


Preface 

Modern life depends on a few basic requirements and of these, one of 
the most important is digital electronics. 

In fact, it is difficult to imagine what would still be available to us if 
digital systems were removed. We would lose our computers, 
telephones, televisions, radios, CDs and microwave ovens. Our 
transport system could not include modern ships, aircraft, trains and 
even many cars. 

As the days pass, we become more dependent on digital systems. On 
our planet digital devices outnumber us by more than a billion to one! 
It's a good job they are friendly. 

The purpose of this book is to give a worry-free introduction to the 
world of digital electronics. It starts at the beginning and does not 
assume any previous knowledge of the subject, and new topics are 
fully explained as they are introduced. 

John Crisp 
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It's a digital wor ld  

In the year 49974 we could be in for a surprise - we may make our first 
contact with advanced aliens from deep space. 

In 1974, from the mountains of Puerto Rico, we launched a greetings 
card towards a group of 300000 stars. As you read this, our digital 
message is out there, about 250 million, million kilometres away, 
reaching out at the speed of light. 

Here is the message that we sent: 

00000010011 11111101111 01111000011 O001lO000ll 

Our amazingly intelligent neighbours will, of course, immediately 
realize that it is our address as shown in Figure 1.1. 

Figure 1. I 
Our interstellar 
address "nUll" 

i mm 

This is obviously(?) a diagram of our solar system 
indicating that we inhabit the third planet 



Introduction to Digital Systems 
i i i i  i [ . i  i i i  i i i i i i  i 1  . i Li i i i  i i i  [ i i i  i i  i i i i  i i i i i  II i i i  1111 i i i i  i i 

Digital and analogue 
There are two types of light control found in our homes: light switches 
and light dimmers. With a light switch, the light is either on or it is off. 
The light switch is called a 'digital' control since it changes state 
completely with no intermediate values. On the other hand, a light 
dimmer will allow all light values between on and off. This type of 
control is called an 'analogue' control. 

This distinction between analogue and digital can be applied to most 
devices and processes. For example, a mercury thermometer is an 
analogue device since the mercury can creep up the tube reaching all 
values in turn. 

Time is analogue and, as it creeps by, we can use a calendar or a clock 
to keep track of it. A calendar is a digital device. The calendar 
indicates the date of 2 October 1999 for the whole of the day. Twelve 
hours into the day we don't say the date is 2~/2 October 1999. No, we 
wait for 24 hours then leap forward to 3 October 1999. In a similar 
way, a digital clock shows the same time for a while then jumps 
forward to the next value. An analogue clock however- that is, one 
with moving hands - shows time passing as a smooth movement of the 
hands. 

The digital way of indicating the passage of time is shown in Figure 
1.2. 

Figure 1.2 
One way of 
measuring time 
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A digital clock's view of t ime 

What  is a system? 
Let's start by looking at one. 

The word 'system' is used to describe any organization or device that 
includes three features. 

A system must have at least one input, at least one output and must do 
something, i.e. it must contain a process. Often there are many inputs 
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and outputs. Some of the outputs are required and some are waste 
products. To a greater or lesser extent, all processes generate some 
waste heat. Figure 1.3 shows these requirements. 

Figure 1.3 

The essential 
requirements of 
a system 

Input 

Prooes8 
Output 

i ii ,, | =  

Something Something 
goes in Something happens to it comes out 

A wide range of different devices meets these simple requirements. For 
example, machinery does something, or performs a function. It also 
requires inputs like fuel to make it work, and it always has outputs. 
They may be wanted outputs like movement, or they may be waste 
products like noise and pollution. Figure 1.4 shows the main parts of 
a monster-truck system. 

Figure 1.4 

A monster-truck 
system 
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The monster truck contains other systems within it. In Figure 1.4, 
we add electricity as a required input to start the engine and 
provide the lights and the instruments, but thereafter the battery is 
recharged by the engine. There must, then, be an electrical system 
at work - so it is quite possible for systems to contain smaller 
systems. In a similar way, a monster truck is just a part of the 
transport system. 
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Digital systems 
Returning to our light switch, the switch is described either as being 
ON or OFF. 

In digital electronics, we normally use the digits 1 and 0 to represent 
these two states. It is our choice whether to use the digit 1 to represent 
ON or to represent OFF. The most usual convention is to use 1 to 
represent ON and the 0 to represent OFF. 

In fact, the use of 1 and 0 can be employed to represent any two states 
which are opposite in the chosen sense. For example, given the 
choices black/white, true/false, up/down, left/right, we could decide to 
define black as 1, which would make white = 0. Remember that it was 
our choice, so we could have decided to make black=0 and 
white = 1. 

If there is already a convention in use it is easier for everyone if we stay 
with it, but in cases where there is no convention, or we don't know 
it, we are free to make our own choice. In this case, however, we must 
be very careful to state our definition so that other people can 
understand our intentions. 

In these days of global markets, the on/off switch is often marked with 
1 and 0 to avoid the necessity of printing the front panels with 'on' and 
'off' in many different languages. Millions of people are therefore using 
digital symbols without realizing it. 

Binary systems 
A digital system that has only two states is called a 'binary' system. 

If we stood on the side of a road and watched the traffic go by, we 
could divide the vehicles into two categories. We may decide on 'cars' 
and 'lorries', and settle down with a note pad to record the first six 
vehicles. Around the corner come a car, a combine harvester, a car, a 
steamroller, a motorbike and a tractor. 

The choice of categories can clearly be improved. To record the traffic 
stream in a binary from, we need to write down a definition in such a 
way that only two possibilities exist and all types of vehicle must fit 
into the scheme. A possible solution is to divide all vehicles into the 
two groups that we could call 'cars' and 'not cars'. 

When we write down binary results it is often easier to use the 
numbers 0 and 1 to represent the two possibilities, so we would start 
by saying what the number 1 means and then we can assume that 0 
means the opposite. How we define things is up to us, but once 
decided, we must stick to it. 
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Let's assume that a car is given the value 1 and therefore 0 is used for 
'not cars'. 

Our record book would show the first six vehicles as: 

Vehicle 1 st 2.d 3rd 4th 5th 6th 
Vehicle type 1 0 1 0 0 0 

So we can see that we have a car which is given the binary value 1, 
followed by a 'not car' that is recorded as a 0, then another 1, followed 
by three 'not cars', 0, 0 and 0. 

If we now ask the question 'How many vehicles were cars?', the 
answer is easily found by counting the number of l s that have been 
listed. 

Logic states 
We often use digital electronics for control or decision-making circuits, 
and for this reason the circuits are often called 'logic' circuits and the 
1 and 0 conditions 'logic states'. 

If we wished to design a digital circuit that could count the number of 
cars that pass in a whole day we could (possibly) design a circuit that 
would detect whether a vehicle was a car or not, and hence give a 
series of logic 1 s and Os at the output. 

The next step would be to design a circuit that could count the number 
of 1 states that occur at the output. 

Digital circuits that are designed to count are extremely fast and 
reliable, but do not usually use our familiar method of counting. 

We will look as the alternative systems in the next chapter. 

Quiz time I 

In each case, choose the best option. 

1 The~ monster-truck system in Figure 1'3 shows- 
(a) only three outputs. 
(b) only one output. 
(c) four outputs. 
(d) seven inputs. 

2 ~- All systems mUst include: 
(a) an input, an output and a process. 
(b) something to do with a form of transport. 
(c) electricity. 
(d) fuel, water and electricity. 
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3 Ail' 'systems generate: 
(a) movement. 
(b) light. 
(c) waste heat. 
(d) waste gases. 

4 The brightness level of' daylight:. 
(a) varies in an analogue way. 
(b) must be represented as a 0 state at midnight. 
(c) varies in a digital way. 
(d) changes its logic state at noon each day. 

5- 'When describing a digital switch, the 1 state: 
(a) must refer to its ON state. 
(b) must refer to its OFF state. 
(c) can be defined as either state but usually refers to its OFF 

state. 
(d) can be defined as either state but usually refers to its ON 

state. 
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It's numbers that count 

This chapter deals with one of the ways in which a digital circuit can 
handle numbers. 

Counting is not an easy thing to learn. If you think back, it took the 
combined efforts of parents and teachers over the first 6 or 7 years of 
our lives before we could feel confident with counting. We were only 
learning one way of doing it. Now, in this one chapter, we are going 
to look at three or four ways - so don't worry if you need to read it 
twice. 

Get the idea of it and refer back later for the details if you feel the 
need. 

First we will zoom back to primary school to see how we count in the 
'normal' system. We all started counting using our fingers, and people 
have been doing this for so long that the word 'digit' means both finger 
and number. 

Denary, or counting with ten fingers 
This is 'normal' counting. We start off with 0 then count up as 
shown. 
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4 
5 
6 
7 
8 
9 

At this point, we run out of symbols. Notice that there are ten different 
symbols - hence the name denary. 

To continue the count, we put a 1 in the next column to the left to 
show that we have used all the symbols once, and reset the right-hand 
column to 0. Then we go again: 

10 
11 
12 
13 
etc. 

When we have 19, we reset the right-hand digit to 0 and increase the 
left-hand column to 2. This gives us the number 20. 

We continue to count in this manner until we reach 99, whereupon we 
reset both columns to O0 and introduce a 1 in the next column to the 
left to give us 100. 

We have spelled out denary counting in some detail to set the scene 
for the other systems. 

Some words 

To make our normal counting seem more difficult than it is, we can 
introduce some technical words - there is nothing quite as good as 
a few technical-sounding words to impress people with our 
expertise. 

Because we use ten different digits, we call this system 'denary'. We 
also call it the 'decimal' system. The words 'base', 'radix' or 'modulo' 
indicate the number of different digits used. 

So our everyday system could be referred to in any of the following 
ways: 

counting in denary 
counting in decimal 
counting using base-lO 
counting using a radix of 10 
counting using modulo-l 0, sometimes abbreviated to mod-lO. 

Impressive, isn't it? 
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It's numbers that count 

Since our logic circuits can only give the output result as a 0 or 1, we 
must design them to count using only these two digits. This system is 
called 'binary' counting. 

Binary, or counting with two fingers 
Binary uses only two digits, 0 and 1. 

'Binary digit' is referred to so often that we have abbreviated the term 
to 'bit' (derived from Binary digiT). 

Counting in binary 
We just use the same rules as we applied in denary counting, except 
that we must remember to use only the two digits. 

We start to count: 

Now we have run out of digits, so we reset the right-hand column to 
0 and add a 1 in a new column to the left just as we did with 
denary. 

We then go" 

10 
11 

and reset these columns to zero and add a new column to the left to 
give" 

100 
101 
110 
111 

and then 

1000 
1001 
I010 
etc. 

Let's compare binary with denary. 

Binary Denary 
0 0 
I I 

10 2 
11 3 

100 4 
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Binary Denary 
101 5 
110 6 
111 7 

1000 8 
1001 9 
1010 10 

Tip: If we read a binary number like 100 as 'one zero zero' rather than 
'a hundred', it will help us to avoid mistakes. 

Notice that in the denary system, the columns will have values of 
units, tens, hundreds etc. as we move from right to left. 

Mathematically, these values are written as 10 ~ 101, 102 etc. 

Similarly, with the binary count the columns have values of units, 
twos, fours, eights, sixteens etc. as we go from right to left across the 
columns. 

These are written as 2 ~ 21 22 23 etc. 
I I 

The denary number 239 means the total of 9 units, plus 3 tens, plus 2 
hundreds. In a similar way, 1011 in binary means 1 unit, plus 1 two, 
plus 0 fours, plus 1 eight. This gives a total that we would call eleven 
in denary. 

We have to be careful here. Have a look at Figure 2.1. 

Figure 2.1 
Numbers can be 
confusing 

What number is this? 

I O  

If we write 10 on the page, what do we mean? It could be ten if we 
assume it to be a denary number, or it could equally well be 10 in 
binary, which is two in denary. 

The way out of this problem is to write a small number called a 
subscript after the last digit to show the base of the number system. If 
it were a binary number we would add the subscript 2 so the number 
would be written as 102, but if it were a denary number we would 
write 101 o. 
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When are subscripts used? 

A maths purist may well insist on the base being shown on all 
occasions, but in the real world this is not done. We never quote our 
age on an application form as 25~o. No, the common-sense approach 
is to use subscripts whenever there is a likelihood of our intentions 
being misunderstood. 

Since digital circuits operate in binary and we work in denary it is 
important for us to be able to convert numbers between the two 
systems. 

Changing  b i n a r y  numbers  to d e n a r y  

Sorting out the columns 
When we write numbers we always put the lowest number value in 
the right-hand column and this is called the 'least significant bit', 
abbreviated to LSB. The highest value number is in the left-hand 
column and is the 'most significant bit', the MSB. 

A denary number like 2357 can be written in columns labelled: 

103 102 101 10 ~ 
2 3 5 7 

Each column is ten times larger than the one to its right. 

When we come to binary we must remember that the column values 
increase in powers of 2, so the columns are twice as large as the one 
to the right. 

2 7 2 6 2 5 2 4 2 3 2 2 21 2 ~ or 
128 64 32 16 8 4 2 I 

Converting by columns 
To change a binary number like 1011001 into a denary number, we 
can just write down the column values and enter the binary 
number. 

64 32 16 
I 0 I 

This means that we have: 

I x 64=64 
0 x 3 2 = 0  
I x 16= 16 
I x 8=8  
OX4=O 
O x 2 = O  
Ixi=I 

8 4 2 I 
I 0 0 I 

11 
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Once we see that 0 x anything is always zero, we can simplify the 
process considerably by just listing the columns where the binary 
value is one. The above list can be simplified to 64 + 16 + 8 + I = 89, so 
the final result is 10110012 = 8910. 

Remember the subscripts 
Since we are always using both binary and denary in these 
conversions, be very careful to avoid misleading answers. For 
example, having converted I0 in binary to 2 in denary, don't write it 
as 10= 2. 

Example 
Convert 110101102 to denary. 

Write out the column values: 

128 64 32 16 8 4 2 I 

Write out the binary number in the columns: 

128 64 32 16 8 4 2 
1 1 0 1 0 1 1 

List all the column values that hold a binary value of I, then add 
them: 

128+64+ 16+4+  2=214 

Answer: 110101102= 21410. 

Conver t ing  d e n a r y  n u m b e r s  to b i n a r y  

If we needed to know what the number five was in binary, we could 
just count up from zero in binary until we got to the required number. 
It would be a long and tedious process to use this method to find the 
binary equivalent of 500 - and we would probably get it wrong. 

Calculator note: Many scientific calculators can do the conversion of 
denary to binary for us. To convert 52 into binary, we would simply 
enter the number 52 then switch the calculator to binary mode and the 
result would be shown. Unfortunately, they are limited to quite low 
numbers by the number of digits able to be seen on the screen. 

Here is a better way. Let's assume that we want to convert 251o to 
binary. 

Step 1: Write down the number. 

25 

1 2  



It's numbers that count 

Step 2" Divide it by two and write down the whole number part of the 
answer; next to it write the remainder, which will always be one or 
zero. 

25 
12 I 

Step 3" Now do the same thing again. Divide the 12 by two and write 
down the answer 6, and the remainder (0) next to it. 

25 
12 
6 

Step 4: Do the same again; divide the six by two, which gives 3 and a 
remainder of 0. 

25 
12 1 
6 0 
3 0 

Step 5" Divide the three by two, which gives 1 with a remainder of 
1. 

25 
12 1 
6 0 
3 0 
1 1 

Step 6" Be careful with this last step. When we try to divide the last one 
by two, the answer is 0 with a remainder of I. 

25 
12 1 
6 0 
3 0 
1 1 
0 1 

Step 7: That is the end of the dividing now that we have got to 
zero. 

The binary number now appears in the remainder column. To get the 
answer, read the remainder column from the bottom UPWARDS, as in 
Figure 2.2. 

1 3  
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Figure 2.2 
Reading the binary 
number 

25 Remainders 
12 1 11001 
6 Read the remainders 
3 0 from the bottom upwards 
1 1 so 251o - 110012 
0 1 

Summary 

Example 

Answer 

Quiz time 2 

1 4  

I Divide the denary number by two. Write the whole number result 
underneath and the remainder in a column to the right. 

2 Repeat the process until the number is reduced to zero. 
3 The binary number is found by reading the remainder column from 

the bottom upwards. 

Here is one for you to try. If you get stuck, the solution is given 
below. 

Convert 861o to a binary number. 

86 
43 0 
21 1 
10 1 
5 0 
2 1 
1 0 
0 1 

So 861o = 10101102. 

Note: If the denary number is even, the binary number always ends 
with a zero. 

For additional practise, just choose any denary number, convert it to 
binary and then convert your answer back to denary. With some luck 
you should get back to the same number. 

In each case, choose the best option. 

The b inary  number  11100"110  is equiva lent  to the 
d e n a r y  number:  

(a) 103 
(b) 255 
(c) 230 
(d) 102 
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2- The number 645'0 is equivalent tolhebinary 
number: 

(a) 1001100011 
(b) I 010000101 
(c) 1011101001 
(d) 101 x0001101 

3 Denary" 

(a) has a base of 9. 
(b) is called modulo counting. 
(c) can only count up to 9. 
(d) has a radix of 10. 

�9 "' _ ,,, , ~,. _, , ,~ 

4 A binary number: 

(a) must include the numbers 1 and O. 
(b) always has more digits than the equivalent denary number. 
(c) 100 is called a 'hundred'. 
(d) with 5 bits cannot represent a number greater than 311o. 

,,,, �9 . . . .  , ,  ,.. L _ 

5 A bit ~s. 

(a) a small piece of cake. 
(b) a single binary digit. 
(c) derived from the words 'Binary In Transit'. 
(d) used as to describe a single digit in binary or in denary. 

I 1  



Binary arithmetic 

Adding binary numbers 
This follows the same process as we normally use for addition in the 
denary system. Remember that we are working in binary so if we add, 
for example, 1 + 1, the answer in binary is 102 not 2. Keep saying 
'binary' to yourself. It is so very easy to slip back to denary without 
realizing it. 

We will now look at an example in detail and show the step by step 
sequence. 

Adding two binary numbers 
Example 

We are going to add two binary numbers. 

1011 
111 + 

Step 1: Starting with the right-hand column, we add the 1 and the 1 to 
give 10. (Binary, remember!). The 0 goes in the right-hand column as 
the answer and the 1 goes under the next column as a 'carry'. 

It now looks like this: 

1011 
111 + 

0 
1 carry 

16 
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Step 2" We can now add the next column. This is 1 + 1 + the carry. In 
binary, this gives the value 11, or answer 1 and carry 1. 

1011 
111 + 

10 
1 1 carry 

Step 3" In the third column we have 0 + 1 + carry, which in binary 
results in 10, so 0 goes in the answer and 1 goes in the carry. 

1011 
111 + 
010  

1 1 1 carry 

Step 4" In the last column we only have a single 1 plus the carry, giving 
a result of 10 in binary. The result is therefore a zero answer and a 1 
in the carry. 

1011 
111 + 

0 0 1 0  
1 1 1 1 carry 

Example 

Step 5" The final carry produces another column on the left-hand side 
to give us a final answer of 10010. 

So 1011 + 111 = 10010 in binary, or 10112 + 1112 = 100102. 

Add 10012 + 1012. 

Your answer should be 11102. If you don't agree, the working is shown 
below. 

Step 1" Adding the right-hand column gives 1 + 1 = 10, which is an 
answer of 0 and 1 in the carry. 

1001 
101 + 

0 
1 carry 

Step 2" Adding the second column gives 0 + 0 + 1 in the carry, which 
gives an answer of 1 and no carry. 

1001 
101 + 

10 
1 carry 

1T 
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Step 3" The third column gives 0 + 1 and so we have an answer of 1 
and no carry. 

1001 
101 + 
110 

1 carry 

Step 4" The last column only contains a 1 and since there isn't a carry, 
the result is just 1, giving the answer of 1110. 

1001 
101 + 

1110 
1 carry 

Adding more than two binary numbers 

With three or more binary numbers to add, you may find it easier 
to add the first two numbers and then add the third, then the fourth, 
and so on. This is the way that a digital adding circuit would tackle 
the problem. You could, of course, simply list all the numbers and 
add them up at once to give a final total, but you will need a little 
more practice since the 'carry' situation tends to become more 
confusing. Fortunately, we seldom have to add more than two binary 
numbers. 

How many bits should we use? 
Have a look at these binary additions: 

1100 + 1001 = 10101 
1100 + 10 = 1110 

In the first example, the two numbers being added each have 4 bits but 
the answer has 5 bits. In the other case, the answer is a 4-bit number 
but one of the numbers being added has only 2 bits. 

This variation in the number of bits is easy to handle when we are 
simply adding numbers by hand, but if we design an electronic circuit 
to do the job it is not so easy. 

Each bit must be entered into the circuit by applying a voltage to an 
input wire, and the result appears on another set of wires. Now, we 
can't have wires disappearing when they are not needed and suddenly 
appearing when an extra bit is needed. 

So digital circuits must be designed to work with a set number of digits 
(bits), and it is the designer's responsibility to decide how many bits 
and therefore how many wires to use. 

111 



Binary arithmetic 

The criteria are: 

1 The more bits used, the more expensive is the design. 
2 Increasing the number of bits in a binary number increases the 

maximum number that can be represented. Every extra bit will 
double the maximum number. 

3 It may have to fit in with other devices like microprocessors, which 
use numbers with a fixed number of b i ts-  generally 4, 8, 16, 32, 64 
and 128 bits at the present time. 

In some of our earlier examples, we had to create an extra column on 
the left-hand side due to the final carry. This must be catered for when 
designing the digital circuitry. 

Have a look at this addition" 

11 
10+ 

101 

If we decided to operate with only 2 bits, the left-hand column in the 
answer would be ignored since only two wires would come out of the 
adding circuit. The sum would then look like this: 

11 
10+  
01 

Which is quite wrong. We would be saying that 3 + 2 = I t 

To get the correct answer, we must use at least 3 bits at a time. The 
number of bits taken at a time is called the 'word length'. 

Generally, both inputs and outputs in a digital circuit have the same 
number of bits, so we must add zeroes to the left-hand side of a 
number in each of the unused columns. 

The sum 

11 
10+  

_ 

101 

would be written as 

011 
010+  
101 

If we did the same sum using an 8-bit word length, it would look like 
this" 

00000011 
00000010 + 
00000101 
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The extra zeroes that are sometimes added are called 'leading 
zeroes'. 

From the maths point of view, these leading zeroes appear as if we 
were making life difficult for no reason. It depends on whether we are 
looking at it as a sum to do, or as a digital design problem. 

If we were doing it with a pen and paper we would immediately ignore 
all the leading zeroes, since we could always 'assume' they were there 
if the need ever arises. 

If a digital circuit were to be built to perform the same addition, it 
would be quite unable to assume anything. If it needs to provide an 
8-bit answer it must work in 8 bits throughout, and so we must have 
eight wires connected to the circuit. 

If we were to add two binary numbers, the word length must be at least 
1 bit longer than the longer of the two binary numbers to allow for the 
possibility of a final carry. 

Example using leading zeroes 
Here's the sum: add 110112 + 1102. 

The first step is to decide on the number of bits to be used. The 
possibility of a carry occurring in the left-hand column will result in 
the maximum number of bits being one greater than the number of bits 
in the longer number. This is true when we are adding ANY two binary 
numbers. 

In the example above, this rule would suggest that we work in 6-bit 
numbers so we add leading zeroes to bring both numbers up to 6 
bits. 

O11O11 
000110 + 

Then we can add in the normal way to give: 

011011 
000110 + 
100001 

Example 

Here's one for you to try. 

Using 8-bit numbers throughout, add 11112 and 1112. The answer is 
000101102. If you run into trouble, the working is shown below. 

Answer: 

Step 1" Add leading zeroes until each number has 8 bits. The sum is 
n o w  

00001111 + 00000111 
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Step 2: Lay them out making sure that the columns are properly 
aligned. 

00001111 
00000111 

Step 3: Add the columns, being careful not to forget the 'carries'. 

OOO01111 
00000111 
00010110 answer 

1111 carries 

S u b t r a c t i o n  o f  b i n a r y  n u m b e r s  

We can all subtract denary numbers and we can use the same method 
for subtracting binary numbers. However, when we ask a digital circuit 
to subtract binary numbers, we use a quite different method. 

Why change a method that works? 
The advantage of doing this is that it allows us to re-use the adding 
circuit that we have already designed. There is a slight modification 
necessary, but it is very slight and, more importantly, extremely cheap 
to produce. Figure 3.1 shows the system used for adding two binary 
numbers and, by comparing it with the subtraction system in Figure 
3.2, we can see that the only difference is that an extra circuit has been 
added. By switching this extra part in or out, we can instantly change 
from adding to subtracting. 

Figure 3.1 

Binary addition 

1100 ~ 

iBinary adding _ ~.  
circuit 

10 

1100 + 10 = 1110 

1110 

(12 + 2 = 14) 

Figure 3.2 

Binary subtraction 
using the adding 
circuit 

10 

1100 

1100- 10 = 1010 

(12 - 2 = 10) 
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So how does this new system work? 
If we take the number 12 and subtract 2, we get the answer 10. Fine. 
If we start with the number 12 and then add MINUS 2, we still get the 
same answer. 

In figures, we can write this as 12 - 2 = 10 or we can say 12 + (?) = 10. 
The value of (?) must be - 2 so that we can rewrite the sum as 12 + (- 2) 
=10.  

So what? 
So we are now adding two numbers, (12) and (-2). And as we are 
adding numbers, we can use the binary adder circuit that we have 
already built. 

Is there a snag? 
Unfortunately, yes. The snag is how to load the number (-2). The only 
inputs to digital circuits are two voltages, one for the value 0 and the 
other for 1. We do not have an input voltage level that means 
'minus'. 

The cure 
We can get around this problem by replacing t h e - 2  with another 
number that CAN be added to give the right answer. It may seem 
amazing, but we can find a positive number that can replace - 2  to 
give the correct answer. Most people at this stage feel somewhere 
between confused and utterly confused, but just stay with i t -  things 
will improve. This magic number is called the complement of the 
number. 

The calculation can now be written as 12 + (complement of 2) = 
10. 

How do we find this magic number? 
First, make sure that each number has the same number of bits by 
adding leading zeroes as we did for addition. In our example, the 
number 102 is changed to 00102. 

The calculation now becomes as 1010 + (complement of 0010) = 
10. 

Finding the complement of 0010 is done in two stages. First we invert 
all the ones and zeroes. That means that all ones are changed to 
zeroes, and all zeroes are changed to ones. The result is called the 
'one's complement' (don't worry about the name). In our example, the 
number 0010 becomes 1101. 

We now add 1 to the one's complement so 1101 + 1 = 1110. This new 
number is called the 'two's complement'. 
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It's a bit confusing having two types of complement. We have to know, 
assume or guess which number is being referred to when books and 
designs talk about 'the complement'. If no clue is given, then assume 
that they are referring to the two's complement. 

Two's complement addition 
Step 1:Add leading zeroes to make sure that both numbers have the 
same number of bits. 

Step 2: Invert all the bits in the number we are subtracting. This means 
that we must change all zeroes into ones, and all ones into zeroes. 

Step 3:Add 1 to the result of Step 2. 

Step 4: Add the first number and the complement of the second 
number. 

Step 5: Ignore the last carry bit. 

Example 
Subtract the number 100 from 1011 using two's complement addition 
(or using complementary arithmetic). 

Step I: Here is the sum to be done: 1011 - I00. 

Add a leading zero to the I00 to make them both up to 4 bi4s. This 
gives 1011 - 0100. 

Step 2: Now invert 0100 to give 1011 (this is the one's complement of 
0100). 

Step 3: Add I to the number being taken away to make it the two's 
complement. This becomes 1011 + I = 1100 and rewrites the sum to 
an adding process. 

It is now 1011 + (two's complement of 0100). 

Step 4:Add these two numbers. 

1011 
1100 + 

Starting with the right-hand column as usual, I + 0 = I with no 
carry. 

1011 
1100 + 

I 

Next column, I + 0 = I, no carry. 

1011 
1100 + 

11 
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Next column, 0 + 1 = 1, no carry. 

1011 
1100 + 

111 

Left-hand column, 1 + 1 = 0, carry = 1. 

1011 
1100 + 
0111 

1 carry 

Final addition by adding the carry. 

1011 
1100 + 

10111 
1 carry 

Step 5: Since we designed our digital circuit to work with 4 bits, only 
four wires will be connected to the output to carry the answer. Any 
further information will simply be ignored by the circuit. 

Our final answer to this subtraction was 10111. This is a 5-bit number, 
so we arrange for the left-hand bit to be the one ignored. 

The final answer to the subtraction is 0111. 

A quick way to find the two's complement of a number 
If you need to add any leading zeroes, do this first, then simply start 
from the left-hand end and change each 0 bit to a I and each I bit to 
a 0. Continue doing this until you come to the last ' I ' .  Don't change 
this bit, and don't change any bit after it. 

Example 
Find the two's complement of 001011000. 

Change each bit until the last ' I ' .  Starting from the left-hand end, we 
would change the 00101 into 11010, then copy in the rest of the 
number without making any more changes. The result is 110101000. 
See Figure 3.3. 

REMEMBER - Add the leading zeroes before finding the two's 
complement. 

You may want to skip this bit 
The term 'one's' complement is derived from the way it can be 
generated. In this book we found it by inverting each bit in the number. 
This method was chosen because it is the way it is done in real digital 
designs. The alternative method is to subtract the number from a series 
of ones. 
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Figure 3.3 
A quick way of finding 
the two's complement of 
a binary number The number = 

The last '1' 

1 0 1 0 0 0 1 1 1 0 0 0 0 0  

Change Don't 
these change 

[, the~e 

010111O0 
100000 

The two's complement = 0 1 0 1 1 1 0 0 1 0 0 0 0 0 

We started with 0010 and inverted it to 1101 to find the one's 
complement. The other way is to write down a line of ones with the 
same number of bits as are in the number and then subtract them. 

Like this: 

1111 
0010  
1 1 01 This is also the one's complement, so both methods 

work OK. 

Just for fun 
This method of using complements can actually be used for 
subtraction using 'normal' denary numbers. It's very unlikely that 
anyone would find it better or easier than our other methods, but just 
for the fun of it we will run through an example. 

We will subtract 50 from 200. Each step is just a modified version of 
the subtraction by two's complement in binary subtraction. 

Step 1:Add leading zeroes to make sure that both numbers have the 
same number of digits. 

Subtracting 50 from 200 is now written as: 

2 0 0  - 0 5 0  

Step 2: Subtract all the digits in the number we are subtracting, from a 
series of nines. 

9 9 9 -  050 = 949 

Step 3:Add 1 to the result. 

949 + 1 = 950 
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Step 4" Add the result to the other number in the sum. 

9 5 0 + 2 0 0 = 1 1 5 0  

Step 5" We are working in three digits so the extra digit that has 
occurred in the left-hand column is not required, therefore we delete 
it. 

So 1150 becomes 150, which is the correct answer. Wow. Try one 
yourself. 

Quiz time 3 

in each case, choose the best option. 

i The result of adding 111, to 1010, would be: 
(a) 1100112 
(b) 110102 
(c) 0001102 
(d) 100012 

2 ..... The binary number 0 0 1 0 1 ~  includes: 
(a) one leading zero. 
(b) two leading zeroes. 
(c) three leading zeroes. 
(d) eight leading zeroes. 

3 'rhe two's complement of an odd number' alwaysi 
(a) ends with a one. 
(b) ends with a zero. 
(c) starts with a zero. 
(d) starts with a one. 

. . . . . . . . . . .  L . . . . . . .  

4 The result Of i 101 i i01012-11112 is: 
(a) 87010 
(b) 67810 
(c) 1011101012 
(d) 11011101112 

. . . . . . . . . . . . . . . . . . . . . . . .  o f  0 ' 1  J ' .... " ' "  o 8 The two's Complement 1 11001110 ,s. 
(a) 010100110110 
(b) 101011001111 
(c) 100100110001 
(d) 010100110010 
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The main problem with binary Is us 
We make fewer mistakes when we are interested, but unfortunately 
binary is not very interesting. In fact it is not interesting at all. Worse 
than that, the numbers are very long. The speed of light in metres per 
second can be written in denary as 299792459~0, or in binary as 
100011101111001111000010010112. Which of these two numbers 
would we rather write down if we had to do it a hundred times and 
guarantee total accuracy? A modern digital circuit can handle binary 
numbers like this at the rate of several million a second. 

We can make life easier by splitting the numbers up into groups 
to provide bite-sized portions. This improves both the denary as 
well as the binary. In denary we use groups of three, starting 
from the right-hand side, changing 299792459 into the much 
easier 299 792 459. In the binary world we split the numbers into 
groups of four, again starting from the right-hand end, so 
10001110111100111100001001011 is written and read as 1 0001 
1101 1110 0111 1000 0100 1011. 

Notice also that the binary number is much longer than the equivalent 
denary number. In our example above, 29 bits has been compacted 
down to nine digits. 

In an attempt to overcome these two shortcomings with binary (the 
number of digits and the ease of making mistakes), we sometimes use 
an alternative system called hexadecimal- or hex to its friends. 
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Counting in hex 
Binary uses two different bits. 
Denary uses ten different digits. 
Hex uses 16 different digits. 

Hexadecimal counts from 0 to 15, which means 16 different digits, 
and so has a base of 16. 

To keep it as simple as possible we use 0123456789 as in denary for 
the first ten digits then, for the last six, we use the letters ABCDEF or 
abcdef. 

The hex system starts as" 

hex denary 
0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
A 10 
B 11 
C 12 
D 13 
E 14 
F 15 

When we run out of digits, we put a 1 in the second column and reset 
the first column to zero just as we always do. 

So the count will continue" 

10 16 
11 17 
12 18 
13 19 
14 20 
15 21 
16 22 
17 23 
18 24 
19 25 
1A 26 
1B 27 
1C 28 
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1D 29 
1E 30 
1F 31 
20 32 

Hex to its friends 

and so on. 

It takes a moment or two to get used to the idea of having numbers that 
include letters, but it soon passes. 

As with binary, we must be careful to include the base whenever 
necessary to avoid confusion. The base is usually written as H, though 
h or 16 would still be acceptable. 

'One eight' in hex is equal to 24 in denary. Notice how I avoided 
quoting the hex number as eighteen. Eighteen is a denary number, and 
does not exist in hex. If you read it in this manner it reinforces the fact 
that it is not a denary value. 

In various books and datasheets, we meet hex numbers written in 
slightly different forms. 

Here are the main options in order of popularity: 

241o = 16H or 16 H or  16h or 16 h o r  1 616. 

The advantages of hex 
1 It is very compact. Using a base of 16 means that the number of 

digits used to represent a given number is usually less than in binary 
or denary. 

2 It is quick and easy to convert between hex and binary, and fairly 
easy to go between hex and denary. 

Converting denary to hex 
The process follows the same pattern as we saw in the denary to binary 
conversion. 

1 Write down the denary number. 
2 Divide it by 161o, put the whole number part of the answer 

underneath and the remainder in the column to the right. 
3 Keep going until the number being divided reaches zero. 
4 Read the answer from the bottom to top of the remainders 

column. 

REMEMBER TO WRITE THE REMAINDERS IN HEX. 
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Example 
Convert the denary number 3077 to hex. 

Step 1: Write down the number to be converted. 

3077 

Step 2: Divide by 16. You will need a calculator. The answer is 
192.3125. The 192 can be placed under the number being 
converted. 

3077 
192 

The decimal part of the answer, 0.3125, is actually 0.3125 of 16. 
Multiply 0.3125 by 16 and the result is 5. Write the 5 down in a 
separate column to the right. 

When completed, this step looks like: 

3077 
192 5 

Step 3: Repeat the process by dividing the 192 by 16 to give 12. There 
is no remainder, so we can just enter the result as 12 with a zero in the 
remainder column. 

3077 
192 5 

12 0 

Step 4: Now, 12 is less than 16, so the answer is going to be 0 with a 
remainder of 12. Great care here- the 12 is a decimal number which 
is C in hex, so the number in the remainder column is written as C. 

Enter the values in the normal columns to give: 

3077 
192 5 

12 0 
0 C 

Step 5: Read the hex number from the bottom upwards: C05H 
(remember that the 'H' just means a hex number). 

3077 
192 5 T 30771o = C05H 

12 0 / 
0 C 

And one for you to try. The answer follows. 

Example 
Convert 44 25610 into hex. 
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Answer" 

44256 
2766 0 

172 E 
10 C 

0 A 
T = ACEOH 

Remember to add the H for hex on the end of the number, particularly 
in cases where the hex number doesn't contain any letters. 

From hex to denary 

To do this we can use a similar method to the one we used to change 
binary to denary, except that in this case each column is 16 times 
larger than the one to the right. 

Example 
Convert B02F9H to denary. 

Step 1: The column values are: 

164 163 162 161 16 o 
65536 4096 256 16 1 

Notice how (anything) ~ = 1, so 10 o = 2 o = 16 o = 1. 

Step 2: Simply enter the hex number using the columns. 

65536 4096 256 16 1 
B 0 2 F 9 

Step 3: The value of the right-hand column is 9 x 1 = 9. 
The next column is F x 16, which is 15 x 16 = 240. 
The third column is 2 x 256 = 512. 
The fourth column is zero. 
The last column is B x 65536 or 111o x 65536 = 720896. 

65536 4096 256 16 1 
720896 0 512 240 9 

Step 4: Add up all the denary column values: 

720896 + 512 + 240 + 9 = 721657 

Method 

Step 1" Write down the column values using a calculator. Starting on 
with 16 o (= 1) on the right-hand side and increase by 16 times in each 
column towards the left. 
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Step 2: Enter the hex numbers in the appropriate columns. 

Step 3: Use a calculator to find the denary values of each column. 

Step 4: Add all the column totals to obtain the final denary 
equivalent. 

Try this one. 

Convert COE4H to denary. 

Answer: 

163 162 161 16 o column values 
4096 256 16 1 column values 
C 0 E 4 Hex numbers 

First column: 4 x 1 = 4 
Second column: E x 16 = 14 • 16 = 224 
Third column" zero 
Fourth column: C x 4096 = 12 x 4096 - 49152 

Total = 49152 + 224 + 4 = 4938010 

Binary to hex conversion 

Example 

If we have a 4-bit binary number, its lowest value is 00002 or zero. Its 
highest value is 11112, which converts to 8 + 4 + 2 + 1 = 15 in 
denary. 

This means that any group of 4 bits can be translated directly into a 
single hex digit. Just put 8, 4, 2, and 1 over the group of bits, and add 
up the values wherever a 1 appears in the binary group. 

Convert 11101010000112 to hex. 

Step 1: Starting from the right-hand end, chop the binary number into 
groups of four. 

11 1101 0000 0011 

Step 2: Convert each group of 4 bits to a hex number. The right-hand 
group is 0011, so this will convert to: 

8 4 2 1 column headers 
0 0 1 1 binary number 
0 0 2 1 column values 

The total will then be 0 + 0 + 2 + 1 = 31o also 3 in hex. 

The right-hand side binary group can-now be replaced by the hex 
value 3. 
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11 1101 0000 0011 
3 

Hex to its friends 

Step 3: The second group can be treated in the same manner: 

The bits are all zeroes so this one is easy, the answer is zero in hex or 
OH. Adding the zero under the second group gives: 

11 1101 0000 0011 
0 3 

Step 4: The next group is 1101, which translates into 8 + 4 +  I = 13. 
Converting the 131o into hex gives D. The result so far will be: 

11 1101 0000 0011 
D 0 3 

Step 5: The last group is incomplete, so only the column headings of 
2 and I are used. If you think it helpful, you could start by adding 
leading zeroes to the original number to keep it in blocks of 4 bits. 

In this case, the result from 111o or from 00111o would be 31o and 
3H. 

This gives a final result of: 

11 1101 0000 0011 
3 D 0 3 

So 11101010000112 = 3D03H. 

Note: Always remember to start chopping from the right-hand side. 

Method  

Example 

1 Write down the binary number. 
2 Chop it into groups of 4 bits starting from the right-hand end. 
3 Convert each block of 4 bits into a denary number and then into a 

hex number. 

Here is one to try. As usual, the solution follows. 

Convert the number 10010101 I01112 to hex. 

Answer: 

Step I: Write down the binary number. 

10010101101112 

Step 2: Chop into groups of four starting from the right-hand side. 

1 0010 1011 0111 
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Step 3: Left-hand group = 0111 - 4 + 2 + 1 = 71o = 7H 
Second group=1011 = 8 + 2 + 1  = 111o =BH 
Third group = 0010 = 21o = 2H 
The last group is just a single 1, so it becomes 1H. 

1/0010/1011/0111 
1 2 B 7 

Final result: 10010101101112 = 12B7H. 

Changing hex into binary 
This is just the reverse of the last process. Simply take each hex 
number and express it as a four bit binary number. 

As we saw in the last section, a 4-bit number has column header 
values of 8, 4, 2 and 1, so conversion is just a matter of using these 
values to build up the required value. All columns used are given a 
value of 1 in binary, and all unused columns are left as zero. 

When we are converting small numbers like 3H we must remember to 
add zeroes on the left-hand side to make sure that each hex digit 
becomes a group of 4 bits. 

Imagine that we would like to convert 5H to binary. Looking at the 
column header values of 8, 4, 2 and 1, how can we make the value 5? 
The answer is to add a 4 and a 1. Taking each column in turn: we do 
not need to use an 8 so the first column is a 0. We do want a 4 so this 
is selected by putting a 1 in this column. We don't need a 2, so make 
this column 0 and finally put a 1 in the last column to select the value 
of 1. The number 5H is now converted to 01012. 

All values between 0 and FH are converted in a similar way. 

Example 
Convert 2F60H to binary. 

Step 1 : Write the whole hex number out with enough space to be able 
to put the binary figures underneath. 

2 F 6 0 

Step 2: Put the column header values below each hex digit. 

2 F 6 0 
8421 8421 8421 8421 

Step 3: The hex 0 does not require any values from the columns but do 
remember to use a 4-bit replacement number, so convert it to 0000. 

2 F 6 0 
8421 8421 8421 8421 

0000 
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Step 4: Now do the same for the next column. The hex number is 6, 
which is made of 4 + 2, which are the middle two columns. This will 
result in the binary group 01102. 

2 F 6 0 
8421 8421 8421 8421 

0110 0000 

Step 5: Since 8 + 4 + 2 + 1 = 15, the hex F will become 11112. 

2 F 6 0 
8421 8421 8421 8421 

1111 0110 0000 

Step 6: Finally the last digit is 2, and since this corresponds to the value 
of the second column it will be written as 00102. 

2 F 6 0 
8421 8421 8421 8421 
0010 1111 0110 0000 

The final result is 2F60H = 00101111011000002. 

But do we include the two leading zeroes? The answer may be 'yes' or 
'no'. It depends on what we are doing. If we were doing a calculation 
then we would want the numerical value and the two leading zeroes 
wouldn't matter. If, however, we were finding information as part of 
the design of a digital circuit, we would have 16 wires and we would 
need to know what voltage to apply to each of the wires. In this case 
the leading zeroes would be needed. 

M e t h o d  

Example 

Step 1: Write down the hex number but make it well spaced. 

Step 2: Using the column header values of 8, 4, 2 and 1, convert each 
hex number to a 4-bit binary number. 

Step 3:Add leading zeroes to ensure that every hex digit is represented 
by 4 bits. 

Here is an example for you to try. As usual, the answer is shown. 

Convert 1375DH to binary. 

Answer: 

Step 1: 

1 3 7 
8421 8421 8421 

5 D 
8421 8421 
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Step 2: 

0001 0011 0111 0101 1101 

So 1375DH = 000100110111010111012. 

Using stepping stones 
Some conversions are easier than others. 
Between binary and hex they are easy. 
Between binary and denary they are not too bad. 
But between hex and denary they are difficult and nearly always need 
a calculator. 

Sometimes a longer but simpler route is a good idea. To convert from 
hex to denary, it may be easier to convert the hex to binary and then 
the resulting binary to denary. Similarly, from denary to hex, we could 
go from denary to binary and then from binary to hex (see Figure 
4.1). 

Figure 4.1 

There is more 
than one way to 
converl denary 
to hex 

You can take 
the short but 

D ~ N ~  difficult route 

/ .................. ". e 
(BINARY ! *  ..... 

Obsolete octal - probably not worth reading 
Octal is another number system, which has almost disappeared. It uses 
only eight digits. 

The count proceeds: 

0 
I 
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2 
3 
4 
5 
6 
7 there is no eighth digit, so reset the count to 0 and put a 1 in the 

next column 
10 
12 
13 
14 
15 
16 
17 
20 
etc. 

now go straight to 20 
(two zero-  remember, it isn't 'twenty') 

As no letters are used, it may take a little while before we realize that 
it is octal rather than denary. 

Conversions follow the same pattern as we have seen for hex. 

Octal to denary: the column heading values are 84, 83, 82, 81, 8 ~ 

Denary to octal: divide by eight and write down the remainders, then 
read remainders from the bottom upwards. Use the subscript 8 to 
indicate an octal number, e.g. 6410= 1008. 

Octal to binary: write each octal digit down as a three digit binary 
group. 

Binary to octal: start from the right-hand side and chop the binary 
numbers into groups of three, then evaluate each group. 

That's about all it is worth doing on octal. There are some digital 
circuits that are associated with computers that still use octal, but they 
are very rare. 

Quiz time 4 

In each case, choose the best option. 

~1 ~" ~lhich'of these'represents the"'iargest number? 
(a) 10008 
(b) 10001o 
(c) 1000H 
(d) 10002 
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2 The .umber"11DO2H is equal to: 
(a) 729621o 
(b) 45601o 
(c) 792621o 
(d) 74261o 

3 The highest digit in the hexadecimal 'systemisi 
(a) 15 
(b) H 
(c) 16 
(d) F 

. . . . . . . . .  

4 -Which Of'these nUmbers is the same as 
10100101011127 
(a) 1001011110 
(b) A5716 
(c) 1057H 
(d) 75Ah 

$ The number'of digits'in a hex number is always: 
(a) more than the number of digits in the equivalent binary 

number. 
(b) more than its radix. 
(c) less than or equal to the number of digits in the equivalent 

denary number. 
(d) more than the number of digits in the equivalent denary 

number. 
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In which of the circuits in Figure 5.1 will the light be on? 

Figure 5.1 

Which lamps are 
ON? 

switch closed switch open lemp 

A 

A 

A B c L_# 

A l k,..J 

. ~ j  _ [ r ~ ) .  , 4 .  
A B 

- A B C 
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Hopefully, you chose numbers 1, 3 and 5. In all three of these cases, 
the important factor was that all the switches were closed. 

Taking circuit 5, we can say that switch A AND switch B had to be 
closed before the light came on. 

Digital circuits are composed almost exclusively of groups of switches. 
It would not be at all unreasonable for a modern digital circuit to 
contain a million switches. For this reason, digital circuits are often 
called 'switching circuits'. 

The group of switches that controls a circuit is given the curious name 
of a 'gate'. 

As we have seen, in circuit 5 the light is ON, provided switches A AND 
B are both ON. We could say that switch A and switch B together form 
an AND gate. 

Making  it difficult 
It's never long before we start using some technical terms, but let's 
introduce them slowly. 

The gate in circuit 5 had two switches, both of which must be closed 
if the light is to come on. We call the states of the two switches 'input 
conditions' or just 'inputs' and, since input A AND input B must both 
be correct for the light to come on, we call this gate a 2-input AND 
gate. 

Have a look at circuit 3 in Figure 5.1. How would you describe this 
gate? 

Yes, it is a 3-input AND gate. Notice how we use capital letters for the 
AND to avoid awkward sentences like ' . . .  and an and ga te . . . ' .  

The 'states' or 'input conditions' of gates are normally described by 
numbers, and we usually describe a closed switch as a logic 1 and an 
open switch as a logic 0. Having done this, we can say that to make 
the light be ON we must have a logic 1 state on each of the inputs. 

If we now define the light being ON as a logic 1 state, we can describe 
the situation in two different ways. 

First, in plain English - when all the switches are ON, the light comes 
ON. 

Second, the technical version - when all the inputs are at logic 1, the 
output is at logic 1. 

The only advantage that the technical version has is that it can be used 
in a more general sense to mean 'when all the input conditions are 
met, the required outcome will occur'. 
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A truth table is a simple list of all the possible input states and all the 
corresponding outputs. 

With two switches, as in circuit 5, we have four possible situations in 
the circuits. These are shown in Figure 5.2. 

Figure  5 . 2  

The four possible 
situations 

A B 

A - / " "~"  - / ~  ~ / ..... "I" 
A open B o p e n  ~-~Light OFF 

A open B closed k'-)Light OFF'I" 

A closed B open ht OFF 

D " ~ - -  - - " "  '~'WLig'ht ' ' 4" A closed B closed ON 

Using the conventions: 

Switch OFF = logic 0 
Switch ON = logic 1 
Light OFF = logic 0 
Light ON = logic 1 

we can describe each of the four situations in the following way. 

Situation A could be described as A = 0, B = 0, light = 0, because 
both switches are OFF and the light is also OFF. 

Situation B has switch A OFF and switch B ON, but the light is still 
OFF. This can be described as A = 0, B = 1, light = 0. 

Situation C is very similar, but the switches are the opposite way 
around. So A = 1, B = 0, light = 0. 

Situation D has both switches ON and hence the light is ON. This state 
is written as A = 1, B = 1, light = 1. 

Rather than writing all the possible states in sentences as above, we 
just produce a table that lists all the possibilities, like this: 
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Switch A Switch B Light 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

This table is nice and easy to read, and gives all the relevant 
information about the operation of the circuit. 

We usually make the table even more compact by abbreviating the 
column headings. The inputs could just be called A and B and the 
output just L (L for light)" 

A B L 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

A truth table is therefore just a compact method of describing all the 
possible conditions that can be met in a circuit. 

Notice how the input possibilities are listed in binary order as we 
count up" 00, 01, 10, 11. it is not essential to do it this way, but it is an 
easy way to make sure that we don't miss any of the possible input 
states. 

A 3 - i n p u t  A N D  g a t e  

A 3-input AND gate is very much the same as the previous example, 
except that there are three inputs that control the output. 

The truth table would have three columns for the inputs and one for 
the output state. The three input columns could be called A, B and C, 
or anything else that we may think helpful. The three columns would 
just count up in binary, and the output would be OFF or at a 0 state 
until, on the last line, the three inputs would all be at 1 states and the 
output would switch ON or go to a 1 state. 

Here it is" 

A B C L 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 
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With a 2-input gate, we had a total of 22= 4 rows in the truth table. In 
this 3-input gate, the number of rows has increased to 23= 8 rows. A 
10-input gate would have 21~ = 1024 rows. 

Circuit symbols 

The big match: the US Military Specification versus the rest of 
the world 

The US Military Specification devised a series of distinctive shapes to 
represent digital gates and other circuits. These designs were happily 
accepted almost universally because they were quickly and easily 
recognized on a circuit diagram. As digital circuits increased in 
complexity and dealt with hundreds of gates at a time, a more compact 
system of symbols was needed. 

The authorities versus the people 
In the 1980s the national and international standards authorities, one 
by one, decreed that we should adopt a series of new symbols, which 
were all basically rectangular. 

By this time the US military symbols were well established and were 
(and are) very popular, and the change over was exceedingly slow. We 
were clearly dragging our feet and, to hasten the process, all UK 
schools, colleges and exam bodies were 'encouraged' to change so the 
change would eventually work through into industry. 

At the present time 
We have a choice: 

1 The American ANSI-IEEE-91-1991 version 2A and the ANSI Y32 
employ all rectangles. 

2 The European standard, called Euronorm 60717, which has been 
incorporated into British Standard 3939; this also employs all 
rectangles. 

3 The International IEC 617-2 standard, which has also used the 
rectangles. 

So everything is pretty well standardized on the same set of rectangular 
symbols. Or it would be except for the 'distinctive shape' symbols that 
refuse to die - so much so that the standards still allow the use of the 
distinctive shape symbols. 

In the UK many of the examination bodies have now reverted to the 
use of the 'old' US military shapes on examination papers, and every 
digital engineer is brought up on the shapes in preference to the 
rectangles. 
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Why all this difficulty? 
The heart of the matter is that the rectangles and distinctive shapes are 
seen to be alternative, competing systems, whereas in reality they are 
complementary. 

A small digital circuit using the distinctive shapes system is very much 
easier to read. When we are first introduced to digital circuits we see 
individual gates and small circuits for which the 'US Mil. Spec.' is 
ideal. 

When we move on to larger circuits employing dozens or hundreds of 
gates and more complex integrated circuits, the compact nature of the 
rectangles is well suited. At this stage, of course, we have to change 
systems, and we hate it. Whether it is feet into metres, Fahrenheit into 
Celsius or changes of currency, our instinctive reaction is to dig our 
heels in and fight to carry on the way we have always done. This is 
doubly the case when we can point to something that is clearly better 
about the old system. 

What are we going to use? 
As new circuit elements are introduced, both the US Mil. Spec. 
'shapes' and the new 'rectangular' versions will be shown side by side. 
In subsequent diagrams, only the shapes will be used. Hopefully this 
will prove a gentle introduction to both systems. 

Using the symbols of either system 
When we have a choice, we prefer to have the symbol drawn 
horizontally with the inputs to the left and the output on the right. In 
this way, we can 'read' the diagrams from left to right. 

An AND gate 
A 2-input AND gate is shown in Figure 5.3, together with its truth 
table. 

The symbols 
The US Military Specification symbol has a distinctive shape, whereas 
the International symbol is basically a rectangle. Notice in the 
rectangular symbol how the type of gate is always signified by a 
symbol placed in the top centre. This symbol shows that a single AND 
integrated circuit actually contains four separate AND gates as shown 
by the symbol being split into four by the horizontal lines. 

The symbol for a 2-input AND gate does not say anything about how 
it was made, it just describes how it responds to the inputs applied. We 
built a perfectly valid 2-input gate from a couple of switches and used 
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Figure 5.3 
2-input AND gate 
symbols and truth 
table 

Symbols 

inputs output [--) 
B 

Mil. Spec. symbol 

Truth table 

inputs 
A B 

, . . . . .  . , ,  

0 0 
0 1 
1 0 
1 1 

output 
Q 

. , , ,  _ 

0 
0 
0 
1 

Just logic 
i I i i 

1A 
1B 
2A 
2B 
3A 
3B 
4A 
4B 

IEC symbol 

1Q 

2Q 

3Q 

4Q 

The output is always 0 
unless both inputs are I 

a lamp to indicate the output, but we could equally well have 
manufactured any other electronic circuit or device provided that it 
responds in the same way to applied inputs. 

The truth table 
In our first truth tables, we used the letters A and B to represent the 
inputs and the letter L for the output. This was convenient since we 
built the circuit using a lamp for the output. 

Letters A, B, C etc. are often used as the inputs to gates and, strangely 
enough, the letter Q is a popular choice for the output, but in neither 
case are these letters compulsory. We can, if we wish, use our own 
choice of letter. 

Boolean algebra 
Boolean algebra was first invented in 1847 by an Englishman called 
George Boole to provide a way of calculating logical thought 
processes. Things like: 'all metals can melt' and 'all ice cream can 
melt'; so is it necessarily true that all ice creams are made from 
metal? 

George got it wrong on his first attempt and had to re-invent it in 1854, 
adding a note requesting his readers to disregard his earlier paper as it 
was neither complete nor correct. Second time lucky. He was the first 
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mathematician for 200 years to attempt the manipulation of logical 
statements by symbols and universal rules. 

One of its first applications was to simplify the design of the switching 
mechanisms in early telephone exchanges. 

Boolean algebra is a means of writing down the description of a gate 
or a combination of gates to avoid the necessity of drawing all the 
symbols. As we will see later, it also allows us to simplify the design of 
logic circuits. 

Ways of describing an AND gate 
If we have a 2-input AND gate with inputs A and B and an output of 
Q, we could describe what it does in words: The output is logic 1 only 
when both inputs are at logic 1. 

An alternative way is to say 'A AND B = Q'. This is a little quicker than 
the previous definition, and Boolean algebra takes it one step further 
by replacing the word AND by a dot. 

So A AND B = Q becomes A.B = Q. 

Even the Boolean expression is sometimes abbreviated further by 
leaving out the dot between the A and the B, so A.B = Q can be written 
as AB = Q. Whether we use the dot symbol is entirely optional. Both 
forms are read as 'A AND B equals Q'. 

A 3-input gate could be written as A.B.C = Q or ABC = Q, and is read 
as 'A AND B AND C equals Q'. 

So far, an AND gate can be described: 

1 In words. 
2 By Boolean algebra. 
3 By circuit symbols. 
4 By a truth table. 

Example 

46  

Use each of the above methods to describe a 3-input AND gate. 

Answer: 

In words: The output will be at a logic 1 if, and only if, all three of the 
inputs are at logic 1. 

As a Boolean expression: A.B.C = Q or ABC = Q. Any other letters can 
be used if required. 

The circuit diagram and truth table are shown in Figure 5.4. 
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Figure 5.4 Symbol 

The 3-input AND inputs output t~ _ - ~  & H 1 Q  
gate symbol ancl  A - - - ' - ' ~  '~ ~ H 
truth table B--.-- - Q 2Q 

t Mil. Spec. symbol 

Truth table 
IEC symbol 

inputs 
A B C 
, ~  

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

output 
Q 

0 
0 
0 
0 
0 
0 
0 
1 The output is 1 only 

if all inputs are 1 

AND gates with many inputs 
So far the circuit symbol has shown each input as a separate line, but 
the symbol often gets too crowded as the number of inputs increase. 
When this happens, we can change the symbol slightly as shown in 
Figure 5.5. 

Figure 5.5 A 6 ~  ) 
Some gates have many inputs F 
inputs 

output 
Q 

A 6-input AND gate 

The OR gate 
Have a look at the circuits in Figure 5.6 and see which lamps will be 
lit. 

The light will be ON in all cases except for the first one. Since the 
switches are connected in parallel, the light will come ON when 
switch A is closed or when switch B is closed, or when both are 
closed. 

A circuit that behaves in this way is called an OR gate. 

Just like the AND gate, it can be described in four ways. 
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Figure 5.6 
Which lamps are 1 " IJ ~ �9149 " 'k..) 
ON? B 

- k,,..) 
B 

+ 

+ 

B --~ k,_,) - "1" 

, _ , , +  

B 

in words 

The output of an OR gate is at logic 1 if any, or all of the inputs, are at 
logic 1. 

As a Boolean expression 

We use a + sign to mean OR, so a 2-input OR gate could be written as 
A + B = Q. A 3-input OR gate could be written as F + K + R = T or any 
other letters we care to use. 

REMEMBER, + means OR. At first (or even second) glance, using a dot 
to mean AND and the + symbol to mean OR may seem curious. In 
Chapter 8 we wil l  look at the reasoning behind it. 

By symbols and truth tables 
These are shown in Figure 5.7. Notice the new shape used for the OR 
gate. This makes it easily recognized on a logic diagram. Gates with 
more inputs are catered for in the same way as AND gates. 

Figure 5.7 
A 2-input OR gate 

Symbol 

inputs output 

B Q 

US Mil. Spec. symbol 

1A 
1B 
2A 
2B 
3A 
3B 
4A 
4B 

1Q 

2Q 

3Q 

4Q 

Truth table 

inputs 
A B 

0 0 
0 1 
1 0 
1 1 

IEC symbol 

output 
Q 

0 The output is always 1 
1 unless both inputs are 0 

1 
1 
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A quick English lesson 
Read these two conversations and answer the question 'What does the 
word "or" mean ?' 

A friend says: 'Would you like something to eat or drink?' 
You reply 'Yes please, a burger and a coffee'. 

A colleague asks: 'Is it Monday or Tuesday today?' 
You answer 'It's Tuesday'. 

We are so familiar with English that we know without a moment's 
thought that the two 'or's have different meanings. 

The first case is what we call an inclusive OR. What we really mean 
is 'Would you like something to eat or something to drink OR 
BOTH? 

In the second case, we are using an exclusive OR. We could answer 
'Monday' or 'Tuesday', but NOT BOTH Monday and Tuesday. 

Back to digital 
Take a glance at the truth table for the OR gate in Figure 5.7. Is this 
behaving like an inclusive or an exclusive 'or'? It is using the inclusive 
meaning of the word 'or', since the last line of the table shows that the 
output is at a logic 1 when both of the inputs are at a logic 1. 

The exclusive-OR gate 

In some design situations we would like to use the exclusive form to 
prevent two events occurring at the same time. Perhaps on a lift 
someone has pressed the 'up' and 'down' buttons at the same time. 

Exclusive-OR is often abbreviated to XOR, EXOR or EOR. 

Note" XOR gates only occur in 2-input versions. 

In words 

The output of an exclusive-OR gate is a logic 1 state if either, but not 
both, of the inputs are at a logic 1. Another way of saying this is that 
the output goes to a logic 1 only if the two inputs are at different logic 
levels and this has resulted in its alternative name of the 'difference 
gate'. 

As a Boolean statement 

We use the symbol (~ to mean 'exclusive-OR', so an XOR gate could 
be described as A (~ B = Q. 

The symbol appears as a modified OR gate and is shown in Figure 
5.8. 

49 



Introduction to Digital Systems 

Figure 5.8 
The exclusive-OR, 
XOR, EXOR, EOR or 
difference gate 

Symbol 

inputs output 

US Mil. Spec. symbol 

Truth table 

inputs 
A B 

0 0 
0 1 
1 0 
1 1 

1A 
1B 
2A 
2B 
3A 
3B 
4A 
4B 

IEC symbol 

output 
Q 

, , , ,  

0 
1 The output is I when 
1 A and B are different 
0 

1Q 

2Q 

3Q 

4Q 

The NOT gate 
This has got to be the simplest gate ever. It has only one input and one 
output, and a truth table with only two lines. 

So what does it do? It just reverses the logic state. 

This gate is also called an inverter since its function is to invert the 
logic state. 

If we apply logic 1 at the input, the output becomes logic 0. 
If we apply logic 0 at the input, the output becomes logic 1. 

In words 
The output always has the opposite logic level to the input. 

The Boolean description 
The Boolean symbol for a NOT is a line or 'bar' over the letter, so if the 
input to a NOT gate is written as A, then the inverted output would be 
written as ~. 

The output to our example in Figure 5.9 would be written as Q - ~. 

The symbol and truth table 
These are shown in Figure 5.9. 

The inversion of the output signal is shown by a small circle in the US 
Mil .  Spec. symbol and by a polarity indicator shown on the 
rectangular symbol. 
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Figure 5.9 
The NOT gate 

Symbol 

input output 

:=D 
US Mil. Spec. symbol 

1A 
2A 
3A 
4A 
5A 
6A 

1Q 
2Q 
3Q 
4Q 
5Q 
6Q 

Truth table 
input 

A 
output 

Q 

1 
0 

IEC symbol 

The output is just the 
reverse of the input 

If we apply an input A to an inverter, we would get 7( at the output. The 
term ~ would be read as 'NOT A'. 

Likewise, if we applied this ~ as the input, then we would get the 
inverted version at the output; but how would we write it? 

We could write this in two ways. 

First, we could say that the effect of a NOT gate is to invert the input, 
whatever it is. As we know, we show an inversion by putting a line 
over the top of the input signal. So, if we have an input of A then the 
output can be written as A. 

Alternatively, we could argue that if the logic state was changed and 
then changed back again, then it must be back to the original value. 
Therefore we could write the output simply as A as in Figure 5.10. 

Figure 5.10 
Outputs from a NOT 
gate 

This is read as 
'NOT NOT A' 

This is better 
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From this we can see that ~ = A so whenever a double line is met, it 
can be simplified by removing both of the 'bars'. It is always a good 
idea to simplify multiple bars as much as possible as soon as they 
o c c u r .  

How would we write the output of the circuit in Figure 5.11 ? 

Figure 5.11 A A 

Always simplify as m u c h  ~ ~ ~ o - ~  
as possible 

We would write it as A, the alternative A is correct but is not used since 
it would be unnecessarily clumsy. This is like using multiple negatives 
in English. We wouldn't say 'it is not not not raining today'. 

It is interesting to see that the NOT gate actually produces the one's 
complement of the input, so a group of four NOT gates could be used 
to find the one's complement of a 4-bit number. 

So f a r . . .  
So far we have looked at four gates- AND, OR, XOR and NOT. These 
are the only basic types of gate that occur. There are three others, but 
they are just combinations of these basic types. It often happens that 
when designing a real circuit we find that the output signal needs to be 
inverted. We could, of course, just add an inverter to reverse the logic 
level, but the problem occurs so often that we build a version of AND, 
OR and XOR gates that already have the inverters built in. 

This has three advantages: 

1 It saves cos t -  the price is much the same with or without the 
inverter, whereas a gate and an inverter bought separately would 
double the total cost. 

2 It saves space- the built-in NOT gate does not increase the total size 
of the original gate at all. 

3 It saves t ime-  adding an internal NOT gate results in no additional 
time delay over and above the original gate, whereas an external 
NOT would double the total time. 

Internal NOT gates are cheaper, smaller and faster, and therefore very 
popular. 

Remember that the 'new' gates that follow are only different because 
the output logic states have been inverted. This inversion is shown by 
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adding a small circle at the output like we had in the symbol for the 
NOT gate. Have a glance back to Figure 5.9. 

T h e  N A N D  g a t e  

NOT AND has been abbreviated to the word NAND. 

In w o r d s  

The output from the NAND gate is a logic 1 unless both, or all, inputs 
are at logic 1. 

As a Boolean  express ion  

The inversion by the internal NOT gate is shown by adding the line 
over the normal AND output, and is exactly the same result as we 
would have if we added a real NOT gate to an AND gate. 

You will recall that a 3-input AND gate would have an output of 
Q = ABC or Q = A.B.C. 

The output from a 3-input NAND gate would be Q = ABC or Q = 
A.B.C. 

Note: it is most important that we add one bar over the whole 
expression. 

By symbols  a n d  a truth tab le  

The circuit diagram and truth table are shown in Figure 5.12. 

Figure 5.12 
The 3-input NAND 
gate symbol and 
truth table 

Symbol 

inputs output t~ 

Truth table 

inputs 
A B C 

, , , ,  , , ,  

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

output 
Q 

1 
1 
1 

1 
1 
1 
0 

IEC symbol 

1Q 

2Q 

3Q 

The output is just the 
opposite of the AND gate 
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An interesting fact 
The NAND gate is used more than any other gate. 

The NOR gate 
As we would expect, this is just like an OR gate except for the output 
being inverted. 

In w o r d s  

The output is a logic 0 unless all of the inputs are at logic 0. 

As a Boolean expression 
Just add a bar across the whole of the normal OR expression. A 2-input 
NOR gate could be written as Q = A + B. Remember, once again, that 
the line extends all the way across the input expression. 

By symbols and a truth table 
Just note the inverting circle in Figure 5.13. 

Figure 5.13 
A 2-input NOR gate 

Symbol 

inputs output 

o 

US Mil. Spec. symbol 

Truth table 

inputs 
A B 

o o 
0 1 
1 0 
1 1 

output 
Q 

1 
0 
0 
0 

1A 
1B 
2A 
2B 
3A 
3B 

4A 
4B 

IEC symbol 

The output is mostly 
zeroes now 

1Q 

2Q 

3Q 

4Q 

The XNOR gate 
This is just an inverted XOR gate. This one only has a logic 1 output if 
the two inputs are the same and, for this reason, it is sometimes called 
an 'equivalence' gate. 
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In words 
The output is a logic 1 if the two inputs have the same logic level. 
Once again, like the XOR gate, only 2-input versions are available. 

As a Boolean expression 

Just add a bar across the whole of the normal XOR expression. The 
output could be written as Q = A (~ B. 

By symbols and a truth table 

These are shown in Figure 5.14. 

Figure 5.14 Symbol . . . .  

The exclusive-NOR, inputs output 1B i~ 1Q 

XNORENoR ' orEXNOR , A ~ B  Q 2B3A2A ~ 2 Q -  I 

equivalence gate 3B 3Q 
4A 4Q 

US Mil. Spec. symbol 4B _ 

Truth table 

inputs 
A B 
,, , ,  , , ,  , , , , ,  , ,  

o o 
o 1 
1 o 
1 1 

output 

IEC symbol 

The output is 1 only if 
A and B are the same 

Real gates 
For less than the price of a can of Coke@, you can treat yourself to a 
NAND gate. 

What you will get for your money will be like the creature shown in 
Figure 5.15. This one has 14 pins, which are used to make the 
electrical connections to the remainder of the circuit. The device 
would plug into a socket called a 'base', or it could be soldered 
directly onto the printed circuit board. 

The logic gates are in integrated form. That means that all the 
electronic components, like transistors, are built within a solid piece of 
silicon called an integrated circuit (IC or chip). It is only a couple of 
millimetres in size and is too small to handle, so several gates are 
included in a single plastic moulding called a 'package'. 

ll5 
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Figure 5. | 5 

A typical digital 
package 

Ceramic or plastic casing 
\ 

Connecting pins 

A two-input NAND gate, for example, would require two of the pins 
to connect the input voltages and one to provide the output. That's 
three altogether. Four such gates would need 12 pins. The 'chip' or 
'package' has 14 pins. The two extra ones are used for the power 
supply. The connections are shown in data books as in Figure 5.16. 

Figure 5.16 

The pins on 
a 2-input 
NAND gate 

Pins are counted 
anti-clockwise 

from here 

J 
Zero voltage supply 

Vcc 

positive voltage supply 
/ 

Pin-out diagrams 
are always viewed 

from above 
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If we wanted a 3-input gate, then each gate would occupy three inputs 
and the one output, a total of four pins. The package would then hold 
three such gates, plus the power supplies. 

A 13-input NAND gate cannot get into a 14-pin package, however 
hard we push. Standard base sizes for the smaller logic circuits are 14, 
16, 18, 20, 24 and 28. 

Sometimes the arithmetic is not so convenient as in our examples 
above and we finish up with some unused p ins-  these are just left 
unconnected, and on pin-outs are labelled as n.c. (not connected). 

We are supplied with the so-called 'pin-out' diagrams by the 
manufacturers to let us know the purpose of each pin. Sometimes they 
include small gate symbols as in Figure 5.16, or letter symbols can be 
used. The labelling is not standardized between manufacturers. 
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The pins are numbered looking from the top of the IC starting from the 
left-hand corner nearest to the indentation at the end of the moulding. 
The pins are then counted anticlockwise around the IC, as we saw in 
Figure 5.16. Be careful not to mistake the indentation with a circular 
mark that is sometimes left from the moulding process. Notice also that 
the pin layout is symmetrical, which means that the integrated circuit 
can be plugged in the wrong way round - which is immediately fatal 
to the integrated circuit. 

You will have noticed that the power supplies were connected to pins 
7 and 14 so the bottom left-hand pin is connected to zero volts and the 
top right-hand pin is the positive supply. On other packages the same 
relative positions are normally followed, so, for example, on a 16-pin 
package we would find the zero volt supply connected to pin 8 and 
the positive supply on pin 16. The use of these pins is fairly standard 
but is NOT universal- so be careful. Incorrect power connections kill 
the chip! 

Quiz time 5 

In each case, choose the best option. 

1 ..... A gate with anoutput of Q = A + B is: 

(a) an AND gate. 
(b) a NOR gate. 
(c) a 2-input XOR gate. 
(d) a 2-input OR gate. 

2 The symbol (~ indicates: 

(a) an XOR gate. 
(b) an AND gate. 
(c) a NOT gate. 
(d) a NOR gate. 

3 Which of these groups-refer to the same gate? 

(a) EOR, EXNOR, NOR. 
(b) EOR, XOR, EXNOR, difference gate. 
(c) ENOR, EXNOR, XNOR, equivalence gate. 
(d) XNOR, ENOR, difference gate, EXNOR 

4 - How many NOT gates Would a 14'pin 'package 
contain? 

(a) 6 
(b) 7 
(c) 12 
(d) 14 
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A 2-'input gate has inputs of A 1 and B [] 0; if 
the output is a 1, the gate could be: 

(a) an AND, ENOR or a NOR gate. 
(b) an AND, XOR or an NOR gate. 
(c) a NAND, XOR or an OR gate. 
(d) a NAND, XNOR or an OR gate. 

$ 8  



Build your own gates 

Along with the law of nature that decrees that buttered toast always 
lands butter-side down, there is one that states 'However many logic 
gates we have, the one we want is not amongst them'. 

Unlike the toast, we usually have an easy solution to the logic 
problem. 

How would you add the numbers 3 + 4 + 5? 

You could say, but it is unlikely, that you just added all three at once. 
It is more likely that you added the 3 and the 4 to give 7, and then 
added 7 and 5 to give the required total of 12. Note that we could have 
got to the same answer by adding any two and then the third number 
afterwards. This 'any order' feature is called the 'commutative' 
property. 

The same occurs with logic gates. If we wanted to perform the logic 
function A OR B OR C, written as A + B + C, we can do A + B first, then 
combine the result with C afterwards. 

We could put brackets around the (A + B) to show that this was done 
separately and requires a 2-input OR gate, and combining the result 
with the C input would need another 2-input OR gate. The method is 
shown in Figure 6.1. 

$ 9  
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(A +B) Figure 6.1 inputs 
A do-it-yourself 3-inpu! A 
OR gate B 

C 

output 
Q = A + B + C  

Example 
Show how you could produce a 4-input AND gate from two 3-input 
AND gates. 

Answer: 

The method is much the same as we used with the OR gates. In this 
case we can AND three of the inputs and then AND the other one. This 
would be written as (ABC)D or, if you prefer, (A.B.C).D. 

Have a look at Figure 6.2. 

Figure 6.2 A 
B Building a 4-input AND gate c 
D 

R e d u c i n g  t h e  n u m b e r  o f  I n p u t s  

How could we use a 3-input OR gate as a 2-input gate? A 3-input OR 
gate has a truth table as shown in Figure 6.3. We can see that, if any 

F;,,ure 6.3 inputs output 
i i  i 1 ~  

[ ' ~  ......... ~ ......... i 5  ............... '~i'i 
The 3-inpul to 2-input [0 0 0' i 
OR truth table [0 0 1 

Eo 1 o 
[ . .~ ......... ..1. ......... .~. ...... 

1 0 0 
1 0 1 
1 1 0 
1 

Oi 0 0 

.......... ~ . . j  1 1 

1 1 

inputs output 
B C Q 

'1 0 1 0 1 
1 

1 
1 So long as one of the inputs 
1 is held at 0, the gate behaves 
1 like a 2-input gate 
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one of the inputs is held permanently at logic 0, the gate behaves just 
the same as a 2-input gate. We can achieve a similar result by joining 
any two of the inputs together, ensuring that two of the inputs are 
always at the same logic level. See Figure 6.4. 



Figure 6.4 

Two ways of 
changing a 3-input 
to a 2-input 

logic 0 ~ Q 

B Q 

Build your own gates 
i ii i_ i i i i ]  i i i 

Hold any one input 
at logic 0 

Connect any two 
inputs together 

Example 
Show how you could produce a 2-input AND gate from a 3-input AND 
gate. 

Answer: 

Figure 6.5 

From 3-input to 
2-input AND gates 

inputs 
A B C 

, ,  

0 0 0 
0 0 1 
0 1 0 

[ "'0I .......... o'I .......... o'I ....... 
~1 0 1 
11 1 0 
i l  I i 
~, . . . . . . . . .  ~ . . . . . .  , . . . . . . . . . .  , . . . . . . .  

output 
Q 

,, , 

0 
0 
0 
0 

.......... "0"i 

1[ 
. . . . . . . . . .  , ~ 1 7 6 1 7 6  

inputs 
B C 
0 0 
0 1 
1 0 
1 1 

output 
Q 
, , , ,  

0 
0 
0 
1 

This time, one of the inputs 
must be held at a logic 1 level 

The method is much the same as we used with the OR gates - but not 
quite. We can certainly connect any two of the inputs together but, 
looking at the truth table in Figure 6.5, it is obvious that we cannot 
simply connect one of the inputs to logic 0. Once again, we have two 
methods of achieving the required result. We can either hold one of 
the inputs at logic 1, or we can simply connect two of the inputs 
together as shown in Figure 6.6. Once again, it doesn't matter which 
inputs are used, they all behave in the same way. 

Figure 6.6 

The 3-input AND changes to a 
2-input AND 

A 
B 

logic 1 

B Q 

A 3-input AND gate 

6 1  



Introduction to Digital Systems 
_ i 

C o n v e r s i o n s  u s i n g  t h e  N O T  g a t e  

The only difference between a NAND gate and an AND gate is the 
inverter that has been added to the output. We have seen in Chapter 
5 that we can cancel the effect of an inverter by adding another one. 
So, adding an inverter on the end of a NAND gate will convert it back 
again to an AND gate. 

Example 
How would you convert a NOR gate to an OR gate? 

Answer: 

Just add a NOT gate as in Figure 6.7. 

Figure 6.7 

NOR to OR, just add a NOT B , Q 

The NOT gate can also 
change NAND to AND 

Here's a more interesting one. 

What single gate could be used to replace the combination shown in 
Figure 6.8? 

Figure 6.8 

What gate is this? 
A , 

B 

NOT gates can also be added to the inputs of a gate 

The effect of adding the NOT gates to the inputs is to invert the inputs 
before they are applied to the OR gate. This has a surprising effect. The 
easiest way to see what happens is to make the changes to the truth 
table, then see if we can recognize it. This is shown in Figure 6.9. 

O t h e r  poss ib i l i t ies  

If we were to add NOT gates to the input of an AND gate we could 
draw up the truth tables and discover that the overall result would be 
a NOR gate. 

6 2  
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A surprising result! 

Build your own gates 
. i i [ . i ~ - -  _ . . . .  ~ z ~ . ]  j l l l l  i i i i i  i i 

inputs 

A B 
. . . .  

0 0 
0 1 
1 0 
1 1 

A [ ~ a  
~ 

output 

a b 

1 1 
1 0 
0 1 
0 0 

Q 
, 

1 
0 
0 
0 

The output is 1 only if 
both inputs are at logic 0 

This combination of gates 
behaves like a NAND gatel 

Ploughing through all the possibilities would quickly become tire- 
some, so everything we need to know is in Figure 6.10. 

Figure 6.10 
A very useful 
thing to 
know 

Add inverters to 
outputs only 

",,, / /  

Add inverters to 
outputs only 

How to use Figure 6 .10  

Start from the gate that you have, then move to the gate that you want. 
Add inverters as written against the arrows. For example, assuming we 
have a NOR gate, we would start at the bottom right-hand corner. If we 
wanted to convert it to an AND gate, we would move diagonally 
across the diagram passing the instruction 'add inverters to inputs'. If, 
however, we wanted to convert the NOR gate to a NAND gate, we 
would move vertically and see the instruction 'add inverters to inputs 
and outputs'. 

G3 
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E x a m p l e  

Use the diagram to determine the type of gate represented in Figure 
6.11. 

Figure 6.11 

What gale is this? 

Start with the OR gate in the bottom left-hand corner. What has 
happened to the OR gate? It has had inverters added to the inputs and 
to the output. So on Figure 6.10, you would move vertically and the 
result would be an AND gate. 

What if you thought it was a NOR gate with inverters added to the 
input? OK, so you would start at the bottom right-hand corner and then 
you would have to move along the diagonal to add the inverters at the 
input. This would give the result as an AND gate just the same. This 
diagram always works. It's a useful thing to learn. 

Universal gates 

If we take a NAND gate and connect all the inputs together, what type 
of gate do we have? The truth table in Figure 6.12 would be reduced 
to only two possibilities. A zero level input would provide a logic 1 
output, and likewise a logic 1 input would be inverted to a logic 0. A 
NAND gate can be easily changed to a NOT gate. 

Figure 6 .12  
inputs 

NAND to N O T -  A B 
! 

instantly 0 " 0 
1 1 

inputs 
A B 

0 1 
1 0 

EZ3ZZs 

output 
Q 

.0. J . . . . . . . . . .  . . . . . . .  ~ , , , =~  ~ 

0 
0 

output 
Q 

o 
1 

The truth table is now 
the same as an inverter 
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The number of inputs doesn't matter, and a NOR gate would work just 
as well. 

We saw, a moment ago, that we could convert a NAND gate (or a 
NOR gate) to any other type of gate simply by adding inverters at the 
output or inputs or both. 



Build your own gates 

If we have a supply of NAND or NOR gates, we can make any other 
gates. For this reason, the NAND and NOR gates are referred to as 
Universal gates. As an example, Figure 6.13 shows how to make a 
NOR gate from NAND gates. 

Figure 6.13 
A NOR gate built 
from NAND gates 

NOT 

A 

B 
1 NOT 
NOT 

Example 
Try this one. Show how we could build a 3-input AND gate from a 
supply of 3-input NOR gates, then check your answer by seeing Figure 
6.14. 

Figure 6.14 
A 3-input AND from 3-input 
NORs 

A 

B 

C 

to each input 

D e  M o r g a n ' s  l a w s  

Despite the impressive name, these laws are just the Boolean 
equivalent of the conversions shown in Figure 6.10. They are used to 
change expressions using AND and NAND gates into equivalent 
circuits using OR or NOR gates. 

We can see from the figure that if we want a 2-input OR gate we can 
make it out of a 2 input AND gate by using an AND gate, inverting 
each input signal and then inverting the final output. 

Notice the three steps - change the gate type, invert the inputs, invert 
the output and that is all there is to it. 

De Morgan's law follows exactly the same steps, but we write it in 
Boolean form. 

See this: 

611 
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Example 

Step 1" Change the gate type from OR to AND, so a 2-input OR gate 
A + B becomes A.B 

Step 2" Invert each term so A.B becomes A.B 

Step 3" Invert the whole expression to give A.B 

So A + B = ~.B, which is just what we would achieve by using the 
conversion in Figure 6.10. 

We have a 2-input NOR gate. Find the NAND equivalent. 

Step 1" Change the symbol" A + B to A.B 

Step 2" NOT each term to give A.B 
m ~  

Note: We could have written the result of this step as A.B, but it is 
more usual to stack the bars with the shortest ones at the lowest 
level. 

Step 3" NOT everything to give A.B 

Step 4: Simplify bars of equal length if required. 

If we decided to cancel the two equal length bars, the result would be 
~ w  

A + B = A . B  

Now this is certainly correct in as much as it performs the correct logic 
function. However, we were asked to produce this function using 
NAND gates but ~.B is using an AND gate. If we replace this AND gate 
with a NAND gate, the result would be written as A.B but we still have 
a problem because we have now inverted what was the correct 
expression so we must invert it back again, which will be shown by 
another full length bar being added to make the final answer A.B 

The final circuit is shown in Figure 6.15. 

Figure 6.15 
Making our own 
NOR gate 

Example 

6 6  

Change the expression FD + A + B + C to remove any OR gates. 

Step 1" Change the symbols to give F~.A.B + C 

Step 2" NOT each one: FD.A.B.C 

Note that FD is treated as a single signal. In fact it IS a single signal- 
it is the output of a 2-input AND gate. 
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Step 3: NOT the lot! F-~.~.~.C 

Step 4: There are no equal length bars stacked one above the other so 
no simplifications are possible. 

Summary of De Morgan's law 
1 Change the symbols. 
2 NOT each one. 
3 NOT the lot. 

Have the XOR and XNOR gates been forgotten? 
No, just ignored, but we can certainly build them from either of the 
universal gates. Working from the truth tables, XOR is AB + ~(B and 
XNOR is just the same but inverted, AB + ~B 

Advantages of using universal gates 
There are two advantages: 

1 We can use up spare gates in the chips that we have already bought 
instead of buying new ones. 

2 If we decide to use just one type of gate, either a NAND or NOR, we 
can buy them more cheaply by ordering them in large quantities. 
Most manufacturers have opted for the NAND gate, and hence 
more NAND gates are bought than any other. 

Quiz time 6 

In each case, choose the best option. 

"1' How "many""un'iverscal' gates are there? 
(a) 6 
(b) 4 
(c) 3 
(d) 2 

2 An AND gate with inverter"'s' connected to each input 
behaves like: 
(a) a NAND gate. 
(b) a NOR gate. 
(c) an OR gate. 
(d) an AND gate. 
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3 Using only two 3-input NOR gates, we could 
NOT build a: 

(a) 3-input OR gate. 
(b) 3-input AND gate. 
(c) 4-input NOR gate. 
(d) 3-input NOT gate. 

4 -  If We had a supply of AND gates and plenty of 
NOT gates, we could construct:. 

(a) only AND gates. 
(b) only NAND gates. 
(c) any other gate. 
(d) only OR gates or NOR gates. 

. . . . . . . . . . .  ~ . . . . .  ~ , , ~  , ~ . . . . .  

5 To change a 3-input NAND gate into a 3-input 
NOR gate would require: 

(a) only one inverter. 
(b) two inverters. 
(c) three inverters. 
(d) four inverters. 
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Designing digital circuits 

Sometimes we buy a digital circuit already designed, built and 
included in products like CD players, mobile telephones or com- 
puters. There is no reason, however, to prevent us from designing and 
building our own digital circuit to do something that we want. 

Digital circuits are cheap and easy to build 

Photographers often need red light or complete darkness to develop a 
film. They tend to get rather irate if someone opens the door just to see 
how they are getting on. 

A solution to this problem is to install a lock on the door that is 
controlled by switches that sense whether the red 'developing' light is 
ON and also whether the normal white room lights are ON, and only 
allow the door to be opened under safe conditions. 

At this moment our 'digitally aware' photographer may decide that 
there are no instant solutions available in the shops, so a 'home-made' 
solution is required. 

How do we design a digital circuit? 
Easy, in just five steps. 

1 Write down what we want the circuit to do. 
2 Choose the switches that we want to use. 

6 9  
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3 Draw up a truth table. 
4 Simplify it if we can; if we can't, just go to step 5. 
5 Draw up the logic diagram and then build it. 

We should be careful to work slowly, building up the design one step 
at a time and making notes as we go. 

Let's have a go at the photographer's problem using the steps listed 
above. 

Step 1 : We would like the door lock to be activated (locked) whenever 
the red light is ON at the same time as the white light is OFF. 

Step 2: Simple on-off switches come in two flavours referred to as 
'normally-open' and 'normally-closed'. 

A normally-open switch has contacts that are initially separated so that 
current cannot flow. A normally-closed switch operates the other way 
round and has the contacts touching allowing current to flow, as 
illustrated in Figure 7.1. The method of closing the contacts differs 
according to the design of the switch. Switches can be light sensing, 
respond to mechanical movement or pressure, or to any one of a 
dozen different options that can be found in electronic component 
catalogues. 

Figure 7. I 

Types of switch 

I ^ 

A 'normally-open' switch 

A 'normally-closed' switch 

1 0  

We will use a normally-open switch for monitoring the red light and a 
normally-closed switch to monitor the state of the white light. There is 
no magic about these choices, the circuit could be designed equally 
well whatever the type of switch used, but one of each will help us to 
explore the possibilities. 

Step 3: The truth tables that we have met so far have used A, B, C etc. 
for the inputs with Q for the output. It is not desperately important to 
use these letters, so when we come to our own designs we may find it 
easier to use letters that will help us to remember what each column 
of the truth table is all about. So, we can call the switch associated 
with the red light, R. The white light switch can be W, and the lock can 
be L. 
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With just two switches there can only be four possible combinations, 
as shown below: 

R W L 

0 0 

0 1 

1 0 

1 1 

where 

R = r e d  l ight  O N  = 1 

W = whi te  l ight  O N  = 1 

L = r o o m  locked  = 1. 

Now we fill in the last column. 

Go back to our original design statement: 'We would like the door lock 
to be activated (locked) only when the red light is ON at the same time 
as the white light is OFF.' This would happen on the row R-- 1, W = 0, 
and we complete the line by putting L = 1 to show the door is locked. 
In all other cases the door is unlocked, so cups of coffee and 
sandwiches can be brought in at any time. These conditions are listed 
as L=0. 

R W L 

0 0 0 

0 1 0 

1 0 1 

1 1 0 
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Step 4: We will leave the problem of simplification to the next 
chapter. 

Step 5" Looking at the final version of the truth table, we simply ignore 
any lines that have an output of '0'. So that has disposed of three out 
of the four lines. 

This has shrunk the table to" 

R W L 

1 0 1 

How do we convert  a truth table  into a logic d iagram? 

The line in the truth table means that the L (lock) is activated when the 
R (red light) is on AND the W (white light) is off. This indicates an AND 
gate is to be used. In fact, any combination of gates in a single row is 
always an AND function. Our particular example has two columns, 
and so it is a 2-input AND gate. 

So we start by drawing an AND gate as in Figure 7.2. 

Figure 7.2 

Our first attempt 

inputs 
W 
R 

output 

This would lock the door 
when both lights were ON 

This diagram would not suit our purposes. An AND gate requires both 
inputs to be at a logic 1, and so the lock would only be activated by 
both the white light and the red light being ON. 

Even so, we need an AND gate because there are two things that must 
occur at the same time, but it must operate when the white light is 
OFF. 

We have a problem 

When the white light is OFF, its switch has an output of logic 0 but, to 
make it work, the AND gate needs a logic 1 - so what do we do? 

7 2  
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The answer is to include a NOT gate to invert the logic level produced 
by the white light switch. That gives the logic 1 needed for the AND 
gate and produces a final diagram as shown in Figure 7.3. 

Figure 7.3 
The final solution 

W _ 

R 

; >  . ' ) .  , outpu, , 

The lock is now activated 
when the white light is OFF 

and the red light is ON 

Example 
A different situation results in this truth table: 

A B C Q 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

Design a logic diagram to provide this result 
Step 1" There are three rows that result in Q = 1. To put it another way, 
we can say that Q = 1 under the conditions described in the first of 
these rows OR in the second OR in the third. These conditions are 
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independent of each other, and this means that the final gate will be a 
3-input OR gate. 

Step 2: Cross out or ignore all the rows that result in the output Q=O; 
all these are ignored. 

, , 

A B C Q 

0 0 1 1 

1 0 1 1 

1 1 1 l 

Our logic diagram now looks like Figure 7.4. 

Figure 7.4 

The first step 

inputs 

A ,, ? J t " " ~  output 

B ? ~ Q 

C o 

So far, we know that there are three inputs 
and the last gate is a 3-input OR gate 

Step 3: The first row has A = 0 AND B = 0 AND C = 1. This means that 
it is a 3-input AND gate. Now, to operate this AND gate we need the 
three inputs to be at logic 1. However, A=0,  so we must add an 
inverter to produce the logic 1 level. Input B must also be inverted for 
the same reason. Figure 7.5 shows the first row completed. 

Figure 7.5 
The first row is completed 

A 

B HL 

? 
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When A = 0 and B= 0 and C = 1, 
there will be three level 1 inputs 

to the AND gate 
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Step 4: The next row is much the same situation except that input A - 1 
and C = 1 and so do not need inverting. Column B will still need a 
NOT gate as before. Figure 7.6 shows this next addition to the logic 
diagram. 

Figure 7.6 
And now the second 
row is added 

Row 1 

Row 2 

Step 5: The third row is easy. It is a straightforward 3-input AND gate. 
No inverters are needed because all columns already have a logic 
value of 1. The final logic diagram is shown in Figure 7.7. 

Figure 7.7 
Complete - and very 
impressive 

A ~ Row 1 

. . . .  7-  
;_ll  ...... P - -  

~ ~ ~ - Q  

Note: In Step 4, we added a NOT gate to provide the NOT B input to 
the Row 2 AND gate, but if we look at the diagram we can see that we 
already have a NOT B logic level being fed into the Row 1 AND gate. 
We could save a NOT gate by using this logic level rather than use 
another NOT gate. In Figure 7.8 the alternative layout is shown. 

7 5  
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Figure 7.8 

An alternative design 

Row 1 

Row 2 

Row 3 

These are the main points 
I To convert any truth table to a logic diagram, start by drawing an OR 

gate at the output. The number of inputs to the OR gate is 
determined by the number of I s in the output column. Each input is 
fed by an AND gate. 

2 The number of inputs to each AND gate is equal to the number of 
input columns in the truth table. Each input that is at a logic 0 must 
be fed via a NOT gate. 

3 Whenever possible draw the logic diagram so that the inputs appear 
on the left-hand side and the output to the right, so we can read the 
diagram from left to right. Be sure to make it clear whether lines on 
diagrams join or cross, as in Figure 7.9. 

Figure 7.9 

Junctions and crossings 

A 
v 

Add blobs where they join 

These cross but 
don't connect 

76 

4 The order in which we write down the separate letters or the 
different groups of letters does not matter. 



Example 

Figure 7 .10  

Spot the mistakes 

Designing digital circuits 

Here is a truth table. A logic circuit design is shown in Figure 7.10 
but it contains mistakes- what are they? The answer is given 
below. 

A B r Q 

0 0 0 1 
. . . . . . . . .  

0 1 

0 1 0 

0 1 1 1 

[ 
1 0 0 

. . . . . . . . . . . .  

0 ! 1 0 

1 1 0 0 

1 I 1 

Answer: 
The input to gate 5 should be connected to the output of gate 1 and not 
to the output of gate 2, and gate 6 must be an OR gate. 

Y T  
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How do we  convert  a truth tab le  into Boolean a lgebra?  

The method is much the same as we used to design the logic 
diagram. 

Here is a truth table: 

A B C Q 

o o o 1 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

Step 1" There are four rows that result in Q = 1. These rows are ORed 
as we saw with the logic diagram. 

Step 2" Cross out or forget about all the rows that result in the output 
Q=O, as all these are ignored. 

Here are the important rows. 

A B C Q 

0 0 0 1 

0 0 1 1 

1 0 1 1 

1 1 1 1 

7 8  
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Step 3" The first row has Q = 1 if A = 0 AND B = 0 and AND C = 0. This 
means that it is a 3-input AND expression. The Boolean expressions 
that need to be ANDed are ~, B and ~. 

The first row is therefore written as Q = ~ B C. 

Step 4" The next row is very similar except that the C = 1 and therefore 
does not need a bar over the C (the 'bar' is the line over the top to 
indicate the NOT function). The output of this line is Q = ~ C .  

Step 5" The third row is just the same except that it is only the B value 
that is inverted. The output is n o w ' Q  = A B C. 

Step 6' The last line is a straightforward 3-input AND gate, so the 
Boolean expression is Q = A B C. 

Step 7" All four of these lines need to be ORed together, so the final 
Boolean expression is Q = A B C + A B C + A B C + A B C. 

Brackets are sometimes added if we want to make certain that the 
terms to be ANDed and those to be ORed are quite clear, so the 
Boolean could be written as Q = (A~ C) + (~ ~ C) + (A B C) + (A B C). 

Step 8' If we can write a Boolean description of a problem, we can go 
straight into the logic design without worrying about doing the truth 
table at all. We will have a look at an example in a moment. 

Most important note 

Be exceedingly careful to write the bars over each letter separately and 
not as a single bar over the whole expression. A B is not the same as 
~ ;  in fact it is completely different. Try drawing up the truth tables. 

From Boolean to logic 
Example 

Draw the logic diagram for the Boolean expression R = (F ]< P) + 
(F K P). 

Step 1 : The expression contains two groups that are ORed together. We 
can make a start by drawing a 2-input OR gate. Each of the two inputs 
is being fed by 3-input AND gates as shown in Figure 7.11. 

Step 2: The first AND gate is fed with F, NOT K and P. This means that 
we must add a NOT gate to the K input to give the value K. Figure 7.12 
shows the first AND gate signal Completed. 

Step 3: The other AND gate is much the same except that both the K 
and P inputs are inverted. Figure 7.13 shows the final result. 
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Figure 7.11 F 
Boolean to log ic-  the 
first step K 

Term 1 

? R = (? ? ?) ,  (? ? ?) 

Term 2 ~ - ~ R 

i -  ? , [ - - - ~  
? 

Figure 7.12 
The first half is finished 

Term 1 

Term 2 

, = = , ,  

I F K P  

Figure 7.13 F 
Boolean to logic - the 
final result K 

Term 1 

Term 2 

Example 

8 0  

Draw the logic diagram of a circuit that would perform the function 
Q = A ~ + A B + A B .  

Again we have the same basic layout, a 3-input OR gate being fed by 
AND gates. This time there are three 2-input AND gates. 

The first AND gate has an inverter on both the A and the B signal 
inputs. The second AND gate has no inverters, and the last AND gate 
has an inverter applied just to the B input. 

The final result is shown in Figure 7.14. 



Figure 7.14 
A worked 
example 

Designing digital circuits 
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I B 

+ AB + AB 

Other Boolean expressions 
In the previous cases we have derived the Boolean expression for truth 
tables, and these give rise to a standard pattern of AND gates feeding 
an OR gate. Furthermore, all the AND gates have had the same 
number of inputs. 

This is not always the case. If we start simplifying the Boolean algebra 
or we build up the expression without starting with a truth table, the 
final expressions are much more varied. We look at simplification in 
Chapters 8 and 9. 

Let's look at a few other Boolean expressions and see how to draw 
their logic diagrams. There are, of course, millions of different 
possibilities, so we will do just a few. To sort these out easily, it is much 
simpler if we know the Boolean equivalent of the basic gates. If you 
feel unhappy about them, just glance back at Chapter 5 again. 

Example 
Draw the logic diagram equivalent to the Boolean Q = A + BC. 

This can be a tricky one. The algebra contains an OR gate and an AND 
gate, but which do we do first? Is this (A OR B) and the result ANDed 
with C, or is it A ORed with the result of ANDing B AND C? 

To sort out this problem we use the convention that, given the choice, 
we always do the AND functions first, so the correct interpretation of 
the above is to AND the B and C and then OR it with the A input. 

If we definitely mean it to be done the other way with the A OR B done 
first then the result ANDed with C, we have to enclose the things to be 
done first with brackets like this: Q = (A + B) C. 

I t l  
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Figure 7.15 
Notice the difference 

Q=A+BC 
or  

j " Q=A+IBC) 

C . . . .  

Q=(A + B)C 

Example 

The logic diagram for Q = A + BC is shown in Figure 7.15. 

Try drawing the logic diagram for the expression Q = (AB + A'B)C. 

Step 1" It looks complicated. Let's start with a general look at the 
expression. There is a group of gates inside the brackets and that group 
has been ANDed with C, so let's draw that first (Figure 7.16). 

Figure 7.16 
The first part A �9 

a ,, , 

C 

AB +A---"~ 

C 

Q = (AB + AB)C 

Step 2" Inside the bracket we have AB, which is a 2-input AND gate 
ORed with ~ik-B, which is a 2-input NAND gate (Figure 7.17). 

Figure 7.17 
The complete 
diagram 

Example 

11,2 

AB ,,,,- 
AB +A'~ 

Pc 
I 

Q = (AB + AB)C 

Try drawing this one: Q = A + ~ + B. 

Note: An inverting line over a group like A + BC means that the terms 
A+ BC are a group and have then been inverted. This would mean 
exactly the same as putting it in brackets like this: Q=  (A + BC). 



Designing digital  circuits 

Step 1" The overall pattern is a group of terms ORed with B, so we 
would have to start with a 2-input OR gate. One of the inputs to this 
gate is B and the other is the group that has been inverted (Figure 
7.18). 

Figure 7.18 

Do the easy bits first 

C Z ~ 

! 

B v 

~ Q 

Step 2" Looking at the inverted group A + BC, we will build this up in 
stages. We may spot that this follows the same pattern as a NOR 
gate. 

Remember to do the AND functions first, so B and C go through an 
AND gate. This takes care of the 'BC' part. 

Now we combine this output by using a 2-input NOR gate, using A as 
the other input. We have now finished A + BC. The complete logic 
diagram is shown in Figure 7.19. 

Figure 7.19 

Q = B ~ i 

 2>-o 
Note" If you didn't spot that this was a NOR gate, you could have used 
an OR gate to combine A + BC and then added an inverter to produce 
the final result A§  BC. It uses an extra gate, which is not quite so slick, 
but it would certainly work. 

8 3  
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Quiz time 7 

In each case, choose the best option. 

1 .... which one of ' the fo l lowing is the odd one Out? 

(a) C + AB 
(b) A.B + C 
(c) (A.B) + C 
(d) A.(C + B) 

2- "The least number of gates ' that could be usec] tO build 
a logic circuit w i th  the Boolean expression A + B + C 
would be: 

(a) 1 
(b) 2 
(c) 3 
(d) 4 

, ,, , , , ,  

3 ........ The Boolean expression A +  B.C is the same as: 

(a) A + 
(b) ~ + ~C 
(c) (C B) + A 
(d) ~ + C.~ 

4'- The logic d iagram in Figure 7 '20 is equivalent to 
the Boolean expression: 

(a) H=F~+G.W 
(b) H = F + WG 
(c) H = F + W G 
(d) H=(F+G)W 

Figure 7.20 
Quiz time 7, Queslion 4 

F 

W 

G 

8 4  



Designing digital circuits 
. _. II I L l  . . . . . . . . .  I I I I I [  I [ . [ . . 1 [ 1 1 1  

In Figure 7.21, the points that will always be at ti~e 
same voltage are: 
(a) G and E. 
(b) A and B. 
(c) A and E. 
(d) H and A. 

Figure 7.21 
Quiz time 7, Question 5 

L 
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Simplifying - by Boolean 
algebra 

When we have designed a logic diagram and written it as a Boolean 
expression, it is usually worthwhile to see if it can be simplified before 
it is finally constructed. 

There are two main methods at our disposal. We can do it by Boolean 
algebra as in this chapter, or by a drawing method as in the next 
chapter. 

Why bother to simplify at all? 
If we were building a circuit from ready-made integrated circuits, it 
would typically contain four 2-input NAND gates in each integrated 
circuit. A circuit requiring 100 NAND gates would need 25 integrated 
circuits, but if we could simplify the design down to the point where 
we only need 40 NAND gates we then only need to use 10 chips. 

However, there are situations in which we don't bother to simplify at 
all. In fact, people who follow this route often discard simplification as 
an outdated process. 

In some industrial situations we design and build a single chip that can 
contain, say, 1000 extremely small NAND gates, which can then be 
internally interconnected to provide our logic circuit. Our problem is 
then deciding how to interconnect the NAND gates to provide the 
required circuit. Let's say the logic circuit requires 800 NAND gates 
without any simplification, or 600 after simplification. In this situation, 

8 6  



Simplifying - by Boolean algebra 
I I I I I  ~ . _  " - - 

there is no point in bothering to simplify the circuit. This would result 
in 400 unused NAND gates if we simplify and 200 if we don't. But we 
still use and power up a single integrated circuit and its 1000 tiny 
NAND gates, so no savings would be made. 

The cost benefits of simplifying 

The overall savings may well be significantly greater than the initial 
cost of the integrated circuits: 

1 Integrated circuits. Reducing the number of chips required from 25 
to 10 saves the cost of 15 chips. 

2 Printed circuit size. The integrated circuits are mounted on a printed 
circuit board. Reducing the number of chips reduces the size and 
hence the cost of the PCB. We will also achieve a reduction in the 
design costs for the board. 

3 Sockets. In some pieces of equipment where maintenance is likely 
to be needed, the integrated circuits are plugged into a socket rather 
than being soldered directly to the PCB. These sockets often cost as 
much or more than the integrated circuit. 

4 Power supply. If there are fewer integrated circuits, then the power 
supply design cost, construction cost, size and heat output can all 
be reduced. 

5 Product design. The overall effect is that the size, weight, initial cost 
and running costs can all be reduced. Less heat and fewer chips 
would increase reliability. 

Boolean rules OK 
Using Boolean algebra may sound impressive and just a bit terrifying, 
but it is quite a fun thing to do. It allows us to simplify a logic circuit 
without doing any drawing of the gates. There are only four or five 
laws used and these are very simple; we quickly get use to using them 
even though they seem a bit daunting at first. 

Identities 
Identities are the most used form of simplification. To understand 
these, all we need is to feel happy and confident with the truth tables 
for the basic gates. 

There are four identities associated with the OR gate. In each case they 
show how an OR gate can be removed from the circuit with no ill 
effects. If you become unhappy, just look back to the truth tables. 

Unnecessary OR gates 
If we have a 2-input OR gate with one input called A and the other 
input held at logic 0, the output will always be the same logic level as 
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the A input. This means that if A = 0 the output is at 0, and if A = 1 
then the output is also at 1, and so the identity could be written as 
A + 0 = A. These two situations are shown in Figure 8.1. 

Figure 8.1 

The identity A + 0 = A 
A - - - - - ~  " ~ ~  The output is 
0 ~ the same as A 

Since the output is the same as the input, 
this gate is not necessary and the circuit can be simplified 

to a single piece of wire 

A . . . .  

If we build the same circuit but have inputs of A and I, then the output 
will always be held at logic I whatever the value of A. We now have 
the simplification A + I = I as in Figure 8.2. You see how easy the 
identities are. 

Figure 8.2 

The identity A + 1 = 1 
A ,, ~ ~_ The output is 
1 ~ , J  always at logic 1 

So, once again, this gate is unnecessary 

, ,, , 1 

If both inputs are held at level A, then the same logic level is applied 
to both inputs and so the output will also be at this level. Two 0s give 
a 0 out, and two ls give a 1 out. So A + A = A, as in Figure 8.3. 

Figure 8.3 

The identity A + A - A 

r ~  

A ,, ~ "~__ ._  The output is the 
A , L _ . . . . j ~  same as the input 

This gate does nothing and so can be removed 

A A 

118 

If one input is at level A and the other is at the opposite value, ~, then 
one of them will always be at a logic I level. This means that the 
output will always be at level I. This identity can be written as 
A + A = I, as shown in Figure 8.4. 
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Figure 8.4 A I ~  The output is 
The identity A + ;~ = 1 ~, , always at level I 

Unnecessary AND gates 
These follow much the same pattern as we saw with the OR gates- 
just keep alert to the truth tables. 

If we take a 2-input AND gate with one input called A and the other 
input held at logic 0, the output will always be at logic 0 so the identity 
could be written as A.0 = 0. This is shown in Figure 8.5. 

Figure 8.5 
The identity A.O = 0 

If one input is held at 0 
the output is always 0 

If we build the same circuit but have inputs of A and 1 then the output 
will always be the same as the A input. We now have the simplification 
A.1 = A, as in Figure 8.6. 

Figure 8.6 
The identity A. 1 = A 

The output depends only on 
the value of A 

Just like the OR gate, two 0 inputs will result in an 0 at the output, and 
two ls will result in a 1 at the output (see Figure 8.7). 

Figure 8.7 
The identity A.A = A 

The output depends on the value of A 

If one input is at level A and the other is at the opposite value, ~, then 
one of them will always be at a logic 0 level so the AND gate will 
always produce a 0 output, as in Figure 8.8. 

8 9  
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Figure 8.8 
The identity A.~ = 0 

The output is alway 0 

Just as a reminder 
If A is inverted by a NOT gate and then inverted again, we get back to 
A. 

S u m m a r y  of  identit ies 

1 A + 0 = A  
2 A + 1 = 1  
3 A + A = A  
4 A + A = I  
5 A . 0 = 0  
6 A . I = A  
7 A . A = A  
8 A . A = 0  
9 A = A  

U s i n g  i d e n t i t i e s  in r e a l  c i rcu i ts  

If we look at the first identity again, we are saying that the first term 
ORed with 0 gives an output equal to the first term. This is true 
whatever the input signal is, whether it is a simple A like we used in 
our examples or a more complex term. 

in Figure 8.9 we used the term A B C as the input to the OR gate and, 
since we know that the identity (some signal) + 0 = (the same signal), 
we can say 

A B C + 0 = A B C  

and therefore the OR gate can be removed. 

This flexibility in what we accept in place of 'A' is an important step to 
take. 

Figure 8.9 
Using an identity in a 
real circuit 

m 

ABC 
A'  I / 

B 

C / 
0 

This gate is not needed 

m 

ABC 
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Example 
Simplify the Boolean expression A ~ + ABC. 

This looks complicated until we recognize that the two terms are the 
same except that the second term has a line across the whole 
expression showing that it has been inverted. We really have 
(something) + (same thing inverted). This is just our identity A + A in 
disguise. Since A + ~ = 1, it follows that 

A B C  + A B C  = 1 

Example 
Simplify C K. C-K 

The second term has been inverted twice and we know that inverting 
something and then inverting it again will get back to the starting 
point. If we spot a double inversion, always start by cancelling the 
inversions before trying any other simplifications. Our expression is 
now CK.CK, which looks like our identity A.A = A. This means that 
our original expression can be reduced to CK, thus saving two NOT 
gates and one AND gate. 

Note" To cancel two inversions, the lines must be the same length. The 
expression A.B cannot be simp_l_ified. The order in which the bars are 
added does not matter, so A B C can be simplified to A B C. 

Commutative law 
Do you agree that the two logic circuits in Figure 8.10 are the 
same? 

Figure 8.10 A ,,, ~'~ Q 
Are these circuits the same? B - ~ J 

B .... ~ " ~ Q  
A 

Yes, the inputs are just written in a different order. So AB = BA and, of 
course, in a 3-input gate ABC = ACB = BAC - BCA --- CAB = CBA. 

We have always known that this applies to addition so 
3 + 4 = 4 + 3 .  

The 'any order' feature of both Boolean and addition is the 
commutative law. Try some simple sums to see if subtraction, 
multiplication and division are commutative. 
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Applying the commutative law to the identities, we can see, for 
example, 1 + A is the same as A + 1. 

In more complex terms, there is much to be said for using the 
commutative law to re-arrange the terms in alphabetical order. This 
makes recognition of terms much easier. At first glance, it is easy to 
miss that ABC, BAC and CBA are the same function. 

Associative law 
If we are using 2-input AND gates and we want to AND three terms 
like A.B.C, then we have to do two of them and then AND the last one 
to the result. 

The circuits in Figure 8.11 show the associative expressions 
(A.B).C = (A.C).B; we can see that in the first case the A and the B are 
grouped or associated, and in the second expression it is the A and C 
that are associated. 

Figure 8.11 

Are these circuits the same? B 1 
C 

c Q 
B- 

Example 

911 

Likewise, OR gates can be used in a similar circuit to give 

(A + B) + C = (A + C) + B 

Here are a couple of random examples of the associative law in 
action. 

(ABC).D = (DA).(BC) 

(A + B + C) + D = (A + B) + (C + D) 

Be careful here. The order does not matter providing the circuit only 
contains the same type of gate. 

However, the order does matter when an expression includes both 
AND and OR functions as in the expression A + C.D; this is always 
taken to mean the same as A + (~.D). If no brackets are used, the AND 
function is always done first. 

Simplify ABC + AB(C) + ABC = Q. 
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Example 

First, we can remove the brackets around the letter C to give 
ABC + ABC + ABC = Q by associative law. 

Now we can combine the first two terms to give ~ + ABC = Q by 
identity number 3. 

Now we can finish the simplification: 1 = Q by using identity number 
4. So none of these gates are needed and the output at Q is held 
permanently at logic 1. Quite a saving! 

Simplify ~C--B.BA(C.1).D = Q 

Simplify to ABC.AB(C.1).D = Q (alphabetical order by commutative 
l a w -  this is optional but helpful). 

Then to B~ik-g-C.AB(C).D = Q (identity 6 to change C.1 to C). 

To ABC.ABC.D = Q (brackets removed by associative law). 

0.D = Q (the terms B~-C.ABC = 0 by identity 8). 

0 = Q (D removed by identity 5). 

This is another worthwhile simplification. 

We have seen from these examples that the associative and com- 
mutative laws help in the clear layout and understanding of the logic 
expressions, but so far it is only the identities that actually simplify the 
circuits. 

Reminders 
1 To be slick at using Boolean algebra for simplification it is very 

important that we know the identities and can spot them when they 
arise. 

2 Identities always involve the following: 
(a) Two identical terms like ABC and AgC. 
(b) An inverted but otherwise identical terms like ABC and ABe. 
(c) A logic level 0 or 1. 

Distributive law 
This is the last Boolean law and, like the identities, it is able to reduce 
the number of gates in a circuit. The logic diagram and, of course, the 
Boolean expression always contains a mixture of both AND gates and 
OR gates. 

Have a look at the logic diagram in Figure 8.12. We can see that it 
performs the function Q = (A.B) + (A.C). 

How can we say this in words? We can say that in this circuit (A is 
ANDed with B) OR (A is ANDed with C). With a slight change in 
emphasis, we could also say that A is ANDed with B OR C. 
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Figure 8.12 

Before applying the 
distributive law 

B 'IZAB, I 

C AC 

Q = AB + AC 

Now, if we write this in Boolean, we say A is ANDed with (B + C) or 
more simply that Q = A.(B + C). 

We have now described the function as Q = (A + B).(A + C) and also 
as Q = A.(B + C). We can see in Figure 8.13 that we have now used 
only two gates instead of three and, if we draw up the truth tables, they 
would be identical. 

Figure 8.13 

Another gate saved 
A , 

A 

o _ A .  ,B,c  

C B + C  

If we take the second expression, Q = A.(B + C) we say that the A. 
(A AND) has been applied to both of the other terms. Technically we 
say that the 'A.' has been 'distributed over' the other two terms - hence 
the name 'distributive law'. 

If we have a different expression like Q = A + (B.C), we can distribute 
the 'A OR' over the other two terms, giving the logic diagrams in 
Figure 8.14. 

Q = ( ~ ~ B . C )  

Q = (A + B) . (A + C) 

94  

There are three things to note about the distributive law- 

1 It does not follow the rules of 'normal' algebra. 
2 it is only used when both AND and OR gates are used. 
3 It can be used to expand or reduce Boolean expressions. 
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Figure 8.14 

Another distributive 
example 

i/A+B 
= (A + B). (A + C) 

I-.B. c 
Q = A+ (B. C) 

Example 

Example 

Simplify the expression ~BCD + ~BCD = Q 

Always start by checking for identities. In this case there are none since 
there are only two terms, and they are neither the same nor the inverse 
of each other. This means that identities are non-starters, so we must 
move on by trying the distributive rule. 

Look for the common parts of the two expressions. The A is common, 
and so is the B and C, so the common part ABC can be filtered out by 
the distributive law to give ~BC(D + D) = Q. 

Now we instantly spot an identity D + D = I, so it becomes 
7(BC.I = Q, and by another identity we have ABC = Q. 

This is as far as we can go, but this is useful in that it has shown that 
the input D is not used. Sometimes there are surprising practical 
consequences such that whole sections of a design are proved 
redundant. 

Simplify A-B.(AB + CE)-- Q. 

Check for identities. There are none, so apply the distributive law to 
give 

(AB.AB) + (AB CE) = Q 

Notice that we cannot use a single bar over all the terms. 

Now what? Let's sort out the first bracket with an identity. 

(0) + AB CE = Q (using identity 8.) 
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Use another identity to remove the 0 term" 

AB CE = Q 

Absorption laws 
These are not really new laws at all, but are merely a summary of 
results that we have already seen by using the distributive laws and the 
identities. 

They are used to remove or 'absorb' a term. There are four of them" 

1 A + A B = A  
2 A + A B = A + B  
3 A(A + B)= A 
4 A ( A + B ) = A B  

If we can spot the absorption patterns we can save several steps in a 
simplification but if not, it doesn't matter; all of these simplifications 
can always be done by using the distributive law and identities. They 
are helpful but not essential. 

As with identities, letters like A, B etc. can be used to represent groups 
of letters providing they fit into the same general pattern. 

For example, taking the absorption law A + AB = A and comparing it 
with the expression FAC~ + ABCFE. We start by putting it in 
alphabetical order by using the commutative law" 

ABCF + ABCEF 

This is an absorption law in disguise. The first term is repeated with 
only an additional E so, using the commutative again, we can make it 
look like the standard absorption law: 

ABCF + ABCFE 

The relationship with the standard form of the absorption law is shown 
in Fig. 8.15. 

Figure 8.15 
Relationship with the standard 
form of the absorption law 

. . . .  �9 : " . ,  

....... ,.. ..'~ ...... "... 

(A~CFi + .'.%w ~" 

Real life simplification 
Having looked at all the laws of Boolean, we have the tools necessary 
to simplify any expression that can be simplified. 
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The normal method is to use the identities and the distributive law 
over and over again. The whole process is very much like a time- 
absorbing game, where the rules are simple but the degree of 
ingenuity and skill pays off in money savings and an inner glow of 
satisfaction. 

There is no definite procedure that will 'solve' all simplifications. It is 
a matter of following the rules and trying a method of attack. If it goes 
wrong, don't be downhearted -everyone takes the wrong path from 
time to time. 

General method 
1 Look for identities and simplify using commutative and associative 

laws as we go. 
2 Apply the distributive rule. 
3 Look for an identity and simplify. 
4 Apply the distributive rule. 
5 Carry on like this until something tells us to s top-  we may have 

completed the simplification, we may be back where we started or 
perhaps nothing useful appears to be happening. 

If we get back to where we started, take comfort in the knowledge that 
at least we must have applied all the rules correctly. So getting back to 
the start is really an achievement in itself. We just start again by a 
different route. 

How do we know if our simplification is correct? We can always check 
a result by drawing up the truth table of the original expression and the 
final result. 

Example 
This is a real example, which shows all my working (including the 
mistakes) so we can see the sort of thing that really happens. 

Simplify A + AB = Q. 

Check for identities. There aren't any. Note that we cannot use the 
A + A as an identity since the second A is only part of the expression 
AB. We must use either the whole of an expression or none of it. As 
there are no identities, we either abandon the task as hopeless or we 
apply the distributive law: 

(A + A)(A + B) = Q (by distributive law) 

Check for identities. We see A + A = A, so we have: 

(A)(A + B) 
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There are no more identities, so we use the distributive law to expand 
the expression by applying A to each term in the other bracket: 

(A.A) + (A.B) = Q 

Look for identities. The first bracket contains A.A, which can be 
reduced to A. 

A + (A.B) = Q 

which is where we came in . . .  

We have gone in a complete circle. Never mind, let's try something 
else. 

There is another identity A.1 = A, so we could apply this to the first A 
in the expression. We now have" 

(A.1) + (A.B) = Q 

We can see that both terms include the term A so the common factor, 
A, can be separated out by using the distributive law. This results in 

A.(1 + B ) = Q  

Inside the bracket we have the identity 1 + B, which can be replaced 
by 1 to give" 

A.1 = Q  

This is another identity which reduces to A = Q, so we have finally 
reduced A + AB to just A so the input B played no part in the 
outcome. 

What  we have learned 

With experience it is possible to 'look ahead' a little to avoid taking the 
wrong route too often, but even so we must expect a false start from 
time to time. 

The general rule is that if you are on the right track, things will be 
looking distinctly better after about five lines of work. Remember, as 
illustrated in the last example, the distributive law can be used to 
expand an expression as well as to reduce it. 

Make notes as you go along. This allows easy checking if an error is 
suspected but when doing it for yourself, the notes can be 
abbreviated. 

Example 

Show that ~BC + A~C + ABC + ABC = BC + AC. 

In the answer, we have the term BC. Now this is part of the first 
and third terms. The second term in the answer is AC, and this 
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occurs in the second and fourth terms, w e  may find it easier if we 
rewrite the question in a different order to bring these terms 
together. 

ABC + ABC + ABC + ABC = BC + AC commutative law. 

Now to attack the first two to extract the BC term" 

BC(A + A) + ABC + ABC = BC + AC distributive law. 

BC(1) + ABC + ABC = BC + AC identity. 

BC + ABC + ABC = BC + AC identity. 

We have finished the first term of the answer -  now for the second one. 
The same process wi l l  be fol lowed. 

BC + AC(B + B) = BC + AC distributive law. 

BC + AC( I )  = BC + AC identity. 

BC + AC = BC + AC identity. 

Finished! 

Example 

Show that PQS + RP + PQ]~S = P(S + R). 

PS(Q + QR) + RP = P(S + R) distributive law applied to first and third 
terms. 

PS(Q + R + RP = P(S + R) absorption law. 

PSQ + PSR + RP = P(S + R) distributive law. 

PSQ + P(SR + R) = P(S + R) distributive law. 

PSQ + P(S + R) -- P(S + R) absorption law. 

PSQ + PS + PR = P(S + R) distributive law. 

PSQ + (PS.1) + PR = P(S + R) identity. 

PS(Q + 1) + PR = P(S + R) distributive law. 

PS.1 + PR = P(S + R) identity. 

PS + PR = P(S + R) identity. 

P(S + R) = P(S + R) distributive. 
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S u m m a r y  of B o o l e a n  laws a n d  iden t i t i es  

Identifies 
1 A + 0 = A  
2 A + 1 = 1  
3 A + A = A  
4 A + A = I  
5 A . 0 = 0  
6 A . I = A  
7 A . A = A  
8 A . A = 0  
9 A = A  

Commutative law 
A.B = B.A 
A + B = B + A  

Associative law 
A + ( B + C ) = ( A +  B ) + C  
A.(B.C) = (A.B).C 

Distributive law 
A + (B.C) = (A + B)(A + C) 
A.(B + C) = (A.B) + (A.C) 

Absorption law 
A + A B = A  
A + A B = A + B  
A(A + B) = A 
A(A + B) = AB 

Why does Boolean algebra use + for OR a n d .  for AND? 
Boolean algebra originated from a study of probability, which is the 
method used for predicting the likelihood of an event occurring in the 
future. A probability of 0 means the event is not possible or has a zero 
probability, whereas a probability of 1 is a certainty. 

Let's assume that we have four cards marked with the letters A, B, C, 
and D all face down on a table. 

IBI IDI 

1 0 0  

Selecting a card at random, the probability of choosing the 'A' card is 
1 in 4, or 1/4. This is written as probability of A = 1/4 or P(A) = ~. If we 
replace the card, shuffle them and again choose a card at random, 
then the probability of the chosen card being B will also be 1/4. What is 
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the probability of the two cards selected being A AND B? To find this 
probability we have to multiply the two individual probabilities, so the 
answer is '/4 x '/~or '/4.V4 = 1/16. 

This situation would be written as shown in Figure 8.16a. 

Figure 8.16(a) 
Probabilities. See how the 'AND' 
function appears in the formula 
as a dot (.) 

P ( A ) ~ .  P(B) 

If we had asked a different question and said 'what are the chances of 
getting an A OR a B?' the probability would be much greater. In fact it 
would be the result of adding the two individual probabilities (Figure 
8.16b). 

Figure 8.16(b) 
Probabilities. Now see how the 
'OR' function appears in the 
formula as a + symbol 

P ( A ) ~  + P(B) 

Quiz time 8 

In each case, choose the best option. 
. . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 In arithmetic, the commutative law applies to: 

(a) addition and multiplication. 
(b) addition and subtraction, 
(c) multiplication and division. 
(d) subtraction and division. 

2 Which of these is NOT an identity? 

(a) H + O = H  
(b) R.R = 1 
(c) W + 1 = 1 
(d) (O)(O)= 0 

3 .... A reduction inthenumber  of gates can be achieved 
by using the: 

(a) identities or the commutative law. 
(b) the commutative and the associative laws. 
(c) identities or the distributive law. 
(d) identities but none of the other laws. 
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4 ~-~The Boolean eXpression A § AB is equivalent to: 

(a) AB 
(b) A + B  
(c) 1 + AB 
(d) ~B 

N 

5 The Boolean expression ABC + BC + ABC can be 
simplified to: 

(a) AB 
(b) 1 
(c) C 
(d) C 
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Simplifying - by 
Karnaugh maps 

There have been many attempts to find an easy way of simplifying 
logic circuits. We have already looked at Boolean algebra, and now 
we will consider the contribution offered by Maurice Karnaugh 
(pronounced KAR-NO), an American physicist. 

Mr Karnaugh has given us the Karnaugh map. This is a graphical 
means of simplifying a Boolean for people who don't like or don't 
know the Boolean laws. 

Advantages of Karnaugh mapping 
1 Boolean laws are not needed. 
2 The best simplification is always obtained, whereas with Boolean 

we often obtain several different solutions and are still not sure if 
there is a better one. 

3 A Karnaugh map can be used to decide between alternative 
Boolean answers. 

4 We can work directly from a truth table. 

Disadvantages of Karnaugh mapping 
1 De Morgan's laws may (sometimes) still be needed unless we are 

working directly from a truth table. 
2 People who are really slick with Boolean simplifications complain 

about this method being slower. 
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3 In reality, Karnaugh mapping is only used for terms containing 
three or four different letters. For cases involving less than three, 
Boolean or the identities are so much quicker. Although Karnaugh 
mapping can be used for up to eight letters it becomes rapidly 
more difficult over four letters, so we normally go back to 
Boolean. Nowadays, larger complicated expressions enlist the 
help of computers. 

Why are De Morgan's laws used? 
To use a Karnaugh map, we should first ensure that the Boolean 
expression is written in this form: F = ABC + AB + ABC . . . ,  that is, 
ANDed terms which are then ORed together. The technical name for 
this format is the 'minterm' or the 'sum-of-products', and is the normal 
form of the Boolean expression when we have started with a truth 
table or a practical design. 

Note: it is possible to use Karnaugh maps with 'maxterms' like 
F = (A + B + C).(A + B).(A + B + C) in which ORed terms are ANDed 
together, but we will find it a lot easier to use De Morgan's laws and 
change it to a minterm first. 

Drawing a Karnaugh map 
The Karnaugh map is always drawn as a rectangular grid. The number 
of squares in the grid is equal to the number of lines in the truth 
table. 

Example 
How many squares would there be on a Karnaugh map if the Boolean 
expression contained three terms? 

Answer: 

You may recall that the number of lines in a truth table is 2" where n 
is the number of letters used in the Boolean expression, so in this case 
we would have 2 3 lines in the truth table and therefore also 2 3 = 8 
squares on the Karnaugh map. 

The shape of the map 
The shape is always rectangular, so with 8 square we have a choice 
of 2 x 4 or 4 • 2 as in Figure 9.1. It really doesn't matter which you 
use, your final answer will be exactly the same. The squares are 
numbered using binary numbers in a special order called the 'Gray' 
code. 
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Figure 9.1 
Two alternative 
shapes for an 
8-square Karnaugh 
map 

The answer is the same 
whichever you choose 

The Gray code 

This is often preferred to straight binary when counting is carried out 
by mechanical or electronic means. By counting in a slightly different 
order we do not run the risk of an accidental error caused by the 
switching process. To see how this may occur, let's start counting up in 
binary: 

000 
001 
010 

Yes, O, 1, 2, no problem. 

When the count changed from 001 to 010 the last two bits had to 
change in value. The right-hand bit changed from 1 to O, and at the 
same time the next bit changed from 0 to 1. 

Consider what would happen if the second bit changed slightly faster 
than the last bit. Just for a moment we would have the situation where 
the count would actually be 011. This might only occur for a very short 
time, probably too fast for us to see, but still slow enough to be spotted 
by a digital circuit. 

We would expect a count of 0OO, OO1,010, or O, 1, 2, but we could 
actually have 000, O01,011,010, or O, 1, 3, 2. Going from a count 
such as O111 to 1000 could throw up all sorts of possibilities. 

This problem may occur each time there is a change by more than a 
single bit from one count to the next. This gives us the clue to the 
design of the Gray code. This code never allows more than a single bit 
to change in a single count. The count may then be late or early, but 
it can never throw up a false count. 

The Gray code rule is to start at zero using however many bits we 
require, then, on the first count, change the right-hand bit. At each 
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succeeding count, change the bit furthest to the right unless it would 
create a number that has already been used, in which case simply 
move one bit further to the left and try changing that one. 

An example using four bits 
Start with 0000. 

On the first count change the right-hand bit to give 0001. 

On the next count we cannot change the right-hand bit because it 
would change the number back to 0000, which has already been 
used, so we move one bit to the left and change that one. This gives a 
value of 0011. 

On the next count we can change the right-hand bit because it would 
result in an unused number of 0010. 

On the next count we cannot change the right-hand bit because it 
would change the number to 0011, which has been used, so instead 
we move one bit to the left and change that one. This again gives a 
number-  0000 - that has been used. So we have to move one more 
bit towards the left and change the next bit. This would give 0110, 
which has not been used so is acceptable. 

If we keep counting by the Gray code it will eventually run out of 
possible changes and will have to restart from 0000. Any code that 
naturally recycles like this is called a cyclic code. Notice how the 0s 
and l s make a regular pattern as we read down the co lumns-  
compare the binary pattern to the Gray pattern. 

1 0 6  

Decimal Binary Gray code 

0 ~ 0000 
1 0001 0001 
2 0010 0011 
3 0011 0010 
4 0100 0110 
5 0101 0111 
6 0110 0101 
7 0111 0100 
8 1000 1100 
9 1001 l l0 l  

10 1010 1111 
11 1011 l l l 0  
12 1100 1010 
13 1101 1011 
14 1110 1001 
15 1111 1000 
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Numbering the Karnaugh map 

Having drawn out the Karnaugh map, the next step is to number each 
square across the top and also down the left-hand side starting from 
the top left-hand corner. Using our Karnaugh map with eight squares, 
we should number it as shown in Figure 9.2. 

Figure 9.2 

Numbering the squares 

O0 01 11 10 

Boolean expressions use letters, of course. If we allocate the first two 
letters to the sequence across the top and the third letter to the 
sequence down the side we could use the letters AB and C (Figure 
9.3). 

Figure 9.3 

Adding the letters 

0 

C 

1 

AB 

O0 01 11 10 
. . . . . . . . .  

The top left-hand square has the co-ordinates AB = 00 and C = 0. We 
always take A as equal to 1, so this makes A equal to zero and we 
could describe this square as A = 0, B = 0, C = 0 or ~B~'.  

The square immediately under this one has the co-ordinates A = 0, 
B = 0 and C = 1, so this would become A B C in Boolean (Figure 9.4). 

Figure 9.4 

Describing the squares O0 

AB 
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Example 
In Figure 9.4, complete the square numbering and write the Boolean 
equivalent of each square. 

Answer: 

We don't normally write in these Boolean descriptions on the map, but 
in this case it is worthwhile to make quite sure that we are happy with 
the Karnaugh map. The results are shown in Figure 9.5. 

Figure 9.5 
The full description 

AB 

O0 01 11 10 
. . . . .  

A B C  A B C  A B C  A B C  

1 ~,BC h, BC ABC ABC 

Simplification by Karnaugh map 
The easiest way to see the Karnaugh map in operation is to use it to 
solve something where we already know the answer. 

Here's one we did earlier. Simplify the Boolean expression 
Q = ABC + ABC. From our work in Chapter 8 we may be able to see 
that this can be simplified to Q = AB by using the absorption law. If 
you've forgotten, it doesn't matter-  we can do it without Boolean. 

Step 1" Draw the basic map with the numbers and letters on the axes 
as in Figure 9.6. 

Figure 9.6 
The starting point 

C 
1 

AB 

O0 01 11 10 

108 

Step 2" Each Boolean term refers to a square on the map. In each 
square referred to, insert a number ' I '  in the square. See Figure 9.7. 



Figure 9.7 

Add a '1' for each 
Boolean term 

00 

Simplifying - by Karnaugh maps 
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AB 

01 11 10 

1 1 

Step 3: Group together the largest number of '1' cells that form a 
rectangle or a square on the map in which the number of squares is a 
power of 2, i.e. 1, 2, 4, 8, 16, 32 etc. In this case there is only one 
possibility. This grouping is seen in Figure 9.8. 

Figure 9.8 

Group the boxes together 

AB 

00 01 11 10 

L . 

Example 

Step 4: This is where we produce our answer by writing the Boolean 
expression for the group of squares. 

To do this, we consider the group as a whole and see what letters are 
needed to describe it. In our example both squares have A = 1 and 
B = 1 since both squares are in the same column, so if we were asked 
to shade in the whole area in which A = 1 and B = 1 we would 
include both of the encircled squares. The C information does not 
matter since part of the circled pair has C = 1 and part has C = 0. We 
just ignore any letter that changes its mind. 

The group only needs the A and B terms to describe the whole group 
so the simplification is Q = AB, just as we found with Boolean. 

Use a Karnaugh map to simplify the Boolean expression 
F = ~ + ~ C  + ~BC + ~B~. We start in the same way as before. 

Step 1" Draw the map adding letters and numbers as in Figure 9.9. 
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Figure 9.9 

The first step 

AB 

O0 01 11 10 

Step 2" Enter each term by putting a '1' in the relevant squares. There 
are two new points here. First, the term A~ describes both squares in 
the left-hand column in much the same way as we saw in the previous 
example. The second term ABC falls in the bottom left-hand square, 
which has already been marked. This doesn't matter- just mark any 
square once. In fact this shows that the term AB C was not needed, so 
we have achieved some simplification already. 

The third term A B C will account for the bottom square in the second 
column, and A BC will account for the other square in this same 
column. Have a look at Figure 9.10. 

Figure 9.10 

Adding the four terms 

AB ~,BC, 

~ O0 01 11.1- ~ 10 
7 ............... 

" ' 1  1 ~" 

c \ 
1 1 

7 

ABC 

1 
\ 

ABC 

1 1 0  

Step 3: Group the cells using the largest possible rectangle or square of 
sizes 1, 2, 4, 8,16, 32. In this case these four terms conveniently form 
a 2 x 2 square. Why not two pairs like in the last example? This would 
be 'a' simplification, but not the best one. The larger the group, the 
simpler the result. 

Step 4: Writing the Boolean. Looking at the square in Figure 9.11 and, 
taking each letter in turn, we see that both columns include A. Both B 
and C change their mind and can be ignored. This means that the 
whole square can be described as A. 



Figure 9.11 
The best simplification 
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oo 01 
, , 

11 10 

This is a really worthwhile simplification; we have F = ;~B + ~BC + 
;~BC + ;~BC = A, and the whole digital circuit can be thrown away 
and replaced by a single inverter on the A input. If you feel doubtful of 
this you can spend a few minutes writing out the truth table or playing 
with the Boolean algebra laws. 

G r o u p i n g  

The Karnaugh map is continuous. If we move across the map from left 
to right, we leave the right-hand edge and reappear on the left-hand 
edge just like the map in Figure 9.12. The implication of this wrapping 
is that, in Figure 9.13, square A and B are adjacent to one another. The 
same goes for C and D so, curiously enough, the four squares A, B, C 
and D form a square. 

Figure 9.12 
Wrapping the world and the 
Karnaugh map 

Figure 9.13 
An unexpected square 

Example 
Write the simplified Boolean expression for each of these Karnaugh 
maps (Figure 9.14). 
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Figure 9 .14  

Find the simplest 
Boolean form of 
these maps 

AB 
00 01 11 10 

0 1 1 
C ~: C 

Number 1 

AB 
00 01 11 10 

0 1 1 

Number 2 

AB 
00 01 11 10 

. . . .  

0 1 1 1 1 
C ~ C 

1 1 
l 

Number 3 

AB 
00 01 11 10 

0 1 1 

1 1 1 
, , 

Number 4 

Answers: 

Map number 1" 

Owing to the way the map wraps, the top left-hand corner is adjacent to 
the top right-hand corner and so we can group them as in Figure 9.15. 

Figure 9 .15  
oo 

These squares can be grouped 
together 0 ~ ~  

C 
1 

AB 
01 11 

. . . . .  

Number 1 

10 

1 1 2  

We just have to look at the A, B and C terms to see which are of fixed 
value and which are changing. First, A: in the top left-hand corner 
A = 0 and in the other square A = 1. Since A changes its value we can 
just ignore it so the final simplification wil l not contain any A term. 
Now for B. In both squares B = 0, so it wil l  have a value of B. Finally, 
both active squares are in the same column in which the C term = 0, 
so C has the value of C. 

The final simplification is BC. 

Map number 2: 

In this map we have three ways of grouping the three active squares. 
We can group any two of them and leave one square all on its own, or 
we can use one of the squares twice. These options are shown in 
Figure 9.16. 



Figure 9.16 

We often get 
more than one 
option 

AB 
O0 01 11 

Simplifying - by Karnaugh maps 

AB 
10 O0 01 11 10 

. . . . . . .  

o T', CD 
C A 

Option 1 Option 2 

AB 
O0 01 11 10 

. . . . . . . . . . .  

, 

Option 3 

The first option obtained by grouping the two on the top line is B 
because the A term is switching from 0 to 1 and is therefore ignored. 
The square on its own is A = 0, B = 1, C = 1, which gives ~BC. 

This gives B C + A B C. 

The second option is to group the two active squares in the A = 0, 
B = 1 column to give ~ B, then deal with the little lonely square, which 
will be called A B ~. 

The third, and preferred, option is to group it into two groups of two. 
We have already found the description of the groups in the previous 
options, so this result will be ~ B + B ~. 

Why is this final option preferred? The last one is best because of the 
gates needed to build it. The two terms are ORed together so we need 
one 2-input OR gate and the groups only need two 2-input AND gates. 
This is a single chip, since we get four 2-input AND gates in one 
integrated circuit. The other options would need an OR gate, a 2-input 
AND gate and a 3-input AND gate - three chips in all. This would 
mean a physically larger circuit to build and additional power 
supplies. 

When grouping, remember always to group the largest number of 
squares (2, 4, 8, 16) together, even if this means using several squares 
more than once. 

Map number 3: 

Looking at this map, we can see immediately that the biggest group is 
the four terms on the top line and there is a group of two in the right- 
hand column. Have a look at Figure 9.1 7. 

1 1 3  
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Figure 9 .17  

Always use big groups if 
possible 

0 
C 

1 

AB 
00 01 

(1 1 

11 10 
. . . . . .  

1 ~i ~ 

k 
| 

Number 3 

In the four squares across the top, A changes from 0 to 1, B can't make 
up its mind either, but C is definitely equal to 0. These four squares are 
therefore described simply as C. 

The two in the last column have A = 1, B = 0 and C is not interested, 
so this pair is written as AB. 

The final simplification is C + AB. 

Map number 4" 

In this last map, the wrapping will mean that these four squares will 
form a square (Figure 9.18). Looking at the letters, A and C are 
changing values so they drop out, which only leaves B at a value of 0. 
The final simplification is therefore just B. 

Figure 9 .18 

These make a square 

AB 
00 01 11 10 

. . . . . . . . .  

r 

o - ~  11 

1 __V I1 

Number 1 

This is worth looking at for another moment. The original unsimplified 
logic circuit would be A B ~  + A BC + ABC + A BC, which would 
need a 4-input OR gate and four 3-input AND gates, all of which can 
be boiled down to one single NOT gate. Very useful. 

Drawing a Karnaugh map for 4-inputs 
Using four letter terms, the truth table and the Karnaugh map have 16 
entries instead of the previous eight. We now draw the Karnaugh map 
as a 4 x 4 square, as in Figure 9.19. The letters and the numbering are 
just a simple extension of the previous map - still Gray code. 

Reading the map is much as before. For example, the bottom right- 
hand corner square would be read as AB C D. 

1 1 4  
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The four-term Karnaugh map 
O0 

O0 

01 
CD " 

11 

10 

Simplifying - by Karnaugh maps 

AB 
01 11 10 

In the 3-input Karnaugh map, we saw that it wrapped round in the 
horizontal direction. The 4-input map is very similar except that it 
wraps in the vertical direction as well. In Figure 9.20, the square 'a' is 
next to square 'b' by wrapping the map horizontally, but it is also next 
to square 'c' by vertical wrapping. Similarly, 'c' is next to 'd' by 
horizontal wrapping. 

Figure 9.20 

It now wraps both ways a 

C / d 

Example 

This means that the top row is next to the bottom row as well as the 
left-hand column being next to the right-hand column. This throws up 
the curious result that the four squares in the corners are actually 
adjacent to each other and can form another square. 

It probably makes your head hurt when you think about this, but an 
example may help. 

Use a Karnaugh map to simplify the following Boolean expression 

A B C  + A B C D  + A B C D  + A B C D  + B C D  + A B C D  

Answer: 

Luckily, this is easier than it looks. It just follows the same sequence of 
steps that we have used in the previous examples. 

1 1 l l  
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Figure 9.21 

Remember to use Gray code 

CD 

00 

01 

11 

10 

00 
AB 

01 11 10 

Step 1: Prepare the map as shown in Figure 9.21. 

Step 2: Enter the terms. Follow the normal procedure, but remember 
that some terms can use the same squares. The final result is shown in 
Figure 9.22. 

Figure 9 .22  

Don't worry 
about duplicates 

CD 

00 

01 

11 

00 

1 
, , ,  , , i  

1 

AB 
01 

. . 

11 10 
. . . . . . . . . . .  

1 

1 1 

10 1 1 

It doesn't matter that some squares are used by more than one term. 

1 1 6  

Step 3: Group the cells as in Figure 9.23. Notice that the four corner 
squares are grouped, since the wrapping effect has brought them 
together. 

Step 4: Write the Boolean expression for each of the groups. The four 
corners are B D because B and D stay at a zero state but A and C 
change states. 

The group of two in the top right-hand corner is A ~  and the other 
pair is ACId. 

This would give a final simplification of Q = "~D + A BC + ~ D. 



Figure 9,23 

The bigger the better 

Simplifying - by Karnaugh maps 
i!11 . .  ! I I I !1 ! ! ! ! ! L  i - ~_  ~ ~ i . ~ i i _ i  ~ ~ i~_ . . ~  i i ~ i ~ i ~ -  " ~ -~  . . . . . . . . .  _~_  ~ - -  ~ ~ -~  

CD 

~, ,00 
\ 
O0 

01 

11 

AB 
01 11 

,5 
, , ,  

101 
/ 
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Group them into 16s, 8s, 4s, 2s or l s. 
The larger the group, the better the simplification. 

Notes: 

The top right-hand square has been used in two different groups- it is 
part of the group of four and is also used as part of the group of two. 
Once again, this doesn't matter and helps to give the best 
simplification. 

We could have found an alternative simplification by a different 
choice of grouping as shown in Figure 9.24, which would give the 
final result as Q = B ~  + B~D + ACD. There is, in this case, more 
than one possible simplification. This is often the case with digital 
circuits. We can use whichever we prefer. 

Figure 9.24 

There can be alternatives 

AB 
", 00 01 11 

1 1  ,, , 

/ 

107 

. ~ . _ .  

Different grouping gives a different answer. 
Different, but equally good. 

There are only two common mistakes made with Karnaugh maps. 
Remember" 

1 The numbering is GRAY CODE. 
2 The map is continuous in both directions. 

1 1 7  
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Working straight from truth tables 
In the previous example we started with a Boolean expression, but for 
anyone with a morbid fear of Boolean it may be easier to skip this stage 
altogether by drawing up the truth table and working directly from that. 

To do this, we just ignore any line of the truth table where the result is 
'0' and plot the lines giving a '1' result, then carry on exactly the same 
as before. Here is an example. 

Example 
Use a Karnaugh map to simplify the truth table. 

Start by picking out the lines in which Q = 1 (lines 3, 4, 7 below). 

A B C Q 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 8  

1 1 1 0 

Now draw the Karnaugh map and find the squares referred to by these 
lines. In our example there will be three squares to find. The first 
square has A = 0, B = 1 and C = 0, so we locate this on the map and 
then do the same for the other two lines. 

Isn't this just the same as finding the square ABC on the map? Yes, of 
course it is, but remember that this method is designed for people who 
would panic if they saw even a hint of Boolean. 

Having located each square on the Karnaugh map we just group them 
together then write out the simplification. OK, so we finally have to 
write it as a Boolean term. 



Example 

Simpl i fy ing - by Karnaugh maps 
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AB 
A B C Q O0 01 11 10 
o o 0 o c o 
0 0 1 0  

~0 i 0 i . . . .  

0 1 1 1 
i 0 0 0 Simplification =BC,+h,B 
1 0 1 0 
i 1 0 1  
1 1 i 0 

Figure 9.26 
A single square 
cannot be simplified 

The solution is shown on Figure 9.25. 

Simplify A B C D  + A B C ~  + ABCD.  

The Karnaugh map and the answer is shown in Figure 9.26. 

CD 

CD 

AB 
O0 01 11 10 

Figure 9.25 
From truth table to 
Karnaugh 

Example 
Use a Karnaugh map to simplify the expression below. 

AC + A C D  + A B C D  + A B C D  + AD 

The answer is shown in Figure 9.27. 

Figure 9.27 
Six squares are best 
split into two fours 

CD 
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The best simplification 
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�9 = 
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Remember that we can use squares more than once. This allows two 
blocks of four to be made rather than a four and a two, which would 
result in a worse simplification. 

" D o n ' t  care" te rms 

When designing a logic circuit we sometimes meet input combina- 
tions that either could not occur or, if they did, the result would not 
matter. For example, in the logic diagram in Figure 9.28 the input B 
would have no effect whatever its value, since the zero input at A will 
be keeping the circuit switched off. 

Figure 9.28 
'Don't care' terms 

Example 

A = O  - ~ ,, 

B The output will be logic 0 
regardless of the input at B 

These 'don't care' states are entered as 'X' rather than 1 or O, and will 
prove to be really valuable when simplifying by using a Karnaugh 
map. 

Have a look at this truth table. You may recognize this o n e -  it is 
similar to the one that we simplified in Figure 9.25. 

A B C Q 

0 0 0 0 

o 0 1 o 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 l X 

1 2 0  
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In this case, however, we have added a 'don't care' state on the last 
line. 

This means that the states 

A B C Q A B C Q 
and 

1 1 1 0 1 1 1 1 

are both acceptable. 

In the circuit design it probably means that either the A = B = C = 1 
state will never occur or, if it does occur, the response of the circuit is 
of no signif icance- perhaps the output is disconnected. 

On the Karnaugh map, the 'don't care' states are shown as X as in 
Figure 9.29. 

Figure 9.29 
Adding a 'don't care' square 

CD 
00 
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AB 

01 11 10 

1 1 

1 X 
. . . .  

The choice of the "don't care" value 

When grouping the terms, the 'don't care' term can be taken as a 1 or 
as a 0 -  whichever will give the best grouping. 

If it were taken to be a 0 then the overall result would be A = B?: + ~ B 
as in Figure 9.30. 

Figure 9.30 AB 
Assuming the 'don't 00 01 11 10 
 are' = 0 C 01. I IL_!Ji I 

I W I 0  I I 
I m 

Simplification = BC + AB 

If, instead, we took it as a 1 state, then the result would be the much 
simpler Q = B as in Figure 9.31. That's really good. 
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Figure 9.31 
'Don't care' = 1 is a much 
better choice 

AB 
00 01 11 10 

cO,,, Ir11;rli I 
lU-lJJI I 

Simplification = B 

Remember, when preparing truth table for design work, it is of great 
benefit if we can spot any 'don't care' conditions and make use of 
them to help in the simplifying stage. 

Simplif ication summary 
We have three different methods of simplifying a logic diagram: 

1 Write out the Boolean equivalent then use the rules of Boolean 
algebra. 

2 Write out the Boolean equivalent then use a Karnaugh map. 
3 Draw up the truth table using 'don't care' terms if possible, then use 

a Karnaugh map. 

Quiz time 9 

In each case, choose the best option. 

i ~ Doe s a  Merca to r  m a p 0 f  the world, as in F igure 9 .12 ,  
wrap the same as a 4-input Karnaugh map? 

(a) yes. 
(b) no. 

2 Karnaugh maps: 

(a) are always faster than Boolean algebra for simplification. 
(b) are generally more certain to find the best solution to a 

simplification. 
(c) can consist of 2, 4 or 6 squares. 
(d) cannot be used to simplify Boolean expressions that contain 

only three terms. 

1 2 2  

Which of these binary numbers are in Gray code 
order? 

(a) 0000, 000 I, O01 O, O011 
(b) I000, I001, I011, IIII 
(c) 010, II0, 011,010 
(d) I000, I001, I011, I010 
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4--- in F igure 9.32,  Which of these squa res ' c0u ld  N O T b e  
paired? 

(a) 4and 13. 
(b) 5 and 8. 
(c) 1 and 13. 
(d) 3 and 15. 

Figure 9.32 
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01 5 

11 9 

10 13 

AB 
01 11 
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10 11 
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10 
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12 

16 

5 On a Karnaugh map a 'don't care' term indicates a 
t e r m  that;  

(a) is too complicated to bother simplifying. 
(b) doesn't exist in the logic diagram. 
(c) can have the value of 1 or O. 
(d) is an input to a gate rather than an output. 

1 2 3  



Real gates and their 
families 

The first step in digital repair or design is to gather information about 
the integrated circuits. 

This chapter will consider how gates perform and the various gates 
that are available. 

How does a gate perform? 

Everything that we need to know is provided in data sheets that are 
freely available from manufacturers, suppliers or in many electronic 
catalogues. A data sheet is not the most exciting reading available but, 
like a telephone directory, it can be very useful when you need it. 

We will choose a gate and see what we can find out about it. The gate 
we will use is a 2-input NAND gate. Even this is not so simple since 
there are so many to choose from, but I have opted for the one with the 
type number SN74HC00N. We will investigate the numbering system 
in the second half of this chapter, but for the moment it is enough to 
say that this is today's most popular 2-input NAND gate for new 
designs. The official description is a 'quadruple 2-input NAND gate'. 
The 'quadruple' bit just means that a single IC will contain four 2-input 
NAND gates, so we buy them four at a time. If we only want to use one 
gate, we can simply ignore the others. 

We will now look at the main items of information contained in the 
data sheets. 
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Description 
This simply says what type of gate it is and states the outcome in 
Boolean algebra, Y = A---~-.. It also states the truth table (or function 
table) and gives the pin-out diagram. 

The truth table in Figure 10.1 is shown in a slightly different form to the 
ones we used in Chapter 5. It uses H (high) and L (low) instead of 1 and 
0. By using X for a 'don't care' value the truth table is reduced slightly. 
Many books and data sheets use H and L instead of 1 and 0. 

Figure 10.1 
An alternative form of a truth 
table 

2-input NAND truth table 

inputs output 
A B Y 

. . . . . . . . . .  H H[L 
L X H 
X L H 

H = logic 1 
L = logic 0 
X = either state 

Notice that the supply voltage, called Vcc, is on pin 14 and the ground 
or 0 V connection is on pin 7. This is a fairly standard layout for the 
supplies and the four NAND gates are shown with A and B as their 
inputs and Y as their outputs (Figure 10.2). 

Figure 10.2 
The pin-out 
diagram of an 
SN74HCOON 

gate 1 

gate 2 

7 
Zero volt supply 

GND 

Vcc 

Positive voltage supply 
/ 

gate 4 

gate 3 

Supply voltage (Vcc) 
This is the supply voltage that should be used if the performance and 
reliability is to be guaranteed. In our case, the nominal supply voltage 
is 5 V with a minimum value of 2 V and a maximum value of 6 V. 
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Low-level input voltage (VIL) 
This is the highest voltage that will still be accepted as a logic 0 (logic 
L). Again it depends on the supply voltage, and in our example it varies 
from the range 0-0.5 V and from 0-1.8 V as the supply changes from 
its minimum to maximum values. 

Noise margin 

Figure 10.3 

A 'noisy' voltage 

Between the voltage corresponding to a level 0 and that of level 1 lies 
a no-man's-land which we try not to use. If we apply such a voltage we 
do not know whether the gate will accept it as a level 0 or as a level 
1, and the output will be quite unpredictable. 

Noise is the name given to a random variation in a voltage level. It may 
be caused by external interference, such as from nearby switches or 
electric motors, or atmospheric noise. It can equally well be caused by 
random electron movements due to heat within the semiconductor 
from which the gates are made. The result is shown in Figure 10.3. 

Voltage 

0.5 volts 

0.1 volts 

This spike may cause a problem 

| . . . . .  " ' ' ' D 

0 time 
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High-level input voltage (VIH) 
This is the lowest voltage that the gate will accept as a logic 1 (or logic 
'high') level. It sometimes varies according to the supply voltage. In 
this chip the minimum input level changes from 1.5 V when Vcc = 2 V 
up to 4.2 V when Vcc = 6 V. 

Incidentally, the symbols like VIH can usually be interpreted by taking 
the terms in order. This one starts with V, so we are talking about a 
voltage. The i stands for input and the H stands for high (or logic 1). 
Most terms can be resolved in this way. 

1 2 6  

If we connect two gates together, the output of the first must be 
acceptable as an input to the second gate. In the situation shown in 
Figure 10.4, the first gate can provide an output logic 0 which is 
anywhere between 0 V and 0.1 V. The second gate requires a logic 0 
input somewhere between 0 V and 0.5 V. 



Figure 10.4 
The worst-case 
scenario 

Real gates and their families 

Logic 1 

LL~ , ,. ii = . ~ [ ~ O  

Highest logic 0 ~ ~ Highest logic 0 
output voltage = 0.1 V input voltage = 0.5 V 

In the worst case, we could have the first gate producing its highest 
acceptable level of 0.1 V, leaving a gap of only 0.4 V. This gap is called 
the noise margin, and represents the highest value of noise that the 
system can handle. 

At logic 1 we have a similar situation since the first gate must provide 
at least 1.9 V and the second gate must accept at least 1.5 V, leaving 
another noise margin of 0.4V. In this example both noise margins 
happen to be the same value, but this does not always happen. When 
the noise margins have different values, the data lists either both of 
them or just the lower of the two. This is summarized in Figure 
10.5. 

Figure 10.5 
Typical noise margins 

Supply voltage 

1.9 volts 

1.5 volts 

0.5 volts 

0.1 volts 

~, . . . . . . . . . . . . . . . . . . . . .  

Noise margin I 
H 

V,, 

Logic 1 

Noise margin I . . . . .  V't I . . . . . . . . . . . . . . .  V, Logic 0 

. . . . . .  

Supply current (l==) 
This is the current that is needed to work the internal circuit. It is the 
current flowing into the Vcc pin. In our example chip, this supply 
current is 20 IJA. 

This appears to be a very simple parameter to measure and so it is . . .  
but. The 'but' here is to remind us that it is a competitive market and, 
like statistics and politics, the statements may be absolutely true but 
what is NOT said is equally important. Just as with politicians, we are 
sometimes fed with selective truths and then left to draw our own 
wrong conclusions. Even if all suppliers have quoted the same figures, 
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this still may not coincide with what happens when we use the chip to 
build a real circuit. 

Before accepting the figure we first have to ask four questions: 

1 Is the current quoted per gate or per package? In the SN74HC00 
there are four NAND gates, so we could 'reduce' our current by 
saying that the current is only 5 IJA and the small print could state 
'per gate'. 

2 What are the logic states being used at the time of measurement? 
Some gates pass different currents under different logic 
conditions. 

3 At what frequency is the chip switching? Or is at rest, called the 
quiescent state? Some designs of gate are unaffected by switching 
rates, but in other designs this is a crucial factor. In one example the 
current varies from almost zero in the quiescent state to one of the 
highest values of current at high frequencies. 

4 What supply voltage (Vcc) was used for the test? 

Input current logic high (ll.) and logic low (ILL) 
These are the currents measured at the gate inputs - not the supply 
currents. 

In the earlier designs with the 'LS' type numbers, the IIH current has a 
value of about 20 pA and the I~L current has a value of about 0.4 mA. 
In more recent designs the input currents have fallen to values of less 
than 20 laA and in the later ones, after the 74HC family, the current will 
not exceed 5 IJA. In the case of the IlL, the earlier families were less 
than 100 I~A and the later ones are again less than 5 IJA. So if we ignore 
the 74 and 74LS families, we can forget about input currents. 

Output current (Io) 
This is a question of how much current the gate can supply to another 
circuit. Perhaps it is controlling an output display or other gates. The 
value of this current may differ according to the logic state of the 
output. Some gates can provide a higher current when the output is at 
logic 0 than when it is at logic 1, whereas in many of the more modern 
gates the current levels are the same in each case. See Chapter 11 for 
more on this. 

Rise time (tn), fall time (tF) 
These terms are a measurement of how fast a waveform can increase 
or decrease in value. It may be measured at the input to a gate or at the 
output. This is a general electronic measurement rather than some- 
thing dreamt up just for logic gates. The measurement points are 
always taken at the 90% and 10% values of the waveform, as shown 
in Figure 10.6. 
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Figure 10.6 
Speed of voltage change 
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Associated with this is the slew rate of a waveform or a device. This is 
based on the same information but is converted to volts per second, so 
if a voltage changes by 2 V in 50 ns it will have a slew rate of 

volts 2.0 
n 

time 50 X 10 - 9  

= 4 0  x 10 6 

or 40 MV/s or 0.4 V/ns. If the rise and fall times are different, check to 
see which has been used to calculate the slew rate. 

Propagation delay (tpD) 
When we switch a gate by changing the input voltage there is a very 
slight delay as the internal circuitry responds to the new conditions. 
Typically this will take a few nanoseconds (ns, 10 -9 seconds). 

Once again the conditions of the test are significant, and propagation 
delay is measured when the output is at the 50% value when changing 
from low to high as well as from high to low. In some cases this results 
in the same value, but not always. 

The symbols used a r e  [ P L H  (time for propagation from low to high) and 
its partner tpHL (time for propagation from high to low). An example is 
shown in Figure 10.7. The measurements are taken at the same points 
whether or not the gate inverts the signal. 

If t pL  H a n d  t p H  L result in the same values, the single figure may just be 
listed as tpD (PD = propagation delay). 

In some data sheets the propagation delay is simply listed as 
'speed'. 

Figure 10.7 
Propagation delay 
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Absolute maximum ratings 
The data sheets usually describe the normal operating parameters, that 
is, the limits within which the IC is guaranteed to perform to the whole 
of its specification. In addition to this, they sometimes list the 'absolute 
maximum ratings', which are the limits beyond which the device is 
likely to be destroyed. 

In the case of our SN74HC00N, the recommended Vcc is given as 
2-6 V but the absolute maximum rating for the Vcc is-0.5-7 V. This 
doesn't mean that we can operate the chip between 6V and 7V 
without a great deal of thought. For example, increasing Vcc will 
increase the power dissipated inside the chip and hence its tem- 
perature. It may all end in tears, and the chip supplier will be totally 
uninterested in any grumbles that you may have. 

Power dissipation (Pdiss) 
This is the measure of how much power can be dissipated. Be careful 
to check whether the stated figure is per gate or per chip, and what the 
ambient temperature was at the time of measurement. 

This completes our roundup of the main parameters and gives us a 
reasonable basis for comparing different ICs. There are other, less 
important, items of data that will be supplied with an IC, but life is 
going to get incredibly boring if we do any more of this so ! think it is 
a good time for a full stop. 

What  gate is this? 
Each individual design of integrated circuit is given its type number. 
There may be several different numbers printed on the integrated 
c i r cu i t -  some indicate the assembly plant, the supplier or the 
manufacturer's batch number- but one of them will be in the general 
format shown in Figure 10.8, which is our magic number. This number 
provides us with all the information that we need to discover 
absolutely everything about the chip. 

Figure 10.8 
The starling point 
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A typical type number of SN74LS02N is shown, and is dissected 
below. 

The letters at the start 
There are many manufacturers, and they usually add between one and 
four letters or a number followed by more letters to indicate the 
manufacturer. Sometimes two manufacturers share a code. Thus both 
Texas and Motorola have used the letters SN. Most manufacturers use 
several different code letters for different products. The first letter or 
letters are therefore not of great interest to us since they all comply 
with the same basic specification. 

The family number 
Some logic designs have been more successful than others and have 
become accepted as 'industry standard'. There is no point in designing 
a really good AND gate unless you also have ORs, NANDs etc. to form 
a complete set, called a 'family' or 'series'. 

As with most technology, the process of continuous development 
causes new families to be born and old ones to wither away. The 
withering process can be a slow one, and some families in everyday 
use are well over 20 years old and are still being sold. 

In the chip SN74LS00N it is the 74LS that tells us the basic design and 
is the family name. 

A little later on we will look at the current state of affairs in three 
groups: the old folk, those in the prime of life and, finally, the 
youngsters. 

Device type 
After the family number there is another group of numbers. 

These numbers tell us what actual device we have. For example, 00 
means a NAND gate in the 74 series, and 86 is an XOR gate. In the 
4000 series the numbers are different, and these two types of gate are 
numbered 11 and 70 respectively. 

It is worth mentioning at this point that all manufacturers employ the 
same type numbers, so a chip called 7400 is a NAND gate from any 
supplier and is completely compatible. 

Package 
The actual circuit is built on a small piece of semiconductor material 
a few millimetres square. To handle it and make the necessary 
connections we have to enclose it in a holder of some kind. 
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One of the most popular is the plastic or ceramic package shown in 
Figure 10.8. This package is called a d-i-I (dual-in-line) package, and 
is either plugged into a base or pushed through holes punched into the 
printed circuit board and soldered on the underside of the board. Most 
chips now have a 'surface mount' option. These are very much the 
same in appearance except that the pins are shorter and do not 
penetrate the printed circuit board but are soldered on the top surface 
of the board (see also Chapter 20). 

A final letter indicates the type of package. The available types are 
common to all manufacturers, but the letters used to signify them are 
not. 

The package letter sometimes also includes another letter added to 
indicate the temperature range of the device. 

The development of logic 
In this section we are going to limit the discussion to a few of the more 
common families. They are the ones that we are likely to meet and a 
few of the new types that may, perhaps, be the winners in the next 
decade. 

The old folk 
These are displayed in Figure 10.9. They were generally designed in 
the 1970s. Some have inevitably been overtaken and have faded away, 
but some are still very much alive. 

Figure 10.9 CMOS TTL 
The old folk voltage: 3-18 V voltage: 5 V only 
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The 74 TTL family 
The most common series ever is the 74 series. This accounts for the 
large majority of all digital integrated circuits in use and includes all 
the common gates. We are all used to the speed of technological 
change, so it is interesting to know that the 74 series was first produced 
in the early part of the 1970s and is still listed in the current catalogues. 
There are generally two grades of device in this series, called 
'commercial' and 'military'. The principle difference is in temperature 
tolerance and reliability (and price!). The usual 74 series can only 
operate down to O~ and up to +70~ The lower limit would be a 
decided disadvantage in military campaigns in arctic regions or even 
in temperate zones during the winter months, and so the military 
family was extended to operate from -55~ to +125~ 

To distinguish between them, the family number 74 was given to the 
commercial version and the number 54 was applied to the military 
version. If you are involved in repairing old digital circuits, you may 
come across the obsolete 64 series which, as the number suggests, lies 
between the commercial and military families. This was called the 
'industrial' family, and had an intermediate temperature range. These 
three families were all plug-in replaceable, which means that all the 
pins are used for the same jobs and require no rewiring of the 
circuits. 

The original 74 series was a design based on a transistor circuit, and 
was referred to as a TTL (transistor transistor logic) device. TTL logic 
gates operated on a supply voltage of 5 V; this became the standard 
voltage for digital circuitry and so it has remained for 20 years. It also 
established that in the 74 series, logic 1 was to be any voltage over 
2.0 V and logic zero anything less than 0.8 V. The voltage ranges of the 
original 74 series have set the trend for many of the more recent 
arrivals. 

CMOS 4000 
The other family that has become a 'standard' is the CMOS 4000 series 
- usually just called the 4000 series. The 'CMOS', incidentally, refers 
to 'complementary metal oxide semiconductor', and refers to the 
design features. 

The 74 and the 4000 series swept away all the previous families and 
virtually gave us a fresh start. The earlier series are of no interest to 
anyone except a museum curator. 

The CMOS 4000 family and the improved version, the 4000B, were 
introduced shortly after the 74 series. Their main selling points were 
the supply voltage, which could range from 3-18V, and that they 
required only a tiny operating current. These made them ideal for 
direct connection to a standard 9-V battery. The supply current is 
actually dependent on the operating frequency being nearly zero at 
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More speed 

74H and 74L 

74S 

74LS 

very low speeds and increasing steadily as the frequency increases, but 
is still low compared with the 74 series, which stays at a constant value 
regardless of operating frequency. 

The drawbacks of the 4000B family were its very low operating speed, 
about 5 MHz, and that its logic levels when operated at 5V were 
different to the 74 series. Logic 0 ranged from 0-1.5 V and logic 1 was 
from 3.5-5 V. They also had different pin-outs. This meant that they 
could not easily be combined with 74 TTL gates in a circuit. 

A few similar variants, 4100, 4500 and 4700, were also produced. 
These families are often grouped as the 4XXX family, the X being 
commonly used in all digital documentation to indicate optional 
numbers, values or logic states. 

At this stage we started to look for improvements. 

Ideally what we were after was a family that delivered high speed, 
used very little power, and was compatible with previous designs. 

Our first attack was on the question of speed. 

The first attempt at improvement was the 74H family. To make it switch 
faster, we would have to change the internal voltages faster. To do this, 
we could decrease the value of internal resistors. This had the 
disadvantage of increasing the power consumption and the 74H (H for 
high speed) did not survive. We also tried to reduce the power 
consumption by increasing the resistor values, and the 74L was born. 
It soon became apparent that the L version was too slow, and this 
family also died away. 

Having fiddled with the resistors without much benefit, we turned our 
attention to the transistors. A new design of transistor called the 
Schottky transistor, or more correctly the Schottky-clamped transistor, 
was developed which had the ability to switch between on and off 
states at very high speeds by preventing saturation of the transistors. 
This, together with low resistor values, produced high speeds, but 
unfortunately it still consumed a lot of power. The 74S family 
(S = Schottky) has survived (just). Its main function was to set the 
course for the all-time winner, the 74LS family. 

This family reduced the power of the original 74 series by a factor of 
five down to 2 mW per gate and also improved on the speed, allowing 
it to switch up to 25 MHz. This one made the basic 74 family virtually 
obsolete. After its launch in 1976 this family became the most popular, 
and it is still in widespread use today. 

1 3 4  



Real gates and their families 

Figure 
10.10 

In the prime 
of life 

TTL 

74HC" * 74HCT 
currently the most 

popular choice 

..... 74Ac + 74AC~CT' 
very fast at no extra power 
., .and often ,used at 3.3 V 

c~ ! Speed a t all 

" '  74ALS [ ~4AS - 
Fast lower-power Fast replacement 

replacement l for the 74S 
for the 74LS 

, ,  , 

In the prime of life 

These are today's (1999) best sellers and will become tomorrow's old 
folk. They are collected together in Figure 10.10. 

74F 
This is an improved Schottky design (F = fast), in which we went for 
speed and achieved 100 MHz at the expense of the power dissipation 
increasing to over 5 mW/gate. This was quickly followed by two rivals, 
the 74AS and the 74ALS. 

74AS and/4ALS 
The first was the 74AS (advanced Schottky), which was slightly faster 
but used 50% more power and was intended to be the replacement for 
the 74S. The other one was the 74ALS (advanced low-power 
Schottky), which was designed to replace the 74LS and was 
completely compatible, but the speed had increased from 25 MHz to 
34 MHz and the power consumed had gone down from 2 mW/gate to 
1.3 mW/gate. 

74HC and 74HCT 
The HC in the title indicates that these are high-speed CMOS devices, 
and the HCT means high-speed CMOS TTL-compatible. These CMOS 
families departed from the 4000 series in their choice of supply 
voltage. The wide voltage range of the earlier CMOS designs was 
abandoned and reduced to 2-6 V, thus allowing them to operate at 5 V 
just like the others in the 74 series. The significance of the TTL- 
compatible part is that the voltage levels of the supply and the logic 
levels were made to coincide with the original 74 series. Both versions 
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were made compatible with regard to the pin-out diagram so that the 
HC family can be used without redesigning any circuits. At the 
moment (1999) the HC family is the most popular choice for all new 
designs. 

Both HC versions are slightly faster than the 74LS family and consume 
only about one-quarter of the power. 

74AC and 74ACT 
These advanced CMOS devices were a significant improvement over 
the HC family, increasing their operating frequency up to 125 MHz 
without any increase in the power consumption. There was another 
change occurring at that t ime-  there was new pressure to reduce the 
operating voltages of integrated circuits. We had found that a decrease 
in the supply voltage could have a knock-on effect of increasing the 
possible operating speeds. This has now been reflected in modern 
microprocessors, which have also reduced their supply voltage to 
3.3 V in the search for more speed. (There is more about this in the 
companion book Introduction to Microprocessors.) The 74ACT family 
is the TTL logic level version with the other characteristic 
unchanged. 

The youngsters 

So far we have been looking at history and how things have developed 
and what has proved popular-  this has been easy. We now have to 
take a guess at the future - time to get things hopelessly wrong. 
However, we will look at four of the likely contenders from the up and 
coming generation. 

The general trend is towards more speed (of course!), more output 
current and less power consumption, and a 3.3 V operating supply. 
These are shown in Figure 10.11. The 74 pin-outs remain, but the 3.3 V 
designs are clearly the future. 

74LVC and 74ALVC 
These CMOS devices are approaching the edge of the universe as we 
know it. They are designed for operation at 3.3V supply voltage, 
hence the name LVC (low-voltage CMOS) and ALVC (advanced low- 
voltage CMOS). There are few devices available as yet. The A version 
has a propagation delay of under 3 ns and offers 100 MHz perform- 
ance with moderately high output drive currents. 

74AHC and 74AHCT 
These are produced jointly by Texas Instruments and Philips. The AHC 
stands for advanced high-speed CMOS, and the T is obviously the 
version with modified logic levels to make it TTL-compatible. Of the 
two, the 74AHC is the better chip to use if it is not to be mixed with 
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Figure 10.11 
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other TTL chips. This advice applies in all families where a TTL version 
is available. This family offers about half the power consumption and 
half the propagation time of the 74LS family whilst running at a 
frequency of 150 MHz or thereabouts. 

And f ina l ly . . .  

There are few devices yet designed to add to this family, but they are 
very promising although we need a little hindsight to see how 
successful they will be. At the moment they are certainly state of the 
art. The ABT (advanced low-voltage BiCMOS) family offer propagation 
delays of under 2 ns! They operate on 3.3 V, and the present devices 
are designed to work with high-speed cache or main memory in 
computers needed for multimedia and high-speed graphics 
applications. 

Performance summary  
It must be emphasized that the figures quoted in Table 10.1, and other 
sources, are only guides to allow comparisons to be made. The actual 
figures vary according to the conditions under which they were 
measured, and which actual device was taken as representative of the 
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whole family. In addition to these approximations, each gate is subject 
to variations caused by normal manufacturing tolerances. 

Before you use a particular chip, make sure you check the figures 
against the data sheet supplied by the manufacturer. 

The families with TTL versions such as the 74ACT, 74AHCT etc. 
generally differ only in the recommended power supply voltages. The 
typical CMOS values of 2 -6V  are modified to the TTL values of 
4.5-5.5 V. 

Remember that the CMOS chips increase their supply current and 
hence power dissipation as the frequency increases, whereas TTL 
devices remain at the same values, near enough, at all frequencies. 
The supply currents quoted in data sheets often refer to the quiescent 
state (0 Hz) and are therefore very kind to CMOS devices. At high 
frequencies, the differences are less significant. 

Quiz time 10 

In each case, choose the best option. 

1 in the typenumber TC74Lso8N: 
(a) the letters TC mean that the construction is low propagation 

time CMOS. 
(b) the numbers 08 indicate the family. 
(c) the letters LS mean low speed. 
(d) the letter N indicates that the package type is dual-in-line. 

2 The last letter in a chip number indicates its: 
(a) package type. 
(b) date of first manufacture. 
(c) family. 
(d) place of manufacture. 

3 In their quiescent state, many chips: 
(a) tend to overheat. 
(b) consume less power than at higher frequencies. 
(c) have a very low propagation delay, which increases at higher 

frequencies. 
(d) of the 74ALS family have floating outputs. 

4~-~A TTL gate is likely to have a ~ supply voltage of: 
(a) 5 V. 
(b) between +2 V and +6 V. 
(c) between +3 V and +18 V. 
(d) 3.3 V. 
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which of the'se' gates is the' slowest? 
(a) 74ACT. 
(b) 74S. 
(c) 4000. 
(d) 74LVC. 
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Interfacing is the connection of one circuit to another. 

There are only two requirements: 

1 It must work. 
2 It must not damage either circuit. 

The general method is to decide what you want to do and then study 
the data sheets point by point to see if there is any clash in the 
requirements. 

It sounds easy and sometimes it is, but not always. Sometimes we 
come across a snag that we have forgotten or never knew about. 

There are possibly four important areas that cause problems: 

1 How fast? 
2 How much current? 
3 What voltage? 
4 Things we may have overlooked. 

How fast? 
Chip to chip 

If we designed a circuit to run at 125 MHz using the 74AHC family, it 
would be a bit of a disaster to put a 74AS chip in the middle that could 
only run at 25 MHz. The whole circuit can only run at the speed of the 
slowest device and this is the electronic equivalent of the popular 
adage that a chain is only as strong as the weakest link. 
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Chip to something else 
When we interface a digital circuit to another type of circuit, we may 
well find that the maximum clock speed is quite irrelevant. Take us, for 
example; there is nothing quite like us to slow a circuit down. A logic 
gate is amazingly fast compared with us. If we feel the temperature of 
a piece of metal and it is too hot, we immediately take our hand off. 
But how long did this take? For most people the time to think and then 
respond would be about one-tenth of a second. 

Imagine you are a goalkeeper in a premier league football match and 
you are facing a penalty. The ball is placed on the spot. The ball will 
enter your goal half a second after the moment it is kicked. Now, if you 
take a tenth of a second to decide which way to go, this leaves you 
only the remaining four-tenths of a second to intercept the ball in the 
top corner. This means that you must average 35 km per hour from a 
standing start. Millions of 'armchair internationals' groan as you miss 
such an easy shot. In reality, your only chance is to use body 
movement or magic to predict what is going to happen. Waiting to 
respond to the flight of the ball will make you too late. 

Imagine that a logic circuit is controlling a coffee machine. We put our 
money in and it flashes up a message saying 'Select item required' and 
we have to press a button. At our fastest, we could hit the button in 
one-tenth of a second. So what can the logic circuit do in the same 
time? A modern logic gate can respond to a button in about one- 
hundredth of a microsecond, or 10 000 000 times faster than us. 

This means than the logic circuit lives at a speed about 10000000 
times faster than we do. 

Can you imagine how we would feel faced with a creature called a 
'hangabout' that runs ten million times slower than us? 

It would take over 11 days for it to press the button. After all that effort, 
it may run off at 1 mm per hour to spend 285 years having a cup of 
coffee. By way of compensation, it may well live for 800 million 
years! 

Whenever the logic circuit is interfacing with something that is not 
electronic, it is very likely that the speed of even the slowest gate is 
going to be more than enough. 

How much current? 
Chip to chip 
Sourcing and sinking 

Conventionally current is said to flow from positive to negative, so if 
the output of a gate is held at logic 1 then current will flow from this 
positive output through the load and down to the 0V supply. This 
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current is supplied or sourced by the IC, and is referred to as a source 
current. However, if the output of a gate is held at logic 0 then current 
will flow from the positive supply through the load and into the gate. 
This current is referred to as a sink-current, and the IC is said to be 
sinking the current. So it is just a matter of which way the current is 
flowing (Figure 11.1 ). In some families, particularly the older designs, 
the sink current is larger in value than the source current. Not only do 
the newer designs have the same values for both of these currents, but 
also the value of the current has generally increased. 

Figure 11.1 
Sourcing and sinking 

+ve supply 
I 

Sink logic 1 current. .. ! ~  

Source 
logic 0 ~~ current 

/ 
0 V supply 

As a convention, the data sheets refer to the sink currents as positive 
and source currents as negative. 

Fan-out and fan-in 
How many gates can be connected to the output from a single gate? 
The traditional answer to this was a matter of comparing the output 
current supplied by a gate with the input current needed by each gate 
connected to it. If the available output currents are, say, 10 times 
greater than the input currents, then we can reasonably expect to be 
able to connect 10 gates to the output of one. In this case the driving 
gate would have a fan-out of ten. 

This was true while we were dealing with the early 74 and 74LS series. 
In the case of the 74LS family the output can supply 10 times the input 
current, so each 74LS chip can drive 10 other members of the same 
family. In the 74LS family we can state 'fan-out = 10'. In more modern 
families the output currents are so much higher than the inputs that the 
drive current is seldom a problem. 

Fan-in is much the same except that we are looking at how many gates 
can be connected to the input of a gate. This limit is usually imposed 
by the output capacitance of each gate. As more are added in parallel 
the total capacitance increases, and this reduces the speed at which 
the input voltages can change. 
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Historical note: unit loads 
In some data sheets we come across the sink and source currents 
expressed in terms of unit loads rather than milliamps. This was very 
popular in the early days, but is now obsolete and has been replaced 
by the actual current values. 

When the original 74 series were first developed, the input current in 
the high state (IIH) was 40 IJA and the input current in the low state (ILL) 
was 1.6 mA. These two values were considered to be rather special 
and were given the name 'unit loads'. The high state output current 
had a value of 20 unit loads (0.8 mA) and a low state output current of 
10 unit loads (16 mA). It was intended that, by quoting all gate input 
and output currents in unit loads, we could see if a design was viable 
just by adding up all the unit loads connected to the output and hoping 
that it did not exceed the unit loads available. 

Chip to something else 
If a circuit requires an input of 20 mA then it is no good using a CMOS 
4000 device that, at best, can only provide a 1 mA output. The other 
way round is OK. It wouldn't matter if we used a 20 mA gate to provide 
a current of 1 mA because the 20mA figure is just the maximum 
capability of the chip, it doesn't have to pass that value of current. 

In many cases, the logic output is used to provide the input to an 
external current amplifier and that, in turn, drives the final circuit. 

What voltage? 
Voltage levels are much the same, but here we may meet two 
problems. A circuit designed to use the CMOS 4000B family can have 
a supply voltage of +18V. If we chose to put a 74LS chip into this 
circuit it would be one very unhappy chip indeed, since these chips 
can only work up to +5.25 V. The other voltage problem is a matter of 
the logic levels. An output at logic level 1 must be accepted as a level 
1 input by the next IC. The same applies to logic 0 levels, of course. 
The logic levels are compared in Figure 11.2. 

Things we may have overlooked 
Switch bounce 

We often use a switch to provide an input to a gate circuit. Now, we 
like to think that the switch just changes the voltage level at the input 
to the gate, but the contact actually bounces just like a ruler twanged 
on the edge of a table by generations of schoolchildren. The output 
voltage changes between logic 1 and 0 maybe 50 times over a 
millisecond or two. As the switch is closed the input to the gate is 

1 4 4  



Figure 11.2 

CMOS levels 
can cause 
problems 

Figure 11.3 

Switch bounce 

Interfacing 
iiii 

.~ i !~ i~ : :~ :~  . . . . . . . . . . . . . .  ; . . . . . . . . . . .  ~ . ,  . . . . . .  ~... ,~.~=....~:~ 

~ ' ~ i ~ . ~ i ~ : . q  ~ ~ �9 ,., , ~.,~:~.. . .. 'N .~." . . . . . . .  ~! ...... 
�9 ;.':.~:~:'::':. ~..;. .:.','. " ' " .~:" " ~  "~  ~.i~ ~: . . . . . . . .  . ~ .~  ., .. ...-~.,..,;:.:.< $:::.:: 

i:.r ~ . ~  -. .. 
o . . . . .  

1.5 .................................... 

0,8 
0.4 .i~!~,~,'..~:.~:,..'~,...,~:~..~.~.~,,,.,~:,,~. ~ ~ ..... ~:~. 

Vo. -.. output high voltage 
V.~ - input high voltage 
V.. -. input low voltage 
VOL - output lOW voltage 

Standard 3.3 V 5 V CMOS 
TTL LVC 

grounded, but the contact actually bounces up far enough to 
disconnect the 0 V input. At this moment the gate input is returned to 
the +5 V supply or is left floating, which has much the same effect. The 
contact now springs back down again to reconnect the 0 V supply only 
to bounce off again. This continues until it finally settles at 0 V. Only 
a few bounces are shown in Figure 11.3. 

A glance through a supply catalogue will find a variety of bounce-free 
switches. In the next chapter we will look at a simple circuit for 
converting any cheap bouncy switch into an expensive bounce-free 
one. 

+5 V 

0 V / .  Output 

, + 5 v  ,, 

+5 V 

OV 

What we expected 

+5 V " 

OV 

,:~ 
The gate output 
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C o n n e c t i n g  outputs t o g e t h e r  

Figure 11.4 shows the problem. What if we switched one gate on and 
the other off? Well, it all depends on the design of the gate. 

Figure 11.4 

Smiles or smoke? 

O~ 

+5 V 

+5V 

+5 ~v 

We can connect the two 
outputs together- but is it safe? 

Totem-pole outputs 
Most gates have totem-pole output stages within the chip. This is the 
name given to a gate output design that consists of two transistors 
connected in series. A transistor is just like an electronic switch that 
can be either on or off. These two transistor switches are connected 
across the supply, and the output is taken from the mid-point. The 
remainder of the circuit is used to switch these transistors as required. 
One or other is on, but never both. In Figure 11.5 the output is 
connected to +5 V to give logic 1 output. If we had two gates, one with 
logic 1 at the output and the other at logic 0, a problem would arise if 
we connected the outputs together (Figure 11.6). As we can, see there 
is a short circuit across the supply lines and there would be excessive 
current flowing through the two transistors until one or other of them 
overheated and was destroyed. 

For nearly all gates, connecting the outputs together is a disaster. 

Figure 11.5 

A totem-pole output 
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Figure 11.6 

A totem-pole disaster 
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Open collector gates 
Open collector gates in TTL or the equivalent open drain gates in 
CMOS have been modified slightly to allow their outputs to be 
connected. They will always be clearly signposted in catalogues and 
data sheets with a separate number. An example of a normal 2-input 
AND gate is listed as 74LS08, and the open-collector version is the 
74LS09. The 'open collector' and 'open drain' descriptions just mean 
that the upper transistor in the totem pole is missing. Simply taking 
away the upper transistor would reduce the output to the equivalent of 
a single switch, as in Figure 11.7. 

Figure 11.7 

Open collector gates 
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Output = 0 

OV . . . . .  

What output is this? 

The left-hand situation is clear enough; the switch is closed and the 
output is connected to the 0 V supply. The right-hand one is intended 
to be at logic 1. However, the output is actually disconnected and is 
said to be 'floating'. To make sure that the output does go to logic 1 
when disconnected, we have to insert a resistor between the output 
and the +5 V supply. 

This resistor is shown in Figure 11.8, and is called a 'pull-up' 
resistor. 

The pull-up resistor is a separate resistor that we have added to the 
outside of the gate. Its value is somewhere around 1 k,O,, so start with 
this value and see what happens. 
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Figure 11.8 ,5 v 
Pull-up resistors 
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A single pull-up resistor can serve several open collector gates (Figure 
11.9). This can be done to drive an external circuit where the supplies 
are higher than the normal logic supply. Just remember to check in the 
data sheet to see the maximum voltage that can be connected to the 
gate output. 

The disadvantage of open collector devices with pull-up resistors is 
that they cause the circuit to run slightly more slowly and introduce 
some additional noise. 

Figure 11.9 
A useful way of 
controlling an external 
circuit 

inputs 

inputs 

inputs 

' ' ' " '  T ' '  

A 

pull up resistor 

oU'OUt 

1 4 8  

0v 



Interfacing 

Power supplies 
Mains powered DC supplies are designed as a fixed voltage supply or 
a variable voltage supply. The fixed ones are OK so long as you choose 
the right one, but some variable supplies can cause problems. 

There are two dangers with these regulators. First, it is very easy to 
switch on and THEN set the voltage and, if we are unlucky, the voltage 
could be set too high and the circuit could be destroyed before we 
have time to adjust it. It is not even safe to reduce the supply to zero 
and then connect it before increasing it to the operating value. The 
danger here is that the supply is always connected before the inputs to 
the gates are applied. Second, many variable supplies create a spike at 
the moment of switching on, which can exceed the maximum rating of 
the digital circuit (Figure 11.10). 

Figure 11.10 
Beware of spikes 

Maximum V~c 

Normal Vcc 

Voltage 

Time 

If an unknown variable supply is to be used, the safest way is to" 

1 Disconnect inputs from all gates. 
2 Disconnect the variable supply. 
3 Switch on the supply and adjust it to the correct value. 
4 Connect the digital circuit. 
5 Connect the external circuits. 

Floating inputs 
To prevent accidental switching of circuits, unconnected inputs called 
'floating inputs' should be tied to logic 1 or logic 0 as appropriate for 
the circui.t action. A direct wire or track can make the connection on 
the printed circuit board, provided that the link is less than about 
30 cm in length. If it is longer than this it can act as an antenna and 
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pick up noise from the surrounding circuits. CMOS ICs are particularly 
prone to problems with floating inputs, and the circuit will prove very 
unreliable if they are left unconnected. TTL inputs tend to float high - 
that is, they appear to be high if the logic state is measured - and it is 
very tempting to say that since it is high anyway, it does not need to be 
tied high. Don't believe it. It will be a constant source of random 
failures. 

Decoupling 
When a gate switches, it goes through a brief moment when both the 
upper and lower switches in the totem-pole output are partially ON. 
This causes a short duration surge of current at the moment of 
switching. The size of this extra current flow depends on the family in 
use. The 74AC family can create a 50mA spike. This extra current 
flows through the conductors on the printed circuit board and causes 
a momentary drop in the value of all the chip supplies, as in Figure 
11.11. A design point here. When we are designing the printed circuit 
board, we can combat the effect of this current by reducing the 
resistance of the supply track to the chips. If we make the power 
supply tracks wider, the resistance falls and, by Ohm's law, the voltage 
drop is less. A smaller spike is easier to deal with. 

Figure 11.11 
Spikes 

Extra current as 
J the gate switches 
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supply current 

time 
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time 

In digital circuits many ICs may switch at the same moment, causing 
severe spikes, and the resulting drop in supply voltage can cause some 
logic 1 levels to fall to logic 0 just for a moment. This can cause all 
sorts of mischief in a logic circuit and can be extremely difficult to 
track down. 

What size of decoupler? 
The spike can be greatly reduced by connecting a small capacitor 
called a decoupler something like 1-10nF or so between the chip 
supply Vcc and the 0 V input. 
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The capacitor acts as an emergency supply of charge to supplement 
the real supply when the required current increases rapidly. How 
much charge needs to be held by the capacitor depends on the amount 
of current drawn by the spike and its duration. 

How many decouplers? 
The number of decoupling capacitors fitted depends on the severity of 
the likely spikes. That, in turn, depends on the logic family used and 
the number of gates that are likely to switch at the same moment. The 
other consideration is the possible result of not having enough 
decouplers. This is a matter of opinion; we would not be too troubled 
by a Mickey Mouse keyring that fails to function occasionally, but if we 
were taking off in an aircraft we would like to think that the control 
circuitry had bucket-loads of carefully selected decouplers. 

The number of decouplers varies. The tendency nowadays is to add a 
decoupler across each IC if it is at all critical, and between every two 
or five chips in non-critical situations. 

The decouplers should be connected between Vcc and ground and as 
close as possible to the IC. 

Ringing 
The connections on a printed circuit board have distributed capaci- 
tance and inductance. This means that they have a resonance 
frequency and, given the chance, will oscillate. The resistance will 
cause any oscillations to be damped - that is, to decrease in amplitude 
until they die away-  but any sudden switches in level will cause such 
a damped oscillation. After all, switching is just what a digital circuit 
is designed to do. The ringing causes overshoots when the voltage 
switches, as seen in Figure 11.12. 

Figure 11.12 
Ringing 
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Crosstalk 
When any conductor passes a changing value of current, the 
surrounding magnetic field changes in sympathy. Faraday's law tells us 
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that any conductor being cut by this changing field will have a voltage 
induced in it. We are used to this idea with transformers and 
generators, but often overlook the same situation on a printed circuit 
board. The sudden switching of a gate with its associated ringing will 
cause a signal to be induced into nearby conductors. This effect is 
called 'crosstalk', and can cause accidental inputs to surrounding 
gates. See the effects in Figure 11.1 3. 

Figure 11.13 
Crosstalk Gate output 
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time 

Slow input signals 
You may remember the diagram we used to define the slew rate (Figure 
10.6). This was stretched out to emphasize that the rising and falling 
edges were not exactly vertical. 

If we allow the voltage to increase slowly, it will reach a stage where 
internal noise causes the output to switch between levels. The result 
looks like a burst of high frequency oscillation that occurs at both the 
input and the output, as seen in Figure 11.14 

Figure 11.14 
Low slew rate 
problem 

Intended 
gate input 

Actual 
gate input 

Gate output 

, ~ ,  ~ Noise induced switching 

, 

time 

Schmilt triggers 
These circuits are designed to overcome this problem of slow rising 
and falling edges. If a Schmitt trigger has a slow rising voltage applied, 
the output will stay at a low level until it decides to change, and when 
it does change it goes really quickly. The same performance occurs 
with a decreasing voltage. The logic 1 at the output is unaffected and 
then suddenly changes. These can be built from separate transistors, 
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from an operational amplifier or bought ready-made in a 74XX132 
chip. 

They are also very useful when we have several circuits that are to be 
switched at the same moment but are activated by slightly different 
voltages. A low slew rate will cause a significant loss of synchronism 
between the circuits. 

See the benefits in Figure 11.15. 

Figure 11.15 
Schmitt trigger to the 
rescue 

Original 
gate input 
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In each case, choose the best option. 
. . . . . . . .  , , , ,  ~ . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 The most l ikely w a y  in which one gate can affect 
another is by" 

(a) ringing. 
(b) opening its collector. 
(c) crosstalk. 
(d) decoupling. 

..... Spikes 'can be the result of: 

(a) a sudden opening of the drain. 
(b) the discharge of a decoupling capacitor. 
(c) the switching sequence of a totem-pole output. 
(d) too high a value of fanout. 

3 A floating input: 

(a) can cause a circuit to behave erratically. 
(b) causes decoupling of the output. 
(c) occurs when the input to a gate is connected accidentally to 

the ground. 
(d) could not occur in a single input gate like an inverter. 
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4 A pull-up resistor is essentialwith: 
(a) an open drain gate. 
(b) a high-speed circuit. 
(c) a TTL gate. 
(d) a variable power supply. 

, ,  

5 Switch bounce can: 
(a) eliminate the need for decoupling capacitors. 
(b) cause a gate to switch many times. 
(c) allow a circuit to use a higher supply voltage. 
(d) be eliminating by avoiding rubber in their construction. 
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Sequential logic 

It's t ime to move on 
So far all our logic circuits have been simple in the sense that we have 
some gates, apply some inputs, and we can say with certainty what the 
result will be. This type of logic is called 'combinational' logic. 

The difference with sequential logic is slight but significant. To be able 
to predict the output from a sequential logic circuit, we need to know 
the input conditions and, in addition, the previous state of the circuit. 

This situation is very common in real life. My television has an on/off 
button. The first time it is pressed the television is switched ON, but 
the next time it is pressed the television goes OFF. To make a simple 
idea more impressive, we could call this a sequential operating 
system. If someone were to ask us what would happen if we pressed 
the button, we could not answer unless we knew the current state of 
the television. 

Latching and non-latching switches 
Push buttons and other switches come in two flavours; latching and 
non-latching. 

A doorbell is non-latching- the bell rings only while the button is 
pressed. A latching switch, as in our television, has a form of ratchet 
action. It switches states and then stays like that until it is operated 
again, otherwise we would have to keep our finger on the button all 
through the programme. 
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T i m i n g  d i a g r a m s  

In sequential logic the timing of events is going to be important. To 
analyse the action of a sequential logic circuit, we have to know both 
the truth table and also the order in which events occurred. In Figure 
12.1 both buttons are pushed after 4 seconds and released 2 seconds 
later. The latching button changes immediately and holds its value, 
whereas the non-latching, or 'momentary' switch drops back to 0 V as 
soon as it is released. 

Figure 12.1 

A timing diagram 

Figure 12.2 
A logic 
timing 
diagram 
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Figure 12.2 shows a real logic circuit timing diagram. In this case we 
are using a NOR gate to invert a continuous square-wave signal. 

Q 

l 

Logic levels 
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Sequential logic 

The basic building block of sequential logic circuits is the bistable 
circuit. As the name suggests, this circuit has two stable states, which 
means that the output can remain at a logic 1 level or it can remain at 
a logic 0 level until an input signal tells it to switch states. 

T h e  R S  b i s t a b l e  

There are only three basic bistables in use, and we will start with one 
that we can build ourselves from a couple of NAND gates. The others 
are discussed in Chapter 13. 

This little circuit goes under a wide variety of names. A bistable is also 
called a flip-flop on account of its two stable states, or the way it can 
flip or flop from one state to the other. It can also be called a 'latch', 
just like the latch switch. 

This particular version is an RS bistable or reset/set bistable. The word 
'set' refers to the process of making the output go to a logic 1, and 
'reset' means the output goes to logic O. 

With so many variations in terms we have to be a little flexible about 
the names that we meet. The RS bistable is also called: the SR bistable, 
RS flip-flop, SR flip-flop, RS latch and the RS flip-flop. 

The logic symbol for an RS bistable is shown in Figure 12.3. In nearly 
all sequential logic ICs there are two outputs, one of which is just an 
inverted version indicated by the circle shown at the output. In some 
diagrams this inverting circle is not shown, and the fact that the two 
outputs are labelled Q and i~ is taken to indicate the inversion. 

Figure 12 .3  

The symbols for an 
RS bistable 

Symbols 

inputs output 

R ! ' 

1R ~ I 1Q 
1CLK ~ ~ _ 

1S , 1Q 
. . . .  

2R' ~ I 2Q 
2CLK__ Ii 

2s , , -2~ 
I I i 

IEC symbol 

This inverting circle 
is not always shown 

We can buy an integrated version listed as a 'quad SR latch' and 
numbered 74XXX279. The 'quad' just means that we get four in each 
IC. As an alternative, we can build them ourselves either from NAND 
gates or from NOR gates. Since the NAND gate is the more popular 
version, we will choose this one to investigate. 
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The NAND latch 
The NAND latch is just a pair of cross-coupled NAND gates, as in 
Figure 12.4. 

Figure 12.4 
The NAND latch or RS 
bistable o r . . .  

R , 

_ 

~ 3 ' ' Q 

......... j gate ~__[6 -- 
,,, 51 B y - Q 

S= I , R = 0  

This looks a bit of a puzzle at first, so we will jump straight in with the 
inputs set as follows. 

The inputs and outputs are numbered as shown in Figure 12.4. 

When input S (1) is at logic 1 the output (3) could be either logic 0 or 
1, depending on the state of the other input at (2). This is not very 
helpful, so we will take a look at R, the input to the other gate (5). 

With the reset input (5) at logic 0, its output at (6) is definitely at logic 
1 because of the truth table for the NAND gate. Since (6) is connected 
to (2), gate A will now have both its inputs at logic 1 and this will result 
in its output (3) being at logic 0. This would make gate B input (4) to 
be at logic 0. 

The final state is the Q output from gate A at logic 0 and the NOT Q, 
or Q, output at logic 1. 

The first line of the truth table will be as in Figure 12.5, showing that 
the bistable is 'reset' because Q = 0. 

Figure 12.5 
The NAND latch is reset 

inputs outputs 
. , , . .  

S R Q Q 

1 0 I 0 1 
Comments 

reset 

S = 0 ,  R= 1 
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The reasoning behind the result of these inputs follows the same pattern 
as in our last example. Briefly, if S = 0, the output at (3) must be logic 1. 
Gate B has two inputs, both at logic 1. Point (5) is the R value and (4) is 
connected to (3), and so its output (6) must be at logic 0. 

The final result is S = 1 and R = 0 gives Q -- 1 (and Q = 0, of course). 
The bistable is said to be 'set' (Figure 12.6). 



Figure 12.6 

Q = 1 means it is 'set' 

inputs 
S R 
1 0 
0 1 

Sequential logic 
I I I I  ] . 1  . . . .  I I  . . . . . . . . . . .  

outputs 
Q i~ Comments 

- , , ,  

0 1 Reset 
1 0 Set 

Active low inputs 
If we wish to 'set' the latch, i.e. make the Q value go to logic 1, we 
must apply a logic 0 to the set input. Similarly, if we wish to reset it, we 
must apply logic 0 to the reset connection. To perform their stated 
function, either S or R, we must apply logic 0. These inputs are 
therefore referred to as 'active low'. On logic diagrams, the active low 
characteristic is indicated by putting a 'not' line over the input -  in our 
case, S and R. 

By a small majority, most inputs to most ICs are active low. 

S = O , R = O  
What would happen if we tried to set and reset the latch at the same 
time? Let's see. 

By taking S to a logic 0, gate A will make its positive output go to logic 
1 owing to the nature of the NAND gate. 

Similarly, by making R = 0, gate B will have an output of 1. It is a 
stable condition and does no harm to the gates, but we avoid this 
situation and refer to this state as 'forbidden', 'prohibited', 'invalid' or 
'indeterminate'. This is shown in Figure 12.7. 

Figure 12.7 

The 'forbidden' state 

inputs 

S R 
, 

1 0 .... 
0 1 

0 0 

outputs 
Q i~ C o m m e n t s  

...... v �9 ~ ' '4' ....... Reset  ..... 

1 o Set 
1 1 Forb idden 

Why don't we like this state? Simply because we have labelled the two 
output as Q and Q, which by our definition of Boolean means that the 
two outputs have opposite logic states; however, in this 'forbidden' 
state we have Q and ~; with the same logic state. It therefore 
contradicts what we said it would do. 

S = 1 and R = 1 
Assume we have the 'set' condition shown in Figure 12.8. 

Now, what would happen if S changed to logic 1 ? The logic level at 
output (6) is still 0, and therefore the input to gate A at (2) is still O. As 
we said earlier, if one input to a NAND gate is logic 0 the output will 
be at logic 1 regardless of the other input to the gate. 
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Figure 12.8 

What happens if S goes to 
logic 1 ? 

1 

S 1 
S=O Q= I  

~=0 
R 1 5 

The answer to our question is . . .  nothing. If S went to logic 1 there 
would be no change in the output. 

If we had a latch with S = 1, R = 0 giving Q = 0, changing R to 1 
would not change the output state at all. 

Changing either input to logic 1 has no effect on the output state, and 
the circuit is said to be in a 'memory' or 'latch' state. 

The final truth table is shown in Figure 12.9, now following the 
convention of listing the inputs in binary order. 

Figure 12.9 

The complete NAND latch 
truth table 

inputs 
S R 
0 0 
0 1 
1 0 
1 1 

outputs 
a 

. . . . . .  

1 1 
1 0 
0 1 
a i~ 

Comments 
forbidden 
set 
reset 
memory or latch 

A use for a NAND latch 
Let's see how we could use a bistable. Imagine that we have a circuit 
running from a 5 V supply that fails every hour or so, and we feel that 
there is a bad joint somewhere that is causing the input voltage to be 
disconnected for a very brief moment. Extremely short and difficult to 
detect pulses are called 'glitches', and the circuit designed to detect 
them is called a 'glitch catcher'. 

One way of finding out whether or not this power supply failure occurs 
is by using a NAND latch to monitor the voltage. 

In the circuit shown in Figure 12.10 we would prepare the trap by 
connecting the S input to the suspect power supply and R to a known 
good supply. Now, we reset the latch by closing switch SWl for a 
moment to make the output change to Q = 0 and Q = 1. By reopening 
the switch we have S = 1 and R = 1, which is the memory state, and 
the outputs would be held at their present values. 
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The latch is on 
guard duty 

Sequential logic 
I I I  I I I . ~  I I I  J [  __ 

+5 V from suspect 
power supply 

Known good 
+5 V supply 

S - 1  _ ,, - Q = 0  

I--3. _ R = I  

sw. 1 / 
0 V  .... ~ . . . . . . . . . . . . . . .  

LED OFF 

The monitor LED would be unlit because the Q output would be at 
logic 0, so there would be no voltage across it. 

The trap is prepared, so all we have to do is to wander off for an 
extended lunch and see what happens. 

If the fault occurs, the S input will drop to 0 V just for a moment. As it 
is an active low circuit, the latch will be set and Q will go to logic 1. 
As soon as the power supply recovers the latch will have inputs of 
S = 1 and R = 1, which is the memory state, so the output will not 
change. 

Since the Q output has gone to logic 1 it will provide the current to 
switch on the LED as in Figure 12.11. 

Figure 12 .11  

The fault is 
detected 

Power supply input 
drops to 0 V then 
goes back to + V 

Known good ------I 
+5 V supply 

OV 

..... 5V 

~ Q=O 

goes to 1 

LED COMES ON 

R = I  

SW.1 
goes to 0 

Another  u s e -  a cure for switch bounce 
We have mentioned this one in the previous chapter. This circuit uses 
a changeover switch, often called a single-pole double-throw 
switch. 
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As the switch changes position, it will be connecting logic 0 input to 
one or other of the gates. This will cause the output voltage to change 
state. If the switch bounces the contact will disconnect and both inputs 
will be returned to logic 1 via the pull-up resistors, and so the latch will 
go to its memory state and hold the previous outputs. Hence no 
bouncing. This circuit is shown in Figure 12.12. 

Figure 12 .12  

Switch 
debouncer 

0V 

+5 V 

+5 V 

Bounce free 
output 

A NOR latch 
Although less popular, the same functions can be performed with a 
couple of NOR gates. As a result of the differing truth tables, the 
detailed operation in terms of logic levels works out slightly differently. 
The circuit diagram and the truth table are shown in Figure 12.13. The 
inputs to the NOR latch are active low, just as in the NAND gate, so 
it sets (Q = 1) when S goes to logic 0. 

Figure 12.13 

The NOR latch and truth 
table 

S ' " ~ _  _ Q 

L 

F 
= . , . ,  

R Q 

inputs 
S R 
0 0 
0 1 
1 0 
1 1 

outputs 
Q i~ Comments 

. . . . .  

Q ~ memory or latch 
1 0 set 
0 1 reset 
0 0 forbidden 
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Testing the glitch catcher 
If we built a latch and wanted to see if it could detect very short 
duration changes of logic state, our first problem would be getting hold 
of a pulse less than, say, 50 ns wide (1 ns = 1 x 10 -9 s). 

Easy! Use a switch. 

Snag! it will probably bounce. 

Easy! Build a debounce circuit or buy a bounce-free switch. 

Snag! A switch won't be fast enough - it can manage 10 ms at best. 

We cannot use a switch, so we need something faster- like a logic 
gate. 

Transition effects 
If we apply a changing input to a NOT gate the gate will just invert the 
input signal, so if we plotted the output at 1-s intervals the timing 
diagram would look as in Figure 12.14. 

Figure 12.14 
Switching a NOT gate input output 

input 
. . . . . . .  

~ i 
time 0 

I _ i  o 
i i i 1 ' ! 

.I ............................ 1..i ........................................ i .......... i .... 
1 2 3 4 5 6 7 seconds 

Logic 
levels 

This figure is sort of, mostly, true. If we take this same situation but look 
at it more closely by plotting it at 10-ns intervals around the time of 
switching, we get the effect shown in Figure 12.15. 

Figure 12.15 
A close look at the 
action 

time 

Rise and fall times 
have been ignored 

I ' i [ output 

0 10 20 30 40 50 60 70 nsecs 

logic 
levels 
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A curious situation has occurred. The change at the output is delayed 
by the time it takes the voltage to travel through the gate - called the 
transition or propagation time. For a brief moment, about 10 ns, the 
input and the output of the gate have the same logic level. 

So, does it matter? 

Not always, but sometimes it can cause unexpected effects. 

Have a look at Figure 12.16 and see what output, if any, you would 
expect to get from this circuit. 

Figure 12.16 
Is there an output when 
the switch closes? 

+5 V -I 

L 

O V  .. 

The simple view is that the inputs to the XNOR gate are always 
opposite in value, since one of the inputs is always passed through an 
inverter. As we know from earlier work, an XNOR gate has logic 1 
output whenever the two inputs are the same. So there should be no 
output. 

In reality we have seen that the inverter will delay the signal by a few 
nanoseconds, and during this time the two inputs to the XNOR gate 
will have the same values. This will result in logic 1 appearing at the 
output of the circuit for about 10ns. See the waveforms in Figure 
12.17. 

Figure 12.17 
A home-made glitch 
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Much the same effect can be obtained with other gates- there was no 
special reason why we used an XNOR gate in our example. 

This output pulse is too fast to be seen on most of our test instruments, 
so a latch or something else must be used to detect it. 

If we want a longer pulse, we can just add a larger number of NOT 
gates. 

Static hazard 
We have seen that small time delays as the signal passes through a part 
of the circuit can cause unexpected voltage spikes. This effect is called 
a static hazard. To avoid them, we must balance the time delays on the 
gate inputs to ensure that voltage changes occur at the same time. This 
may even require us to pass the signal through another gate just to 
introduce a time delay. 

The moral of this chapter is that if we have a logic circuit that is 
behaving oddly, things may be happening that are not obvious at first 
or even second glance. 

Quiz time 12 
In each case, choose the best option. 

1 On the number pad of a telephone the switches are 
called: 
Ca) 'momentary' switches. 
(b) latching switches. 
(c) active switches. 
(d) ratchet switches. 

2 .......... A HAND-latch has a memory s~~whenever:. 
Ca) inputs S and R are set to logic O. 
(b) both outputs have the same value. 
(c) inputs S and R are set to logic 1. 
(d) the inputs are active low. 

......... TO .... ' se t '  a N A N D  ia i ch ,  the logic" s ta ie  Of t h e R  input,~. 

Ca) must be logic 1. 
(b) must be the same as the S input. 
(c) must be logic O. 
(d) does not matter, it is only the S input that matters. 
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4 '~A glitch is a: 

(a) person who is obsessed with computers. 
(b) cause of switch bounce. 
(c) forbidden state in a latch truth table. 
(d) momentary change of logic level in a signal. 

In a NAND RS latch the S' input is held at logic 0 
while the R input changes from logic 1 to O, the latch 
wi l l :  

(a) go to its forbidden state. 
(b) be cleared. 
(c) enter its memory state. 
(d) be damaged. 
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Clocks 
All gates and the SR bistable operate immediately when we apply the 
inputs. The technical term for this sort of 'go when you like' circuit is 
an asynchronous operation. 

We don't always want this sort of operation. Much of our lives is 
governed by the idea of gathering all the requirements for a job but not 
actually starting it until a signal is given. We don't want our alarm 
clock to ring immediately we have set it. We don't want the plane to 
take off as soon as the pilot arrives at the airport, nor do we want the 
chef to start cooking as soon as the first ingredient is delivered, 
whatever the time of day or night. This 'wait until you are told' routine 
is called synchronous operation. 

Most digiial circuits are synchronous. An obvious example is a digital 
clock, in which a circuit counts the seconds up to 60 and then sends a 
pulse to the minute counter to increase its value by one. The 'seconds' 
counter is also reset to zero to restart the counting process. 

Let's see how to convert the RS bistable to a clocked RS bistable. 

Clocked RS bistable 

The only change we have to make is to add a 'wait until you are told' 
circuit. We can do this by adding a couple of NAND gates. Have a 
look at Figure 13.1. 
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Figure 13.1 

The inputs can be 
clocked Clock input : 

R 

Outputs are available 
only when the clock 

[ ~  input is at logic 1 

If the clock input signal is held at logic 0, the NAND gates are 
switched off and both outputs are at logic 1. Notice how the values of 
S and R will now have no effect on the output. 

When the clock input goes to logic 1, the S and R inputs appear at the 
output and are applied to the bistable. 

The complete circuit and truth table are shown in Figure 13.2. Notice 
how the logic levels of the S and R inputs are inverted by the NAND 
gates in the clock circuit, and this has a knock-on effect on the truth 
table. 

Figure 13.2 

The clocked SR 
bistable 

Clock input 
_J-L. 

D 

Q 

Q 

inputs 
S R 

, , ,  

0 0 
0 1 
1 0 
1 1 

outputs 
Q i~i Comments 

. . . . . .  , , 

Q i~ memory or latch 
0 1 reset 
1 0 set 
1 1 forbidden 

The advantage of using NAND gates throughout this circuit is that we 
buy NAND gates four at a time in the 74XX00 chip. So for a few pence 
we can build the whole circuit using only one component. 

T h e  J K  b i s t a b l e  

This is the second of the four bistables that are available. It is 
particularly popular because we can easily make it behave like any of 
the others. For this reason it has been referred to as the 'universal' 
bistable. 

1 6 8  



Clocked bistables 

While it is quite possible to build a JK from basic gates, or even from 
transistors, it is a pointless exercise. In the integrated form, we can buy 
two JKs in a single chip for less than a cup of tea. To build it from 
separate gates or components would not only be more expensive but 
it would be more difficult, consume more power and take more 
space. 

In many ways the JK bistable is very similar to the clocked RS bistable. 
In fact, all the bistables are only slight modifications of each other. 

There are two data inputs called J and K, which are similar to the S and 
R inputs that we have met. The JK has two outputs, Q and ~,  just as 
before. It also has a clock input. 

One improvement Over the SR bistable is that the 'forbidden' state has 
been replaced by something useful. This is called a 'toggle' state. This 
means that the Q and Q outputs alternate between logic 0 and I each 
time a clock pulse arrives. 

The logic symbol and truth table are shown in Figure 13.3. 
Unfortunately the symbols on truth tables have not been standardized, 
so we have to be a little flexible when we interpret them. Different 
manufacturers present them differently. 

Figure 13.3 

The.IK bistable 

Symbols 

inputs 

J 

CK : 

K 

output 

, , , i ,  Q 

US Mil. Spec. symbol 

1CLK 
m 

1K ! 1Q 

2J ~'J I 2Q 
2CLK I L= 

2KI-I I l ~2Q 

IEC symbol 

inputs output 
J K Qn,1 
0 0 Q. 
0 1 0 
1 0 1 
i i ~-o 

Comments 
memory or latch 
reset 
set 
toggles 

On this truth table" 

Qn+1 = the next output state, that is, what will happen after the 
clock pulse has occurred. 

Qn = the present output state before the clock was applied. 
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Q'n = the opposite output state to the one that was present before 
the clock was applied. 

We must remember that if no clock is applied, then nothing 
happens. 

The golden rules of JKs 

1 If J and K are different, the Q is always the same as the J. 
2 If J and K are 0, nothing happens. 
3 If J and K are 1, the output toggles. 

When does the clock tick? 
The clock input determines the moment at which the circuitwill respond 
to the state of the inputs. There are three possibilities. The one in use is 
always stated on the data sheet and shown on the symbol, and has really 
significant effects on the operation of the circuit. The input signals must 
be present just before the clock pulse occurs and they sometimes have to 
be held for a short time afterwards. These times are listed as set-up time, 
typically 20 ns, and hold time, which is often zero. 

Negative edge triggered 
This is also called trailing edge triggered, and indicates that the action 
occurs at the end of the clock pulse just as its logic level changes from 
logic 1 to logic O. This is indicated by the clock input. The > symbol 
means it is edge triggered, and the circle means the edge in question 
is the negative-going edge. 

Any changes to the input that occur during the rest of the pulse are 
ignored. 

If we apply logic 1 to both the J and K inputs, the JK will toggle on each 
clock pulse synchronized to the negative edge. So if we apply a 
continuous square-wave to the clock it has the effect of halving the 
output frequency, as we can see in Figure 13.4. To keep the figure 
uncluttered, the NOT Q output is not shown. It is always opposite to 
the Q output. 

Figure 13.4 
Trailing edge 
triggering 
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Positive edge triggering 
This is also called leading edge or rising edge triggering. 

Everything is much the same, except that the changes occur on the 
positive-going edge of the waveform. The symbol will include the > to 
show it is edge triggered, but this time there will be no circle. 

Have a close look at Figure 13.5, comparing the output waveform with 
that on Figure 13.4. 

Figure 13.5 

Positive edge 
triggering 

Clock input 

Q output 
i l  

~.~ The change only happens 
S on the rising edges 
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0 

1 

0 

Logic 
levels 

Very few devices are available with positive edge triggering, but that 
doesn't matter. It is very easy to change a negative edged circuit to use 
the positive edge if we ever need to. Can you see how we could do it? 
Have a look at Figure 13.6, and see that we have simply inverted the 
clock pulse that is being used to supply the positive edge chip. By 
inverting this input clock pulse, its own positive-going edge coincides 
with the negative edge of the main circuit. 

Figure 13.6 
Positive 
edge device 
pretending 
to be 
negative 
edge 

The main clock for t 
rest of the circuit 

Invert the 
Clock input 

Q output ~ . . . .  
- F  

m 

m 

/ 

. . . . . . .  

I 

Q output now switches 

~ on the original trailing edge 

. . , . . = , .  

m 

m 

, . , = . = , . .  

. _ .  1 

0 Logic 
1 levels 

. _ .  0 

Are there any snags? Yes. One, possibly two. 

This clock inversion method will only work if the clock pulse is a 
square-wave with a mark-space (on-off) ratio of 1, otherwise we have 
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a problem. We are assuming that the waveform is symmetrical and that 
by inverting it we can have an identical wave but shifted by half a 
wavelength. 

The other question to ask is 'where did we get the inverted wave 
from?'. If we passed the original clock through an inverter, we will 
have introduced a time shift of 10ns or whatever the propagation 
delay of the chip is. If the clock came from a JK or something similar, 
we could overcome this problem by using the NOT Q instead of the Q 
output to provide the inverted version. There is no time delay between 
the Q and NOT Q outputs of a single bistable. 

Pulse triggering 
This is also called a master-slave design. 

It changes its state, if required, on the trailing edge of the clock pulse, 
just like the negative edge triggered bistable, but it actually uses the 
whole of the input pulse as part of the process. 

In the normal trailing edge JK, all the action occurs on the falling edge, 
inputs are read, output levels are fed out of Q and NOT Q. It's a busy 
time, and if the input clock is very narrow it's a very busy time indeed. 
With very narrow pulses being read into a circuit, it is possible to miss 
a pulse and give the wrong output. 

The master-slave design was intended to overcome this possibility by 
using the main part of the pulse to read the values at the J and K inputs 
and then, on the falling edge, to pass the appropriate signals out via Q 
and NOT Q. 

The overall action can be likened to a series of barges going through 
a lock: 

1 Both lock doors are closed. 
2 The entrance door opens and the lock is loaded with barges. 
3 The entrance door closes trapping the barges inside. 
4 The exit door opens and the barges come out. 

Now, translating this into Digispeak, we have the following action: 

1 The JK inputs and the Q and NOT Q outputs are isolated. 
2 As soon as the leading edge of the clock pulse reaches logic 1, the 

data enters and is stored inside the JK. 
3 At the end of the clock pulse, when the falling edge leaves the logic 

1 level, the J and K inputs are disconnected preventing any 
latecomers from getting in. 

4 The data is transferred to the Q and NOT Q outputs. 

See Figure 13.7. 
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Figure 13.7 
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master-slave JK 
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A clock pulse 

A master-slave trick 
Some master-slave JKs can play a trick that can cause an unexpected 
output that is difficult to trace. Although both master-slave JKs and 
negative edge JKs switch on the trailing edge of the clock pulse, they 
can give different results when fed with the same waveform. That 
sounds odd. 

In Figure 13.8 both JKs have their J and K inputs settled happily at logic 
0 before the negative-going edge of the clock pulse. In the case of the 
edge triggered JK, the logic 0 simply tells the JK to stay in its old state 
which, in this case has Qout = o. 

Figure 13.8 
The great Clock 
master-slave JK 
trick J input 

K input 

Qout from negative 
edge triggered JK 

Qout from a 
Master slave JK 
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Logic 
levels 

In the case of the master-slave JK, we have allowed the J and K inputs 
to go to logic 1 for a moment but have safely restored the logic 0 level 
before the end of the clock pulse. The master-slave circuitry has the 
ability to remember that one or both of the inputs have been high at 
some time during the clock pulse. 

When the negative edge occurs, the master-slave responds as if the 
high inputs are still there. In this case, with both J and K apparently 
high, the JK toggles. This doesn't happen with an edge triggered JK, 
which simply reads the input values at the time of the clock edge. 

Set and preset inputs 
When our computer gets itself into a hopeless muddle and won't 
respond, the last resort is for us to press the reset button. This button 
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over-rides the program operation in the microprocessor and sets 
everything back to the starting point. 

All bistables and many other integrated circuits have the ability to be 
reset by over-riding all other inputs and putting the Q output at logic 
0. Similarly, many digital ICs can also set the Q output to logic 1. 

The reset input is called 'clear', and is written as CLR. The line over the 
top indicates that it is an active low input, so we connect it to logic 0 
to reset the bistable. This clear function is called asynchronous, which 
means that it is independent of the clock input. It sends the output to 
0 whenever we like. When the chip is in normal operation, this input 
must be kept at logic 1. 

Some clear inputs are synchronous. That means the outputs do not 
revert to zero state immediately, but do so on the leading edge of the 
next clock pulse. 

The preset or P RE input works in just the same way, except that in this 
case it forces the Q output to go to logic 1. 

When cleared or preset, the NOT Q output takes up the opposite level 
to the Q output. 

As with all inputs to bistables, the preset and clears must be tied to a 
logic 1 when not used. Never leave them floating or they may 
accidentally go low and cause erratic operation of the circuit while 
they are logic 0, over-riding any other inputs. 

D-type bistable 
Now that we have sorted out the JK bistable, the others are very easy. 
in fact, they are only slight modifications to the basic JK. 

Think back to the JK truth table. We have the two cases where J and K 
are at different logic levels, and two cases where they are the same. 

The D-type only uses the first two situations, where J and K have 
different values. This reduces the truth table to only two lines, and this is 
the only difference between the D and JK bistables. Simple, isn't it? 

How do we manage to ignore two lines in the JK truth table? Simple 
again; we just make sure that they don't occur. We do this by 
connecting a NOT gate between the J and K inputs. With a NOT gate 
between them, J and K can never have the same value. 

The finishing touch is to call the input 'D' rather than J, and make the 
old K input an internal connection so that the D-type bistable has only 
a single data input. The symbol and truth table are shown in Figure 
13.9. 

We can buy a D-type or we can connect a NOT gate across the inputs 
of a normal JK to make our own, just as we wish. 
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Figure 13.9 
The D-type bistable 

Do-it-yourself D type Ready-made D type 

D __ Ij i i 0 
CK CK 

input output 
D Q.,I 
0 0 
1 1 

Note: they will probably 
have presets and resets 

When we see the truth table, it seems a bit pointless. The inputs are 
exactly the same as the outputs- so why bother? The only benefit is 
that the output data changes in synchronism with the clock pulse and 
the rest of the circuit. This bistable is widely used for shifting data 
around in microprocessor systems, hence the name 'D' for 'data'. 

Since the input and output logic levels are always the same, this 
bistable is sometimes referred to as a 'transparent latch'. 

T-type b is tab le  

T is for toggle. This again is really a JK in disguise. In the JK truth table, 
we remember that the effect of holding J and K at logic 1 is to make the 
outputs toggle. The output rectangular waveform runs at half the 
frequency of the input, just as we saw in Figures 13.4 and 13.5. This 
is the purpose of this bistable. 

Unlike the D-type we cannot buy one readymade, but we don't have 
to. It is just a JK with the J and K inputs permanently connected or 
'hardwired' to logic 1. 

Figure 13.10 
The T-type bistable 

CK 

logic 1 
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CK ". iiii -o 

input output 
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If you were pleased with the simplicity of the D-type truth table, be 
prepared to be positively delighted when you see Figure 13.10. 

That's all of the bistables. In the next chapter we will start to make use 
of them. 

Quiz time 13 

In each case, choose the best option. 

1 A D-type bistable: 

(a) changes its output state after every clock pulse. 
(b) has a memory state when both inputs are at logic 0. 
(c) doubles the input frequency. 
(d) is a clocked bistable. 

2 A JK bistable can be converted to aT-tyPe by- 

(a) adding a NOT gate between the J and K inputs. 
(b) connecting both inputs to logic 1. 
(c) disconnecting the K input. 
(d) applying a square-wave input signal of twice the required 

frequency. 

3 A JK bistable' has inputs Of J = o, K 1' and Q =" O. 
After the next clock pulse: 
(a) the NOT Q output would be at logic 1. 
(b) the Q output would be at logic 1. 
(c) the output is uncertain, it depends on the clock pulse. 
(d) the preset input would go high. 

4 The symbol > on a bistable symbol indicates: 
(a) that the bistable is negative edge triggered. 
(b) the pin that is to be used as the input. 
(c) that the bistable is edge triggered. 
(d) the direction of data flow. 

5-  The inputs appliecl to a T-typ.e bistable are T= O, 
a square-wave clock pulse, CLR = 1 and PRE = O. 
The Q output will change to: 
(a) logic 1 after the next clock pulse. 
(b) logic 0 immediately. 
(c) logic 1 immediately. 
(d) logic 0 after the next clock pulse. 
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Asynchronous counters 

Counters are used to count the number of input pulses occurring in a 
circuit. The pulses can be derived from radio transmissions, a 
computer system or, very slowly, the number of coins being fed into a 
vending machine. 

We can build them from JK bistables or D-type bistables. It will not 
come as a surprise to hear that counters are available in integrated 
form. 

So why build them ourselves if they can be bought readymade? 

Three reasons for building our own counter: 

I We need to know the circuitry and possible problems because we 
will certainly meet them in existing equipment. 

2 We can build a counter that meets our design requirements. Like all 
off-the-peg equipment, standard counters meet standard needs. But 
we may not be standard. 

3 It's fun. 

Reasons for using an integrated counter: 

I They are cheaper, easier and quicker to build. 
2 They consume less total power. 
3 They take up less space. 

Integrated counters are discussed in Chapter 15. 
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H o w  c o u n t e r s  w o r k  

As we saw in the last chapter, the output of a JK bistable can be made 
to toggle if the two inputs are connected to logic 1. 

If we look at Figure 14.1, we are reminded that the output is running 
at half of the frequency of the input clock. We can stay with the idea 
of a frequency divider, or we can look at it in a different way. We can 
note that at the beginning of the output cycle arrowed on the diagram 
the Q output is held at logic 0, and it then changes to logic 1 for the 
second half of the cycle. 

Figure 14.1 
A divide-by-two 
circuit 

Clock input J 

Q output 
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v 
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F o Logic 
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.... 0 

This is a binary count. It counts up 0, 1 and then resets to 0 and starts 
again. Admittedly it could equally well be described as counting down 
1,0 then resetting to 1, but at the moment this doesn't matter. The thing 
is, it is either a frequency divider or a counter, whichever we want. 

The number of different counts before its starts again is called the 
'modulo', so in this case we could describe the circuit as a modulo-2 
counter, usually abbreviated to a mod-2 counter. 

M o d - 4  counter  

If we were to use the output of the mod-2 counter as the clock for 
another T-type bistable, that bistable would also divide its input by 
two. Overall, then, the effect would be a circuit that divides the 
original input by four. We have built a mod-4 counter (Figure 14.2). 

We can see the count by reading the values of Qo and QI: 

1 They start as Q0 = o, Q1 = o, and the count is 00. 
2 After the trailing edge of Q0, the values become Qo = 1, Q1 = o, 

giving a count of 01. 
3 After the next trailing edge of Qo, the values become Q0 = o, 

Q1 = 1, giving a count of 10. 
4 Then the values become Qo = 1, Q1 = 1, giving a count of 11. The 

next count returns to 00, and thereafter it counts continuously. 

There is no ambiguity regarding the count here. It is definitely counting 
up in the binary sequence 00, 01, 10, 11, 00, 01 . . .  
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Figure 14.2 
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M o d - 8  c o u n t e r  

We could add another bistable on the end of a rood-4 counter and 
have a mod-8 counter. The count starts from 000 and then proceeds 
001,010 etc. up to 111, then resets to 000. This is shown in Figure 
14.3. Another bistable would make it mod-16 and so on; we could go 
on for as long as we wanted. 

Figure 14.3 
We can add 
more bistables 
as required 
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All these counters have been counting up from zero, and we have 
been using the Q output from each bistable for two functions: 

1 Providing the output counts. 
2 Providing the clock input to the next bistable. 

The NOT Qs have been ignored, so let's see what happens when they 
join in the fun. 

A few experiments 
We will use the mod-4 counter in Figure 14.2 as the test-bed, but we 
must appreciate that any effects noticed are going to apply equally 
well to all counters, however many bistables are used in the design. 

In Figure 14.4, we leave the circuit alone except for taking the output 
from the NOT Q outputs rather from the Q output. The effect is that the 
count now starts at 11 and counts down to 00. It is not difficult, then, 
to change an up counter to a down counter. 

Figure 14.4 
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Notice that it still acts as a divide-by-four frequency divider. 

Using NOT Q for the clocks 
Let's see what happens if we return to our starting point in Figure 14.2, 
but this time we use the NOT Q outputs to supply the clock for each 
IC but stay with the Q for the count. What do you think will 
happen? 

The modified circuit is shown in Figure 14.5. The result is that, once 
again, it will count down. 
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Figure 14.5 
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The last possibility 
We will round this off with the last possibility: the count and the clock 
both coming from the NOT Q. This is the exact opposite arrangement 
to the one we started with in Figure 14.2. 

Do you have a hunch about this outcome? Have a look at Figure 14.6 
and see if you were right. 

Figure 14.6 
Count and clock 
from the NOT 
Qs 
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Trailing edge summary 
If we summarize the results as in Figure 14.7, we may be able to spot 
a pattern. Doing this wil l save drawing out pages of waveforms to work 
out what would happen with a given circuit. 

Figure 14.7 

Negative- 
edge counters 

output count I 
taken, from Q I 

I ,UP c~ er I 

l 

Where are the 
clocks taken from? 

I , . 

l 
l ~ outPuts I 

. . . .  l ' ' - I  
output count I [output count I 
taken from Q I [ taken from ~1 

l output count [ I taken from-Q I i 

[Down counter I 

The golden rule is: 

In trailing edge bistables, whenever the same pin supplies the 
next clock and the count output, the result is an UP COUNTER. 
In all other cases it's a down counter. 

Leading edge counters 
If we use leading edge bistables we can try out a basic mod-4 counter. 
This is shown in Figure 14.8. 

We can see from the timing diagram that this counter is a down 
counter. Now, this is opposite to the result that we got from the 
negative edge bistables under the same conditions. This is not a fluke 
- all the results we achieved from the negative edge triggered bistables 
are reversed when we come to the positive edge counters. 

The golden rule is: 

In leading edge bistables, whenever the same pin supplies the 
next clock and the count output, the result is a DOWN 
COUNTER. in all other cases it's an up counter. 
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Figure 14.8 

A leading edge 
counter 
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--- count starts 

01 

i 
FLSB 
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00 

We have seen that we can build a counter or frequency divider from 
positive or negative edge bistables to count up or down. But they can 
only count up to 2, 4, 8, 16, or any other power of 2. What about the 
other numbers? 

Count up to anything 
This could also be entitled 'count down to anything'. Up counters 
have been used in the examples, but the same procedures can be 
followed when we are dealing with down counters. 

If we had three bistables connected as an up counter, their natural 
count would proceed O, 1,2, 3, 4, 5, 6, 7 and then go back to 0 to start 
again. 

To modify the count to be O, 1, 2, 3, 4, 5 and then back to 0 we have 
to find a way to stop the count from going to 6 and instead switch the 
output back to O. 

Switching back to 0 is easily done by putting logic 0 onto the 
input. Our main problem is applying this 0 at the right time. To do this, 
we kill off the count of 6 and replace it by a 0 output. 

The decoder circuit 
When the count of 6 occurs the output from the JKs will be Qo = o, 
Q1 = 1 and Q2 = 1, so what we need to do is to design any gate circuit 
that will provide an output of 0 when the three inputs are at O, 1 and 
1 and connect this 0 output to the clear inputs to each of the JKs. All 
three will reset and the count will start again. 
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Before we rush into building such a circuit we should think carefully 
to see if it can be done more simply by checking the sequence of the 
outputs. 

This is" 

Q2 Ql Qo 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 (replace this line with O, O, O) 

Looking down the columns, we have to find some combination of 
values that is unique to the line we want to replace. The answer, in this 
case, is that it is the first time when Q1 and Q2 are both at logic 1. So, 
this is enough for us. The logic circuit needed is any one that has two 
inputs of logic 1 and provides an output of logic 0. That's easy. A 
2-input NAND gate will do that nicely; we don't need the complica- 
tion of the third input. 

All we do then is add the NAND gate to the circuit. Its input is taken 
from the Q1 and Q2 outputs, and its output is used to clear Q1 and Q2. 
It is often a good idea to clear all three bistables, even though Qo is 
already at 0. It has the advantage of ensuring that we don't forget the 
CLR input and accidentally leave it floating. This would run the risk of 

Figure 14.9 
Modified to 
count 0 -5  
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erratic performance if the floating input went low for a moment and 
reset this bistable. The complete circuit is shown in Figure 14.9, with 
the decoder circuit printed in bold. 

A small point 
If we look closely at the Q1 output waveform, we can see that a small 
spike occurs at the moment that the circuit is reset to zero. This will be 
discussed at the end of this chapter. 

Example 
How could we make the circuit count from 0 to 2 and then reset? 

Answer" 

Looking at the count sequence: 

Q2 Q1 Qo 
o o o 
0 o 1 
o 1 o 

the next step is' 

0 l 1 

and this is the one to use to initiate the reset action. Using the 2-input 
NAND gate we could simply shift its inputs to Qo and Q1 (see Figure 
14.10). 

Figure 14.10 

Now it 
counts 0 -2  

CK 

+ t out Y out t I + 

Example 
What is the simplest way to achieve a count of 0, 1, 2, 3 and start 
again? 

Answer: 

Simply take the outputs from Qo and Q1 and just ignore Q2; we don't 
need a reset circuit. Don't forget the simple answers. 
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Example 
Here is an incorrect answer. Can you spot the mistake that was 
made? 

We wanted to count from 000 to 011 then reset. 

The count went: 

Q2 QJ . Qo 
o o o 
o o 1 
o 1 o 
o 1 1 

and the reset count is Q~ = 1, Q1 = 0 and Qo = 0. 

Since we know that Q1 and Q2 are at logic 0 when we want to reset, 
we have a good idea. We use the NOT Q outputs to feed the NAND 
gate because they will be at logic 1 at the required time. 

We build the decoder circuit in Figure 14.11. We switch it on and 
nothing happens, there is no output count at all. 

Figure 14.11 
Why doesn't 
this circuit 
work? 

CK 

out out out 

+ ~ I + ~ 1  + 

These do NOT join J Clear " 
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What did we do wrong? 

Answer: 

When the circuit resets, all the Q outputs go to logic 0. This means all 
the NOT Q outputs go to logic 1. These logic ls are applied to the 
NAND gate, which has a logic 0 output, which resets the circuit. 

The circuit is held in a continuous loop so it stays permanently in its 
reset, or clear, condition. 

There is nothing inherently wrong with using a NOT Q output if it is 
convenient. A correct answer is shown in Figure 14.12. 



Figure 14.12 
A better answer 
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Asynchronous counters 
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Clear 

Notice that this is a correct answer, not the correct answer. We can use 
whatever gates we like, providing the counter works. 

Using the presets 
So far, we have seen how to stop the count at any particular number 
- and, incidentally, how to build a frequency divider for any required 
ratio. In much the same way we can use the preset inputs to start the 
count at any particular value. 

The only change is to take the output back to preset or clear as 
necessary. 

In Figure 14.9, we stopped counting at a count of 101 and then 
returned to 000 to start again. Now we will modify the circuit to count 
from 010 to 101. 

The output count will be 010, 011, I00, 101 and then 010. 

The only change will be to move the connection going to the CLR 
input of the second bistable up to the preset input to switch QI, as in 
Figure 14.13. 

Figure 
14.13 
Starting a 
count at 
010 

, i l l  i l l  

, . . . . . .  out,  out T . , .  .... outT 

Clear 
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W h y  are these called "asynchronous" counters? 

As well as asynchronous, they are also called 'ripple' counters or 
'ripple-through' counters. 

Ripple-through is quite a good name because it describes the action 
nicely. The point here is that the clock is only applied to the first 
bistable; it switches and only then does it provide the clock to the 
second bistable. The clock to the second bistable has been delayed by 
the propagation time of the first bistable. When we have a large 
counter, there is a significant delay as the signal 'ripples through' the 
various stages. 

The clock is therefore not applied at exactly the same moment to all the 
bistables- hence they are not perfectly synchronized. For this reason 
they are called asynchronous counters. More about this in a moment. 

There are three problems with asynchronous counters; 

1 The race problem. 
2 Glitches. 
3 'Clock skew' or 'dynamic hazard'. 

The race problem 
This problem occurs at the moment when the count is reset by the 
voltage being fed to the clear inputs. 

The decoded output tries to reset all the counters to zero but, and 
here's the problem, as soon as one of them does reset, the decode 
circuit is switched off. 

If we glance back to Figure 14.9 we reset the circuit as soon as the 
output of Q1 and Q2 have changed to logic 1. Now let's assume that, 
due to manufacturing tolerances or different logic families, the middle 
bistable is very fast and the one on the right is very slow. As soon as the 
NAND output applies logic 0 to the CLR inputs, the middle bistable 
will rapidly reset. The NAND gate will notice that one of its inputs has 
gone low and will change its output to logic 1. This cancels the CLR 
command to the bistables. If the slow bistable on the right still hasn't 
changed, then it may not do so. 

This means that the count may not restart from zero. We have a race. 
Can all the bistables be cleared (or set) before the control voltage is 
removed? 

Glitches 
In the timing diagram in Figure 14.9 we can see that a small spike 
occurs on the Q1 output just as the circuit resets. The spike occurs 
because all the bistables used for decoding must be at logic 1 before 
the NAND gate can reset the circuit. However fast the NAND gate is, 
the spike must occur first. 
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This 'glitch' is very difficult to detect by test instruments, and is bad 
news in digital circuits. Glitches can cause all manner of erratic 
behaviour and odd symptoms. If we are using an asynchronous 
counter in a slow circuit, such as controlling light displays, the spike 
exists for such a short time that we cannot detect it but the logic circuit 
may still malfunction for no obvious reason. 

'Clock skew' or 'dynamic hazard' 
This is another trick digital circuits can play to give us hours of fault- 
finding fun. 

In Figure 14.14 we have the output from a counter as it counts up from 
000 to 100 (or 0 to 4 in denary). 

In reality, as we found with glitches, the JKs will take time to respond. 
Their propagation time will mean that after Q0 switches, a few 
nanoseconds will pass before Q1 responds and then a further few 
nanoseconds as we wait around for Q2 to provide its output. 

This means that the timing diagram in Figure 14.14 is not telling the 
whole truth. The edges of all waveforms are shown aligned, whereas 
we know that they are not. 

Figure 14.14 
A straightforward count 
- or is it? 

' i [ 
Qooutput .~ I I 
Q1 output _ [ _ i 
Q2~ "~ ' ' ! ..... 

Decimal count o 

J 

1 2 3 4 

In Figure 14.15, we expand the time scale enormously until we can 
see the propagation time. Notice that the trailing edges, which were 
previously shown in vertical alignment, are now shown at an angle, 

Figure 14.15 

What a count! 

propagation time .. 

Q o ~  _ I l 

Q ~ output 

Q 2 output 

Decimal count 6 4 0 1 

i 

0 2 3 2 

clock skew - ~  
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giving rise to the term 'clock skew'. More important than this - we get 
a real shock when we look at the count. 

These time delays, as we have seen, have the effect of throwing up 
spurious counts. Clock skew or dynamic hazard is a real problem in 
digital circuits, and sometimes accounts for 'inexplicable' failures in 
circuits. It is even more puzzling when the output is displayed on a 
light panel since the lights (and our eyes) tend to respond only to the 
main count and hide the true count, which is playing havoc with the 
rest of the (faster) digital circuit. 

Remember too that the timing diagram in Figure 14.15 is necessarily 
distorted. The real propagation time may be 5 ns per bistable. As 
drawn the delay is about a millionth of the width of the clock pulse, 
and therefore if it was drawn to scale the skew would not be apparent. 
Even using instruments like oscilloscopes the skew is often missed, and 
the circuit is said to have 'decided' not to work. 

Like glitches, these failures are very difficult to detect, so we need to 
watch out for them. 

Quiz time 14 

190  

In each case, choose the best option. 

1 ~ How many T-type bistables'would be needed'to 
divide a clock frequency by 64? 
(a) 32 
(b) 100 000 
(c) 6 
(d) 5 

2 Dynamic" hazard is'caused byi 
(a) the preset inputs being connected to logic 1 levels. 
(b) D-type bistables. 
(c) propagation delay in the bistables. 
(d) decoder circuits. 

3 If'a small'circle 'is shown on the 'input of a' bis'table ~, 
this indicates that the input is: 
(a) a reset pin. 
(b) active low. 
(c) not to be used. 
(d) active high. 
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4 If an up counter uses negative edge bistables and 
takes its output from the NOT Q outputs, the 
clock for each bistable is taken from: 

(a) the previous Q output. 
(b) the previous clock. 
(c) either the previous Q or NOT Q. 
(d) the previous NOT Q output. 

5 A decoding circuit is used to change the: 

(a) maximum and minimum value of the count. 
(b) speed of the count. 
(c) amount of skew. 
(d) direction of the count. 
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Synchronous and 
integrated counters 

Synchronous counters 

Advantages 
Both race problems and dynamic hazards can be overcome by using 
synchronous counters, also called 'parallel' counters. 

The main difference in the design of synchronous counters is that the 
original clock pulses are taken to all bistables, not just the first. The 
clock is therefore fed in parallel to all bistables - hence the alternative 
name of 'parallel' counter. 

This has the effect of making the synchronous counter faster because 
all bistables switch at the same time, so we don't have to wait for the 
change to ripple through the chain of bistables. 

Disadvantages 
We have mentioned in Chapter 11 that gates cause a momentary 
increase in current at the moment of switching. Bistables cause the 
same problem. Synchronous counters are designed to switch the 
bistables at the same moment, so the accumulated current burst can be 
severe. This requires power supplies with higher current capability and 
much improved decoupling. 

The only other small disadvantage is that the circuitry is very slightly 
more complex. But only slightly; not enough to worry us. 
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A s y n c h r o n o u s  u p  c o u n t e r .  

Note in Figure 15.1 the three significant features: 

1 The clock goes directly to each bistable 
2 There is extra decoding compared with the equivalent asyn- 

chronous counter 
3 Only the J and K inputs to the first bistable are held to logic 1. 

Figure 15. I 

A 
synchronous 
up-counter 
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LSB . . . . . . . . .  MiB 
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Clock input 

Qooutput 
Q 1 output 

Q2output 

COUNT 

-- i  .... i 1 t i ..... �9 
i i i ! I 
000 001 010 011 100 101 110 111 000 

LSB 

MSB 

Action of the circuit 
The bistables have been labelled A, B and C, and let's assume that at 
the start all the outputs are at logic zero so QA = QB = Qc = o. The 
bistables are master-slave JKs. 

The AND gate is there to detect the moment when the output of the 
first two bistables is at logic 1. This detects a binary count of 11 and 
sends a signal to switch on the next bistable to give the next count as 
1002. 

First clock pulse 
State of inputs before the clock pulse: J, K of bistable A -- 1; J, K of 
bistable B = 0; J, K of bistable C = 0. 

Action: when the trailing edge of the clock occurs, bistable A toggles 
but B and C remain at zero because their J and K inputs were held at 
logic 0. 

Output state after the clock pulse: QA = 1, QB = 0, Qc = 0, giving a 
binary count of 001 or 1 in denary. 
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Second clock pulse 
State of inputs before the clock pulse: J, K of bistable A = 1; J, K of 
bistable B = 1; J, K of bistable C = 0. 

Action: Bistables A and B will toggle but bistable C will remain at logic 0. 

Output state after the clock pulse: QA = 0, QB = 1, Qc = 0, giving a 
binary count of 010 or 2 in denary. 

Third clock pulse 
State of inputs before the clock pulse: J, K of bistable A = 1; J, K of 
bistable B = 0; J, K of bistable C = 0. 

Action: Bistable A toggles, bistable B remains at logic 1 and bistable C 
remains at logic 0. 

Output state after the clock pulse: QA = 1, QB = 1, Qc = 0, giving a 
binary count of 011 or 3 in denary. 

Fourth clock pulse 
State of inputs before the clock pulse: J, K of bistable A = 1; J, K of 
bistable B = 1; J, K of bistable C = 1 (AND gate now activated). 

Action: All bistables will toggle. 

Output state after the clock pulse: QA = 0, QB = 0, Qc = 1, giving a 
binary count of 100 or 4 in denary. 

The output waveforms are exactly the same as those we saw with the 
asynchronous counter except for the absence of clock skew. 

Adding more bistables for a higher count 
We can carry on adding more bistables to give any count that we 
require, if we wish to add further bistables, each would be fed via 
another 2-input AND gate with its input fed from the previous two 
bistables, it is tempting to think that the next JK would need a 
3-input AND gate to recognize the time when QA, QB and Qc are 
all at logic 1. However, the existing AND gate provides us with 
A.B, so by adding another 2-input AND gate and a little Boolean 
we achieve (A.B).(C)= A.B.C. An extended counter is shown in 
Figure 15.2. 

Figure 15.2 
Synchronous 
counlers can be 
easily extended 
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UP counter or down counter? 
If we are using negative edge triggering, look to see where the output 
is taken from. If it's the same point that is being used to provide the 
clock input to the next bistable then we have an up counter; if not, it's 
a down counter. 

With a positive edge triggered circuit, ask the same questions but 
expect the opposite answers. 

Modulo-n counters 
Counting up to any number, or between two numbers, is achieved by 
adding decoding circuits using the clear and preset inputs as we did 
with asynchronous counters. In fact, the circuitry is exactly the 
same. 

Remember, though, that this decoder circuitry to control the start and 
stop points of the count is in addition to the AND gates that we added 
to build the basic synchronous counter, so the circuit can look pretty 
impressive by the time it is complete. 

Example 
Figure 15.3 shows a counter. Study the diagram and answer the 
following questions: 

Figure 15.3 

So, what have 
we got here? 

out out out out 

CK 

+ = logic 1 

1 Is this a parallel counter or a ripple counter? 
2 Is it an up counter or a down counter? 
3 At what binary value does the count start? 
4 What is the last count value (in binary)? 
5 What is its mod value? 
6 If the outputs were moved from the Q to the NOT Q outputs, how 

would the count proceed? (Note: no other changes are made.) 

Answers: 

1 Check to see whether the same clock input is connected to all 
bistables. It is, so it's a parallel counter. 
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2 It's an up counter. The outputs are taken from the same points as the 
J and K inputs to the next bistable. 

3 When the decoding circuit produces a low, bistables B and C are 
preset and A and D are cleared. The output is therefore QA = 0, 
QB = 1, Qc = 1 and QD = 0. This gives a starting count of 0110 in 
binary, 6 in denary. 

4 The reset NAND gate operates the first time bistable C and D are 
both set. This will occur at a count of 1100 in binary, 12 in denary. 
Now remember, this count is killed off by the reset circuit and so the 
last count is the one immediately before this o n e -  that is, binary 
1011 ordenary11. 

5 Mod-6. The count is 6, 7, 8, 9, 10, 11 and then 6 again. This gives 
six different counts, which is mod-6. 

6 In denary it would count down: 9, 8, 7, 6, 5, 4 and then reset to 9. 

Here's how to work out the final answer. 

The limits of the count when using the Q outputs were 6 and 11. When 
it was counting six the output binary values would be: QA = 0, 
QB = 1, Qc = 1 and QD = 0. The NOT Q values are just the opposite, 
so they would be NOT QA = 1, NOT QB = 0, NOT Qc = 0 and NOT 
QD = 1. The value is 1001 in binary or 9 in denary. 

The other end of the count would be denary 11 or binary QA = 1, 
QB = 1, Qc = 0 and QD = 1. Inverting each bit will give us NOT 
QA = 0, NOT QB = 0, NOT Qc = 1 and NOT QD = 0. This is binary 
0100 or denary 4. 

Integrated bistables and counters 
As mentioned in the previous chapter, integrated counters are usually 
easier to use than stringing a series of bistables together. They win on 
cost, power consumption, ease of use and space. 

A couple of general points. Not all bistables are available in all logic 
families. Those chosen here are readily available in the HC fami l y -  
which, at the moment, is our first choice for new designs. All of these 
ICs are also available in the traditional 74LS family. 

74HC74, 74LS74 
This is a dual D-type positive edge triggered flip-flop with clear and 
preset. 

The 'dual' just means we have two of them in the same package. They 
are quite independent, and if only one is required just ignore the other 
one. 

The pin-out diagram is shown in Figure 15.4 and the truth table is in 
Table 15.1. Its maximum switching frequency is about 25 MHz. 
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Figure 15.4 
The 74XX74 
D-type 
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Table 15.1 Truth table of the 74XX74 

PRE aR 

Inputs 
, 

CLK 

Outputs 

Q 

H 
L 
H 
H 
L 

Qo 

Q 

L 
H 
H 
L 
H 

Qo 

Truth table symbols 
X means 'don't care'; the input can be held at either logic level or any 
voltage in between. 

H, L refers to the logic levels. H is high and refers to logic 1, L is low 
and equates to logic 0. This is the normal way of showing the voltage 
levels in truth tables used to describe the operation of a device. It can 
also be found when describing the operation of logic gates. 

1' refers to the leading or positive-going edge of the pulse. 

Qo refers to the state of Q before the current clock pulse. 

Note how it is possible to take both the preset and the clear inputs to 
a low state and force both Q and NOT Q to a high state. This is an 
unstable state, and it doesn't last once either or both of them return to 
their normal high state. 
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The truth table, line by line 
The first three lines of the truth table just show that the preset and clear 
inputs control the output regardless of the other inputs. 

The last line shows that, if the clock is missing, everything stops. 

The remaining lines show what we regard as the normal operation of 
the D-type bistable. An input is applied to D, a clock pulse is applied 
and the D input state is copied to the output. 

Figure 15.5 shows the connections necessary to make the D-type 
operate correctly. 

Figure 15.5 
One of the 
D-types all 
wired up and 
ready to go 

+ve supply 

input data 
clock input I 

Q out " [ ~  
out - . _ ~  

0 volts 

74HC 112, 74LS 112 

This is a dual master-slave JK with data transfer occurring on the 
trailing edge. 

The active low preset and clear inputs are disabled during the set-up 
time that extends for the 25 ns or so immediately before the data 
transfer. During this set up time it reads the input data from J and K. Its 
maximum switching frequency is about 25MHz, similar to the 
74XX74. 

The pin-out diagram is shown in Figure 15.6 and the truth table is in 
Table 15.2. 
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Figure 15.6 
The 74XX1 1 2 
JK 

PRE 
I 

j I , Q 

K - ~  
I I 

I 
CLR 

Synchronous and integrated counters 

1 CLK r ~ 

1K E 
1J ['g" 

1PRE E 

1Q['5 

l~[gi 

GND [~- 

~J ~V~o 
,ctR 

N 2 e-c-~ 
~ 2CLK 

~ 2K 
~ 2J 

N  ,,RE 
9-12Q 

Table 15.2 Truth table of the 74XX112 

PRE CLR 

Inputs 

CLK K 

X X X 
X X X 
X X X 
J, L L 
J, H L 
$ L H 
J, H H 
H X X 

Outputs 

Q 

H 
L 
H 

Qo 
H 
L 

Toggle 

Qo 
, 

(3 

L 
H 
H 

Qo 
L 
H 

Toggle 

Qo 

Apart from the obvious fact that it requires both J and K inputs as 
opposed to the single D input of the 74XX74, there are no surprises at 
all. To accommodate the J and K inputs, the pin-out has been extended 
to a 16-pin package. 

The truth table, line by line 
Most of this follows the pattern used in the 74XX74 truth table. 

The first two lines show the effect of the asynchronous preset or clear 
being taken low. The third line refers to the unstable state that occurs 
only while the preset and clear inputs are both held low. Notice again 
that these inputs over-ride all the other inputs. 

The next four lines show that changes occur on the trailing edge of the 
clock and they follow the normal responses to change in the level of 
J and K. The seventh line shows the toggle state. 
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Finally, the last line shows the obvious nil response to no clock 
input. 

Figure 15.7 shows the connections for a mod-4 synchronous up 
counter. 

Figure 15.7 

A JK synchronous 
modulo-4 counter 

+ve supply 
. . . .  

clock input 

E 
E 

Output 

0 volts 

7 4 X X 1 9 3  

2 0 0  

This is a 4-bit synchronous up/down counter with asynchronous 
clear. 

As the name would suggest, there are four bistables inside connected 
as a synchronous counter. The pin-out diagram is shown in Figure 
15.8. 

It has two separate input clocks; one makes it count up on each 
positive edge of the waveforrn and the other causes it count down. 
Either clock can be used at any time provided the other clock is held 
at a high logic state, so we can mix up and down counting anywhere 
from 0-15 in binary. As with most other counters there is no minimum 
operating frequency, so it can be used for slow inputs such as people 
being counted through a turnstile. 

The clear input, sometimes called the master reset, is active high and 
will over-ride all other inputs. This means that it must be held at 
logic low to allow the count to proceed. This reset is asynchronous. 
This means that it will clear the input immediately. Some counters 
have synchronous clears or resets that take effect on the next clock 
pulse. 



Synchronous and integrated counters 

Figure 
15.8 
The 
74XX 193 

A / I Q0 
B Q1 
C Q2 
D Q3 

LOAD 
UP CLOCK Borrow 

DOWN CLOCK Carry 
CLEAR 

US Mil. Spec. symbol 

CLEAR ~ ~ . ~  UP CLOCK Carry 
DOWN CLOCK 

LOAD rj Borrow 

A ~I I Q0 B Q1 
! D Q3 

BE 
Q,E 
QolT 

DOWN ~ 

Q, I'g" 
Q, ['/" 

GND E 

I IIII ~ 

I•CLR 
1~ Borrow out (BO) 

N (co) 

No 
N~ 

IEC symbol 

We can join up these bistables to form larger counts by connecting the 
pin BO to the next chip's 'down clock' and the CO pin to the other 
chip's 'up clock'. For larger counts there are other chips that are easily 
available, like the 74HC4060 which is a 14-bit counter. 

Operation 
Refer to Figure 15.9. 

Let's assume we would like to load it with the number 7 then count up 
from 8 to 12 and stop. 

Step 1 : We start by applying a positive-going pulse to clear the outputs 
Qo to Q3. This makes all the inputs to return to zero regardless of all 
other inputs. 

Step 2: Next, we enter the starting values - in our case A = 1, B -- 2, 
C = 3 and D = 0. When all is ready, we apply a negative-going 'load' 
pulse. The timing of the load pulse is not critical; it can be delayed as 
long as we like. This can be the 5 minutes while we stare at the 
vending machine wondering whether to have coffee or tea. As the load 
pulse occurs, the outputs Qo-Q3 are set to the loaded values so our 
outputs go to Q0 = 1, Q1 = 1, Q2 = 1 and Q3 = 0. 

Step 3: Nothing happens now until a clock pulse occurs. As mentioned 
a moment ago, there are two clocks, one for counting up and one for 
counting down. The unused clock must be held at logic high. We 
wanted to count up from 8 to 12, so we need five positive edges to 
occur. 
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Figure 15 .9  

Timing 
diagram of a 
74XX193 
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Step 4" To stop the count, we just hold both clock inputs at a high level. 
If we wished, we could now continue counting or apply a clock pulse 
to the 'down clock' to count downwards. 

Good value for money  
Inside this IC we get five bistables and 47 gates in a ready-built circuit, 
all for the cost of two bistable chips! This is a really nice one to use for 
counting experiments. 

D e c a d e  c o u n t e r s  

Since we live in a denary world, it is often the case that we wish to 
count up to 10. We can achieve this by designing any form of counter 
to reset after 10 counts. Then by connecting a series of them together 
we can easily extend the counter to 100 or 1000, or whatever we 
want. This is ideal if we are counting events like products on a 
conveyor belt or litres of petrol being pumped into a car. 

For convenience, some counters are available that are ready-made for 
a count of 10 and are, of course, referred to as denary counters. An 
example is the 74XX390. 
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Synchronous and integrated counters 

This is a dual version of the 74XX90. The benefit of the dual version is 
that these can be easily connected to provide a single chip count up to 
100. 

Figure 15.10 
The 74XX390 1CKA 

1CLR I ~- 

1QAF 

1CK s 

1Q 8 I 'E 

1 Q c ~  

1QD~ 

GND i ~" 

I I Ill ~ i ~  II Jl 

o c  

2CLK A 

2CLR 

~ 2Q A 

2CK B 

~ 2 Q  e ~ 2Q c 

2Q o 

It is sometimes referred to by the scary title of a bi-quinary counter. 
'Quinary' means a count of five, and the 'bi' just means that we can 
count the five twice. Two fives are 10. It's now a not-so-scary counter. 
The advantage of making it in a bi-quinary form is that, by suitable 
choice of interconnections, we can achieve a count of many multiples 
of two, five and 10. 

Figure 15.11 

The 74XX390 as 
a bi-quinary 
decade counter 

+ve supply 
, , . .  , 

mod-10 o/p - ,"41 
input signal 

,3 
,3 
,3 

74XX390 

0 volts 

Bi-quinary output 
on pins 3, 5, 6 and 7 
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Table 15.3 The bi-quinary count using the 74XX390 

Count 

, , .  

Outputs 

Note: The Q outputs are in an unusual order. The first bistable provides the 'bi' part of 
the count at QA, then Qo, Qc and Q8 count up to five 

Figure 15.10 shows the chip pin-out. The two-decade counters are 
indicated by the '1' or '2' at the start of each pin designation. The rood- 
2 input is called clock A or CLK^, and its output is at Q^. The rood-5 
part uses the input CLKB, and the outputs are on QB, Qc and QD. Each 
decade counter has its own clear. 

Figure 15.11 shows the chip connected as a decade counter. The 
output count is shown in Table 15.3. 

For a mod-lO0 counter, just connect the output from Q^ to input B of 
the next counter. 

Quiz time 15 

In each case, choose the best option. 

1 A synchronous Counter is also' cal led:  

(a) a parallel counter. 
(b) an asynchronous counter. 
(c) a ripple-through counter. 
(d) an up/down counter. 

2'" If a synchronous clear is'activated, the outputs will be: 
(a) reset immediately. 
(b) set to logic high when the clock pulse is applied. 
(c) held at their current state. 
(d) reset at the time of the next clock pulse. 
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3 In a truth table, the symbol X means: 
(a) this facility is not available. 
(b) the connecting wires should be twisted. 
(c) that the logic state is irrelevant. 
(d) no logic level can be applied. 

~1 ..... The term""qn+ 1 m o s t  likely means theiogic-state 
after: 

(a) Qn+2 
(b) Qn-I 
(c) QA 
(d) Qn 

5 A synchronous counter: 
(a) must use trailing edge ]Ks. 
(b) is faster than an asynchronous counter. 
(c) is simpler to build than an asynchronous counter. 
(d) causes clock skew. 
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Some more  counters, 
codes and registers 

The ring counter 
This is an unusual counter in that it does not provide a binary count at 
the output but it does provide a moving sequence of outputs and a 
frequency divider output. 

These counters are usually made from D-type bistables, although JKs 
can be used. They are very simple, with any number of bistables 
connected in a row and the final output connected back to the input 
to form a complete r ing -  hence the name. 

It's an interesting counter to play with, but it is uneconomic for larger 
counts for two reasons. First, by its nature it only produces a single 
count for each bistable whereas with all the previous designs the count 
number has doubled for each bistable added. Secondly, when we have 
more than a few bistables it becomes more economic to use a 
purpose-built integrated circuit. 

The operation can be followed in Figure 16.1. Assume that we start by 
applying an active low clear signal to reset the whole counter to give 
zero outputs. We can choose which preset inputs to activate. In this 
example, we set just the first bistable to keep things really simple. 

Starting point 
The first bistable (A) has a high state at its output that is ready to be 
loaded into bistable B as soon as the clock pulse occurs. At the same 
time, there is a low state applied to the first bistable that is being 
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Figure 16.1 
A ring counter or 
rotate register 

preset preset preset preset preset 

D QA DQB " 
J>A >B 
i 

clock - T q) 

clear 

': D Qc 
>C 

l 

, J 

' D Qo 
>D 

3 i 

m 

b 
>! 

wrapped around from the last bistable (E), again, not loaded until the 
clock pulse occurs. Bistables C, D and E all have logic low being 
loaded from the preceding bistables. 

After clock pulse 1 the high level is loaded into bistable B and low 
levels are loaded into A, C, D and E. 

After clock pulse 2 the high state is passed on to bistable C and all the 
others are loaded with low levels. These levels are applied to the next 
bistable in each case ready for the next clock pulse to be applied. 

Every clock pulse has the effect of transferring the data one step to the 
right, and it will eventually be fed back to the start as in Table 16.1. 

Table 16.1 Ring counter or rotate register operation 

After clock pulse 

0 (start) 
1 
2 
3 
4 
5 
6 

Q1 

We can take the final output from each of the Q outputs. In this way 
we could use this ring counter to switch five external circuits in 
rotation. If these external circuits control the clock pulse, then quite 
complex industrial processes can be performed one step at a time. This 
circuit is also referred to as a sequencer since it can control a sequence 
of tasks. 
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If we decide to take the output signal from just one of the bistables, 
then we have a frequency divider or a way of changing the mark- 
space ratio of the output. The mark-space ratio is the on-off ratio and 
can be changed by presetting a different number of bistables before the 
circuit is clocked. 

If JKs are used, the final Q is returned to the first J input and the final NOT 
Q is returned to the first K input. In each of the other cases, the Q is 
connected to the next J and the NOT Q is connected to the next K. 

Twisted ring or Johnson counter 
This is a simple modification to the ring counter which generates a 
different pattern much loved for light displays and advertising as it 
appears as a moving image. The changes appear slight. The final 
output from the last bistable is inverted by taking it from the 
NOT Q output rather than from the Q as in the ring counter, and 
all the bistables are cleared to start. The twisted ring is shown in 
Figure 16.2. 

Figure 16.2 
A t~isted ring or 
Johnson counter 

-~ ~ ~ "i o 02 . . . .  o a~ ' . D Q. !o 
~ B  - - - - ~ C  �9 . ~ D  - ,, - ~ [  

J, 
v 

" J 

T T clock - ] 

clear ' 
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When all the bistables are cleared, the final NOT Q is at a high state 
that is ready to be fed into bistable A. 

After the first clock pulse QA is high, and remember that the input 
to the first bistable remains high because there will still be another 
high state coming from the NOT Q of the last bistable. As the clock 
pulses occur, the bistables will fill with high outputs until bistable E 
sets. When this occurs its Q goes high but its NOT Q output goes 
low, and the low state will start to be fed along the line of 
bistables. 

Notice how the count pattern now occurs over 10 clock pulses rather 
than the five we had with the normal ring counter. The logic sequence 
is shown in Table 16.2. 
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Table 16.2 Twisted ring or Johnson counter 

After clock pulse 

0 (start) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Qo Q/ Qs 

L 
L 
L 
L 
H 
H 
H 
H 
H 
L 
L 
L 

L 
L 
L 
L 
L 
H 
H 
H 
H 
H 
L 
L 

. . .  and the pattern starts again . . .  

Registers 
A register is just a collection of flip-flops that are used to store or 
manipulate data in the form of logic 0 and logic 1 levels. With registers 
it is usually easier to use the alternative form of 1 and 0 rather than 
high and low levels. 

A flip-flop can only store one bit by being set or cleared, so to handle 
8 bits at a time we would need eight flip-flops and would refer to this 
as an 8-bit register. To save space, an 8-bit register would be shown as 
in Figure 16.3. 

Figure 16.3 

An 8-bit register 

Control Clock Enable Read/ 
signals 

Bit 7 6 5 4 3 2 1 0 

Data connections 

Note how we number the bits starting at bit 0 rather than refer to the 
bistable outputs as QA or Qo etc. This is because registers are often 
used to store data in the form of binary numbers. 
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The register has two distinct groups of connections: the data bits 0 to 
7 and the control signals. 

The data connections or data lines carry the binary levels in or out of 
the register, to set or clear each bistable separately. This data can be 
entered by switches or be derived from external circuits. The number 
of data lines determines the size of the register, so a 64-bit register 
would have 64 data connections. 

Apart from the clock input, there are two new control signals: 

1 Enable. This is a simple on/off switch for the register. The line over 
the top of the word indicates that it is active low and the register is 
'on' when this line is ' low' or at logic zero. Therefore, it follows that 
the register is disabled or switched 'off' when the enable line is at 
logic 1 or 'high'. Nearly all control lines are active low. The benefit 
of having the enable line is that we are able to disconnect a register 
without doing any physical uncoupling of links etc. 

2 Read/write. The terms 'read' and 'write' are used to describe the 
direction of data movement. Loading data levels into a register is 
called 'writing' to it, and we 'read' the data to recover it. 

Using a register 
The sequence is as follows: 

1 The read/write line is taken to logic 0 to allow the register to receive 
data from an external source. 

2 The enable control switches ON the tri-state buffers at the input to 
each flip-flop. 

3 Data is written to each flip-flop and then the enable control puts the 
register to sleep until the next time it is needed. 

How long can the data be stored? 
It will be stored until the power supplies are removed - either by an 
equipment fault or, more usually, by the system being switched off. 
The data does not deteriorate in storage. 

Shift registers 

These are really ring counters without the final connection from the 
output back to the input. 

They are called shift registers because the data is shifted from one flip- 
flop to the next each time the clock pulse occurs. The one we used for 
the ring counter shifted the data from left to right, and such a register 
would be called a 'shift-right' register. 

The one in Figure 16.4 is a shift-left register. The last one in bit 7 drops 
off the end and is lost while, at the other end, a new bit is entered into 
bit 0 (Figure 16.4). 
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Figure 
16.4 
A shift-left 
register 
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7 6 

Clock input --] New data 

5 4 3 2 1 0 

If we tie the input to a logic 0, each clock pulse will move the data one 
step and add a new zero at the right-hand end. The register will slowly 
have its data replaced by zeroes. We could load with ones if we 
wished. 

A real world use for a shift register 
In Figure 16.5, it is controlling an automatic drinks dispenser. The 
customer inserts some money and presses any button of the eight 
available to obtain the drink required - but which button was pressed? 

Figure Data from 
16.5 ~ buttons 
Using a 
shift register 

A bank of 8 buttons 

Outputs to external circuits 

As a button is pressed the associated bistable data changes from logic 
0 to logic 1, so to start with, we can assume no buttons are pressed and 
the response from each button is zero. 

Along comes a customer who, having read the instructions, inserts 
some money, re-reads the instructions and stares at the buttons, 
eventually deciding to press one of them. 
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Pressing a button generates a burst of eight clock pulses, and the value 
of each button is loaded into the shift register. Once the button has 
been pressed the zeroes and ones corresponding to each of the buttons 
is loaded into the shift register. The output from each button is made 
available to external circuits, and one such circuit will be activated so 
that the chosen can drops down the chute. 

Rotate registers 
These are modified versions of the shift registers and perform just like 
the ring counter. 

As with shift registers, rotate registers can be made in rotate-right as 
well as rotate-left versions. In some cases, the same register can be 
used to rotate or shift in either direction. 

The benefit of using a rotate rather than a shift register is that the data 
is not destroyed. We have seen that a shift register is progressively 
emptied as bits fall into the bin at the end. With a rotate register, the 
data is not changed. If we rotate left say, six times, we only have to 
rotate right six times to recover all the original data. 

Inputs and outputs 
If, as in Figure 16.5, we load the data in serial form and send it out in 
parallel to another circuit, this type of register is referred to as a serial- 
in, parallel-out or SIPO register. 

There is an obvious alternative by loading in a parallel way and then 
starting a clock pulse to move the data out in serial form. This provides 
a parallel-in and serial-out action, called a PISO register. 

We can load in parallel and read in parallel in a PIPO, or use a serial 
method to load and read the data out, which is a SISO. 

74XX194 

Outputs 
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This is a 4-bit universal register able to load in serial or parallel fashion 
and to shift in either direction. Outputs are available in parallel or 
serial format. 

Let's look at the pins first in Figure 16.6. 

The outputs of the shift register are shown as QA, QR, Qc and QD. 
If a parallel-out shift register is required we would use all of these 
outputs at the same time, but if we wanted a serial output we would 
use just one of them - probably QD. There is nothing to prevent us 
from using both the serial and the parallel outputs at the same 
time. 
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Figure i6.6 
A universal shift register Parallel load 

J ,  

A : : Q0 

B ~ - - - - - -  Q1 Outputs 
C ~ Q2 
D - ~ - Q3 

Serial data (shift right) , 
Serial data (shift left) 

Clock 

Mode controls 

'> :)' Clear 

US Mil.  Spec.  symbo l  

CLEAR 

Mode controls 
Clock 

Serial data (shift right) 
A 
B 
C 
D 

Serial data (shift left) 

IEC symbo l  

Carry 

Borrow 

QO 

Q1 
Q2 

Q3 

Inputs 
The inputs follow much the same pattern, if we apply our data to all 
the inputs A, B, C and D we have a parallel-in register, but if we need 
a serial-in shift register we have a choice of applying the data to either 
the serial data shift-left pin or to the shift-right pin according to the 
direction of shift that we need. 

Mode controls 
The input pins only provide the data to be shifted - they do not tell the 
register to shift in a particular direction. This is the job of the mode 
control pins. The register has four modes of operation controlled by 
the logic levels applied to the mode pins, as described in Table 
16.3. 

Table 16.3 Mode control of the 74XX194A 

$1 50 Operation 

m e m o r y  state 
shift right 
shift left 
parallel load 

2 1 3  
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The truth table 
The complete and frightening truth table is shown in Table 16.4. We 
will have a look at it line by line. 

Table 16.4 Truth table of the 74XXl 94A 

clear 

L 
H 
H 
H 
H 
H 
H 
H 

Inputs 

Mode serial parallel 
. . . .  

51 SO Clock L R A B C D 

X X X X X X X X X 
X X L X X X X X X 
H H T X X a b c d 
L H T X H X X X X 
L H "~ X L X X X X 
H L "~ H X X X X X 
H L "~ L X X X X X 
L L X X X X X X X 

Outputs 

oA oB Oc oo 

L L L L 
QA0 QB0 Qco Qoo 

a b c d 
H QAN QBN QCN 
L QAN QBN QCN 

QBN QCN Qo~ H 
QBN QCN QDN L 
QA0 QB0 Qco QDO 

T = leading edge of clock pulse; a, b, c, d -level of data applied to parallel inputs; QAO etc. - previous 
values of QA etc. (memory state); QAN etc. = previous level of QA etc. before the most recent clock pulse. 

Note: the high to low transition of $1 and SO must only occur during the high state of the clock. 

2 1 4  

Line 1: The clear is taken low and, being active low, it resets all the 
outputs to a low state. Notice that the clock is marked as X, which is 
the 'don't care' state, because the clear can over-ride the clock and all 
the other inputs. 

Line 2: With the clear high but the clock low there is no clock input, 
so no changes occur and the register is in its memory state. The outputs 
stay at their previous values. This is indicated by writing the zero after 
the Q states, e.g. QAO. 

Line 3: With clear high and the two mode controls at SO = $1 = high, 
it is in its parallel load mode. We can see that the parallel inputs 
lettered a, b, c and d are transferred to the Q^, QB, Qc and QD outputs 
at the moment of the 0 ~ 1 transition of the clock pulse. The register 
is not shifting the data along so the serial inputs are not used - hence 
the Xs in the table. 

Lines 4 and 5: With $1 low and SO high the resister is acting as a shift- 
right register. Each shift occurs on the leading edge of the clock pulse 
and the new data is read in from the serial data shift-right input pin. 
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This new data appears at the QA pin, and all the previous data levels 
are shifted one place to the right. Like all shift registers, the original 
data that was in QD has fallen off the end and has been lost. The 
previous levels are written as QAN etc. 

Lines 6 and 7: These follow the same pattern as lines 4 and 5 except 
that the direction of the shift is now towards the left. The data is loaded 
into the serial data shift-left pin and when the clock pulse occurs, the 
new data will enter at QD and each of the previous data levels will 
move one place to the left until the original value of QA is lost. 

Line 8: With $1 and SO both low, the shift register ceases to function 
and reverts to a memory state. When in the memory state, all the 
inputs are irrelevant and can be any value and are therefore shown as 
X on the table. The outputs are shown in the 'old' state and given the 
symbols QAO etc. 

Unused inputs 
When the shift register is being used as a serial load register the 
parallel inputs are not used; likewise, when parallel loading occurs, 
the serial inputs are irrelevant. All the unused inputs can be left 
disconnected and floating since their voltage levels do not matter. This 
is a very unusual state of affairs with digital circuits. 

We return to registers in Chapter 17, but for the moment we will look 
at some new counting codes. 

Binary coded decimal |BCD) 
If we want to represent a denary number in a binary form, we have 
more ways than the obvious choice of a straight conversion. There are 
a dozen or more ways of representing a denary number, each with 
their own advantages and disadvantages. If the input to a circuit gives 
rise to a binary code at the output, we have what we call a 'binary 
coded decimal' or BCD. 

Weighted codes 
Many BCD codes are weighted. This means that each bit has a value 
depending on its position. Denary is weighted, since a number 5 in the 
right-hand column is five, but in the next column it means 50 and in 
the next 500 and so on. 

There are other weighted codes, such as the 5421 code in which 
510 = 10005421, the 2421 code in which 510 = 01012421, and the XS-3 
(excess-3) which is the 8421 code plus 3, hence the excess-3. In this 
code, 51o = 1000xs_3. 

It is a good idea to make it clear which code is being used by adding 
suffixes, like we do with binary and denary. 

21S 
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The Gray code 
We met this in Chapter 9. It is a binary code, but it is not a weighted 
binary code. This means that each bit in the code does not have the 
same binary value. 

You may remember that it starts: 0000, 0001, 0011, 0010. If this 
represents the count 0, 1, 2, 3 it cannot be weighted, for, whatever the 
weight of each bit, the value of 0011 must be greater than 0010; 
therefore it cannot be counting up. 

The Gray code is often used for encoding data from computer- 
controlled machinery or to measure shaft angles or rotation speed. Its 
main advantage is that since only 1 bit changes from count to count, 
then if one change is missed, the maximum error can only be a single 
count. The Gray code shaft encoder disk is shown in Figure 16.7. This 
particular one divides the rotation up into angles of 22.5 ~ . The disk is 
fixed to the shaft. The light and dark areas are detected by reflecting 
light from the surface, and the values are read from the centre of the 
disk by a series of light detectors. 

Figure 16.7 
A Gray code shaft 
encoder 

1101 

1111 1011 

1001 

1100 1000 

0100 0000 

0101 

/ o  , 111 / ~ ~ 0011 

ad from t �9 centre, white = 1, grey = 0 

0001 

The '8421' or 'standard' code 
Conversion between binary and denary is not terribly easy, as we saw 
in Chapter 2. 

2 1 6  
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One way of making it easier is to convert each denary number into a 
4-bit binary number and simply string them together rather like we did 
when we were converting between binary and hex. 

The numbers 0-9 are easy: 

Denary Binary 
0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 

The next number is 101o, and this will not be written as the 
straightforward binary equivalent of 10102. The denary digits 1 and 0 
are treated separately. The 4-bit code for 1 is 0001 and the 4-bit code 
for 0 is 0000, so we can join them up to create the BCD equivalent of 
1010 to be 0001 0000. In situations where it may otherwise cause 
confusion it can be written as 0001 00008421 or, rather less correctly, 
as 0001 0000BCD. It makes it easier to read if the bits are separated out 
into blocks of four. This is all a bit like converting from binary to hex, 
isn't it? 

The '8421' just reminds us that the values of each column are 
weighted as 8, 4, 2 and 1. In denary, the columns are weighted in 
powers of 10. 

A BCD code is often used in circuits such as in electronic voltmeters, 
frequency counters, calculators, petrol pumps and other places where 
we want a denary display as an output. 

BCD counters 

If we organize a decade counter to produce a 8421 BCD at its output, 
we can string a series of them together to produce as many digits as 
required- as shown in Figure 16.8. 

Figure 16.8 
Using decade counters 

Units Tens Hundreds 

_1111  II I I 111 
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We have looked at the 74XX390 bi-quinary version of a denary 
counter, but the same chip can be reconfigured to give us an 8421 
BCD output. This is shown in Figure 16.9 (pin-out in Figure 15.10) and 
the count sequence is shown in Table 16.5. 

Figure 16.9 

The 74XX390 as 
a BCD counter 

+ve supply 

input signal ~ ' 1~ !  ~J 
13 

,3 j 1t 
mod-lO o/p ~ 

Bi-quinary output 
on pins 3, 5, 6 and 7 

0 volts 

74xx3go 
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Table 16.5 An 8421 BCD count from the 74XX390 

Count 

Outputs 
. . . .  

Qc QB 

L L L L 
L L L H 
L L H L 
L L H H 
L H L L 
L H L H 
L H H L 
L H H H 
H L L L 
H L L H 

The outputs are now taken in the expected order 
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Quiz time 16 

In each case, choose the best option. 

1'; An"exampie of a unweighted: BCD code is the: 

(a) Gray code. 
(b) BCD code. 
(c) 8421 code. 
(d) 5421 code. 

2 Four bistables are required to count up to eight 
using: 

(a) a ring counter. 
(b) an 8421 BCD counter. 
(c) a Johnson counter. 
(d) an asynchronous counter. 

, ,  . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 If a 4-bit register is loaded with the binary value ' 
1111 and shifted three counts to the right and then 
three to the left, the data stored will now be: 

(a) 0011 
(b) 0001 
(c) 1111 
(d) 1000 

4 Two bi-quinary counters can be interconnected to 
provide a count of: 

(a) 25 
(b) 250 
(c) 8 
(d) 40 

5 . . . . . . .  if theactive.iowenable input to a register was taken 
high, all data stored in the register would: 

(a) be reset to zero. 
(b) remain at their previous value. 
(c) be switched to a high logic level. 
(d) toggle. 
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M e m o r y  

Figure 17.1 
Two types of 
memory 

2 2 0  

In Chapter 16 we looked at registers which were used to store binary 
information, usually in groups of 4 or 8 bits at a time. Once stored, we 
could play tricks like shifting or rotating the information. 

A memory chip is very similar. 

The function of a memory is to store information - almost the same as 
we said for the register. Generally, a register stores small quantities of 
data for immediate use, whereas a memory is designed for bulk storage 
of data but that is all it can do - no shifts or rotates. Some of them are 
very useful in that they can remember the data, even when the power 
is turned off, for up to 7 years. 

This ability to remember data after the power is switched off is the 
dividing line between the two main types of memory. If the memory 
loses its data when the power is switched off, then we call the memory 
RAM or volatile memory. If it can hold on to the data without power, 
we call it ROM or non-volatile memory (volatile means 'able to 
evaporate'). This is seen in Figure 17.1. 

RAM 
Random Access Memory 

Memories 

I , , ,  

I 
, . . . . . . .  1 . . . . .  

ROM 
Read Only Memory 
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Since RAM is so similar to our registers, we wil l  make a start here. 

Inside the chip, there are a large number of registers-  hundreds, 
thousands or millions, depending on the size of the memory. 
incidentally, when we are referring to memories, we use the word 
'cell ' instead of register even though they are exactly the same. 

So, in each of the internal cells there is a 4-, 8-, 16-, 32-, or 64-bit 
register made from a line of bistables. The registers, or cells, are 
arranged in rows and columns so we can access the data easily. Figure 
17.2 shows the register layout in a very small memory containing only 
16 cells or locations, each of which can hold 4 bits and is given a 
memory number or address. By today's standards, this is an itsy-bitsy- 
too-small-to-mention register. 

Figure 17.2 
The layout of 
cells in a 
memory 

This is [ 
arow L .... 

This is a 
column 

[ .............................. '.= 
. . . . .  , ! 

I - f e e , 0  j I ceil 1 1 i I Cell 2 1 [ i :celi 3 I 
i [ 

I- Ce, 4 _1 I ~ Cell 5 _ j [ J Ceil 6' "l i [ Cell 7 _ J 
i i 

I Ce,, 8 I ! ca,, g I i I c; ,  io / i / . . . . .  c a ,  ~ ....... i 
...... ....,,..,.:.,,..Z:, ............... :...: ........... : ....... [ .... ,., .... :...:,..,., ..... ,...1 .... .,.,.:.,.::.,..:,.,.... ........ : i 

1, . . . .  'Cell i 2  1 ! ' ce,, . . . .  13 l.[i i Ce,-i4 ][i J Cell !5J 

; i 

. . . .  i 

. . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . .3  

There are 16 cells or 'memory locations' numbered from 0 to 15. 
Each cell is a register holding between 1 and 16 bits in each. 
A real memory may include up to half a million registers. 

A c c e s s i n g  m e m o r y  

Loading data into a register is called 'writ ing' data to a memory, and 
we talk about data being 'read' from the memory. 

Each location in a memory is given a number, called an address. In 
Figure 17.2, the 16 locations of memory would be numbered from 
0-15 or, in binary, 0000-11112. 

The cells are formed into a rectangular layout, in this case a 4 x 4 
square with four columns and four rows. 

To use a cell, the row containing the cell must be selected and the 
column containing the cell must also be activated. The shaded cell in 

2 2 1  



Introduction to Digital Systems 

Figure 17.3 

Selecting a 00 
memory 
location 

Row 
numbers 

Column numbers 

01 lO .. 

O0 0000 0001 0010/ 
/ 

" ~ ,  "~ 
01 0100 0101 11~ 0111 

i 

10 1000 1001 1010 1011 

11 1100 1101 1110 1111 

11 The address of 
, ~ 1  _ . ~ ~ 1  ~ this cell is 0110 

(Column = 10 
Row = 01) 

Figure 17.3 has the address 0110, which means that it is in row 01 and 
in column 10. 

To access this cell we need to apply the binary address to the row and 
column decoders. When the address 0110 is applied, the first half of 
the address, 01, is applied to the row decoder, and the second half of 
the address is applied to the column decoder. 

A decoder circuit is a small gate circuit which, when fed with the 
address of the location, is able to switch on the appropriate row and 
column. 

The maximum number of locations that can be addressed will depend 
on the number of bits in the address. We have already seen that a 4-bit 
address can access 16 locations. 

This is because 24 = 16, so generally 2 n = number of locations if n is 
the number of bits in the address. 

To take a more realistic example, if we had 20 address lines we would 
have 22o = 1 048 576 locations. 

Two types of RAM 

RAM chips can be designed in two different forms called static RAM 
(SRAM) and dynamic RAM (DRAM), as seen in Figure 17.4. 

Static RAMs 

These are the normal line of bistables. The problem with the flip-flop 
is that it draws current all the time because one of the two transistors 
in the totem-pole output stage is passing current all the time. It doesn't 
matter if we have just four bistables in a register, but an integrated 

2 2 2  
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RAM 
Random Access Memory 

I 

,,, ,,,,, , 

Static RAM Dynamic RAM 

Fast - expensive Low power- high capacity 

version with 100 000 bistables is another case altogether. The benefit 
of bistables is that they are very fast and are used where speed of 
access is important. 

Dynamic RAM 
These store the information in capacitors, which are small components 
that store an electrical charge in the form of static electricity. They are 
called 'dynamic' owing to one of their drawbacks. In use, the electric 
charge stored in each capacitor leaks away because of the imperfect 
insulation. So after a little while the charge has to be replaced, 
otherwise the DRAM will be empty and all the stored information will 
be lost. This process of topping up the charge is called 'refreshing', and 
has to be performed at intervals of about 2 ms by a DRAM control 
circuit. To prevent any interference with the operation of the 
microprocessor system, the refreshing is done in the background 
whenever the DRAM is not being used. 

Once the static charge is stored, no further current is required (except 
for refreshing), therefore less heat is being generated internally and we 
can pack more memory into a given space. We say it has a 'high 
packing density'. 

Memory organization 
The size of a memory is always quoted as number of locations x bits 
stored in each, so this memory, which contained 1024 locations with 
8 bits stored in each, would have an organization of 1024 x 8. 

Three types of ROM 
All ROMS are used to store information on a more-or-less permanent 
basis. In use, the ROM can be read but new information cannot be 
stored in it. In other words, we cannot write to it (Figure 17.5). The 
choice of type depends on the number being made and how 
permanent we need the data to be. 
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Figure 17.5 
Three types of 
ROM 

,, , 

I "' Masked ROM 
. . . . . . . . .  

ROM 
Read Only Memory 

, ,  

,, ] 

EPROM . ] 

Ultra-violet Electrical 

Masked ROM 
This one is cheap to manufacture if at least several thousand 
identical chips are required. It is only found in large-scale manu- 
facture, such as in computers or test equipment. Once made, the 
data cannot be changed. We have to send our data to the ROM 
factory and the chips will be delivered with the data, right or wrong, 
permanently loaded. 

PROM (programmable ROM) 
This chip is an attempt to get the price and convenience of a ROM but 
still be able to write our own data into it without committing ourselves 
to a large number of devices. It is ideal for situations where we may 
want to use between perhaps 100 and 1000 identical chips. Inside 
these chips there is a tiny fusible link for each data bit. The bit is set to 
binary 1 unless the fuse is blown, at which time it goes to binary O. To 
do the blowing we use a 'PROM blower'. The data is loaded, the 
button is pressed and the equipment goes from location to location 
blowing the required fuses. If we make a mistake, we drop the chip in 
the bin and start again. 

EPROM (erasab le  p r o g r a m m a b l e  ROM)  

As the name would suggest, this chip allows us to program it, then 
change our minds and try again. To erase the data there are two 
methods- ultraviolet (UV) light or electrical voltage pulses. 

EPROMs are ideal for prototyping since it is so easy to change the data 
to make modifications. 

The data is added by using a tool called an EPROM programmer. This 
is similar to the 'PROM blower'; indeed, it is often the same 
instrument. 

2 2 4  
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The EPROMs arrive empty, which means all the locations hold a logic 
1. The EPROM programmer is loaded with the required data and 
applies voltage pulses to load each location. 

If we make a mistake, we must erase all the data and start again. We 
can have up to 700 attempts before the chip dies. It slowly gets more 
and more difficult to clear the old data, until we get tired of waiting 
and drop it in the bin. 

The types of EPROM only differ in the method used for erasing the old 
data. 

The UVEPROM is erased by shining a strong ultraviolet light through 
a small clear window in the top of the IC. 

A specially constructed EPROM eraser provides the light. We pop the 
chip in, close the lid and switch on the timer. After a few minutes, the 
data is erased. 

The eraser includes power cut-outs to ensure that we do not 
accidentally get exposed to the UV light. The UV light is not the fun 
stuff that makes our clothes glow at the disco; it is seriously nasty with 
a wavelength of around 254 nm. It can cause irreparable damage to 
our eyes in just a few seconds. 

As an alternative, some EPROMs are erased and reprogrammed by 
electrical pulses. This type is called an EEPROM (electrically erasable 
programmable ROM). 

Accidental erasure 
To ensure that the data is not accidentally erased during normal use, 
the programming voltage is always much greater than the normal use 
power supplies. Typically, EPROMs are made to operate from the usual 
logic supply of 5 V but they use a voltage of 12 V for programming. So, 
whatever we do with the pin connections, we cannot destroy the data. 
We could destroy the whole chip by reversing the power supplies, 
though! 

Be careful with the programming voltages. We are nowhere near the 
point of having a standard programming voltage. A glance through the 
catalogue will show programming voltages varying from 12-25 V, all 
with a normal operating voltage of 5 V when reading data. 

Pin layout of an EPROM 
Figure 17.6 shows the pin-out diagram for a 1 Mb (actually 1 048 576 
bits) EPROM with an organization of 131 072 x 8 bits. 

Power supplies 
The main power supplies to operate the chip are the +5 V applied to 
the V+ pin and 0 V on the GND (ground) pin. 

2 2 S  
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Figure 17.6 Vpp 
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To program the memory, the programming voltage is applied to Vpp. 
When not being programmed, it should be held at +5 V. The PGM pin 
should also be held low during this time. 

Address pins are always numbered starting from A0. 

The number of locations is given by 2 n, so with 17 address lines (A0 to 
A16) the number of locations would be 217 = 131 072. 

Like the addresses, these pins always start counting from zero. 

In the EPROM shown in Figure 17.6 they are abbreviated to D for data, 
and go from DO to D7 -e ight  in all. Some manufacturers call them 
output pins and number them O0, O1, 02 etc. The output from these 
pins is the normal logic levels of near 0 or near +5 V. 

1 The chip enable (CE), sometimes called chip select (CS), is the main 
on/off switch for the chip. It is usually active low, which means that 
the chip needs a logic 0 voltage to be applied to switch the chip on. 
This is indicated by a line over the CE. When the chip is switched 
off, it goes to sleep and the power drops with a reduction of about 
150 times. 

2 The output enable (OE) leaves the chip fired up but with its output 
disconnected from the data pins. How this is done, we will discuss 
in the next chapter. Disconnecting the output pins is very much 
faster than switching the chip off. Watch out for the line over the 
name to indicate the polarities required. 
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Unconnected pins 
An unconnected pin is shown as NC (not connected) and is not used. 
It is physically separate from the internal chip and therefore has no 
effect on anything. It should be left unconnected. 

Converting binary to Gray code 
Let's imagine we need to convert a series of binary numbers between 
0000 00002 and 1111 11112 to the equivalent Gray code. 

We have three options - two sensible and one silly. To dispose of the 
silly option first, we are not going to start from zero and count up in 
Gray code as we saw in Chapters 9 and 16 until we get to the 
number. 

There are two better ideas. The first is to convert the codes by hand, 
and the second is to use an EPROM to help us. 

Converting by hand 
See Figure 17.7 and follow the steps below. It seems strange to start 
with, but soon becomes quick and easy. 

Figure 17.7 
Converting 
binary 
numbers to 
Gray code 

add add add 

BINARY 1 1 0 1 

[ 
copy 

GRAY CODE 1 0 1 1 
ignore 

the 
carry 

add 

0 
ignore 

the 
carry 

Method: Converting the binary number 11011 to Gray code 
Step 1" Copy the left-hand bit down to become the left-hand bit of the 
Gray code. In our example the MSB in the binary is 1, so the MSB of 
the Gray code is also 1. 

Step 2: Add the MSB of the binary to the next bit. Ignore any carry that 
occurs and use the result as the second bit of the Gray code. In our 
example we have added 1 + 1 = 102. Ignore the carry 1 and enter the 
0 as the next Gray number. 

2 2 7  
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Step 3:Add the binary bit in the second column to the one in the third 
column and copy the result into the Gray code. In our case, 
1 + 0 = 1 .  

Step 4: The bits in the third and fourth columns give 0 + 1 = 1. Copy 
this answer down into the fourth column in the Gray code. 

Step 5: The last two bits give 1 + 1 = 102. As before, we ignore the 
carry and copy down the 0. This gives the final result of 
110112 = 10110GRAY. 

Using an EPROM 
EPROMs and other memory chips are often looked upon merely as a 
computer component to store programs and data, but they can be used 
individually to convert between codes of any type. 

We could store a series of numbers, let's say all the binary numbers 
from 0000 00002 up to 1111 11112 and the corresponding 256 Gray 
codes, in an EPROM, one Gray code in each memory location starting 
at memory location 0000 0000. 

To convert any binary number, say 100111012, to Gray code, all we 
have to do is to use the binary number as an address by applying it to 
the address pins on the chip. This address will be accessed and the 
contents, which will be our previously stored answer, 11010011 GRAY, 
will appear at the EPROM data output. We have to produce all the 
Gray codes in the first place but, having done this, we can recall any 

F i g u r e  1 7 . 8  

Binary is 
applied to the 
address pins 
and Gray code 
appears at the 
data pins 
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conversion within about 150ns, which is faster than working them 
out. 

Clearly this system can be used to convert between any two codes. Just 
as a matter of interest, Figure 17.8 shows the above conversion being 
undertaken by an EPROM. Since we are converting an 8-bit binary 
number and there are 17 address pins, we just tie all the excess pins to 
0 V to stop them floating and changing logic levels accidentally. Read 
the data sheets well before use, as the treatment of some pins differs 
according to the EPROM used. 

Converting Gray code into binary 
Have a look at Figure 17.9 as we convert the Gray code 1011 GRAY into 
binary. The method is quite similar. 

Figure 17.9 

Converting Gray code 
to binary 

~  

copy add add 

Binary code 1 1 0 
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the 

carry 
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add 

/ 
1 

Adders 

Step 1: Copy the first bit down to provide the first binary bit. This 
means that Gray code and binary always start with the same 
number. 

Step 2: Add the first bit in the binary number to the second number in 
the Gray code. The answer is the second binary bit, 1 + 0 = 1. 

Step 3: Add the second binary bit to the third Gray code digit and use 
this answer as the third binary bit. As before, just ignore any carries 
that occur. 1 + 1 = 10; use the 0 and ignore the 1. 

Step 4: Add the third bit in the binary number to the fourth number in 
the Gray code. The answer is the fourth binary bit, 0 + 1 = 1. 

This gives the final result of 1011 GRAY = 11012. 

These circuits provide the addition needed to convert between Gray 
and binary codes as well as in other operations. 
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We can build the circuit ourselves or, more economically, we can use 
a ready-made chip. 

Building it ourselves 
To design this logic circuit, or any other, we must start with a truth table 
or a Boolean expression as we saw in Chapter 7. 

If we add two binary numbers, there are a limited number of 
outcomes. The answer may be 0 or 1, and there may be a carry-out. 

The options are: 

A plus B 
, , ,  

, , ,  

Answer Carry-out 

If we look at the Answer column, we may spot that we have an XOR 
gate and the carry-out is just an AND gate, so we can easily build the 
circuit shown in Figure 17.10. This circuit is called a half adder to 
distinguish it from the full adder, as we will see in a minute. 

Figure 17 .10  

A half adder 
input A ,, - output 

B 

Carry out 

2 3 0  

The half adder is OK if all we want to do is to add 2 bits together, but 
life is never that simple. Binary numbers normally have at least 4 or 8 
bits, so we need a way to join up (cascade) adders. When we try this, 
we must allow the possibility of the carry-out from one adder to be 
connected to the input of the next one. 

A full adder takes care of this. The circuit has three inputs: A, B and 
carry-in. 
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74XX283 
Apart from the pin-out, it is identical to the 74XX83a. 

Figure 17.11 
The 74XX28 3 F 
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It contains two 4-bit full adders referred to as A and B. The first bit of 
each number, At and B I, are added, together with the carry-in, and 
the answer is available at 7,1. This can be summarized as 
A1 + BI + C~n = 7,1. 

The next 3 bits are treated in exactly the same way. The final carry is 
available on pin 9 as Cout. Extra pins are expensive to add, and to 
avoid this only the first and the last carry are taken out to pins although 
inside the chip they are all connected to provide the correct arithmetic 
results. 

Displaying the results 
LED seven-segment displays 

The display consists of a series of LEDs that can be activated separately 
to provide an alphanumeric display. These displays are normally sold 
in two flavours - common-anode and common-cathode- and in three 
colours. 

By using a common pin we reduce the number of pins and the 
subsequent connections as in Figure 17.12, which shows a common- 
anode version. 

A common-cathode version is exactly the same except that the LEDs 
are reversed. To illuminate a segment in a common-anode version, we 
simply take the voltage low so that the required current is flowing. This 
current needs to be limited so that about 2.2 V are dropped across the 
diode with the desired current flowing. Typically, each segment may 
draw about 20 mA and the current limiters may be about 150 ~. 
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Figure 17.12 
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Figure 17.13 shows a 74HC4511 chip driving a single display. This 
driver is able to run either common-anode or common-cathode 
displays. There are many different drivers such as the popular 7447A, 
which is an open collector device with active low outputs suitable for 
driving a common-anode device. 

Figure 17. | 3 
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In general, common-anode displays are more popular as many logic 
circuits can sink more current than they can source. 

Liquid crystal displays, which are now common in calculators and 
other displays, offer some advantages over the LED displays. The main 
one is the extremely low operating current. Whereas each segment of 
an LED display takes about 20 rnA, we can power four complete digits 
in an LCD from a 5 IJA source at 3 V. They are easier to read in strong 
light conditions, and any shape or symbol can be displayed. 
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The driving is necessarily more complex, since a LCD requires an 
alternating square-wave input signal (it dies if fed with DC), but the 
74XX4543 LCD driver will take care of this. With many characters 
appearing on the display, the input signals are necessarily more 
complex and are often microprocessor driven. 

Programmable logic arrays (PLA) 
There is a whole collection of chips that are very similar. They go 
under a variety of names, which are also very similar. They are 
programmable logic arrays (PLA), field programmable logic arrays 
(FPLA), programmable logic devices (PLD) and programmable array 
logic (PAL). 

Imagine buying several thousand AND gates, OR gates and some NOT 
gates, then soldering them onto a large board. Add plugs and sockets 
at all the inputs and all the outputs. 

Whatever logic circuit we want to build, we can now do so by simply 
interconnecting whichever gates we want. Incidentally, the total cost 
of this lorry-load of gates is about the same as six AND gates. In logic, 
as in so many things, it certainly pays to buy in bulk. 

All these gates are shrunk onto a single chip, and the required 
interconnections can be made by fusible links as in a PROM or by an 
electrical pulse as with EEPROMs. If we want large quantities they can 
be connected permanently during manufacture, like a ROM chip. 

To distinguish between connections that are possible and those that 
are actually made, we use the symbols shown in Figure 17.14. 

Figure 17.14 
Connections that are made 
or are just possible 

i 

C~onnected 

A very small sample of the full circuit is shown in Figure 1 7.15, which 
is enough to show the possibilities. 

What gate have we built in Figure 17.15? 

The output of the AND gate 'D' is AB and the output of gate E is ~B. 
These two outputs are applied to the NOR gate and provide the output 
G = AB + AB. 

The final output is an XNOR function. 
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Introduction to Digital Systems 

Figure 17.15 
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A real PLA 
Our example was deliberately simple, but was enough to show the 
possibilities. In a real chip there would be about 14 data inputs A, B, 
C, D . . .  to replace our three shown. There are typically 96 14-input 
AND gates and eight outputs. This provides a mind-boggling number 
of possible interconnections. 

Needless to say, computer-aided design plays a part in the organiza- 
tion of the connections. When designed, the connections are made by 
a piece of equipment similar to an EPROM programmer. 

Analogue-to-digital  conversion (ADC) 
We live largely in an analogue world. Some of our instruments are 
analogue and some are digital. The circuitry we use is partly analogue 
and partly digital, so it is not surprising that much conversion takes 
place between these two systems. 

In essence, the analogue-to-digital converter (ADC) samples the 
analogue voltage from time to time and converts the measured value 
into a binary number. The speed and accuracy depend on the circuit 
used for the conversion. It is possible to build an ADC from discrete 
components, but no-one does this. It's just not economic. 

There are several methods used in converters - here are four of 
them. 
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P a r a l l e l  o r  ' f l a s h "  c o n v e r t e r s  

This is the fastest method of ADC, but can be expensive. Being very 
fast, a parallel converter also samples the incoming analogue signal for 
a very brief moment and is therefore largely unaffected by a changing 
input voltages. The sampling speed is governed by a clock input, and 
can be over 20 000 000 samples per second (20 MS/s). 

A series of reference voltages are set up inside the IC and the input 
voltage is applied to each comparator at the same moment, as in 
Figure 1 7.16. 

Figure 17.16 
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The comparators have two inputs. One is a reference voltage, which is 
compared with the input voltage applied to the other input. If the input 
voltage is less than the reference voltage, the output is logic 0. If it is 
greater, it will produce a logic 1. 

Let's assume that we apply a voltage of 3.5V. The first three 
comparators with reference voltages of | V, 2 V and 3 V will produce 
a logic 1, and the highest comparator will still provide a logic 0 at its 
output. The four-line to two-line decoder will represent the number of 
'high' outputs as a binary number on its output lines. A more typical 
number of comparators would be between 16 and 1024 to give more 
steps in the digital output for a given analogue input, thus increasing 
the accuracy. 

2 3 S  
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In our example the comparator reference voltages were spaced at 1 V 
intervals, so anywhere between just over 3 V and just under 4 V will 
give the same digital output. Having more reference levels can reduce 
this error, called quantization error. 

The levels are converted into a binary number with between 4 and 10 
bits to accommodate the 16-1024 input levels. A typical IC for this 
purpose is the eight-line to three-line encoder 74XX148. 

Single ramp 
This is the opposite end of the spectrum: cheap and slow. 

The input voltage is compared continuously with a single reference 
voltage inside the chip. The internal reference voltage increases at a 
known rate until it exceeds the incoming voltage. The time taken 
obviously depends on the magnitude of the voltage to be converted. To 
measure this time, an internal clock is started coincident with the start 
of the ramp voltage and is stopped by the switching of the comparator 
in Figure 17.17. It converts between 5 samples/s and 1000 samples/s, 
which is awful compared with the flash converter. 

F i g u r e  1 7 . 1 7  

Single slope 
ADC 

Start pulse , , 

input voltage . . . . .  ~ , 

R a m p  ~ ~ . _  Thec~am p~oltag e 

Clock input 

count starts 

Dual ramp 
This type is often found in instruments such as digital voltmeters. 

It overcomes two main problems of the single slope ADC, caused by 
the inaccuracy of the clock frequency that determines the final count 
and the non-linearity of the ramp voltage. 

The unknown voltage is applied for a set number of counts to a ramp 
generating circuit in which the upward slope of the ramp is determined 
by the voltage applied. At the end of the count, the ramp circuit 
decreases the voltage at a known rate by using an internal reference 
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voltage and the same counter. When the ramp voltage gets to zero, the 
count stops. 

The input voltage was 
number of up counts 

number of down counts 
x reference voltage. 

How about an example? 
Assume that the fixed count used is nine, as in Figure 1 7.18 (it will be 
between 1000 and 260000 in real life). 

Figure 17.18 
Dual slope ADC Start pulse 

Ramp . . _  

Clock input .__ 

1 
voltage reached 

Counting up Counting down 

We apply the unknown voltage, and during the count time the ramp 
reaches a particular value. At the end of the count we reset the counter 
to zero and use an internal reference voltage to ramp down to zero. 
Let's assume the internal reference voltage was 5V and, in our 
example, the ramp reached 0 V after three counts. 

9 
The input voltage was t h e r e f o r e -  x 5 = 1.66 V. 

3 

Successive approximations 
This is a popular design which, although slower than the flash 
converter, is considerably faster than the dual slope circuits. 

It generates a range of reference voltages, each of which is half the 
value of the next in line. It then adds these reference voltages to 'home 
in' on the required digital output value. 

To demonstrate the principle of operation, we will use an over- 
simplified 4-bit version. The idea is shown in Figure 17.19. 

If the input signal applied was 5.8V, the sequence could be as 
below. 

Step 1 : Switch A is closed and the input voltage of 5.8 V is compared 
with the reference voltage of 4V. The input voltage is larger so the 
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Figure 17. l 9 
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comparator provides an output of binary 1, which is the most 
significant bit of the output. 

Step 2: Switch B is closed and the combined voltage of 4 V + 2 V is 
applied to the comparator. This total of 6V is rejected by the 
comparator since it is greater than the 5.8V input signal. The 
comparator provides a binary 0 as the output value of the next bit. 

Step 3: Switch C is closed and the reference input to the comparator 
now tries 4V + 1 V = 5V. This is less than 5.8V so the output is 
another binary 1. 

Step 4: The last switch is closed, creating a total of 
4 + 1 + 0.5 = 5.5 V. The input is greater than this, and this last 0.5 V is 
accepted and a final bit = 1 is added to the digital output. 

The final digital output is therefore 10112. 

If we return to a real-life size of 8-12 bit outputs, we only need 8-12 
clock pulses occupying from l O-50ps. Slower than the parallel 
converter, but much faster than the slope varieties. 

D i g i t a l - t o - a n a l o g u e  convers ion  |DAC)  

Conversion in this direction is rather easier. In essence, each bit in the 
binary number is allocated a voltage and the final outcome is achieved 
by simply adding the voltages together. 
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For example, if we had a 4-bit binary number the weightings would 
increase in steps of two as we moved from right to left across the 
columns. If we chose to make the LSB equal to 0.25 V, then the other 
columns would have the values 0.5 V, 1 V and 2 V. 

A binary count of 1010 would provide an analogue output of 
2 +0  + 0.5 + 0=  2.5V. 

An operational amplifier generates these voltages, with the input 
resistance value doubling as we go from bit to bit. Have a look at 
Figure 17.20. 

The function of an operational amplifier connected in this way is given 
by the formula: 

output vol tage = input vol tage X 
- R 1  

R2 

When the first switch is closed, 

- l O k ~  
output vol tage = ~ = 2 V. 

50kf~  

The next switch would result in 1 V at the output then 0.5 and 0.25 V 
for the remaining two switches. 

The switches are controlled electronically by the binary value applied 
to the circuit. When more than one switch is closed at the same time, 
the voltages are added at the output. 

A binary input of 11112 would close all the switches, giving a 
maximum output of 2 + 1 + 0.5 + 0.25 - 3.75 V. 

The design problem with this circuit lies with the resistors. As the 
number of inputs increases, the range of resistor values increases 

F i g u r e  1 7 . 2 0  
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rapidly. With our 4-bit converter in Figure 17.20, the ratio of the 
highest resistor to the lowest is 8:1. 

Ready-made converters are usually 8 or 12 bits, with resistor ratios up 
to 4096:1. This is a very wide range bearing in mind that all resistors 
must have the same degree of accuracy. 

Commercially available DACs normally use an improved resistor 
system called an R-2R pattern or an R-2R ladder. The advantage of this 
method is that, although more resistors are used, there are only two 
values, one being twice the value of the other. So we could use just 
10k~ and 20k~, for example. This means that it is very easy to 
maintain the required accuracy of the resistors. 

Figure 17.21 shows a 4-bit DAC using an R-2R ladder to provide a 
direct contrast with the previous type in Figure 17.20. The switches 
perform exactly the same function as previously, i.e. putting the right- 
hand switch over to the binary 1 position (to +10 V) will result in -2 V 
appearing at the output. If we want +2 V we can always invert it with 
another op amp or a transistor. 

Figure 17.21 

Easier to 
build, harder 
to calculate 

§ , , i i , ,  i 1 . . . .  

0 o,,s . . . .  T 3  

10 ~ ' ~  _ output 
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It would provide a few minutes of fun to confirm the calculations - or 
just accept that it works! 

Microprocessors 
A microprocessor is an integrated circuit that accepts binary inputs, 
usually between 4 bits and 64 bits at a time. These inputs are either 
instruction codes telling it to perform a function like ADD, or they are 
data to be used or sent to the output connections. On its own it is 
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pretty useless, so it is surrounded by RAM and ROM chips to hold the 
data to be used and store the results. 

How does it know what to do? 
We have to provide it with a list of instructions called a program. How 
to actually follow these instructions is stored inside itself as a set of 
internal instructions. This internal code is the most commercially 
sensitive part of the design. 

To add two numbers, the sequence of events will be something like 
this. We tell it to load the first number, usually from a RAM chip or an 
EPROM. It loads the second number. Finally it adds them and then 
stores the answer in a RAM chip for later use. 

Everything must be split into tiny steps as the microprocessor has a 
very limited number of instructions, but it can carry them out at 
relatively high speeds. 

What is there inside the microprocessor? 
Inside, the most modern and largest microprocessors have up to 
9000000 transistors, generally organized into registers to shift data 
arou nd. 

They are classified by the number of bits that can be entered and sent 
to the output at the same time. This varies from the 4-bit micro- 
processors that run our dishwashers, microwave ovens and video 
recorders through 8, 16 and 32 bits to the 64-bit monsters that live in 
our computers. 

Remember that, to do anything useful, the microprocessor must be 
surrounded by other devices like RAMs, ROMs, EPROMs DAC, ADCs 
and power amplifiers, power supplies and all sorts. It's very much like 
comparing an engine with a car. An engine sitting in the workshop is 
a long way off driving to work. 

Note: Microprocessors are explained in the companion book Intro- 
duction to Microprocessors, by the same author. 

Programmable interface controllers (Pies) 
These are self-contained systems that have a microprocessor together 
with the necessary surrounding chips to provide an output that is able 
to control external devices. It is a (sort-of) computer, but is geared 
towards controlling machinery, external devices and processes in an 
industrial setting. It must be programmed in much the same way as a 
computer. 
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Quiz time 17 

In each case, choose the best option. 

i-~ The first bit of a Grayc0de is always- 

(a) 1. 
(b) the opposite value to the first bit of the binary equivalent. 
(c) the same as the first bit of the binary equivalent. 
(d) 0. 

2 When the power is switched off, data is iostfrom: 

(a) a RAM. 
(b) an EPROM. 
(c) a ROM. 
(d) An EEPROM. 

3 Dual ramp is a type of: 
(a) R-2R. 
(b) DAC. 
(c) UVEPROM. 
(d) ADC. 

4 The ~stest form of analogue to digitaiconverter is  
called a" 
(a) single ramp. 
(b) parallel converter. 
(c) binary up-counter. 
(d) register. 

5 ..... A full adder includesi 
(a) an adder, but it has no carry facility. 
(b) a carry-out and a carry-in. 
(c) a carry-out but no carry-in. 
(d) a carry-in but no carry-out. 
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digital data 

Trl-state outputs and tri-state buffers 
We have seen that the output of a gate can be of a totem-pole design, 
with the two output transistors in series acting like a couple of 
switches. 

Some digital circuits, particularly those using microprocessors and 
large scale digital circuits, have outputs with three alternative states. 
The output can be logic 1, logic 0 or disconnected, as in Figure 18.1. 
In the tri-state condition, the chip is, in effect, isolated from its 
output. 

Figure 18.1 
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'TRI-STATE' is actually a trade name owned by the National 
Semiconductor Corporation. Over time it has become a generic term, 
in the form of 'tri-state', for what should strictly be called 'three-state' 
devices. 

To disconnect the chip there is a pin or pins called output enable (OE), 
or just enable (E). When these pins are held at a low logic state the chip 
behaves normally, providing a logic level at all the outputs that depend 
on the input conditions. If we take these pins high, the chip outputs are 
disconnected. It does this by disabling a series of tri-state buffers 
immediately before the data pins. 

There may be several enabling pins on a chip, and not all wil l be 
active low though this is the most common. 

Tri-state buffers 
A buffer is a circuit that has been added to provide isolation between 
two circuits, a bit like a firebreak. It reduces the chance of unwanted 
noise and oscillations escaping from the output back to the input and 
causing distortion or other mischief. 

A buffer often provides voltage or current amplification, and some- 
times it inverts the signal. Buffers are also available in the tri-state 
form. 

If we want to switch off a data stream, it is undesirable to use a normal 
on-off  switch. The timing of interruption is impossible to control 
accurately and the switch may bounce. It is far better to use a tri-state 
buffer, which will connect or disconnect at the moment when the 
voltage is applied to the enable input. 

Buffers are available in integrated form as quad, hex or octal buffers; 
that is, four, six or eight of them in a single chip. Figure 18.2 uses the 
74XX125 quad buffer. 

Figure 18.2 
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Bus working 
Bus working is a way of reducing the number of interconnecting wires 
by using tri-state devices. It is very similar to the telephone system in 
that all our telephones use the same 'trunk' route, which acts just like 
a bus. The rather impractical alternative would be to have a separate 
wire leaving our house to each person in the world that we may wish 
to contact. 

We are using a bus in Figure 18.3 in which the seven-segment display 
can be controlled by either of the two driver circuits. 

Figure 18.3 
On the buses 
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If we wish to use input B to provide the signal for the display, we must 
isolate driver A by switching off the tri-state buffer with a high logic 
level on its enable input. Taking its enable input to a low state connects 
the buffers for input B. In this way, either of the two sets of data can use 
the same bus connections. For simplicity the figure shows only two 
circuits using the bus, but in reality there can be as many as we like 
providing that only one input is switched on at the same time. 

On the diagram, the bus consists of only eight connections. They can 
all be drawn on the diagram, or we can just show the number of 
connections included by adding a label as in the figure. By the nature 
of the circuitry that is using this bus it will be a one-way route, but in 
other cases data can be carried in either direction as required. 

A long bus often employs bus drivers that are usually tri-state buffers 
designed to provide high current levels. A typical example is the 
74XX125. 

24S 



Introduction to Digital Systems 
II I I I I I I  

If a bus is too long it begins to display odd effects. What these are and 
how long is too long, we will see in the next section. 

Transmission line speed and impedance 
A transmission line is any connector, like a wire, cable or copper track 
on a printed circuit board, that is used to convey energy. 

Any connection includes a small amount of resistance and inductance 
and some capacitance, as in Figure 18.4. The main point here is that 
if electrical energy is going to travel along the wire, then it follows that 
the energy must be contained within the transmission line at some 
time. Therefore the characteristics of the transmission line will have an 
effect on the signal. 

Figure 18.4 
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One effect is that these characteristics determine the speed at which 
the energy can move. 

The formula is: 

1 
veloci ty = metres  per second 

~/LC 

where L is the inductance per metre and C is the capacitance per 
metre. For a typical transmission line it works out to be about 17 cm/ns 
(light travels at 3 x 108 m/s or 30 cm/ns in free space). 

Another effect is that the inductance and capacitance determines the 
impedance of the line. Impedance is the ratio of voltage/current, just 
like in Ohm's law. If we ignore the effects of resistance, the impedance 
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of any length of line, called the 'characteristic impedance' is given by 
the formula: 

Zo = ~ ohms 

where L and C have the same values as previously. 

So what's the point of all this? 
If the energy is travelling along a transmission line which is terminated 
by an impedance equal to the characteristic impedance, the pulse 
remains square and the rise time is unaffected (Figure 18.5). 

Figure 18.5 
Correct 
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the far end 
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However, if it hits an impedance at the far end which is different to 
the line impedance, some of the energy is reflected from the end of the 
line. This is just like waves bouncing off the end of a bath. The 
returning energy may then be reflected from the other end and bounce 
to and fro along the line, being progressively absorbed by the 
resistance as it goes. 

If the end impedance is too high, the voltage will bounce back in- 
phase and will add. The effect is shown in Figure 18.6. Notice how 
'ringing' occurs with the voltage overshoot and an undershoot possibly 
low enough to change logic levels. It loses energy on each reflection, 
and will stabilize at +5 V after a few reflections. 

Figure 18.6 
Reflecting 
off a high 
impedance 
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If the terminating impedance is too low, it will have the effect of 
slowing down the increase and thus increasing the rise time. This is 
shown in Figure 18.7. 
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Figure 18.7 
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The good news 
If a connector is short enough, we don't have to worry about all these 
reflections. But how short is short enough? 

We will have problems if the reflected energy gets back to the driving 
gate after the change of voltage level is completed. The longer the 
delay, the worse the problem. So we don't want fast rise times and long 
transmission lines. 

Let's look at an example. The 74LS series has typical rise times of 5 ns 
and fall times of around 2.5 ns. Taking the faster of the two, the 
reflection must get to the end and back in less than 2.5 ns. This means 
it could cause problems if it took more than 1.25 ns to go each way 
along the line. 

If we use our typical figure of 17 cm/ns, the line can cause problems if 
it is over 1.25 x 17 = 21.25 cm - and the longer the more likely the 
problems. 

As a rule of thumb, if a line is over 300 mm in length and rather odd 
things keep happening, it may be a transmission line effect. 

A soluSon 
Since the amount of reflected energy depends on the difference 
between the characteristic impedance of the transmission line and the 
terminating impedance, one first line of defence is to terminate the line 
with an impedance that roughly matches most l ines- around I00 g. 

When ringing occurs the undershoot causes most problems, and to 
counteract this effect the 74F1016 can be used. It is designed to remove 
the undershoot by using Schottky diodes. This chip has 16 terminations, 
and only requires inputs and a 0 V connection (no Vcc). 

Noisy environments 

A conductor, such as a transmission line, will suffer from crosstalk if it 
is running parallel to another conductor carrying data. It will also 
suffer from electrical noise, whether it is natural as in a thunderstorm 
or artificial as with motors, fluorescent lighting, machinery etc. 

Using a screened cable will reduce but not entirely eliminate the 
noise. However, there is an easy way to totally eliminate all of these 
problems, and that is by using an optic fibre. 
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The military have another problem. One effect of a nuclear explosion 
is an amazingly intense electromagnetic pulse that will easily kill off 
normal digital networks and circuits. For most of us, the fact that our 
hi-fis and mobile phones won't work after a nuclear attack has a worry 
value of about 0.000001 on a scale of 1-10. To the military mind, 
however, it is still important to have enough control over our 
communications to be able to organize the elimination of the other 
country. 

Again the answer is optic fibres. 

A n  opt ic  f i b r e  

An optic fibre is a very thin, ultra-clear length of glass. We have known 
for over a hundred years that communication by light is possible, but 
we neither had the light source nor the glass for long distance 
communications. In 1960 we developed the ruby laser, which gave us 
the light source, but we still didn't have the glass to shine it through. 
We poured millions of pounds, dollars and yen into research, and after 
many years silica glass was developed. The clarity of this glass is 
nothing short of amazing. If the ocean was made of it we could see 
right down to the bottom of the deepest part. We could make a pane 
of window glass several kilometres thick, and it would be as clear as 
a sheet of normal window glass. 

An optic fibre is made of two layers of this glass; the inner one, called 
the core, is used to carry the light, and the outer one, the cladding, is 
there to prevent the light from escaping. The combined thickness of 
the layers is about 125 pm or approximately the same thickness as two 
pages of this book. 

For very short ranges of a few metres we can use a clear plastic fibre 
such as is used in some hi-fi units. This is cheaper and easier to use 
than glass, but it has considerably higher losses. 

To build a digital communication system we need a light source, like 
a laser for long distances or an LED for short ranges, a length of optic 
fibre, and a light detector to convert the flashes of light back into 
voltage pulses. This is done by a PIN diode, which is really just a fast- 

Figure 18.8 
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2 4 9  



Introduction to Digital Systems 
I I I I  I I I  I I I I II I I I I 

acting photocell that looks like an LED but works the opposite way 
round - we put light in and get voltages out. 

A communication system is shown in Figure 18.8. 

The story continues in the companion book Introduction to Fibre 
Optics, by the same author. 

Opto- isolators or opto-coupler  

These integrated circuits are something like a very short optic fibre 
system. Inside the IC is a light source in close proximity to a light- 
sensitive switch of some kind. There are many different types on 
the market, which differ in speed, voltage and internal design, but the 
6N136 shown in Figure 18.9 is designed to be compatible with the 
74LS and CMOS 4000 families. 

Figure 18.9 
An opto-isolator 

NC cathode 
anode base 

cathode collector 
NC emitter 

6N135 

In this one, the input circuit provides a current that passes through the 
light source on pins 2 and 3. The resultant light causes the output 
diode to conduct, and this switches on the transistor that provides the 
input to the next circuit. 

The advantage of using opto-isolators (also called opto-couplers) is 
that there is no DC voltage connection between the input and output 
circuits, so they can be used to link circuits where the voltages are 
incompatible. This one offers electrical isolation up to 2500 V. 

Quiz time 18 

In each case, choose the best option. 

i Opt ic  fibre can be made: 

(a) only of silica glass. 
(b) of copper. 
(c) of sea water. 
(d) of glass or plastic. 
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2 Ringing occurs when the terminating impedance Of a 
�9 Q transmission line ,s. 

(a) equal to the characteristic impedance of the line. 
(b) greater than the characteristic impedance of the line. 
(c) equal to 100 D. 
(d) less than the characteristic impedance of the line. 

_ . _ . . . . . . . . . . .  , , .  

3 Tri-state devices are: 
(a) essential for bus working. 
(b) opto-isolators. 
(c) not used in a RAM chip because they are too slow. 
(d) able to provide output logic levels of 0, ~/2 and 1. 

4 Which of these situations is'MOST likely to' causeLa 
problem with a transmission line? 
(a) A line length of 200 mm. 
(b) A slow switching speed and a long transmission line. 
(c) A high switching speed and a long transmission line. 
(d) An impedance of less than 100 ~. 

~=_ . . . . .  �9 . . . .  . ~ . . . . . . . . . . . . .  

5 An opto-isolator: 
(a) requires an input of 2500V. 
(b) is an essential part of a fibre optic system. 
(c) can be used to connect circuits in which the voltages are 

different. 
(d) is normally used to terminate a transmission line. 
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One of the simplest examples of data transmission is a device designed 
to inform us that we have a visitor. It is activated by a simple spring- 
loaded switch near the door. At the transmitting end a switch is closed 
and an electrical signal is passed along a wire to some receiving 
equipment, which may be a bell, chimes, music generator or a light. 
The receiving apparatus may well be reinforced by the sound of a 
barking dog crashing its way towards the door[ 

In this case the data being sent is simply a rectangular voltage pulse, 
but it is still a form of data because it is conveying information to us. 
This is not much different to the data being sent from the laser system 
in a CD player to the amplifier and then to the speakers in a hi-fi 
system. 

The ASCII code 

Another short-range, slow-speed communication system used in a 
computer or other system to send alphabetic data is the ASCii code. 
ASCII stands for American Standard Code for Information Interchange. 
By short-range, we mean just that -  a few metres, and then not with 
any degree of certainty. 

It uses a 7-bit code that allows 27 or 128 different characters to be 
transmitted. Some of these are for housekeeping jobs, like the tab key, 
the return key or the ESC (escape) key, and others provide the normal 
letters, numbers and symbols that appear on all keyboards. 

2S2  
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7 bits or 8 bits? 
The ASCII code is actually specified as a 7-bit code with 128 
characters plus an extra bit designed as a parity bit, which makes it an 
8-bit code. We will look at what parity is all about in a minute or 
two. 

A n  ASCI I  t r a n s m i s s i o n  

Assume we send the word 'It'. We start by looking up the ASCII 
equivalent for each of the letters: I = 49H, which in 8421 BCD format 
binary is 0100 10012; then t = 74H or 0111 01002. 

So the data to send is 0100100101110100 - but how do we send it? The 
simplest way would be just to connect a piece of wire from the 
transmitter to the receiver. However, the reliability of this system would 
be poor. If, for instance, a moment's electrical noise removed a single bit, 
all the following ones would be in the wrong place and our word could 
be totally scrambled. How does the receiving device know whether one 
of the bits is wrong? This can be achieved by a parity check. 

Pari ty  

If an announcement simply said '12.34' and nothing else, most people 
would either ignore it, stare at the loudspeaker or miss it entirely. 

As a form of communication, this is not very efficient. 

If it said 'the next train will depart at 12.34', everyone would 
understand the message. 

The first attempt was very efficient in terms of the number of words 
used, but is unlikely to be an efficient communication because many 
people wil l not receive the message. 

In the second attempt, we have used seven words to make sure that the 
three important ones get through. This is called adding 'redundancy'. 
The more redundancy we add, the more certain the message but the 
slower and less efficient the communication system. 

Data being returned from space probes use very high levels of 
redundancy, over 96%, which allows for correction of really scram- 
bled signals due to the extremely low power levels involved. 

We can use parity for alerting us to the possibility of an error in a 
stream of data, or in some cases we can both detect and correct the 
error. 

In its simplest form, we take a group of bits in a transmission - 4 or 8 
bits are normally used, though the idea is applicable to all other 

2 S 3  



Introduction to Digital Systems 
i i . 

values. In this example we wil l  look at the first 4 bits in our letter '1', 
which is the 4-bit group 0100. 

At the transmitting end, we add an extra bit on the end - either a 0 or 
a 1 - to make the total number of 1 s an even number. In this case there 
is only a single 1 in the group, so we add an extra 1 on the end. The 
data now reads 01001. 

At the receiving end, if the data has been mutilated and now reads 
01101 a quick count wil l  show that there is now an odd number of 1 s 
and so an error has occurred. 

This simple approach can be easily fooled. If there are two errors there 
may still be an even number of ls, which wil l be passed as correct. 
Another disappointment; if it shows an error, we cannot tell which bit 
is wrong and therefore cannot correct it. We can send a request back 
to the transmitter saying 'send that last group again', but this assumes 
that the transmitter and the receiver are in communication with each 
other. 

To send our message 'It' we need to send a total of 16 bits, and with 
a little cunning we can not only spot an error but can automatically 
correct it. 

Just follow these steps to send the binary data 0100 1001 0111 
0100. 

Step 1: Rewrite the data in the form of a square, using 4 bits at a 
time. 

0 1 0 0 
1 0 0 1 
0 1 1 1 
0 1 0 0 

Step 2 : A d d  parity bits. 

Across the top row we have the numbers 0100, which includes a 
single 1. In this system, which we call 'even' parity, we add another 
1 if necessary to ensure that there is an even number of ls across 
the first row. As we have only a single 1, we add another 1 on the 
end. 

It now looks like this: 

0 1 0 0 l 
1 0 0 1 
0 1 1 1 
0 1 0 0 

The top row now has an even number  of ls.  The next row has two l s  
already, so we  add a 0 to keep the total number  of l s an even 
number :  
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0 1 0 0 1 
l 0 0 l 0 
0 1 1 1 
0 1 0 0 

Data on the move 

The third row, with three l s, will also be completed with a 1, and 
finally the last row will need another 1 to be entered. 

The result is now: 

0 I 0 0 I 
I 0 0 I 0 
0 I I I I 
0 I 0 0 I 

Step 3:Add parity downwards. 

We now have five columns down the page, and we can add extra Is 
in the same way to make the total number of Is in each column an 
even number. 

The fourth column already has an even number of Is, so this one takes 
a 0. The other columns must have a I added. Notice that we also 
played the parity trick on the last column, which consisted of all the 
previous parity results. 

The result is now" 

0 1 0 0 1 
1 0 0 1 0 
0 1 1 1 l 
0 1 0 0 1 
l 1 1 0 1 

We have now got a total of 25 bits to be transmitted. This represents 16 
bits of data and 9 bits added to check the accuracy of the data. 

The final serial transmission is 0100110010011110100111101. 

This means that 9 out of 25 bits (36% of the transmission) are not 
actual data and represent redundancy. 

Let's see how it works. We will assume an error has occurred and one 
of the bits is received incorrectly, so here is the received 
transmission" 

OlO0110010011110110111101 

Step 1: Layout the data as a 5 x 5 square. 

0 1 0 0 l 
1 0 0 1 0 
0 1 1 1 1 
0 1 1 0 1 
1 1 1 0 1 
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Step 2: Check the parity in each row across the square. 

Remember that we decided to use even parity, so each row and 
column should have an even number of ls. 

The first row has two ls; this is even - O K .  
The second row also has two ls; this is even - OK 
The third row has four ls; this is even - OK. 
The fourth row has three ls; this is odd - an error has occurred. 
The last row has four ls; this is even - OK. 

We now know that one of the bits in the fourth row has been received 
incorrect ly-  but so far, we don't know which one. 

Step 3: Do the same for the columns. 

The first column has two ls; this is even - OK. 
The second column has four ls; this is even - OK. 
The third column has three 1 s; this is odd - an error exists in column 
three. 
The fourth column has two ls; this is even - O K .  
The last column has four ls; this is even - OK. 

Step 4: Isolate the error and change the data. 

The error occurs in the third column and the fourth row. Since we only 
have a choice of 0 or 1, we can confidently change the 1 to a 0 and 
recover the correct data stream: 

0 1 0 0 1 
1 0 0 1 0 
0 1 1 1 1 
0 1 0 0 1 
1 1 1 0 1 

A few notes 
In this example we chose to use even parity; that is, we made each row 
and column have an even number of ls. It would work equally well if 
we used odd parity by making the number of ls an odd number. 

It would also work just as happily if we counted the Os instead of the 1 s. 

If more than one error occurs, it wi l l  warn us of an error but it wil l  be 
unable to make any corrections. If you try it, you wil l  see that it 
indicates four possible positions for the two errors and nine for three 
errors. 

RS-232  
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So far we have simply connected two circuits with a piece of wire and 
shovelled some data bits down it, hoping that it might come out the 
other end without loss or mutilation. 



Data on the move 

We may be more demanding, wishing to send data as far as 15 m and 
want reliable communication between two pieces of equipment. 

What  is RS-2327 
RS-232 is a laid-down standard that specifies the use of a 25-core 
cable so that all pieces of equipment that use this standard can be 
simply plugged together and work with no delay or hassle. The plugs 
and sockets are standard, and the voltages and signals on each 
conductor are itemized. Nothing can possibly go wrong - until you try 
it, that is. 

Note:  RS-232 refers to a method of sending information. It can be any 
information that we wish. The ASCII code is one type of information 
that can be sent along an RS-232 link, but we could equally well 
transmit any other data by RS-232. 

There have been several versions of RS-232, and the current popular 
version is RS-232C - so, strictly speaking, all our references to RS-232 
should really read RS-232C. But despite this, almost everyone forgets 
to put the C on the end. 

The RS-232 signal 

There are two things about the signal that jump out at us: the voltages 
are big and the polarities are 'wrong'. 

Logic high is between -5 V and -15 V at the transmitter output. The 
voltage is usually about-12 V. 

Logic low is between +5 V and +15 V at the transmitter output. 

The receiving end must accept a slightly wider range of between 3 V 
and 25 V. 

These wide voltage differences give a good immunity to noise. 

If we were using an RS-232 method to transmit our word 'It', the data 
would be sent as in Figure 19.1. 

Figure 19.1 

ASCII 't' sent using 
RS-232C 

start bit 

+12V I '~' 

-12 V 

stop bit 

Data ~ 0 ,, 

LSB 

0 1 0 1 1 1 O~ 
r 

MSB 
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How is it transmitted? 
At the transmitter end of the communication link, the data is converted 
into RS-232 format and 1 bit of data is sent at each clock pulse. 

Immediately before the first bit of data, a 'start bit' is sent. This is 
always positive-going, and warns the receiver that data will follow 
immediately. 

After that come the data in reverse o rde r -  the least significant bit 
first. 

Finally, there is a 'stop bit' to signify the end of the group of data. 

Every bit of data is the same width except the stop bit, which is at least 
1 bit wide, but there is no upper limit so the system can lie dormant 
waiting for the next data to be sent. 

Why are the start and stop bits needed? 
For the data to be read at the receiving end, the data amplitude must 
be checked roughly in the centre of each data bit. This means that the 
receiver clock controlling the reading of the data must be going at 
much the same speed as the transmitter clock generating it. If this were 
not the case a bit might be read twice or missed altogether. 

To keep the two clocks synchronized, the receiver clock is corrected 
every time the received signal changes from 0 to 1 or from 1 to O; that 
is, on every edge of the signal. In many cases, as in Figure 19.1, we 
have several bits of the same value and no edges occur, so the receiver 
clock must be within a few percent of the transmitter rate to stay 
roughly synchronized. If we send a burst of data where the values are 
all ls or all Os, there will be no edges. To overcome this problem we 
use a start and stop bit of opposite signs, so that each character must 
generate at least two edges to keep the receiver clock on track. 

How fast is it sent? 
The speed of transmission is measured in 'Baud' (Bd), which is the rate 
of the clock used to transmit the data. 

In many systems like this one a single bit is sent by every clock pulse, 
which gives a transmission rate in Baud numerically equal to the 
number of bits per second. 

The standard rates are 300 Baud, 600, 1200, 2400 and so on. The 
longer the line, the lower the maximum speed. RS-232 will run at up 
to 38400 Bd, or even higher in good conditions. 

Genera t ing  the RS-232 signal 

The signal conversion is always left to integrated circuits, in days gone 
by there were the two favourites numbered 1488 (TTL to RS-323) and 
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1489 (RS-323 to TTL), but these were slightly inconvenient because 
we had to provide +12 V and -12 V supplies. 

Nowadays we have new chips like the MAX220, which is made by 
Maxim. The advantage here is that they only need a single +5 V supply 
and have an internal circuit to generate RS-232 voltages. Even so, they 
only draw a low current of about 2 mA. 

A typical system is shown in Figure 19.2. 

Figure 19.2 

An RS-2 3 2 system 

Long wire 

TTL data 
High = +5 volts RS-232 levels Back to TTL 
Low = 0 volts High = -12 volts levels again 

Low = + 12 volts 

So what are the problems? 
Very few pieces of equipment actually use all the specified 25 
connections, and those that are used may be used for different 
purposes. 

Equipment is divided into stuff called data terminal equipment (DTE) 
and other stuff called data communication equipment (DCE). The 
wiring for each type is different; some use a particular wire as an input 
and some use the same wire as an output. In most cases, we don't 
know what a piece of equipment actually is and the manufacturer 
doesn't tell us. It requires experimentation. 

Plug them together. They may work. If they don't, more reading may 
be worth while - see The Art of Electronics (Horowitz and Hill, 
1989). 

R S - 4 8  S a n d  R S - 4 8 2  

These other two standards were designed for faster speeds and for use 
over greater distances - we are talking about 1 km and 10 MBd. They 
also allowed more than one transmitter to use the same transmission 
line and more receivers to be connected. In the case of RS-422 we 
were looking at 10 receivers and 1 transmitter, but RS-485 could 
manage 32 transmitters and 32 receivers. 

With these benefits they were expected to sweep RS-232 aside. But it 
hasn't happened. 
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The MAX485 integrated circuit provides both RS-482 and 485 
conversions and again only requires a single +5 V supply and operates 
at up to 250 kB/s. 

UARTs 
To convert the parallel data to a serial transmission, we could use a 
shift register. 

The modern alternative is to use a chip called a UART (universal 
asynchronous receiver/transmitter) or USART (universal synchronous/ 
asynchronous receiver/transmitter). 

There are integrated circuits that do the conversion from parallel to 
serial and back again as a signal is received. 

UARTS do a lot more than a shift register. They set the Baud rate for the 
transmission, they take care of adding parity bits and perform parity 
checks on incoming signals. They also provide a choice of modulation 
forms. 

A communication system using a UART or USART is shown in 
Figure 19.3. 

Figure 19.3 
A UART does the 
housework, 

Digital input 

I 'I I RS'232 L_._ 
I dri 

Digital input to the 
receiving circuit. 

Encoding 
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In some systems, the correction of the clock by the start and stop bits 
only is insufficient and we want to correct the clock more often - once 
a bit would be nice. 

If the data just happens to consist of more positive pulses than 
negative, the average voltage will have a positive value so we have 
accidentally inserted a DC voltage into the signal. The value of this DC 
level is likely to wander slowly between positive and negative with the 
average value of the incoming data. In some receiving circuits this DC 
may prove to be a nuisance and cause bits to be missed. 



D a t a  on the m o v e  

Luckily, both of these problems (the clock synchronism and DC 
voltages) can easily be solved by making slight modifications to the 
data before transmission. All we have to do is to 'condition' or 
'encode' the digital pulses before they are transmitted, then reverse the 
process at the receiving end. 

RZ (return to zero) 
This is a partial solution. 

Every time there is a positive pulse, it is made to drop back to zero during 
the second half of the clock period. Figure 19.4 shows the original 
signal, which can be referred to as a 'non-return to zero' or NRZ signal, 
and its RZ equivalent. The data shown in the figure is just random 
voltage levels; it is not intended to be RS-232 or anything else. 

RZ encoding does not cure the DC level changes although it will 
reduce the effect, and it will create plenty of clock synchronizing 
edges when a block of positive voltage occurs but it will not help with 
a block of 0 V pulses. 

Manchester 
This solves everything. Regardless of the data being sent, there is no 
DC voltage level and every bit of data generates a timing pulse. 

The encoding method is to split all bit-times into two. The real data 
level is sent during the first half of the bit-time, and the opposite level 
is sent during the second half. So, providing we only read the data 
during the first half of the bit time, the data is not corrupted at all. The 
voltage reversal during the second half automatically balances out any 
DC level, and every bit-time generates an edge to generate a receiver 
clock pulse. The receiver does not need to generate an accurate clock 
of its own - i t  can just derive a clock signal from the incoming data. 
These waveforms are included in Figure 19.4. 

Figure 19.4 
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Multiplexing 
This enables us to send more than one digital signal along the same 
line without them getting muddled up. The same trick works for 
analogue signals, but that doesn't really concern us just now because 
we are wearing our digital hats at the moment. 

Almost every serious transmission route carries more than a one signal 
at the same time, and many carry thousands. 

How does it do this? 
Easy- at least in principle. 

We use a system called TDM - which is an abbreviation for time 
division multiplexing and not for 'tedium', as some people assume. 
This just means that we send a small part of the first message then a 
part of the second message and so on until we have sent some from 
each message. The circuit that does this is called a multiplexer (MUX). 
Then we just start again and send some more parts of the messages. 

When all these fragments get to the far end of the communication 
route, another circuit reassembles all the fragments and rebuilds each 
complete message. This circuit is called a demultiplexer or DEMUX. 

How it works 
Figure 19.5 shows a simple mechanical version. In the position shown, 
a short sample of the logic level in signal A is passed through the 
switch and sent along the transmission line and, at the far end, is 
connected back into circuit A. 

Figure 19.5 
Four-line to one-line 
multiplexing 

A ~ ~,~ / O , c  A B o B 
C -----o c C 
D -------o o D 

Four signals in Four signals out 

Both switches move 
once per clock pulse 
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Both switches click round to the B position, and much the same 
happens. The logic level in signal B is sampled, and this information is 
sent through the transmission line and passed back into circuit B at the 
far end. 

Another click of the switch, and sample C is passed through the 
switches. This is followed by the same process being applied to 
signal D. 

When this is complete, the switches return to position A and we start 
all over again. 
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How long are the samples and does it matter? 
It is not critical,, but there are some guidelines. As we know, the data 
remains constant for the whole of the bit-time in a transmission and 
this means that one sample of a pulse is enough. So we don't need to 
sample each signal more than once per bit-time. 

However we must sample all the signals and be ready back at the first 
one in time to get the data level during the next bit-time. 

Using our example in Figure 19.5, if the bit-time is 1 s, the switch will 
have to move four times in a second in order to be back in time to read 
the first one again during the next bit-time. The switch would have to 
move four times in each second, so we would say that the minimum 
sampling rate is four samples per second. 

Each sample would have a maximum width of 0.25 s. Reducing the 
width of the sampling time, or indeed the gap between the samples, 
means that the signal on the transmission line would have to change 
levels in a shorter period of time. This means a higher frequency and 
a wider bandwidth, which is more expense- so we don't want to go 
too far down that road. The sampling is shown in Figure 19.6, and has 
the sample width roughly equal to the gap between samples. This 
gives the least bandwidth for the system. 

Figure 19.6 
Samples on a TDM 
system ,L vV ,;IIG  1-1 !-I I-!_1-1, 

~" • 0 0 ~" time 

One sample from each, then back to the start 

Figure 19.7 shows a situation in which the sample values are A = 0, 
B = 0 ,  C = I  a n d D - 0 .  

Figure 19.7 
What data are being 
transmitted now? 

Level 1 i-'1 
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How do we build it? 
Although possible, it is highly unlikely that we will use mechanical 
switches for all sorts of reasons- speed, switch bounce, electrical 
noise, life expectancy and cost. A digital solution is altogether better 
and cheaper. 

We need a chip to convert the four incoming lines into a series of 
samples on a single line. Chips that do this are called multiplexers or 
data selectors, and there is a wide range available from 2-input to 
16-input devices. As an example, we are going to look at the 74XX153. 
This is a 4-input version. 

This chip samples each input in turn, so we must have a rood-4 
counter. We can get this by using any binary counter, either in 
integrated form or by building our own from a couple of JKs. 

At the far end of the communication system we need a device to sort 
the incoming samples back into their four circuits. This chip is called 
decoder or a demultiplexer. Again there is a range available, from 
4-16 output channels. A suitable one to work with the '153 is the 
74XX139. 

Figure 19.8 shows the data for the 74HCl 53 and how to connect it to 
multiplex our four input lines. One thing new is the word 'strobe'. 
Strobe is just the same as 'enable'. This one is active low. 

Figure 19.8 

A multiplexer in use BE 
1C3 ~" 
1C2 
1C1~" 
1C0 ~" 
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1~ 2C1 
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2Y 

strobe 
counter .,C.~ ' 

four 
input 
lines 
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~)'i " ~  Vcc 

....... -- multiplexed 
output 
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Figure 19.9 shows the 74XXl 39 demultiplexer used to recover the four 
separate sets of data. 

Figure 19.9 

Using a demultiplexer ~A [7 
~B E 

1Y0 r4 
1Y1 ~ 
1Y2 [~ 
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74HC139 
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1"61 2Y2 
~1 2Y3 

multiplexed ~ kJ  ' '  
input . . . . .  I 

E 
IZ 74HC139 

E 
E 

GND rs 

clock 

four 
output 
lines 

The multiplexed input is applied to the strobe input. One small point; 
the data emerging from the '139 is actually an inverted version of the 
original input, so it may be necessary to add some NOT gates on the 
output of the '139. 

Framing 

As we discussed earlier, the receiver clock must be synchronized with 
the transmitter clock. We found that we can do this by encoding with 
something like the Manchester code to provide plenty of edges. 

Even when we have done this, there is another problem. What 
happens if the receiver misses out a complete sample? All of the 
succeeding pulses will be synchronized, but would be out of step and 
sent to the wrong receiving line. In our example, this could mean that 
line two might receive the data from input line one, line three would 
get the data destined for line two and so on. In the commercial world 
this could be dynamite. A company could find that all its research data 
had safely arrived in a competitor's computer. 
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To overcome this, we can add a distinctive group that would be 
recognized by the receiver c lock -  a bit like adding a bookmark to 
keep track of how far we have reached in our reading. 

A frame then would consist of a framing code followed by the user 
data (Figure 19.10). 

Figure 19.10 

Synchronizing by framing r ] J l _ r L ~  L.rl r l  r l  ....... * 
time 

Framing code Remainder of the data 

Frame 

More choices 
The framing code should be a sequence that the receiving circuitry can 
recognize to enable it to reset the clock. The choice of code becomes 
more elaborate if the data is very important, because with only 8 bits 
there is a chance that the chosen code will accidentally appear in the 
data and cause an unintentional reset. We can make this less likely by 
increasing the number of bits to 16 or more. Even more sophisticated 
methods use a sequence of code bits, rather than the same choice each 
frame. 

How big is a frame? 
Take two extremes: 

1 A single framing code at the beginning of the data, and perhaps 
once a year after that. This is very insecure, but it doesn't add much 
extra transmission time to the message. 

2 The other extreme is to send a framing group just before the data 
associated with the first transmission line, which in our case will 
mean an extra group after every four groups of data. This is very 
safe, but can add 25% to the message. 

in between these two extremes, there is one to suit the data 
transmission being undertaken. 

M o d e m s  

Digital signals, because of their fast switching between levels, tend to 
produce a wide spread of frequencies. The telephone system has a 
bandwidth of only 300 Hz-3.1 kHz-  just about good enough for voice 
transmission, but not very impressive. To send digital pulses, we 
employ a modem (MOdulator DEModulator) at each end of the 
transmission route. 
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To reduce the bandwidth, the modem converts the logic levels into 
two different frequency sine waves that account for the noise we hear 
when the telephone is being used for fax transmissions. 

Converting digital signals into different sine wave frequencies is 
called FSK or frequency shift keying. The waveforms are shown in 
Figure 19.11. 

Figure 19.11 
Frequency shift 
keying as used in 
modems 

+V 

0 volts 

frequency low high low high 

The voltage level controls the frequency 

Quiz time 19 

In each case, choose the best option. 

I The data group 1 0 i ~ i 1 ( ) 1  i 000001001011100  was 
transmitted using even ls parity and contains an 
error. The corrected data group is: 

(a) O010011011000001 O01011100 
(b) 1010011011000001101011100 
(c) 101 O011010000001001011100 
(d) 1010011011000001001011101 

2" .......... if-each channel in a4-channel TDM System~*is 
sampled every 5 ms, the system clock would 
be running at a frequency of: 

(a) 200 Hz. 
(b) 50 Hz. 
(c) 10 kHz. 
(d) 1 kHz. 
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3 Which of these RS-232C output levels' would NoT be 
a valid transmitter output voltage? 
(a) +13 V. 
(b) -15 V. 
(c) -25V. 
(d) +3 V. 

~1 .... A form of encoding 'thatw0uld be most helpfui in 
clock synchronization is called: 
(a) Manchester. 
(b) NRZ. 
(c) RS-485. 
(d) RZ. 

s I , la,  RS-232r tro.smissio., stop bib 
(a) is sent immediately after the least significant bit. 
(b) is not essential if a start bit is used. 
(c) is always at a high logic level. 
(d) can be longer than any of the other bits. 
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Methods and 
measurements 

Nooking up a prototype 
The first attempt at a new circuit is seldom, if ever, the finished design. 
It makes sense, then, to build the circuit with a view to making quick 
and easy modifications without damaging any of the components. 

The prototyping board 
This is also called plug board, breadboard and various trade names, 
including the term 'proto'. 

All integrated circuits have pins spaced at intervals of one-tenth of an 
inch (2.54mm). For easy building of circuits, prototyping boards 
consist of rows of interconnected sockets into which nearly all types of 
components can fit without the need for any soldering. A common 
layout of these boards is shown in Figure 20.1. 

Figure 20. I 
A protolyping board 
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Lines of sockets are connected together, some examples of which are 
shown shaded in the figure. The separate strips running along the 
outside edges are ideal for running power supplies that are likely to be 
connected to many parts of the circuits. The ICs, other components 
and connecting wires are simply plugged in to make the final circuit. 
A sample circuit is shown in Figure 20.2. 

Figure 20.2 
A sample circuit 

+3.3 V 

OV 

+3.3 V 

I   ilIF- I J 

OV 

A few tips 
Use single-strand insulated copper connecting wire. A diameter of 
0.6 mm is perfect. 

Support the component leads on the component side as it is bent to 
prevent strain and failure. Don't bend closer than one-tenth of an inch 
from the component. 

Use short wires laid flat with right-angled bends, called plate wiring. 
Avoid high loops of wire that look like a saucer of mustard and cress 
growing. 

Use a method to select different colours of wires to make faultfinding 
easier- not just to make the circuit look pretty. 

W h e n  w e  are  slightly sure of the design 

If we want a soldered circuit, we can use stripboard. Vero manu- 
factures much of this, and Veroboard is becoming a generic name for 
all types of stripboard. 

Stripboard is a sheet of insulating material, usually 1.6 mm thick, which 
has holes punched at one-tenth of an inch centres. On one side, strips of 
copper provide connections along the board as in Figure 20.3. 
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Figure 20.3 

Stripboard 
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Components on other side 

Inserting ICs 

Components are added on the non-coppered side, and their leads are 
passed through the holes to be soldered to the copper. Alternatively, 
pins can be pushed through the holes and soldered in position. The 
components can be soldered to the pins, making it very easy to try 
different values with no damage to the copper tracks. Hand tools make 
the pin insertion easy. 

The tracks have to be broken as necessary to allow the circuit to be 
constructed. To break the track, the best method is to use a Stripboard 
cutter (also called a strip face cutter). This is basically a twist drill with 
an attached hand le -  put it in a hole, press gently and twist 
clockwise. 

We can solder them in just like any other component, but it is not easy 
to take the IC out again if we change our mind. To remove the IC we 
either have to melt all the solder at the same time by using one of the 
special attachments that fit on the soldering iron, or we can use a hand 
tool called a solder sucker which is like a spring loaded vacuum 
cleaner. We melt the solder with the iron and, when liquid, we suck it 
all up, leaving the IC pin clear of solder. Working from pin to pin will 
finally allow us to lift the IC out. 

If the IC is expensive there is another method open to us, and that is 
soldering a base or socket onto the board so that the IC can be plugged 
and removed as necessary. 

A moments thought is required when selecting the bases to be used. 
They generally cost at least as much as the IC, and can be up to eight 
times the price. The very cheap ones are unreliable, have a limited life 
and are generally a waste of time and money. 

The ZIF (zero insertion force) IC base or holder is at the other end of the 
spectrum. These are excellent to use and a good investment if we are 
using more expensive chips. We simply lift the lever, which opens the 
holes, and the pins just drop in. As the lever,is lowered the holes 
decrease in size, gripping the pins. It causes no damage to the IC 
(Figure 20.4). 
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Figure 20.4 
Z I F - a  really nice IC holder 

lower lever to gdp the chip, 
lift to release 

Printed circuit boards 
If we are going to make several circuits of the same design, we may 
decide to use a printed circuit board (PCB). We can sometimes buy 
ready-made PCBs for use with some of the more popular chips, or we 
can make our own. 

Basically, a PCB is a sheet of insulator with a layer of copper bonded 
onto one side. We remove most of the copper to leave behind the 
connections necessary to build the circuit. 

Construction steps 
Draw up the circuit diagram that we wish to build. Build a 
prototype. 

Design the board layout 
Remember that the components will go on the non-copper side of the 
board. The only other requirement is that it must work. Generally, 
though, keep ICs in a line with all pin ls in the same direction, and 
keep the resistors in line or, if necessary, in groups placed at 90 ~ . 
Faultfinding becomes more difficult if components are scattered 
randomly over the board. 

Using a sheet of one-tenth inch (2.54 mm) graph paper, lay out the 
components and mark the component positions in pen. Take a soft 
pencil and a bountiful supply of erasers and draw in the inter- 
connections necessary to form the circuit, trying not to cross any lines 
or the copper will be connected causing a short circuit. As the circuit 
complexity increases, it will become more difficult and probably 
impossible. We may improve things by repositioning the 
components. 

If connections really must cross, we can use a short length of insulated 
wire to jump over the offending copper strip. A most impressive way 
is to hide the jump by using a 0 ~ resistor. 

A high-tech alternative is to use a computer and one of the many PCB 
layout programs, which are really magic to use. 
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Transfer the design to the board 
The connections on the copper side must be protected from the acid 
used to remove the remainder of the copper. At this stage take a few 
moments to add a dot against pin 1 of the ICs, so we don't accidentally 
plug them in the wrong way round. Instant death for the IC. For the 
same reason, it is worth marking in the power supply value and 
polarity. 

An easy but not very smart method of transferring the design is to use 
etch-resist pens to draw it. It certainly works, but the line quality is 
rather variable. 

A better but slower method is to use adhesive tracks or etch-resist 
transfers. These methods allow us to buy ready-made IC base pads and 
thus guarantee that the IC will actually fit into position. 

The best way is to use a photographic method. To do this we draw the 
circuit on a transparent polyester sheet, either by applying transfers by 
hand or by direct printing from a laser printer. This is a nice method; 
we can go straight from our PC drafting program onto the polyester 
film. 

Using the photographic process, the copper is supplied with an 
ultraviolet light-sensitive surface coating. The polyester film is placed 
against this surface coating and exposed to UV light in a light box. 
Engage brain at this stage. Being transparent, the film can easily be 
placed upside down and the resulting board will be back to front and 
quite useless. It should be slipped quietly in the waste bin before 
anyone notices. Alternatively, get someone else to do this bit and have 
someone to blame. The light softens the exposed areas of the surface 
coating and the coating under the tracks on the polyester film is 
unaffected. The softened surface coating is washed off with a 
developing chemical. At this stage, the now exposed copper is ready 
for etching. 

Remove the unwanted copper 
This is achieved by etching in an acid solution such as ferric chloride. 
This process dissolves away the exposed copper areas, leaving just the 
interconnecting tracks. 

Drill some holes 
All points where the pins or wires go through the board must be 
drilled. Small-scale work often uses a small electric drill. If epoxy glass 
boards are used, spend about three times the price and buy a tungsten- 
carbide drill b i t -  well worth the extra. Commercial production is 
normally by punching the holes through the board. Curiously, this 
results in a very clean accurate hole with no splintering around the 
edges. 
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Inserting the components 
As the components are inserted, it is usual to bend the leads to about 
45 ~ to give some support to prevent the components dropping out as 
they are soldered. When complete, the excess wire lead should be 
snipped off and the flux removed. Flux solvents remove the flux easily 
at this stage, but it gets more difficult as time goes by. There is no strict 
necessity to remove the flux, but the appearance is much improved 
and fault-finding is easier. 

Professional boards 
As we try to cram more circuit onto a smaller board the PCBs have 
developed and have more than the single copper layer for the tracks. 
It is normal now to have multilayer boards with at least four 
interconnected layers, and sometimes many more. There has also been 
a move towards surface-mounted devices (SMD). These are small and 
have no connecting wires. They are mounted by being soldered 
directly to the surface of the board and very close together, giving a 
higher packing density. 

Test equipment 
We need a basic multimeter to check the input supply voltages, but 
there are some items that are more specific to digital circuits. 

Logic probe 
A logic probe is a simple instrument that has two power connections 
and a conducting tip which can be touched on points of interest. The 
general layout is shown in Figure 20.5. There are three LEDs on it. The 
first two show the logic states 0 or 1, and the third indicates the 
presence of a high-frequency square-wave or a single very short 
duration pulse or 'glitch'. 

The switch enables the voltage levels to be switched from TTL or 
CMOS. To ensure the correct interpretation of voltage levels, it is 
important that the power supply is fed from the circuit that is being 
tested. 

A logic pulser 
A logic pulser acts as a signal generator to inject voltage pulses into a 
logic circuit. It is very easy to check whether an IC is working by 
injecting a voltage pulse into an IC and using a logic probe to monitor 
the changes, if any, at the output. 

The input pulses are of very short duration, just a few microseconds, 
and by providing a current as high as 100 mA it is possible to force the 
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Figure 20.5 
A logic probe 

CMOS/TTL switch 
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Pulse detector 
Logic 1 ~  

Logic 0 ~ _  

Connect to 
required point 

Clip leads on to 
the circuit supplies 

potential to change even if other gates are supposedly holding the 
voltage at the opposite logic level. Therefore, we do not have to 
disconnect parts of the circuit before testing. The very short duration 
ensures that the current is not maintained long enough to damage the 
circuitry. (Not 100% true, but very nearly!) 

They can also provide a continuous square-wave output signal. The 
frequency is selectable, with a low frequency of about 1 Hz that enables 
us to watch the circuit operate and hopefully spot the problem. It also 
has a higher frequency, between 400-1000 Hz, which we can hear with 
an earpiece as we trace the signal around the circuit. 

Physically, the logic pulser looks so similar to a logic probe that we 
could easily mistake them at first glance. 

A ser ious piece of  test e q u i p m e n t  

The previous pieces of test gear would fail when we want to see what 
data is actually present in a data stream under real operating 
conditions. 

The problem with digital circuits is that they often depend on many 
bits of data occurring at the right time. We may need to monitor a large 
number of places, perhaps 30 or more, and then analyse the data 
slowly and carefully to see what is really happening. This is the 
function of a piece of test equipment called a 'logic analyser'. Logic 
analysers are in the same price range as an oscilloscope. 
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A logic analyser can answer such questions as: 

Are all the correct data inputs present at the instant at which the 
enable or strobe input is pulsed low? 
Is a dynamic hazard occurring? 

The design of a logic analyser is basically a very simple combination 
of shift registers. 

You may remember we looked at shift registers in Chapter 16. The 
register was loaded with data and, on each clock pulse, the data is 
moved one place to the left or right as required. 

Now imagine a shift-right register that can hold 32 bits of data. If we 
connect it to a data stream, the first bit of data will enter on the first 
clock pulse, and after a period of time we will have a copy of the most 
recent 32 bits of data (Figure 20.6). 

Figure 20.6 
Another look at 
a shift register 

Data in -101ollo!olloloooolollololo10o111o I 

data moves once on 
each clock pulse 

Data lost 

Now, if we had four such registers, we could collect data from any four 
parts of a circuit at the same time. 

Imagine we were trying to locate a fault in a counter. We may want to 
know how the output from each JK compares with the clock input. We 
would use one register to monitor the logic levels on the clock, and 
three others to check the outputs. 

The central part of the register is called a 'window', and allows us to 
read the data stored at that point (Figure 20.7). A simple arrangement 

Figure 20.7 
The window 
value is 1011 
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input = 

input ~. 

input ~. 

input .- 

Window 

Data ~, Data 

1101110100100101 ~ 100100100000,00101 
I oo000ooooob~b11N4"5l--I ()!10i00101011010 i 
1,1111,,1111i111111~--~ 1111111i'ii"i1'11'!!i 
I00,i1'~i100!010101 ~ ~:f'i0!0!0!01101, 011 

The window value is often displayed as a hex number 
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like this would be referred to as a 4 x 32 (4 by 32) logic analyser. In 
logic analyser specifications, the number of registers are spoken of as 
the number of channels. 

In real life, we would never find such a simple arrangement of 
registers. Logic analysers contain at least 32 channels, each containing 
a 2048-bit shift register. One like this is referred to as a 32 x 2k logic 
analyser, and with it we can monitor any 32 different points in a digital 
system. Which points we choose are entirely up to us. 

More about the window 
In the window, the logic analyser will 'see' a bit of data from each of 
the channels. We can also load a combination that we are searching 
for. For convenience we can enter the values in hex or any other base, 
and as the clock pulses arrive from the circuit the data move across 
and are continuously compared with the combination we have 
entered. When a match is found, the clock is switched off and the data 
'captured'. 

We can now move backwards and forwards along the registers and 
read off the sequence of data bits 'frozen' in time, so we can analyse 
it at our leisure. The data can also be displayed as waveforms on an 
oscilloscope. 

The benefit of positioning the window in the centre of the shift register 
is that it allows us to observe the program action before as well as after 
the chosen moment. 

Quiz time 20 

In each case, choose the best option. 

1 ...... integrated 'circuits have pin's "spaced: 
(a) I mm apart. 
(b) one-tenth of an inch apart. 
(c) I m apart. 
(d) 2.54 in apart. 

2-' The letters ziF stand for: 
(a) zero insertion force. 
(b) zoom insertion fixing. 
(c) zero integrated force. 
(d) zero insertion fixing. 
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3 Most single-layer PCBs have a thickness of: 

(a) one-tenth of an inch. 
(b) 0.6 mm. 
(c) 2.54 mm. 
(d) 1.6 mm 

4 "  An' advantage of u'sing SMDs " �9 IS. 

(a) that the larger components make handling easier. 
(b) their higher power dissipation. 
(c) that a higher packing density is achieved. 
(d) that the copper can be etched without ultraviolet light. 

5 A device used to iniect a voltage into a digital circuit 
is a: 

(a) logic pulser. 
(b) flux meter. 
(c) logic analyser. 
(d) logic probe. 
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Avoiding some problems 
-and finding the others 

I built my first radio using the techniques illustrated in Figure 21.1. 

Figure 21.1 
Look Mum, I built it 
myself! 

I sat up through the night, determined to finish it. I held all the circuit 
in my head. Finally I connected the last wire and switched on. It didn't 
work. It took me a fortnight to remove all the faults I had introduced. 
Then it worked. 

It was a waste of time and effort but it taught me a lesson or two. 
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Ways to avoid problems. 
1 Keep notes during building or modifying a circuit, otherwise the 

telephone Will ring or the fire alarm will sound and 10 minutes later 
we are staring at the circuit with no idea of how far we have got. 

2 Add labels and colour code the wiring. Following a circuit with 
inconsistent colour coding is a nightmare. 

3 Always make sure the power supplies are applied before the input 
data is connected. It is often fatal for an IC to have input voltages 
applied without the supplies. 

4 Never remove or insert any component or plug or IC with the 
supplies on. Inevitably some connections are made or broken 
before others, so voltage changes occur in a random order. 

5 Don't cook components with the soldering iron. They don't like it. 
6 Don't break the ICs. Take them out of the bases carefully. This is 

sometimes easier said than done. The recommended way is to 
invest in an IC remover tool that grips the chip along the whole of 
its length, allowing it to be eased out of the socket without breaking. 
The very popular but dangerous way is gently to prise up alternate 
ends with a small screwdriver until it is lifted clear of the base. As 
the size of the IC (and usually its price) increases, the chance of 
cracking it in half becomes more serious. Safer than a screwdriver is 
the cap of a ballpoint pen, as in Figure 21.2. Just slide it under the 
chip and wedge alternate ends up. The softness of the plastic 
reduces, but does not eliminate, the chance of damage. There are 
also bases with a lever, very similar to ZlF bases, which actually lift 
the IC out when the lever is operated. 

Figure 21.2 
Safer than a 
screwdriver 

FREE IG ,.ernover with 
b"llpOint 
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7 Remember electrostatic discharge (ESD). The input resistance to 
CMOS gates is extremely high, which means that static electricity 
applied to the pins of the IC cannot leak away easily and quickly 
builds up a voltage sufficient to damage the chip. The earlier gates 
like the 74 and 74LS families have much less trouble with static. 
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Nowadays the only safe way is to assume that all Its are static- 
sensitive. 

Electrostatic d ischarge 

The increase in speed and complexity over the years has resulted in 
using smaller internal geometry, which in turn means thinner layers of 
insulation and more susceptibility to ESD damage. 

We cannot feel a static discharge unless it exceeds 3000 V, but 200 V 
of static electricity is enough to damage chips. This is despite the fact 
that most chips have antistatic protection circuits at their inputs. We 
can certainly improve the antistatic precautions and indeed we can 
cure the problem completely, but only at a cost of a large reduction in 
operating speed. 

Static electricity can degrade the performance without actually killing 
it totally. In fact, it can cause any number of odd effects. 

What can we do about it? This is not an easy question to answer- we 
could stop it altogether, but do we really want to? A better question is 
'what steps are worth taking, given all the circumstances'? We have a 
close parallel on the roads- we can totally eliminate serious road 
accidents but have decided not to. It would be easy. Fit hydraulic rams 
to the front and rear of all vehicles to cushion any impact, fit Doppler 
radar to apply the brakes automatically when any obstruction or road 
problem is sensed ahead of the vehicle, and reduce the maximum 
speed to 5 mph. Problem solved. 

What  steps shall we  take to protect a few integrated circuits? 

Circumstances alter cases. Consider, for instance, assembling a circuit 
using ICs costing over a hundred pounds each as part of a 'missile 
launch inhibit' circuit. Under these circumstances, it is worth taking 
the most stringent precautions. On the other hand, if we are using a 
single JK chip to make a counter just for fun, the simplest precautions 
will be enough. 

So, choose from the following. 

Simple precautions at no cost 
I Store the chips in conductive foam, aluminium foil, antistatic plastic 

bags or antistatic bubble wrap. 
2 Check the furniture. Avoid plastic chairs or tables and nylon carpets. 

A bare wooden table is very safe, but beware of a varnished table. 
It may appear to be wood, but if it is coated with polyurethane 
varnish then, in the opinion of the static electricity, it is a plastic 
table. 
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3 Check clothing. A nylon lab coat is bad news-  particularly if you 
are in a low-humidity area due to central heating or air condition- 
ing. Cotton is very much better, as it absorbs moisture more easily 
and becomes a poor insulator. 

4 Check the floor. Avoid plastic tiles unless they are designated 
antistatic. 

More serious precaution 
1 Use a wrist strap. This is a conductive band that fits round the wrist 

and is earthed by a cord clipped to a convenient earth point. They 
have a resistance of about 1 Mg. This conducts enough to dissipate 
static, but not enough to electrocute us if we accidentally touch 
something nasty. A very worthwhile first step to safety, they are quite 
inexpensive and are sometimes provided free of charge when 
buying the more expensive chips. 

2 Conductive matting is available to put over the surface of the 
workbench and on the floor under the chair. This is also earthed by 
a conductive lead, as on the wrist strap. 

3 A conductive heel strap provides a connection between the user's 
leg and the bottom of the shoe to allow easy movement in areas like 
storerooms or production lines'. 

4 All chip storage facilities are available in an antistatic form. 

Fault-finding 
Good fault-finding does not involve a great deal of activity; we don't 
have to keep up an average of a check a minute to show that we are 
apparently 'getting on with it'. In fact fault-finding is not like that; it 
involves a lot of time sitting and thinking. (Not just sitting). 

Whenever we make a test, we should always write down the test and 
the result. This is vital, as it saves us repeating tests that we have 
already made. It also allows us to settle down with a cup of coffee and 
sift through the clues we have gathered and plan our next move. 

We must follow a method, and here are the two popular ones. 

The half-split method 
This is probably the fastest way of homing in on a fault. The first test 
is made at a convenient point in the centre of the circuit, as shown in 
Figure 21.3. 

Figure 21.3 
The half-split 
method 

input '1 1'1--I 2 

No signal here "~ 

~ ~ 5 .  ~ .6"  I_ .1~-~  8 '}------ output 
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If the expected signal is not present the fault must be somewhere in 
blocks one to four, so the shaded blocks five to eight have been 
eliminated. Our next step is to check halfway through the remaining 
blocks, as in Figure 21.4. 

Figure 21.4 
Test halfway through 
the remaining circuit 

Signal here is OK 7 

input ~ - 2_ ~ ' ~ ~ . . . ~  

'_/.~/:H._.I7_... H __ 8. ;, output 

If we assume that a signal is present at this point we know that the 
circuit elements one and two are OK, so again we make a check 
between the two remaining parts of the circuit as in Figure 21.5. 

Figure 21.5 
One last test 

No signal ~ 

input ~ . . ~ . _ = 2 _ ~ _ I . H ~ . ~ ~  

If no signal is found, then the fault must be in block three (Figure 21.6). 

Figure 21.6 
Got it! 

It's you! 

input ...... ~.,=:=.iL!l:..~..i~ 3 i_ H i. 4 .i 

~ 7' .... __~._LJ output 
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Plod-through method 
This means starting from the beginning and checking the output of 
each stage, following the signal until, at the faulty stage, it disappears. 
The alternative is to start from the last stage and check back through 
the circuit until the expected signal is found. 

People who like the plod-through approach often have a firm opinion 
about which one is best. Those that prefer to start at the beginning 
have the benefit of following a known signal, so test equipment is 
easier to set up and any loss of signal is immediately apparent. 
However, working back from the end means that we are moving from 
a 'no signal' situation to 'some signal'. The advocates of this method 
would argue that it is fast and easy to spot a signal, and we can always 
worry about the details of the signal when we have got one. 

At the end of the day it doesn't matter which way we prefer. Any 
method is better than no method. 

Checking for a waveform 

Even when we are following a recognized method, we still have to keep 
alert, in the last example, we checked between blocks three and four 
and found no signal. We had 'found' the fault to be block three. 

Before rushing out and buying a new chip, let's look more closely. The 
actual circuit is shown in Figure 21.7. 

Figure 21.7 
Which gate is dud? 

Signal I~1o signal 

/. 

We check the power supplies to both chips and all supplies are OK. 
We break the link between the two chips and the signal at the output 
of chip 1 mysteriously reappears. There had been a low resistance path 
to the 0 V supply inside the second chip. 

Breaking the link could be done by removing the second IC from the 
board or by disconnecting the wire or PCB track. This should be 
achieved by using a hand tool called a track cutter, but many 
technicians resort to a drill or scratching away with a knife or a 
screwdriver until the track is broken. 

When the repair is made, the track should be cleaned and a short 
length of copper wire soldered across to bridge the gap. Try to avoid 
the quick solution of blobbing solder across the gap. This often results 
in a dry joint, which will come back to haunt us later. 
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Checking an IC 
Checking by replacement is an easy way of knowing for sure whether 
it is the IC causing the problem. But there are a couple of provisos 
here. We must know that the IC used for the check is not faulty. New 
chips are not fully checked after manufacture. Generally only a sample 
of each batch is tested, so some duff ones always get through. Some 
chips like RAMs cannot be conclusively checked. They are tested by 
loading ls into each memory cell, then by loading Os in each. Finally, 
0s and l s are loaded into alternate memory locations; other data 
combinations are not tested. We do not have a computer in the world 
that is fast enough to test all combinations of data in a simple RAM 
chip. 

The other problem is that we must run the risk that if there is a circuit 
fault that caused the failure, it may kill off our replacement as well. 

It is a good idea to check the pin voltages first, just looking for 
something really silly. The likely pins that are worth checking are the 
ones carrying a DC voltage, like the power supplies. This may show a 
fault in the PCB track layout. 

Reliabil i ty of components 
In order, worst first, the least reliable components are connections and 
cables, switches and variable resistors. 

Probable causes of IC faults 
I analysed the causes of a large number of faults occurring in digital 
circuits that employed integrated circuits. 

There were seven main causes that account for almost every failure of 
digital circuits, and these are listed below. 

No power supplies connected to the chip 
Magic they may be, but they won't run without supplies. They are 
sometimes forgotten at the prototype stage, as most circuit diagrams 
omit the power supplies for clarity on the page. 

Miscounted pins 
Remember the pins are counted from above the IC around it in an 
anticlockwise direction (Figure 21.8). 

Figure 21.8 
Count tile pins 
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Figure 21.9 
Strange but true 

0v 

+5V 
, , ,  , , , 

Voltmeter reads 0 V ~ ~ ~  ~ 

( ~  ~ Voltmeter reads 0 V 
, , , 

Easily done but 
difficult to spot 

A logic probe would not be fooled by a floating 'zero'; it will not show 
any logic level if it is floating. 

Insufficient decoupling 
This is another cause of erratic running, and was introduced in 
Chapter 11. 

Bent pins 
If the pin is bent when being inserted into a base it is very difficult to 
see, and if the pin happens to be an output pin the test instruments will 
show the output to be OK. See Figure 21.10. 

Figure 21.10 
Bent pins can 
cause puzzles 
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Inputs left floating 
Floating inputs tend to float up to logic 1 levels and sometimes the 
circuits still work but are prone to erratic action due to noise. These 
circuits are often reported as 'it was working yesterday/before lunch/ 
just now but it's decided to go wrong'. 

When using a voltmeter they show 0 V between the floating input and 
ground. They also show zero between the positive supply voltage and 
the suspect pin, showing that something is clearly amiss (Figure 21.9). 
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IC inserted the wrong way round 
This normally reverses the polarity of the supplies. The chip normally 
gets very hot and does not survive the experience. To help us to avoid 
this, a dot is printed on the board next to pin 1. 

Voltages applied to the output 
If a chip is trying to make its output go to a logic O, say, and we apply 
+5 V to it, there will be a bit of a disagreement and the result may well 
be a dead IC. 

Feedback loops 
In circuits like mod-n counters, where the output controls the 
operation of the circuit, a failure in any part of the circuit will cause the 
whole thing to collapse. It may be an idea to disconnect the feedback 
section and look to see if the circuit performs in the expected minimal 
way without it. With a counter, for instance, it may just count 
continuously without resetting at the required value. It may be worth 
taking all the enable or strobe inputs to their active values and seeing 
if the outputs then respond correctly. It may also be possible to slow 
the input clock pulses by replacing the input clock with a debounced 
switch. We can then check the operation of the circuit on every clock 
pulse. 

Finally, late at night, if all else fails, just switch it off. Go outside and 
stare up at the stars. They will tell us the truth - i n  the global view, our 
problems really don't matter. 

Quiz time 21 
In each case, choose the best option. 

The half-split system of fault-finding: 
(a) is probably the fastest way of finding a fault. 
(b) can only be used in circuits which include feedback. 
(c) involves breaking each integrated circuit in half. 
(d) can be started at either end of the circuit. 

2 The best way to Io"cate a floating inputis 'by"using: 
(a) a voltmeter. 
(b) an oscilloscope to check the output of the chip. 
(c) an LED. 
(d) a logic probe. 
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3 An  in tegrated cir'cuit is most l ike ly  t o b e ' d a m a g e d b y .  

(a) leaving an input pin floating. 
(b) reversing the power supplies. 
(c) disconnecting an output pin. 
(d) disconnecting the input voltages before disconnecting the 

power supplies. 

~4' "The least reliable parts of an electroniccircuit are: 
(a) 1 M~ resistors. 
(b) connections and cables. 
(c) decoupling capacitors 
(d) integrated circuits. 

5 *A gate Witha correct input but no Output: 
(a) must be replaced. 
(b) is not faulty, it is in a circuit which includes feedback. 
(c) may not be faulty. 
(d) has overheated but will recover if left to rest. 
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Johnson counter, 208, 209 

Index 

Modifying gates, 59-67 
Multiplexing, 262-6 

Karnaugh maps 103-122 
advantages and disadvantages, 

103, 104 
cyclic code, 105, 106 
don't care terms, 120-2 
from truth tables, 118, 119 
Gray code, 105, 106 
numbering of squares, 105, 

107,108 
simplification, 108-22 

Latching, 155 
Logic analyser, 274-7 
Logic gates, 39-67, 124-53 

AND gate, 39-47 
changing gate types, 59-67 
exclusive-NOR gate, 54, 55 
exclusive-OR gate, 49, 50 
EXNOR gate, 54, 55 
families, 130-9 
interfacing, 141-53 
NAND gate, 53-4, 55, 56 
NOR gate, 54 
NOT gate, 50-2 
OR gate, 47-49 
performance summary, 138 
specification, 124-32 
universal gate, 64, 65, 67 
XNOR gate, 54, 55 

Logic probe, 274 
Logic pulser, 274 
Logic states, 5 
Logic symbols, 43, 44 

Masked ROM, 224 
Master-slave, 172-173 
Memory, 220-228 

dynamic RAM (DRAM), 223 
EPROM, 224-8 
masked ROM, 224 
PROM, 224 
RAM, 220-3 
ROM, 223-8 
static RAM, 222, 223 

Microprocessor, 240, 241 
Modems, 266,267 

NAND gate, 53-4, 55, 56 
NAND latch, 158-62 
NOR gate, 54 
NOR latch, 162 
NOT gate, 50-2 
Number systems, 7-11, 27-37 

Octal number system, 36, 37 
Open collector outputs, 147, 148 
Optic fibre, 249-50 
Opto-coupler, 250 
Opto-isolator, 250 
OR gate, 47-9 

Parity, 253-6 
PIC, 241 
PLA, 233, 234 
Printed circuit board, 272-4 
Problems and how to avoid them, 

280-2 
Programmable interface controller, 

241 
Programmable logic arrays, 233, 

234 
PROM, 224 
Pulse triggering, 172-3 

RAM, 220-3 
Registers, 209-15 

rotate, 212 
shift, 210-12 
universal, 212-15 

Ring counter, 206-8 
Ringing, 151, 152 
ROM, 223-8 
Rotate register, 212 
RS bistable, 157 
RS-232m 256-9 
RS485 RS482, 259-60 

Schmidt trigger, 153, 153 
Sequential logic, 155-65 

latching, 155 
timing diagrams, 156 
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Seven segment displays, 231-3 
Shift register, 210-12 
Simplifying logic designs, 86-122 

using Boolean algebra, 86-101 
using Karnaugh maps, 103-22 

Sinking and sourcing, 142 
Specifications of gates, 124-32 
Static hazard; 165 
Static RAM, 222, 223 
Switch bounce, 144, 145 
Synchronous counters, 192-209 

integrated bistables and counters, 
196-209 

mod-n, 195 
ring counter, 206-8 
twisted ring or Johnson counter, 

208, 209 
up-counter, 193, 195 

Systems, 2-4 
analogue, 2-4 
digital, 2-4 

Transmission of data, 243-67 
ASCll code, 252, 253 
bus working, 245-8 
encoding, 260, 261 
fibre optics, 249-50 
framing, 265, 266 
modems, 266, 267 
multiplexing, 262-6 
optic fibre, 249-50 
opto-coupler, 250 
opto-isolator, 250 
parity, 253-6 
RS-232, 256-9 
RS485 RS482, 259-60 
three state devices, 243-5 
transmission lines, 246-8 
tri-state devices, 243-5 
UARTs, 260 

Tri-state devices, 243-245 
Truth tables, 41, 42 
TTL gates, 132-9 
T-type bistable, 175, 176 
Twisted ring, 208, 209 

Test equipment, 274-7 
logic analyser, 274-7 
logic probe, 274 
logic pulser, 274 

Three state devices, 243-5 
Timing diagrams, 156 
Totem pole outputs, 146 
Transmission lines, 246-8 

UARTs, 260 
Universal gate, 64, 65, 67 
Universal register, 212-I 5 

XNOR gate, 54, 55 
XOR gate, 49, 50 
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