (s) = det

[
(Gi + sCb) gm

gm (Gi + sCb)

]
(12.25)

= (s − s1)(s − s2)

where s1 and s2 are the natural frequencies of the linearized system about the
assumed equilibrium point. Note that P (s) has the form

P (s) = a2 − b2 = (a − b)(a + b) (12.26)

Therefore, the P (s) is simply factored.

P (s) = (sCb − gm + Gi) (sCb + gm + Gi) (12.27)

The natural frequencies are

s1 =
gm − Gi

Cb
=

gm

Cb

(
1 − Gi

gm

)
(12.28)

s2 = −gm + Gi

Cb
= −gm

Cb

(
1 +

Gi

gm

)
(12.29)

From an inspection of the circuit of Figure 12.7e, the loop gain of the
linearized circuit at the equilibrium point is

loop gain =
(

gm

Gi

)2

(12.30)

For a loop gain greater than one, the ratio Gi

gm
is less than one and a repre-

sentative plot of s1 and s2 is given in Figure 12.8a. One natural frequency
lies on the positive real axis and leads to a growing exponential as shown in
Figure 12.8b. The other natural frequency lies on the negative real axis and its
natural mode is a decaying exponential as shown in Figure 12.8b. The ‘time
constant’ of the regenerative mode is

T1 =
1
s1

=
Cb

gm − Gi
(12.31)

= Tt
1

1 − Gi

gm

The time constant of regeneration is approximately equal to the simplified,
effective transit time of the devices. For present-day transistors, Tt is less than
0.1ns. Since a 100-to-1 increase in the value of the regenerative mode takes
only 4.6 time constants, regenerative switching can be very fast.

If capacitors to model charge-storage effects in the base-collector junction
are included, a two-node circuit model is still present, and the simple factoring
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jω
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Regenerative
mode
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Fig. 12.8. (a) A representative plot of the natural frequencies. (b) Time-domain
response.

of the circuit determinant can also be obtained. Four natural frequencies are
produced, two in the right-half plane and two in the left-half plane. The largest
natural frequency on the positive-real axis, s1, establishes the regenerative
switching speed. Although the magnitude of s1 is smaller by the addition of
Cjc to Cb, regeneration is still very fast.

12.4 Recovery Analysis in a BJT Relaxation Feedback
Oscillator

In this section, simple analyses of the recovery segments of the steady-state
oscillation of a relaxation oscillator are made. In contrast to the analysis of
the last section, we must now include the charging and discharging of the
coupling capacitors, and the transistors are assumed to be either off or on
and saturated. For simplicity, the base-bias circuits (VCC and RB) in the loop-
coupled, relaxation oscillator of Figure 12.7a are replaced in Figure 12.9a with
current sources, IB1 and IB2. In contrast to the active-region biasing of the
earlier description, these current sources are assumed to be large enough to
produce saturation, IB > 1

β

(
VCC

RC

)
.

It is helpful to once more follow through the operation of the circuit. We
propose a steady-state oscillation sequence. Let Q1 be off and Q2 be on and
saturated. The biasing current IB2 tends to hold Q2 in the assumed on state.
IB1, however, can bring Q1 into the active region. This involves the change
of charge of C2. When this occurs, regenerative switching occurs leaving Q1

on and saturated and Q2 off. IB2 now changes the charge of the coupling
capacitor C1 and brings Q2 back into the active region, leading to another
regenerative switching.

During the recovery segments of operation, which are often called the
quasi-stable states, significant changes of charge occur for the coupling ca-
pacitors. The time durations for these charge changes establishes the lengths
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Fig. 12.9. (a) Another loop-coupled oscillator circuit. (b) Circuit model for the
oscillator when Q1 is off and Q2 is on and in saturation.

of the recovery segments. For the initial recovery analysis, we assume that,
after the end of a regenerative switching, transistor Q1 is off and transistor
Q2 is on and saturated. The circuit model of the oscillator at this point of
time is that of Figure 12.9b. Notice that the on transistor is modeled with
two voltage sources, VBEon and VCEsat. The off transistor is modeled as a
three-node open circuit.

Just before the last regenerative switching, the coupling capacitor C1 had
an initial voltage from the collector node to the base node of (VCEsat−VBEon),
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since Q2 was just returning from an off state into conduction, and Q1 had been
on with its collector at VCEsat. We check for consistency and the validity of
such assumptions after the analysis. The initial voltage of coupling capacitor
C2 after regenerative switching is (VCC − VBEon) for the present analysis
since before regenerative switching Q2 was off with a collector voltage of VCC

and Q1 was on with a base voltage of VBEon. Looking at the two circuit
segments, we see that a large base current flows into the base of Q2, as shown
in Figure 12.10a, because the initial voltage across C1 is small. The initial
current is almost VCC

RC
. With time, the flow of current through C1 charges it

to (VCC−VBEon) and ceases to flow when C1 is fully charged. The base-supply
current IB2 maintains Q2 on. The waveform of VC1(t) starts at VCEsat and
recovers to VCC . It is sketched in Figure 12.10a.

For the other circuit segment, a drop of VC2(t) from VCC to VCEsat as
shown in Figure 12.10b occurs after regenerative switching as Q2 moves from
off to on. This change of voltage is coupled across C2 to VB1 with little change.
Thus, VB1 drops by (VCC − VCEsat) from VBEon to

VB1(0) = VBEon − (VCC − VCEsat) (12.32)

For a numerical example, let VCC = 5 V, VBEon ≈ 0.8 V and VCEsat ≈ 0 V.
Other circuit elements are assumed to be RC = 10 kΩ, C1 = C2 = 100 pF
and IB1 = IB2 = 5 µA. For these values,

VB1(0) = −4.2 V (12.33)

This negative value of VBE1 holds Q1 off. However, the base-bias source
IB1 flows through C2 to the saturated collector of Q2 since Q1 is off. This
discharges C2, and VBE1 rises as shown in Figure 12.10b. The left-hand side
of C2 is held at VCEsat by the on transistor Q2. For the simple circuit of
Figure 12.9b, VB1(t) will attempt to increase without limit because of the
current drive IB1. However, when VB1(t) = VBEon ≈ 0.8 V, Q1 returns to
the active region, the circuit model of Figure 12.9b is no longer valid, and
regenerative switching occurs.

The time for VB1(t) to reach VBEon can be found from the simple current-
charge relation for C2.

i = C2
dv

dt
(12.34)

dt = C2
dv

i
(12.35)

The charging current is IB1, and increments of time and voltage can be
used instead of the differentials, leading to

∆t = C1
∆V

IB1
(12.36)
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Fig. 12.10. (a) First circuit segment and associated waveforms. (b) Second circuit
segment and waveforms.

The necessary change of voltage is equal to the change of VB1. From (12.33)
and if VCEsat is neglected, this change is from −4.2 V to 0.8 V = 5 V = VCC .
The time duration of this charging is, using the circuit value above,

∆t = C2
VCC

IB1
= 100 pF

5 V
5 µA

= 100 µs (12.37)

∆t is the governing length of the recovery, since as described above, the other
portion of the circuit remains in a state keeping Q2 on.

Note from Figure 12.10a that VC1(t) returns to VCC long before the next
regenerative switching occurs. It takes about 5 time constants for a capacitor
to charge fully. Therefore, VC1(t) returns to VCC in approximately
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5TRC = 5RCC1 = 5 µs. (12.38)

This is much less than the recovery period.
At the end of the recovery period, C1 is charged to (VCC −VBEon) and C2

is discharged to −(VBEon −VCEsat), again with positive node as the collector
side.

We have obtained a consistent pattern of circuit behavior, starting with
assumed initial capacitor voltages at the beginning of a recovery period (and
the end of a regenerative switching) ending with the same capacitor voltages
for the opposite set at the beginning of the next recovery segment of operation.

For a complete cycle of oscillation, the second recovery time must also be
calculated. For equal capacitors and bias elements, the second recovery is the
same as the first. Therefore, the period of oscillation for the values in (12.37)
is

Tp = 2 × 100 µs = 200 µs (12.39)

The input file for a Spice simulation of this circuit is given in Figure 12.11a.
The circuit values are the same as used above. The small node-to-ground
capacitors are included to insure convergence of the simulation, since no charge
storage is included in the transistors. A pulse input is used with one base bias
current source to initiate action properly. The waveforms of VB1 = V (1) and
VC2 = V (6) variables are shown in Figure 12.11b. The waveforms across the
coupling capacitors are given in Figure 12.11c. The waveforms substantiate
our evaluation above; however, the simulated period is only 184 µs. Actual
values of VBEon and VCEsat differ from those assumed and the change of
capacitor voltage is seen from Figure 12.11c to be approximately 4.5 V, not 5
V. In addition, the transistors turn on for VBE < 0.8 V.

The base-current sources can be replaced with the VCC , RB combinations
of Figure 12.7a. These elements are included in Figure 12.11a as commented
lines. It is a simple matter to show that the recovery period is now

∆t =
Tp

2
= RBC1 ln

[
2VCC − VCEsat − VBEon

VCC − VBEon

]
(12.40)

In order to achieve the 5 µA base current, RB must be 840 kΩ. For values
of VCEsat = 0.1 V and VBEon = 0.8 V, the estimated period is

Tp ≈ 130 µs (12.41)

The observed period from a Spice simulation is 116 µs.

12.5 Other Astable Oscillators

A common method to produce an astable relaxation oscillator is to start with
a dc-coupled bistable circuit. A general example is shown in Figure 12.12a.
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FIGURE 12.11
.PLOT TRAN V(1) V(6) (-5,5)
.PLOT TRAN V(3,4) V(6,1) (-5,5)
.OPTION RELTOL=1E-6 ITL5=0
I1 0 1 5U 
*RB1 5 1 840K
CB1 1 0 1P
Q1 3 1 0 MOD1
RC1 5 3 10K
C1 3 4 100P
I2 0 4 5U PULSE 0 5U 0 0 0 500U
*RB2 7 4 840K
*VCC2 7 0 5 PULSE 0 5 0 0 0 500U
CB2 4 0 1P 
Q2 6 4 0 MOD1
RC2 5 6 10K
C2 6 1 100P
VCC 5 0 5 
.MODEL MOD1 NPN IS=1E-16
.OPTION NOPAGE NOMOD
.WIDTH OUT=80
.TRAN 4U 380U 180U 2U
.END
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Fig. 12.11. (a) Spice input file for relaxation oscillator. (b) Waveforms of voltages
VB1 and VC2. (c) Voltage waveforms across the coupling capacitors.
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The two inverters connected in a loop produce a bistable circuit if the input
on voltage of an inverter is greater than the output on voltage. To achieve
an astable circuit, ac coupling, usually with capacitor coupling, is introduced.
New bias elements are also introduced to provide each inverter with a definite
bias state in the absence of coupling. The arrangement shown in Figure 12.12b
is that used in the previous astable BJT oscillator examples.

(a) (b)

(c)

C C

I I

C C

R R

Fig. 12.12. (a) A dc-coupled bistable circuit. (b) Introduction of capacitor coupling
and bias elements. (c) Another biasing alternative.

Another bias possibility is to return the bias resistors to ground, as illus-
trated in Figure 12.12c. This corresponds to an off bias for the transistors.
However, with an adequate excitation, often obtained by just turning on the
circuit, steady-state relaxation oscillations are produced. To determine the
length of the recovery for the configuration of Figure 12.7a, but returning the
RB to ground, one must analyze the time for the base current to drop from
the initial heavy overdrive into the on transistor to a value corresponding to
the base current at the edge of the active region. This analysis is left for a
problem.

Since the early days of electronics, there have been devices which have a
V-I or I-V characteristics which display a negative-resistance (conductance)
shape, i.e., have a negative-slope region bordered by two positive-slope re-
gions. In addition to the tunnel diode introduced in Section 10.2, examples
include the point-contact transistor, the unijunction transistor, the four-layer
switch and the silicon-controlled rectifier (SCR). Using a properly chosen re-
sistive load together with a voltage or current source, one can obtain bistable
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operation from these devices. As brought out above, by suitably modifying
the bias arrangement and by introducing the correct energy-storage element,
monostable or astable operation can be achieved. There is extensive literature
on these devices and their use. For low-power applications and in particular for
integrated circuit realization, these negative resistance (conductance) devices
have not proven to be the best basis to achieve these relaxation-circuit func-
tions. Because the characteristics are usually temperature and aging sensitive
and because of the problems of triggering and output loading, the basic device
must be augmented with many other elements. Consequently, the preferred
approach has been to start with a two inverter configuration, such as shown
in Figure 12.12a. Additional transistors can be added with little penalty in
an IC design, and a designable, insensitive configuration can be obtained. An
example of this is introduced with the voltage-controlled oscillator of Section
12.10.

12.6 A CMOS Relaxation Oscillator

In the circuit of Figure 12.13a, only one capacitor is needed to achieve the re-
laxation oscillation. For the example to be analyzed here, CMOS inverters are
used, and the complete circuit is that of Figure 12.13b. The bulk connections
are returned to the lowest voltage for the n-channel devices and to the highest
voltage for the p-channel devices. It is important to note that the inverters
in this oscillator can either supply both current to charge the capacitor and
current to the bias circuitry of the other inverter, or can also ‘sink’ current
from the other inverter, i.e., can accept current and discharge the coupling
capacitor. For the BJT circuit of Section 12.4, the saturated transistor sinks
the current during one segment of the oscillation while the collector resistor
‘sources’ (supplies) current while its transistor is off. For a CMOS inverter, the
NMOS transistor can sink the discharging current while the PMOS transistor
sources the charging current.

As usual, it is necessary to think through the steady-state operation of the
relaxation oscillation before setting up the analysis. Assume that the input
voltage to the left-hand inverter, A, is low. For Inverter A, its NMOS device
is off, the PMOS device is on, and the output voltage is high. Because of this,
the other inverter, B, has its PMOS device off and its NMOS device on and
can supply current to a load. The reduced circuit is shown in Figure 12.14a.
For Inverter A, only if there is an open-circuit load will the PMOS unit have
no current. This is the usual condition for dc coupling as in logic circuits. In
our case, the P device can supply current through the resistor R to charge the
capacitor C with the current being sunk by the (on) N device of Inverter B. Of
course, this charging of C increases the input voltage of Inverter A with time
as shown in Figure 12.14b for t approaching t1. Ultimately, Inverter A reaches
its threshold voltage at t = t1 and becomes active leading to a regenerative
switching which leaves Inverter B in the off state with its input voltage low.
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CR
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V(1) V(2) V(3)

100 pF

+ VDD = 5 V

(a)

(b)

100 kΩ

Fig. 12.13. (a) Schematic of CMOS relaxation oscillator. (b) Complete circuit of
the relaxation oscillator.

Now Inverter B through its P device can source current through C and R and
into the output of Inverter A. This is illustrated in Figure 12.14c. Inverter
A’s N device now sinks the current, and C discharges until V (1) reaches the
threshold value and a second regenerative switching occurs.

The waveform of V (1) can be expected to be that of Figure 12.14b. At t1,
regenerative switching occurs, turning Inverter A on. Since the capacitor volt-
age cannot change instantly, the input voltage of A jumps from the threshold
voltage by the same amount of the change of the output voltage of B. Before
switching, V (3) is clamped to almost zero voltage, and after switching V (3)
is almost VDD. Therefore, V (1) jumps by VDD.

Similarly, V (1), at the end of the next regenerative switching, drops from
the threshold voltage by an amount VDD after the next switching, since V (3)
drops from VDD to zero.

To estimate the half-period of the oscillation, we need the values of the
turn-on voltage and the turn-off voltage of the inverters. These are approxi-
mately VTN and VDD−VTP . However, it is simpler to assume that the critical
input voltage for the inverter, Vx, for appreciable current conduction is the
midpoint voltage of the voltage transfer characteristic of the CMOS inverter.
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Fig. 12.14. (a) Reduced circuit with inverter A’s NMOS device off. (b) Voltage
waveforms across the capacitor. (c) Inverter B sourcing current through C and R.
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Vx =
VDD + 0

2
(12.42)

The time for V (1) to change from VDD + Vx to Vx is estimated to be

∆t = RC ln
[
VDD + Vx

Vx

]
= RC ln 3 = 1.1RC (12.43)

The same result is obtained for the recovery of V (1) to Vx during the next
recovery segment of operation. The period of oscillation is then

Tp = 2∆t = 2.2RC (12.44)

For R = 100 kΩ and C = 100 pF,

Tp = 22 µs. (12.45)

The Spice input file for this circuit is given in Figure 12.15a. The waveforms
of V (1), V (2), V (3) and V (3, 1) are given in Figures 12.15b and c. Note that
the threshold voltage at switching is approximately 1.77 V when Inverter A
turns on and 2.1 V when turning off. The estimated value of Vx is 2.5 V.
The simulated period of oscillation is 22.5 µs. V (3) has a very rectangular
waveform.

This single-capacitor relaxation oscillator can also be used with other MOS
inverters. In Figure 12.15d, the circuit and the Spice input file are given for an
oscillator in which the inverters are simple NMOS enhancement-mode devices
with a resistive load. The waveforms of the capacitor and node voltages are
given in Figures 12.15e and f.

Bipolar versions of this circuit are possible but care must be taken to in-
corporate the transistor base currents. If BJTs are substituted for the MOS
devices in the circuit of Figure 12.15d, the right-hand device can be a Dar-
lington connection of a double transistor.

12.7 Voltage- and Current-Controlled Oscillators

In many applications, the oscillation frequency of the relaxation oscillator
needs to be varied with a control source. An example is the phase-locked
loop circuit studied in Chapter 15. For the BJT example of the Section 12.4,
the period of oscillation is directly proportional to the value of the base-
bias current source. Usually, current sources are not available directly, but
are approximated by transistor circuits which are voltage-source driven. An
example for the BJT oscillator is that shown in Figure 12.16. Positive base
bias first is produced by the resistors RB and VCC . The control currents reduce
this level. The control voltage is VBS , but could be a combination of VBS and
VEE . In Section 12.10, a similar bias configuration is used in a single-capacitor,
voltage-controlled oscillator (VCO).
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CMOS REL OSC
.TRAN 0.5U 50U 20U 0.5U
.PLOT TRAN V(3,1) V(3) (-2,6)
.PLOT TRAN V(1) V(2) V(3) (-3,7)
M1 2 1 4 4 MOD1 W=80U L=8U
M2 2 1 0 0 MOD2 W=80U L=8U
M3 3 2 4 4 MOD1 W=80U L=8U
M4 3 2 0 0 MOD2 W=80U L=8U
C1 1 0 1P
I1 0 1 PULSE 10U 0 0 0 0 100U
C2 2 0 1P
R1 2 1 100K 
CC 3 1 100P
VCC 4 0 5
.OPTIONS RELTOL=1E-6 ITL5=0
.MODEL MOD1 PMOS VTO=-0.5 KP=10U
.MODEL MOD2 NMOS VTO=0.5 KP=30U
.END
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Fig. 12.15. (a) Spice input file. (b) Waveforms of V(3,1) and V(3). (c) Waveforms
of V(1), V(2), and V(3).
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NMOS REL OSC
.TRAN 0.5U 50U 20U 0.5U
.PLOT TRAN V(3,1) V(3) (-5,5)
.PLOT TRAN V(1) V(2) V(3) (-5,5)
RD1 4 2 10K
RD2 4 3 10K
M2 2 1 0 5 MOD2 W=80U L=8U
M4 3 2 0 5 MOD2 W=80U L=8U
VSS 5 0 -0
C1 1 0 1P
I1 0 1 PULSE 10U 0 0 0 0 100U
C2 2 0 1P
R1 2 1 100K 
CC 3 1 100P
VCC 4 0 5
.OPTIONS RELTOL=1E-6 ITL5=0
.MODEL MOD1 PMOS VTO=-0.5 KP=10U
.MODEL MOD2 NMOS VTO=0.5 KP=30U
.END
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Fig. 12.15. (d) Circuit and Spice input file. (e) Waveforms of V(3,1) and V(3). (f)
Waveforms of V(1), V(2), and V(3).
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- VEE

Fig. 12.16. A voltage-controlled bias arrangement.

For the CMOS oscillator of the last section, the period of oscillation is
dependent on the value of the supply voltage, VDD. However, one does not
usually make the control variable the major system supply voltage. It is pos-
sible to achieve current (voltage) control by introducing a bias offset current
at the input, V (1), of Inverter A of Figure 12.13b.

12.8 An Astable Schmitt Circuit

A basic voltage-controlled oscillator can be produced by a modification of the
emitter-coupled bistable circuit of Figure 12.17a. The predecessor of this cir-
cuit is the cathode-coupled Schmitt trigger circuit using vacuum tubes and
was first described in 1938 [35]. (The basic loop-coupled bistable circuit was
first described by Eccles and Jordan in 1919 [36].) The Schmitt circuit, us-
ing BJT or MOS devices, has many variants and has many applications as
a bistable, monostable, or astable circuit. In this section, we briefly review
the basic bistable circuit using BJTs and modify it for astable operation. In
Section 12.10, a common VCO version is analyzed.

A practical Schmitt circuit is illustrated in Figure 12.17a and contains
several resistive bias elements. A simple emitter resistor source is used to
realize a current source IEE . The circuit of Figure 12.17b contains only the
essential elements for bistable behavior (and even RC2 can be omitted if a
separate voltage supply is used). As with the loop-coupled bistable circuit,
bistability for the basic circuit depends upon the fact that VCEsat is less than
VBEon.

VBEon > VCEsat (12.46)
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Fig. 12.17. (a) An emitter-coupled bistable circuit. (b) Circuit with only the es-
sential elements for bistable behavior. (c) Simple circuit with Q1 off and Q2 on.
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The bistability of the circuit is easiest to establish with a numerical ex-
ample. Let VBEon = 0.8 V, RC1 = 10 kΩ, RC2 = 5 kΩ, VCC = 5 V, and
IEE = 1 mA. For Q1 off and Q2 on, the simple circuit of Figure 12.17c can
be used to determine that VE = 1.4 V. V1 must then be less than 2.2 V for
bistability. Choose V1 = 2.0 V which leads to VE = 1.2 V when Q1 is on, (and
saturated). The collector voltage of Q1 is then also 1.2 V. Since Q2 is off with
its VBE < 0.8 V, i.e., its base voltage < 2.0 V, the circuit is bistable.

To produce an astable circuit, the emitters are ac coupled with a capacitor
as shown in Figure 12.18a. The emitter-supply current has been separated into
two. Note that the bias arrangements of both transistors are for on operation.
Once again, we ‘walk through’ the astable operation. If Q1 is off, VE1 must
be greater than V1 − VBEon = 1.2 V, as illustrated in Figure 12.18b. VE2 is
fixed by the bias arrangement and is equal to 1.4 V. Note that, in spite of
the presence of C, the emitter current of Q2 is IEE , since Q1 is off, and IEE

2

must flow through C. With time, the flow of IEE

2 through C changes its charge
and decreases VE1 until Q1 enters the active region at VE1 = 1.2 V, as shown
in Figure 12.18b. Regenerative switching then occurs, leaving Q1 on and Q2

off. In this new quasi-stable state, VE1 is fixed by the bias arrangement at
VE1 = 1.2 V, and VE2 must equal 1.2 V + 0.2 V = 1.4 V, since the capacitor
had 0.2 V across it when switching occurred. VE2 now decreases with time
due to the flow of IEE

2 through the capacitor, until VE2 = 0.4 V when VBE of
Q2 is equal to 0.8 V. After the second regenerative switching, VE1 jumps to
2.2 V, since the capacitor voltage has changed to 1 V. The voltage change for
both quasi-stable states (recovery periods) is 1 V. For C = 3 nF and IEE = 1
mA, the period of the steady-state oscillation is

Tp = 2 × C
V

IEE

2

= 12 µs (12.47)

The collector voltages have approximate rectangular waveforms with an
amplitude of RC

IEE

2 , as shown in Figure 12.18b.
The Spice input file for this circuit is given in Figure 12.19a, where a

step function for the voltage source, V1, is used to excite the oscillation. The
waveforms for the emitter voltages are shown in Figure 12.19b and for the
collector waveforms in Figure 12.19c. The voltage levels as estimated are only
approximately realized, and it is seen that the period of oscillation is 9 µs,
which is less than the predicted value. However, the predicted shapes of the
waveforms for VE1 and VE2 are obtained. From a sequence of simulation runs,
it is found that proper operation of this circuit depends upon critical values
of the sources and excitation. For this reason, this circuit is not used in prac-
tice. Instead, a more complicated version is used which employs both loop
and emitter coupling together with voltage limiting diodes. This circuit is
examined in the last section of this chapter.
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Fig. 12.18. (a) Circuit with capacitor coupling between the emitters. (b) Node
voltage waveforms during astable operation.

12.9 Equivalence of the Schmitt and Loop-Coupled
Bistable Circuits

It is of interest to illustrate that the basic emitter-coupled and collector-
base (loop) coupled circuits are equivalent in circuit configuration as well as
functionally as bistable circuits. We start with the Schmitt circuit of Figure
12.17b, which is repeated here as Figure 12.20a.

If only the essential circuit elements are retained, we produce the circuit
of Figure 12.20b. IEE is relabeled I2. RC1 and VCC are replaced with a pure
current source I1. RC2 can be omitted if a separate voltage supply V2 is used.
Bistability is assured with I1 ≤ I2 and V1 ≤ V2. The circuit is next redrawn,
and the ground point is moved, as in Figure 12.20c. If I2 is moved across V2,
only the power dissipation is changed. Bistability is maintained for V1 = V2

and for I2 = I1. We thus have the basic prototype of the loop coupled circuit.
If the currents sources are approximated with VCC , RC elements, the familiar
loop-coupled circuit of Figure 12.20e is produced.

12.10 A BJT VCO

A popular voltage-controlled oscillator in integrated-circuit realizations is
shown in Figure 12.21a. The essential circuit is shown in Figure 12.21b. Two
emitter current sources, I1a and I1b, are used, which are voltage controlled in
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EC-COUPLED OSC, FIG 12.20
.OPTIONS RELTOL=1E-6
VCC 5 0 5
V1 1 0 2 PULSE 2.3 2.1 0 0 0 200U
Q1 2 1 3 MOD1
.MODEL MOD1 NPN IS=1E-16
RC1 5 2 10K
IE1 3 0 0.5M
Q2 4 2 6 MOD1
RC2 5 4 5K
IE2 6 0 0.5M
CC 3 6 3N
CC1 1 0 1P
CC2 2 0 1P
.TRAN .4U 40U 20U 0.2U
.PLOT TRAN V(3) V(6) (0,3)
.PLOT TRAN V(2) V(4) (0,5)
.END

(a)

4035302520
0

1

2

3

V(3)
V(6)

V
(3

),
 V

(6
) 

 (
V

)

Time (µs)

(b)

4035302520
1

2

3

4

5

V(2)
V(4)

V
(2

),
 V

(4
) 

 (
V

)

Time (µs)

(c)

Fig. 12.19. (a) Spice input file. Voltage waveforms at the (b) emitters, and (c)
collectors.
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RC1 RC2

Q1 Q2V1

IEE

+ VCC

Q1 Q2

V1

I1

I2

V2

(a) (b)

Q1 Q2

V1

I1

I2

V2

Q1 Q2

I1 I2

V2 - V1

(c) (d)

( )

( )

( )

( )

( )( )

( )

( )

Fig. 12.20. (a) Schmitt circuit. (b) Circuit with only the essential elements retained.
(c) Circuit redrawn with a new ground point. (d) Circuit with voltage and current
sources rearranged.

the practical circuit. Notice that cross coupling (which can be drawn as loop-
coupling) of Q1 and Q2 is used, as well as emitter coupling via the capacitor
C. Buffering emitter followers Q3 and Q4 are used as coupling elements from
the transistor collectors to transistor bases in the loop. Two additional current
sources, IB , are used at the bases of Q1 and Q2 to provide bias for the emitter
followers, Q3 and Q4. The diodes Q5 and Q6 (usually diode-connected tran-
sistors) act as voltage clamps and limit the value of the voltage drop across
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Q1 Q2

+ VCC

RC RC

( ) ( )

Fig. 12.20. (e) The familiar loop-coupled circuit.

the resistors, R1 and R2. Recall that there is virtually no penalty in an IC
realization to use a large number of small transistors to achieve a well-defined
design.

The operation of the oscillator is first established by following through a
cycle of operation using the waveforms of Figure 12.21c. A numerical example
and Spice simulations are then introduced. We assume that the regenerative
switching is very fast and that the voltage across C does not change appre-
ciably during regeneration. We also assume that when current flows through
resistors R1 or R2, the voltage drop is sufficient to turn on the diodes Q5

or Q6. Base currents are assumed to be negligible with respect to collector
currents, i.e., the values of β are large.

We start by setting Q1 off and Q2 on. Since Q2 is on, Q6 conducts with a
voltage drop, across R2, of VBEon. The base voltage of Q4 is

VB4 = VCC − VBEon (12.48)

The base voltage of Q1, as shown in the idealized waveforms of Figure
12.21c, is

VB1 = VB4 − VBEon = VCC − 2VBEon (12.49)

Since base currents are neglected, the base voltage of the emitter follower Q3

is

VB3 = VCC (12.50)

and, as shown in the waveforms,

VB2 = VCC − VBEon (12.51)

VE2 = VCC − 2VBEon (12.52)
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R1 R2

Q1 Q2

Q3 Q4

Q5 Q6

IB

I1a I1b

vin

IB

C

+

-

+ VCC

R1 R2

Q1 Q2

Q3 Q4

Q5 Q6

IB

I1a I1b

IB

+ VCC

VE1 VE2(3) (4)

(1) (2)

(5) (6)

(7)

C1

(a)

(b)

Fig. 12.21. (a) A popular voltage-controlled oscillator in integrated realizations.
(b) The essential circuit of the voltage-controlled oscillator.
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Time

Time

Time

Time

Time

Time

VB2

VB1

VE2

VE1

VC

Vout

VCC
Q2 on

Q1 on

VBEon

-VBEon

VCC - 3VBEon

VCC - VBEon
VCC - 2VBEon

VCC - 2VBEon

VCC - 3VBEon

VCC - 2VBEon

VCC - VBEon

VCC - VBEon
VCC - 2VBEon

Fig. 12.21. (c) Waveforms illustrating the operation of the oscillator.

Let the initial voltage of C be zero (uncharged). This leads to

VE1 = VE2 = VCC − 2VBEon (12.53)

As shown in the waveforms, notice that the above state confirms that Q1 is
off. The current source I1a on the left charges C1, and VE1 is pulled lower with
time. Ultimately, Q1 turns on when VE1 = VCC − 3VBEon, and regenerative
switching occurs to the other quasistable state with Q1 on and Q2 off. At the
end of regenerative switching, VE2 = VCC − 2VBEon and with time is pulled
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lower by the right-hand current source, I1b, ending with another regenerative
switching and the cycle is complete.

During a half cycle, i.e., during one quasi-stable state, the capacitor voltage
changes by 2VBEon. The time for this to occur is

Tp

2
= C1

2VBEon

I1
(12.54)

where Tp is the period of the oscillation and I1 = I1a = I1b. The frequency of
oscillation, fo, is

fo =
1
Tp

=
I1

4C1VBEon
(12.55)

Since I1 can be linearly proportional to Vin, a linear voltage controlled
oscillator is produced. Since fo depends upon VBEon which is temperature
dependent, the frequency of oscillation depends upon temperature. However,
the current sources I1 can be compensated to cancel this effect.

For a numerical example, the device and circuit parameters are chosen as
shown in the Spice input file of Figure 12.22a. Note that the base bias currents
are 0.5 mA and I1 = 1 mA. A pulse start is used to initiate operation. Assume
that VBEon = 0.8 V. For VCC = 10 V, VB1 and VB2 should switch between
8.4 V and 9.2 V. VE1 and VE2 should switch between 7.6 V, 8.4 V, and 9.2 V.
The midportion occurs when its transistor is conducting. The output voltage
should switch between 9.2 V and 10 V. Finally, the period of the oscillation
should be

Tp = 4 × 0.1 µF ×
(

0.8 V
1 mA

)
= 320 µs (12.56)

From the Spice simulation results of Figures 12.22b and c, the switching
points of the VE are 7.83 V, 8.45 V and, 9.07 V, and the period of oscillation
is 255 µs. The small voltage differences in the value of VBEon make a large
change in T .

Another version of this type of relaxation oscillator is shown in Figure
12.23. Notice that fixed current supplies are used that include bias setting
diodes D1 and D2. The clamp diodes across R1 and R2 are not used. If an
analysis similar to that above is followed, it can be shown that the time
duration of one quasistable state is 4R1C1. The frequency of oscillation is
then

fo =
1

8R1C1
(12.57)

This relaxation oscillator is not voltage controlled and is not even supply-
voltage dependent.
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VOLTAGE CONTROLLED OSCILLATOR
.WIDTH OUT=80
RC1 7 5 1K
RC2 7 6 1K
Q5 7 7 5 MODN
Q6 7 7 6 MODN
Q3 7 5 2 MODN
Q4 7 6 1 MODN
IB1 2 0 .5MA
IB2 1 0 .5MA
CB1 2 0 1PF
CB2 1 0 1PF
Q1 5 1 3 MODN
Q2 6 2 4 MODN
C1 3 4 .1UF 
IS1 3 0 PULSE 5MA 1MA 1NS 1NS 1NS 50MS
IS2 4 0 1MA
VCC 7 0 10
.MODEL MODN NPN IS=1E-16 BF=100 RB=10 RC=10 VA=100
.OPTION ITL5=0 LIMPTS=5000
.OPTIONS NOPAGE NOMOD
.TRAN 5US 500US 200U 5US
.PLOT TRAN V(5) V(1) V(3) (7,10)
.PLOT TRAN V(3) V(4)  (7,10)
*.PLOT TRAN V(4,3) (-2, 2)
.END

(a)

0.500.450.400.350.300.250.20
7

8

9

10

V(5)
V(1)
V(3)

Time  (ms)

V
(5

),
 V

(1
),
 V

(3
) 

 (
V

)

(b)

Fig. 12.22. (a) Spice input file. (b) Waveforms of voltages V(5), V(1), and (V3).

Problems

12.1. A voltage-controlled oscillator is shown in Figure 12.24. Note the tran-
sistor current sources.
(a) For Vin = 0 V, determine the frequency of oscillation and sketch the wave-
forms at the base and collector of Q2.
(b) Determine the range of voltage control and the corresponding range of
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0.500.450.400.350.300.250.20
7

8

9

10

V(4)
V(3)

Time  (ms)

V
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),
 V

(4
) 
 (
V

)

Fig. 12.22. (c) Waveforms of voltages V(3) and V(4).

R1

Q1 Q2

Q3 Q4

Q5 Q6

IB IB

+ VCC

I1 I1

D1

D2
400 Ω 400 Ω

200 Ω 200 Ω

C1

R2

1 kΩ

Fig. 12.23. Another version of the relaxation oscillator.

frequency of oscillation.
(c) Verify your analysis results with Spice.

12.2. A relaxation oscillator is shown in Figure 12.25.
(a) For VBB = 0 V determine the frequency of steady-state oscillation. Note
the initial current source excitation.
(b) What is the change in oscillation frequency, if any, for VBB = 1 V?
(c) What is the change in oscillation frequency, if any, for VBB = −1 V?
(d) Verify your analysis results with Spice.
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Q1 Q2

+10 V

IA IB

100 pF

100 pF

βF = 100

IS =10-16 A

- 5 V

IA IB

RE

Vin

RE

0.5 kΩ

RE chosen for
IA = IB = 100 µA
when Vin = 0

2 kΩ 10 kΩ

50 kΩ
2 kΩ

50 kΩ

Fig. 12.24. Circuit for the voltage-controlled oscillator of Problem 12.1.

Q1 Q2

+10 V

100 pF 100 pF

βF = 100

100 kΩ

10 kΩ10 kΩ

100 kΩ

VBB

0

15 µA

IS = 10-16 A

Fig. 12.25. Circuit for relaxation oscillator of Problem 12.2.

12.3. A relaxation oscillator using NMOS inverters is shown in Figure 12.26.
(a) Sketch all voltage waveforms and label the appropriate voltage levels for
steady-state operation.
(b) What is the frequency of oscillation?
(c) Verify your analysis results with Spice.

100 pF

+ 5 V

k' = 30 µA/V2

VT = 0.7 V

W
L

 =20

λ = γ = 0

50 kΩ 50 kΩ

200 kΩ

Fig. 12.26. Circuit for the NMOS relaxation oscillator of Problem 12.3.
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12.4. A MOS relaxation oscillator is shown in Figure 12.26.
(a) Sketch all voltage waveforms and label the appropriate voltage levels for
steady-state operation.
(b) What is the frequency of oscillation?
(c) Verify your analysis results with Spice.

100 pF

+ 5 V

W
L

 = 20

λ = γ = 0

50 kΩ

200 kΩ

k' = 30 µA/V2

VT = 0.7 V

NMOSFET

k' = 15 µA/V2

VT = -0.7 V

PMOSFET

Fig. 12.27. Circuit for relaxation oscillator of Problem 12.4.

12.5. A bipolar relaxation oscillator is shown in Figure 12.27.
(a) Determine the steady-state operation of the circuit and the frequency of
oscillation. Sketch all voltage waveforms.
(b) Estimate the change in performance if devices Q3 and Q4 are replaced
with short circuits from base to emitter.

Q1 Q2

Q3 Q4

Q5 Q6

100 pF

0.1
mA

0.1
mA

0.5 mA 0.5 mA

-5 V -5 V

+5 V

βF = 100

IS = 10-16 A

 

2 kΩ 2 kΩ

Fig. 12.28. Circuit for the bipolar relaxation oscillator of Problem 12.5.
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Analog Multipliers, Mixers and Modulators

13.1 The Emitter-Coupled Pair as a Simple Analog
Multiplier

The multiplication of two analog, real-time signals is an important, required
circuit function. A particular application concerns the translating of a fre-
quency spectrum from one passband to another. This is often referred to by
the term, mixing. In the early days of electronics, before the availability of
reliable analog multipliers, two signals were combined (mixed) in a nonlin-
ear device and the mixing (beating) of the two signals produced sum and
difference components of the signals and their harmonics comparable to in-
termodulation distortion presented in Chapter 3. For IM2, the critical factor
is the presence of the square-law term of the device transfer characteristic
which leads to the (cross) product of the two signals. With a more compli-
cated circuit, easily realizable in IC form, the multiplication can be achieved
directly.

The simple emitter-coupled pair of Figure 13.1a provides a very simple ex-
ample of an elementary multiplier. From Chapter 2, we note that the collector
currents and the input voltages are related by

IC1 =
IEE

2

[
1 + tanh

(
d

2

)]
(13.1)

IC2 =
IEE

2

[
1 − tanh

(
d

2

)]
(13.2)

where d = vi1
Vt

and vi1 = Vi1 − Vi2 is the differential-mode input signal.
As usual, base currents are neglected. A common-mode (bias) input, VB1 =
Vi1+Vi2

2 , may affect the value of IEE , the dc value of the common-emitter
current source. For simplicity in the following developments, we assume that
VB1 = 0. The differential output voltage is
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vo = Vo1 − Vo2 = −RC(IC1 − IC2) = −IEERC tanh
(

d

2

)
(13.3)

Vi1 Vi2

Vo1 Vo2

Ic1 Ic2RC

IEE

RC

+ VCC

- VEE

Vi1 Vi2

Vo1 Vo2

Ic1 Ic2RC RC

+ VCC

- VEE

RB

Q1 Q2

Q3

Q4

Vi2

Q1 Q2

∆I = Ic1 - Ic2

(a) (b)

vi1
2

- vi1
2

Vi1

Vi2Vi1

Vi2 1V

(c)

Iee

Fig. 13.1. (a) A simple emitter-coupled pair. (b) A second input introduced through
Iee. (c) Common-mode and differential-mode input signals.

As brought out in Chapter 2, for d � 1, the tanh function can be approx-
imated well by the first term of its power-series expansion

tanh
(

vi1

2Vt

)
≈ vi1

2Vt
(13.4)
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vo ≈ −IEERC
vi1

2Vt
(13.5)

A second input signal can be introduced into a transistor realization of
IEE as shown in Figure 13.1b.

Iee ≈ Vi2 − VBEon − (−VEE)
RB

(13.6)

This second input in terms of its bias and variational components is

Vi2 = vi2 + VB2 (13.7)

The total common-emitter current source is

Iee = iee + IEE =
vi2

RB
+

VB2 − VBEon + VEE

RB
(13.8)

=
vi2

RB
+ IEE

where iee is the incremental value dependent upon vi2 and IEE is the dc
value. (Remember that IEE may also depend upon VB1). The differential
output voltage of the ECP becomes

vo = −RC

RB

vi1vi2

2Vt
− RCIEEvi1

2Vt
(13.9)

The output voltage can then be written

vo = vom + f(IEE , vi1) (13.10)

The vom term above is the one of immediate interest and can be considered
the ‘ideal’ multiplier output.

vom = −Kvi1vi2 (13.11)

where the multiplier coefficient is

K =
RC

RB

1
2Vt

(13.12)

(The multiplier constant K is used throughout this chapter as a generic term.
Care must be taken to insure the correct usage.)

For a numerical example, let RC = 1 kΩ and RB = 5 kΩ. The upper input
voltages are assumed to have a common-mode dc bias component of 1 V and
a sinusoidal differential-mode signal component with an amplitude of 0.02 V
and a radial frequency of 106 r/s, as shown in Figure 13.1c.

VB1 = 1 V (13.13)
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vi1 = 0.02 cos 106t (13.14)

Because a transistor-diode current source is used in Figure 13.1b, the dc
value of IEE does not depend upon VB1 = 1 V. (However, the values of the
VCE of the transistors do depend upon VB1.) The lower signal source is chosen
to have a dc component of zero and a sinusoidal input with an amplitude of
1 V and a radial frequency of 107 r/s.

Vi2 = 0 + 1 cos 107t (13.15)

The dc state of the circuit for VBEon = 0.8 V, VCC = 10 V,−VEE = −10 V,
RC = 1 kΩ and RB = 5 kΩ is

IEE =
0 − VBEon + VEE

RB
(13.16)

= 1.84 mA

V01 = V02 = VCC − IEE

2
RC = 9.08 V (13.17)

These values do not enter into the signal multiplication in vom, provided
that normal active region operation of the devices is maintained. The multi-
plier coefficient from (13.12) is 3.85 V−1. Therefore, the ‘signal multiplication’
output is

vom = −3.85(1.0 cos 107t)(0.02 cos 106t) V (13.18)
= −38.5 mV cos[(1 − .1)107t] − 38.5 mV cos[(1 + .1)107t]

As expected, the sum and difference of the two sinusoidal signals (the IM2

terms) are produced in the output.
From (13.5), the upper-input signal vi1 is also amplified by the ECP and

appears in the output. Its amplitude is

voA =
(1.84 mA)(1 kΩ)(20 mV)

2(25.85 mV)
= 712 mV (13.19)

This signal is approximately 20 times that of the vom terms above. If
the difference-frequency output component is of main interest, substantial
frequency filtering is needed to reject the vi1 component.

To continue with the example, it is also of interest to determine the range
of the input, vi1, over which linear multiplication is obtained, i.e., the range
over which the transfer characteristic slope deviates from linearity by a given
percent. We start with (13.3) and take the derivative with respect to vi1.
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dvo

dvi1
=

RCIEE

2Vt

1
cosh2

(
d
2

) (13.20)

For vi1 = 0, the value of the slope is

dvo

dvi1
=

RCIEE

2Vt
(13.21)

To find the value of vi1 for which the slope is, say, 1% different than a
linear curve, we solve for the value of vi1 where

dvo

dvi1
= 0.99

RCIEE

2Vt
(13.22)

This leads to

cosh
(

d

2

)
=

√
1

.99
(13.23)

vi1 = ±5.2 mV (13.24)

Therefore, the upper-signal amplitude must be less than 5.2 mV to main-
tain 99% linearity. The linearity restriction for the lower-signal source is much
less severe because of the linearity introduced by the bias source resistance,
RB.

This simple type of analog multiplier has many uses but is restricted to the
particular ‘single-ended input’ for the lower signal source. Often, it is desired
to use a differential input signal for both inputs. In addition, the voltage
excursion for the upper signal is limited for accurate multiplication. In the
next sections, new circuitry is introduced to remove these limitations.

The lower-signal source can be introduced in several ways into the bias
current source. Another example is shown in Figure 13.1d. In this circuit, the
lower-signal source is ac coupled into the emitter of the bias transistor, Q3.
For this signal, this transistor operates in a common-base mode. It is easily
shown that the multiplier gain constant is

K ≈ RCIEE

2V 2
t

(13.25)

For RC = 1 kΩ,RE = 5 kΩ,VEE = 10 V, one obtains IEE = 1.84 mA and
K = 1.4 × 103 V−1. The linearity constraint for the amplitude of the lower
signal is now much more severe because of the direct input to transistor Q3.

13.2 A Subtraction Improvement

The simple ECP analog multiplier suffers from the small input signal restric-
tion and the offset voltage due to vi1 alone. In terms of the original equations,



422 13 Analog Multipliers, Mixers, and Modulators

- VEE

Q1 Q2

Q3

vi1

vi2
RE

Fig. 13.1. (d) Another example of introducing the lower-signal source.

vo = Vo1 − Vo2 = −RC

RB
tanh

(
vi1

2Vt

)
vi2 − RCIEE tanh

(
vi1

2Vt

)
(13.26)

The second term can be eliminated by an addition (subtraction) config-
uration involving an additional ECP. In the configuration of Figure 13.2a, a
second pair, Q3 − Q4, is in parallel with the first ECP, Q1 − Q2, except that
the input voltage drive to the second pair is inverted, i.e., has the opposite
phase as of the first pair. The differential output voltage is

vo = − [(I1 − I2) + (I3 − I4)] RC (13.27)

= −
[
IEE1 tanh

(
vi1

2Vt

)
+ IEE2 tanh

(
−vi1

2Vt

)]
RC

= −(IEE1 − IEE2)RC tanh
(

vi1

2Vt

)

Of course, if the two pairs have equal common-emitter current sources,
the differential output voltage cancels and is zero. This cancellation aspect
at first does not seem promising unless we also consider the case where the
two common-emitter currents sources have incremental components which are
also out of phase and are proportional of vi2. Let

Iee1 = IEE + iee (13.28)
Iee2 = IEE − iee

Using these in (13.27), we obtain
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IEE1 IEE2

Q1 Q2 Q3 Q4

IC1 IC2 IC3 IC4

RC

vo

RC

+ -

v1

+

-

+ VCC

(IC2 + IC4(IC1 + IC3) )

Fig. 13.2. (a) Circuit to eliminate the second term of Equation (13.26).

vo = 2ieeRC tanh
(

vi1

2Vt

)
(13.29)

The dc offset in vo is eliminated provided that we can produce the currents
in (13.28). If one starts with the configuration of either Figure 13.1b or Figure
13.1c, a new inverting stage is necessary to obtain −vi2 and thus −iee. A
simpler scheme uses a third ECP, Q5 − Q6, as shown in Figure 13.2b. The
difference of the ‘source’ currents IC5 and IC6 is

IC5 − IC6 = IEE tanh
(

vi2

2Vt

)
(13.30)

Starting with (13.27), we obtain

vo = −RC [(IC1 + IC3) − (IC2 + IC4)] (13.31)
= −RC [(IC1 − IC2) + (IC3 − IC4)]

= −RC

[
IC5 tanh

(
vi1

2Vt

)
+ IC6 tanh

(
−vi1

2Vt

)]

= −RC

[
(IC5 − IC6) tanh

(
vi1

2Vt

)]

= −RCIEE tanh
(

vi2

2Vt

)
tanh

(
vi1

2Vt

)

For small inputs,
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Q1 Q2 Q3 Q4

RC

vo

RC

+ -

v1

+

-

+ VCC

+

-
v2

Q5 Q6

IEE

Iee1 Iee2

Fig. 13.2. (b) A fully balanced four-quadrant multiplier circuit.

vo = vom = −RCIEE

4V 2
t

vi1vi2 (13.32)

This is one-half of the corresponding small-signal output for a single ECP
multiplier. The magnitude restriction on the input signals for linearity remains
the same now for both vi1 and vi2.

The final circuit of this section, Figure 13.2b, is often referred to as a fully
balanced multiplier and as a four-quadrant multiplier. The latter is the result
of the output of the multiplier having the same relative behavior in all of the
four quadrants of the vi1 − vi2 plane, dependent only on the sign of the input
signals.
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13.3 Predistortion and Linearity Improvement
in the ECP

B. Gilbert first proposed a scheme to predistort the input signal to an emitter-
coupled pair, at the expense of gain, which greatly extends the linearity range
of the circuit [37]. This is of particular importance for analog multipliers, but
also has application for other large-signal uses of the ECP. Although Gilbert
first published the predistortion technique in conjunction with a fully balanced
multiplier, as described in the last section, the technique, for simplicity, is first
introduced with the ECP alone.

In the Gilbert predistortion scheme, diodes are introduced at the input of
an ECP to compress the input signal logarithmically. This compressed signal is
expanded by the transfer characteristic of the ECP to obtain an almost linear
transfer characteristic of the total circuit. In Figure 13.3a, the input signals
are chosen for the moment to be the currents Ia and Ib. These two currents
flow down through the diodes (diode-connected transistors) developing the
voltages Va and Vb.

Va = VB − Vt ln
(

Ia

IS

)
(13.33)

Vb = VB − Vt ln
(

Ib

IS

)

where IS is the saturation current of the bipolar device. The difference voltage,
Va − Vb, is taken as the differential input voltage to an ECP.

vi1 = Va − Vb = −Vt ln
(

Ia

Ib

)
= Vt ln

(
Ib

Ia

)
(13.34)

For the pair shown in Figure 13.3b, the collector currents, from (13.1) and
(13.2) and from Chapter 2, are

IC1 =
IEE

1 + exp(−d)
=

IEE

2

[
1 + tanh

(
d

2

)]
(13.35)

IC2 =
IEE

1 + exp(d)
=

IEE

2

[
1 − tanh

(
d

2

)]

where d = vi1/Vt. The difference of the two currents and the ratio of the two
are

IC1 − IC2 = IEE tanh
(

d

2

)
(13.36)

IC1

IC2
= exp(d) (13.37)
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Fig. 13.3. (a) Circuit with currents as inputs. (b) An EC pair circuit. (c) An input
voltage-to-current transducer. (d) An alternate arrangement to linearize the transfer
characteristics.
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If (13.34) is solved for exp
(

vi1
Vt

)
= exp(d) and used in (13.37),

IC1

IC2
=

Ib

Ia
(13.38)

Next recognize that IEE = IC1 +IC2 (assuming that the base currents can
be neglected). In addition, (13.38) is introduced into (13.36) to obtain

Ib − Ia = (Ia + Ib) tanh
(

d

2

)
(13.39)

This is solved for the tanh function which is used in (13.36).

IC1 − IC2 =
IEE

Ia + Ib
(Ib − Ia) (13.40)

We therefore have a linear relationship between the differential input cur-
rents, (Ib − Ia) and the differential output currents, (IC1 − IC2), of the pair.

An input voltage-to-current ‘transducer’ is next introduced as shown in
Figure 13.3c. In this circuit, a large common-emitter resistor is used to lin-
earize the transfer characteristic of an ECP. An alternate arrangement, as
shown in Figure 13.3d, is to use a resistance RE/2 in each emitter lead and
a single current source supply, IAA. For the circuit of Figure 13.3c and for
RE 	 Vt

Ia
and 	 Vt

Ib
,

Ia =
v1
2

RE

2

+
IAA

2
(13.41)

Ib =
− v1

2
RE

2

+
IAA

2

where v1 is the differential-input voltage to the transducer pair. The difference-
output current of the transducer is

Ia − Ib =
2v1

RE
(13.42)

The sum of the two collector currents is a constant

Ia + Ib = IAA (13.43)

The complete predistorted pair is shown in Figure 13.4a. The differential-
output voltage is

vo ≈ −RC(IC1 − IC2) = +2
(

RC

RE

)(
IEE

IAA

)
vi (13.44)

The linearity of the actual transfer characteristic can be found from a
Spice simulation. The input file is given in Figure 13.4b, where the local
feedback and bias arrangement of Figure 13.3d is used. Several plots of the
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Fig. 13.4. (a) The complete predistorted pair.

voltage transfer characteristic are shown in Figure 13.4c. The improvement in
linearity with RE is clear, although the voltage gain suffers. For modest values
of RE/2 relative to the output resistance at the emitter of Q5 or Q6, 1/gm5,
the error in (13.44) can be significant. For RE = 2 kΩ, (13.44) estimates a
differential voltage gain of 50. The observed value is 32.8.

This predistortion scheme can be used with the simple analog multiplier
of the last section by also introducing a second input signal into the current
source, IEE . However, from the results of Section 13.1, the output still contains
both the desired multiplication term as well as the offset term involving vi1

and the dc component, IEE . The fully differential circuit of the last section
eliminates this second term.
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FIGURE 13.4B
Q1 2 8 3 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
RC1 5 2 5K
VCC 5 0 10
RC2 5 4 5K
Q2 4 9 3 MOD2
.MODEL MOD2 NPN IS=1E-16 BF=100
IEE1 3 20 2M
VEE 20 0 -10
RBB 5 7 37K
Q3 7 7 8 MOD1
Q4 7 7 9 MOD1
Q5 8 10 11 MOD1
Q6 9 0 12 MOD1
RE1 11 13 1K
RE3 12 13 1K
IAA 13 20 0.2MA
V1 10 0 0 
.DC V1 -0.5 0.5 0.05
.PLOT DC V(2,4)
.OPTIONS RELTOL=1E-6
.WIDTH OUT=80
.END

0.500.250.00-0.25-0.50
-10

-5

0

5

10

V1  (V)

V
(2

, 
4)

  
(V

)

RE =  = 2RE1

(b) (c)

RE = 1 kΩ

RE = 2 kΩ
4 kΩ

Fig. 13.4. (b) Spice input file. (c) Voltage transfer characteristics.

13.4 The Gilbert Cell

As mentioned in Section 13.2, a so-called four-quadrant multiplier is obtained
when two simple analog multipliers of a single pair each are arranged in par-
allel with a push-pull input connection as shown in Figure 13.5a. In this
arrangement, the common-emitter current sources for the upper pairs are also
an emitter-coupled pair with emitter degeneration as used in the last section
for the input voltage-to-current converter. Repeating some of the analysis of
the last two sections, we obtain

IC3 − IC4 = IC1 tanh
(

v1

2Vt

)
(13.45)

IC5 − IC6 = IC2 tanh
(
−v1

2Vt

)
= −IC2 tanh

(
v1

2Vt

)
(13.46)

io = (IC3 + IC5) − (IC4 + IC6) (13.47)

= (IC1 − IC2) tanh
(

v1

2Vt

)

For large values of the emitter feedback resistors,

IC1 − IC2 ≈ 2v2

RE
(13.48)

The differential-output voltage is
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Fig. 13.5. (a) A four-quadrant multiplier core.

vo = [VCC − RC(IC3 + IC5)] − [VCC − RC(IC4 + IC6)] (13.49)

= −RCio = −kv2 tanh
(

v1

2Vt

)

where

k =
2RC

RE
(13.50)

The low-level input restriction on v1 can be lifted by using predistortion as
in the last section. The complete circuit becomes that of Figure 13.5b. Note
that both series and coupling resistors are used in the emitters of the trans-
ducer pairs. The total, effective emitter resistors, RE1 and RE2, comparable
to that used in the last section are twice one series resistor plus the coupling
resistor. An example is given below. From the earlier results, the input-output
relation is

vo = −Kv1v2 (13.51)

where
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K =
4RC

IAARE1RE2
(13.52)

Often, the parameters are chosen to achieve K = 0.1 V−1 which can be
obtained in a numerical example, with RE1 = RE2 = 15 kΩ,RC = 11 kΩ,
and IAA = 2 mA.

The Spice input file for the multiplier of Figure 13.5b is shown in Figure
13.6a. The two input voltages are labeled vx and vy and correspond to v1

and v2 above. The appropriate values of the transducer resistors are RE1 =
RE2 = 85 kΩ, as given in a comment line in the listing. The source current
IAA for these transducers is approximately 0.3 mA. Therefore, from (13.52),
K = 0.0092 V−1. In Figure 13.6b, the dc node voltages are given with vx =
v(1) = 1 V and vy = v(3) = 1 V. The differential output voltage is v0 =
v(23) − v(24) = −0.0089 V, which is close to the estimate from (13.51) and
(13.52). Three voltage transfer characteristics are shown in Figure 13.6c. The
values of v0 with vx for vy = 2 V, with vy for vx = 2 V and with vx for vy = 1
V. The zero crossings are at zero volts and the linearity is very good over
inputs of ±6 V. The breaks in the characteristics at the input of 9 V are due
to transistor saturation.

The circuit shown in Figure 13.5b is the original circuit developed by
Gilbert. This basic circuit is often referred to as the “Gilbert Cell.” It has
been the prototype of many integrated circuit versions produced commercially
by many manufacturers. The four-quadrant multiplier is, with the operational
amplifier, a workhorse for analog signal processing.

13.5 MOS Analog Multipliers

MOS devices can also be used to produce an analog multiplier. As seen re-
peatedly in previous chapters for other circuit function realizations, MOS
enhancement-mode devices can be substituted for the original bipolar, en-
hancement mode devices, biases adjusted, and a new circuit achieved. Of
course, the different gain properties of the new devices, and the differing non-
linearities of the input and transfer characteristics may lead to modified per-
formance.

For analog multipliers, the easiest way to proceed is to start directly with
source-coupled pairs as illustrated in Figure 13.7. In this circuit three source-
coupled pairs are used in the stacked arrangement also used for bipolar multi-
pliers. For the BJT circuit, a straight-forward multiplication of the two input
signals is produced due to the simple tanh function provided by the BJT ex-
ponential nonlinearity. For MOS SCPs, a closed-form transfer function can be
obtained only for operation in the MOS saturation region [38]. In addition,
the expressions for SCPs are not convenient to work with. It can be shown
that linear multiplication is obtained for typical input voltage ranges.

Input predistortion circuitry and linear voltage-to-current converter sources
can also be added to the MOS analog multiplier of Figure 13.7.
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Fig. 13.5. (b) Complete circuit of the multiplier.
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GILBERT CELL, FIG. 13.6A
.OPTIONS NOMOD NOPAGE RELTOL=1E-6
* VX IS BETWEEN 1 AND 2 AND VY BETWEEN 3 AND 4
* SET INPUTS TO APPROPRIATE VALUES
VX 1 2 1
VY 3 4 1
* USE NODE 2 AND NODE 4 AS THE INPUT BIAS POINTS
VX1 2 0 0
VY1 4 0 0
* SUPPLY VOLTAGES
VCC 100 0 10
VEE 101 0 -10
* LOAD RESISTORS, OUTPUT NODES ARE 23 AND 24
RL1 100 23 5K
RL2 100 24 5K
* MULTIPLIER CORE TRANSISTORS
Q1  100 100 20  MODN
Q2  10    100 21  MODN
Q3  23  21  22  MODN
Q4  24   20  22  MODN
Q5  23  20  25  MODN
Q6  24  21  25  MODN
* INPUT STAGE TRANSISTORS + RESISTORS
Q7  20  2   5   MODN
Q8  21  1   6   MODN
Q9  22  4   12  MODN
Q10  25  3   13  MODN
R11  5   7   25K
R12  6   8   25K
R13  12  14  25K
R14  13  15  25K
R21  7   8   35K
R22  14  15  35K
* NOTE: RE1 AND RE2 = 85K
* CURRENT SOURCE TRANSISTORS + RESISTORS
Q13  7   9   10  MODN
Q14   8   9   11  MODN
Q15  14  9   16  MODN
Q16  15  9   17  MODN
Q17  9   9   18  MODN
R31  10  101 8K
R32  11  101 8K
R33  16  101 8K
R34  17  101 8K
R35  18  101 4K
* CURRENT SOURCE AS BIAS GENERATOR
IBB 100 9 300U
* MODEL DEFINITION
.MODEL MODN NPN IS=1E-16 BF=100
*ANALYSIS TYPES
.DC VX -10 10 .5
*.DC VY -10 10 .5

Fig. 13.6. (a) Spice input file for Gilbert cell.
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  NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE

 (  1)    1.0000    (  2)    0.0000    (  3)    1.0000    (  4)    0.0000
 (  5)   -0.7224    (  6)    0.2735    (  7)   -4.1235    (  8)   -3.7134
 (  9)   -8.0813    ( 10)   -8.8061    ( 11)   -8.8061    ( 12)   -0.7224
 ( 13)    0.2735    ( 14)   -4.1235    ( 15)   -3.7134    ( 16)   -8.8061
 ( 17)   -8.8061    ( 18)   -8.8236    ( 20)    9.2776    ( 21)    9.2736
 ( 22)    8.5715    ( 23)    9.2713    ( 24)    9.2802    ( 25)    8.5674
 (100)   10.0000    (101)  -10.0000    

(b)

1050-5-10
-0.2

-0.1

0.0

0.1

0.2

VX, VY  (V)

V
(2

3,
 2

4)
  

(V
)

VY = 1 V

VY = 2 V

VY with VX = 2 V

(c)

Fig. 13.6. (b) Dc node voltages for input voltages of 1 V. (c) Three voltage transfer
characteristics.

13.6 Mixing, Modulation and Frequency Translation

The most common form of radio receiver is the superheterodyne configura-
tion which is once again shown in Figure 13.8a. In operation, the mixer must
achieve an analog multiplication. With multiplication, sum and difference fre-
quency components at (ωc ± ωlo) are produced at the output of the mixer,
where ωc is the input signal frequency and ωlo is the frequency of the lo-
cal oscillator. The sum frequency is rejected by sharply tuned circuits and
the difference frequency component, the IF, is subsequently amplified in a
fixed-tuned bandpass amplifier.

The design and evaluation of tuned amplifiers and lowpass, audio output
amplifiers has been covered in the earlier chapters. The operation and design
of the demodulation block (function) is introduced in the next chapter.

To formalize the mixer operation, assume that both the input signal and
the local oscillator output are unmodulated, single-tone sinusoids.

Vc = VcA cos ωct (13.53)

Vlo = VloA cos ωlot (13.54)

If the multiplier (mixer) has a gain constant, K, the output is
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Fig. 13.7. A MOS analog multiplier using source-coupled pairs.
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Fig. 13.8. (a) The superheterodyne configuration. Frequency spectrum of (b) the
input, and (c) the multiplier output.
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Vout =
K

2
VcAVloA [cos(ωc − ωlo)t + cos(ωc + ωlo)t] (13.55)

The difference frequency, ωc − ωlo, is labeled ωif .
If the input is a modulated signal, the modulation also is translated to

a band about the new carrier frequency, ωif . For example, if the input is
amplitude modulated,

Vs = VsA[1 + m cos ωmt] cos ωct (13.56)

= VsA cos ωct +
m

2
VcA cos(ωc − ωm)t +

m

2
VcA cos(ωc + ωm)t

The input can be represented as in Figure 13.8b with the carrier frequency
term and an upper and a lower sideband, each sideband containing the mod-
ulation information.

For a linear multiplier, each of the input components is multiplied by the
local oscillator input and the output of the multiplier contains six terms as
shown in Figure 13.8c, the difference-frequency carrier with two sidebands
and the sum-frequency carrier with two side bands. The latter combination is
usually rejected by the passband of the IF amplifier.

13.7 The Fully Balanced (Quad) Mixer

A compensated, predistorted analog multiplier such as that shown in Figure
13.5b can be used directly as a mixer. One input, v2, is the RF signal from the
RF amplifier/tuner. The other input, v1, is from the local oscillator. At the
output of the multiplier, a high Q resonant circuit is included which is tuned to
the difference frequency. (This tuned circuit is usually also the input circuit
for the intermediate-frequency amplifier.) Good mixer performance can be
provided for modest frequency applications. Charge storage and interaction
effects for the usual IC realization do not permit operation for frequencies
above one-tenth of the fT of the devices.

Because of the need for the high-Q tuned circuit at the output of the
mixer, which rejects all frequency components other than the spectrum about
the difference frequency, the linearizing circuitry of the Gilbert Cell can be
omitted and only the ‘small-signal’ multiplier of Figure 13.2b, which is shown
again in Figure 13.9a with an output tuned circuit, need be used as the mixer.
The circuit is a doubly balanced, four-quadrant analog multiplier and is called
the quad mixer.

The amplitudes of the input signals into a quad mixer need not be small
relative to the Vt of the devices. For large amplitudes of sinusoidal signals,
each tanh function of (13.31) can be represented as a Fourier series in terms
of the fundamentals of each input and their harmonics, cf., Section 2.5. The
output of the multiplier is the infinite set of the beats of the signals and all
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Fig. 13.9. (a) A quad-mixer circuit.

possible harmonics. If the output tuned circuit of the quad mixer has a high
Q, the only appreciable output voltage presented to the IF amplifier is the
difference-frequency, beat component of the original two input sinusoids.

Typically, the input from the local oscillator has an amplitude greater than
4Vt ≈ 100 mV. With this large an input, the transistors of the top ECPs of
Figure 13.9a quickly switch from their active to the off regions and vice versa,
that is, the transistors act as fast switches. The output collector currents of
the top ECPs are virtually rectangular wave trains [39]. The amplitude of
the lower ECP can also be large, but proper operation of the mixer is also
obtained for small amplitudes.

For a numerical example, the Spice input file for the quad mixer of Figure
13.9a is given in Figure 13.9b. The difference frequency of the mixer is chosen
to be 1.59 MHz. The two input frequencies are chosen to be the multiples of
8 and 9 of the difference frequency. This provides a convenient check of the
output components of the mixer using Spice’s Fourier analysis. The sinusoidal
input to the upper ECPs, v1, has an amplitude of 90 mV at a frequency of
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12.732 MHz (8 times the difference frequency). The input amplitude to the
lower ECP, v2, is 2 mV at a frequency of 14.324 MHz (9 times the difference
frequency). The output tuned circuit develops the differential output voltage.
Note that the resistance of the tuned circuit is 2RC = 10 kΩ, since the tuned
circuit is placed between the two collector nodes.

QUAD MIXER, FIG 13.9A
.TRAN 30N 13U 10U 3.5N
.PLOT TRAN V(23,24)
.FOUR 1.5916MEG V(23,24)
V1 5 0 SIN (0 90M 12.732MEG)
V2 1 4 SIN (0 2M 14.324MEG)
VB 4 0 -2
VCC 100 0 10
RL1 100 23 5K
RL2 100 24 5K
LT 23 24 100U
CT 23 24 100P
Q1 23 5 22 MODN
Q2 24 0 22 MODN
Q3 23 0 25 MODN
Q4 24 5 25 MODN
Q5 22 1 12 MODN
Q6 25 4 12 MODN
.MODEL MODN NPN IS=1E-16 BF=100
IEE 12 0 300U
.OPTIONS NOPAGE NOMOD RELTOL=1E-5
.WIDTH OUT=80
.OPTIONS ITL5=0 LIMPTS 5000
.END

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(23,24)
 DC COMPONENT =   5.614D-06
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.592D+06   3.036D-02     1.000000   160.108       0.000
     2      3.183D+06   9.451D-06     0.000311   -16.705    -176.813
     3      4.775D+06   3.561D-06     0.000117    -8.217    -168.326
     4      6.366D+06   3.855D-06     0.000127    -2.037    -162.146
     5      7.958D+06   1.773D-06     0.000058    23.756    -136.352
     6      9.550D+06   2.786D-06     0.000092   -30.677    -190.785
     7      1.114D+07   2.472D-06     0.000081    42.797    -117.311
     8      1.273D+07   2.092D-06     0.000069     4.945    -155.163
     9      1.432D+07   5.696D-07     0.000019    57.621    -102.487

     TOTAL HARMONIC DISTORTION =      0.038778  PERCENT

13.0012.7512.5012.2512.0011.75
-40

-20

0

20

40

V
(2

3,
24

) 
 (

m
V

)

Time (µs)

(b)

(c)

Fig. 13.9. (b) Spice input file and output voltage waveform. (c) Fourier components
of the output voltage.

Spice simulation of mixers and other frequency-translation circuits is
computer-time consuming because of the wide ranges of frequencies and crit-
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ical time intervals. The parameters of the .TRAN line of the input file must
be carefully chosen. The .TRAN statement has the form:

.TRAN TSTEP TSTOP TSTART TMAX (13.57)

For the present example, the longest time interval permitted during the
simulation, TMAX, should be no greater than approximately 1/20 of the
period of the highest frequency input signal; therefore, TMAX = 3.5 ns.
The simulation must take place over several cycles of the desired difference-
frequency output. In this Spice input, 20 cycles are used; thus, TSTOP =
13 µs. Such a large compute time insures that startup transients have dis-
appeared. Since only a few cycles of the difference-frequency output need be
inspected, TSTART = 10 µs. Finally, the print step, TSTEP, is chosen to be
1/20 of the period of the difference frequency.

Since a large number of iterations are needed for the simulation, .options
ITL5=0 must be used in Spice2 to eliminate the limit on the number of
iterations. Because of the complexity of the waveform for the output of a
mixer, high-order interpolation in the Fourier analysis of Spice3 should not
be used. Linear interpolation, as used in Spice2, provides a filtering action.

The output voltage waveform is shown in Figure 13.9b and the Fourier
components of the output are given in Figure 13.9c. The harmonic content of
the output voltage is very low. In particular, the output components at the
frequencies of the two inputs are negligible. Cancellation from the mixer and
high rejection by the tuned circuit are present.

The amplitude of the output sinusoid is seen to be 30.4 mV. An estimate of
this amplitude can be obtained from (13.31) and from Figure 2.16 (or Figure
10.16). From the results of Chapter 2, the fundamental component of the
output currents of an ECP with heavy overdrive can be obtained from Figure
2.16. For d/2 = 90 mV/2Vt, b1 = 0.53. This value can be used in (13.31) to
obtain

vo = −RCIEE
vi2

2Vt
b1 (13.58)

where a small-signal approximation of tanh (vi2/2Vt) is used. For RC = 5 kΩ,
IEE = 300 µA, vi/2 = 2 mV, and Vt = 25.9 mV, vo = 30.7 mV.

To improve the linearity of the RF input stage of the quad mixer shown in
Figure 13.9(a) emitter degeneration is typically used [39]. The modified quad-
mixer circuit with resistive emitter degeneration is shown in Figure 13.9(d).

13.8 Single-Device Mixers

As mentioned earlier, the quad mixer is limited to frequencies well below
the fT of the BJTs. For higher frequencies, as well as for low-cost situations,
single-device mixers are used. In a single-device mixer, the input signals are in-
troduced into the device and the square-law term of the device’s characteristic
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Fig. 13.9. (d) A quad-mixer circuit with emitter degeneration for the lower ECP.

provides the multiplication action. In Chapter 3, intermodulation distortion is
introduced in this manner. There, the interaction of the two signals in the non-
linearity of the device is to be minimized. In a mixer, the desired output is one
of the IM2 components, the difference-frequency component developed from
the second-order term of the power series of the nonlinearity. The other terms
of the nonlinear device characteristic also produce harmonics and beats which
can be considered distortion terms which must be rejected by the fixed-tuned
amplifier which follows the mixer. The filtering problem is usually severe.

13.8.1 BJT Mixers

Consider the BJT circuit of Figure 13.10a. The input consists of the series
combination of a dc bias voltage source, VBS , an input sinusoidal voltage
source vs and a local oscillator voltage source vlo, also sinusoidal. VBS is the
quiescent bias value of VBE . The transfer characteristic of the BJT is taken
to be the usual ideal exponential.
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IC = IS exp
(

VBS + vs + vlo

Vt

)
(13.59)

= ICA exp
(

vs

Vt

)
exp

(
vlo

Vt

)

where

ICA = IS exp
(

VBS

Vt

)

The term, ICA, is the quiescent dc value of the collector current. Since
vs and vlo have the form of X cos ωit, each exponential can be expanded as
in Chapters 3 and 11 in a Fourier series with Bessel Function coefficients, cf.
(11.28).

exp
(

VsA cos ωst

Vt

)
= I0(d) + 2I1(d) cos ωst + · · · (13.60)

exp
(

VloA cos ωlot

Vt

)
= I0(y) + 2I1(y) cos ωlot + · · · (13.61)

where d and y are normalized values of the sinusoidal amplitudes, VsA and
VloA, respectively.

d =
VsA

Vt
(13.62)

y =
VloA

Vt
(13.63)

The In(x) are modified Bessel functions of order n. If the Fourier series
terms are introduced into (13.59), the multiplication carried out and if trigono-
metric identities are introduced, the result has the form

IC = ICAI0(d)I0(y) + · · · 2ICAI1(d)I1(y) cos(ωs − ωlo)t + · · · (13.64)

= IDC

[
1 + · · · + 2

I1(d)
I0(d)

I1(y)
I0(y)

cos(ωs − ωlo)t + · · ·
]

where IDC = ICAI0(d)I0(y) is the dynamic average value of the collector
current and only the difference-frequency component is explicitly included.
The desired mixing occurs and there are a multitude of other terms to reject.

We next specify that the local oscillator magnitude be larger than Vt =
25.85 mV at room temperature and that the input voltage be much less than
Vt.
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VBS

vlo

vs

Ic
vo

+ VCC

ωo = ω s - ω lo

FIGURE 13.10, Q=40
VS 2 1 0 SIN(0 1MV 1MEG)
VLO 1 0 0 SIN(0.78 100MV 1.1MEG)
.TRAN 0.2U 620U 610U 45N
*.TRAN 45N 601.8U 600U 45N
.PLOT TRAN V(3)
.FOUR 100K V(3)
*.FOUR 1.1MEG V(3)
VCC 4 0 10
Q1 3 2 0 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
CI1 2 0 1PF
R1 4 3 15K
C1 4 3 4.244NF
L1 4 3 596.83UH
.WIDTH OUT=80
.OPTIONS RELTOL=1E-4 ITL5=0
.OPTIONS NOMOD NOPAGE
.END

(a) (b)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   9.999D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+05   6.228D+00     1.000000   -89.976       0.000
     2      2.000D+05   7.772D-03     0.001248     4.196      94.172
     3      3.000D+05   2.883D-03     0.000463    82.645     172.621
     4      4.000D+05   5.096D-03     0.000818   106.306     196.282
     5      5.000D+05   1.449D-03     0.000233  -158.424     -68.448
     6      6.000D+05   1.705D-03     0.000274   -19.667      70.308
     7      7.000D+05   1.990D-02     0.003196     5.753      95.728
     8      8.000D+05   1.331D-03     0.000214   -10.905      79.070
     9      9.000D+05   8.830D-04     0.000142  -139.899     -49.923

     TOTAL HARMONIC DISTORTION =      0.358472  PERCENT

0.6200.6180.6160.6140.6120.610
0

5

10

15

20

Time  (ms)

V
(3

) 
 (

V
)

(c)

Fig. 13.10. (a) A single-device BJT mixer. (b) Spice input file. (c) Output voltage
waveform and its Fourier components.
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VloA 	 Vt, y 	 1 (13.65)

VsA � Vt, d � 1 (13.66)

These lead to the approximations:

I1(y)
I0(y)

= 0.95 (13.67)

I1(d)
I0(d)

=
d

2
(13.68)

With these approximations the difference component of the collector cur-
rent becomes

IC |if cos ωif t ≈ 0.95IDC
VsA

Vt
cos ωif t (13.69)

where ωif = ωs − ωlo.
In some cases, it is convenient to define a new transfer coefficient, Gmcon,

the conversion transconductance. This is taken as the ratio of the amplitude
of the IF component of the collector current and the amplitude of the signal
input voltage. From the last equation,

Gmcon = 0.95
IDC

Vt
(13.70)

If y is not much greater than one, the plots of the In(x) in Figure 11.5 can
be used to obtain the value of I1(y)

Io(y) to replace the value 0.95 in (13.69) and
(13.70).

For a numerical example, let the circuit be current biased with IDC = 0.5
mA. For VsA = 1 mV and VloA = 100 mV, IC |if= 18 µA and Gmcon =
18 × 10−3 �.

If the output resonant circuit of the mixer is tuned to the difference fre-
quency and has a center-frequency resistance of R = 10 kΩ, the output voltage
of the IF component is 184 mV.

Of the other components of the output, a troublesome one is the fundamen-
tal of the local oscillator because of the assumed and usual large amplitude.
From the Bessel-function expansions,

IC |lo= IDC2
I1(y)
I0(y)

cos ωlot (13.71)

For y 	 1,

IC |lo= 1.9IDC cos ωlot (13.72)
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For the above numerical example, the magnitude of the local-oscillator
output component is very large, 0.95 mA. The ratio of the magnitude of this
term to the magnitude of the desired difference frequency term is

IC |lo
IC |if

= 2
Vt

VsA
(13.73)

For the example above where VsA = 1 mV, this ratio is over 50. Therefore,
the tuned output circuit must provide adequate rejection at the LO frequency.
One cannot depend only on the rejection of the following IF amplifier. Large-
signal inputs into this amplifier may cause substantial additional IM distortion
to be generated. If the output voltage of the mixer at the local oscillator
frequency is to be less than, say, ten times that of the IF component, the
rejection from the output tuned circuit must be approximately 500 at the
local oscillator frequency relative to the IF frequency response.

For a single-tuned, parallel RLC, resonant circuit, the magnitude function
with frequency from (8.6) has the form

| Z(jω) |= Rωωb√
(ω2

o − ω2)2 + (ωωb)2
(13.74)

where ω is the frequency of interest, ωo = 1√
LC

is the resonant frequency and
ωb = 1

RC is the -3 dB bandwidth of the magnitude response. The rejection
produced by the tuned circuit at ω, Rej(ω), is the reciprocal of the impedance
magnitude at ω relative to R, the magnitude at the center frequency, ωo. For
frequencies well beyond the band edges of the passband, | ω − ωo |	 ωb,

Rej(ω) =
(
| Z(jω) |

R

)−1

(13.75)

≈ Q

∣∣∣∣ωo

ω
− ω

ωo

∣∣∣∣
For the example above and if fif = 0.5 MHz, flo = 1.5 MHz and bw = 16.7

kHz (corresponding to a Q of the tuned circuit of 30), the rejection at the local
oscillator frequency is 80. Since the collector-current LO component is 50
times greater than the IF component, the difference-frequency output voltage
relative to the fundamental of the local oscillator at the output is only 50/80 =
0.63. To reduce this to 0.1, the Q of the tuned circuit has to be increased by a
factor of 6. However, this large a value of Q may be difficult to achieve unless
crystal filters are used. Alternately, the local oscillator magnitude must be
reduced. This in turn makes the mixer more susceptible to variations of the
circuit’s supply biases. For y 	 1, the mixer is relatively insensitive to the
amplitude of the local oscillator and subsequently the bias supply levels. As
mentioned above, if y is not greater than one, plotted tabular values for the
Bessel functions must be used the equations above. Curves of the first few
Bessel Functions are included in Figure 11.5.
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The Spice input listing for the circuit of the BJT mixer of Figure 13.10a
is given in Figure 13.10b. The input and local oscillator signal amplitudes are
1 mV and 100 mV, respectively. Note that the input frequency is 1 MHz and
the LO frequency is 1.1 MHz. The difference frequency is therefore 100 kHz.
The Q of the tuned output circuit ωo

ωb
is chosen to be 40. Frequency-response

calculations estimate that the ratio of the difference-frequency output voltage
to the local-oscillator fundamental in the output is 8.44.

The output voltage waveform of the mixer is shown in Figure 13.10c. In
this waveform, the LO output component certainly is present. The harmonic
content for the lower harmonics can be misleading considering the distorted
waveform of the output voltage. Since the difference frequency and local os-
cillatory frequency are integrally related, the Fourier series algorithm picks
points which predict a smooth sinewave. Greater detail of the effects of the
output due to the local oscillator is seen more clearly for the output plot
of Figure 13.10d where TSTEP is reduced to 1/20 of the LO period. (See
the * lines in the Spice input file.) Some adjustments are also made to other
.TRAN parameters to obtain the plot. The LO output definitely is seen as
a ripple superimposed on the IF output. From the .FOUR calculation from
Spice3, where 12 harmonics can be obtained, the ratio of difference frequency
component of the output voltage to the LO component is 8.5.

If the Q of the output tuned circuit is increased to 100, the output wave-
form of Figure 13.10e is obtained. The waveform from Figure 13.10c for Q = 40
is superimposed. The decreased effect of the local oscillator component is clear.

13.8.2 MOSFET Mixers

It is clear that MOSFET circuits can be used as mixers since the transfer
characteristics of the devices are not only nonlinear, but also provide the nec-
essary square-law terms to achieve the multiplication of two inputs. The MOS
devices are especially interesting because of their nearly square-law charac-
teristics. Because the higher-order terms in the transfer characteristic are not
present in single-device circuits, or are at least small, higher-order distortion
components, such as IM3 terms, are not produced.

A simple MOSFET mixer circuit is shown in Figure 13.11a. The input is
simply the sum of two sinusoidal signals and a dc bias voltage. The ideal I-V
model for the MOSFET biased in saturation is

ID =
k′

2
W

L
(VGS − VT )2 (13.76)

The total input voltage is

VGS = VGG + va + vb (13.77)

The I-V characteristics of (13.76) can be expanded similar to the procedure
of Section 3.5 for a MOS amplifier.
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FIGURE 13.10D, Q=40
VS 2 1 0 SIN(0 1MV 1MEG)
VLO 1 0 0 SIN(0.78 100MV 1.1MEG)
*.TRAN 0.2U 620U 610U 45N
.TRAN 45N 601.8U 600U 45N
.PLOT TRAN V(3)
*.FOURIER 100K V(3)
.FOURIER 1.1MEG V(3)
VCC 4 0 10
Q1 3 2 0 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
CI1 2 0 1PF
R1 4 3 15K
C1 4 3 4.244NF
L1 4 3 596.83UH
.WIDTH OUT=80
.OPTIONS RELTOL=1E-6 ITL5=0
.OPTIONS NOMOD NOPAGE
.END

0.60200.60150.60100.60050.6000
3
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FIGURE 13.10E, Q=100
VS 2 1 0 SIN(0 1MV 1MEG)
VLO 1 0 0 SIN(0.78 100MV 1.1MEG)
.TRAN 0.2U 620U 610U 45N
*.TRAN 45N 601.8U 600U 45N
.PLOT TRAN V(3)
.FOURIER 100K V(3)
*.FOURIER 1.1MEG V(3)
VCC 4 0 10
Q1 3 2 0 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
CI1 2 0 1PF
R1 4 3 15K
C1 4 3 66.667NF
L1 4 3 37.995UHUH
.WIDTH OUT=80
.OPTIONS RELTOL=1E-4 ITL5=0
.OPTIONS NOMOD NOPAGE
.END

0.62000.61750.61500.61250.6100
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Fig. 13.10. (d) Spice input file and output voltage waveform shown in greater
detail. (e) Spice input file and output voltage waveform for Q = 100 (the waveform
for Q = 40 is superimposed).

ID =
k′

2
W

L
(VGG − VT )2 + 2

k′

2
W

L
(VGG − VT ) (va + vb) (13.78)

+
k′

2
W

L
(va + vb)2

We now let each signal input be a single-tone sinusoid with amplitudes VaA

and VbA. VbA is associated with the local oscillator input. From the square-law
term, we obtain the difference-frequency output current.

ID |if=
k′

2
W

L
VaAVbA (13.79)
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vo

va

vb

 VGG

+ VDD

Fig. 13.11. A single-device MOSFET mixer circuit.

The conversion transconductance, the ratio of ID |if to the amplitude VaA

of the input signal, is

Gmcon =
ID |if
VaA

=
k′

2
W

L
VbA (13.80)

The fundamental of the LO in the drain-current component from (13.78)
is

ID |lo= 2
k′

2
W

L
(VGG − VT ) VbA (13.81)

For a numerical example, let k′ = 100 µA/V2, VT = 0.7 V, W
L = 80

1 ,
VaA = 10 mV at 1500 kHz and VbA = 0.4 V at a frequency of 1045 kHz.
The difference frequency is 455 kHz. The dc drain current is 1 mA and the
sinusoidal components are ID |if= 8 µA and ID |lo= 1.6 mA. The ratio of
the IF output current component to the LO output is 0.005. If the output
circuit has a Q of 50, the rejection ratio provided by the output tuned circuit
at the LO frequency is 93. Therefore, the relative IF component of the output
voltage is still only 0.465 of the LO component. The LO input magnitude VbA

must be lowered or the Q of the output circuit increased. Since a Q of 50 is
already a practical maximum, unless a crystal filter is used, the LO amplitude
must be reduced for adequate performance of the mixer.

Because the local oscillator is usually a strong signal, an appreciable bias
shift can be obtained due to the square-law term of the drain current charac-
teristic. Without a LO signal, the dc current is
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ID =
k′

2
W

L
(VGG − VT )2 (13.82)

where VGG is the magnitude of the dc bias from gate to source of the MOS-
FET. With a LO signal of VbA cos ωlot, the square-law term of (13.78) produces
a dc current.

ID =
1
2

k′

2
W

L
V 2

bA (13.83)

The shift in the dc value with the local oscillator signal for the example
above is 0.32 mA.

13.9 Modulators

Modulation is a process wherein an information-carrying signal is introduced
into a carrier signal. In amplitude modulation, the amplitude of the carrier
carries the information of the modulating signal.

Vo = VcA (1 + m cos ωmt) cos ωct (13.84)

= VcA cos ωct +
VcA

2
m cos(ωc − ωm)t +

VcA

2
m cos(ωc + ωm)t

where the separation into the carrier and the two sidebands is also shown. To
achieve amplitude modulation, a multiplication is needed. At low frequencies,
analog multipliers can be used directly. Usually the amplitudes of the two
signals need not be large, and the predistortion circuits of the Gilbert cell are
not needed. The modulator may have the configuration of Figure 13.5a which
is repeated in Figure 13.12a. As pointed out earlier, MOS devices can also
be used in this configuration. For high frequencies, single-device modulators
are used and the square-law term of the transfer characteristic of the device
provides the multiplication function.

The carrier frequency input may be a large differential signal V1(t) which
overdrives the coupled pairs at the top of the analog multiplier. The output
is then a chopped version of the modulation input as shown in Figure 13.12b.
Notice that if the modulating input is absent, the output is zero. The carrier
is suppressed in this balanced arrangement and this modulator is called a
balanced modulator. An analysis of this process and the output waveform
provides the frequency spectrum shown in Figure 13.12c. The carrier and its
harmonics are not present, only the sidebands about the carrier fundamental
and its odd harmonics. If the carrier is desired, a dc component is needed in
the carrier input signal.

Other applications of the balanced modulator are introduced in the next
chapters.
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Fig. 13.12. (a) A modulator circuit. (b) Time-domain voltage waveforms. (c) Fre-
quency spectrum of input and output signals.
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In frequency modulation, other types of modulating circuits are needed
to change the carrier frequency or its phase as a function of the modulating
signal. In these modulators, voltage- and/or current-dependent devices or cir-
cuits are used which vary the resonant frequency of an oscillator, cf., Sections
12.10 and 15.2.

Problems

13.1. An analog multiplier is shown in Figure 13.13. v1(t) = 0.01 cos 106t + 1
V, v2(t) = −0.01 cos 106t + 1 V, and v3(t) = 1 cos 107t + 0 V.
(a) Determine the multiplier coefficient.
(b) What is the magnitude of the difference-frequency component of the out-
put voltage?
(c) Verify your analysis results with Spice.

-5 V

+5 V

v1

v2

vo

v3

+ -

1 kΩ

5 kΩ

1 kΩ
βF = 100

IS = 10-16 A

Fig. 13.13. Circuit for the analog multiplier of Problem 13.1.

13.2. A simple analog multiplier is shown in Figure 13.14.
(a) If L and C are removed and if V1 and V2 are small low frequency incre-
mental voltages, what is the multiplier constant.
(b) The multiplier is now used as a mixer with L and C values given in
the figure. The two inputs are V1(t) = 0.012 cos(8 × 107t) V and V2(t) =
0.25 cos(7 × 107t) V. What is the amplitude of the difference-frequency com-
ponent of Vout(t)?
(c) What are the output amplitudes at the fundamental frequencies of the
input signals?
(d) Verify your analysis results with Spice.
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-10 V

+10 V

βF = 100

v1

v2

vo

10 kΩ

10 kΩ

0.5 kΩ 0.5 kΩ

100 pF

0.1 mH

IS = 10-16 A

Fig. 13.14. Circuit for the analog multiplier of Problem 13.2.

13.3. A mixer circuit is shown in Figure 13.15. Assume the LO is a large
signal at 2400 MHz and the RF is a small signal at 2400.6 MHz.
(a) Derive the expression for the conversion transconductance of this mixer
and calculate its value.
(b) Calculate the amplitude of the IF output voltage for an input RF signal
of 1 mV.
(c) Calculate the amplitude of the output voltage at the LO frequency for an
LO amplitude of 1 V.

13.4. An analog multiplier is shown in Figure 13.16
(a) Determine the drain-source voltages for all transistors at the quiescent
operating point coefficient.
(b) Assume that the bias state of the circuit is adjusted to provide ISS = 0.5
mA. Determine the multiplier constant when the two inputs vx and vy are
small signals.
(c) Verify your analysis results with Spice.

13.5. An analog multiplier used as a frequency translator is shown in Figure
13.17. v1(t) = 0.1 cos(2π106t) V and v2(t) = 2 cos(2π1.1 × 106t) V.
(a) Determine the amplitude of the difference-frequency component of the
output voltage across the tuned circuit which is tuned to the difference fre-
quency. Clearly state any assumptions that you make.
(b) Estimate the ratios of the amplitudes of the difference-frequency com-
ponent of the output voltage to the output components at the fundamental
frequencies of the input signals.



452 13 Analog Multipliers, Mixers, and Modulators

-3 V

+3 V

vLO

vo+ -

βF = 100

IS = 10 -16 A
vRF

+

-

3 kΩ 3 kΩ

Large

0.5 mA

5 pF 5 pF

50 Ω

Fig. 13.15. Mixer circuit for Problem 13.3.

-10 V

+10 V

vx

vo

k' = 30 µA/V2

W
L

 = 100

λ = γ = 0

VT = 0.5 V

vy

-

+
2 V

20 kΩ

20 kΩ

   ISS

Fig. 13.16. Circuit for the analog multiplier of Problem 13.4.
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-10 V

+10 V

v1

v2

vo+ -

0.2 mA

L

C

L = 3.8 mH
C = 667 pF

k' = 30 µA/V2

W
L

 =20

λ = γ = 0

VT = 0.6 V
50 kΩ 50 kΩ

40.7 kΩ

Fig. 13.17. Circuit for the analog multiplier of Problem 13.5.

13.6. A mixer circuit is shown in Figure 13.18. Assume the LO is a large
signal and the RF is a small signal.
(a) Derive the expression for the conversion transconductance of this mixer
and calculate its value.
(b) What is the IF frequency for this mixer?
(c) Calculate the amplitude of the IF output voltage for an input RF signal
of 10 mV.
(d) Calculate the amplitude of the output voltage at the LO frequency for an
LO amplitude of 1 V at a frequency of 100 MHz.

13.7. A mixer circuit is shown in Figure 13.19. Assume the LO is a large
signal at 996 MHz and the RF is a small signal at 925 MHz.
(a) Calculate the conversion transconductance of this mixer.
(b) Calculate the amplitude of the IF output voltage for an input RF signal
of 10 mV.
(c) Calculate the amplitude of the output voltage at the LO frequency for an
LO amplitude of 1 V.

13.8. A single-device BJT mixer is shown in Figure 13.20. v1(t) = 0.001 cos
(2π106t) V and v2(t) = 0.01 cos(2π1.5 × 106t) V.
(a) For the output transformer what is the desired value of the magnetizing
inductance Lm.
(b) What is the value of Q for the output tuned circuit?
(c) Determine the amplitude of the difference frequency output.
(d) What is the amplitude of the output at 1.5 MHz?

13.9. A single-device MOS mixer is shown in Figure 13.21. vs(t) = 0.1 cos
(2π107t) V and vlo(t) = 1 cos(2π1.1 × 107t) V.
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-3 V

+3 V

vo+ -

0.1 mA

L

C

L = 2533 nH
C = 100 pF

λ = γ = 0

k' = 250 µA/V2

VT = 0.5 V

vLO

vRF

VBIAS

250 Ω 250 Ω

400 Ω

W
L

 = 250

W
L

 = 125

W
L

 = 250

Fig. 13.18. Mixer circuit for Problem 13.6.

-3 V

+3 V

vLO

vo+ -

+

-

1 pF 1 pF

vRF

VBIAS

W
L

 = 200

λ = γ = 0

k' = 250 µA/V2

VT = 0.5 V
1 kΩ 1 kΩ

IDC  = 0.1 mA

Fig. 13.19. Mixer circuit for Problem 13.7.

(a) Design the tuned circuit to resonate at the difference frequency.
(b) Determine the amplitude of the difference frequency output.
(c) What is the ratio of the desired output amplitude of Part (b) and the
fundamental output due to the local oscillator?
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+10 V

vo

4.4 nF

2 kΩ

10 kΩ

1 : 1

v1

v2

0.774 V

βF = 100

IS = 10-16 A

Fig. 13.20. Circuit for single-device mixer of Problem 13.8.

vo

+10 V

0.4 mA

vs

vlo

VGG

W
L

 = 20

VT = 0.6 V

Q = 25

20 kΩ

k' = 30 µA / V2

λ = γ = 0

Fig. 13.21. Circuit for single-device mixer of Problem 13.9.
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Demodulators and Detectors

14.1 AM Demodulation using Analog Multipliers

Demodulation is the process of retrieving the information from a modulated
carrier. It is necessary to treat AM and FM separately because of the dif-
ferent techniques used. Nonetheless, both AM and FM demodulation make
use of analog multipliers and/or nonlinear device characteristics. In essence,
the carrier is extracted and is multiplied with the original modulated signal,
sometimes after its phase is shifted, to produce the modulation signal. In the
process, the sidebands are frequency-translated down to a lowpass spectrum.

For AM, an input signal modulated with a single-tone sinusoid has the
waveform as sketched in Figure 14.1a and can be expressed as

vi = Vi(t) cos ωct = ViA[1 + m cos ωmt] cos ωct (14.1)

= ViA cos ωct + ViA
m

2
cos (ωc − ωm) t + ViA

m

2
cos (ωc + ωm) t

In the second expression, the two AM sidebands are placed in evidence
and appear in the frequency spectrum as shown in Figure 14.1b. Assume now
that this signal is used as the input to an analog multiplier connected as a
squarer, as shown in Figure 14.1a. The output has the form

vo = V 2
iA

[
a1 cos2 X + a2 cos2 Y + a3 cos2 Z (14.2)

+a4 cos X cos Y + a5 cos Y cos Z + a6 cos Z cos X]
= V 2

iA [bo + b1 cos 2X + b2 cos 2Y + b3 cos 2Z

+b4 cos(X ± Y ) + b5 cos(Y ± Z) + b6 cos(Z ± X)]

where the ai and bi are constants. The spectrum of the output is shown in
Figures 14.1c. From (14.2), the output can be viewed as being produced by
the beating of the carrier with each sideband and the two sidebands beating
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vi(t)
vo(t)

t
vo(t)vi(t)

Analog
Multiplier

desired output

t

(a)

ωω ωm 2ωm0 2ω c

ωm ωm ωm ωm

ω c
ω c - ωm ω c + ωm

(b) (c)

actual

Fig. 14.1. (a) An AM signal input to a multiplier and the desired output. Frequency
spectrum of (b) the input, and (c) actual output.

with each other to produce the modulation and a second harmonic of the
modulation, plus the harmonics of the carrier and the two sidebands. In order
to eliminate the terms at a higher frequency than the modulation term, a
lowpass frequency filter must be added after the multiplier. The harmonics
of the original signal are eliminated readily. However, the second harmonic of
the modulation signal is troublesome. For a specific sinusoid tone, a filter can
be designed to achieve a large rejection. But the modulation is seldom a single
sinusoid. Usually the modulation lies in a lowpass spectrum. The harmonics
of the upper portions of the spectra can be rejected; however, the harmonics
of the lower-frequency components may pass through relatively unaffected.
For these terms, the second-harmonic distortion factor is

HD2 =
m

4
(14.3)

For a large modulation index, the second-harmonic distortion is severe. An
example illustrating this aspect is introduced later.

A possible solution to minimize the beating of the two sidebands which
produces the second harmonic of the modulating signal is to reject partially
one of the sidebands of the input signal with an off-tuned bandpass filter. This
is illustrated in Figure 14.2.

A simple AM demodulator based on multiplication can be obtained by
using a nonlinear device characteristic. An example is the BJT demodulator
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ω

mag
response

ω0

ωc ωc + ωmωc - ωm

Fig. 14.2. An off-tuned bandpass filter response.

shown in Figure 14.3a. In the circuit on the right, the AM input signal is
represented as a series of three sinusoidal voltage sources together with the
dc bias source. The square-law term from the power-series expansion of the
BJT’s transfer characteristic provides the required multiplication. This circuit,
however, also has the same second-harmonic characteristic as the example
above that uses an analog multiplier as a squarer. In addition, the three input
signals appear in the output as amplified components. Usually, the rejection
of the carrier terms by the lowpass filter is adequate because of the large
separation in frequency of the modulation signal and the carrier.

The BJT demodulator serves as a simple vehicle to introduce Spice simu-
lation of demodulation. The input file is given in Figure 14.3b. The amplitude
of the AM carrier is 10 mV, and its frequency is 1 MHz. The modulation is a
single tone with a frequency of 10 kHz and a modulation index of 80%. The
-3 dB band-edge frequency of the low-pass filter is 1/(2πRLCL) = 14.3 kHz.

As mentioned above, the input to Spice must be considered to be the
individual carrier and sideband signals. As with Spice simulation of mixers
and other frequency translation circuits, care must be taken to simulate for a
sufficient time to establish a steady-state and obtain a good waveform for the
low modulation-frequency component. Finally, the minimum time step must
be small enough to provide an accurate simulation of the carrier.

The output waveform from the Spice simulation is shown in Figure 14.3c.
In spite of the use of a simple lowpass RC filter at the output, it is clear from
an inspection of the output waveform that there is a strong second harmonic.
The Fourier components of the output waveform are given in Figure 14.3d,
and it is seen that HD2 = 14.4%. Since the modulation index for this example
is 80%, the estimate of HD2 from (14.3) is 20%. If the lowpass filtering of the
second harmonic is included, the estimate is 11%. The filter rejects the carrier
component of the output voltage by a factor of 75.
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+ VCC

RL

CL
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2
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VBS

ViA,  ω c

m
2

 ViA,  ω c + ωm

m
2

 ViA,  ω c - ωm

(a)

FIG 13.3B
V1 1 0 0.774
V2 2 1 SIN(0 10M 1MEG)
V3 3 2 SIN(0 4M .99MEG)
V4 4 3 SIN(0 4M 1.01MEG)
Q1 5 4 0 MOD1
.MODEL MOD1 NPN IS=1E-16 BF=100
RL 5 6 1K
CL 5 0 0.012U
VCC 6 0 10
.TRAN 5U 200U 0 0.1U
.PLOT TRAN V(5)
.FOUR 10K V(5)
.OPTIONS LVLTIM=1 ITL5=0
.END

0.200.150.100.050.00
8.90

8.95

9.00

9.05

Time  (ms)

V
(5

) 
 (
V

)

(c)(b)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(5)    
 DC COMPONENT =   8.958D+00
0HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+04   4.877D-02     1.000000  -127.032       0.000
     2      2.000D+04   7.000D-03     0.143521  -146.667     -19.634
     3      3.000D+04   1.533D-04     0.003144  -166.430     -39.397
     4      4.000D+04   1.769D-04     0.003627  -179.359     -52.327

     TOTAL HARMONIC DISTORTION =     14.374665  PERCENT

(d)

Vi = ViA(1 + cos ωmt) cos ωct + VBS

Fig. 14.3. (a) A BJT demodulator circuit. (b) Spice input file. (c) Output voltage
waveform. (d) Fourier components of the output voltage.
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14.2 Synchronous AM Detection

A better AM demodulator using an analog multiplier can be obtained if the
carrier alone is extracted and multiplied with the original AM modulated sig-
nal as shown in Figure 14.4. The carrier alone is extracted using an amplitude
limiter. The limiter is often an emitter- or source-coupled pair which is over-
driven to eliminate the amplitude modulation for m > 0. A tuned filter may
be used after the limiter at the carrier frequency, which will restore the sinu-
soidal carrier tone. The new carrier signal may have phase shift with respect
to the input signal.

vc = VcA cos (ωct + φ) (14.4)

The input signal from (14.1) is

vi = Vi(t) cos ωct (14.5)

Analog
Multiplier

Lowpass
Filter

Limiter

Input Output

ωc + harmonics

ωc,  ωc ± ωm

Fig. 14.4. AM demodulation using an analog multiplier.

The amplitude modulation is implicit in the function Vi(t). After mul-
tiplication and filtering out the higher-frequency terms, the output of the
multiplier is

vo(t) = K ′VcAVi(t)
1
2

[cos φ + cos (2ωct + φ)] (14.6)

where K ′ is a constant. The 2ωct term can also be rejected by filtering, and
the AM information Vi(t) is recovered. Note that the filtering of the carrier
in the limiter should not produce a phase shift φ equal to ±90◦.

To illustrate this type of demodulation, a Spice simulation is made of the
circuit of Figure 14.5a. The circuit is a fully balanced, cross-coupled set of
ECPs. The modulated input signal can be modeled as a set of three volt-
ages sources driving the bottom pair. A voltage-controlled voltage source E1
samples the total input and drives the upper pairs. With a large drive to the
upper pairs, the limiting action of Figure 14.4 is obtained. The capacitor Co

and the collector load resistors constitute a lowpass filter.
The Spice input file is given in Figure 14.5b for an input voltage with

a carrier amplitude of 10 mV and a modulation index of 80%. The carrier
has a frequency of 1 MHz, and the modulation frequency is 10 kHz. Note
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that RELTOL = 1× 10−6 is specified in anticipation of small distortion. The
output waveform is given in Figure 14.5c. The distortion components of the
latter are given in Figure 14.5d. The second-harmonic distortion is small, and
THD = 1.2%.

Q1 Q2 Q3 Q4

RC RC

+ VCC

Q5 Q6

IEE

2RC

VB

Co

Co

Vo(t)
+ -

v11

v12

v13

e1

Fig. 14.5. (a) Circuit for AM demodulation.

14.3 Peak Detectors

In the AM demodulation scheme of the last section, the squaring of the mod-
ulated carrier is achieved, and a ‘beating’ of the modulated input with the
carrier is produced that translates the modulation component of the input
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FIG 14.5, LO DRIVES TOP ECPS
.TRAN 5U 800U 600U 0.1U 
.PLOT TRAN V(23,24)
.FOUR 10K V(23,24)
V11 1 2 SIN(0 10M 1MEG)
V12 2 3 SIN(0 4M 1.01MEG)
V13 3 4 SIN(0 4M 0.99MEG)
VB  4  0 -2
VCC 100 0 10
RL1 100 23  5K
RL2 100 24  5K
CO 23 24 0.005U
Q1 23 5 22 MODN
Q2 24 0 22 MODN
Q3 23 0 25 MODN
Q4 24 5 25 MODN
Q5 22 1 12 MODN
Q6 25 4 12 MODN
.MODEL MODN NPN IS=1E-16 BF=100
E1 5  0  1  4  50
IEE 12 0 300U
.OPTIONS NOPAGE NOMOD RELTOL=1E-6
.WIDTH OUT=80
.OPTIONS ITL5=0 LIMPTS=5000 
.END

0.800.750.700.650.60
-0.25

-0.20

-0.15

-0.10

Time  (ms)
V

(2
3,

24
) 

 (
V

)

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(23,24)
 DC COMPONENT =  -1.765D-01
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)
 
     1      1.000d+04   4.298d-02     1.000000  -162.363       0.000
     2      2.000d+04   4.837d-04     0.011255    15.836     178.200
     3      3.000d+04   5.165d-05     0.001202    93.919     256.282
     4      4.000d+04   6.717d-05     0.001563   132.260     294.623
     5      5.000d+04   1.664d-04     0.003872   171.540     333.903
     6      6.000d+04   5.399d-05     0.001256  -175.665     -13.302
     7      7.000d+04   2.201d-05     0.000512   -42.097     120.266
     8      8.000d+04   1.406d-05     0.000327   -49.225     113.138
     9      9.000d+04   9.396d-06     0.000219   128.781     291.144
 
     TOTAL HARMONIC DISTORTION =      1.214681  PERCENT

(d)

(b) (c)

Fig. 14.5. (b) Spice input file. (c) Output voltage waveform. (d) Fourier components
of the output voltage.

down to the lowpass region. The sketch of the frequency spectra as in Figure
14.1 aids the visualization of the translation.

In peak detection, a voltage-controlled switch is the key nonlinear element.
It is necessary to remain in the time domain, observing modulated waveforms,
in order to understand simply the operation of the demodulator.

The simplest peak detector including a voltage-controlled switch is shown
in Figure 14.6a, with an input circuit tuned to the carrier frequency (usually
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the IF), and a lowpass, parallel RC filter. In practice, the controlled switch
is realized as a pn diode. The diode-peak detector circuit is shown in Figure
14.6b, where the input is replaced with the series of voltage sources repre-
senting an AM input. Initially, the parameters of the diode are chosen with a
(relatively) large value for IS (10−5A) and a diode resistance of RS = 100 Ω.
These values provide an approximate piece-wise-linear I-V characteristic of
the diode similar to Curve A of Figure 14.6c, in contrast to the usual expo-
nential characteristic for a pn diode as sketched as Curve B for a much smaller
value of IS , say 10−16A.

The waveform of the input to the circuit of Figure 14.6b is shown in Figure
14.6d. Consider that the input has been applied for some time, and that
startup transients have died out. At a particular value of time, the capacitor
CL of the lowpass filter has a residual voltage (charge) across it. When the
input signal decreases below this value, the switch opens (the diode is off).
The charge on the capacitor then discharges through RL while the input is
below the capacitor voltage. When the input voltage, the modulated carrier,
becomes larger than the capacitor voltage, the switch closes (the diode is on),
and the capacitor voltage follows the input voltage and receives charge. The
output voltage is sketched in Figure 14.6e where the positive excursions of
the modulated input are included and the envelope of the waveform has been
emphasized. The output voltage is a somewhat distorted approximation of
the envelope.

During the off segment of operation, when the input voltage is less than
the capacitor voltage, the RC time constant of the filter must be larger than
the period of the carrier. During the on segment of diode operation, the time
constant of the total circuit is very small when the diode is forward-biased
because of the low resistance path through the on diode and an assumed
low source resistance. The capacitor then can follow closely changes of the
modulated carrier.

The distortion in the output waveform consists principally of higher-order
harmonics of carrier-frequency terms; however, some harmonics of the modu-
lation frequencies also are present. It is difficult to estimate analytically these
harmonic terms. Although the nonlinear circuit is quite simple, the nonlin-
ear differential equation which describes the circuit is solvable simply only
by numerical means. It is easier to use Spice simulation to establish typical
performance.

In Figure 14.7a, the Spice input file for the peak-detector circuit is given.
The input is a series of three sinusoids to provide the AM wave. The AM
input has the same frequencies and modulation as the prior examples of this
chapter; however, the carrier amplitude is increased to 5 V. The diode has the
parameters introduced above to approximate a piece-wise-linear switch. The
10 µs time constant for the lowpass filter is chosen to be one-tenth the period
of the modulation tone (1/10 kHz = 100 µs). The ratio of the modulation
frequency to the carrier frequency is 1/100.
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Fig. 14.6. (a) A simple peak-detector circuit. (b) A diode peak detector. (c) I-V
characteristics of the diode. (d) Input voltage waveform. (e) Output voltage wave-
form.
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FIG 14.7
VA 1 5 SIN 0 2 0.99MEG
VB 6 0 SIN 0 2 1.01MEG
VC 5 6 SIN 0 5 1.00MEG
R1 1 2 1
D1 2 3 M1
.MODEL M1 D IS=1E-5 RS=100
*.MODEL M1 D IS=1E-16 
RL 3 0 1K
CL 3 0 10N
.TRAN 5U 400U 200U 0.1U
*.TRAN .05U 4U
.FOUR 10K V(3)
.PLOT TRAN V(3)
.OPTIONS ITL5=0 RELTOL=1E-6
.END

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   3.106D+00
0HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+04   2.502D+00     1.000000    80.048       0.000
     2      2.000D+04   1.322D-02     0.005281   165.815      85.767
     3      3.000D+04   7.873D-03     0.003146   -16.895     -96.943
     4      4.000D+04   1.297D-02     0.005183   -29.193    -109.241
     5      5.000D+04   3.679D-02     0.014703    -4.768     -84.816
     6      6.000D+04   1.583D-02     0.006324    14.022     -66.026
     7      7.000D+04   1.539D-03     0.000615    -1.099     -81.147
     8      8.000D+04   4.289D-04     0.000171   -81.291    -161.339
     9      9.000D+04   2.343D-03     0.000936  -179.481    -259.529

     TOTAL HARMONIC DISTORTION =      1.794729  PERCENT

(c)
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Fig. 14.7. (a) Spice input file. (b) Output voltage waveform. (c) Fourier compo-
nents of the output voltage. (d) Voltage waveform for an initial time segment. (e)
Waveform with a regular diode model.
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The output voltage waveform is shown in Figure 14.7b, and the distortion
components in the lowpass region are given in Figure 14.7c. A very clean
lowpass output has been achieved. The output waveform for an initial time
segment of the carrier is shown in Figure 14.7d. The buildup and ‘holding’ of
the output voltage are clearly seen.

The output waveform of the detector and its harmonic components when
a regular diode model is used in the circuit, are shown in Figures 14.7e and
f. The diode parameters, as given in the commented line of Figure 14.7a,
are IS = 10−16A and RS = 0. The output voltage of the fundamental is
larger, and the waveform shows more distortion than the previous case. The
distortion is reduced somewhat when CL is reduced to 8 nF.

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   3.995D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+04   3.728D+00     1.000000    88.077       0.000
     2      2.000D+04   7.755D-02     0.020805   129.018      40.940
     3      3.000D+04   3.659D-02     0.009815   -58.921    -146.999
     4      4.000D+04   2.094D-02     0.005619  -156.863    -244.941
     5      5.000D+04   8.895D-02     0.023863   -20.103    -108.180
     6      6.000D+04   2.366D-02     0.006348    12.467     -75.610
     7      7.000D+04   2.591D-02     0.006951   -37.516    -125.594
     8      8.000D+04   2.003D-02     0.005372   -37.478    -125.555
     9      9.000D+04   1.154D-02     0.003096    48.642     -39.435

     TOTAL HARMONIC DISTORTION =      3.545764  PERCENT

Fig. 14.7. (f) Fourier components of the output voltage.

If the time constant of the lowpass filter is too large relative to the pe-
riod of the modulation, or alternately, if the band-edge frequency of the filter,
considered independently of the input and diode, is close to or less than the
frequency of the modulation, a problem develops as sketched in the wave-
form of Figure 14.8a. For this situation, the value of the capacitor has been
increased. On the decreasing portion of the lowpass output, the output fails
to follow the envelope of the input. The capacitor does not discharge fast
enough. An estimate of the relation to avoid this distortion can be developed
as follows. Let the input envelope voltage be

vi = ViA [1 + m cos ωmt] (14.7)

The output across the capacitor when the diode is off is of the form

vo = V exp
(
−t′

T

)
(14.8)

where V is the value of the filter voltage at t′ = 0, t′ is the time since diode
turnoff, and T is the time constant of the filter, RLCL. We desire that the
magnitude of the slope of the envelope of the modulated input be smaller
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   3.194D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+04   2.298D+00     1.000000    69.648       0.000
     2      2.000D+04   8.783D-02     0.038218   121.259      51.611
     3      3.000D+04   4.781D-02     0.020802   -63.812    -133.460
     4      4.000D+04   1.630D-02     0.007092    91.634      21.986
     5      5.000D+04   2.311D-02     0.010055   -26.812     -96.460
     6      6.000D+04   1.215D-02     0.005286    40.300     -29.349

     TOTAL HARMONIC DISTORTION =      4.554737  PERCENT

(e)

Fig. 14.8. (a) A problem output voltage waveform. (b) Constraint on the RC time
constant. (c) Total harmonic distortion as a function of CL. (d) Output voltage
waveform for CL = 20 nF. (e) Fourier components of the output voltage for CL = 20
nF.
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than the magnitude of the slope of the discharge of the capacitor for t′ ≥ 0.
This is illustrated in Figure 14.8b. In the following, the absolute values can
be neglected since the development includes the correct sign.

dvi

dt′
≥ dvo

dt′
(14.9)

which for the time segment of interest is the same as

∣∣∣∣dvi

dt′

∣∣∣∣ ≤
∣∣∣∣dvo

dt′

∣∣∣∣
where the inequality changes direction due to negative values. This leads to

ViAmωm sin ωmt′ ≤ V

T
exp

(
−t′

T

)
(14.10)

Next, we set (14.7) equal to (14.8) at t′ and combine with (14.10). The result
is

1 + m cos ωmt′

m sin ωmt′
≥ ωmT (14.11)

From the minimum of the left-hand side of (14.11), we obtain the condition

cos ωmt′ = −m (14.12)

which leads to

sin ωmt′ =
√

1 − m2 (14.13)

Using these in (14.11), we obtain

ωmT ≤
√

1 − m2

m
(14.14)

As a numerical example, the values from the Spice listing of Figure 14.7a
are used (with the idealized diode). Since T = RLCL, the largest value of CL

should be

CL ≤ 1
RL2πfm

√
1 − m2

m
(14.15)

= 12 nF

For the simulation leading to Figure 14.7b, CL is equal to 10 nF, and the
output shows no ‘failure-to-follow’ distortion. In the table in Figure 14.8c,
values of the THD of the output waveforms are given as CL is varied. With
CL = 20 nF, the output waveform and its harmonic components are given
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in Figures 14.8d and e. ‘Failure-to-follow’ distortion is evident. The best per-
formance is obtained with a value of CL near that given by the equality in
(14.15).

If the AM signal source has a finite source resistance, say from the tuned
output circuit of an ECP stage rather than from the output of a buffering
emitter follower, the results of this section must be modified, principally in
the amplitude of the average (dc) output voltage and the amplitude of the
modulation output. Consider first the situation where only a carrier is present
(m = 0). Because of the diode ‘switch’, only sinusoidal tips of current flow
through the closed switch into the capacitor. For the high frequency, fast
transient of the carrier, CL appears as a short circuit. However, these pulses
of current produce and support an overall average charge in the steady state.
The average value of the charged CL is labeled Voave. With the diode switch
open, the capacitor discharges through RL. CL then is charged again when the
switch closes at the next voltage peak of the input source. The diode current
has an average value which must flow into RL since a dc current cannot flow
through CL.

Let a be the ratio of the average current through the diode to the peak
current magnitude. (For a half sinusoid, a = 0.32. For sinusoidal tips, a is less.)
The average current can be written as Iave = a(VcA −Voave)/R′

s where VcA is
the amplitude of the carrier and R′

s is the value of the source resistance, Rs,
plus the diode series resistance. In the steady state, the average output voltage
is Voave = RLIave. Therefore, Voave = VcA/(1 + R′

s/aRL). For a = 0.32, R′
s =

10.1 kΩ,RL = 10 kΩ, and VcA = 10 V, Voave = 2.41 V. The results from a
Spice simulation as shown in Figure 14.8f are Voave = 2.1 V with CL = 1 nF;
therefore, aeff = 0.27. (The Fourier components of a sequence of sinusoidal
tips can be obtained. An iterative procedure can be used to find an estimate
of aeff .)

For an amplitude modulated (AM) input, a similar argument can be used
to obtain the amplitude of the output modulation superimposed on the aver-
age output. For m = 0.8 in the above example, the estimate of the amplitude
using a = 0.27 is 1.69 V. Spice simulation as shown in Figure 14.8f provides
1.59 V. Again the product RLCL must not be too large with respect to the
minimum period of the modulation 1/fm. Equation (14.15) can be used as a
guide.

A more complicated lowpass filter can be used in the peak detector. To
achieve appreciably better results, a RLC-pi filter should be used as shown
in Figure 14.9a. However, the size and cost of the inductor often are not
warranted.

It is possible to replace the single diode of Figure 14.6b or Figure 14.9a
with multiple diode arrangements, such as push-pull parallel and bridge con-
figurations as shown in Figures 14.9b and c. In effect, the bottom portions of
the modulated waveform are brought up above the axis as sketched in Figure
14.9d, and a more efficient performance is achieved. For AM detectors, power-
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   2.107D+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000D+04   1.588D+00     1.000000    66.199       0.000
     2      2.000D+04   6.234D-03     0.003925    56.123     -10.075
     3      3.000D+04   1.863D-03     0.001173   113.154      46.955
     4      4.000D+04   7.634D-03     0.004807    18.162     -48.037

     TOTAL HARMONIC DISTORTION =      1.181639  PERCENT

DIODE PEAK DETECTOR
*RS > 0, FIG13.8F
VA 1 5 SIN 0 4 0.99MEG
VB 6 0 SIN 0 4 1.01MEG
VC 5 6 SIN 0 10 1.00MEG
R1 1 2 10K
D1 2 3 M1
.MODEL M1 D IS=1E-5 RS=100
*.MODEL M1 D IS=1E-16 
RL 3 0 10K
CL 3 0 1N
.TRAN 5U 400U 200U 0.1U
*.TRAN .05U 4U
.FOUR 10K V(3)
.PRINT TRAN V(3)
.OPTIONS ITL5=0 RELTOL=1E-5
.END

0.400.350.300.250.20
0

1

2

3

4

Time  (ms)

V
(3

) 
 (
V

)

Fig. 14.8. (f) Spice input file, output voltage waveform, and Fourier components
for RS > 0.

conversion efficiency is not of great importance and the simpler single-diode
circuit is adequate.

14.4 Automatic Gain Control

Usually in an AM radio, another RC filter circuit is added to the peak detector
as shown in Figure 14.9e. The time constant for the R2 − C2 combination is
made very large relative to the period of the modulation. What is desired is
an output which is proportional to the carrier magnitude. This output is used
as a very low-frequency feedback signal to change the gain of the proceeding
tuned amplifiers, usually the IF amplifier. Using dc coupling to the ECPs
or SCPs of these amplifiers, we can change the biasing of these stages and
therefore their gain. Thus, as the carrier level increases as detected by the
new circuit in the peak detector, the gain of the bandpass stages in the IF
amplifier can be decreased to maintain an approximately constant output of
the modulation component output of the detector. This arrangement is called
an ‘automatic gain control’ (AGC) feature. Examples of the bias control of
basic stages are given in Sections 12.7 and 12.10.
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ω0 = ωc

R1 R2

Filter

Filter

(a)

(b)

(c)

(d)

Fig. 14.9. (a) A peak detector with a RLC-pi filter. (b) A push-pull parallel diode
arrangement. (c) A bridge configuration of the diodes. (d) Output voltage wave-
forms.
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AGC

C2

R2 CL RL

Vo

Fig. 14.9. (e) Circuit for automatic gain control.

14.5 FM Demodulation, Off-Peak Detection

To obtain the information content from a frequency-modulated (FM) signal,
a simple procedure is to convert the frequency deviation into an amplitude
deviation. The resulting signal is then AM demodulated with a peak detector.
A simple circuit to achieve this is shown in Figure 14.10a. The input tuned
circuit, say from the output stage of an IF amplifier, is tuned below or above
the carrier frequency (IF) of the signal. As the frequency of the input signal
to the FM detector varies with the modulation, the voltage across the tuned
circuit varies as the magnitude response varies with frequency. This is illus-
trated in Figure 14.10b. An amplitude modulation of the signal is produced.
The peak detector produces the low pass, information signal.

ω 0
ω

mag
response

ω0ωc

(a) (b)

Fig. 14.10. (a) A simple scheme for FM demodulation. (b) Conversion of frequency
deviation into amplitude deviation.

The magnitude response of the tuned circuit, well away from the passband,
varies approximately as 1/ω or ω. However, some distortion is introduced.
An example shows that the performance is acceptable. For the example, an
emitter-coupled pair is used as the driver stage as shown in Figure 14.11a.
Device parameters and circuit values are given in the figure. The FM input
signal is
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vi = Via sin[ωct + MDI sinωmt] (14.16)
= 100 mV sin[2π × 107t + 7.5 sin 2π × 104t]

where MDI = ∆f/fm. The carrier frequency is 10 MHz, the frequency devi-
ation is ±75 kHz, and the modulation is a single tone of 10 kHz. (Remember
that for FM, ωi(t)t cannot be used as the argument of the principal sinusoid
where ωi is the instantaneous frequency, ωi(t) = ωc + ∆ω cos ωmt. The argu-
ment must be a phase function. Only for a constant frequency, φ(t) = ωct,
can we deal directly with the constant, ωc).

For an estimate of performance, note that the input signal amplitude is
100 mV. From earlier performance studies of the ECP, we can expect that
overdrive exists and that the collector current of Q2 varies over the range 0
mA to IEE = 2 mA. The amplitude of the fundamental component, from the
developments of Section 10.7, is 0.64IEE = 1.28 mA. The carrier frequency
of the input is 10 MHz, and the output tuned circuit is tuned above this at
12 MHz with a Q of 20. At the resonant frequency, the magnitude of the
impedance is 10 kΩ, if we assume that the loading across the transformer
due to the peak detector is negligible because of the diode on-off behavior.
For a distortion estimate, we calculate the output voltage at the carrier fre-
quency and at the upper and lower maximum frequency deviations. These
three frequencies are

fc = 10 MHz (14.17)
fu = 10 MHz + 75 kHz = 10.075 MHz
fl = 10 MHz − 75 kHz = 9.925 MHz

The magnitude of the tuned circuit at these frequencies can be found from

| Z(j2πf) |= R√
1 + Q2

(
f
fo

− fo

f

)2
(14.18)

where fo = 12 MHz. At the three frequencies of interest,

| Z(2π × 107) | = 1.351 kΩ (14.19)
| Z(2π × 1.0075 × 107) | = 1.409 kΩ

| Z(2π × 0.9925 × 107) | = 1.298 kΩ

The corresponding initial estimates of the voltages across the tuned circuit
are found by multiplying by the amplitude of the fundamental collector cur-
rent, 1.28 mA. The voltages presented to the detector are these same values.
If we assume that the peak detector has no voltage drop and if the envelope
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+ VCC

- VEE

RC1 = 1 Ω

k = 1
n : 1

Q1 Q2

C R

CL = 1 nF

IEE = 2 mA

f0 = 12 MHz
Q = 20

v1 (100 mV)

fC = 10 MHz
∆f = ± 75 kHz
fm = 10 kHz

(a)

FM OFF PEAK DETECTION, FIG 14.11B
V1 1 0 0 SFFM 0 100M 10MEG 7.5 10K
R1 1 2 .1
Q1 3 2 4 MOD1
Q2 6 7 4 MOD1
R2 7 0 .1
RC1 5 3 1
RC2 5 6 10K
L1 5 6 6.63U
C1 5 6 26.54P
E1 8 10 6 0 1
D1 8 9 MOD2
.MODEL MOD1 NPN BF=100 IS=1E-16
.MODEL MOD2 D IS=1E-5 RS=100
RL 9 0 10K
CL 9 0 1N
IEE 4 10 2M
VEE 10 0 -10
VCC 5 0 10
.OPTIONS ACCT ITL5=0 RELTOL=1E-3
.OPTIONS NOPAGE NOMOD
.TRAN 5U 200U 0 5N
.PLOT TRAN V(9) (1.1,1.5)
.FOUR 10K V(9)
.END

(b)

10 kΩ

RL =  10 kΩ

L

Fig. 14.11. (a) A circuit for FM off-peak detection. (b) Spice input file.
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detector has little distortion, a three-point distortion analysis can be used to
estimate the second-harmonic distortion. The mid and extreme values of the
output voltage are

V4 = 1.804 V (14.20)
V0 = 1.729 V
V2 = 1.661 V

The fundamental and the second-harmonic output voltages are

b1 =
V4 − V2

2
= 71.5 mV (14.21)

b2 =
V4 + V2 − 2V0

4
= 1.75 mV

The second-harmonic distortion is

HD2 =
b2

b1
= 2.5% (14.22)

Of course, many simplifying assumptions have been made and the am-
plitude of the AM output is low; however, the estimate illustrates that the
off-peak detection circuit is capable of achieving the desired demodulation
circuit function with reasonable performance, albeit not high fidelity.

In the above analysis, hard limiting by the input signal is assumed. A
better estimate of the collector current can be obtained by using the curves in
Figure 2.16 of Chapter 2 for the fundamental and the harmonics from the ECP
with a sinusoidal input. However, such results only introduce a scale factor.
For the above example, the normalized input drive is d ≈ 4. From Figure 2.16,
IC2 |fund≈ 0.56IEE . Therefore, the estimate of the amplitude of the AM is
62.3 mV instead of 71.5 mV. Similarly, a value can be added for the detector
loading, but this involves nonlinear estimates in the time domain which can
be questionable with our calculations above in the frequency domain. It is
best we stay with the simple evaluation above.

Spice simulations of this detector involve very large computer times to iso-
late the low-frequency modulation component from the multiplicity of side-
band and carrier components. The input file for the circuit of Figure 14.11a is
given in Figure 14.11b. Note that the input is a FM time function with a carrier
frequency of 10 MHz, and MDI = 7.5 and a modulating frequency of 10 kHz.
Therefore, the frequency deviation is ±75 kHz. In the .TRAN specification,
the print interval is taken to be 1/20 of the period of the modulating frequency
while the maximum time step is 1/20 of the period of the carrier. The output
transformer is replaced with a voltage-controlled voltage source to eliminate
loading. The output voltage waveform and its harmonic components are given
in Figure 14.11c. From the latter, b1 = 62 mV and HD2 = 2.3%. These values
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are very close to the estimates. However, HD3 = 4.2% and THD = 7.9%.
Hopefully, the higher-order harmonics are attenuated by lowpass filtering in
the following audio amplifiers.

 DC COMPONENT =   1.254d+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000d+04   5.881d-02     1.000000    86.302       0.000
     2      2.000d+04   1.309d-03     0.022262    70.522     -15.780
     3      3.000d+04   5.248d-04     0.008923   142.553      56.251
     4      4.000d+04   2.025d-04     0.003443   -49.351    -135.653
     5      5.000d+04   7.603d-04     0.012928   -45.964    -132.266
     6      6.000d+04   7.253d-04     0.012332     6.345     -79.957
     7      7.000d+04   4.594d-04     0.007811  -146.506    -232.808
     8      8.000d+04   7.320d-04     0.012446   -32.570    -118.872
     9      9.000d+04   7.634d-04     0.012980   159.212      72.910

     TOTAL HARMONIC DISTORTION =      3.592607  PERCENT

0.200.150.100.050.00
1.15

1.20

1.25

1.30

1.35

Time  (ms)

V
(9

) 
 (
V

)

Fig. 14.11. (c) Output voltage waveform and its Fourier components.

14.6 Discriminators

In the next section, FM demodulation is studied using analog multipliers
and bandpass filters. In the next chapter, FM demodulation is used as an
application example for phase-locked loops. In this section, we look briefly at
other historically important FM demodulation configurations.

An improvement in the linearity of the magnitude response of the tuned
circuit of the off-peak detector can be obtained if two resonant circuits are
used, one tuned above the carrier frequency and the other tuned below. An
idealized situation is used in Figure 14.12a where two peak-detectors are used.
One output (secondary) tuned circuit has a center frequency above the carrier
frequency, and the other is tuned below. A critical assumption is that there
is no coupling between the two tuned circuits. The dashed lines in the figure
signify this restriction. The magnitude response of each output tuned circuit is
sketched in Figure 14.12b. A negative-going plot is used for the lower detector
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Isolated
Secondaries

+

-

+

-

+

-ωc

ωo1

ωo2

v1

v2

v

Fig. 14.12. (a) Improvement in the linearity of the magnitude response by use of
two peak detectors.

since the output from the detectors involves a subtraction. The modulation
output is taken as the difference of the two detector outputs.

Vo = | v1 | − | v2 | (14.23)

≈ 1√
1 + Q2

1

(
ω

ωo1
− ωo1

ω

)2
− 1√

1 + Q2
2

(
ω

ωo2
− ωo2

ω

)2

where it is assumed that the outputs of the detectors are proportional to
the magnitude responses of the tuned circuits. As shown in Figure 14.12c,
the difference of the magnitude responses of the two tuned frequencies with
input frequency can be quite linear near the carrier frequency. An analysis of
this configuration leads to the result that for best linearity and with equal
bandwidths for the two tuned circuits, the resonant frequencies should be
separated by 2.45 times the -3 dB bandwidth of the tuned circuits.

Because of the ‘out-band’ frequency response, FM demodulation can occur
at three tuning frequencies: the desired mid-position of Figure 14.12c and at
both upper and lower outband positions where ‘off-peak detection’ occurs.
This three-point tuning possibility is observed with many FM receivers.

Demodulator circuits with two (double) tuned circuits are often called fre-
quency discriminator circuits. A practical version utilizes push-pull coupling
between the secondary windings as shown in Figure 14.12d. This is a form of
the Foster-Seeley discriminator. In operation, the voltage across the peak de-
tectors is the vector sum or difference of the two secondary responses plus the
voltage from the primary. The primary has an ac ground as shown in Figure
14.12d, and the lowpass filter brings the high-frequency ground to the diodes,
as shown in Figure 14.12e. The small coupling capacitor completes the cir-
cuit. Because of the 90◦ midband phase shift for double-tuned circuits relative
to the primary, the components are in phase quadrature as shown in Figure
14.12f. The vector sum and difference vary in amplitude with the frequency
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ωc ωo1ωo2
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v  = v1  - v2
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(b)

(c)
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vb

+ -

+ -
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-
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vb

+

-

vin

(d) (e)

Fig. 14.12. (b) Magnitude response of each output tuned circuit. (c) The difference
of the magnitude responses. (d) A practical demodulator circuit. (e) Circuit at high
frequencies.
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deviation of the input, because of the phase shift of the tuned circuits. Again
the difference of the detector outputs is taken as the demodulation output. In
use, a very good amplitude limiter must be used ahead of the demodulator to
eliminate any input AM.

va

vb
vd1

vd2

vin

vd2

vin

va

vb

vd1

vin

vd2

va

vb

vd1

+

-

+

-

va

vb

Vo

+ VCC

ω = ω0 ω < ω0 ω > ω0

(f)

(g)

Fig. 14.12. (f) Phasor diagram. (g) The ratio-detector circuit.

A modified form of the discriminator is the ratio detector and is illustrated
in Figure 14.12g. Note that one diode is reversed. This circuit is not sensitive
to input amplitude changes and eliminates the need for the proceeding limiter.
The overall linearity performance of the demodulator is not as good, however,
as that of the Foster-Seeley circuit. The ratio detector has been used over the
years in relatively inexpensive receivers.

14.7 FM Demodulators using Multipliers

A. Bilotti in 1968 first proposed that excellent FM demodulation can be
achieved with an analog multiplier together with a bandpass phase-shift net-
work as shown in Figure 14.13 [40]. The modulated input is first amplitude
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limited to remove amplitude modulation from noise or other causes. As estab-
lished in Chapter 8, several tuned circuits can produce a bandpass response
with −90◦ phase shift at the center frequency. The simple lowpass filter is
one example. The input to the analog multiplier is the limited signal and
the phase-shifted signal. The output from the multiplier is the desired signal
(frequency) modulation.

FM
Input

Limiter
Amplifier

Balanced
Analog 

Multiplier

Lowpass
Filter

modulation
output

Bandpass
Filter

90° at ω0

Fig. 14.13. FM demodulation using an analog multiplier.

Assume that the output of the limiter is

v1(t) = V1A sinφc(t) (14.24)

where φc(t) contains the FM modulation as well as the carrier, cf., (14.16).
The output from the bandpass filter is this signal plus added phase. For a
filter realized from a lowpass function, the phase function is

� vo

vi
(jω) = −π

2
+ tan−1

(
ω2

o − ω2

ωbω

)
(14.25)

≈ −π

2
+ 2Q

∆ω

ω

where ωo is the center frequency and ωb is the width of the pass band. The
second term of (14.25) results from the assumption that ω ≈ ωo and that
∆ω = ω − ωo is small relative to ωo and uses tan−1 x ≈ x. The output from
the analog multiplier has the form

vo(t) = KV 2
1A sin φc(t) sin

(
−π

2
+ 2Q

∆ω

ω
+ φc(t)

)
(14.26)

where K is a constant.
The second term can be replaced by the cosine function of the same argu-

ment without the term −π
2 . Using a trigonometric identity, we obtain for one

component of the output,
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vo(t) = KV 2
1A sin

(
2Q

∆ω

ω

)
(14.27)

≈ K ′ ∆f

f

where K ′ is a new constant. A great number of other terms also are pro-
duced. However, all occur at high frequencies and can be removed by the
(true) lowpass filter which follows the multiplier. The final output is thus a
signal proportional to the frequency deviation of the input signal, i.e., the FM
modulation.

The analog multiplier above can consist of cross-coupled, emitter-coupled
pairs together with appropriate biasing circuits. The complete circuit is read-
ily implemented as an integrated circuit and is used extensively as the FM
demodulator in commercial FM receivers and in TV audio sections.

Problems

14.1. An AM peak detector is shown in Figure 14.14. The input AM signal
has a single-tone modulation frequency of 1 kHz and a modulation factor of
0.8. For ni = 2 (overall) and RL = 8 kΩ, determine the maximum value of C
to avoid failure-to-follow distortion.

CL

IS = 10 -16 A

vin

IS = 10 -16 A

RL

ni :1

Fig. 14.14. AM peak detector circuit for Problem 14.1.

14.2. A simple AM demodulator is shown in Figure 14.15. The input voltage
has a carrier amplitude of 4 V with a modulation factor of 0.8. The carrier
frequency is 1 MHz and the single-tone modulation frequency is 10 kHz.
(a) For RS = 1 Ω, estimate the amplitude of the demodulated output signal.
(b) Repeat Part (a) for RS = 10 kΩ.

14.3. For the circuit shown in Figure 14.16,
vi(t) = 5[1 + 0.6 cos(2π102t)] cos(2π106t).
(a) For RS = 0 Ω, choose C for proper operation for AM demodulation.
(b) Sketch the output waveform in the time domain, vout(t).
(c) Sketch the frequency spectrum of the output waveform, i.e, |vout(jω)|.
(d) Estimate the effect of using RS = 1 kΩ.
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IS = 10 -16 A

vs

10 nF

RS

1 kΩ

Fig. 14.15. AM demodulator circuit for Problem 14.2.

IS = 10 -16 A

vi

IS = 10 -16 A

1:2

C10 kΩ

R

Fig. 14.16. Circuit for Problem 14.3.

14.4. An AM peak detector is shown in Figure 14.17. The input voltage has a
carrier amplitude of 4 V with a modulation factor of 0.8. The carrier frequency
is 0.5 MHz and the single-tone modulation frequency is 10 kHz.
(a) Use the series 1 Ω resistor as shown in the figure to connect the input and
the diode and determine a suitable value for the filter capacitor CL.
(b) Determine the harmonic distortion of the output voltage at the modulation
frequency.
(c) Replace the 1 Ω series resistance with the tuned transformer circuit shown
in the figure. The center frequency is 0.5 MHz with a Q of 20. Determine the
THD of the modulation output. Compare the results with those of (b).

CL

vo

n = 1
l1 = 1

Lm

C1

R = 1Ω

IS = 10 -16 A

vin

10 kΩ

10 kΩ

Fig. 14.17. AM peak detector circuit for Problem 14.4.

14.5. A MOS circuit is shown in Figure 14.18 with
vin(t) = 1[1 + 0.4 cos(2π102t)] cos(2π105t).
(a) Show why this circuit can be used as an AM demodulator.
(b) Choose the value of C for proper operation as an AM demodulator.
(c) What is the output voltage amplitude at the modulation frequency of 102

Hz?
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(d) Estimate HD2 in the output waveform.
(e) Verify your analysis with Spice.

Vo

W
L

 = 201 : 2

+10 V

vin

+ 2 V -

W
L

 = 20

C

5 kΩVTO = 0.5 V

k' = 30 µA/V2

γ = λ = 0

Fig. 14.18. Circuit for Problem 14.5.

14.6. A circuit for FM off-peak detection is shown in Figure 14.19.
(a) What is the output voltage amplitude at the modulation frequency of 10
kHz?
(b) Estimate HD2 in the output waveform.
(c) Verify your analysis with Spice.

+ VCC

- VEE

k = 1
1 : 1

Q1 Q2

C R L

CL = 1 nF

IEE = 2 mA

f0 = 8 MHz
Q = 25

v1 (100 mV)

fC = 10 MHz
∆f = ± 75 K Hz
fm = 10 K Hz

10 kΩ

RL =  10 kΩ

IS = 10 -16 A

βF = 100

Fig. 14.19. FM off-peak detection circuit for Problem 14.6.
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Phase-Locked Loops

15.1 Basic Configurations and Applications

A phase-locked loop (PLL) is an electronic system which synchronizes an in-
ternal oscillator, in frequency and phase, with an external signal. As brought
out below, the PLL is extremely useful for signal processing and signal synthe-
sis [41]. PLLs have been used extensively in the electronic tuning of radios and
in the signal processing within TVs. Today, PLLs are key building blocks of
frequency synthesizers and clock generators and are used in all communication
circuits [42], [43].

A phase-locked loop (PLL) is a negative feedback configuration which
can be represented by the block diagram in Figure 15.1a. To appreciate the
operation of a PLL, it is helpful first to compare the PLL with the block
diagram and electrical behavior of a negative feedback amplifier, as shown in
Figure 15.1b, cf., Section 5.1. For the feedback amplifier, an analog subtraction
is achieved at the input and, to use feedback control-system notation, the
output of the subtractor is an ‘error signal’, ve(t) = vi(t)−vf (t), the difference
between the input signal and the feedback signal. If the loop gain, aL, of
the feedback amplifier is large, the feedback signal is almost equal to the
input signal, and the output of the subtractor, the error signal, is almost
zero. Therefore, with a large loop gain the feedback signal can be considered
to follow or track the input signal. A similar tracking is achieved in a PLL
involving other circuit variables, such as the phases of the input and the
feedback signals.

The basic PLL of Figure 15.1a contains an analog multiplier at its input
instead of an analog subtractor (adder), a voltage-controlled oscillator (VCO)
and a filter amplifier. For the simple case of a single-tone, sinusoidal input
signal and with the loop of the PLL opened at its output, the results of
Chapter 13 for mixer circuits can be used to establish the basic operation of
the PLL. For a sinusoidal input of frequency fi and an assumed sinusoid from
the VCO of frequency fosc, the output of the analog multiplier is sinusoids of
the difference frequency, fi − fosc, and of the sum frequency, fi + fosc.
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AmplifierAnalog
Multiplier Filter

VCO

vi(t)
vp(t) vf(t)

vo(t)

vosc(t)

(a)

+

-

vi(t)

vf(t)

vo(t)
ve(t)Analog

Subtractor
a

(amplifier)

f
(feedback)

(b)

Precise
Osc.

Analog
Multiplier

VCO

Vosc

N

M

(c)

Fig. 15.1. (a) Block diagram of a phase-locked loop. (b) Block diagram of a negative
feedback amplifier. (c) The PLL as a frequency synthesizer.
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Vam = Kvi × vosc (15.1)
= KViA cos ωit × VoscA cos(ωosct + ∆φ)

=
K

2
ViAVoscA cos[(ωi − ωosc)t − ∆φ]

+
K

2
ViAVoscA cos[(ωi + ωosc)t + ∆φ]

Note that a phase angle, ∆φ, is introduced. ∆φ is the relative phase of
vosc(t) with respect to vi(t). The frequency of the VCO, ωosc, is controlled by
the output voltage, Vo, of the PLL as indicated in Figure 15.1a. If the output
voltage is zero, the VCO is said to oscillate at its free-running frequency, ffree.
Now the loop is closed and for the moment, assume that the input signal has
a frequency equal to ffree. For this case, the output voltage of the PLL must
be zero to produce the free-running frequency of the VCO. Therefore, the
loop gain must force the difference component of (15.1) to be zero. The sum
frequency term of (15.1) is the second harmonic of fi = fosc and must be
rejected by the filter of the PLL. Note also that the loop gain of the feedback
must produce a 90◦ phase shift in the VCO frequency to force the cosine
difference-frequency term in (15.1) to zero. These aspects are expanded upon
in the example of the next section.

If the frequency of the input signal is increased with respect to ffree and
after the steady state is reached, the output from the analog multiplier is a
nonzero constant voltage plus a sum-frequency term. The greater-than-zero
output from the analog multiplier is produced by an additional phase shift
in the oscillator output relative to the input. After filtering, the dc output
voltage must have the necessary magnitude to shift the frequency of the VCO
to equal that of the input signal. Therefore, a matching or tracking of the
input frequency has occurred. This again is the result of the large loop gain of
the PLL and is comparable to the matching (tracking) of the feedback signal
with the input signal in the feedback amplifier. If the input signal to the PLL
has a (relatively) slowly varying frequency, as in frequency modulation where
the modulation frequency is usually much less than the carrier frequency,
the loop can track the input and an output voltage can be obtained which
is proportional to the input modulation. Thus, the PLL with proper design
choices may function as a FM demodulator.

The function of the analog multiplier in the PLL is to achieve a phase com-
parison of its two inputs. Thus, it is often referred to as a phase comparator
(PC) or phase detector.

Another important application of the PLL is as a frequency synthesizer as
illustrated in Figure 15.1c. This function is widely used as a digitally controlled
local oscillator for superheterodyne receivers. In lock the VCO of the PLL
oscillates at a rational fraction of the input frequency. To see this, note in the
figure that the frequency of the input signal, fi, is divided down by an integer
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multiple, N , usually by a digital divider (controlled shift register). This is the
frequency of one input to the PC. In lock, the frequency of the other input to
the PC, originating from the VCO, must also equal fi

N . The frequency from
the VCO is divided by an integer M by another digital divider. From the two
inputs to the phase comparator

fosc

M
=

fi

N
(15.2)

fosc =
M

N
fi (15.3)

If the input signal to the PLL is a precise, crystal-controlled oscillator, an
output from the VCO of the PLL can be a precise rational fraction of the input
frequency. The rational fraction can be electronically controlled by simple dig-
ital count-up, count-down register circuits. This frequency-synthesizer scheme
is used as the local oscillator in many electronically tuned, superheterodyne
receivers, e.g., in almost all TV and FM receivers, as well as AM/FM auto-
mobile radios.

The digital dividers of this synthesizer scheme usually introduce wave-
forms which are rectangular pulse trains. From a Fourier-series viewpoint,
each signal from the dividers contains the fundamental and harmonics. Many
additional intermodulation (beat) terms are produced by the analog multi-
plier; however, these are rejected by the lowpass filter of the PLL. This aspect
is brought out in a later section.

The concepts and principles of PLLs were established in the early 1930s.
However, actual physical realizations of PLLs were initially very expensive
and the applications were restricted to use in precision radio receivers. With
the advent of analog ICs, including emitter-coupled pairs, analog multipliers,
and voltage-controlled oscillators, entire PLLs can be implemented simply on
one chip and became readily available in the late 1960s. These IC PLLs now
are used extensively as demodulators, frequency synthesizers, etc.

15.2 A Simple Circuit Model of a PLL

The basic properties and operation of a PLL can be illustrated using a simple
circuit model for a PLL that can be constructed using the elements available in
the Spice simulators. Circuit simulation then provides waveforms and numer-
ical data to document the operation and properties of the PLL. One circuit
possibility is shown in Figure 15.2a. The Spice input file is given in Figure
15.2b. The subcircuits of the PLL model (often referred to as a macromodel)
include the VCO implemented with a Wien-type oscillator and a lowpass, RC
filter. The amplifier of the PLL is achieved by setting the desired value of the
gain as the constant of a voltage-controlled voltage source, which also models
the PC. In the following subsections, each of these subcircuits is described.
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VCO

(1) (2) (3)

(7)

V(1)

V(7)

vin Rin

RLow

CLow

vo

Emult

(a)

PLL MACROMODEL, FIG 15.2B
.TRAN 0.5U 20U 0 0.1U
.PLOT TRAN V(3)
* INPUT *
VIN 1 0 SIN(0 1 1.0MEG)
*VIN 1 0 SIN(0 1 1.1MEG)
*VIN 1 0 SIN(0 1 0.9MEG)
*VIN 1 0 SFFM(0 1 10MEG 7.5 10K)
RIN 1 0 1K
* PHASE DETECTOR MULTIPLIER *
EMULT 2 0 POLY(2) 1 0 7 0     0 0 0 0 1
* LOW PASS FILTER  BW=20KHZ *
RLOW 2 3 1K
CLOW 3 0 7.958NF
* WIEN-TYPE VOLTAGE CONTROLLED OSCILLATOR *
*  KO=100KHZ/VOLT   FO=1MHZ   *
* WEIN FEEDBACK CIRCUIT *
RB 4 10 1K
GVAR2 4 10 POLY(2) 4 10 3 0    0 0 0 0 1E-4
VTRIG 10 0 PULSE(0 5 0 0 0 1NS)
C2 4 0 159.15PF
RA 4 6 1K
GVAR1 4 6 POLY(2) 4 6 3 0     0 0 0 0 1E-4
C1 6 7 159.15PF
* POSITIVE-GAIN BLOCK *
EGAIN 5 0 4 0 3.05
RO 5 7 10
D1 7 8 MD
V1 8 0 10V
D2 0 9 MD
V2 9 7 10V
.MODEL MD D IS=1E-16
* CONTROL CARDS *
.OPTIONS NOPAGE ITL5=0 LIMPTS=2000
.OPTIONS RELTOL=1E-4

(b)

Fig. 15.2. (a) Circuit model for a PLL. (b) Spice input file.
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15.2.1 Voltage-Controlled Oscillator (VCO)

The VCO of the PLL macromodel is an idealized Wien-type oscillator as
shown in Figure 15.2c. A prototype of this configuration is given in Figure
10.11 and operational results are given in Section 10.6. The two voltage-
controlled conductors, described below, provide a linear change of oscillation
frequency with the output voltage of the filter. The gain element of the os-
cillator is produced with a simple voltage-controlled voltage source providing
a gain of 3.05. Two diode, voltage-source clamp combinations are used to
limit the output voltage of the idealized amplifier to ±10 V and provide the
necessary nonlinearity for the oscillator. A pulse voltage source is included in
one conductor combination of the VCO to initialize the circuit for transient
operation and to reduce the time needed to let the startup transients die off.

(10) (4) (5) (7)

(6)

VTrig

Ra

Ro

C2

C1

Egain

vosc

Rb

+
-

+
-

Gvar2 = f (v4,  v3)

Gvar1 = f(v4-6,  v3)

Fig. 15.2. (c) The VCO of the PLL macromodel.

In the Wien oscillator, it is convenient to let the resistors and capacitors
of the feedback network circuit be equal. R1 = R2 = R and C1 = C2 = C.
The steady-state frequency of the oscillator is then approximately

ωosc =
1

RC
=

G

C
(15.4)

where G = 1
R . It is now convenient to use the conductance notation rather

than the resistance notation for the oscillator. The two conductances, G1 = 1
R1

and G2 = 1
R2

, which have identical values, are each implemented, as shown
in Figure 15.2c, as the parallel combination of a fixed resistance and variable
conductance,

G1 =
1

Ra
+ Gvar1 (15.5)
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G2 =
1
Rb

+ Gvar2

The voltage control of the frequency of the Wien oscillator is produced by
realizing Gvar1 and Gvar2 with voltage-controlled, two-dimensional current
sources. These two current sources can be chosen to be proportional both
to the voltage across them and the output voltage of the PLL, Vo = V (3),
producing the voltage-controlled conductor function.

Ix = (KGVo)Vx (15.6)
= GequivVx

where Gequiv = KGVo.
In terms of the Spice element, for the element Gvar1:

Ix = Gvar1 4 10 poly(2) 4 10 3 0 0 0 0 0 KG (15.7)

The nodes of the element are 4 and 10. The control voltage is V (3, 0). The
value of the constant KG in (15.6) and (15.7), for the example listed in Figure
15.2b, is 1 × 10−4 �/V.

Using the above results in (15.4), we obtain

ωosc =
1/Ra + KGVo

C
(15.8)

=
1

RaC
+

KGVo

C
= ωfree + KoVo

where ωfree = 1
RaC and Ko = KG

C .
For the values of the Spice example of Figure 15.2, ffree = ωfree

2π = 1 MHz
and ko = 100 kHz/V, where the lower-case constant denotes the cyclic value:
ko = 1

2π Ko.

fosc =
ωosc

2π
= 1 MHz + 0.1 (MHz/V)Vo (15.9)

15.2.2 Filter

In the PLL shown in Figure 15.2a, a one-pole, lowpass filter is included, but
a more complicated filter is easily substituted.

15.2.3 Phase Comparator (PC)

The PC of the PLL of Figure 15.2a is implemented with a two-dimensional
voltage-controlled voltage source, Emult. The output voltage for this element
should be the function:
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V (2) = KViVosc (15.10)

The Spice element to provide this multiplier in Figures 15.2a and b is
Emult and has the description:

V (2) = Emult 2 0 poly(2) 1 0 7 0 0 0 0 0 p4 (15.11)

where Vi = V (1, 0), Vosc = V (7, 0). The value of the coefficient p4 is the ‘gain
constant’ of the PLL, A, and is chosen for this example to be 1.

As done in the last section, let

vi(t) = ViA cos ωit (15.12)
vosc(t) = VoscA cos(ωosct + ∆φ)

Now set ωi = ωosc. The output from Emult is

Vp = V (2) =
ViAVoscA

2
cos ∆φ (15.13)

+
ViAVosc

2
cos[(ωi + ωosc)t + ∆φ] (15.14)

As mentioned in the last section, these sum and difference frequency terms
are the same as those in the output of a mixer. After filtering out the high-
frequency component, the output signal (voltage) is proportional to the cosine
of the phase difference between the two sinusoids. A plot of the output voltage
with the phase difference, Vp versus ∆φ, for this simple case is shown in Figure
15.3 and is the negative of a segment of the cosine function.

Vp = −Kp cos ∆φ, 0 < ∆φ < π (15.15)

Vp

∆φ

Fig. 15.3. Plot of the output voltage with the phase difference.

The sign of the function above is necessary to produce a positive output
voltage with a positive change of the frequency difference. The constant Kp

is the slope of this function for Vp = 0
(
∆φ = π

2

)
.
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Kp = −Kp
d cos ∆φ

d∆φ

∣∣∣∣
∆φ= π

2

(15.16)

For the values of the Spice example, ViA = 1 V and VoscA = 10 V.

Kp =
1
2
ViAVoscA = 5 V (15.17)

15.2.4 PLL Operation

As noted, for equal input and VCO free-running frequencies, the phase differ-
ence of the two signals must be 90◦ to provide a zero dc output voltage for
the PC. This can be readily verified from Spice simulation. In the Spice input
file of Figure 15.2b, several input signals can be used. For the operative input
for the present analysis, without the leading *, the input frequency is 1 MHz.
The transient response of the PLL is shown in Figure 15.4a. After a transient
startup condition, the dynamics of which are studied in the next section, the
output voltage settles to zero volts indicating that the PLL is locked to the
input frequency. The input frequency is equal to the free-running frequency
of the VCO.

50403020100
-2

-1

0

1

2

V
(3

) 
 (
V

)

Time ( µs)

fi = 1.0 MHz

Fig. 15.4. (a) The transient response of a PLL.

A more detailed plot of the input signal and the output of the VCO is
given in Figure 15.4b. In lock, the expected 90◦ phase difference between the
two sinusoids can be seen with vosc leading vi by 90◦. This aspect is also
established analytically in the next section.

The output waveform of Figure 15.4c is produced when the input frequency
to the PLL is changed to 1.1 MHz. After the transients have decayed, the
output voltage settles toward +1 V and controls the VCO to provide an
output frequency of 1 MHz + ko(1 V) = 1.1 MHz. It is to be noted that
the ‘startup transients’ in this case are quite different than that of the first
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fi = 1.1 MHz

50403020100
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fi = 0.9 MHz

(c) (d)

6543210
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1
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V
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fi = 1.0 MHz
Ripple = 2.0 MHz

(e)

Fig. 15.4. (b) Plot of the input signal and the VCO output. Output voltage wave-
form for an input frequency of (c) 1.1 MHz, and (d) 0.9 MHz. (e) Output of the
PLL showing the ripple content.
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example where fi = ffree. This is due to the capture phenomena which is
analyzed in a later section.

Similarly, for an input frequency of 0.9 MHz, the output voltage settles to
−1 V to produce a VCO frequency of 0.9 MHz. The output waveform of the
PLL is shown in Figure 15.4d.

The rejection of the filter is not perfect and a portion of the sum frequency
from the analog multiplier (PC) output appears at the PLL output. This is
shown, for an input frequency of 1 MHz, in the more detailed output of Figure
15.4e.

15.3 The Small-Signal Analysis of the PLL

The block diagram of a PLL is repeated in Figure 15.5a. Note that in this
diagram, all input and output variables are denoted as voltage variables in the
time domain. As mentioned in the last sections, the analog multiplier serves
as the phase comparator. The low-frequency output of the PC is equal to
the voltage Vp which is proportional to the phase difference of its two input
signals, vi and vosc. As brought out earlier, although the two input signals to
the phase comparator may be voltages and currents, the desired ‘error’ signal
is the phase difference between the signals.

Instantaneous frequencies are of prime concern, but the error signal of the
PC must be the differences of the phases of the two inputs, not the frequency
difference. Comparable to the situation for frequency modulation, as men-
tioned in Chapter 14, frequency differences cannot be used directly since this
introduces an averaging, and information about the instantaneous frequency
is lost.

In Figure 15.5b, it is assumed that the PLL is in a locked condition and
that a definite dc bias state is present. An incremental evaluation of the PLL
about this dc state is now made. In the figure, variables of the block diagram
are chosen to be in the (complex) frequency domain. In Figure 15.5c, the
individual blocks of the PLL are shown with their input and output variables
in the frequency domain, assuming linear operation about the dc operating
point. The output of the phase comparator for this small-signal situation is
the slope of the transfer characteristic, (15.16), about the operating point,
∆φ = π

2 .

vp(s) = Kp(φi − φosc) (15.18)

where ∆φ = φi − φosc and sinx ≈ x for small x. Kp is often called the
conversion (gain or transfer) constant of the comparator.

The filter is usually lowpass and its transfer function is denoted

F (s) =
vf (s)
vp(s)

(15.19)
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AmplifierAnalog
Multiplier Filter

VCO

vi(t)
vp(t) vf(t) vo(t)

vosc(t)

(a)

APhase
Comparator F(s)

VCO

(b)

φi(s)

φosc(s)

vp(s) vf (s) vo(s)

Phase
Comparator

F(s)

φosc(s)

φi(s)

vp (s)

vf (s)vp(s)

vo(s)vf (s)

vo(s) φosc(s)

(c)

Kp

A

VCO
K0 / s

Fig. 15.5. Block diagram of the PLL in (a) the time domain, and (b) the frequency
domain. (c) The individual blocks of the PLL.
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The loop amplifier can be chosen to have a constant gain A; any frequency
effects are assumed to be included in the filter.

vo(s) = Avf (s) (15.20)

The voltage-controlled oscillator (VCO) provides a sinusoidal output volt-
age with a controlled frequency. In the time domain,

ωosc(t) = ωfree + Kovo(t) (15.21)

where ωfree is the free-running frequency of the VCO and Ko is the control
constant. In the frequency domain, the incremental frequency can be written:

∆ωosc(s) = Kovo(s) (15.22)

Again, since we are concentrating on the small-signal behavior about the
operating state, the constant free-running term can be neglected. The phase
function of the oscillator output is of primary interest. This is obtained in the
time domain by using the relation that the phase function is the integral of
the frequency function.

φosc(t) =
∫

∆ωosc(t)dt (15.23)

In the frequency domain,

φosc(s) =
1
s
∆ωosc(s) (15.24)

Therefore, the phase output from the VCO can be expressed

φosc(s) =
1
s
Kovo(s) (15.25)

Choosing the phase as the output variable of the VCO introduces an in-
herent integration, 1/s.

To repeat, the PLL is assumed to be in a locked state, i.e., the VCO is
locked to the input frequency. The closed-loop transfer function of the PLL is
established as follows: The amplifier output is

vo(s) = AF (s)Kp(φi − φosc) (15.26)

The oscillator output in terms of its phase response is given in (15.25).
The closed-loop transfer function in terms of the phase, φi, of the input signal
is

vo(s)
φi(s)

=
KpFA

1 + KpFAKo

s

(15.27)
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The frequency of the input signal can be introduced using a relation for
∆ωi(s) comparable to (15.24). Not that ∆ωi must be used, i.e., the change of
input frequency about the reference operating state.

vo(s)
∆ωi(s)

=
vo(s)
sφi(s)

(15.28)

=
KpFA

s + KpFAKo

In the next section, this transfer function is used to explore for the locked
condition the dynamics of the PLL and its response characteristics.

Note that (15.27) has the form of a closed-loop feedback function,

Af =
a

1 − af
(15.29)

=
a

1 + aL

where the ‘open-loop gain’, a, and ‘loop-gain’ function, aL, are defined as:

a = KpFA (15.30)

aL = −af =
KL

s
(15.31)

KL = KpFAKo (15.32)

For the situation where no filter is included in the PLL, F = 1, and aL

has the form of a hyperbolic function and can be considered as a degenerate
or limiting form of a lowpass function. The product KL = KpFAKo can
be identified as the magnitude of transfer function around the loop, i.e., the
magnitude of the loop-gain constant. The loop-gain function is dimensionless.
However, note that the loop-gain constant, KL, has the dimension of radial
frequency.

An alternate output of the closed-loop PLL is ∆φ, the phase difference
between the input sinusoid and that of the VCO output. Using (15.26) and
(15.27), we obtain

∆φ = φi − φosc (15.33)

=
φis

s + KL

For KL very large,
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∆φ =
φis

KL
(15.34)

Therefore, for a large magnitude of the loop-gain constant, the magnitude
of the phase error reduces to zero with a +90◦ phase shift with respect to
the input sinusoid. This result is consistent with the physical reasoning and
observations of the last sections, cf., Figures 15.3 and 15.4b.

15.4 Dynamics of the PLL in the Locked Condition

In this section, the dynamical response characteristics of the PLL are ex-
amined for typical filter components for the PLL. In the simplest case, no
lowpass filter is included, and F = 1. Of course, there is no filtering of high-
order intermodulation terms produced by the PC. All of these terms appear
unattenuated in the output voltage. Nonetheless, for reference purposes, the
results from the closed-loop response for this case are included.

For F = 1, the inherent integration in the VCO variables introduces
the only frequency effect. The closed-loop transfer function of the PLL from
(15.28) is

vo

∆ωi
=

1
Ko

KL

s + KL
(15.35)

=
H

s + ωa

where H and ωa are auxiliary constants. KL is the loop-gain constant intro-
duced in the last section.

KL = KpAKo (15.36)

For F = 1, the closed-loop transfer function of the PLL, Vo

∆ωi
, has a single

real pole at −ωa = −KL, as shown in Figure 15.6a. Note that for KL = 0,
which is the open-loop case, the pole lies at the origin which moves out into
the LHP as KL increases. The negative-real axis is the locus of the closed-
loop pole with KL. (Remember for negative feedback that the locii on the
real axis lie to the left of an odd number of poles and zeros.) The closed-
loop PLL transfer function, (15.35), for any value of KL, has a first-order,
lowpass transfer characteristic. The -3 dB frequency of the magnitude of the
transfer function for s = jω is KL, as illustrated in Figure 15.6b. (With this
identification, KL is often referred to as the closed-loop bandwidth for F = 1,
or more simply as the ‘loop bandwidth’.)

For the above example, KL is the effective output bandwidth for frequency
deviations of the input signal, ∆ωi = 2π∆fi. For example, if the input is a FM
signal, the PLL in lock follows the frequency variation of the input at a cyclic
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Fig. 15.6. (a) Pole locations with no filter. (b) Magnitude response of the closed-
loop transfer function.

rate equivalent to the modulation frequency fm. The low-frequency compo-
nent of the control voltage to the VCO is a lowpass signal with a frequency
variation equal to the modulation frequency of the FM signal. Therefore, FM
demodulation is achieved if this voltage is taken as the output of the PLL.
To the extent that the PC and VCO have linear transfer characteristics, the
demodulation is linear. If the passband width of the modulation is less than
KL, the -3 dB bandwidth of the closed-loop PLL, little (lowpass) frequency
distortion is introduced although the output contains unrejected components
of the higher-order intermodulation terms.

For a numerical example, we choose the parameters of the PLL macro-
model of Figures 15.2a and b. ffree = 1 MHz and ko = 0.1 MHz/V. In radial
measure,

ωosc = 2π(1 × 106 + 0.1 × 106Vo) (15.37)
= 6.28 × 106 + 6.28 × 105Vo

As defined in (15.16), the value of Kp is the slope of the transfer charac-
teristic of the PC.

Kp = −1
2
ViAVoscA

d cos ∆φ

d∆φ

∣∣∣∣
∆φ= π

2

(15.38)

= +5 V

For these choices and with A = 1, the closed-loop bandwidth is

KL = KpAKo = 3.14 × 106 r/s (15.39)

kL =
KL

2π
= 500 kHz
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15.4.1 One-Pole Filter

Usually, the presence of a lowpass filter in the loop is inevitable because of
the charge-storage effects in the amplifier. Further, it is often desirable to
introduce filtering with other RC elements to reject high-frequency intermod-
ulation components generated in the PC. For the overall response of the PLL,
the filtering is desired for applications where additional, interfering signals are
present at the input to the PLL. In a common situation for an IC PLL, the
filter has a single-pole response and takes the form shown in Figure 15.7a. For
this situation,

F (s) =
1

1 + s
ω1

(15.40)

where ω1 = 1
Rf Cf

. The closed-loop transfer function of the PLL becomes

vo

∆ωi
=

1
Ko

1 + s
KL

+ s2

ω1KL

(15.41)

=
KLω1

Ko

(
1

s2 + ω1s + ω1KL

)

The transfer function of the closed-loop PLL has a two-pole response and
the PLL is called a second-order loop. The poles of the closed-loop response
are shown in Figure 15.7b where the locii of the poles are also shown as the
parameter KL is varied. The closed-loop poles, if complex, are

s1, s2 =
−ω1

2
± j

√
ω1KL −

(ω1

2

)2

(15.42)

= −ζωn ± jωn

√
1 − ζ2

where the auxiliary constants are

ω2
n = ω1KL (15.43)

ζ =
1
2

√
ω1

KL

A set of steady-state magnitude responses are plotted for a sequence of the
closed-loop pole locations in Figure 15.7c. Peaking occurs for ζ < 0.707. For
ζ = 0.707, ω1 = 2KL and a maximally flat magnitude response is obtained
with a -3 dB bandwidth of ω−3dB = ωn = 1.414KL. Here again, the -3 dB
bandwidth of the loop is dictated by the value of the loop gain, KL.

For a numerical example, we start with the values of the Spice input of
Figure 15.2b.
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Fig. 15.7. (a) Circuit for a one-pole filter. (b) Pole locations and locii. (c) Magnitude
response of the closed-loop transfer function. (d) A sketch of the closed-loop pole
locations. (e) The magnitude response.

ω1 =
1

RfCf
=

1
(1 kΩ)(8 nF)

(15.44)

= 2π(20 kHz)
KL = 2π(500 kHz)
ωn = 2π(100 kHz)
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ζ =
1
10

s1, s2 = 2π(0.1 ± j1)105

= 2π(10 ± j100)103

A sketch of the closed-loop pole locations is given in Figure 15.7d. The
magnitude response for this example is given in Figure 15.7e. A 400% peaking
is observed, and the -3 dB bandwidth is approximately to ∆ωi = 2π(155 kHz).
This type of magnitude response can permit ‘outband’ signals to enter the PLL
and appear at the output.

Clearly, the closed-loop poles of the example above are not positioned for
a maximally flat, closed-loop magnitude function. For this type of response,
the pole of the filter should be located at −ω1 = −2KL = −2π106. The
-3 dB frequency for this condition would be 1.414 MHz and the filtering of
the higher-order intermodulation components of the PC output would not be
large.

We can check on the validity of the above evaluation by determining the
closed-loop pole positions from the data of Figure 15.4a. First recall the form
of the closed loop response for the small-signal situation.

vo(s) = A(s)∆ω1(s) (15.45)

∆ω1 must be considered to be a constant and for the small-signal case is
the deviation from ωfree.

∆ω1(s) =
∆ω1

s
(15.46)

For the case at hand, where a one-pole filter is used,

A(s) =
H1

s2 + as + b
=

H1

(s − s1)(s − s2)
(15.47)

where H1 is an auxiliary constant. For the example in question, the closed-
loop poles, s1, s2, are a complex pair. The output voltage in the time domain
has the form:

vo(t) = H2 exp(−at

2
) cos(Bt) + H3 (15.48)

where B =
√

b −
(

a
2

)2. There is an oscillatory decay to the steady-state,
the constant H3, since the system is underdamped. From the period of the
response, we obtain an estimate for the value of the imaginary part of the
poles. The period is approximately 10 µs, leading to B = Imag(s1) = 2π105,
which is equal to the estimated value of (15.44). The decay of the envelope of
the waveform is assumed to have a simple exponential form of (15.48).

v(t) = A exp(
−at

2
) (15.49)
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From the ratio of the successive positive peaks or negative peaks, v1
v2

, we
obtain

t2 − t1 = period =
2
a

ln
(

v1

v2

)
(15.50)

a

2
=

ln
(

v1
v2

)
t2 − t1

where a
2 is equal to |Real(s1)|. The estimate of the magnitude of the real part

of the closed-loop poles is 68×103 from the negative peaks and 56×103 from
the positive peaks, for an average of 62 × 103. The value from the analysis
above is 62.8 × 103. Thus, our estimate of the dynamical response is good.

15.4.2 One-Zero, One-Pole Filter

If a zero is added into the transfer function of the filter, an additional degree of
design freedom is obtained with respect to the loop response. This technique
permits one to set the loop bandwidth relatively independently of KL. A
common filter to provide a zero as well as a pole for F (s) is shown in Figure
15.8a. The transfer function of the filter is

F (s) =
vo

vp
=

1 + s
ω2

1 + s
ω1

(15.51)

The pole at −ω1 has the magnitude

ω1 =
1

C(R1 + R2)
(15.52)

The zero at −ω2 has the magnitude

ω2 =
1

CR2
(15.53)

The locii of the closed-loop poles as the loop gain constant KL is increased
from zero are sketched in Figure 15.8b. Note that the closed-loop poles are
initially negative real and then become complex. For large values of KL, the
poles again become negative real. One of the closed-loop poles, say s2, asymp-
totically approaches the zero at −ω2. The zero, however, also appears in the
closed-loop response, and an approximate pole-zero cancellation occurs in the
overall closed-loop response function.

vo

∆ωi
=

1
Ko

KL

(
1 + s

ω2

)

s
(
1 + s

ω1

)
+ KL

(
1 + s

ω2

) (15.54)
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Fig. 15.8. (a) A one-pole, one-zero filter. (b) Pole locations and locii. (c) Magnitude
response of the closed-loop transfer function. (d) Another filter providing one pole
and one zero. (e) Pole locations and locii.

=
KLω1
Koω2

(s + ω2)

s2 +
(
1 + KL

ω2

)
ω1s + ω1KL

=
H(s + ω2)

(s − s1)(s − s2)

When the pole, s2, and the zero, −ω2, approximately cancel for large values
of KL, the closed-loop response is approximately a one-pole response.
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vo

∆ωi
=

KLω1
Koω2

s − s1
(15.55)

The conditions to achieve this response are

ω1 < ω2 <
ω1

ω2
KL (15.56)

where ω1 < ω2 follows from the properties of the circuit. The approximate
value of the remaining pole is:

s1 ≈ −KL
ω1

ω2
(15.57)

The magnitude response is sketched in Figure 15.8c. The closed-loop band-
width is the magnitude of the remaining pole, |s1|.

BW−3dB = |s1| (15.58)

To the extent that (15.56) is satisfied, the closed-loop bandwidth can be
set independently of the value of the loop gain.

To continue with the numerical example of this section where KL = 2π(5×
105), we choose the zero of the filter function to lie at −2π(20 × 103) r/s
and the pole at −2π(10 × 103) r/s. The closed-loop poles from (15.54) are
−2π(21 × 103) and −2π(239 × 103). The -3 dB bandwidth of the closed-loop
response is approximately 239 kHz. The estimate from (15.58) is 250 kHz.

To reduce the −3 dB frequency, new choices for ω1 and ω2 can be made
using (15.58) as a guide. For an approximate 50 kHz bandwidth, we choose
ω1 = 2π(0.5×103) r/s and ω2 = 2π(5×103) r/s. The closed-loop pole locations
are −2π(5.56 × 103) r/s and −2π(44.9 × 103) r/s. s2 is close to the zero at
−ω2 and the magnitude response has a −3 dB bandwidth of approximately
45 kHz.

Another simple filter configuration providing one pole and one zero is
shown in Figure 15.8d. For this circuit F (0) = R2

R1+R2
< 1, and the value of

KL is reduced accordingly. The zero is now inside of the pole and the locii
of the closed-loop poles are those shown in Figure 15.8e. For any reasonable
value of the loop-gain constant, the bandwidth of the response is determined
by the outside pole, s2.

15.5 The Lock and Capture Ranges

When no control voltage is applied to the VCO, the frequency of oscillation
is the free-running frequency, ωfree = 2πffree. At the input to the PLL there
is a range of input frequencies with respect to ffree for which the PLL can
‘capture’ the input and produce a locked state. There is a second range of
input-signal frequencies with respect to ffree for which the loop can maintain
lock, once lock is attained. The capture range is usually less than the range to
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maintain lock. These limits are the result of the limited phase-voltage range
provided by the phase comparator as well as the limits due to the magnitude
and frequency characteristics of the loop-gain function.

15.5.1 Lock Range

For the simple PC of the Section 15.2, an idealized linear analog multiplier,
the transfer characteristic is repeated in Figure 15.9a and has the functional
form:

Vp = −Kp cos(∆φ) (15.59)

slope = Kp
'

= 2π Kp

π
2

π0

Vo

π
2

π0

Vo

(a) (b)

∆φ ∆φ

Fig. 15.9. (a) The transfer characteristics of an idealized linear analog multiplier.
(b) The transfer characteristics of a different phase comparator.

The value of the slope of this characteristic for ∆φ = π
2 is Kp. The maxi-

mum value of the characteristic is also Kp and occurs at ∆φ = π. In order to
maintain lock, the phase difference between the VCO output and the signal
input must be kept between 0 and π. At the extremes, and for F = 1 as well
as A = 1, the maximum output voltage is equal to the maximum output of
the PC.

Vo max = ±Kp (15.60)

This leads to the maximum change of VCO frequency to maintain lock.
The maximum change of signal input frequency from ffree for ∆φ = π

2 , to
either the positive or negative extreme is the lock range, ωL.

ωL = Vo maxKo = KpKo = KL (15.61)

for F = A = 1. Remember that in lock the phase difference is a constant, i.e.,
a dc quantity, and the value of F for dc is 1.

For the PC transfer characteristic of (15.59) and Figure 15.9a, the values
of the slopes of the characteristic become zero at the extremes. Therefore,
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the small-signal value of KL reduces to zero and the value of the lock range,
(15.61), based on the value for ∆φ = 0 is very optimistic. As an approxi-
mate correction, a ‘large excursion’ value, K ′

L, can be used in place of KL.
The approximation is sketched in Figure 15.9a. In the expressions above, an
approximate slope of K ′

p = 2
π Kp can be used. leading to a corrected value,

K ′
L = 2

π KL.
In a later section, a different phase comparator is introduced for which

the constants in the development above must be changed. The new PC is
the result of overdriving a practical analog multiplier (mixer) or presenting
it with large inputs having rectangular waveforms. For this situation, the
transfer characteristic has the shape shown in Figure 15.9b. The slope of the
characteristic is labeled Kp and because of the linear curve, the extremes
occur at approximately π

2 KL. Therefore, KL in the above expression for ωL

is replaced with π
2 KL.

15.5.2 Capture Range

The range of input frequencies for which an initially unlocked loop will achieve
lock is always less then the lock range. In the simplest terms, if lock is not
present, the difference frequency output from the PC is a time-varying func-
tion, not a constant; therefore, the filter response reduces the magnitude of Vo

and the maximum range of ∆ωosc. Once in lock, the PC output after filtering
is again a dc quantity.

The capture range is difficult to estimate accurately. Even with a simple
analog multiplier, its nonlinear transfer function, as given in (15.59), leads to
a nonlinear differential equation describing the PLL. A closed-form solution
for this equation does not exist.

For a physical description of the capture process, let the loop be initially
open with the frequency of the input signal close but not equal to the free-
running frequency of the VCO. Let the input frequency be higher than ffree.
At the output of the PC, the difference-frequency and sum-frequency sinusoids
appear. As usual we assume that the sum-frequency term is rejected by the
lowpass filter. The output voltage then contains only the difference-frequency
sinusoid.

The loop is now closed. The frequency of the VCO becomes a function of
the time-varying output voltage, but because of the lowpass filter, the output
voltage cannot follow closely the changes of the output of the PC. Nonetheless,
as the output voltage increases with time during a half cycle of the input from
the PC, the frequency of the VCO also tends to increase and the amplitude
of the difference-frequency sinusoid from the PC becomes smaller. However,
for the negative half-cycle, the opposite is true. The waveform of the PC out-
put and the PLL output become quite distorted with respect to a sinusoid,
as shown in the waveform of Figure 15.4c. The slow-moving portions of the
waveform, when fi ≈ fosc, hug the steady-state dc value. The fast portions of
the waveform become smaller and smaller ‘blips’ until they disappear when
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capture occurs and the PLL is in lock. From another point of view, the dis-
torted waveform of the PC output produces an average dc value which brings
the average frequency of the VCO to equal fi.

For a crude estimate of the capture range, the following analysis is pro-
posed. First, assume that the PLL is in lock with an input frequency of ωi1.
In lock, the frequency of the signal input is equal to that of the VCO.

ωi1 = ωosc = ωfree + KoVo (15.62)

Therefore,

∆ω1 = ωi − ωfree = KoVo (15.63)

In lock, Vo is a constant or changing very slowly relative to the carrier
frequency due to a frequency modulation of the input. As brought out above,
∆ω1 has a maximum value equal to the lock range.

ωL = KoVo |max (15.64)
= KL

Now consider that the PLL is not locked and let the input signal frequency
be chosen to be different than the free-running frequency of the VCO. At the
output of the PC, the response in time is

vp(t) = Kp cos[(ωi − ωosc)t − ∆φ] + sum term (15.65)

This voltage is the input to the loop filter. At the output of the filter, the
difference-frequency signal is

vo(t) = Kp|F (j∆ω2)| cos(∆ω2t − ∆φ + θf ) (15.66)

where

∆ω2 = ωi − ωosc (15.67)

and the phase function is

θf = � F (j∆ω2) (15.68)

If capture is achieved at an input frequency, ωi1, the difference frequency
∆ω2 must approach the lock range, KL. However, because of the reduced
magnitude of vo due to the filter, the maximum change of the VCO frequency
is not as large as that of the lock range. The maximum magnitude of the
voltage which appears at the VCO input is
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| vo | ≤ Kp | F (j∆ω2) | (15.69)

=
∆ω2

Ko

In the limiting case, just after capture, ∆ω2 is approximately equal to the
lock range reduced by the filter magnitude response, leading to

ωc = ∆ω2 = KoKp | F (j∆ω2) | (15.70)
= KL | F (jωc) |

where ωc is the capture frequency, with respect to ωfree.

15.5.3 Capture Examples

For a first-order loop where no explicit filter is used, the lock range and the
capture ranges are (approximately) equal since F = 1 and ωL = KL.

For a second-order loop containing a one-pole filter, the capture range is
less than the lock range. To illustrate this with a numerical example, let the
filter have a single-pole response with a pole at −ω1. The magnitude response
of this type of filter has the form:

|F (j∆ω)| =
1√

1 +
(

∆ω
ω1

)2
(15.71)

where ∆ω is the difference frequency of the PC. Using this in the magnitude
criterion for the capture range of (15.69) and setting ∆ω = ωc, we obtain

(
ωc

KL

)2

=
1

1 +
(

ωc

ω1

)2 (15.72)

If a variable substitution is made, the results can be put into a simple
form. Let

ω2
c = ω2

1u (15.73)

The criterion becomes

u2 + u −
(

KL

ω1

)2

= 0 (15.74)

For the values of the continuing Spice example, ω1 = 2π(20× 103) r/s and
KL = 2π(500 × 103) r/s, u = 25 and ωc = 2π(100 kHz). This is significantly
smaller than the lock range for this example, ωL = 2π(500 kHz). Spice simu-
lation can be used to check this estimate. For the input file in Figure 15.2b,
the signal input frequency is 1.1 MHz = ffree + fc, the limiting case on the
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basis of the estimate above. As noted in Figure 15.4c, capture is obtained.
At an input frequency of 1.2 MHz, no capture is achieved. From a series of
Spice runs, the capture range for this example is found to be approximately
160 kHz.

For ω1 � KL, the approximate solution of (15.74) is u ≈ KL

ω1
and ωc ≈√

ω1KL.
For a PLL with a one-pole filter, a closed-loop maximally flat response can

be achieved. From the earlier results, this requires that ω1 = 2KL. Using this
requirement in (15.74), we obtain

u = 0.207 (15.75)

ωc = 0.45ω1 = 0.9KL = 2π(450 kHz) (15.76)

Since the lock range is equal to KL, the capture range is 90% of the lock
range.

Next we consider the example from the last section where the filter provides
a real zero and a real pole. The zero is chosen to have a magnitude of 2π(20
kHz) and the pole has a magnitude of 2π(10 kHz). The free-running frequency
of the VCO is 1MHz, Ko = 2π(100 kHz/V) and Kp = 5 V/r with A = 1.
The loop gain is KL = KpAKo = 2π(500 kHz). From (15.69), for capture to
occur,

ωc = KL|F (jωc)| (15.77)

where

|F (jωc)| =

√
1 + (ωc

ω2
)2

1 + (ωc

ω1
)2

(15.78)

Again it is convenient to introduce a variable change. We let

ω2
c = ω2

1u (15.79)

The constraint equation becomes

u2 − u

[(
KL

ω2

)2

− 1

]
−

(
KL

ω1

)2

= 0 (15.80)

For the numerical values above, where ω1 = 2π(10 kHz) and ω2 = 2π(20
kHz), the solution of the quadratic is

u = 628 (15.81)

The value of the capture range is

ωc = ±ω1

√
u = 2π(250 kHz) (15.82)
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This estimate of the capture range is less by a factor of two than the lock
range, 2π(500 kHz).

For a second example, the magnitudes of the pole and zero are changed.
From the results of the last section, an approximate single-pole, closed-loop
response is produced if

ω1 < ω2 <
ω1

ω2
KL (15.83)

These relations are satisfied if we decrease ω1 to 2π(0.5× 103) r/s and ω2

to 2π(5 × 103) r/s. The approximate −3 dB bandwidth of the response and
the approximate capture range are the same

ω−3dB = ωc =
ω1

ω2
KL (15.84)

For the values above: ω−3dB = ωc ≈ 2π(50 kHz). The exact solution
provides ω−3dB = 45 kHz. The solution of the quadratic, (15.80), yields u =
1 × 104, and ωc = 2π(50 kHz).

15.6 PLLs with Overdriven PCs and Relaxation
Oscillators

A simple implementation of a phase comparator is an emitter-coupled pair,
such as introduced in Section 13.1, Figure 13.1b. One input is introduced
differentially across the two upper-base nodes and the other input is via the
common-emitter current. With this scheme, if amplitudes of the two inputs
are small, linear operation is produced and the output voltage is sensitive to
amplitude changes of the inputs.

As brought out in Sections 13.2 and 13.7, better operation is achieved with
the doubly balanced (quad) mixer, the configuration of which is repeated in
Figure 15.10a. Of particular interest is the situation with large signal inputs.
If the amplitude of the differential input voltage is large, the transistors are
alternately on or off. A switching behavior of the ECP is obtained. The output
of this type of PC consists of the sum and difference frequencies of the inputs
plus corresponding components from the harmonics of the overdriven input.
As with the quad mixer, the output filter rejects these high-order terms and
the output of the filter (and the PLL) is approximately the same as that of
an ideal analog multiplier.

It is simple to assume first that one overdriven input to the ECP is that
from the VCO since we have control of the amplitude of its output, again
comparable to the case for the ECP mixer. A further step may be taken,
in that a near-harmonic oscillator for the VCO is not necessary. Rather a
relaxation configuration can be chosen, as studied in Section 12.10, Figure
12.22. The output is a rectangular pulse train with a frequency controlled by



15.6 PLLs with Overdriven PCs and Relaxation Oscillators 513

Q1 Q2 Q3

Q5 Q6

Q4

RC RC

+ -

+

-

+ VCC

+

-

IEE

Vin1

Vin2

Vo

+ Vcm1

+ Vcm2

Fig. 15.10. (a) A doubly balanced (quad) mixer.

a single capacitor and by the values of the current sources. The output voltage
amplitude extremes are well defined.

For the circuit of Figure 15.10a, the signal input to the lower ECP input
is first amplified to also overdrive this ECP of the quad. All of the ECPs are
thus overdriven. In effect, the quad is driven by rectangular pulse trains.

For the PLL, the two inputs to the PC can now be considered to be
rectangular pulse trains as shown in Figure 15.10b. In the locked PLL, both
inputs have the same frequency. The output waveform for the PC is shown in
the figure and consists of a pulse train with positive and negative portions.
When the two inputs are both positive or negative, the output is positive
with a fixed height. When the two inputs have different signs, the output is
negative. For one cycle the negative area of the waveform is denoted A1 and
the positive area A2. The dc component of the output waveform is clearly the
difference of two areas.

Voave = − 1
π

(A1 − A2) (15.85)



514 15 Phase-Locked Loops

= IEERC

[
2
(

∆φ

π

)
− 1

]

where 1
π gives the average value of this waveform in terms of the peak value

which is IEERC for a bipolar doubly balanced multiplier. The phase vari-
able, ∆φ, is introduced according to the defined phasing of the two inputs as
shown in the figure. This phase-voltage relation is plotted in Figure 15.10c
and can be considered the transfer characteristic of this PC. The slope of this
characteristic is the constant Kp for this circuit. In comparison with the ideal
multiplier, the shape of the transfer characteristic is linear over the entire
range, 0 < ∆φ < π. Outside of this range, the transfer characteristic becomes
a triangular waveform as sketched in the figure. Of course, proper operation
of the PLL is restricted to the principal region, 0 < ∆φ < π.

ω0tπ 2π 3π 4π

ω0tπ 2π 3π 4π

ω0tπ 2π 3π 4π

A2

A1

Vin1

Vin2

Vo

+ IEERC

- IEERC

Output voltage

π
2

π0

Vo

+ IEERC

- IEERC

Lock Range

(b) (c)

∆φ

∆φ

∆φ

Fig. 15.10. (b) The input and output voltages. (c) Phase-voltage relation of the
comparator.

The slope of the linear transfer characteristic is labeled Kp. Therefore, the
maximum output at ∆φ = π is π

2 Kp, as shown in Figures 15.9b and 15.10c.
(In terms of the maximum value shown in Figure 15.10c, Kp = 2

π IEERC V/r).
In the various developments to this point in the chapter, the basic operation of
the PLL and the small-signal dynamics are unchanged with the use of this new
PC. In the formulas for the lock and capture ranges, the earlier values for KL
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and Kp must be replaced by π
2 KL and π

2 Kp to obtain the appropriate values
for the response and characteristics of the PLL. For example, the appropriate
output function for the PC in place of (15.65) is

vp(t) =
π

2
Kp cos[(ωi − ωosc)t − ∆φ] (15.86)

Of course with a linear characteristic over the entire operating range of
the PC, the lock and capture ranges are more definite since there is not the
reduced slope values at the extremes of the characteristic as is the case for
the cosine function of the earlier PC, cf., Figure 15.9a.

15.7 PLL Design Example

For another example, consider the PLL configuration shown in Figure 15.11.
The parameters and constants of the loop components are given in the figure.
Note that a frequency divider is included with a programmable scale of 5 to 15.
With an input frequency of fi = 100 kHz, a controlled output frequency can
be obtained from the output of the VCO from 0.5 MHz to 1.5 MHz. The VCO
must have a tunable range from 0.5 MHz to 1.5 MHz and is assumed to have
a free-running value of 1.0 MHz. The value of the VCO transfer coefficient is
given as 1 × 107 r/V-s or 1.6 MHz/V-s. The VCO output is

fosc = (1.0 + 1.6Vo) MHz (15.87)

Phase
Comparator

Lowpass Filter
Amplifier

A = 1

Frequency
Divider

VCO

Kp = 3V/rad

Kn = 1n

ff = 1.0 MHz

Ko = 107

VCO output

5 < n < 15

fn = 
fosc
n

fi = 100 kHz
R1

C

Fig. 15.11. A phased-lock loop configuration.

We check out the design with the VCO assumed oscillating at 1.5 MHz.
The appropriate divide ratio to produce an input to the PC equal to the
signal input frequency of 100 kHz is 15. The phase shift of the oscillator is
also divided by 15. Therefore, the loop gain is
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KL = KpAKoKn (15.88)

= (3)(1)(1 × 107)
1
15

= 2 × 106 r/s

where from the arguments above and from Figure 15.11, Kn = 1
n = 1

15 . The
input voltage to the VCO must be

Vo =
fosc − ffree

Ko
(15.89)

=
1.5 − 1.0

1.6
= +0.3125 V

If the filter is to have a single pole, the magnitude of the pole should be
2KL = 4 × 106 r/s to achieve a flat-magnitude response for the PLL. If the
filter resistor has a value of 1 kΩ, the required capacitor must be 250 pF. The
passband width of the closed-loop PLL is 1.414KL = 2.83 × 106 r/s= 2π(450
kHz). A filter with a one-zero, one-pole response, can be used to reduce the
−3 dB bandwidth of the closed-loop PLL.

15.8 PLL Parameters for a Typical IC Realization

The 560B IC is an early, commercially available realization produced by sev-
eral manufacturers. The circuit schematic is shown in Figure 15.12. The reader
is referred to Section 10.4.4 of [6]for the bias analysis and component-transfer-
constant evaluation of the 560B. From these evaluations, the following values
are obtained for the PLL components.

ffree = 0.26
103

C
(15.90)

where C is an external capacitor. The transfer constant for the VCO is

Ko = 0.93ωo r/V − s (15.91)

For a free-running frequency of 10 MHz, ωo = 2π(1×107), Ko = 5.85×107

r/V-s and C = 26 pF. The transfer constant for the PC is

Kp = 2.55 V/r (15.92)

The value of the gain constant for the 560B is A = 1. These values provide
a loop bandwidth of

KL = 1.5 × 108 r/s (15.93)
kL = 24 MHz



15.8 PLL Parameters for a Typical IC Realization 517

+

-

Q5

Q6

Loop filter
VCC

R1 R2

R18

Q1

5.3 kΩ

6 kΩ 6 kΩ

8 kΩ
R 11

Q 39

Loop
outputQ 21

Q22

Q 40

Q 41

Q35 Q 36 Q37
Q38

Q15 Q16 Q17 Q18

Q 2

Q3

Q4

Q 7

Q 8

Q 9

Q10 Q 11

R6

R 7

R8 R9 R10 R24

325 Ω 325 ΩQ 19 Q20

Input

R3 R4

2 kΩ 2 kΩ

+14V

R16

R14

R15

3.2 kΩ

3.3 kΩ

4.6 kΩ
R12

R13 R5

Q 12

6.8 kΩ

243 Ω 243 Ω

R17

Q13

Q14

11 kΩ

Q 27

Q 30

R26

Q 31 Q 32

R25

Q 33 Q 34

R20 R 23R19

1.2
kΩ

1.2
kΩ

1.2
kΩ

1.2
kΩ

1.2
kΩ

1.25
kΩ

1.25
kΩ

kΩ
8.2

kΩ
8.2

VCC

Q 29

Q 25 Q 26

Q 28

VCC

R21 R22

kΩ
2

kΩ
2

Q 23 Q 24

C(external)

Track 
range
limit

VCC

VCC

VCC

Bias circuit VCO

VCO
Output

Phase detector,
loop filter, and
amplifier

Fig. 15.12. Circuit schematic of the 560B PLL.
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Since the PC has the triangular transfer characteristic of Figure 15.10c,
the appropriate constant to use for the lock and capture ranges is π

2 KL. The
lock range for this PLL will be

ωL =
π

2
KL = 2.36 × 108 r/s (15.94)

fL = 37.5 MHz

Assume that the application of interest is that the input be a FM signal
with a carrier frequency of fo = 10 MHz, a maximum frequency deviation of
∆f = ±75 kHz, and a modulation frequency of fm = 10 kHz. We choose the
capture range to be approximately equal to the maximum deviation. There-
fore, a one-pole, one-zero filter is proposed to achieve the capture range and
to reduce the closed-loop bandwidth of the PLL. As a guide, we assume that
the approximate capture range formula holds, comparable to (15.84),

ωc ≈ ω1

ω2

π

2
KL (15.95)

where the factor π
2 is appropriate for the PC characteristic of Figure 15.10c.

From (15.95), ω2 ≈ 500ω1. From (15.84),

f−3dB =
2
π

75 kHz ≈ 48 kHz (15.96)

This value of bandwidth is well above the modulation frequency. Choices
of f1 = 4 Hz and f2 = 2 kHz satisfy the constraints of (15.56).

The Spice simulation of a PLL such as the 560B can be accomplished.
However, the size of the complete circuit, as shown in Figure 15.12, leads to
time-consuming and expensive computer runs. In order to study more eco-
nomically the properties and performance of PLLs, we can use the simplified,
‘macromodel’ of the PLL which is developed in Sections 15.1 and 2. In partic-
ular the basic behavior of the PLL under different inputs and with different
transfer constants of the PLL components can be studied.

15.9 A PLL Example with a FM input

In this section the PLL macromodel of Figure 15.2a is used to investigate the
use of the PLL as a demodulator of frequency modulation. It is to be noted
that a linear, simple analog multiplier is used together with a Wien-type,
near-harmonic oscillator, not the quad multiplier and relaxation oscillator of
the last section. Nonetheless, typical behavior can be illustrated.

As brought out Chapter 14, Spice includes a source which is frequency
modulated. The defining equation for this source is

vin = VinA sin[2πfot + MDI sin(2πfmt)] (15.97)
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where fo is the frequency of the carrier, fm is the modulation frequency and
MDI is the modulation index = ∆f

fm
. This source permits us to evaluate a

PLL configuration used as an FM demodulator.
The Spice input file for the PLL macromodel of this chapter is repeated

in Figure 15.13a. For the macromodel, the PC is a simple two-dimensional
voltage-controlled voltage source, and the VCO is a macro-model of a Wien-
type oscillator. The PLL constants are: Kp = 5 r/s, A = 1, the filter band-
width can be easily set by a choice of Rf and Cf . For the VCO, Ko = 2π(100
kHz)/V. The value of the loop-gain constant is KL = 2π(500 kHz). Since a
linear multiplier is used, the transfer characteristic of the phase comparator is
sinusoidal as shown in Figure 15.9a. In a large-signal situation, as in capture,
a modified value of Kp can be used: K ′

p = 2
π Kp leading to K ′

L = 2π(318 kHz).
In Figure 15.13a, the Spice input file contains the frequency-modulated

input. The carrier frequency is fo = 10 MHz, the signal frequency is fm = 10
kHz. The frequency deviation is ∆f = (±)75 kHz; therefore, the modulation
index is MDI = 7.5. The filter of the PLL is chosen to have a −3 dB bandwidth
of 20 kHz with Rf = 1 kΩ and Cf = 8 nF.

The output waveform of the PLL for a time sequence appropriate for
the modulating signal is shown in Figure 15.13b. The harmonic-distortion
components are given in Figure 15.13c: HD2 = 0.47%,HD3 = 0.17%, with
THD = 1.34% due to the upper harmonics and intermodulation components.
Additional filtering in the lowpass amplifier which follows the demodulator in
a superheterodyne receiver will aid in rejecting these high-frequency compo-
nents. It is to be noted that to obtain these results a long simulation time is
needed, even for this simple macromodel, to ensure that steady-state perfor-
mance has been attained.

Note from the values in Figure 15.13c that the small harmonic components
of the output voltage waveform depend strongly on the values of the TSTOP
and TSTEP parameters of the .TRAN specification. The set mentioned above
should be the more accurate.

When the value of Cf , the filter capacitor, is reduced to achieve a filter
design to produce a closed-loop, maximally flat magnitude response, the lack
of adequate filtering of the sum-frequency component of the PC is observed
in Figure 15.13d.

Problems

15.1. A phase-locked loop has the parameters, Kp = 1 V/rad, K0 = 250
kHz/V, and the free-running frequency of the VCO is 1 MHz.
(a) For AF (s) = 10, estimate the lock range and the close-loop bandwidth.
(b) For AF (s) = 10

1+j ω
2π4×106

, estimate the lock range and the closed-loop

bandwidth.
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fc = 10 MHz

∆f = ±75 KHz

fm = 10 KHz

PLL MACROMODEL, FM DEMOD, FIG 15.13A
.TRAN 5U 600U 400U 0.01U
.PLOT TRAN V(3)
.FOUR 10K V(3)

* INPUT *
VIN 1 0 SFFM(0 1 10MEG 7.5 10K)
RIN 1 0 1K
*KL = 500 KHZ
 
* PHASE DETECTOR MULTIPLIER *
* Kp = 5 V/R
EMULT 2 0 POLY(2) 1 0 7 0     0 0 0 0 1
 
* LOW PASS FILTER  BW=20KHZ *
RLOW 2 3 1K
CLOW 3 0 8NF
 
* WIEN-TYPE VOLTAGE CONTROLLED OSCILLATOR *
*  KO=100KHZ/VOLT   FO=1MHZ   *
        
* WEIN FEEDBACK CIRCUIT *
RB 4 10 1K
GVAR2 4 10 POLY(2) 4 10 3 0    0 0 0 0 1E-5
VTRIG 10 0 PULSE(0 5 0 0 0 1NS)
C2 4 0 15.915PF
RA 4 6 1K
GVAR1 4 6 POLY(2) 4 6 3 0     0 0 0 0 1E-5
C1 6 7 15.915PF
 
* POSITIVE-GAIN BLOCK *
EGAIN 5 0 4 0 3.05
RO 5 7 10
D1 7 8 MD
V1 8 0 10V
D2 0 9 MD
V2 9 7 10V
.MODEL MD D IS=1E-16
 
* CONTROL CARDS *
.OPTIONS NOPAGE NOMOD ITL5=0 LIMPTS=2000
.OPTIONS RELTOL=1E-4
.WIDTH OUT=80
.END

Fig. 15.13. (a) Spice input file for the PLL macromodel.

15.2. A phase-locked loop block diagram is shown in Figure 15.14.
(a) Determine the loop gain KL.
(b) What is the closed-loop -3 dB bandwidth assuming that the closed-loop
poles are located on the ±45o radials from the negative real axis.
(c) Estimate the voltage input to the VCO in the locked condition.

15.3. In a phase-locked loop, the free-running frequency of the VCO is 2 MHz.
The VCO can provide a change of 25 kHz with each volt of the output voltage
of the PLL. The phase detector output is 20 mV/degree, and the voltage gain
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Time  (ms)
0.600.550.500.450.40

0.0

0.5

1.0

1.5

2.0

V
(3

) 
 (

 V
 )

(b)

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   1.041d+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000d+04   7.693d-01     1.000000    88.899       0.000
     2      2.000d+04   4.405d-03     0.005726   -13.530    -102.429
     3      3.000d+04   5.497d-03     0.007146  -102.384    -191.283
     4      4.000d+04   5.643d-03     0.007335   -98.698    -187.596
     5      5.000d+04   3.477d-03     0.004520   -23.612    -112.510
     6      6.000d+04   2.076d-03     0.002699    94.207       5.308
     7      7.000d+04   4.725d-03     0.006141  -167.228    -256.126
     8      8.000d+04   4.582d-03     0.005956  -138.912    -227.811
     9      9.000d+04   3.679d-03     0.004782    58.327     -30.572

     TOTAL HARMONIC DISTORTION =      1.616844  PERCENT

Tstep = 1µs, Tmax = 0.01µs, Tstop = 400 µs

 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   1.043d+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000d+04   7.698d-01     1.000000    89.023       0.000
     2      2.000d+04   3.336d-03     0.004333   143.615      54.592
     3      3.000d+04   1.899d-03     0.002467  -128.026    -217.049
     4      4.000d+04   5.147d-03     0.006686   -74.577    -163.599
     5      5.000d+04   5.124d-03     0.006657  -115.642    -204.665
     6      6.000d+04   1.877d-03     0.002438    77.565     -11.457
     7      7.000d+04   3.076d-03     0.003995  -146.069    -235.092
     8      8.000d+04   3.759d-03     0.004883   157.698      68.675
     9      9.000d+04   8.678d-03     0.011273  -130.472    -219.494

     TOTAL HARMONIC DISTORTION =      1.693274  PERCENT

Tstep = 5µs, Tmax = 0.01µs, Tstop = 600 µs

(c)

Fig. 15.13. (b) Output voltage waveform. (c) Fourier components of the output
voltage.
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 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)    
 DC COMPONENT =   1.026d+00
 HARMONIC   FREQUENCY    FOURIER    NORMALIZED    PHASE     NORMALIZED
    NO         (HZ)     COMPONENT    COMPONENT    (DEG)    PHASE (DEG)

     1      1.000d+04   8.876d-01     1.000000    88.657       0.000 
     2      2.000d+04   9.256d-02     0.104284  -100.117    -188.774
     3      3.000d+04   1.027d-01     0.115722   -90.341    -178.998
     4      4.000d+04   1.159d-01     0.130623   -97.317    -185.974
     5      5.000d+04   3.981d-02     0.044847  -121.913    -210.570
     6      6.000d+04   2.660d-02     0.029971   144.997      56.340
     7      7.000d+04   6.006d-02     0.067663  -105.293    -193.950
     8      8.000d+04   7.225d-02     0.081403   -85.331    -173.987
     9      9.000d+04   2.002d-02     0.022555    61.256     -27.401

     TOTAL HARMONIC DISTORTION =     23.654138  PERCENT

0.400.350.300.250.20
-1

0

1

2

3

Time  (ms)

V
(3

) 
 (
V

)

Cf = 0.16 nF
MFM
BW = 1 MHz

Fig. 15.13. (d) Output voltage waveform and its Fourier components for a reduced
value of the filter capacitor.

Phase
Comparator

Lowpass Filter
Amplifier

A = 20

Frequency
Divider

VCO

VCO output

fi = 10 kHz 
= 1

1+j ω
ω1

Kn = 1
10

ffree = 250 kHz

Ko = 106

K p = 0.1 V/rad
H(  jω) 

Fig. 15.14. PLL block diagram for Problem 15.2.
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of the amplifier at low frequencies is 12.
(a) If the amplifier provides no filtering, what is the -3 dB bandwidth of the
closed-loop PLL.
(b) If the output load of the amplifier has a resistance of 12 kΩ, what value
of shunt C is needed to achieve a maximally-flat-magnitude response of the
closed-loop PLL.
(c) What is the -3 dB bandwidth for Part (b)?

15.4. In an IC phase-locked loop, the free-running frequency of the VCO is
10 MHz. The maximum deviation of the input frequency is 50 kHz about a
carrier frequency equal to the free-running frequency of the VCO. For the
phase detector of the PLL the output is 6 V/rad.
(a) What value of K0 for the VCO is needed to achieve proper operation?
(b) Sketch the closed-loop magnitude response of Vo/ωi if no lowpass amplifier
is included and if a one-pole filter is used in the PLL with a -3 dB frequency
of 50 kHz.

15.5. A phase-locked loop has the parameters, Kp = 3 V/rad, K0 = 15
kHz/V. For a filter with a one-pole lowpass response, establish the corner
frequency of the filter and the gain constant A of the PLL to achieve a closed-
loop, double-pole response with a closed-loop, -3 dB bandwidth of 50 kHz.
(Hint: A two-pole bandwidth shrinkage factor can be used.)

15.6. A phase-locked loop has the parameters, Kp = 1 V/rad, K0 = 250
kHz/V, and the VCO has a free-running frequency of 1 MHz.
(a) Design the AF (s) block to achieve a lock range of 3.14 MHz and a capture
range of 2.64 MHz producing a maximally-flat-magnitude response for the
closed-loop PLL. (Hint: First establish the value of A. Then determine the
filter characteristic. A first-order filter should suffice.)
(b) Design the filter for Part (a).
(c) Determine the closed-loop magnitude response of the PLL, Vo/ωi, if a zero
at 6.26 MHz is added to the filter.
(d) What is the lock range and the approximate capture range when a zero
at 6.26 MHz is added to the filter?
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Index

AGC, see Automatic gain control
AM, see Amplitude modulation
AM demodulation, 457, 461, 462
AM demodulator

multiplier based, 457
peak detector, 462
synchronous detection, 461

Amplifier power series, 43
Amplitude modulation, 1, 2, 436
Analog multipliers, 417, 429, 431
Astable circuit, 377, 390, 394, 397, 403
Automatic gain control, 4, 471
Autotransformer, 184

B-H curve, 183
Balance-to-unbalance converter, 135
Balanced modulator, 448
Bandpass

amplifiers, 221, 247, 251, 266
circuits, 229, 259

Bandwidth
bandpass circuits, 221, 224, 227
shrinkage, 258
shrinkage factor, 261

Basic oscillator equation, 337–339, 342,
357, 367

Bessel functions, modified, 49, 52–54,
347, 441, 444

Bias shift in oscillators, 331, 337, 343
Bilotti scheme, FM demodulation, 480
Bipolar transistor

circuit symbol, 6
large-signal model, 6
small-signal model, 6, 7

BJT, see Bipolar transistor

Capture range, 508, 510
CCO, see Current-controlled oscillator
Center frequency, 221, 228
Class-A output stage, 139, 156, 194, 205
Class-AB output stage, 159, 163, 169,

213
Class-B output stage, 164, 167
Class-C output stage, 167
Closed-loop gain, 101, 106, 109, 111
CM, see Cross modulation, see Cross

modulation
CMOS relaxation oscillator, 397
Coefficient of coupling, 191
Colpitts oscillator, 359, 362, 368
Common-emitter

configuration, 45
distortion, 48, 51, 82, 149
emitter feedback, 116
large sinusoidal input, 49
shunt feedback, 113
with RS , 73

Common-mode input, 15, 417
Common-source

configuration, 59
distortion, 61

Complementary output stages, 159, 168
Composite transistors, 168
Compression points, 68
Conversion efficiency, 152, 164, 197
Conversion transconductance, 443, 447
Core loss, 183
Coupled coils, 181
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Cross modulation, 68, 273
Crossover distortion, 165
Crystal circuit model, 369
Crystal-controlled oscillators, 368
Current-controlled oscillator, 400

Demodulation, 2
AM, 457, 461, 462
FM, 473, 477, 480, 500, 518

Differential error calculation, 145
Differential input, 15, 417
Discriminators, 477
Distortion, 9

cross modulation, 68, 273
crossover, 165
differential error, 145
due to nonlinear beta, 88, 96, 149
failure-to-follow, 469
five-point calculation, 56
generation, 10
intermodulation, 62
reduction

due to RS , 75
due to feedback, 103, 104

second-harmonic, 10, 28, 39, 45, 48,
54, 58, 61, 82, 97, 104, 105, 147,
458

Spice simulation, 11, 67
third-harmonic, 10, 28, 39, 45, 48, 54,

82, 87, 104, 105, 127, 147
three-point calculation, 58
total harmonic, 10, 28
triple beat, 68

Double-tuned circuits, 235

Emitter follower, 139
conversion efficiency, 152
distortion, 147
power dissipation, 154
push-pull circuit, 159

Emitter-coupled pair, 15
active load, 135
analog multiplier, 417
bandpass amplifier, 251
distortion, 22, 27, 84
emitter feedback, 125
internal feedback, 128, 262
large-signal performance, 17, 24
oscillator, 305, 315

with RS , 84

Failure-to-follow distortion, 469
Faraday’s law, 182
Feedback

closed-loop gain, 101, 106, 109, 111
effect on distortion, 103, 104
general amplifier, 105
internal, 128, 262
loading effect, 111
loop gain, 102, 108, 122
negative, 101
positive, 108, 249, 250, 295, 386
series-series, 116
shunt, 113
shunt-shunt, 109

FM, see Frequency modulation
FM demodulation, 473, 477, 480, 500,

518
FM demodulator

Bilotti scheme, 480
discriminator, 478
Foster-Seeley, 478
multiplier based, 480
off-peak detection, 473
PLL, 518
ratio detector, 480

Foster-Seeley discriminator, 478
Fourier analysis, 10
Fourier series characterization, 54
Free-running frequency, 487
Frequency modulation, 1, 3

Gilbert cell, 429, 431

Harmonic distortion, 9
factors, 10
total, 10

Harmonic-balance method, 12, 67, 80,
347

Hartley oscillator, 360, 368
HD2, see Second-harmonic distortion
HD3, see Third-harmonic distortion
Hysteresis, 183

Ideal electronic oscillator, 282
Ideal transformer, 187
IF, see Intermediate frequency
IM, see Intermodulation
IM2, see Second-order intermodulation
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IM3, see Third-order intermodulation
Impedance transformation, 239

L-match circuit, 242, 243
Inductance

coil, 183
mutual, 184, 186
self, 186

Inductive two-port parameters, 189
Instabilities in amplifiers, 281
Intercept points, 68, 69
Intermediate frequency, 4, 434
Intermodulation distortion, 62

second-order, 65
third-order, 65

Internal feedback, 128, 262
IP, see Intercept points
IP2, see Second-order intercept
IP3, see Third-order intercept

L-match network, 242, 243
Large-signal model

Bipolar transistor, 6
MOS transistor, 8

Large-signal transconductance, 358
Leakage inductance, 186
Lenz’s law, 182
Lienard plane, 384
Linearization, due to RS , 73
Load line, 154, 196
Local oscillator, 4, 434
Lock range, 507
Loop gain, 102, 108, 122, 498

Macromodel
741 Opamp, 303
PLL, 488, 500, 518
VCO, 490

Magnetizing inductance, 188
Magnetomotive force, 182
Maximally flat magnitude, 238
Maximum power transfer, 204
MFM, see Maximally flat magnitude
Mixer, 4, 434, 439

BJT, 440
double-balanced, 436
fully balanced, 436, 439
MOSFET, 445
Spice simulation, 439

MMF, see Magnetomotive force

Modified Bessel functions, 49, 52, 53,
347, 441, 444

asymptotic values, 54
Modulation, 1, 434

amplitude, 1, 2, 436
frequency, 1, 3
index, 2, 3, 276, 519

Modulators, 448
balanced, 448

MOS transistor
circuit symbol, 8
large-signal model, 8
small-signal model, 8, 9

MOSFET, see MOS transistor
Multiplier

analog, 417, 429, 431
coefficient, 419
four-quadrant, 424, 429, 436
fully balanced, 424

Multistage bandpass circuits, 259, 266
Mutual inductance, 184, 186

Negative feedback, 101
effect on distortion, 103, 104

Negative-conductance oscillator, 282,
284, 291, 322

Noise, 12
Nonlinear beta, 88, 96

distortion due to, 88, 96, 149
models, 92, 94, 95
Spice parameters, 90, 95

Off-peak detection, 473
Opamp 741, 301

macromodel, 303
Open-circuit parameters, 117
Oscillators

astable, 377, 390, 394, 397, 403
basic equation, 337–339, 342, 357,

367
Colpitts, 359, 362, 368
crystal-controlled, 368
current-controlled, 400
EC pair, 305, 315
graphical analysis, 381
Hartley, 360, 368
ideal, 282
Lienard-plane analysis, 384
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negative-conductance, 282, 284, 291,
322

phase-shift, 359
Pierce, 370
relaxation-mode, 377, 390, 394, 397,

403, 412
SC pair, 315
single-device

BJT, 339
MOSFET, 352

starting conditions, 286
state-plane analysis, 381
transformer-coupled, 305, 339, 352
tunnel-diode, 287, 291
van der Pol analysis, 287
voltage-controlled, 400, 406
Wien-type, 295, 296, 339

Output stages
Class-A, 139, 156, 194, 205
Class-AB, 159, 163, 169, 213
Class-B, 164, 167
Class-C, 167
complementary, 159, 168
emitter follower, 139
push-pull, 159, 169, 170, 205, 213
requirements, 139
source follower, 156
totem-pole circuit, 172

Parallel-to-series transformation, 239
Parallel-tuned circuit, 222
Peak detectors, 462
Phase comparator, 487, 491, 512
Phase detector, 487
Phase noise, 12
Phase-locked loop, 485

560B, 516
applications, 485
block diagram, 486
capture range, 508, 510
circuit model, 488
design example, 515
dynamics, 499
FM demodulation, 500, 518
frequency synthesizer, 487
lock range, 507
macromodel, 488, 500, 518
operation, 493
phase comparator, 487, 491, 512

phase detector, 487
small-signal analysis, 495
Spice analysis, 488

Phase-shift oscillators, 359
Pierce oscillator, 370
PLL, see Phase-locked loop
Positive feedback, 108, 249, 250, 295,

386
Power series analysis, 43, 54
Power-conversion efficiency, 139, 152,

164
Push-pull output stages, 159, 169, 170,

205, 213

Q, see Quality factor
Quad mixer, 436, 439
Quality factor, 224

Ratio detector, 480
Receiver, superheterodyne, 3, 434
Relaxation-mode oscillators, 377, 390,

394, 397, 403, 412
recovery analysis, 390
regenerative switching, 386

Schmitt circuit, 403
Second-harmonic distortion, 10, 28, 39,

45, 48, 54, 58, 61, 82, 97, 104, 105,
147, 458

Second-order intercept, 69
Second-order intermodulation, 65
Self inductance, 186
Series-series feedback, 116
Series-to-parallel transformation, 239
Series-tuned circuit, 226
Short-circuit parameters, 109
Shunt-shunt feedback, 109
Single-device oscillators, 339, 352
Single-tuned circuits, 222, 228, 229
Small-signal model

Bipolar transistor, 6, 7
MOS transistor, 8, 9

Sony oscillator, 319
Source follower, 156

conversion efficiency, 159
distortion, 158
push-pull circuit, 169

Source-coupled pair, 30
analog multiplier, 431
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distortion, 37
internal feedback, 128
oscillator, 315

Squegging, 355
Stagger tuning, 259
State plane, 381
Super-heterodyne receiver, 4
Superheterodyne receiver, 3, 434
Synchronous AM detection, 461
Synchronous tuning, 258

THD, see Total harmonic distortion
Third-harmonic distortion, 10, 28, 39,

45, 48, 54, 82, 87, 104, 105, 127,
147

Third-order intercept, 69
Third-order intermodulation, 65
TOI, see Third-order intercept
Total harmonic distortion, 10, 28
Totem-pole circuit, 172
Transformer, 181

circuit model, 189
frequency response, 201
ideal, 187
Spice simulation, 194

Transformer-coupled
oscillators, 305, 315, 339, 352
output stages, 194, 205, 213

tuned circuits, 228, 229, 235
Triple beat distortion, 68
Tuned circuit, 222

bandwidth, 224, 227
double-tuned, 235
frequency response, 224
impedance transformer, 242
parallel, 222
quality factor, Q, 224
series, 226
single-tuned, 222, 228, 229
transformer-coupled, 228, 229, 235

Tunnel-diode oscillator, 287, 291

van der Pol
approximation, 287, 288, 293
equation, 289
oscillator analysis, 287
parameter, 289

VCO, see Voltage-controlled oscillator
Voltage-controlled oscillator, 400, 406

macromodel, 490

Wien-type oscillator, 295, 296, 339
Spice simulation, 301

y-parameters, 109

z-parameters, 117




