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PREFACE

This book has been written to provide a thorough and complete discussion of
virtually all aspects of inductance: both “loop” and “partial.” There is con-
siderable misunderstanding and misapplication of the important concepts of
inductance. Undergraduate electrical engineering curricula generally discuss
“loop” inductance only very briefly and only in one undergraduate course
at the beginning of the junior year in a four-year curriculum. However, that
curriculum is replete with the analysis of electric circuits containing the in-
ductance symbol. In all those electric circuit analysis courses, the values of
the inductors are given and are not derived from physical principles. Yet in
the world of industry, the analyst must somehow obtain these values as well
as construct inductors having the chosen values of inductance used in the
circuit analysis. This book addresses that missing link: calculation of the val-
ues of the various physical constructions of inductors, both intentional and
unintentional, from basic electromagnetic principles and laws.

In addition, today’s high-speed digital systems as well as high-frequency
analog systems are using increasingly higher spectral content signals. Numer-
ous “unintended” inductances such as those of the interconnection leads are
becoming increasingly important in determining whether these high-speed,
high-frequency systems will function properly. This is generally classified as
the “signal integrity” of those systems and is an increasingly important aspect
of digital system design as clock and data speeds increase at a dramatic rate.
Some ten years ago the effects of interconnects such as printed circuit board
lands on the function of the modules that lands interconnect were not im-
portant and could be ignored. Today, it is critical that circuit models of these

xi
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interconnects be included in any analysis of the overall system. The concept
of “partial inductance” is the critical link in being able to model these in-
terconnects. Partial inductance is not covered in any undergraduate electrical
engineering course but is becoming increasingly important in digital system
design. A substantial portion of this book is devoted to that topic.

One of the important contributions of this book is the detailed derivation
of the loop and partial inductances of numerous configurations of current-
carrying conductors. Although the derivations are sometimes tedious, there
is nothing we can do about it because the results are dictated by the laws of
electromagnetics, and these can be complicated. Unlike other textbooks, all
the details regarding derivations for the inductance of inductors are given.
Although these are simplified where possible, only so much simplification
can be accepted if the reader is to have a clear and unambiguous view of how
the result is obtained.

In Chapter 1 we discuss inductance and show important parallels between
inductance and capacitance along with some historical details. All of the
derivations of the inductance of various inductors first require that we obtain
their magnetic fields. Chapter 2 is devoted to this task. The fundamental laws
of Biot–Savart, Gauss, and Ampère are discussed, and numerous calculations
of the magnetic fields are obtained from them. In addition, the vector magnetic
potential method of computing the magnetic fields is also discussed, along
with the method of images and energy stored in the magnetic field. In Chapter 3
we provide a complete explanation of how the inductance, which is computed
for dc currents, can be used to characterize the effect of time-varying currents.
Maxwell’s equations for time-varying currents are discussed in detail. An
iterative solution of them is given which shows why and when the inductor,
derived for dc currents, can be used to characterize the effects of time-varying
currents.

All aspects of the derivation of the “loop” inductance of various current-
carrying loops are covered in Chapter 4. The flux linkage method, the vector
magnetic potential method, and the Neumann integral for determining the
“loop” inductance are used, and the “loop” inductances are calculated from all
three methods. The proximity effect for closely spaced conductors is discussed
along with the loop inductance of various transmission lines.

In Chapter 5 we provide details for computation of the “partial” inductances
of wires. Both the self-partial inductance of wires and the mutual partial
inductances between wires are derived. These generic results can then be used
to “build” a model for other current-carrying structures. Chapter 6 contains
all corresponding details about the derivation of the partial inductances of
conductors of rectangular cross section, referred to as “lands.” The concept
of geometric mean distance as an aid to the calculation of partial inductances
is discussed and derived for various structures.



PREFACE xiii

The final chapter of the book, Chapter 7, provides a focus on when one
should use “loop” inductance and when one should use “partial” inductance for
determining the effect of current-carrying conductors. This chapter is meant
to provide a simple discussion of this in order to focus the results of previous
chapters. The chapter concludes with the solution of a problem involving
coupling between two circuit loops using the “loop” inductance method and
then using the “partial” inductance method. Both methods yield the same
answer, as expected. This example clearly shows the advantages of using
“partial” inductance to characterize “unintentional inductors” such as wires
and lands.

With the present and increasing emphasis on high-speed digital systems
and high-frequency analog systems, it is imperative that system designers
develop an intimate understanding of the concepts and methods in this book.
No longer can we rely on low-speed, low-frequency systems to keep us from
needing to learn these new concepts and analysis skills.

The author would like to acknowledge Dr. Albert E. Ruehli of the IBM T.J.
Watson Research Center for many helpful discussions of partial inductance
over the years.

Clayton R. Paul

Macon, Georgia





1
INTRODUCTION

The concept of inductance is simple and straightforward. However, actual
computation of the inductance of various physical structures and its imple-
mentation in an electric circuit model of that structure is often fraught with
misconceptions and mistakes that prevent its correct calculation and use. This
book is intended to ensure the correct understanding, calculation, and imple-
mentation of inductance.

1.1 HISTORICAL BACKGROUND

Knowledge of magnetism has a long history [3]. A type of iron ore called
lodestone had been discovered in Magnesia in Asia. This material had some
interesting properties of magnetic attraction at a distance of other ferromag-
netic substances and was known to Plato and Socrates. In the sixteenth century,
William Gilbert first postulated that Earth was a giant spherical magnet, and
A. Kirchner, in the seventeenth century, demonstrated that the two poles of
a magnet have equal strength. Pierre de Marricourt constructed a compass in
1629 that allowed the determination of the direction of the North Pole of the
Earth. In 1750, John Mitchell determined the universal principle that force at
a distance depends on the inverse square of the distance. At the beginning of
the nineteenth century, Alessandro Volta developed a battery (called a pile).

Inductance: Loop and Partial, By Clayton R. Paul
Copyright © 2010 John Wiley & Sons, Inc.
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2 INTRODUCTION

This allowed the production of a current in a conducting material such as a
wire. In 1820, Hans Christian Oersted showed that a current in a wire caused
the needle of a compass to deflect. Around the same time, André Ampère
conducted a set of experiments, resulting in his famous law. At about the
same time, Jean-Baptiste Biot and Felix Savart formulated their important law
governing the magnetic fields produced by currents: the Biot–Savart law. So
up to this time it was known that in addition to permanent magnets, a current
would produce a magnetic field. In 1831, Michael Faraday discovered that a
time-changing magnetic field would also produce a current in a closed loop of
wire. This discovery formed the essential idea of the inductance of a current
loop. James Clerk Maxwell unified all this knowledge of the magnetic field
as well as the knowledge of the electric field in 1873 in his renowned set of
equations.

Extensive work on the calculation of the magnetic field of various current
distributions and the associated concept of inductance dates back to the late
nineteenth and early twentieth centuries. In fact, Maxwell in his famous trea-
tise discussed inductance in 1873 [23]. An enormous amount of work was
published on the determination of inductance from 1900 to 1920. (See the ex-
tensive list of references on magnetic fields in the book by Weber [11] and on
inductance in the book by Grover [14].) This early work on inductance at the
turn of the century was spurred by the introduction of 60-Hz ac power and its
generation, distribution, and use. Some books, particularly those of the early
twentieth century, tended to give only formulas for the magnetic fields of var-
ious distributions of currents and their inductance with little or no detail about
the derivation of formulas. In that era, computers did not exist, so that many of
the books and papers simply gave tables of values for the magnetic field and
inductance as a function of certain parameters. Another important purpose of
this book is to show, in considerable detail, how the results for the magnetic
fields and the inductance are derived. All details of each derivation are shown.
At the end of the book is a list of significant references and further readings on
the subject of the computation of magnetic fields and inductance of various
current-carrying structures. References to these are denoted in brackets.

1.2 FUNDAMENTAL CONCEPTS OF LUMPED CIRCUITS

We construct lumped-circuit models of electrical structures using the concepts
and models of resistance, capacitance, and inductance [1,2]. We then solve for
the resulting voltages and currents of that particular interconnection of circuit
elements using Kirchhoff’s voltage law (KVL) (which relates the various volt-
ages of the particular interconnection of circuit elements), Kirchhoff’s current
law (KCL) (which relates the various currents of the particular interconnec-
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tion of circuit elements), and the laws of the circuit elements (which relate the
voltages of each circuit element to its currents) [1,2]. It is important to keep
in mind that these lumped-circuit models are valid only if the largest physical
dimension of the circuit is “electrically short” (e.g., L < λ/10), where a wave-
length λ is defined as the ratio of the velocity of wave propagation (along the
component attachment leads), v, and the frequency of the wave, f [3–6]:

λ = v

f
(1.1)

If the medium in which the circuit is immersed and through which the waves
propagate along the connection leads is free space (essentially, air), the velo-
city of propagation of those waves is the speed of light, which is approximately
v0

∼= 3 × 108 m/s. For a printed circuit board (PCB), the velocity of propaga-
tion of the waves traveling along the lands on that board is about 60% of that
of free space, due to the interaction of the fields with the board substrate, and
the wavelengths are consequently shorter than in free space. Hence, circuit
dimensions on a PCB are electrically longer than in free space. For a sinu-
soidal wave in free space at a frequency of 300 MHz, a wavelength is 1 m.
At frequencies below this, the wavelength is proportionately larger than 1 m,
and for frequencies above this, the wavelength is proportionately smaller. For
example, at a frequency of 3 MHz a wavelength in free space is 100 m, and
at a frequency of 3 GHz a wavelength in free space is 10 cm. Hence, for
lumped-circuit concepts to be valid for a circuit having a sinusoidal source of
frequency 3 MHz, the maximum physical dimension of the circuit must be
less than about 10 m or about 30 ft. Similarly, for a circuit having a sinusoidal
source of frequency 3 GHz, the maximum physical dimension must be less
than about 1 cm or about 0.4 inch for it to be modeled as a lumped circuit.
Today’s digital electronics have clock and data rates on the order of 300 MHz
to 3 GHz. But these digital waveforms have a spectral content consisting of
harmonics (integer multiples) of the basic repetition rate, which are generally
significant up to at least the fifth harmonic. Hence, a 300-MHz clock rate
has spectral content up to at least 1.5 GHz, and a 3-GHz clock rate has spec-
tral content up to at least 15 GHz! So the lumped-circuit models (and their
constituent components of capacitance and inductance) that were so reliable
some 10 years ago are becoming less valid today. This trend will no doubt
continue in the future as the requirement for higher clock and data speeds
continues to increase, and the reader should keep in mind this fundamental
limitation of inductance, capacitance, and the lumped-circuit models that use
these elements.

The laws governing the calculation of resistance, capacitance, and induc-
tance are written in terms of the vectors of the five basic electromagnetic field
vectors, which are summarized in Table 1.1. Therefore, if we are to correctly
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TABLE 1.1. Electromagnetic Field Vectors

Symbol Vector Units

J Current density A/m2

Electric field vectors

E Electric field intensity V/meter
D Electric flux density C/m2

Magnetic field vectors

H Magnetic field intensity A/meter
B Magnetic flux density Wb/m2 = T

calculate and understand the ideas of capacitance and inductance of a physical
structure as well as use them correctly to construct a lumped-circuit model of
that structure, we must understand some elementary properties of vectors and
some basic vector calculus concepts. Trying to circumvent the use of vector
calculus ideas by relying on one’s life experiences to compute and interpret
the meaning of the capacitance and inductance of a structure properly has
caused many of the incorrect results and misunderstanding, as well as the
numerous erroneous applications that are seen throughout the literature and
in conversations with engineering professionals. References [3–6] give ex-
tensive details on vector algebra and vector calculus. The Appendix of this
book contains a review of the vector algebra and vector calculus concepts
that are required to understand and compute the inductance of all physical
structures.

The lumped-circuit elements of resistance, capacitance, and inductance
are derived fundamentally for static conditions. Capacitance is derived for
conductors that are supporting charges whose positions on those conductors
are fixed. Resistance as well as inductance are derived for currents that are
not varying with time: that is, direct (dc) currents. For charge distributions
and currents that do not vary with time, the electromagnetic field equations
(Maxwell’s equations) that govern the field vectors simplify considerably.
However, the resulting electrical elements of resistance, capacitance, and in-
ductance can be used to construct lumped-circuit models of a structure whose
currents and charge distributions vary with time. This is valid as long as the
sources driving the circuit have frequency content such that the largest phys-
ical dimension of the circuit is electrically small (see Section 3.4).

To understand the computation of inductance (the main subject of this
book), it is useful to understand the dual concept of capacitance and its
calculation. The basic idea of the capacitance of a two-conductor structure
is summarized in Fig. 1.1(a). If we apply a dc voltage V between two
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V
V

+Q

-Q

E
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(b) inductance

FIGURE 1.1. Capacitance and inductance.

conductors, a charge Q is transferred to and stored on those conductors
(equal magnitude on both conductors, but opposite polarity). This charge
induces an electric field intensity E between the two conductors that is
directed from the conductor containing the positive charge to the conductor
containing the negative charge. Alternatively, we could look at this process
in a different way. Place a charge on the two conductors (equal magnitude
on both conductors but opposite polarity). This charge will result in an
electric field E between the two conductors which when integrated with a
line integral (see the Appendix) gives the resulting voltage between the two
conductors:

V = −
∫ +

−
E · dl (1.2)

where the path for integration is from a point on the negatively charged con-
ductor to a point on the positively charged conductor [3–6]. In either case,
the capacitance of the structure is the ratio of the charge stored on the two
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conductors and the voltage between them [1–6]:

C = Q

V
(1.3)

Hence, the capacitance of a structure represents the ability of that structure
to store charge. However, the capacitance of the structure is independent of
the values of the voltage V and the charge Q and depends only on their ratio.
Hence, the capacitance C of a structure depends only on its dimensions, its
shape, and the properties of the medium surrounding the conductors (e.g., free
space, Teflon). There is energy stored in the electric field in the space around
the two conductors. That stored energy is [3–6]

WE = 1
2

∫
v

D · E dv = 1
2ε

∫
v
E2 dv (1.4)

where v is the volume of the entire space surrounding the conductors, ε is
the permittivity of the surrounding medium, and we have used the relation
D = εE. In terms of capacitance this stored energy is [1,2]

WE = 1
2CV 2 (1.5)

The dual concept is that of inductance, illustrated in Fig. 1.1(b). If we
pass a steady (dc) current I around a conducting loop of wire, the current
will produce a magnetic flux density B that circulates about the wire with its
direction about the wire determined by the right-hand rule: If we place the
thumb of the right hand in the direction of the current, the fingers will show
the direction of the resulting magnetic field that is circumferential about the
current. This causes a magnetic field B to penetrate the surface that is enclosed
by the loop of current. The total magnetic flux penetrating the surface enclosed
by the current loop is obtained with a surface integral (see the Appendix) as
[3–6],

ψ =
∫

s

B · ds (1.6)

where s is the surface of the loop that is surrounded by the current. The
inductance of the loop is the ratio of the total magnetic flux penetrating the
loop and the current that produced it [1–6]:

L = ψ

I
(1.7)

If the surrounding medium is not ferromagnetic (iron is an example of a ferro-
magnetic material), that is, is not magnetizeable, the inductance is independent
of the values of the flux and the current and depends only on the dimension
of the loop, its shape, and the properties of the medium surrounding the con-
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ductor (e.g., free space). There is energy stored in the magnetic field in the
space around the conductor loop. That stored energy is [3–6]

WM = 1
2

∫
v

B · H dv = 1
2μ

∫
v
H2 dv (1.8)

where v is the volume of the entire space surrounding the conductors, μ is
the permeability of the surrounding medium, and we have used the relation
B = μH. In terms of inductance, the stored energy is [1,2]

WM = 1
2LI2 (1.9)

The duality between the concept of capacitance and the corresponding
concept of inductance is striking. However, the methods and techniques for
computing them are generally different in both concept and method. Visual-
izing how to go about calculating the capacitance of a particular structure is
usually much easier to understand than is the visualization of how to go about
calculating inductance.

1.3 OUTLINE OF THE BOOK

In Chapter 2 we summarize the fundamental electromagnetic field laws gov-
erning the magnetic field, those of Gauss, Ampère, and Biot–Savart, on which
the inductance calculation is based. The magnetic fields B of various config-
urations carrying a dc current are derived from these laws. This is a necessary
first step in computing the inductance of a structure since the magnetic flux ψ

penetrating the surface that comprises the inductance must be computed from
B via (1.6). The inductance of the structure is then obtained as the ratio of the
flux and the current producing it via (1.7). The derivation of the B field for
a particular structure that carries a dc current generally involves the setting
up and evaluation of somewhat complicated integrals. An extensive table of
integrals is given by Dwight [7]. Furthermore, the next step in calculation of
the inductance of a structure requires a further integration of B as in (1.6).
An alternative way of computing the B field of a current-carrying structure
is obtained using the vector magnetic potential A. In some cases it is easier
to compute A directly and from this obtain B by differentiation. The method
of images for simplifying problems involving currents over large “ground
planes” is also discussed. The commonly assumed fact that all dc currents
must “return to their source” and therefore must comprise closed loops is
proven.

The important ideas that arise when the currents are, instead of dc, varying
with time are discussed in Chapter 3. The fundamental law that provides an
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understanding of how an inductance produces a voltage between its two termi-
nals is Faraday’s law of induction, which is examined in detail. The important
notion of displacement current in Ampère’s law, which affords an understand-
ing of how a capacitance can conduct a time-varying current through it, is also
discussed. The important concepts of waves, wavelength, time delay, and elec-
trical dimensions that allow these static ideas of capacitance and inductance
to be incorporated into lumped circuits which have time-varying sources driv-
ing them are examined. The important ability of being able to use a quantity
that is derived for static (dc) currents (e.g., inductance and capacitance) in
a circuit where the currents vary with time is shown in terms of an iterative
expansion of the electromagnetic fields. Finally, conservation of energy in the
electromagnetic field and Poynting’s theorem are reviewed.

With this requisite background, we are able to understand how to calculate
and interpret the meaning of the “loop inductance” of a closed loop of current,
which is given in Chapter 4. The “loop inductances” for various structures are
also derived in Chapter 4 using several methods.

The remaining chapters are devoted to the concept of “partial inductance,”
which is rapidly becoming important in today’s high-speed digital electronics.
The general concept of “partial inductance” is examined in Chapter 5, and the
self and mutual partial inductances of straight wire segments are determined.
The self and mutual partial inductances of conductors of rectangular cross
section, which the “lands” on printed circuit boards (PCBs) represent, are
determined in Chapter 6. Chapter 7 is devoted to a critical examination of
the relative merits of using loop inductances to characterize current loops
versus the use of partial inductances. A fairly complex structure is analyzed
by first characterizing it with loop inductances and then characterizing it with
partial inductances. This example is quite useful in bringing together all the
concepts of the previous chapters and in comparing their relative merits and
deficiencies.

1.4 “LOOP” INDUCTANCE VS. “PARTIAL” INDUCTANCE

It is critically important that the reader understand the following two dis-
tinctions with regard to inductance. In undergraduate electrical engineering
courses, only the concept of the inductance of a complete loop of current is
studied. (It is shown in Section 2.9 that dc currents must form closed loops.)
This “loop inductance” is given in (1.7) and requires that we be able to com-
pute the magnetic flux ψ that passes through the enclosed surface of a closed
current loop, as illustrated in Fig. 1.1(b). Therefore, computation of the loop
inductance of a structure requires that we be able to identify the complete cur-
rent loop. For “intentional” inductors this current loop is rather obvious. For
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example, if we wind several turns of wire around a ferromagnetic toroid core,
the loop area of the current that the magnetic flux passes through is evident.
Hence, the concept of loop inductance of intentional inductors is useful in that
it allows us to characterize those as lumped-circuit elements.

On the other hand, if we want to assign an “inductance” to segments of a
conductor on a printed circuit board (referred to as lands), there are several
problems in trying to use the concept of loop inductance to do so. The first
problem is that we must be able to determine the complete current loop path
in order to calculate loop inductance of that current loop. In other words, we
must be able to identify not only the “going down” path from the source to the
load (which is relatively easy to do) but also the “return current” path of the
current back to the source in order to determine the complete current loop. In
today’s densely packed integrated circuits and printed circuit boards carrying
currents having ever-increasing spectral content, this has become virtually
impossible to do! Furthermore, the complete path for the current depends on
the frequency of the current. For one frequency, the return current will take a
particular path, but for a higher frequency the path of the return current may
be entirely different!

So the first problem with using loop inductance to model the conductors of
a loop is that at different frequencies, the return path of the loop current may
be different. This is best illustrated by the situation of a coaxial cable above
a ground plane shown in Fig. 1.2. (See [5] for an analysis of this problem.)
At dc and low frequencies, the current I takes its return path, IG, through the
massive ground plane. However, at higher frequencies, the current I takes its
return path up through the shield, IS . Therefore, the return paths and hence
the complete current loops are different for different frequencies. So if we
were to compute the loop inductance it would appear that we would have two
different values, depending on the frequency of the current.

The final and most important problem in trying to use loop inductance to
allocate inductances to the individual lands on a PCB is that the total loop
inductance of a current loop cannot be placed in any unique position in
that loop. For example, the current loop in Fig. 1.1(b) is said to present an
inductance at its input terminals. But that is a loop inductance that cannot,

I

IS IS
IIG

RVS

I

FIGURE 1.2. “Return currents” of different frequencies may take different paths.
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FIGURE 1.3. The problem in using “loop inductance” to characterize the inductance of PCB
lands.

a priori, be divided into portions that are associated with segments of that
loop!

Figure 1.3 illustrates this problem of trying to use loop inductance to model
the inductance of portions of the PCB lands. We have shown a CMOS inverter
that is attached to a capacitive load (perhaps representing the input to another
CMOS inverter). The +5-V output of the power supply is attached to the
+5-V power pin of the CMOS module via a land on the PCB. Similarly, the
ground terminal of the power supply is attached to the ground pin of the CMOS
module with another land on the PCB. As the inverter switches from the low
to high state, the current, IL-H, is drawn from the power supply through the
+5-V land and through the inverter to charge the capacitor to put the load
voltage, VL, in the high state and returns to the power supply through the
ground land. When the inverter switches, the load capacitor then discharges
via current IH-L through the inverter via a different loop: from the capacitor,
through the inverter, and back to the capacitor. We have shown the conductors
as each having associated individual inductances. The land connecting the
+5-V output of the power supply to the +5-V pin of the inverter is shown
as having an inductance LPR. The land connecting the ground of the power
supply to the ground pin of the inverter and the land connecting the bottom
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of the capacitor to the ground pin of the inverter are also shown as having
inductances LGB. (Although these two inductances have the same symbol,
they obviously have different values, due to the different lengths of these
return paths.) The current IL-H clearly forms a loop: from the power supply
through the inverter, through the capacitor, and back to the power supply.
When the inverter is switching from low to high, the current IL-H through
the +5-V land increases in value in order to charge the capacitor. Hence, a
voltage is developed across LPR of

VPR = LPR
dIL-H

dt
This is referred to as power rail collapse, since the voltage of the power pin of
the inverter is 5 − VPR, and hence the voltage of the +5-V pin of the inverter
module drops in value from +5-V. Similarly, the voltage at the ground pin of
the inverter goes from zero to VGB:

VGB = LGB
dIL-H

dt
This is referred to as ground bounce. On the other hand, when the load voltage
is transitioning from high to low state, a voltage is developed across the VGB

of the other ground land as the current IH-L from the capacitor discharges
through the inverter and returns to the capacitor.

Although at first glance this seems to be a straightforward characterization
of the individual lands with an inductance, it is not. What do we mean by
the inductances of the two lands, LPR and LGB? These certainly are not loop
inductances because the total inductance of a loop cannot be placed uniquely
in any segment of the loop. In fact, these are “partial inductances.” But the type
of diagram shown in Fig. 1.3 is seen throughout the literature. The problem
here is that few people know how to compute LPR and LGB. Even worse, they
often mistakenly compute LPR and LGB using a formula for a loop inductance
they find in a handbook that does not apply to these inductances, thereby
giving erroneous results for the magnitudes of VPR and VGB!

So loop inductance is not useful in modeling an “unintended inductance”
to obtain the voltage developed between its two ends, due to a rate of change
of current through it. However, using the concept of loop inductance to model
“intended” physical inductors such as a toroid or a solenoid is a useful appli-
cation of that concept. On the other hand, the concept of partial inductance
allows us to represent the lands on a PCB as well as other types of conductors
with inductances and to compute the values of those inductances uniquely to
determine the correct voltage drop between two ends of the conductor. Unlike
loop inductances, we can compute partial inductances without the necessity
of having to be able to identify the return paths for the currents! We simply
model all conductors with their partial inductances (self and mutual between
this and other conductors in the circuit), build a lumped-circuit model using
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these partial inductances, and “turn the crank” (analyze the resulting lumped-
circuit model) to find the return paths for the currents rather than trying to
guess their paths a priori. There is a dual concept to partial inductance that is
referred to by the author as generalized capacitance (see references [5,8] for
a discussion).

Prior to a decade ago, when the digital clock and data speeds and their
spectral content were below about 100 MHz and the density of electronic
circuits was not what it is today, the concept of partial inductance was not as
important. Today, it is a virtual necessity if we are to cope with the rapidly
escalating densities of electronic circuits whose conductors carry currents
having increasingly higher spectral content.

The units of the quantities are named for the great scientists who made major
contributions to the discovery of these phenomena. Throughout this book, we
use the abbreviations A, Wb, H, and T, respectively, for the units amperes,
webers, henrys, and tesla. The standard is to use lowercase for the first letter
of each of the names of these units and capital letters in their abbreviations.



2
MAGNETIC FIELDS OF DC CURRENTS
(STEADY FLOW OF CHARGE)

As discussed in Chapter 1, inductance is intimately related to a closed loop of
dc current which produces magnetic flux through the surface surrounded by
the current loop. So our first priority is to understand the computation of the
magnetic fields of steady (dc) currents that do not vary with time for various
configurations of those currents.

2.1 MAGNETIC FIELD VECTORS AND PROPERTIES
OF MATERIALS

The fundamental magnetic field vectors are the magnetic field intensity H,
whose units are A/m, and magnetic flux density B, whose units are Wb/m2 =
T. In a simple (but very common) linear, homogeneous, and isotropic medium,
B and H are related as [3–6]

B = μH = μ0μrH (2.1)

where μ is the permeability of the medium. The permeability can be written
as the product of the relative permeability μr and the permeability of free

Inductance: Loop and Partial, By Clayton R. Paul
Copyright © 2010 John Wiley & Sons, Inc.
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space (essentially, air), μ0 = 4 π × 10−7 H/m:

μ = μrμ0 (2.2)

The units of permeability are named for Joseph Henry of Albany, New York,
who essentially discovered Faraday’s law at about the time Faraday did but
did not publish his results until much later. Hence, for linear, homogeneous,
and isotropic media, B and H can be freely interchanged according to (2.1).
Dielectrics and metals that are not magnetizeable, such as copper, aluminum,
and brass, are linear and isotropic with regard to magnetic fields and have μr =
1. However, materials that are magnetizeable have μr > 1 and are generally
nonlinear.

There are common materials such as iron and steel that are magnetizable.
These are said to be nonlinear with respect to magnetic fields. Ferromagnetic
materials such as iron and steel have B and H related by the common “hystere-
sis curve” shown in Fig. 2.1. Suppose that we wind N turns of wire around a
toroid of nonlinear magnetic material such as iron and pass a current I through
the turns of wire as illustrated in Fig. 2.2. The turns of wire produce a mag-
netic field intensity of approximately H = NI. Starting from an unmagnetized
toroid, B = H = 0, we start at the origin in Fig. 2.1. Increasing the current
I we move up and to the right, reaching a point where further increases in I
(and H) cause little or no change in B. At this point the material is said to be in
saturation. Upon reducing I we proceed to a point where I = 0 (and H = 0)
but the magnetic flux density B has not decreased to zero. Further reductions
of I for negative values reduces B to zero where H is negative. This process
continues as we cycle around the hysteresis curve.

B

H

FIGURE 2.1. “Hysteresis curve” for nonlinear magnetic media.
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I

N turns

B

FIGURE 2.2. Toroid.

The instanteous slope at a point on the hysteresis curve is the incremental
permeability of the material:

�μ = B

H
(2.3)

The slope of the hysteresis curve at B = H = 0 when the material is unmag-
netized is called the initial permeability and is typically stated in the brochures
of manufacturers of the material. Clearly, this material is nonlinear and there
can be no numerical value for a “permeability” stated for it. Because of this
difficulty we deal only with materials such as air and copper, for which μr = 1,
or nonlinear magnetic materials where the applied currents and consequently
the levels of H are sufficiently small that we can consider the material to be lin-
ear, having its initial permeability. We could also deal with situations where,
for example, the sinusoidal variations of the current and consequentially of H
are sufficiently small that we can use an incremental permeability to charac-
terize this nonlinear magnetic material. Common ferromagnetic materials are
steel (μr = 2000), iron (μr = 1000), and nickel (μr = 600), as well as cer-
tain powdered ferrites such as nickel–zinc (μr

∼= 600) and manganese–zinc
(μr

∼= 1200). Certain exotic materials such as Mu-metal (μr = 30,000) have
very large relative permeabilities (at low frequencies, e.g., 1 kHz, and low
values of H).

2.2 GAUSS’S LAW FOR THE MAGNETIC FIELD
AND THE SURFACE INTEGRAL

In the case of fixed distributions of charge, electric field lines that begin on
a positive charge must end on a negative charge, as illustrated in Fig. 2.3. So
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surface s

E

E

Q1

Q2

Q3 Q4

Qnet=Q1-Q2+Q3

FIGURE 2.3. Static electric field of fixed distributions of charge.

we can view charges as a source of the electric field intensity vector E, whose
units are V/m. Gauss’s law for the electric field is stated as [3–6]

∮
s

D · ds = Qenclosed (2.4)

where D is the electric flux density whose units are C/m2 and D = εE, where
ε is the permittivity of the surrounding medium. The surface integral in (2.4)
gives the net flux of the D field out of the closed surface s (see the Appendix
for a discussion of the surface integral). Hence, Gauss’s law in (2.4) simply
provides that if we take the products of the differential surface elements ds and
the components of D that are perpendicular to the surface s and add them over
the closed surface s, we will obtain the net positive charge enclosed by the
closed surface s. This is a sensible result because there are two components of
D and E at a point on the surface s: One component is parallel to the surface and
the other is perpendicular to the surface. Only the component perpendicular
to the surface contributes to the net flux of the electric field entering or leaving
the surface s.

However, in the case of magnetic fields, there are no known sources or
sinks for the magnetic field, so that the magnetic field lines must form closed
loops. If we cut a permanent magnet into two pieces, we do not create isolated
sources of the magnetic field, as illustrated in Fig. 2.4. Gauss’s law for the
magnetic field states this important fact in terms of a surface integral [3–6]:

ψ =
∮

s

B · ds = 0 (2.5)
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FIGURE 2.4. Permanent magnets.

This law provides that if we take the surface integral of the magnetic flux
density B over a closed surface s as illustrated in Fig. 2.5 giving the net
magnetic flux, ψ, out of the closed surface, we will obtain a result of zero for
any closed surface: There is no net magnetic flux entering or leaving a closed
surface. The units of B are Wb/m2 = T. Hence, the units of the magnetic flux
ψ leaving the closed surface s are webers. The surface integral in (2.5) simply
provides that if we take the products of the differential surface elements ds
and the components of B that are perpendicular to the surface s and add them
over the closed surface, we will obtain a result of zero. This is a sensible

N

S

B B

surface s

FIGURE 2.5. Gauss’s law for the magnetic field.
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result if the magnetic field lines must close on themselves since there are two
components of B at a point on the surface: One component is parallel to the
surface and the other is perpendicular to the surface. Only the component
perpendicular to the surface contributes to the net flux of the magnetic field
out of the surface s.

The laws of Gauss in (2.4) and (2.5) are said to be in integral form; that is,
they apply to broad regions of space. The point forms of these laws apply to
specific points in space and are [3–6]

∇ · D = ρ (2.6)

for the electric field, where ρ is the volume charge density at the point whose
units are C/m3 and

∇ · B = 0 (2.7)

for the magnetic field. The notation ∇ · F denotes the divergence of the vector
field F (see the Appendix). These point forms can be derived from the integral
forms using the divergence theorem (see the Appendix):∮

s

D · ds =
∫

v
(∇ · D) dv

= Qenclosed

=
∫

v
ρ dv

and ∮
s

B · ds =
∫

v
(∇ · B) dv

= 0

where the closed surface s encloses the volume v. Comparing both sides
gives the point forms in (2.6) and (2.7). Gauss’s law for the electric field in
(2.6) provides that the divergence or net outflow of the electric field lines
from a point equals the net positive volume charge density at the point (see
the Appendix for a discussion of divergence). Gauss’s law for the magnetic
field in (2.7) simply provides that there is no divergence of the magnetic
field lines: There are no isolated sources or sinks for the magnetic field, and
the magnetic field lines must therefore form closed loops. In a rectangular
coordinate system consisting of mutually orthogonal axes x, y, and z, we may
write the “del operator” as (see the Appendix)

∇ = ax

∂

∂x
+ ay

∂

∂y
+ az

∂

∂z
(2.8)
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and Gauss’s laws become

∇ · D = ∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z
= ρ (2.9)

∇ · B = ∂Bx

∂x
+ ∂By

∂y
+ ∂Bz

∂z
= 0 (2.10)

Note that if the vector components of B are independent of x, y, and z, re-
spectively [i.e., Bx(y, z), By(x, z), and Bz(x, y)], the divergence of B will
automatically be zero. But there are obviously many cases where the vector
components of B are functions of some or all of the axis variables x, y, and z,
yet the divergence of B is still zero.

2.3 THE BIOT–SAVART LAW

Perhaps the most fundamental law that allows computation of the magnetic
field due to a dc current is the Biot–Savart law [3–6,9–11]:

B = μ0

4π

∫
v

J × aR

R2
dv (2.11)

The dc current density vector is denoted as J, whose units are A/m2, and
v is the volume containing this current. A differential segment or “chunk”
of this current density vector contains J dv ampere-meters, and the distance
from this chunk of current (the source of the B field) to the point at which
we are computing the magnetic field B is denoted as R. The unit vector aR is
directed from this differential chunk of current to the point at which we are
computing B. The resulting B field is perpendicular to the plane containing
J and aR according to the right-hand rule (see the Appendix). Note that the
Biot–Savart law is an inverse-square law like Coulomb’s law and the law of
gravity since it depends on the inverse of the square of the distance between
B and the differential segment of the current density vector (the source of the
field).

Throughout this book we generally concentrate on line currents, denoted as
I, whose units are amperes. Considering a differential length of these currents
as a small cylinder of length dl and cross-sectional area ds with current
density distributed uniformly over the cross section (as will be the case for
dc currents [3]), J ds = I, so that J dv = J ds dl = I dl. In this case the
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R
ld I

θ

dB into the page

Ra

FIGURE 2.6. Biot–Savart law.

differential contribution of this current to the magnetic flux density vector
at a point is

dB = μ0I

4πR2
dl × aR (2.12a)

as illustrated in Fig. 2.6. The direction of the vector differential length dl of
this filamentary current segment is in the direction of the current.

Note that the magnetic field depends on the cross product dl × aR, where
the unit vector from the current element to the point aR is directed from the
current to the point (see the Appendix for a review of the cross product).
Hence, the magnetic field is directed into the page (perpendicular to the plane
containing dl and the unit vector aR according to the right-hand rule). Hence,
in terms of the angle θ between these two vectors, we can write the Biot–Savart
law as

dB = μ0Idl

4πR2
sin θ an (2.12b)

where an is a unit vector perpendicular to the plane containing dl and aR

according to the right-hand rule in the order dl an = dl × aR (i.e., pointing
into the page). So the magnetic field is a maximum along a line perpendicular
to the current element and is zero off the ends of the current element. If we place
the current element along the z axis of a cylindrical coordinate system (see
the Appendix), the magnetic field will be directed circumferentially around
the current in the φ direction at all points around the current.

EXAMPLE

As an example, we use the Biot–Savart law to determine the magnetic field
about a current of finite length L. Since dc currents must form closed loops
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FIGURE 2.7. Current of length L and the magnetic field about it.

(see Section 2.9), we use the magnetic fields of finite lengths of current
to construct the fields of closed current loops by the superposition of the
fields of the current segments of the closed current loop. Hence, deter-
mining the magnetic fields of finite lengths of current is useful from that
standpoint.

First, set up a rectangular coordinate system and orient the current along
the z axis and centered on the origin with the current directed in the positive z
direction, as shown in Fig. 2.7(a). We will determine the magnetic flux density
at a point that is a distance r = √

x2 + y2 from the midpoint of the current
and along a line that is perpendicular to the current. The contribution to the
magnetic field at a distance r from the origin of the coordinate system that is
due to a differential length of the current dz which is at a distance R from the
point is

dB = μ0Idz

4πR2
sin θ

The direction of this B field is, according to the Biot–Savart law, perpendicular
to the plane containing the positive z axis and the unit vector from the current
element I dz to the point according to the right-hand rule: az × aR. Hence, it
is directed circumferentially about the current. This is in the φ direction in a
cylindrical coordinate system, aφ (see the Appendix for a discussion of the
cylindrical coordinate system). The sine of the angle involved in the cross
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product is

sin θ = sin(α + 90◦) = cos α

= r

R

and the distance R is

R =
√

z2 + r2

Hence, the total magnetic field at the point is

B = μ0I

4π

∫ L/2

z=−L/2

r

R3
dz

= μ0I

4π

∫ L/2

z=−L/2

r(
r2 + z2

)3/2 dz

= μ0Ir

4π

[
z

r2
√

r2 + z2

]L/2

z=−L/2

= μ0Ir

4π

⎡
⎣ L/2

r2
√

r2 + (L/2)2
− −L/2

r2
√

r2 + (−L/2)2

⎤
⎦

= μ0Ir

4π

L

r2
√

r2 + (L/2)2

= μ0I

4πr

L√
r2 + L2/4

= μ0I

2πr

L√
4r2 + L2

We have used integral 200.03 from the table of integrals by Dwight [7]:∫
1(

a2 + x2
)3/2 dx = x

a2
√

a2 + x2
(D200.03)

(Note: Throughout this book we evaluate the somewhat complicated integrals
we encounter using the extensive table of integrals by Dwight [7]. These
integrals will be denoted as (Dxxx.xx) according to the integral number in
Dwight.) The magnetic flux density vector is directed in the circumferen-
tial direction about the wire which corresponds to the φ coordinate of the
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cylindrical coordinate system. Hence, the result can be written as a vector:

B = μ0I

4πr

L√
r2 + (L/2)2

aφ

= μ0I

2πr

L√
4r2 + L2

aφ (2.13)

where aφ = az × ar.
For an infinite length of current, L → ∞, (2.13) reduces to a very funda-

mental result that we will use on numerous occasions:

B = μ0I

2πr
aφ L → ∞ (2.14)

Determination of the direction of the magnetic field of a current is obtained
with the famous right-hand rule. [The official symbol of the Institute of
Electrical and Electronics Engineers (IEEE) memorializes this very funda-
mental rule.] According to the Biot–Savart law, if we place the thumb of our
right hand in the direction of the current I, the fingers of that hand will give the
resulting direction of the B field, which is perpendicular to the plane contain-
ing (1) the current I and (2) the vector pointing from the current to the point at
which we desire to determine the B field; aφ = az × ar. Hence, the magnetic
field about an infinitely long current is directed circumferentially about the
wire at all points along it according to the right-hand rule, decays inversely
with distance from the wire, and is constant in magnitude at distances r from
the wire as illustrated in Fig. 2.7(b). An important difference between the
magnetic fields of a wire of infinite length and one of finite length is that the
latter has fringing fields at its endpoints.

EXAMPLE

In the preceding example we centered the current on the origin of the coordi-
nate system and determined the B field at a radial distance r from that center
and on a line perpendicular to the midpoint of the current. We next generalize
this result to obtain the magnetic field of a current that is of finite length but at
any point about the current which is not necessarily on a line perpendicular
to its midpoint, as shown in Fig. 2.8.

We again orient the current along the z axis and center the current on the
origin of that coordinate system, but the B field is determined at a general point
that is at a horizontal distance r (the cylindrical coordinate system variable)
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FIGURE 2.8

from the z axis and is located at an arbitrary value of z = Z. Using the Biot–
Savart law we see that the B field is again circumferential about the current
and, for example, is perpendicular to the yz plane. The B field is again in the
aφ = az × aR direction. The Biot–Savart law again gives

dB = μ0I

4πR2
sin θ dz

The distance R from the current element to the point is

R =
√

(Z − z)2 + r2

and

sin θ = r

R

Hence, the integral to be evaluated is

B = μ0Ir

4π

∫ L/2

z=−L/2

1[
(Z − z)2 + r2

]3/2 dz
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Using a change of variables, Z − z = λ, dλ = −dz gives

B = μ0Ir

4π

∫ Z+L/2

λ=Z−L/2

1(
λ2 + r2

)3/2 dz

Using Dwight [7] (D200.03) again gives

B = μ0I

4πr

⎡
⎣ Z + L/2√

(Z + L/2)2 + r2
− Z − L/2√

(Z − L/2)2 + r2

⎤
⎦ aφ (2.15)

which, of course, reduces to (2.13) for Z = 0. For a current of infinite length,
L → ∞, (2.15) reduces to (2.14). In terms of the angles θ1 and θ2 between the
z axis and lines drawn from the ends of the current to the point, this becomes

B = μ0I

4πr
(cos θ2 − cos θ1) aφ (2.16)

In the case of a current of infinite length, L → ∞, θ1 → π, and θ2 → 0 and
(2.16) reduces to (2.14).

EXAMPLE

The principle of superimposing the contributions of several currents to give
the total field at a point is a powerful technique for linear media. We show
in Section 2.9 that steady (dc) currents must form closed loops. Hence, we
use this principle of superimposing the contributions of the segments of the
current of a closed current loop to obtain the total magnetic field of closed
loops of current. In this example we determine the total magnetic field at a
distance d from the center of a rectangular loop of current having sides of
length w and l and along a line that is perpendicular to the loop at a distance
d from its center, as shown in Fig. 2.9. We restrict this solution to a point
along a line from the center of the loop because the equation for the B field
at any other point about the loop is very difficult to derive and the result
is extraordinarily complicated (see [9], p. 286). Treat this as four currents
whose B fields are given by (2.13) and superimpose the fields. The B field
due to each side is perpendicular to a line drawn from the center of each
current to the point. Considering two pairs of opposite sides, we see from
Fig. 2.9 that the horizontal contributions (in the xy plane) cancel and we are
left with the total in the z direction. (Use the right-hand rule to determine
the direction of the magnetic field that is due to each current.) Hence, the
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FIGURE 2.9. Magnetic field at a distance d along a line perpendicular to the center of a
rectangular loop.

magnetic field at the point due to two of the opposite sides each of length w is,
using (2.13),

B = 2
μ0I

2π

w

R
√

4R2 + w2
cos α az

where

R =
√(

l

2

)2

+ d2

= 1

2

√
l2 + 4d2

and

cos α = l/2

R

Hence, the total from two of the opposite sides is

B = 2
μ0I

π

wl(
l2 + 4d2

)√
l2 + w2 + 4d2

az
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Adding the contributions from the other two opposite sides gives the total as

B = 2
μ0I

π

[
wl(

l2 + 4d2
)√

l2 + w2 + 4d2

+ lw(
w2 + 4d2

)√
w2 + l2 + 4d2

]
az (2.17)

At the center of the loop, d = 0, this reduces to

B = 2
μ0I

π

(
w

l
√

l2 + w2
+ l

w
√

w2 + l2

)
az d = 0

= 2
μ0I

π

√
l2 + w2

wl
az d = 0 (2.18)

For a square loop, w = l, (2.17) reduces to

B = 2
√

2
μ0I

π

l2(
l2 + 4d2

)√
l2 + 2d2

az l = w (2.19)

At the center of a square loop, w = l and d = 0, (2.18) becomes

B = 2
√

2
μ0I

πl
az w = l, d = 0 (2.20)

EXAMPLE

Consider a sheet of current lying in the yz plane as shown in Fig. 2.10(a).
The sheet carries a surface current K whose units are A/m that is parallel
to the yz plane and directed in the z direction. The sheet extends to infinity
in all directions. Viewing this as currents of infinite length directed in the z
direction whose values are I = K dy, we can superimpose their B fields using
the results for an infinite current obtained in (2.14). The B field due to one of
the currents at a point along the +x axis at x = d (perpendicular to the plane
containing the surface current) as shown in Fig. 2.10(b) is

dB = μ0K

2πR
dy

where

R =
√

d2 + y2
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FIGURE 2.10. Infinite current sheet.

The direction of the B field from each current is, according to the Biot–Savart
law, perpendicular to the plane containing the current and a unit vector directed
from the current to the point: az × aR. The x components of the fields of two
symmetrically disposed currents cancel as shown in Fig. 2.10(b), giving the
net field in the y direction as

Bnet = 2
μ0K

2π

∫ ∞

y=0

1

R
cos α dy ay



THE BIOT–SAVART LAW 29

where

cos α = d

R

Substituting gives

Bnet = 2
μ0K

2π

∫ ∞

y=0

1

R
cos α dy ay

= μ0Kd

π

∫ ∞

y=0

1

d2 + y2
dy ay

=

⎧⎪⎪⎨
⎪⎪⎩

μ0K

2
ay for x > 0

−μ0K

2
ay for x < 0

(2.21)

and we have used integral 120.1 from Dwight [7]:∫
1

a2 + x2
dx = 1

a
tan−1 x

a
(D120.1)

Hence, the magnetic flux density at any distance from a current sheet is di-
rected parallel to the sheet and is independent of distance from the sheet. This
result applies also to the field on the other side of the sheet, but the direction
of the field is in the –y direction on that side.

EXAMPLE

We can generalize the result for an infinite current sheet obtained in the pre-
ceding example to one that has a finite width W and finite length L. We will
determine the magnetic flux density vector B at a point that is a distance x = d

from the center of the sheet, as illustrated in Fig. 2.11. Again viewing this re-
sult as a superposition of the fields due to two symmetrically disposed but
finite-length currents I = K dy of length L that are parallel to the z axis, we
can use the result obtained in (2.13) for the field at a point a distance r from
the midpoint of a finite-length current and write the net B field as

Bnet = 2
μ0K

4π

∫ W/2

y=0

L

R
√

R2 + (L/2)2
cos α dy ay

Substituting R = √
d2 + y2 and cos α = d/R gives

Bnet = μ0KLd

2π

∫ W/2

y=0

1(
y2 + d2

)√
y2 + d2 + (L/2)2

dy ay
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FIGURE 2.11. Current sheet of finite length and width.

Using integral 387 from Dwight [7],

∫
dx(

ax2 + b
)√

fx2 + g
= 1√

b
√

ag − bf
tan−1 x

√
ag − bf√

b
√

fx2 + g

(D387)

gives

Bnet = μ0K

π
tan−1 (W/2)(L/2)

d
√

d2 + (W/2)2 + (L/2)2
ay x > 0 (2.22)
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On the back side of the plate, x < 0, the result in (2.22) must be negated
according to the right-hand rule.

Taking the limit as L → ∞ gives the result for an infinitely long current
strip of width W at a distance d from its center and perpendicular to the strip
surface as

Bnet = μ0K

π
tan−1 W

2d
ay L → ∞ (2.23)

This result in (2.23) can be derived directly by using the result for an infinite
current in (2.14), B = (μ0I/2πr) aφ:

B = 2
μ0K

2π

∫ W/2

y=0

1

R
cos α dy ay L → ∞

= μ0K

π

∫ W/2

y=0

d

d2 + y2
dy ay

= μ0K

π
tan−1 W

2d
ay

where we again used integral 120.1 from Dwight [7]. Taking the limit of this
as W → ∞ gives an infinite current sheet and the result derived directly in
(2.21).

EXAMPLE

A loop of current of radius a is centered on the origin of a rectangular coor-
dinate system and lies in the xy plane as shown in Fig. 2.12. Determine the B
field at a point z = d on the z axis. A segment of the current loop is of length
a dφ, where φ is the cylindrical coordinate system variable. The distance R
from the differential segment to the point is R = √

a2 + d2, and the cosine of
the angle between the differential contribution dB and the z axis is

cos α = a

R

As φ varies from φ = 0 to φ = 2π the horizontal components (in the xy plane)
of dB cancel, leaving the B field along the z axis in the positive z direction as

B = μ0I

4π

∫ 2π

φ=0

1

R2
cos α a dφ az

= μ0I

4π

∫ 2π

φ=0

a2(
a2 + d2

)3/2 dφ az
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FIGURE 2.12. Current loop.

But this is a simple integral since the integrand does not depend on φ:

B = μ0I

2

a2(
a2 + d2

)3/2 az z ≥ 0 (2.24)

At the center of the loop, the field is

B = μ0I

2 a
az d = 0 (2.25)

At very large distances from the loop compared to the loop radius, d 	 a,
(2.24) simplifies to

B = μ0Ia
2

2d3
az

= μ0m

2πd3
az d 	 a (2.26)

The magnetic dipole moment m is defined as the product of the current and
the area of the current loop:

m = πa2I (2.27)
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FIGURE 2.13. Helmholtz coil.

Observe that at relatively large distances from the loop, d 	 a, the magnetic
field decays with distance as inverse-distance cubed.

A Helmholtz coil, shown in Fig. 2.13, is a pair of current loops that are used
to provide a fairly uniform magnetic field. Superimposing the results for the
magnetic field on the axis of each coil obtained in (2.24) gives the magnetic
field along the z axis as

Bz = μ0Ia
2

2

⎡
⎢⎣ 1(

a2 + z2
)3/2 + 1(

a2 + (z − d)2
)3/2

⎤
⎥⎦ (2.28)

To examine the change in the field along the z axis between these two coils,
we differentiate (2.28) with respect to z to give

∂Bz

∂ z
= 3μ0Ia

2

2

⎡
⎢⎣ −z(

a2 + z2
)5/2 − z − d(

a2 + (z − d)2
)5/2

⎤
⎥⎦ (2.29)

This derivative is precisely zero midway between the two coils at z = d/2,
meaning that the rate of change of the field along the z axis midway between
the two coils is zero. If we take the second derivative, it can also be made zero
at z = d/2 if we choose the separation between the two coils equal to their
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radii, d = a, thereby giving a further uniform nature of the B field between
the two coils.

2.4 AMPÈRE’S LAW AND THE LINE INTEGRAL

In Section 2.3 we showed how to calculate the magnetic fields of currents
using the Biot–Savart law. The calculations required the evaluation of certain
integrals. Ampère’s law allows the direct solution of many of those problems
without the evaluation of any integrals, but the problem must exhibit a certain
symmetry to be able to do so. Ampère’s law for dc currents is stated as [3,6]∮

c

H · dl = Ienclosed (2.30)

where H is the magnetic field intensity vector. Recall that for a linear, homoge-
neous, and isotropic surrounding medium, B and H can be freely interchanged
using B = μH, and μ = μrμ0 is the permeability of the surrounding medium.
Ampère’s law essentially provides that if we sum the product of the differ-
ential segments of the path, dl, and the components of H that are tangent to
a closed path c, we obtain the net current that penetrates the surface s that is
enclosed by the closed path illustrated in Fig. 2.14. The direction of the closed
contour c and the direction of the enclosed current are related by the right-
hand rule: Place the fingers of the right hand in the direction of c and the
thumb will point in the direction of Ienclosed. The integral on the left-hand side

c

s

I
c

d l
H

-I

I
I

Inet = 3I-I
      = 2I

FIGURE 2.14. Ampère’s law.
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of Ampère’s law is said to be a line integral (see the Appendix for a review of
the line integral). The line integral adds the products of the differential path
lengths dl and the components of H that are tangent to the contour path c.
There are two components of H: One is parallel to the path and the other is
perpendicular to the path. It is sensible that only the components of H that are
parallel to the path should contribute to the line integral.

Ampère’s law is similar to Gauss’s law for the electric field given in (2.4),
which provides that the sum of the products of the components of D that are
perpendicular to a closed surface s and the differential surface areas ds will
give the net positive charge enclosed by the closed surface.

Ampère’s law can be used to compute the H field for current distributions
by using symmetry. To use Ampère’s law to determine H, we must be able to
choose a closed contour c encircling the current so that the H field along that
contour has two properties. The first property is that H must be tangent to the
closed contour c at every point on it. This allows us to remove the dot product
and write Ampère’s law solely in terms of the magnitudes of H and dl as∮

c

H dl = Ienclosed (2.31a)

The second property is that H must be constant at all points along the contour
c. This will allow us to remove H from the integral in (2.31a) and write
Ampère’s law as

H

∮
c

dl

︸ ︷︷ ︸
total length
of contour c

= Ienclosed (2.31b)

Hence, if contour c can be chosen such that it has these two properties, H is
simply the total current enclosed divided by the total length of contour c.

EXAMPLE

Determine the magnetic field intensity about a current that is infinite in length.
This was solved in Section 2.3 using the Biot–Savart law, which required
setting up and evaluating an integral. To solve this problem using Ampère’s
law, we again orient the current along the z axis with the current directed in
the +z direction as shown in Fig. 2.15. We observe that because of the Biot–
Savart law, the H field will be circumferentially directed about the current at
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FIGURE 2.15. Using Ampère’s law to determine the H field about an infinitely long current.

all points along it. Because of the assumption that the current is infinite in
length, we may choose a closed contour c that is a circle of radius r centered
on the current and place it at any point along the wire. The H field will be
tangent to all points on this contour. This allows us to remove the dot product
from Ampère’s law:

∮
c

H dl =
∫ 2π

φ=0
Hrdφ

= I
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In addition, the Biot–Savart law shows that the H field magnitude will be
constant in value at all points on c that are a distance r from the current, so
that we may remove H from the integral and obtain

H

∮
c

dl = H

∫ 2π

φ=0
r dφ

= 2πrH

= I

giving the H field as

H = I

2πr
aφ (2.32)

Substituting

B = μ0H

gives the result in (2.14) that was derived with the Biot–Savart law but required
the evaluation of an integral.

EXAMPLE

Currents flow through wires of circular, cylindrical cross section whose radii
rw, although small, are nonzero. If the wire is isolated from (or far from)
other currents, the current inside it will be distributed symmetrically about
the wire axis. (We investigate the influence of nearby currents on the current
redistribution, the proximity effect, in Section 4.6). In the case of dc currents,
the total current I carried by the wire will also be uniformly distributed over
the wire cross section with a current density over the cross section of

J = I

πr2
w

A/m2

For the purpose of determining the magnetic field external to this isolated
wire, we can replace the wire and its current with a filament of current located
on the axis of the wire that contains the total current I. If the wire is further
assumed to be infinite in length (or very long), we can then use the basic result
for a filamentary current of infinite length in (2.14) to compute the magnetic
field external to the wire, and the actual radius of the wire does not enter into
this. In this example we demonstrate the validity of this important principle.

Consider an isolated wire of radius rw carrying a total current I through its
cross section. Certainly because of symmetry, the current is symmetric about
the wire axis. But as the frequency f of the current increases from zero (dc),
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it will become concentrated near the wire surface in an annulus at the wire
surface having a thickness of a few skin depths [3,6], where the skin depth
parameter is

δ = 1√
πfμ0σ

m

The conductivity of the wire material is denoted as σ (copper has σ = 5.8 ×
107 S/m), and the wire material is assumed to be nonmagnetic, μr = 1. At
dc, f = 0, the skin depth is infinite, showing that a dc current is distributed
uniformly over the wire cross section.

We first determine the magnetic field of an isolated wire of radius rw and
infinite length that is carrying a total dc current I in its cross section by using
Ampère’s law. To determine the field external to the wire using Ampère’s
law, we surround the wire with a circular contour of radius r as shown in
Fig. 2.16(a). Since the current is distributed uniformly over the wire cross

r

rw

Bφ

(a) r >rw

(b) r < rw 

r

rw

φB

22
w m

A

r

I
J

π
=

22
w m

A

r

IJ
π

=

FIGURE 2.16. Using Ampère’s law to determine the magnetic field of an isolated wire.
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section and therefore symmetrically about the wire axis, the magnetic field
intensity vector is in the circumferential or φ direction (in a cylindrical coor-
dinate system) about the axis of the wire and is constant around that contour.
Hence, from Ampère’s law we obtain∮

c

H · dl = Hφ2πr = I

and we again obtain the basic result in (2.14):

Bφ = μ0Hφ

= μ0I

2πr
r > rw (2.33a)

The magnetic field external to the wire is the same as if we concentrate the
entire current in a filament on the wire axis and is independent of the wire
radius.

Next, we determine the magnetic field internal to the wire. Again surround
an interior portion of the wire with a circular contour of radius r (r < rw)
centered on the wire axis as shown in Fig. 2.16(b). The current density for a
total current of I that is uniformly distributed over the wire cross section is

J = I

πr2
w

A/m2

Hence, this contour encloses a total current of

Ienclosed = I

πr2
w

πr2

= I
r2

r2
w

A

Again, by symmetry about the wire axis, the magnetic field is directed cir-
cumferentially around this contour and is constant at points on it. Hence, by
Ampère’s law we obtain

Bφ = μ0Hφ

= μ0

2πr
I
r2

r2
w

= μ0Ir

2πr2
w

r < rw (2.33b)

The magnetic field is plotted versus the radius of the contour in Fig. 2.17.
Finally, we determine these results directly by integration as shown in

Fig. 2.18. The current density over the wire cross section is again

J = I

πr2
w

A/m2
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FIGURE 2.17. Plot of the magnetic field for an isolated wire.

At a radius r′ and angle φ, a differential area is r′ dφ dr′, which contains a
differential current of

I

πr2
w

r′ dφ dr′ A

Treat this as an infinite-length filament of current and use the result in (2.14)
to determine the differential contribution to the magnetic field at a radius r

r

R

R
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α
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( )( )rddr ′′= φArea
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2

w

rddr
r

I ′′ φ
π

22
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π
=

α

dB dB

φdB

α

FIGURE 2.18. Determining the magnetic field of a wire with the Biot–Savart law.
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from the wire axis as shown in Fig. 2.18:

dB = μ0

2πR

I

πr2
w

r′ dφ dr′

where the distance from this differential current to the point where we desire
to compute the field is (using the law of cosines)

R =
√

r2 + r′2 − 2rr ′ cos φ

The horizontal components of dB from symmetrically disposed elements can-
cel, leaving the net field in the φ direction as

dBφ = 2
μ0

2πR

I

πr2
w

r′ dφ dr′ cos α

= μ0I

π
(
πr2

w

) r′ (r − r′ cos φ
)

dφ dr′

r2 + r′2 − 2rr′ cos φ

and

cos α = r − r′ cos φ

R

Integrating this from r′ = 0 to r′ = rw and from φ = 0 to φ = π gives the
total magnetic field of the wire:

Bφ = μ0I

π
(
πr2

w

) ∫ rw

r′=0
r′

[∫ π

φ=0

r − r′ cos φ

r2 + r′2 − 2rr′ cos φ
dφ

]
dr′

The interior integral can be evaluated using the remarkable integral 859.124
of Dwight [7]:

∫ π

0

(a − b cos x) dx

a2 + b2 − 2ab cos x
=

⎧⎨
⎩

π

a
a > b > 0

0 b > a > 0
(D859.124)

For r > rw the result is

Bφ = μ0I

π
(
πr2

w

) ∫ rw

r′=0
r′

[∫ π

φ=0

r − r′ cos φ

r2 + r′2 − 2rr′ cos φ
dφ

]
dr′

= μ0I

π
(
πr2

w

) ∫ rw

r′=0
r′ π

r
dr′

= μ0I

π
(
πr2

w

) π

r

r2
w

2

= μ0I

2πr
r > rw (2.34a)
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again giving the fundamental result in (2.14). For r < rw we break the integral
into two pieces with respect to r′ in order to use (D859.124):

Bφ = μ0I

π
(
πr2

w

) ∫ rw

r′=0
r′

[∫ π

φ=0

r − r′ cos φ

r2 + r′2 − 2rr′ cos φ
dφ

]
dr′

= μ0I

π
(
π r2

w

) [∫ r

r′=0

π

r
r′ dr′ +

∫ rw

r′=r

(0) r′ dr′
]

= μ0I

π
(
πr2

w

) π

r

r2

2

= μ0Ir

2πr2
w

r < rw (2.34b)

as was derived using Ampère’s law.

EXAMPLE

Next we derive the magnetic field of a coaxial cable. The coaxial cable has
an infinite (or very long) length and consists of an inner wire of radius rw

contained within an overall shield of inner radius rs and thickness t, as shown
in Fig. 2.19(a). A current I is passed down the inner wire and returns in the
shield.

To determine the magnetic field, we surround the inner wire with a circular
contour of radius r as shown in Fig. 2.19(b). The dc current I is uniformly
distributed over the cross section of the wire and over the cross section of the
shield. Hence, the magnetic field is in the circumferential or φ direction tangent
to the contour and is constant around that contour. In the region between the
wire and the shield, rw < r < rs, the total current enclosed by the contour is
I. Hence, Ampère’s law gives for rw < r < rs,

∮
c

H · dl = Hφ2πr

= I rw < r < rs

and the magnetic flux density in the region between the wire and the shield
is

Bφ = μ0I

2πr
rw < r < rs (2.35a)
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FIGURE 2.19. Coaxial cable.

The magnetic flux density inside the wire is, as in the preceding example,

Bφ = μ0Ir

2πr2
w

r < rw (2.35b)

The dc current −I in the shield is also uniformly distributed over the shield
cross section and has a current density of

Jshield = − I

π
[
(rs + t)2 − r2

s

] A/m2 rs < r < rs + t

Hence, expanding the contour to within the shield, rs < r < rs + t, encloses
a total current of

Ienclosed = I − I
πr2 − πr2

s

π
[
(rs + t)2 − r2

s

]

= I
(rs + t)2 − r2

(rs + t)2 − r2
s

A rs < r < rs + t
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By Ampère’s law, the magnetic field in the shield is circumferentially directed
and becomes

Bφ = μ0I

2πr

(rs + t)2 − r2

(rs + t)2 − r2
s

rs < r < rs + t (2.35c)

Expanding the contour to enclose the entire coaxial cable, r > rs + t, shows,
by Ampère’s law, that the magnetic field is

Bφ = 0 r > rs + t (2.35d)

since the total current enclosed is zero because of the equal but oppositely
directed currents.

These results, easily obtained using Ampère’s law, can also be obtained
using direct integration in the same fashion as in the preceding example. The
results for the fields in a coaxial cable obtained by using Ampère’s law in
this example and given in (2.35b) for r < rw, and in (2.35a) for rw < r < rs,
were obtained by direct integration in the preceding example. The final result
in (2.35c) for rs < r < rs + t can also be obtained by direct integration by
reference to Fig. 2.20.

Again we set up the integration as in the preceding example. The differential
currents in the shield are

−I

π
[
(rs + t)2 − r2

s

]︸ ︷︷ ︸
JshieldA/m2

r′ dφ dr′ A
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−+

− φ
π

FIGURE 2.20. Determining the magnetic field within the shield by direct integration.
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Hence, the magnetic field in the shield for rs < r < rs + t due to the currents
in the shield is

Bφ = 2
μ0

2π

−I

π
[
(rs + t)2 − r2

s

]︸ ︷︷ ︸
Jshield A/m2

∫ rs+t

r′=rs

r′
[∫ π

φ=0

r − r′ cos φ

r2 + r′2 − 2rr′ cos φ
dφ

]
dr′

= −μ0I

π

1

π
[
(rs + t)2 − r2

s

] [ ∫ r

r′=rs

π

r
r′ dr′ +

∫ rs+t

r′=r

(0) r′ dr′
]

= − μ0I

πr
[
(rs + t)2 − r2

s

] [
r′2

2

]r

r′=rs

= − μ0I

2πr
[
(rs + t)2 − r2

s

] (
r2 − r2

s

)
rs < r < rs + t

where we have again separated the integration from r′ = rs to r′ = rs + t into
two parts in order to use integral 859.124:

∫ π

0

(a − b cos x) dx

a2 + b2 − 2ab cos x
=

⎧⎨
⎩

π

a
a > b > 0

0 b > a > 0
(D859.124)

To this we add the contribution to the field within the shield due to the current
of the interior wire:

Bφ = μ0I

2πr
rs < r < rs + t

Combining these two contributions yields (2.35c)

Bφ = μ0I

2πr
− μ0I

2πr
[
(rs + t)2 − r2

s

] (
r2 − r2

s

)

= μ0I

2πr

(rs + t)2 − r2

(rs + t)2 − r2
s

rs < r < rs + t (2.35c)

For the fields external to the cable, r > rs + t, the integral above is, according
to (D859.124),

Bφ = 2
μ0

2π

−I

π
[
(rs + t)2 − r2

s

]︸ ︷︷ ︸
Jshield A/m2

∫ rs+t

r′=rs

r′
[∫ π

φ=0

r − r′ cos φ

r2 + r′2 − 2rr′ cos φ
dφ

]
dr′

= −μ0I

π

1

π
[
(rs + t)2 − r2

s

] [ ∫ rs+t

r′=rs

π

r
r′ dr′

]
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= − μ0I

πr
[
(rs + t)2 − r2

s

] [
r′2

2

](rs+t)

r′=rs

= − μ0I

2πr
[
(rs + t)2 − r2

s

] [
(rs + t)2 − r2

s

]

= −μ0I

2πr
rs + t < r

which, combined with the field due to the interior wire, gives a result of zero,
which is (2.35d).

EXAMPLE

Use Ampère’s law to determine the H field of the infinite current sheet shown
in Fig. 2.10. View the sheet from the top in the xy plane and construct a
rectangular closed contour c as shown in Fig. 2.21. By symmetry we see
that the H field must be directed parallel to the sheet. Hence, the H field is

y

x

K

K

c

c

c

c

H H

to ∞

to ∞

H H

l

FIGURE 2.21. Infinite current sheet and Ampère’s law.
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parallel to the sides and perpendicular to the tops (and contributes nothing to
Ampère’s law along the tops of contour c). If the contour has tops of width w
and sides of length l, the total current enclosed by the contour is

Ienclosed = lK m × A/m = A

Hence, Ampère’s law around the entire contour is∮
c

H · dl = 2
∫

w
H · dl︸ ︷︷ ︸

0

+2
∫

l

H · dl

= 2
∫

l

H dl

= 2lH

= Ienclosed = lK

Hence, the H field is

H =

⎧⎪⎪⎨
⎪⎪⎩

K

2
ay for x > 0

−K

2
ay for x < 0

(2.36)

Substituting

B = μ0H

gives the result in (2.21) that was derived by the Biot–Savart law but required
evaluation of an integral.

2.5 VECTOR MAGNETIC POTENTIAL

Since the magnetic field has no sources or sinks, it must form closed loops
everywhere. Hence, the divergence of the magnetic field, according to Gauss’s
law for the magnetic field, is zero:

∇ · B = 0 (2.37)

In the Appendix it is shown that the divergence of the curl of any vector field
is zero:

∇ · ∇ × A = 0 (2.38)

The divergence ∇ · F represents the net flux or outflow of the vector field F
from a point, whereas the curl ∇ × F represents the circulation of the vector
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field F about a point. Although the identity in (2.38) is proven directly in the
Appendix, it is a sensible identity. If the vector field A has nonzero circulation
at a point, ∇ × A /= 0, its curl ∇ × A should have no outflow from the point
and the identity is satisfied. On the other hand, suppose that the vector field
has no circulation at a point, ∇ × A = 0. Then the divergence of this is clearly
zero.

The identity in (2.38), combined with Gauss’s law for the magnetic field
in (2.37), ∇ · B = 0, allows us to define another, auxiliary field as

B = ∇ × A (2.39)

This new vector field A is called the vector magnetic potential. This is very
similar to defining the scalar electric potential or voltage φ for a static (dc)
electric field E from ∇ × E = 0 and using the identity from the Appendix
of ∇ × ∇φ = 0 to define the electric field in terms of the scalar potential
function φ as E = −∇φ [3,6]. It turns out (see [3]) that to define a vector
field completely, we must define the curl of that field as well as its divergence.
Equation (2.39) has defined the curl of A. It also turns out that we can, without
any contradiction in doing so, define the divergence of A as zero:

∇ · A = 0 (2.40)

thereby completely defining this new magnetic potential vector A.
To determine an equation relating the vector magnetic potential to the cur-

rents that produce it, we employ Ampère’s law given in (2.30):∮
c

H · dl = Ienclosed (2.30)

Using Stokes’s theorem (see the Appendix), we can write Ampère’s law as∮
c

H · dl =
∫

s

(∇ × H) · ds

= Ienclosed

=
∫

s

J · ds (2.41)

where s is the open surface surrounded by the closed contour c as illustrated
in Fig. 2.22. The current density vector throught the surface s is denoted as
J, whose units are A/m2. The direction of the normal to the surface s as well
as the direction of the contour c that encloses s are related by the right-hand
rule. Place the fingers of the right hand in the direction of c and the thumb will
point in the direction of ds. Comparing both sides of (2.41) gives Ampère’s
law in point form as

∇ × H = J (2.42)
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c

H

d l

s

J

J

FIGURE 2.22. Ampère’s law and Stokes’s theorem.

Substituting the relation between B and H using the permeability of the
surrounding medium (assumed not to be ferromagnetic), B = μ0H, gives

∇ × B = μ0J (2.43)

Substituting the definition of the vector magnetic potential given in (2.39)
gives

∇ × (∇ × A) = μ0J (2.44)

The curl of the curl of a vector field can be written as [3,6]

∇ × (∇ × A) = ∇ (∇ · A) − ∇2A (2.45)

We defined the divergence of A as zero in (2.40), ∇ · A = 0, to complete the
definition of the vector magnetic potential A. Hence, (2.44) becomes

∇2A = −μ0J (2.46)

The solution to (2.46) is [3,6]

A = μ0

4π

∫
v

J dv

R
(2.47a)

where v is the volume enclosing the current density J (which is the source
of A). The distance between the point where we are determining A and a
differential volume of the current that contains J dv ampere-meters is denoted
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as R. If the current is confined to a surface, this reduces to

A = μ0

4π

∫
s

K ds

R
(2.47b)

where s is the surface containing the surface current density K whose units
are A/m. The distance between the point where we are determining A and a
differential surface of the current that contains K ds ampere-meters is denoted
as R. For line currents we consider the current I to be contained in a differential
cylinder of length dl and cross-sectional area ds. If the current density is
uniformly distributed over the cylinder cross section (as will be the case for
dc currents [3]), the total current is J ds = I, so that J dv = J ds dl = I dl,
and the result becomes

A = μ0

4π

∫
l

I

R
dl (2.47c)

where a vector differential length of the line in the direction of the current
is denoted as dl and contains I dl ampere-meters. Again R is the distance
between the point where we are determining A and the differential current
segment. The units of the vector magnetic potential are Wb/m, magnetic flux
per length. We will learn the reason for these units in Chapter 4.

It should be noted that we obtained the basic result for the computation of A
in (2.47a) from the solution of (2.46), ∇2A = −μ0 J. But we obtained (2.46)
by defining the divergence of A in (2.45) as zero (i.e., ∇ · A = 0). However,
the basic result for computing A in (2.47a) does not require that ∇ · A = 0.
The Helmholtz theorem [3,6] establishes the fact that to define a vector field
such as A completely requires that its curl and its divergence be defined. But
the choices for these are arbitrary and are not related. We can show this by
demonstrating that taking the curl of (2.47a) gives B = ∇ × A, where the
resulting B is the Biot–Savart law given in (2.11). To show this we take the
curl of (2.47a):

B = ∇ × A

= μ0

4π
∇ ×

∫
v

J
R

dv

= μ0

4π

∫
v
∇ × J

R
dv (2.48)

We can interchange the order of differentiation and integration using
Leibnitz’s rule [12] since the ∇ operator takes derivatives with respect to
the coordinates of the location of B and A, whereas the volume integral is
with respect to the coordinates of the current J. Using a vector identity [3],
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we can write the curl of the integrand as

∇ × J
R

= ∇
(

1

R

)
× J + 1

R
(∇ × J)︸ ︷︷ ︸

0

= ∇
(

1

R

)
× J

= −J × ∇
(

1

R

)
(2.49)

The del operator takes the derivatives with respect to the coordinates of the
location of B and A: the field point. Hence, the curl of J is zero here since J
involves only the coordinates of the location of the source current. You can
verify in spherical coordinates (see the Appendix) that

∇
(

1

R

)
= − 1

R2
aR (2.50)

where aR is a unit vector pointing from the current to the field point. The vector
identity in (2.49) is, of course, sensible since it is the vector counterpart to the
scalar result using the chain rule. Therefore, we obtain

B = ∇ × A

= μ0

4π
∇ ×

∫
v

J
R

dv

= μ0

4π

∫
v
∇ × J

R
dv

= μ0

4π

∫
v

J × aR

R2
dv (2.51)

which is the Biot–Savart law for determining B given in (2.11). If the current
forms a closed loop (as all dc currents must), ∇ · A = 0, but it is not necessary
to define the divergence of A to be zero in order to obtain (2.47).

The solutions in (2.47) apply to any coordinate system. If we specialize
them to a rectangular coordinate system, we obtain

Ax = μ0

4π

∫
v

Jx

R
dv

Ay = μ0

4π

∫
v

Jy

R
dv

Az = μ0

4π

∫
v

Jz

R
dv (2.52a)

This is a significant result because it says that (1) each component of J pro-
duces the corresponding component of A, and (2) the direction of the resulting
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Ax, Ay, Az is the same as the direction of the corresponding Jx, Jy, Jz that pro-
duced it! In other words, a current that is directed solely in the z direction will
produce a vector magnetic potential that is solely in the z direction parallel to
the Jz at all points in the space around the current! For a current distributed
over a surface s, these results become

Ax = μ0

4π

∫
s

Kx

R
ds

Ay = μ0

4π

∫
s

Ky

R
ds

Az = μ0

4π

∫
s

Kz

R
ds (2.52b)

If the current is a line current whose contour is l such as in a wire, these
become

Ax = μ0

4π

∫
l

Ix

R
dl = μ0

4π

∫
l

I

R
dlx

Ay = μ0

4π

∫
l

Iy

R
dl = μ0

4π

∫
l

I

R
dly

Az = μ0

4π

∫
l

Iz

R
dl = μ0

4π

∫
l

I

R
dlz (2.52c)

Note that unlike the Biot–Savart law, which is an inverse-square law where
B depends on the square of the inverse distance between the current and the B
field, the magnetic vector potential simply depends on the inverse of the dis-
tance R between the current and the component of A that it produces. In some
problems it is simpler to determine the components of A from (2.47), which
for rectangular coordinates are given in (2.52), and then simply determine
B by computing its curl mechanically from B = ∇ × A in the appropriate
coordinate system, than it is to compute B directly using the Biot–Savart
law.

One of the main advantages of first computing the three components of the
vector magnetic potential A via (2.47) or, in rectangular coordinates, from
(2.52) and then determining B by differentiation via B = ∇ × A is that we do
not need to integrate vector quantities to obtain A! The expansion of (2.47)
for rectangular coordinates given in (2.52) shows this. Determining B directly
by integration by applying the Biot–Savart law may require that we integrate
vector quantities. To avoid integrating vector quantities, we utilize symmetry
and resolve B into components, thereby restricting the solution only to points
about the current where we can exploit symmetry (see, e.g., Figures 2.10
and 2.11).
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Observe that the vector magnetic potential in (2.47) and (2.52) requires
the integral of an inverse distance, 1/R. Hence, the resulting vector magnetic
potential typically involves a natural logarithm (ln) function as the result.
Thus, we expect to see these natural log functions in the following results
for various configurations. The B field obtained from (2.39) then requires the
derivatives of these natural log functions.

In some of the earlier problems we solved for the magnetic field of a
very idealized case: a current of infinite length that is directed in the z
direction. The magnetic flux density of a current of infinite length is finite and
given by

B = μ0I

2πr
aφ

From the relation B = ∇ × A in cylindrical coordinates, A is related to B as

B =
(

∂Ar

∂z
− ∂Az

∂r

)
aφ

= −∂Az

∂r
aφ

This is because the B field has only a φ component, and the current and
resulting vector magnetic potential is directed in the z direction. Integrating
this, we obtain

Az = −μ0I

2π
ln r + C current of infinite length

where C is a constant of integration. However, when we are using B = ∇ × A
to determine the B field for an infinite-length current by first determining A,
we can ignore the integration constant C because we differentiate Az in order
to determine Bφ. Hence, for a current of infinite length we may assume a form
of Az to be

Az = −μ0I

2π
ln r current of infinite length (2.53)

EXAMPLE

Determine the vector magnetic potential at a distance r from the center of a
current of length L and on a line perpendicular to its midpoint as shown in
Fig. 2.23. Then determine the magnetic field B from that result. Although
steady (dc) currents must form closed loops, we again use the solutions for
currents of finite length to construct, by superposition, the magnetic fields of
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FIGURE 2.23. Vector magnetic potential of a current.

closed current loops (see the discussion in Section 2.9). Hence, determining
the vector magnetic potential for currents of finite length is useful for that
purpose.

The problem again fits a cylindrical coordinate system (see the Appendix
for a discussion of the cylindrical coordinate system). From (2.52c) and
Fig. 2.23 we see that since the current is directed solely in the z direction,
the vector magnetic potential will be parallel to it at all points and directed in
the z direction also. From (2.52c),

Az = μ0

4π

∫ L/2

z=−L/2

I

R
dz

= μ0I

4π

∫ L/2

−L/2

1√
r2 + z2

dz

= μ0I

4π

[
ln

(
z +

√
z2 + r2

)]L/2

−L/2

= μ0I

4π
ln

L/2 + √
(L/2)2 + r2

−(L/2) + √
(L/2)2 + r2

(2.54a)

and we have used integral 200.01 from Dwight [7]:

∫
1√

x2 + a2
dx = ln

(
x +

√
x2 + a2

)
(D200.01)
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This result can be simplified to

Az = μ0I

4π
ln

(L/2r) + √
(L/2r)2 + 1

−(L/2r) + √
(L/2r)2 + 1

= μ0I

2π
ln

⎡
⎣ L

2r
+

√(
L

2r

)2

+ 1

⎤
⎦ (2.54b)

and we have used log(A/B) = log A − log B and an important natural
logarithm identity:

ln
(
x +

√
x2 + 1

)
= − ln

(
−x +

√
x2 + 1

)
which can be proven directly (log AB = log A + log B):

ln
(
x +

√
x2 + 1

)
+ ln

(
−x +

√
x2 + 1

)
= ln(1) = 0

The result in (2.54b) can be written in an alternative form using the inverse
hyperbolic sine function:

sinh−1x ≡ ln
(
x +

√
x2 + 1

)
= − sinh−1(−x) (D700.1)

Hence, we could write (2.54b) as

Az = μ0I

2π
sinh−1 L

2r
(2.54c)

The simplified result in (2.54b) could also have been obtained directly by
utilizing symmetry and integrating from z = 0 to z = L/2 and doubling the
result:

Az = 2
μ0

4π

∫ L/2

z=0

I

R
dz

= μ0I

2π

[
ln

(
z +

√
z2 + r2

)]L/2

0

= μ0I

2π

⎡
⎣ln

⎛
⎝L

2
+

√(
L

2

)2

+ r2

⎞
⎠ − ln r

⎤
⎦

= μ0I

2π
ln

⎡
⎣ L

2r
+

√(
L

2r

)2

+ 1

⎤
⎦

= μ0I

2π
sinh−1 L

2r
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Taking the curl of A to give B via (2.39) gives (see the Appendix for the
curl in cylindrical coordinates)

B = ∇ × A(r, φ, z)

=
(

1

r

∂Az

∂ φ
− ∂Aφ

∂ z

)
ar +

(
∂Ar

∂ z
− ∂Az

∂ r

)
aφ +

[
1

r

∂
(
rAφ

)
∂ r

− 1

r

∂Ar

∂ φ

]
az

= −∂Az

∂ r
aφ

Substituting Az from (2.54b) and performing the differentiation gives

B = −∂Az

∂ r
aφ

= μ0I

2πr

L/2√
(L/2)2 + r2

aφ

= μ0I

2πr

L√
4r2 + L2

aφ (2.55)

which is the same as (2.13), which was obtained with the Biot–Savart law.
We have used Az from (2.54b) and the derivative

d

dr
ln

⎡
⎣a

r
+

√(
a

r

)2

+ 1

⎤
⎦ = − a

r
√

a2 + r2

Alternatively,

d

dx
sinh−1 a

x
= d

dx
csch−1 x

a

= −a

|x| √x2 + a2
(D728.8)

For an infinitely long current, L → ∞, (2.55) evaluates to

B = μ0I

2πr
aφ L → ∞ (2.56)

which is (2.14) again.

EXAMPLE

Determine the vector magnetic potential of a current of length L at some
general point that is at a distance r from it (the cylindrical coordinate system
variable) and at z = Z, as shown in Fig. 2.24, and then determine the B field.
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FIGURE 2.24. Vector magnetic potential of a current of finite length.

From Fig. 2.24 and (2.52c), we again see that since the current is directed
solely in the z direction, the vector magnetic potential will be parallel to it at
all points and directed in the z direction also. From (2.52c),

Az = μ0I

4π

∫ L/2

z=−L/2

1

R
dz

where R =
√

(Z − z)2 + r2. Making a change of variables as λ = Z − z and
dλ = −dz gives

Az = μ0I

4π

∫ Z+L/2

λ=Z−L/2

1√
λ2 + r2

dλ

= μ0I

4π
ln

(Z + L/2) +
√

(Z + L/2)2 + r2

(Z − L/2) +
√

(Z − L/2)2 + r2

= μ0I

4π

(
sinh−1 Z + L/2

r
− sinh−1 Z − L/2

r

)

= μ0I

4π

(
sinh−1 Z + L/2

r
+ sinh−1 L/2 − Z

r

)
(2.57)
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and we have again used integral 200.01 of Dwight [7]:∫
dx√

x2 + a2
= ln

(
x +

√
x2 + a2

)
(D200.01)

Also, we have again used the alternative relation

sinh−1 x ≡ ln
(
x +

√
x2 + 1

)
= − sinh−1(−x) (D700.1)

Obtain B by taking the curl of A in cylindrical coordinates, giving

B = −∂Az

∂ r
aφ

= μ0I

4πr

⎡
⎣ Z + L/2√

(Z + L/2)2 + r2
− Z − L/2√

(Z − L/2)2 + r2

⎤
⎦ aφ (2.58)

which is the same as (2.15) obtained with the Biot–Savart law. We have used
the derivative

d

dr
ln

(
a +

√
a2 + r2

)
= − a

r
√

a2 + r2
+ 1

r

and log(A/B) = log A − log B. Alternatively, we could use (D728.8).

EXAMPLE

Determine the vector magnetic potential A due to a current loop of radius a
that is centered on the origin of a rectangular coordinate system and lying in
the xy plane as shown in Fig. 2.25. From that, determine B.

For the following computation, we determine A at a point located in the xz
plane at x = ρ, y = 0, and z. Because of the symmetry of the current loop,
the field will then be determined at any general point located at (ρ, φ, z) in a
cylindrical coordinate system or, equivalently, at any general point (r, θ, φ) in
a spherical coordinate system and will be independent of φ in either case. If
we pair off current segments at ±φ measured with respect to the x axis, from
symmetry we see that A is in the y direction or, equivalently, in the φ direction
at this point. At the point of interest we obtain, from (2.47c),

Aφ = μ0I

4π

∮
dlφ

R
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FIGURE 2.25. Current loop.

The component of a differential length of the loop, dl = a dφ, in the direction
of A at this point is

dlφ = a dφ cos φ

Using the law of cosines, we obtain

R2 = a2 + r2 − 2ar sin θ cos φ

Hence, at the field point

Aφ = 2
μ0I

4π

∫ π

φ=0

a cos φ√
a2 + r2 − 2ar sin θ cos φ

dφ

= μ0I

2π

∫ π

φ=0

a cos φ√
a2 + ρ2 + z2 − 2aρ cos φ

dφ

(2.59)

since r2 = z2 + ρ2 and ρ = r sin θ.
The integral in (2.59) is difficult to evaluate. We first restrict the result to

the case where the point is at a distance that is far away with respect to the
current loop radius, r 	 a, and later will obtain the exact solution. Evaluating
the denominator using the binomial theorem gives

1

R
∼=

(
1

r2 − 2ar sin θ cos φ

)1/2

= 1

r

(
1 − 2a

r
sin θ cos φ

)−1/2

∼= 1

r

(
1 + a

r
sin θ cos φ

)
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Hence, we obtain

Aφ
∼= μ0I

2π

∫ π

φ=0

a cos φ

r

(
1 + a

r
sin θ cos φ

)
dφ

= μ0I

2π

a2

r2
sin θ

π

2

= μ0 I a2 sin θ

4 r2

Taking the curl of A in spherical coordinates (see the Appendix) to obtain B
gives

B = ∇ × A

= 1

r sin θ

∂
(
sin θ Aφ

)
∂ θ

ar − 1

r

∂
(
rAφ

)
∂ r

aθ

= μ0a
2I

4 r3
(2 cos θ ar + sin θ aθ) (2.60)

The magnetic dipole moment is defined in (2.27) as the product of the current
and the area of the current loop:

m = π a2I (2.27)

Substituting (2.27) into (2.60) gives the components of B as

Br = μ0m

2πr3
cos θ (2.61a)

Bθ = μ0m

4πr3
sin θ (2.61b)

Bφ = 0 (2.61c)

Note that the magnetic field of a current loop at large distances from the loop
falls off inversely with the cube of distance.

The exact solution of the integral in (2.59) can be obtained in terms of the
complete elliptic integrals [10,11]. To do so, we make a change of variables
φ = π − 2ζ and dφ = −2 dζ so that cos φ = − cos 2ζ = 2 sin2 ζ − 1. Hence,
(2.59) becomes

Aφ = μ0Ia

π

∫ π/2

ζ=0

2 sin2 ζ − 1√
(a + ρ)2 + z2 − 4aρ sin2 ζ

dζ (2.62)

Defining

k2 = 4aρ

(a + ρ)2 + z2
(2.63)
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(2.62) reduces to

Aφ = μ0I

πk

√
a

ρ

[(
1 − k2

2

)
K − E

]
(2.64)

where the complete elliptic integrals of the first and second kind are [7]

K (k) =
∫ π/2

ζ=0

dζ√
1 − k2 sin2 ζ

(D773.1)

and

E (k) =
∫ π/2

ζ=0

√
1 − k2 sin2 ζ dζ (D774.1)

and are tabulated in Dwight, Tables 1040 and 1041 [7].
The magnetic flux density is obtained in cylindrical coordinates (see the

Appendix) from B = ∇ × A as [10,11]

Bρ = −∂ Aφ

∂ z

= μ0I

2π

z

ρ

√
(a + ρ)2 + z2

[
−K + a2 + ρ2 + z2

(a − ρ)2 + z2
E

]
(2.65a)

Bφ = 0 (2.65b)

Bz = 1

ρ

∂
(
ρAφ

)
∂ρ

= μ0I

2π

1√
(a + ρ)2 + z2

[
K + a2 − ρ2 − z2

(a − ρ)2 + z2
E

]
(2.65c)

Along the z axis, ρ = 0, k = 0, so that K (0) = E (0) = π/2 and these general
results reduce to

Bρ → 0 ρ = 0 (2.66a)

Bφ = 0 ρ = 0 (2.66b)

Bz = μ0I

2

a2(
a2 + z2

)3/2 ρ = 0 (2.66c)
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FIGURE 2.26. Magnetic field of a loop.

which is the result obtained in (2.24). In the plane of the loop, z = 0, (2.65)
reduces to

Bρ = 0 z = 0 (2.67a)

Bφ = 0 z = 0 (2.67b)

Bz = μ0I

2π

(
1

a + ρ
K + 1

a − ρ
E

)

= μ0Ia

2π

∫ π

0

a − ρ cos φ(
a2 − ρ2

) √
a2 + ρ2 − 2aρ cos φ

dφ z = 0 (2.67c)

where k2 in (2.63) becomes, for z = 0,

k2 = 4aρ

(a + ρ)2 z = 0 (2.67d)

The alternative result forBz at z = 0 in (2.67c) was obtained by substituting the
change of variables φ = π − 2ζ and dφ = −2dζ, so that cos φ = − cos 2ζ =
2 sin2 ζ − 1 into K and E. At the center of the loop (z = 0, ρ = 0), k = 0, and
K = E = π/2, so that (2.67c) reduces to Bz = μ0I/2a, which is (2.25). The
magnetic fields of a current loop are illustrated in Fig. 2.26.

EXAMPLE

Derive the B field at any point about a current sheet of finite width W and
infinite length as shown in Fig. 2.27 using the vector magnetic potential.
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FIGURE 2.27. Current sheet of finite width and infinite length.

Again the sheet surface current can be viewed as currents I = K dy, which
are infinite in length. We can assume a form for the differential contribution
to Az given in (2.53):

dAz = −μ0K dy

2π
ln R current of infinite length

Here

R =
√

(y − Y )2 + X2



64 MAGNETIC FIELDS OF DC CURRENTS (STEADY FLOW OF CHARGE)

and hence

Az = −μ0K

2π

∫ W/2

y=−W/2
ln R dy

= −μ0K

4π

∫ W/2

y=−W/2
ln

[
(y − Y )2 + X2

]
dy

Making a change of variables λ = y − Y , this becomes

Az = −μ0K

4π

∫ W/2−Y

λ=−(W/2+Y )
ln

(
λ2 + X2

)
dλ

= −μ0K

4π

[
λ ln

(
λ2 + X2

)
− 2λ + 2X tan−1 λ

X

]W/2−Y

−(W/2+Y )

= −μ0K

4π

{
(W/2 − Y ) ln

[
(W/2 − Y )2 + X2

]

−2 (W/2−Y )+2X tan−1 W/2 − Y

X

+ (W/2 + Y ) ln
[
(W/2 + Y )2 + X2

]
−2 (W/2 + Y ) + 2X tan−1 W/2 + Y

X

}

= −μ0K

4π

{
(W/2 − Y ) ln

[
(W/2 − Y )2 + X2

]

+ (W/2 + Y ) ln
[
(W/2+Y )2 + X2

]
−2W + 2X tan−1 WX

X2 + Y 2 − (W/2)2

}
(2.68)

This was evaluated using integral 623 from Dwight [7]:∫
ln

(
x2 + a2

)
dx = x ln

(
x2 + a2

)
− 2x + 2a tan−1 x

a
(D623)

We also used the trigonometric identity

tan−1 θ1 ± tan−1 θ2 = tan−1 θ1 ± θ2

1 ∓ θ1 θ2
θ1, θ2 ≥ 0 (2.69a)

giving

tan−1(x + y) + tan−1(x − y) = tan−1 2x

1 − x2 + y2
(2.69b)
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and

tan−1(x + y) − tan−1(x − y) = tan−1 2y

1 + x2 − y2
(2.69c)

This gives [x = (W/2)/X and y = Y/X]

tan−1 W/2 + Y

X
+ tan−1 W/2 − Y

X
= tan−1 W/X

1 − [(W/2)/X]2 + (Y/X)2

= tan−1 WX

X2 + Y 2 − (W/2)2

The magnetic field is determined from B = ∇ × A in rectangular coordinates
as

B = ∂Az

∂Y
ax − ∂Az

∂X
ay

= μ0K

4π

{
− ln

(W/2 + Y )2 + X2

(W/2 − Y )2 + X2
ax + 2 tan−1 WX

X2 + Y 2 − (W/2)2
ay

}

(2.70)

and we have used

∂

∂ u
tan−1 u = 1

1 + u2
(D512.4)

Letting Y → 0 in (2.70) gives the field along a line perpendicular to the strip:

B = μ0K

2π
tan−1 WX

X2 − (W/2)2
ay

= μ0K

π
tan−1 W

2X
ay Y = 0 (2.71)

and we have used the identity in (2.69). But (2.71) is the same as (2.23)
(X = d), which was derived directly for the B field using the Biot–Savart law.

This result can be derived directly from the Biot–Savart law. A cross-
sectional view of the problem is shown in Fig. 2.28. The differential contribu-
tion to the B field at a general point x = X and y = Y can be obtained by again
considering the sheet to be composed of infinitely long filaments of currents
I = K dy and using the fundamental result in (2.14):

dB = μ0Kdy

2πR
(− cos θ ax + sin θ ay)

where

R =
√

(Y − y)2 + X2
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FIGURE 2.28. Magnetic field of a current sheet of finite width and infinite length using the
Biot–Savart law.

and

cos θ = Y − y

R

sin θ = X

R

Integrating gives the total B field as

B =
∫ W/2

y=−W/2
dB = Bxax + Byay
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Evaluating these gives

Bx = −μ0K

2π

∫ W/2

y=−W/2

Y − y

(Y − y)2 + X2
dz

Making a change of variables, λ = Y − y, dλ = −dy gives

Bx = −μ0K

2π

∫ Y+W/2

λ=Y−W/2

λ

λ2 + X2
dλ

Using integral 121.1 from Dwight [7],∫
x

a2 + x2
dx = 1

2
ln

(
a2 + x2

)
(D121.1)

gives

Bx = −μ0K

4π
ln

(Y + W/2)2 + X2

(Y − W/2)2 + X2

which is the x component given in (2.70). The y component becomes

By = μ0K

2π

∫ W/2

y=−W/2

X

(Y − y)2 + X2
dy

Again making a change of variables, λ = Y − y, dλ = −dy gives

By = μ0K

2π

∫ Y+W/2

λ=Y−W/2

X

λ2 + X2
dλ

Using integral 120.1 from Dwight [7],∫
1

a2 + x2
dx = 1

a
tan−1 x

a
(D120.1)

gives

By = μ0K

2π

(
tan−1 Y + W/2

X
− tan−1 Y − W/2

X

)
Using the identity in (2.69c) gives

By = μ0K

2π
tan−1 WX

X2 + Y 2 − (W/2)2

which is the y component given in (2.70).

2.5.1 Leibnitz’s Rule: Differentiate Before You Integrate

Solving for the B field by first obtaining the vector magnetic potential A via
(2.47) or (2.52) avoids the integration of vector quantities that occurs by a
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direct solution for B using the Biot–Savart law. However, the final step of
differentiating that to give B = ∇ × A may involve some rather complicated
differentiations. A convenient way of avoiding those complicated differentia-
tions and going directly to the B field is by using Leibnitz’s rule [12]. Leibnitz’s
rule allows us to exchange the order of differentiation and integration:

∂

∂y

∫ b

a

f (x, y) dx =
∫ b

a

∂f (x, y)

∂y
dx

There are some rather mild restrictions: f (x, y) must be continuous and have
continuous derivatives in a ≤ x ≤ b and y1 ≤ y ≤ y2 over which the result is
to be obtained.

For example, consider the problem of determining the B field for a finite-
length current as shown in Fig. 2.24. The vector magnetic potential was ob-
tained as

Az = μ0I

4π

∫ Z+L/2

λ=Z−L/2

1√
λ2 + r2

dλ

= μ0I

4π
ln

(Z + L/2) +
√

(Z + L/2)2 + r2

(Z − L/2) +
√

(Z − L/2)2 + r2
(2.57)

and the B field was obtained from B = ∇ × A as

B = −∂Az

∂r
aφ

= μ0I

4πr

⎡
⎣ Z + L/2√

(Z + L/2)2 + r2
− Z − L/2√

(Z − L/2)2 + r2

⎤
⎦ aφ (2.58)

This final step required the differentiation of a somewhat complicated natural
log function. We can instead formulate this as

Bφ = −∂Az

∂ r

= − ∂

∂ r

[
μ0I

4π

∫ Z+L/2

λ=Z−L/2

1√
λ2 + r2

dλ

]

= −μ0I

4π

∫ Z+L/2

λ=Z−L/2

∂

∂ r

[
1√

λ2 + r2

]
dλ

= −μ0I

4π

∫ Z+L/2

λ=Z−L/2

[
−1

2

2r(
λ2 + r2

)3/2

]
dλ

= μ0I

4π
r

∫ Z+L/2

λ=Z−L/2

1(
λ2 + r2

)3/2 dλ
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= μ0I

4π
r

[
1

r2

λ√
λ2 + r2

]Z+L/2

Z−L/2

= μ0I

4πr

⎡
⎣ Z + L/2√

(Z + L/2)2 + r2
− Z − L/2√

(Z − L/2)2 + r2

⎤
⎦

as obtained in (2.58) by differentiation of Az after the integration to obtain it.
We have used integral 200.03 from the table of integrals by Dwight [7]:∫

1(
a2 + x2

)3/2 dx = x

a2
√

a2 + x2
(D200.03)

Integrating Az and then obtaining B from B = ∇ × A required the differenti-
ation of a natural log function.

As another example, consider the problem of a current sheet of finite width
and infinite length shown in Fig. 2.27. The vector magnetic potential is in the
z direction and is given by

Az = −μ0K

2π

∫ W/2

y=−W/2
ln R dy

= −μ0K

4π

∫ W/2

y=−W/2
ln

[
(y − Y )2 + X2

]
dy

= −μ0K

4π

∫ W/2−Y

λ=−(W/2+Y )
ln(λ2 + X2) dλ

The B field is obtained from B = ∇ × A as

B = ∂Az

∂Y
ax − ∂Az

∂X
ay

= μ0K

4π

[
− ln

(W/2 + Y )2 + X2

(W/2 − Y )2 + X2
ax + 2 tan−1 WX

X2 + Y 2 − (W/2)2
ay

]

(2.70)

Instead of integrating to obtain Az and then differentiating to obtain B, use
Leibnitz’s rule to obtain

Bx = ∂Az

∂Y

= ∂

∂Y

[
−μ0K

4π

∫ W/2

y=−W/2
ln

[
(y − Y )2 + X2

]
dy

]

= −μ0K

4π

∫ W/2

y=−W/2

[
∂

∂Y
ln

[
(y − Y )2 + X2

]]
dy
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= −μ0K

4π

∫ W/2

y=−W/2

2(y − Y )(−1)

(y − Y )2 + X2
dz

= μ0K

2π

∫ W/2−Y

λ=−(W/2+Y )

λ

λ2 + X2
dλ

= μ0K

2π

1

2

[
ln

(
λ2 + X2

)]W/2−Y

−(W/2+Y )

= −μ0K

4π
ln

(W/2 + Y )2 + X2

(W/2 − Y )2 + X2

as was obtained in (2.70) and we used integral 121.1 of Dwight [7]:

∫
x

a2 + x2
dx = 1

2
ln

(
a2 + x2

)
(D121.1)

Similarly, the y component of B is obtained as

By = −∂Az

∂X

= − ∂

∂X

[
−μ0K

4π

∫ W/2

y=−W/2
ln

[
(y − Y )2 + X2

]
dy

]

= μ0K

4π

∫ W/2

y=−W/2

[
∂

∂X
ln

[
(y − Y )2 + X2

]]
dy

= μ0K

4π

∫ W/2

y=−W/2

2X

(y − Y )2 + X2
dy

= μ0K

2π
X

∫ W/2−Y

λ=−(W/2+Y )

1

λ2 + X2
dλ

= μ0K

2π
X

[
1

X
tan−1 λ

X

]W/2−Y

−(W/2+Y )

= μ0K

2π

[
tan−1 W/2 − Y

X
− tan−1 − (W/2 + Y )

X

]

= μ0K

2π
tan−1 WX

X2 + Y 2 − (W/2)2

as was obtained in (2.70) and we used integral 120.1 of Dwight [7]:

∫
1

a2 + x2
dx = 1

a
tan−1 x

a
(D120.1)
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2.6 DETERMINING THE INDUCTANCE OF A CURRENT
LOOP: A PRELIMINARY DISCUSSION

The process of determining the inductance of a loop formed by a current-
carrying conductor was discussed briefly in Chapter 1. To determine the in-
ductance of any loop shape we first need to determine the B field over the
surface of the loop, s, that is bounded by the conductor. Next we must inte-
grate that B field over the loop surface with a surface integral to determine
the total magnetic flux through the loop surface as

ψ =
∫

s

B · ds (1.6)

The inductance of the loop is the ratio of this flux and the current I that created
it:

L = ψ

I
(1.7)

The circular current loop shown in Fig. 2.29 will be used to illustrate the
first part of that process: determining the B field over the surface of the loop.
The loop has a radius a and is formed by a wire of radius rw. In this section
we determine the magnetic flux density B over the flat surface of the loop, s,
that is bounded by the interior surface of the wire by using three methods. In
Chapter 4, that B field will be integrated over the loop surface via the surface

I

y

x

a

r
φ

s

2rw

zB

R

φφ adaId lI =
θ
α

FIGURE 2.29. Determining the magnetic flux through the surface enclosed by a circular wire
loop.
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integral in (1.6) to give the total magnetic flux through the loop and hence
the inductance of the circular loop via (1.7). The B field over the loop surface
will, by the right-hand rule, be z-directed (out of the page), B = Bzaz, and
hence the total magnetic flux throught the surface via (1.6) will be obtained
in Chapter 4 by further integration as

ψ =
∫ a−rw

r=0

∫ 2π

φ′=0
Bz r dφ′ dr︸ ︷︷ ︸

ds

(1.6)

We assume that the current is uniformly distributed over the wire cross section
so that we may compute the magnetic fields from it by replacing the wire with
a filament on its axis that contains the total current.

Perhaps the most fundamental method for determining the magnetic field
over the surface bounded by the wire loop is by using the Biot–Savart law. A
differential length of current produces a net magnetic field over the surface
bounded by the wire that is in the z direction and is therefore perpendicular
to the surface of the loop. Because of symmetry, we can, without loss of
generality, determine the B field in the plane of the loop, the xy plane, at a
point that is located along the x axis at a distance r from the center of the loop
as shown in Fig. 2.29. For r < a this gives the field inside the loop. This result
will also be valid in the plane of the loop for points outside the loop, r > a.
From the Biot–Savart law, the differential contribution to the B = Bzaz field
at the point from this differential current is

dBz = μ0I

4π

1

R2
a dφ︸︷︷︸

dl

sin θ (2.72a)

where the distance R between the differential current segment and the point
is, using the law of cosines,

R2 = a2 + r2 − 2ar cos φ (2.72b)

and θ is the angle between the differential current vector and the vector directed
from it to the point as shown in Fig. 2.29. The sine of θ can be determined in
terms of the angle α as θ = 90◦ + α and

sin θ = sin (90◦ + α) = cos α

Using the law of cosines again gives r2 = a2 + R2 − 2aR cos α, so that

sin θ = cos α = a2 + R2 − r2

2aR

= a − r cos φ

R
(2.72c)
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The contribution to the field at the point from the lower half of the current is
the same as that from the upper half. Hence, the magnetic field at the point is
determined from the Biot–Savart law as

Bz (r) = 2
μ0Ia

4π

∫ π

φ=0

a − r cos φ

(a2 + r2 − 2ar cos φ)3/2
dφ

= μ0Ia

2π

∫ π

φ=0

a − r cos φ

(a2 + r2 − 2ar cos φ)3/2
dφ z = 0 (2.73)

A second method of determining Bz is by using the vector magnetic poten-
tial and performing Bz = ∇ × Aφ = (1/r)[∂(rAφ)/∂ r] (see the Appendix).
The vector magnetic potential is obtained by evaluating (2.59) in the plane of
the loop (Fig. 2.25, z = 0, ρ = r, θ = 0) to give

Aφ = μ0Ia

2π

∫ π

φ=0

cos φ√
a2 + r2 − 2ar cos φ

dφ z = 0 (2.74)

Hence, the magnetic flux density over the loop surface is obtained from

B = ∇ × A

= 1

r

∂
(
rAφ

)
∂r

az

= μ0Ia

2πr

∂

∂r

[∫ π

φ=0

r cos φ√
a2 + r2 − 2ar cos φ

dφ

]
az

= μ0Ia

2πr

∫ π

φ=0

[
∂

∂ r

r cos φ√
a2 + r2 − 2ar cos φ

]
dφ az

= μ0Ia

2πr

∫ π

φ=0

a cos φ (a − r cos φ)

(a2 + r2 − 2ar cos φ)3/2
dφ z = 0 (2.75)

where we have used Leibnitz’s rule to interchange the order of differentiation
and integration. This result seems to be undefined at the center of the loop,
r = 0:

lim︸︷︷︸
r→0

Bz = μ0I

2π
lim︸︷︷︸
r→0

∫ π

φ=0

a2 cos φ (a − r cos φ)

(a2 + r2 − 2ar cos φ)3/2
dφ

r

= μ0I

2π

∫ π
φ=0 [(a3 cos φ)/a3]dφ

0
= 0

0
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However using l’Hôpital’s rule gives a limit of

lim︸︷︷︸
r→0

Bz = μ0I

2π
lim︸︷︷︸
r→0

∂
∂r

∫ π

φ=0

a2 cos φ (a − r cos φ)

(a2 + r2 − 2ar cos φ)3/2
dφ

∂

∂r
(r)

= μ0I

2π

∫ π
φ=0 [(2 cos2 φ)/a]dφ = π/a

1

= μ0I

2a
r = 0, z = 0

which is the result derived directly by the Biot–Savart law and given in (2.25).
We again used Leibnitz’s rule to interchange the order of differentiation and
integration in the numerator.

The third method of obtaining the Bz field in the plane of the loop is to
use directly the result obtained by Smythe [10] and Weber [11] and given in
(2.65). Evaluating this in the plane of the loop, z = 0, gives (2.67):

Bz = μ0I

2π

(
1

a + r
K + 1

a − r
E

)

= μ0Ia

2π

∫ π

0

a − r cos φ(
a2 − r2

) √
a2 + r2 − 2ar cos φ

dφ z = 0 (2.67c)

where K(k) and E(k) are the complete elliptic integrals of the first and second
kind, respectively [7]:

K(k) =
∫ π/2

ζ=0

dζ√
1 − k2 sin2 ζ

(D773.1)

E(k) =
∫ π/2

ζ=0

√
1 − k2 sin2 ζ dζ (D774.1)

and

k2 = 4ar

(a + r)2 (2.67d)

As a check on these results, at the center of the loop all three evaluate to

Bz = μ0I

2a
r = 0, z = 0 (2.25)

which is the result obtained directly and given in (2.25).
The interesting aspect of these three results for Bz is that they are all seem-

ingly different! All three results have the form

Bz(r) = μ0Ia

2π

∫ π

φ=0

[
Integrand

]
dφ z = 0 (2.76)
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but all three integrands are different. For example, compare the integrands of
the result using the Biot–Savart law and given in (2.73):∫ π

φ=0

a − r cos φ

(a2 + r2 − 2ar cos φ)3/2
dφ = 1

a2

∫ π

φ=0

1 − u cos φ

(1 + u2 − 2u cos φ)3/2
dφ

(2.77a)

the result obtained by differentiating the vector magnetic potential according
to B = ∇ × A and given in (2.75):∫ π

φ=0

a cos φ (a − r cos φ)

r (a2 + r2 − 2ar cos φ)3/2
dφ = 1

a2

∫ π

φ=0

cos φ (1 − u cos φ)

u (1 + u2 − 2u cos φ)3/2
dφ

(2.77b)

and the result obtained by Smythe and Weber in (2.67c):∫ π

0

a − r cos φ

(a2 − r2)
√

a2 + r2 − 2ar cos φ
dφ

= 1

a2

∫ π

φ=0

1 − u cos φ

(1 − u2)
√

1 + u2 − 2u cos φ
dφ (2.77c)

and we have written the three integrands in terms of the ratio of the radius to
the point, r, and the radius of the loop, a, as

u = r

a
(2.77d)

Therefore, all of the results depend on the ratio of the radius to the point and
the radius of the loop. For points interior to the loop, r < a and u < 1, the
magnetic field should be directed out of the page, and hence the integrals
should be positive so that Bz > 0. For points exterior to the loop, r > a and
u > 1, the magnetic field should be directed into the page and hence the
integrals should be negative, so that Bz < 0. This is determined using the
right-hand rule.

But how can these three different integrands give the same result for the
Bz(r) field over the surface enclosed by the loop? The answer is that what
is important is the result of the integration, and integrands having different
curves over the limits of the integral, 0 ≤ φ ≤ π, are capable of enclosing the
same area. Fortunately, it turns out that this is the case for the three results
above: All three seemingly different integrals give the same magnetic field
Bz(r), as we show next using numerical integration.

Since the three integrals in (2.77) cannot be integrated in closed form, a
numerical integration routine was used to perform the integration for various
values of the radius to the point, r, and the radius of the loop, a. Figure 2.30(a)
shows the plots of the integrands for r = 1 and a = 2 over the range of the
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Comparison of Integrands
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FIGURE 2.30(a). Plots of the integrands for 0 ≤ φ ≤ π: ( ) by the Biot–Savart law in
(2.77a); ( ) by the vector potential method in (2.77b); and ( ) by the result from Smythe
[10] and Weber [11] in (2.77c) for r = 1 and a = 2. All three integrals evaluate to 0.9783.

integral, 0 ≤ φ ≤ π. The curves of the three integrands are considerably dif-
ferent, yet the integral evaluates to 0.9783 for all three integrands.

Figure 2.30(b) shows the plots of the integrands for r = 0.1 and a = 2 over
the range of the integral, 0 ≤ φ ≤ π. The curve of the integrand by the vector
magnetic potential method in (2.77b) is considerably different from the other
two, yet the integral evaluates to 0.7869 for all three integrands. For r = 0 all
three integrals approach π/a2 = 0.7854.

Figure 2.30(c) shows the plots of the integrands for r = 1.9 and a = 2
over the range of the integral, 0 ≤ φ ≤ π. The curves of the integrands by the
Biot–Savart law in (2.77a) and by the vector potential method in (2.77b) are
virtually identical but are different from the result by Smythe and Weber in
(2.77c), yet the integral evaluates to 5.6550 for all three integrands.

The three integrals for Bz in (2.77) are also valid for points in the plane
of the loop (z = 0) which are outside the loop, r > a. Figure 2.30(d) shows
the plots of the integrands for r = 2 and a = 1 over the range of the integral,
0 ≤ φ ≤ π. The curves of the three integrands are considerably different over
the range of the integral, 0 ≤ φ ≤ π, yet the integral evaluates to −0.2709 for
all three integrands. The fact that the integral is negative and Bz < 0 makes
sense because for points in the plane of the loop (z = 0) but lying outside
the current loop, r > a, the B = Bzaz field is, by the right-hand rule, in the
negative z direction (into the page).
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Comparison of Integrands
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FIGURE 2.30(b). Plots of the integrands for 0 ≤ φ ≤ π: ( ) by the Biot–Savart law in
(2.77a), ( ) by the vector potential method in (2.77b), and ( ) by the result from
Smythe [10] and Weber [11] in (2.77c) for r = 0.1 and a = 2. All three integrals evaluate
to 0.7869.

Comparison of Integrands
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FIGURE 2.30(c). Plots of the integrands for 0 ≤ φ ≤ π: ( ) by the Biot–Savart law in
(2.77a), ( ) by the vector potential method in (2.77b), and ( ) by the result from
Smythe [10] and Weber [11] in (2.77c) for r = 1.9 and a = 2. All three integrals evaluate
to 5.6550.
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Comparison of Integrands
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FIGURE 2.30(d). Plots of the integrands for 0 ≤ φ ≤ π: ( ) by the Biot–Savart law in
(2.77a), ( ) by the vector potential method in (2.77b), and ( ) by the result from Smythe
[10] and Weber [11] in (2.77c) for r = 2 and a = 1 (points outside the loop). All three integrals
evaluate to −0.2709.

The curves representing the three integrands in (2.77a), (2.77b), and (2.77c)
which are plotted in Fig. 2.30 are equal for only one value of φ. This equality
of the three integrands occurs when in (2.77b)

cos φ

u
= 1

and when in (2.77c)

1 + u2 − 2u cos φ

1 − u2
= 1

Both these conditions occur when

φ = cos−1 u u < 1

which has values only for u ≤ 1. For the case of r = 1 and a = 2 giving
u = 1/2 in Fig. 2.30(a), this value of φ is φ = 60o = 1.0472 rad. For the
case of r = 0.1 and a = 2 giving u = 1

20 in Fig. 2.30(b), this value of φ is
φ = 87.134◦ = 1.5208 rad. For the case of r = 1.9 and a = 2 giving u =
0.95 in Fig. 2.30(c), this value of φ is φ = 18.195◦ = 0.3176 rad. For points
outside the current loop, r > a, so that u > 1, the term in the numerator of
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each integrand, (1 − u cos φ), is zero for all three integrands at

φ = cos−1 1

u
u > 1

Hence for the case of r = 2 and a = 1 giving u = 2 in Fig. 2.30(d), this value
of φ where all three integrands are zero is φ = 60◦ = 1.0472 rad.

2.7 ENERGY STORED IN THE MAGNETIC FIELD

The electric energy stored in a region of space of volume v due to a system of
charges is [3,6]

WE = 1
2

∫
v

D · E dv J (2.78)

If the space surrounding the charges is linear, homogeneous, and isotropic
and described by a permittivity ε, then D is related to E by D = ε E and (2.78)
becomes

WE = 1
2ε

∫
v

E2 dv J (2.79)

Similarly, the magnetic energy stored in a region of space of volume v due to
a system of current loops is [3,6]

WM = 1
2

∫
v

B · H dv J (2.80)

If the space surrounding the currents is linear, homogeneous, and isotropic
and described by a permeability μ, then B is related to H by B = μ H and
(2.80) becomes

WM = 1
2μ

∫
v

H2 dv J (2.81)

As noted in Chapter 1, these have a direct parallel with the energy stored
in the fields of a capacitor (stored in its electric field)

WE = 1
2C V 2 J (2.82)
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where V is the voltage between the capacitor plates and C is its capacitance.
Similarly, the energy stored in an inductor (stored in its magnetic field) is

WM = 1
2L I2 J (2.83)

where I is the current passed through the inductor and L is its inductance.
Hence, we have an alternative means of determining the capacitance or in-
ductance of a structure indirectly by, instead, determining the energy stored
in the electric or magnetic fields of the element:

C = 2WE

V 2
(2.84a)

L = 2WM

I2
(2.84b)

For some structures, (2.84b) will be a useful way of determining the inductance
of the structure.

2.8 THE METHOD OF IMAGES

Problems often involve a flat sheet of metal that is very large in extent. Charges
and/or currents exist above the sheet and it is desired to determine the electric
and magnetic fields in the space above the sheet. This is a very difficult
problem, because to solve it we have to determine the distribution of the
charge/currents induced on the surface of this sheet. Fortunately, with the
method of images we can replace these problems with equivalent problems
that are much easier to solve. Although conductive metals have very large
conductivities, it is nonetheless desirable to replace them with perfect con-
ductors. A perfect electric conductor is a fictitious material that has an infinite
conductivity, σ → ∞. In the case of electric fields in the conductor, the current
density in that conductor is related to the electric field by Ohm’s law, J = σ E.
For σ = ∞ we must have either E = 0 or J = ∞. Having an infinite current
density would mean that either (1) a finite amount of charge is moved in zero
time, or (2) an infinite amount of charge is moved in a finite time. Since nei-
ther of these is acceptable physically, we conclude that E = 0 in a perfect
conductor. No charge can exist in the interior of a perfect conductor and must
exist only on its surface. Any charge in a very good conductor having a very
large conductivity will decay to zero (move to the conductor surface) in a
very short time called the relaxation time, τ = ε0/σ [3]. Similarly, magnetic
fields that vary with time cannot exist in a perfect conductor, but steady (dc)
magnetic fields in a superconductor can [3].
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The boundary conditions at the surface of a perfect conductor are that
(1) the component of the total electric field intensity E that is tangent to the
surface must be zero, and (2) the component of the total magnetic flux density
B normal to the surface must be zero [3]. This means that on the surface of a
perfect conductor (1) the total electric field must be normal to it, and (2) the
total magnetic field must be tangent to it.

The electrostatic potential function or voltage V is defined such that the neg-
ative gradient of V gives the static electric field: E = −∇V (see the Appendix
for the gradient function). Hence, the equipotential surfaces on which the
voltage is constant are perpendicular to the lines of the E field and hence
must be tangent to the surface of a perfect conductor. Similarly, the vector
magnetic potential A is defined such that its curl gives the magnetic flux den-
sity: B = ∇× A. Since the B field lines must be tangent to the surface of a
perfect conductor with no component perpendicular to the conductor surface,
the lines of A must be tangent to the surface of a perfect conductor.

Ground planes consisting of a conductor of large extent whose conduc-
tance, although finite, is very large (e.g., copper) are frequently found in
electronic systems either intentionally or unintentially. The metallic frame of
an airplane fuselage acts like a ground plane to the electromagnetic fields
of the antennas that are mounted above it. Other metallic enclosures such as
are used in constructing shielded rooms are intended to contain or exclude
unwanted electromagnetic fields that may cause interference with sensitive
electronic devices [5].

First consider a static charge above a perfect conductor of infinite extent
shown in Fig. 2.31. Although the equivalent image problem requires a perfect
conductor of infinite extent, in practice a reasonably good conductor of very
large extent is usually a sufficient approximation. A positive charge Q at a
height h above an infinite, perfectly conducting plane has, according to the
boundary conditions on the electric field at its surface, its electric field normal
to the surface of the plane [3]. If we replace the plane with a negative charge

+Q +Q

–Q

⇔
hh

h

EEEE

E E

FIGURE 2.31. Static charges above a perfect conductor and the equivalent image problem.
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–Q at a depth h below the previous position of the plane, the electric fields
above the position of the plane will be identical in either case [3].

In the case of currents, a similar imaging can be used. A foolproof way
of getting the correct directions of the images of the currents is to recall
that current is the flow of charge. So we can visualize a finite-length current
as having positive and negative charge being accumulated at the ends and
then image those charges as shown in Fig. 2.32. A current that is parallel to
the plane is imaged at the same depth below the plane but with the current
direction reversed as shown in Fig. 2.32(a). A current that is perpendicular to
the plane is imaged at the same depth below the plane but with its direction
the same as the current above the plane as shown in Fig. 2.32(b). In either
case, the magnetic field in the space above the plane will be the same as when
the plane is replaced by images. The total magnetic field will be tangent to the

⇔

h h

II

I

h

(a)

I

h

⇔

I

h

I

h

(b)

FIGURE 2.32. Imaging currents.
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plane at all points on the plane in either case, thereby satisfying the boundary
conditions on the magnetic field on the surface of a perfectly conducting plane
[3]. Currents that are neither horizontal nor perpendicular to the plane can be
imaged by resolving the current into its vertical and horizontal components
and imaging those.

You should show that the total magnetic field at all points on the surface
of the plane in Fig. 2.32 is tangent to the surface, and there is no component
perpendicular to the surface of the plane. Do this by replacing the plane with its
image and then superimposing the magnetic fields due to the original current
and its image using the results for the magnetic fields of the currents (finite
length or infinite length) that were derived previously.

2.9 STEADY (DC) CURRENTS MUST FORM CLOSED LOOPS

Steady currents (dc currents that do not vary with time) must form closed
loops (i.e., must return to their source). This is rather simple to prove. First,
we recall the law of conservation of charge:

Ileaving s =
∮

s

J · ds = − d

dt
Qenclosed (2.85)

The surface integral
∮
s J · ds gives the net current leaving the closed surface

s, J is the current density in A/m2 over that surface, and Qenclosed is the net
positive charge enclosed by the surface. This is illustrated in Fig. 2.33. This
mathematical statement of the law of conservation of charge is very sensible
since it says merely that the net outflow of current out of a closed surface
s equals the time rate of decrease of the charge enclosed by that surface.
Recalling that current is the rate of flow of charge, this mathematical statement

closed surface s

J

J

J

enclosedQ

FIGURE 2.33. Conservation of charge.
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(a)

(b)

closed surface s
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0enclosed =Q

0enclosed ≠Q

closed surface s

s

I I

I

FIGURE 2.34. Finite-length currents and conservation of charge.

of the law of conservation of charge is elegantly obvious since it requires that
if there is a net current leaving the closed surface, it must be accompanied
by a decrease in the net positive charge contained in that surface since charge
can be neither created nor destroyed inside the closed surface s!

Consider the case of a wire carrying a steady (dc) current I as illustrated
in Fig. 2.34. Surround a point along the wire with a closed surface (a node
in the vernacular of lumped-circuit theory) as shown in Fig. 2.34(a). In the
case of steady or direct (dc) currents, the right-hand side of (2.85) must
be zero: ∮

s

J · ds = 0 steady (dc) currents (2.86)

According to (2.86) the dc current entering the node must equal the dc current
leaving the node, and hence Kirchhoff’s current law satisfies conservation
of charge for steady (dc) currents [1,2]. However, this also shows that finite
lengths of dc currents cannot exist. This is simple to show because if we sur-
round the end of a finite length of current with a closed surface as illustrated
in Fig. 2.34(b), we will have current I entering but no current leaving the
closed surface, thereby violating (2.86). Hence, steady (dc) currents must
form closed loops. In other words, a steady (dc) current must return to its
source.
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The current J in (2.86) is conduction current, which is the flow of free
charge such as in a wire. When we add displacement current to Ampère’s
law for time-varying fields (and time-varying currents) in Chapter 3 we may
make the statement that for time-varying currents, the sum of the conduction
and the displacement current must form closed loops (i.e., must return to their
source). This may be shown by taking the divergence of Ampère’s law for
time-varying currents in point form (see Chapter 3):

∇ · ∇ × H = ∇ ·
⎛
⎜⎝ J︸︷︷︸

conduction
current

⎞
⎟⎠ + ∇ ·

⎛
⎜⎜⎜⎝

∂D
∂t︸︷︷︸

displacement
current

⎞
⎟⎟⎟⎠

= 0 (2.87)

since we have the identity ∇ · ∇ × F = 0 for any vector field (see the
Appendix). Using the divergence theorem (see the Appendix), this gives

∮
s

(
J + ∂ D

∂ t

)
· ds = 0 (2.88)

thereby showing that for time-varying currents, the total current must form
closed loops. Where conduction current ends, displacement current takes over
to complete the loop as in a circuit containing a capacitor.

In several of the examples illustrating the Biot–Savart law as well as in
illustrating the use of the vector magnetic potential to obtain B via B = ∇ × A,
we employed finite lengths of dc current. But if these cannot exist, of what
use are those results for the magnetic fields of a current of finite length? The
answer is that we use solutions for the fields of finite-length current segments

I

I

I

Bnet

FIGURE 2.35. Combining magnetic fields of finite-length currents to determine the magnetic
field of a closed loop of current.
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to construct the solutions for the fields of a closed current loop of which
these current elements are a part, as illustrated in Fig. 2.35. Clearly, we are
using superposition and the surrounding medium must be linear, at least with
regard to its magnetic field properties. So determining the magnetic fields
for steady (dc) currents of finite length is useful in that regard and for that
purpose.



3
FIELDS OF TIME-VARYING
CURRENTS (ACCELERATED CHARGE)

In Chapter 2 we investigated the calculation of the magnetic fields produced
by various configurations of static (dc) currents (the steady flow of charge). We
discussed in Chapter 1 how the inductance of a structure will be obtained from
these static magnetic fields by first obtaining the magnetic flux penetrating
the surface of the current loop from (1.6):

ψ =
∫

s

B · ds (1.6)

and then obtaining the inductance of the loop from (1.7):

L = ψ

I
(1.7)

This inductance parameter will then be used in lumped circuits to determine
its effect in circuits in which the currents vary with time (accelerated charge).
The electromagnetics law that allows this determination is Faraday’s law of
induction. However, we seem to have a logical inconsistency in this process:
A circuit element, inductance, that was derived for static (dc) currents will
be used to evaluate its effect on time-varying currents. The ability to use
a result derived for dc currents in a situation where the currents vary with
time is shown in Section 3.4 to be a valid approximation using an iterative
solution of the field equations. This approximation will be valid for circuits

Inductance: Loop and Partial, By Clayton R. Paul
Copyright © 2010 John Wiley & Sons, Inc.
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whose maximum dimensions are “electrically small,” that is, much less than
a wavelength at the frequency of the driving source. The notion of electrically
small dimensions is discussed in Section 3.3.

3.1 FARADAY’S FUNDAMENTAL LAW OF INDUCTION

Faraday’s law is perhaps the most profound of the collective group of laws
governing all macroscopic electromagnetic fields that are known as Maxwell’s
equations. Without Faraday’s law we would not have the use of “electricity”
and all its myriad implications.

To state Faraday’s law in unambiguous mathematical terms, consider
Fig. 3.1, which shows an open surface s that has a contour or path c surround-
ing it. With reference to Fig. 3.1, Faraday’s law can be stated in mathematical
form as [3–6]

emf = − dψ

dt
(3.1)

where the electromotive force emf around the closed loop c is obtained with
a line integral as

emf =
∮

c

E · dl (3.2)

and the magnetic flux that passes through the open surface s is obtained with
a surface integral as

ψ =
∫

s

B · ds (3.3)

Hence, Faraday’s fundamental law of induction is

∮
c

E · dl = − d

dt

∫
s

B · ds (3.4)

ds

E

B

B

B

B

d l

c

s

na

FIGURE 3.1. Faraday’s law.
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The contour c of the closed loop can be thought of as either a conducting
material (as in the case of a wire) or an imaginary contour of nonconducting
material (as in the case of free space) and E is the electric field intensity vector
with units of V/m along that contour. The dot product in the integrand of the
emf in (3.2), E · dl, means that we take the product of the differential lengths
of this contour dl and the electric field lines that are tangent to the contour.
We then sum these products (with an integral) to obtain the emf around that
closed path. E has a component parallel or tangent to this path and a component
perpendicular to this path, and the components that are perpendicular to this
path do not contribute to the sum. Observe that the electromotive force in (3.2)
has units of volts and acts like a voltage. However, the minus sign that was
present in the definition of voltage due to a charge distribution in Chapter 1
is absent here, so that instead of being a voltage produced by charge, the
emf represents a form of voltage source inserted in the loop. If the electrical
dimensions (in wavelengths) of the closed loop are electrically small (� λ),
we may treat this emf as a lumped voltage source and place it anywhere in
the loop.

The right-hand side of Faraday’s law in (3.1) is the rate of decrease (the
negative sign is referred to as Lenz’s law) of the magnetic flux ψ given in (3.3)
that passes through the surface s that the closed loop c encloses, and B is the
magnetic flux density vector with units of Wb/m2 (tesla). The result of the
surface integral in (3.3), ψ, gives the net magnetic flux passing through the
surface that is enclosed by the contour c. The units of that flux are webers.
A vector differential surface of that surface is ds = ds an, where an is the
unit normal to the surface. The dot product B · ds in the integrand of (3.3)
means that we take the product of the differential surface areas ds and the
components of B that are perpendicular to the surface. Then we add (with an
integral) these products to give the net magnetic flux ψ leaving (or passing
through) the open surface s. This is again sensible since B has two compo-
nents: one perpendicular to the surface and one that is tangent to the surface.
The component of B that is tangent to the surface does not (and should not)
contribute to the net flux passing through the surface.

So we may interpret Faraday’s law as providing that:

A time-varying magnetic field passing through an open surface s will
induce (produce) an electric field around the contour c that encircles
the surface.

In Section 3.4 we provide the rationale for saying that the magnetic field pro-
duces an electric field rather than the reverse, although this is still somewhat
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arbitrary. This is the process behind some particle accelerators that accelerate
charged particles to enormous speeds and smash them into other particles
in order to break those particles into their constituent pieces. A large, time-
varying magnetic field creates an electric field that exerts a force on electric
charge. The path here into which the electric field is induced is an imaginary
contour in space. Faraday’s law also makes possible electric transformers and
electric motors and generators among an enormous number of other appli-
cations that are absolutely essential to our daily lives and commerce. In an
electric generator, coils of wire rotate around a shaft and pass through a dc
magnetic field, thereby causing a time-varying magnetic field to penetrate the
surfaces enclosed by those coils of wire. Hence voltages are induced in those
coils of wire by Faraday’s law, thereby producing electricity.

The contour or path c in the general statement of Faraday’s law can be
thought of as the mouth of a balloon which can be inflated to give different
surfaces s, as illustrated in Fig. 3.1. All these surfaces give the same result as
long as the contour c remains the same. Magnetic field lines that enter and
leave the surface and do not pass through the mouth of the balloon do not
contribute to the net flux through the surface and hence do not contribute to
the induced electric field. Only those magnetic field lines that pass through
the mouth of the balloon contribute to the net flux exiting the balloon surface.
The direction of the contour c and the direction “out of” the open surface s
are again related by the right-hand rule. Placing the fingers of our right hand
in the direction of the contour c, our thumb will point in the direction “out of
the open surface.”

To simplify the discussion we choose a flat surface and a circular contour
enclosing that surface as shown in Fig. 3.2. Again, the components of the
magnetic flux density that penetrate or pass through this surface are those that
are normal (perpendicular) to the surface, B · ds and ds = ds an, where an is a
unit normal to the surface. Again, this is sensible because the components of
B that are tangent (parallel) to the surface do not “exit” the surface. Faraday’s
law provides that we may replace the effect of the magnetic flux density vector
passing through the surface by inserting an equivalent voltage source whose
value is

V = dψ

dt
(3.5)

into the contour of the loop that encloses the surface. To “lump” this induced
emf in the loop, we will assume that the physical dimensions of this loop
are electrically small (� λ). Furthermore, we consider the loop contour to
be constructed of a conducting material such as a wire (a conductor hav-
ing a circular, cylindrical cross section). We can lump these effects of the
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E
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B
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FIGURE 3.2. Modeling the effect of the B field as an induced voltage source.

time-changing magnetic field through the loop into a lumped voltage source
whose value is given in (3.5) and place it anywhere in the loop contour because
we assume that the loop dimensions are electrically small.

Getting the polarity of this induced source correct is critical. Faraday’s law
essentially provides that the voltage source representing the induced emf has
a polarity such that it opposes (Lenz’s law) the rate of change of the magnetic
flux through the loop. A foolproof way of determining the correct polarity
of the source is the following. The source should tend to induce or “push” a
current I ind around this conducting loop in a direction such that this induced
current produces another induced magnetic flux Bind that opposes any change
in the original magnetic field B. This is a very sensible result because if the
magnetic field induced by the source did not oppose the original magnetic
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field, an induced current would produce an induced magnetic flux that would
increase the net magnetic flux through the loop, thereby increasing the value
of the induced voltage, which produces a larger induced magnetic field, and
so on without bound. As we found in Chapter 2, a current in a wire produces a
magnetic field whose direction can be obtained with the right-hand rule. That
is, if we place the thumb of our right hand in the direction of the current, the
fingers will give the direction of the induced magnetic field about the wire. If
the original magnetic flux through the surface enclosed by the loop is directed
upward as shown in Fig. 3.2, the source should have a polarity such that it
tends to push a current out of its positive terminal that circulates clockwise,
thereby producing (by the right-hand rule) an induced magnetic field that is
directed downward through the loop surface such that this induced magnetic
field opposes the original magnetic field. Observe that the value of the induced
voltage source V in (3.5) depends on the time rate of change of the magnetic
flux. Hence, either a large B field that is slowly varying with time (such as a
60-Hz power frequency current) or a small B field that is rapidly varying with
time (such as a 2-GHz current in a cell phone) will have a similar effect.

EXAMPLE

This example shows the utility of using an induced voltage source to model
the effect of an incident magnetic field through a closed loop and also shows
that the positions of the measurement leads to a voltmeter affect the reading of
that voltmeter. Figure 3.3(a) shows a circuit where two resistors comprise the
circuit and a uniform external magnetic field ofB = 5t2 Wb/m2 directed out of
the page threads the loop that the circuit encloses. A high-impedance voltmeter
that draws negligible current is attached across a resistor. The 2 m × 3 m
circuit loop encloses a total magnetic flux of

ψ =
∫

s

B · ds

= 5t2
(

Wb/m2
)

× 6
(

m2
)

= 30t2 (Wb)

Hence, the magnitude of the voltage source induced in the loop is

V = dψ

dt

= 60t V
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FIGURE 3.3. Example showing that the position of the voltmeter leads affects its reading.
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The source representing this induced emf is inserted as shown in Fig. 3.3(b).
The source has the polarity shown in order to enforce Lenz’s law (it tends to
produce a current that circulates around the loop in the clockwise direction so
as to produce, according to the right-hand rule, an induced B field that tends
to oppose the change in the original B field).

From that circuit we calculate a current flowing around the loop in the
clockwise direction of

I = 60t

100 + 200

= 0.2t A

Hence, the measured voltage is

V = 200I

= 40t V

In Fig. 3.3(c) the voltmeter is attached to the same two points, but the voltmeter
leads are routed differently. The equivalent circuit for Fig. 3.3(c) is shown in
Fig. 3.3(d). Observe that the voltmeter leads now also enclose the magnetic
flux, and another voltage source must be inserted in the loop formed by those
voltmeter leads as shown. Since the impedance of the voltmeter is assumed
infinite, it draws neglible current and we again obtain

I = 60t

100 + 200

= 0.2t A

But its measured voltage is now

V = 200I − 60t

= −20t V

This can also be obtained by summing KVL around the inner loop of that
circuit to again obtain

V = −60t + 60t − 100I

= −20t V

Hence, Faraday’s law shows that the orientation of the voltmeter leads can
influence its reading significantly.
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EXAMPLE

Consider Fig. 3.4(a), where an open-circuit loop is situated near a two-wire
transmission line bearing equal but oppositely directed time-varying currents
I(t). It is assumed that the time variation of the currents is sufficiently slow
that the loop is electrically small at the significant spectral frequencies of
the currents. Each current produces a component of the B field threading
the loop as shown in Fig. 3.4(b). Assuming that the currents are very long
with respect to the loop dimensions, the fundamental result in (2.14) for the
magnetic field of an infinitely long current can be applied in an approximate
fashion:

Bφ = μ0 I(t)

2πr

I(t)

w

l

ds

(a)

s

B(t)

Voc = −

dt

dψ

s d

w

Bφ

(b)

I(t)

II

dt

dψ

FIGURE 3.4. Example.
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Hence, the net magnetic flux threading the loop [into the page in Fig. 3.4(a)]
due to both currents is (use the right-hand rule)

ψ = −
∫ l

z=0

∫ s+d+w

r=s+d

μ0 I(t)

2πr
dr dz +

∫ l

z=0

∫ d+w

r=d

μ0 I(t)

2π r
dr dz

= μ0l I(t)

2π

(
− ln

s + d + w

s + d
+ ln

d + w

d

)

= μ0l

2π
ln

(d + w) (s + d)

d (s + d + w)
I(t)

Hence, the induced voltage source in the loop has the magnitude dψ/dt and
the polarity shown. Thus, the open-circuit voltage at the loop terminals with
polarity shown is

Voc(t) = − dψ

dt

= −μ0l

2π
ln

(d + w) (s + d)

d (s + d + w)

dI(t)

dt

EXAMPLE

This final example of Faraday’s law illustrates that since the magnitude of the
induced voltage source is the time rate of change of the flux through the loop
and the total flux through the loop is essentially the product of the B field and
the area of the loop, the induced voltage can also be produced by a constant B
field but a time-changing loop area. Consider a set of conducting rails across
which a conducting shorting bar moves to the right with velocity v as shown
in Fig. 3.5. The magnetic field threading the loop is constant (independent of
time) and is uniformly distributed over the loop area. The horizontal width of
the loop area is vt, so that the total area of the loop is

area = lvt

The induced voltage source has the polarity shown and a magnitude of

dψ

dt
= B

darea

dt

= Blv

Hence, the open-circuit voltage is

Voc = Blv
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w = υt

l
s

B

dt
dψ

Voc =
dt

dψ
υ

FIGURE 3.5. Example showing Faraday’s law for a moving contour.

The form of Faraday’s law in (3.4) is said to be its integral form. This form
is useful for describing its meaning. The point form is useful for performing
numerical solutions. It is obtained by applying Stokes’s theorem (see the
Appendix) to the left-hand side to give∮

c

E · dl =
∫

s

(∇ × E) · ds

= − d

dt

∫
s

B · ds

Comparing both sides gives the point form of Faraday’s law:

∇ × E = −∂ B
∂ t

(3.6)

where ∇ × E gives the curl or circulation of E at a point. Applying the general
result (see the Appendix) that ∇ · ∇ × F = 0 for any general vector field F
to (3.6), we obtain Gauss’s law for the magnetic field: ∇ · B = 0. Expanding
the curl (see the Appendix) in a rectangular coordinate system and comparing
both sides gives

∂Ez

∂y
− ∂Ey

∂z
= −∂Bx

∂t
(3.7a)

∂Ex

∂z
− ∂Ez

∂x
= −∂By

∂t
(3.7b)

∂Ey

∂x
− ∂Ex

∂y
= −∂Bz

∂t
(3.7c)
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EXAMPLE

A very common form of wave propagation is the uniform plane wave [3–6].
If the E field is given by

E = Em cos (ω t − β z) ax

determine the corresponding B field such that the fields satisfy Faraday’s
law. Since the E field is directed solely in the x direction, Ey = Ez = 0.
Furthermore, the E field is independent of x and y, so that ∂/∂x = ∂/∂y = 0.
Hence, (3.7) becomes simply

∂Ex

∂z
= −∂By

∂t
(3.7b)

Substituting the form of E gives

βEm sin (ω t − βz) = −∂By

∂ t

Integrating this gives the B field as

B = β

ω
Em cos (ω t − βz) ay

The B field is in the y direction orthogonal to the E field.

3.2 AMPÈRE’S LAW AND DISPLACEMENT CURRENT

We studied Ampère’s law for static (dc) fields in Chapter 2:

∮
c

H · dl =
∫

s

J · ds︸ ︷︷ ︸
Ienclosed
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D

J
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na
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D

FIGURE 3.6. Ampère’s law for time-varying fields.

The surface current density J has units of A/m2 and represents current due
to free charges such as electrons in a wire. For time-varying fields a term must
be added: ∮

c

H · dl =
∫

s

J · ds︸ ︷︷ ︸
conduction
current

+ d

dt

∫
s

D · ds︸ ︷︷ ︸
displacement
current

(3.8)

The vector D is the electric flux density vector with units of C/m2. The open
surface s is enclosed by the closed contour c as for Faraday’s law and the
directions are related by the right-hand rule. This is illustrated in Fig. 3.6.

The displacement current is essentially a time-varying electric field. For
static fields (3.8) reduces to the static field version of Ampère’s law. This
addition of the displacement current term to the static version of Ampère’s law
allows current to flow between two plates of a capacitor, thereby completing
the current loop as shown in Fig. 3.7. Ampère’s law for time-varying fields in

c

conductionI
displacementI

D

D

Vsin ω t

s

FIGURE 3.7. Displacement current flows between the two plates of a capacitor.
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(3.8) shows that a time-varying electric field and its associated displacement
current act exactly like conduction current, and either one can produce a
magnetic field.

EXAMPLE

For the capacitor circuit of Fig. 3.7, a 1-μ F capacitor has a sinusoidal voltage
source 10 sin ω t volts attached across its terminals, and the frequency of the
source is 1 kHz. The conduction current is

Iconduction = 10 V

1/ωC

= 62.8 mA

The capacitance of a parallel-plate capacitor (neglecting fringing of the fields
at the edges) is C = ε(A/d), where ε is the permittivity of the dielectric
between the plates, A is the plate area, and d is the separation of the plates.
The electric field between the plates is (neglecting fringing of the fields at the
edges) E = 10 V/d. Hence, the D field is

D = ε E

= C

A
(10 V)

= 10−5

A

and the displacement current is

Idisplacement = d

dt

∫
s

D · ds

= ω
10−5

A
A

= 62.8 mA

Hence, the conduction and displacement currents are equal, as they must be.

The form of Ampère’s law in (3.8) is said to be its integral form. Again,
this form is useful for describing its meaning. The point form is useful for
performing numerical solutions. It is obtained by applying Stokes’s theorem
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(see the Appendix) to the left-hand side to give∮
c

H · dl =
∫

s

(∇ × H) · ds

=
∫

s

J · ds + d

dt

∫
s

D · ds

Comparing both sides gives the point form of Ampère’s law:

∇×H = J + ∂D
∂ t

(3.9)

Applying the general result (see the Appendix) that ∇ · ∇ × F = 0 for any
general vector field F to (3.9), we obtain ∇ · J = −∂ (∇ · D)/∂ t = −∂ρ(t)/∂ t

by substituting Gauss’s law so that (3.9) satisfies the law of conservation of
charge. Expanding the curl in a rectangular coordinate system and comparing
both sides gives

∂Hz

∂y
− ∂Hy

∂z
= Jx + ∂Dx

∂t
(3.10a)

∂Hx

∂z
− ∂Hz

∂x
= Jy + ∂Dy

∂t
(3.10b)

∂Hy

∂x
− ∂Hx

∂y
= Jz + ∂Dz

∂t
(3.10c)

EXAMPLE

Again a very common form of wave propagation is the uniform plane wave
[3–6]. If the H field is given by

H = Hm cos (ω t − β z) ay

determine the corresponding E field such that the fields satisfy Ampère’s law.
We assume that the fields are in free space so that there is no conduction
current, J = 0. Since the H field is directed solely in the y direction, Hx =
Hz = 0. Furthermore, the H field is independent of x and y so that ∂/∂x =
∂/∂y = 0. Hence, (3.10) becomes simply

−∂Hy

∂z
= ∂Dx

∂t
(3.10a)

Substituting the form of H gives

−βHm sin (ω t − βz) = ∂Dx

∂t
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Integrating this gives the D field as

D = β

ω
Hm cos (ω t − βz) ax

Substituting D = ε0 E gives the electric field:

E = β

ε0ω
Hm cos (ω t − βz) ax

Again, the E field is in the x direction orthogonal to the H field.

3.3 WAVES, WAVELENGTH, TIME DELAY, AND ELECTRICAL
DIMENSIONS

We routinely model electronic circuits with a lumped-circuit model which
is a particular interconnection of the lumped-circuit elements of resistance,
capacitance, and inductance [1,2]. We then solve these lumped-circuit models
for the resulting voltages and currents of those elements using Kirchhoff’s
voltage and current laws. These lumped-circuit models and the voltages and
currents obtained from them are only valid as long as the largest physical
dimension of the circuit is electrically small (i.e., much less than a wavelength
at the frequency of excitation, f, of that circuit) [3–6]. A wavelength is

λ = v

f
(3.11)

where v denotes the velocity of propagation of, for example, the currents along
the connection leads attached to the elements. If the surrounding medium
is free space (for all practical purposes air), the velocity of propagation is
approximately v = 3 × 108 m/s. If a sinusoidal source excites the circuit and
has a frequency of 300 MHz, a wavelength is 1 m, and if the excitation
frequency of the source is 3 GHz, a wavelength is 10 cm or approximately
4 in. In the case of a printed circuit board the velocities of propagation of the
signals carried by the lands on the board are about 60% of that of free space,
due to the interaction of the electromagnetic fields produced by those signals
with the board substrate, and hence the wavelengths are smaller than in air.

In lumped circuits we can ignore the effects of the connection leads attached
to the lumped elements because for the model to be valid, their physical
lengths must be electrically small (i.e., � λ). If the connection leads that are
attached to an element are electrically long, currents at the two endpoints of
this leads will not be the same but will have a phase difference between them,
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FIGURE 3.8. Effect of element interconnection leads.

as illustrated in Fig. 3.8. The current along the connection lead is, in fact, a
wave. Suppose that the current and the associated wave are sinusoidal. Such
a wave can be written as a function of time, t, and position along the lead, z,
as [3–6]

i(z, t) = I cos(ωt − βz) (3.12)

where β is the phase-shift constant in rad/m, and ω = 2πf , where f is the
cyclic frequency of the wave. The velocity of propagation of the wave can be
found by observing that to track the movement of the wave, we must follow
a point on the wave. Hence, the argument of the cosine in (3.12) must be a
constant: ω t − βz = C. Differentiating this gives the velocity of propagation
of the wave:

v = ω

β
(3.13)

Substituting (3.13) into (3.12) gives

i(z, t) = I cos
(

ω

(
t − z

v

))
(3.14)

Therefore, the phase shift in the frequency domain translates to a time delay
of z/v seconds in the time domain. Hence, the currents at two ends of the
leads have a time delay between them of

TD = L

v
(3.15)

where L is the total length of the connection leads.
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FIGURE 3.9. Wave propagation and wavelength.

A wavelength λ is the distance the wave must travel to shift phase by 2π

radians or 360◦:

βλ = 2π

as illustrated in Fig. 3.9. Substituting this into (3.13) again gives the wave-
length in terms of the velocity of propagation and the frequency as

λ = v

f

If the total length of the connection leads is one-half wavelength, these cur-
rents at the endpoints of the lead will be 180◦ out of phase with each other.
If the length of the connection leads is only λ/100, the phase difference be-
tween the two currents at the endpoints is an inconsequential 3.6◦ and can be
ignored. This phase difference translates in the time domain to a time delay;
the current at one end of the connection lead and the current at the other end
will have a time delay between them. For a connection lead of length L this
time delay (in seconds) can be written as TD = L/v = (L/λ)(1/f ) = (L/λ)P ,
where P = 1/f is the period of the sinusoidal waveforms. Hence, the sinu-
soidal waveforms at the two ends of the connection lead will be shifted in time
relative to each other by a fraction of their period, L/λ. If the connection leads
are electrically short, L � λ, the two waveforms will be almost coincident
in time and the time delay can be ignored. Otherwise, the time delay will be
significant.
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3.4 HOW CAN RESULTS DERIVED USING STATIC (DC)
VOLTAGES AND CURRENTS BE USED IN PROBLEMS WHERE
THE VOLTAGES AND CURRENTS ARE VARYING WITH TIME?

At the beginning of this chapter we alluded to the apparent contradiction that
we compute the lumped elements of capacitance and inductance using static
(dc) voltages and currents, yet we use these elements to investigate the effects
of time-varying voltages and currents. How is this possible? The answer is,
of course, as an approximation. In this section we look more closely at this
approximation.

Maxwell’s equations are commonly considered to be the collection of five
equations: Faraday’s law, Ampère’s law, the two laws of Gauss, and the law
of conservation of charge:

∮
c

E · dl = − d

dt

∫
s

B · ds (3.16a)

∮
c

H · dl =
∫

s

J · ds + d

dt

∫
s

D · ds (3.16b)∮
s

D · ds =
∫

v
ρv dv (3.16c)∮

s

B · ds = 0 (3.16d)

∮
s

J ·ds = − d

dt

∫
v
ρv dv (3.16e)

where ρv is the volume (free) charge distribution throughout volume v. The
point forms of these laws were obtained from the integral forms as

∇ × E = −∂ B
∂ t

(3.17a)

∇ × H = J + ∂D
∂ t

(3.17b)

∇ · D = ρv (3.17c)

∇ · B = 0 (3.17d)

∇ · J = −∂ρv

∂ t
(3.17e)
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We solve these in an approximate manner by an iterative process [13]. First
disregard all time derivatives giving the zero-order solutions:

∇ × E0 = 0 (3.18a)

∇ × H0 = J0 (3.18b)

∇ · D0 = ρv0 (3.18c)

∇ · B0 = 0 (3.18d)

∇ · J0 = 0 (3.18e)

Next, we put back the time derivatives but use the zero-order solutions in
those time derivatives to obtain these first-order solutions for other variables
not contained in time derivatives:

∇ × E1 = −∂B0

∂t
(3.19a)

∇ × H1 = J1 + ∂D0

∂t
(3.19b)

∇ · D1 = ρv1 (3.19c)

∇ · B1 = 0 (3.19d)

∇ · J1 = −∂ρv0

∂t
(3.19e)

Similarly, we can obtain a more refined solution known as the second-order
solution by using the first-order solutions in the time derivatives to obtain the
other variables not contained in the time derivatives:

∇ × E2 = −∂B1

∂t
(3.20a)

∇ × H2 = J2 + ∂D1

∂t
(3.20b)

∇ · D2 = ρv2 (3.20c)

∇ · B2 = 0 (3.20d)

∇ · J2 = −∂ρv1

∂t
(3.20e)

The zero-order solutions in (3.18) are the static (dc) solutions we obtained in
Chapter 2. The zero-order solutions in (3.18) were used to obtain, for example,
the solution for the first-order, induced electric field, E1, in Faraday’s law in
(3.19a) by using the zero-order solution for the B field, B0. As we continue
this process, we obtain a more accurate solution of Maxwell’s equations. The
combination of the zero-order solutions in (3.18) and the first-order solutions
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in (3.19) are usually referred to as the quasistatic solution. Generally speaking,
the quasistatic solution obtained iteratively using the zero-order solutions and
refining them to give the first-order solutions give adequate accuracy as long
as the maximum physical dimension of the electromagnetic structure being
investigated is electrically small (i.e., L � λ) [13]. This gives the rationale for
using circuit elements such as capacitance and inductance which were derived
using dc voltages and dc currents in circuits whose currents and voltages vary
with time so long as the maximum dimension of the circuit is electrically
small.

It is simple to show that the sums of the partial solutions in this iterative
process converge to the true solution to Maxwell’s equations:

E = E0 + E1 + E2 + · · · (3.21a)

H = H0 + H1 + H2 + · · · (3.21b)

D = D0 + D1 + D2 + · · · (3.21c)

B = B0 + B1 + B2 + · · · (3.21d)

J = J0 + J1 + J2 + · · · (3.21e)

ρv = ρv0 + ρv1 + ρv2 + · · · (3.21f)

Adding the zero-order equations in (3.18a), the first-order equations in (3.19a),
the second-order equations in (3.20a), and so on, gives

∇ × (E0 + E1 + E2 + · · ·) = 0 − ∂

∂t
(B0 + B1 + B2 + · · ·) (3.22)

Substituting (3.21a) and (3.21d) gives the first Maxwell equation:

∇ × E = −∂B
∂t

The other equations of Maxwell are obtained in a similar fashion.

3.5 VECTOR MAGNETIC POTENTIAL FOR TIME-VARYING
CURRENTS

In Chapter 2 we introduced the vector magnetic potential A for determining
the magnetic field B for static (dc) current configurations. In this section we
rederive the vector magnetic potential for time-varying currents. The main pur-
pose in doing so is that the result will clearly demonstrate that the quasistatic
solutions of the field equations, (3.18) and (3.19), are valid approximations
as long as the maximum physical dimensions of the problem are much less
than a wavelength (L � λ).



108 FIELDS OF TIME-VARYING CURRENTS (ACCELERATED CHARGE)

Because of Gauss’s law for the magnetic field,

∇ · B = 0 (3.23)

and the vector identity (see the Appendix) that the divergence of the curl of
any vector field is zero;

∇ · ∇ × A = 0 (3.24)

we can define the vector magnetic potential A as

B = ∇ × A (3.25)

For static current distributions, A was obtained in Chapter 2 as

A = μ

4π

∫
v

J
R

dv (3.26)

where J is the current distribution (A/m2), v is the volume enclosing that
current distribution, and R is the distance between a differential volume of
that current distribution containing J dv and the point at which we wish to
determine A.

For time-varying currents this result obviously must be modified. To
demonstrate that result, first note that substituting (3.25) into Faraday’s law
gives

∇ ×
(

E + ∂A
∂t

)
= 0

This seems to imply that the sum in parentheses is zero. But we have the
identity (see the Appendix) that

∇ × ∇φ = 0 (3.27)

for any scalar field φ. Hence, we can write, in general,

E = − ∇φ︸︷︷︸
due to

charges

− ∂A
∂t︸︷︷︸

due to
time−varying

currents

(3.28)

Hence, in general, the electric field is the result of two “sources”: the charges
in the system and the time-varying currents in the system. For dc, this reduces
to E = −∇φ and φ is said to be the potential function that is more commonly
known as “voltage.”

With these results we can now derive the result for the vector magnetic
potential for time-varying currents. Proceeding in a fashion similar to that
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of Section 2.5 of for static fields, we substitute B = μ H and D = ε E into
Ampère’s law to yield

∇ × B = μ J + με
∂E
∂t

Substituting the relation for B in terms of A given in (3.25) yields

∇ × ∇ × A = μ J + με
∂E
∂t

(3.29)

Substituting the relation for E given in (3.28) gives

∇ × ∇ × A = μ J + με

(
−∇

(
∂φ

∂t

)
− ∂2A

∂2t

)
(3.30)

But we have the vector identity [3,6]

∇ × ∇ × A = ∇ (∇ · A) − ∇2A (3.31)

Substituting (3.31) into (3.30) and collecting terms gives

∇2A − με
∂2A
∂2t

= −μ J + ∇
(

∇ · A + με
∂φ

∂t

)
(3.32)

Again, the complete definition of a vector quantity requires that we define
both the curl and the divergence of it. We defined the curl of A in (3.25). We
are free to define the divergence of A. From (3.32) a convenient way to define
the divergence of A is so that the term in (3.32) in parentheses is rendered
zero:

∇ · A = −με
∂φ

∂t
(3.33)

This is commonly referred to as the Lorentz choice of gauge. Note that for
static currents, this reduces to ∇ · A = 0, which was chosen in Chapter 2 for
static (dc) currents. Hence the equation for the vector magnetic potential for
time-varying currents becomes

∇2A − με
∂2A
∂2t

= −μ J (3.34)

It can be shown [3,6] that the solution to (3.34) is

A = μ

4π

∫
v

J
(
t − R

v

)
R

dv (3.35a)

where v is a velocity of propagation:

v = 1√
με

(3.35b)
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and again, J is the current distribution, v is the volume enclosing that current
distribution, and R is the distance between a differential volume of that current
distribution containing J dv and the point at which we wish to determine A.
This shows that the vector magnetic potential at a point that is a distance R
away from a current element J dv has a time delay of effect of R/v. This is
refered to as retardation and is characteristic of all time-varying fields. If we
write this result for fields and currents that are varying sinusoidally with time,
the result in (3.35a) becomes the phasor vector magnetic potential Â [3]:

Â = μ

4π

∫
v

Ĵ e−jβR

R
dv (3.36a)

in terms of the phasor current density Ĵ where the phase constant β is again

β = ω

v

= 2π

λ
(3.36b)

and the wavelength is again

λ = v

f

= 1√
με f

(3.36c)

Again, the phase shift term e−jβR in the frequency domain amounts to a time
delay in the time domain. We can expand the exponential term in (3.36a) as

e−jβR = 1 − jβR + β2R2

2
+ · · · (3.37a)

It is this result that shows why quasistatic results can be used to approximate
time-varying fields. Substituting (3.36b) for β gives

e−jβR = 1 − j2π
R

λ
+ (2π)2

2

(
R

λ

)2

+ · · · (3.37b)

Hence, the retardation term depends on powers of R/λ, which gives the physi-
cal distance to the field point in terms of its electrical distance in wavelengths.
For electrically small dimensions of the problem, R � λ, the exponential
term approximates to unity, e−jβR ∼= 1, and the vector magnetic potential for
time-varying currents in (3.36a) reduces to the static field result for A that
was used in Chapter 2 and is given in (2.52). Also observe that in Chapter 2
we chose the Coulomb gauge to define the divergence of A for static fields:
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∇ · A = 0. The more general Lorentz gauge for time-varying field problems
in (3.33) reduces to the Coulomb gauge for static problems.

In the case of sinusoidal variation of the fields, the phasor form of Faraday’s
law and Ampère’s law are obtained by replacing all time derivatives with jω

and become [3–6]

∇ × Ê = −jωB̂ (3.38a)

∇ × B̂ = μ Ĵ + jωμεÊ (3.38b)

and we have substituted B̂ = μĤ and D̂ = ε Ê into Ampère’s law in (3.38b).
Once the phasor vector magnetic potential Â is obtained from (3.36a), the
phasor magnetic field is determined from

B̂ = ∇ × Â (3.39a)

The phasor electric field is determined from Ampère’s law in (3.38b) in the
region outside the current distribution where Ĵ = 0 as

Ê = 1

jωμε
∇ × B̂

= 1

jωμε
∇ × ∇×Â (3.39b)

and the solution for all the fields is determined in terms of the vector magnetic
potential Â. Using the equation for the phasor vector magnetic potential in
(3.36a) and (3.37b) shows that for electrically small structures, the quasistatic
fields obtained from (3.39) provide reasonable approximations.

3.6 CONSERVATION OF ENERGY AND POYNTING’S
THEOREM

In this section we discuss the dissipation and storage of energy in the electro-
magnetic field. The product of the units of E and H is V/m × A/m = W/m2,
representing a power density in the combined field. Hence, it is natural to
define the power density vector as

S = E × H W/m2 (3.40)

This is referred to as the Poynting vector after the English physicist John
H. Poynting. The net outflow of power from a point is represented by the
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divergence of S. Using a vector identity [3] of ∇ · (E×H) = H · (∇×E) −
E · (∇×H) and substituting Faraday’s and Ampère’s laws gives

∇ · S = H ·
(

−∂ B
∂ t

)
− E ·

(
J + ∂ D

∂ t

)

= −E · J − E · ∂ D
∂ t

− H · ∂ B
∂ t

(3.41)

Integrating this result throughout a volume v and using the divergence theorem
(see the Appendix) gives

−
∮

s

S·ds︸ ︷︷ ︸
power

entering
surface s

=
∫

v
(E · J) dv︸ ︷︷ ︸

power
dissipated

in volume v

+
∫

v

(
E · ∂ D

∂ t

)
dv︸ ︷︷ ︸

rate of change
of stored

energy in the
electric field

+
∫

v

(
H · ∂ B

∂ t

)
dv︸ ︷︷ ︸

rate of change
of stored

energy in the
magnetic field

(3.42)

where the closed surface s encloses the volume v. This indicates the expected
energy balance since the left side, which represents the total power entering
the closed surface s, equals the sum of three terms. The first term represents
the ohmic power dissipation throughout the volume v, while the second and
third terms represent the time rate of change of the energy stored in the electric
and magnetic fields, respectively, in the volume v. The right-hand side can be
rewritten, assuming that the medium is linear, homogeneous, and isotropic
using the basic relations J = σ E, B = μH, and D = εE, as

−
∮

s

S · ds︸ ︷︷ ︸
power

entering
surface s

=
∫

v

(
σ |E|2

)
dv︸ ︷︷ ︸

power
dissipated

in volume v

+ 1

2

d

dt

∫
v

(
ε |E|2

)
dv︸ ︷︷ ︸

rate of change
of stored

energy in the
electric field

+ 1

2

d

dt

∫
v

(
μ |H |2

)
dv︸ ︷︷ ︸

rate of change
of stored

energy in the
magnetic field

=
∫

v
(E · J) dv + 1

2

d

dt

∫
v

(D · E) dv + 1

2

d

dt

∫
v

(B · H) dv (3.43)

We used the 1
2 factor and moved the time partial derivatives outside the last

two volume integrals since

E · ∂ D
∂ t

= ε E · ∂ E
∂ t

= ε
1

2

∂

∂ t
|E|2
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= ε
1

2

∂

∂ t
(E · E)

= 1

2

∂

∂ t
(D · E)

H · ∂ B
∂ t

= μ H · ∂ H
∂ t

= μ
1

2

∂

∂ t
|H|2

= μ
1

2

∂

∂ t
(H · H)

= 1

2

∂

∂ t
(B · H)

because we can write for any vector field F, using the chain rule,

F · ∂F
∂ t

= Fx

∂Fx

∂ t
+ Fy

∂Fy

∂t
+ Fz

∂Fz

∂t

= 1

2

∂F 2
x

∂t
+ 1

2

∂F 2
y

∂t
+ 1

2

∂F 2
z

∂t

= 1

2

∂ |F|2
∂t

= 1

2

∂ (F · F)

∂t

The result in (3.43) suggests that for linear, homogeneous, and isotropic media,
the energy stored in the electric and magnetic fields inside the volume is

WE = 1
2

∫
v

(D · E) dv J (3.44a)

and

WM = 1
2

∫
v

(B · H) dv J (3.44b)

respectively.

3.7 INDUCTANCE OF A CONDUCTING LOOP

In the remaining chapters we discuss the computation of the inductance of a
closed loop that is constructed of a conductor such as a wire or a land on a
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printed circuit board. This final section will serve as a preliminary to those
discussions.

Faraday’s fundamental law of induction indicates that an electromotive
force is induced in the perimeter of any closed loop through the enclosed
surface of which a time-varying magnetic field passes. We have represented
that emf in Fig. 3.2 as a lumped voltage source placed at an indeterminate
position in the loop:

V = dψ

dt
(3.45)

This voltage source represents the time rate of change of the total magnetic
flux penetrating that loop:

ψ =
∫

s

B · ds (3.46)

We can also write the flux through the loop in an equivalent form in terms of
the line integral of the vector magnetic potential A around the loop using the
identity B = ∇×A. Hence, the magnetic flux through the loop can be written
as a line integral of A around that loop as

ψ =
∫

s

B · ds

=
∫

s

(∇ × A) · ds

=
∮

c

A · dl (3.47)

where we have used Stokes’s theorem (see the Appendix) to convert a sur-
face integral over the open surface s enclosed by the conducting loop into
a line integral around the contour c enclosing the surface. Hence, Faraday’s
fundamental law of induction can be written in two alternative forms as

∮
c E · dl = − d

dt

∫
s

B · ds

= − d

dt

∮
c

A · dl
(3.48)



INDUCTANCE OF A CONDUCTING LOOP 115

V

B

surface s

contour c

a

b

A

∫

∫

=

=
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ψ

FIGURE 3.10. Conducting loop with a small gap.

Consider a conducting loop composed of a perfect conductor that has a
very small gap cut in it, as shown in Fig. 3.10. Along the conductor of the
loop E = 0, so that Faraday’s law gives

∮
c

E · dl =
∫

gap
Egap · dl +

∫
conductor

Econductor︸ ︷︷ ︸
0

· dl

= − d

dt

∫
s

B · dl

= − d

dt

∮
c

A · dl (3.49)

But the electric field along the perfect conductor is zero, giving

∫
gap

Egap · dl = − d

dt

∫
s

B · ds

= − d

dt

∮
c

A · dl (3.50)
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Moving the minus sign to the left-hand side gives

V = −
∫

gap
Egap · dl

= dψ

dt

= d

dt

∫
s

B · ds

= d

dt

∮
c

A · dl (3.51)

Hence, a voltage that is related to the time rate of change of the magnetic
flux appears at the terminals of the open-circuited loop. Essentially, the time-
changing magnetic flux through the loop induces an electric field in the con-
ductor that forces the charges (electrons) in the conductor to move to the
terminals of the gap, thereby creating another electric field due to this electric
field across the gap induced by the charge that is accumulated at the terminals.
The sum of this induced electric field caused by the charges at the gap and
the original electric field combine to give a net electric field that is zero on the
surface of the conductor, therby satisfying the boundary conditions that the
tangential electric field on the surface of a perfect conductor must equal zero.



4
THE CONCEPT OF “LOOP”
INDUCTANCE

In this chapter we examine the calculation of the “loop” inductance of various
configurations of closed current loops.

4.1 SELF INDUCTANCE OF A CURRENT LOOP
FROM FARADAY’S LAW OF INDUCTION

Faraday’s law of induction, discussed in Chapter 3, is fundamental to the
notion of inductance. For example, consider the circular loop of conducting
wire shown in Fig. 4.1. Suppose that we cut a small gap in the loop and inject a
current I into that gap so that the current flows around the loop in the counter-
clockwise direction as shown in Fig. 4.1. This current will, by the right-hand
rule, produce a magnetic flux density B threading the surface s that the current
surrounds. We have shown this surface as being flat to simplify the discussion,
although any surface shape will give the same result as long as it is surrounded
by the loop. For a current directed in the counterclockwise direction around
the loop, the magnetic field is directed upward through the surface surrounded
by the loop. The total magnetic flux penetrating the loop is obtained as

ψ =
∫

s

B · ds (4.1)

Inductance: Loop and Partial, By Clayton R. Paul
Copyright © 2010 John Wiley & Sons, Inc.
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FIGURE 4.1. Loop inductance by Faraday’s law.

where s is the surface the current loop surrounds. If the current and asso-
ciated magnetic field varies with time, Faraday’s law of induction essen-
tially provides that the time rate of change of the magnetic flux through the
loop will essentially induce an electromotive force (emf) around the loop
contour:

emf =
∮

c

E · dl = −dψ

dt
(4.2)

where c is the contour of the loop that surrounds the surface s. If the dimensions
of the loop are electrically small, we may represent this emf as a lumped
voltage source whose value is the time rate of change of the magnetic flux
through the loop:

V = dψ

dt
(4.3)

and place it anywhere in the loop perimeter as shown in Fig. 4.1. The exact
location of the voltage source in the loop perimeter cannot be determined
uniquely, nor does it need to be.
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It is important to determine correctly the polarity of the induced voltage
source. The minus sign in Faraday’s law in (4.2) is referred to as Lenz’s
law. The induced voltage source should induce a current, I induced, leaving
its positive terminal such that this induced current will produce an induced
magnetic field, Binduced, through the loop surface that tends to oppose the rate
of change of the original magnetic field, B, produced by the original current
I. Hence, the voltage source is inserted with the polarity shown in Fig. 4.1.

The inductance of the current loop is defined fundamentally, as the ratio of
the magnetic flux threading the loop and the current producing it:

L = ψ

I
(4.4a)

or

ψ = LI (4.4b)

If the surrounding medium is linear, homogeneous, and isotropic, the total
magnetic flux threading the loop is directly proportional to the current I that
produced it, and hence the inductance of the loop is only a function of the loop
shape and its dimensions as well as the material properties of the surrounding
medium. Hence, the induced voltage source is

V = dψ

dt

= L
dI

dt
(4.5)

Figure 4.1 shows that we can replace this induced source with the usual in-
ductor symbol, and the voltage induced across this inductance is given by
(4.5). This voltage appears across the terminals of the loop like a Thèvenin
open-circuit voltage. If the contour of the loop (represented here as a wire) has
resistance, that is represented as well by the usual resistor symbol inserted in
series with the loop, thereby giving an additional voltage drop of IR around
the loop.

The process of calculating the inductance of a loop is referred to as the
method of flux linkages, since we compute the flux that “links” the current. It
is a four-step process:

1. Inject a current I around the closed loop.

2. Determine the magnetic flux density B over the surface of the enclosed
loop by the methods of Chapter 2.

3. Compute the total magnetic flux threading the loop according to (4.1).

4. Divide that flux by the current I according to (4.4a).
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FIGURE 4.2. Mutual inductance between two loops.

The inductance so obtained is referred to as the self inductance of the loop.
The mutual inductance between two loops, one of which carries a current I1,
is defined with reference to Fig. 4.2 as

M12 = ψ2

I1
(4.6)

where ψ2 is the flux penetrating the surface of the second loop, s2, that is
caused by the current of the first loop:

ψ2 =
∫

s2

B12 · ds (4.7)

In Chapter 2 we found that the computation of the magnetic flux density B
could be accomplished by various methods. But they all required that we eval-
uate some rather complex integrals. To complete the process of determining
the inductance of the structure by the method of flux linkages, we will further
have to evaluate some rather complicated integrals involving those B fields
in order to determine the flux through the loop via (4.1) and (4.7) or by other
means. However, there are other methods that we will investigate to compute
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the self and mutual inductances of and between current loops that avoid the
direct calculation of B and the flux through the loop as in (4.1) or (4.7).
Nevertheless, the fundamental definition of inductance is via Faraday’s law.

4.1.1 Rectangular Loop

In this section we determine the inductance of the rectangular loop shown in
Fig. 4.3(a), whose length is l and width is w. The conductors of the loop are
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I
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y
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I

I

I

I

z

y

w2
r

l −

w2
r

l +−

B(R,Z)
R

Z

s

s

FIGURE 4.3. Rectangular loop.
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wires having radii rw. We assume that the current I is uniformly distributed
across the cross section of the wires, so that with regard to computing the
magnetic field from it, the current can be considered to be concentrated in a
filament on the axes of those wires. For isolated direct currents (dc) not in
proximity to other currents, the current is, in fact, uniformly distributed over
the wire cross section. However, for a current that is in close proximity to other
currents, the current in the wire will not be distributed uniformly over the wire
cross section. Nearby currents will cause the current to be concentrated on the
side of the wire nearest the neighboring current, a phenomenon known as the
proximity effect. Proximity effect is usually not pronounced unless the two
currents are within about four radii of each other (i.e., one wire will just fit
between the two). This is investigated in Section 4.6. High-frequency currents
will be symmetric about the wire axis but will tend to be concentrated in an
annulus at the surface of thickness that is a few skin depths. High-frequency
redistribution of the current is investigated in Section 6.5.

The loop through which we determine the magnetic flux is the area formed
by the interior edges of the wires of the loop. To determine the total flux through
that loop, we determine the flux through the loop caused by the current of each
wire separately and then add the four fluxes. The flux through the loop caused
by the left wire segment as shown in Fig. 4.3(b) can be obtained by using the
result for the B field due to a length of wire given in equation (2.15). The B
field is perpendicular to the loop surface and directed into the page according
to the right-hand rule:

B (R, Z) = μ0I

4πR

⎡
⎣ Z + l/2√

(Z + l/2)2 + R2
− Z − l/2√

(Z − l/2)2 + R2

⎤
⎦ (4.8)

Hence, the flux through the loop due to the current of the left side is

ψleft side =
∫ l/2−rw

Z=rw−l/2

∫ w−rw

R=rw

B(R, Z) dR dZ (4.9)

Then the total flux through the loop is

ψloop = 2
∫ l/2−rw

Z=rw−l/2

∫ w−rw

R=rw

B (R, Z) dR dZ

+2
∫ w/2−rw

Z=rw−w/2

∫ l−rw

R=rw

B (R, Z) dR dZ (4.10)
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The flux through the loop surface due to the left side is evaluated as follows:

ψleft side = μ0I

4π

∫ l/2−rw

Z=rw−l/2

∫ w−rw

R=rw

1

R

⎡
⎣ Z + l/2√

(Z + l/2)2 + R2

+ l/2 − Z√
(l/2 − Z)2 + R2

⎤
⎦ dR dZ

(4.11)

Using integral 221.01 from Dwight [7],∫
dx

x
√

x2 + a2
= −1

a
ln

∣∣∣∣∣a + √
x2 + a2

x

∣∣∣∣∣ (D221.01)

this becomes

ψleft side = μ0I

4π

∫ l/2−rw

Z=rw−l/2

⎡
⎣− ln

(Z + l/2) +
√

(Z + l/2)2 + R2

R

− ln
(l/2 − Z) +

√
(l/2 − Z)2 + R2

R

⎤
⎦

w−rw

R=rw

dZ

= μ0I

4π

∫ l/2−rw

Z=rw−l/2

[
− sinh−1 Z + l/2

R
− sinh−1 l/2 − Z

R

]w−rw

R=rw

dZ

(4.12)

where we have written this result in terms of the inverse hyperbolic sine:

sinh−1 x = ln
(
x +

√
x2 + 1

)
(D700.1)

Evaluating this at the limits gives

ψleft side = μ0I

4π

∫ l/2−rw

Z=rw−l/2

(
− sinh−1 Z + l/2

w − rw
− sinh−1 l/2 − Z

w − rw

+ sinh−1 Z + l/2

rw
+ sinh−1 l/2 − Z

rw

)
dZ (4.13)

To evaluate this final integral we use a change of variables,

λ = Z + l

2
dλ = dZ
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and

ζ = l

2
− Z

dζ = −dZ

giving

ψleft side = μ0I

4π

∫ l−rw

λ=rw

(
−sinh−1 λ

w − rw
+ sinh−1 λ

rw
dλ

)

+μ0I

4π

∫ l−rw

ζ=rw

(
−sinh−1 ζ

w − rw
+ sinh−1 ζ

rw

)
dζ

= 2
μ0I

4π

∫ l−rw

λ=rw

(
−sinh−1 λ

w − rw
+ sinh−1 λ

rw

)
dλ (4.14)

Evaluating this using Dwight’s integral 730 [7],∫
sinh−1 x

a
dx = x sinh−1 x

a
−

√
x2 + a2 a > 0 (D730)

gives

ψleft side = μ0I

2π

[
−λ sinh−1 λ

w − rw
+

√
λ2 + (w − rw)2

+ λsinh−1 λ

rw
−

√
λ2 + (rw)2

]l−rw

λ=rw

= μ0I

2π

⎡
⎢⎢⎢⎢⎣ − (l − rw)sinh−1 l − rw

w − rw
+

√
(l − rw)2 + (w − rw)2

+ (l − rw)sinh−1 l − rw

rw
−

√
(l − rw)2 + (rw)2

+ rw sinh−1 rw

w − rw
−

√
(rw)2 + (w − rw)2

− rw sinh−1 rw

rw︸ ︷︷ ︸
ln (1+√

2)

+
√

(rw)2 + (rw)2︸ ︷︷ ︸√
2rw

⎤
⎥⎥⎥⎥⎦ (4.15)

Then the total flux through the loop given by (4.10) is

ψloop = 2ψleft side(l, w, rw) + 2ψtop side(w, l, rw) (4.16)
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where we simply interchange l and w in (4.15) to obtain ψtop side(w, l, rw). The
inductance of the loop is

Lloop = 2
ψleft side (l, w, rw) + ψtop side (w, l, rw)

I

= μ0

π

[
− (l − rw) sinh−1 l − rw

w − rw
− (w − rw) sinh−1 w − rw

l − rw

+ (l − rw) sinh−1 l − rw

rw
+ (w − rw) sinh−1 w − rw

rw

+rw sinh−1 rw

w − rw
+ rw sinh−1 rw

l − rw

+2
√

(l − rw)2 + (w − rw)2 − 2
√

(w − rw)2 + (rw)2

−2
√

(l − rw)2 + (rw)2 − 2rw ln
(
1 + √

2
) + 2

√
2 rw

]

(4.17)

If the loop dimensions are much larger than the wire radius, l, w 	 rw, the
result in (4.17) simplifies to

Lloop
∼= μ0

π

(
−l sinh−1 l

w
− w sinh−1 w

l

+l sinh−1 l

rw
+ w sinh−1 w

rw
+ 2

√
l2 + w2 − 2w − 2l

)

= μ0

π

⎡
⎣−l ln

⎛
⎝ l

w
+

√(
l

w

)2

+ 1

⎞
⎠ − w ln

⎛
⎝w

l
+

√(
w

l

)2

+ 1

⎞
⎠

+l ln
(

2l

rw

)
+ w ln

(
2w

rw

)
+ 2

√
l2 + w2 − 2w − 2l

⎤
⎦

= μ0

π

⎡
⎣−l ln

⎛
⎝1 +

√
1 +

(
w

l

)2
⎞
⎠ − w ln

⎛
⎝1 +

√
1 +

(
l

w

)2
⎞
⎠

+l ln
2w

rw
+ w ln

2l

rw
+ 2

√
l2 + w2 − 2w − 2l

⎤
⎦ l, w 	 rw

(4.18)
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This result for the inductance of a rectangular loop in 4.17 simplifies con-
siderably if the loop is square (i.e., l = w). The loop inductance of a square
loop becomes

Lsquare loop = 2
μ0

π

[
(l − rw) sinh−1 l − rw

rw
− l ln

(
1 +

√
2
)

+ l
√

2

+rw sinh−1 rw

l − rw
− 2

√
(l − rw)2 + (rw)2

]
l = w

(4.19)

In practical situations, the wire radius is much smaller than the side length of
the loop (i.e., l 	 rw), and this simplifies to

Lsquare loop
∼= 2

μ0

π

[
l sinh−1 l

rw
− l ln

(
1 +

√
2
)

+ l
√

2 − 2l

]
∼= 2

μ0

π
l

[
ln

(
2

l

rw

)
− ln

(
1 +

√
2
)

+
√

2 − 2
]

= 2
μ0

π
l

[
ln

l

rw
− 0.774

]
l = w 	 rw

(4.20)

This tedious derivation will be obtained in a simple and straightforward
manner using the concept of partial inductance in Chapter 5.

4.1.2 Circular Loop

Next, we determine the loop inductance of a circular loop of radius a lying in
the xy plane which is composed of a wire of radius rw, as shown in Fig. 4.4.
Again we assume that the (dc) current is uniformly distributed over the cross
section of the wire so that for the purposes of computing the flux through
the loop surface, we can consider the current I to be contained in a filament
at the center of the wire. The magnetic flux density is directed solely in the
z direction over the loop, B = Bzaz, and is therefore perpendicular to the
surface s that is surrounded by the wire. Once the B field over the surface s is
computed, we next determine the total magnetic flux through the surface of
the loop with a surface integral as

ψ =
∫

s

B · ds

=
∫ a−rw

r=0

∫ 2π

φ′=0
Bz r dφ′ dr︸ ︷︷ ︸

ds
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FIGURE 4.4. Circular loop.

Note that the integral with respect to r is from r = 0 out to the inner edge of
the wires at r = a − rw as with the rectangular loop. Once this is completed,
the self inductance of the circular current loop is again determined from

L = ψ

I

In Section 2.6 three methods for determining the B = Bzaz field over the
loop surface were evaluated. First the Biot–Savart law was the simplest method
and gave the result in (2.73):

Bz (r) = 2
μ0Ia

4π

∫ π

φ=0

a − r cos φ(
a2 + r2 − 2ar cos φ

)3/2 dφ

= μ0Ia

2π

∫ π

φ=0

a − r cos φ(
a2 + r2 − 2ar cos φ

)3/2 dφ (2.73)

Next, we obtained the B field over the loop surface from the vector magnetic
potential of a current loop given in (2.59). That general result in (2.59) spe-
cialized for the problem of Fig. 4.4 for the field in the plane of the loop (z = 0)
is

Aφ = μ0Ia

2π

∫ π

φ=0

cos φ√
a2 + r2 − 2ar cos φ

dφ (4.21)
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We obtained the magnetic flux density over the loop surface contained by the
loop from B = ∇ × A = 1/r[∂

(
rAφ

)
/∂r] az using the result in (4.21). The

magnetic flux density in the plane of the loop (z = 0) is totally z directed (out
of the page within the interior of the loop and into the page outside the loop)
according to the right-hand rule and is

Bz = 1

r

∂
(
rAφ

)
∂ r

= μ0I

2π r

∫ π

φ=0

a2 cos φ (a − r cos φ)(
a2 + r2 − 2ar cos φ

)3/2 dφ (4.22)

The third method for obtaining the B field over the loop surface is to use
directly the result obtained from (2.59) by Smythe [10] and Weber [11] and
given in (2.67c). We showed in Section 2.6 that all three results give the same
value for the B field over the surface of the loop. So the choice of which result
to use is whichever one provides the simplest integral for obtaining the total
flux through the loop. It is for this reason that we choose to use the result
obtained from differentiating A and given in (4.22).

The total flux through the surface of the loop is

ψloop =
∫ 2π

φ′=0

∫ a−rw

r=0
Bz r dr dφ′

= μ0I

2π

∫ 2π

φ′=0

∫ a−rw

r=0

1

r

[ ∫ π

φ=0

a2 cos φ (a − r cos φ)(
a2 + r2 − 2ar cos φ

)3/2 dφ

]
r dr dφ′

= μ0 I

∫ π

φ=0

[ ∫ a−rw

r=0

a2 cos φ (a − r cos φ)(
a2 + r2 − 2ar cos φ

)3/2 dr

]
dφ

and we have interchanged the order of integration. The interior integral can
be evaluated using integrals 380.003 and 380.013 in Dwight [7]:∫

dx[
ax2 + bx + c

]3/2 = 4ax + 2b(
4ac − b2

) [
ax2 + bx + c

]1/2 (D380.003)

∫
x dx[

ax2 + bx + c
]3/2 = − 2bx + 4c(

4ac − b2
) [

ax2 + bx + c
]1/2 (D380.013)

to yield

ψloop = μ0Ia (a − rw)
∫ π

φ=0

cos φ√
a2 + (a − rw)2 − 2a (a − rw) cos φ

dφ

(4.23)
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This integral cannot be evaluated in closed form, but the result can be given
in terms of complete elliptic integrals of the first and second kind [7]:

K =
∫ π/2

θ=0

dθ√
1 − k2 sin2 θ

(D773.1)

and

E =
∫ π/2

θ=0

√
1 − k2 sin2 θ dθ (D774.1)

Making a change of variables in (4.23) as φ = π − 2θ, dφ = −2dθ gives
cos φ = 2 sin2 θ − 1 and

ψloop = 2μ0Ia (a − rw)
∫ π/2

θ=0

2 sin2 θ − 1

(2a − rw)
√

1 − k2 sin2 θ
dθ (4.24)

where k2 is defined here as

k2 = 4a (a − rw)

(2a − rw)2 (4.25)

This can be written in terms of the complete elliptic integrals as

ψloop = μ0I
√

a (a − rw)
[(

2

k
− k

)
K(k) − 2

k
E(k)

]
(4.26)

Hence, the loop inductance is

Lloop = ψloop

I

= μ0
√

a (a − rw)
[(

2

k
− k

)
K(k) − 2

k
E(k)

] (4.27)

This result can be simplified by assuming that the loop radius is much
larger than the wire radius, a 	 rw. For this reasonable approximation we
obtain

√
a (a − rw) ∼= a and k2 ∼= 1. From series expansions of the complete

elliptic integrals given by Dwight [7], we obtain

K(k) ∼= ln
(

8a

rw
− 4

)
a 	 rw

E(k) ∼= 1 a 	 rw
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Hence, the loop inductance of the circular loop approximates to

Lloop
∼= μ0a

(
ln

8a

rw
− 2

)
a 	 rw (4.28)

The self inductance of coils consisting of a thin wire of radius rw and the
same total length, denoted as Len, are approximately independent of their
shape. For example, the circular loop of radius a has a total circumference of
Len = 2πa and an inductance in (4.28) of

Lcircular loop = μ0 Len

2π

(
ln

4 Len

rw
− 3.145

)

whereas the square loop of equal side lengths of l has a total circumference
of Len = 4l and an inductance in (4.20) of

Lsquare loop = μ0 Len

2π

(
ln

4 Len

rw
− 3.547

)

4.1.3 Coaxial Cable

In this section we determine the inductance of a coaxial cable shown in
Fig. 4.5(a). The cable is assumed to be infinite in length (or very long com-
pared with the cable radius) in order to avoid having to deal with fringing
of the fields at the ends of a finite-length section. The magnetic flux density
for this cable was determined in Chapter 2. Consider a section of length 1 m.
Because of the infinite length and symmetry, the magnetic field between the
inner wire and the inside of the shield is circumferentially directed in the φ

direction as shown in Fig. 4.5(b) and is determined in Chapter 2 as

Bφ = μ0I

2πr
rw < r < rs (2.35a)

We determine the flux through a flat surface that extends from the outer edge
of the inner wire, r = rw, to the inner edge of the outer shield, r = rs, and is of
length along the cable of 1 m. We have shown two choices for this surface. One
(which we will choose) is perpendicular the inner wire surface, and the other
extends at an angle from the inner wire surface to the inner surface of the shield
as shown in Fig. 4.5(b). The best choice is the first surface that is perpendicular
to the inner wire surface and extends directly across perpendicular to the inner
surface of the shield. The reason that this is preferred is that the magnetic field,
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FIGURE 4.5. Coaxial cable.

Bφ, is perpendicular to that surface and hence we easily obtain the flux through
this surface as

ψ =
∫

s

B · ds

=
∫ 1m

z=0

∫ rs

r=rw

Bφ dr dz︸ ︷︷ ︸
ds
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=
∫ 1m

z=0

∫ rs

r=rw

μ0I

2 π r
dr dz︸ ︷︷ ︸

ds

= μ0I

2 π
ln

rs

rw

The per-unit-length inductance of the cable is the inductance of this section
and is denoted as l:

l = ψ

I

= μ0

2π
ln

rs

rw
H/m

(4.29)

There were two choices for the flat surface through which we were to de-
termine the flux. Figure 4.5(c) shows this situation. Consider this as a closed,
“wedge-shaped” surface. The top and bottom sides were the two choices for
surfaces. We chose the bottom surface because the magnetic flux density vec-
tor is perpendicular to that surface, thus allowing us to remove the dot product
in the flux integral and deal only with the magnitude of the field over the sur-
face. Would computing the flux through the other surface, the top surface,
have given a different answer? Certainly that computation would be more
difficult since the magnetic flux density vector would not be perpendicular
to it and the dot product could not be removed from the flux integral. Recall
Gauss’s law for the magnetic field:∮

s

B · ds = 0

In other words, the net magnetic flux leaving a closed surface s is zero for
the magnetic field. Consider the closed wedge-shaped surface in Fig. 4.5(c).
Applying Gauss’s law gives∮

s

B · ds =
∫

top
B · ds +

∫
bottom

B · ds +
∫

side
B · ds︸ ︷︷ ︸
0

+
∫

left end
B · ds︸ ︷︷ ︸

0

+
∫

right end
B · ds︸ ︷︷ ︸

0

= 0

The flux through the side of constant radius rs is zero because on that surface
Bφ is parallel to the surface. Similarly, the flux through the left and right ends
of the surface are also zero because on the surfaces Bφ is also parallel to the
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surfaces. Hence, we see that∫
top

B · ds = −
∫

bottom
B · ds

But obtaining the flux through the bottom surface is much easier than obtaining
the flux through the top surface since the magnetic field is perpendicular to
the bottom surface.

4.2 THE CONCEPT OF FLUX LINKAGES FOR MULTITURN
LOOPS

Consider a single, circular current loop carrying a current I. Denote the mag-
netic flux through the surface of the loop due to this current I as ψone loop. The
emf voltage induced in that single loop is

Vone loop = dψone loop

dt

= Lone loop
dI

dt

The magnetic flux ψone loop is said to link current I.
Now consider a multiturn loop where we add N such identical loops that

are in very close proximity (virtually on top of each other) so that all of the
magnetic flux that passes through one of the loops that is due to the current
of that loop, ψone loop, also passes through all the other loop surfaces. The
total are concentrically located and are tightly wound together such that they
resemble one loop carrying a current of NI amperes as shown in Fig. 4.6.
The total flux through each loop is therefore the sum of the fluxes from all the

I

I

N turns

IN
N Bone loop

FIGURE 4.6. A multiturn loop consisting of N loops close together and connected in series.
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other N loops or Nψone loop. Hence, we say that each loop has N flux linkages
linking its current I. The emf voltage induced in each loop is therefore

Vone loop = N
dψone loop

dt

The loops are connected in series so that each carry current I in the same
direction around the loops. Since all N loops are connected in series, the total
emf voltage at the terminals of the N loops is

Vtotal = N
(
Vone loop

)
= N2 dψone loop

dt

This is an important property of N identical loops that surround a common
core; the inductance is proportional to N2 times the inductance of one of the
loops:

LN loops ∝ N2Lone loop

4.2.1 Solenoid

For example, consider the solenoid shown in Fig. 4.7(a), consisting of N
turns of wire wound in one layer on a ferromagnetic core that has a relative
permeability of μr and a radius r. The purpose of a ferromagnetic core having
a large μr is to concentrate the flux in that core, thereby minimizing the flux
that leaks out into the air, which has μr = 1 [3]. Hence, if the turns of wire
are closely wound on the core, there will be very little leakage of the magnetic
field between the adjacent turns of wire. In fact, if the solenoid is infinite in
length, l → ∞, and the turns of wire are tightly wound, the magnetic field in
the core will be (1) in the z direction parallel to the axis of the core, (2) constant
along that axis, (3) uniformly distributed across the core cross section, and
(4) the magnetic field outside the solenoid will be zero. These properties of
an infinite-length solenoid are also approximate properties of a solenoid of
finite length on which the wires are tightly wound.

To determine the H field in the core, assume that the solenoid is infinite in
length (l → ∞). Thinking of this as an infinite number of current loops that
are infinitesimally close together shows that the H field in the core will be in
the z direction and independent of z and r. Draw a rectangular closed contour
c whose sides are parallel to the core axis and whose ends are perpendicular to
it and which encloses N turns (wires) within a length l as shown in Fig. 4.7(b).
If this rectangle were moved outside the core, it would enclose no current and
the line integral of H around it must, by Ampere’s law, be zero. But this would
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FIGURE 4.7. Solenoid.

imply that the H field along the sides would be constant. Hence, we conclude
that the H field outside the infinite-length core is zero since the magnetic field
must go to zero as r → ∞. Therefore, the magnetic field along the right-hand
part of contour c (that passes along the outside of the coil of wire) is zero.
From Ampère’s law and Fig. 4.7(b), we obtain∮

c

H · dl = Hl = NI (4.30)



136 THE CONCEPT OF “LOOP” INDUCTANCE

since the closed contour c encloses N currents. From this result for a coil of
infinte length the magnetic field intensity is H = NI/ l. For a core of finite
length, this result is approximately the same and relies on our assumption that
(1) the turns are tightly wound, (2) the relative permeability of the core is very
large, μr 	 1, and (3) the coil length, l, is long, l 	 r. Hence, the magnetic
flux density in the core and parallel to the core axis is

B = μrμ0H = μrμ0 NI

l
(4.31)

This result can be derived in a different fashion by using the result for the
magnetic field on the axis of a single current loop derived in Chapter 2 and
given in (2.24). Since we assume that the coil of wires is tightly wound, think
of the coil of wires as being a cylindrical sheet of current with a surface current
distribution of K = NI/ l A/m uniformly distributed along the core surface
and directed in the circumferential direction about the core. Hence, we may
think of a section of the coil of differential length dz as being a single turn
carrying a current of K dz = NI/ l dz amperes. Using (2.24) and summing the
fields of these turns of differential lengths dz gives the magnetic flux density
on the axis of the core and midway between the two ends of the coil of wire
at z = 0 as

B = μrμ0

2

NI

l

∫ l/2

z=−l/2

r2(
r2 + z2

)3/2 dz

= μrμ0

2

NI

l

[
z√

r2 + z2

]l/2

z=−l/2

= μrμ0

2

NI

l

⎡
⎣ l/2√

r2 + (l/2)2
+ l/2√

r2 + (l/2)2

⎤
⎦

= μrμ0 NI√
4r2 + l2

(4.32)

and we have used integral 200.03 from Dwight [7]:∫
1(

x2 + a2
)3/2 dx = x

a2
√

x2 + a2
(D200.03)

For a very long coil length with respect to the radius, l 	 r, (4.32) reduces to
(4.31) derived by the previous method using Ampère’s law.

Since the field for a very long coil, l 	 r, is (approximately) uniformly
distributed over the core cross section, which has an area of πr2, the magnetic
flux through each turn of the solenoid is

ψeach loop = μrμ0
NI

l
πr2 (4.33)
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Hence, the emf voltage induced in each loop is

Veach loop = N
μrμ0πr2

l︸ ︷︷ ︸
Leach loop

dI(t)

dt
(4.34)

If we visualize the entire coil of wire as being the N loops connected in series
as shown in Fig. 4.7(c), the emf voltage sources of each loop are connected
in series so that the voltage across the terminals of the entire coil is V =
NVeach loop. Hence, the total inductance of the solenoid is

L = N2 μrμ0π r2

l
(4.35)

4.2.2 Toroid

Next, consider the toroid shown in Fig. 4.8(a). The toroid consists of N turns of
wire wound tightly around a toroidal core of ferromagnetic material having
relative permeability of μr, an inner radius a, and an outer radius b. The
cross section of the toroid is usually rectangular with thickness t and width
w = b − a, as shown in Fig. 4.8(b). If we assume that the turns are tightly
wound on the core and μr 	 1 so that there is no significant leakage of the
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μ r
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w

FIGURE 4.8. Toroid.
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magnetic field outside the core, we may assume as an approximation that the
magnetic field is contained within the core and is in the circumferential or φ

direction. Alternatively, we can view the toroid as a finite-length solenoid that
is formed into a circle.

To determine that magnetic field, we choose a circular contour c of radius
r in the core as shown in Fig. 4.8(a) and write Ampère’s law as

∮
c

H · dl = Hφ (2πr) = NI (4.36a)

since the contour c surrounds NI currents. Hence, the magnetic field intensity
in the core is Hφ = NI/2π r, and the flux density in the core is

Bφ = μrμ0 Hφ

= N
μrμ0

2π r
I a < r < b (4.36b)

Expanding the contour to a radius r > b encloses zero net current, and hence
the H field outside the toroid is zero, as is the field for r < a. If the core cross
section is rectangular with width w and thickness t as shown in Fig. 4.8(b),
we can determine the total magnetic flux through each loop as

ψeach loop =
∫

s

B · ds

=
∫ t

z=0

∫ b

r=a

NI
μrμ0

2π r
dr dz

= NI
μrμ0

2π
t ln

b

a

(4.37)

where surface s is the rectangular flat surface of a cross section of the core.
The emf voltage induced in each turn is

Veach loop = N
μrμ0

2π
t ln

b

a︸ ︷︷ ︸
Leach loop

dI(t)

dt
(4.38)

Since the loops are connected in series, the total inductance is

L = NLeach loop

= N2 μrμ0

2π
t ln

b

a

(4.39)
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This expression can be simplified for cores of rectangular cross section
where the width, w = b − a, is much less than the inner radius, w � a, by
using the approximation of the natural logarithm:

ln
b

a
= ln

(
w

a
+ 1

)
∼= w

a
w � a (D601)

Evaluating (4.39) gives

L ∼= N2 μrμ0

2π a
tw (4.40a)

Since the cross-sectional area of the core is A = tw, we can write a general
relation for the inductance of a toroid as

L ∼= μrμ0 N2 A

2π a
(4.40b)

4.3 LOOP INDUCTANCE USING THE VECTOR MAGNETIC
POTENTIAL

The inductance of a current loop is defined fundamentally by Faraday’s law as
the ratio of the magnetic flux penetrating the open surface s that is surrounded
by the current and the current I as illustrated in Fig. 4.9:

L = ψ = ∫
s B · ds
I

(4.41)

In the previous examples we evaluated this by first computing the magnetic
flux density B and then evaluating (4.41) by computing the flux ψ through the
surface that is surrounded by the current loop. This required the evaluation of
two integrals: one to obtain B (by the Biot–Savart law or Ampère’s law) and
two [since (4.41) is a surface integral] to obtain ψ.

There is another way of obtaining this result by using the
vector magnetic potential A rather than using B. To obtain this alternative
result, recall from Chapter 2 that A is defined by

B = ∇ × A (4.42)
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B

A

I

c

s

FIGURE 4.9. Using the vector magnetic potential A to obtain the magnetic flux through an
open surface s.

Hence, the magnetic flux through surface s can alternatively be obtained in
terms of A as

ψ =
∫

s

B · ds

=
∫

s

(∇ × A) · ds

=
∮

c

A · dl (4.43)

where we have used Stokes’s theorem (see the Appendix) and c is the
closed contour that surrounds the open surface s. Hence, to obtain the to-
tal magnetic flux penetrating the open surface s we only need to obtain A
(which is usually easier to obtain than B) and then integrate with only one
integral, a line integral, the component of A that is tangent to the contour
c around the perimeter of that open surface, as illustrated in Fig. 4.9. The
inductance calculation becomes

L =
ψ =

∫
s

B · ds

I

=

∮
c

A · dl

I (4.44)
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FIGURE 4.10. Determining the inductance of a rectangular loop by using the vector magnetic
potential A.

4.3.1 Rectangular Loop

We now apply this to the calculation of the self inductance of a rectangular loop
composed of four wires of radii rw having lengths w and l as shown in Fig. 4.3.
The basic idea is to integrate the line integral of A along the interior edge of
the wire of one side as illustrated in Fig. 4.10 and then repeat this for the other
three sides. The total magnetic flux threading the loop, according to (4.43), is

ψloop = 2
∫

left side
A · dl + 2

∫
top side

A · dl (4.45)

It is very important to realize that the total vector magnetic potential tangent
to each side has contributions from the current of that side and the currents
of the other three sides. This is illustrated for the left side in Fig. 4.10. Again
we assume that the currents are dc and are uniformly distributed over the wire
cross sections so that they can be represented by filaments on the axes of the
wires. Two of these contributions, Aleft (that is due to the current in the left
side) and Aright (that is due to the current in the right side), are parallel to the
left side and are oppositely directed. Aleft is larger in magnitude than Aright

since the current of the right side is further away. The other contributions
along the left side, Atop and Abottom, are due to the currents in the top and
bottom sides and are perpendicular to the left side since the vector magnetic
potential is in the direction of the current producing it. Hence, the line integral
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of the total vector magnetic field along the left side is

ψleft side =
∫

left side
A · dl

=
∫ l/2−rw

z=rw−l/2
Aleft · dl +

∫ l/2−rw

z=rw−l/2
Aright · dl

+
∫ l/2−rw

z=rw−l/2
Atop · dl︸ ︷︷ ︸

0

+
∫ l/2−rw

z=rw−l/2
Abottom · dl︸ ︷︷ ︸
0

(4.46)

The contributions to Aleft and Aright are derived in Chapter 2 and given in
(2.57) with respect to Fig. 2.24:

Az = μ0I

4π

(
sinh−1 Z + L/2

r
+ sinh−1 L/2 − Z

r

)
(2.57)

Hence, the contribution to the magnetic flux through the loop surface inte-
grated along the left side is the same as obtained in Section 4.1.1 and given
in (4.13):

ψleft side = μ0I

4π

∫ l/2−rw

Z=rw−l/2

(
sinh−1 Z + l/2

rw
+ sinh−1 l/2 − Z

rw

− sinh−1 Z + l/2

w − rw
− sinh−1 l/2 − Z

w − rw

)
dZ

(4.13)

Notice that the vector magnetic potential in (2.57) is evaluated over the left
wire surface, giving

Aleft = Az|r=rw
(4.47a)

and

Aright = − Az|r=w−rw
(4.47b)

since Aleft along the left side is at a distance r = rw from the current of that
side, and Aright along the left side is at a distance r = w − rw from the current
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of the right side that produces it. The integral of (4.13) was evaluated in Section
4.1.1, giving

ψleft side = μ0I

2π

⎡
⎢⎢⎢⎢⎢⎣ − (l − rw) sinh−1 l − rw

w − rw
+

√
(l − rw)2 + (w − rw)2

+ (l − rw) sinh−1 l − rw

rw
−

√
(l − rw)2 + (rw)2

+ rw sinh−1 rw

w − rw
−

√
(rw)2 + (w − rw)2

− rw sinh−1
(

rw

rw

)
︸ ︷︷ ︸

ln
(

1+√
2
)

+
√

(rw)2 + (rw)2︸ ︷︷ ︸√
2 rw

⎤
⎥⎥⎥⎥⎥⎦ (4.15)

Similarly, we obtain the contributions to the magnetic flux through the
surface from the right side and the top and bottom sides by integrating
A along those remaining three sides of the loop (ψleft side = ψright side and
ψtop side = ψbottom side).

The total flux through the loop is

ψloop = 2ψleft side (l, w, rw) + 2ψtop side (w, l, rw) (4.48)

where we simply interchange l and w in ψleft side (l, w, rw) to obtain
ψtop side (w, l, rw). Since the result is identical to that obtained in Section 4.1.1
using B, the inductance of the loop is identical to that obtained in Section
4.1.1:

Lloop = 2
ψleft side (l, w, rw) + ψtop side (w, l, rw)

I

= μ0

π

[
− (l − rw) sinh−1 l − rw

w − rw
− (w − rw) sinh−1 w − rw

l − rw

+ (l − rw) sinh−1 l − rw

rw
+ (w − rw) sinh−1 w − rw

rw

+ rw sinh−1 rw

w − rw
+ rw sinh−1 rw

l − rw
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+ 2
√

(l − rw)2 + (w − rw)2 − 2
√

(w − rw)2 + (rw)2

− 2
√

(l − rw)2 + (rw)2 − 2rw ln
(

1 +
√

2
)

+ 2
√

2 rw

]
(4.17)

The remaining results in (4.18), (4.19), and (4.20) for a square loop and for
loop side lengths greater than the wire radius are obtained from (4.17) and are
identical to those obtained with this method. But the method of this section
is much simpler since it avoids having to integrate B over the surface of the
loop, thereby eliminating one integration.

4.3.2 Circular Loop

The circular loop of radius a is composed of a wire having radius rw and
shown in Fig. 4.4 and is illustrated for this problem in Fig. 4.11. Again we
assume that the current is dc and is uniformly distributed over the wire cross
section so that it can be represented by a filament on the axis of the wire. To
obtain the magnetic flux through the loop enclosed by the wire surface using

I

y

x

a

2rw

(a-rw)

),( φφ wra −A

φ ′

FIGURE 4.11. Determining the inductance of a circular loop by using the vector magnetic
potential A.
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the vector magnetic potential method in (4.44), we first obtain the vector
magnetic potential along the inner surface of the wire at r = a − rw. The
vector magnetic potential for a circular current loop was obtained in Chapter 2
and given in (2.59) with reference to Fig. 2.25. That result is used to give the
magnetic vector potential over the loop surface given in (4.21):

Aφ = μ0Ia

2π

∫ π

φ=0

cos φ√
a2 + r2 − 2ar cos φ

dφ (4.21)

Evaluating (4.21) at r = a − rw gives the vector magnetic potential along
the inner wire surface as

Aφ (a − rw, φ) = μ0Ia

2π

∫ π

φ=0

cos φ√
a2 + (a − rw)2 − 2a (a − rw) cos φ

dφ

(4.49)

Then we obtain the result for the total flux through the loop as

ψloop =
∮

c

A · dl

=
∫ 2π

φ′=0
Aφ

∣∣
r=a−rw

(a − rw) dφ′︸ ︷︷ ︸
r dφ′

= μ0 I a

2π

∫ 2π

φ′=0

∫ π

φ=0

(a − rw) cos φ√
a2 + (a − rw)2 − 2a (a − rw) cos φ

dφ dφ′

= μ0Ia (a − rw)
∫ π

φ=0

cos φ√
a2 + (a − rw)2 − 2a (a − rw) cos φ

dφ

(4.50)

But this is identical to the result obtained by integrating B in Section 4.1.2
and given in (4.23). Hence, the remaining results in Section 4.1.2 and the
inductance of the loop obtained in (4.27) and (4.28) are identical to those
obtained by this method. But the method of this section is much simpler since
it avoids having to integrate B over the surface of the loop, thereby eliminating
one (difficult) integration.

4.4 NEUMANN INTEGRAL FOR SELF AND MUTUAL
INDUCTANCES BETWEEN CURRENT LOOPS

Mutual inductance between two current loops was discussed at the beginning
of this chapter with reference to Fig. 4.2. With the first loop carrying a current
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I1, the mutual inductance between the two loops is

M12 = ψ2

I1
(4.6)

where ψ2 is the flux penetrating the surface of the second loop, s2, that is
caused by the current of the first loop:

ψ2 =
∫

s2

B12 · ds (4.7)

and B12 is the magnetic flux density through loop 2 that is due to the current
I1 of loop 1. This result can be put into a more compact form by recalling
that the magnetic flux through the second loop can be written in terms of the
vector magnetic potential around the perimeter of that loop (the interior edge
of the wire), A12, as

ψ2 =
∮

c2

A12 · dl2 (4.51)

and c2 is the contour surrounding the surface of the second loop, s2. But A12

is the magnetic vector potential around contour c2 of loop 2 that is due to the
current of loop 1 as

A12 = μ0

4π

∮
c1

I1

R12
dl1 (4.52)

and c1 is the contour of the current of loop 1. The distance R12 is the distance
from a “chunk” of current I1dl1 of loop 1 to the point on the contour of loop
2, c2, where we are evaluating the integral in (4.51). Substituting (4.52) into
(4.51) yields

ψ2 = μ0 I1

4π

∮
c1

∮
c2

dl1 · dl2
R12

(4.53)

Hence, the mutual inductance between the two loops is

M12 = ψ2

I1

= μ0

4π

∮
c1

∮
c2

dl1 · dl2
R12 (4.54)

This result is called the Neumann integral. It shows that the mutual inductance
between two loops is only a function of the shapes of the two loops and their
orientation with respect to each other. It is also important to remember that if
the currents are not filamentary but are uniformly distributed over the cross
sections of wires of radii rw1 in loop 1 and rw2 in loop 2, contour c1 is along the
filamentary current I1 but contour c2 is along the interior surface of the second
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wire, which bounds the surface s2 that is enclosed by that wire. The order of
integration is immaterial. This important result shows that M12 = M21 simply
by interchanging the roles of the two loops in (4.54).

The Neumann integral for mutual inductance between two current loops in
(4.54) can also be used to determine the self inductance of a loop by letting
the two loops be coincident:

L = ψ

I

= μ0

4π

∮
c′

∮
c

dl · dl′

R (4.55)

Contour c′ is along the filamentary current bearing current I at the center of
the wire, and contour c is along the interior edge of that wire that bounds the
surface of the loop through which we desire to compute the flux through that
loop.

4.4.1 Mutual Inductance Between Two Circular Loops

Consider two coaxial loops having N1 and N2 turns, respectively, that are
tightly wound, as shown in Fig. 4.12. The two loops are parallel, have radii a
and b, and are separated by distance d. First we fix the point on the second loop

b

φ

z

d

x

I

N1 turns

N2 turns

dl1

dl2

a

R12

FIGURE 4.12. Concentric, coaxial loops.
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and vary the angle φ of the first loop. Using the law of cosines, the distance
between the two differential arc lengths is

R12 =
√

a2 + b2 + d2 − 2ab cos φ (4.56)

First, we perform the calculation for one turn in each loop and then we mul-
tiply the result by the square of the number of turns, N2

1 and N2
2, as discussed

previously. The dot product in the Neumann integral depends on the dot prod-
uct dl1 · dl2 = cos φ dl1dl2 and dl1 = a dφ and dl2 = b dφ′. Once we integrate
with respect to φ from φ = 0 to φ = 2π, we finally integrate with respect to
the angle of loop 2: φ′ = 0 to φ′ = 2π, giving the Neumann integral as

M12 = μ0ab

4π

∫ 2π

φ′=0

∫ 2π

φ=0

cos φ√
a2 + b2 + d2 − 2ab cos φ

dφ dφ′

= μ0ab

2

∫ 2π

φ=0

cos φ√
a2 + b2 + d2 − 2ab cos φ

dφ (4.57)

Making a change of variables to φ = 2θ so that cos φ = cos 2θ = 2 cos2 θ − 1
and dφ = 2dθ gives

M12 = μ0ab

2

∫ π

θ=0

2 cos 2θ√
(a + b)2 + d2 − 4ab cos2 θ

dθ

= μ0

√
ab

2

∫ π

θ=0

k cos 2θ√
1 − k2 cos2 θ

dθ (4.58a)

where

k2 = 4ab

(a + b)2 + d2

= 4
(a/d) (b/d)

(a/d + b/d)2 + 1
(4.58b)

and the factor k depends on the ratios of the circle radii to their separation.
But the numerator of the integrand of (4.58a) can be written as

k cos 2θ = k
(

2 cos2 θ − 1
)

=
(

2

k
− k

)
− 2

k

(
1 − k2 cos2 θ

)
Note that ∫ π

θ=0

√
1 − k2 cos2 θ dθ = 2

∫ π/2

θ=0

√
1 − k2 cos2 θ dθ

= 2
∫ π/2

θ=0

√
1 − k2 sin2 θ dθ
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∫ π

θ=0

1√
1 − k2 cos θ

dθ = 2
∫ π/2

θ=0

1√
1 − k2 cos θ

dθ

= 2
∫ π/2

θ=0

1√
1 − k2 sin θ

dθ

Hence, (4.58) can be written as

M12 = μ0

√
ab

2

∫ π

θ=0

k cos 2θ√
1 − k2 cos2 θ

dθ

= μ0

√
ab

∫ π/2

θ=0

[(
2

k
− k

)
1√

1 − k2 cos2 θ
− 2

k

√
1 − k2 cos2 θ

]
dθ

= μ0

√
ab

∫ π/2

θ=0

[(
2

k
− k

)
1√

1 − k2 sin2 θ
− 2

k

√
1 − k2 sin2 θ

]
dθ

= μ0

√
ab

[(
2

k
− k

)
K(k) − 2

k
E(k)

]
(4.59)

where K(k) and E(k) are the complete elliptic integrals of the first and second
kind that are tabulated by Dwight [7]:

K(k) =
∫ π/2

θ=0

dθ√
1 − k2 sin2 θ

(D773.1)

E(k) =
∫ π/2

θ=0

√
1 − k2 sin2 θ dθ (D774.1)

This was first obtained by Maxwell [23]. (In [23] 4π denotes μ0, the units
of length taken to be 107m.) Setting d = 0 and b = a − rw gives the self
inductance of a loop of radius a composed of a wire of radius rw given in
(4.27).

If the separation between the two coils, d, is much larger than the radii (i.e.,
d 	 a, b), R12 in (4.56) approximates to

1

R12
= 1√

a2 + b2 + d2 − 2ab cos φ

=
(
a2 + b2 + d2 − 2ab cos φ

)−1/2

∼= 1

d

(
1 − 2ab cos φ

d2

)−1/2

∼= 1

d

(
1 + ab cos φ

d2

)
d 	 a, b (4.56)
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and we used the binomial theorem:

(1 − x)−1/2 ∼= 1 + 1

2
x + · · · (D1)

Using this result, the integral in (4.57) approximates to

M12 = N2
1 N2

2
μ0ab

4π

∫ 2π

φ′=0

∫ 2π

φ=0

cos φ√
a2 + b2 + d2 − 2ab cos φ

dφ dφ′

= N2
1 N2

2
μ0ab

2

∫ 2π

φ=0

cos φ√
a2 + b2 + d2 − 2ab cos φ

dφ

∼= N2
1 N2

2
μ0ab

2 d

∫ 2π

φ=0

(
1 + ab cos φ

d2

)
cos φ dφ

= N2
1 N2

2
μ0π a2b2

2 d3
d 	 a, b (4.60)

and we have multiplied by the squares of the number of turns in each coil for
multiturn coils.

4.4.2 Self Inductance of the Rectangular Loop

Figure 4.13 shows a rectangular loop for computing the self inductance using
the Neumann integral in (4.55):

L = ψ

I

= μ0

4π

∮
c′

∮
c

dl · dl′

R
(4.55)

The differential element along the filament of current at the center of the wires
is denoted as dl′, and the differential element along the inside of the wire
(bounding the surface of the loop) is denoted as dl. For the left and right sides
of the loop these become dl′left = dz′ az, dlleft = dz az and dl′right = −dz′ az,
dlright = −dz az. For the top and bottom sides of the loop these become dl′top =
dy′ ay, dltop = dy ay and dl′bottom = −dy′ ay, dlbottom = −dy ay.

We first compute the integral along the inside surface of the left wire (at y =
rw), dlleft, which is due to the currents of each of the four sides, dl′, according
to (4.55) to give the contribution of that side to the total loop inductance of
the loop, Lleft. Then repeat this for the contributions to the inductance of the
loop for each of the other three sides that are due to the currents of each of the
four sides according to (4.55): Ltop, Lright, and Lbottom. The dot product dl′ · dl
equals dz′dz along the left side and −dz′dz along the right side but is zero
along the top and bottom sides since dl′ and dl are orthogonal to each other
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FIGURE 4.13. Neumann integral and the rectangular loop.

along those sides. So the contributions along the left side due to the currents
of each of the other four sides is

Lleft = μ0

4π

∫ l/2−rw

z=rw−l/2

⎡
⎢⎢⎢⎢⎢⎣
∫ l/2

z′=−l/2

1√
(z′ − z)2 + r2

w

dz′

︸ ︷︷ ︸
left

−
∫ l/2

z′=−l/2

1√
(z′ − z)2 + (w − rw)2

dz′

︸ ︷︷ ︸
right

⎤
⎥⎥⎥⎥⎥⎥⎦ dz

= μ0

4π

∫ l/2−rw

z=rw−l/2

⎡
⎣∫ l/2−z

λ=−l/2−z

1√
λ2 + r2

w

dλ

−
∫ l/2−z

λ=−l/2−z

1√
λ2 + (w − rw)2

dλ

⎤
⎦ dz
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= μ0

4π

∫ l/2−rw

z=rw−l/2

{[
ln

(
λ +

√
λ2 + r2

w

)]l/2−z

λ=−l/2−z

−
[
ln

(
λ +

√
λ2 + (w − rw)2

)]l/2−z

λ=−l/2−z

}
dz

= μ0

4π

∫ l/2−rw

z=rw−l/2

⎡
⎣ln

(l/2 − z) +
√

(l/2 − z)2 + r2
w

(−l/2 − z) +
√

(−l/2 − z)2 + r2
w

− ln
(l/2 − z) +

√
(l/2 − z)2 + (w − rw)2

(−l/2 − z) +
√

(−l/2 − z)2 + (w − rw)2

⎤
⎦ dz (4.61)

where we used a change of variables λ = z′ − z and integral 200.01. Using

sinh−1 x = ln
(
x +

√
x2 + 1

)
= − sinh−1 (−x)

= − ln
(
−x +

√
x2 + 1

)
(D700.1)

(4.61) reduces to

Lleft = μ0

4π

∫ l/2−rw

z=rw−l/2

(
sinh−1 z + l/2

rw
+ sinh−1 l/2 − z

rw

− sinh−1 z + l/2

w − rw
− sinh−1 l/2 − z

w − rw

)
dz (4.62)

Essentially, we have rederived the equation for Az in (2.57) and then repeated
the derivation using Az in Section 4.3.1. The integral of (4.62) was evaluated
in (4.13)–(4.15), giving

Lleft = μ0

2π

⎡
⎢⎢⎢⎢⎢⎣ − (l − rw) sinh−1 l − rw

w − rw
+

√
(l − rw)2 + (w − rw)2

+ (l − rw) sinh−1 l − rw

rw
−

√
(l − rw)2 + (rw)2
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+ rw sinh−1 rw

w − rw
−

√
(rw)2 + (w − rw)2

− rw sinh−1 rw

rw︸ ︷︷ ︸
ln
(

1+√
2
)

+
√

(rw)2 + (rw)2︸ ︷︷ ︸√
2rw

⎤
⎥⎥⎥⎥⎥⎦ (4.63)

Repeating this for the top, right, and left sides gives

Lloop = 2Lleft (l, w, rw) + 2Ltop (w, l, rw) (4.64)

where we simply interchange l and w in Lleft(l, w, rw) to obtain Ltop(w, l, rw).
Since the result is identical to that obtained in Section 4.1.1 using B, the
inductance of the loop is identical to that obtained in Section 4.1.1:

Lloop = 2 Lleft side (l, w, rw) + 2 Ltop side (w, l, rw)

= μ0

π

[
− (l − rw) sinh−1 l − rw

w − rw
− (w − rw) sinh−1 w − rw

l − rw

+ (l − rw) sinh−1 l − rw

rw
+ (w − rw) sinh−1 w − rw

rw

+rw sinh−1 rw

w − rw
+ rw sinh−1 rw

l − rw

+2
√

(l − rw)2 + (w − rw)2 − 2
√

(w − rw)2 + (rw)2

−2
√

(l − rw)2 + (rw)2 − 2rw ln
(

1 +
√

2
)

+ 2
√

2 rw

]
(4.65)

The remaining results in (4.18), (4.19), and (4.20) for a square loop and for
loop side lengths greater than the wire radius are obtained from (4.65) and are
identical to those obtained with this method.

4.4.3 Self Inductance of the Circular Loop

Applying the Neumann integral in (4.55) to the circular loop in Fig. 4.14
yields

Lloop = μ0

4π

∫ 2π

φ′=0

[∫ 2π

φ=0

cos φ

R12
(a − rw) dφ

]
a dφ′ (4.66a)
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where

R12 =
√

a2 + (a − rw)2 − 2a (a − rw) cos φ (4.66b)

and the dot product in (4.55) is

dl · dl′ = (a − rw) dφ a dφ′ cos φ (4.66c)

Substituting gives

Lloop = μ0a (a − rw)

4π

∫ 2π

φ′=0

∫ 2π

φ=0

cos φ√
a2 + (a − rw)2 − 2a (a − rw) cos φ

dφ dφ′

= μ0a (a − rw)

2

∫ 2π

φ=0

cos φ√
a2 + (a − rw)2 − 2a (a − rw) cos φ

dφ (4.67)

But this is identical to the result in (4.57) for the mutual inductance between
two coaxial loops obtained in Section 4.4.1 if we let the two loops in Fig.
4.12 be coincident, d = 0, and the radius of the second loop be b = a − rw.
Hence, the results for that case given in (4.59) yields the self inductance of
the loop in Fig. 4.14 and substitute d = 0 and b = a − rw in that result. But
that is identical to (4.27), which, for thin wires, rw � a, reduces to (4.28).

I

y

x

rw

φ

2

φ′

a

12R

wra −
φφ ′′=′ al dad

( ) φφ al drad w−=

FIGURE 4.14. Neumann integral and the circular loop.
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4.5 INTERNAL INDUCTANCE VS. EXTERNAL INDUCTANCE

Thus far, we have determined the external inductance of a current loop: that is,
the inductance due to the magnetic flux that is external to the wires. In Section
2.4 we determined the magnetic flux density both external and internal to a
wire of radius rw that carries a dc current I that is uniformly distributed over
the wire cross section. Those results are given in (2.33a) for r > rw and in
(2.33b) for r < rw. The magnetic flux internal to the wire also links a portion
of the current and gives rise to an internal inductance. Hence, the internal
inductance of the wire should be added to the external self-inductances of the
current loops that were determined in the previous examples of this chapter as

Lloop = Lexternal + Linternal (4.68)

We next show that the internal inductance of a wire carrying a dc current I
that is uniformly distributed over the wire cross section is

Linternal = μ0

8π
× wire length (4.69)

Hence the per-unit-length internal inductance is μ0/8π = 0.5 × 10−7 H/m =
50 nH/m = 1.27 nH/in. Usually, this is inconsequential compared to the
external inductance. For a wire formed into a circular loop of radius r = a

such as those shown in Figs. 4.4, 4.11, and 4.14, the total internal inductance
is (approximately) (μ0/8π)2πa. For currents whose frequency is not zero
(dc), the current tends to be concentrated increasingly in an annulus of a skin
depth, δ, at the surface, where the skin depth is

δ = 1√
πfμ0σ

where σ is the conductivity of the wire material. As f → ∞, the current
tends to reside on the surface of the wire and Linternal → 0 since no internal
current is linked by the field.

To determine the internal inductance of a wire, consider the cross sec-
tion shown in Fig. 4.15. The magnetic flux density internal to the wire was
determined in Chapter 2, using Ampère’s law, to be

Bφ = μ0

2πr
I

(
πr2

π r2
w

)

= μ0Ir

2πr2
w

r < rw (2.33b)
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r
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φB

FIGURE 4.15. Determining the internal inductance of a wire.

An annulus of radius r and thickness dr has a total flux through it, for a unit
length along the wire axis, of

dψ = μ0Ir

2πr2
w

dr

But this flux links only a portion of the total wire current of

I
πr2

πr2
w

so that the flux linkages for that annulus are

dψ = μ0Ir

2π r2
w

r2

r2
w

dr

= μ0Ir
3

2πr4
w

dr

Hence, the total flux linkage per unit length of the wire is

ψ =
∫ rw

r=0

μ0Ir
3

2π r4
w

dr

= μ0 I

8π
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and the per-unit-length internal inductance of the wire is

linternal = ψ

I

= μ0

8π
H/m

(4.70)

EXAMPLE

Consider the coaxial cable shown in Fig. 4.5. The inner wire has radius rw

and an internal inductance per unit length along the cable of

linternal, wire = μ0

8π
H/m (4.71a)

as determined above. The internal inductance of the shield which is of interior
radius rs and thickness t is determined as follows. In Chapter 2 we determined
the magnetic flux density in the shield as

Bφ = μ0I

2πr

(rs + t)2 − r2

(rs + t)2 − r2
s

rs < r < rs + t (2.35c)

and the dc return current in the shield, –I, is distributed uniformly over the
cross section of the shield. Again constructing an annulus at radius r and
thickness dr within the shield, the magnetic flux through the annulus per unit
of cable length is

dψ = μ0I

2πr

(rs + t)2 − r2

(rs + t)2 − r2
s

dr rs < r < rs + t

But this links only a portion of the total cable current of

I − I
πr2 − πr2

s

π
[
(rs + t)2 − r2

s

] = I
(rs + t)2 − r2

(rs + t)2 − r2
s

A rs < r < rs + t

Hence, the total flux linkages for this annulus are

dψ = μ0I

2πr

[
(rs + t)2 − r2

(rs + t)2 − r2
s

]2

dr rs < r < rs + t
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The total per-unit-length internal inductance of the shield is therefore

linternal, shield

= ψ

I

=
∫ rs+t

r=rs

μ0

2πr

[
(rs + t)2 − r2

(rs + t)2 − r2
s

]2

dr

= μ0

2π
[
(rs + t)2 − r2

s

]2

∫ rs+t

r=rs

[
(rs + t)4 1

r
− 2r (rs + t)2 + r3

]

= μ0

2π

[
(rs+t)4 ln[(rs+t)/rs]−(rs + t)2

[
(rs + t)2 − r2

s

] + 1
4

[
(rs + t)4 − r4

s

]
[
(rs + t)2 − r2

s

] 2

]
H/m

(4.71b)

To this is added the per-unit-length external inductance determined in (4.29):

lexternal = ψ

I

= μ0I

2π
ln

rs

rw

H/m (4.29)

Hence the total per-unit-length inductance of the coaxial cable is

l = linternal, wire + lexternal + linternal, shield H/m (4.72)

4.6 USE OF FILAMENTARY CURRENTS AND CURRENT
REDISTRIBUTION DUE TO THE PROXIMITY EFFECT

Throughout this chapter and in Chapter 2 we have assumed that the (dc) current
I in a wire was uniformly distributed over the wire cross section. Hence, we
were able to represent the wire current as a filament of current on the axis of
the wire, thereby simplifying the computations.

If there are no other currents in close proximity, this will be the case.
However, if another current is within a few radii of this wire, the current
over the wire cross section will not be distributed uniformly but will tend to
be concentrated toward the side facing the other wire. This phenomenon is
called the proximity effect. If that is the case, the previous results for the B
field in Chapter 2 as well as the inductances associated with the wire (both
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external and internal inductances) in this chapter will be only approximately
correct and will become less so the closer the wires are spaced. Typically, the
proximity effect does not substantially alter the results that were obtained by
assuming that the current is uniformly distributed over the wire cross section
if the separation of the two wires is greater than approximately four wire radii,
as we will see. In other words, one wire of the same radius as the other two
could be placed exactly between the two wires.

4.6.1 Two-Wire Transmission Line

To demonstrate this dependence, consider a two-wire transmission line con-
sisting of two wires of equal radii, rw, carrying equal but oppositely directed
currents and separated by a distance (center to center) of s as illustrated in
Fig. 4.16(a). The wires are considered infinitely long (or at least very long
compared with their radii) so that we will not have to deal with fringing of
the fields at the endpoints of finite-length wires. For the widely spaced wires

wr wr

s

I–I

(a)

D

(b)

B

B

I –I

FIGURE 4.16. Proximity effect in a two-wire transmission line.



160 THE CONCEPT OF “LOOP” INDUCTANCE

shown in Fig. 4.16(a), the current is distributed uniformly over the wire cross
sections so that the current may be replaced by filaments on the wire axes.
Hence, the B fields of each wire form circles that are centered on the centers
of the respective wires. The magnetic flux density about each wire is

Bφ = μ0I

2πr

where r is measured from the center of each wire. Constructing a flat surface
between the adjacent surfaces, the total flux through the surface per unit of its
longitudinal length is

ψ = 2
∫ s−rw

rw

μ0I

2πr
dr

= μ0I

π
ln

s−rw

rw

∼= μ0I

π
ln

s

rw

We have made the approximation that s−rw
∼= s since the wires are assumed

to be widely spaced. Hence, the approximate per-unit-length inductance of
the line for widely spaced wires which assumes a uniform current distribution
over the wire cross sections is

lapproximate = μ0

π
ln

s

rw
H/m (4.73)

If the wires are closely spaced as shown in Fig. 4.16(b), the currents will
be concentrated toward the facing sides, and the result above for the per-unit-
length inductance in (4.73) is an approximation since that relied on the currents
being uniformly distributed over the wire cross sections. It can be shown (see
[3,8]) that the magnetic fields are as though the total currents are concentrated
as filaments but separated by a distance D ≤ s as shown in Fig. 4.16(b). The
exact per-unit-length inductance for this result can be shown to be [3,8]

lexact = μ0

π
ln

⎡
⎣ s

2rw
+

√(
s

2rw

)2

− 1

⎤
⎦ H/m (4.74)

Observe that (4.74) reduces to (4.73) if s 	 2rw.
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Effect of wire separation on nonuniform current distribution

R
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1
2              3             4             5              6               7              8

FIGURE 4.17. Ratio of the approximate and exact per-unit-length inductances of a two-wire
transmission line as a function of the ratio of separation to wire radius.

Figure 4.17 shows a plot of the ratio

R = lapproximate

lexact

= ln (s/rw)

ln
[
(s/2rw) +

√
(s/2rw)2 − 1

]
for ratios of wire separation to wire radius between 2.1 and 8: 2.1 < s/rw ≤ 8.
(Note: For a ratio of s/rw = 2, the two wires would be touching.) For a ratio
of s/rw = 4, the error is 5.3%.

4.6.2 One Wire Above a Ground Plane

The results for the two-wire transmission line can be extended rather easily to
cover the case of a transmission line consisting of one wire at a height h above
an infinite and perfectly conducting ground plane, as shown in Fig. 4.18(a).
The basic idea is to use the method of images discussed in Section 2.7 to
replace the ground plane with the image of the current as shown in Fig. 4.18(b).
The image of the current above the ground plane is the same but with the
current direction reversed and at a distance h below the position of the ground
plane but with the ground plane removed. All the fields above the position of
the ground plane remain the same in the image problem of Fig. 4.18(b). Note
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I
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FIGURE 4.18. Transmission line consisting of one wire above and infinite and perfectly
conducting ground plane.

that the method of images also applies to the case where the current is not
distributed uniformly over the wire cross section.

Now we have an equivalent problem of a two-wire transmission line where
the separation between the two wires is s = 2h. In the original problem of one
wire above a ground plane, the loop area for a 1-m length of the line is between
the surface of the wire and the ground plane, whereas the equivalent surface for
the image problem is between the surfaces of the wire and its image. Hence,
the per-unit-length inductance of the problem of one wire above a ground
plane is one-half the value of the per-unit-length inductance of the two-wire
but with s replaced by s = 2h. Therefore, the per-unit-length inductance of
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the transmission line consisting of one wire above a ground plane is

lapproximate = μ0

2π
ln

2h

rw
H/m (4.75)

and

lexact = μ0

2π
ln

⎡
⎣ h

rw
+

√(
h

rw

)2

− 1

⎤
⎦ H/m (4.76)

Figure 4.17, demonstrating the impact of proximity effect and current redis-
tribution, applies to this case, but the horizontal axis is h/rw, which varies
from 1 to 4.

The internal inductances of the wires can then be added to all these external
inductances to give the total per-unit-length inductances of the lines. In the
case of the two-wire line, we add linternal = 2(μ0/8π) = μ0/4π H/m, and
in the case of one wire above a ground plane we add linternal = μ0/8π H/m.

4.7 ENERGY STORAGE METHOD FOR COMPUTING LOOP
INDUCTANCE

In Section 3.6 we obtained the result that the magnetic energy stored in the
magnetic field is

WM = 1

2

∫
v

B · H dv

= μ0

2

∫
v
H2 dv

= 1

2 μ0

∫
v
B2 dv (4.77)

and v is the volume of space containing the magnetic field. From a circuit
analysis standpoint, the energy stored in an inductance is

WM = 1
2 LI2 (4.78)
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Hence, we can determine the inductance in terms of the stored magnetic field
from

L = 2 WM

I2

= μ0

I2

∫
v
H2 dv

= 1

μ0 I2

∫
v
B2 dv

(4.79)

4.7.1 Internal Inductance of a Wire

In Chapter 2 we determined the magnetic fields both inside and outside a wire
of radius rw that contained a current I that is distributed uniformly over the
wire cross section. Hence we assumed that the current is dc and there are no
other currents in close proximity to disturb this uniform distribution. Those
magnetic fields at a radius r are directed circumferentially in the φ direction
about the wire axis:

Bφ =

⎧⎪⎪⎨
⎪⎪⎩

μ0 I r

2π r2
w

0 < r < rw (2.33b)

μ0 I

2π r
rw < r (2.33a)

The per-unit-length internal inductance of the wire is obtained from (4.79)
using (2.33b) by integrating throughout a cylindrical volume of unit length
within the wire as

linternal = 1

μ0I2

∫ 1m

z=0

∫ 2π

φ=0

∫ rw

r=0

(
μ0Ir

2π r2
w

)2

r dφ dr dz︸ ︷︷ ︸
dv

= 2πμ0

4π2r4
w

∫ rw

r=0
r3 dr

= μ0

2π r4
w

[
r4

4

]r=rw

r=0

= μ0

8π
H/m (4.80)

which was obtained directly by the flux linkage method in Section 4.5.
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4.7.2 Two-Wire Transmission Line

The per-unit-length external inductance of a two-wire transmission line con-
sisting of two identical wires of radii rw with center-to-center separation s as
shown in Fig. 4.16(a) was obtained in Section 4.6.1. Again we assume that
the wire separation is sufficiently large, s 	 rw, so that the current of each
wire remains distributed uniformly (or approximately so) over the wire cross
section. We obtain the total per-unit-length inductance by integrating (4.79)
throughout a cylindrical volume of unit length using the results for the B fields
inside and outside the wires given in (2.33a) and (2.33b):

l = 2
1

μ0 I2

∫ 1m

z=0

∫ 2π

φ=0

∫ rw

r=0

(
μ0Ir

2πr2
w

)2

rdφ dr dz︸ ︷︷ ︸
dv︸ ︷︷ ︸

linternal

+ 2
1

μ0I2

∫ 1m

z=0

∫ 2π

φ=0

∫ s−rw

r=rw

(
μ0 I

2π r

)2

rdφ dr dz︸ ︷︷ ︸
dv︸ ︷︷ ︸

lexternal

= 2
2π μ0

4π2 r4
w

∫ rw

r=0
r3 dr︸ ︷︷ ︸

linternal

+ 2
2πμ0

4π2

∫ s−rw

r=rw

1

r
dr︸ ︷︷ ︸

lexternal

= 2
μ0

2π r4
w

[
r4

4

]rw

r=0︸ ︷︷ ︸
linternal

+ μ0

π
[ln r]s−rw

r=rw︸ ︷︷ ︸
lexternal

= 2
μ0

8π︸︷︷︸
linternal

+ μ0

π
ln

s − rw

rw︸ ︷︷ ︸
lexternal

H/m (4.81)

4.7.3 Coaxial Cable

Finally, we obtain the per-unit-length inductance of a coaxial cable shown in
Fig. 2.19 consisting of an inner wire of radius rw and an overall shield of inner
radius rs and thickness t. The dc current of the inner wire returns in the shield.
Observe that because of symmetry there is no proximity effect regardless of
the spacing of the conductors. The magnetic fields of the cable were derived
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in Chapter 2 and are

Bφ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0 Ir

2π r2
w

r < rw (2.35b)

μ0 I

2πr
rw < r < rs (2.35a)

μ0 I

2πr

(rs + t)2 − r2

(rs + t)2 − r2
s

rs < r < rs + t (2.35c)

Integrating (4.79) over a differential volume of unit length, dv = r dφ dr dz,
throughout the appropriate regions gives

linternal wire = μ0

8π
H/m (4.82a)

lexternal = 1

μ0 I2

∫ 1m

z=0

∫ 2π

φ=0

∫ rs

r=rw

(
μ0 I

2πr

)2

r dφ dr dz︸ ︷︷ ︸
dv

= 2πμ0

4π2

∫ rs

r=rw

1

r
dr = μ0

2π
[ln r] rs

r=rw

= μ0

2π
ln

rs

rw
H/m (4.82b)

linternal, shield = 1

μ0 I2

∫ 1m

z=0

∫ 2π

φ=0

∫ rs+t

r=rs

(
μ0I

2π r

)2
[

(rs + t)2 − r2

(rs + t)2 − r2
s

]2

r dφ dr dz︸ ︷︷ ︸
dv

= 2π μ0

4π2

∫ rs+t

r=rs

1

r

[
(rs + t)2 − r2

(rs + t)2 − r2
s

]2

dr

= μ0

2π

[
(rs + t)4 ln[(rs + t)/rs] − (rs + t)2

[
(rs + t)2 − r2

s

] + 1
4

[
(rs + t)4 − r4

s

]
[
(rs + t)2 − r2

s

] 2

]
H/m

(4.82c)

But the result in (4.82c) is the same result as obtained in (4.71b) by the method
of flux linkages.
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4.8 LOOP INDUCTANCE MATRIX FOR COUPLED
CURRENT LOOPS

Figure 4.19(a) shows n current-carrying loops which are in close proximity
such that their magnetic fields interact with each other so that the loops are
said to be coupled. This structure can be characterized by self and mutual

I1

Ii

In

s1

si

sn

(a)

I1

Ii

In

(b)

11L

iiL

nnL

iM1

nM1 inM

FIGURE 4.19. Multiloop coupled structure.



168 THE CONCEPT OF “LOOP” INDUCTANCE

inductances as shown in Fig. 4.19(b). Denote the fluxes through each loop
as ψ1, . . . , ψi, . . . , ψn. These fluxes are related to the currents of each loop,
I1, . . . , Ii, . . . , In as

ψ1 = L11I1 + · · · + M1iIi + · · · + M1nIn

...

ψn = Mn1I1 + · · · + MniIi + · · · + LnnIn

(4.83)

and Mij = Mji. The terms Lii are the self inductances of the current loops,
and the Mij are the mutual inductances between the current loops. These
individual inductances can be obtained with the methods of this chapter by
setting all but one of the currents in each equation of (4.83) to zero:

Lii = ψi

Ii

∣∣∣∣
I1=···=Ii−1=Ii+1=···=In=0

(4.84a)

Mij = ψi

Ij

∣∣∣∣∣
I1=···=Ij−1=Ij+1=···=In=0

(4.84b)

The equations in (4.83) can be placed in matrix form as

ψ = LI (4.85a)

where

ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1

...

ψi

...

ψn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.85b)

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11 · · · M1i · · · M1n

...
. . .

...
. . .

...

Mi1
... Lii

... Min

...
. . .

...
. . .

...

Mn1 · · · Mni · · · Lnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.85c)
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I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1

...

Ii

...

In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.85d)

The n × n matrix L is said to be the inductance matrix for this coupled set
of current loops. Assuming that the entire structure is electrically small at the
frequencies of the currents, the Faraday law voltages induced into each loop
(see Fig. 4.1) are obtained by differentiating (4.85) to give

V(t) = L
dI(t)

dt
(4.86a)

where the n × 1 vector of induced voltages is

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

...

Vi

...

Vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.86b)

4.8.1 Dot Convention

It is important to review the dot convention for computing the contributions to
the voltages across each inductance that are due to the mutual inductances be-
tween that loop and the other loops [1,2]. Figure 4.20 illustrates this. The dots
are placed on the individual inductors in order to give the relative orientations
of the loops with respect to each other. For example, consider the two coupled
current-carrying loops (shown for simplicity as being rectangular) shown in
Fig. 4.20. The currents around each loop, I1 and I2, are arbitrarily chosen to be
in the clockwise direction around those loops, and the directions of the fluxes
through each loop, ψ1 and ψ2, are arbitrarily chosen to be into the page for
loop 1 and out of the page for loop 2. Using the right-hand rule, we see that

ψ1 = L11I1 − M12I2 (4.87a)

and

ψ2 = −L22I2 + M12I1 (4.87b)

(which you should verify using the right-hand rule) where L11, L22, and
M12 = M21 are positive numbers.
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FIGURE 4.20. Dot convention.

Next, we label the inductors with dots and choose the voltage polarities for
the voltages, V1 and V2, across those inductances as shown. These voltages
are the Faraday law voltage sources that are induced into each loop (see
Fig. 4.1). Each current contributes to each voltage, so we initially set up the
relation

V1 = (?) L11I1 + (?) M12I2

V2 = (?) M12I1 + (?) L2I2
(4.88)

and (?) denotes the signs that are to be determined. We determine the signs of
each of the terms according to the following rules. For each loop we write the
equation for the induced voltage in that loop as the sum of a self term and a
mutual term, with the signs of each being determined by the following [1,2]:

1. The sign of the self-inductance term is positive if the current of that loop
enters the assumed positive or + terminal of the voltage for that loop
(the passive sign convention [1,2]). For loop 1, I1 enters the + terminal
of V1, so the sign of the self inductance contribution, L11I1, is positive.
For loop 2, I2 enters the negative or − terminal of V2, so the sign of the
self inductance contribution, L22I2, is negative.

2. The mutual inductance contribution to the voltage of a loop is positive
at the dotted end of that loop inductance if the current of the other loop
enters the dotted end of the inductance of that loop. Otherwise, it is
negative. For example, the current of loop 2, I2, enters the undotted
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end of its inductance. Hence, it produces a contribution to the voltage
of the first loop, M12I2, that is positive at the undotted end of V1 and
is therefore entered as a negative contribution to the equation for V1.
Hence, the equation for the voltage of loop 1 is

V1 = L11I1 − M12I2 (4.89a)

The current of loop 1 enters the dotted end of its inductance. Hence, it
produces a contribution to the voltage of the second loop, M12I1, that is
positive at the dotted end of V2 and is entered as a positive contribution
to the equation for V2. Hence, the equation for the voltage of loop 2 is

V2 = −L22I1 + M12I2 (4.89b)

4.8.2 Multiconductor Transmission Lines

These concepts are very useful in constructing transmission-line equations
characterizing multiconductor transmission lines (MTLs) [8]. Solving those
MTL equations allows the prediction of crosstalk, which is the unintended
coupling of a signal from one current loop into another current loop [8].

For example, consider the MTL shown in Fig. 4.21(a) consisting of n + 1
parallel conductors of infinite (or very long) length. The (n + 1)st conduc-
tor serves as the return for all the other currents. The currents of all con-
ductors are directed to the right (in the z direction parallel to the conductor
axes). The current of the (n + 1)st conductor is therefore In+1 = −∑n

i=1 Ii =
− (I1 + · · · + Ii + · · · + In). Each of the n currents therefore forms a loop
between that current and the (n + 1)st conductor. Hence, the fluxes of each
loop, ψi (assumed arbitrarily to be directed into the page) can be related to
the currents with a per-unit-length inductance matrix as

ψ = LI (4.90a)

where the n × n matrix of per-unit-length inductances (denoted as lowercase)
is

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l11 · · · m1i · · · m1n

...
. . .

...
. . .

...

mi1
... lii

... min

...
. . .

...
. . .

...

mn1 · · · mni · · · lnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H/m (4.90b)
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FIGURE 4.21. Multiconductor transmission line.

and mij = mji. The per-unit-length equivalent circuit of a �z length of line is
shown in Fig. 4.21(b). From this we can determine the voltages across each
of the n inductors with the + terminal assumed at the dotted end as

V(t) = L �z
dI(t)

dt
(4.91)

To this circuit are added the per-unit-length self and mutual capacitances
between the n + 1 conductors from which the MTL equations are derived



LOOP INDUCTANCE MATRIX FOR COUPLED CURRENT LOOPS 173

and whose solution can be used to predict crosstalk between the n circuits
(loops) [8].

In the following subsections we determine approximate relations for the
per-unit-length self and mutual inductances of MTLs that are composed of n
wires. To make our calculations feasible, we assume that all wires are “widely
spaced,” so that the current of each wire is distributed uniformly over the wire
cross section. In other words, the wires are separated sufficiently, so that the
proximity effect is not pronounced. As we saw in Section 4.6, this will be a
good approximation as long as the ratio of wire separation to wire radius is
larger than about 4 : 1. This is not an unduly restrictive assumption since it
means that one wire can just be placed between two other wires of the same
radii, so that wires separated by this ratio are rather “closely spaced.” With
this assumption of “widely spaced” wires we can replace the current of each
wire with a filament on its axis containing the total current of the wire. The n
wires are assumed to be infinite in length to avoid having to deal with fringing
of the field at the endpoints of a finite-length line. Therefore, the magnetic flux
density of each wire is in the circumferential or φ direction about the wire,
and we obtain the familiar result for the magnetic flux density at a radius r
about an infinitely long wire that has a uniform current distribution over its
cross section that was obtained in Chapter 2:

Bφ = μ0I

2πr
(2.14)

In determining the per-unit-length inductances of the line, we determine the
total magnetic flux through a surface by using superposition to give the total
contribution from all wires of the line.

Using the result in (2.14), we can develop a useful wide-separation approx-
imation for calculating the total magnetic flux through a surface. Consider the
problem shown in Fig. 4.22(a) of an isolated wire where we wish to calculate
the total magnetic flux through a tilted surface s whose edges are at radii
R1 and R2 from the wire axis with R2 > R1. The total per-unit-length flux
through this surface for R2 > R1 is in the direction indicated through surface
s and is obtained from

ψ =
∫

s

B · ds

But as shown in the figure, this is a difficult calculation because the magnetic
flux density Bφ is not perpendicular to the surface s, so that the dot product
cannot be removed from the integrand. However, consider the closed “wedge-
shaped” surface that is 1 m in length into the page and has a side s (the original
side through which the flux is desired), a side s2 that is at a constant radius
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FIGURE 4.22. Fundamental problem for determining flux through a surface.

r = R2 from the wire, a side s1 that extends radially from r = R1 to r = R2,
and two “end caps.” Gauss’s law provides that the total flux leaving this closed
surface is∮

B · ds =
∫

s

B · ds +
∫

s1

B · ds +
∫

s2

B · ds +
∫

end caps
B · ds

= 0

From the figure we see that ∫
s2

B · ds = 0

because the magnetic flux density Bφ is tangent to this side. Similarly, we see
that ∫

end caps
B · ds = 0

because the magnetic flux density Bφ is tangent to these sides. Hence, we
obtain the important result that∫

s

B · ds = −
∫

s1

B · ds

=
∫ 1 m

z=0

∫ R2

r=R1

Bφ dr
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=
∫ 1 m

z=0

∫ R2

r=R1

μ0I

2πr
dr

= μ0I

2π
ln

R2

R1
(4.92)

and the dot product may be removed from the integrand since Bφ is perpen-
dicular to surface s1.

In addition, when the surface is between two wires that are separated center
to center by distance d, we would integrate from r = rw to r = d − rw

∼= d,
which results from our assumption that d 	 rw. This is illustrated in Fig.
4.22(b). By superposition the total flux through the flat surface between the
interior edges of the two wires is the sum of the fluxes due to each current:

ψ = ψ1 + ψ2

= μ0I

2π
ln

d − rw2

rw1
+ μ0I

2π
ln

d − rw1

rw2

∼= μ0I

2π
ln

d

rw1
+ μ0I

2π
ln

d

rw2

= μ0I

2π
ln

d2

rw1rw2

since we must assume that d 	 rw1, rw2 in order for the current to be uniformly
distributed over the wire cross sections and for (2.14) to apply.

Lines Composed of n + 1 Wires Consider the case of n + 1 wires of radii
rwi that are parallel to each other as shown in cross section in Fig. 4.23(a). The
(n + 1)st conductor through which the other n currents “return” is denoted
as the zeroth conductor. Figures 4.23(b) and (c) show the calculation of the
per-unit-length self and mutual inductances of the line:

lii = ψi

Ii

∣∣∣∣
I1=···=Ii−1=Ii+1=···=In=0

= μ0

2π
ln

di0

rw0
+ μ0

2π
ln

di0

rwi

= μ0

2π
ln

d2
i0

rw0 rwi
(4.93a)
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FIGURE 4.23. (n + 1) wires.
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and

lij = lji = ψi

Ij

∣∣∣∣∣
I1=···=Ij−1=Ij+1=···=In=0

= μ0

2π
ln

dj0

dij

+ μ0

2π
ln

di0

rw0

= μ0

2π
ln

di0dj0

dijrw0 (4.93b)

Lines Composed of n Wires Above an Infinite Ground Plane Figure 4.24
shows the case of n parallel wires of radii rwi situated at heights hi above an
infinite “ground plane” which is designated as the zeroth conductor through
which all the other n currents “return.” Replacing the ground plane with the
images of the currents according to Section 2.8 allows calculation of the

irw

jrw

ih

ih

jh

jh

ijs

s′

s′

s ′′

0=jI

iψ
jψ

0

iI

iI

i

j

FIGURE 4.24. n wires above a ground plane.
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per-unit-length self and mutual inductances as shown:

lii = ψi

Ii

∣∣∣∣
I1=···=Ii−1=Ii+1=···=In=0

= μ0

2π
ln

hi

rwi

+ μ0

2π
ln

2hi

hi

= μ0

2π
ln

2hi

rwi (4.94a)

and

lij = lji = ψj

Ii

∣∣∣∣
I1=···=Ii−1=Ii+1=···=In=0

= μ0

2π
ln

s′

sij

+ μ0

2π
ln

s′′

s′

= μ0

2π
ln

√
s2
ij + 4hihj

sij

= μ0

4π
ln

[
1 + 4hihj

s2
ij

]
(4.94b)

Lines Composed of n Wires Within an Overall Shield Figure 4.25(a) shows
the case of n parallel wires of radii rwi within an overall circular shield of
interior radius rs which is designated as the zeroth conductor through which
all the other n currents “return.” We can replace the shield with the wire
images that are located at radii r2

s /di from the axis of the shield [10]. This
allows calculation of the per-unit-length self and mutual inductances as shown
in Fig. 4.25(b) [8]:

lii = ψi

Ii

∣∣∣∣
I1=···=Ii−1=Ii+1=···=In=0

= μ0

2π
ln

rs − di

rwi

+ μ0

2π
ln

r2
s /di − di

r2
s /di − rs

= μ0

2π
ln

r2
s − d2

i

rsrwi (4.95a)
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and

lij = lji = ψj

Ii

∣∣∣∣
I1=···=Ii−1=Ii+1=···=In=0

= μ0

2π
ln

⎛
⎝dj

rs

√√√√(
didj

)2 + r4
s − 2didjr

2
s cos θij(

didj

)2 + d4
j − 2did

3
j cos θij

⎞
⎠ (4.95b)

4.9 LOOP INDUCTANCES OF PRINTED CIRCUIT
BOARD LANDS

So far we have concentrated on conductors having circular, cylindrical cross
sections (i.e., wires). Finally, we turn our attention to transmission lines that are
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constructed of conductors that have rectangular cross sections. These appear
on printed circuit boards (PCBs) and are referred to as lands. The calcula-
tion of the loop inductances of structures composed of lands is considerably
more difficult than for wires, and only approximate relations are generally
obtained.

Figure 4.26 shows three common configurations used in constructing PCBs.
Figure 4.26(a) shows the stripline that appears in PCBs that contain inner-
planes. Innerplanes are layers of conductors sandwiched at various levels
within the board substrate, which is glass epoxy, a dielectric with εr

∼= 4.7
and μr = 1. Hence the board substrate is not ferromagnetic and does not
affect the magnetic fields (but does affect the electric fields). A land of thick-
ness t is situated between two “ground planes.” The thickness of the land is
commonly that of 1-oz copper, which is t = 1.4 mils = 0.036 mm (1 mil =
0.001 in). However, in the following results it is assumed that t = 0. The sep-
aration between the two surrounding ground planes is denoted as s, and the
land is situated midway between the two ground planes (as is common). The

FIGURE 4.26. (a) Stripline; (b) microstrip line; (c) PCB lands.
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per-unit-length loop inductance of the stripline is [8]

l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

30

v0
ln

[
2

1 + √
k

1 − √
k

]
1√
2

≤ k ≤ 1

30π2

v0 ln
[
2
(

1 + √
k′
)

/
(

1 − √
k′
)] 0 ≤ k ≤ 1√

2

H/m

(4.96a)

where

k = 1

cosh (πw/2s)
(4.96b)

and k′ = √
1 − k2. This can be approximated as [8]

l ∼= 30 π

v0

1

we/s + 0.441
H/m (4.96c)

and the effective width of the conductor is

we

s
=

⎧⎪⎪⎨
⎪⎪⎩

w

s

w

s
≥ 0.35

w

s
−

(
0.35 − w

s

)2 w

s
≤ 0.35

(4.96d)

The speed of light is denoted as v0
∼= 3 × 108 m/s.

The microstrip line shown in Fig. 4.26(b) is typical of the outer layers of
a PCB that has innerplanes. A land of thickness t lies on top of a dielectric
substrate of thickness h, and a ground plane (representing an adjacent inner-
plane) is below the substrate. Assuming that the thickness of the land is zero,
t = 0, approximate relations for the per-unit-length loop inductance are [8]

l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

60

v0
ln

(
8h

w
+ w

4h

)
w

h
≤ 1

120π

v0

[
w

h
+ 1.393 + 0.667 ln

(
w

h
+ 1.444

)]−1 w

h
≥ 1

H/m

(4.97)
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Finally, the case of two lands on the surface of a PCB is shown in Fig.
4.26(c). The approximate per-unit-length loop inductance is [8]

l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

120

v0
ln

(
2

1 + √
k

1 − √
k

)
1√
2

≤ k ≤ 1

120π2

v0 ln
[
2(1 + √

k′)/(1 − √
k′)

] 0 ≤ k ≤ 1√
2

H/m

(4.98a)

where

k = s

s + 2w
(4.98b)

and

k′ =
√

1 − k2 (4.98c)

4.10 SUMMARY OF METHODS FOR COMPUTING LOOP
INDUCTANCE

There are several methods for computing the B field of currents: the Biot–
Savart law, Ampère’s law, the vector magnetic potential A, and the method of
images for problems with ground planes. There are also several methods for
computing the loop inductance of a closed current loop, but all these methods
fundamentally require computation of the flux through the open surface s that
is enclosed by the closed current loop:

ψ =
∫

s

B · ds (4.99a)

The loop inductance is computed from this result as

L = ψ

I
(4.99b)

We investigated several methods in this chapter for calculating L either
directly or indirectly. The direct method is to use the Biot-Savart law:

B = μ0I

4π

∫
l

dl × aR

R2
(4.100a)
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or Ampère’s law for problems with symmetry:∮
c

B · dl = μ0I (4.100b)

to compute B over the surface enclosed by the current loop, and then to
compute the inductance of the loop via (4.99a) and (4.99b).

The next method is to compute the vector magnetic potential A directly
from

A = μ0I

4π

∫
l

1

R
dl (4.101a)

Substituting

B = ∇ × A (4.101b)

into (4.99) yields

L =
∮
c A · dl

I
(4.101c)

where c is the contour around the open surface that the current loop surrounds.
The third method is via the Neumann integral. Substituting (4.101a) into

(4.101c) yields

L = μ0

4π

∮
c

∮
c′

dl · dl′

R12
(4.102)

A fourth indirect method is by computing the energy stored in the magnetic
field:

WM = 1
2 LI2

= 1
2

∫
v

B · H dv
(4.103a)

giving

L = 1

μ0I2

∫
v
B2 dv (4.103b)

Generally, this energy method works best for closed structures where the
magnetic field is contained within a finite region of space as with a coaxial
cable or in computing the internal inductance of a wire.
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For some structures, such as the circular current loop, the vector magnetic
potential method in (4.101) and the Neumann integral in (4.102) are easiest,
whereas for rectangular current loops, the direct method of computing the
magnetic flux through the loop in (4.99) is somewhat simpler. All of these
methods can be applied in a similar fashion to the computation of the mutual
inductance between two closed current loops:

M12 = ψ2

I1
(4.104)

4.10.1 Mutual Inductance Between Two Rectangular Loops

We finally illustrate all three methods by computing the mutual inductance
between two rectangular loops that lie in the same plane and whose sides
are either parallel or perpendicular as shown in Fig. 4.27. We consider the
loops to be composed of wires which can be approximated by filaments on
the axes of those wires on the assumption that the currents of the wires are

1l
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2m
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ls

1Loop

Loop 2

1I

1I

1I

1I

FIGURE 4.27. Computation of the mutual inductance between two rectangular loops.
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uniformly distributed over their cross sections (i.e., all of the parallel wires are
“widely spaced”). Loop 1 carries a current I1 that circulates about that loop in
the clockwise direction. We first compute the mutual inductance between the
two loops from the fundamental definition of mutual inductance in (4.104) by
computing the total magnetic flux penetrating the surface enclosed by loop 2:

ψ2 =
∫

s2

B · ds (4.105)

where s2 is the open surface enclosed by loop 2. Using the Biot–Savart law,
we see that the magnetic flux density B is perpendicular to the surface of loop
2, and hence the dot product in (4.105) can be removed:

ψ2 =
∫

s2

B ds (4.106)

Note that the total magnetic flux through loop 2 can be obtained as the super-
position of the fluxes through that loop, due to each of the four currents of
the four sides comprising loop 1. Hence, we essentially need first to solve the
fundamental problem shown in Fig. 4.28 of determining the total magnetic
flux through a rectangular loop due to a current filament of length L and then
use that fundamental result and the right-hand rule to superimpose the fluxes
due to the currents of the four sides of loop 1. The magnetic flux density of
a line current was determined in (2.15). This was for the origin located at the

B

r2

r1

1Z

2Z

IL

z

FIGURE 4.28. Fundamental subproblem.
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midpoint of the current. We modify that result for the origin at the lower end
of the current filament, giving

B = μ0I

4πr

⎡
⎣ Z√

Z2 + r2
− Z − L√

(Z − L)2 + r2

⎤
⎦ (4.107)

Hence, the magnetic flux through the loop due to this current filament is

ψ = μ0I

4π

∫ r2

r=r1

∫ Z2

Z=Z1

1

r

⎡
⎣ Z√

Z2 + r2
− Z − L√

(Z − L)2 + r2

⎤
⎦ dZ dr

(4.108)

The inner integral with respect to Z is evaluated as

(I) =
∫ Z2

Z=Z1

⎡
⎣ Z√

Z2 + r2
− Z − L√

(Z − L)2 + r2

⎤
⎦ dZ

Using an integral from Dwight [7],∫
x√

x2 + a2
dx =

√
x2 + a2 (D201.01)

gives

(I) =
√

Z2
2 + r2 −

√
Z2

1 + r2 −
√

(Z2 − L)2 + r2 +
√

(Z1 − L)2 + r2

where we have used a change of variables λ = Z − L, dλ = dZ in the second
part of the integral. The second integral with respect to r is

(II) =
∫ r2

r=r1

⎡
⎣
√

Z2
2 + r2

r
−

√
Z2

1 + r2

r

−
√

(Z2 − L)2 + r2

r
+

√
(Z1 − L)2 + r2

r

⎤
⎦ dr

This can be evaluated using an integral from Dwight [7]:

∫ √
x2 + a2

x
dx =

√
x2 + a2 − a ln

a + √
x2 + a2

x

=
√

x2 + a2 − a ln
(
a +

√
x2 + a2

)
+ a ln x (D241.01)
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giving the flux through the loop as

ψ = μ0 I

4π

[√
Z2

2 + r2
2 − Z2 ln

(
Z2 +

√
Z2

2 + r2
2

)
−

√
Z2

2 + r2
1

+Z2 ln
(

Z2 +
√

Z2
2 + r2

1

)
−

√
Z2

1 + r2
2 + Z1 ln

(
Z1 +

√
Z2

1 + r2
2

)

+
√

Z2
1 + r2

1 − Z1 ln
(

Z1 +
√

Z2
1 + r2

1

)
−

√
(Z2 − L)2 + r2

2

+ (Z2 − L) ln
(

(Z2 − L) +
√

(Z2 − L)2 + r2
2

)
+

√
(Z2 − L)2 + r2

1

− (Z2 − L) ln
(

(Z2 − L) +
√

(Z2 − L)2 + r2
1

)
+

√
(Z1 − L)2 + r2

2

− (Z1 − L) ln
(

(Z1 − L) +
√

(Z1 − L)2 + r2
2

)
−

√
(Z1 − L)2 + r2

1

+ (Z1 − L) ln
(

(Z1 − L) +
√

(Z1 − L)2 + r2
1

)]
(4.109a)

This can be written more compactly as

ψ = μ0I

4π
K (Z1, Z2, r1, r2, L) (4.109b)

where

K (Z1, Z2, r1, r2, L)=
∑2

i=1

∑2

j=1
(−1)i+j

[
f

(
Zi, rj, 0

) − f
(
Zi, rj, L

)]

(4.109c)

and

f (Z, r, L) =
√

(Z − L)2 + r2 − (Z − L) ln
[
(Z − L) +

√
((Z − L)2 + r2

]

(4.109d)

Hence, by superimposing the magnetic fluxes through loop 2 in Fig. 4.27
due to each of the four sides of loop 1 (using the right-hand rule and matching
each case to Fig. 4.28), we obtain the mutual inductance between the two
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rectangular loops in Fig. 4.27 as

M12 = μ0

4π
[ K (m1 + sm, m1 + sm + m2, l1 + sl, l1 + sl + l2, m1)

−K (m1 + sm, m1 + sm + m2, sl, sl + l2, m1)

−K (l1 + sl, l1 + sl + l2, sm, sm + m2, l1)

+K (l1 + sl, l1 + sl + l2, m1 + sm, m1 + sm + m2, l1)]

(4.110)

Note that the sm and sl may be negative. If both loops are identical and square
(i.e., l1 = l2 = m1 = m2 = L), this result simplifies to

M12 = μ0

4π
[K (L + sm, 2L + sm, L + sl, 2L + sl, L)

−K (L + sm, 2L + sm, sl, L + sl, L)

−K (L + sl, 2L + sl, sm, L + sm, L)

+K (L + sl, 2L + sl, L + sm, 2L + sm, L)] (4.111)

Next, we obtain the mutual inductance by determining the total magnetic
flux through the second loop using the vector magnetic potential, A, as

ψ2 =
∫

s2

B · ds

=
∮

c2

A · dl (4.112)

This requires that we solve the fundamental subproblem shown in Fig. 4.29.
Once this is done, we superimpose the result around the four sides of loop
2 from each of the four currents in loop 1. Since the current I and the left
segment of loop 2 are parallel, the vector magnetic potential A is tangent
to the conductor and the dot product in (4.112) can be removed. The vector
magnetic potential for the case in Fig. 4.29 was derived in equation (2.57).
That was derived for the origin at the midpoint of the current. Rederiving that
for the origin at the bottom of the current as in Fig. 4.29 gives

A = μ0I

4π

[
ln

(
Z +

√
Z2 + r2

)
− ln

(
(Z − L) +

√
(Z − L)2 + r2

)]
(4.113)
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FIGURE 4.29. Another fundamental subproblem.

Integrating this along the left side of the second loop gives

∫ Z2

Z=Z1

A dZ = μ0 I

4π

∫ Z2

Z=Z1

[
ln
(
Z +

√
Z2 + r2

1

)

− ln

(
(Z − L) +

√
(Z − L)2 + r2

1

)]
dZ

= μ0 I

4π

[
Z2 ln

(
Z2 +

√
Z2

2 + r2
1

)
−

√
Z2

2 + r2
1

−Z1 ln
(
Z1 +

√
Z2

1 + r2
1

)
+

√
Z2

1 + r2
1

− (Z2−L) ln

(
(Z2−L) +

√
(Z2 − L)2 + r2

1

)
+

√
(Z2 − L)2 + r2

1

+ (Z1−L) ln

(
(Z1−L) +

√
(Z1−L)2 + r2

1

)
−

√
(Z1 − L)2 + r2

1

]
(4.114)

where we have used an integral from Dwight [7]:∫
ln

(
x +

√
x2 + a2

)
dx = x ln

(
x +

√
x2 + a2

)
−

√
x2 + a2

(D625)
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and have made a change of variables in the second half of the integral of λ =
Z − L, dλ = dZ. Realizing that the vector magnetic potential is perpendicular
to the top and bottom sides of the loop in Fig. 4.29 and contribute nothing to
the line integral around the loop, the contribution to integration around loop 2
in (4.112) due to the current in the left side of loop 1 as in Fig. 4.28 is obtained
as

ψ = μ0 I

4π

[
Z2 ln

(
Z2 +

√
Z2

2 + r2
1

)
−

√
Z2

2 + r2
1

−Z1 ln
(

Z1 +
√

Z2
1 + r2

1

)
+

√
Z2

1 + r2
1

− (Z2 − L) ln
(

(Z2 − L) +
√

(Z2 − L)2 + r2
1

)
+

√
(Z2 − L)2 + r2

1

+ (Z1 − L) ln
(

(Z1 − L) +
√

(Z1 − L)2 + r2
1

)
−

√
(Z1 − L)2 + r2

1

−Z2 ln
(

Z2 +
√

Z2
2 + r2

2

)
+

√
Z2

2 + r2
2

+Z1 ln
(

Z1 +
√

Z2
1 + r2

2

)
−

√
Z2

1 + r2
2

+ (Z2 − L) ln
(

(Z2 − L) +
√

(Z2 − L)2 + r2
2

)
−

√
(Z2 − L)2 + r2

2

− (Z1 − L) ln
(

(Z1 − L) +
√

(Z1 − L)2 + r2
2

)
+

√
(Z1 − L)2 + r2

2

]
(4.115)

giving the same result as in (4.109). Using this result and superimposing the
fluxes through loop 2 due to the the top, right and bottom currents of loop 1
gives the same result as the previous direct computation of the flux through
loop 2 and given in (4.110).

Using the Neumann integral we compute the mutual inductance between
loops 1 and 2 directly from

M12 = μ0

4π

∮
c2

∮
c1

dl · dl2
R12

(4.116)

where c1 and c2 are the contours of loops 1 and 2, respectively, and R12 is the
distance between a point on loop 1 and a point on loop 2. This was derived by
substituting the expression for the vector magnetic potential produced along
the contour of loop 2 by the current of loop 1:

A12 = μ0I1

4π

∮
c1

1

R12
dl1 (4.117a)
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into the basic expression for the magnetic flux through loop 2:

ψ12 =
∮

s2

B12 · ds

=
∮

c2

A12 · dl (4.117b)

The mutual inductance is obtained by dividing the flux by the current I1

according to the basic definition in (4.104). Once again we need to solve a
basic subproblem shown in Fig. 4.30. This represents the contribution to the
Neumann integral along the left side of loop 1 and the left side of loop 2. The
portion of the Neumann integral due to the left side of loop 1 and the left side
of loop 2 represented in Fig. 4.30 beomes

Intleft-left = μ0

4π

∫
c2

∫
c1

1

R12
dl1 dl2

= μ0

4π

∫ Z2

z2=Z1

∫ L

z1=0

1√
(z2 − z1)2 + r2

1

dz1 dz2 (4.118)
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FIGURE 4.30. Basic subproblem for the Neumann integral.
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The inner integral with respect to z1 is integrated as

(I) =
∫ L

z1=0

1√
(z2 − z1)2 + r2

1

dz1

=
∫ z2

λ=z2−L

1√
λ2 + r2

1

dλ

= ln
(

z2 +
√

z2
2 + r2

1

)
− ln

[
(z2 − L) +

√
(z2 − L)2 + r2

1

]

and we have used an integral from Dwight [7]:

∫
dx√

x2 + a2
= ln

(
x +

√
x2 + a2

)
(D200.01)

and a change of variables λ = z2 − z1, dλ = −dz1. Integrating with respect
to z2 gives

Intleft-left = μ0

4π

∫ Z2

z2=Z1

[
ln

(
z2 +

√
z2

2 + r2
1

)

− ln
(

(z2 − L)+
√

(z2 − L)2 + r2
1

)]
dz2

Using a change of variables λ = z2 − L, dλ = dz2 gives

Intleft-left = μ0

4π

∫ Z2

z2=Z1

[
ln

(
z2 +

√
z2

2 + r2
1

)]
dz2

−μ0

4π

∫ Z2−L

λ=Z1−L

[
ln

(
λ +

√
λ2 + r2

1

)]
dλ

Integrating this using an integral from Dwight [7],

∫
ln

(
x +

√
x2 + a2

)
dx = x ln

(
x +

√
x2 + a2

)
−

√
x2 + a2 (D625)
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yields

Intleft-left = μ0

4π

[
Z2ln

(
Z2 +

√
Z2

2 + r2
1

)
−

√
Z2

2 + r2
1

−Z1ln
(

Z1 +
√

Z2
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1

)
+

√
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1 + r2
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√
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1

)

+
√
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1

+ (Z1 − L) ln
(

(Z1 − L) +
√

(Z1 − L)2 + r2
1

)

−
√

(Z1 − L)2 + r2
1

]

The contribution from the left side of loop 1 to the right side of loop 2 is the
same but negated and with r1 replaced with r2. Realizing that dl1 · dl2 = 0
along the top and bottom sides of loop 2 gives the total contribution to the
Neumann integral due to the left side of loop 1 as

Intleft = μ0

4π

[
Z2 ln

(
Z2 +

√
Z2

2 + r2
1

)
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√
Z2

2 + r2
1
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√
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1 + r2
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+

√
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)
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)
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−
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√
(Z1− L)2 + r2

2

]
(4.119)
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which is the same as (4.115) with the current I removed from that expression.
Using this result and superimposing the contributions to the Neumann integral
around loop 2 due to the top, right, and bottom segments of loop 1 gives the
same result as the previous direct computation of the flux through loop 2 and
given in (4.110).



5
THE CONCEPT OF “PARTIAL”
INDUCTANCE

In the preceding chapters we discussed the meaning and calculation of the
“loop” inductance of various conducting structures that support a closed loop
of current. This “loop” inductance is calculated fundamentally for steady (dc)
currents which we showed in Section 2.9 must form closed loops. If we open
the loop at a point with a small gap, the loop inductance of that current loop is
seen as an inductance L at these input terminals. When we pass a time-varying
current around the loop via these terminals a voltage, V (t) = LdI(t)/dt, is
developed across the terminals. This voltage is essentially the Faraday’s law
voltage induced into the loop. For electrically small loop dimensions, this
lumped inductance and the voltage across its terminals can be represented as
a lumped voltage source and placed anywhere in the loop perimeter (see
Fig. 4.1). It is important, however, to remember that neither this lumped
inductance nor the equivalent voltage source it represents can be placed in a
unique position in the loop! This loop inductance is a property of the entire
loop and its use is valid only at the input terminals of the loop. Hence, it is
not possible to associate the loop inductance with any particular segment of
the loop.

However, there are numerous situations, some of which were described in
Chapter 1, where it is useful to develop a lumped-circuit model of a closed
current loop wherein the segments of the perimeter of the loop are represented

Inductance: Loop and Partial, By Clayton R. Paul
Copyright © 2010 John Wiley & Sons, Inc.
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with a self inductance as well as mutual inductances between that segment
and other segments of this and other adjacent current loops. The concept of
“partial” inductance allows us to do that in a unique way.

It has been said that “you cannot ascribe the properties of inductance to
an isolated piece of wire.” Of course you can’t because an isolated piece of
wire is not capable of supporting a dc current, which must form a closed loop
(i.e., it must return to its source). This is therefore a misleading statement.
The proper question is: Can you ascribe the properties of inductance uniquely
to a segment of a closed loop of current? The answer to this question is yes,
and the method for doing so is with “partial” inductances.

There are three significant references regarding partial inductance. Those
by Grover [14] and Ruehli [15] are excellent general references, and the paper
by Hoer and Love [16] gives results for the partial inductances of conductors
of rectangular cross section [e.g., printed circuit board (PCB) lands].

5.1 GENERAL MEANING OF PARTIAL INDUCTANCE

Consider a closed physical loop constructed of a conductor such as a wire,
PCB land, and so on, that supports a dc current I. The “loop” inductance of
this current loop is defined fundamentally in previous chapters as

L = ψ

I
(5.1a)

where

ψ =
∫

s

B · ds (5.1b)

is the total magnetic flux that penetrates the open surface s that is surrounded
by the closed contour of the loop, c, and B is the magnetic flux density (caused
by current I) through the surface s. In Chapter 2 we calculated B for various
configurations of loop shapes. In Chapter 4 we calculated the flux ψ and
hence the inductance according to (5.1) for various loop shapes. Faraday’s
fundamental law of induction (Chapter 3) gives the induced voltage appearing
at the terminals of the loop as

V = dψ

dt

= L
dI

dt
(5.2)

where the current I is now allowed to be “slowly varying with time,” as demon-
strated in Section 3.4. Essentially, the condition “slowly varying with time”
is satisfied approximately as long as the physical dimensions of the loop are
much less than a wavelength (e.g., < λ/10, where the wavelength is λ = v/f ,
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f is the highest significant frequency in the waveform of the current I, and v

is the velocity of propagation of the current.
In Chapter 4 we developed an alternative means of calculating the induc-

tance by using the vector magnetic potential A, which is defined by

B = ∇×A (5.3)

Hence, the total magnetic flux through the surface s is

ψ =
∫

s

B · ds

=
∫

s

(∇×A) · ds

=
∮

c

A · dl (5.4)

where we have used Stokes’s theorem (see the Appendix) to convert the surface
integral over surface s to a line integral around contour c that encloses the
surface. This gives an alternative way of calculating the flux through the loop,
ψ, in terms of A. Hence, an alternative way of calculating the inductance of
the current loop is

L =
∮
c A · dl

I
(5.5)

where c is the closed contour that bounds the open surface s. Hence, we can
compute the inductance of a loop by integrating, with a line integral, the
product of the differential path lengths around the contour c that surrounds
the open surface s and the components of the vector magnetic potential A
that are tangent to that closed path. But (5.5) can be decomposed into the line
integral along unique segments of the closed loop as

L =
∮
c A · dl

I

=
∫
c1

A1 · dl

I
+

∫
c2

A2 · dl

I
+ · · · +

∫
cn

An · dl

I (5.6)

where the closed path c is segmented into n contiguous segments ci so that
c = c1 + c2 + · · · + cn and Ai is the total A along contour ci that is due to the
current of that segment as well as the currents of the other segments of c or of
some other current loop. This allows us to uniquely associate an inductance
contribution to each segment of the closed loop as

Li =
∫
ci

Ai · dl

I
(5.7a)
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FIGURE 5.1. Rectangular loop.

so that the total loop inductance is the sum of these parts:

L = L1 + L2 + · · · + Ln (5.7b)

For example, in Fig. 5.1 we have shown Fig. 4.10, where in Section 4.3.1
we detailed the calculation of the inductance of a rectangular loop using the
vector magnetic potential according to (5.5) Essentially, we are indirectly
computing the total magnetic flux threading the loop, which is the region
surrounded by the interior surfaces of the wires whose radii are rw. This
contour surrounding the open surface s is denoted as contour c in Fig. 5.1. As
discussed in Sections 4.5 and 4.6, two important assumptions in computing the
B field (and the subsequent calculation of the A field) are that (1) the current
I is distributed uniformly over the wire cross section so that the current I can
be represented as a filament on the wire axis (as it is for dc currents), and (2)
there are no other currents in close enough proximity to this wire to upset this
uniform current distribution over its cross section (i.e., the “proximity effect”
is not pronounced). The total vector magnetic potential along the left side of
the loop, A1, is the sum of the vector magnetic potentials along that side that
are due to the current of that side, Aleft, and those that are due to the currents
of the other three sides of the loop, Aright, Atop, and Abottom:

A1 = Aleft + Aright + Atop + Abottom (5.8a)
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Hence, the portion of the loop inductance uniquely attributable to the left
side is

L1 =

∫
left
side

A1 · dl

I

=

∫
left
side

Aleft · dl

I
+

∫
left
side

Aright · dl

I
+

∫
left
side

Atop · dl

I

+

∫
left
side

Abottom · dl

I
(5.8b)

Observe that Atop and Abottom are in the directions of the currents of those
sides and hence are both orthogonal to the left side and do not contribute to
the line integral for L1 along the left side. In a similar fashion we obtain the
inductances attributable to the other three sides, L2, L3, and L4. Hence, the
rectangular loop can be represented uniquely by the lumped equivalent circuit
shown in Fig. 5.2.

Observe that the total vector magnetic potential along the left side, A1, in
(5.8a) has contributions due to its own current as well as the currents of the
other three sides. So this leads us to break the inductance of the left side, L1,
into four distinct pieces according to (5.8b):

L1 = Lp1 + Mp12 + Mp13 + Mp14 (5.9)
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FIGURE 5.2. Uniquely attributing inductances to the sides of the rectangular loop of
Fig. 5.1.
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The first contribution is the self partial inductance of the left side:

Lp1 =

∫
left
side

Aleft · dl

I
(5.10a)

which is due to the current of the left side. The other three contributions are
due to the currents of the other three sides and are referred to as the mutual
partial inductances between the other three sides and the left side:

Mp12 =

∫
left
side

Atop · dl

I
(5.10b)

Mp13 =

∫
left
side

Aright · dl

I
(5.10c)

Mp14 =

∫
left
side

Abottom · dl

I
(5.10d)

Hence, the more complete equivalent circuit of the rectangular loop in terms
of the partial inductances is shown in Fig. 5.3.

According to the dot convention described in Section 4.8.1, the total voltage
across the left conductor is

V1 = Lp1
dI

dt
+ Mp12

dI

dt
+ Mp13

dI

dt
+ Mp14

dI

dt

= (
Lp1 + Mp12 + Mp13 + Mp14

)︸ ︷︷ ︸
L1

dI

dt
(5.11)

Observe that because sides 2 and 4 are orthogonal to side 1, Atop and Abottom

are orthogonal to the left side, so that Mp12 = Mp14 = 0. Also, because the
direction of Aright is opposite the direction of the contour c along the left side,

I

II

I

Lp1

Lp2

Lp3

Lp4

Mp13V1

Mp12

Mp14

FIGURE 5.3. Rectangular loop equivalent circuit in terms of the partial inductances.
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Mp13 in (5.10c) is negative. The effective inductance of the left side of the
loop, L1, in (5.9) is referred to as the net partial inductance but has little value
or use. Separating the net partial inductance into its constituent parts as in (5.9)
gives more information about the contributions of all the other side currents.

5.2 PHYSICAL MEANING OF PARTIAL INDUCTANCE

The self partial inductance of the ith segment of a current loop is

Lpi =
∫
ci

Ai · dl

Ii

(5.12a)

and Ai is the portion of A along ci that is produced by the current Ii of that
segment. The voltage developed across that self partial inductance is

Vi = Lpi

dIi

dt
(5.12b)

as shown in Fig. 5.4.
Although (5.12a) gives the mathematical definition of self partial induc-

tance, we now investigate the physical meaning of self partial inductance.
Consider a segment ci of a current loop carrying current Ii as shown in
Fig. 5.5(a). Draw a surface extending from the segment to infinity with sides
that are perpendicular to the current segment. Now determine the magnetic
flux through that surface:

ψ∞
Ii

=
∫
s B · ds

Ii

=
∮
c A · dl

Ii

=
∫
ci

Ai · dl

Ii︸ ︷︷ ︸
ci

+
∫
c A · dl

Ii︸ ︷︷ ︸
left side

+
∫
c A · dl

Ii︸ ︷︷ ︸
right side

+
∫
c A · dl

Ii︸ ︷︷ ︸
∞

=
∫
ci

Ai · dl

Ii︸ ︷︷ ︸
ci

= Lpi (5.13)

iciI iI

iV
iA

piL

FIGURE 5.4. Self partial inductance of the ith segment of a current loop.
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FIGURE 5.5. Physical meaning of self partial inductance.

The line integrals along the left and right sides are zero since the vector mag-
netic potential A is parallel to the current Ii that produces it and is therefore per-
pendicular to the left and right sides of the closed contour. The vector magnetic
potential from a line current goes to zero at infinity [see (2.57)], so that the line
integral along this portion of the closed contour at infinity is also zero. Hence,
we are left with the partial inductance given in (5.12a) and the observation
that:

The self partial inductance of a segment of a current loop is the ratio
of the magnetic flux between the current segment and infinity and the
current of that segment.

This is illustrated in cross section in Fig. 5.5(b).
The mutual partial inductance between two segments ci and cj (which

may be parts of the same current loop or different current loops) is
defined by

Mpij =
∫
ci

Aij · dl

Ij

(5.14a)
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FIGURE 5.6. Mutual partial inductance between two current loop segments ci and cj .

where Aij is along contour ci and is due to the current of another segment, Ij.
The voltage developed across that self partial inductance is

Vi = Mpij

dIj

dt
(5.14b)

as shown in Fig. 5.6.
The physical meaning of mutual partial inductance is illustrated in Fig. 5.7.

Consider a current loop and two segments of that loop, ci and cj, as shown
in Fig. 5.7(a). Again draw a surface s extending from the jth segment (car-
rying the current) to infinity with sides that are perpendicular to that current

(b)
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A A
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Aij

c s

s

FIGURE 5.7. Physical meaning of mutual partial inductance.
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segment. Now determine the magnetic flux through the surface s between the
ith segment and infinity. Carrying through a development similar to that in
(5.13) we see that the line integrals along the left and right sides are zero since
the vector magnetic potential A is parallel to the current Ij that produces it
and is therefore perpendicular to the left and right sides of the contour c that
surrounds surface s. Also, the vector magnetic potential from a line current
goes to zero at infinity so that the line integral along the portion of the contour
at infinity is also zero. Hence, we are left with the mutual partial inductance
given in (5.14a) and the observation that

The mutual partial inductance between two segments of the same or
different current loops is the ratio of the magnetic flux ( produced by
the current of the first segment ) that penetrates the surface between the
second segment and infinity and the current of the first segment.

This is illustrated in cross section in Fig. 5.7(b).
Although Fig. 5.7 shows the result for the mutual partial inductance of

two parallel conductors, the result also obtains for two conductors at any
angle to each other as shown in Fig. 5.8. Again draw two lines to infinity

∞

0=A

AA

ijA

Ij

s
c

ic

ijR

id l

dl j

FIGURE 5.8. Mutual partial inductance for conductors at any angle to each other.
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that are perpendicular (shown as small rectangles) to current Ij and which
enclose the open surface s that lies between those parallel lines and between
the skewed conductor and infinity. Integrating the line integral of the vector
magnetic potential around the closed contour c surrounding this surface to
infinity again gives

Mpij = ψ∞
Ij

=
∮
c A · dl

Ij

=
∫
ci

Aij · dl

Ij

(5.15)

This is obtained again since A is parallel to Ij at all points in space, so that A
is perpendicular to the left and right sides of s and contribute nothing to the
line integral along those sides, and A goes to zero at infinity. Observe that the
same result is obtained even if the two conductors do not lie in the same plane,
since A will still be orthogonal to the two sides of the open surface because
they were constructed perpendicular to the current Ij and will also go to zero
at infinity. (Again draw two lines for the sides of s that are perpendicular to
conductor cj.)

The mutual partial inductance can also be obtained from the Neumann
integral by substituting the explicit equation for Aij into (5.15):

Mpij = μ0

4π

∫
ci

∫
cj

1

Rij

dli · dlj (5.16)

where cj is the contour along the conductor carrying current Ij, and Rij is
the distance between differential segments dli along contour ci and dlj along
contour cj, as shown in Fig. 5.8.

5.3 SELF PARTIAL INDUCTANCE OF WIRES

In this section we derive some fundamental results for the self partial induc-
tance of wires having radii rw. Again we assume that the current of the wire, I,
is distributed uniformly over the wire cross section so that for the purpose of
computing the B and A fields, we can concentrate the current I as a filament
on the axis of the wire.

The fundamental problem for computing the self partial inductance of a
wire is a wire of length l carrying a current I as shown in Fig. 5.9. We de-
termine the self partial inductance of this segment of wire by integrating the
magnetic flux density through the surface s between the wire surface, y = rw,
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l
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FIGURE 5.9. Determination of the self partial inductance of a wire.

and infinity, y → ∞. The magnetic flux density was derived in Chapter 2 and
given in (2.15):

B = μ0I

4πr

[
Z + l/2√

(Z + l/2)2 + r2
− Z − l/2√

(Z − l/2)2 + r2

]
aφ (2.15)

The total flux through the surface s is

ψ∞ =
∫ ∞

r=rw

∫ l/2

Z=−l/2
Bφ dZ dr

= μ0I

4π

∫ ∞

r=rw

1

r

∫ l/2

Z=−l/2

[
Z + l/2√

(Z + l/2)2 + r2

− Z − l/2√
(Z − l/2)2 + r2

]
dZ dr

= 2
μ0I

4π

∫ ∞

r=rw

1

r

∫ l

λ=0

λ√
λ2 + r2

dλ dr

= μ0I

2π

∫ ∞

r=rw

1

r

[√
λ2 + r2

]l

λ=0
dr

= μ0I

2π

∫ ∞

r=rw

1

r
(
√

l2 + r2 − r) dr (5.17a)
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and we have used a change of variables, λ = Z ± l/2, dλ = dZ, and integral
201.01 of Dwight [7]: ∫

x√
x2 + a2

dx =
√

x2 + a2 (D201.01)

Further integration with respect to r yields

ψ∞ = μ0 I

2π

∫ ∞

r=rw

[√
l2 + r2

r
− 1

]
dr

= μ0I

2π

[√
l2 + r2 − l ln

l + √
l2 + r2

r
− r

]r→∞

r=rw

= −μ0I

2π
l

⎡
⎣ln

⎛
⎝ l

r
+

√(
l

r

)2

+ 1

⎞
⎠ −

√
1 +

(
r

l

)2

+ r

l

⎤
⎦r→∞

r=rw

= μ0I

2π
l

⎡
⎣ln

⎛
⎝ l

rw
+

√(
l

rw

)2

+ 1

⎞
⎠ −

√
1 +

(
rw

l

)2

+ rw

l

⎤
⎦
(5.17b)

and we have used integral 241.01 of Dwight [7]:∫ √
x2 + a2

x
dx =

√
x2 + a2 − a ln

a + √
x2 + a2

x
(D241.01)

Hence, the self partial inductance is

Lp = ψ∞
I

= μ0

2π
l

⎡
⎣ln

⎛
⎝ l

rw
+

√(
l

rw

)2

+ 1

⎞
⎠ −

√
1 +

(
rw

l

)2

+ rw

l

⎤
⎦

= 2 × 10−7 l

⎡
⎣ln

⎛
⎝ l

rw
+

√(
l

rw

)2

+ 1

⎞
⎠ −

√
1 +

(
rw

l

)2

+ rw

l

⎤
⎦

(5.18a)

and we have substituted μ0/2π = 2 × 10−7. Using the inverse hyperbolic
sine,

sinh−1 x

a
= ln

⎛
⎝x

a
+

√(
x

a

)2

+ 1

⎞
⎠

= − sinh−1
(

−x

a

)
(D700.1)
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gives an alternative form of the result:

Lp = μ0

2π
l

⎡
⎣ sinh−1 l

rw
−

√
1 +

(
rw

l

)2

+ rw

l

⎤
⎦ (5.18b)

In a practical case, the length of the segment is usually much larger than
the wire radius, l 	 rw, so we have the following approximations:

ln

⎡
⎣ l

rw
+

√(
l

rw

)2

+ 1

⎤
⎦ = ln

2l

rw
+ 1

4

(
rw

l

)2

− 3

32

(
rw

l

)4

+ · · · l

rw
	 1 (D602.1)

and √
1 +

(
rw

l

)2

= 1 + 1

2

(
rw

l

)2

− 1

8

(
rw

l

)4

+ · · · rw

l
≤ 1 (D5.3)

so that (5.18a) approximates to

Lp = μ0

2π
l

[
ln

2l

rw
− 1 + rw

l
− 1

4

(
rw

l

)2

+ · · ·
]

∼= 2 × 10−7 l

(
ln

2 l

rw
− 1

)
l 	 rw

(5.18c)

Alternatively, we can determine the self partial inductance by integrating
the vector magnetic potential along the wire surface also shown in Fig. 5.9.
The vector magnetic potential A for this case was determined in Chapter 2
and given in (2.57):

Az = μ0I

4π

(
sinh−1 Z + l/2

r
− sinh−1 Z − l/2

r

)
(2.57)

Hence, we set up the integral

Lp =

∫ l/2

Z=−l/2
Az|r=rw dZ

I

= μ0

4π

∫ l/2

Z=−l/2

(
sinh−1 Z + l/2

rw
− sinh−1 Z − l/2

rw

)
dZ

= 2
μ0

4π

∫ l

λ=0

(
sinh−1 λ

rw

)
dλ
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= 2
μ0

4π

[
λ sinh−1 λ

rw
−

√
λ2 + r2

w

]l

λ=0

= μ0

2π

(
l sinh−1 l

rw
−

√
l2 + r2

w + rw

)

= μ0

2π
l

⎡
⎣sinh−1 l

rw
−

√
1 +

(
rw

l

)2

+ rw

l

⎤
⎦

= μ0

2π
l

⎡
⎣ln

⎛
⎝ l

rw
+

√(
l

rw

)2

+ 1

⎞
⎠ −

√
1 +

(
rw

l

)2

+ rw

l

⎤
⎦

(5.19)

which is the same as (5.18a). We have used a change of variables, λ = Z ±
l/2, dλ = dZ, integral 730 of Dwight [7],∫

sinh−1 x

a
dx = x sinh−1 x

a
−

√
x2 + a2 (D730)

and the identity for inverse hyperbolic sine,

sinh−1 x

a
= ln

⎛
⎝x

a
+

√(
x

a

)2

+ 1

⎞
⎠

= − sinh−1
(

−x

a

)
(D700.1)

5.4 MUTUAL PARTIAL INDUCTANCE BETWEEN PARALLEL
WIRES

Next, we determine another fundamental result: the mutual partial inductance
between two parallel wires shown in Fig. 5.10. We first assume that both wires
are of the same length and their endpoints are aligned. In the next section we
derive the result for this situation but with the wires offset and their lengths
different. The only difference between this computation and those for the self
partial inductance of Section 5.3 is that here we integrate from y = d + rw to
y → ∞ rather than from the surface of the first wire. Hence, the integral in
(5.17a) becomes

ψ∞ =
∫ ∞

r=d+rw

∫ l/2

Z=−l/2
Bφ dZ dr (5.20)
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FIGURE 5.10. Determination of the mutual partial inductance between parallel wires.

It is easy to see that we only need to replace rw with d + rw in the previous
derivation for the self partial inductance in (5.17a)–(5.17b) and obtain

Mp = ψ∞
I

= μ0

2π
l

⎡
⎣ln

⎛
⎝ l

d + rw
+

√(
l

d + rw

)2

+ 1

⎞
⎠

−
√

1 +
(

d + rw

l

)2

+ d + rw

l

⎤
⎦

∼= 2 × 10−7 l

⎡
⎣ln

⎛
⎝ l

d
+

√(
l

d

)2

+ 1

⎞
⎠

−
√

1 +
(

d

l

)2

+ d

l

⎤
⎦ d 	 rw

(5.21a)

Using the inverse hyperbolic sine,

sinh−1 x

a
= ln

⎛
⎝x

a
+

√(
x

a

)2

+ 1

⎞
⎠

= − sinh−1
(

−x

a

)
(D700.1)
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gives an alternative form of the result:

Mp = μ0

2π
l

⎡
⎣sinh−1 l

d
−

√
1 +

(
d

l

)2

+ d

l

⎤
⎦ d 	 rw (5.21b)

For wires that are very long compared to their separation, l/d 	 1, or,
equivalently, separations much smaller than their length, d/l � 1, the result
in (5.21a) can be approximated by using

ln

⎡
⎣ l

d
+

√(
l

d

)2

+ 1

⎤
⎦ = ln

2l

d
+ 1

4

(
d

l

)2

− 3

32

(
d

l

)4

+ · · · l

d
> 1

(D602.1)

√
1 +

(
d

l

)2

= 1 + 1

2

(
d

l

)2

− 1

8

(
d

l

)4

+ · · · d

l
≤ 1

(D5.3)

giving

Mp = μ0

2π
l

[
ln

2l

d
− 1 + d

l
− 1

4

(
d

l

)2

+ 1

32

(
d

l

)4

− · · ·
]

∼= μ0

2π
l

(
ln

2l

d
− 1

)
l 	 d

(5.21c)

For wires that are very short compared to their separation, l/d � 1, or,
equivalently, separations much greater than their length, d/l 	 1, the result
in (5.21a) can be approximated by using

ln

⎡
⎣ l

d
+

√(
l

d

)2

+ 1

⎤
⎦ = l

d
− 1

6

(
l

d

)3

+ 3

40

(
l

d

)5

− · · · l

d
< 1

(D602.1)

√
1 +

(
d

l

)2

= d

l

√(
l

d

)2

+ 1

= d

l
+ 1

2

(
l

d

)
− 1

8

(
l

d

)3

+ 1

16

(
l

d

)5

− · · · l

d
≤ 1

(D5.3)
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giving

Mp = μ0

2π

l

2d

[
1 − 1

12

(
l

d

)2

+ 1

40

(
l

d

)4

− · · ·
]

l � d

(5.21d)

We can obtain the same result as in (5.21a) from the vector magnetic
potential A:

Mp =

∫ l/2

Z=−l/2
Az|r=d+rw

dZ

I
(5.22)

and evaluating Az along the second wire at y = d + rw. Carrying through the
same integration in (5.19) but with r = rw replaced by r = d + rw again gives
(5.21a).

Finally, we show that the mutual partial inductance in (5.21a) can also be
derived from the Neumann integral in (5.16):

Mp = μ0

4π

∫
c1

∫
c2

dl1 · dl2
R12

= μ0

4π

∫ l/2

z2=−l/2
dz2

∫ l/2

z1=−l/2

1√
(d + rw)2 + (z1 − z2)2

dz1

= μ0

4π

∫ l/2

z2=−l/2
dz2

∫ l/2−z2

λ=−l/2−z2

1√
(d + rw)2 + λ2

dλ

= μ0

4π

∫ l/2

z2=−l/2

[
ln

(
λ +

√
(d + rw)2 + λ2

)]l/2−z2

λ=−l/2−z2

dz2

= μ0

4π

∫ l/2

z2=−l/2

(
sinh−1 l/2 − z2

d + rw
+ sinh−1 l/2 + z2

d + rw

)
dz2

= μ0

4π

∫ l

ζ=0

(
2 sinh−1 ζ

d + rw

)
dζ

= 2
μ0

4π

[
ζ sinh−1 ζ

d + rw
−

√
ζ2 + (d + rw)2

]l

ζ=0

= μ0

2π

[
l sinh−1 l

d + rw
−

√
l2 + (d + rw)2 + (d + rw)

]

= μ0

2π
l

⎡
⎣sinh−1 l

d + rw
−

√
1 +

(
d + rw

l

)2

+ d + rw

l

⎤
⎦ (5.23)
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and the differential lengths dl1 and dl2 are parallel so that the dot product goes
away: dl1 · dl2 = dl1 dl2 = dz1 dz2. But (5.23) is the same as (5.21a). We have
substituted a change of variables in the inner integral: λ = z1 − z2, dλ = dz1,
and a change of variables in the outer integral: ζ = l/2 ± z2, dζ = ±dz2, and
have again used the integrals∫

1√
x2 + a2

dx = ln
(
x +

√
x2 + a2

)
(D200.01)

and ∫
sinh−1 x

a
dx = x sinh−1 x

a
−

√
x2 + a2 (D730)

We also used the important identity

ln
a + √

x2 + a2

−b + √
x2 + b2

= sinh−1 a

x
− sinh−1

(
−b

x

)

= sinh−1 a

x
+ sinh−1 b

x

From these results we see that the self partial inductance Lp can be obtained
from the mutual partial inductance simply by replacing d + rw in Mp, with
rw, and vice versa. In other words,

Lp = Mp

∣∣
d+rw→rw

(5.24)

Using Mp to get Lp in this way presupposes that both wires are of the same
length and radii, and their endpoints are aligned.

5.5 MUTUAL PARTIAL INDUCTANCE BETWEEN PARALLEL
WIRES THAT ARE OFFSET

Consider the case of two offset, parallel wires whose lengths are l and m shown
in Fig. 5.11. The two wires are parallel to the z axis, have a center-to-center
separation of d, and their endpoints are offset by a distance s. The radius of the
second wire of length l is rw. The radius of the first wire of length m carrying
the current I which produces the magnetic field is immaterial since we assume
that the current I is distributed uniformly over the cross section of that wire
so that this current can be concentrated as a filament on the axis of the wire.
The first wire carrying the current I has its lower end at the origin of the
coordinate system, z = 0. The two ends of the other wire of length l are at
positions z = z1 and z = z2. In all such problems of determining the mutual
partial inductance between two parallel but offset wires using the result derived
in this section, it is important to determine these wire lengths and positions,
z = 0, z1, and z2, for each particular problem.
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FIGURE 5.11. Mutual partial inductance between offset wires.

Again we have three methods for calculating the mutual partial inductance
between the two wire segments: the magnetic flux linkage method using B,
the vector magnetic potential method using A, and the Neumann integral. For
this problem we choose to use the vector magnetic potential method using A.
We must integrate the vector magnetic potential due to the current I of the
first wire of length m along the surface of the second wire of length l with a
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line integral:

Mp =

∫
l

A21|r=d+rw∼=d · dl

I

=

∫ z2

Z=z1

A21 (Z, r)|r=d dZ

I
(5.25)

where A21 is the vector magnetic potential along the surface of the second
wire that is produced by the current I of the first wire. Hence, we need the
result for the vector magnetic potential from a wire of length m carrying a
current I. This was derived in Chapter 2 from Fig. 2.24 and given in (2.57).
Note in Fig. 2.24 that the origin of the coordinate system at z = 0 was located
at the midpoint of the wire. We must modify that result to fit Fig. 5.11 by
rederiving the result for the case where the lower end of the wire is at z = 0.
Carrying through the development that led to (2.57) yields for this case

A21 (Z, r) = μ0I

4π

{
ln

(
Z +

√
Z2 + r2

)
− ln

[
(Z − m) +

√
(Z − m)2 + r2

]}

= μ0I

4π

(
sinh−1 Z

r
− sinh−1 Z − m

r

)
(5.26)

and we have again used the identity

sinh−1 x

a
= − sinh−1

(
−x

a

)

= ln

⎡
⎣x

a
+

√(
x

a

)2

+ 1

⎤
⎦

= ln
(
x +

√
x2 + a2

)
− ln a (D700.1)

Hence, (5.25) becomes

Mp =

∫ z2

Z=z1

A21|r=d dZ

I

= μ0

4π

∫ z2

Z=z1

(
sinh−1 Z

d
− sinh−1 Z − m

d

)
dZ (5.27)
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Carrying through with the integration of (5.27) gives

Mp = μ0

4π

∫ z2

Z=z1

(
sinh−1 Z

d
− sinh−1 Z − m

d

)
dZ

= μ0

4π

(∫ z2

Z=z1

sinh−1 Z

d
dZ −

∫ z2−m

λ=z1−m

sinh−1 λ

d
dλ

)

= μ0

4π

[
z2 sinh−1 z2

d
− z1 sinh−1 z1

d
− (z2 − m) sinh−1 z2 − m

d

+ (z1 − m) sinh−1 z1 − m

d
−

√
z2

2 + d2 +
√

z2
1 + d2

+
√

(z2 − m)2 + d2 −
√

(z1 − m)2 + d2

]

(5.28)

where we have used a change of variables, λ = Z − m, dλ = dZ, in the second
integral and have used integral 730 of Dwight [7]:

∫
sinh−1 x

a
dx = x sinh−1 x

a
−

√
x2 + a2 (D730)

In the case where the two wires lie on the z axis, d = 0, as shown in
Fig. 5.12, we could reintegrate (5.27) for r = rw or simply substitute d = rw

into (5.28) to give

Mp(d=rw) = μ0

4π

[
z2 sinh−1 z2

rw
− z1 sinh−1 z1

rw
− (z2 − m) sinh−1 z2 − m

rw

+ (z1 − m) sinh−1
(

z1 − m

rw

)
−

√
z2

2 + r2
w +

√
z2

1 + r2
w

+
√

(z2 − m)2 + r2
w −

√
(z1 − m)2 + r2

w

]

(5.29a)
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FIGURE 5.12. Aligned but offset wires.
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Substituting the dimensions gives

Mp (d=rw) = μ0

4π

[
(l + s + m) sinh−1 l + s + m

rw
− (m + s) sinh−1 m + s

rw

− (l + s) sinh−1 l + s

rw
+ s sinh−1 s

rw
−

√
(l + s + m)2 + r2

w

+
√

(m + s)2 + r2
w +

√
(l + s)2 + r2

w −
√

s2 + r2
w

]
∼= μ0

4π

{
(l + s + m)

[
ln

(
2 (l + s + m)

rw

)
− 1

]

− (m + s)
[
ln

(
2 (m + s)

rw

)
− 1

]

− (l + s)
[
ln

(
2 (l + s)

rw

)
− 1

]
+ s

[
ln

(
2s

rw

)
− 1

]}

(5.29b)

In terms of the self partial inductances of a wire of radius rw and length l
obtained in (5.18b),

Ll = μ0

2π

(
l sinh−1 l

rw
−

√
l2 + r2

w + rw

)
(5.18b)

the result for aligned but offset wires in (5.29a,b) can be written as

2Mp(d=rw) = (
Lz2 + Lz1−m

) − (
Lz2−m + Lz1

)
= (Ll+s+m + Ls) − (Ll+s + Lm+s) (5.29c)

Notice that (5.29c) gives 2Mp since the self partial inductance Ll in (5.18b)
is multiplied by μ0/2π, whereas the result for Mp in (5.29a,b) is multiplied
by μ0/4π.

There is a simple explanation for why the result for the mutual partial
inductance between two aligned but offset wires can be written in terms of
the self partial inductances of wires of various lengths obtained previously, as
in (5.29c). Recall that the self partial inductance of a wire is the ratio of the
magnetic flux between that wire and infinity, ψl, and the current of that wire:

Ll = ψl

I

Figure 5.13 shows that a current on each wire segment produces not only flux
between that segment and infinity but also between each of the other segments
and infinity. For example, observe from Fig. 5.13 that superimposing the fluxes
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FIGURE 5.13. Mutual partial inductance for aligned but offset wires in terms of fluxes to
infinity.

opposite each segment that are due to currents on the other three segments
gives

ψl = ψll + ψls + ψlm (5.30a)

ψs = ψsl + ψss + ψsm (5.30b)

ψm = ψml + ψms + ψmm (5.30c)
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where the notation ψij denotes the flux to infinity opposite segment i due to a
current I only on segment j. Keep in mind that these mutual inductances are
reciprocal (i.e., Mij = Mji). But if all three segments have current I on them,
they produce the total flux ψl+s+m. Hence, the self inductance of a wire of
total length l + s + m can be written as

Ll+s+m = ψl+s+m

I

= ψl

I
+ ψs

I
+ ψm

I

= ψll

I
+ ψls

I
+ ψlm

I

+ψsl

I
+ ψss

I
+ ψsm

I

+ψml

I
+ ψms

I
+ ψmm

I
(5.31)

The key to simplifying this and writing it in the form of (5.29c) is to write the
result in terms of the self partial inductances of segments of a single length
so that we can use the result derived in (5.18a,b) without having to rederive
a new result [which we have already done in (5.29)]. To do this, note that the
total fluxes given by (5.31) can be written as

Ll+s+m = ψll

I
+ ψls

I
+ ψsl

I
+ ψss

I︸ ︷︷ ︸
Ll+s

+ ψmm

I
+ ψms

I
+ ψsm

I
+ ψss

I︸ ︷︷ ︸
Lm+s

− ψss

I︸︷︷︸
Ls

+ ψlm

I
+ ψml

I︸ ︷︷ ︸
2Mp

(5.32a)

Solving this gives the result in (5.29c) since

2Mp = Mlm + Mml

I

= (Ll+s+m + Ls) − (Ll+s + Lm+s) (5.32b)

This gives a very basic principle for adding inductors in series where the
inductors have not only their self inductance but also mutual inductances
between each other:

L1+2+3 = L1 + M12 + M13 + L2 + M12 + M23 + L3 + M13 + M23

= L1 + L2 + L3 + 2M12 + 2M13 + 2M23

(5.33)
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FIGURE 5.14. Adding inductors in series.

This can be verified from the electric circuit diagram in Fig. 5.14 by determin-
ing the total voltage across the series combination using the dot convention
[1,2].

The basic result in (5.28) for parallel, offset wires with d /= 0 can be written
similarly in terms of the result in Section 5.4 for the mutual partial inductance
between two identical wires of lengths l and separation d whose endpoints
coincide as shown in Fig. 5.10 and given in (5.21b):

Ml = μ0

2π

(
l sinh−1 l

d
−

√
l2 + d2 + d

)
d 	 rw (5.21b)

Hence, the result in (5.28) can be written in terms of (5.21b) as

2Mp = (
Mz2 + Mz1−m

) − (
Mz1 + Mz2−m

)
= (Ml+s+m + Ms) − (Mm+s + Ml+s) (5.34)

Notice again that (5.34) gives 2Mp since Ml in (5.21b) is multiplied by μ0/2π,
whereas the result for Mp in (5.28) is multiplied by μ0/4π. Note from (5.21b)
that

M0 = 0 (5.35a)

and

M−l = Ml (5.35b)

with (5.35b) resulting from the identity sinh−1(−x) = − sinh−1 x. If the wires
overlap, replace s with −s in (5.34).

We can easily determine the mutual partial inductance between the various
offset structures shown in Fig. 5.15 by using the basic result in (5.34) and
comparing each of these structures to Fig. 5.11, from which (5.34) was derived
in order to (1) determine the location point of z = 0 on those structures,
and (2) hence to determine the values of z1 and z2 in (5.34). For example,
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FIGURE 5.15. Using the basic relation in (5.34) to determine the mutual inductance for other
offset structures.

in Fig. 5.15(a) we identify z2 = l + s + m and z1 = m + s. Hence, for the
structure in Fig. 5.15(a) we obtain

2Mp = (Ml+s+m + Ms) − (Mm+s + Ms+l)

Similarly, for the case in Fig. 5.15(b) we identify z2 = l + m and z1 = m or,
equivalently, s = 0. Hence, for the structure in Fig. 5.15(b) we obtain

2Mp = (Ml+m + M0) − (Mm + Ml)

= Ml+m − Mm − Ml

For the case in Fig. 5.15(c) we identify z2 = p + m and z1 = p + m − l or,
equivalently, s = − (l − p). Hence, for the structure in Fig. 5.15(c) we obtain

2Mp = (
Mp+m + Mp−l

) − (
Mp+m−l + Mp

)
= (

Mp+m + Ml−p

) − (
Mp+m−l + Mp

)
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For the case in Fig. 5.15(d) we identify z2 = p + m and z1 = −q = p +
m − l or, equivalently, s = − (l − p) = − (m + q). Hence, for the structure
in Fig. 5.15(d) we obtain

2Mp = (
Mp+m + M−q−m

) − (
M−q + Mp

)
= (

Mp+m + Mq+m

) − (
Mq + Mp

)
Figure 5.16 shows how we could have easily obtained the basic result in

(5.34) by using lumped-circuit analysis principles and the dot convention

d

s

A

a

B

b

C

c

I

MAa MBb MCc
MBa

I

V

V

l m

lsmMM ++=net

FIGURE 5.16. Combining mutual partial inductances that are in series.
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[1,2]. We have shown an equivalent circuit for two parallel conductors of
total length m + s + l along with the mutual inductances between the three
segments of lengths m, s, and l. Denoting the voltage between the endpoints
of the ends of the top conductor as V, and passing a current I through the lower
conductor, the total contribution to V due to the mutual inductances between
all segments is

V = Mnet
dI

dt

Using the dot convention [1,2] and analyzing this circuit for the total voltage
contributed to V by the mutual inductances between the segments, the net
mutual inductance between the entire lengths is

Mnet = MAa + MAb + MAc+MBa + MBb + MBc + MCa + MCb + MCc

But

Mnet = Mm+s+l

Ms+l = MAa + MAb + MBa + MBb

Mm+s = MBb + MBc + MCb + MCc

Ms = MBb

Hence, we can write

Mm+s+l = Ms+l + Mm+s − Ms + MAc + MCa

However, the mutual inductance we desire between the two conductors of
lengths l and m is

2Mp = MAc + MCa

Solving the last two relations gives the basic relation in (5.34), which we
derived through a lengthy integration!

5.6 MUTUAL PARTIAL INDUCTANCE BETWEEN WIRES
AT AN ANGLE TO EACH OTHER

We first consider a special case of two straight wires of lengths l and m that
are inclined with respect to each other at an angle θ and joined at one end (or
at least infinitesimally close) as shown in Fig. 5.17. The solution for the mutual
partial inductance for this special case can be adapted to give the solution for
a large class of similar problems, as we will see. This will be very similar
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FIGURE 5.17. Wires inclined at an angle to each other.

to our recognizing that the mutual partial inductance for the case for two
parallel but offset wires shown in Fig. 5.11 could be obtained in terms of the
solution for two equal-length wires whose endpoints are aligned and shown
in Fig. 5.10. This adaptation is given in (5.34) in terms of the mutual partial
inductance of two equal-length parallel wires whose endpoints are aligned
given in (5.21a,b).

We obtain the mutual partial inductance for the configuration in Fig. 5.17
using the Neumann integral:

Mp = μ0

4π

∫
l2

∫
l1

dl1 · dl2
R12

= μ0

4π
cos θ

∫
l2

∫
l1

1

R12
dl1 dl2 (5.36a)

where l1 and l2 are the contours along the axes of the two wires, and R12 is
the distance between the differential segments dl1 and dl2 given by

R12 =
√

l21 + l22 − 2l1l2 cos θ (5.36b)

and we have used the law of cosines. The dot product of the vector differential
segments becomes dl1 · dl2 = cos θ dl1 dl2.
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We can place this integral in an integrable form using the following tech-
nique [17]. We can show that (5.36a) can be written as

Mp = μ0

4π
cos θ

∫
l2

∫
l1

1

R12
dl1 dl2

= μ0

4π
cos θ

∫
l2

∫
l1

[
d

dl1

(
l1

R12

)
+ d

dl2

(
l2

R12

)]
dl1 dl2

= μ0

4π
cos θ

[
l1

∫
l2

1

R12
dl2 + l2

∫
l1

1

R12
dl1

]
(5.37)

This first equivalence in (5.37) can be shown, using R12 from (5.36b), to give

d

dl1

(
l1

R12

)
= R12 − l1 R−1

12 (l1 − l2 cos θ)

R2
12

= 1

R12
− l1 (l1 − l2 cos θ)

R3
12

(5.38a)

d

dl2

(
l2

R12

)
= R12 − l2 R−1

12 (l2 − l1 cos θ)

R2
12

= 1

R12
− l2 (l2 − l1 cos θ)

R3
12

(5.38b)

and we have used

d
(

u
v

)
dx

=
v
du

dx
− u

dv

dx
v2

(D65)

Hence,

d

dl1

(
l1

R12

)
+ d

dl2

(
l2

R12

)
= 1

R12
(5.39)

The second equivalence in (5.37) can easily be shown from

∫
l2

∫
l1

[
d

dl1

(
l1

R12

)]
dl1 dl2 =

∫
l2

[∫
l1

d

dl1

(
l1

R12

)
dl1

]
dl2

=
∫

l2

l1

R12
dl2

= l1

∫
l2

1

R12
dl2 (5.40a)
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∫
l1

∫
l2

[
d

dl2

(
l2

R12

)]
dl2 dl1 =

∫
l1

[∫
l2

d

dl2

(
l2

R12

)
dl2

]
dl1

=
∫

l1

l2

R12
dl1

= l2

∫
l1

1

R12
dl1 (5.40b)

and we have obtained the equivalence in (5.37). But the last result in (5.37)
can easily be integrated using integral 380.001 from Dwight [7]:∫

dx√
x2 + bx + c

= ln
(

2
√

x2 + bx + c + 2x + b
)

(D380.001)

and the equation for R12 in (5.36b) to give∫
li

1

R12
dli =

∫
li

1√
l2i + l2j − 2lilj cos θ

dli

= ln
(

2
√

l2i + l2j − 2lilj cos θ + 2li − 2lj cos θ

)

= ln
(√

l2i + l2j − 2lilj cos θ + li − lj cos θ

)
(5.41)

The factor of 2 cancels out when we evaluate at the upper and lower limits of
the integral.

Now we apply this result to the problem of Fig. 5.17. For economy of
notation we denote the mutual partial inductance between the two segments
as

Mp = μ0

4π
N (5.42)

and N becomes, in terms of the limits of the integrals,

N =
∫ B

l2=A

∫ b

l1=a

1

R12
dl1dl2

= l1

∫
l2

1

R12
dl2 + l2

∫
l1

1

R12
dl1

=
[
l1

∫ B

l2=A

1

R12
dl2

] b

l1=a

+
[
l2

∫ b

l1=a

1

R12
dl1

]B

l2=A

= b
{

ln
[√

b2 + B2 − 2bB cos θ + B − b cos θ
]
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− ln
[√

b2 + A2 − 2bA cos θ + A − b cos θ
]}

−a
{

ln
[√

a2 + B2 − 2aB cos θ + B − a cos θ
]

− ln
[√

a2 + A2 − 2aA cos θ + A − a cos θ
]}

+B
{

ln
[√

b2 + B2 − 2bB cos θ + b − B cos θ
]

− ln
[√

a2 + B2 − 2aB cos θ + a − B cos θ
]}

−A
{

ln
[√

b2 + A2 − 2bA cos θ + b − A cos θ
]

− ln
[√

a2 + A2 − 2aA cos θ + a − A cos θ
]}

= b ln
RbB + B − b cos θ

RbA + A − b cos θ
− a ln

RaB + B − a cos θ

RaA + A − a cos θ

+B ln
RbB + b − B cos θ

RaB + a − B cos θ
− A ln

RAb + b − A cos θ

RaA + a − A cos θ
(5.43)

The beginning and ending coordinates of the two lines are denoted as a,b for
l1 and A,B for l2. The distances Rij are the distances between the endpoints of
the segments. For the problem in Fig. 5.17, we obtain

N =
[
l1

∫
l2

1

R12
dl2 + l2

∫
l1

1

R12
dl1

]

=
{[

l1

∫ l

l2=0

1

R12
dl2

]m

l1=0

+
[
l2

∫ m

l1=0

1

R12
dl1

] l

l2=0

}

= m ln
Rml + l − m cos θ

Rm0 + 0 − m cos θ
− 0 ln

R0l + l − 0 cos θ

R00 + 0 − 0 cos θ

+ l ln
Rml + m − l cos θ

R0l + 0 − l cos θ
− 0 ln

R0m + m − 0 cos θ

R00 + 0 − 0 cos θ

= l ln
R + m − l cos θ

l − l cos θ
+ m ln

R + l − m cos θ

m − m cos θ
(5.44)

and, by using l’Hôpital’s rule,

lim︸︷︷︸
x→0

x ln (x) = 0 (D605)
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The distance between the endpoints is denoted as

R = Rml

=
√

l2 + m2 − 2 l m cos θ (5.45)

and Rm0 = m and R0l = l. Substituting the result in (5.44) into (5.42) gives
the mutual partial inductance between the two segments in Fig. 5.17:

Mp = μ0

4π
cos θ

(
l ln

R + m − l cos θ

l − l cos θ
+ m ln

R + l − m cos θ

m − m cos θ

)

(5.46a)

But this result can be put into an equivalent form as [14]

Mp = μ0

4π
cos θ

(
l ln

R + m + l

R + l − m
+ m ln

R + l + m

R + m − l

)
(5.46b)

To demonstrate the equivalence between the two forms of the result in
(5.46) we need to show that

R + m − l cos θ

l − l cos θ
= R + m + l

R + l − m
(5.47)

This can be shown directly by multiplying it out to give

R2 + R (l − l cos θ) + (m − l cos θ) (l − m)
?= R (l − l cos θ) + (m + l) (l − l cos θ)

or

R2 ?= (m + l)(l − l cos θ) − (m − l cos θ)(l − m)

= l2 + m2 − 2ml cos θ

which is satisfied.
In fact, a more general result can be proven which will be useful for other

situations. Consider the triangles shown in Fig. 5.18. Each triangle is com-
posed of two sides labeled R and R′ with included angles θ and θ′ with respect
to the horizontal axes. These sides R and R′ make projections on the hori-
zontal axes of P and P ′, respectively, where P = R cos θ and P ′ = R′ cos θ′.
The total length on the horizontal axis between the intersections of each line
with the horizontal axis is denoted as T. We can prove the following important
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FIGURE 5.18. Important theorem.

equivalences. For the left triangle in Fig. 5.18(a) we have

ln
R + P

R′ − P ′ = ln
R′ + P ′

R − P

= ln
R + R′ + T

R + R′ − T

= 2 tanh−1 T

R + R′ (5.48a)

and for the right triangle in Fig. 5.18(b) we have

ln
R − P

R′ − P ′ = ln
R′ + P ′

R + P

= ln
R + R′ + T

R + R′ − T

= 2 tanh−1 T

R + R′ (5.48b)

The conversion of (5.48a) to (5.48b) is accomplished simply by replacing P in
(5.48a) with −P . This is somewhat evident since P in Fig. 5.18(a) adds to P ′

to give the total length between the endpoints of R and R′, which is denoted as
T = P ′ + P , whereas in Fig. 5.18(b) P subtracts from P ′ to give T = P ′ − P .
The identity for Fig. 5.17 in (5.47) follows from the identity in (5.48a).

The proofs of (5.48) are fairly simple by comparing the arguments of the
log functions. For example, (5.48a) gives

R + P

R′ − P ′
?= R′ + P ′

R − P

?= R + R′ + T

R + R′ − T



MUTUAL PARTIAL INDUCTANCE BETWEEN WIRES 231

Multiplying these out gives

(R + P) (R − P) ?= (
R′ + P ′) (R′ − P ′)

But R2 = P2 + h2 and R′2 = P ′2 + h2. Substituting T = P + P ′, we need to
show that

R + P

R′ − P ′
?= R + R′ + (

P + P ′)
R + R′ − (P + P ′)

Multiplying this out and canceling common terms gives

R2 − P2 ?= R′2 − P ′2

which is satisfied. The results in (5.48b) can be verified similarly. The last
results in (5.48) are verified using the identity for the inverse hyperbolic tan-
gent:

tanh−1 x = 1

2
ln

1 + x

1 − x
x2 < 1 (D702)

Hence, a further equivalent form for the result in (5.46) for Fig. 5.17 can be
obtained in terms of the inverse hyperbolic tangent as

Mp = μ0

4π
cos θ

(
l ln

R + m + l

R + l − m
+ m ln

R + l + m

R + m − l

)

= μ0

2π
cos θ

(
l tanh−1 m

R + l
+ m tanh−1 l

R + m

)
(5.46c)

This solution process for the configuration of Fig. 5.17 can readily be
adapted to obtain the mutual partial inductance between two segments that do
not physically join at a common point but are inclined at an angle θ to each
other as shown in Fig. 5.19. Extend the segments of lengths l and m to a point
where they join, thereby generating the extension lengths α and β. Adapting

θ

l

m

α

β

1R
2R

3R 4R

FIGURE 5.19. More general case of Fig. 5.17.
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the result in (5.43) gives the result for Fig. 5.19 as

N = l1

∫
l2

1

R12
dl2 + l2

∫
l1

1

R12
dl1

=
⎧⎨
⎩
[
l1

∫ α+l

l2=α

1

R12
dl2

]β+m

l1=β

+
[
l2

∫ β+m

l1=β

1

R12
dl1

]α+l

l2=α

⎫⎬
⎭

= (β + m) ln
R(β+m)(α+l) + (α + l) − (β + m) cos θ

R(β+m)α + α − (β + m) cos θ

−β ln
Rβ(α+l) + (α + l) − β cos θ

Rβα + α − β cos θ

+ (α + l) ln
R(β+m)(α+l) + (β + m) − (α + l) cos θ

Rβ(α+l) + β − (α + l) cos θ

−α ln
Rα(β+m) + (β + m) − α cos θ

Rβα + β − α cos θ
(5.49)

Denoting the distances between the endpoints of the lines as shown in Fig. 5.19
gives

R1 = R(α+l)(β+m)

=
√

(α + l)2 + (β + m)2 − 2 (α + l) (β + m) cos θ (5.50a)

R2 = R(α+l)β

=
√

(α + l)2 + β2 − 2 (α + l) β cos θ (5.50b)

R3 = Rαβ

=
√

α2 + β2 − 2αβ cos θ (5.50c)

R4 = Rα(β+m)

=
√

α2 + (β + m)2 − 2α (β + m) cos θ (5.50d)
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Hence, the mutual partial inductance between the two segments of Fig. 5.19
becomes

Mp = μ0

4π
N

= μ0

4π

[
(β + m) ln

R1 + (α + l) − (β + m) cos θ

R4 + α − (β + m) cos θ

−β ln
R2 + (α + l) − β cos θ

R3 + α − β cos θ

+ (α + l) ln
R1 + (β + m) − (α + l) cos θ

R2 + β − (α + l) cos θ

−α ln
R4 + (β + m) − α cos θ

R3 + β − α cos θ

]
(5.51a)

Using the identities in (5.48) and the inverse hyperbolic tangent identity in
(D702) gives equivalent forms as

Mp = μ0

4π
N

= μ0

4π

[
(β + m) ln

R1 + R4 + l

R1 + R4 − l
− β ln

R2 + R3 + l

R2 + R3 − l

+ (α + l) ln
R1 + R2 + m

R1 + R2 − m
− α ln

R4 + R3 + m

R4 + R3 − m

]

= μ0

2π

[
(β + m) tanh−1 l

R1 + R4
− β tanh−1 l

R2 + R3

+ (α + l) tanh−1 m

R1 + R2
− α tanh−1 m

R4 + R3

]

(5.51b)

We can then use the previous result for the mutual partial inductance
between two segments of lengths x and y that are joined at a common point
that was derived for Fig. 5.17 and given in (5.46c) to obtain the mutual partial
inductance for Fig. 5.19 indirectly. Denote the result for Fig. 5.17 as

Mx,y = μ0

4π
cos θ

(
x ln

R + x + y

R + x − y
+ y ln

R + y + x

R + y − x

)

= μ0

2π
cos θ

(
x tanh−1 y

R + x
+ y tanh−1 x

R + y

)
(5.52a)
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where θ is the included angle where they are joined and

R =
√

x2 + y2 − 2xy cos θ (5.52b)

Visualize the structure of Fig. 5.19 as consisting of four such structures, each
consisting of the following lengths, with each pair being joined at a common
point: (1) x = α + l, y = β + m, (2) x = α, y = β, (3) x = α + l, y = β,
and (4) x = α, and y = β + m. We can then obtain the total mutual partial
inductance for the structure in Fig. 5.19 of overall lengths α + l and β + m to
give, in a fashion similar to that of Fig. 5.16,

Mα+l,β+m = Mα,β + Mα,m + Ml,β + Ml,m

The desired result is Ml,m giving

Ml,m = Mα+l,β+m − Mα,β − Mα,m − Ml,β

But the result for Fig. 5.17 does not apply to generating Mα,m or Ml,β since
the two lengths in each of these are not joined at a common point. So we write
this as

Ml,m = Mα+l,β+m − Mα,β − (
Mα,m + Mα,β

)︸ ︷︷ ︸
Mα,β+m

− (
Ml,β + Mα,β

)︸ ︷︷ ︸
Mα+l,β

+2Mα,β

giving

Mp = (
Mα+l,β+m + Mαβ

) − (
Mα+l,β + Mβ+m,α

)
(5.53)

Using the result for two segments joined at one end in (5.52) gives the result
as

Mp = μ0

4π
cos θ

[
(α + l) ln

R1 + (α + l) + (β + m)

R1 + (α + l) − (β + m)

+ (β + m) ln
R1 + (β + m) + (α + l)

R1 + (β + m) − (α + l)

+ α ln
R3 + α + β

R3 + α − β
+ β ln

R3 + β + α

R3 + β − α

− (α + l) ln
R2 + (α + l) + β

R2 + (α + l) − β
− β ln

R2 + β + (α + l)

R2 + β − (α + l)

− (β + m) ln
R4 + (β + m) + α

R4 + (β + m) − α
− α ln

R4 + α + (β + m)

R4 + α − (β + m)

]
(5.54a)
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This result can be simplified to

Mp = μ0

4π
cos θ

[
(α + l) ln

R1 + R2 + m

R1 + R2 − m
+ (β + m) ln

R1 + R4 + l

R1 + R4 − l

−α ln
R3 + R4 + m

R3 + R4 − m
− β ln

R2 + R3 + l

R2 + R3 − l

]

(5.54b)

which agrees with (5.51b).
The equivalence of (5.54a) and (5.54b) can be shown with the following

important identity for triangles. Consider the three triangles shown in
Fig. 5.20. Triangle T1 has sides of a, b, and R1. Triangle T2 has sides of
a, c, and R2. Triangle T3 has sides of R1, b − c, and R2 and is formed from tri-
angles T1 and T2 as T3 = T1 − T2. It is a simple matter to prove the following

(a () b)1T 2T

c

2R

θ

a 1R

b

θ

a

1R

c

2R

θ

a

b – c

(c)

1R

2R

213 TTT −=

FIGURE 5.20. Important identity for triangles.
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identity for these three related triangles:

ln
R1 + a + b

R1 + a − b
− ln

R2 + a + c

R2 + a − c
= ln

R1 + R2 + (b − c)

R1 + R2 − (b − c)
(5.55a)

and R1 and R2 are given by the law of cosines:

R2
1 = a2 + b2 − 2ab cos θ (5.55b)

R2
2 = a2 + c2 − 2ac cos θ (5.55c)

The important identity in (5.55a) can easily be verified by multiplying out the
arguments of the logarithms as ln A − ln B = ln C ⇒ A/B = C. Applying
(5.55a) to (5.54a) gives the equivalence to (5.54b).

Figure 5.21 shows the general configuration for skewed and displaced con-
ductors. The general result for this was derived by G.A. Campbell in 1915
[17]. This figure is modeled after that of Grover [14], pp. 56, who clearly
explained the general result obtained by Campbell. The first conductor is of
length l and its endpoints are denoted as A and B. It is shown as lying in a
plane. The second conductor is of length m and its endpoints are denoted as
a and b. It is shown as lying in another plane. These two planes containing
the two conductors are parallel and separated by distance d between the two

θ

R1

R2

R3

R4

A Blα
P

p

d

m
a

b

C

Plane containing AB

β

R12

FIGURE 5.21. General configuration for skewed and displaced conductors.
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planes. The line Pp between the two planes is of length d and is mutually
perpendicular to the two planes containing the two conductors. Hence, Pp is
said to be the common perpendicular to the two conductors. The endpoints
of the conductors, A and a, are displaced from points P and p by distances α

and β, respectively. The line PC lying in the plane containing AB is parallel
to the line ab representing the second conductor and is at an angle θ to the
first conductor AB. This is what is meant by the two conductors AB and ab
having an angle of inclination of θ with respect to each other. If the displace-
ment between the planes, d, is zero, d = 0, then the angle θ between the two
conductors is the same as in the previous results.

The Neumann integral in (5.36) remains the same for this case:

Mp = μ0

4π
cos θ

∫
l1

∫
l1

1

R12
dl1 dl2 (5.56a)

where l1 and l2 again denote the contours along the two conductors of lengths
m and l, respectively, and

R12 =
√

d2 + l21 + l22 − 2l1l2 cos θ (5.56b)

Carrying through with a similar development as before gives

Mp = μ0

4π
cos θ

∫
l2

∫
l1

1

R12
dl1 dl2

= μ0

4π
cos θ

∫
l2

∫
l1

[
d

dl1

(
l1

R12

)
+ d

dl2

(
l2

R12

)
− d2

R3
12

]
dl1 dl2

= μ0

4π
cos θ

(
l1

∫
l2

1

R12
dl2 + l2

∫
l1

1

R12
dl1

− d

sin θ

∫
l2

∫
l1

d sin θ

R3
12

dl1 dl2

)
(5.57a)

and one can similarly show using R12 in (5.56b), as was done previously for
d = 0, that

d

dl1

(
l1

R12

)
+ d

dl2

(
l2

R12

)
− d2

R3
12

= 1

R12
(5.57b)
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Again, the last result in (5.57a) can be integrated, using (D380.001), to yield

Mp = μ0

4π
cos θ

(
l1

∫
l2

1

R12
dl2 + l2

∫
l1

1

R12
dl1

− d

sin θ

∫
l2

∫
l1

d sin θ

R3
12

dl1 dl2

)

= μ0

4π
cos θ

[ [
l1 ln (R12 + l2 − l1 cos θ) + l2 ln (R12 + l1 − l2 cos θ)

− �d

sinθ

]l2=PB

l2=PA

]l1=pb

l1=pa

= μ0

2π

(
pB′ tanh−1 ab

aB + Bb
− pA′ tanh−1 ab

aA + Ab

+Pb′ tanh−1 AB

Ab + bB
− Pa′ tanh−1 AB

Aa + aB
− �d

tan θ

)
(5.58a)

where the solid angle � is

� = tan−1
(

Pp

Bb
cot θ + PB

Pp

pb

Bb
sin θ

)
− tan−1

(
Pp

Ba
cot θ + PB

Pp

pa

Ba
sin θ

)

− tan−1
(

Pp

Ab
cot θ + PA

Pp

pb

Ab
sin θ

)

+ tan−1
(

Pp

Aa
cot θ + PA

Pp

pa

Aa
sin θ

)
(5.58b)

In (5.58a) primes denote the projection of the point on one conductor perpen-
dicular to and onto the other conductor, and the inverse hyperbolic tangent is
again defined in terms of the natural logarithm as

tanh−1 x = 1

2
ln

1 + x

1 − x
x2 < 1 (D702)

Grover [14] simplified this in terms of the quantities in Fig. 5.21 and the result
becomes

Mp = μ0

2π
cos θ

[
(α + l) tanh−1 m

R1 + R2
+ (β + m) tanh−1 l

R1 + R4

−α tanh−1 m

R3 + R4
− β tanh−1 l

R2 + R3

]
− μ0

4π

�d

tan θ

(5.59a)
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where the solid angle � is

� = tan−1 d2 cos θ + (α + l) (β + m) sin2 θ

dR1 sin θ

− tan−1 d2 cos θ + (α + l) β sin2 θ

dR2 sin θ

+ tan−1 d2 cos θ + α β sin2 θ

dR3 sin θ

− tan−1 d2 cos θ + α (β + m) sin2 θ

dR4 sin θ
(5.59b)

The distances between the ends of the two conductors are shown in Fig. 5.21
and are R1 = Bb, R2 = Ba, R3 = Aa, and R4 = Ab. Using the law of cosines,
these distances are

R2
1 = d2 + (α + l)2 + (β + m)2 − 2 (α + l) (β + m) cos θ (5.60a)

R2
2 = d2 + (α + l)2 + β2 − 2 β (α + l) cos θ (5.60b)

R2
3 = d2 + α2 + β2 − 2 α β cos θ (5.60c)

R2
4 = d2 + α2 + (β + m)2 − 2 α (β + m) cos θ (5.60d)

The only difference between this result and the result for Fig. 5.19 given in
(5.51b) is the solid angle �, which goes away for d = 0.

5.7 NUMERICAL VALUES OF PARTIAL INDUCTANCES
AND SIGNIFICANCE OF INTERNAL INDUCTANCE

It is helpful to obtain some representative values of the self and mutual partial
inductances for typical configurations. The self partial inductance of a wire
of radius rw and length l is obtained as

Lp = 2 × 10−7 l

⎡
⎣ln

⎛
⎝ l

rw
+

√(
l

rw

)2

+ 1

⎞
⎠

−
√

1 +
(

rw

l

)2

+ rw

l

⎤
⎦ (5.18a)

Observe that this depends on the ratio of the wire length and the wire radius:
l/rw. It is typical to specify wire radii rw in mils (1000 mils=1 in. and
1 in.=2.54 cm). Also observe that the length of the wire, l, also appears outside
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the equation. Hence, it is not possible to speak of an absolute per-unit-length
inductance as is the case for a two-wire transmission line of infinite length.
Nevertheless, we can divide both sides of (5.18a) by the wire length and obtain
a universal plot of the ratio of self partial inductance per unit length, Lp/l,
versus the ratio l/rw as

Lp

l
= 5.08

⎡
⎣ln

⎛
⎝ l

rw
+

√(
l

rw

)2

+ 1

⎞
⎠

−
√

1 +
(

rw

l

)2

+ rw

l

⎤
⎦ nH/in. (5.61)

This is shown in Fig. 5.22 for ratios of 10 ≤ l/rw ≤ 500. For example, a
No. 20 gauge (AWG) wire is a common wire size and has a radius of 16 mils.
Hence, the last ratio of 500 plotted represents a wire length of 8 in. for a No. 20
gauge wire (30.02 nH/in.), and a ratio of 10 represents a length of 0.16 in.,
or about 3/16 in. (10.63 nH/in.). Because the wire length l appears outside
the result, it is not possible to state a single per-unit-length value of the self
partial inductance. But the plot in Fig. 5.22 indicates that a reasonable rule of
thumb for practical wire sizes and wire lengths is a value of between 15 and
30 nH/in.

Self partial inductance (nH/inch)

Ratio of wire length to wire radius, l/rw

L
p/

l (
nH

/in
ch

)

35

30
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10
0              100             200             300            400             500

FIGURE 5.22. Plot of Lp/l (nH/in.) vs. the ratio of wire length to wire radius, l/rw.
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We obtained the dc per-unit-length value of the internal inductance of a
wire (which is independent of the wire radius) as

linternal = μ0

8π

= 0.5 × 10−7H/m

= 1.27nH/in. (5.62)

Technically, this should be multiplied by the wire length and added to the ex-
ternal self partial inductance in (5.18a) to give the total self partial inductance:

Lp,total = Lp,(5.18a) + linternal × l (5.63)

But we see from Fig. 5.22 that for practical situations the internal inductance
of the wire can generally be neglected. Furthermore, the value for the internal
inductance in (5.62) is its value at dc. As frequency is increased from zero, the
current tends to move toward the surface of the wire, and hence the internal
inductance goes to zero. This gives further support to the observation that the
internal inductance can generally be neglected.

The mutual partial inductance between two wires of common length l and
separation d is obtained as

Mp = 2 × 10−7 l

⎡
⎣ln

⎛
⎝ l

d
+

√(
l

d

)2

+ 1

⎞
⎠

−
√

1 +
(

d

l

)2

+ d

l

⎤
⎦ (5.21a)

As was the case for self partial inductance, notice that this depends on the
ratio of wire length to wire separation, l/d. But the wire length, l, also appears
outside the result, so it is not possible to speak of an absolute value of per-
unit-length mutual inductance, as is the case for a transmission line of infinite
length. Nevertheless, we can divide both sides of (5.21a) by the wire length
and obtain a universal plot of the ratio of the per-unit-length mutual partial
inductance, Mp/l, versus the ratio l/d as

Mp

l
= 5.08

⎡
⎣ln

⎛
⎝ l

d
+

√(
l

d

)2

+ 1

⎞
⎠ −

√
1 +

(
d

l

)2

+ d

l

⎤
⎦ nH/in.

(5.64)

This is plotted in Fig. 5.23 for ratios of 1 ≤ l/d ≤ 100. For example, a ratio
of 80 would apply to two wires of length 5 in. and a separation between them
of 0.0625 in., or 1/16 in. (20.77 nH/in.), and a ratio of 10 would apply to
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Mutual partial inductance (nH/inch)
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FIGURE 5.23. Plot of Mp/l in (nH/in.) vs. the ratio of wire length to wire separation l/d.

two wires of length 5 in. and a separation between them of 1/2 in. (10.63
nH/in.). Observe that as the wire separation increases without bound (i.e., the
ratio goes to zero), the mutual partial inductance goes to zero: an expected
result. Similarly, as the wire separation goes to zero (approaches the radii of
the wires) (i.e., the ratio increases), the mutual partial inductance approaches
the self partial inductance shown in Fig. 5.22: again, an expected result.

5.8 CONSTRUCTING LUMPED EQUIVALENT CIRCUITS
WITH PARTIAL INDUCTANCES

Unlike the case of loop inductances, for current loops whose borders are
bounded by piecewise-linear segments of wires, there are no further partial
inductances to be derived. We simply “put together” the partial inductances
(self and mutual) derived previously in this chapter and “turn the crank.”
We construct an equivalent lumped-circuit model that can be solved with,
for example, the SPICE circuit analysis computer program [2]. To do so,
we finally need to discuss the allocation of the dots in an inductor equivalent
circuit of the segments. The key to doing so is to be able to determine correctly
the total voltage developed across the segment, magnitude and polarity, by
using the dot convention that replicates the derivation of that inductance in this
chapter. The self partial inductance of a segment determines the voltage across
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Ij Ij
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Mpij
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FIGURE 5.24. Mutual partial inductance between pairs of segments.

it that is due to the current through the element according to the passive sign
convention: Current entering one end of the inductance produces a voltage
across the element that is positive at that end. The dots do not have anything
to do with this self voltage.

Let us first address the situation for a pair of segments shown in Fig. 5.24.
The dots are placed on the ends of two elements so that the magnitude and
polarity of the contribution to the voltage across one of the elements that is
due to the current through the other element via the mutual partial inductance
between the associated segments will be determined correctly. The key to
doing so is to replicate the situation for which the mutual partial inductance
between two segments was as derived in this chapter. Note that if a current I
on one segment enters the dotted end of that segment, a voltage MpdI/dt will
be developed along the other segment that is positive at the dotted end of that
segment:

Vi = Mpij

dIj

dt

The key to getting the dots placed correctly on a pair of segments is observed
to be in the relation between the current in one segment and the direction of
the vector magnetic potential A along the other segment, which was used in
the derivations of the mutual partial inductance. The vector magnetic potential
A is everywhere parallel to the current that produced it. Hence, the positive
terminal of the induced voltage is on the end of the segment that A enters, as
shown in Fig. 5.24. In other words, A points from the positive terminal of the
induced voltage to the negative terminal of the induced voltage.

This can be done easily for a pair of elements. For more than two cou-
pled segments we must arbitrarily place the dots on the ends of the inductor
symbols for each segment. But some of the mutual partial inductances may
turn out to be negative for that placement. A good example of this is the rect-
angular loop shown in Fig. 5.1. The inductive equivalent circuit is shown in
Fig. 5.3 and the dots are assigned arbitrarily. Observe that a current directed
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FIGURE 5.25. Assigning dots to the segments.

down through the right segment of the loop produces a vector magnetic po-
tential along the left side of the loop that is also directed downward. But this
is opposite the assigned dotted terminal of the left inductor. Hence, M13 here
is negative.

Figure. 5.25 shows an example of this. Assigning the dots arbitrarily gives
the inductive equivalent circuit in Fig. 5.25(b). The voltage across the first
inductor is assigned the polarity of positive at its dotted end. Directing a
current I1 through the first inductor that enters the assigned dotted end of it
as shown in Fig. 5.25(a) generates vector magnetic potentials along the other
segments that enters the dotted end of the third segment (assigned arbitrarily)
so that the mutual inductance between the first and third inductors is positive
as Mp13. But current I1 that enters the dotted terminal of the first inductor
(arbitrarily assigned) generates a vector magnetic potential that enters the
undotted end of the second segment (assigned arbitrarily) so that the mutual
partial inductance between that pair is −Mp12, where Mp12 here has a positive
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value. Hence, using the dot convention, the voltage generated across the first
inductor that is due only to the mutual inductances is

V1 = − (−Mp12
) dI2

dt
− Mp13

dI3

dt

= +Mp12
dI2

dt
− Mp13

dI3

dt

Computer-aided circuit analysis programs such as SPICE require that all self
inductances such as Lp here must be positive. However, there are no restric-
tions on the signs of any of the mutual inductances: Some may have negative
values.



6
PARTIAL INDUCTANCES OF
CONDUCTORS OF RECTANGULAR
CROSS SECTION

In this chapter we obtain the self and mutual partial inductances for conductors
of rectangular cross section, referred to here as printed circuit board (PCB)
lands. Figure 6.1 shows this type of conductor. The width is denoted as w, the
length is denoted as l, and the thickness is denoted as t.

In previous chapters we have detailed the computation of inductances for
conductors having circular, cylindrical cross sections (i.e., wires). The com-
putation of the partial inductances of and between wires is fairly simple, for
an important reason. We consistently made the assumption that the current
carried by a wire is uniformly distributed over the cross section of the wire
which is true for dc and widely spaced wires. In this case, for the purposes of
computing the magnetic fields from that wire, we can replace the wire with a
filament containing the total current I = JA, where J is the uniform current
density distribution and A is the area of the wire cross section. This is an
extraordinarily important simplifying assumption, for a number of reasons.
First, we can equate the self partial inductance of a wire having a uniform
current distribution over its cross section to the total magnetic flux threading
the surface formed between the surface of the wire and infinity per unit of
that current. No matter what radial direction about the wire we choose to
go to infinity, the result is the same since the magnetic field is symmet-
ric about the wire. This provides important alternative methods of directly

Inductance: Loop and Partial, By Clayton R. Paul
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t

w

l

FIGURE 6.1. Printed circuit board land.

computing the self and mutual partial inductances of wires. We can directly
compute the magnetic flux through that surface from the surface integral of the
magnetic flux density vector B, or we could integrate via a line integral the
vector magnetic potential A along the surface of the wire, which leads to
the third method, the Neumann integral.

Now consider the case of the PCB land. Even if we assume that the current
is distributed uniformly over the cross section of the land (as we do in this
chapter), the magnetic fields about the land do not form concentric circles,
and hence we cannot replace the land with an equivalent filament containing
the total current for the purposes of computing the magnetic fields due to
it. [See Chapter 2 for the fields around an infinitely long, flat conductor of
width W given in (2.70).] Hence, for lands, we can no longer relate the partial
inductances to the magnetic flux between the land surface and infinity: From
which point on the land shall we draw the boundaries of the surface? Although
the magnetic fields about a land will appear at very large distances as though
they are due to the current from a filament, the computation of the flux at
nearer distances is dominant.

We need another way of meaningfully formulating the partial inductances
of and between lands. In the next section we derive that formulation in terms
of stored energy in the magnetic field. A fundamental assumption in that
derivation is again that the current is distributed uniformly over the cross
section of the land. This assumption is also true for dc currents and will provide
a simplification in the computation, as we will see. When is this assumption
of a uniform current distribution over the land cross section invalidated? As
in the case of wires, adjacent land currents will cause the currents to migrate
toward the facing surfaces of the lands in the same way that closely spaced
wires will cause their current distributions to move toward the facing surfaces
of the wires. This is again the phenomenon of “proximity effect.” For wires,
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this was not pronounced enough to invalidate the replacement of the wire
with a filament as long as the ratio of wire separation to wire radius was larger
than about 4 (i.e., for two identical wires, another identical wire would just
fit between the two). So this assumption of uniform current distribution over
the cross section of the wire and the subsequent replacement of the wire with
a filament is not a limiting assumption for wires having typical separations.
For two lands this region of separation for the current to be approximately
uniformly distributed over the cross section cannot easily be determined, but
we will make the assumption that the proximity effect is not pronounced in
order to make computation of the self and mutual partial inductances feasible.
We provide numerical computations in Section 6.5 to give us some feel for
what “too close” means for this problem.

Recall that the fundamental computation of inductance is for dc currents!
If a wire or a PCB land carries a dc current and is isolated from other wires
or PCB lands, the current will be distributed uniformly over the wire or land
cross section. For wires, as the frequency of the current increases from dc, the
current will crowd to the surface, lying in a region of the surface of thickness
on the order of a skin depth, but the current will remain symmetric about the
wire axis and can still be replaced by a filament as long as the wire is not “too
close” to other wires. The internal inductance will go to zero but the external
inductances will remain the same. In the case of a PCB land, as the frequency
of the current also increases from dc, the current will migrate toward the
surface of the land but it will also peak at the sharp corners of the land, as
numerical computations in Section 6.5 will show. Hence, the advantage of a
wire current of increasing frequency remaining symmetric about the wire axis
is not shared by the PCB land, even if the proximity effect is not pronounced.

This prior discussion illustrates that although the computation of loop and
partial inductances for wires was rather straightforward, the same computa-
tions for PCB lands will be much more difficult. Even using the assumption
that the current is uniformly distributed over the cross section of the land, the
computation of its self and mutual partial inductances is considerably more
difficult than for wires. Hoer and Love [16] provide general formulas for the
self and mutual inductances of PCB lands. These formulas are not derived in
[16], but in the following we provide detailed derivations of them. Again the
derivations of these formulas for PCB lands are very complicated, as are the
resulting formulas themselves.

6.1 FORMULATION FOR THE COMPUTATION
OF THE PARTIAL INDUCTANCES OF PCB LANDS

As indicated previously, we need to determine a suitable method for computing
the self and mutual partial inductances of PCB lands. The method we use is in
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terms of the energy stored in the magnetic field. First recall that the magnetic
energy stored in the magnetic field is given by

WM = 1
2

∫
all space

B · H dv J (6.1)

Recall that we define the vector magnetic potential A in terms of the magnetic
flux density vector B as B = ∇ × A. Substituting into 6.1 gives

WM = 1
2

∫
all space

(∇ × A) · H dv (6.2)

Substituting the vector identity [3]

(∇ × A) · H = ∇ · (A × H) + A · (∇ × H) (6.3)

into (6.2) and using Ampère’s law for dc currents, ∇ × H = J, gives

WM = 1
2

∫
all space

∇ · (A × H) dv + 1
2

∫
all space

A · J dv (6.4)

Applying the divergence theorem (see the Appendix) to the first integral gives

WM = 1
2

∮
s∞

(A × H) · ds + 1
2

∫
all space

A · J dv (6.5)

where s∞ is the closed surface at infinity. Now recall the Biot–Savart law
in (2.11) and the equation for computing the vector magnetic potential in
(2.47a). These show that at points far from a finite current distribution, the
magnitude of A will decrease at a rate greater than or equal to the inverse
distance (1/r), and the magnitude of B will decrease at a rate greater than
or equal to the inverse distance squared (1/r2). The A and B fields of some
current distributions, such as the current loop in Fig. 2.25 whose fields were
derived in Chapter 2, decrease at large distances from the loop at a greater rate:
1/r2 and 1/r3, respectively. In spherical coordinates, the differential surface is
ds = r2 sin θ dθ dφ. Since the product of the magnitudes of A and H decrease
at a rate no less than 1/r3, the first integral in (6.5) over the surface at infinity,
s∞, will go to zero. The remaining integral is over all space, but the current
density J is zero except where the current is located. Hence, the result for the
stored energy is an integral only over the volume containing the current:

WM = 1
2

∫
throughout
the volume

containing the
current

A · J dv

(6.6)

Now consider applying the result in (6.6) to the case of two lands. Each
land carries a total current I1 and I2, respectively. The total vector magnetic
potential in the space around the two lands is A = A1 + A2, where A1 is due



250 PARTIAL INDUCTANCES OF CONDUCTORS OF RECTANGULAR CROSS SECTION

to current I1 that is carried by land 1, and A2 is due to current I2 that is carried
by land 2. The total magnetic energy in the field surrounding the lands is

WM = 1
2

∫
v1

A · J1 dv1 + 1
2

∫
v2

A · J2 dv2 (6.7)

where volumes v1 and v2 are the volumes of the respective lands that en-
close the respective current densities, J1 and J2. Substituting the total vector
magnetic potential in the space surrounding the two lands, A = A1 + A2,
gives

WM = 1
2

∫
v1

A1 · J1 dv1 + 1
2

∫
v2

A1 · J2 dv2 + 1
2

∫
v2

A2 · J2 dv2

+ 1
2

∫
v1

A2 · J1 dv1 (6.8a)

Our intent is to derive self and mutual partial inductances that can be used to
model these two lands, as illustrated in Fig. 5.6. The total magnetic energy in
the field is represented in terms of self and mutual partial inductances of the
two lands as

WM = 1
2 Lp1 I2

1 + 1
2 Mp12 I1I2 + 1

2 Lp2 I2
2 + 1

2 Mp21 I2I1 (6.8b)

and of course the mutual partial inductances are reciprocal (i.e., Mp12 =
Mp21). Comparing (6.8a) and (6.8b), the various self and mutual partial in-
ductances can be found from

Lp1 = 1

I2
1

∫
v1

A1 · J1 dv1 (6.9a)

Lp2 = 1

I2
2

∫
v2

A2 · J2 dv2 (6.9b)

Mp12 = 1

I1I2

∫
v2

A1 · J2 dv2 (6.9c)

Mp21 = 1

I1I2

∫
v1

A2 · J1 dv1 (6.9d)

Next we substitute the equation for the vector magnetic potential given in
(2.47a),

A = μ0

4π

∫
v

J dv

R
(2.47a)
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giving

Lp1 = 1

I2
1

∫
v1

∫
v1

μ0

4π

J1 · J′
1

R
dv′

1 dv1 (6.10a)

Lp2 = 1

I2
2

∫
v2

∫
v2

μ0

4π

J2 · J′
2

R
dv′

2 dv2 (6.10b)

Mp12 = 1

I1I2

∫
v1

∫
v2

μ0

4π

J′
1 · J2

R
dv2 dv′

1 (6.10c)

Mp21 = 1

I1I2

∫
v2

∫
v1

μ0

4π

J′
2 · J1

R
dv1 dv′

2 (6.10d)

where the term R is the distance between two differential chunks of current
Ji dvi and J′

j dv′
j. We have denoted one current density with a prime to denote

that chunk of current J′ dv′ as being the cause of A and it lies in the differ-
ential volume dv′, whereas the differential chunk of current J dv lies in the
differential volume dv.

It is important to point out the following observation about the internal
inductances of lands:

Since the formulations for determining the self and mutual partial in-
ductances in (6.10) result from the integration of the magnetic energy
density over all space (including that internal to the lands), the results
for the self partial inductances in (6.10a) and (6.10b) include the inter-
nal self inductances of the lands due to the magnetic fields internal to
them.

As the frequency of the current increases from dc, the current distribution
over the land cross sections migrate to the outer edges of the lands, and hence
the internal inductances go to zero, so that (6.10a) and (6.10b) for higher
frequencies represent the external self partial inductances. This will be shown
through numerical computations later. However, it would not be simple to
determine the external self partial inductances by integrating (6.10) only over
a thin volume near the land surfaces that contains the total land current, since
the high-frequency current distribution peaks at the corners of the lands, and
this would generate a very difficult computation. It turns out that Holloway
and Kuester have recently derived the result for the internal self inductance
of a PCB land [18]. Their result for a square land was 48.3nH/m, which had
been confirmed with numerical computation [19]. This is on the order of the
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internal inductance of a circular wire (50nH/m), which is independent of the
wire radius.

Now we make two crucial assumptions in order to make the results in (6.10)
useful for computing the self and mutual partial inductances of PCB lands.

1. Assume that the currents I with density J in volume v that are carried by
the lands are uniformly distributed over the cross sections of those lands.
Hence, we can simply write the magnitudes of the current distributions
as J = I/A, where A denotes the cross-sectional area of the respective
lands.

2. Assume that the currents J in v that are carried by the lands are also
uniformly distributed along the lengths of the lands. This agrees with
the fundamental limitation that the conductors must be electrically short
for currents of nonzero frequency in order to represent those conductors
with lumped-circuit elements such as an inductance. Hence, we can
write

J dv = I

A
dA dl

With these two assumptions the magnitudes of the current densities, J,
are constants (independent of the longitudinal as well as the cross-sectional
variables of the lands) and can therefore be removed from the integrals in
(6.10). Hence, the results in (6.10) simplify considerably. The self partial
inductances are then computed from

Lp = 1

A A′

∫
A

∫
A′

Mf dA′ dA (6.11a)

where A and A′ are over the same land, and Mf is the Neumann integral de-
noting the mutual partial inductance between two filamentary currents (within
the same land) that are separated by distance R:

Mf = μ0

4π

∫
l

∫
l

dl′ · dl
R

(6.12)

In the case of two different lands, the mutual partial inductance between them
is obtained from

Mp = 1

A A′

∫
A

∫
A′

Mf dA′ dA (6.11b)
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where A and A′ are over different lands, and Mf in (6.12) denotes the mutual
partial inductance between two filamentary currents (in different lands) that
are separated by distance R.

So the computation of the self and mutual partial inductances essentially
involves representing the currents of each land as being composed of filaments.
We obtain the total self and mutual partial inductances of the lands as the
summation, over the cross-sectional areas of the lands, of these mutual partial
inductances between the filaments. Note that (6.11a) and (6.11b) for the self
and mutual partial inductances seem to indicate an “averaging” over the cross-
sectional areas of the lands. This averaging is not in the derivation of the result
from the outset (i.e., it is not an approximation, but just comes out of the formal
derivation). The computations in (6.11a) and (6.11b) involve sixfold integrals:
two over the filament lengths and four over the cross-sectional areas of the
lands. But the mutual partial inductance between filaments was derived in
Chapter 5 and given in Section 5.5. For parallel but offset filaments of length
l and m separated by distance d and whose endpoints are offset by distance
s with reference to Fig. 5.11, the mutual partial inductance between the two
parallel but offset filaments is given as

Mf = μ0

4π

[
(l + s + m) sinh−1 l + s + m

d
− (s + m) sinh−1 s + m

d

− (l + s) sinh−1 l + s

d
+ s sinh−1 s

d
−

√
(l + s + m)2 + d2

+
√

(s + m)2 + d2 +
√

(l + s)2 + d2 −
√

s2 + d2

]
(5.28)

This can be put into an alternative form by using the identity for the inverse
hyperbolic sine:

sinh−1 z

d
= ln

⎡
⎣ z

d
+

√(
z

d

)2

+ 1

⎤
⎦

= ln
(
z +

√
z2 + d2

)
− ln d (D700.1)

as

Mf = μ0

4π

[
f (z)

] ∣∣∣∣∣ (l+s+m),s
(z)

(s+m),(l+s)

= μ0

4π

[
f (l + s + m) − f (s + m) + f (s) − f (l + s)

] (6.13a)
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where

f (z) = z ln
(
z +

√
z2 + d2

)
−

√
z2 + d2 (6.13b)

Note that the − ln d term in the identity in (D700.1) cancels out because we
add and subtract this term twice in (5.28).

6.2 SELF PARTIAL INDUCTANCE OF PCB LANDS

For self partial inductance calculations, the mutual partial inductance be-
tween two parallel filaments in (6.13) simplifies since the two filaments are
of identical length l and their endpoints coincide, giving m = l and s = −l.
Hence, (6.13) reduces to

Mf = μ0

4π

[
f (z)

] ∣∣∣∣∣l,−l

(z)
0,0

= μ0

4π

[
f (l) − f (0) + f (−l) − f (0)

]
= μ0

4π

[
l ln

(
l +

√
l2 + d2

)
− l ln

(
−l +

√
l2 + d2

)
− 2

√
l2 + d2 + 2d

]
= μ0

2π

(
l sinh−1 l

d
−

√
l2 + d2 + d

)
m = l, s = −l

(6.14)

which agrees with (5.21b), which was derived directly in Chapter 5.
We first compute the self partial inductance for a land of zero thickness,

t = 0. Hence, we integrate the mutual partial inductances of filaments in (6.14)
that are separated by distance d2 = (x2 − x1)2 first from x1 = 0 to x1 = w and
then integrate that result from x2 = 0 to x2 = w. Hence, we integrate (6.11a)
over the same cross-section land to give

Lp(t=0) = μ0

4π

1

w2

∫ w

x2=0

∫ w

x1=0
Mf dx1 dx2 t = 0 (6.15)

as illustrated in Fig. 6.2. The inner integral is evaluated first:

(I) =
∫ w

x1=0

[
z ln

(
z +

√
z2 + d2

)
−

√
z2 + d2

]
dx1

and d2 = (x1 − x2)2. Since z here is treated as a constant, we evaluate f (z)
in the integrand at the four limits of z = l, −l, 0, 0 as in (6.14) after we
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x

x1

x2

d

w

FIGURE 6.2. Computation of the self partial inductance for a land of zero thickness (t = 0).

have finished the integrations. Making a change of variables as λ = x1 − x2,
dλ = dx1 gives

(I) =
∫ w−x2

λ=−x2

[
z ln

(
z +

√
z2 + λ2

)
−

√
z2 + λ2

]
dλ

which is equivalent to

(I) =
∫ x2

λ=x2−w

[
z ln

(
z +

√
z2 + λ2

)
−

√
z2 + λ2

]
dλ

This can be integrated using integrals from Dwight [7]:∫
ln

(
z +

√
z2 + λ2

)
dλ = λ ln

(
z +

√
z2 + λ2

)
−λ + z ln

(
λ +

√
z2 + λ2

)
(D740)

∫ √
z2 + λ2 dλ = z2

2
ln

(
λ +

√
z2 + λ2

)

+λ

2

√
z2 + λ2 (D230.01)

Hence, the inner integral evaluates to

(I) =
[
λz ln

(
z +

√
z2 + λ2

)
− λz + z2

2
ln

(
λ +

√
z2 + λ2

)

− λ

2

√
z2 + λ2

]x2

λ=x2−w

Note that this result contains a term −λz. But when this is evaluated for the
four values of z, z = l, −l, 0, 0, it will cancel out:[

f (z)
] l,l

(z)
0,0

= [
f (l) − f (0) + f (−l) − f (0)

]
= −λl + λl

= 0
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Hence, we ignore this term. This gives

(I) =
[
λ z ln

(
z +

√
z2 + λ2

)
+ z2

2
ln

(
λ +

√
z2 + λ2

)

− λ

2

√
z2 + λ2

]x2

λ=x2−w

=
[
x2 z ln

(
z +

√
z2 + x2

2

)
+ z2

2
ln

(
x2 +

√
z2 + x2

2

)
− x2

2

√
z2 + x2

2

]

−
[
(x2 − w) z ln

(
z +

√
z2 + (x2 − w)2

)

+ z2

2
ln

(
(x2 − w) +

√
z2 + (x2 − w)2

)

− (x2 − w)

2

√
z2 + (x2 − w)2

]
Next, we integrate (I) from x2 = 0 to x2 = w:

(II) =
∫ w

x2=0
(I) dx2

giving

(II) =
∫ w

x2=0

[
x2 z ln

(
z +

√
z2 + x2

2

)
+ z2

2
ln

(
x2 +

√
z2 + x2

2

)

− x2

2

√
z2 + x2

2

]
dx2

+
∫ −w

λ=0

[
λ z ln

(
z +

√
z2 + λ2

)

+ z2

2
ln

(
λ +

√
z2 + λ2

)
− λ

2

√
z2 + λ2

]
dλ

and we have used a change of variables λ = x2 − w, dλ = dx2 in the second
integral. These integrals can be evaluated using Dwight [7]:∫

λ ln
(
z +

√
z2 + λ2

)
dλ = −λ2

4
+ z

2

√
z2 + λ2

+λ2

2
ln

(
z +

√
z2 + λ2

)
(D602.5)∫

ln
(
λ +

√
z2 + λ2

)
dλ = λ ln

(
λ +

√
z2 + λ2

)
−

√
z2 + λ2 (D625)
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∫
λ
√

z2 + λ2 dλ = 1
3

(
z2 + λ2

)3/2
(D231.01)

to give

(II) =
[
−λ2z

4
+ zλ2

2
ln

(
z +

√
z2 + λ2

)
+ z2λ

2
ln

(
λ +

√
z2 + λ2

)

− 1

6

(
z2 + λ2

)3/2
]w,−w

λ=0,0

Once again this contains a term −λ2z/4, which will be canceled out when this
is evaluated at the four limits of z, z = l, −l, 0, 0, so it will also be ignored.

Hence, the result gives the self partial inductance of a land of zero thickness
(t = 0) as

Lp(t=0) = μ0

4π

1

w2

[
f (λ, z)

] ∣∣∣∣∣w,−w
(λ)
0,0

∣∣∣∣∣l,−l

(z)
0,0

t = 0 (6.16a)

where

f (λ, z) = zλ2

2
ln

(
z +

√
z2 + λ2

)
+ z2λ

2
ln

(
λ +

√
z2 + λ2

)

−1

6

(
z2 + λ2

)3/2
(6.16b)

Evaluating this gives

Lp(t=0) = μ0

4π

1

w2

[
f (λ, z)

] ∣∣∣∣∣w,−w
(λ)
0,0

∣∣∣∣∣l,−l

(z)
0,0

t = 0

= μ0

4π

1

w2

⎡
⎢⎢⎢⎢⎣

+f (w, l) − f (w, 0) + f (w, −l) − f (w, 0)

−f (0, l) + f (0, 0) − f (0, −l) + f (0, 0)

+f (−w, l) − f (−w, 0) + f (−w, −l) − f (−w, 0)

−f (0, l) + f (0, 0) − f (0, −l) + f (0, 0)
]

⎤
⎥⎥⎥⎥⎦

(6.17)

Note that f (0, 0) = 0. In the sum in (6.17), the following identity may be used:

ln
(
a +

√
a2 + b2

)
− ln

(
−a +

√
a2 + b2

)
= 2 ln

⎡
⎣a

b
+

√(
a

b

)2

+ 1

⎤
⎦

This identity can be confirmed by writing the left side as ln A − ln B =
ln (A/B) and comparing the arguments of the natural logarithms on both
sides. Caution should be observed in evaluating the term

(
z2 + λ2

)3/2
. When
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either z = 0 or λ = 0, the absolute values of z or λ should be used:[(
z2 + λ2

)3/2
]

z=0 or λ=0
= |λ|3 or |z|3

Finally, in evaluating the terms in (6.17) we should note that

lim︸︷︷︸
x→0

x ln [ax] = 0

as can be proven using l′Hôpital’s rule. This gives the self partial inductance
of a PCB land of zero thickness, t = 0, as

Lp(t=0) = μ0

2π

1

w2

⎡
⎣lw2 ln

⎛
⎝ l

w
+

√(
l

w

)2

+ 1

⎞
⎠

+ l2w ln

⎛
⎝w

l
+

√(
w

l

)2

+ 1

⎞
⎠

+ 1

3

(
l3 + w3

)
− 1

3

(
l2 + w2

)3/2

⎤
⎦ t = 0

(6.18)

which agrees with the formula given by Hoer and Love [16].
The result for infinitesimally thin lands in (6.18) can be written compactly

in terms of the “aspect ratio” of the land as the ratio of the land length to land
width, u = l/w:

Lp(t=0)

l
= μ0

2π

⎡
⎣ ln

(
u +

√
u2 + 1

)
+ u ln

⎛
⎝1

u
+

√(
1

u

)2

+ 1

⎞
⎠

+ 1

3

(
u2 + 1

u
−

(
u2 + 1

)3/2

u

)⎤
⎦ u = l

w
, t = 0

(6.19)

This can be simplified for extreme values of the “aspect ratio” of the lands:
u 	 1 (very “long” lands, l 	 w) or u � 1 (very “wide” lands, l � w). We
have the following identities [7]:

ln(u +
√

u2 + 1) =

⎧⎪⎪⎨
⎪⎪⎩

ln 2u + 1

4 u2
− 3

32 u4
+ · · · u > 1

u − 1

6
u3 + 3

40
u5 + · · · u < 1

(D602.1)
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ln

⎡
⎣1

u
+

√(
1

u

)2

+ 1

⎤
⎦ =

⎧⎪⎪⎨
⎪⎪⎩

1

u
− 1

6u3
+ 3

40u5
+ · · · u > 1

ln
2

u
+ u2

4
− 3u4

32
+ · · · u < 1

(D602.5)

The result in (D602.5) follows from (D602.1) by substituting u = 1/x into
(D602.1). In addition, we have the series expansion

(1 + x)n = 1 + nx + n(n − 1)

2!
x2 + n(n − 1)(n − 2)

3!
+ · · · x2 ≤ 1 (D1)

Using (D1) we obtain approximations for the term
(
u2 + 1

)3/2
for u ≤ 1:(

u2 + 1
)3/2 = 1 + 3

2
u2 + 3

8
u4 + · · · u ≤ 1

∼= 1 + 3

2
u2 u � 1

and for u ≥ 1:(
u2 + 1

)3/2 = u3
(

1

u2
+ 1

)3/2

= u3
(

1 + 3

2

1

u2
+ 3

8

1

u4
+ · · · +

)
u ≥ 1

∼= u3 + 3

2
u u 	 1

Hence the last term in (6.19) becomes

1

3

(
u2 + 1

u
−

(
u2 + 1

)3/2

u

)
∼=

⎧⎪⎪⎨
⎪⎪⎩

−1

2
+ 1

3u
u 	 1

−1

2
u + 1

3
u2 u � 1

Hence, (6.19) should approach

Lp(t=0)

l
∼= μ0

2π

⎧⎪⎪⎨
⎪⎪⎩

ln 2u + 1

2
+ 1

3u
u 	 1, l 	 w

u

(
ln

2

u
+ 1

2
+ u

3

)
u � 1, l � w

(6.20)

The following table summarizes some computed data comparing (6.19) and
(6.20).

u (6.19) (6.20)

10 17.925 nH/in. 17.928 nH/in.

100 29.472 nH/in. 29.473 nH/in.
1

10 1.7927 nH/in. 1.7928 nH/in.
1

100 0.2946 nH/in. 0.2947 nH/in.
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FIGURE 6.3. Computing the self partial inductance of a PCB land of nonzero thickness.

For very large aspect ratios, l 	 w, the self partial inductance approaches a
variation of 5.08

[
ln (2l/w) + 1

2

]
nH/in. For this to give the same result as

in (5.18c) for a “long” wire would require the land to be replaced by a wire
whose diameter is 0.446w. This tends to support a commonly held design rule
that rectangular straps have less “inductance” than do comparable sized wires.

Now we turn our attention to PCB lands with nonzero thicknesses, as
illustrated in Fig. 6.3. In this case we must integrate (6.11b) over the entire
cross section:

Mp = 1

A A′

∫
A

∫
A′

Mf dA′ dA (6.11b)

The mutual inductance between the filaments, Mf , is the same as in (6.14)
but with

d2 = (x2 − x1)2 + (y2 − y1)2 (6.21)

Hence, the integral we must evaluate is

Lp = 1

t2w2

∫ t

y2=0

∫ t

y1=0

∫ w

x2=0

∫ w

x1=0
Mf dx1 dx2 dy1 dy2 (6.22)

and, since z in Mf is treated here essentially as a constant, we evaluate the
result at the limits of z = l, −l, 0, 0 according to (6.14) after we finish the
integration. The interior integrals with respect to x represent the self partial
inductances of two identical lands of zero thickness that we integrated before,
but we must repeat that because d2 in Mf is no longer just (x2 − x1)2 but is
given now by (6.21). The first two integrals with respect to x1 and x2 are fairly
simple to integrate, and the process is very similar to what was done to obtain
the result for a land of zero thickness in (6.15). Once these are performed,
we are left with the integrals with respect to y1 and y2. The entire process,
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although straightforward, is exceedingly tedious. Hoer and Love give that
result [16] as

Lp = μ0

4π

1

t2w2

[[[
f (x, y, z)

] w
(x)

0

]
t

(y)
0

]
l

(z)
0

(6.23a)

where[[[
f (x, y, z)

] q1

(x)
q2

]
r1

(y)
r2

]
s1

(z)
s2

=
2∑

i=1

2∑
j=1

2∑
k=1

(−1)i+j+k+1 f
(
qi, rj, sk

)

(6.23b)

and f (x, y, z) is given by

f (x, y, z) =
(

y2z2

4
− y4

24
− z4

24

)
x ln

x + √
x2 + y2 + z2√
y2 + z2

+
(

x2z2

4
− x4

24
− z4

24

)
y ln

y + √
x2 + y2 + z2

√
x2 + z2

+
(

x2y2

4
− x4

24
− y4

24

)
z ln

z + √
x2 + y2 + z2√
x2 + y2

+ 1

60

(
x4 + y4 + z4 − 3x2y2 − 3y2z2 − 3x2z2

)√
x2 + y2 + z2

−xyz3

6
tan−1 xy

z
√

x2 + y2 + z2

−xy3z

6
tan−1 xz

y
√

x2 + y2 + z2

−x3yz

6
tan−1 yz

x
√

x2 + y2 + z2

(6.23c)

Ruehli shows [15] that the general result in (6.23) can be written solely in
terms of u = l/w and v = t/w. One would expect that the self partial induc-
tance should vary in a smooth fashion as a function of u = l/w and v = t/w.
Hence, it should be possible to obtain a general formula that is much simpler
than (6.23) by curve fitting to computed data from (6.23) or Ruehli’s version
of it. Ruehli in [15] also points out that for extreme values of the aspect ratios
of u = l/w and v = t/w, the general result in (6.23) may involve subtraction of
terms of similar magnitude, thereby giving numerical errors. He gives a more
stable form of this result in [15]. His computations also show that the result
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for a land of zero thickness in (6.19) gives reasonable accuracy for v<0.1. In
addition, his results show that the zero-thickness land result in (6.19) gives
approximately the same result as (6.23) for all values of v and u>100 (i.e.,
for “very long” lands). Hoer and Love [16] give an approximation for the
general result in (6.23) for v = t/w ≤ 0.1 using the zero-thickness land result
in (6.19) as

Lp
∼= Lp (t=0) − 2 × 10−7 t

w
l w ≥ 10t (6.24)

6.3 MUTUAL PARTIAL INDUCTANCE BETWEEN PCB LANDS

Calculating the mutual partial inductance between lands follows a pattern
similar to that for self partial inductance. Treat each land as a set of filaments
and use the basic result

Mp = 1

A A′

∫
A

∫
A′

Mf dA′ dA (6.11b)

In this case the lands may be offset from each other and hence we use the
general relation for the mutual partial inductances between two filaments of
lengths l and m which are offset from each other by a distance s as shown in
Fig. 5.11. Hence, the mutual partial inductance between the two filaments is
given by (5.28), which may be written as

Mf = μ0

4π

[
f (z)

] ∣∣∣∣∣ (l+s+m),s
(z)

(s+m),(l+s)

= μ0

4π

[
f (l + s + m) − f (s + m) + f (s) − f (l + s)

]
(6.13a)

where

f (z) = z ln
(
z +

√
z2 + d2

)
−

√
z2 + d2 (6.13b)

If the lands (and their associated filaments) overlap, s will be negative by the
amount of overlap.

We first obtain the mutual partial inductance between two lands of zero
thickness whose lengths in the z direction are l and m and whose surfaces
are parallel to each other (but perhaps offset by distance s) as shown in
Fig. 6.4(a). For this case, d in (6.13b) is the distance in the xy plane between
the filaments composing each land and is given by

d2 = (x2 − x1)2 + b2 (6.25)
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FIGURE 6.4. Computing the mutual partial inductance between two PCB lands of zero
thickness.

where b is the vertical separation in the xy plane between the lands as shown
in Fig. 6.4. Hence, the integral we must evaluate is

Mp = 1

w1w2

∫ a+w2

x2=a

∫ w1

x1=0
Mf dx1 dx2 (6.26)

as illustrated in Fig. 6.4(b), and since z in Mf is essentially treated as a constant
here, we evaluate the result at the limits of z = (l + s + m), (s + m), s, (l + s)
according to (6.13a) after we finish the integration. Hence, we first integrate

(I) =
∫ w1

x1=0

[
z ln

(
z +

√
z2 + b2 + (x2 − x1)2

)

−
√

z2 + b2 + (x2 − x1)2
]

dx1
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Making a change of variables as λ = (x2 − x1), dλ = −dx1 gives

(I) =
∫ x2

λ=x2−w1

[
z ln

(
z +

√
z2 + b2 + λ2

)
−

√
z2 + b2 + λ2

]
dλ

This can be integrated as [16]

(I) =
⎡
⎣zx2 ln

(
z +

√
z2 + b2 + x2

2

)
− zb tan−1 zx2

b

√
z2 + b2 + x2

2

+z2 − b2

2
ln

(
x2 +

√
z2 + b2 + x2

2

)
− x2

2

√
z2 + b2 + x2

2

⎤
⎦

−
[
z (x2 − w1) ln

(
z +

√
z2 + b2 + (x2 − w1)2

)

− zb tan−1 z (x2 − w1)

b

√
z2 + b2 + (x2 − w1)2

− z2 − b2

2
ln

(
(x2 − w1) +

√
z2 + b2 + (x2 − w1)2

)

− x2 − w1

2

√
z2 + b2 + (x2 − w1)2

]

Hence, it can be written symbolically as

(I) =
[
zλ ln

(
z +

√
z2 + b2 + λ2

)
− zb tan−1 zλ

b
√

z2 + b2 + λ2

+z2 − b2

2
ln

(
λ +

√
z2 + b2 + λ2

)
− λ

2

√
z2 + b2 + λ2

]x2

λ=x2−w1

which, when multiplied by (μ0/4π) (1/w1) and evaluated at the four limits of
z according to (6.13a), represents the mutual partial inductance between the
first land and a filament in the second land at (y, x) = (b, x2) [16].

The second integral in (6.26) becomes

(II) =
∫ a+w2

x2=a

(I) dx2
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Making a change of variables in the second half of the result for the first
integral of λ = (x2 − w1), dλ = dx2 gives

(II) =
∫ a+w2

x2=a

⎡
⎣zx2 ln

(
z +

√
z2 + b2 + x2

2

)
− zb tan−1 zx2

b

√
z2 + b2 + x2

2

+ z2 − b2

2
ln

(
x2 +

√
z2 + b2 + x2

2

)
− x2

2

√
z2 + b2 + x2

2

⎤
⎦ dx2

+
∫ a−w1

λ=a+w2−w1

⎡
⎣zλ ln

(
z +

√
z2 + b2 + λ2

)
−zb tan−1 zλ

b
√

z2 + b2 + λ2

+ z2 − b2

2
ln

(
λ +

√
z2 + b2 + λ2

)
− λ

2

√
z2 + b2 + λ2

⎤
⎦ dx2

These integrals can be evaluated, giving the mutual partial inductance between
two lands of zero thickness as [16]

Mp = μ0

4π

1

w1w2

[
f (x, z)

] ∣∣∣∣∣a+w2,a−w1

(x)
a,a+w2−w1

∣∣∣∣∣ (l+s+m),s
(z)

(s+m),(l+s)
(6.27a)

where

[
f (x, z)

] ∣∣∣∣∣
q1,q3

(x)
q2,q4

∣∣∣∣∣ s1,s3

(z)
s2,s4

=
4∑

i=1

4∑
j=1

(−1)i+j f (qi, sj) (6.27b)

and

f (x, z) = x2 − b2

2
z ln

(
z +

√
z2 + b2 + x2

)
−1

6

(
z2 − 2b2 + x2

)√
z2 + b2 + x2

+z2 − b2

2
x ln

(
x +

√
z2 + b2 + x2

)
−zbx tan−1 zx

b
√

z2 + b2 + x2
(6.27c)
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The mutual partial inductance between two parallel lands of widths w1, w2

and corresponding thicknesses of t1, t2 is extraordinarily complicated and
becomes [16]

Mp = μ0

4π

1

w1t1w2t2

[[[
f (x, y, z)

] a−w1,a+w2

(x)
a+w2−w1,a

]
b−t1,b+t2

(y)
b+t2−t1,b

]
(l+s+m),s

(z)
(s+m),(l+s)

(6.28a)

where

[[[
f (x, y, z)

] q1,q3

(x)
q2,q4

]
r1,r3

(y)
r2,r4

]
s1,s3

(z)
s2,s4

=
4∑

i=1

4∑
j=1

4∑
k=1

(−1)i+j+k+1 f
(
qi, rj, sk

)

(6.28b)

and f (x, y, z) is given in (6.23c).

6.4 CONCEPT OF GEOMETRIC MEAN DISTANCE

The concept of the geometric mean distance (GMD) between two objects
gives a method for obtaining simplified (but approximate) calculations of the
mutual partial inductance between those objects [14,20–22]. The origin of
the name is illustrated in Fig. 6.5, where we have shown a point P and a line.
Distances di are drawn from the point to the line. The geometric mean distance
D between the point and the line is the nth root of the product of the distances

P

d1

d2

di

dn

FIGURE 6.5. Concept of geometrical mean distance.
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(their geometric mean) as the number of distances n increases without bound:

D = lim︸︷︷︸
n→∞

(d1 d2 · · · di · · · dn)1/n (6.29)

Taking the natural logarithm of (6.29) gives

ln D = lim︸︷︷︸
n→∞

ln d1 + ln d2 + · · · + ln di + · · · + ln dn

n
(6.30)

Hence, the natural logarithm of the geometric mean distance between the point
and the line is the arithmetic mean of the natural logarithms of the distances
from the point to the line.

The concept of geometric mean distance has a particularly beneficial ap-
plication in computing the mutual partial inductance between a pair of two-
dimensional shapes representing the cross sections of two conductors when
the lengths of the two conductors are much greater than their separation. The
concept of geometric mean distance was originally developed by Maxwell
in the late nineteenth century [23]. It is used routinely in the electric power
distribution area to compute the self inductance of a bundle of wires, as well as
the mutual inductances between sets of multiphase, high-voltage power trans-
mission lines [24]. A very large number of formulas for the GMD of various
shapes was published by Rosa and his colleagues in the Bulletin of the Na-
tional Bureau of Standards in the period 1900–1910 [25–28]. A magnificent
book by Andrew Gray gives a very thorough discussion of GMD, and it was
written in 1893 [29]!

We computed the mutual partial inductance by considering the conductors
to be composed of parallel current filaments via (6.11b):

Mp = 1

AA′

∫
A

∫
A′

Mf dA′ dA (6.11b)

where Mf is the mutual partial inductance between two filaments of current
within the cross-sectional areas A and A′ given in (5.21a). The basic idea here
is to treat the currents (assumed to be uniformly distributed over their cross
sections) as being composed of filaments of current, sweep the filaments over
the two cross sections, and then average the result over the cross sections as
illustrated in Fig. 6.6.

The basic result for the mutual partial inductance between two filaments of
current of length l (into the page) separated by distance d is given in (5.21a).
If the lengths of the filaments are much greater that their separation, (5.21a)
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FIGURE 6.6. Computing the mutual partial inductance using the GMD between two shapes.

approximates to

Mf = μ0

2π
l

[
ln

2l

d
− 1 + d

l
− 1

4

(
d

l

)2

+ · · ·
]

∼= μ0

2π
l

(
ln

2l

d
− 1

)
l 	 d (5.21c)

Note that only d will vary as we sweep the filaments over the surfaces as in
(6.11b). Substituting (5.21c) into (6.11b) gives

Mp
∼= 1

A A′

∫
A

∫
A′

μ0

2π
l

(
ln

2l

d
− 1

)
dA′ dA

= μ0

2π
l

1

A A′

∫
A

∫
A′

(ln 2l − ln d − 1) dA′ dA

= μ0

2π
l (ln 2l − 1) − μ0

2π
l

1

A A′

∫
A

∫
A′

(ln d) dA′ dA (6.31)

The goal here is to determine an equivalent distance between two filaments, D,
which will have the same mutual partial inductance between them as between
the two surfaces, as illustrated in Fig. 6.6. Note that for very long filaments
l 	 d, the only parameter in Mf in (5.21c) that varies is d. Hence, we may
instead determine a D (the GMD between the two surfaces) such that

ln D = 1

A A′

∫
A

∫
A′

(ln d) dA′ dA (6.32)

If this computation is carried out, two (very long) filaments of length l spaced a
distance equal to the geometric mean distance between the two cross-sectional
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shapes of the two conductors, D, will have a mutual partial inductance between
those conductors of

Mp
∼= μ0

2π
l

(
ln

2l

D
− 1

)
l 	 D (6.33)

which will give the same mutual partial inductance as between the (very
long) conductors originally desired and obtained with (6.11b). If we include
the third term of (5.21c), d/l, the d should properly be the arithmetic mean
distance between the filaments used to represent the conductors. But usually
this term is inconsequential and will be neglected. So (6.33) is an approximate
solution to (6.11b) which is reasonably valid only for “very long” conductors
(i.e., D � l). Of course, the work in computing the GMD in (6.32) can be
as tedious as that in directly computing the original integral in (6.11b), but
the GMD for various shapes has been tabulated over the years in various
publications [14,20,21].

The discussion above regarding the use of the GMD in computing the
mutual partial inductance applies to computation of the self partial in-
ductance in (6.11a). The GMD here is said to be between the shape and
itself.

Another interpretation of the utility of the GMD is computation of the
vector magnetic potential due to a very long conductor of rectangular cross
section whose current I is distributed uniformly over the cross section of the
conductor as illustrated in Fig. 6.7 [22]. The vector magnetic potential of a
current filament of infinite length (pointing in the z direction, into the page)
is given as

Az = −μ0I

2π
ln d (2.53)

where d is the distance between that filament of current and the point P(X, Y )
at which we desire to determine the vector magnetic potential. This is unique
within a constant. Assuming that the current I of the rectangular bar is dis-
tributed uniformly over the bar cross section, the current density over the
bar is J = I/A, where A is the cross-sectional area of the bar. Hence, the
current over the bar can be concentrated into filaments, giving differential
contributions to Az(X, Y ) at point P located at x = X and y = Y as

dAz = −μ0 J

2π
ln d dA (6.34)
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FIGURE 6.7. Another interpretation of geometric mean distance between a point and a
surface.

and dA is a differential area of the cross section. Hence, the magnetic vector
potential at point P is obtained as

Az (X, Y ) = −μ0 J

2π

∫
y

∫
x

ln
[√

(X − x)2 + (Y − y)2
]

dx dy

= −μ0 I

2π

1

A

∫
y

∫
x

ln
[√

(X − x)2 + (Y − y)2
]

dx dy

(6.35a)

where the distance between the filament and the point is

d =
√

(X − x)2 + (Y − y)2 (6.35b)

and the integral is to be taken over the coordinates of the conductor cross
section.

We can evaluate the integral in (6.35) in an approximate fashion via
numerical means simply by dividing the cross section into N subrectangles
of area �x �y as illustrated in Fig. 6.7, performing (6.35) over the individual
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subrectangles, and summing the results:

Az (X, Y ) ∼= −μ0I

2π

1

A

N∑
i=1

∫
yi

∫
xi

ln
[√

(X − xi)
2 + (Y − yi)

2
]

dxi dyi

(6.36)

where xi and yi are the coordinates of the subrectangles. If this division is such
that the dimensions of the subrectangles are sufficiently small, the integral in
(6.36) over each subrectangle can be further approximated as

∫
yi

∫
xi

ln
[√

(X − xi)
2 + (Y − yi)

2
]

dxi dyi

∼= �x �y ln
[√

(X − xn)2 + (Y − yn)2
]

(6.37)

This amounts to replacing the smooth and uniform current distribution by
filaments at the centers of the subrectangles located at (xn, yn). Hence, (6.35)
is approximated as (the area of the conductor cross section is A = N�x �y)

Az (X, Y ) ∼= −μ0 I

2π

1

N

N∑
n=1

ln
[√

(X − xn)2 + (Y − yn)2
]

(6.38)

By finely dividing the cross section, we can obtain a reasonably accurate
approximation to (6.35).

The computation in (6.38) requires an excessive number of operations to
(1) take the square root, (2) take the natural logarithm of that result, and (3)
sum all of these N resulting contributions. Alternatively, we can write this
result in a more computationally efficient form as

Az (X, Y ) ∼= −μ0I

2π

1

N

N∑
n=1

ln
[√

(X − xn)2 + (Y − yn)2
]

= −μ0I

4π

1

N
ln

{
N∏

n=1

[
(X − xn)2 + (Y − yn)2

]}
(6.39)

and we have used the result that ln x1 + ln x2 + · · · + ln xN = ln (x1x2 · · · xN)
along with ln

√
a = 1

2 ln a. Hence, the result in (6.35) can be approximated as

Az (X, Y ) ∼= −μ0I

2π
ln D (6.40a)
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where the geometric mean distance D between the point P and the rectangle
is

ln D = 1

N

N∑
n=1

ln
[√

(X − xn)2 + (Y − yn)2
]

= 1

2N
ln

{
N∏

n=1

[
(X − xn)2 + (Y − yn)2

]}
(6.40b)

or

D = 2N

√√√√ N∏
n=1

[
(X − xn)2 + (Y − yn)2

]
(6.40c)

So the vector magnetic potential at a point P from a conductor of rectangular
cross section and very long length compared to D, l 	 D, can be computed
alternatively as being the same as that due to a filament containing the total
current I that is separated from the point P by the distance D, which is the
geometric mean distance between the rectangle and the point.

This works well for points P outside the conductor. In using it to determine
Az (X, Y ) at points within the conductor, we run into an obvious problem
when the desired point is at the center of a subrectangle, X = xn, Y = yn. For
this particular “self term” in (6.38), we integrate over the subrectangle and
average to give

1

�2x �2y

∫
y

∫
x

∫
η

∫
ξ

ln
[√

(x − ξ)2 + (y − η)2
]
dξ dη dx dy (6.41)

The GMD between the subrectangle and itself is proportional to the perimeter
of the subrectangle and evaluates to ln Dn = ln [0.223525 (W + H)] [14,20].
This represents a special case of the geometric mean distance between a shape
and itself.

The numerical solution above was used by Antonini et al. [19] to compute
the internal self partial inductance of a conductor of rectangular cross section.
We discuss those results in Section 6.5.

The GMD of the combination of two or more surfaces S1, S2, . . . with
another surface S can be found from

ln DS = A1 ln DS1 + A2 ln DS2 + · · ·
A1 + A2 + · · · (6.42)

which follows from the definition of the GMD. The notation DSi
denotes

the GMD from surface Si to the desired surface S, and Ai denotes the cross-
sectional area of surface Si.
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6.4.1 Geometrical Mean Distance Between a Shape and Itself
and the Self Partial Inductance of a Shape

The GMD between a shape and itself is given by (6.32):

ln (D) = 1

A A′

∫
A

∫
A′

(ln d) dA′ dA (6.32)

where A and A′ are the same surface area. When the conductor length is
much greater than the GMD given by (6.32), the self partial inductance is
approximately

Lp
∼= μ0

2π
l

(
ln

2l

D
− 1

)
l 	 D (6.33)

Since the integration for the GMD in (6.32) is over the entire cross section of
the conductor, the self partial inductance in (6.33) includes the internal self
partial inductance of the conductor due to magnetic flux internal to it. Although
there are innumerable shapes having a GMD with itself, we consider only the
GMDs of the common and useful shapes shown in Fig. 6.8. GMDs of other
shapes may be found in Grover [14], Rosa and Grover [20], Gray [29], and
Higgins [30].

wr

(a)

w

(b)

w

t

(c)

FIGURE 6.8. GMDs of various shapes from which the self partial inductance can be obtained.
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GMD of a Circular Shape from Itself The first shape is the circle shown in
Fig. 6.8(a), representing the cross section of a wire. The self partial inductance
due to magnetic flux external to the wire was computed directly in Chapter 4
by replacing the wire with a filament on its axis carrying the total wire current
I. This was permissible by the fundamental assumption that the current of the
wire is distributed uniformly over its cross section. Hence, the external self
partial inductance of a wire of length l and radius rw was obtained in Chapter 5
and is given by

Lp,external = ψ∞
I

= μ0

2π
l

⎡
⎣ln

⎛
⎝ l

rw
+

√(
l

rw

)2

+ 1

⎞
⎠ −

√
1 +

(
rw

l

)2

+ rw

l

⎤
⎦
(5.18a)

For a long wire such that l 	 rw (a very reasonable assumption) this approx-
imates to

Lp,external = μ0

2π
l

[
ln

2l

rw
− 1 + rw

l
− 1

4

(
rw

l

)2

+ · · ·
]

∼= μ0

2π
l

(
ln

2 l

rw
− 1

)
l 	 rw (5.18c)

But this only gives the self partial inductance due to the magnetic flux external
to the wire. The contribution to the self partial inductance due to the magnetic
flux internal to the wire was obtained as

Lp,internal = μ0

8π
l (4.70)

Adding the external self partial inductance in (5.18c) to the internal self partial
inductance in (4.70) gives the total self partial inductance of a length of wire
that is due to magnetic flux both external to the wire and internal to the wire
as

Lp = Lp,external + Lp,internal

= μ0

2π
l

(
ln

2l

rw
− 1 + 1

4

)

= μ0

2π
l

(
ln

2l

rw
− 3

4

)
(6.43a)
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But this can be written as

Lp = Lp,external + Lp,internal

= μ0

2π
l

(
ln

2l

rw
− 1 + 1

4

)

= μ0

2π
l

(
ln

2l

rw e−1/4
− 1

)
(6.43b)

Hence, the GMD of a circular area of radius rw (a wire cross section) from
itself is

D = rwe−1/4

= 0.7788 rw
(6.44a)

or

ln D = ln rw − 1
4 (6.44b)

and the self partial inductance of a cylinder (a wire) of radius rw and length l
is

Lp
∼= μ0

2π
l

(
ln

2l

D
− 1

)

= μ0

2π
l

(
ln

2l

rw
− 3

4

)
l 	 D

(6.44c)

Note that the self partial inductance here includes the internal inductance of
the wire due to magnetic flux internal to the wire.

To compute the GMD of a circular area with itself directly, we first compute
the GMD between a point P and a circular area of radius rw as shown in Fig. 6.9.
The GMD becomes, from (6.32),

ln D = 1

πr2
w

∫ rw

r=0

∫ 2π

θ=0
ln

(√
R2 + r2 − 2rR cos θ

)
r dθ dr

= 1

2

1

πr2
w

∫ rw

r=0

∫ 2π

θ=0
ln

(
R2 + r2 − 2rR cos θ

)
r dθ dr (6.45a)

and we have used the law of consines to write

d2 = R2 + r2 − 2rR cos θ (6.45b)
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wr

d

P

θ

r

R

FIGURE 6.9. Computing the GMD between a point and a circular area.

The integral with respect to θ can be written as

(I) =
∫ 2π

θ=0
ln

(
R2 + r2 − 2rR cos θ

)
dθ

=
∫ 2π

θ=0
ln

[
1 +

(
r

R

)2

− 2
(

r

R

)
cos θ

]
dθ + 2 ln R

∫ 2π

θ=0
dθ

=
∫ 2π

θ=0
ln

[
1 +

(
r

R

)2

− 2
(

r

R

)
cos θ

]
dθ + 4π ln R (6.46)

This integral can be evaluated using an integral from Dwight [7]:

∫ 2π

θ=0
ln

(
1 + a2 − 2a cos x

)
dx =

{
4π ln a a > 1

0 a < 1
(D865.73c)

giving (I) = 4π ln(r/R) + 4π ln R = 4π ln r for the point inside the circle,
R < r, and (I) = 4π ln R for the point outside the circle, R > r. Evaluating
the second integral with respect to r yields

ln D = 4π

2πr2
w

∫ rw

r=0
ln (r) r dr R < rw

= 4π

2πr2
w

[
r2

2
ln r − r2

4

]rw

r=0

=
(

ln rw − 1

2

)
R < rw (6.47a)
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and

ln D = 4π

2πr2
w

ln R

∫ rw

r=0
r dr R > rw

= 4π

2πr2
w

ln R

[
r2

2

]rw

r=0

= ln R R > rw (6.47b)

and we have used an integral from Dwight [7]:∫
x ln x dx = x2

2
ln x − x2

4
(D610.1)

in (6.47a). The result in (6.47a) shows that the natural logarithm of the GMD
from a circular area to any point inside it is the natural logarithm of the radius
of the circular area, rw, minus 1

2 . The result in (6.47b) shows that the GMD
from a circular area to any point P outside it is simply the distance between
the point and the center of the circular area.

Now consider an annulus of differential thickness dr and radius r and a
point P within the annulus as shown in Fig. 6.10. The total circular surface is
divided into a part internal to the point and the annulus, and a part external
to the point and the annulus. The GMD of the combination of two or more
surfaces S1, S2, . . .with another surface S can be found from

ln DS = A1 ln DS1 + A2 ln DS2 + · · ·
A1 + A2 + · · · (6.42)

which follows from the definition of the GMD. The notation DSi
denotes

the GMD from surface Si to the desired surface S, and Ai denotes the

wr

P

r

dr

FIGURE 6.10. GMD of a circle from itself.
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cross-sectional area of surface Si. Hence, the GMD of the entire circle to
point P is

ln DP =
πr2

w

(
ln rw − 1

2

)
− πr2

(
ln r − 1

2

)
+ πr2 ln r

πr2
w

=
(

ln rw − 1

2

)
+ r2

r2
w

1

2
(6.48)

Hence, the GMD of the circle from itself is

ln D = 1

πr2
w

2π

∫ rw

r=0
ln (DP ) r dr

= 2

r2
w

∫ rw

r=0

[(
ln rw − 1

2

)
+ r2

r2
w

1

2

]
r dr

=
(

ln rw − 1

2

)
+ 1

4

= ln rw − 1

4
(6.49)

as before.

GMD of a Line from Itself Next we determine the GMD of a line of width
w and zero thickness from itself as illustrated in Fig. 6.11. The GMD of a line
from itself is again obtained from the basic definition in (6.32) as

ln D = 1

w2

∫ w

x2=0

∫ w

x1=0
ln |x2 − x1| dx1 dx2

= 1

2w2

∫ w

x2=0

∫ w

x1=0
ln (x2 − x1)2 dx1 dx2 (6.50)

w
x

1x

2x

FIGURE 6.11. GMD of a line from itself.
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The integral with respect to x1 becomes

(I) =
∫ w

x1=0
ln (x2 − x1)2 dx1

=
∫ x2

λ=x2−w
ln λ2 dλ

=
[
λ ln λ2 − 2λ

]x2

λ=x2−w

= x2 ln x2
2 − 2x2 − (x2 − w) ln (x2 − w)2 + 2 (x2 − w) (6.51)

and we have used the change of variables λ = x2 − x1, dλ = −dx1 and an
integral from Dwight [7]:∫

ln
(
x2 + a2

)
dx = x ln

(
x2 + a2

)
− 2x + 2a tan−1 x

a
(D623)

The integral with respect to x2 becomes

(II) =
∫ w

x2=0
(I) dx2

=
[
λ2

2
ln λ2 − λ2

2
− λ2

]w

λ=0

+
[
λ2

2
ln λ2 − λ2

2
− λ2

]−w

λ=0

= w2 ln w2 − 3w2 (6.52)

and we have used a change of variables λ = x2 − w, dλ = dx2 in the second
half of the integral and an integral from Dwight [7]:∫

x ln
(
x2 + a2

)
dx = 1

2

(
x2 + a2

)
ln

(
x2 + a2

)
− 1

2x2 (D623.1)

Hence, dividing (6.52) by 2w2 according to (6.50) gives the GMD of a line
with itself as

ln D = ln w − 3
2 (6.53a)

or

D = 0.22313w (6.53b)

and the self partial inductance of a line is

Lp
∼= μ0

2π
l

(
ln

2l

D
− 1

)

= μ0

2π
l

(
ln

2l

w
+ 1

2

)
l 	 D

(6.53c)
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Compare this result to (6.20) for u = l/w 	 1:

Lp(t=0)

l
∼= μ0

2π

⎧⎪⎪⎨
⎪⎪⎩

ln 2u + 1

2
+ 1

3u
u 	 1, l 	 w

u

(
ln

2

u
+ 1

2
+ u

3

)
u � 1, l � w

(6.20)

For u = 1 (l = w) the exact result in (6.19) gives Lp(t=0) = 7.552 nH/in.,
whereas (6.53) using the GMD gives Lp(t=0) = 6.061nH/in., a difference
of 24.6%. For u = 10 (l = 10w) the exact result in (6.19) gives Lp(t=0) =
17.926 nH/in., whereas (6.53) using the GMD gives Lp(t=0) = 17.758 nH/in.,
a difference of 0.9%. For a typical PCB land of width w = 8 mils, a ratio of
l/w = 10 gives the length of the land as 0.08 in., which is not an unreasonably
long length for a typical PCB land. For u = 100 (l = 100w) the exact result in
(6.19) gives Lp(t=0) = 29.472 nH/in., whereas (6.53) using the GMD gives
Lp(t=0) = 29.455 nH/in., a difference of 0.06%. For a typical PCB land of
width w = 8 mils, a ratio of l/w = 100 gives the length of the land as 0.8 in.,
which is still not an unreasonably long length of a typical PCB land. This
reinforces the restriction on the validity of the GMD concept to situations
where the length of the land is much greater than its width. But the computation
of the self partial inductance of a thin land via the GMD is considerably simpler
than the exact formula given in (6.18) or (6.19).

GMD of a Rectangular Shape from Itself The GMD of the rectangle shown
in Fig. 6.8(c) can be derived in a fashion similar to that from the basic definition
in (6.32) and is given in [19,30] as

ln D = −25

12
+ 1

2t2w2

4∑
i=1

4∑
j=1

(−1)i+j f
(
qi, rj

)
(6.54a)

where

f (q, r) =
(

q2r2

4
− q4

24
− r4

24

)
ln

(
q2 + r2

)
+q3r

3
tan−1 r

q
+ qr3

3
tan−1 q

r

(6.54b)
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and

q1 = −w

q2 = q4 = 0

q3 = w

r1 = −t

r2 = r4 = 0

r3 = t
(6.54c)

Writing this out and using the fact that f (0, 0) = 0, f (±w, ±t) = f (w, t),
f (−w, 0) = f (w, 0), and f (−t, 0) = f (t, 0) gives a clearer result as

ln D = −25

12
+ 1

2
ln

(
w2 + t2

)
− 1

12

w2

t2
ln

(
1 + t2

w2

)

− 1

12

t2

w2
ln

(
1 + w2

t2

)

+2

3

w

t
tan−1 t

w
+ 2

3

t

w
tan−1 w

t (6.55a)

which is equivalent to the result given by Gray [29], p. 302, eq. (114). If the
rectangle is square, w = t, its GMD is

ln D = −25

12
+ 1

2
ln

(
2w2

)
− 1

12
ln (2) − 1

12
ln (2) + 2

3

π

4
+ 2

3

π

4

= −25

12
+ ln w + 1

3
ln (2) + π

3
= ln w − 0.80509 w = t

(6.55b)

It turns out that the GMD of a rectangle shape (a bar) can be represented
approximately in terms of the dimensions of its perimeter, its width w and its
thickness t, as [14,20,29]

log D ∼= ln(w + t) − 3
2 (6.56a)

and the GMD is

D ∼= (0.2235) (w + t) (6.56b)



282 PARTIAL INDUCTANCES OF CONDUCTORS OF RECTANGULAR CROSS SECTION

If the bar is square, w = t, this reduces approximately to (6.55b). So the self
partial inductance of a conductor of rectangular cross section is approximately

Lp
∼= μ0

2π
l

(
ln

2l

w + t
+ 1

2

)
l 	 D (6.56c)

which reduces to (6.53c) for t = 0. Note that the self partial inductance here
includes the internal inductance of the bar due to magnetic flux internal to
the bar.

The result for the GMD of a rectangle given in (6.54) can be obtained by
direct integration using the basic result in (6.32) as

ln D = 1

(wt)2

∫ t

y2=0

∫ t

y1=0

∫ w

x2=0

∫ w

x1=0

ln
[√

(y2 − y1)2 + (x2 − x1)2
]
dx1 dx2 dy1 dy2

= 1

(wt)2

1

2

∫ t

y2=0

∫ t

y1=0

∫ w

x2=0

∫ w

x1=0

ln
[
(y2 − y1)2 + (x2 − x1)2

]
dx1 dx2 dy1 dy2 (6.57)

The first integral with respect to x1 is evaluated as

(I) =
∫ w

x1=0
ln

[
(y2 − y1)2 + (x2 − x1)2

]
dx1

=
∫ x2

λ=x2−w
ln

[
(y2 − y1)2 + λ2

]
dλ

where we have used a change of variables λ = x2 − x1, dλ = −dx1. This can
be evaluated using Dwight [7]:∫

ln
(
a2 + x2

)
dx = x ln

(
a2 + x2

)
− 2x + 2a tan−1 x

a
(D623)

to give

(I) =
[
λ ln

(
(y2 − y1)2 + λ2

)
− 2λ + 2 (y2 − y1) tan−1 λ

y2 − y1

]x2

λ=x2−w

=
[
x2 ln

(
(y2 − y1)2 + x2

2
)

− 2x2 + 2 (y2 − y1) tan−1 x2

y2 − y1

]
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−
[
(x2 − w) ln

(
(y2 − y1)2 + (x2 − w)2

)
− 2

(
x2 − w

)

+ 2 (y2 − y1) tan−1 x2 − w

y2 − y1

]
The next integral with respect to x2 is evaluated as

(II) =
∫ w

x2=0
(I) dx2

=
∫ w

x2=0

[
x2 ln

(
(y2 − y1)2 + x2

2

)
−2x2 + 2 (y2 − y1) tan−1 x2

y2 − y1

]
dx2

+
∫ −w

λ=0

[
λ ln

(
(y2 − y1)2 + λ2

)
− 2λ + 2 (y2 − y1) tan−1 λ

y2 − y1

]
dλ

where we have made a change of variables λ = x2 − w,dλ = dx2 in the second
integral. These can be evaluated using integrals from Dwight [7]:∫

x ln
(
a2 + x2

)
dx = 1

2

(
a2 + x2

)
ln

(
a2 + x2

)
− x2

2
(D623.1)

and ∫
tan−1 x

a
dx = x tan−1 x

a
− a

2
ln

(
a2 + x2

)
(D525)

to give

(II) =
[
λ2

2
ln

(
(y2 − y1)2 + λ2

)
− 3λ2

2

+2 (y2 − y1) λ tan−1 λ

y2 − y1
− 1

2
(y2 − y1)2 ln

(
(y2 − y1)2 + λ2

)] w,−w
(λ)
0,0

where the notation is the same as in Sections 6.2 and 6.3. The third integral
with respect to y1 can be similarly integrated as

(III) =
∫ t

y1=0
(II) dy1

=
∫ t

y1=0

[
λ2

2
ln

(
(y2 − y1)2 + λ2

)
− 3λ2

2

+ 2 (y2 − y1) λ tan−1 λ

y2 − y1

− 1

2
(y2 − y1)2 ln

(
(y2 − y1)2 + λ2

)] w,−w
(λ)
0,0

dy1
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=
∫ y2

ξ=y2−t

[
λ2

2
ln

(
ξ2 + λ2

)
− 3λ2

2
+ 2ξλ tan−1 λ

ξ

− 1

2
ξ2 ln

(
ξ2 + λ2

)] w,−w
(λ)
0,0

dξ

and we have used a change of variables ξ = y2 − y1, dξ = −dy1. These can
be evaluated using integrals from Dwight [7]:∫

ln
(
a2 + x2

)
dx = x ln

(
a2 + x2

)
− 2x + 2a tan−1 x

a
(D623)

∫
x2 ln

(
a2 + x2

)
dx = x3

3
ln

(
a2 + x2

)
− 2

9
x3 + 2

3
xa2 − 2

3
a3 tan−1 x

a

(D623.2)

∫
x tan−1 a

x
dx = ax

2
+ x2 + a2

2
tan−1 a

x
(D528.1)

giving

(III) =
[[

λ2ξ

2
ln

(
ξ2 + λ2

)
− ξ3

6
ln

(
ξ2 + λ2

)
− λ2ξ

3
− 3

2
λ2 + ξ2

9

+ 4

3
λ3 tan−1

(
ξ

λ

)
+ λ

(
ξ2 + λ2

)
tan−1 λ

ξ

]
w,−w
(λ)
0,0

]y2

ξ=y2−t

=
[
λ2y2

2
ln

(
y2

2 + λ2
)

− y3
2

6
ln

(
y2

2 + λ2
)

− λ2y2

3
− 3

2
λ2 + y2

2

9

+ 4

3
λ3 tan−1 y2

λ
+ λ

(
y2

2 + λ2
)

tan−1 λ

y2

]
w,−w
(λ)
0,0

−
[
λ2(y2 − t)

2
ln

(
(y2 − t)2 + λ2

)
− (y2 − t)3

6
ln

(
(y2 − t)2 + λ2

)

− λ2(y2 − t)

3
− 3

2
λ2

+ (y2 − t)2

9
+ 4

3
λ3 tan−1 y2 − t

λ
+ λ

(
(y2 − t)2

+ λ2
)

tan−1 λ

y2 − t

]
w,−w
(λ)
0,0
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or

(III) =
[[

λ2η

2
ln

(
η2 + λ2

)
− η3

6
ln

(
η2 + λ2

)
− λ2η

3
− 3

2
λ2 + η2

9

+ 4

3
λ3 tan−1 η

λ
+ λ

(
η2 + λ2

)
tan−1 λ

η

]
w,−w
(λ)
0,0

]
y2
(η)
y2−t

In a similar fashion, the fourth integral can be evaluated as

(IV) =
∫ t

y2=0
(III) dy2

=
∫ t

η=0

[
λ2η

2
ln

(
η2 + λ2

)
− η3

6
ln

(
η2 + λ2

)
− λ2η

3
− 3

2
λ2 + η2

9

+ 4

3
λ3 tan−1 η

λ
+ λ

(
η2 + λ2

)
tan−1 λ

η

]
w,−w
(λ)
0,0

dη

+
∫ −t

η=0

[
λ2η

2
ln

(
η2 + λ2

)
− η3

6
ln

(
η2 + λ2

)
− λ2η

3
− 3

2
λ2 + η2

9

+ 4

3
λ3 tan−1 η

λ
+ λ

(
η2 + λ2

)
tan−1 λ

η

]
w,−w
(λ)
0,0

dη

and using Dwight [7]:∫
x ln

(
a2 + x2

)
dx = 1

2

(
a2 + x2

)
ln

(
a2 + x2

)
− x2

2
(D623.1)

∫
x3 ln

(
x2 + a2

)
dx = x4 − a4

4
ln

(
x2 + a2

)
− x4

8
+ x2a2

4
(D623.3)∫

tan−1 x

a
dx = x tan−1 x

a
− a

2
ln

(
a2 + x2

)
(D525)∫

tan−1 a

x
dx = x tan−1 a

x
+ a

2
ln

(
x2 + a2

)
(D528)

∫
x2 tan−1 a

x
dx = x3

3
tan−1 a

x
+ ax2

6
− a3

6
ln

(
x2 + a2

)
(D528.2)

giving the result in (6.54).

6.4.2 Geometrical Mean Distance and Mutual Partial
Inductance Between Two Shapes

In this subsection we obtain the geometrical mean distances between the
common shapes shown in Fig. 6.12. These represent (a) the cross sections of
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s

w1r w2r

(a)

(b)

(c)

1w

1w

2w
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1t

2t

h

h

s

s

FIGURE 6.12. Computing the GMDs between common shapes.

two wires of radii rw1 and rw2 that are separated a distance s, (b) two strips of
widths w1 and w2 and zero thickness, and (c) two rectangular bars of widths
w1 and w2 and thicknesses t1 and t2 that represent the cross sections of PCB
lands. Once again we stress that the GMDs for these shapes will be valid only
as long as the lengths of the conductors whose cross sections these shapes
represent are much longer than the separation between them.
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GMD Between Two Circular Shapes The GMD between two circular
shapes representing the cross sections of two wires shown in Fig. 6.12(a)
is simply the distance between their centers, s:

ln D = ln s

This follows from the fact that the mutual partial inductance between be-
tween two parallel wires of equal length l having currents that are uniformly
distributed over their cross sections can be obtained by replacing them with
two filaments located on the axes of the conductors. This result is the basic
result for the mutual partial inductance between two filaments separated a
distance s and given as

Mp = μ0

2π
l

[
ln

2l

s
− 1 + s

l
− 1

4

(
s

l

)2

+ 1

32

(
s

l

)4

− · · ·
]

∼= μ0

2π
l

(
ln

2l

s
− 1

)
l 	 s (5.21c)

GMD Between Two Lines The GMD between two parallel lines having
widths w1 and w2 and zero thickness with vertical separation h and horizontal
separation s between their centers as shown in Fig. 6.12(b) can again be
obtained from the basic definition of the GMD in (6.32):

ln D = 1

w1w2

∫ s+w1/2+w2/2

x2=s+w1/2−w2/2

∫ w1

x1=0
ln

[√
(x2 − x1)2 + h2

]
dx1 dx2

= 1

w1w2

1

2

∫ s+w1/2+w2/2

x2=s+w1/2−w2/2

∫ w1

x1=0
ln

[
(x2 − x1)2 + h2

]
dx1 dx2 (6.58)

The integral with respect to x1 becomes

(I) =
∫ w1

x1=0
ln

[
(x2 − x1)2 + h2

]
dx1

=
∫ x2

λ=x2−w1

ln
(
λ2 + h2

)
dλ

=
[
λ ln

(
λ2 + h2

)
− 2λ + 2h tan−1 λ

h

]x2

λ=x2−w1

= x2 ln
(
x2

2 + h2
)

− 2x2 + 2h tan−1 x2

h

− (x2 − w1) ln
(

(x2 − w1)2 + h2
)

+ 2 (x2 − w1) − 2h tan−1 x2 − w1

h

(6.59)
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and we have used the change of variables λ = x2 − x1, dλ = −dx1 and an
integral from Dwight [7]:∫

ln
(
x2 + a2

)
dx = x ln

(
x2 + a2

)
− 2x + 2a tan−1 x

a
(D623c)

The integral with respect to x2 becomes

(II) =
∫ s+w1/2+w2/2

x2=s+w1/2−w2/2
(I) dx2

=
[
x2

2 − h2

2
ln

(
x2

2 + h2
)

− 3

2
x2

2 + 2hx2 tan−1 x2

h

]s+w1/2+w2/2

x2=s+w1/2−w2/2

−
[
λ2 − h2

2
ln

(
λ2 + h2

)
− 3

2
λ2 + 2hλ tan−1 λ

h

]s−w1/2+w2/2

λ=s−w1/2−w2/2

(6.60)

and we have used a change of variables λ = x2 − w1, dλ = dx2 in the second
half of the integral and integrals from Dwight [7]:

∫
x ln

(
x2 + a2

)
dx = x2 + a2

2
ln

(
x2 + a2

)
− x2

2
(D623.1)

∫
tan−1 x

a
dx = x tan−1 x

a
− a

2
ln

(
x2 + a2

)
(D525)

Hence, dividing (6.60) by 2 w1w2 according to (6.58) gives the GMD between
the two lines. Although the integration is complete, this gives a complicated
expression which we obtain in the next section.

A more interesting and simpler result is for the case where the line widths
are identical, w1 = w2 = w, and the two lines are on line with each other,
h = 0. The results above simplify to give the GMD as

2w2 ln D = (s + w)2 ln (s + w) − 3
2 (s + w)2 − 2s2 ln s

+3s2 + (s − w)2 ln (s − w) − 3
2 (s − w)2 h = 0, w1 = w2 = w

(6.61)

We can simplify this further. Suppose that the lines lie in the same plane,
h = 0, and the separation between the lines is s = nw. The lines are touching
when n = 1 and are separated edge to edge by one line width w when n = 2.
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Substituting s = nw into (6.61) gives

ln D = (n + 1)2

2
ln [(n + 1) w] − 3

4
(n + 1)2 − n2 ln nw

+3

2
n2 + (n − 1)2

2
ln [(n − 1) w] − 3

4
(n − 1)2

= (n + 1)2

2
ln [(n + 1) w] − n2 ln nw

+ (n − 1)2

2
ln [(n − 1) w] − 3

2
s = nw

(6.62)

This matches the result given by Rosa [25], p. 164, eq. (11). Rosa also gives a
convenient series expansion for this case of h = 0, w1 = w2 = w, and s = nw:

ln D = ln nw −
(

1

12n2
+ 1

60n4
+ 1

168n6
+ 1

360n8
+ 1

660n10
+ · · ·

)

(6.63)

which converges very rapidly.
In either case, the mutual partial inductance between the conductors is

Mp
∼= μ0

2π
l

(
ln

2l

D
− 1

)
l 	 D (6.33)

GMD Between Two Rectangles Finally, we obtain the GMD for the general
case shown in Fig. 6.12(c) of two parallel rectangles with widths w1, w2,
thicknesses t1, t2, and vertical separation h and horizontal separation center
to center of s. The result is given in [19,30] as

ln D = −25

12
+ 1

2 (t1w1) (t2w2)

4∑
i=1

4∑
j=1

(−1)i+j f
(
qi, rj

)
(6.64a)

where

f (q, r) =
(

q2r2

4
− q4

24
− r4

24

)
ln

(
q2 + r2

)

+q3r

3
tan−1 r

q
+ qr3

3
tan−1 q

r

(6.64b)
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and

q1 = s − w1

2
− w2

2

q2 = s + w1

2
− w2

2

q3 = s + w1

2
+ w2

2

q4 = s − w1

2
+ w2

2

r1 = h − t1

2
− t2

2

r2 = h + t1

2
− t2

2

r3 = h + t1

2
+ t2

2

r4 = h − t1

2
+ t2

2

(6.64c)

Once again, for “long conductors,” the mutual partial inductance between
them is

Mp
∼= μ0

2π
l

(
ln

2l

D
− 1

)
l 	 D (6.33)

Grover [14] gives several tables for determining the GMD of two rectangles
for the cases of Fig. 6.12(c) with various ratios of width to thickness and length
to width for h = 0. Ruehli [15] has computed results for the mutual partial
inductance between two parallel lands of equal width and equal thickness for
various values of u = l/w and v = t/w. He shows that there is little error be-
tween the exact result and the mutual partial inductance obtained by replacing
the lands with one filament at the center of each land (i.e., Mp

∼= Mf ) as long
as the lands are not very close to each other. This correlates with the exact
solution for round wires discussed in Section 4.6, in that proximity effect and
the associated redistribution of the current over the cross section to the facing
surfaces of the wires is not significantly pronounced unless the wires are close
enough that they are separated by a distance such that one wire will exactly
fit between them. This is somewhat remarkable since as the lands are brought
close together, their currents will no longer be distributed uniformly over their
cross sections but will migrate toward the facing sides, as we show with nu-
merical computations in the next section. It should be reiterated that all our
previous formulas were derived assuming that the current remains uniformly
distributed over the conductor cross section. Considering the nonuniform
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distribution of the current over the cross section of a PCB land does not seem
to be feasible except with approximate numerical solutions which we address
in the next section.

6.5 COMPUTING THE HIGH-FREQUENCY PARTIAL
INDUCTANCES OF LANDS AND NUMERICAL METHODS

We have seen that computation of the self and mutual partial inductances
of conductors having rectangular cross sections (PCB lands) is very com-
plicated and the results are quite tedious. This is why the earlier textbooks
and publications contained extensive tables for the calculation of these par-
tial inductances; digital computers had not been invented. Today we enjoy
the enormous computing power of computers, and involved formulas are no
longer the obstacle they used to be. Still there remain many problems in partial
inductance for which there are no feasible closed-form solutions. An example
is the nonuniform current distribution over the conductor cross section caused
either by (1) proximity effect, or (2) frequencies of excitation other than dc.
In this section we develop methods for numerically computing the self and
partial inductances of conductors of rectangular cross section that can be used
to solve those difficult problems.

The primary restriction on all the previous results of this book is that the cur-
rent is assumed to be uniformly distributed over the conductor cross sections.
This condition is not satisfied for either proximity effect or high-frequency
excitation. However, we can approximate a nonuniform current distribution in
a discrete fashion, that is, by approximating the current distribution over the
conductor cross section in a piecewise-constant or piecewise-linear manner.
The actual parameters in that distribution are unknown but will be determined
by enforcing the constraints that the currents must satisfy, resulting in the si-
multaneous solution of a large set of simultaneous equations which computers
can readily handle.

For example, consider breaking the cross section of a rectangular con-
ductor into individual “subbars” of rectangular cross section, as illustrated in
Fig. 6.13(a). The number of divisions along the width is NW and the number of
divisions along the thickness is NT. Each subbar dimension is �t = t/NT and
�w = w/NW. The total number of subbars is therefore N = NW × NT. The
bar can be modeled as an equivalent circuit shown in Fig. 6.13(b). Represent
each subbar with its dc resistance Ri = l/σ �w �t, where σ is the conductiv-
ity of the metal, which we will assume is copper (having σCu = 5.8 × 107).
The Lpi are the exact self partial inductances of the subbar, given by Hoer and
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FIGURE 6.13. Approximating a conductor of rectangular cross section as a set of parallel
“subbars” of rectangular cross section.

Love in (6.23), which Ruehli ([15], eq. (15)) put into a more stable numerical
form. The mutual partial inductances between the subbars is approximated as
being between filaments at the centers of the subbars and is given by

Mpij
= μ0

2π
l

⎡
⎢⎣ln

⎛
⎜⎝ l

dij

+
√√√√(

l

dij

)2

+ 1

⎞
⎟⎠ −

√
1 +

(
dij

l

)2

+ dij

l

⎤
⎥⎦ (5.21a)

where dij is the distance between the centers of subbars i and j.
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All the subbars are connected in parallel so that the voltage across each
subbar is the same and is the voltage between the ends of the entire conductor
and denoted as V. The total current drawn by the conductor is denoted as I,
and we determine and plot over the conductor cross section the individual
currents of the subbars, Ii, for i = 1, 2, . . . , N where N = NW × NT. This
demonstrates two important aspects of this problem. For increasing frequen-
cies of excitation (1) the currents crowd to the edges of the conductor, and (2)
the currents peak at the corners of the conductor, giving the so-called “bed-
post” distribution over the conductor cross section. The equivalent circuit of
the conductor and its subbars is shown in Fig. 6.13(b). The voltage across
each subbar, Vi, is related to the current through it, Ii, as

Vi = (
Ri + jω Lpi

)
Ii + jω

N∑
j=1
j /= i

Mpij Ij (6.65a)

In matrix notation this becomes

V = ZI (6.65b)

where V and I are vectors of N rows and one column containing the voltages
and currents of the N individual subbars as

V =

⎡
⎢⎢⎢⎢⎢⎣

V1

V2

...

VN

⎤
⎥⎥⎥⎥⎥⎦ , I =

⎡
⎢⎢⎢⎢⎢⎣

I1

I2

...

IN

⎤
⎥⎥⎥⎥⎥⎦ (6.65c)

The “impedance matrix” Z is square with N = NW × NT rows and N =
NW × NT columns and contains the self impedances of the individual sub-
bars and the mutual impedances between the subbars. This matrix of subbar
impedances can be separated into two parts:

Z = Zs + Zm (6.65d)

The “self impedance” matrix is a diagonal matrix as

Zs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Zs1 0 0 · · · 0

0 Zs2 0 · · · 0

0 0
. . . · · · ...

...
...

...
. . . 0

0 0 · · · 0 ZsN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.65e)
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where

Zsi = Ri + jω Lpi (6.65f)

The “mutual impedance” matrix is

Zm = jω

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Mp12 Mp13 · · · Mp1N

Mp12 0 Mp23 · · · Mp2N

Mp13 Mp23
. . . · · · ...

...
...

...
. . .

...

Mp1N Mp2N · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.65g)

We solve these equations by inverting (6.65b) to give, at each frequency of
excitation,

I = Z−1 V (6.66)

But the subbars are all connected in parallel, so thatV = V1 = V2 = · · · = VN.
Hence, (6.66) becomes ⎡

⎢⎢⎢⎢⎢⎣
I1

I2

...

IN

⎤
⎥⎥⎥⎥⎥⎦ = Z−1

⎡
⎢⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎥⎦ V (6.67)

Hence, we sum the columns of Z−1 to obtain the individual subbar currents:

Ii =
N∑

j=1

[
Z−1

]
ij

V (6.68)

ChoosingV = 1V gives the explicit currents of the subbars. We can also obtain
the overall impedance (resistance and self partial inductance) of the entire
conductor by noting that the total conductor current is the sum of the subbar
currents computed in (6.68) (i.e., I = I1 + I2 + · · · + IN). Hence, we sum
the rows and columns (the sum of all entries) of Z−1 to give the relationship
between the total current through the conductor, I, and the voltage across the
conductor, V, to give

I =
⎛
⎝ N∑

i=1

N∑
j=1

[
Z−1

]
ij

⎞
⎠ V (6.69)
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We obtain the effective impedance of the entire conductor by inverting (6.69)
to give

Ztotal = 1∑N
i=1

∑N
j=1 [Z] ij

= Rtotal + jω Lp,total (6.70)

where the real part of Ztotal is the equivalent resistance of the land, Rtotal,
and the imaginary part of Ztotal is the product of ω = 2πf and the equivalent
self partial inductance of the land, Lp,total. Note that Lp,total is the sum of
the external self partial inductance and the internal self partial inductance.
As the frequency increases and the current crowds to the surface of the land,
the magnetic flux internal to the land goes to zero, so the internal inductance
should also go to zero, leaving the external self partial inductance of the land
as the high-frequency inductance.

We will show computed results for typical lands. The thickness of a PCB
land is 1.4 mils, where a mil is one-thousandth of an inch. The lands are
typically etched from a copper-cladded board that is made from glass–epoxy
or FR-4 material. The glass–epoxy substrate has a relative permeability of
μr = 1 (is not magnetic) and hence does not affect the inductance. It has a
relative permittivity of about εr = 4.7, which does affect the capacitance. The
copper cladding is said to be “1 ounce” since 1 ft2 of this thickness weighs
1 oz. Typical land widths range from 5 to 30 mils. The following shows the
result for a PCB land whose thickness is 1.4 mils, whose width is 15 mils,
and whose length is 10 in. The current distribution over the land cross sec-
tion will be shown for four frequencies: 100 kHz, 10 MHz, 100 MHz, and 1
GHz. The results for this case were obtained with NT = 16 and NW = 172.
The width dimension of w = 15 mils is one skin depth (δ = 1/

√
πfμ0σ) at

f1δ = 30 kHz and two skin depths at f2δ = 120.34 kHz. The thickness dimen-
sion of t = 1.4 mils is one skin depth at f1δ = 3.45 MHz and two skin depths at
f2δ = 13.8 MHz. For the discretization of each conductor, the widths, �w, and
the thicknesses, �t, of each subbar should be less than two skin depths in order
that the current over each subbar will be approximately uniformly distributed
over it, which was the basic assumption in the derivation of the subbar resis-
tances and partial inductances. Hence, we should have �w = w/NW < 2δ

and �t = t/NT < 2δ. For NT = 16 and NW = 172, �t =�w = 2.22 �m.
(This was the reason for choosing the NT and NW as we did.) Each dimen-
sion of the subbars, �w and �t, is two skin depths at 3.5 GHz. Hence, at the
largest frequency of 1 GHz the current will be approximately uniformly dis-
tributed over each subbar. The distribution of the current over the conductor
cross section is shown at the four frequencies in Fig. 6.14(a) through (d).
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FIGURE 6.14(a). Current distribution over the cross section of a 1.4 mil × 15 mil land at
100 kHz.

FIGURE 6.14(b). Current distribution over the cross section of a 1.4 mil × 15 mil land at
10 MHz.

FIGURE 6.14(c). Current distribution over the cross section of a 1.4 mil × 15 mil land at
100 MHz.

FIGURE 6.14(d). Current distribution over the cross section of a 1.4 mil × 15 mil land at
1 GHz.
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FIGURE 6.15. Current concentrating at the land surface in a thickness of dimension on the
order of one skin depth.

Figure 6.14(a) shows that the current is uniformly distributed over the cross
section at 100 kHz. We would expect that as the frequency of excitation
increases, the current will move toward the surface, eventually lying predom-
inantly in a thickness at the surface of dimension on the order of a skin depth,
as illustrated in Fig. 6.15. Consequently, we would expect that the current
would start to exhibit this concentration at the surface when the width or the
thickness becomes greater than two skin depths: 2δ < w or 2δ < t, whichever
occurs first. For the width dimension of w = 15 mils, f2δ = 120.34 kHz, and
for the thickness dimension of t = 1.4 mils, f2δ = 13.8 MHz. Hence, 100 kHz
is such that the current distribution should remain uniformly distributed over
the cross section. Since the width is much larger than the thickness, the first
departure from a uniform distribution should occur when the width becomes
on the order of two skin depths. Figure 6.14(b) for 10 MHz clearly shows
that since the frequency is well above that for which the width is two skin
depths but has not reached the point where the thickness is two skin depths or
f2δ = 13.8 MHz, the current is crowding to the ends of the width dimension.
Similarly, Fig. 6.14(c) for 100 MHz is above the point where the thickness
is two skin depths, so crowding of the current is beginning to occur along
the thickness dimension. Finally, Fig. 6.14(d) for 1 GHz shows the classic
“bedpost” pattern, where the frequency is high enough that the current peaks
sharply at all four corners of the land cross section.

We next show the frequency behavior of the net resistance and self partial
inductance of the 1.4-mil × 15-mil land computed from (6.70). Figure 6.16(a)
shows the behavior of the net resistance versus frequency. Figure 6.16(b)
shows the internal inductance of the land computed from the current data via
the method of Antonini et al. [19].

As the frequency increases such that the current lies in a thickness of ap-
proximately one skin depth at all four surfaces as in Fig. 6.15(b), we would ex-
pect the per-unit-length high-frequency resistance to asymptotically approach

rhf = 1

σ (2δ t + 2δ w)

= 1

2σ δ (w + t)
�/m (6.71a)
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FIGURE 6.16(a). Net resistance of the 1.4 mil × 15 mil land vs. frequency.

The dc resistance, rdc = 1/σ w t, and this high-frequency asymptote join at

2δ = wt

w + t
(6.71b)

Hence, the high-frequency resistance should asymptotically approach a√
f increase since the skin depth δ = 1/

√
π f μ0 σ decreases as

√
f .

Figure 6.16(a) exhibits this behavior. Similarly, as the frequency increases
and the current crowds to the surface of the land, the magnetic flux internal to

FIGURE 6.16(b). Internal inductance of the 1.4 mil × 15 mil land vs. frequency.
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the land goes to zero as
√

f , so the internal inductance should also go to zero
as

√
f . Figure 6.16(b) also exhibits this behavior. Because of the “peaking”

of the current at the corners of the land, the high-frequency resistance in
(6.71) is somewhat less than the actual high-frequency resistance [8].

Next, we investigate two identical lands having identical cross-sectional
dimensions of w = t = 50 �m ∼= 2 mils with various separations between the
two lands. The total length of the two lands is 2.5 cm (about 1 in.). We compute
the total resistance and partial inductance of each land from 1 to 100 MHz.
We also plot the current distributions across the conductor cross sections for
(1) an isolated conductor and (2) two identical conductors having various
spacings between them when the two conductors carry (a) differential-mode
currents and (b) common-mode currents. This demonstrates the proximity
effect. The total resistance and partial inductance of each land will also be
plotted for various land separations. We subdivide each land cross section into
subbars of thickness �t = �w = t/NT = w/NW for NT = NW = 20. For
the discretization of each conductor, the widths, �w, and the thicknesses, �t,
of each subbar should again be less than two skin depths in order that the
current over each subbar will be approximately uniformly distributed over it,
which was the basic assumption in the derivation of the subbar resistances and
partial inductances (see Fig. 6.15). Hence, we should have �w = w/NW < 2δ

and �t = t/NT < 2δ. For NT = NW = 20, �t =�w = 2.5 �m and each
dimension of the subbars, �w and �t, is two skin depths at 2.8 GHz. Each
subbar will again be represented as shown in Fig. 6.13(b). The self partial
inductances and the mutual partial inductances between all subbars will both
be calculated using results from Hoer and Love [16] and given in (6.23) and
(6.28), respectively.

The computations for an isolated conductor are as described before. For
the case of two conductors, we write the relations between the impedances of
the subbars of the two conductors as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V1

...

V1

· · ·
V2

V2

...

V2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

Z1
... jω M12

· · · · · · · · ·
jω M12

... Z2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I11

I12

...

I1N

· · ·
I21

I22

...

I2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.72)
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where N = NW × NT. The Z1 and Z2 are each square with N rows and N
columns each and contain the self impedances Z = R + jω Lp of the subbars
of that conductor as well as the mutual partial inductances jω Mp between
the subbars of that conductor. The M12 matrix is square with N rows and N
columns and contains the mutual partial inductances between subbars of the
two conductors. We first invert Z in (6.72), giving

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I11

I12

...

I1N

· · ·
I21

I22

...

I2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

Y11 Y12

Y12 Y22

]
︸ ︷︷ ︸

Y=Z−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V1

...

V1

· · ·
V2

V2

...

V2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.73)

Since the total current of each conductor is I1 = I11+ · · · I1N and I2 = I21+ · · ·
I2N and all subbars of each conductor are connected in parallel, we then sum
the rows and columns of each of the four blocks of Y = Z−1 to give a relation
between the total currents and voltages of the two conductors as

[
I1

I2

]
=

[
Y11 Y12

Y12 Y22

] [
V1

V2

]
(6.74a)

where each Yij is a scalar:

Yij =
N∑

n=1

N∑
m=1

[
Yij

]
mn

(6.74b)

Equation (6.74a) is inverted to give

[
V1

V2

]
=

[
Z11 Z12

Z12 Z22

] [
I1

I2

]
(6.75)

We have two cases to consider: (1) differential-mode currents where the total
currents through the two conductors are related as I2 = −I1, and (2) common-
mode currents where the total currents through the two conductors are related
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as I2 = I1. From this we can determine the voltages across the two conductors
for I1 = 1 A as

V1,DM = (Z11 − Z12) I1

V2,DM = (Z22 − Z12) I2

V1,CM = (Z11 + Z12) I1

V2,CM = (Z22 + Z12) I2

(6.76)

where DM and CM denote differential- and common-mode voltages across
the conductors, respectively. This gives the voltages across each of the two
conductors for DM and CM excitation for a total current of 1 A through
each of the two conductors. Hence the resistance and partial inductance of
each conductor can be determined for DM and CM excitation as the real and
imaginary parts of (6.76). (The self partial inductance of the conductor is the
imaginary part divided by ω.) The voltages determined in (6.76) for 1-A DM
and CM excitation can then be substituted into (6.73) to determine and plot the
currents of the subbars for each of the conductors for DM and CM excitation.

Figure 6.17(a) shows the current distribution over the cross sections of
the two conductors for a separation (edge to edge) of s = 50 �m ∼= 2 mils,
differential-mode excitation, and an excitation frequency of 1 MHz, while
Fig. 6.17(b) shows this for an excitation frequency of 100 MHz. Figure 6.18
repeats this for common-mode excitation. These plots show the expected
crowding of the current toward the surfaces of the conductors when the cross-
sectional dimensions become on the order of two skin depths. They also show

FIGURE 6.17(a). Current distribution over the conductor cross sections for differential-mode
current and s = 50 �m and 1 MHz.
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FIGURE 6.17(b). Current distribution over the conductor cross sections for differential-mode
current and s = 50 �m and 100 MHz.

the proximity effect. For differential-mode excitation shown in Fig. 6.17(b)
the currents tend to concentrate on the facing sides as is the case for wires.
For common-mode excitation shown in Fig. 6.18(b), the currents tend to con-
centrate on opposide sides.

FIGURE 6.18(a). Current distribution over the conductor cross sections for common-mode
current and s = 50 �m and 1 MHz.
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FIGURE 6.18(b). Current distribution over the conductor cross sections for common-mode
current and s = 50 �m and 100 MHz.

Figure 6.19(a) shows the resistance for (1) an isolated conductor and (2) two
conductors. Also shown is the high-frequency approximation in (6.71a). The
dc and high-frequency asymptotes join at a frequency where 2δ = wt/(w + t).
Observe that for this close separation of the two conductors of s = 50 �m,

FIGURE 6.19(a). Total resistance for an isolated conductor and for two conductors.
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FIGURE 6.19(b). Total partial inductance for an isolated conductor and for two conductors.

exactly one conductor will fit between the two. Figure 6.19(b) shows the net
self partial inductance of the isolated conductor as well as the two conductors.
In addition, the dc and high-frequency limits of the self partial inductance are
shown.

FIGURE 6.20(a). Total resistance for an isolated conductor and for two conductors for a
separation of s = 200 �m.
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FIGURE 6.20(b). Total partial inductance for an isolated conductor and for two conductors
for a separation of s = 200 �m.

Figure 6.20 shows the total resistance and partial inductance for an isolated
conductor and for two conductors for a separation (edge to edge) of s =
200 �m. For these wide separations (four conductors will fit between the two)
the resistance and inductance are not affected appreciably by the presence of
the other conductor, as we would expect.

FIGURE 6.21(a). Total resistance for an isolated conductor and for two conductors for a
separation of s = 10 �m.
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FIGURE 6.21(b). Total partial inductance for an isolated conductor and for two conductors
for a separation of s = 10 �m.

Figure 6.21 shows the total resistance and partial inductance for an iso-
lated conductor and for two conductors for a separation (edge to edge) of
s = 10 �m. For this very close separation, the resistance and inductance are
affected significantly by the presence of the other conductor more than for
s = 50 �m.



7
“LOOP” INDUCTANCE VS. “PARTIAL”
INDUCTANCE

In the preceding chapters we have detailed the concept and calculation of
“loop” inductance and “partial” inductance for various current-carrying struc-
tures consisting of conductors of circular, cylindrical cross section (wires), as
well as conductors of rectangular cross section (PCB lands). In this final
chapter we summarize the advantages and disadvantages of characterizing
these structures with “loop” inductance or with “partial” inductance and give
examples of the applications of partial inductance.

7.1 LOOP INDUCTANCE VS. PARTIAL INDUCTANCE:
INTENTIONAL INDUCTORS VS. NONINTENTIONAL
INDUCTORS

An important question that this book intends to resolve is: When should loop
inductance be used to characterize a current-carrying, conductive structure,
and when should partial inductance be used? A related question to be an-
swered is: What are the advantages and disadvantages of loop inductance
vs. partial inductance? There exists considerable misunderstanding through-
out the electrical engineering community regarding “partial” inductance and
where it is appropriate to use the concept to characterize the inductance ef-
fects of current-carrying structures. “Loop” inductance is a standard topic in

Inductance: Loop and Partial, By Clayton R. Paul
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undergraduate electrical engineering textbooks, but these textbooks do not
contain any reference to “partial” inductance. Hence, electrical engineers are
well trained in the understanding and calculation of loop inductance, but they
have little or no understanding of the concept and uses of partial inductance.
This unfortunate deficiency in the training of electrical engineers causes them
erroneously to use formulas for loop inductance that do not apply to their
situation of interest when they should instead use partial inductance formu-
las. If one models a section of wire or PCB land with an inductance, they
are inherently using partial inductance, whether they know it or not. Loop
inductance cannot be used to characterize a section of a conductor because
as we have discussed, the induced emf in Faraday’s law of induction that the
loop inductance represents cannot be placed uniquely in any specific place
in a closed current loop. The literature, both trade magazines and scholarly
journals, is replete with examples of this misunderstanding and misuse of
inductance, wherein the symbol for an inductor is used to model a section of
wire or PCB land, yet a formula for “loop” inductance is used erroneously to
compute the value of that inductance.

The inductive effects of a time-varying current inherent in Faraday’s law
of induction represent one of the most important parameters that determine
the performance of today’s electrical circuits and systems. Digital circuits
and systems today have clock and data rates in the GHz range. The spec-
tral content of these digital waveforms of trapezoidal pulse shape generally
extends at least to the fifth harmonic of the repetition rate and depends on
the pulse rise/fall times [5]. Frequencies of analog systems have also moved
steadily into the GHz range. Interconnects such as wires and PCB lands were
electrically short some 10 years ago and could be ignored in an analysis of
the system performance. Today, the physical lengths of those same intercon-
nects have not changed substantially but their electrical lengths have become
a significant portion of a wavelength, and hence can no longer be ignored.
These interconnects represent one of the most important parameters affecting
digital as well as analog system performance. Most power distribution and
signal interconnects in today’s digital and analog systems must be modeled
to predict the true performance of the system.

To understand the distinction in use between “loop” inductance and “par-
tial” inductance, it is important to focus on “intentional” and “nonintentional”
inductors. The solenoid and the toroid covered in Sections 4.2 are examples of
“intentional” inductors. They are constructed intentionally to take advantage
of the inductive effects inherent in Faraday’s law of induction. One of the
primary uses of intentional inductors such as the solenoid and the toroid are
to block high-frequency signals while passing lower-frequency signals such
as dc power. They are also used, along with capacitors, to construct bandpass
filters that are so essential to radio communication. Lowpass and highpass
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filters are constructed as well using inductors in combination with capacitors.
Similarly, bandreject filters remove unwanted signals. Shorted stubs consist-
ing of two parallel lands shorted together at the far end are used to construct
inductors that are suitable for use at microwave frequencies, where the para-
sitic effects of interwinding capacitance in conventional inductors would short
out the inductor at these very high frequencies. These are examples of “in-
tentional” inductors. For these structures we are interested only in the voltage
at the terminals of the structure and are not interested in the voltages gener-
ated at points internal to the structure. Hence, “loop” inductance is useful in
characterizing these structures for their typical uses.

Certain “transmission lines,” such as the coaxial cable (Sections 4.1.3, and
4.7.3); the two-wire transmission line (Sections 4.6.1 and 4.7.2); one wire
above a ground (Section 4.6.2); transmission lines composed of conductors
of rectangular cross section such as the stripline, the microstrip line, and the
PCB (Section 4.9); and multiconductor transmission lines (Section 4.8.2) are
suitably characterized by per-unit-length “loop” inductances. Again, for these
transmission-line structures we are only interested in the voltages at the termi-
nals of the structure and are not interested in the voltages generated at points
internal to the structure. Hence, “loop” inductance is useful in characterizing
these structures for analyzing their typical use.

However, “nonintentional” inductances are generally undesired induc-
tances and represent detrimental effects that must be incorporated into an
analysis of the overall system to determine its performance degradation. It
is generally not feasible or useful to attempt to characterize nonintentional
inductances with “loop” inductance for a number of reasons, outlined in the
following sections. Hence, partial inductance is the most appropriate charac-
terization for nonintentional inductances.

7.2 TO COMPUTE “LOOP” INDUCTANCE, THE “RETURN
PATH” FOR THE CURRENT MUST BE DETERMINED

Dc currents must form closed loops along conductors. The “loop” inductance
characterizes that complete current loop at its terminals. For intentional in-
ductors, the complete current loop is evident virtually “by design.” Hence, the
complete current loop for calculating the loop inductance is evident.

However, consider nonintentional inductors such as lands on a PCB that
interconnect a source and a load. The “going down” path for a current from
the source to the load is fairly easy to determine. But the return path for the
current back to the source can take a number of alternative routes that are far
from obvious. In today’s highly dense and complicated PCBs it is virtually
an impossible task to identify the return path for most currents. If one cannot
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identify the complete path of the current loop, the loop inductance cannot be
computed. We therefore have no other recourse than to use partial inductance
for characterizing the Faraday law inductive effect of a segment of the current
loop such as a wire or a PCB land.

We ascribe the property of “inductance” to an intentional inductor such as
a toroid or a solenoid, whether or not that inductor has any current flowing
through it. But its utility exists only if a current passes through it. Similarly,
when we ascribe a partial inductance to a segment of a conductor, that partial
inductance is effective only when it has a current passing through it. That
current must form a closed loop by some path that may not yet be obvious,
nor do we need to determine “that path” when computing the partial inductance
of a segment of the path. We must be assured that a return path for the current
has been provided by the designer in some fashion that may not be readily
obvious. If, by some omission in the circuit’s physical construction, no path
is provided for the current to return to its source, the partial inductance of a
segment has no effect, for the same reason that an intentional inductor would
have no effect: No current passes through it.

There is an important case where the return path of the current on a PCB is
somewhat more obvious. If the current is allowed to return through one of the
innerplanes buried in the board (either a “ground” distribution innerplane or a
power distribution innerplane), it is well known that the current in that plane
will tend to concentrate directly beneath the “going down” path. The return
current will peak beneath the “going down” current and spread out in (on the
surface of) the adjacent plane, giving a current density on the plane of [5]

Js(x) = I

πh
(

1 + (x/h)2
) A/m

where h is the height of the “going down” current above the plane and x is
the horizontal position along the plane, with x = 0 being directly beneath the
“going down” current. This result was derived for a very ideal situation of
a filamentary current above an infinite, perfectly conducting ground plane.
Innerplanes in PCBs have various discontinuities in them and are of finite
dimensions, so they are represented only approximately by this ideal case.
For example, lands on a PCB that are above but near the edges of the in-
nerplanes have substantial fringing fields and probably do not represent the
case of an infinite ground plane. Similarly, the innerplanes may have gaps and
other discontinuities in them. A power plane must have isolated sections to
accommodate the various dc voltages of the system. Even the ground inner-
planes may have gaps cut into them for various reasons. It is generally not
recommended and is unnecessary to cut gaps in a ground innerplane, as this
disrupts the return current paths [5]. But even for the ideal situation, which
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resembles a stripline or a microstrip line, computation of the loop inductance
is a formidable task. Holloway and Kuester have made this calculation for the
microstrip line [31]. It is worth noting that they do this using partial inductance
concepts.

We can model all the conductor segments of a structure with their partial
inductances (self and mutual). We can then solve the resulting lumped circuit
using, for example, SPICE and hence determine the return paths for the cur-
rents without having to guess about the return path for a current. If the model
does not have provision for at least one return path back to its source for a
conductor segment, assigning a partial inductance to that segment will have
no effect in the same fashion that not passing a current around the closed loop
of an intentional inductor will eliminate any effect of that loop inductance.
But to compute, a priori, a loop inductance, we must first determine the com-
plete path for the loop current. To compute, a priori, the partial inductance of
a conductor segment, we do not need to determine the complete current loop
path.

7.3 GENERALLY, THERE IS NO UNIQUE RETURN PATH
FOR ALL FREQUENCIES, THEREBY COMPLICATING
THE CALCULATION OF A “LOOP” INDUCTANCE

Circuit designers provide only one path for the “going down” current. How-
ever, they tend to “leave it to the current” to select a return path back to the
source. At dc and low frequencies, a current will return to its source along the
path of lowest resistance. At higher frequencies, the current will return to its
source along the path of lowest impedance, which is generally the path of low-
est inductance: Resistance is an insignificant portion of the total impedance
of a conductor at the higher frequencies [5]. A good example of this is the
shielded wire, where the shield is above and “grounded to” a “ground” plane
that was discussed in Chapter 1 and shown in Fig. 1.2. At dc and low fre-
quencies, the “going down” current I takes its return path, IG, through the
massive ground plane, which obviously has a much lower dc resistance than
other possible return paths. However, at higher frequencies, the current I takes
its return path up through the shield, IS , thereby minimizing the area and in-
ductive impedance between the “going down” path and the return path [5].
Therefore, the return paths and hence the complete current loops are different
for different frequencies for this structure.

Another example of this is the popular “gridded ground” system on a PCB
shown in Fig. 7.1, where a “grid” of conductors is interconnected so as to pro-
vide a number of possible paths for the current to return to its source along [5].
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FIGURE 7.1. Ground grid for reducing the loop area of the loop current path.

This is done to avoid the radiated emissions of large current loops and is used
in low-cost products to avoid more costly boards having innerplanes. It is also
used even on PCBs with innerplanes, to minimize the (partial) inductance
and associated “ground bounce” as well as common-mode currents generated
by return currents that do not take the innerplane route [5]. At dc and low
frequencies the “going down” current I returns along the path of lowest
resistance using the simple “current-division” principle [1,2]. Simply model
each wire segment of the grid with its dc resistance and compute (using
SPICE or, if the circuit is simple, by hand) the path of lowest resistance. As
the frequency of the current increases, the impedance of the complete path is
governed by the inductance of the entire loop. From our previous calculations
we know that the inductance of a current loop is related directly to its loop
area. Hence, the return current “chooses” the path to minimize the total loop
area giving the path of lowest loop impedance (inductance) nearest the “going
down” current, as shown in Fig. 7.1. Modeling all the conductor segments of
this structure with their resistances as well as their partial inductances (self
and mutual), we can solve the resulting lumped-circuit model using SPICE
and hence determine the lowest-impedance return current path. This was
accomplished by Paul and Smith [32].

7.4 COMPUTING THE “GROUND BOUNCE” AND “POWER
RAIL COLLAPSE” OF A DIGITAL POWER DISTRIBUTION
SYSTEM USING “LOOP” INDUCTANCES

Signal integrity has become a paramount design consideration in today’s high-
speed digital systems. Signal integrity has to do with ensuring that the wave-
shape and levels of those signals are maintained within tightly controlled
limits to avoid logic errors and false switching when these levels rise or fall
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FIGURE 7.2. “Ground bounce” and “power rail collapse” in digital circuits.

into gray regions. Dc voltages are supplied to the modules in a digital system
by lands routed on and within a PCB. For example, consider a two-conductor
power distribution circuit for supplying dc voltages from a power supply to
CMOS inverters as shown in Fig. 7.2. When the left inverter is in the high
state, the right inverter is in the low state and current passes along the power
distribution lands from the dc power supply to the power pin of the left in-
verter, into the input of the right inverter, and returns to the power supply
along the “ground” lands. When the left inverter is switched to the low state,
the current of the power supply passes down through the right inverter and
returns to the power supply. We have modeled the PCB lands connecting the
power and the ground pins of the inverter modules to each other and to the
dc power supply with inductances labeled as LPR and LGB. As the inverters
switch, the currents through these lands go to or increase from zero or change
direction, thereby inducing voltages across these inductors that are related to
the rate of change of the currents through them. Voltages VPR are developed
across the inductors LPR that may cause the voltages of the power pins of the
modules to drop significantly, which is called power rail collapse. Similarly,
voltages VGB are developed across the inductors LGB, causing the voltages of
the two “ground” pins of the inverters to differ significantly, which is referred
to as ground bounce. Both of these phenomena may cause logic errors, thereby
degrading the signal integrity of the system.

There is considerable evidence that these voltages exist [33], but the essen-
tial question is: What do we mean by these inductances? They certainly are
not “loop” inductances since we know that an inductance of a closed current
loop cannot be assigned uniquely to any place in that loop. These inductances
are, in fact, partial inductances. Although not shown in this diagram, there
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are also mutual partial inductances between these self partial inductances that
should be included if the conductors are close enough to each other. A diagram
such as Fig. 7.2 is seen throughout the literature not only in “trade” magazines
but also in scholarly journals. A closer inspection of those articles shows that
many of the authors do not know how to correctly calculate the values for
these inductances and erroneously use formulas for “loop” inductance. If we
accept the fact that ground bounce and power rail collapse actually exist in
digital circuits and are a severe problem, we have no recourse but to admit
that “loop” inductance does not explain the phenomenon, and we must ac-
cept the utility of partial inductance concepts. A means for measuring these
ground bounce and power rail collapse voltages using the concept of partial
inductance was given in [33,34].

7.5 WHERE SHOULD THE “LOOP” INDUCTANCE OF THE
CLOSED CURRENT PATH BE PLACED WHEN DEVELOPING
A LUMPED-CIRCUIT MODEL OF A SIGNAL OR POWER
DELIVERY PATH?

As we know from previous discussions, one cannot place the loop inductance
uniquely in any specific position in the loop. You can only attribute partial
inductances to specific segments of the closed current loop. For example,
consider the parallel-wire transmission line shown in Fig. 7.3. In transmission-
line analyses, we are only interested in the terminal voltages at the endpoints
of the line. Hence, we can place the “loop” inductance in either conductor, as
shown in Fig. 7.3, and obtain the same result for these terminal voltages. It is
clear from Fig. 7.3 that the ground bounce and power rail collapse voltages
cannot be determined uniquely using “loop” inductance.

Throughout the literature one sees equivalent-circuit models with lumped
“inductances” representing segments of conductors. Upon closer scrutiny it

loopL
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I

Lloop I

dt

dI
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V1

V1 V2V1

loop==

FIGURE 7.3. Loop inductance and the transmission line.
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FIGURE 7.4. Modeling a two-wire transmission line with partial inductances.

is found that formulas for “loop” inductance are used to compute the values
of those inductances. We can compute the “loop” inductance using partial
inductances of the loop segments, but the reverse is not true. For example, we
can model the two-wire transmission line in Fig. 7.3 using partial inductances
as shown in Fig. 7.4. Using the dot convention [1,2] we obtain

VGB = VPR = Lp

dI

dt
− Mp

dI

dt

= (
Lp − Mp

) dI

dt
(7.1)

The total voltage drop around the transmission line loop is the product of
the “loop” inductance of the transmission line loop and the time derivative
of the current. Hence, the total voltage around the loop is twice (7.1). There-
fore, the transmission line “loop” inductance can be obtained from the partial
inductances as

Lloop = 2
(
Lp − Mp

)
(7.2)
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These self and mutual partial inductances for wires were obtained in Sec-
tions 5.3 and 5.4:
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Combining these gives the loop inductance of the transmission line:
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which was obtained directly by computing the magnetic flux threading the
loop between the two wires in (4.73) in Section 4.6.1.

This result for the loop inductance of the transmission line in terms of
partial inductances in (7.2) is rather obvious if we recall the physical meaning
of the partial inductances as being the ratios of the magnetic flux between a
wire and infinity and the current producing that flux. The quantity

(
Lp − Mp

)
is the net magnetic flux through the loop formed by the two transmission-line
conductors per unit of current as shown in Fig. 7.5. Adding the fluxes through
the loop due to the two currents (equal but oppositely directed) gives the result
in (7.2).

This partial inductance model of the transmission line in Fig. 7.4 also clearly
shows an interesting observation that is not obtained from the transmission-
line “loop” inductance circuit of Fig. 7.3. As we move the two wires closer, the
value of the mutual partial inductance approaches the value of the self partial
inductance (i.e.,Mp → Lp as s → 0), and hence the ground bounce and power
rail collapse voltages approach zero (i.e., VGB, VPR → 0 as s → 0). This
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FIGURE 7.5. Loop inductance of a transmission line from partial inductances.

shows a routinely observed design rule that in order to reduce ground bounce
and power rail collapse, the “going down” and return conductors should be
placed as close as possible to each other. This useful design rule could not be
determined using “loop” inductance, but it is frequently used without under-
standing the distinction between “loop” and “partial” inductances.

7.6 HOW CAN A LUMPED-CIRCUIT MODEL OF A
COMPLICATED SYSTEM OF A LARGE NUMBER OF TIGHTLY
COUPLED CURRENT LOOPS BE CONSTRUCTED USING
“LOOP” INDUCTANCE?

The electromagnetic fields of all neighboring currents interact with each other
to some degree, and to include all their effects, this coupling should be included
in each circuit loop representation. Consider Fig. 7.6, where we have shown
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FIGURE 7.6. Including the effects of other currents.

a power distribution current loop in a digital system carrying current I, and
also a conductor of a neighboring current loop on the PCB carrying current
Iother. The neighboring current Iother as well as other neighboring currents
will affect the ground bounce and power rail collapse voltages. This effect
of neighboring currents could not be determined using “loop” inductances.
However, their effect can be determined easily by modeling this situation
with the self and mutual partial inductances of the conductors. To include the
effect of the other current, we simply write the circuit equations using the dot
convention as

VGB = Lp2
dI

dt
− Mp

dI

dt
− M2

dIother

dt

VPR = Lp1
dI

dt
− Mp

dI

dt
+ M1

dIother

dt

With this circuit model we simply “turn the crank” and compute (perhaps
with SPICE) the “ground bounce” voltage VGB and the “power rail collapse”
voltage VPR, which are of considerable interest in signal integrity analyses
for today’s high-speed digital systems [5]. This would be a formidable if not
impossible task using only “loop” inductances.

7.7 MODELING VIAS ON PCBS

A via (pronounced “veeya”) is a hole drilled through a PCB to interconnect
lands on the top and bottom surfaces as well as on innerplane layers within the
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FIGURE 7.7. Via for interconnecting lands on a PCB that are on different layers.

PCB, as illustrated in Fig. 7.7. Circular “pads” attach the barrel to the lands.
The via is an important feature in keeping the physical size of the PCBs from
becoming prohibitive. However, it is also a significant factor affecting signal
integrity since it represents a discontinuity in the transmission lines that are
connected by it, thereby causing reflections that degrade the waveshape of the
voltages and currents on the lands. A particularly simple inductance model of
the via is as a simple wire of diameter d representing the barrel. Hence, the
inductance of the via is simply the self partial inductance of a wire of diameter
d and length h:

Lvia

h
= μ0

2π

(
ln

2h

rvia
− 1

)

= μ0

2π

(
ln

4h

d
− 1

)
H/m (7.5a)

It is common to write this in nH and to use the dimensions for d and h in
inches. Hence, the constant becomes μ0/2π → 5.08 and we obtain

Lvia

h
= 5.08

(
ln

4h

d
− 1

)
nH/in. (7.5b)

For example, for a board of standard thickness 62 mils and a via of radius 16
mils, which is equivalent to a No. 20 gauge wire, the inductance of the via is
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5.32 nH/in., for a total via inductance of 0.33 nH. Mutual partial inductance
between neighboring vias should be included in this model.

A popular signal integrity book gives the result as Lvia = 5.08 h[
ln (4h/d) + 1

]
. Observe that there is a + 1 in this result, whereas the correct

partial inductance result in (7.5) has a −1 in it. For the previous dimensions,
this gives a via inductance of 15.5 nH/in., a factor of 3 larger than the cor-
rect result in (7.5b). The authors of that book argued that their result was
obtained using the per-unit-length inductance of a coaxial cable derived in
(4.29), Lvia = (μ0/2 π) h ln(rs/rw), where the barrel of the via represents the
inner wire of the cable of radius rw and the “shield” (the “return path” for
the current) is at a distance of rs = 2eh cylindrically about the barrel and
e = 2.71828 . . .. Substituting rs = 2eh into the equation for the coaxial cable
gives their result. A more defensible result is obtained with partial inductance
concepts, and we would not need to determine a fictitious “return path” for
the via current.

7.8 MODELING PINS IN CONNECTORS

Another aspect of system design that has the potential for degrading signal
integrity are the numerous connectors in the system that make the inevitable
connection between an off-board cable and the lands on the PCB. These
connectors have numerous pins in them of radius rpin and length lpin that are
inserted into a receptacle on the PCB. These essentially insert inductances into
the signal propagation path that have the potential for degrading the quality
of the signals being transferred through the connector. How shall we model
these connector pins? The obvious choice is with partial inductances. Using
the result for the self partial inductance of a wire in (7.3a) gives

Lpin = μ0

2π
lpin

(
ln

2lpin

rpin
− 3

4

)
H (7.6a)

This was cited in a textbook without recognition being given to it being a
“partial” inductance. Where does the factor of 3/4 arise? If we add the internal
inductance of the wire, μ0/8π, to the self partial inductance in (7.3a), we
obtain a total self partial inductance of

Lpin = μ0

2π
lpin

(
ln

2lpin

rpin
− 1

)
+ μ0

8π
lpin

= μ0

2π
lpin

(
ln

2lpin

rpin
− 3

4

)
(7.6b)
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Again mutual partial inductaries between neighbours pins should be included.
As we computed earlier, the internal inductance is usually a negligible term
and goes to zero as the frequency increases. This was not explained in the
textbook. If all this were explained and the use of “partial” inductance of a
wire were mentioned, the result would not seem to be “magic” and of unknown
origin. For pins of rectangular cross section the textbook gives the formula

Lpin = μ0

2π
lpin

(
ln

4lpin

P
+ 1

2

)
(7.7)

where P is the perimeter of the rectangular cross section of the pin: P =
2 (w + t). This result was given in equation (6.56c). Neither of these “mys-
terious formulas” in (7.6) and (7.7) were described as being “partial” induc-
tances that we derived previously and were originally published by Grover
[14] in 1946. In addition, the mutual inductance between two pins separated
by a distance s is given as

Mp = μ0

2π
lpin

⎡
⎢⎣ln

⎛
⎝ lpin

s
+

√(
lpin

s

)2

+ 1

⎞
⎠ −

√√√√1 +
(

s

lpin

)2

+ s

lpin

⎤
⎥⎦

∼= μ0

2π
lpin

[
ln

(
2lpin

s

)
− 1

]
lpin 	 s (7.3b)

But, of course, this is simply the mutual partial inductance between the two
current filaments that is derived in Chapter 5 and given in (5.21) and was also
originally given by Grover [14]. So once again there has been widespread use
of the concept of partial inductance without apparently knowing it or under-
standing the distinction between “loop” inductance and “partial” inductance.

7.9 NET SELF INDUCTANCE OF WIRES IN PARALLEL
AND IN SERIES

Consider two wires of equal radii rw that are connected in series as shown
in Fig. 7.8. The lengths of the wires are l1 and l2 and their adjacent ends are
separated by a distance of s. The equivalent circuit is also shown in Fig. 7.8.
Summing the voltages developed across the two inductors of the equivalent
circuit and using the dot convention gives

V = Lp1
dI

dt
+ Mp

dI

dt
+ Lp2

dI

dt
+ Mp

dI

dt

= (
Lp1 + Mp + Lp2 + Mp

) dI

dt
(7.8)
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FIGURE 7.8. Two wires in series.

Hence, the net self partial inductance of the combination is

Lp net = Lp1 + Lp2 + 2Mp (7.9)

where the self partial inductances are obtained in Section 5.3 as

Lpi
∼= μ0

2π
li

(
ln

2 li

rw
− 1

)
li 	 rw (5.18c)

The mututal partial inductance between two wires that are aligned but are
offset by a distance s was obtained in Section 5.5 and Fig. 5.12 as

2Mp = Lp (l2+s+l1) − Lp (l1+s) − Lp (l2+s) + Lp s (5.28d)

In the special case where the two conductors are joined together, s = 0, the
mutual inductance becomes

2Mp = Lp (l2+l1) − Lp l2 − Lp l1 s = 0 (5.28d)

Combining this result for s = 0 with (7.9) gives Lp net = Lp (l2+l1), which
makes sense.

Figure 7.9 shows two wires (possibly of different radii) connected in par-
allel. From the equivalent circuit and using the dot convention, we obtain the
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FIGURE 7.9. Two wires in parallel.

voltage across each conductor as

V = Lp1
dI1

dt
+ Mp

dI2

dt

= Lp2
dI2

dt
+ Mp

dI1

dt
(7.10)

Since the endpoints of the wires are connected, the two voltages across each
wire must be equal. Writing this in matrix form gives

V

[
1

1

]
= s

[
Lp1 Mp

Mp Lp2

] [
I1

I2

]
(7.11)

and s denotes the Laplace transform variable (essentially, the derivative oper-
ator here). Inverting this gives[

I1

I2

]
= 1

s

1

Lp1Lp2 − M2
p

[
Lp2 −Mp

−Mp Lp1

] [
1

1

]
V (7.12)
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Solving gives [
I1

I2

]
= 1

s

1

Lp1Lp2 − M2
p

[
Lp2 − Mp

Lp1 − Mp

]
V (7.13)

Adding the rows gives

I = I1 + I2

= 1

s

Lp1 + Lp2 − 2Mp

Lp1Lp2 − M2
p

V (7.14)

Inverting this result gives the net partial inductance of the parallel combina-
tion:

Lnet = Lp1Lp2 − M2
p

Lp1 + Lp2 − 2Mp

(7.15)

If the two wires have identical lengths and radii, Lp1 = Lp2 = Lp, (7.15)
reduces to

Lnet = Lp + Mp

2
(7.16)

It is generally thought that placing two wires in parallel gives a net induc-
tance of the combination that is half that of one wire alone, since in electric
circuit analysis, inductors in parallel combine like resistors in parallel [1,2].
This is not necessarily true because that usual assumption neglects to consider
the mutual partial inductance between the two wires. The result in (7.16) shows
that unless the two wires are placed relatively far apart, the net partial induc-
tance of the combination will not equal half that of one wire. Placing the wires
relatively far apart means that the mutual partial inductance approaches zero,
Mp → 0, as we have seen, and the result in (7.16) approaches Lp net → Lp/2.
On the other hand, moving the two wires closer together causes the mutual par-
tial inductance to approach the value of the self partial inductance, Mp → Lp,
and the result in (7.16) approaches that of one wire, Lp net → Lp. Hence, plac-
ing two wires in parallel and close together provides a net partial inductance
that is not significantly less than using only one wire!

7.10 COMPUTATION OF LOOP INDUCTANCES
FOR VARIOUS LOOP SHAPES

With the concept of partial inductances and the results derived previously for
the self and mutual partial inductances of wires, it is a simple matter to derive
the loop inductances of loops of various shapes as long as their perimeters
consist of piecewise-linear segments. For example, consider the rectangular
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FIGURE 7.10. Rectangular loop.

loop composed of wires of equal radii rw and side lengths of l and w shown
in Fig. 7.10. Summing the voltages across the inductances in the equivalent
circuit and using the dot convention for the mutuals gives the inductance of
the loop as

Lloop = 2
(
Lpw − Mplw

) + 2
(
Lpl − Mpwl

)
(7.17)
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Notice the placement of the dots on the inductors. Parallel conductors should
have the dots on the same ends since the self and mutual partial inductances
give the magnetic fluxes between each conductor and infinity. To obtain the
magnetic flux threading the loop between the two conductors, the dots should
be on the same ends of parallel wires, thereby giving the magnetic flux through
the surface between the two conductors carrying oppositely directed cur-
rents as the difference between the self and mutual partial inductances (see
Figure 7.5 as well as Section 5.8 and Figures 5.5, 5.6, and 5.7). Substituting
the self and mutual partial inductances from (5.18c) and (5.21b) into (7.17)
yields, for l, w 	 rw:

Lloop = μ0

π

(
w ln

2w

rw
− w − w sinh−1 w

l
+

√
w2 + l2 − l

+ l ln
2l

rw
− l − l sinh−1 l

w
+

√
l2 + w2 − w

)
(7.18)

Simplfying this gives the same loop inductance obtained in Chapter 4 after a
lengthy integration of the B field over the loop surface:

Lloop = μ0

π

(
w ln

2w

rw
+ l ln

2l

rw
− w sinh−1 w

l
− l sinh−1 l

w

+ 2
√

l2 + w2 − 2 (w + l)
)

(4.18)

In the case of a square loop, l = w, (4.18) simplifies to the result obtained in
Chapter 4 that was obtained after some tedious integration of the B field over
the loop surface:

Lsquare loop = μ0

π

⎡
⎢⎢⎢⎣2l ln

2l

rw
− 2l sinh−1 (1)︸ ︷︷ ︸

ln
(

1+√
2
) +2l

√
2 − 4l

⎤
⎥⎥⎥⎦

= 2
μ0

π
l

[
ln

2l

rw
− ln

(
1 +

√
2
)

+
√

2 − 2
]

= 2
μ0

π
l

[
ln

l

rw
− 0.774

]
l = w 	 rw (4.20)

which matches Grover’s result [14]. To these results we may add the internal
inductances of the wire if necessary:

Lloop, internal = 2
μ0

8π
l + 2

μ0

8π
w (7.19)

Next, consider the equilateral triangle shown in Fig. 7.11 (see the discussion
on placement of the dots in Section 5.8). Writing the voltage V across one of
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FIGURE 7.11. Equilateral triangle.

the inductors gives

V = Lp

dI

dt
− 2Mp

dI

dt

= (
Lp − 2Mp

) dI

dt
(7.20)

The total voltage around the loop is three times (7.20), accounting for the
voltages of all three sides. Hence, the net loop inductance as

Lloop = 3
(
Lp − 2Mp

)
(7.21)

Substituting the self partial inductances of the three wires from Chapter 5,

Lp
∼= μ0

2π
l

(
ln

2 l

rw
− 1

)
l 	 rw (5.18c)

and the mutual partial inductances between two inclined wires of equal length
from Section 5.6, equation (5.46b),

Mp = μ0

2π
cos

(
60o) (

l ln
l + 2l

l

)

= μ0

2π
l (0.549) (5.46b)

gives

Lloop = 3
(
Lp − 2Mp

)
= 3

μ0

2π
l

(
ln

2 l

rw
− 1 − 2 × 0.549

)

= 3
μ0

2π
l

(
ln

l

rw
+ ln 2 − 1 − 2 × 0.549

)

= 3
μ0

2π
l

(
ln

l

rw
− 1.405

)
(7.22)
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which matches Grover’s result [14]. To this result we may add the internal
inductances of the wire if necessary:

Lloop, internal = 3
μ0

8π
l (7.23)

7.11 FINAL EXAMPLE: USE OF LOOP AND PARTIAL
INDUCTANCE TO SOLVE A PROBLEM

In this final section of the book we examine a typical example of computing
the inductive coupling between two loops using (a) loop inductances and (b)
partial inductances. Figure 7.12 shows the example dimensions. To simplify
the numbers, each loop is chosen to be square with side dimensions 1 m × 1 m,
and the two loops are offset by 1 m in the vertical dimension and by 1 m in the
horizontal dimension. The loops are constructed of No. 20 gauge wires having
radii of rw = 16 mils. The first loop is driven by a 1-V sinusoidal source of
frequency 10 MHz having a source resistance of 10 �. At a frequency of
10 MHz, a wavelength (in free space) is 30 m. Hence the dimensions of the
loops and their separation can be considered to be electrically small, thereby
allowing us to treat this problem as a lumped-circuit problem. The second
loop also has a 10-� resistor inserted in it, and it is desired to compute the
voltage induced across the terminals of that resistor, Vout (t).

1m

+–

1m

1m

1m

1m

1m

10 Ω

10 Ω

10 MHz=f

VS (t) = 1sin ω t V

Vout (t)

+

–

FIGURE 7.12. Example comparing loop inductance to partial inductance.
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f
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5.627 μHI1 2I1

32

0 0

4.901 nH

–

+

FIGURE 7.13. Example of Fig. 7.12 modeled with loop inductances.

We first compute the output voltage by modeling each loop as its loop
self inductance and a mutual inductance between the two loops as shown
in Fig. 7.13. The self inductance of each loop is computed from equation
(4.20) as Lloop = 5.627 μH. The mutual inductance between the two loops is
computed from equation (4.111) as M12 = 4.901 nH. The complete model for
the example using loop inductances is shown in Fig. 7.13. This can be solved
by writing the (phasor) mesh current equations around the two loops giving
[1,2]

V̂ S = 1∠0o =
(

10 + jω 5.627 × 10−6
)
Î1 − jω 4.901 × 10−9Î2

0 = −jω 4.901 × 10−9Î1 +
(

10 + jω 5.627 × 10−6
)
Î2 (7.24)

Substituting ω = 2πf = 2π × 107 gives the phasor equations as

1∠0o = (10 + j353.58)Î1 − j0.30795Î2

0 = −j0.30795Î1 + (10 + j353.58)Î2 (7.25)

Solving this givesÎ2 = 2.461 × 10−6∠ − 86.76o andV̂ out = 10Î2 = 2.461 ×
10−5∠ − 86.76o V. A simpler way to compute this result is by using PSPICE
[2]. The nodes are numbered as shown in Fig. 7.13. The PSPICE program is

EXAMPLE
VS 1 0 AC 1 0
RS 1 2 10
L1 2 0 5.6273U
L2 3 0 5.6273U
K12 L1 L2 8.7097E-4
RL 3 0 10
.AC DEC 1 10MEG 10MEG
.PRINT AC VM(3) VP(3)
.END
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FIGURE 7.14. Modeling the example in Fig. 7.12 using partial inductances.

Note that PSPICE requires the description of mutual inductances in terms
of their “coupling coefficients” as k12 = M12/

√
L1L2 = 8.7097 × 10−4. The

result is, as by hand calculation,V̂ out = V (3) = 2.461 × 10−5∠ − 86.76◦ V.
Next, we compute this result using partial inductances to model the seg-

ments of the loops and their interaction. The equivalent circuit is shown in
Fig. 7.14. All of the self partial inductances are equal since the lengths of
the sides of the loops are identical and equal to 1 m. These self partial in-
ductances of each of the four sides of the two loops are computed from
equation (5.18a) or approximately from (5.18c) and yield Lp = 1.5 μH. The
inductances are labeled and have even or odd numbers. Mutual partial in-
ductances between orthogonal segments are zero and hence there are mu-
tual inductances only between even-numbered segments and only between
odd-numbered segments. First, we compute the mutual partial inducances
between parallel segments in the same loop using (5.21a): Mp13 = Mp24 =
Mp57 = Mp68 = 93.432 nH. Next, we compute the mutual partial inductances
between the vertical segments and between the horizontal segments of the two
separate loops that are parallel but offset. We use (5.28) to perform that com-
putation: Mp15 = Mp37 = Mp48 = Mp26 = 35.524 nH. Similarly, we obtain
Mp17 = Mp46 = 27.7175 nH and Mp28 = Mp35 = 45.7816 nH.

The PSPICE program is

EXAMPLE
VS 1 0 AC 1 0
RS 1 2 10
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L1 3 2 1.5U
L2 3 4 1.5U
L3 4 9 1.5U
L4 0 9 1.5U
L5 5 0 1.5U
L6 5 6 1.5U
L7 6 7 1.5U
L8 0 8 1.5U
RL 7 8 10
K13 L1 L3 0.062275
K15 L1 L5 0.023678
K17 L1 L7 0.018474
K35 L3 L5 0.030515
K37 L3 L7 0.023678
K57 L5 L7 0.062275
K24 L2 L4 0.062275
K68 L6 L8 0.062275
K26 L2 L6 0.023678
K48 L4 L8 0.023678
K28 L2 L8 0.030515
K46 L4 L6 0.018474
.AC DEC 1 10MEG 10MEG
.PRINT AC VM(7,8) VP(7,8)
.END

The result isV̂ (7,8) = V̂ out = 2.461 × 10−5∠ − 86.76o V, which is precisely
the same result as was obtained by using loop inductances!

If we examine the values of the mutual inductances for this problem, we
find a seemingly curious result. All coupling between the two loops is trans-
ferred only through the mutual inductances, loop or partial. In the case of
loop inductances in Fig. 7.13, this is solely through the mutual inductance
between the two loops of M12 = 4.901 nH. In the case of partial induc-
tances in Fig. 7.14, this coupling between the two loops occurs only through
the mutual partial inductances between elements of the two different loops:
Mp15, Mp17, Mp35, Mp37, Mp28, Mp26, Mp48, and Mp46. These have magni-
tudes that are on the order of 10−8, which is an order of magnitude greater
than the loop mutual inductance of Fig. 7.13. How can mutual partial induc-
tances that differ by an order of magnitude from the loop mutual inductance
M12 produce the same current in the second loop? The answer to this is that
in the partial inductance circuit of Fig. 7.14, the effects of pairs of mutual
partial inductances representing the coupling between the two loops subtract
in the production of induced voltages across the segments of the perimeter of
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loop 2 to produce Vout. For example, the portion of the magnetic flux threading
loop 2 due to the current in loop1 on segment 1 of that loop via the mutual
partial inductance between that segment and segments 5 and 7 of loop 2 is
ψ2 = (

Mp15 − Mp17
)
I1. This is sensible since the mutual partial inductance

between two segments i and j, Mpij, gives the magnetic flux between segment
j and infinity due to the current on segment i (see Fig. 5.7). Hence, the total
flux between two parallel segments of loop 2 due to the current on another
segment of loop 1 is the difference between the two mutual partial inductances
(see Fig. 7.5). Hence, we may write the total magnetic flux through loop 2 (ψ2

out of the page) due to the current around loop 1, I1, as (use the right-hand
rule)

ψ2 = (
Mp35 − Mp37

)
I1 − (

Mp15 − Mp17
)

I1 + (
Mp28 − Mp26

)
I1

− (
Mp48 − Mp46

)
I1

= (
Mp35 − Mp37 + Mp17 − Mp15 + Mp28 − Mp26 + Mp46 − Mp48

)︸ ︷︷ ︸
M12

I1

Therefore, the loop mutual inductance between the two loops could be com-
puted using partial mutual inductances as

M12 = Mp35 − Mp37 + Mp17 − Mp15 + Mp28 − Mp26 + Mp46 − Mp48

= 4.901 nH

giving precisely the same value for M12. So the difficult and tedious derivation
of the equation for the mutual loop inductance between the two loops, M12,
given in (4.110) in Section 4.10.1, could have been derived more easily in
terms of the prederived mutual partial inductance formulas of Chapter 5.

It may appear that since the circuit for the partial inductance method in
Fig. 7.14 is more involved than the circuit for the loop inductance method in
Fig. 7.13, using loop inductances is preferable to using partial inductances.
But when examined carefully, this is not the case. Solution of either circuit is
trivial using SPICE or the personal computer version, PSPICE. The heart of the
solution is the values of the circuit elements of the circuit model! For the loop
inductance method one must compute the self inductances for each of the two
loops as well as the mutual inductance between the two loops. The derivation
of the equation for the loop self inductance, even a square loop, from the
electromagnetic field equations is very involved: (see Section 4.1.1). Next, the
derivation of the equation for the mutual inductance between two rectangular
loops, even ones that lie in the same plane, from the electromagnetic field
equations is also extremely involved and tedious: (see Section 4.10.1). You
will not find these equations in handbooks or textbooks and must derive them
yourself. Had we not already derived these self and mutual loop inductances
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for this specific configuration, you would be required to carry out these detailed
derivations from the electromagnetic field equations. For every new problem
you must rederive the formulas for that specific configuration! On the other
hand, calculating the values of the self and mutual partial inductances in
the partial inductance model of Fig. 7.14 is simple! We already derived the
formulas for the self and mutual partial inductances of and between segments
of straight wires: No more derivations need be done for a new configuration.
Simply “build” a model of the problem by constructing it with piecewise-linear
segments, compute the self and mutual partial inductances of and between the
segments with the prederived formulas in Chapters 5 and 6, and then simply
program PSPICE or any other lumped-circuit analysis tool to perform the
circuit analysis calculations! So by using partial inductances, a circuit designer
can build a circuit model without ever having to deal with the complicated
electromagnetic field equations to derive the values of those elements! Aside
from the very serious requirement in using loop inductances to identify the
complete current loop, this is the essential beauty in using partial inductances
over using loop inductances.





APPENDIX

FUNDAMENTAL CONCEPTS
OF VECTORS

Fundamentally, the laws governing the calculation of capacitance and in-
ductance are written in terms of vectors of the four electromagnetic field
vector quantities, which are the electric field intensity vector E, the electric
flux density vector D, the magnetic field intensity vector H, and the magnetic
flux density vector B. Therefore, if we are to calculate and understand the no-
tions of capacitance and inductance of a physical structure correctly, as well
as use them correctly to construct a lumped-circuit model of that structure, we
must understand some elementary properties of vectors and some elementary
vector calculus ideas. Trying to avoid the use of vector calculus ideas by re-
lying on one’s daily “life experiences” to compute and properly interpret the
meanings of capacitance and inductance of a structure has caused many of
the incorrect results and misunderstanding, as well as the numerous erroneous
applications that are seen throughout the literature and in conversations with
engineering professionals.

We assume that the reader has a rudimentary familiarity with vectors,
so this appendix is a review of those important concepts. The reader is re-
ferred to other textbooks on electromagnetics listed in the references for more
details [3–6]. For the computation of inductance, this brief review will be
sufficient.

Inductance: Loop and Partial, By Clayton R. Paul
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A.1 VECTORS AND COORDINATE SYSTEMS

A vector, as distinguished from a scalar, contains two items of information
about a physical quantity: its value and its direction of effect. A vector is shown
in the figures as a line with an arrowhead to show that direction of effect and is
denoted in the text as boldface (e. g. , F). The magnitude or length of a vector
is denoted as F or as F = |F|. To compute with vectors properly requires a
coordinate system. We use primarily the rectangular (Cartesian) coordinate
system that consists of three axes x, y, and z, as shown in Fig.A.1.

These axes are mutually orthogonal. In a rectangular coordinate system, a
vector is described as

F = Fxax + Fyay + Fzaz (A.1)

where the components of F along (projections of F onto) the x, y, and z axes
are denoted as Fx, Fy, and Fz, respectively, and the unit vectors along the axes
are denoted as ax, ay, and az. These unit vectors are of unit length and are
directed in the direction of increasing value of the coordinate axis.

There are other coordinate systems, such as the cylindrical and spherical
coordinate systems described at the end of this appendix. Although a problem
can be solved in any coordinate system, the choice of coordinate system used
to solve the problem will simplify the solution considerably. The rectangular

x

y

z

ax

ay

az

F

Fxax Fyay

Fza z

FIGURE A.1. Rectangular coordinate system.
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coordinate system is more suitable for problems whose boundaries fit a rectan-
gular shape. The cylindrical coordinate system is more suitable for problems
whose boundaries fit a cylindrical shape, whereas the spherical coordinate
system is more suitable for problems whose boundaries fit a spherical shape.
The unit vectors of a rectangular coordinate system are mutually perpendic-
ular at a point. Hence, the rectangular coordinate system is said to be an
orthogonal coordinate system. The cylindrical and spherical coordinate sys-
tems discussed at the end of this appendix are similarly orthogonal coordinate
systems. Vectors in any orthogonal coordinate system are added or subtracted
by adding or subtracting their corresponding components:

A ± B = (Ax ± Bx) ax + (
Ay ± By

)
ay + (Az ± Bz) az (A.2)

There are two ways of performing the multiplication of two vectors: the
dot product and the cross product. The dot product of two vectors gives the
result as a scalar and is defined by [3]

A·B = AB cos θAB

= AxBx + AyBy + AzBz (A.3)

where θAB is the angle between the two vectors as illustrated in Fig. A.2(a). In
plain terms this gives (1) the product of the length of A and the projection of
B onto A, or (2) the product of the length of B and the projection of A
onto B. The result for the dot product in terms of the vector components in
a rectangular coordinate system given in (A.3) is easy to remember: It is the
sum of the products of the corresponding components of the two vectors. This
will also be the case for the cylindrical and spherical coordinate systems. Two
vectors are perpendicular if A·B = 0. Also, the dot product of a vector with
itself is its magnitude squared: A·A = |A|2.

B

A

B

A

ABθ
ABθ

A×B

na

ABAB θcos=• BA(a) (b) nABAB aBA θsin=×

ABB θcos

FIGURE A.2. Dot and cross product of two vectors.
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The cross product of two vectors gives a vector and is defined by [3]

A×B = AB sin θABan

= (
AyBz − AzBy

)
ax + (AzBx − AxBz) ay + (

AxBy − AyBx

)
az

(A.4)

where θAB is the angle between the two vectors, as illustrated in Fig. A.2(b).
The result gives a vector that is perpendicular to the plane containing A and
B. The unit vector perpendicular to (normal to) this plane containing A and B
is denoted as an. Since there are two sides to this plane, which contains A and
B, the direction of the unit normal is determined by the right-hand rule; that is,
if the fingers of our right hand curl from A to B, the direction of the normal to
this plane for A×B will be given by the thumb of our right hand. The reader
should practice this since it is used throughout this book. The axes of the
rectangular coordinate system are assumed to be ordered cyclically according
to the convention of x → y → z → x → y → z → · · ·. In other words, if
we cross the x axis into the y axis, we get the z axis: ax × ay = az. Note
that, for example, ay × ax = − az. The vector result for the cross product in a
rectangular coordinate system in terms of the vector components in (A.4) is
easily remembered. Each component is of the form

(
AβBγ − AγBβ

)
aα in the

order α → β → γ → α → β → · · · according to the cyclic ordering of the
axes. This rule for determining the cross product is the same in the cylindrical
and spherical coordinate systems. Two vectors are parallel if A × B = 0. Note
that A·B = B·A and the order in the dot product does not matter. However,
the order in the cross product does matter: A×B = −B×A.

EXAMPLE

Two vectors lying in the yz plane are defined, as shown in Fig.A.3, as

A = 3 ay

B = 2 ay + az

The lengths of the two vectors are A = 3 and B =
√

(2)2 + (1)2 = √
5. The

dot product is

A·B = (
0 ax + 3 ay + 0 az

) · (0 ax + 2 ay + az

)
= 3 × 2 + 0 × 1

= 6
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z

y

A

B

ABθ

x

FIGURE A.3

From the dot product in (A.3),

cos (θAB) = A·B
A B

= 6

3·√5

= 0.894

Hence, the angle between the two vectors is θAB = cos−1 (0.894) = 26.57◦.
For these simple vectors, we can obtain this angle directly by trigonometry:

θAB = tan−1 1

2
= 26.57◦

so we again obtain

A·B = A B cos θAB

= 3 ×
√

22 + 12 × cos (26.57◦)

= 6

The cross product is

A×B = (
AyBz − AzBy

)
ax + (AzBx − AxBz) ay + (

AxBy − AyBx

)
az

= (3 − 0) ax + (0 − 0) ay + (0 − 0) az

= 3 ax
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Directly, we obtain the same result:

A×B = A B sin θAB an

= 3 ×
√

22 + 12 × sin (26.57◦) an

= 3 an

Since both vectors lie in the yz plane, the unit normal perpendicular to the
plane containing A and B is in the ±x direction. Using the right-hand rule
and crossing A to B gives the unit normal in the positive x direction: an = ax.

A.2 LINE INTEGRAL

The fundamental equations governing the electromagnetic field vectors (re-
ferred to collectively as Maxwell’s equations) involve two basic integrals: the
line integral and the surface integral. Hence, it is important that we understand
what these mean and how to evaluate them. The vectors in the electromagnetic
field equations are functions of the coordinate system variables x, y, and z,
which is denoted by F (x, y, z) and hence are said to constitute a field. There
are two possible types of fields: a scalar field and a vector field. An example
of a scalar field is a plot of the temperature distribution in a room. Lines of
constant temperature (a scalar) show the distribution of that field in the room.
An example of a vector field would be the plot of flow rates and directions of
the water flow in a river. The directions of these vectors show the direction of
the water flow at that point, and the lengths of these vectors are proportional
to the rates of flow at that point.

The line integral of a vector field is denoted as

∫ b

a

F (x, y, z) ·dl =
∫ b

a

F (x, y, z) cos θ dl (A.5)

The line integral means that we take the products of the projection of the
vector F onto the path, F cos θ (alternatively, the component of F tangent
to the path), and the differential lengths, dl, along the path and sum them
with an integral from the starting point a to the endpoint b, as illustrated in
Fig. A.4.

An example of a line integral is the computation of the work required
to push an object from one point to another when the force F is exerted
on the object at an angle to the path as shown in Fig.A.5. The work done
is W = ∫

F cos θ dx = ∫
F ·dl. The line integral is a very sensible result.
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a

b

c

dl c

F

dlθ

FIGURE A.4. Line integral.

There are two components of F: One component is parallel to the path
and the other component is perpendicular to the path. Only the component
parallel to the path should contribute to the result.

The actual computation of the line integral in a rectangular coordinate
system is very simple. In a rectangular coordinate system a vector differential
path length is

dl = dx ax + dy ay + dz az (A.6)

Hence

F·dl = Fx dx + Fy dy + Fz dz (A.7)

and the line integral becomes

∫ b

a

F·dl =
∫ b

a

F cos θ dl

=
∫ xb

xa

Fx dx +
∫ yb

ya

Fy dy +
∫ zb

za

Fz dz (A.8)

where the path extends from (xa, ya, za) to (xb, yb, zb) and each component
of F is a function of x, y, and z: Fx (x, y, z), Fy (x, y, z), and Fz (x, y, z). If

mass

θ

F

F cosθ

x

FIGURE A.5. Line integral in computing work.
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the integral is taken around a closed path, it is denoted with a circle on the
integral sign as

∮
c F·dl and c represents the contour of that closed path.

EXAMPLE

A vector field in the yz plane is given as

F (x, y, z) = z ay

as shown in Fig. A.6. Determine the line integral of F along a straight-line
path between the two points in the yz plane from point a at (0,1,3) to point b
at (0,2,4). Observe that at all points in the yz plane the vector is directed in
the y direction. However, its magnitude depends on z: for positive, increasing
values of z, its magnitude (length) increases. For z negative, it is pointing in
the –y direction. Performing the line integral gives

∫ b

a

F·dl =
∫ 0

x=0
Fx︸︷︷︸
0

dx +
∫ 2

y=1
Fy︸︷︷︸
z

dy +
∫ 4

z=3
Fz︸︷︷︸
0

dz

=
∫ 2

y=1
z dy

z

y
x

yzaF =

a

b

(0,1,3)

(0,2,4)

c

FIGURE A.6
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=
∫ 2

y=1
(y + 2) dy

= 7

2
and we have substituted the equation of the path, z = y + 2.

A.3 SURFACE INTEGRAL

The surface integral is∫
s

F (x, y, z) ·ds =
∫

s

F (x, y, z) ·an ds

=
∫

s

F (x, y, z) cos θ ds (A.9)

The surface integral gives the integral of the products of the components of
F that are perpendicular to the surface s and the differential surface elements
ds as shown in Fig. A.7. The unit normal perpendicular to the surface is
denoted as an, and the differential surface area is ds = ds an. The surface
integral gives the flux of the vector field F through the surface s. This is like
shining a light through an opening. There are two components of F: One
component is parallel to the surface and the other component is perpendicular

F

θ

s

ds

na

FIGURE A.7. Surface integral.
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to the surface. Only the component of the light flux that is perpendicular to
the opening contributes to the net light flux passing through that opening. If
the surface s is a closed surface, the surface integral is denoted with a circle
on the integral sign:

∮
s F·ds. Hence, the surface integral in (A.9) is said to give

the net flux of the vector field through the surface s.
Observe that there is a major difference between the line integral and the sur-

face integral. The line integral involves the components of F that are parallel
to (tangent to) the path, whereas the surface integral involves the components
of F that are perpendicular to the surface.

The evaluation of the surface integral in a rectangular coordinate system is
very simple. The vector differential surface is

ds = dy dz ax + dx dz ay + dx dy az (A.10)

Note that the components of this are the differential surface areas whose unit
normals are perpendicular to them (e. g., dy dz ax). Hence, the surface integral
simplifies, in a rectangular coordinate system, to∫

s

F (x, y, z) ·ds =
∫

sx

Fx dy dz +
∫

sy

Fy dx dz +
∫

sz

Fz dx dy (A.11)

EXAMPLE

A wedge-shaped surface lies in the yz plane as shown in Fig. A.8. Determine
the flux of the vector field

F = (x + 2) ax

z

y
x

s

)1,3,0()1,1,0(

(0,1,3)

( ) xx aF 2+=

4+−= zy

FIGURE A.8
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through the surface. The surface integral becomes∫
s

F (x, y, z) ·ds =
∫

sx

Fx dy dz

=
∫ 3

z=1

∫ y=−z+4

y=1

⎛
⎝ x︸︷︷︸

0

+2

⎞
⎠ dy dz

=
∫ 3

z=1

∫ y=−z+4

y=1
2 dy dz

=
∫ 3

z=1
(−2z + 6) dz

= 4

We have substituted x = 0 over the surface into Fx = x + 2 and the equation
of the top part of the wedge, y = −z + 4, in the limit of one of the integrals.

A.4 DIVERGENCE

The line and surface integrals apply over regions of space. The following
vector calculus results, the divergence and the curl, are the point forms of
these integrals which apply to points in space and are differential relations
that give the relationships between the field vectors at points in space.

The divergence of a vector field gives the net outflow or flux of a vector
field from a point, hence the name divergence, and is defined by

∇·F (x, y, z) = lim︸︷︷︸
�v→0

∮
s F·ds
�v

(A.12)

This is illustrated in Fig. A.9. If we surround a point by a closed surface s
that contains a differential volume �v, compute the net flux of F out of the
closed surface per unit of volume enclosed by s, and then let the surface and
enclosed volume shrink to zero, the limit of that is the divergence of F at that
point. Essentially, this gives an indication of any sources of F that are located
at the point. If the divergence of F is negative at the point, we say that a sink
exists at that point. So the divergence indicates whether there is a net outflow
of F at that point. If we puncture an inflated ballon, we get a divergence of
the air contained in that ballon.
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F

na

ds

s

Δvpoint

FIGURE A.9. Divergence of a vector field.

The “del operator,” ∇, is somewhat equivalent to a derivative in scalar
calculus and is an “operator” defined by [3]

∇ = ax

∂

∂ x
+ ay

∂

∂ y
+ az

∂

∂ z
(A.13)

Using the del operator, we obtain the divergence of a vector field in a rectan-
gular coordinate system as

∇·F (x, y, z) = ∂ Fx

∂ x
+ ∂ Fy

∂ y
+ ∂ Fz

∂ z
(A.14)

It is very important to observe that the divergence of a vector field gives a
scalar quantity as the result.

EXAMPLE

A vector field is described by

F = x ax + y ay + z az

as plotted in Fig. A.10. Determine the divergence of the field. The divergence
of this field is

∇·F (x, y, z) = ∂ Fx

∂ x
+ ∂ Fy

∂ y
+ ∂ Fz

∂ z

= 1 + 1 + 1 = 3

Since this result is independent of x, y, and z, there is a net outflow of the
vector at every point in the space. This is a sensible result since the field is
constant over any sphere of radius r = √

x2 + y2 + z2 centered at the origin
of the coordinate system and is directed normal to the surface of that sphere.
Hence, from the basic definition of the divergence given in (A.12) we can
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z

y

x

FIGURE A.10

calculate directly

∇·F (x, y, z) = lim︸︷︷︸
�v→0

∮
s F·ds
�v

= r × 4πr2

4/3π r3

= 3

A.4.1 Divergence Theorem

We can interchange certain surface and volume integrals with the divergence
theorem [3]: ∮

s

F·ds =
∫

v
(∇·F) dv (A.15)

This result provides that if we integrate the divergence of F throughout some
volume v, we can obtain the same result by performing the surface integral of
F over the closed surface s that contains the volume v. This is a very sensible
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result if we think about what these quantities mean. According to (A.12), the
divergence ∇·F gives the net outflow or flux of F throughout the volume �v
per unit of that volume. Rewriting (A.12) gives∮

s

F·ds = lim︸︷︷︸
�v→0

[∇·F (x, y, z) �v
]

=
∫

v
(∇·F) dv (A.12)

Hence, it makes sense that we can obtain the net flux out of the closed surface
s that encloses that volume,

∮
s F·ds, by performing the volume integral of

∇·F throughout that volume.

EXAMPLE

Verify the divergence theorem for the vector field

F = x ax + y ay + z az

for the square volume whose corners are at (0,0,0), (0,0,1), (0,1,0),(0,1,1),
(1,0,0), (1,0,1), (1,1,0), and (1,1,1) as illustrated in Fig. A.11. The surface
integral over the closed surface s is∮

s

F·ds =
∫ 1

z=0

∫ 1

y=0
Fx dy dz︸ ︷︷ ︸

front

−
∫ 1

z=0

∫ 1

y=0
Fx dy dz︸ ︷︷ ︸

back

−
∫ 1

z=0

∫ 1

x=0
Fy dx dz︸ ︷︷ ︸

left

+
∫ 1

z=0

∫ 1

x=0
Fy dx dz︸ ︷︷ ︸

right

−
∫ 1

y=0

∫ 1

x=0
Fz dx dy︸ ︷︷ ︸

bottom

+
∫ 1

y=0

∫ 1

x=0
Fz dx dy︸ ︷︷ ︸

top

=
∫ 1

z=0

∫ 1

y=0
x︸︷︷︸
1

dy dz

︸ ︷︷ ︸
front

−
∫ 1

z=0

∫ 1

y=0
x︸︷︷︸
0

dy dz

︸ ︷︷ ︸
back

−
∫ 1

z=0

∫ 1

x=0
y︸︷︷︸
0

dx dz

︸ ︷︷ ︸
left

+
∫ 1

z=0

∫ 1

x=0
y︸︷︷︸
1

dx dz

︸ ︷︷ ︸
right

−
∫ 1

y=0

∫ 1

x=0
z︸︷︷︸
0

dx dy

︸ ︷︷ ︸
bottom

+
∫ 1

y=0

∫ 1

x=0
z︸︷︷︸
1

dx dy

︸ ︷︷ ︸
top

= 1 − 0 − 0 + 1 − 0 + 1

= 3
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FIGURE A.11

Notice that the surface integral determines the net flux leaving the closed sur-
face. A vector component points into one side and out of the other side.
Hence, half the integrals are positive and half the integrals are negative.
Observe also that each integrand is 0 or 1 over a surface and the dimen-
sions of each side are 1. Therefore, the integral over a side is either 0 or1.
Since

∇·F (x, y, z) = ∂ Fx

∂ x
+ ∂ Fy

∂ y
+ ∂ Fz

∂ z

= 1 + 1 + 1 = 3

the right-hand side of the divergence theorem in (A.15) also gives the same
result:

∫
v

(∇·F) dv =
∫ 1

x=0

∫ 1

y=0

∫ 1

z=0
3 dx dy dz

= 3
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F(x, y, z)

paddlewheel ( )zyx ,,F×∇

FIGURE A.12. Curl (circulation) of a vector field.

A.5 CURL

While the divergence gives the net outflow or flux of a vector field from a
point, the curl of a vector field gives the net circulation or rotation of the
field about a point. For example, consider the vector field shown in Fig. A.12.
This field might represent the flow of the water in a river. If we insert a small
paddlewheel as shown, the flow pattern will cause the paddlewheel to rotate
in the clockwise direction. If we turned the paddlewheel such that its axis was
parallel to the field lines, it would not rotate.

Figure A.13 shows how we might define the circulation of a vector field
in one plane. Define a flat surface s in that plane and the associated contour
c enclosing it. Define the unit normal to that plane as an, with its direction

c

an

Δ s

F(x, y , z)

FIGURE A.13. Defining the curl of a vector field.
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according to the right-hand rule with respect to the direction of c around that
surface perimeter. The net circulation at the point per unit of the enclosed
surface area in this plane would be

circulation per unit area = an

⎛
⎝ lim︸︷︷︸

�s→0

∮
c F·dl
�s

⎞
⎠ (A.16)

By performing the line integral of F around the contour c enclosing the surface
�s and dividing by that surface, we get a measure of the circulation (in this
case in the counterclockwise direction). A direction is given to that circulation
by the unit vector an normal to the surface. The direction of the unit normal is
obtained in accordance with the right-hand rule. Since the result is circulation
or rotation of the field, we should obtain the total circulation or rotation in
three orthogonal planes. The result gives the curl of the vector field as

∇×F (x, y, z) = ax

⎛
⎜⎝ lim︸︷︷︸

�syz→0

∮
cyz

F·dl

�syz

⎞
⎟⎠ + ay

⎛
⎝ lim︸︷︷︸

�sxz→0

∮
cxz

F·dl

�sxz

⎞
⎠

+az

⎛
⎜⎝ lim︸︷︷︸

�sxy→0

∮
cxy

F·dl

�sxy

⎞
⎟⎠

(A.17)

where �sxy, for example, is a flat surface in the xy plane which is perpendicular
to az, and cxy denotes the contour around the enclosed surface � sxy.

Applying the del operator that is defined in (A.13) gives a mechanical way
of determining the curl in a rectangular coordinate system [3]:

∇×F (x, y, z) =
(

∂Fz

∂y
− ∂Fy

∂z

)
ax +

(
∂Fx

∂z
− ∂Fz

∂x

)
ay

+
(

∂Fy

∂x
− ∂Fx

∂y

)
az

(A.18)

Observe that each of these components can be remembered easily using the
cyclic rule for the cross product, the cyclic ordering of the three axes, and
the definition of the del operator given in (A.13). For example, each compo-
nent of the curl is of the form

(
∂Fγ/∂β − ∂Fβ/∂γ

)
aα, where the ordering is

α → β → γ → α · · ·.
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EXAMPLE

Determine the curl of the vector field
F = z ay

that is illustrated in Fig. A.14. First we see clearly that there will be circulation
and the rotation will be clockwise with the unit normal being in the negative
x direction. Substituting into (A.18) yields

∇×F (x, y, z) =

⎛
⎜⎜⎜⎝∂Fz

∂y︸︷︷︸
0

− ∂Fy

∂z︸︷︷︸
1

⎞
⎟⎟⎟⎠ ax +

⎛
⎜⎜⎜⎝∂Fx

∂z︸︷︷︸
0

− ∂Fz

∂x︸︷︷︸
0

⎞
⎟⎟⎟⎠ ay

+

⎛
⎜⎜⎜⎝∂Fy

∂x︸︷︷︸
0

− ∂Fx

∂y︸︷︷︸
0

⎞
⎟⎟⎟⎠ az

= −ax

as expected.

z

y
x

yzaF =

FIGURE A.14
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A.5.1 Stokes’s Theorem

Similar to the divergence theorem, Stokes’s theorem allows us to interchange
a surface integral and a line integral [3]:

∮
c

F·dl =
∫

s

(∇×F) ·ds (A.19)

Stokes’s theorem provides that the surface integral of the curl of F over an
open surface s will give the same result as performing the line integral of F
around the contour c that encloses that open surface. As was the case for the
divergence theorem, Stokes’s theorem is a very sensible result. According to
(A.17), the curl of a vector field, ∇×F, gives the net circulation or rotation
of a field around a contour that encloses a differential surface per unit of that
enclosed surface. Rewriting the x component of (A.17) gives∮

cyz

F·dl = lim︸︷︷︸
�syz→0

{[∇×F (x, y, z)
]
x

�syx

}

=
∫

syz

(∇×F) ·ds

Hence, it makes sense that by integrating the curl over the surface with a
surface integral we will obtain the same result as the line integral around the
contour enclosing that surface would give.

EXAMPLE

Verify Stokes’s theorem for the vector field

F = z ay

and the closed contour c and its enclosed surface s shown in Fig. A.15. The
curl of F is

∇×F =

⎛
⎜⎜⎜⎝∂Fz

∂y︸︷︷︸
0

− ∂Fy

∂z︸︷︷︸
1

⎞
⎟⎟⎟⎠ ax +

⎛
⎜⎜⎜⎝∂Fx

∂z︸︷︷︸
0

− ∂Fz

∂x︸︷︷︸
0

⎞
⎟⎟⎟⎠ ay +

⎛
⎜⎜⎜⎝∂Fy

∂x︸︷︷︸
0

− ∂Fx

∂y︸︷︷︸
0

⎞
⎟⎟⎟⎠ az

= −ax
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FIGURE A.15

Hence, the right-hand side of Stokes’s theorem is∫
s

(∇×F) ·ds =
∫ 3

z=1

∫ y=−z+4

y=1
(−1) ax︸ ︷︷ ︸

∇×F

· (ax dy dz)︸ ︷︷ ︸
ds

=
∫ 3

z=1

∫ y=−z+4

y=1
(−1) dy dz

= −2

Since F·dl = Fy dy = z dy, the left-hand side of Stokes’s theorem is∮
c

F·dl =
∫ 3

y=1
Fy dy︸ ︷︷ ︸
c1

+
∫ 1

y=3
Fydy︸ ︷︷ ︸

c2

+
∫ 1

y=1
Fydy︸ ︷︷ ︸

c3

=
∫ 3

y=1
z︸︷︷︸
1

dy +
∫ 1

y=3
z︸︷︷︸

−y+4

dy +
∫ 1

y=1
z dy

= 2 − 4 + 0

= −2

which is the same.

A.6 GRADIENT OF A SCALAR FIELD

Perhaps one of the best illustrations of the use of the gradient is a topographi-
cal map. Contours of constant elevation (above sea level) are shown as closed
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contours. We might denote this as the scalar field EL (x, y, z). Think of this
scalar function as depicting a three-dimensional map with the x and y coor-
dinates giving the horizontal position over the Earth’s surface, and the z axis
giving the elevation of each point above sea level. The closer the contours of
constant elevation are to each other, the steeper the slope (i. e., the greater
the change in elevation with a change in horizontal distance). If we wanted to
chart a course for hiking that would avoid the steep slopes, we would choose
a path between points on adjacent contours of constant elevation with those
contours being as widely separated as possible. In doing so, we would make
the vertical distance we move as long a horizontal distance as possible. Also,
to make the trip as expeditious as possible we would choose a route that is
perpendicular to those contours.

Denote some general scalar field as f (x, y, z). A differential change in the
function (the scalar field) as we move between contours of constant value of
f is

df = ∂f (x, y, z)

∂x
dx + ∂f (x, y, z)

∂y
dy + ∂f (x, y, z)

∂z
dz (A.20)

Using the del operator in (A.13):

∇ = ax

∂

∂ x
+ ay

∂

∂ y
+ az

∂

∂ z
(A.13)

we define the gradient of f as

∇f = ∂f (x, y, z)

∂x
ax + ∂f (x, y, z)

∂y
ay + ∂f (x, y, z)

∂z
az (A.21)

Note that the gradient of a scalar field f (x, y, z), ∇f (x, y, z), gives a vector
as the result. Recalling the vector differential path length in (A.6),

dl = dx ax + dy ay + dz az (A.6)
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we can write (A.20) in terms of the gradient as

df = ∇f ·dl (A.22)

which you should verify.
Now we interpret the meaning of the gradient. The differential change in

(A.22) is

df = ∇f ·dl

= |∇f | dl cos θ (A.22)

where θ is the angle between the gradient vector, ∇f , and the differential path
length vector, dl. The rate of change of the scalar field along this path is

df

dl
= |∇f | cos θ (A.23)

If we want to move in the direction of the maximum rate of change of the
scalar field (i. e., perpendicular to the contours of constant f), the path taken
must be perpendicular to the gradient vector (i. e., θ = 90◦):

df

dl

∣∣∣∣
max

= |∇f | (A.24)

Therefore, the gradient vector gives both the direction and the magnitude of
the maximum space rate of change of the scalar field.

EXAMPLE

Show that the gradient of the scalar field f (x, y, z) = x + y is normal to the
lines of constant f. The scalar field is plotted in Fig. A.16. The gradient is

∇f = ∂f

∂x
ax + ∂f

∂y
ay

= ax + ay

which is plotted in Fig. A.16. Obviously, the gradient is perpendicular to the
lines of constant f, and it also points in the direction of the maximum rate of
change of f.
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A.7 IMPORTANT VECTOR IDENTITIES

An important vector identity that will prove very useful in defining the concept
of partial inductance is

∇· (∇×F) = 0 (A.25)

Note that it would make no sense to write ∇× (∇·F) because the divergence
∇·F gives a scalar and we cannot take the curl of a scalar. With our under-
standing of the meaning of curl and divergence, this identity is sensible. The
curl of a vector field, ∇×F, gives the net circulation or rotation of the field,
whereas the divergence of a field, ∇·F, gives the net outflow or flux of the
field from a point. We have two situations to consider: (1) If the vector field
has circulation at a point, ∇×F /= 0, it can have no divergence (net outflow
of the field) at that point and (A.25) is satisfied; (2) on the other hand, if the
vector field has no circulation at a point, ∇×F = 0, the divergence of this is
zero.

A simple way to prove this important identity is to carry out the operation
in a rectangular coordinate system using symbols. For example,

∇×F =
(

∂Fz

∂y
− ∂Fy

∂z

)
ax +

(
∂Fx

∂z
− ∂Fz

∂x

)
ay +

(
∂Fy

∂x
− ∂Fx

∂y

)
az
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If we next take the divergence of this result, we obtain

∇· (∇×F) = ∂

∂x

(
∂Fz

∂y
− ∂Fy

∂z

)
+ ∂

∂y

(
∂Fx

∂z
− ∂Fz

∂x

)
+ ∂

∂z

(
∂Fy

∂x
− ∂Fx

∂y

)

= ∂2Fz

∂x∂y
− ∂2Fy

∂x∂z
+ ∂2Fx

∂y∂z
− ∂2Fz

∂y∂x
+ ∂2Fy

∂z∂x
− ∂2Fx

∂z∂y

= 0

Another useful vector identity is that the curl of the gradient of a scalar
field is zero:

∇×∇f (x, y, z) = 0 (A.26)

Integrating this over some open surface s and using Stokes’s theorem on
the result gives ∫

s

[∇×∇f
] ·ds =

∮
c

(∇f ) ·dl

=
∮

c

∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz

=
∮

c

df

= 0

The result is due to integrating df around a closed path. This identity can be
directly proven by carrying out the operations in (A.26) symbolically in a
rectangular coordinate system:

∇×∇f = ∇×
(

∂f

∂x
ax + ∂f

∂y
ay + ∂f

∂z
az

)

=
(

∂

∂y

∂f

∂z
− ∂

∂z

∂f

∂y

)
ax +

(
∂

∂z

∂f

∂x
− ∂

∂x

∂f

∂z

)
ay

+
(

∂

∂x

∂f

∂y
− ∂

∂y

∂f

∂x

)
az

= 0

A.8 CYLINDRICAL COORDINATE SYSTEM

A point in a cylindrical coordinate system is defined by the three variables r, φ,

and z, as illustrated in Fig. A.17. The coordinate r is the radial distance of the
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FIGURE A.17. Cylindrical coordinate system.

point from the z axis (parallel to the xy plane), the coordinate φ is the angular
displacement (in radians with 0 ≤ φ ≤ 360◦) of the projection of the point
on the xy plane measured counterclockwise from the positive x axis, and the
coordinate z is the distance of the projection of the point along the z axis. The
corresponding three unit vectors ar, aφ, and az are directed in the direction
of increasingvalue of the variable and are mutually perpendicular. Hence, the
cylindrical coordinate system, like the rectangular coordinate system, is an
orthogonal coordinate system.

A vector in cylindrical coordinates is again described in terms of its unit
vectors as

A = Arar + Aφaφ + Azaz (A.27)

Two vectors are again added or subtracted by adding or subtracting their
corresponding components:

A ± B = (Ar ± Br) ar + (
Aφ ± Bφ

)
aφ + (Az ± Bz) az (A.28)
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The dot product of two vectors is, again, the sum of the products of the
corresponding components:

A·B = AB cos θAB

= ArBr + AφBφ + AzBz (A.29)

The cross product of two vectors is, again,

A×B = AB sin θAB an

= (
AφBz − AzBφ

)
ar + (AzBr − ArBz) aφ + (

ArBφ − AφBr

)
az

(A.30)

Note that the coordinates are ordered r → φ → z → r → φ → z → r →
· · · such that ar×aφ = az. Note that aφ×ar = −az and ar×az = −aφ. The
vector result for the cross product in a cylindrical coordinate system in terms
of the vector components is, again, easily remembered. Each component is
of the form

(
AβBγ − AγBβ

)
aα in the order α → β → γ → α → β → · · ·

according to the cyclic ordering of the coordinates r → φ → z → r → φ →
z → r → · · ·.

The algebra results above are the same as for the rectangular coordinate
system. However, the vector calculus results will be different from those for
a rectangular coordinate system since one of the variables of the cylindrical
coordinate system, φ, does not have the dimensions of distance. Differential
changes in the coordinates give differential arc lengths dr, r dφ, and dz, as
illustrated in Fig. A.18. Note that the φ variable is the only one of the three
whose units are not a length. (The units of φ are radians. )For a differential
change in φ, dφ, the corresponding change in arc length for a radius of r is
r sin dφ ∼= r dφ using the small-angle approximation for the sine. Hence, a
vector differential arc length is

dl = dr ar + r dφ aφ + dz az (A.31)

and the line integral is

∫ b

a

F(r, φ, z)·dl =
∫ rb

ra

Fr dr +
∫ φb

φa

Fφ r dφ +
∫ zb

za

Fz dz (A.32)

A vector differential surface is

ds = (r dφ dz) ar + (dr dz) aφ + (dr r dφ ) az (A.33)

Each of these components is formed by the products of the two sides of each
differential surface in Fig. A.18 that is perpendicular to the unit vector for
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FIGURE A.18. Differential elements in a cylindrical coordinate system.

that side. For example, the side perpendicular to ar has sides of length dz and
r dφ, while the side perpendicular to aφ has sides of length dz and dr. Hence,
the surface integral is∫

s

F(r, φ , z)·ds =
∫

sr

Fr r dφ dz +
∫

sφ

Fφ drdz +
∫

sz

Fz dr r dφ (A.34)

The divergence and the curl are a bit more complicated than for the rectan-
gular coordinate system. The derivations of these are given in reference [3,6]
and become

∇·F (r, φ, z) = 1

r

∂ (rFr)

∂r
+ 1

r

∂Fφ

∂φ
+ ∂Fz

∂z
(A.35)

∇×F(r, φ, z) =
(

1

r

∂Fz

∂φ
− ∂Fφ

∂z

)
ar +

(
∂Fr

∂z
− ∂Fz

∂r

)
aφ

+
[

1

r

∂
(
rFφ

)
∂r

− 1

r

∂Fr

∂φ

]
az

(A.36)
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A.9 SPHERICAL COORDINATE SYSTEM

A point in a spherical coordinate system is defined by the three variables
r, θ, and φ, as illustrated in Fig. A.19. The coordinate r is the radial distance of
the point from the origin of the coordinate system, the coordinate θ (in radians
with 0 ≤ θ ≤ 180◦) is the angular displacement from the positive z axis, and
the coordinate φ is the angular displacement (in radians with 0 ≤ φ ≤ 360◦)
of the projection of the point on the xy plane measured counterclockwise
from the positive x axis. Note that the r in a spherical coordinate system is
different from the r in a cylindrical coordinate system. The corresponding
three unit vectors ar, aθ, and aφ are directed in the direction of increasing
value of the variable and are mutually perpendicular. Hence, the spherical
coordinate system, like the rectangular and cylindrical coordinate systems, is
an orthogonal coordinate system.

Some textbooks denote the radius dimension in a cylindrical coordinate
system as ρ instead of r to distinguish it from the radius r in a spherical
coordinate system. It is usually rather simple to distinguish between the two.
If r is the distance perpendicular to the z axis and parallel to the xy plane, this
is the cylindrical coordinate system. If r is the distance from the origin of the
coordinate system, this is the spherical coordinate system.

x

y

z

φ

r
θ

ar

aθ

aφ

FIGURE A.19. Spherical coordinate system.
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A vector in spherical coordinates is again described in terms of its unit
vectors as

A = Arar + Aθaθ + Aφaφ (A.37)

Two vectors are again added or subtracted by adding or subtracting their
corresponding components:

A ± B = (Ar ± Br) ar + (Aθ ± Bθ) aθ + (
Aφ ± Bφ

)
aφ (A.38)

The dot product of two vectors is, again, the sum of the products of the
corresponding components:

A·B = AB cos θAB

= ArBr + AθBθ + AφBφ (A.39)

The cross product of two vectors is, again,

A×B = AB sin θAB an

= (
AθBφ − AφBθ

)
ar + (

AφBr − ArBφ

)
aθ + (ArBθ − AθBr) aφ

(A.40)

Note that the coordinates are ordered r → θ → φ → r → θ → φ → r →
· · · such that ar×aθ = aφ. Note that aθ×ar = −aφ and ar×aφ = −aθ. The
vector result for the cross product in a spherical coordinate system in terms
of the vector components is, again, easily remembered. Each component is
of the form

(
AβBγ − AγBβ

)
aα in the order α → β → γ → α → β → · · ·,

according to the cyclic ordering of the coordinates r → θ → φ → r → θ →
φ → r → · · ·.

The algebra results above are the same as for the rectangular and the cylin-
drical coordinate systems. However, the vector calculus results will be differ-
ent from those for a rectangular coordinate system since two of the variables
of the spherical coordinate system, θ and φ, do not have the dimensions of
distance. Differential changes in the coordinates give differential arc lengths
dr, r dθ, and r sin θ dφ, as illustrated in Fig.A.20. Hence, a vector differential
arc length is

dl = dr ar + r dθ aθ + r sin θ dφ aφ (A.41)
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FIGURE A.20. Differential elements in a spherical coordinate system.

and the line integral is

∫ b

a

F(r, θ, φ)·dl =
∫ rb

ra

Fr dr +
∫ θb

θa

Fθ r dθ +
∫ φb

φa

Fφ r sin θ dφ (A.42)

A vector differential surface is

ds = (r dθ r sin θ dφ) ar + (dr r sin θ dφ) aθ + (dr r dθ ) aφ (A.43)

Each of these components is formed by the products of the two sides of each
differential surface in Fig. A.20 that is perpendicular to the unit vector for
that side. For example, the side perpendicular to ar has sides of length r dθ

and r sin θ dφ, while the side perpendicular to aθ has sides of length dr and
r sin θ dφ. Hence the surface integral is

∫
s

F(r, θ, φ )·ds =
∫

sr

Fr r dθ r sin θ dφ

+
∫

sθ

Fθ dr r sin θ dφ +
∫

sφ

Fφ dr rdθ (A.44)
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The divergence and the curl are again a bit more complicated. The deriva-
tions of these are given in references [3,6] and become

∇·F(r, θ, φ) = 1

r2

∂
(
r2Fr

)
∂r

+ 1

r sin θ

∂ (sin θ Fθ)

∂θ
+ 1

r sin θ

∂Fφ

∂φ
(A.45)

∇ × F(r, θ, φ) = 1

r sin θ

[
∂
(
Fφ sin θ

)
∂θ

− ∂Fθ

∂φ

]
ar

+1

r

[
1

sin θ

∂Fr

∂φ
− ∂

(
rFφ

)
∂r

]
aθ + 1

r

[
∂ (rFθ)

∂r
− ∂Fr

∂θ

]
aφ

(A.46)
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Identities

(1)
ln

a + √
x2 + a2

−b + √
x2 + b2

= sinh−1 a

x
− sinh−1 −b

x

= sinh−1 a

x
+ sinh−1 b

x (5.24)

(2) ln
(
x + √

x2 + 1
) = − ln

(−x + √
x2 + 1

)
(3) sinh−1 x ≡ ln

(
x + √

x2 + 1
)

= − sinh−1(−x) (D700.1)

(4) K (k) =
∫ π/2

ζ=0

dζ√
1 − k2 sin2 ζ

(D773.1)

(5) E (k) =
∫ π/2

ζ=0

√
1 − k2 sin2 ζ dζ (D774.1)

(6) tan−1 θ1 ± tan−1 θ2 = tan−1 θ1 ± θ2

1 ∓ θ1 θ2
θ1, θ2 ≥ 0

(7) tan−1(x + y) + tan−1(x − y) = tan−1 2x

1 − x2 + y2

(8) tan−1(x + y) − tan−1(x − y) = tan−1 2y

1 + x2 − y2
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(9) ln
b

a
= ln

(
w

a
+ 1

)
∼= w

a
w � a (D601)

(10)

∫ π

θ=0

√
1 − k2 cos2 θ dθ = 2

∫ π/2

θ=0

√
1 − k2 cos2 θ dθ

= 2

∫ π/2

θ=0

√
1 − k2 sin2 θ dθ

(11)
∫ π

θ=0

1√
1 − k2 cos θ

dθ = 2

∫ π/2

θ=0

1√
1 − k2 cos θ

dθ

= 2

∫ π/2

θ=0

1√
1 − k2 sin θ

dθ

(12) (1 − x)−1/2 ∼= 1 + 1

2
x + · · · (D1)

(13) sinh−1x = ln
(
x + √

x2 + 1
)

= − sinh−1 (−x)

= − ln
(−x + √

x2 + 1
)

(D700.1)

(14) sinh−1 x

a
= − sinh−1

(
−x

a

)

= ln

[
x

a
+

√(
x

a

)2

+ 1

]

= ln
(
x + √

x2 + a2
) − ln a

(D700.1)

(15) ln

⎡
⎣ l

d
+

√(
l

d

)2

+ 1

⎤
⎦ = ln

2l

d
+ 1

4

(
d

l

)2

− 3

32

(
d

l

)4

+ · · · l

d
> 1

= l

d
− 1

6

(
l

d

)3

+ 3

40

(
l

d

)5

− · · · l

d
< 1

(D602.1)
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(16)

√
1 +

(
d

l

)2

= 1 + 1

2

(
d

l

)2

− 1

8

(
d

l

)4

+ 1

16

(
d

l

)6

− · · · d

l
≤ 1

= d

l

√(
l

d

)2

+ 1

= d

l
+ 1

2

(
l

d

)
− 1

8

(
l

d

)3

+ 1

16

(
l

d

)5

− · · · l

d
≤ 1 (D5.3)

(17) ln
(
x + √

x2 + a2
) − ln

(
−y +

√
y2 + a2

)
= ln

(
y +

√
y2 + a2

)
− ln

(−x + √
x2 + a2

)
(18) ln

a + √
x2 + a2

−b + √
x2 + b2

= sinh−1 a

x
− sinh−1

(
−b

x

)
= sinh−1 a

x
+ sinh−1 b

x

(19) tanh−1 x = 1

2
ln

1 + x

1 − x
x2 < 1 (D702)

Derivatives

(1)
d

dr
ln

[
a

r
+

√(
a

r

)2

+ 1

]
= − a

r
√

a2 + r2

(2) d

dx
sinh−1 a

x
= d

dx
csc h−1 x

a

= −a

|x| √x2 + a2 (D728.8)

(3)
d

dr
ln
(
a +

√
a2 + r2

)
= − a

r
√

a2 + r2
+ 1

r

(4)
∂

∂ u
tan−1 u = 1

1 + u2
(D512.4)

(5)
d

(
u

v

)
dx

=
v
du

dx
− u

dv

dx

v2
(D65)
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Integrals

(1)
∂

∂ y

∫ b

a

f (x, y) dx =
∫ b

a

∂ f (x, y)

∂ y
dx (D69.3)

(2)

∫
1(

a2 + x2
)3/2 dx = x

a2
√

a2 + x2
(D200.3)

(3)

∫
1

a2 + x2
dx = 1

a
tan−1 x

a
(D120.1)

(4)

∫
dx(

ax2 + b
)√

fx2 + g
= 1√

b
√

ag − bf
tan−1 x

√
ag − bf√

b
√

fx2 + g
(D387)

(5)

∫ π

0

(a − b cos x) dx

a2 + b2 − 2ab cos x
=

{
π

a
a > b > 0

0 b > a > 0
(D859.124)

(6)

∫
1√

x2 + a2
dx = ln

(
x +

√
x2 + a2

)
(D200.01)

(7)

∫
ln
(
x2 + a2

)
dx = x ln

(
x2 + a2

) − 2x + 2a tan−1 x

a
(D623)

(8)

∫
x

a2 + x2
dx = 1

2
ln
(
a2 + x2

)
(D121.1)

(9)

∫
dx
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Ampere’s law, 34
for time-varying currents, 85, 98
point form, 101

Biot-Savart law, 19

capacitance, 4
definition, 6
energy stored in, 6
generalized, 12

circular loop
by vector magnetic potential, 144
inductance of, 126
self inductance of by the Neumann integral, 153

coaxial cable
inductance of, 130
magnetic fields of, 43

common-mode currents, 301
conducting loop

inductance of, 113
conduction current, 85
conductors of rectangular cross section

partial inductances of, 246
connector pins

modeling with partial inductances, 320
conservation of charge, 83

conservation of energy, 111
Coulomb choice of gauge, 111
cross product

rectangular coordinate
system, 338

curl
cylindrical coordinate system, 361
example, 352
general definition, 350
rectangular coordinate system, 351
spherical coordinate system, 365

current loop
magnetic fields of, 31, 71
vector magnetic potential of, 58

current return path, 309, 311
current sheet

vector magnetic potential of, 63
cylindrical coordinate system, 359

del operator, 18
differential-mode currents, 301
displacement current, 85
divergence, 18

cylindrical coordinate system, 361
example, 346
general definition, 345
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divergence (Continued)
rectangular coordinate system, 346
spherical coordinate system, 365

divergence theorem, 347
example, 348

dot convention, 169, 243
dot product

rectangular coordinate system, 337

electrical dimensions, 3, 102
electrically short, 3
electrically small dimensions, 90
electromotive force (emf), 88, 118
elliptic integrals, 61, 149, 129

Faraday’s law, 88, 118
point form, 97

ferromagnetic materials, 6, 134,137
flux linkages

method of, 119

Gauss’s law, 132, 174
electric field, 16
magnetic field, 16

geometric mean distance (GMD)
between a shape and itself, 273
between two circular shapes, 287
between two lines, 287
between two rectangles, 289
definition of, 266
of a circular shape, 274
of a line, 278
of a rectangle, 280
partial inductances from, 268

gradient
example, 356
general definition, 355
rectangular coordinate system, 355

ground bounce, 11, 312
ground grid, 312
ground plane, 81, 310

Helmholtz coil, 33
high-frequency partial inductances

numerical methods, 291
hysteresis curve, 14

images
method of, 80

inductance
definition of loop, 6
energy stored in, 7
of a coaxial cable, 165
of a two-wire line, 165

Infinite length of current
magnetic fields of, 23, 35

intentional vs nonintentional inductances, 307
internal inductance

of a coaxial cable, 157
of a wire, 164
of wires, 155
with partial inductances, 239

Leibnitz’s rule, 67
Lenz’s law, 89, 91
line integral

cylindrical coordinate system, 360
example, 342
general definition, 340
rectangular coordinate

system, 341
spherical coordinate system, 364

loop inductance, 8
by vector magnetic potential, 139
concept of, 117
energy method, 163
methods for computing inductance, 182
of coupled coils, 167

loop inductance vs partial inductance
an example, 328

loops of various shapes
inductance of, 324

Lorentz choice of gauge, 109
lumped circuit analysis, 2, 102

magnetic dipole moment, 32, 60
magnetic field intensity, H, 13
magnetic flux density, B, 13

finite-length currents, 21, 23
magnetism

history of, 1
Maxwell’s equations, 105

iterative solution, 106
method of flux linkages

for multiturn loops, 133
microstrip line

inductance of, 181
multiconductor transmission lines

inductance of, 171
n wires above a ground plane, 177
n wires within an overall shield, 178
n+1 wires, 175

mutual inductance
between two circular loops, 147
loop, 120

mutual partial inductance
between two parallel, aligned wires, 209
between two parallel, offset wires, 213
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between two skewed, offset wires, 236
between two wires at an angle to each

other, 224
by the Neumann integral, 225
of wires, 202, 209

neighboring conductor currents
modeling effect with partial inductances, 318

Neumann integral
for computing loop inductances, 145

partial inductance, 8, 11
by the Neumann integral, 205, 212
concept of, 195
from vector magnetic potential, 197, 201
general meaning of, 196
plots of, 240

passive sign convention, 170
PCB

inductance of, 182
perfect conductor, 80
permeability, 13

incremental, 15
initial, 15

power density, 111
power rail collapse, 11, 312
Poynting’s theorem, 111
printed circuit board lands

inductance of, 179
internal inductance of, 251
mutual partial inductance of, 262
partial inductances of, 246, 252
self partial inductance of, 254

proximity effect, 122
current redistribution, 158

rectangular coordinate system, 336
rectangular loop

by vector magnetic potential, 141
inductance of, 121
magnetic fields of, 25
self inductance of by the Neumann

integral, 150
relative permeability, 13
relaxation time, 80
retardation, 110
right-hand rule, 23, 90

self partial inductance
of wires, 201, 205

sheet of current
magnetic fields of, 27, 29,46

signal integrity, 312
skin depth, 155, 298

solenoid
inductance of, 134

spherical coordinate system, 362
Stokes’s theorem, 353

example, 353
stored energy

electric field, 79, 113
magnetic field, 79, 113, 249

stripline
inductance of, 180

superposition
of magnetic fields, 25, 86

surface current, 27
surface integral, 16

cylindrical coordinate system, 361
example, 344
general definition, 343
rectangular coordinate system, 344
spherical coordinate system, 364

time delay, 103
toroid

inductance of, 137
transmission line

one-wire above ground, inductance of, 161
two-wire, inductance of,

approximate, 160
two-wire, inductance of, exact, 160

transmission lines
loop inductance from partial inductance, 314

two rectangular loops
mutual inductance between, 184

uniform plane wave, 98, 101

vector identities, 357, 358
vector magnetic potential, A, 47

finite-length currents, 54, 57
for time-varying currents, 107
infinite currents, 53
line currents, 50
surface currents, 50

vectors
electromagnetic field, 4

vias
modeling with partial inductances, 318

voltmeter leads
effect of, 92

wavelength, 3, 102,104
wire

internal and external magnetic fields of, 37
wires in series and in parallel

net partial inductance of, 321
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