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Chapter 1

Introduction

... the greater part of human actions have their origin not in logical
reasoning but in sentiment. This is particularly true for actions that
are not motivated economically... . Man, although impelled to act
by nonlogical motives, likes to tie his actions logically to certain
principles; he therefore invents these a posteriori in order to justify
his actions. �Vilfredo Pareto, �The rise and fall of the elites�(1968,
p. 27)

1.1 The rôle of microeconomic principles

Why principles in microeconomics? Principles take you further than pure eco-
nomic theory; principles show you the reasons underlying good practice in ap-
plied economics; principles help you tie together issues in microeconomics that
might otherwise remain as isolated topics.

This book aims to introduce these principles: it does not try cover everything
in the �eld of microeconomics nor to explore all the rami�cations of standard
abstract models. Rather its purpose is to conduct you through an account of
the central canon of microeconomics, showing you how it can assist in under-
standing everyday economic phenomena and helping you to develop a �air for
economic reasoning. If you grasp some basic principles in theoretical and applied
economics you can often make considerable headway through a mixture of tech-
nical expertise and healthy common sense. There are a lot of rules-of-thumb,
standard analytical procedures and simple theorems that can be applied again
and again to apparently dissimilar economic problems. The student of microeco-
nomics can exploit the fact that many basic problems have a common structure
and that they can be analysed using the same insights and methods. I hope
that this book will help students to do just that.

1
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1.2 Microeconomic models

Modern microeconomics focuses on the use of abstract models as a means of
pursuing the inner truth of key issues. What are they for? What makes a good
model?

1.2.1 Purpose

Apart from claims to intrinsic intellectual beauty (and some models do have an
inherent attractiveness all of their own) the quality of a model depends upon
such things as its power to explain the reasons underlying observed economic
phenomena, to make precise the insights born of common sense and to expose er-
roneous reasoning. It is almost meaningless to describe a microeconomic model
as �good�or �bad�without further quali�cation. Whether or not a particular
model is good depends on the purpose for which it is designed � unless the
model is actually so bad that it violates some fundamental economic principle
(the equivalent, say, of assuming that water can �ow uphill).
So, to assess the worth of an economic model we need a speci�c context

in which to place its abstract components and mechanisms. Di¤erent circum-
stances �but apparently the same economic problem �may demand a di¤erent
type of model. This does not mean that microeconomics is inconsistent or am-
biguous, just that we have to be careful to pause and rethink the objectives of
the model, the context in which it is set and the way the model components are
to be implemented. The essential components of a microeconomic model can
be summarised under the following headings:

� The economic actors

� Motivation

� The economic environment

� Assumptions and axioms.

1.2.2 The economic actors

At the heart of the model is the economic actor or agent �someone or something
that is taking economic decisions. It is common practice to speak as though
this entity is just an isolated person �a solitary John Doe acting or reacting in
the arti�cial world of the economic model. However often the same principles
apply whether this actor is considered to be an isolated consumer, a worker, a
representative member of a group or the embodiment of a corporation.

1.2.3 Motivation

Cynics may say that economics is about greed. In a sense cynics are right:
most microeconomic models assume that somewhere deep in the mechanism is
the driving force of self-interest. Are there useful alternatives? Certainly it is
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possible to imagine many cases where self-interest is not well de�ned because
the �self�may be a di¢ cult concept �we shall brie�y encounter this in chapter
9 where we consider what is meant by �social�choices among alternatives. It is
also possible to consider cases where individuals care about others�consumption
or others�welfare. But in a sense even this can be seen as an extension of the
standard paradigm of sel�shness � I get personal satisfaction from observing
your consumption increase.
The assumption of sel�shness is not essential to economics, but it gets us a

long way in formulating problems precisely and, even though it may go against
the grain of the public-spirited people who study microeconomics, it can be
useful in specifying a well-crafted model.
Where the topic of motivation runs into di¢ culty is in characterising the

content and structure of these sel�sh aspirations. In the matter of specifying
agents�preferences the model-builder usually has to fall back on assertion based
on extrapolation from one�s own preferences and principles or, sometimes, on
mathematical convenience. A special example of this is di¢ culty lies in the
representation of people�s preferences under uncertainty (chapter 8): here strong
far-reaching results can be obtained on the basis of a few elementary assumptions
about preference structure, but it is not at all clear that they are in fact a
suitable way of encapsulating individuals�motivation when faced with choices
under uncertainty.

1.2.4 The economic environment

The economic environment may take a variety of forms. The principal form
relevant to our discussion is some sort of market. The market itself could be
represented in a number of ways: obviously it consists of a collection of other
economic actors, but in order to complete its description as the economic envi-
ronment we need to specify the �rules of the game.�The rules of the game could
refer literally to a game (see chapter 10) but, even in models where game theory
makes no formal appearance, the assumptions about the forms of action and in-
teraction that are admissible in the model are crucial in specifying clearly how
a model is supposed to work and what it can tell us about human behaviour.
This can be illustrated even without using a formal model. We could imagine

three levels of interaction of an individual economic agent with the environment,
in ascending order of complexity:

� Agents may just accept the economic environment like we accept the
weather. Just as you cannot change the weather so no agent is large
or in�uential enough to manipulate the economic environment, so the ar-
gument goes.

� Maybe agents do not have to accept the economic environment as a given.
Just as some human activities may indeed be big enough to a¤ect the
weather �so some agents�economic activities may big enough to in�uence
the market price of a product. However, interaction with the environment
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is limited: even if you can change the weather it doesn�t try to anticipate
your actions

� A third view is that the environment in which agents operate is not like
the weather at all. Everyone has to take into consideration the explicit
interaction with everyone else. This interaction will include possible an-
ticipation by one agent of what another agent may do.

Which view of the environment is appropriate clearly depends on the type
of microeconomic model and its purpose.

1.2.5 Assumptions and axioms

Some of the basic ideas about the elements of a model �the nature of preferences,
the structure of organisations, the physical nature of production possibilities �
have to be modelled from scratch. The free hand enjoyed by the model-builder
should be used in a way that well represents the modeller�s craft. The principal
way that this craft is exercised in scratch modelling is known as the axiomatic
method.
Axioms are just formally stated assumptions. They cannot be right or wrong,

although they could be woefully inappropriate, judged by the purpose of the
economic model.
What is the purpose of this formalisation? Axioms can help us:

� carefully develop the �ow of an argument,

� concentrate on the individual components of key results,

� debug a wonky theory.

But they can never substitute for clear thinking about the purpose and
essential functioning of the parent model and about the rôle of the speci�c
model components for which axioms are to be introduced.

1.2.6 �Testing�a model

What is the criterion of �relevance� of an economic model? Clearly it is ad-
vantageous if the predictions of the model do not immediately fall over when
confronted with facts. However, this does not mean that all features of a model
should be or could be subjected to rigorous empirical test. The standard meth-
ods of quantitative investigation can reveal a lot about the detail of agents�
behavioural responses to the market environment and yet miss the central point
of a model. In some cases, what may be more promising is to turn this con-
nection between theory and empirics around; if the theory predicts a certain
pattern of behaviour by economic agents then use the theoretical predictions
as restrictions on relevant econometric models in order to provide more useful
estimates.
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Testing a the quality of a theoretical model is a more subtle process than
just confronting it with empirical testing. The model�s quality also depends
on such factors as simplicity of form, clarity of prediction and the absence of
�blind-alley�assumptions (those that leave you with nowhere to go when you
try to relax them).

1.3 Equilibrium analysis

The importance of economic equilibrium in understanding and applying eco-
nomic principles cannot be overstated. An equilibrium can be regarded as an
arti�cial construct that allows one to examine the properties of the model in
a situation where every agents�choices and activities are consistent with each
other and no agent would have an incentive to change its choices or activities.
We can visualise an equilibrium as a posed picture of how a particular piece of
the economic mechanism works.

1.3.1 Equilibrium and economic context

The equilibrium has to be de�ned relative to the economic environment. So if we
make the environment more complicated within the economic model it should
not come as a surprise that we need a more carefully speci�ed de�nition of what
an equilibrium state is. We can imagine this by analogy with a mechanical
model: the more intricate the system of levers, wheels and pulleys, the more
you add on extra subsystems, the more carefully you will need to specify the
conditions for the whole contraption to be in balance.

1.3.2 The comparative statics method

How do things in the model change as things in the environment around it
change? The comparative statics method provides a way of dealing with this
issue. It is built on the concept of equilibrium and focuses on the relationship
between the equilibrium itself and one or more key parameters. It is not a
description of a process but is more like a set of snapshots of di¤erent instances
of equilibrium that leave a trace of a process.
The comparative statics method is sometimes incorporated into speci�c re-

lationships that are used as a shorthand to characterise the behaviour of an
economic agent. The prime example of this is demand and supply functions �
collectively referred to as response functions. A second example is the reaction
function in the analysis of game-theoretic models (chapter 10) �how one player
responds to the actions of another on the assumption of a speci�c form of the
rules of the game.
We use the comparative statics method time and again to get some insight

on where the economic machine might move if certain levers were pulled. How
the machine moves from point to point requires an explicit model of dynamic
processes.
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1.3.3 Dynamics and stability

With very few exceptions this book does not examine behaviour out of equi-
librium. Some of the main issues of disequilibrium arise in the brief discussion
of the stability of a general equilibrium system (subsection 7.4.4 on page 163
onwards). It is important to distinguish between equilibrium itself and the sta-
bility of equilibrium.1 We need this notion of stability in order to have some
idea of whether the equilibrium states on which we spend so much intellectual
energy are likely to prove no more than a ephemeral distraction.

1.4 Background to this book

This book assumes that you are not coming to the subject with a completely
clean slate. Here is a brief overview of the background that is assumed in order
to pursue the argument.

1.4.1 Economics

The opening chapters assume that you have mastered an introductory univer-
sity course in economics, so that you will already have some familiarity with
production functions, utility, demand and supply curves, the operation of the
market and the nature of equilibrium. However we will reinforce and deepen
understanding of these essential concepts by putting them on a formal basis.
Later developments build on this foundation to introduce more advanced ideas.

1.4.2 Mathematics

This is not a book about mathematical economics nor about mathematics in
economics. But it does not shy away from mathematics. Where a mathematical
explanation could help to make an argument concise, or to give an additional
economic insight that could be lost in the fog of words, we use it. As far
as possible algebraic arguments are backed up with diagrams to present the
underlying intuition.
The mathematical level does not get harder as the argument of the book

progresses; nor is it the case that the harder economic problems are typically
associated with harder mathematics. The material in Appendix A is intended to
be a statement of fair dealing concerning the technical requirements of the main
text: there are no mathematical surprises in the book that are not brie�y covered
in that material. Dipping into Appendix A is a way of reassuring yourself of
how far you are expected to go with the mathematics as well as brushing up on
particular technical points.

1 Take an ordinary pencil with a sharpened point and place it on a �at table. How many
equilibria does it have? Which of them are stable?
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1.5 Using the book

The argument on each topic proceeds by a mixture of narrative and practice.
The narrative is designed to take you briskly through the main themes of modern
microeconomics. The material has been organised in a way that both has an
inner logic to it and that permits extensive re-use of techniques as you progress
through the chapters. To achieve this, I have tried to minimise the interruption
to the �ow of narrative by relegating some formal proofs to appendices or to
guided exercises. The practice involves a mixture of examples, exercises and
quick discussion points that you are encouraged to use in order to provide depth
on particular points within the main themes and to develop familiarity with
important solution techniques.

1.5.1 A route map

We begin with each of the two main economic actors �the �rm and the household
�and their relationships to the market. Understanding how these relationships
work is the key to a lot of other interesting microeconomic problems.
The argument naturally moves on to consider how the economic system

works as a whole. This addresses the key question on the rôle of the market in
delivering goods to individual consumers and calling forth resources to produce
the goods. The background message here is �the market works� and can be
used as a method of achieving desirable allocations of goods and services in the
economy. But the discussion moves on to economic reasons why the argument
does not work and why the paradigm of price-taking may be too restrictive.
There is no magic bullet to blow away the market as an institution, but an
understanding of microeconomic principles can help in appraising the various
possibilities for modifying market mechanisms and piecemeal solutions for over-
riding or replacing particular markets.

1.5.2 Some tips

� You will probably �nd it useful to check through the brief summary of
mathematics in Appendix A. There you will also �nd some suggestions
for further reading if you are a bit rusty on certain techniques. You should
be certain to check carefully the list of symbol conventions used throughout
the book �see page 485.

� The proof of some of the results are hived o¤ to Appendix C. This is not
because the results are not interesting, but because the method of proof
is not particularly illuminating or is rather technical.

� Throughout each chapter there are footnotes that focus on detailed points
of the argument. These take the form of one-liners or mini-problems that
have suggested answers or outline solutions in Appendix B.

� Each chapter has one or two practical illustrative examples drawn from
the relevant applied economics literature.
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� The bibliographic references for the examples and for further reading are
collected together on pages 484 onwards.

� At the end of each chapter there are exercises that are designed to give
you a more serious mental workout than the little footnote questions by
the wayside. Outline answers for these are on the website.



Chapter 2

The Firm

I think business is very simple. Pro�t. Loss. Take the sales, sub-
tract the costs and you get this big positive number. The math is
quite straightforward. �Bill Gates, US News and World Report, 15
February 1993.

2.1 Basic setting

We begin with the economic problem of the �rm, partly because an understand-
ing of this subject provides a good basis for several other topics that arise later
in the book, partly because the formal analysis of this problem is quite straight-
forward and can usually be tied into everyday experience and observation.
We will tackle the issues that arise in the microeconomic analysis of the �rm

in seven stages. The �rst four of these are as follows:

� We analyse the structure of production and introduce some basic concepts
that are useful in solving the �rm�s optimisation problem.

� We solve the optimisation problem of the price-taking, pro�t-maximising
�rm. Along the way we look at the problem of cost-minimisation.

� The solution functions from the optimisation are used to characterise the
�rm�s responses to market stimuli in the long and the short run.

� The analysis is extended to consider the problems confronting a multi-
product �rm.

The remaining three topics focus on the �rm�s relationship with the market
and are dealt with in chapter 3.
In this chapter we will �nd in part a review of some standard results that you

may have already encountered in introductory treatments of microeconomics,
and in part introduce a framework for future analysis. I shall give a brief account

9
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zi amount used of input i
q amount of output
� production function
wi price of input i
p price of output

Table 2.1: The Firm: Basic Notation

of the behaviour of a �rm under very special assumptions; we then build on this
by relaxing some of the assumptions and by showing how the main results carry
over to other interesting issues. This follows a strategy that is used throughout
the later chapters � set out the principles in simple cases and then move on
to consider the way the principles need to be modi�ed for more challenging
situations and for other economic settings that lend themselves to the same
type of treatment.

2.1.1 The �rm: basic ingredients

Let us introduce the three main components of the problem, the technology, the
environment, and economic motivation.

Technology

You may well be familiar with the idea of a production function. Perhaps the
form you have seen it before is as a simple one-output, two-input equation:
q = F (K;L) (�quantity of output = a function of capital and labour�), which
is a convenient way of picking up some of the features that are essential to
analysing the behaviour of the �rm.
However, we shall express the technological possibilities for a �rm in terms

of a fundamental inequality specifying the relationship between a single output
and a vector of m inputs:

q � �(z) (2.1)

Expression (2.1) allows for a generalisation of the idea of the production relation.
Essentially the function � tells us the maximum amount of output q that can
be obtained from the list of inputs z := (z1; z2; ::; zm); putting the speci�cation
of technological possibilities given in the form (2.1) allows us to:

� handle multiple inputs,

� consider the possibility of ine¢ cient production.

On the second point note that if the �=�part of (2.1) holds we shall call
production technically e¢ cient �you cannot get any more output for the given
list of inputs z.
The particular properties of the function � incorporate our assumptions

about the �facts of life� concerning the production technology of the �rm.
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Working with the single-product �rm makes description of the �direction of
production�easy. However, sometimes we have to represent multiple outputs,
where this speci�cation will not do �see section 2.5 below where we go further
still in generalising the concept of the production function.

Environment

We assume that the �rm operates in a market in which there is pure competition.
The meaning of this in the present context is simply that the �rm takes as given
a price p for its output and a list of prices w := (w1; w2; ::; wm) for each of the
m inputs respectively (mnemonic �think of wi as the �wage�of input i).
Of course it may be interesting to consider forms of economic organisation

other than the market, and it may also be reasonable to introduce other con-
straints in addition to those imposed by a simple speci�cation of market con-
ditions �for example the problem of �short-run�optimisation, or of rationing.
However, the standard competitive, price-taking model provides a solid analyt-
ical basis for a careful discussion of these other possibilities for the �rm and for
situations where a �rm has some control over the price of output p or of some
of the input prices wi.

Motivation

Almost without exception we shall assume that the objective of the �rm is to
maximise pro�ts: this assumes either that the �rm is run by owner-managers
or that the �rm correctly interprets shareholders�interests.1

Within the context of our simpli�ed model we can write down pro�ts in
schematic terms as follows:

�rm�s sales purchases
= �

pro�ts revenue of inputs

More formally, we de�ne the expression for pro�ts as

� := pq �
nX
i=1

wizi (2.2)

Before we go any further let us note that it seems reasonable to assume that �
in (2.1) has the property:

�(0) = 0 (2.3)

which in plain language means both that the �rm cannot make something for
nothing and that it can always decide to shut up shop, use no inputs, produce
no output, and thus make zero pro�ts. Therefore we do not need to concern
ourselves with the possibility of �rms making negative pro�ts (tactful name for
losses) in the pro�t-maximisation problem.2

1 What alternative to pro�t-maximisation might it be reasonable to consider?
2 In real life we come across �rms reporting losses. In what ways would our simpli�ed

model need to be extended in order to account for this phenomenon?
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Figure 2.1: Input requirement sets for four di¤erent technologies

2.1.2 Properties of the production function

Let us examine more closely the production function given in (2.1) above. We
will call a particular vector of inputs a technique. It is useful to introduce two
concepts relating to the techniques available for a particular output level q:

1. Pick some arbitrary level of output q: then the input-requirement set for
the speci�ed value q is the following set of techniques:

Z(q) := fz : �(z) � qg: (2.4)

2. The q-isoquant of the production function � is the contour of � in the
space of inputs

fz : �(z) = qg: (2.5)

Clearly the q-isoquant is just the boundary of Z(q). Although you may
be familiar with the isoquant and the input requirement-set Z may seem to
be a novelty, the set Z is, in fact, useful for characterising the fundamental
properties of the production function and the consequences for the behaviour of
the optimising �rm. Certain features of shape of Z will dictate the general way
in which the �rm responds to market signals as we will see in section 2.3 below.
In a 2-input version of the model Figure 2.1 illustrates four possible shapes

of Z(q) corresponding to di¤erent assumptions about the production function.
Note the following:
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� An isoquant can touch the axis if one input is not essential.

� An isoquant may have �at segments (case 2 in Figure 2.1). We can inter-
pret this as locally perfect substitutes in production.

� The convexity of Z(q) implies that production processes are, in some sense,
divisible. To see this, do the following with cases 1, 2 or 4 in Figure 2.1:
take any two vectors z0 and z00 that lie in Z(q); draw the straight line
between them; any point on this line clearly also belongs to Z(q) and such
a point can be expressed as tz0+[1� t]z00 where 0 < t < 1; what you have
established is that if the production techniques z0 and z00 are feasible for
q, then so too is a mixture of them (half one and half the other, say).3

However, this does not work everywhere in case 3 (check the part of Z
where there is a �dent�). Here a mixture of two feasible techniques may
lie outside Z: nonconvexity implies that there is some indivisibility in the
production process.

� An isoquant may have �kinks�or corners: (case four).

Marginal Rate of Technical Substitution

Where � is di¤erentiable (i.e. at points on the isoquant other than kinks) we
shall often �nd it convenient to work with the slope of the isoquant, which is
formally de�ned as follows:

De�nition 2.1 The marginal rate of technical substitution of input i for input
j is given by

MRTSij :=
�j(z)

�i(z)

In this de�nition and elsewhere we use subscripts as a shorthand for the
appropriate partial derivative. In this case �i(z) means @�(z)=@zi:
The MRTS re�ects the �relative value�of one input in terms of another from

the �rm�s point of view. The particular value of the MRTS for inputs
�
z01 ; z

0
2

�
is

represented in Figure 2.2 by the slope at point z�; the slope of the ray through
z� represents the corresponding input ratio z2=z1 at this point.

Elasticity of substitution

We can use this idea to characterise the shape of the isoquant. Consider the
question: how responsive is the �rm�s production technology to a change in this
relative valuation? This may be made precise by using the following de�nition.

3 A �rm has o¢ ces in London and New York. Fractional units of labour can be employed
in each place (part-timers can be hired) and the headquarters could be in either city. The
minimum viable o¢ ce sta¤ is 1 full-time employee and the minimum size of headquarters is 3
full-timers. Sketch the isoquants in this case and explain why Z(q) is not convex.
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Figure 2.2: Marginal rate of technical substitution

Figure 2.3: Low and high elasticity of substitution
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Figure 2.4: Homothetic and homogeneous functions

De�nition 2.2 The elasticity of substitution is

�ij := �
@ log (zj=zi)

@ log
�
�j(z)=�i(z)

� : (2.6)

Notice that �ij � 0 and that (2.6) has the simple interpretation

proportional change in input ratio
proportional change in MRTS

(in absolute terms).4 Higher values of � mean that the production function is
more ��exible�in that there is a proportionately larger change in the production
technique in response to a given proportionate change in the implicit relative
valuation of the factors: Figure 2.3 illustrates isoquant maps for two cases,
where � is low (large changes in the MRTS are associated with small changes in
the input ratio) and where � is high (small changes in the MRTS are associated
with large changes in the input ratio).
We can build up an entire family of isoquants corresponding to all the possi-

ble values of q and there may be a wide variety of potentially interesting forms
that the resulting map might take.

Homothetic and homogenous production functions

For many purposes it is worth considering further restrictions on the function
� that have convenient interpretations. The left-hand half of Figure 2.4 illus-
trates the case of homothetic contours: each isoquant appears like a photocopied

4 Show that �ij = �ji. You may �nd the material on page 496 useful.
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enlargement; along any ray through the origin all the tangents have the same
slope so that the MRTS depends only on the relative proportions of the inputs
used in the production process. The right-hand half of Figure 2.4 illustrates
an important subcase of this family �homogeneous production functions �for
which the map looks the same but where the labelling of the contours has to
satisfy the following rule: for any scalar t > 0 and any input vector z�0:

�(tz) = tr�(z); (2.7)

where r is a positive scalar. If � (�) satis�es the property in (2.7) then it is
said to be homogeneous of degree r. Clearly the parameter r carries important
information about the way output responds to a proportionate change in all
inputs together: if r > 1, for example then doubling more inputs will more than
double output.

Returns to scale

However, homogenous functions, although very convenient analytically, are ob-
viously rather special. It is helpful to be able to classify the e¤ect of changing the
scale of production more generally. This is done using the following de�nition:

De�nition 2.3 The production function � exhibits

1. increasing returns to scale (IRTS) if, for any scalar t > 1:

�(tz) > t�(z) (2.8)

2. decreasing returns to scale (DRTS) if, for any scalar t > 1:

�(tz) < t�(z) (2.9)

3. constant returns to scale (CRTS) if, for any positive scalar t:

�(tz) = t�(z) (2.10)

Figures 2.5 to 2.7 illustrate production functions with two inputs and a
single output corresponding to each of these three cases. In each case the set
of points on or �underneath�the tent-like shape represent feasible input-output
combinations. Take a point on the surface such as the one marked in each of
the three �gures:

� Its vertical coordinate gives the maximum amount of output that can be
produced from the input quantities represented by its (z1; z2) coordinates.

� The dotted path through this point in each �gure is the expansion path;
this gives the output and input combinations as (z1; z2) are varied in the
same proportion (for example variations along the ray through the origin
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Figure 2.5: An IRTS production function

Figure 2.6: A DRTS production function
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Figure 2.7: A CRTS production function

in the 2-dimensional Figure 2.2).5 In the simple constant returns to scale
production function the expansion path is itself a ray through the origin
(Figure 2.7); in the IRTS and DRTS cases this path is clearly curved.

� The solid curve through this point in each �gure is a contour of �; project
this contour down into the (z1; z2)-plane (the ��oor�of the diagram) and
you get the isoquant.

Of course one could specify localised increasing returns to scale by limiting
the range of values of t for which (2.8) is true �likewise for decreasing or constant
returns to scale; quite a common assumption is that for small-scale production
(low values of z1 and z2) IRTS is true while for large scale operations DRTS is
true. Furthermore it is easy to check that if � is a concave function all the sets
Z(q) are convex and returns to scale are constant or decreasing everywhere.

Marginal product

Now consider the relationship between output and one input (z1 let us say)
whilst all the other inputs are kept at some �xed level. We could do this
in Figure 2.7, for example, by picking an arbitrary z2 value and then slicing
through the tent-shape in a plane parallel to q0z1. This would give a shape

5 In the special case of homogeneous production functions what are the values of r that
correspond to increasing/constant/decreasing returns to scale?
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Figure 2.8: Four di¤erent technologies

such as the Case 1 in Figure 2.8.6 Cases 2-4 in Figure 2.8 illustrate the same
type of diagram for three other production functions.7 We can use this view of
the production function to depict another very useful concept, shown in Figure
2.9.

De�nition 2.4 The marginal product of input i is the derivative (where it is
de�ned) of the production function.

Of course the concept of marginal product was already implicit in the De�-
nition 2.1 earlier: it represents the �value�to the �rm of an input �measured
in terms of output.

2.2 The optimisation problem

We could now set out the �rm�s objectives in the form of a standard constrained
optimisation problem. To do this we would specify a Lagrangean incorporating
pro�ts (2.2), and the production constraint (2.1). However it is more illuminat-
ing to adopt a two-stage approach to solving the �rm�s optimisation problem:

6 Sketch 3-D diagrams like the one above that will correspond to Cases 2 to 4 in Figure
2.8.

7 Assume constant returns to scale: then two of the four cases in Figure 2.1 correpond to
two of the four cases in Figure 2.8. Which are they? Suggest a simple formula for each of
the two production functions that would yield these forms.
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Figure 2.9: The marginal product

1. Cost Minimisation. For any speci�ed output level q, �nd the combination
of inputs that will minimise the cost of producing q for known input prices
w.

2. Output Optimisation. Once the appropriate input policy conditional upon
an arbitrary output level is known, choose the appropriate output level.

In stage 1 we notionally �x the output level at some arbitrary level q as in
Figure 2.1; in stage 2 the output level becomes endogenous. Why go via this
roundabout route? There are two reasons. First, it neatly compartmentalises
two aspects of the �rm�s activities that have an intuitive independent rationale;
for example the stage-2 problem is a self-contained topic often presented in
introductory texts. Second, the stage-1 problem is highly �portable:�we will see
later examples of this approach to the solution of microeconomic problems that
are in e¤ect just a simple translation of the �rm�s cost-minimisation problem.

2.2.1 Optimisation stage 1: cost minimisation

The essence of the problem can be set out simply in terms of just two inputs:
we can represent it diagrammatically as in Figure 2.10. Two important points
to note about this diagram:

� Consider a line drawn with slope w1=w2 in this diagram. By de�nition
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Figure 2.10: Cost minimisation

this has the equation:

w1z2 + w2z2 = constant (2.11)

In other words, all the points lying on such a line represent input combi-
nations that require the same �nancial outlay by the �rm. For this reason
such a line is known as an isocost line.

� Shift an isocost line up and cost goes up: you just change the constant on
the right-hand side of (2.11).

Intuitively the cost-minimisation problem for a given output q involves reach-
ing the lowest isocost line subject to staying within the input-requirement set
Z(q). Formally we can represent the cost-minimisation problem as that of min-
imising the Lagrangean:

L(z; �;w; q) :=
mX
i=1

wizi + � [q � �(z)] (2.12)

for some speci�ed output level q, and for given input prices w, subject to the
restrictions that zi � 0 for every input i, where � is the Lagrange multiplier
associated with the constraint (2.1).
Di¤erentiating (2.12) with respect to zi we can derive the �rst-order con-

ditions (FOC) for a minimum . Let z� denote the vector of cost-minimising
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inputs that emerges in the solution to (2.12); if input i is used in strictly posi-
tive amounts at the optimum then the FOC implies:

���i(z
�) = wi (2.13)

More generally we have:
���i(z

�) � wi (2.14)

for every i where the �<�part applies only if z�i = 0. Likewise, di¤erentiating
(2.12) with respect to �, we would �nd

q = �(z�): (2.15)

The general condition for a maximum is actually

q � �(z�): (2.16)

where the �<� part applies only if �� = 0. However, conditions (2.13, 2.14)
imply that the Lagrange multiplier �� must be positive at the optimum,8 and
so we actually do have (2.15) �production must be technically e¢ cient.9 From
all of this we can deduce that if cost-minimisation requires a positive amount
of input i then for any other input j:10

�j(z
�)

�i(z
�)
� wj
wi

(2.17)

with equality in (2.17) if input j is also used in positive amounts. So in the case
where cost-minimising amounts of both inputs are positive we have:

input
MRTS = price

ratio

Drawing all these remarks together we have established the following result:

Theorem 2.1 (Proporties of the minimum-cost solution) (a) The cost-
minimising output under perfect competition is technically e¢ cient. (b) For
any two inputs, i; j purchased in positive amounts MRTSij must equal the input
price ratio wj=wi. (c) If i is an input that is purchased, and j is an input that
is not purchased then MRTSij will be less than or equal to the input price ratio
wj=wi.

8 Explain why this implies that �� must be positive in non-trivial cases.
9 Provide an intuitive argument to show (2.15). Hint: Suppose that at z� the strict

inequality part of (2.1) were true; show that you could then �nd a feasible input vector that
is cheaper for the �rm.
10 (a) Draw a �gure illustrating the corner solution in (b) Interpret this �rst-order condition

using the concept of the �rm�s �relative value�of one input in terms of another from the �rm�s
point of view (see page 13) (i) in the case where �<� holds in (2.17), (ii) in the case where
�=�holds in (2.17)
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As the earlier discussion implies, the solution may be at a corner, and it may
not be unique: this all depends on the shape of the input-requirement set Z(q),
as we will see later.
We can express the inputs that satisfy (2.15) and (2.17) in terms of the

speci�ed output level q and the input-price vectorw. We shall write this solution
as follows:

z�i = Hi(w; q) (2.18)

for inputs i = 1; :::;m. Think of the relationship Hi as the conditional demand
for input i �demand that is conditional upon the level q. We shall discuss a
number of aspects of this relationship �in particular the conditions under which
Hi is a genuine single-valued function �after we have considered some other
important features of the optimum (but you have to wait until chapter 4 on the
consumer to see why the letter H is used...).

2.2.2 The cost function

We can also write the minimised cost that is the solution to (2.12) as a function
of q and w. This will prove to be a valuable concept that has applications not
only throughout the rest of our discussion of the theory of the �rm, but also in
other areas of economic theory, such as consumer optimisation.

De�nition 2.5 The �rm�s cost function is a real-valued function C of input
prices and the output level such that:

C(w; q) := min
fz�0;�(z)�qg

mX
i=1

wizi (2.19)

=

mX
i=1

wiH
i(w; q) (2.20)

The meaning of the cost function is as follows. Given a speci�ed value for
the price of each input and for the level of output, what is the minimum outlay
that the �rm requires in order to purchase the inputs? Because the function
C is derived from a process of cost minimisation, it possesses a number of very
useful properties.
First, C must be strictly increasing in at least one of the input prices and, if

the production function is continuous, C must be strictly increasing in output
too: if this were not so then you could either use less of all inputs to get the
same level of output, or get more output for the same expenditure on inputs;
either way, you clearly would not be at a cost-minimising point. For much the
same sort of reason we can see that C cannot be decreasing in any of the wi.11

Second, we can see from (2.17) that a 10 percent increase in both input
prices w1 and w2 would not change the optimal input levels z�i and z

�
2 ; so by

how much would the minimised cost, w1z�1 + w2z
�
2 have increased? Obviously

11 C could be constant in some of the wi. Why?
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Figure 2.11: Cost and input price

10 percent. The argument easily extends to m inputs and an arbitrary rescaling
of all input prices.
Third, the cost function must be concave in prices, as illustrated by the one-

input snapshot that is illustrated in Figure 2.11: note that this a general result
and does not depend on any special properties of the production function �.12

Fourth, imagine that you are employing a thousand hours of labour at the
cost-minimising point: by how much would your �rm�s costs increase if there
was in in�nitesimal increase in the wage paid to labour (say one penny an
hour)? By how much would your costs have gone up had you been employing
1200 hundred units of labour at the cost-minimising point? 1200 pence? If your
intuition is sharp you should have spotted that the rate of increase of cost with
respect to input price equals the amount of units of that input that you employ
at the optimum �a property of the cost function that is known as Shephard�s
Lemma.13

All these features can be summarised as follows (a proof is provided in Ap-
pendix C):

Theorem 2.2 (Properties of the cost function) The competitive �rm�s cost
function C in (2.19) is nondecreasing and continuous in w, homogeneous of de-
gree one in w and concave in w. It is strictly increasing in at least one wi.

12 Show that the cost function must be concave using Remark A.4 in Appendix A.
13 Prove this in the special case where z� is unique and strictly positive (Hint: di¤erentiate

(2.20) with respect to wi and use the �rst-order conditions).
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If the production function is continuous then C is strictly increasing in q. At
every point where the di¤erential is de�ned

@C(w; q)

@wi
= z�i (2.21)

the optimal demand for input i.

For a couple of further points of interest we introduce the concepts of average
cost C(w; q)=q, and of marginal cost Cq(w; q). There is a neat and very useful
relationship between the �returns-to-scale�property of the production function
� and the behaviour of average cost: decreasing returns to scale imply rising
average cost14 and vice versa; constant returns to scale imply constant average
cost. Also rising average cost implies that marginal cost is above average cost;
falling average cost implies that marginal cost is below average cost.15 Further-
more, consider the impact of an increase in the speci�ed level of output on the
cost minimisation problem. Noting that (2.15) holds at the optimum, we must
have

C(w;q) =

mX
i=1

wiz
�
i + �

� [q � �(z�)] : (2.22)

Equation (2.22) leads to the following very useful general result on marginal
cost (see Appendix C):16

Cq(w; q) = �� (2.23)

To see why we get this result, put the question: �how much would the �rm be
prepared to pay for an in�nitesimal relaxation of the output target in (2.12) from
to q to q �4q?�The intuitive answer to this is: �an amount that is just equal
to the extra cost of producing 4q.� In other words, in the neighbourhood of
the optimum, the appropriate �value�of the constraint in (2.12) �the Lagrange
multiplier �is the marginal cost of output at q

2.2.3 Optimisation stage 2: choosing output

Using the cost function we can now set out the problem of �nding optimal
output. What we do is simply substitute C(w; q) back into (2.2). Then the
problem becomes:

max
fq�0g

pq � C(w; q) (2.24)

14 Prove this. Hint: draw a pair of isoquants at q and tq ; for a given input-price ratio
mark in the cost-minimising input combination on the tq-isoquant and draw a ray through
this point; �nd the point where this ray intersects q-isoquant and work out the input bill at
this point; then use the de�nition of the cost function.
15 Show this.
16 Show this in the special case where z� is unique and strictly positive (Hint: di¤erentiate

(2.12) or (2.20) with respect to q and use the �rst-order conditions. Also check the results on
page 515).
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The �rst-order condition for this maximisation problem yields an optimum quan-
tity q� where

p = Cq(w; q
�) if q� > 0;

p � Cq(w; q
�) if q� = 0:

9=; (2.25)

In other words product price is less than or equal to marginal cost at the opti-
mum.
A necessary condition for a maximum of (2.24) is that its second derivative

with respect to q should be negative or zero in the neighbourhood of q�. Working
this out we �nd that this implies:

Cqq(w; q) � 0 (2.26)

So the optimum must be on a constant or rising portion of the marginal cost
curve. However we must also take into account the obvious restriction that no
�rm will stay in business if it makes a loss.17 Clearly this requires

pq � C(w; q)�0; (2.27)

which we may rewrite as
C(w; q)

q
� p; (2.28)

which in plain language says that average cost must not exceed product price
at the optimum.
Once again we can, in principle, express the optimal supply of output as

a function of the exogenously given variables in the problem by solving for q�

from the �rst-order condition (2.25); let us think for a moment about this supply
relationship. Suppose that there is some value of output q at which marginal
cost equals average cost. If marginal cost is strictly greater than average cost
(to the right of q),18 and if marginal cost is rising then there is a one-to-one
relationship between price p and optimal output; if marginal cost is less than
average cost (to the left of q), then the �rm will produce no output; if marginal
cost equals average cost then the �rm is indi¤erent between producing q and
producing nothing at all � see Figure 2.12. So there may be more than one
pro�t-maximising output level for a single value of p = p. We shall develop this
point later, but for the moment, let us set it aside and return to the overall
optimisation problem of the �rm.

2.2.4 Assembling the solution

Let us now see what we get when we put together the solutions to the two
component problems, cost-minimisation and output optimisation. The main
result is as follows:
17 We have ruled out � < 0, but what would be likely to happen in a market if � > 0?

See page 57.
18What must be true about the production function � for such a q to exist?
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Figure 2.12: Optimal output may be multivalued

Theorem 2.3 (Marginal products and input prices) At the pro�t-maximising
technique, for any input the value of the marginal product of the input must be
no greater than the price of that input. If the input is purchased in positive
amounts, the value of its marginal product must equal its price.

The proof of this result requires no more than gathering together some points
that we already know: from expression (2.13) in the cost-minimisation problem
we know that � times the marginal product of i must be less than or equal to
wi; our discussion of the cost function revealed that � must be marginal cost;
from the optimisation of output problem we know that marginal cost equals
price.
Of course, now that we have obtained the solution of the combined problem

in terms of market prices p and w it would be interesting to know how the
solution might be a¤ected if those prices were to change.

2.3 The �rm as a �black box�

We shall now see how we can put the �rm�s cost function to work: we use it to
characterise the equilibrium of the �rm in a simple way, and to analyse how the
pro�t-maximising �rm will react to changes in its market environment. We can
imagine the �rm to be like an electronic black box that accepts incoming signals
from the market in the form of prices and, as the result of some predetermined
inner workings, processes them and emits other signals in the form of quantities
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Figure 2.13: Convexity and input demands

of input demands and output supply. Our task is to characterise the inner
workings of the black box.
To do this we shall make use of the method of comparative statics, which

basically means that we see how the solution to the optimisation problem would
change if some of the market data were to be altered a little. This can do more
than just provide a simple mechanical response; it can reveal information about
the structure of the solution as well. We shall then extend our analysis of the
elementary model of the �rm to cover two important developments: its reaction
to �short-run�constraints, and the possibility of acting as a price-maker rather
than as a price taker.
As a simple example of the basic comparative statics method let us go back

to a point that we made earlier, that the nature of the solution to the �rm�s
cost-minimisation problem would depend on the shape of the input-requirement
set Z(q). To examine the implications of alternative possible shapes for Z(q)
try the following four-part experiment:

� Take the case where Z(q) is strictly convex �case 1 in Figure 2.13 �and
use a straight-edge to represent the isocost line on the �gure. Then, on a
separate piece of paper, plot the cost-minimising value of z1 against w1=w2,
the slope of the isocost line; you should get a continuous, downward sloping
curve. The shading of the boundary indicates the optimal z-values that
you pick up as you do the experiment.

� If you conduct the same experiment for the case where Z(q) is convex but
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not strictly convex (case 2) you should �nd that you get a similar graph,
but that there will be at least one point at which a single value of w1=w2
corresponds to an interval of values of z1.

� Thirdly, try it for the case where Z(q) is non-convex (case 3): you should
�nd a point at which a single value of w1=w2 corresponds to exactly two
values of z1: between these two z1-values there is a discontinuity in the
relationship you are plotting.

� Fourthly, try it for the �kinked case�: you will �nd that at a kink there
is a range of w1=w2-values for which the optimal z1 remains unchanged.
However, although there is a unique input demand for a given w1=w2 value
at the kinks, you will �nd a range of (w1=w2)-values which yield the same
input demand.19

It is useful to compare Figures 2.1 and 2.13: note that not all the bound-
ary points of Z(q) (Figure 2.1) emerge as possible solution points in the cost-
minimisation exercise (Figure 2.13) if Z(q) is nonconvex. The experiment shows
that the issue of convexity of the input-requirement set is central to the rela-
tionship between market prices and input demands. Also kinkedness of the
boundary may destroy the uniqueness of the relationship between input de-
mands and input prices. This will be put on a more formal basis in a moment;
we will �nd that these insights apply in other aspects of economic optimisation.

2.3.1 Demand and supply functions of the �rm

Let us follow up the point that emerged from the experiment, that for a suit-
ably shaped Z(q) � in other words a �well-behaved� production function � �
you would get a one-to-one relationship between the input price ratio and the
demand for an input, but that for other production functions multiple solu-
tions might emerge. This point �proved in Appendix C �is summarised more
formally as:

Theorem 2.4 (Firm�s demand and supply functions) (a) If all input-requirement
sets are strictly convex, conditional input demand functions are always well de-
�ned and continuous for all positive input prices. (b) If the production function
is strictly concave, the supply function and input demand functions are always
well de�ned and continuous for all positive input prices.

The conditions required for the second half of this result are rather demand-
ing. To see why this is so let us recall that the �conventional�supply relationship
that we sketched in Figure 2.12 does not actually satisfy the requirements of
part (b). If the average cost curve is U-shaped then the �rm�s supply of output
is in fact multi-valued at one point: this is point q, where p equals minimum

19 Draw a case where Z(q) is strictly convex and for which the boundary has multiple kinks.
Draw the relationship between input price and conditional input demand and check that input
demands are always uniquely de�ned.
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average cost (given p = p the �rm does not care whether it produces at q or
produces nothing at all because it makes zero pro�ts either way). This means
that, strictly speaking, we have a supply correspondence rather than a supply
function (see page 487 in Appendix A for this important technical distinction).
The �rm�s supply curve is discontinuous at p: there is a jump from 0 to q as
the market price increases from a level just below p to just above p. The reason
for this is simple: the left-hand branch of the U-shape (to the left of q) is a
region where there is increasing returns to scale: the production function is not
concave in this region.
Having thought about this, let us promptly ignore it for the moment and

introduce three key concepts that we shall use frequently from now on. The
�rst two are:

De�nition 2.6 The conditional demand functions for inputs i = 1; 2; :::;m is
a set of real-valued functions Hi of input prices and an output level such that

z�i = Hi(w; q) (2.29)

where (z�1 ; z
�
2 ; :::; z

�
m) are the cost-minimising inputs for w and q.

De�nition 2.7 The supply function of the competitive �rm is a real-valued
function S of prices such that

q� = S(w; p) (2.30)

where q� is the pro�t-maximising output for w and p.

Notice that Hi must be homogeneous of degree zero in input prices w, and
that S is homogeneous of degree zero in (w; p).20 Next, stick together these two
principal solution functions that we have introduced. This then gives us the
third key concept:

De�nition 2.8 The unconditional demand function for input i is a real-valued
function Diof input prices and the output price such that:

z�i = Di(w; p); (2.31)

where
Di(w; p) := Hi(w; S(w; p)): (2.32)

Equation (2.32) emphasises that conditional and unconditional demands are
just two di¤erent ways of tying down the same basic concept: in the �rst case
we write the solution to the input-optimisation problem as function of input
prices and output; in the second we write it as a function of input prices and
the output price. Both versions are useful, as we shall see.

20 Use the properties of the cost function to explain why this is so.
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2.3.2 Comparative statics: the general case

Working with the supply curve is a simple example of comparative statics: we
can show how q� responds to p given the assumption of pro�t maximisation.
Suppose that we are in the interesting part of the problem where the �rm

is producing a strictly positive output. Then the points on the supply curve
must also satisfy the standard �rst-order condition �price = marginal cost�.
Substituting in for q� from (2.30), we may thus write:

p = Cq(w; S(w; p)): (2.33)

where we have again used the subscript notation to represent the partial deriv-
ative. Di¤erentiate (2.33) with respect to p and rearrange it to get:21

Sp(w; p) =
1

Cqq(w; q�)
: (2.34)

The left-hand side of (2.34) is the slope of the supply curve. The right-hand side
depends on the way marginal cost Cq increases with output q. Since we know
from the second order conditions that Cqq must be positive at the optimum, we
see immediately from this that the competitive �rm must have a rising supply
curve.
Now consider input demands using the same sort of approach. Suppose the

market price of output rises: as we know, output goes up, but what happens to
input usage? Will a shift in the demand for the product also increase demand
for, say, labour? Let us use the fundamental relationship between the two ways
of writing input demands given in equation (2.32). Di¤erentiating (2.32) with
respect to p we get

Di
p(w; p) = Hi

q(w; q
�)Sp(w; p): (2.35)

So the answer to our question is not quite straightforward: a rise in p will
increase the demand for labour if and only if the term Hi

q is positive: this term is
an �output e¤ect�describing what would happen to conditional input demand if
the speci�ed level of output q were to be increased; the conventional assumption
is that it is positive, so that z�i would go up as output level is increased ( a
�normal input�); but there are odd cases (so-called inferior inputs) where this
does not happen. We can get further insight on this if we use Shephard�s Lemma
which, using (2.21) and (2.29), we may write as:

Ci(w; q) = Hi(w; q): (2.36)

Then we �nd that (2.35) can be rewritten22

Di
p(w; p) =

@Cq(w; q
�)

@wi
Sp(w; p): (2.37)

21Do the di¤erentiation and show this. You may �nd a review of the �function of a function�
rule helpful �see section A.4.3.
22 Show this, using the basic theorem on the properties of the cost function and the fact

that the second partial di¤erentials of C commute.
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So, if the cost structure is such that an increase in the wage rate would have
raised marginal cost, then we may deduce that an increase in product price
would increase the employment of labour.
Now, what would happen to the demand for input i if the market price of

input j were to alter? If the cost of paper (wj) goes up do you employ fewer
secretaries (z�i )? To address this issue, di¤erentiate equation (2.32) again, this
time with respect to wj :

Di
j(w; p) = Hi

j(w; q
�) +Hi

q(w; q
�)Sj(w; p): (2.38)

We can simplify the second term on the right-hand side of this expression us-
ing the same sort of tricks as we have employed for earlier comparative-statics
exercises. Using Shephard�s Lemma the term Hi

q can be put in terms of the
second derivative of the cost function; and di¤erentiating (2.33) with respect to
wj we can get an expression for the required derivative of the supply function.23

Substituting into (2.38) we �nd:

Di
j(w; p) = Hi

j(w; q
�)� Ciq(w; q

�)Cjq(w; q
�)

Cqq(w; q�)
(2.39)

This fundamental decomposition formula for the e¤ect of a price change can be
expressed as follows:

total substitution output
= +

e¤ect e¤ect e¤ect

The �rst component, the substitution e¤ect, is the response that a �rm would
make to the input-price change if it were constrained to meet a �xed output
target. The second component, the output e¤ect, gives the change in input
demand that is induced by a change in optimal output. Two nice results follow
from the decomposition formula (2.39).
First, consider the substitution term Hi

j . Because of (2.36) we can write
this term as Cij ; the cross-partial derivative of the cost function; and because
Cij = Cji (if the function is well-behaved, the order of di¤erentiation does not
matter) we see immediately that Hi

j = Hj
i wherever the derivatives are well-

de�ned. In other words all the substitution terms must be symmetric.
Second, have a look at the output e¤ect term in (2.39). Clearly this too is

symmetric in i and j: So since both this and the substitution term are symmetric
we must also have Di

j = Dj
i for the uncompensated demands too: the overall

cross-price e¤ects are symmetric. So a rise in the price of paper would have the
same e¤ect on the (ordinary) demand for secretarial hours as would a rise in
the wages of secretaries on the demand for paper.
Now let us think about the important special case where goods i and j

happen to be the same, in other words the demand-response of input i to its own

23 Do all this and derive (2.39).
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Figure 2.14: The substitution e¤ect of a fall in price

price, wi. Because C is concave in w, we must have Cii � 0 and hence Hi
i � 0.24

In fact we can show that if � were everywhere smooth and concave-contoured
then, for all strictly positive input price vectors, we would have Hi

i < 0: the
conditional demand for input i must be a decreasing function of its own price.
Furthermore a quick check on the decomposition formula (2.39) reveals that in
the own-price case we have:

Di
i(w; p) = Hi

i (w; q
�)� Ciq(w; q

�)2

Cqq(w; q�)
(2.40)

We have just seen that the substitution e¤ect in (2.40) is negative; so too,
evidently, is the output e¤ect (the squared term and Cqq are both positive);
hence we have Di

i(w; p) � 0.25
We can pull all this together in the following statement:

Theorem 2.5 (Input prices and demands) (a) The e¤ect of an increase in
the price of input j on the conditional demand for input i equals the e¤ect of
an increase in the price of input i on the conditional demand for input j; (b)
the same result holds for the unconditional input demands; (c) the e¤ect of an
increase in the price of input i on the conditional demand for input i must
24 (For the mathematically inclined). Show this by using the result that a di¤erentiable

concave function must have a negative-semide�nite matrix of second partial derivatives �see
page 507.
25 Will the downward-sloping demand-curve also apply to consumer demand?
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Figure 2.15: Input-price fall: total e¤ect

be non-positive; (d) the e¤ect of an increase in the price of input i on the
unconditional demand for input i must be non-positive and greater in absolute
size than the e¤ect in (c).

We can use this information to sketch the shape of the demand curves for an
input: �Figure 2.14 depicts the demand for input 1, conditional on a particular
output level q. It must be downward sloping, because H1

1 < 0 (Theorem 2.5).
We also know that H1(w; q) gives the marginal change in cost C(w; q) as w1
changes (Shephard�s Lemma): so the change in cost (for a �xed output q)
resulting from a change in w1 is given by the integral of H1, which is depicted
by the shaded area in Figure 2.14.
Let us consider the full e¤ect of such a fall in w1 such as that shown in Figure

2.14. It is obvious from Figure 2.14 that z1 must increase, but that is purely a
substitution e¤ect. As we saw in equation (2.40) there is also an output e¤ect;
let us suppose that as w1 falls the marginal cost curve in Figure 2.12 shifts
downward so that output rises (the case of a normal input):26 then the output
e¤ect is obviously positive, so that the total impact of the fall in input price is
as shown in Figure 2.15.
Finally there is in this diagram a separate conditional demand curve for each

level of output: that is why two conditional demand curves are drawn in �one
for q� (the original output level) and one for q�� (the output level after the price

26 Notice that this reasoning implies that, for normal inputs, the ordinary demand curve is
�atter than the conditional demand curve. Does the same apply to inferior inputs?
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LONG RUN
C Cost function
Di Unconditional demand for input i
Hi Conditional demand for input i
S Supply function
SHORT RUN
~C Cost function
~Hi Conditional demand for input i

Table 2.2: The Firm: Solution Functions

fall).

2.4 The short run

The short run is a notional period in which one or more inputs are assumed to
be �xed. We introduce it to our model by taking input m to be �xed in the
short run although, of course, it is variable in the long run.

� Example 1: Capital Equipment.27 Take input m to be a mainframe com-
puter. At some stage the �rm has to decide how large a computer to
install. The short-run curves are then derived on the assumption of a
given size of computer, varying other inputs such as programmers�hours,
secretarial hours, consumables..

� Example 2: Employment protection. Some types of workers may be able
to negotiate long-term contracts with an employer. This section of sta¤
in e¤ect becomes a quasi-�xed factor.

To see the impact of this short-run �xity of an input, think of the behav-
iour of the pro�t-maximising �rm as an mechanism, converting market data
(prices) into supplies of output and demands for inputs. We have seen how this
mechanism works in the comparative statics manipulations that we performed
earlier on. Now suppose you tie down part of the system by imposing short-run
constraints: what would we expect to happen? Presumably this will make the
mechanism more sluggish �it will be less �exible in its response to changes in
the market environment. This is in fact exactly what occurs.
To see this, let us introduce a proper de�nition of what we mean by the short

run. Suppose that the conventional cost-minimisation problem has been solved
for some speci�ed output level q by setting input demands to z1; z2; :::; zm. By

27 In what way might this be useful in representing �rms� activities in a macroeconomic
model?
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de�nition we have:
z1 = H1(w; q);
z2 = H2(w; q);

: : : : : :
zm = Hm(w; q):

9>>=>>; (2.41)

Now suppose that the speci�ed output level is changed to some other value of
q, but that the �rm is constrained to keep its usage of the mth input �xed.
Clearly it may want to alter its usage of the remaining m-1 variables; we will
�nd the following concept useful:

De�nition 2.9 The �rm�s short-run cost function is a real-valued function ~C
of input prices, the output level, and an amount of input m such that:

~C(w; q; zm) := min
fzi�0;�(z)�q;zm=zmg

mX
i=1

wizi (2.42)

The idea of these short run costs is that they are the best that you can do
given that you are committed to an input level of zm for themth input.28 Check
this de�nition, term by term, against the de�nition of the �rm�s cost function
in (2.19); in fact this function inherits �with very simple modi�cations �most
of the conventional cost function�s properties. In particular we have:

~Ci(w; q; zm) = ~Hi(w; q; zm); (2.43)

where ~Hi(i = 1; :::m � 1) is the short-run demand for input i, conditional on
output q, which emerges from the solution of the problem in (2.42).
By de�nition of the cost function, we must have

~C(w; q; zm) � C(w; q): (2.44)

Dividing both sides of (2.44) by q, we see immediately that long-run average
cost must be less than or equal to short-run average cost. Of course, exactly at
the point q = q it is true that:

~C(w; q; zm) = C(w; q): (2.45)

and therefore, at this point, @ ~C(w; q; zm)=@zm = 0.
Let us look at the behaviour of long-run and short-run costs. What would

have happened were we to have started from a di¤erent output level q? Use
(2.41) to write (2.45) as

~C(w; q;Hm(w; q)) = C(w; q) (2.46)

28 It is sometimes convenient to work with the concepts of short-run variable costs (the �rst
m � 1 terms of the sum in the above de�nition) and of �xed costs, which are simply wmzm.
Show that the results which follow also work for short-run variable costs, rather than ~C, as
de�ned.
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and then di¤erentiate this with respect to q so as to obtain, on simpli�cation:29

~Cq(w; q; zm) = Cq(w; q); (2.47)

Thus, when output is at the level for the �xed input level zm is optimal, long-
run marginal costs (Cq) equal short-run marginal costs ( ~Cq). Hence at q the
slope of the long-run average cost curve must equal the slope of the short-run
average cost curve. Using the same general method we can di¤erentiate (2.45)
with respect to wi so as to obtain

~Ci(w; q; zm) = Ci(w; q); (2.48)

which implies
~Hi(w; q; zm) = Hi(w; q): (2.49)

So, in the neighbourhood of q, short-run and long-run conditional input demands
are identical.
Now let us look at the second-order conditions. Using the conditional input

demand function for input m (see equation (2.41) above) di¤erentiate (2.47)
with respect to q :

~Cqq(w; q; zm) + ~Cqzm(w; q; zm)H
m
q (w; q) = Cqq(w; q); (2.50)

Rearranging (2.50) we get:30

Cqq(w; q) = ~Cqq(w; q; z) +
Hm
q (w; q)

2

Hm
m (w; q)

(2.51)

But we know that the own-price substitution e¤ect Hm
m must be non-positive

(and if the production function is smooth it must be strictly negative). Hence
for a locally smooth production function we �nd:

Cqq(w; q) < ~Cqq(w; q; z) (2.52)

In other words short-run marginal cost is steeper than long-run marginal cost.
In like manner by di¤erentiating (2.49) with respect to wi(i = 1; 2; :::;m�1)

we can derive31

Hi
i (w; q) >

eHi
i (w; q; z); (2.53)

so that short-run input demand is less elastic (to its own price) than long-run
input demand.
We can summarise the above results thus:

29 Explain why @ ~C=@zm = 0 at q = q, and prove (2.47).
30Show this. Hint: substitute the conditional demand function for zm in (2.47) and dif-

ferentiate (2.47) with respect to wm, noting that @ ~Cq=@wm = 0 [Why?]; you then �nd an
expression for ~Cqzm to substitute in (2.50).
31 Show this by following through the same steps as for short-run marginal costs, using

Shephard�s Lemma and the fact that the second derivatives of C commute.
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Figure 2.16: Marginal and average costs in the short and long run

Theorem 2.6 (Short-run demand and supply) (a) Where output is at the
optimal level for the �xed input, short-run and long-run total costs are equal.
(b) At this output level, short- and long-run marginal costs are equal. (c) At this
output level, short- and long-run input demands are equal. (d) The short-run
marginal cost curve is at least as steep as the long-run marginal cost curve. (e)
Long-run input demands are at least as elastic as short-run demands.

Figure 2.16 illustrates these results in the case where long-run marginal costs
are rising. Take the example where inputm represents the computer the �rm has
just installed: technological change may have shifted the production function so
that the �rm now wishes it had a larger computer, but for now it is committed
to the installation (q = q). The broken cost curve represents the situation with
the existing computer (allowing programmers�hours and materials to be varied
in the short run);32 the solid curve represents average costs given that computer
installation can itself be taken as a variable input.
The results may be easily generalised. Instead of just one constraint, zm =

zm, let a further input be constrained, and then another and then another.
Then we have the following for this sequential exercise:

@z�i
@wi

����
no constraints

� @z�i
@wi

����
one constraint

� @z�i
@wi

����
two constraints

� ::: (2.54)

32 Draw in on this diagram the short-run cost curves given that a computer system of ideal
size had been installed.
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a result which makes the �short run�as short as you like.

Example 2.1 A classic study of US airlines (Eads et al. 1969) modelled long
run costs as

C(w; q) = Cf + k
0q

1
w1

�1
w2

�2
 (2.55)

where q is an index of airline output,Cf is the cost of fuel (separately estimated),
w1 is the price of labour other than pilots and copilots and w2 is the price of pilots
and copilots: the �s are parameters to be estimated econometrically,  = �1+�2,
and k0 is also a function of the �s. Di¤erentiate (2.55) with respect to w1 we
get

z�i = H1(w; q) =
�1k


q

1
w1

�i�1


�2
 (2.56)

In other words the (long-run) conditional demand for labour of type 1 is given
by the log-linear equation:

log(z�i ) = �0 + �1 log(w1) + �2 log(w2)�  log(q) (2.57)

Eads et al. (1969) assumed that in the short run pilots and copilots are a �xed
factor (try sacking them!). The short-run cost function is then

~C (w; q; z2) = Cf + kq
1
�1 w1z

��2=�1
2 (2.58)

Di¤erentiating this with respect to w1 we get the short-run demand for non-pilot
labour which will also be log-linear. Try it.

2.5 The multiproduct �rm

Clearly the assumption that the �rm produces but a single output is rather
limiting. To try to put this matter right we need another way of represent-
ing production possibilities. A method that is particularly convenient in the
multiproduct case involves introducing one new concept � that of net output.
Net outputs subsume both inputs and outputs using a natural sign convention
under which outputs are measured in the positive direction (qi > 0), and inputs
negatively (qi < 0).
Suppose there are n goods in the economy: the net output vector q :=

(q1; :::; qn) for the �rm summarises all the �rms�activities in the outside world.
The �rm�s non-zero amounts of output or input for each good can be described
according to the above sign convention; irrelevant goods, or pure intermediate
goods can be ignored (qi = 0). The production constraint33 corresponding to
(2.1) can be written

�(q) � 0 (2.59)

where the function � is nondecreasing34 in each of the qi. A sectional snapshot
of the multiproduct �rm�s production function is given in Figure 2.17: this
33 Express the single-output production function (2.1) in this notation.
34 Explain why it makes economic sense for � to be a non-decreasing function in each

component, whether it be an input or an output.
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Figure 2.17: Firm�s transformation curve

shows the production possibilities of two outputs that are potentially produced
by the �rm (of course the exact form of this snapshot depends on the values
of the other components of the net-output vector �dimensions 3; 4; :::; n). The
shaded set depicts the net-output vectors that satisfy (2.59); the boundary of
this set is known as the transformation curve.
There are obvious counterparts of assumptions about the single-output pro-

duction function (see section 2.1.2 above) that can be easily established for �.
Many of the standard concepts such as MRTS, marginal products and returns
to scale35 carry over straightforwardly to the multiproduct case: for the �rst
two of these concepts the trick is usually to identify the appropriate contour
of �. Obviously we have skated over these issues rather rapidly: we will have
much more to say about them in chapter 6.
One important new concept can be de�ned wherever the production function

is di¤erentiable:

De�nition 2.10 The marginal rate of transformation of (net) output i into
(net) output j is given by

MRTij :=
�j(q)

�i(q)

35 How would constant returns to scale be expressed in terms of the multi-output production
function �(�)?
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The MRT is the �rm�s trade-o¤ or marginal valuation of a pair of goods �
for example, the rate at which the �rm would have to give up of one output in
order to produce more of another. It has a central rôle to play in characterising
market equilibrium (this is dealt with in chapters 6 and 7) and the e¢ ciency of
the allocation of goods and resources in an economy (chapter 9). Notice that
the MRTS in de�nition 2.1 can be seen as a special case of de�nition 2.10 where
goods i and j are both inputs.
One of the advantages of the net-output approach is that one has a particu-

larly convenient expression for pro�ts. To see this, imagine that for a particular
�rm the goods are labelled so that 1; :::;m are unambiguously inputs, goods
m+1; :::; r are are either intermediate goods or irrelevant, and goods r+1; :::; n
are unambiguously outputs (the labelling of goods is arbitrary, so we can always
do this). The total value of inputs is given by:

cost =
mX
i=1

pi [�qi] (2.60)

where the term �qi is a positive number (because qi is negative for inputs, under
the convention); this is the absolute amount used of input i. The value of the
outputs from the �rm is obviously

revenue =
nX

i=r+1

piqi: (2.61)

So, subtracting (2.60) from (2.61) and noting that the valuation of goods m +
1; :::; r is zero (because here all the qi values are zero) we �nd that

profits =
nX
i=1

piqi: (2.62)

The diagrammatic representation of pro�ts works in just the same way as
the diagrammatic representation of costs in Figure 2.10, but in the opposite
direction �see the set of parallel isopro�t lines with slope �p1=p2 in Figure 2.18
that are the counterparts to the isocost lines in Figure 2.10. The �rm�s optimi-
sation problem36 then requires a solution to the constrained-maximum problem
�maximise (2.62) subject to the feasibility condition (2.59).�Intuitively this in-
volves reaching the highest isopro�t line in Figure 2.18 subject to remaining in
the technologically feasible set (shaded in the �gure). The method for solving
this is in e¤ect a modi�cation of the cost-minimisation problem that we carried
out for a �xed single output and a vector of m variable inputs in section 2.2.1.
Formally we can represent this problem as that of maximising the Lagrangean:

L(q; �;p) :=
nX
i=1

piqi � ��(q) (2.63)

36 Re-express condition (2.27) for the multiproduct case.
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Figure 2.18: Pro�t maximisation: multiproduct �rm

for given prices p, where � is the Lagrange multiplier associated with the con-
straint (2.59). Di¤erentiating (2.63) with respect to qi we can derive a set of
�rst-order conditions that are the counterparts of the FOC in section 2.2.1. The
result is a set of n pro�t-maximising net outputs (q�1 ; :::; q

�
n) that satisfy the set

of FOCs. In a manner similar to section 2.2.1 we then �nd:

� If net output i is produced in non-zero amounts at the optimum then

���i(q
�) = pi: (2.64)

� For any pair of outputs i and j where output i is produced in positive
amounts at the optimum the FOCs imply:

�j(q
�)

�i(q�)
� pj
pi

(2.65)

with equality in (2.65) if input i is also used in positive amounts.37

� At the vector of optimal net outputs:

�(q�) = 0: (2.66)

37 Draw a diagram to illustrate the case where �<� holds in (2.65). Give a brief verbal
interpretation of the optimum.
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So, once again we �nd that production is technically e¢ cient and, in the
case where pro�t-maximising amounts of both outputs are positive, we have the
rule of thumb:

output
MRT = price

ratio
:

Furthermore the result of this optimisation process is another solution func-
tion as follows:

De�nition 2.11 The �rm�s pro�t function is a real-valued function � of net
output prices such that:

�(p) := max
f�(z)�0g

nX
i=1

piqi (2.67)

Clearly the pro�t function � is the �twin� of the cost function C for the
cost-minimisation problem in sections 2.2.1 and 2.2.2. So it is not surprising to
�nd that there is a theorem characterising the properties of the pro�t function
that is very similar to Theorem 2.2 for the cost function:

Theorem 2.7 (Properties of pro�t function) The competitive �rm�s pro�t
function � is nondecreasing, continuous, homogeneous of degree one and concave
in p. At every point where the di¤erential is de�ned

@�(p)

@pi
= q�i (2.68)

the optimal value of net output i.

For proof see Appendix C. Equation (2.68) is usually known as Hotelling�s
Lemma and is established in the same way as Shephard�s Lemma. In particular
we can see that the part of the theorem about the slope of the pro�t function
in equation (2.68) is obviously just Shephard�s Lemma �turned around�in the
case where i is an input. Other parts of the Theorem are proved in the same
way as for Theorem 2.2.
We can push the analogy between the analysis of the multiproduct �rm

and the single product �rm in sections 2.2 and 2.3 one stage further. Clearly
the optimal net output value in (2.68) can be expressed as a function (or as a
correspondence) of the price vector:

q�i = qi(p): (2.69)

The properties of the net-output function qi(�) in (2.69) follow from those of the
single-output �rm�s demand and supply functions (see for example Theorems
2.4 and 2.5 and the associated discussion). So we �nd that qi(�) is homogeneous
of degree zero, is nondecreasing in its own price pi and that, for any i and j:

@qi(p)

@pj
=
@qj(p)

@pi
: (2.70)
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Clearly the analysis in terms of the pro�t function and net outputs has an
attractive elegance. However it is not for the sake of elegance that we have
introduced it on top of the more pedestrian output-as-a-function-of-input ap-
proach. We will �nd that this approach has special advantages when we come
to model the economic system as a whole.

2.6 Summary

The elementary microeconomic model of the �rm can be constructed rigorously
and informatively with rather few ingredients. Perhaps the hardest part is to
decide what the appropriate assumptions are that should be imposed on the
production function that determines the �rm�s technological constraints.
The fundamental economic problem of the competitive �rm can be usefully

broken down into two subproblems: that of minimising the cost of inputs for a
given output and that of �nding the pro�t-maximising output, given that input
combinations have already been optimally selected for each output level. Each
of these subproblems gives rise to some intuitively appealing rules of thumb such
as �MRTS = input price ratio�for the �rst subproblem and �price = marginal
cost�for the second subproblem.
Changing the model by introducing side constraints enables us to derive

a modi�ed solution function (the short-run cost function) and a collection of
modi�ed response functions. We get the common-sense result that the more of
these side constraints there are, the less �exible is the �rm�s response to changes
in signals from the market.
The elementary model of the �rm can usefully be generalised by what amounts

to little more than a relabelling trick. Outputs and inputs are replaced by the
concept of net output. This trick is an important step for the future development
of the production model in chapters 6 and onwards.

2.7 Reading notes

On the mathematical modelling of production see Fuss and McFadden (1980).
The classic references that introduced the cost function and the pro�t function
are Hotelling (1932) and Shephard (1953). See also Samuelson (1983) chapters
III and IV.

2.8 Exercises

2.1 Suppose that a unit of output q can be produced by any of the following
combinations of inputs

z1 =

�
0:2
0:5

�
; z2 =

�
0:3
0:2

�
; z3 =

�
0:5
0:1

�
1. Construct the isoquant for q = 1.
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2. Assuming constant returns to scale, construct the isoquant for q = 2.

3. If the technique z4 = [0:25; 0:5] were also available would it be included in
the isoquant for q = 1?

2.2 A �rm uses two inputs in the production of a single good. The input
requirements per unit of output for a number of alternative techniques are given
by the following table:

Process 1 2 3 4 5 6
Input 1 9 15 7 1 3 4
Input 2 4 2 6 10 9 7

The �rm has exactly 140 units of input 1 and 410 units of input 2 at its disposal.

1. Discuss the concepts of technological and economic e¢ ciency with refer-
ence to this example.

2. Describe the optimal production strategy for the �rm.

3. Would the �rm prefer 10 extra units of input 1 or 20 extra units of input
2?

2.3 Consider the following structure of the cost function: C(w; 0) = 0; Cq(w; q) =
int(q) where int(x) is the smallest integer greater than or equal to x. Sketch to-
tal, average and marginal cost curves.

2.4 Draw the isoquants and �nd the cost function corresponding to each of the
following production functions:

Case A : q = z�11 z�22
Case B : q = �1z1 + �2z2

Case C : q = �1z
2
1 + �2z

2
2

Case D : q = min

�
z1
�1
;
z2
�2

�
:

where q is output, z1 and z2 are inputs, �1 and �2 are positive constants. [Hint:
think about cases D and B �rst; make good use of the diagrams to help you �nd
minimum cost.]

1. Explain what the returns to scale are in each of the above cases using the
production function and then the cost function. [Hint: check the result on
page 25 to verify your answers]

2. Discuss the elasticity of substitution and the conditional demand for inputs
in each of the above cases.
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2.5 Assume the production function

�(z) =
h
�1z

�
1 + �2z

�
2

i 1
�

where zi is the quantity of input i and �i � 0 , �1 < � � 1 are parameters.
This is an example of the CES (Constant Elasticity of Substitution) production
function.

1. Show that the elasticity of substitution is 1
1�� .

2. Explain what happens to the form of the production function and the elas-
ticity of substitution in each of the following three cases: � ! �1, � ! 0,
� ! 1.

2.6 For a homothetic production function show that the cost function must be
expressible in the form

C (w; q) = a (w) b (q) :

2.7 For the CES function in Exercise 2.5 �nd H1(w; q), the conditional de-
mand for good 1, for the case where � 6= 0; 1. Verify that it is decreasing in w1
and homogeneous of degree 0 in (w1,w2).

2.8 Consider the production function

q =
�
�1z

�1
1 + �2z

�1
2 + �3z

�1
3

��1
1. Find the long-run cost function and sketch the long-run and short-run
marginal and average cost curves and comment on their form.

2. Suppose input 3 is �xed in the short run. Repeat the analysis for the
short-run case.

3. What is the elasticity of supply in the short and the long run?

2.9 A competitive �rm�s output q is determined by

q = z�11 z�22 :::z�mm

where zi is its usage of input i and �i > 0 is a parameter i = 1; 2; :::;m. Assume
that in the short run only k of the m inputs are variable.

1. Find the long-run average and marginal cost functions for this �rm. Under
what conditions will marginal cost rise with output?

2. Find the short-run marginal cost function.

3. Find the �rm�s short-run elasticity of supply. What would happen to this
elasticity if k were reduced?
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2.10 A �rm produces goods 1 and 2 using goods 3,...,5 as inputs. The pro-
duction of one unit of good i (i = 1; 2) requires at least aij units of good j, (
j = 3; 4; 5).

1. Assuming constant returns to scale, how much of resource j will be needed
to produce qi units of commodity 1?

2. For given values of q3; q4; q5 sketch the set of technologically feasible out-
puts of goods 1 and 2.

2.11 A �rm produces goods 1 and 2 uses labour (good 3) as input subject to
the production constraint

[q1]
2
+ [q2]

2
+Aq3 � 0

where qi is net output of good i and A is a positive constant. Draw the trans-
formation curve for goods 1 and 2. What would happen to this transformation
curve if the constant A had a larger value?
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Chapter 3

The Firm and the Market

. . . the struggle for survival tends to make those organisations pre-
vail, which are best �tted to thrive in their environment, but not
necessarily those best �tted to bene�t their environment, unless it
happens that they are duly rewarded for all the bene�ts which they
confer, whether direct or indirect. �Alfred Marshall, Principles of
Economics, 8th edition, pages 596,597

3.1 Introduction

Chapter 2 considered the economic problem of the �rm in splendid isolation.
The �rm received signals (prices of inputs, prices of outputs) from the outside
world and responded blindly with perfectly calculated optimal quantities. The
demand for inputs and the supply of output pertained only to the behaviour of
this single economic actor.
It is now time to extend this to consider more fully the rôle of the �rm in

the market. We could perhaps go a stage further and characterise the market as
�the industry�, although this arguably sidesteps the issue because the de�nition
of the industry presupposes the de�nition of speci�c commodities. To pursue
this route we need to examine the joint e¤ect of several �rms responding to price
signals together. What we shall not be doing at this stage of the argument is
to consider the possibility of strategic game-theoretic interplay amongst �rms;
this needs new analytical tools and so comes after the discussion in chapter 10.
We extend our discussion of the �rm by introducing three further develop-

ments:

� We consider the market equilibrium of many independent price-taking
�rms producing either an identical product or closely related products.

� We look at problems raised by interactions amongst �rms in their produc-
tion process.

49
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Figure 3.1: A market with two �rms

� We extend the price-taking paradigm to analyse situations where the �rm
can control market prices to some extent. What are these? One of the
simplest cases �but in some ways a rather unusual one �is that discussed
in section 3.6 where there is but a single �rm in the market. However this
special case of monopoly provides a useful general framework of analysis
into which other forms of �monopolistic competition� can be �tted (see
section 3.7).

We shall build upon the analysis of the individual competitive �rm�s supply
function, as discussed on page 30 above, and we will brie�y examine di¢ culties
in the concept of market equilibrium. The crucial assumption that we shall
make is that each �rm faces determinate demand conditions: either they take
known market prices as given or they face a known demand function such as
(3.7).

3.2 The market supply curve

How is the overall supply of product to the market related to the story about
the supply of the individual �rm sketched in section 2.3.1 of chapter 2?
We begin with an overly simpli�ed version of the supply curve. Suppose we

have a market with just two potential producers �low-cost �rm 1 and high-cost
�rm 2 each of which has zero �xed costs and rising marginal costs. Let us write
qf for the amount of the single, homogeneous output produced by �rm f (for
the moment f can take just the values 1 or 2). The supply curve for each �rm
is equal to the marginal cost curve �see the �rst two panels in Figure 3.1. To
construct the supply curve to the market (on the assumption that both �rms
continue to act as price takers) pick a price on the vertical axis; read o¤ the value
of q1 from the �rst panel, the value of q2 from the second panel; in the third
panel plot q1 + q2 at that price; continuing in this way for all other prices you
get the market supply curve depicted in the third panel. clearly the aggregation
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Figure 3.2: Another market with two �rms

of individual supply curves involves a kind of �horizontal sum�process.
However, there are at least three features of this story that strike one imme-

diately as unsatisfactory: (1) the fact that each �rm just carries on as a price
taker even though it (presumably) knows that there is just one other �rm in the
market; (2) the �xed number of �rms and (3) the fact that each �rm�s supply
curve is rather di¤erent from that which we sketched in chapter 2. Point 1 is a
big one and going to be dealt with in chapter 10; point 2 comes up later in this
chapter (section 3.5). But point 3 is dealt with right away.
The problem is that we have assumed away a feature of the supply function

that is evident in Figure 2.12. So, instead of the case in Figure 3.1, imagine a
case where the two �rms have di¤erent �xed costs and marginal costs that rise
everywhere at the same rate. The situation is now as in Figure 3.2. Consider
what happens as the price of good 1 output rises from 0. Initially only �rm 1
is in the market for prices in the range p0 � p < p00 (left-hand panel). Once the
price hits p00 �rm 2 enters the market (second panel): the combined behaviour
of the two �rms is depicted in the third panel. Notice the following features of
Figure 3.2.

� Even though each �rm�s supply curve has the same slope, the aggregate
supply curve is �atter �in our example it is exactly half the slope. (This
feature was already present in the earlier case)

� There is a discontinuity in aggregate supply as each �rm enters the market.

A discontinuous supply curve in the aggregate might seem to be rather prob-
lematic �how do you �nd the equilibrium in one market if the demand curve
goes through one of the �holes�in the supply curve? This situation is illustrated
in Figure 3.3. Here it appears that there is no market equilibrium at all: above
price p00 the market will supply more than consumers demand of the product,
below p00 there will be the reverse problem (at a given price p people want to
consume more than is being produced); and exactly at p00 it is not self-evident
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Figure 3.3: Absence of market equilibrium

what will happen; given the way that the demand curve has been drawn you
will never get an exact match between demand and supply.
These simple exercise suggests a number of directions in which the analysis

of the �rm in the market might be pursued.

� Market size and equilibrium. We shall investigate how the problem of the
existence of equilibrium depends on the number of �rms in the market.

� Interactions amongst �rms. We have assumed that each �rm�s supply
curve is in e¤ect independent of any other �rm�s actions. How would such
interactions a¤ect aggregate market behaviour?

� The number of �rms. We have supposed that there was some arbitrarily
given number of �rms nf in the market �as though there were just nf
licences for potential producers. In principle we ought to allow for the
possibility that new �rms can set up in business, in which case nf becomes
endogenous.

� Product Di¤erentiation:We have supposed that for every commodity i =
1; 2; :::; n there is a large number of �rms supplying the market with in-
distinguishable units of that commodity. In reality there may be only
a few suppliers of any one narrowly-de�ned commodity type although
there is still e¤ective competition amongst �rms because of substitution
in consumption amongst the product types. Instead of supplying identical
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Figure 3.4: Average supply of two identical �rms

packets of tea to the market, �rms may sell packets that are distinguished
by brand-name, or they may sell them in locations that distinguish them
as being particularly convenient for particular groups of consumers.

Let us deal with each of these issues in turn.

3.3 Large numbers and the supply curve

Actually, this problem of nonexistence may not be such a problem in practice.
To see why consider again the second example of section 3.2 where each �rm
had a straight-line marginal cost curve. Take �rm 1 as a standard case and
imagine the e¤ect of there being potentially many small �rms just like �rm 1: if
there were a huge number of �rms waiting in the wings which would enter the
market as p hit p0 what would the aggregate supply curve look like?To answer
this question consider �rst of all a market in which there are just two identical
�rms. Suppose that each �rm has the supply curve illustrated in either of the
�rst two panels of Figure 3.4. Using the notation of section 3.2 the equation of
either �rm�s supply curve is given by:1

qf =

�
0; if p < p0

16 + �[p� p0]; if p � p0
(3.1)

Clearly for p > p0 total output is given by

q1 + q2 = 32 + 2�[p� p0] (3.2)

and so for p > p0 average output is given by

1

2
[q1 + q2] = 16 + �[p� p0] (3.3)

1 Write down a cost function consistent with this supply curve.
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Figure 3.5: Average supply of lots of �rms

Obviously for p < p0 total �and hence average �output is zero. But what
happens exactly at p = p0? Clearly either we must have either (q1 = 0; q2 = 0)
or (q1 = 0; q2 = 16), or (q1 = 16; q2 = 0) or (q1 = 16; q2 = 16). In other words
total output could have the value 0, 16 or 32, so of course average output has
the value 0, 8 or 16. Notice that the average supply in the market is almost like
that for each �rm, but there is an additional �blob�at q = 8:
We can extend this idea to a market with more �rms. We do this by consid-

ering more replications. This is illustrated in Figure 3.5. Notice that in the top
left hand panel where there are four �rms, there are three intermediate blobs.
The top right-hand panel and the bottom left-hand panel display the result of
two more replications of the �rms in the market �to 8 �rms and 16 �rms re-
spectively.2 So we can see that in the limit this large number of small �rms
looks indistinguishable from a market incorporating �rms each of which has a
continuous supply curve, as illustrated in the bottom right-hand panel of Figure
3.5.
So, if we can appeal to a regularity condition �in our example a large num-

ber of small, similar �rms in the market �the elementary diagram incorporating
a continuous supply curve is a valid approach for the analysis of market equilib-
rium. Fortunately this regularity condition can be generalised, but the principle

2 If there are nf identical �rms, how many blobs will there be? Use this argument to show
why in the limit the average supply curve of the industry looks as though it is continuous.
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Figure 3.6: Industry supply with negative externality

of �large numbers, small �rms�remains.

3.4 Interaction amongst �rms

All of the preceding analysis has been predicated on the basis that each �rm�s
production possibilities are independent of every other �rm�s production deci-
sions.However, we also need to take into account the possibility of technological
interactions between �rms �interactions that do not occur through conventional
market mechanisms. One �rm�s choice of outputs and inputs a¤ects the others�
technological possibilities. This interaction could be in either of two directions:
negative externalities whereby the increase in the output by one �rm �a pol-
luter perhaps �raises the marginal costs of other �rms, and positive externalities
whereby the increase in output by one �rm �perhaps a �rm that undertakes
the general training of workers in an area �lowers the marginal costs of other
�rms.
Consider a negative externality in the case of two identical �rms. If one

�rm increases its output, the other �rm�s marginal costs are pushed up. So the
position of either �rm�s supply curve depends on the other�s output decision.
This is illustrated in Figure 3.6. Suppose that market price is such that each
�rm wants to supply one unit of output: the �rm�s supply curve is as shown by
the solid line in each of the �rst two panels. Then market demand rises: the
price goes up and each �rm expands output, let us say to �ve units. Because of
the negative externality each �rm�s expansion pushes up marginal costs of the
other �rm �see the �rm supply curves drawn as broken lines. When we draw
in the supply curve for the market notice that the slope is steeper than would
have been the case had there been no externality (in the third panel compare
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Figure 3.7: Industry supply with positive externality

the supply curve S with the two broken lines).
We can also consider the e¤ect of a positive externality simply by inter-

changing the labels in each part of the above �gure. In this case, as each �rm
expands output, the other �rm�s marginal costs fall. Again we can run through
the same story of what happens as market demand rises, but now the �rm�s
supply curves shift the other way. If you do this notice that, for this particular
case, the aggregate supply curve is less steeply upward-sloping than that for
either �rm �see Figure 3.7. However the resulting market supply curve could
be horizontal or even be forward-falling.3

3.5 The size of the industry

In the elementary examples of constructing market supply curves from the be-
havioural response of individual �rms (sections 3.2 and 3.3) we made the unwar-
ranted assumption that there was a known, �xed, number of �rms nf : Rather
than just assuming that there are 2, 4, 8, 16,... �rms we need to examine the
economic principle that will determine the size of the industry.
Again we work within the context of price-taking �rms. If all �rms are

earning positive pro�ts, as depicted by the shaded area in Figure 3.8, then it is
clear why this �xed-nf approach to constructing the analysis of the supply-and-
demand equilibrium in the market will not do. The reason is that other new
�rms may be able to set up and make a pro�t. If so, then presumably they will
try to do this. How many �rms will do so? How will the number of �rms nf be

3 Suppose each �rm�s individual supply curve is upward sloping but that the market curve
is forward-falling. Explain what happens as market demand increases.
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Figure 3.8: Temporary equilibrium of one �rm

determined?
We can answer this by extending the elementary argument of the last para-

graph. Let the �rms be numbered in the order in which they would enter the
industry, 1; 2; :::; N; ::: and suppose the number of �rms currently in the indus-
try is nf . Let qN be the pro�t-maximising output for �rm N in a price-taking
equilibrium (in other words the optimal output and inputs given market prices
as we considered for the single competitive �rm on page 26). Allow nf gradu-
ally to increase: 1,2,3...: output price p will fall if the market demand curve is
downward sloping.4 If there is a value N such that

�N (qN ) � 0 (3.4)

and

�N+1(qN+1) < 0 (3.5)

then nf = N must represent an equilibrium number of �rms.5 In this full
equilibrium we will �nd that the �marginal �rm�is in the situation as depicted
in Figure 3.9: pro�t is zero since the �rm is producing where

p =MC = AC (3.6)

Thus in the full market equilibrium the behaviour of each �rm is determined by
the standard �price=marginal cost�rule, and the number of �rms is solved by
a zero-pro�t condition.

4 Explain what will happen to input prices if factors are not in perfectly elastic supply.
5 Provide a one-line argument to explain why this is so.
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Figure 3.9: Equilibrium of the marginal competitive �rm

3.6 Price-setting

So far we have assumed that the �rm just accepts all prices as parametrically
given. This seems reasonable if the �rm has no market power, but it would be
interesting to see how the optimisation problem would change were the �rm in
a position to make a price. We will look at three straightforward developments
of the basic model of the �rm to examine the e¤ect on the �rm�s behaviour of
having market power.

3.6.1 Simple monopoly

We begin with a case that is easy and unrealistic, but that forms is a very useful
starting point. We shall assume that the markets for all inputs are competitive
as before: so we can be sure that the derivation of the cost function will go
through in the just the same manner as we did it originally. The only e¤ective
change to our model is that we shall assume that the product price is a deter-
minate function of output.6 In other words there is an inverse demand curve
for output given by:

p = p(q): (3.7)

This gives the �price that the market will bear�. It is useful to introduce the
product demand elasticity � (a negative number):

� :=
d log q

d log p
=

p(q)

qpq(q)
: (3.8)

6 Under what circumstances in the industry would this speci�cation be insu¢ cient? What
other information about the market or about the�rules of the game� might be required in
order for the �rm to determine the price of p at which it can sell its output?
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Figure 3.10: Equilibrium of the monopolist

This encapsulates important information for the monopolist: what is the per-
centage change in the price that the market will bear given a 1-percent change
in the volume of output unloaded on to the market?
Pro�ts may now be written as the expression

p(q)q � C(w; q): (3.9)

The �rst-order condition for a maximum is:

p(q) + pq(q)q = Cq(w; q); (3.10)

or, in plain language

marginal marginal
=

revenue cost

Solving equation (3.10) for q determines the monopolist�s optimal output �see
the point q� in Figure 3.10 where the AR (average revenue curve) is the demand
curve and MR is marginal revenue.7 But what of the price?

7 (a) The average revenue and marginal curves have been drawn of the case where � is
a constant. Write down explicit formulae for these curves in this special case. (b) Now
suppose that market price given by the relationship p = a�bq: Draw the AR and MR curves.
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Condition (3.10) can be expressed in another way that illuminates the ra-
tional behaviour of the monopolist. A rearrangement of (3.10) gives:8

p =
Cq(w; q)

1 + 1=�
: (3.11)

The denominator in (3.11) is smaller than 1. So this means that the price-maker
uses his market power to force price above marginal cost.
A simple interpretation of (3.11) is that the monopolist uses information

about the shape of the market demand curve (captured in the parameter �)
and not just the price to determine how much of the product to supply to the
market. So, in the sense of De�nition 2.7 there is no determinate supply curve
for the monopolistic �rm . Nevertheless there is a determinate solution to the
monopolist�s problem.

3.6.2 Discriminating monopolist

However, this is just one narrow interpretation of market power. What if the
monopolist had yet more power? Suppose for example that the �rm could
e¤ectively divide the market and sells in two separated markets with prices
p1; p2 determined as follows

p1 = p1
�
q1
�

p2 = p2
�
q2
�
:

where q1 and q2 are the amounts delivered to each market and total output is
q = q1 + q2. Pro�ts are now:

p1
�
q1
�
q1 + p2

�
q2
�
q2 � C(w; q) (3.12)

To �nd a maximum we need the following pair of expressions

piq
�
qi
�
qi + pi

�
qi
�
� Cq(w; q); i = 1; 2 (3.13)

The outcome of the pro�t-maximisation problem is one of two types: a solution
where the monopolist sells in one market only9 and, more interestingly, the case
where the monopolist sells in both markets and (3.13) yields

p1q
�
q1
�
q1 + p1

�
q1
�
= p2q

�
q2
�
q2 + p2

�
q2
�
= Cq(w; q):

or, if �1 and �2 are the demand elasticities in the two markets:

p1
�
1 +

1

�1

�
= p2

�
1 +

1

�2

�
= Cq(w; q): (3.14)

It is clear that pro�ts are higher10 than in the case of the simple monopolist
and �from (3.14) �that if �1 < �2 < �1 then p2 > p1. We have the intuitively
reasonable result that if the monopolistic �rm can split the market then it will
charge the higher price in the submarket that has the less elastic demand.

8 For this condition to be meaningful we must have � < �1. Explain what happens if this
condition is violated. Hint: plot (3.9) on a graph and think about what happens as q ! 0.

9 Write down the condition that must be satis�ed in this case, derived from (3.13).
10 Provide an intuitive argument to show that this is true.
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3.6.3 Entry fee

Could the monopolist do more �perhaps exercise market power by setting an
entry fee for the market? Here is a quick and easy approach to the problem.
One way of interpreting the demand curve (AR) in Figure 3.10 is that the

height of the curve p (x) at any output level x gives the consumer�s willingness to
pay for an extra unit of output given that x units have already been supplied; if
this is above the current market price then the consumer is enjoying a �surplus�
�the willingness to pay minus the price. Given that an amount q is actually
being supplied to the market and that the price is p(q), the total amount of this
surplus is given by the expressionZ q

0

p (x) dx� p (q) q; (3.15)

the large shaded area in Figure 3.11.
The concept of consumer�s surplus is discussed further in chapter 4 (page

90); we use it here to give some extra leverage to the monopolist. Suppose the
�rm were able to charge an entry fee F0 to the market in order to capture the
consumer�s surplus. Then in addition to the conventional pro�ts term p (q) q �
Cq(w; q) (the shaded rectangle in Figure 3.11) has the fee revenue F0 equal to
(3.15) so that in this case total pro�ts are�Z q

0

p (x) dx� p (q) q
�
+ p (q) q � C (w; q)

=

Z q

0

p (x) dx� C (w; q)

Di¤erentiating with respect to q the FOC for this problem is just

p (q)� Cq(w; q) = 0 (3.16)

so that we have the nice result that in this case the monopolist sets price equal
to marginal cost �see Figure 3.11. Here the �rm uses a two-part tari¤ (p; F0)
to charge for its provision of the good.11

Example 3.1 The monopoly-with-entry-fee model has been applied to Disney-
land (Oi 1971). Here the marginal cost of some individual entertainments is
e¤ectively zero so that the entry fee is set in such a way as to capture the con-
sumer surplus and the rides are then free of charge.

This model raises further, deeper issues that will be discussed in chapter 11
(page 332).

11 What type of goods could be carged for in this way?
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Figure 3.11: Monopolistic market with an entry fee

3.7 Product variety

What if the �rms are not all making an identical product? If there is e¤ective
product di¤erentiation, then individual �rms act as quasi monopolists (with
downward sloping demand curves instead of facing a given market price). The
form of the equilibrium, however, is fairly similar to the homogeneous product
case. We need to set out the analogue to perfectly competitive equilibrium
in which we discussed the determination of the number of �rms: in e¤ect an
equilibrium under product di¤erentiation.
Because each �rm may have a local monopoly, its behaviour will be di¤erent

from that discussed in section 3.5. In order to analyse this let us �rst of all
take the situation where the market contains a �xed number of �rms. Each
�rm will make quasi-monopolistic pro�ts (as shown in Figure 3.12), the size of
which will depend on the degree of market power that it enjoys through the
e¤ective product di¤erentiation which �ties�a section of the market to it.But
as we saw in section 3.5 which dealt with homogeneous goods, the �xed-number
assumption will not do. If all �rms are making positive pro�ts then other �rms
making products that are di¤erentiated (perhaps only slightly di¤erentiated)
will enter the market in the hope of capturing some of these pro�ts. Now, if
any new �rm enters the market, this will a¤ect the AR and MR curves of other
�rms: the extent to which this happens will depend on the extent to which
the new �rm�s product is perceived to be a close substitute for the outputs of
other �rms. The equilibrium is a form of �monopolistic competition�; for the
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Figure 3.12: Equilibrium for the local monopolist

Figure 3.13: The marginal �rm in monopolistic competition
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marginal �rm, the situation is as in Figure 3.13. It makes zero pro�ts but faces
a downward-sloping demand curve.

Example 3.2 What makes one type of good �close�to another in monopolistic
competition? One might expect competition amongst �rms to be localised in that
people are loyal to brands and do not regard products from other �rms as perfect
substitutes. But how could you identify this localised competition empirically?
Schmalensee (1985) shows how to do this in the case of the breakfast cereal
industry.

3.8 Summary

Extending the analysis of a �rm in isolation to the mass of �rms in the market is
fairly straightforward as long as we make a key assumption about the economic
environment in which they operate. Each �rm faces a determinate demand curve
for its product or, in the case where there is product variety, a determinate
pattern of demand curves for the various products. On this assumption we
can then move on from the approach of chapter 2 and �nd straightforward,
interpretable conditions for �rms�equilibrium behaviour. A marginal condition
determines the equilibrium output for each �rm and a condition on market
demand and average costs determines how many �rms will be present in the
market.
The question of what happens when there is no determinate demand curve

is a deep one and will be addressed after we have thought anew about �rms�
interaction and equilibrium.

3.9 Reading notes

The classic reference on monopolistic competition is Chamberlin (1933); see also
Dixit and Stiglitz (1977) that is used as a basis for Exercise 3.2. Various types
of discriminating monopoly are treated by Pigou (1952) chapter 17.

3.10 Exercises

3.1 (The phenomenon of �natural monopoly�) Consider an industry in which
all the potential member �rms have the same cost function C. Suppose it is true
that for some level of output q and for any nonnegative outputs q; q0 of two such
�rms such that q+ q0 � q the cost function satis�es the �subadditivity�property

C (w; q + q0) < C (w; q) + C (w; q0) .

1. Show that this implies that for all integers N > 1

C (w; q) < NC
�
w;

q

N

�
, for 0 � q � q
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2. What must average and marginal curves look like in this case?

3. May one conclude that a monopoly must be more e¢ cient in producing
this good?

3.2 In a particular industry there are n pro�t-maximising �rms each producing
a single good. The costs for �rm i are

C0 + cqi

where C0 and c are parameters and qi is the output of �rm i. The goods are
not regarded as being exactly identical by the consumers and the inverse demand
function for �rm i is given by

pi =
Aq��1iPn
j=1 q

�
j

where � measures the degree of substitutability of the �rms�products, 0 < � � 1.

1. Assuming that each �rm takes the output of all the other �rms as given,
write down the �rst-order conditions yielding �rm 1�s output conditional
on the outputs q2; :::; qn. Hence, using the symmetry of the equilibrium,
show that in equilibrium the optimal output for any �rm is

q�i =
A� [n� 1]

n2c

and that the elasticity of demand for �rm i is

n

n� n�+ �

2. Consider the case � = 1. What phenomenon does this represent? Show
that the equilibrium number of �rms in the industry is less than or equal

to
q

A
C0
.

3.3 A �rm has the cost function

F0 +
1

2
aq2i

where qi is the output of a single homogenous good and F0 and a are positive
numbers.

1. Find the �rm�s supply relationship between output and price p; explain
carefully what happens at the minimum-average-cost point p :=

p
2aF0.
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2. In a market of a thousand consumers the demand curve for the commodity
is given by

p = A� bq
where q is total quantity demanded and A and b are positive parameters.
If the market is served by a single price-taking �rm with the cost structure
in part 1 explain why there is a unique equilibrium if b � a

�
A=p� 1

�
and

no equilibrium otherwise.

3. Now assume that there is a large number N of �rms, each with the above
cost function: �nd the relationship between average supply by the N �rms
and price and compare the answer with that of part 1. What happens as
N !1?

4. Assume that the size of the market is also increased by a factor N but that
the demand per thousand consumers remains as in part 2 above. Show
that as N gets large there will be a determinate market equilibrium price
and output level.

3.4 A �rm has a �xed cost F0 and marginal costs

c = a+ bq

where q is output.

1. If the �rm were a price-taker, what is the lowest price at which it would be
prepared to produce a positive amount of output? If the competitive price
were above this level, �nd the amount of output q� that the �rm would
produce.

2. If the �rm is actually a monopolist and the inverse demand function is

p = A� 1
2
Bq

(where A > a and B > 0) �nd the expression for the �rm�s marginal
revenue in terms of output. Illustrate the optimum in a diagram and show
that the �rm will produce

q�� :=
A� a
b+B

What is the price charged p�� and the marginal cost c�� at this output
level? Compare q�� and q�:

3. The government decides to regulate the monopoly. The regulator has the
power to control the price by setting a ceiling pmax. Plot the average and
marginal revenue curves that would then face the monopolist. Use these
to show:

(a) If pmax > p�� the �rm�s output and price remain unchanged at q��

and p��
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(b) If pmax < c�� the �rm�s output will fall below q��.

(c) Otherwise output will rise above q��.

3.5 A monopolist has the cost function

C(q) = 100 + 6q +
1

2
[q]
2

1. If the demand function is given by

q = 24� 1
4
p

calculate the output-price combination which maximises pro�ts.

2. Assume that it becomes possible to sell in a separate second market with
demand determined by

q = 84� 3
4
p:

Calculate the prices which will be set in the two markets and the change
in total output and pro�ts from case 1.

3. Now suppose that the �rm still has access to both markets, but is prevented
from discriminating between them. What will be the result?
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Chapter 4

The Consumer

Consumer : A person who is capable of choosing a president but inca-
pable of choosing a bicycle without help from a government agency.
�Herbert Stein, Washington Bedtime Stories (1979)

4.1 Introduction

It is now time to introduce the second of the principal economic actors in the eco-
nomic system �the consumer. In a sense this is the heart of the microeconomics.
Why else speak about �consumer sovereignty�? For what else, ultimately, is the
economy�s productive activity organised?
We will tackle the economic principles that apply to the analysis of the

consumer in the following broad areas:

� Analysis of preferences.

� Consumer optimisation in perfect markets.

� Consumer�s welfare.

This, of course, is just an introduction to the economics of individual con-
sumers and households; in this chapter we concentrate on just the consumer in
isolation. Issues such as the way consumers behave en masse in the market, the
issues concerning the supply by households of factors such as labour and savings
to the market and whether consumers �substitute� for the market by produc-
ing at home are deferred until chapter 5. The big topic of consumer behaviour
under uncertainty forms a large part of chapter 8.
In developing the analysis we will see several points of analogy where we can

compare the theory of consumer with the theory of the �rm. This can make life
much easier analytically and can give us several useful insights into economic
problems in both �elds of study.

69
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Figure 4.1: The consumption set: standard assumptions

4.2 The consumer�s environment

As with the �rm we begin by setting out the basic ingredients of the problem.
First, a preliminary a word about who is doing the consuming. I shall sometimes
refer to �the individual,�sometimes to �the household�and sometimes �more
vaguely �to �the consumer,�as appropriate. The distinction does not matter
as long as (a) if the consumer is a multiperson household, that household�s
membership is taken as given and (b) any multiperson household acts as though
it were a single unit. However, in later work the distinction will indeed matter
�see chapter 9.
Having set aside the issue of the consumer we need to characterise and discuss

three ingredients of the basic optimisation problem:

� the commodity space;

� the market;

� motivation.

The commodity space.

We assume that there is a known list of n commodities where n is a �nite,
but perhaps huge, number. A consumption is just a list of commodities x :=
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Figure 4.2: Two versions of the budget constraint

(x1; x2; :::; xn). We shall refer to the set of all feasible consumption bundles as
X. In most cases we shall assume that X is identical to Rn+, the set of all non-
negative n-vectors �see Figure 4.1; the implications of this are that a negative
amount of any commodity makes no sense, that all commodities are divisible,
and there is no physical upper bound to the amount of any one commodity that
an individual could consume (that bound is going to be set by the budget, which
we will come to in a moment).1

How do you draw the boundaries of goods classi�cations? This depends on
the type of model you want to analyse. Very often you can get by with cases
where you only have two or three commodities �and this is discussed further
in chapter 5. Commodities could, in principle, be di¤erentiated by space, time,
or the state-of-the-world.

The market.

As in the case of the competitive �rm, we assume that the consumer has access
to a market in which the prices of all n goods are known: p := (p1; p2; :::; pn).
These prices will, in part, determine the individual�s budget constraint.
However, to complete the description, there are two versions (at least) of this

constraint which we may wish to consider using in our model of the consumer.

1 How might one model indivisibilities in consumption? Describe the shape of the set X
if good 1 is food, and good 2 is (indivisible) refrigerators.
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These two versions are presented in Figure 4.2.

� In the left-hand version a �xed amount of money y is available to the
consumer, who therefore �nds himself constrained to purchase a bundle of
goods x such that

p1x1 + p2x2 � y: (4.1)

if all income y were spent on good 1 the person would be able to buy a
quantity x1 = y=p1.

� In the right-hand version the person has an endowment of resources R :=
(R1; R2), and so his chosen bundle of goods must satisfy

p1x1 + p2x2 � p1R+ p2R2: (4.2)

The two versions of the budget constraint look similar, but will induce dif-
ferent responses when prices change.2

Motivation.

This is not so easy to specify as in the case of the �rm, because there is no over-
whelmingly strong case for asserting that individuals or households maximise
a particular type of objective function if, indeed anything at all. Households
could conceivably behave in a frivolous fashion in the market (if �rms behave
in a frivolous fashion in the market then presumably they will go bust). But
if they are maximising something, what is it that they are maximising? We
will examine two approaches that have been attempted to this question, each of
which has important economic applications. In the �rst we suppose that people
make their choices in a way that reveals their own preferences. Secondly we
consider a method of introspection.

4.3 Revealed preference

We shall tackle �rst the di¢ cult problem of the consumer�s motivation. To some
extent it is possible to deduce a lot about a �rm�s objectives, technology and
other constraints from external observation of how it acts. For example from
data on prices and on �rms� costs and revenue we could investigate whether
�rms�input and output decisions appear to be consistent with pro�t maximi-
sation. Can the same sort of thing be done with regard to consumers?
The general approach presupposes that individuals�or households�actions in

the market re�ect the objectives that they were actually pursuing, which might
be summarised as �what-you-see-is-what-they-wanted�.

2 (i) For each type of budget constraint sketch what will happen if the price of good 1 falls.
(ii) Repeat this exercise for a rise in the price of good 2. (iii) Redraw the right-hand case
for the situation in which the price at which one can buy a commodity is greater than the
price at which one can sell the same commodity.
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xi amount consumed of good i
x (x1; :::; xn)
X the set of all x
pi price of good i
p (p1; :::; pn)
y income

< weak preference relation
B revealed preference relation
U utility function
� utility level

Table 4.1: The Consumer: Basic Notation

De�nition 4.1 A bundle x is revealed preferred to a bundle x0 (written in
symbols x B x0) if x is actually selected when x0 was also available to the con-
sumer.

The idea is almost self-explanatory and is given operational content by the
following axiom.

Axiom 4.1 (Axiom of rational choice) The consumer always makes a choice,
and selects the most preferred bundle that is available.

This means that we can draw inferences about a person�s preferences by
observing the person�s choices; it suggests that we might adopt the following
simple �but very powerful �assumption.

Axiom 4.2 (Weak Axiom of Revealed Preference) If x B x0 then x0 7
x:

In the case where purchases are made in a free market this has a very simple
interpretation. Suppose that at prices p the household could a¤ord to buy
either of two commodity bundles, x or x0; assume that x is actually bought.
Now imagine that prices change from p to p0 (while income remains unchanged);
if the household now selects x0 then the weak axiom of revealed preference states
that x cannot be a¤ordable at the new prices p0. Thus the axiom means that
if

nX
i=1

pixi �
nX
i=1

pix
0
i (4.3)

then
nX
i=1

p0ixi >

nX
i=1

p0ix
0
i (4.4)

If you do not choose today something that you chose yesterday (when today�s
bundle was also available and a¤ordable) it must be because now you cannot
a¤ord yesterday�s bundle: see Figure 4.3.



74 CHAPTER 4. THE CONSUMER

Figure 4.3: x is chosen Monday; x0 is chosen Tuesday

Figure 4.4: Extension of the revealed preference concept
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You can get a long way in consumption theory with just this. Indeed with a
little experimentation it seems as though we are almost sketching out the result
of the kind of cost-minimisation experiment that we performed for the �rm, in
which we traced out a portion of a contour of the production function. Perhaps
we might even suspect that we are on the threshold of discovering a counterpart
to isoquants by the back door (we come to a discussion of �indi¤erence curves�
on page 77 below). For example, examine Figure 4.4: let x B x0, and x0B x00,
and let N(x) denote the set of points to which x is not revealed-preferred. Now
consider the set of consumptions represented by the unshaded area: this is N(x)
\ N(x0)\N(x00) and since x is revealed preferred to x0 (which in turn is revealed
preferred to x00 we might think of this unshaded area as the set of points which
are �directly or indirectly �revealed to be at least as good as x00: the set is
convex and the boundary does look a bit like the kind of contour we discussed in
production theory. However, there are quite narrow limits to the extent that we
can push the analysis. For example, it would be possible to have the following
kind of behaviour: x B x0, x0 B x00, x00B x000 and yet also x000 B x. To avoid this
problem actually you need an additional axiom �the Strong Axiom of Revealed
Preference which explicitly rules out cyclical preferences.

4.4 Preferences: axiomatic approach

In contrast to section 4.3 let us use the method of introspection. Instead of
just drawing inferences from people�s purchases, we approach the problem of
specifying their preferences directly. We proceed by setting out a number of
axioms which it might be reasonable to suppose that a consumer�s preferences
should satisfy. There is no special magic in any one axiom or set of axioms:
they are just a way of trying to capture a structure that seems appropriate in
the light of everyday experience. There is a variety of ways in which we might
coherently axiomatise a model of consumer choice. Our fundamental concept
is:

De�nition 4.2 The weak preference relation < is a binary relation on X. If
x;x0 2 X then the statement �x < x0�is to be read �x is at least as good as x0�.

To make this concept useful we shall consider three basic axioms on prefer-
ence.

Axiom 4.3 (Completeness) For every x;x0 2 X, either x < x0 is true, or
x0 < x is true, or both statements are true.

Axiom 4.4 (Transitivity) For any x;x0;x00 2 X, if both x < x0 and x0 < x00,
then x < x00.
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Axiom 4.5 (Continuity) 3 For any x 2 X, the not-better-than-x set and the
not-worse-than-x set are closed in X.

Figure 4.5: The continuity axiom

Completeness means that people do not shrug their shoulders helplessly when
confronted with a choice; transitivity implies that (in a sense) they are consis-
tent.4 To see what the continuity axiom implies do the experiment illustrated
in Figure 4.5. In a two-commodity diagram put some point x� that represents
positive amounts of both goods; plot any other point xM that represents more of
both goods, and some other point xL that represents less of both goods (relative
to x�); suppose the individual strictly prefers xM to x� and x� to xL. Now con-
sider points in the line

�
xL;xM

�
: clearly points �close�to xM may reasonably

3 What are the implications of dropping the continuity assumption?
4 Each day I buy one piece of fruit for my lunch. On Monday apples and bananas are

available, but no oranges: I buy an apple. On Tuesday bananas and oranges are available,
but no apples: I buy a banana. On Wednesday apples and oranges are available (sorry we
have no bananas): I buy an orange. Am I consistent?
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Figure 4.6: Two utility functions representing the same preferences

be considered to be better than x� and points �close�to xL worse than x�. But
will there be a point in

�
xL;xM

�
which is just indi¤erent to x�? If the continu-

ity axiom holds then indeed this is always so. We can then draw an indi¤erence
curve through any point such as x� (the set of points fx : x 2 X;x � x�g) and
we have the following useful result (see Appendix C)::

Theorem 4.1 (Preference representation) Given completeness, transitiv-
ity and continuity (axioms 4.3 �4.5) there exists a continuous function U from
X to the real line such that U(x) � U(x0) if and only if x < x0, for all x;x0 2 X.5

The utility function makes life much easier in the analysis which follows. So,
almost without exception, we shall assume that axioms 4.3 to 4.5 hold, and so
we can then work with the notation U rather than the slightly clumsy-looking
<.
Notice that this function is just a way of ordering all the points in X in a

very simple fashion; as such any strictly increasing transformation �any car-
dinalisation �of U would perform just as well. So, if you plotted the utility
values for some particular function U as x ranged over X, you would get the
same pattern of values if you plotted instead a function such such as U2, U�

or exp(U).6 The utility function will tell you whether you are going uphill or

5Old George is a dipsomaniac. Friends speak in hushed tones about his lexicographic
indi¤erence map (this has nothing to do with his appointment in the University Library):
he always strictly prefers the consumption bundle that has the greater amount of booze in
it, regardless of the amount of other goods in the bundle; if two bundles contain the same
amount of booze then he strictly prefers the bundle containing the greater amount of other
goods. Sketch old George�s preferences in a diagram. Which of the axioms used in Theorem
4.1 is violated by such an ordering?

6 A consumer has a preference map represented by the utility function

U(x) = x�11 x�22 :::x�nn
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Figure 4.7: A bliss point

downhill in terms of preference, but it cannot tell you how fast you are go-
ing uphill, nor how high o¤ the ground you are. Figure 4.6 shows two utility
functions depicting exactly the same set of preferences: the (vertical) graph of
utility against (x1; x2) may look di¤erent, but the functions project the same
pattern of contours �the indi¤erence curves �on to the commodity space. The
preference contour map has the same shape even if the labels on the contours
di¤er.

Axiom 4.6 (Greed) If x > x0(i.e. xi � x0i for all i with strict inequality for
at least one i) then U(x) > U(x0).

This assumption implies that indi¤erence curves can never be horizontal
or vertical; furthermore they cannot bend round the wrong way as shown in

Can this also be represented by the following utility function?

Û(x) =

nX
i=1

�i log (xi)

Can it also be represented by this utility function?

~U(x) =
nX
i=1

�i log (xi + 1)
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Figure 4.8: Strictly quasicconcave (concave-contoured) preferences

Figure 4.7.7 In particular, as far as we are concerned, there is no such thing
as economic bliss (the peak of the �mountain� in Figure 4.7). The �nal two
assumptions concern the shape of the indi¤erence curves, the contours of the
function U .

Axiom 4.7 (Strict quasiconcavity) 8 let x0;x00 2 X be such that U(x0) =U(x00);
then for any number t such that 0 < t < 1 it is true that U(tx0 + [1 � t]x00) >
U(x0).

The immediate implication of this is that there can be no bumps or �at
segments in the indi¤erence curves �see Figure 4.8. Points x0 and x00 represent
consumption vectors that yield the same level of utility. A point xt on the line
joining them, (xt := tx0 + [1 � t]x00) represents a �mix� of these two vectors.
Clearly xt must lie on a higher indi¤erence curve. The deeper signi�cance of
this is that it presupposes that the consumer has a preference for mixtures of

7 If the budget constraint actually passed �northwest� of the bliss point (so that the bliss
point lay in the interior of the budget set) explain what the person would do.

8 Notice that for a lot of results you can manage with the weaker requirements of concave
contours (quasiconcavity):

U(tx0 + [1� t]x00) � U(x0);
where 0 � t � 1 and U(x0) =U(x00): For the results which follow, identify those that go
through with this weaker assumption rather than strictly concave contours.
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goods over extremes.9

Axiom 4.8 (Smoothness) U is everywhere twice di¤erentiable and its second
partial derivatives commute � for any pair of goods i and j we have Uij(x) =
Uji(x).

This means that there can be no kinks in the indi¤erence curves. Given that
a person�s preferences satisfy the smoothness requirement, an important tool
then becomes available to us:

De�nition 4.3 The marginal rate of substitution of good i for good j (written
MRSij) is Uj(x)=Ui(x).

Here, as before, Ui(x)means @U(x)=@xi. A quick check con�rms that MRSij
is independent of the cardinal representation of U .10 The marginal rate of sub-
stitution has an attractive intuition: MRSij is the person�s marginal willingness
to pay for commodity j, measured in terms of commodity i �a �subjective price
ratio�. This leaves us with a fairly general speci�cation of the utility function.
We will see later two cases where we might want to impose further restrictions
on the class of admissible functions for use in representing a person�s preferences

� aggregation over consumers �see chapter 5, page 112.

� analysis of uncertainty �see chapter 8, page 177.

4.5 Consumer optimisation: �xed income

There is more than one way of representing the optimisation problem that the
consumer faces; perhaps the intuitively obvious way in which to do this involves
�nding a point on the highest utility contour within the appropriate constraint
set � for example the kind of sets illustrated in Figure 4.2. In the case of a
perfect market with exogenously �xed income y we have the standard problem
of choosing a basket of goods x from the feasible set X so as to maximise utility
subject to a budget constraint that is a simple generalisation of (4.1)

nX
i=1

pixi � y (4.5)

This is illustrated in the left-hand part of Figure 4.9: note the direction of
increasing preference and the particular vector x� which represents the optimum.
However we could also look at the optimisation problem in another way.

Use the utility scale to �x a target utility level or standard of living (the units

9 Every Friday I go out for a drink with the lads. I regard one pint of cider and one pint
of beer as of equal utility; and one pint of either is strictly preferable to 1

2
pint of both. Draw

my indi¤erence curves.
10Suppose that the utility function ~U can be obtained from U by a di¤erentiable monotonic

transformation ': i.e. ~U(x) = ' (U(x)) for all x 2 X. Prove this assertion about the MRSij .
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Figure 4.9: Two views of the consumer�s optimisation problem

in which this is to be measured are arbitrary � dollars, tons, utils, quarks �
since the cardinalisation of U is unimportant) and �nd the smallest budget that
will enable the consumer to attain it. This yields an equivalent optimisation
problem which may be regarded as the economic �dual� of the one we have
just described. This involves minimising the budget

P
i pixi subject to the

non-negativity condition and a utility constraint

U(x) � � (4.6)

where � is the exogenously speci�ed utility level � see the right-hand part of
Figure 4.9.

A glance at the two halves of Figure 4.9 reveals the utility-maximisation and
the cost-minimisation problems are e¤ectively equivalent, if the values of y and
� are appropriately speci�ed. Obviously, in connecting these two problems, we
would take � as being the maximum utility obtainable under the �rst problem.
So in the left-hand diagram we are saying �maximise the utility obtainable under
a given budget:�we are maximising a quasiconcave function over a convex set
�the budget set. In the right-hand diagram we are saying �minimise the cost
of getting to any given utility level:�we are minimising a linear function over a
convex set �the �better-than�set given by satisfying (4.6). We shall return to
the �primal�problem of utility maximisation, but for the moment let us look
at the solution to the problem depicted in the right-hand panel of Figure 4.9.
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4.5.1 Cost-minimisation

Formally, the budget-minimising problem is one of minimising the Lagrangean

L(x; �;p; �) :=
nX
i=1

pixi + �[� � U(x)] (4.7)

for some speci�ed utility level �, subject to the restrictions that xi � 0 for
every commodity i. Now inspection of (4.7) and comparison with the cost-
minimisation problem for the �rm reveals that the problem of cost-minimisation
subject to a target utility level is formally equivalent to the �rm�s cost-minimisation
problem subject to a target output level, where all input prices are given. So we
may exploit all the results on the economic analysis of the �rm that dealt with
this problem. For this aspect of the problem can literally rub out and replace
notation from our analysis the �rm. For example we introduce the following
counterpart:

De�nition 4.4 The consumer�s cost function or expenditure function is a real
valued function C of the price vector and the utility index such that:

C(p; �) := min
fxi�0;U(x)��g

nX
i=1

pixi (4.8)

The cost function (expenditure function) plays a key rôle in analysing the
microeconomic behaviour of individuals and households, just as it did in the
case of the �rm. All of the properties of the function carry straight over from
chapter 2, so we do not need to prove them again here. Just use Theorem 2.2
and replace the symbol w by p, the symbol q by � and z�i by x

�
i :

Theorem 4.2 (Properties of consumer�s cost function) the consumer�s cost
function C(p; �) is nondecreasing and continuous in p,homogeneous of degree
one in p and concave in p. It is strictly increasing in � and in at least one pi.
At every point where the di¤erential is de�ned

@C(p; �)

@pi
= x�i : (4.9)

the optimal demand for good i.

Of course, if the �constraint-set�in this cost-minimisation problem, de�ned
by (4.6), is appropriately shaped then we can borrow another result from the
theory of the �rm, and then introduce the household�s counterpart to the �rm�s
conditional demand functions:
Now for the rationale behind the usage of the letter H to denote certain

kinds of demand function, for the �rm and for the consumer �it is in honour of
Sir John Hicks:
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De�nition 4.5 The compensated demand functions or Hicksian demand func-
tions for goods i = 1; 2; :::; n constitute a set of real-valued functions Hi of prices
and a utility level such that

x�i = Hi(p; �) (4.10)

where (x�1; x
�
2; :::; x

�
n) are the cost-minimising purchases for p and �.

The basic result on demand functions carries over from the �rm, with just
some rebadging.

Theorem 4.3 (Existence of compensated demand functions) If the util-
ity function is strictly concave-contoured then compensated demand functions
are always well-de�ned and continuous for all positive prices.

We can also follow through the comparative statics arguments on the sign of
the partial derivatives of the demand functions; again we only need to change
the notation.

Theorem 4.4 (Properties of compensated demand functions) (a) Hi
j ; the

e¤ect of an increase in the price of good j on the compensated demand for good
i, is equal to Hj

i the e¤ect of an increase in the price of good i on the compen-
sated demand for good j. (b) Hi

i , the e¤ect of an increase in the price of good i
on the compensated demand for good i must be non-positive. If the smoothness
axiom holds, then Hi

i is strictly negative.

The analogy between the two applications of cost-minimisation could be
extended further.11 However, the particular point of special interest in the
case of the household is the close relationship between this problem and the
�primal�problem of utility maximisation subject to a budget constraint. Some
very useful results follow from this relationship, as we shall see.

4.5.2 Utility-maximisation

So let us now tackle problem 1 which we can set up, once again, as a standard
Lagrangean:

L(x; �;p; y) := U(x) + �

"
y �

nX
i=1

pixi

#
(4.11)

where � is the Lagrange multiplier. The FOC for the maximum yield

Ui(x
�) � ��pi (4.12)

and also the boundary of the budget constraint:

nX
i=1

pix
�
i = y (4.13)

11What is the equivalent of the �short run� in the case of the consumer?
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Notice that not all goods may be demanded at the optimum; this observation
enables us to distinguish between the two cases of equation (4.12):

1. If �<�holds in (4.12) for commodity i then we must have x�i = 0.
12

2. Otherwise (case �=�) we could have x�i = 0 or x
�
i > 0.

Again we �nd a very neat immediate consequence of the �rst-order condition
(4.12): if cost-minimisation requires a positive amount of good i then for any
other good j:13

Uj(x
�)

Ui(x�)
� pj
pi

(4.14)

with equality in (4.14) if commodity j is also purchased in positive amounts. So
in the case where the cost-minimising amounts of both commodities are positive
we have:

MRS = price ratio

Let us examine more closely the properties of the solution to the utility-maximisation
problem. We have already established (by analogy with the case of the cost-
minimising �rm) the circumstances under which the household�s compensated
(or conditional) demands can be represented by a well-de�ned function of prices
and utility. Now let us introduce the following result,14 proved in Appendix C,
and a new concept:

Theorem 4.5 (Existence of ordinary demand functions) If the utility func-
tion is strictly concave-contoured then the ordinary demand functions for good
i constitute a set of real-valued functions Di of prices and income

x�i = Di(p; y); (4.15)

are well de�ned and continuous for all positive prices, where (x�1; x
�
2; :::; x

�
n) are

the utility-maximising commodity demands for p and y.

However, as the implicit de�nition of the set of demand functions suggests,
we cannot just write out some likely-looking equation involving prices and in-
come on the right-hand side and commodity quantities on the left-hand side and
expect it to be a valid demand function. To see why, note two things:

12 Draw a �gure for the case where �<�holds in (4.14) .
13 Interpret this condition using the idea of the MRS as �marginal willingess to pay�men-

tioned on page 80 (i) where one has �<� in (4.14) and (ii) where one has �=� in (4.14).
14 Suppose that instead of the regular budget constraint (4.13) the consumer is faced with a

quantity discount ongood 1 (�buy 5 items and get the 6th one free�). Draw the budget set and
draw in an indi¤erence curve to show that optimal commodity demand may be non-unique.
What can be said about commodity deamdn as a function of price in this case?
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1. Because of the budget constraint, binding at the optimum (equation 4.13),
it must be true that the set of n functions (4.15) satisfy

nX
i=1

piD
i(p; y) = y: (4.16)

2. Again focus on the binding budget constraint (4.13). If all prices p and
income y were simultaneously rescaled by some positive factor t (so the
new prices and income are tp and ty) it is clear that the FOC remain
unchanged and so the optimal values (x�1; x

�
2; :::; x

�
n) remain unchanged.

In other words
Di(tp; ty) = Di(p; y): (4.17)

This enables us to establish:15

Theorem 4.6 (Properties of ordinary demand functions) (a) the set of
ordinary demand functions is subject to a linear restriction in that the sum of
the demand for each good multiplied by its price must equal total income; (b)
the ordinary demand functions are homogeneous of degree zero in all prices and
income.

Now let us look at the way in which the optimal commodity demands x�

respond to changes in the consumer�s market environment. To do this use the
fact that the utility-maximisation and cost-minimisation problems that we have
described are two ways of approaching the same optimisation problem: since
problems 1 and 2 are essentially the same, the solution quantities are the same.
So:

Hi(p; �) = Di(p;y) (4.18)

The two sides of this equation are just two ways of getting to the same answer
(the optimised x�i ) from di¤erent bits of information. Substituting the cost
function into (4.18) we get:

Hi(p; �) = Di (p; C(p; �)) : (4.19)

Take equation (4.19) a stage further. If we di¤erentiate it with respect to
any price pj we �nd:

Hi
j(p; �) = Di

j(p;y) +D
i
y(p; y)Cj(p; �) (4.20)

Then use (4.20) to give the Slutsky equation:

Di
j(p;y) = Hi

j(p; �)� x�jDi
y(p; y) (4.21)

The formula (4.21) may be written equivalently as

@x�i
@pj

=
dx�i
dpj

����
�=const

� x�j
@x�i
@y

(4.22)

15 Prove this using the properties of the cost function established earlier.
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Figure 4.10: The e¤ects of a price fall

and we may think of this decomposition formula (4.21 or 4.22) of the e¤ect of
a price change as follows:

total substitution income
= +

e¤ect e¤ect e¤ect

This can be illustrated by Figure 4.10 where x� denotes the original equi-
librium: the equilibrium after good 1 has become cheaper is denoted by x�� on
the higher indi¤erence curve. Note the point on this indi¤erence curve marked
���: this is constructed by increasing the budget at unchanged relative prices
until the person can just reach the new indi¤erence curve. Then the income
e¤ect �the change in consumption of each good that would occur if the per-
son�s real spending power alone increased �is given by the notional shift from
x� to ���. This e¤ect could in principle be positive or negative: we will use the
term inferior good to apply to any i for which the income e¤ect is negative, and
normal good for other case.16 The notional shift from x� to the new equilibrium
x�� represents the e¤ect on commodity demands that would arise if the relative
price of good 1 were to fall while the budget was adjusted to keep the person
on the same indi¤erence curve. This is the substitution e¤ect. (Since we are
actually talking about in�nitesimal changes in prices we could have equally well
done this diagrammatic representation the other way round �i.e. �rst consider

16 How might commodity grouping in�uence the income e¤ect?



4.6. WELFARE 87

the substitution e¤ect along the original indi¤erence curve and then considered
the notional income change involved in moving from one indi¤erence curve to
the other).
The substitution e¤ect could be of either sign if n > 2 and j and i in

(4.21) represent di¤erent goods (jelly and ice-cream let us say). We say that
commodities i and j are net substitutes if Hi

j > 0 and net complements if the

reverse inequality is true. Now, we know that Hi
j = Hj

i . So if jelly is a net
substitute for ice-cream then ice-cream is a net substitute for jelly.17

Now let us take the �own-price�case; for example, let us look at the e¤ect
of the price of ice-cream on the demand for ice-cream. We get this by putting
j = i in (4.21). This gives us:

Di
i(p;y) = Hi

i (p; �)� x�iDi
y(p; y) (4.23)

Once again we know from the the analysis of the �rm that Hi
i < 0 for any

smooth-contoured function (see page 33 in chapter 2). So the compensated
demand curve (which just picks up the substitution e¤ect) must be everywhere
downward sloping. But what of the income e¤ect? As we have seen, this could
be of either sign (unlike the �output e¤ect�in the own-price decomposition for
a �rm�s input demand). So it is, strictly speaking, possible for the ordinary
demand curve to slope upwards for some price and income combinations �the
rare case of the Gi¤en good .18 But if the income e¤ect is positive or zero (a
normal good) we may state the following fundamental result:

Theorem 4.7 (Own-price e¤ect) If a consumer�s demand for a good never
decreases when his income (alone) increases, then his demand for that good must
de�nitely decrease when its price (alone) increases.19

Notice throughout this discussion the di¢ culties caused by the presence of
income e¤ects. If all we ever had to consider were pure substitution e¤ects �
sliding around indi¤erence curves �life would have been so much easier. How-
ever, as we shall see in other topics later in this book, income e¤ects are nearly
always a nuisance.

4.6 Welfare

Now look again at the solution to the consumer�s optimisation problem this time
in terms of the market environment in which the consumer �nds himself. We
will do this for the case where y is �xed although we could easily extend it to
the endogenous �income case. To do this work out optimised utility in terms
of p; y:

17 (a) Why can we not say the same about gross substitutes and complements? (b) Explain
why �in a two-good model �the goods must be net substitutes.
18 Draw the income and substitution e¤ects for a Gi¤en good.
19 Prove this using the own-price version of the Slutsky equation (4.23).
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De�nition 4.6 The indirect utility function is a real-valued function V of
prices and income such that:

V (p; y) := max8<: xi � 0;Pn
i=1 pixi � y

9=;
U(x) (4.24)

I should stress that this is not really new. As Figure 4.9 emphasises there
are two fundamental, equivalent ways of viewing the consumer�s optimisation
problem and, just as (4.8) represents the solution to the problem as illustrated
in the right-hand panel of the �gure, so (4.24) represents the solution from the
point of view of the left-hand panel. Because these are two aspects of the same
problem we may write

y = C(p; �) (4.25)

and
� = V (p; y) (4.26)

where y is both the minimised cost in (4.8) and the constraint income in (4.24),
1while � is both the constraint utility in (4.8) and the maximal utility in (4.24).
In view of this close relationship the function V must have properties that

are similar to C. Speci�cally we �nd:

� V �s derivatives with respect to prices satisfy Vi(p; y) � 0 20

� Vy(p; y) = ��, the optimal value of the Lagrange multiplier which appears
in (4.12).21

� A further derivative property can be found by substituting the cost func-
tion from (4.25) into (4.26) we have

V (p; C(p; �)) = � ; (4.27)

then, di¤erentiating (4.27) with respect to pi and rearranging, we get:

x�i = �
Vi(p; y)

Vy(p; y)
; (4.28)

a result known as Roy�s Identity.22

� V is homogeneous of degree zero in all prices and income23 and quasicon-
vex in prices (see Appendix C).

We can use (4.24) in a straightforward fashion to measure the welfare change
induced by, say, an exogenous change in prices. To �x ideas let us suppose that

20 Explain why Vi may be zero for some, but not all goods i.
21 Use your answer to Chapter 2�s footnote 16 (pages 25 and 525) to explain why this is so.
22 Use (4.27) to derive (4.28).
23 Show this using the properties of the cost function.



4.6. WELFARE 89

the price of commodity 1 falls while other prices and income y remain unchanged
�the story that we saw brie�y in Figure 4.10. Denote the price vector before
the fall as p, and that after the fall as p0. De�ne the utility level � as in (4.26)
and �0 thus:

�0 := V (p0; y) (4.29)

This price fall is good news if the consumer was actually buying the commodity
whose price has fallen. So we know that �0 is greater than �: but how much
greater?
One approach to this question is to take prices at their new values p0, and

then to compute that change in income which would bring the consumer back
from �0 to �. This is what we mean by the compensating variation of the price
change p! p0. More formally it is an amount of income CV such that

� = V (p0; y � CV) (4.30)

�compare this with (4.26) and (4.29). Now equation (4.27) suggests that we
could write this same concept using the cost function C instead of the indirect
utility function V . Doing so, we get:24

CV(p! p0) := C(p; �)� C(p0; �) (4.31)

This suggests yet another way in which we could represent the CV. Consider
Figure 4.11 which depicts the compensated demand curve for good 1 at the
original utility level �: the amount demanded at prices p and utility level � is
x�1. Now remember that Shephard�s Lemma tells us that the derivative of the
cost function C with respect to the price p1 is x�1 = H1(p; �): this means that
we can write the CV of a price fall of commodity 1 to the new value p01 as the
following integral:

CV(p! p0) :=

Z p1

p01

H1 (�; p2; :::; pn; �) d� (4.32)

So the CV of the price fall that we have been discussing is just the shaded area
trapped between the compensated demand curve and the axis.
It is worth repeating that equations (4.30)-(4.32) all contain the same con-

cept, just dressed up in di¤erent guises. However, there are alternative ways in
which we can attempt to calibrate the e¤ect of a price fall in monetary terms.
For example, take the prices at their original values p, and then compute that
change in income which would have brought the consumer from � to �0; this
is known as the equivalent variation of the price change p! p0. Formally we
de�ne this as an amount of income EV such that

�0 = V (p; y + EV) (4.33)

or, in terms of the cost function:

EV(p! p0) := C(p; �0)� C(p0; �0) (4.34)

24Use (4.27) to �ll in the one line that enables you to get (4.31) from equation (4.30).
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Figure 4.11: Compensated demand and the value of a price fall

�see Figure 4.12.
We can see that CV and EV will be positive if and only if the change p! p0

increases welfare �the two numbers always have the same sign as the welfare
change.25 We also see that, by de�nition:

CV(p! p0) = �EV(p0 ! p) (4.35)

The CV and the EV represent two di¤erent ways of assessing the value of
the fall: the former takes as a reference point the original utility level; the latter
takes as a reference the terminal utility level. Clearly either has a claim to our
attention, as may other utility levels, for that matter.
At this point we ought to mention another method of trying to evaluate

a price change that is often found convenient for empirical work. This is the
concept of consumer�s surplus (CS):

CS(p! p0) :=

Z p1

p01

D1 (�; p2; :::; pn; y) d� (4.36)

which is just the area under the ordinary demand curve �compare (4.36) with
(4.32).
The relationship amongst these three concepts is illustrated in Figure 4.13.

Here we have modi�ed Figure 4.11 by putting in the compensated demand curve

25Use (4.26)-(4.34) to explain in words why this is so.
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Figure 4.12: Compensated demand and the value of a price fall (2)

Figure 4.13: Three ways of measuring the bene�ts of a price fall
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for the situation after the price fall (when the amount consumed is x��1 ) and the
ordinary demand curve: this has been drawn for the case of a normal good
(where the ordinary demand curve D1 is not steeper than the compensated
demand curve H1).26 From Figure 4.13 we can see that the CV for the price
fall is the smallest shaded area; by the same argument, using equation (4.34),
the EV is the largest shaded area (made up of the three shaded components);
and using (4.36) the CS is the intermediate area consisting of the area CV plus
the triangular shape next to it.
So we can see that for normal goods the following must hold:

CV � CS � EV

and for the case of inferior goods we just replace ���by �>�. Of course all
three concepts coincide if the income e¤ect for the good in question is zero.

4.6.1 An application: price indices

We can use the analysis that we have just developed as a basis for specifying
a number of practical tools. Suppose we wanted a general index of changes in
the cost of living. This could be done by measuring the proportionate change in
the cost that a �representative consumer�would face in achieving a particular
reference level of utility as a result of the change in price from p to p0. The
analysis suggests we could do this using either the �base year� utility level �
(utility before the price change �the CV concept) or the �current-year�utility
level �0 (utility after the price change �the EV concept) which would give us
two cost-of-living indices:

ICV =
C(p0; �)

C(p; �);
(4.37)

IEV =
C(p0; �0)

C(p; �0):
(4.38)

These are exact price indices in that no empirical approximations have to
be used. However in general each term in (4.37) and (4.38) requires a complete
evaluation of the cost function, which can be cumbersome, and unless prefer-
ences happen to be such that the cost function can be rewritten neatly like this:

C(p; �) = a(p)b(�) (4.39)

then the indices in (4.37) and (4.38) will depend on the particular reference level
utility, which is very inconvenient (more on this in Exercise 4.10).
What is often done in practice is to adopt an expedient by using either of two

corresponding approximation indices �the Laspeyres and the Paasche indices

26 Use the Slutsky decomposition to explain why this property of the slopes of the two
curves must be true.
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�which are given by:

IL =

Pn
i=1 p

0
ixiPn

i=1 pixi
(4.40)

IP =

Pn
i=1 p

0
ix
0
iPn

i=1 pix
0
i

(4.41)

For example the Retail Price Index (RPI) in the UK is a Laspeyres index (Cen-
tral Statistical O¢ ce 1991). These indices are easier to compute, since you
just work out two �weighted averages�, in the case of IL using the base-year
quantities as weights, and in the case of IP using the �nal-year quantities. But
unfortunately they are biased since examination of (4.37)-(4.41) reveals that
IL � ICV and IP � IEV.27 So the RPI will overestimate the rise in the cost of
living if the appropriate basis for evaluating welfare changes is the CV concept.

4.7 Summary

The optimisation problem has many features that are similar to the optimisation
problem of the �rm, and many of the properties of demand functions follow
immediately from results that we obtained for the �rm. A central di¢ culty
with this sub�eld of microeconomics is that an important part of the problem
�the consumer�s motivation �lies outside the realm of direct observation and
must in e¤ect be �invented�by the model-builder. The consumer�s objectives
can be modelled either on the basis of indirect observation �market behaviour
�or on an a priori basis.
If we introduce a set of assumptions about the structure of preferences that

enable representation by a well-behaved utility function, considerable progress
can be made. We can then formulate the economic problem of the consumer
in a way that is very similar to that of the �rm that we analysed in chapter 2;
the cost function �nds a natural reinterpretation for the consumer and makes it
easy to derive some basic comparative-static results. Extending the logic of the
cost-function approach also provides a coherent normative basis for assessing
the impact of price and income changes upon the welfare of consumers. This
core model of the consumer also provides the basis for dealing with some of the
more di¢ cult questions concerning the relationship between the consumer and
the market as we will see in chapter 5.

4.8 Reading notes

On the fundamentals of consumer theory see Deaton and Muellbauer (1980),
chapters 2 and 7.

27 Use the de�nition of the cost function and to prove these assertions. Explain the
conditions under which there will be exact equality rather than an inequality.



94 CHAPTER 4. THE CONSUMER

The pioneering work on revealed-preference analysis is due to Samuelson
(1938, 1948) and Houthakker (1950); for a thorough overview see Suzumura
(1983), chapter 2. The representation theorem 4.1 is due to Debreu (1954);
for a comprehensive treatment of axiomatic models of preference see Fishburn
(1970). On indi¤erence curve analysis the classic reference is Hicks (1946).
There are several neat treatments of the Slutsky equation �see for example Cook
(1972). The indirect utility function was developed in Roy (1947), the concept
of consumer�s surplus is attributable to Dupuit (1844) and the relationship of
this concept to compensating and equivalent variation is in Hicks (1956). For
a discussion of the use of consumer�s surplus as an appropriate welfare concept
see Willig (1976).

4.9 Exercises

4.1 You observe a consumer in two situations: with an income of $100 he buys
5 units of good 1 at a price of $10 per unit and 10 units of good 2 at a price
of $5 per unit. With an income of $175 he buys 3 units of good 1 at a price of
$15 per unit and 13 units of good 2 at a price of $10 per unit. Do the actions
of this consumer conform to the basic axioms of consumer behaviour?

4.2 Draw the indi¤erence curves for the following four types of preferences:

Type A : � log x1 + [1� �] log x2
Type B : �x1 + x2

Type C :  [x1]
2
+ [x2]

2

Type D : min f�x1; x2g :

where x1; x2 denote respectively consumption of goods 1 and 2 and �; �; ; � are
strictly positive parameters with � < 1. What is the consumer�s cost function
in each case?

4.3 Suppose a person has the Cobb-Douglas utility function
nX
i=1

ai log(xi)

where xi is the quantity consumed of good i, and a1; :::; an are non-negative
parameters such that

Pn
j=1 aj = 1. If he has a given income y, and faces

prices p1; :::; pn, �nd the ordinary demand functions. What is special about the
expenditure on each commodity under this set of preferences?

4.4 The elasticity of demand for domestic heating oil is �0:5, and for gasoline
is �1:5. The price of both sorts of fuel is 60c/ per litre: included in this price is an
excise tax of 48c/ per litre. The government wants to reduce energy consumption
in the economy and to increase its tax revenue. Can it do this (a) by taxing
domestic heating oil? (b) by taxing gasoline?
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4.5 De�ne the uncompensated and compensated price elasticities as

"ij :=
pj
x�i

@Di(p;y)

@pj
; "�ij :=

pj
x�i

@Hi(p;�)

@pj

and the income elasticity

"iy :=
y

x�i

@Di(p;y)

@y
:

Show how equations (4.20) and (4.21) can be expressed in terms of these elas-
ticities and the expenditure share of each commodity in the total budget.

4.6 You are planning a study of consumer demand. You have a data set which
gives the expenditure of individual consumers on each of n goods. It is sug-
gested to you that an appropriate model for consumer expenditure is the Linear
Expenditure System:(Stone 1954)

ei = �ipi + �i

24y � nX
j=1

pj�j

35
where pi is the price of good i, ei is the consumer�s expenditure on good i, y
is the consumer�s income, and �1; :::; �n, �1; :::; �n are non-negative parameters
such that

Pn
j=1 �j = 1.

1. Find the e¤ect on xi, the demand for good i, of a change in the consumer�s
income and of an (uncompensated) change in any price pj.

2. Find the substitution e¤ect of a change in price pj on the demand for good
i.

3. Explain how you could check that this demand system is consistent with
utility-maximisation and suggest the type of utility function which would
yield the demand functions implied by the above formula for consumer
expenditure. [Hint: compare this with Exercise 4.3]

4.7 Suppose a consumer has a two-period utility function of the form labelled
type A in Exercise 4.2. where xi is the amount of consumption in period i.
The consumer�s resources consist just of inherited assets A in period 1, which is
partly spent on consumption in period 1 and the remainder invested in an asset
paying a rate of interest r.

1. Interpret the parameter � in this case.

2. Obtain the optimal allocation of (x1; x2)

3. Explain how consumption varies with A, r and �.

4. Comment on your results and examine the �income� and �substitution�
e¤ects of the interest rate on consumption.
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4.8 Suppose a consumer is rationed in his consumption of commodity 1, so
that his consumption is constrained thus x1 � a. Discuss the properties of the
demand functions for commodities 2; :::; n of a consumer for whom the rationing
constraint is binding. [Hint: use the analogous set of results from section 2.4].

4.9 A person has preferences represented by the utility function

U(x) =
nX
i=1

log xi

where xi is the quantity consumed of good i and n > 3.

1. Assuming that the person has a �xed money income y and can buy com-
modity i at price pi �nd the ordinary and compensated demand elasticities
for good 1 with respect to pj, j = 1; :::; n.

2. Suppose the consumer is legally precommitted to buying an amount An
of commodity n where pnAn < y. Assuming that there are no additional
constraints on the choices of the other goods �nd the ordinary and com-
pensated elasticities for good 1 with respect to pj, j = 1; :::n. Compare
your answer to part 1.

3. Suppose the consumer is now legally precommitted to buying an amount Ak
of commodity k, k = n�r; :::; n where 0 < r < n�2 and

Pn
k=n�r pkAk < y.

Use the above argument to explain what will happen to the elasticity of good
1 with respect to pj as r increases. Comment on the result.

4.10 Show that if the utility function is homothetic, then ICV = IEV [Hint:
use the result established in Exercise 2.6.]

4.11 Suppose an individual has Cobb-Douglas preferences given by those in
Exercise 4.2.

1. Write down the consumer�s cost function and demand functions.

2. The republic of San Serrife is about to join the European Union. As a
consequence the price of milk will rise to eight times its pre-entry value. but
the price of wine will fall by �fty per cent. Use the compensating variation
to evaluate the impact on consumers�welfare of these price changes.

3. San Serrife economists have estimated consumer demand in the republic
and have concluded that it is closely approximated by the demand system
derived in part 1. They further estimate that the people of San Serrife
spend more than three times as much on wine as on milk. They conclude
that entry to the European Union is in the interests of San Serrife. Are
they right?
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4.12 In a two-commodity world a consumer�s preferences are represented by
the utility function

U(x1; x2) = �x
1
2
1 + x2

where (x1; x2) represent the quantities consumed of the two goods and � is a
non-negative parameter.

1. If the consumer�s income y is �xed in money terms �nd the demand
functions for both goods, the cost (expenditure) function and the indirect
utility function.

2. Show that, if both commodities are consumed in positive amounts, the
compensating variation for a change in the price of good 1 p1 ! p01 is
given by

�2p22
4

�
1

p01
� 1

p1

�
3. In this case, why is the compensating variation equal to the equivalent
variation and consumer�s surplus?

4.13 Take the model of Exercise 4.12. Commodity 1 is produced by a monopo-
list with �xed cost C0 and constant marginal cost of production c. Assume that
the price of commodity 2 is �xed at 1 and that c > �2=4y.

1. Is the �rm a �natural monopoly�? (page 64)

2. If there are N identical consumers in the market �nd the monopolist�s
demand curve and hence the monopolist�s equilibrium output and price p�1.

3. Use the solution to Exercise 4.12 to show the aggregate loss of welfare
L(p1) of all consumers�having to accept a price p1 > c rather than being
able to buy good 1 at marginal cost c. Evaluate this loss at the monopolist�s
equilibrium price.

4. The government decides to regulate the monopoly. Suppose the government
pays the monopolist a performance bonus B conditional on the price it
charges where

B = K � L(p1)

and K is a constant. Express this bonus in terms of output. Find the
monopolist�s new optimum output and price p��1 . Brie�y comment on the
solution.
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Chapter 5

The Consumer and the
Market

The consumer, so it is said, is the king. . . each is a voter who uses
his money as votes to get the things done that he wants done �Paul
Samuelson, Economics (1948)

5.1 Introduction

There is a small collection of big issues that remain in connection with the
consumer. These focus on the consumer�s interaction with the surrounding
economic environment and cover the following:

� Determination of incomes. Just as the market determines the prices of
the goods that consumer buy, so too it may determine a large part, if
not all, of their incomes. Instead of receiving a lump sum, members of
a household generate their income by trading in the market. The price
system therefore has a fuller rôle in in�uencing consumer behaviour than
we accorded it in the simple model of chapter 4. (section 5.2)

� Supply by households. Implicit in the issue of income determination is the
idea that the household will be selling goods and services to the market,
as well as buying. We need to see how the basic analysis of the consumer
can be adapted to include this phenomenon. (section 5.3)

� Household production. Not all the objects in the utility function are on
sale in the market. Instead the household may perform activities similar
to that of a �rm by buying market goods not for their own sake but in
order to use them as inputs in the production of the things that it really
wants. (section 5.4)

99
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� Aggregation over goods and households. Analysing the choices of a single
agent over bundles of n commodities is a useful base on which to build
a theory of consumers�behaviour. However the extension of our analysis
to more general economic models suggests �and data limitations usually
require �(i) that we consider broadly de�ned groups of commodities and
(ii) that we analyse demands by groups of consumers. (sections 5.5 and
5.6)

We begin with a re-examination of the consumer�s budget constraint.

5.2 The market and incomes

So far we have taken the consumer�s budget constraint to be of the form (4.5)
where y is an exogenously given number of dollars, euros or pounds. We have
assumed that the consumer�s income is like a state pension for the elderly or
pocket money for the young. This is clearly somewhat restrictive. In order to
make progress we need to use something like that depicted in the right-hand
panel of Figure 4.2.
To do this we introduce an elementary system of property rights. An individ-

ual owns R1; R2; :::; Rn of commodities 1; 2; :::; n; some of the Ri could be zero
(if the consumer possesses none of that commodity) but no Ri can be negative.
The person�s income comes from selling in the market some of the resources
that he owns. Given market prices p1; p2; :::; pn we have

y =

nX
i=1

piRi (5.1)

A small point that we need for the future is that if incomes are determined by
(5.1) and the price of good j changes then the person�s money income changes
as follows:

dy

dpj
= Rj : (5.2)

Obviously other, speci�cations of income are possible. For example, we could
also have a hybrid case where the consumer had some income from the sale of
resources, some shares in the pro�ts of �rms (we will be dealing with that in
chapter 7) and some income �xed in money terms; but (5.1) is rich enough for
present purposes. Obviously, too, we could translate all this from the case where
the consumer is an individual to that where the consumer is a household.

5.3 Supply by households

Now the consumer�s problem can be expressed: �maximise utility subject to the
constraint that expenditure is less than or equal to the value of resources�. To
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solve this we form the Lagrangean:

L(x; �;p;R) := U(x) + �

"
nX
i=1

piRi �
nX
i=1

pixi

#
(5.3)

This is essentially of the same form as (4.11) in chapter 4, and so has essentially
the same solution. Accordingly the demand for good i, Di(p; y), can in this
case be written

x�i = Di

 
p;

nX
i=1

piRi

!
(5.4)

Obviously a change in prices will in general induce a change in resource incomes
as well as changes in consumption demand. Consider the implications of the
demand function (5.4). Obviously if, for some i, the optimum value of x�i is
greater than Ri we have a fairly conventional case of consumption demand for
this good; but if x�i < Ri (and pi > 0) then an amount Ri�x�i is being supplied
to the market. Factor supply by households can thus be treated symmetrically
with consumption demand by households within this simple model.
Now let us examine the comparative statics of these demand functions (since

each Ri is �xed, to get the e¤ect on the supply in each case below, simply put
a minus sign in front). First consider the e¤ect on consumer demand of an
increase in the endowment Rj : this simply augments the person�s income by
an amount proportional to pj . So the net result is a simple modi�cation of the
income e¤ect that we introduced above:

dx�i
dRj

= Di
y(p; y)pj (5.5)

Next consider a change in pj , the price of good j: this now has a direct e¤ect
through the �rst argument of Dj ; and if y were somehow to be held constant
then we know that the Slutsky decomposition formula (4.21) would apply; but
of course y is not held constant: equation (5.1) makes clear that if the consumer
has a positive stock of good j then as pj increases, so too does y, as given by
equation (5.2). Taking into account this indirect e¤ect of pj as well, we have to
modify the exogenous-income formula (4.21) to read1

dx�i
dpj

= Hi
j(p; �)�

�
x�j �Rj

�
Di
y(p; y) (5.6)

Notice the importance of the sign of the term [x�j �Rj ] in (5.6). Let us suppose
that good i (oil) is a normal good (so that the term Di

y is positive). If the price
of oil goes up and you are net oil demander (so x�j > Rj) this event is bad news
and it is clear from (5.4) that the impact on demand is similar to the exogenous
income case; but if you are a net oil supplier (for whom x�j < Rj) this is good
news and the income e¤ect goes in the other direction.

1 Fill in the one missing step in going from (4.21) to (5.6).
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Figure 5.1: The o¤er curve

The o¤er curve

In cases where Rj�x�j > 0 �where the individual is a net supplier �you may get
responses to price changes that might appear to be strange. To see this, look at
Figure 5.1 that introduces a useful concept for cases where consumers�incomes
are determined endogenously, the o¤er curve. This is the set of consumption
bundles demanded (trades o¤ered) at di¤erent prices. The initial resource en-
dowment is denoted R and the original budget constraint is indicated by the
shaded triangle: clearly the optimal consumption bundle is at x� where the
person supplies an amount R1 � x�1 in order to buy extra units of commodity
2. If the price of good 1 rises (equivalently, the price of good 2 falls) then the
optimum shifts to x�� and then to x���. Notice that, while the consumption of
good 2 increases steadily, the supply of good 1 at �rst rises and then falls. The
locus of equilibrium points (on which x�;x�� and x��� lie) is the o¤er curve and
its shape clearly depends on the position of R.

Household supply function

From the analysis that yields o¤er curve we can get another useful tool. Plot
slope of the budget line in Figure 5.1 against R1 � x1. Then we have the
household supply curve �see Figure 5.2.2 Notice how the way the o¤er curve

2 To get from Figure 5.1 to Figure 5.2 it is convenient to use an intermediate �gure showing
quantity of good 2 demanded against quantity of good 1 supplied. Dewscribe how to generate
this �gure.
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Figure 5.2: The household�s supply of good 1

bends around in Figure 5.1 (due, of course to the rôle of the income e¤ect) is
re�ected in the shape of the curve in Figure 5.1: in this case the supply curve
eventually �bends backwards.�There are several applications of this analysis to
be found in the applied economics literature: labour supply, savings, agricultural
production. Let us think through a simpli�ed version of the �rst two of these.

5.3.1 Labour supply

To get a usable model of labour supply we just need to reinterpret the elements
of the above model. Suppose commodity 1 represents �time�that is desired as
a consumption good in its own right. Time can either be spent in paid work
earning money income (so as to buy the other consumption goods) or is spent
at home in the form of leisure. So x1, the consumption of good 1, represents
hours of leisure. R1 is the total number of hours available (168 per week?) to
the worker, so that the expression ` := R1�x1 is obviously hours spent at work.
p1, the price of commodity 1, is the hourly wage rate: for convenience let us



104 CHAPTER 5. THE CONSUMER AND THE MARKET

relabel this as w. In principle we have total income determined thus:3

y = w`+ y0 (5.7)

where y0 is any non-labour income of the household.
Now, remembering that d` = �dx1, we can modify (5.6) to get the e¤ect of

a small change in the wage rate on an individual�s labour supply:

@`

@w
=

d`

dw

����
�=const

+ `
@`

@y
(5.8)

De�ne ordinary and compensated wage-elasticities and income elasticity for
the supply of labour (Cf Exercise 4.5) as follows:

" :=
w

`

@`

@w
; "� :=

w

`

d`

dw

����
�=const

; "y :=
y

`

@`

@y

Then, if non-labour income, y0, is zero, (5.8) gives us:

" = "� + "y : (5.9)

Example 5.1 The relationship (5.9) can be used to analyse the estimates of
the labour-supply response of workers from sample survey data. Table 5.1 gives
a typical picture for the UK. Notice that the second column (the substitution
e¤ect) has to be positive, but the last column (the e¤ect of an extra £ 1 of
�other income� on a person�s market work) could be of either sign and of
any magnitude. Men have a labour-supply curve which slopes the �wrong�
way (a negative elasticity overall because of the big negative income e¤ect),
but women (without too many children) have a conventional, upward-sloping
labour-supply curve; also the more children she has, the less responsive is a
woman�s labour supply to the market wage rate (look at the substitution e¤ect).

5.3.2 Savings

Again we just need to reinterpret the basic model components. First, the com-
modities: a lot of progress can be made just by taking a two-period model (�the
present�, �the future�) where xi is consumption in period i, i = 1; 2. The con-
sumer may have an endowment of resource in each of the two periods (R1; R2)
and savings are simply the supply by household of commodity 1 to the market
R1 � x1 (a negative value, of course, is interpreted as borrowing).

3 Suppose that instead of (5.7) the individual were o¤ered a premium rate for working
overtime.
(a) Write down the budget constraint and draw a sketch of the budget set in (x1; x2)-space.
(b) Do the same in (`; y)-space.
(c) What will be the implications of the shape of this set for the labour supply function?

[Hint: check out the answer to footnote question 14 in Chapter 4 �see page 84.]
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" "� "y
Men: -0.23 +0.13 -0.36
Women:

No children +0.43 +0.65 -0.22
One child +0.10 +0.32 -0.22
Two children -0.19 +0.03 -0.22

Source: Blundell and Walker (1982)

Table 5.1: Own-wage labour-supply responses for di¤erent types of UK workers

What about prices? Suppose that there is a rate of interest r in this two-
period world �one unit of consumption saved in the present yields an additional
r units in the future. So one unit of good 1 is worth 1 + r units of good 2; in
other words

p1
p2
= 1 + r (5.10)

is the relative price of good 1 using good 2 as the unit of value, or numéraire.
There is a terminological di¢ culty with �income� in this interpretation of

the model. Common parlance refers to the monetary �ow to the household per
period as its �income� for that period. But of course this is not the same as
the concept of income that we have used throughout this chapter and chapter 4.
Suppose the savings and loans market is such that there is everywhere a uniform
interest rate r �the same whether you are a lender or a borrower. Of course
such a �perfect�market is a strong assumption (Exercises 5.3 and 5.4 invite
you to think through the consequences of dropping it) but it permits a natural
extension and interpretation of the approach epitomised in equation (5.1). The
income concept that we want is the total value of the household�s resources over
the two periods (R1; R2). Using (5.10) this can be expressed in units of good 2
as [1 + r]R1 +R2; however, it is slightly more convenient to express it in units
of good 1, in which case the value of household resources is

y := R1 +
R2
1 + r

(5.11)

is the present value (�lifetime income�). Under the perfect market assumption
the budget constraint can then be written

x1 +
x2
1 + r

� y (5.12)

where y is given by (5.11).
Consider preferences in this model. It is convenient to impose a more speci�c

on the structure of utility function

U (x1; x2) = u (x1) + �u (x2) (5.13)
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Figure 5.3: The savings problem

where u is an increasing, concave function.4 It is not necessary to do this for
the main results which follow, and it may not be an appropriate representation
of some people�s intertemporal preferences.5 However, the special structure
permits a natural and appealing intuition: consider a consumption vector that
gives the person equal amounts in each of the two periods then, using De�nition
4.3 (page 80), we have MRS12 = �; we can think of the parameter as the rate
of pure time preference.
Now examine the equilibrium. If we work with the perfect-market assump-

tion then the model and its solution are illustrated in Figure 5.3. The case drawn
shows someone with a lot of resources in period 1 but very little in period 2.6

Furthermore it illustrates the point (actually just a rehash of the same point
made in the case of labour supply in 5.3.1 above) that savings may eventually
decrease with the interest rate.
Will the consumer bias his consumption towards the present or the future?

Intuition suggests � that if the pure rate of time preference is high then the
person is likely to spend more of lifetime resources on future rather than present

4Extend the formulation in (5.13) to the case where the consumer makes a choice over n
periods. If n tends to in�nity, why would it make sense to impose the restriction � < 1?

5A consumer lives for three periods: Breakfast, Lunch and Tea. If he gets higher
consumption at Lunch this increases the amount of consumption at Breakfast that he is
prepared to sacri�ce in order to increase his consumption at Tea. Explain why these pref-
erences are inconsistent with the type of model given in (5.13) and generalised in footnote
4.

6 Identify on the diagram the interest income that the household receives in period 2.
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consumption. In fact we have7

x�2 ? x�1 according as � ?
1

1 + r
:

5.4 Household production

Some items of household consumption cannot be bought and sold on the mar-
ket �or at least there are no obvious close substitutes. Instead they must be
produced within the household using other purchased goods as inputs. Family
home videos, child care, vacation trips are possible examples, as are many other
leisure activities where time and other commodities are expended within the
household to produce �goods� that are enjoyed directly but which cannot be
bought or sold.
Suppose the household faces a perfect market in some commodities but that

certain consumption goods are not purchasable. Although in practice there
may be goods that are used both as inputs and which yield utility directly to
�x ideas, let us suppose that there just two categories of commodities:

1. m �household inputs�which do not yield utility directly, but which may
be purchased (or sold) at prices w1; :::; wm.

2. n �household outputs�x1; :::; xn, which yield utility directly, but cannot
be bought or sold in the market.

The household has a technology for transforming the purchased inputs into
outputs. The household needs both to select the right bundle of outputs and to
�nd the appropriate technique (i.e. combination of market inputs) for producing
that bundle.
Take �rst a �xed proportions technology of the sort introduced in Exercise

2.10 in chapter 2. The production function here for outputs x1; :::; xn from
inputs z1; :::; zm is given by

xi = min

�
z1
ai1

; :::;
zm
aim

�
i = 1; :::; n (5.14)

where aij is the minimum amount of input j needed to produce one unit of
output i. As long as at least one good i has positive marginal utility, the
household would wish to transform inputs into outputs e¢ ciently. If the person
wants to consume an amount xi of that good this will require aijxi units of
input j. Hence the minimum cost of producing a bundle x is

C(w;x) =
nX
i=1

mX
j=1

wjaijxi

=
nX
i=1

�ixi (5.15)

7Show this. [ Hint: set up the Lagrangean for the case where utility is given by (5.13) and
the budget constraint is given by (5.12)]
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where

�i :=
mX
j=1

aijwj (5.16)

is the notional �price�of output i to the consumer given the household�s pro-
duction technology.
The household�s income is given by a minor adaptation of (5.1) as

y =
mX
j=i

Rjwj : (5.17)

So, using (5.15)�(5.17) in the case of a �xed-proportions technology, the attain-
able set of vectors x that can be reached by a consumer with resources R and
facing input prices w is (

x : x 2 X;
nX
i=1

�ixi � y

)
(5.18)

In general the idea of the attainable set can be thought of as a generalisation
of the consumer�s budget set, although in this case the attainable set (5.18) is
equivalent to a simple linear budget constraint �see Figure 4.2.
The problem becomes more interesting if it is possible to substitute amongst

inputs in the household production process. Assume that the domestic ��rm�
will be operated as an e¢ cient economic unit, so that inputs z1; :::; zm are ad-
justed to minimise cost. This yields a cost function C(w;x), the minimum
value of

Pm
j=1 wjzj required to obtain the speci�ed n-vector of output x: Obvi-

ously this cost must not exceed y, the value of the household�s resources, so the
attainable set of outputs A is given by

A(R;w) :=

8<:x : C(w;x) �
mX
j=1

Rjwj

9=; (5.19)

Clearly the e¤ective budget constraint need no longer be a straight line. But
the attainable set must be convex if the household�s production technology is
convex �see Figure 5.4.8

The remainder of the household�s optimisation problem can be illustrated in
Figure 5.4. Given the attainable set the consumer selects the optimum combi-
nation of non-market goods in the usual fashion by a constrained maximisation
of U(x). This determines a point such as x�, which in turn determines the
optimal combination of purchased inputs through the appropriate technique in
the household production set.
Once again let us see what e¤ects certain exogenous changes have upon the

household�s consumption plan. In the �xed proportions case (5.14) a change in
any of the input prices w1; :::; wm or a change in any of the production coe¢ cients

8 Use de�nition A.17 to show why this must be true.
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Figure 5.4: General household production model

aij will shift the budget constraint.9 However if some substitution is possible,
a rather more interesting picture emerges. To see this, consider another special
case � the general linear technology. Let input j have a constant marginal
productivity bij in the production of output i. Then, if the input vector z1; :::; zm
is selected, the amount of consumption good i that is produced is given by

xi =

mX
j=1

bijzj (5.20)

Contrast this with the �xed proportions technology (5.14). If m > n, not
all inputs will be purchased �in fact at least m� n will be redundant, in that
optimal purchases of them will be zero. Which ones are redundant depends on
the input prices w and the objective function U . The situation is illustrated
in Figure 5.5 for the case n = 2, m = 7. The household�s attainable set is a
polyhedron, so that the boundary is piecewise linear. The coordinates of any
vertex are �

b1j
wj

y;
b2j
wj

y

�
(5.21)

This shows the amount of x1 and x2 that could be purchased if the entire budget
was spent on input zj . The slope of the frontier between vertex j and vertex

9 Provide a one-line explanation of why this happens.
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Figure 5.5: Consumption in the household-production model

j + 1 is
wjb2j+1 � wj+1b2j
wjb1j+1 � wj+1b1j

: (5.22)

We can think of this as ratio of notional prices �1=�2. So it is clear that a simple
increase in the budget y (from a larger resource endowment) just �in�ates�the
attainable set � look at the way each vertex (5.21) changes with y �without
altering the relative slopes of di¤erent parts of the frontier (5.22). However
changes in input prices or productivities will change the shape of the frontier.
As illustrated the household would consume at x� using a combination of

input (market good) 4 and input 5 to provide itself with output goods 1 and 2.
The household does not bother buying market good 3 because its market price
is too high. Now suppose something happens to reduce the price of market
good 3 � w3 falls in (5.21) and (5.22). Clearly the frontier is deformed by
this �vertex 3 is shifted out along the ray through 0. Assume that R3 = 0:
then, if the price of market good 3 falls only a little, nothing happens to the
household�s equilibrium;10 the new frontier shifts slightly outwards at vertex 3
and the household carries on consuming at x�. But suppose the price w3 falls a
lot, so that the vertex moves out as shown in in Figure 5.6. Note that techniques
4 and 5 have now both dropped out of consideration altogether and lie inside the
new frontier. Market good 3 has become so cheap as to render them ine¢ cient:
the consumer uses a combination of the now inexpensive market good 3 and

10 How would this behaviour change if R3 > 0?
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Figure 5.6: Market price change causes a switch

market good 6 in order to produce the desired consumption goods that yield
utility directly. The household�s new consumption point is at x��.
The fact that some commodities are purchased by households not for direct

consumption but as inputs to produce other goods within the household enables
us to understand a number of phenomena that are di¢ cult to reconcile in the
simple consumer-choice model of section 4.5 (chapter 4):

� If m > n, some market goods may not be purchased. By contrast, in
the model of chapter 4, if all indi¤erence curves are strictly convex to the
origin, all goods must be consumed in positive amounts.

� If the market price of a good falls, or indeed if there is a technical im-
provement in some input this may lead to no change in the consumer�s
equilibrium.

� Even though each xi may be a �normal�good, certain purchased market
goods may appear �inferior�if preferences are non-homothetic.11

� The demand for inputs purchased in the market may exhibit jumps: as
the price of an input drops to a critical level we may get a sudden switch
from one facet to another in the optimal consumption plan.

11 Provide an intuitive argument why this may occur.
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5.5 Aggregation over goods

If we were to try to use any of the consumer models in an empirical study we
would encounter a number of practical di¢ culties. If we want to capture the �ne
detail of consumer choice, distinguishing not just broad categories of consumer
expenditure (food, clothing, housing....) but individual product types within
those categories (olive oil, peanut oil) almost certainly this would require that
a lot of components in the commodity vector will be zero. Zero quantities are
awkward for some versions of the consumer model, although they �t naturally
into the household production paradigm of section 5.4; they may raise prob-
lems in the speci�cation of an econometric model. Furthermore attempting to
implement the model on the kind of data that are likely to be available from
budget surveys may mean that one has to deal with broad commodity categories
anyway.
This raises a number of deeper questions: How is n, the number of com-

modities determined? Should it be taken as a �xed number? What determines
the commodity boundaries?
These problems could be swept aside if we could be assured of some de-

gree of consistency between the model of consumer behaviour where a very �ne
distinction is made between commodity types and one that involves coarser
groupings. Fortunately we can appeal to a standard commonsense result (proof
is in Appendix C):

Theorem 5.1 (Composite commodity) The relative price of good 3 in terms
of good 2 always remains the same. Then maximising U(x1; x2; x3) subject to
p1x1 + p2x2 + p3x3 � y is equivalent to maximising a function U(x1; x) subject
to p1x1 + px � y where p := p2 + p3, x := �x2 + [1� �]x3, � := p2=p.

An extension of this result can be made from three to an arbitrary number of
commodities,12 so e¤ectively resolving the problem of aggregation over groups
of goods. The implication of Theorem 5.1 is that if the relative prices of a group
of commodities remain unchanged we can treat this group as though it were a
single commodity.
The result is powerful, because in many cases it makes sense to simplify

an economic model from n commodities to two: theorem 5.1 shows that this
simpli�cation is legitimate, providing we are prepared to make the assumption
about relative prices.

5.6 Aggregation of consumers

Translating the elementary models of consumption to a real-world application
will almost certainly involve a second type of aggregation � over consumers.
We are not talking here about subsuming individuals into larger groups �such
as families, households, tribes � that might be considered to have their own

12 Provide a one-line argument of why this can be done.
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coherent objectives.13 We need to do something that is much more basic �
essentially we want to do the same kind of operation for consumers as we did for
�rms in section 3.2 of chapter 3. We will �nd that this can be largely interpreted
as treating the problem of analysing the behaviour of the mass of consumers as
though it were that of a �representative�consumer �representative of the mass
of consumers present in the market.
To address the problem of aggregating individual or household demands we

need to extend our notation a little. Write an h superscript for things that
pertain speci�cally to household h so:

� yh is the income of household h

� xhi means the consumption by h of commodity i,

� Dhi is the corresponding demand function.

We also write nh for the number of households.
The issues that we need to address are: (a) How is aggregate (market) de-

mand for commodity i related to the demand for i by each individual household
h ? (b) What additional conditions, if any, need to be imposed on preferences
in order to get sensible results from the aggregation? Let us do this in three
steps.

Adding up the goods

Suppose we know exactly the amount that is being consumed by each household
of a particular good:

xhi ; h = 1; :::; nh: (5.23)

To get the total amount of i that is being consumed in the economy, it might
seem that we should just stick a summation sign in front of (5.23) so as to get

nhX
h=1

xhi : (5.24)

But this step would involve introducing an important, and perhaps unwarranted,
assumption �that all goods are �rival�goods. By this we mean that that my
consumption of one more unit of good i means that there is one less unit of good
i for everyone else. We shall, for now, make this assumption; in fact we shall
go a stage further and assume that we are only dealing with pure private goods
�goods that are both rival and �excludable� in that it is possible to charge a
price for them in the market.14 We shall have a lot more to say about rivalness
and excludability in chapters 9 onwards.

13 Is there any sensible meaning to be given to aggregate preference orderings?
14 Can you think of a good or service that is not rival? One that is not excludable?
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Figure 5.7: Aggregation of consumer demand

The representative consumer

If all goods are �private goods�then we get aggregate demand xi as a function of
p (the same price vector for everyone) simply by adding up individual demand
functions:

xi(p) :=

nhX
h=1

Dhi
�
p; yh

�
(5.25)

The idea of equation (5.25) is depicted in the two-person case in Figure 5.7
and it seems that the elementary process is similar to that of aggregating the
supply of output by �rms, depicted in Figures 3.1 and 3.2. There are similar
caveats on aggregation and market equilibrium as for the �rm15 �see pages 51
to 53 for a reminder �but in the case of aggregating over consumers there is a
more subtle problem.
Will the entity in (5.25) behave like a �proper� demand function? The

problem is that a demand function typically is de�ned on prices and some simple
measure of income �but clearly the right-hand side of (5.25) could be sensitive
to the distribution of income amongst households, not just its total. One way
of addressing this issue is to consider the problem as that of characterising the
behaviour of a representative consumer. This could be done by focusing on the
person with average income16

�y :=
1

nh

nhX
h=1

yh

15 Take the beer-and-cider example of Chapter 4�s note 9 (page 80). Show that my demand
for cider on a Friday night has a discontinuity. Suppose my tastes and income are typical for
everyone in London. Explain why London�s demand for cider on a Friday night is e¤ectively
continuous.
16 This is a very narrow de�nition of the �representative consumer� that makes the calcu-

lation easy: suggest some alternative implementable de�nitions.
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Figure 5.8: Aggregable demand functions

and the average consumption of commodity i

xi :=
1

nh

nhX
h=1

xhi :

Then the key question to consider is whether it is possible to write the com-
modity demands for the person on average income as:

xi = �Di (p; �y) (5.26)

where each �Di behaves like a conventional demand curve. If such a relationship
exists, then we may write:

�Di (p; �y) =
1

nh

nhX
h=1

Dhi
�
p; yh

�
(5.27)

If you were to pick some set of functions Dhi out of the air �even though they
were valid demand functions for each individual household � they might well
not be capable of satisfying the aggregation criterion in (5.26) and (5.27) above.
In fact we can prove (see Appendix C)

Theorem 5.2 (Representative Consumer) Average demand in the market
can be written in the form (5.26) if and only if, for all prices and incomes,
individual demand functions have the form

Dhi
�
p; yh

�
= ahi (p) + y

hbi(p) (5.28)
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Figure 5.9: Odd things happen when Alf and Bill�s demands are combined

In other words aggregability across consumers imposes a stringent require-
ment on the ordinary demand curves for any one good i �for every household h
the so-called Engel curve for i (demand for i plotted against income) must have
the same slope (the number bi(p)). This is illustrated in Figure 5.8. Of course
imposing this requirement on the demand function also imposes a correspond-
ing condition on the class of utility functions that allow one to characterise the
behaviour of the market as though it were that of a representative consumer.

Market demand and WARP

What happens if this regularity condition is not satis�ed? Aggregate demand
may behave very oddly indeed. There is an even deeper problem than just
the possibility that market demand may depend on income distribution. This is
illustrated in Figure 5.9 which allows for the possibility that incomes are endoge-
nously determined by prices as in (5.1). Alf and Bill each have conventionally
shaped utility functions: although clearly they di¤er markedly in terms of their
income e¤ects: in neither case is there a �Gi¤en good�. The original prices are
shown by the budget sets in the �rst two panels: Alf�s demands are at point
xa and Bill�s at xb. Prices then change so that good 1 is cheaper (the budget
constraint is now the �atter line): Alf�s and Bill�s demands are now at points
xa0 and xb0 respectively; clearly their individual demands satisfy the Weak Ax-
iom of Revealed Preference. However, look now at the combined result of their
behaviour (third panel): the average demand shifts from x to x0. It is clear that
this change in average demand could not be made consistent with the behaviour
of some imaginary �representative consumer��it does not even satisfy WARP!

5.7 Summary

The demand analysis that follows from the structure of chapter 4 is powerful: the
issue of the supply to the market by households can be modelled using a minor
tweak of standard demand functions, by making incomes endogenous. This in
turn opens the door to a number of important applications in the economics of
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the household �to the analysis of labour supply and of the demand for loans
and the supply of savings, for example.
Introducing the production model of chapter 2 alongside conventional prefer-

ence analysis permits a useful separation between �goods�that enter the utility
function directly and �commodities� that are bought in the market, not for
their own sake, but to produce the goods. It enables us to understand market
phenomena that are not easily reconciled with the workings of the models de-
scribed in chapter 4 such as jumps in commodity demand and the fact that large
numbers of individual commodities are not purchased at all by some consumers.
We will also �nd �in chapter 8 �that it can form a useful basis for the economic
analysis of �nancial assets.
There are a number of cases where it makes good sense to consider a re-

stricted class of utility functions. To be able to aggregate consistently it is
helpful if utility functions belong to the class that yield demand functions that
are linear in income.
These developments of the basic consumer model to take into account the

realities of the marketplace facilitate the econometric modelling of the household
and they will provide some of the building blocks for the analysis of chapters 6
and 7.

5.8 Reading notes

The consumer model with endogenous income is covered in Deaton and Muell-
bauer (1980), chapters 11 and 12. The basis of the household production model
is given in Lancaster (1966)�s seminal work on goods and characteristics; Becker
(1965) pioneered a version of this model focusing on the allocation of time.

5.9 Exercises

5.1 A peasant consumer has the utility function

a log (x1) + [1� a] log (x2 � k)

where good 1 is rice and good 2 is a �basket� of all other commodities, and
0 < a < 1, k � 0.

1. Brie�y interpret the parameters a and k.

2. Assume that the peasant is endowed with �xed amounts (R1; R2) of the two
goods and that market prices for the two goods are known. Under what
circumstances will the peasant wish to supply rice to the market? Will the
supply of rice increase with the price of rice?

3. What would be the e¤ect of imposing a quota ration on the consumption
of good 2?
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5.2 Take the model of Exercise 5.1. Suppose that it is possible for the peasant
to invest in rice production. Sacri�cing an amount z of commodity 2 would
yield additional rice output of

b
�
1� e�z

�
where b > 0 is a productivity parameter.

1. What is the investment that will maximise the peasant�s income?

2. Assuming that investment is chosen so as to maximise income �nd the
peasant�s supply of rice to the market.

3. Explain how investment in rice production and the supply of rice to the
market is a¤ected by b and the price of rice. What happens if the price of
rice falls below 1=b?

5.3 Consider a household with a two-period utility function of the form speci�ed
in Exercise 4.7 (page 95). Suppose that the individual receives an exogenously
given income stream (y1; y2) over the two periods, assuming that the individual
faces a perfect market for borrowing and lending at a uniform rate r.

1. Examine the e¤ects of varying y1,y2 and r on the optimal consumption
pattern.

2. Will �rst-period savings rise or fall with the rate of interest?

3. How would your answer be a¤ected by a total ban on borrowing?

5.4 A consumer lives for two periods and has the utility function

� log (x1 � k) + [1� �] log (x2 � k)

where xt is consumption in period t, and �, k are parameters such that 0 < � < 1
and k � 0. The consumer is endowed with an exogenous income stream (y1; y2)
and he can lend on the capital market at a �xed interest rate r, but is not allowed
to borrow.

1. Interpret the parameters of the utility function.

2. Assume that y1 � �y where

�y := k � �

1� �

�
y2 � k
1 + r

�
Find the individual�s optimal consumption in each period.

3. If y1 � �y what is the impact on period 1 consumption of

(a) an increase in the interest rate?
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(b) an increase in y1?

(c) an increase in y2?

4. How would the answer to parts (b) and (c) change if y1 < �y ?

5.5 Suppose a person is endowed with a given amount of non-wage income �y
and an ability to earn labour income which is re�ected in his or her market
wage w. He or she chooses `, the proportion of available time worked, in order
to maximise the utility function x� [1� `]1�� where x is total money income �
the sum of non-wage income and income from work. Find the optimal labour
supply as a function of �y, w, and �. Under what circumstances will the person
choose not to work?

5.6 A household consists of two individuals who are both potential workers
and who pool their budgets. The preferences are represented by a single utility
function U(x0; x1; x2) where x1 is the amount of leisure enjoyed by person 1,
x2 is the amount of leisure enjoyed by person 2, and x0 is the amount of the
single, composite consumption good enjoyed by the household. The two members
of the household have, respectively (T1; T2) hours which can either be enjoyed as
leisure or spent in paid work. The hourly wage rates for the two individuals are
w1, w2 respectively, they jointly have non-wage income of �y, and the price of
the composite consumption good is unity.

1. Write down the budget constraint for the household.

2. If the utility function U takes the form

U(x0; x1; x2) =
2X
i=0

�i log(xi � �i) : (5.29)

where �i and �i are parameters such that �i � 0 and �i > 0, �0+�1+�2 =
1, interpret these parameters. Solve the household�s optimisation problem
and show that the demand for the consumption good is:

x�0 = �0 + �0 [[�y + w1T1 + w2T2]� [�0 + w1�1 + w2�2]]

3. Write down the labour supply function for the two individuals.

4. What is the response of an individual�s labour supply to an increase in

(a) his/her own wage,

(b) the other person�s wage, and

(c) the non-wage income?
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5.7 Let the demand by household 1 for good 1 be given by

x11 =

8<:
y
4p1

if p1 > a
y
2p1

if p1 < a
y
4a or

y
2a if pi = a

9=; ;

where a > 0.

1. Draw this demand curve and sketch an indi¤erence map that would yield
it.

2. Let household 2 have identical income y: write down the average demand
of households 1 and 2 for good 1 and show that at p1 = a there are now
three possible values of 12 [x

1
1 + x

2
1].

3. Extend the argument to nh identical consumers. Show that nh ! 1 the
possible values of the consumption of good 1 per household becomes the
entire segment

�
y
4a ;

y
2a

�
.



Chapter 6

A Simple Economy

I had nothing to covet; for I had all that I was now capable of
enjoying. I was lord of the whole manor; or, if I pleased, I might
call myself king, or emperor over the whole country which I had
possession of. There were no rivals. I had no competitor, none to
dispute sovereignty or command with me. ... But all I could make
use of was all that was valuable. ... The nature and experience of
things dictated to me upon just re�ection that all the good things
of this world are of no farther good to us than they are for our use.
�Daniel Defoe, Robinson Crusoe, p. 128, 129.

6.1 Introduction

Now that we have seen how each of the principal actors in microeconomic models
behave and how their responses to price signals can be modelled, we could just
go ahead and build a fully formed, multi-featured general model of price-taking
equilibrium. This will indeed be done in chapter 7. But �rst we need to focus
on just one point: the issues that arise from �closing� the economic system,
without yet introducing the complication of large numbers of economic agents.
To do this we will build a self-contained model of a very simple economy

The initial step of building a self-contained model of an economic system
will yield an important insight. In the discussion so far we have treated the
analysis of the �rm and of the household as logically separate problems and
have assumed there is access to a �perfect�market which permits buying and
selling at known prices. Now we will be able see some economic reasons why this
logical separation of consumption and production decisions may make sense.

121
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Figure 6.1: Three basic production processes

6.2 Another look at production

In chapter 2 (section 2.5) we focused on the case of a single �rm that produced
many outputs using many inputs. We need to look at this again because the
multiproduct-�rm model is an ideal tool for switching the focus of our analysis
from an isolated enterprise to an entire economy. It is useful to be able to
think about a collection of production processes that deal with di¤erent parts
of the economy and their relationship to one another. Fortunately there is a
comparatively easy way of doing this.

6.2.1 Processes and net outputs

In order to describe the technological possibilities it is useful to use the concept
brie�y introduced in chapter 2:

De�nition 6.1 The net output vector q is a list of all potential inputs to and
outputs from a production process, using the convention that outputs are mea-
sured positively and inputs negatively.

We can apply this concept at the level of a particular production process or
to the economy as a whole. At each level of operation if more of commodity i is
being produced than is being used as input, then qi is positive, whereas if more
of i is used up than is produced as output, then qi is negative. To illustrate this
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usage and its application to multiple production processes, consider Figure 6.1
which illustrates three processes in which labour, land, pigs and potatoes are
used as inputs, and pigs, potatoes and sausages are obtained as outputs.
We could represent process 1 in vector form as

q1 =

266664
0 [sausages]

990 [potatoes]
0 [pigs]

�10 [labour]
�1 [land]

377775 (6.1)

and processes 2 and 3, respectively as:

q2 =

266664
0 [sausages]

�90 [potatoes]
+20 [pigs]
�10 [labour]
0 [land]

377775 (6.2)

q3 =

266664
+1000 [sausages]

0 [potatoes]
�20 [pigs]
�10 [labour]
0 [land]

377775 (6.3)

Expressions (6.1) to (6.3) give a succinct description of each of the processes.
But we could also imagine a simpli�ed economy in which these �ve commodities
were the only economic goods and q1 to q3 were the only production processes.
If we wanted to view the situation in the economy as a whole we can do so by
just adding up the vectors in (6.1) to (6.3): q = q1 + q2 + q3: netting out
intermediate goods and combining the three separate production stages in we
�nd the overall result described by the net output vector

q =

266664
+1000
+900

0
�30
�1

377775 (6.4)

So, viewed from the point of view of the economy as a whole, our three processes
produce sausages and potatoes as outputs using labour and labour as inputs;
pigs are a pure intermediate good.
In sum, we have a simple method of deriving the production process in the

economy as a whole, q, from its constituent parts. But this leaves open a number
of issues: How do we handle multiple techniques in each process? What is the
relationship of this approach to the production function introduced in section
2.5? Is the simple adding-up procedure always valid?
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6.2.2 The technology

The vectors in (6.1) to (6.3) or their combination (6.4) describe one possible list
of production activities. It is useful to be able to describe the �state of the art�,
the set of all available processes for transforming inputs into outputs �i.e. the
technology. We shall accordingly refer to Q, a subset of Euclidean n-space, Rn,
as the technology set (also known as the production set.) If we write q 2 Q we
mean simply that the list of inputs and outputs given by the vector is technically
feasible. We assume the set Q is exogenously given �a preordained collection
of blueprints of the production process. Our immediate task is to consider the
possible structure of the set Q: the characteristics of the set that incorporate
the properties of the technology.
We approach this task by imposing on Q a set of axioms which seem to

provide a plausible description of the technology available to the community.
These axioms will then form a basis of almost all our subsequent discussion of
the production side of the economy, although sometimes one or other of them
may be relaxed. We shall proceed by �rst providing a formal statement of the
axioms, and then considering what each means in intuitive terms.
The �rst four axioms incorporate some very basic ideas about what we mean

by the concept of production: zero inputs mean zero outputs; production can-
not be �turned around� so that outputs become inputs and vice versa; it is
technologically feasible to �waste�outputs or inputs. Formally:

Axiom 6.1 (Possibility of inaction) 0 2 Q.

Axiom 6.2 (No free lunch) Q \ Rn+ = f0g.

Axiom 6.3 (Irreversibility) Q \ (�Q) = f0g.

Axiom 6.4 (Free disposal) If q� 2 Q and q � q� then q 2 Q.

The next two axioms introduce rather more sophisticated ideas and, as we
shall see, are more open to question. They relate, respectively, to the possibility
of combining and dividing production processes.

Axiom 6.5 (Additivity) If q0 and q00 2 Q then q0 + q00 2 Q.

Axiom 6.6 (Divisibility) If 0 < t < 1 and q� 2 Q then tq� 2 Q.

Let us see the implications of all six axioms by using a diagram. Accordingly
take Process III in Figure 6.1 and consider the technology of turning pigs (good
3) and labour (good 4) into sausages (good 1). In Figure 6.2 the vector q�

q� = (1800; 0;�18;�20; 0) (6.5)

represents one speci�c technique in terms of the list of the two inputs and the
output they produce;

q0 = (500; 0;�10;�5; 0) (6.6)
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Figure 6.2: Labour and pigs produce sausages

represents another, less labour-intensive technique producing less output. The
three unlabelled vectors represent other techniques for combining the two inputs
to produce sausages: note that all �ve points lie in the (+; �;�;�; �) orthant
indicating that sausages are the output (+), pigs and labour the inputs (�) �
the two ���symbols are there just to remind us that goods 2 (potatoes) and 5
(land) are irrelevant in this production process.
These axioms can be used to build up a picture of the technology set in Figure

6.3. Axiom 6.1 simply states that the origin 0 must belong to the technology
set � no pigs, no labour: no sausages. Axiom 6.2 rules out there being any
points in the (�;+; �;+;+; �) orthant �you cannot have a technique that produces
sausages and pigs and labour time to be enjoyed as leisure. Axiom 6.3 �xes the
�direction�of production in that the sausage machine does not have a reverse
gear � if q is technically possible, then there is no feasible vector �q lying in
the (�;�; �;+;+; �) direction whereby labour time and pigs are produced from
sausages. Axiom 6.4 just says that outputs may be thrown away and inputs
wasted, so that the entire negative orthant belongs to Q.
The implications of the additivity axiom are seen if we introduce q00 =

(0; 0;�12; 0; 0) in Figure 6.3: this is another feasible (but not very exciting)
technique, whereby if one has pigs but not labour one gets zero sausages. Now
consider again q0 in (6.6); then additivity implies that (500; 0;�22;�5; 0) must
also be a technically feasible net output vector: it is formed from the sum of
the vectors q0and q00. Clearly a further implication of additivity is, for example,
that (1000; 0;�20;�10; 0) is a technically feasible vector: it is formed just by
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Figure 6.3: The technology set Q

doubling q0. The divisibility axiom says that if we have a point representing a
feasible input/output combination then any point on the ray joining it to the
origin must represent a feasible technique too. Hence, because q� in (6.5) is
feasible, the technique 1

2q
� =(900; 0;�9;�10; 0) is also technologically feasible;

hence also the entire cone shape in Figure 6.3 must belong to Q.
Axioms 6.1�6.3 are fairly unexceptionable, and it is not easy to imagine

circumstances under which one would want to relax them. The free disposal
axiom 6.4 is almost innocuous: perhaps only the case of noxious wastes and the
like need to be excluded. However, we should think some more about Axioms
6.5 and 6.6 before moving on.
The additivity axiom rules out the possibility of decreasing returns to scale

�de�ned analogously to the way we did it for the case of a single output on
page 16. As long as every single output is correctly identi�ed and accounted for
this axiom seems reasonable: if, say, land were also required for sausage making
then it might well be the case that multiplying the vector q0 by 2000 would
produce less than a million sausages, because the sausage makers might get in
each other�s way �but this is clearly a problem of incomplete speci�cation of
the model, not the inappropriateness of the axiom. However, at the level of
the individual �rm (rather than across the whole economy) apparent violations
of additivity may be relevant. If certain essential features of the �rm are non-
expandable, then decreasing returns may apply within the �rm; in the whole
economy additivity might still apply if �clones�of individual �rms could be set
up.
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Figure 6.4: The potato-sausage tradeo¤

The divisibility axiom rules out increasing returns (since this implies that any
net output vector can be �scaled down�to any arbitrary extent) and is perhaps
the most suspect. Clearly some processes do involve indivisibilities, and whilst
it is reasonable to speak of single pigs or quarter pigs in process III, there is
an obvious irreducible minimum of two pigs required for process II!1 However,
as we shall see later, in large economies it may be possible to dismiss these
indivisibilities as irrelevant: so for most of the time we shall assume that the
divisibility axiom is valid. Evidently if both additivity and divisibility hold then
decreasing and increasing returns to scale are ruled out: we again have constant
returns to scale: in the multi-output case this means that if q is technologically
feasible then so is tq where t is any non-negative scalar. 2

1 Sketch in two dimensions a technology set Q that violates Axiom 6.6.
2Consider a two-good economy (good 1 an input good 2 an output) in which there are

potentially two technologies as follows

Q� := fq : q2 = 0 if q1 > �1; q2 � 1 otherwiseg

Q0 := fq : q2 � �q1 for all q1 � 0g

If both technologies were available at the same time, what would be the combined technology
set?
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6.2.3 The production function again

The extended example in section 6.2.2 dealt with one production process; but
all the principles discussed there apply to the combined processes for the whole
economy. Naturally there is the di¢ culty of trying to visualise things in �ve
dimensions �so, to get a feel for the nature of the technology set Q it is useful
to look at particular sections of the set. One particularly useful instance of
this is illustrated in Figure 6.4 that illustrates the technological possibilities for
producing the two outputs in the �ve-good economy (sausages and potatoes),
for given values of the three other goods. The kinks in the boundary of the set
correspond to the speci�c techniques of production that were discussed earlier.3

In the case where there are lots of basic processes, this view of the technology
set, giving the production possibilities for the two outputs, will look like Figure
6.5. Clearly we have recreated Figure 2.17 that we introduced rather abruptly
in chapter 2�s discussion of the single multiproduct �rm.
This connection of ideas suggests a further step. Using the idea of the

technology set Q we can then write the production function for the economy as
a whole. This speci�es the set of net output vectors (in other words the set of
input-output combinations) that are feasible given the technology available to
the economy. In other words this is a function � such that4

�(q) � 0 (6.7)

if and only if q 2 Q. The particular feature of the production function high-
lighted in Figures 6.4 and 6.5 is of course the transformation curve �the implicit
trade-o¤ between outputs given any particular level of inputs.

6.2.4 Externalities and aggregation

The simple exercise in section 6.2.1 implicitly assumed that there were no tech-
nological interactions amongst the three processes. We have already met � in
chapter 3, page 55 � the problem that one �rm�s production possibilities de-
pends on another �rm�s activities. This concept can be translated into the
net-output language of processes as follows: if Q1 and Q2 are the technology
sets for processes 1 and 2 respectively then, if there are no externalities, the
technology set for the combined process is just Q1 + Q2 [check (A.24) in Ap-
pendix A for the de�nition of the sum of sets]. So, if there are no externalities,
we have a convenient result:5

3 Draw similar �gures to illustrate (a) the relationship between one input and one output
(given the levels of other outputs); (b) the isoquants corresponding to the pig-labour-sausage
�gure.

4 Take a �rm that produces a single output q from quantities of inputs z1; z2 subject to the
explicit production function q � �(z1; z2); rewrite this production function in implicit form
using � notation. Sketch the set of technologically feasible net output vectors.

5 Use Theorem A.6 (page 499) to provide a 1-line proof of this.
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Figure 6.5: Smooth potato-sausage tradeo¤

Theorem 6.1 (Convexity in aggregation) If each the technology set or �rm
is convex and if there are no production externalities then the technology set for
the economy is also convex.

If, to the contrary, there were externalities then it is possible that the aggre-
gate technology set is nonconvex. Clearly the independence implied by the ab-
sence of externalities considerably simpli�es the step of moving from the analysis
of the individual �rm or process to the analysis of the whole economy.

6.3 The Robinson Crusoe economy

Now that we have a formal description of the production side of our simple econ-
omy we need to build this into a complete model. The model will incorporate
both production and consumption sectors and will take into account the natural
resource constraints of the economy. To take this step we turn to a well-known
story that contains an appropriately simple account of economic organisation �
the tale of Robinson Crusoe.
To set the scene we are on the sunny shores of a desert island which is cut

o¤ from the rest of the world so that:

� there is no trade with world markets,

� we have a single economic agent (Robinson Crusoe),
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x consumption goods
q net outputs
U utility function
� production function
R resource stocks

Table 6.1: The Desert Island Economy

� all commodities on the island have to be produced or found from existing
stocks.

Some of these restrictions will be dropped in the course of our discussion; but
even in this highly simpli�ed model, there is an interesting economic problem
to be addressed.
The problem consists in trying to reach Crusoe�s preferred economic state

by choosing an appropriate consumption and production plan. To make this
problem speci�c assume that he has the same kind of preference structure as we
discussed previously; this is represented by a function U de�ned on the set X
of all feasible consumption vectors; each vector x is just a list of quantities of
the n commodities that are potentially available on the island. requiring that
the consumption vector be feasible imposes the restriction

x 2 X: (6.8)

But what determines the other constraints under which the optimisation prob-
lem is to be solved? The two main factors are the technological possibilities of
transforming some commodities into others, and the stocks of resources that are
already available on the island.
Clearly we need to introduce the technology set or the production func-

tion. Take, for example, the technology set from section 6.2 depicted in Figure
6.5. This merely illustrates what is technologically feasible: the application of
the technology will be constrained by the available resources; furthermore the
amount of any commodity that is available for consumption will obviously be re-
duced if that commodity is also used in the production process. To incorporate
this point we introduce the assumption that there are known resource stocks
R1; R2; :::; Rn, of each of the n commodities, where each Ri must be positive or
zero. Then we can write down the materials balance condition for commodity
i:

xi � qi +Ri (6.9)

which simply states that the amount consumed of commodity i must not exceed
the total production of commodity i plus preexisting stocks of i. Technology
and resources enable us to specify the attainable set for consumption in this
model, sometimes known as the production-possibility set.6 This follows from

6 Use the production model of Exercise 2.10. If Crusoe has stocks of three resources
R3; R4; R5 sketch the attainable set for commodities 1 and 2.
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the conditions (6.7) and (6.9):

A(R; �) := fx : x 2 X; x � q+R; � (q) � 0g : (6.10)

Two examples of the attainable set A are illustrated in Figure 6.6:the left-hand

Figure 6.6: Crusoe�s attainable set

side assumes that there are given quantities of resources R3; :::; Rn and zero
stocks of goods 1 and 2 (R1 = R2 = 0); the case on the right-hand side of Figure
6.6 assumes that there are the same given quantities of resources R3; :::; Rn, a
positive stock of R1 and R2 = 0.
So the �Crusoe problem�is to choose net outputs q and consumption quan-

tities x so as to maximise U(x) subject to the constraints (6.7) �(6.9). This is
represented in Figure 6.7 where the attainable set has been copied across from
Figure 6.6 (for the case where R1 = R2 = 0) and a standard set of indi¤er-
ence curves has been introduced to represent Crusoe�s preferences. Clearly the
maximum will be at the point where7

�i(q)

�j(q)
=
Ui(x)

Uj(x)
(6.11)

for any pair of goods that are produced in non-zero quantities, and consumed in
positive quantities at the optimum. This condition is illustrated in Figure 6.7
where the highlighted solution point (representing both optimal consumption
x� and optimal net outputs q� = x� �R) is at the common tangency of the
surface of the attainable set and a contour of the utility function. You would
probably think that this is essentially the same shape as 5.4 (the model with
household production) and you would be right: the linkage between the two is
evident once one considers that in the household-production model the consumer
buys commodities to use as inputs in the production of utility-yielding goods

7 Show this, using standard Lagrangean methods.
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Figure 6.7: Robinson Crusoe problem: summary

that cannot, by their nature, be bought; Crusoe uses resources on the island to
produce consumer goods that cannot be bought because he is on a desert island.
The comparative statics of this problem are straightforward. Clearly, a tech-

nical change or a resource change will usually involve a simultaneous change in
both net outputs q and consumption x.8 Moreover a change in Crusoe�s tastes
will also usually involve a change in production techniques as well as consump-
tion: again this is to be expected from chapter 5�s household-production model.9

6.4 Decentralisation and trade

In the tidy self-contained world of Robinson Crusoe there appears to be no room
for prices. However this is not quite true: we will carry out a little thought
experiment that will prove to be quite instructive.
Re-examine the left-hand panel of Figure 6.6 and consider the expression

� := �1q1 + �2q2 + :::+ �nqn (6.12)

where �1; �2;...; �n are some notional prices. (I have used a di¤erent symbol
for prices here because at the moment there is no market, and therefore there

8 Use your answer to the exercise in note 6 to illustrate the e¤ect of an increase in the
stock R4.

9 Use the diagram in the text to show the e¤ect of a technological improvement that enables
Crusoe to produce more of commodity i for every input combination.
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are no �prices� in the usual meaning of the word (if we want to invent a story
for this let us suppose that Robinson Crusoe does some accounting as a spare-
time activity). If we were to draw the projection of (6.12) on the diagram
for di¤erent values of the sum � we would generate a family of isopro�t lines
similar to those on page 41 but with these notional prices used instead of real
ones.10 If we draw the same family of lines in the right-hand panel of Figure 6.6
then clearly we have a set of notional valuations of resources R1; R2; :::; Rn plus
pro�ts, and if we do the same in Figure 6.7 then we have a family of budget
constraints corresponding to various levels of income at a given set of notional
prices �1;...; �n.

Figure 6.8: Crusoe problem: another view

Now suppose that there is an extra person on the island. Although the
preferences of this person (called �Man Friday�, after the original Robinson
Crusoe book) play no rôle in the objective function and although he owns none
of the resources, he plays a vital rôle in the economic model: he acts as a kind
of intelligent slave to whom production can be delegated by Robinson Crusoe.
We can then imagine the following kind of story.
Crusoe writes down his marginal rates of substitution �his personal �prices�

for all the various goods in the economy �and passes the information on to Man
Friday with the instruction to organise production on the island so as to max-
imise pro�ts. If the notional prices �1; :::; �n are set equal to these announced

10 Use the de�nition of net outputs to explain how to rewrite the expression for pro�ts in
(6.12) the more conventional format of �Revenue - Cost�.
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MRS values then a simple geometrical experiment con�rms that the pro�t-
maximising net outputs q chosen by Friday (left-hand panel of Figure 6.6) lead
to a vector of commodities available for consumption q+R (right-hand panel
of Figure 6.6) that exactly corresponds to the optimal x vector (Figure 6.7).
In the light of this story we can interpret the numbers �1; :::; �n as shadow

prices �the imputed values of commodities given Crusoe�s tastes. The notional
�shadow pro�ts�made by the desert island at any net output vector q will be
given by (6.12). So the notional valuation of the whole island at these shadow
prices is just

� := �1 [q1 +R1] + �2 [q2 +R2] + :::+ �n [qn +Rn] (6.13)

To summarise, see Figure 6.9. Crusoe has found a neat way to manage produc-

Figure 6.9: The separating role of prices

tion on the desert island �he gets Friday to maximise pro�ts (6.12) at shadow
prices (left-hand panel); this requires

�i(q)

�j(q)
=
�i
�j
: (6.14)

Crusoe then maximises utility given the income consisting of the value of his
resource endowment plus the pro�ts (6.12) generated by Friday (right-hand
panel);11 this requires

Ui(x)

Uj(x)
=
�i
�j
: (6.15)

11 How would this sort of problem change if Crusoe could not thoroughly monitor Friday�s
actions?
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We have a simple decentralisation parable: the problem with FOC (6.11) is
broken down into the two separate problems with FOCs (6.14) and (6.15) re-
spectively.
But will decentralisation always work? Not if there are indivisibilities in the

technology set that render the attainable set non-convex. To see that this is the
case recall that such non-convexities will be present if there are indivisibilities
in the production process. In such a case pro�t-maximisation could lead to
selection of an inappropriate input-output combination as illustrated in Figure
6.10. Notice that if Crusoe announces the prices that correspond to point x�,
pro�t maximisation will actually result in production, not at point x�, but at
point x�.
Comparing the diagrams we have used so far should give the clue to the

following general result, proved in Appendix C:

Theorem 6.2 (Decentralisation) If the attainable set is convex and the util-
ity function is concave-contoured and satis�es the greed axiom, then there exists
a set of imputed shadow prices �1; :::; �n such that the problem

max
fx;qg

U(x) subject to

8<: x 2 X
�(q) � 0
x � q+R

9=; (6.16)

is equivalent to the two-stage problem

max
q

nX
i=1

�i [qi +Ri] subject to �(q) � 0 (6.17)

max
x

U(x) subject to
x 2 XPn

i=1 �ixi�y
(6.18)

where y is the maximal value of (6.17).

Theorem 6.2 relies on the powerful results given in Appendix A as Theorems
A.8 and A.9. To oversimplify what these results state, if you have two convex
sets A and B with no points in common, then you can �separate�them with a
hyperplane, an n-dimensional generalisation of a line in (in two dimensions) or
a plane (in three dimensions); if A and B have only boundary points in common
then you can pass a hyperplane through their common boundary points so that
it �supports�A and B. The two sets here are:

� A: the attainable set (from 6.10)

A(R; �) := fx : x 2 X; x � q+R; � (q) � 0g : (6.19)

� B: the better-than-x� set,

B(x�) := fx : U(x) � U(x�)g : (6.20)
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Figure 6.10: Optimum cannot be decentralised

(Purists will note that I should have called B the �at-least-as-good-as-x��
set or the �not-worse-than-x��; but purists will have to put up with this nomen-
clature for the sake of linguistic euphony). The hyperplane here is determined
by the notional prices �1; :::; �n and is represented by the straight line in Figures
6.8 and 6.9 �for a formal de�nition see page 501.12

The decentralisation result is illustrated in Figures 6.8 and 6.9. Figure 6.8
shows the basic utility-maximisation problem (as in Figure 6.7). The problem in
(6.17) is equivalent to maximising pro�ts

Pn
i=1 �iqi; maximising pro�ts gives the

solution in the left-hand panel of Figure 6.9. The right-hand of Figure 6.9 panel
reinterprets Crusoe�s utility-maximisation problem as one of cost-minimisation
(as we did in the discussion of the consumer in chapter 4); consumer costs in this
case are given by

Pn
i=1 �ixi. Now glance back at Figure 6.8: it also illustrates

the two convex sets A and B and the corresponding optimisation problems �
pro�t-maximisation subject to a technological feasibility constraint, and cost-
minimisation subject to a utility constraint. Notice that the same price line
applies to these two problems, and is the line that just �separates�the two sets
in Figure 6.8. This is the �rst example of economic decentralisation which will
play an important rôle later in the book.
Now let us suppose that Crusoe has access to a world market with prices

p: all goods are tradeable at those prices and there are no transactions costs to

12 Discuss the way Theorem 6.2 can be applied to the household production model in section
5.4.
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Figure 6.11: Crusoe�s island trades

trade.13 One consequence of this is that the attainable set may be enlarged (see
Figure 6.11). Take the original (no-trade) attainable set and let us note that
the best that can be done on the desert island without trade is given by point
x� (compare this with our previous diagram). If we introduce the possibility of
buying and selling as much as we like at the prices given by the line through x�

then, of course, any point on this line becomes feasible �all such points lie in
Crusoe�s �budget set�given by the world prices p.
However, he can do better than points on this budget line through x�. This

is one of a whole family of lines with the equation

nX
i=1

pi [qi +Ri] = constant (6.21)

each one of which puts a particular valuation on net output plus resources �so
why don�t we pick the budget line that maximises this valuation? This is shown
by the parallel line through q�� and x��: Crusoe�s island produces at q��, but
trade with the market permits consumption at x��.14

A second result immediately follows. Trade will �convexify�the attainable
set, so that we do not have to worry about the decentralisation problem. This
result is illustrated in Figure 6.12: the pre-trade attainable set for Crusoe is

13 Rework the analysis of this section for the case where there are �xed costs to trade.
14 Use a diagram similar to the ones shown here to show the amount that Crusoe exports

to the market and the amount that he imports from the market.
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Figure 6.12: Convexi�cation of the attainable set

given by A and has deliberately drawn as non-convex; the after-trade attainable
set for Crusoe is given by the convex set A0. So the exact shape of the pre-trade
attainable set is largely irrelevant to the utility outcome for the consumer; as
drawn Crusoe gets the same utility whether the pre-trade attainable set is convex
(Figure 6.11) or non-convex (Figure 6.12).15

Trade thus permits the transformation of the optimisation problem into the
following two stages:

� You choose q so as to maximise the value of �South Seas�Inc.

� You then choose x from the budget set determined by this maximised
value.

An important lesson from this exercise that the market accomplishes de-
centralisation in a beautifully simple fashion �it takes over the �Man Friday�
rôle by ensuring that the correct signals are given the consumption and pro-
duction sectors ensuring that their optimisation problems can be separated out
from each other. We shall make extensive use of this property in the next few
chapters.

15 Explain in words why this happens.
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6.5 Summary

We have seen some of the basic elements of a complete economic system. The
characterisation of the system is facilitated by using the compact net-output
language for production and an explicit axiomatisation of the technology. Al-
though the economic model at the heart of this chapter is very simple it is
capable of illustrating some of the deep points of standard economic analysis of
decentralisation and the market. It lays the basis for a richer model that we
will analyse in chapter 7.

6.6 Reading notes

For a good introduction to the Robinson Crusoe economy see Koopmans (1957).

6.7 Exercises

6.1 In an economy the activity of digging holes in the ground is carried out by
self-employed labourers (single�person �rms). The production of one standard-
sized hole requires a minimum input of one unit of labour. No self-employed
labourer can produce more than one hole.

1. Draw the technology set Q for a single �rm.

2. Draw the technology set Q for two �rms.

3. Which of Axioms 6.1 to 6.6 are satis�ed by this simple technology?

6.2 Consider the following four examples of technology sets Q:

A :
�
q : q21 + q

2
2 + q3 + q4 � 0; q1; q2 � 0; q3; q4 � 0

	
B :

n
q : q�1 � [�q2]

� � [�q3] � 0; q1 � 0; q2; q3 � 0
o

C :

�
q : log q1 �

1

2
log (q2q3) � 0; q1 � 0; q2; q3 � 0

�
D :

n
q : q1 + q2 +max

�
q3;

q4
�

�
� 0; q1; q2 � 0; q3; q4 � 0

o
1. Check whether Axioms 6.1 to 6.6 are satis�ed in each case.

2. Sketch their isoquants and write down the production functions.

3. In cases B and C express the production function in terms of the notation
used in chapter 2.

4. In cases A and D draw the transformation curve.



140 CHAPTER 6. A SIMPLE ECONOMY

6.3 Suppose two identical �rms each produce two outputs from a single input.
Each �rm has exactly 1 unit of input. Suppose that for �rm 1 the amounts q11,
q22 it produces of the two outputs are given by

q11 = ��1

q12 = �[1� �1]

where �1 is the proportion of the input that �rm 1 devotes to the production of
good 1 and � and � depend on the activity of �rm 2 thus

� = 1 + 2�2

� = 1 + 2[1� �2]:

where �2 is the proportion of the input that �rm 2 devotes to good 1. Likewise
for �rm 2:

q21 = �0�2

q22 = �0[1� �2]

�0 = 1 + 2�1

�0 = 1 + 2[1� �1]:

1. Draw the production possibly set for �rm 1 if �rm 2 sets �2 = 1
2 and �rm

2�s production possibly set if �rm 1 sets �1 = 1
2 .

2. Draw the combined production-possibility set.

6.4 Take the model of Exercise 2.11. Assuming that production is organised
to maximise pro�ts at given prices show that pro�t-maximising net outputs of
goods 1 and 2 are:

q1 =
A

2
p1

q2 =
A

2
p2

where pi is the price of good i expressed in terms of commodity 3, and that
maximised pro�ts are

� = A
[p1]

2
+ [p2]

2

4

6.5 Take the model of Exercise 5.3 but suppose that income is exogenously
given at y1 for the �rst period only. Income in the second period can be obtained
by investing an amount z in the �rst period. Suppose y2 = �(z), where � is
a twice-di¤erentiable function with positive �rst derivative and negative second
derivative and �(0) = 0, and assume that there is a perfect market for lending
and borrowing.
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1. Write down the budget constraint.

2. Explain the rôle of Theorem 6.2 in this model

3. Find the household�s optimum and compare it with that of Exercise 5.3.

4. Suppose �(z) were to be replaced by ��(z) where � > 1; how would this
a¤ect the solution?

6.6 Apply the model of Exercise 6.5 to an individual�s decision to invest in
education.

1. Assume the parameter � represents talent. Will more talented people de-
mand purchase more education?

2. How is the demand for schooling related to exogenous �rst-period income
y1?

6.7 Take the savings model of Exercise 5.4 (page 118). Suppose now that by
investing in education in the �rst period the consumer can augment his future
income. Sacri�cing an amount z in period 1 would yield additional income in
period 2 of

�
�
1� e�z

�
where � > 0 is a productivity parameter.

1. Explain how investment in education is by the interest rate. What would
happen if the interest rate were higher than � � 1?

2. How is the demand for borrowing a¤ected by (i) an increase in the interest
rate r and (ii) an increase in the person�s productivity parameter �?
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Chapter 7

General Equilibrium

Every individual. . . intends only his own gain, and he is in this as
in many other cases led by an invisible hand to promote an end
which was no part of his intention. By pursuing his own interest
he frequently promotes that of society more e¤ectually than when
he really intends to promote it. �Adam Smith, Wealth of nations
(1776).

7.1 Introduction

We are now able to examine the problem of general competitive equilibrium: in
other words the conditions under which you can get some sort of harmony in a
market economy full of sel�sh individuals, and the ways in which this harmony
is achieved. General equilibrium analysis can be �general�in a number of ways;
some or all of the following features may be present in a general-equilibrium
model:

� The number of economic actors �households and �rms �can be general.
We could have nh households and nf �rms.

� Behavioural assumptions can be general �there is no need to assume that
everyone acts as price-takers.

� The system can be general: instead of a single market, or collection of
markets, we deal with a complete, closed economic unit incorporating
consumption, exchange and (perhaps) production.

The last of these features was present in the Robinson Crusoe model of chap-
ter 6: in the Crusoe economy production and consumption took place within
the same closed universe and (at least at �rst) there was no market, no world
outside with which to trade. But we can now extend the model of the economy
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HOUSEHOLDS
xhi consumption by h of good i
xh

�
xh1 ; x

h
2 ; :::; x

h
n

�
[x]

�
x1;x2;x3; :::

�
Uh h�s preferences

FIRMS
qfi net output by f of good i

> 0 if i is an output < 0 if i is an input

qf
�
qf1 ; q

f
2 ; :::; q

f
n

�
[q]

�
q1;q2;q3; :::

�
�f f�s technology

Ri resource stock of i

Table 7.1: Elements of the Economy

to system one that incorporate the �rst two features, multiple agents and the
possibility of non-price-taking behaviour.

7.2 A more interesting economy

We begin by building on the simple closed model of the Robinson Crusoe econ-
omy: we need to make it richer and capable of handling large numbers of eco-
nomic agents. To do this we need �rst to reconsider the basic economic ingre-
dients of the economic problem. There are three fundamental elements to the
kind of economy that we shall be talking about:

� Households who have given preferences represented by utility functions

Uh; h = 1; 2; :::; nh; (7.1)

� Firms that have speci�c technologies described in production functions

�f ; f = 1; 2; :::; nf ; (7.2)

� Resource stocks Ri of the commodities i = 1; 2; :::; n.

Assume that there are markets in all commodities, and that all agents are
perfectly informed about what is going on in the economy. We shall also usually
assume that they act as price-takers in each of the markets. Finally let us
mention the role of time within the model: essentially it does not exist, but we
shall examine a rudimentary model involving time in section 7.4.4 below.
Quite a bit more is needed to complete the description of the economy �

how the households�budget constraints are determined, who runs the �rms and
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so on �but for now this gives us enough to start a meaningful discussion of an
equilibrium system. Some of the issues which suggest themselves within this
framework are:

� Why do people act as price takers?

� Where do the prices come from?

� Will an economic system have an equilibrium? More than one equilibrium?

� Is there a mechanism driving the economy towards the equilibrium?

7.2.1 Allocations

To make further headway we need to describe a state of the economy. We shall
assume that a state is completely described by a snapshot of what is going on
in every household and in every �rm at some particular moment: we are, for
the moment, unconcerned about the processes which have led to the snapshot
that we observe.

De�nition 7.1 A state of the economy or an allocation in an economy consists
of an allocation of consumption vectors to each household [x], and an allocation
of net output vectors to each �rm [q].

As a reminder of the meaning of this notation, check the details in Table
7.1.
Suppose there is a market in operation: prices are denoted by p1; :::; pn and

household h�s income is written as yh, for h = 1; :::; nh. The pro�ts of �rm f
are given by1

�f =
nX
i=1

piq
f
i (7.3)

for f = 1; :::; nf . Clearly we would be interested in market allocations that take
into account the prices as well as the collection of consumption bundles [x] and
the collection of net-output vectors [q]. However, to make progress it is more
useful introducing the the following more careful de�ned concept:

De�nition 7.2 A competitive allocation is a market allocation:

a = ([x]; [q];p)

where xh is utility-maximising for household h = 1; 2; :::; nh, and qf is pro�t-
maximising for �rm f = 1; 2; :::; nf at prices p.

1 Using this notation explain what happens to pro�ts if two �rms, which previously traded
with each other, now merge.
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What this means is that, given the prices p, each xh in the allocation must
be the solution to

max
(xh)

Uh(xh) subject to

8<: xh 2 XPn
i=1 pix

h
i �yh

9=; (7.4)

and each qf in the allocation must be the solution to

max
(qf )

nX
i=1

piq
f
i subject to �

f (qf ) � 0 (7.5)

This implies that, in a competitive allocation, each consumer�s bundle must be
on his o¤er curve. To �close� the system we again use the materials balance
condition � (6.9) generalised to allow for the multiplicity of households and
�rms. This raises a tricky point that is too easily glossed over. Can we just add
up the household consumption demands to get the overall demand for input i
and add up the �rms�net outputs? This simple aggregation property would be
satis�ed if:

� All goods are purely private goods (like bread) and do not permit joint con-
sumption (like bridges and broadcast TV). We have used this assumption
before when considering the relationship between market and household
demand (page 112). Technically it requires the property of �rivalness�
discussed on page 236.

� There are no externalities in production. Then if q1 is technologically
feasible for �rm 1 and q2 is technologically feasible for �rm 2 the combined
net output vector q1 + q2 is also feasible �see the discussion on pages 55
and 128.

If we assume the simple aggregation property then the generalised materials
balance condition for any commodity i is:

nhX
h=1

xhi �
nfX
f=1

qfi +

nhX
h=1

Rhi ; (7.6)

or, writing xi =
Pnh

h=1 x
h
i , qi =

Pnf
f=1 q

f
i and Ri =

Pnh
h=1R

h
i , for the aggregates

over households and �rms, we can express (7.6) equivalently in vector form as

x � q+R: (7.7)

What this means is that, if an allocation is to be feasible, demand cannot exceed
supply, where �supply� of any commodity covers the aggregate of all the net
outputs of the �rms plus the aggregate of all preexisting stocks. Then we can
introduce our main concept:
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De�nition 7.3 A competitive equilibrium is a competitive allocation a� :=
([x�]; [q�];p) in which the materials balance condition holds.

So there are two principal components to the de�nition of a competitive
equilibrium: the price-taking maximising behaviour by each of the agents �
households, �rms �and the feasibility condition incorporated in the fundamen-
tal constraint (7.6). However, it is important to note that we still have no
explanation of why people and �rms should take the prices p� parametrically
nor of where these prices come from.

7.2.2 Incomes

But what about the incomes? Where are they derived from? Although there
are many possibilities we shall consider one of the simplest �a private ownership
economy in which income comes from two sources, thus:

household value of share in the
= +

income resources �rms�pro�ts

To make this work we need to specify Rhi , the ownership by household h of
resource stock i, and also &hf , the proportionate share in �rm f�s pro�ts to which
h is entitled. Then we may express household income formally as:

yh =
nX
i=1

piR
h
i +

nfX
f=1

&hf�
f (7.8)

Compare this with Robinson Crusoe and his income: Crusoe�s notional �income�
consisted of a valuation of all the resources on the island plus all of the surplus
(pro�t) from the production activity. We may rewrite (7.8) as:2

yh =
nX
i=1

pi

h
Rhi +

Xnf

f=1
&hfq

f
i

i
(7.9)

So yh is homogeneous of degree 1 in prices.
The distribution of property �in other words the distribution of the income-

yielding assets �is given as:

d := ([R]; [&]) (7.10)

7.2.3 An illustration: the exchange economy

The essence of a competitive equilibrium can be conveniently illustrated in a
model of an economy without production �an exchange economy. The elements
of this simple economy are illustrated in Figures 7.1 and 7.2. The left-hand side
of Figure 7.1 shows the solution to a conventional utility-maximisation problem
for Alf:3 Alf is endowed with a bundle of resources Ra; given his preference map

2 Show this using the de�nition of pro�ts given in equation (7.3).
3 Write down the budget constraint and �rst-order conditions for a maximum.
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Figure 7.1: Utility-maximising choices for Alf and Bill

and the price line shown in the �gure he chooses to trade so as to be able to
consume at point xa. The right-hand side of Figure 7.1 shows a similar solution
for Bill, rotated through 180�.4

Given that Alf and Bill face the same prices we can simply stick these two
diagrams together to get the diagram in Figure 7.2 �conventionally known as
an Edgeworth box . The box shape in this �gure is of length R1 and height
R2.5 The point in the box marked [R] is the endowment point representing the
property distribution �the resource-vectors (Ra1 ; R

a
2) and

�
Rb1; R

b
2

�
with which

Alf and Bill are endowed before trading takes place. From our earlier argument
concerning Figure 7.1 it is clear that the competitive equilibrium allocation is
given point by [x�], and the equilibrium price ratio p1/p2 is given by the slope
of the line joining the points [R] and [x�]; it is also clear that the competitive
equilibrium depends crucially on the property distribution, captured in this case,
by the endowment point [R].

Example 7.1 Some types of Prisoner-of-War camp are appropriately modelled
as a simple exchange economy. Radford (1945) discusses (from personal ex-
perience) the key elements of such an economy including the determination of
equilibrium prices and allocations and the impact of changes in endowments.

To summarise, the economic system can be summarised schematically as

d! (a�;p�): (7.11)

The �rules of the game� which apply to this simple economic model are as
follows:

4 In the example as shown what trade takes place between Alf and Bill?
5 Explain why. What happens to the diagram if Alf suddently receives a present of 10

more units of good 1? What happens if both Alf and Bill get 10 more units of good 1?
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Figure 7.2: Competitive equilibrium: exchange economy

� acceptance of d

� price-taking behaviour by each of the participants.

Why is this set of rules appropriate?

7.3 The logic of price-taking

I do not think we can contribute much to the discussion of the �rst of these rules
in the present context. However, we can say something about the second. What
we will do is use a simpli�ed model of the economy in order to characterise a
very general concept of equilibrium trades.
Suppose we are in an exchange economy where there is no production and

all income is derived from the endowment of resources. You can think of an
exchange economy as the Prisoner-of-War camp in the example above where
the inmates get a regular endowment of food parcels and may wish to trade
the contents of the parcels with each other. In this case d = [R]: the property
distribution is just the initial distribution of parcels in the camp. This is illus-
trated in Figure 7.3, which is derived from Figure 7.2. The path joining the
two origins Oa and Ob is the locus of points where an a-indi¤erence curve is
tangential to a b-indi¤erence curve. This path �usually known as the so-called
contract curve �has considerable attraction because it is the key to the general
solution concept that we seek.



150 CHAPTER 7. GENERAL EQUILIBRIUM

Figure 7.3: The contract curve

To see this let us consider the set of allocations that could emerge as po-
tential solution in such an economy assuming that the agents (households or
individuals) have perfect information and tell the truth.6 We allow all sorts of
negotiation amongst them that respects their personal property rights �nobody
is compelled to trade and nobody is able to steal other people�s resources. Given
that all agents are well informed and self interested we can assume that they
will not be prepared to agree to allocations that they know they could improve
on, either by themselves or in cooperation with others in the economy. This
idea is made formal using the following two de�nitions:

De�nition 7.4 A coalition is a non-empty subset K of the set of households
f1; 2; :::; nhg.

De�nition 7.5 A coalition K blocks an allocation [bx] if there exists a set of
consumption vectors fxh : h 2 Kg such that, for every h in K:

Uh(x
h
) �Uh(x̂h) (7.12)

with strict inequality for at least one h, andX
h2K

xh�
X
h2K

Rh: (7.13)

6 What might happen to all this if people had imperfect information, or if they were to lie?
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Figure 7.4: The core in the two-person case

The idea of blocking yields the solution concept to the problem of exchange
in an economy of truthful agents. It is simply this:

De�nition 7.6 The core is the set of unblocked feasible allocations given the
preferences (U1; U2; :::) for the nh households and the property distribution d.

7.3.1 The core of the exchange economy

Let us have a look at the core in Figure 7.4 in which again we have just the
two agents called Alf and Bill. There are three coalitions that could be formed
{Alf}, {Bill} and {Alf,Bill}. The way the diagram works in the analysis is
largely determined by the location of the endowment point [R].
Let the utility level for Alf at point [R] be �a: this is his reservation utility,

since he can always guarantee it for himself by just refusing to trade; the same
thing can be said about the Bill indi¤erence curve labelled �b that passes through
[R]. So it is clear that one or other of the two agents would form a 1-person
coalition to block any proposed allocation that fell outside the lens-shaped area
in Figure 7.4 bounded by �a and �b. Moreover, we can see that, working
together, they would block any point that does not lie on the contract curve,7

the locus of common tangencies. The core is therefore the little segment of

7 Show this by considering a point that is o¤ the contract curve and showing graphically
how they could �nd an allocation that would make at least one of them better o¤, without
reducing the utility of the other.
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the curve along joining [xa] and
�
xb
�
�including the endpoints �that consists

entirely of points of common tangencies.
As with the discussion of the competitive equilibrium in section 7.2.3 we

should note the dependence of the core on the property distribution, again
given by the endowment point [R].

7.3.2 Competitive equilibrium and the core: small econ-
omy

The core is a basic solution concept and of considerable interest in its own right.
However it is particularly interesting to see how this concept relates to other
approaches to the general equilibrium problem. The following result (proof in
Appendix C) in particular is very useful:8

Theorem 7.1 (Competitive equilibrium and the core) if no consumer has
a bliss point, any competitive equilibrium allocation must always be in the core.

Theorem 7.1 is quite powerful. For example it is not restricted to cases where
there is just one competitive equilibrium in the economy. It could indeed happen
that in a certain economy there are multiple competitive equilibria: the theorem
establishes that all of them must lie in the core. Figure 7.5 illustrates this: both
[x�] and [x��] are competitive equilibrium allocations each with its own set of
equilibrium prices. To see this check �rst the allocation [x�]: the straight line
that passes through [R] and [x�] plays the rôle of a budget constraint for both
Alf and Bill; given this budget constraint both parties maximise utility at point
[x�]. But all of this is also true of the allocation [x��]: it involves a di¤erent
budget constraint corresponding to di¤erent relative prices, of course, but at
those prices [x��] is also a utility-maximising allocation.9

Even in the multiple-equilibrium case depicted in Figure 7.5 it is clear that
the set of equilibrium allocations is rather sparse: there are lots of allocations in
the core other than the competitive equilibria. But are these other allocations
relevant as solutions to the trading problem?

7.3.3 Competitive equilibrium and the core: large econ-
omy

The answer to this question depends on whether we take the Alf and Bill story
as literally a two-person economy or as a parable for an economy with many
agents. If it is a parable then many of the core allocations in the two-person
story may turn out to be irrelevant in large economy.
To see why let us suppose that the economy is replicated. We mean by this

that we take one or more identical copies of the agents and their endowments:

8 In a two-person economy describe the competitive equilibrium in terms of the o¤er curve
for each trader. Use this to provide an intuitive argument for Theorem 7.1.

9 Draw in the o¤er curves in the case of multiple equilibria (Cf footnote 8).
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Figure 7.5: Any CE must lie in the core

note that this is a rather narrowly de�ned way of proceeding from the two-
person paradigm to a large economy. So, in the replication economy Alf is now
joined by his twin brother Arthur; Bill is accompanied by his brother Ben. The
Alf-and-Arthur twins have the same utility functions and the same resources.
The same goes for Bill and Ben. The immediate consequence of this is that there
are likely to be more possibilities of forming coalitions: all the old coalitions in
the two-person model are still available, plus some new ones. This suggests
that the core may not contain as many allocations as before because the new
coalitions may now be able to block them.
This is in fact just what happens. Consider whether a point such as [xa] in

Figure 7.4 is still a valid solution for the Alf-Arthur-Bill-Ben economy; could it
still be in the core? Some elementary reasoning shows that an allocation that
places both sets of twins at this point must surely be blocked.
To show this note �rst that the consumption bundle of one of the b-twins at

point [xa] would be given by

�xb := Rb +Ra � xa (7.14)

where, of course, xa is the consumption bundle of one of the a-twins at point
[xa]. Next let us write down what the consumption bundle of one of the a-twins
would be if he were located at a point exactly half-way between [R] and [xa]; it
is

x̂a :=
1

2
[Ra + xa] : (7.15)
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THE COALITION
Alf x̂a (7.15)
Arthur x̂a (7.15)
Bill �xb (7.14)

(OUT OF COALITION)
Ben Rb

Table 7.2: Alf, Arthur and Bill cut Ben out of the coalition

So, imagine a coalition of Alf, Arthur and Bill with associated consumption
bundles as set out in the top half of Table 7.2 (poor old Bill gets left out of the
coalition and so just has to consume his original endowment).
Examining this proposed allocation we �nd that the resources required to

satisfy the consumption vectors of members of the coalition amount exactly to
the combined endowments of Alf, Arthur and Bill.10 Furthermore, if we look at
the situation diagrammatically in Figure 7.6, it is clear that by ensuring that
the a-twins can consume at x̂a given by (7.15) they are placed on a strictly
higher indi¤erence curve than if they had been forced to consume xa (look at
the point marked ���). So the allocation proposed by the coalition is feasible
and Alf and Arthur prefer it. Therefore it is clear that the allocation given by
the bundles in Table 7.2 blocks [xa].11

The signi�cance of this exercise is that an allocation that had been in the
core of the original 2-person economy is blocked in the 4-person economy: the
core must have shrunk in the replication process.12

It is important to note that it is not just the �extreme�allocations that are
knocked out of the core by the replication process taking us from the Alf-Bill
economy to the Alf-Arthur-Bill-Ben economy. Let [~x] represent any point on
the little bit of the contract curve joining [xa] and [xb] in Figure 7.6 that is not
a competitive equilibrium; this assumption means that the tangent to the two
indi¤erence curves at [~x] does not pass through [R]. Look again at the way in
which we constructed the example to show that point [xa] was no longer in the
core; the presence of two representatives of each type of agent enabled us to
consider a consumption vector that split in half the line from [R] to [xa]. It is
clear that we could have done the same kind of thing with many of these other
points [~x] that would have belonged to the two-person core �i.e. we could have
split the line from [R] to [~x] and found a point that makes the a-twins better
o¤ than they would have been at [~x]. But we can be more speci�c than this
vague assertion.
Suppose now that we replicate the economy N -fold: there are N persons in

10 Use the information in Table 7.2 to check this.
11 The allocation in Table 7.2 is not in the core of the 4-person economy either � can you

see why?
12 What might happen in this process if the replication were carried out in an unbalanced

way?
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Figure 7.6: An allocation that blocks [xa]

the Alf tribe and N persons in the Bill tribe, and all the members of the same
tribe have identical preferences and identical endowments. If N were 4, let us
say, then coalitions could be formed that will not just split the line from [R] to
[~x] in the proportion 1

2 :
1
2 (as in Figure 7.6) but also in the proportions

1
4 :

3
4 ,

for example; and if N were to be very large, coalitions could be formed that
could secure for members of the Alf tribe any arbitrary point on this line. By
this method we can show that in a su¢ ciently large economy any point [~x] as
de�ned in the previous paragraph must be blocked by some coalition.13

The implication of this is that as N ! 1 with balanced replication all
allocations that are not competitive equilibria are eliminated from the set of
possible solutions: in the limit the core is reduced to the set of competitive
equilibria. In other words, under carefully speci�ed conditions, large numbers
suggest that only price-taking behaviour survives in equilibrium.14

13 Assuming that N is very large use a geometrical argument - similar to that in Figure 7.6
to show the composition of a coalition that could be formed to block such an allocation [~x] .
14 It is sometimes argued that in practice in economies with large numbers of individuals

this blocking process does not appear to work automatically, so that some can deviate from
price-taking behaviour. Why might this be so?
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7.4 The excess-demand approach

Let us recall the two major elements of our discussion of general equilibrium so
far :

� The combination of a market allocation and the materials balance condi-
tion yields what we have called a competitive equilibrium (section 7.2.1).

� Price-taking is the limiting behaviour of rational economic agents in the
context of a �core�equilibrium (section 7.3.3).

Using these two elements we can represent the issues concerning general
equilibrium in terms of a very convenient economic device. We introduce the
excess demand function, for each commodity i. The excess demand function
encodes the information about aggregate demand and aggregate supply for a
particular good at some given set of market prices; it is de�ned as a function
Ei(�) such that:15

Ei(p) := xi(p)�qi(p)�Ri (7.16)

The derivation of the excess demand function can be illustrated as follows.
First, we need to derive the aggregate demand for each commodity as a

function of prices p: Figure 5.7 in chapter 5 shows the idea of how it is done
in a two-person economy for x1(�), the demand for commodity 1. We then do
a similar exercise for the net output of each commodity by aggregating �rms�
supply curves to get q1(�) (illustrated for the two-�rm case in Figures 3.1 or
3.2 in chapter 3). Finally we subtract the net output and resource stocks of
each commodity from the demand, as shown in Figure 7.7 that summarises the
relationship between market demand from consumers, net output from �rms,
resource stocks and excess demand for in the case of commodity 1.
We may then write the conditions for equilibrium in terms of the excess

demand functions. An equilibrium price vector p� must satisfy the following
conditions:

Ei(p
�
) � 0;

p�i � 0;
p�iEi(p

�
) = 0

9=; (7.17)

for each commodity i = 1; :::; n. The three statements in (7.17) mean that,
in equilibrium, there cannot be excess demand �that would violate materials
balance �and any good for which there is excess supply must be a free good.16

The excess demand function will prove to be an e¤ective tool for understand-
ing some of the basic issues in determining and characterising a competitive
equilibrium. This is pursued below; before doing that we need to examine the
properties of the system of excess demand functions.

15 Brie�y explain the relationship between the excess demand function in an exchange
economy and households�o¤er curves.
16 Explain in words the circumstances under which you could have excess supply of some

commodity in equilibrium.
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Figure 7.7: Construction of excess demand curve

7.4.1 Properties of the excess demand function

Inherent in any system of excess demand functions E = E1; :::; En are a cou-
ple of features that are fundamental to the way a competitive market system
works, and that make computation of the equilibrium much easier. They are
summarised in the following two results that follow directly from the properties
of �rms� and consumers� response functions (chapters 2 and 4) and that are
really only a reinterpretation of results that we have already established.

Theorem 7.2 (Homogeneity of excess-demand functions) Each excess-demand
function must be homogeneous of degree zero.17

Theorem 7.3 (Walras�law) For any price vector p and fully-informed, ra-
tional, non-satiated agents in a private-ownership economy, the set of n excess
demand function must satisfy18

nX
i=1

piEi(p) = 0 (7.18)

17 Explain why. Prove it using the results on the �rm�s demand and supply functions and
the consumer�s demand functions.
18 Prove this law, using the facts that (a) for each household income equals expenditure,

and that (b) each household�s income is derived from the resources it owns and its shares in
the �rms�pro�ts.[Hint: Check equations (2.66) and (4.13)]
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It is, perhaps, worth labouring the point that these two properties are gen-
erally true in a world of price-taking optimisers: they hold for all con�gurations
of preferences and production functions, not just well-behaved ones; they hold
for all price vectors, not just at equilibrium. Let us look more closely at their
implications.

Homogeneity of degree zero

This property means that we can normalise the prices arbitrarily. There are lots
of ways in which this normalisation could be done, but let us brie�y consider
two alternative methods that one often �nds in actual applications.
We could measure everything in terms of a numéraire good, let us say good

n. Then, if the non-normalised prices were given by the vector bp, we would �nd
that normalised prices under this normalisation method were given by

pi = p̂1
p̂n

p2 = p̂2
p̂n
;

::: :::

pn�1 = p̂n�1
p̂n

pn = 1

9>>>>>=>>>>>;
(7.19)

Alternatively we could write the prices in such a way that they sum to 1. Again
writing non-normalised prices as the vector bp, we �nd that this second method
would yield the following set of normalised prices:

p1 = p̂1
p̂1+p̂2+:::+p̂n

;

p2 = p̂2
p̂1+p̂2+:::+p̂n

;

::: :::

pn = p̂n
p̂1+p̂2+:::+p̂n

:

9>>>=>>>; (7.20)

This procedure might seem a bit odd, but in fact it sometimes proves to be a
very convenient device. The reason that it is so convenient is that it ensures that
every normalised price must lie between zero and one inclusive . Furthermore
if we consider the set J of all possible normalised prices

J :=

(
p : p � 0;

nX
i=1

pi = 1

)
(7.21)

it can be shown that is convex and compact (see page A.4 in Appendix A) �
properties that are handy for some results that we will come to in a moment.

Example 7.2 Take a two-good economy with non-normalised prices bp1; bp2. Us-
ing the normalisation scheme in (7.20) yields normalised prices p1 = bp1=[bp1 +bp2], p2 = 1 � p1. Figure 7.8 depicts the set J and illustrates the normalised
price vector p = (0:75; 0:25).19

19 Draw the set J for the case n = 3 and depict the normalised prices p = (0:5; 0:25; 0:25).
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Figure 7.8: Normalised prices, n = 2.

Walras�Law

This property of excess demand functions means that there is a linear restriction
on the system of n demand functions. In particular, if you know E1; :::; En�1
you can �nd En from the following formula:

En(p) = �
1

pn

n�1X
i=1

piEi(p) (7.22)

Hence, although there are n commodities �and thus n prices and n excess
demands �the two restrictions that we have discussed imply that when we solve
the system (7.17) we have, in e¤ect, only n� 1 equations in n� 1 unknowns. In
simple models this can be a great advantage. If, say, we had an economy where
n = 3 then this means that to �nd the equilibrium price vector we e¤ectively
have a system of two simultaneous equations in two unknowns, that can probably
be solved explicitly by hand, instead of a cumbersome 3� 3 system.
Now that we have a clearer idea of how the system of excess demand functions

E makes the representation of the competitive system easier by encapsulating
information about the responses of the mass of individual economic agents we
can investigate a number of fundamental issues about equilibrium. We shall
address three principal questions:

� the conditions for the existence of a solution (7.17);
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Figure 7.9: Existence of a unique equilibrium price

� the uniqueness or otherwise of the solution (7.17);

� the stability of equilibrium.

7.4.2 Existence

An idealised �well-behaved�case is illustrated in Figure 7.9: there is a speci�c
value p�1 of the price of commodity 1 such that the excess demand for commodity
1 is exactly zero and, by (7.22) we know that the excess demand for commodity
2 must be zero at this point as well. However this neat solution begs a number
of questions that we will examine over the next few pages.
The most basic question that we need to address is whether, in general, the

general-equilibrium system has a solution at all: in other words, can we be sure
that for some speci�c set of excess demand functions E there is going to be any
vector p� such that (7.17) holds? To convince ourselves that this question is
not vacuous, let us look at a couple of examples in a two-commodity model.
The properties of boundedness and continuity are evidently important. If

there are discontinuities in the excess demand function then we might �nd that
excess demand jumps from negative to positive without ever being 0: look at
the gap that straddles the p1 axis in Figure 7.10. If excess demand for some
good is unbounded below then you might be able to go on increasing the price of
the other good inde�nitely without reaching an equilibrium �see Figure 7.11.20

Boundedness is not terribly worrying: all that you need is a requirement that
there could not be in�nite aggregate supply of any one commodity. However,
continuity may present greater di¢ culties �we have already seen instances where

20 Show that in Figure 7.11 excess supplies of some of the other goods must be in�nite.
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Figure 7.10: Discontinuous excess demand

Figure 7.11: Excess demand for good 2 unbounded below



162 CHAPTER 7. GENERAL EQUILIBRIUM

apparently standard assumptions about the structure of �rms�costs can lead to
discontinuous supply functions.
The following result (proved in Appendix C) formalises our discussion of

Figures 7.9 to 7.11.

Theorem 7.4 (Existence of competitive equilibrium) If each Ei(�) is a
continuous function from J to the real line and is bounded below, then there
exists p� 2 J which is an equilibrium price vector.

A su¢ cient condition to ensure continuity of each Ei is that each production
function �f be strictly concave (strict convexity of the technology set), and
each utility function Uh be strictly quasiconcave. In fact these requirements
are considerably stronger than necessary. One can establish the existence of
equilibrium using only concavity of each production function and quasiconcavity
(rather than the �strict�concavity). But a general proof of an existence result
is technically quite demanding.

7.4.3 Uniqueness

We have already seen that even in a pure exchange economy there could be
more than one equilibrium: this was illustrated in the Edgeworth box diagram
of Figure 7.5. The pattern of indi¤erence curves and endowments that permits
this multiplicity of equilibria produces some rather �twisty�o¤er curves (if you
have not done so yet, checking the answer to footnote 9 could be helpful here)
and a set of excess demand curves that have several turning points: see Figure
7.12.
We might wonder what condition on the functions E could avoid this. Ba-

sically we need well-behaved demand and supply curves that do not slope the
�wrong way�, so that we do not �nd multiple intersections in Figure 7.12, for
example. But why might demand curves (in the aggregate) slope the �wrong
way�? The main problem is the presence of income e¤ects, as we have already
seen in the discussion of the aggregation of the market behaviour of consumers
in chapter 5. If Alf and Bill have very di¤erent income e¤ects, then as di¤erent
price vectors are tried out the changes in incomes could lead to perverse switches
in demand in the aggregate.
What conditions in the economic system could ensure that situations do not

arise? The clue lies in our earlier discussion of Figure 5.9 (page 116): we noted
there that the apparent oddity that arose when Alf�s and Bill�s demands were
aggregated was that, although their individual behaviour was rational and con-
sistent, jointly it did not satisfy the minimal requirement of the Weak Axiom of
Revealed Preference; so , could this violation of WARP be key to understanding
the odd things that seem to be going on in the case of multiple competitive equi-
libria? This insight is summarised in the following theorem (proved in Appendix
C):
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Figure 7.12: Multiple equilibria

Theorem 7.5 (Uniqueness of competitive equilibrium) If p� is a nor-
malised equilibrium price vector in a private ownership economy and if aggregate
consumer demands satisfy the Weak Axiom of Revealed Preference with refer-
ence to p�, then p� must be unique.

It is interesting to note that WARP, a principle that might have appeared
as blindingly obvious for an individual, plays a subtle and important rôle in
characterising the regularity conditions needed for the mass of consumers to act
in a way that makes competitive equilibrium �well behaved�.21

7.4.4 Stability

In order to make precise the problem of specifying what stability of the system
means and the conditions under which it might be achieved, we need some
explicit story of dynamics �a process through time �something that we have
in general shied away from.
Our �rst step is to introduce an arti�cial device. Suppose there is an �auc-

tioneer�who adjusts prices. This is not one of the ordinary economic agents
of our model, but a disembodied institution that manipulates the vector p in
response to market conditions. A reasonable sort of rule might be that if there
is currently excess demand for commodity i then the auctioneer ought to put pi

21 You might think that the phenomenon of multiple equilibria is just a technicality; but it
could have important policy implications. What might happen in a situation such as Figure
7.12 if one were to try to in�uence the equilibrium incomes of poor agricultural producers by
changing resource endowments?
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Figure 7.13: Global stability

up a bit; if there is excess supply (Ei < 0) then, if the price is not already zero,
it ought to come down a bit �see Figures 7.13 and 7.14. We could formalise
this general idea in the following speci�c process:

De�nition 7.7 the economy follows a linear tâtonnement process if

dpi(t)

dt
=

8<: �iEi (p(t)) if pi(t) � 0

0 otherwise

9=; (7.23)

i = 1; :::; n, where �i is some positive scalar.

Tâtonnement processes �linear or non-linear �are very convenient analytical
simpli�cations, but are rather strange in terms of their economic interpretation.
The process described in (7.23) implies that if there is positive excess demand
for a good then that good�s price rises, and vice versa. But the functions Ei are
de�ned relative to a given distribution d, so that the price-adjustment rule above
implicitly assumes that d does not change during the process. Obviously once
people do trade, these resource endowments for the �next period�will change;
so the tâtonnement process e¤ectively assumes that no trading occurs before
equilibrium is reached. In many cases this is a manifestly absurd assumption.
However, let us see how the system adjusts under this simple-minded process
where, for convenience we shall take �i = 1 for all i.
To do this let us introduce a notion of �distance� of prices at any time t
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Figure 7.14: Local instability

from equilibrium prices; this may be de�ned as

�(t) :=

vuut nX
i=1

[pi(t)� p�i ]
2 (7.24)

To examine the issue of stability, we need to examine how this distance changes
as time goes by. Di¤erentiate (7.24) with respect to time; then using the de�n-
ition of the tâtonnement process we get22

d�(t)

dt
= � 1

�(t)

nX
i=1

p�iEi (p(t)) : (7.25)

However, if aggregate consumption demands x(p) obey the Weak Axiom of
Revealed Preference with reference to p�, so also do the excess demand functions
E(p).23 The Weak Axiom of Revealed Preference implies

nX
i=1

p�iEi (p
�) <

nX
i=1

p�iEi (p(t)) : (7.26)

But the left-hand side of (7.26) is zero, because of Walras�Law. From this result
we can see that the right-hand side of equation (7.25) must be negative. This

22 Establish this result by squaring (7.24), di¤erentiating and then using Walras�Law.
23 Show this using the de�nition of WARP (Axiom 4.2 on page 73) and the de�nition of

pro�t maximisation.
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means that the distance to equilibrium always decreases over time. So we may
conclude that the system is stable.24

These three topics in the excess-demand approach have enabled us to fo-
cus on the key issues in the determination of an equilibrium price vector. We
now need to use the information derived from this analysis to complete the
characterisation of general equilibrium.

7.5 The rôle of prices

In section 7.2 we summarised the underlying story of the competitive equilibrium
system as a mapping from the distribution of resource- and share-ownership to
a special allocation of goods and production activities in the economy (7.11).
We have now seen two key steps in the explanation of that mapping:

� A rationale for the price-taking paradigm. The results on the core in
section 7.3 clarify why it makes sense to assume that self-interested con-
sumers act as price-takers in a large economy. If everyone does act as
a price-taker then an important component of the fundamental mapping
is that the property distribution and the price system determine desired
consumptions and outputs through the demand and supply functions

(d;p) !
�
x1(p);x2(p); :::

�
(7.27)

p !
�
q1(p);q2(p); :::

�
: (7.28)

� A tool for analysing the properties of equilibrium price vectors. The system
of excess demands discussed in section 7.4 encapsulates all the informa-
tion about the price-taking responses by aggregating the two relationships
(7.27, 7.28) over all the agents. This simpli�es (7.27) and (7.28) to

(d;p)! E(p) (7.29)

We now know that under (perhaps?) reasonable conditions the excess-
demand system (7.17) will yield a unique equilibrium price-vector p�.

It is clear that the rôle of prices is central to each of these steps in the
argument. There remain for us two important tasks that exploit this central rôle.
First we need to use these two steps to complete the characterisation of a general
competitive equilibrium. Second we need to re-examine the decentralisation
function of prices that we discussed in chapter 6, taking into account that, by
contrast to the chapter 6 model, we are now in a large-numbers economy.

24 What might happen if people were to sell things along the way?
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7.5.1 The equilibrium allocation

The solution to the excess-demand system discussed in section 7.4 gives us a
speci�c set of normalised prices; we can notionally represent this as

(7:17)! p�: (7.30)

Given (7.30) we can then take the �nal step in the mapping from the property
distribution to the equilibrium allocation. This is simply to plug the p� that
emerges from (7.30) into the response functions (7.27) and (7.28). What is
going on here is that each household or �rm in the economy freely chooses the
appropriate consumption bundle or collection of net outputs at the equilibrium
prices: it is the result of their acting as optimising economic agents. We can
summarise this as �equilibrium prices determine the allocation�:

p� ! a�: (7.31)

Putting together the three bits of the story (7.29) � (7.31) we then have a
complete account of the fundamental mapping d! a�.
As a �nal remark here let us not overlook the fact that associated with the

distribution of bundles of goods in the allocation a� there is also a distribution
of utilities. The general equilibrium determines how well-o¤ each person is.
This is something that ought to be of interest to anyone concerned with how
economies work. The issue will be pursued in chapter 9.

7.5.2 Decentralisation again

There is another important interpretation of the rôle of prices that we can see
just by borrowing material from the Crusoe model (chapter 6). This is the
decentralisation result, the essence of which is depicted in Figure 7.15: this
�gure is obviously very similar to Figure 6.8 used for the decentralisation result
in the Robinson Crusoe economy, but there are two small di¤erences.
The �rst di¤erence is that we are now talking about real market prices, not

shadow prices as in the discussion of Figure 6.8. The hyperplane de�ned by the
equilibrium price vector p� is depicted as the straight line in Figure 7.15. In the
�gure this line is seen to pass between two sets marked A and B: again these
are the attainable set of consumptions, A, given by

fx : x � q+R;�(q) � 0g (7.32)

and the better-than-x� set, B, given by(
nhX
h=1

xh : Uh(xh) � Uh(x�h)

)
; (7.33)

where x, q and R represent vectors of consumption, net output and resources
aggregated over the whole economy as in (7.7). The attainable set A is much
as we discussed on page 131 in chapter 6. The set B is the second of the
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Figure 7.15: Decentralisation in general equilibrium

slight di¤erences from the previous discussion: it represents the set of aggregate
consumption vectors that would permit each household to achieve the same or
higher utility level that it achieves in equilibrium. This set must also be convex
if all households have conventional concave-contoured utility functions.25

To interpret the decentralisation function of prices in this case de�ne aggre-
gate expenditure (income) in equilibrium as

y :=
nX
i=1

p�i x
�
i :

Then the hyperplane illustrated in Figure 7.15 is the set of points(
x :

nX
i=1

p�i xi = y

)
: (7.34)

This hyperplane �supports� the sets A and B as in the following result (see
Appendix C):

Theorem 7.6 (Valuation in general equilibrium) If A given by (7.32) and
B given by (7.33) are both convex sets then there are prices p� and a consump-
tion vector x� such that, for all x 2 A:

nX
i=1

p�i xi � y (7.35)

25 Explain why (7.33) must be convex using Theorem A.6 in Appendix A.
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Figure 7.16: Convexi�cation of production through aggregation

and for all x 2 B
nX
i=1

p�i xi � y: (7.36)

where y :=
Pn

i=1 p
�
i x
�
i :

This means that x� simultaneously maximises the valuation of aggregate
income over the attainable set A and minimises the valuation of aggregate ex-
penditure over the set B.
Now, while we can borrow results from chapter 6 we must also admit that

there is a problem that carries over from chapter 6. One of the lessons drawn
from the Robinson Crusoe analogy was that it might not be possible to decen-
tralise in the presence of nonconvexities. This appears to a¤ect Theorem 6.2
which relies on the sets A and B being convex.26 We might have suspected this
in the light of the discussion of the possibility of nonexistence of equilibrium
(page 161) �after all, as we have seen, nonconvexity of an agent�s constraint set
can lead to discontinuity of the agent�s response function.
However, given that we are using a model that represents arbitrarily many

agents, we may be able to get around this problem by appealing to a result that
we have already glimpsed a couple of times previously (see section 3.3 starting
on page 53). Consider a very simple production function, where good 1 is an

26 Use the Robinson Crusoe analogy and a diagram like Figure 7.15 to show (a) why
decentralisation may not be possible (a) if A is non-convex, and (b) if B is non-convex.
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Figure 7.17: Non-convex preferences

input, and good 2 an output (this is based on Exercise 6.1 in chapter 6):8<: q2 = 0 q1 > �1

q2 = 1 q1 � �1

9=; (7.37)

This technology is illustrated in the �rst panel of Figure 7.16. Clearly there
is a simple indivisibility in the production process and, as a consequence, the
technology set is nonconvex. If we were to replicate a �rm with this technology
set and plot the feasible combinations of inputs and outputs on a half-scale
diagram, we would get the second panel in the �gure; successive replications
yield the subsequent panels, scaled down by 1

4 ,
1
8 , and so on. As we can see this

process of replication enables one to consider the aggregate technology set being
�almost�convex if the replication factor were to be large enough. The same
kind of result can be obtained in the case of nonconvex preferences. Examine
Figure 7.17 in which the shaded area represents the B-set for a single person,
Bill. Consider the line that bridges the �dent�in B. If the economy consists of
Bill, and his identical twin brother Ben, then not only the n points of the line
but also the midpoint will belong to the B-set. If there are inde�nitely many of
the Bill tribe, then all of this line belongs to the B-line: in fact you just shaded
in the dent that you had in the one person B-set.
The allocation in each of these two cases involves placing similar agents in

dissimilar situations: some �rms will produce (q2 = 1), others will not (q2 = 0);
some consumers will be at the left-hand end of the dent in Figure 7.17, others
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at the right-hand end. But in each case the �rms and the consumers are acting
as maximisers. What this means is that we can still decentralise if individual
sets are non-convex, but agents are �small�.

7.6 Summary

Without too much additional e¤ort and complication the Robinson Crusoe econ-
omy of chapter 6 can be generalised to an economy with many agents �con-
sumers and �rms �in a way that preserves the main Crusoe insights. Further-
more it is clear that the general-equilibrium model has much that is familiar
from earlier chapters: along with bits of the Crusoe story it incorporates bits
from the equilibrium analysis of the �rm and of the consumer. Some com-
ponents of microeconomic models have popped up again in a new guise: for
example WARP that originally appeared as a basic axiom of consumer behav-
iour re-emerges as a condition on excess-demand functions that enables us to
characterise whether the system is well behaved.
However, there are three areas where the general-equilibrium analysis pre-

sented here does more than just pull together results from previous analysis,
but rather contributes important new insights.

Ownership

The anchor point of the type of model that we have analysed is the system of
property rights �who owns the resources and the rights to the pro�ts from the
�rms. From this follows the endogenous determination of household incomes;
from this also follows the fundamental mapping d ! a from the property dis-
tribution to the allocation of consumption bundles amongst the households and
net-output vectors amongst the �rms. Taking the property distribution as a
given enables us to focus clearly on the principles governing the operation of
the competitive market system, but it may seem to be as an abdication of
responsibility on the part of the economist.

Numbers

The presence of many economic agents might at �rst have seemed just an unfor-
tunate but necessary complication in the basic economic model. However, there
are two points where a �large-numbers argument� is a particular advantage in
establishing key economic insights.
The �rst large-numbers argument concerns the analysis of the core and com-

petitive equilibrium (section 7.3.3). The limit theorem enables us to see why and
under what circumstances the competitive parable provides a coherent account
of how self-interested economic agents behave.
The second large-numbers argument concerns the decentralisation story (sec-

tion 7.5.2). This works in basically the same way as in Robinson Crusoe, but
there is a new twist. In the Crusoe story decentralisation might break down
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if there were some substantial indivisibility in production that led to the at-
tainable set being nonconvex. That could happen in the general-equilibrium
model too, but the large-numbers argument provides some reassurance: build-
ing on a lesson from chapter 3 the presence of large numbers of small agents
approximately convexi�es the model, ensures that the excess-demand function
is e¤ectively continuous and so ensures the existence of equilibrium prices that
do the job of decentralisation.

Prices

As an over-simpli�cation, the central problem of characterising a general com-
petitive equilibrium can be resolved into a two-stage process:

1. Find the equilibrium price vector p� from the aggregate market-clearing
conditions

2. Use p� to get the equilibrium allocation a� through the price responses of
individual agents.

It is evident that the price system is the engine that drives this model; how
it does this is an issue that we shall have cause to re-examine in later chapters.

7.7 Reading notes

The origin of general equilibrium is largely attributable to Walras (1954). The
connection between the core and competitive equilibrium was anticipated in
Edgeworth (1881); the key result is in Debreu and Scarf (1963); an easier treat-
ment of this is in Schweizer (1982). The classic reference on the existence of
equilibrium is Arrow and Debreu (1954); comprehensive treatment of general
equilibrium models is to be found in Arrow and Hahn (1971). Stability analysis
is considered further in Hahn (1982). For the application of convexity arguments
in competitive models see Farrell (1959).

7.8 Exercises

7.1 Suppose there are 200 traders in a market all of whom behave as price
takers. Suppose there are three goods and the traders own initially the following
quantities:

� 100 of the traders own 10 units of good 1 each

� 50 of the traders own 5 units of good 2 each

� 50 of the traders own 20 units of good 3 each
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All the traders have the utility function

U = x
1
2
1 x

1
4
2 x

1
4
3

What are the equilibrium relative prices of the three goods? Which group of
traders has members who are best o¤ ?

7.2 Consider an exchange economy with two goods and three persons. Alf
always demands equal quantities of the two goods. Bill�s expenditure on group 1
is always twice his expenditure on good 2. Charlie never uses good 2.

1. Describe the indi¤erence maps of the three individuals and suggest utility
functions consistent with their behaviour.

2. If the original endowments are respectively (5, 0), (3, 6) and (0, 4), com-
pute the equilibrium price ratio. What would be the e¤ect on equilibrium
prices and utility levels if

(a) 4 extra units of good 1 were given to Alf;

(b) 4 units of good 1 were given to Charlie?

7.3 In a two-commodity economy assume a person has the endowment (0; 20).

1. Find the person�s demand function for the two goods if his preferences are
represented by each of the types A to D in Exercise 4.2. In each case
explain what the o¤er curve must look like.

2. Assume that there are in fact two equal sized groups of people, each with
preferences of type A, where everyone in group 1 has the endowment (10,0)
with � = 1

2 and everyone in group 2 an endowment (0,20) with � =
3
4 . Use

the o¤er curves to �nd the competitive equilibrium price and allocation.

7.4 The agents in a two-commodity exchange economy have utility functions

Ua(xa) = log(xa1) + 2 log(x
a
2)

U b(xb) = 2 log(xb1) + log(x
b
2)

where xhi is the consumption by agent h of good i, h = a; b; i = 1; 2. The property
distribution is given by the endowments Ra = (9; 3) and Rb = (12; 6).

1. Obtain the excess demand function for each good and verify that Walras�
Law is true.

2. Find the equilibrium price ratio.

3. What is the equilibrium allocation?

4. Given that total resources available remain �xed at R := Ra+ Rb =
(21; 9), derive the contract curve.
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7.5 Which of the following sets of functions are legitimate excess demand func-
tions?

E1 (p) = �p2 + 10
p1

E2 (p) = p1
E3 (p) = � 10

p3

9=; (7.38)

E1 (p) =
p2+p3
p1

E2 (p) =
p1+p3
p2

E3 (p) =
p1+p2
p3

9>=>; (7.39)

E1 (p) =
p3
p1

E2 (p) =
p3
p2

E3 (p) = �2

9=; (7.40)

7.6 In a two-commodity economy let � be the price of commodity 1 in terms of
commodity 2. Suppose the excess demand function for commodity 1 is given by

1� 4�+ 5�2 � 2�3:

How many equilibria are there? Are they stable or unstable? How might your
answer be a¤ected if there were an increase in the stock of commodity 1 in the
economy?

7.7 Consider the following four types of preferences:

Type A : � log x1 + [1� �] log x2
Type B : �x1 + x2

Type C :  [x1]
2
+ [x2]

2

Type D : min f�x1; x2g

where x1; x2 denote respectively consumption of goods 1 and 2 and �; �; ; � are
strictly positive parameters with � < 1.

1. Draw the indi¤erence curves for each type.

2. Assume that a person has an endowment of 10 units of commodity 1 and
zero of commodity 2. Show that, if his preferences are of type A, then his
demand for the two commodities can be represented as

x :=

�
x1
x2

�
=

�
10�
10� [1� �]

�
where � is the price of good 1 in terms of good 2. What is the person�s
o¤er curve in this case?

3. Assume now that a person has an endowment of 20 units of commodity
2 (and zero units of commodity 1) �nd the person�s demand for the two
goods if his preferences are represented by each of the types A to D. In
each case explain what the o¤er curve must look like.
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4. In a two-commodity economy there are two equal-sized groups of people.
People in group 1 own all of commodity 1 (10 units per person) and people
in group 2 own all of commodity 2 (20 units per person). If Group 1 has
preferences of type A with � = 1

2 �nd the competitive equilibrium prices
and allocations in each of the following cases:

(a) Group 2 have preferences of type A with � = 3
4

(b) Group 2 have preferences of type B with � = 3.

(c) Group 2 have preferences of type D with � = 1.

5. What problem might arise if group 2 had preferences of type C? Compare
this case with case 4b

7.8 In a two-commodity exchange economy there are two equal-sized groups of
people. Those of type a have the utility function

Ua (xa) = �1
2
[xa1 ]

�2 � 1
2
[xa2 ]

�2

and a resource endowment of (R1; 0); those of type b have the utility function

U b
�
xb
�
= xb1x

b
2

and a resource endowment of (0; R2).

1. How many equilibria does this system have?

2. Find the equilibrium price ratio if R1 = 5, R2 = 16.

7.9 In a two-person, private-ownership economy persons a and b each have
utility functions of the form

V h
�
p; yh

�
= log

�
yh � p1�h1 � p2�h2

�
� 1
2
log (p1p2)

where h = a; b and �h1 , �
h
2 are parameters. Find the equilibrium price ratio as

a function of the property distribution [R].

7.10 In an economy there are large equal-sized groups of capitalists and work-
ers. Production is organised as in the model of Exercises 2.11 and 6.4. Capital-
ists� income consists solely of the pro�ts from the production process; workers�
income comes solely from the sale of labour. Capitalists and workers have the
utility functions xc1x

c
2 and x

w
1 � [R3 � xw3 ]

2 respectively, where xhi denotes the
consumption of good i by a person of type h and R3 is the stock of commodity
3.

1. If capitalists and workers act as price takers �nd the optimal demands for
the consumption goods by each group, and the optimal supply of labour
R3 � xw3 .
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2. Show that the excess demand functions for goods 1,2 can be written as

�

2p1
+

1

2 [p1]
2 �

A

2
p1

�

2p2
� A

2
p2

where � is the expression for pro�ts found in Exercise 6.4. Show that in
equilibrium p1=p2 =

p
3 and hence show that the equilibrium price of good

1 (in terms of good 3) is given by

p1 =

�
3

2A

�1=3
3. What is the ratio of the money incomes of workers and capitalists in equi-
librium?



Chapter 8

Uncertainty and Risk

The lottery is the one ray of hope in my otherwise unbearable life.
�Homer Simpson.

8.1 Introduction

All of the economic analysis so far has been based on the assumption of a
certain world. Where we have touched on the issue of time it can e¤ectively
be collapsed into the present through discounting. Now we explicitly change
that by incorporating uncertainty into the microeconomic model. This also
gives us an opportunity to think more about the issue of time. We deal with
a speci�c, perhaps rather narrow, concept of uncertainty that is, in a sense,
exogenous. It is some external ingredient that has an impact upon individual
agents�economic circumstances (it a¤ects their income, their needs...) and also
upon the agents�decisions (it a¤ects their consumption plans, the pattern of
their asset-holding...)
Although there are some radically new concepts to be introduced, the analy-

sis can be �rmly based on the principles that we have already established, par-
ticularly those used to give meaning to consumer choice. However, the approach
will take us on to more general issues: by modelling uncertainty we can provide
an insight into the de�nition of risk, attitudes to risk and a precise concept of
risk aversion.

8.2 Consumption and uncertainty

We begin by looking at the way in which elementary consumer theory can be
extended to allow for the fact that the future is only imperfectly known. To �x
ideas, let us consider two examples of a simple consumer choice problem under
uncertainty.

177
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�Budget day� �Election day�

states of the world fee does/ Blue/Red wins
does not increase

payo¤s (outcomes) �£ 20 or £ 0, capital gain/capital loss,
depending on ! depending on !

prospects states and outcomes states and outcomes
seen from the morning seen from the morning

ex ante/ex post before/after 3pm before/after the
Election results

Table 8.1: Two simple decision problems under uncertainty

1. Budget day. You have a licence for your car which must be renewed
annually and which still has some weeks before expiry. The government is
announcing tax changes this afternoon which may a¤ect the fee for your
licence: if you renew the licence now, you pay the old fee, but you forfeit
the unexpired portion of the licence; if you wait, you may have to renew
the licence at a higher fee.

2. Election day. Two parties are contesting an election, and the result will
be known at noon. In the morning you hold an asset whose value will
be a¤ected by the outcome of the election. If you do not sell the asset
immediately your wealth will rise if the Red party wins, and drop if the
Blue party wins.

The essential features in these two examples can be summarised in the ac-
companying box, and the following points are worth noting:

� The states-of-the-world indexed by ! act like labels on physically di¤erent
goods.

� The set of all states-of-the-world 
 in each of the two examples is very
simple �it contains only two elements. But in some interesting economic
models may be (countably or uncountably) in�nite.

� The payo¤s in the two examples are scalars (monetary amounts); but
in more general models it might be useful to represent the payo¤ as a
consumption bundle �a vector of goods x.

� Timing is crucial. Use the time-line Figure 8.1 as a simple parable; the left-
hand side represents the �morning�during which decisions are made; the
outcome of a decision is determined in the afternoon and will be in�uenced
by the state-of-the-world !. The dotted boundary represents the point at
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Figure 8.1: The ex-ante/ex-post distinction

which exactly one ! is realised out of a whole rainbow of possibilities. You
must make your choice ex ante. It is too late to do it ex post �after the
realisation of the event.

� The prospects could be treated like consumption vectors.

8.2.1 The nature of choice

It is evident that from these examples that the way we look at choice has
changed somewhat from that analysed in chapter 4. In our earlier exposition
of consumer theory actions by consumers were synonymous with consequences:
you choose the action �buy x1 units of commodity 1�and you get to consume
x1 units of commodity 1: it was e¤ectively a model of instant grati�cation. We
now have a more complex model of the satisfaction of wants. The consumer
may choose to take some action (buy this or that, vote for him or her) but
the consequence that follows is no longer instantaneous and predictable. The
payo¤ �the consequence that directly a¤ects the consumer �depends both on
the action and on the outcome of some event.

To put these ideas on an analytical footing we will discuss the economic
issues in stages: later we will examine a speci�c model of utility that appears
to be well suited for representing choice under uncertainty and then consider
how this model can be used to characterise attitudes to risk and the problem of
choice under uncertainty. However, �rst we will see how far it is possible to get
just by adapting the model of consumer choice that was used in chapter 4.
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Figure 8.2: The state-space diagram: #
 = 2

8.2.2 State-space diagram

As a simpli�ed introduction take the case where there are just two possible states
of the world, denoted by the labels red and blue, and scalar payo¤s; this means
that the payo¤ in each state-of-the-world ! can be represented as the amount
of a composite consumption good x!. Then consumption in each of the two
states-of-the-world xred and xblue can be measured along each of the two axes
in Figure 8.2. These are contingent goods: that is xred and xblue are quantities
of consumption that are contingent on which state-of-the world is eventually
realised. An individual prospect is represented as a vector of contingent goods
such as that marked by the point P0 and the set of all prospects is represented
by the shaded area in Figure 8.2. If instead there were three states in 
 with
scalar payo¤s then a typical prospect would be such as P0 in Figure 8.3. So
the description of the environment in which individual choice is to be exercised
is rather like that of ordinary consumption vectors � see page 71. However,
the 45� ray in Figure 8.2 has a special signi�cance: prospects along this line
represent payo¤s under complete certainty. It is arguable that such prospects are
qualitatively di¤erent from anywhere else in the diagram and may accordingly be
treated di¤erently by consumers; there is no counterpart to this in conventional
choice under certainty.
Now consider the representation of consumers�preferences �as viewed from

the morning � in this uncertain world. To represent an individual�s ranking
of prospects we can use a weak preference relation of the form introduced in
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Figure 8.3: The state-space diagram: #
 = 3

De�nition 4.2. If we copy across the concepts used in the world of certainty
from chapter 4 we might postulate indi¤erence curves de�ned in the space of
contingent goods �as in Figure 8.4. This of course will require the standard
axioms of completeness, transitivity and continuity introduced in chapter 4 (see
page 75). Other standard consumer axioms might also seem to be intuitively
reasonable in the case of ranking prospects. An example of this is �greed�
(Axiom 4.6 on page 78): prospect P1 will, presumably, be preferred to P0 in
Figure 8.4.
But this may be moving ahead too quickly. Axioms 4.3 to 4.5 might seem

fairly unexceptionable in the context where they were introduced �choice under
perfect certainty �but some people might wish to question whether the continu-
ity axiom is everywhere appropriate in the case of uncertain prospects. It may
be that people who have a pathological concern for certainty have preferences
that are discontinuous in the neighbourhood of the 45� ray: for such persons a
complete map of indi¤erence curves cannot be drawn.1

However, if the individual�s preferences are such that you can draw indif-
ference curves then you can get a very useful concept indeed: the certainty
equivalent of any prospect P0. This is point E with coordinates (�; �) in Figure
8.5; the amount � is simply the quantity of the consumption good, guaranteed
with complete certainty, that the individual would accept as a straight swap for

1 If the continuity axiom is violated in this way decribe the shape of the individual�s
prefernce map.
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Figure 8.4: Preference contours in state-space

Figure 8.5: The certainty equivalent
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Figure 8.6: Quasiconcavity reinterpreted

the prospect P0. It is clear that the existence of this quantity depends crucially
on the continuity assumption.
Let us consider the concept of the certainty equivalent further. To do this,

connect prospect P0 and its certainty equivalent by a straight line, as shown
in Figure 8.6. Observe that all points on this line are weakly preferred to
P0 if and only if the preference map is quasiconcave (you might �nd it useful
to check the de�nition of quasiconcavity on page 506 in Appendix A). This
suggests an intuitively appealing interpretation: if the individual always prefers
a mixture of prospect P with its certainty equivalent to prospect P alone then
one might claim that in some sense he or she has �risk averse� preferences.
On this interpretation �risk aversion�implies, and is implied by, convex-to-the-
origin indi¤erence curves (I have used the quote marks around risk aversion
because we have not de�ned what risk is yet).2

Now for another point of interpretation. Suppose red becomes less likely
to win (as perceived by the individual in the morning) �what would happen to
the indi¤erence curves? We would expect them to shift in the way illustrated in
Figure 8.7. by replacing the existing light-coloured indi¤erence curves with the
heavy indi¤erence curves The reasoning behind this is as follows. Take E as a
given reference point on the 45� line �remember that it represents a payo¤ that
is independent of the state of the world that will occur. Before the change the
prospects represented by points E and P0 are regarded as indi¤erent; however

2What would the curves look like for a risk-neutral person? For a risk-lover?
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Figure 8.7: A change in perception

after the change it is P1 � that implies a higher payo¤ under red � that is
regarded as being of �equal value�to point E.3

8.3 A model of preferences

So far we have extended the formal model of the consumer by reinterpreting the
commodity space and reinterpreting preferences in this space. This reinterpreta-
tion of preference has included the �rst tentative steps toward a characterisation
of risk including the way in which the preference map �should� change if the

3 Consider a choice between the following two prospects:

P :

�
$1 000
$100 000

with probability 0.7
with probability 0.3

P 0 :

�
$1 000
$30 000

with probability 0.2
with probability 0.8

Starting with Lichtenstein and Slovic (1983) a large number of experimental studies have
shown the following behaviour

1. When a simple choice between P and P 0 is o¤ered, many experimental subjects would
choose P 0.

2. When asked to make a dollar bid for the right to either prospect many of those who
had chosen then put a higher bid on P than on P 0.

This phenomenon is known as preference reversal. Which of the fundamental axioms ap-
pears to be violated?
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RED BLUE GREEN
P10 1 6 10
P̂10 2 3 10

Table 8.2: Example for Independence Axiom

person�s perception about the unknown future should change. It appears that
we could � perhaps with some quali�cation � represent preferences over the
space of contingent goods using a utility function as in Theorem 4.1 and the
associated discussion on page 77.
However some might complain all this is a little vague: we have not speci�ed

exactly what risk is, nor have we attempted to move beyond an elementary two-
state example. To make further progress, it is useful to impose more structure
on preferences. By doing this we shall develop the basis for a standard model of
preference in the face of uncertainty and show the way that this model depends
on the use of a few powerful assumptions.

8.3.1 Key axioms

Let us suppose that all outcomes can be represented as vectors x which belong
to X � Rn. We shall introduce three more axioms.

Axiom 8.1 (State-irrelevance) The state that is realised has no intrinsic
value to the person.

In other words, the colour of the state itself does not matter. The intuitive
justi�cation for this is that the objects of desire are just the vectors x and people
do not care whether these materialise on a �red�day or a �blue�day; of course
it means that one has to be careful about the way goods and their attributes
are described: the desirability of an umbrella may well depend on whether it is
a rainy or a sunny day.

Axiom 8.2 (Independence) Let Pz and bPz be any two distinct prospects spec-
i�ed in such a way that the payo¤ in one particular state of the world is the same
for both prospects: x! = bx! = z: Then, if prospect Pz is preferred to prospectbPz for one value of z, Pz is preferred to bPz for all values of z.
To see what is involved, consider Table 8.2 in which the payo¤s are scalar

quantities. Suppose P10 is preferred to P̂10: would this still hold even if the
payo¤ 10 (which always comes up under state green) were to be replaced by
the value 20? Look at the preference map depicted in Figure 8.8: each of the
�slices� that have been drawn in shows a glimpse of the (xred ; xblue)-contours
for one given value of xgreen . The independence property also implies that the
individual does not experience disappointment or regret �see Exercises 8.5 and
8.6.4

4 Compare Exercises 8.5 and 8.6. What is the essential di¤erence between regret and
disappointment?
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Figure 8.8: Independence axiom: illustration

Axiom 8.3 (Revealed Likelihood) Let x� and x be two payo¤s such that
under certainty x� would be weakly preferred to x. Let 
0 and 
1 be any two
given subsets of the set of all states of the world 
 and suppose the individual
weakly prefers the prospect

P0 = [x
� if ! 2 
0;x if ! =2 
0]

to the prospect
P1 = [x

� if ! 2 
1;x if ! =2 
1]

for some such x�;x. Then he prefers P0 to P1 for every such x�, x.

Consider an example illustrating this property. Let the set of all states-of-
the-world be given by


 = fred,orange,yellow,green,blue,indigo,violetg:

Now, suppose we have a person who prefers one apple to one banana, and also
prefers one cherry to one date. Consider two prospects P0, P1 which each have
as payo¤s an apple or a banana in the manner de�ned in Table 8.3:
Furthermore let us de�ne two subsets of 
, namely


0 := fred,orange,yellow,green,blueg


1 := fgreen,blue,indigo,violetg;
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RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET
P0 apple apple apple apple apple banana banana
P1 banana banana banana apple apple apple apple

Table 8.3: Prospects with fruit

RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET
P 00 cherry cherry cherry cherry cherry date date
P 01 date date date cherry cherry cherry cherry

Table 8.4: Prospects with di¤erent fruit

we see that P0 and P1 then have the property described in the axiom. Suppose
the individual prefers P0 to P1. Then the revealed-likelihood axiom requires that
he also prefer P 00 to P

0
1, de�ned as in Table 8.4; it further implies that the above

hold for any other arbitrary subsets 
0, 
1 of the set of all states-of-the-world.
The intuition is that the pairs (P0, P1) and (P 00, P

0
1) have in common the

same pattern of subsets of the state-space where the �winner� comes up. By
consistently choosing P0 over P1, P 00 over P

0
1, and so on, the person is revealing

that he thinks that the subset of events 
0 is �more likely� than 
1. This
assumption rules out so-called �ambiguity aversion��see Exercise 8.7.
The three new assumptions then yield this important result, proved in Ap-

pendix C:

Theorem 8.1 (Expected utility) Assume that preferences over the space of
state-contingent goods can be represented by a utility function as in Theorem 4.1.
If preferences also satisfy state-irrelevance, independence and revealed likelihood
(axioms 8.1 �8.3) then they can be represented in the formX

!2

�!u (x!) (8.1)

where the �! are real numbers and u is a real-valued function on X that is
de�ned up to an increasing, a¢ ne transformation.

In honour of its origin the special form (8.1) is often known as a von-
Neumann-Morgenstern utility function. As with the problem of aggregation
discussed in chapter 5 (see page 112), once again the additional requirements
imposed on the representation of preferences induce a set of restrictions on the
class of admissible utility functions. It is di¢ cult to overstate the importance of
this result (and its alternate version in Theorem 8.4 below) for much of modern
microeconomic analysis. Nevertheless, before we press on to its interpretation
and some of its many applications, it is worth reminding ourselves that the
additional structural axioms on which it rests may be subject to challenge as
reasonable representations of people�s preferences in the face of uncertainty.
Speci�cally, experimental evidence has repeatedly rejected the independence
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Figure 8.9: Contours of the Expected-Utility function

axiom as a representation of people�s preferences in the face of choice under
uncertainty.

8.3.2 Von-Neumann-Morgenstern utility

What does this special utility function look like? To scrutinise the properties
of (8.1) and how they work we can extract a lot of information from the simple
case of scalar payo¤s �e.g. payo¤s in money �as in section 8.2.2 above.
First the function u. Here we encounter a terminologically awkward corner.

We should not really call u �the utility function�because the whole expression
(8.1) is the person�s utility; so u is sometimes known as the individual�s cardinal
utility function or felicity function; arguably neither term is a particularly happy
choice of words. The last part of Theorem 8.1 means that the function u could
be validly replaced by û de�ned by

û := a+ bu (8.2)

where a is an arbitrary constant and b > 0: the scale and origin of u are
unimportant. However, although these features of the function u are irrelevant,
other features, such as its curvature, are important because they can be used to
characterise the individual�s attitude to risk: this is dealt with in section 8.4.
Now consider the set of weights f�! : ! 2 
g in (8.1). If they are normalised

so as to sum to 1,5 then they are usually known as the subjective probabilities
5 Show that, given the de�nition of u, this normalisation can always be done.
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of the individual. Notice that the concept of probability has emerged naturally
from the structural assumptions that we have introduced on personal prefer-
ences, rather than as an explicit construct. Furthermore, being �subjective,�
they could di¤er from one individual to another �one person might quite reason-
ably put a higher weight on the outcome �The red party will win the election�
than another. We shall have much more to say about this and other aspects of
probability later in this chapter.
In view of the subjective-probability interpretation of the �s the von-Neumann-

Morgenstern utility function (8.1) can be interpreted as expected utility, and may
more compactly be written Eu(x). In the two-state, scalar payo¤ case that we
used as an example earlier this would be written:

�redu (xred) + �blueu (xblue) (8.3)

Using Figure 8.9 for the two-state case we can see the structure that (8.3)
introduces to the problem:6

� The slope of the indi¤erence curve where it crosses the 45� line is (�) the
ratio of the probabilities �red=�blue .

� A corollary of this is that all the contours of the expected utility function
must have the same slope at the point where they intersect the 45�-line.

� For any prospect such as point P0 in Figure 8.9, if we draw a line with this
slope through P0, the point at which it cuts the 45�-line represents the
expected value of the prospect P ; the value of this is represented (on either
axis) as Ex, where E is the usual expectations operator (see De�nition A.28
on page 517).

8.3.3 The �felicity�function

Let us know interpret the function u in terms of individual attitudes. To �x
ideas let us take the two-state case and suppose that payo¤s are scalars; further
assume that the individual assigns equal probability weight to the two states
(this is not essential but it makes the diagram more tractable). Figure 8.10
illustrates three main possibilities for the shape of u.

� In the left-hand panel look at the diagonal line joining the points (xblue ; u (xblue))
and (xred ; u (xred)); halfway along this line we can read o¤ the individual�s
expected utility (8.3); clearly this is strictly less than u (Ex). So if u had
this shape an individual would strictly prefer the expected value of the
prospect (in this case �redxred + �bluexblue) to the prospect itself. It follows
from this that the person would reject some �better-than-fair� gambles
i.e. gambles where the expected payo¤ is higher than the stake money for
the gamble.

6 Explain why these results are true, using (8.3).
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Figure 8.10: Attitudes to risk

� In the right-hand panel we see the opposite case; here the individual�s
expected utility is higher than u (Ex) and so the person would accept
some unfair gambles (where the expected payo¤ is strictly less than the
stake money).7

� Finally the middle panel. Here the expected utility of the gamble just
equals u (Ex).

Clearly each of these cases is saying something important about the person�s
attitude to risk; let us investigate this further.

8.4 Risk aversion

We have already developed an intuitive approach to the concept of risk aversion.
If the utility function U over contingent goods is quasiconcave (so that the
indi¤erence curves in the state-space diagram are convex to the origin) then we
have argued that the person is risk averse �see page 183 above. However, we
can now say more: if, in addition to quasiconcavity the utility function takes
the von-Neumann-Morgenstern form (8.1) then the felicity function u must be
concave.8 This is precisely the case in the left-hand panel of Figure 8.10 and
accords with the accompanying story explaining that the individual might reject
some fair gambles, which is why the panel has been labelled �risk averse.�By
the same argument the second and third panels depict risk-neutral and risk-
loving attitudes, respectively.9 However, we can extract more information from
the graph of the felicity function.

7 Would a rational person buy lottery tickets?
8 Prove this. Hint: use Figure 8.9 and extend the line through P0 with slope ��red=�blue

to cut the indi¤erence curve again at a point P1; then use the de�nition of quasiconcavity.
9 Draw an example of a u-function similar to those in Figure 9 but where the individual is

risk-loving for small risks and risk-averse for large risks.
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Figure 8.11: The �felicity�or �cardinal utility�function u.

8.4.1 Risk premium

We have already introduced the concept of the certainty equivalent in 8.2.2:
as shown in Figure 8.5 this is the amount of perfectly certain income that you
would be prepared to exchange for the random prospect lying on the same
indi¤erence curve. Now, using the von-Neumann-Morgenstern utility function,
the certainty equivalent can be expressed using a very simple formula: it is
implicitly determined as the number � that satis�es

u(�) = Eu(x): (8.4)

Furthermore we can use the certainty-equivalent to de�ne the risk premium as

Ex� �: (8.5)

This is the amount of income that the risk-averse person would sacri�ce in order
to eliminate the risk associated with a particular prospect: it is illustrated on
the horizontal axis of Figure 8.9,
Now we can also use the graph of the felicity function to illustrate both

the certainty-equivalent and the risk premium �see Figure 8.11. In this �gure
�red > �blue and on the horizontal axis Ex denotes the point �redxred + �bluexblue ;
on the vertical axis Eu(x) denotes the point �redu (xred) + �blueu (xblue). Use the
curve to read o¤ on the horizontal axis the income � that corresponds to Eu(x)
on the vertical axis. The distance between the two points � and Ex on the
horizontal axis is the risk premium.
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But we can say more about the shape of the function u by characterising
risk-aversion as a numerical index.

8.4.2 Indices of risk aversion

Why quantify risk-aversion? It is useful to be able to describe individuals�pref-
erences in the face of uncertainty in a way that has intuitive appeal: a complex
issue is made manageable through a readily interpretable index. However, it
should not come as a surprise to know that there is more than one way of de�n-
ing an index of risk aversion, although the good news is that the number of
alternative approaches is small.
Assume that preferences conform to the standard von-Neumann-Morgenstern

con�guration. In the case where the payo¤ is a scalar (as in our diagrammatic
examples above), we can de�ne an index of risk aversion in a way that en-
capsulates information about the function u depicted in Figure 8.11. Use the
subscript notation ux and uxx to denote the �rst and second derivatives of the
felicity function u. Then we can introduce two useful de�nitions of risk aversion.

Absolute risk aversion

The �rst of the two risk-aversion concepts is just the normalised rate of decrease
of marginal felicity:

De�nition 8.1 The index of absolute risk aversion is a function � given by

�(x) := �uxx (x)
ux (x)

We can also think of � (�) as a sort of index of �curvature�of the function u;
in general the value of �(x) may vary with the level of payo¤ x, although we will
examine below the important special case where � is constant. The index � is
positive for risk-averse preferences and zero for risk-neutral preferences (reason:
follows immediately from the sign of uxx (�)). Furthermore � is independent of
the scale and origin of the function u.10

This convenient representation enables us to express the risk premium in
terms of the index of absolute risk aversion and the variance of the distribution
of x:11

Theorem 8.2 (Risk premium and variance) For small risks the risk pre-
mium is approximately 1

2�(x)var(x).

10 Show why this property is true.
11 Prove this. Hint, use a Taylor expansion around Ex on the de�nition of the risk premium

(see page 494).
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Figure 8.12: Concavity of u and risk aversion

Relative risk aversion

The second standard approach to the de�nition of risk aversion is this:

De�nition 8.2 The index of relative risk aversion is a function % given by

%(x) := �xuxx (x)
ux (x)

Clearly this is just the �elasticity of marginal felicity�. Again it is clear
that %(x) must remain unchanged under changes in the scale and origin of the
function u. Also, for risk-averse or risk-neutral preferences, increasing absolute
risk aversion implies increasing relative risk aversion (but not vice versa).12

Comparisons of risk-attitudes

We have already seen in above (page 190) that a concave u-function can be
interpreted as risk aversion everywhere, a convex u-function as risk preference
everywhere. We can now be more precise about the association between con-
cavity of u and risk aversion: if we apply a strictly concave transformation to u
then either index of risk aversion must increase, as in the following theorem.13

12 Show this by di¤erentiating the expression in De�nition 8.2.
13 Prove this by using the result that the second derivative of a strictly concave function is

negative.
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Figure 8.13: Di¤erences in risk attitudes

Theorem 8.3 (Concavity and risk aversion) Let u and bu be two felicity
(cardinal utility) functions such that bu is a concave transformation of u. Thenb�(x) � �(x) and b%(x) � %(x).

So, the more �sharply curved�is the cardinal-utility or felicity function u, the
higher is risk aversion (see Figure 8.12) on either interpretation. An immediate
consequence of this is that the more concave is u the higher is the risk premium
(8.5) on any given prospect.14

This gives us a convenient way of describing not only how an individual�s
attitude to risk might change, but also how one compare the risk attitudes
of di¤erent people in terms of their risk aversion. Coupled with the notion
of di¤erences in subjective probabilities (page 188) we have quite a powerful
method of comparing individuals�preferences. Examine Figure 8.13. On the
left-hand side we �nd that Alf and Bill attach the same subjective probabilities
to the two states red and blue: for each of the two sets of indi¤erence curves in
the state-space diagram the slope where they intersect the 45� line is the same.
But they have di¤ering degrees of risk aversion �Alf�s indi¤erence curves are
more sharply convex to the origin (his felicity function u will be more concave)
than is the case for Bill. By contrast, on the right-hand side, Alf and Charlie
exhibit the same degree of risk aversion (their indi¤erence curves have the same
�curvature�and their associated u-functions will be the same), but Charlie puts
a higher probability weight on state red than does Alf (look at the slopes where
the indi¤erence curves cross the 45� line).

14 Show this using Jensen�s inequality (see page 517 in Appendix A).



8.4. RISK AVERSION 195

Figure 8.14: Indi¤erence curves with constant absolute risk aversion

8.4.3 Special cases

The risk-aversion indices �(�) and %(�) along with the felicity function u(�) are
quite general. However, for a lot of practical modelling it is useful to focus on
a particular form of u. Among the many possibly fascinating special functional
forms that might be considered it is clearly of interest to consider preferences
where either �(x) or %(x) is constant for all x. In each case we get a particularly
convenient formula for the felicity function u.

Constant Absolute Risk Aversion In the case of constant absolute risk
aversion the felicity function must take the form:15

u(x) = � 1
�
e��x (8.6)

or some increasing a¢ ne transformation of this �see (8.2) above. Figure 8.14
illustrates the indi¤erence curves in state space for the utility function (8.1)
given a constant �: note that along any 45� line the MRS between consumption
in the two states-of-the-world is constant.16

15 Use De�nition 8.1 to establish (8.6) if � (x) is everywhere a constant �.
16 Suppose individual preferences satisfy (8.1) with u given by (8.6). Show how Figure 8.14

alters if (a) �! is changed, (b) � is changed.
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Figure 8.15: Indi¤erence curves with constant relative risk aversion

Constant Relative Risk Aversion In the case of constant relative risk
aversion the felicity function must take the form:17

u(x) =
1

1� %x
1�% (8.7)

illustrated in Figure 8.1518 or some transformation of (8.7) of the form (8.2).
Figure 8.14 illustrates the indi¤erence curves in state space for the utility func-
tion (8.1) given a constant %: in this case we see that the MRS is constant along
any ray through the origin.

Other special cases are sometimes useful, in particular the case where u is a
quadratic function �see Exercise 8.8.

Example 8.1 How risk averse are people? Barsky et al. (1997) used survey
questions from the Health and Retirement Survey �a panel survey of a nation-
ally representative sample of the US population aged 51 to 61 in 1992 �to elicit
information on risk aversion, subjective rate of time preference, and willingness
to substitute intertemporally. The questions involved choice in hypothetical situ-
ations about willingness to gamble on lifetime income. Their principal evidence

17 Use De�nition 8.2 to establish (8.7) if % (x) is everywhere a constant %.
18 Suppose individual preferences satisfy (8.1) with u given by (8.7). Show how Figure 8.15

alters if (a) �! is changed, (b) % is changed.
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Figure 8.16: Estimates of % by quintiles from Barsky et al. (1997)

concerns the degree of �relative risk tolerance��the inverse of %(x) �by indi-
viduals at di¤erent points in the income distribution. The implications of these
estimates for relative risk aversion by income and wealth groups group is shown
in Figure 8.16.

8.5 Lotteries and preferences

sections 8.2 to 8.4 managed quite well without reference to probability, except
as a concept derived from the structure of preferences in the face of the un-
known future. This is quite a nice idea where there is no particular case for
introducing an explicit probability model, but now we are going to change that.
By an explicit probability model I mean that there is a well-de�ned concept of
probability conforming to the usual axioms, and that the probability distribu-
tion is objectively knowable (section A.8 on page 515 reviews information on
probability distributions). Where the probabilities come from �a coin-tossing,
a spin of the roulette wheel �we do not enquire, but we just take them to be
known entities.
We are going to consider the possibility that probability distributions are

themselves the objects of choice. The motivation for this is easy to appreciate
if we think of the individual making a choice amongst lotteries with a given
set of prizes associated with the various possible states of the world: the prizes
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Figure 8.17: The probability diagram: #
 = 2

are �xed but there are di¤erent probability vectors associated with di¤erent
lotteries.

8.5.1 The probability space

To formalise this assume a �nite set of states of the world $ as in (A.63): this
is not essential, but it makes the exposition much easier. There is a payo¤ x!
and a probability �! associated with each state. We can imagine preferences
being de�ned over the space of probability distributions, a typical member of
which can be written as a $-dimensional vector � given by (A.64)

� := (�red; �blue; �green; :::) (8.8)

such that X
!2


�! = 1: (8.9)

Figure 8.17 depicts the case $ = 2 where the set of points representing the
lottery distributions is the 45� line from (0; 1) to (1; 0): the speci�c distribution
(0:75; 0:25) is depicted as a point on this line. Alternatively, for the case $ = 3,
we can use Figure 8.18 where the set of points representing valid probability
distributions is the shaded triangle with vertices (1; 0; 0), (0; 1; 0), (0; 0; 1); the
speci�c distribution (0:5; 0:25; 0:25) is illustrated in the �gure. (Figures 8.17 and
8.18 are essentially exactly the same as the normalised price diagrams, Figures
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Figure 8.18: The probability diagram: #
 = 3

7.8 and B.21) The $ = 3 case can be seen more clearly in Figure 8.19 where
the probability triangle has been laid out �at.

8.5.2 Axiomatic approach

Now, suppose we consider an individual�s preferences over the space of lotteries.
Again we could try to introduce a �reasonable�axiomatisation for lotteries and
then use this to characterise the structure of preference maps �a particular class
of utility functions �that are to be regarded as suitable for problems of choice
under uncertainty.
The three axioms that follow form the standard way of doing this axioma-

tisation. Here ��;�0 and �00 are lotteries with the same payo¤s, each being
$-vectors of the form 8.8. The payo¤s associated with the given set of prizes
for each of the $ states-of-the-world is the ordered list of consumption vectors
[xred;xblue;xgreen; :::] and (0; 1) is the set of numbers greater than zero but less
than 1.
It is convenient to reintroduce the inelegant �weak preference�notation that

was �rst used in chapter 4. Remember that the symbol �<�should be read as
�is at least as good as.�Here are the basic axioms:

Axiom 8.4 (Transitivity over lotteries) If �� < �0 and �0 < �00 then
�� < �00.
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Figure 8.19: The probability diagram: #
 = 3 (close-up)

Axiom 8.5 (Independence of lotteries) If �� < �0 and � 2 (0; 1), then

��� + [1� �]�00 < ��0 + [1� �]�00:

Axiom 8.6 (Continuity over lotteries) If �� � �0 � �00 then there are
numbers �; � 2 (0; 1) such that

��� + [1� �]�00 � �0

and
�0 � ��� + [1� �]�00

Now for a very appealing result that obviously echoes Theorem 8.1 (for proof
see Appendix C):

Theorem 8.4 (Lottery Preference Representation) If axioms 8.4�8.6 hold
then preferences can be represented as a von-Neumann-Morgenstern utility func-
tion: X

!2

�!u (x!) (8.10)

where u is a real-valued function on X that is de�ned up to an increasing, a¢ ne
transformation.
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Figure 8.20: �-indi¤erence curves

So with the set of three axioms over lotteries the individual�s preference
structure once again takes the expected utility form

Eu (x) :

Furthermore, it is clear that the utility function (8.10) can be rewritten as a
simple �bilinear�form X

!2

�!�! (8.11)

where �! := u (x!) is the payo¤ in state-of-the-world !, expressed in utility
terms. We can see the objective function (8.11) in two equivalent ways:

1. As a weighted sum of payo¤s (the payo¤s are the utilities derived from
consumption; the weights are the probabilities).

2. As a weighted sum of probabilities (the weights are the scalar utility pay-
o¤s).

Version 1 is exactly what we already found from our �rst pass through the
axiomatisation of preferences under uncertainty in section 8.3. Version 2 is
perhaps the more natural when it is the probability distributions themselves
that are the objects of choice.
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�! probability that state-of-the-world ! occurs
�h! subjective probability of ! according to h
u felicity or cardinal utility function
�j holding of bonds of type j.
rj! rate-of-return on bonds of type j in state !
pi! price of good i contingent on state !
�y initial wealth
y! wealth in state !

Table 8.5: Uncertainty and risk: notation

The linearity of the expression (8.11) implies that indi¤erence curves must
take the form illustrated19 in Figure 8.20 and will exhibit the following proper-
ties:20

� The indi¤erence curves must be parallel straight lines.

� If �red > �green > �blue , the slope
d�blue
d�red

is positive.

� If �blue increases, then the slope also increases.

So we now have a second approach to the expected-utility representation
individual�s preferences under uncertainty. This alternative way of looking at
the problem of uncertainty and choice is particularly useful when probabilities
are well-de�ned and apparently knowable. It might seem that this is almost a
niche study of rational choice in situations involving gaming machines, lotteries,
horse-race betting and the like. But there is much more to it. We will �nd
in chapter 10 that explicit randomisation is often appropriate as a device for
the analysis and solution of certain types of economic problem: the range of
potential application there is enormous.

8.6 Trade

Now that we have a fairly extensive view of how individuals�preferences uncer-
tainty can be mapped we should try to put the analysis to work. To do this let
us start by considering the logical extension of the exchange-economy analysis of
chapter 7 to a world of uncertainty. We again make use of the timing convention
introduced in Figure 8.1.

19 Another convenient way of representating the set of all probability distributions when
$ = 3 can be constructed by plotting �red on the horizontal axis and �green on the vertical
axis of a conventional two-dimensional diagram. (a) What shape will the set of all possible
lotteries have in this diagrammatic representation? (b) How is �blue to be determined in this
diagram? (c) What shape will an expected-utility maximiser�s indi¤erence curves have in this
diagram?
20 In the case where $ = 3 show that these are true by using the fundamental property

(8.9) and the bilnear form of utility (8.11).
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8.6.1 Contingent goods: competitive equilibrium

If there are n physical commodities (anchovies, beef, champagne,...) and $
possible states-of-the-world (red, blue,...) then, viewed from the morning,
there are n$ possible �contingent goods� (anchovies-under-red, anchovies-
under-blue, beef-under-red,..., . It is possible that there are markets, open
in the morning, in which titles to these contingent goods can be bought and
sold. Then, using the principles established in chapter 7, one can then immedi-
ately establish the following:

Theorem 8.5 (Equilibrium in contingent goods) If all individuals are risk-
averse or risk-neutral then there market-clearing contingent-goods prices

[pi!] ; i = 1; :::; n; ! 2 
 (8.12)

that will support an exchange equilibrium.21

If there is just one physical commodity (n = 1) and two states of the world
the situation can be depicted as in Figure 8.21. In Alf has the endowment
(0; yblue) and Bill has the endowment (yred; 0) where the size of the box is
yred � yblue. Note that Alf�s indi¤erence curves all have the same slope where
they intersect the 45� through the origin Oa; Bill�s indi¤erence curves all have
the same slope where they intersect the 45� through the origin Ob; as drawn
Alf and Bill have di¤erent subjective probabilities about the two events:

�a
red

�a
blue

>
�b
red

�b
blue

Equilibrium contingent-goods prices are shown as the line from the endowment
point (top left-hand corner) to the equilibrium point on the contract curve.22

But the number of contingent goods n$ may be huge, which suggests that
it might be rather optimistic to expect all these markets to exist in practice.
Could the scale of the problem be reduced somewhat?

8.6.2 Financial assets

Let us introduce �securities��in other words �nancial assets. These securities
are simply pieces of paper which say �the bearer is entitled to $1 if state !
occurs�. If person h has an endowment yh of wealth in the morning, and if the
price on the securities market (open in the morning) of an !-security is �!, then
the following constraint holds: X

!2

�!z

h
! � yh

21 Under what circumstances might it be possible to drop the assumption about risk aversion
in this theorem?
22 Redraw Figure 8.21 for two special cases: (a) where overall wealth in the economy

is constant, independent of the state-of-the-world; (b) where Alf and Bill have the same
subjective probabilities.
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Figure 8.21: Contingent goods: equilibrium trade

where zh! is the amount h buys of a !-security. If the (morning) price of a claim
on commodity i contingent on state ! is pi!, and if pij! is the (afternoon) price
of commodity i given that state ! has actually occurred at lunch time, then
equilibrium in the securities market, with all �rms breaking even, requires:

�!pij! = pi!

which, set out in plain language, says:

price price of contingent price
of an ! � champagne when = of champagne
security ! has occurred given !

There is in e¤ect a two-stage budgeting process:

1. Choose the securities zh!: this, along with the realisation of !, determines
income in the afternoon.

2. Given that state ! has occurred, choose the purchases xh! in the afternoon
so as to maximise uh(xh!):

This seems to reduce the scale of the problem by an order of magnitude, and
to introduce a sensible separation of the optimisation problem.
But there is a catch. People have to do their �nancial shopping in the

morning (lunchtime is too late). Now, when they are doing this, will they know
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what the pij! would be for each commodity i in each possible state !? This
seems rather a demanding requirement, but they need to have this information
in order to make sensible purchases of the securities zh! in stage 1. Despite
this logically awkward corner the two-stage simpli�cation provides us a way of
making the individual decision-maker�s problem more tractable

8.7 Individual optimisation

In the light of the two-stage problem discussed in section 8.6.2 we can now extend
the elementary modelling of the household�s preferences and constraints to build
in the essential characteristics of uncertainty. We will draw both upon standard
consumer behaviour as presented in chapter 4, and the model of household
production that was introduced in chapter 5. We shall develop further the
idea of �nancial assets introduced in section 8.6.2 in order to focus upon the
comparative statics of behaviour under risk.
To set the scene, consider a general version of the consumer�s optimisation

problem in an uncertain world. You have to go shopping for food, clothing and
so on in the afternoon. The amount that you will have available to spend then
may be stochastic (viewed from the morning), but that you can in�uence the
probability distribution a¤ecting your income by some choices that you make
in the morning. These choices concern the disposition of your �nancial assets
including the purchase of bonds and of insurance contracts.
Before we get down to the detail of the model let us again use Figure 8.1

to anchor the concepts that we need in developing the analysis. The timing of
matters is in the following order

� The initial endowment is given. The person makes decisions on �nancial
assets.

� The state-of-the-world ! is revealed: this and the �nancial decisions al-
ready made determine �nal wealth in state !.

� Given �nal wealth the person determines consumptions using ex-post util-
ity function and prices then ruling.

An explicit model of this is set out in section 8.7.2 below: �rst we will
examine in more detail what the shape of the individual�s attainable set is
going to be in a typical problem of choice under uncertainty.

8.7.1 The attainable set

We need to consider the opportunities that may be open to the decision maker
under uncertainty �the market environment and budget constraint. We have
already introduced one aspect of this in that we have considered whether an
individual would swap a given random prospect x for a certain payo¤ �: there
may be some possibility of trading away undesirable risk. Is there, however, an
analogue to the type of budget set we considered in chapters 4 and 5?
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Figure 8.22: Attainable set: safe and risky assets

There are many ways that we might approach this question. However we
will proceed by focusing on two key cases �where the individual�s endowment
is perfectly certain, and where it is stochastic �and then reasoning on a leading
example of each case.

Determinate endowment: portfolio choice

Return to the two-state �red/blue�examples above and examine Figure 8.22
which represents the attainable set for a simple portfolio composition problem.
Imagine that an individual is endowed with an entitlement to a sum �y (denom-
inated in dollars) whichever state of the world is realised. We may think of
this as money. He may use one or more of these dollars to purchase bonds in
dollar units. For the moment, to keep things simple, there is only one type of
bond: each bond has a yield of r� if state blue is realised, and r0 if state red
is realised where we assume that

r0 > 0 > r� > �1

So if the individual purchases an amount � of bonds and holds the balance
�y � � in the form of money then the payo¤ in terms of ex-post wealth is either

yred = [�y � �] + �[1 + r0]

or
yblue = [�y � �] + �[1 + r�]

In other words
(yred ; yblue) = (�y + �r

0; �y + �r�) (8.13)
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By construction of the example, for all positive � we have yred > �y > yblue .
In Figure 8.22 the points �P and P0 represent, respectively the two cases where
� = 0 and � = �y. Clearly the slope of the line joining �P and P0 is r0=r�, a
negative number, and the coordinates of P0 are

([1 + r0]�y; [1 + r�]�y) :

Given that he has access to such a bond market, any point on this line must
lie in the feasible set; and assuming that free disposal of his monetary payo¤
is available in either case, the attainable set A must include all the points in
the heavily shaded area shown in Figure 8.22. Are there any more such points?
Perhaps.
First of all, consider points in the lightly shaded area above the line A. If

one could �buy�a negative amount of bonds, then obviously the line the line
from P0 to �P could be extended until it met the vertical axis. What this would
mean is that the individual is now selling bonds to the market. Whether this is
a practical proposition or not depends on other people�s evaluation of him as to
his ��nancial soundness�: will he pay up if red materialises? With certain small
transactions �betting on horse races among one�s friends, for example � this
may be quite reasonable. Otherwise one may have to o¤er an extremely large
r0 relative to r� to get anybody to buy one�s bonds.
Secondly consider points in the area to the right of A. Why can�t we just

extend the line joining �P and P0 downwards until it meets the horizontal axis?
In order to do this one would have to �nd someone ready to sell bonds �on
credit� since one would then be buying an amount � > �y. Whoever extends
this credit then has to bear the risk of the individual going bankrupt if blue is
realised. So lenders might be found who would be prepared to advance him cash
up to the point where he could purchase an amount ��y=r� of bonds. Again, we
can probably imagine situations in which this is a plausible assumption, but it
may seem reasonable to suppose that one may have to pay a very high premium
for such a facility. Accordingly the feasible set might look like Figure 8.23,
although for many purposes Figure 8.22 is the relevant shape.
There might be a rôle for many such �nancial assets �particularly if there

were many possible states-of-the-world � in which case the attainable set A
would have many vertices, a point to which we return in section 8.7.2.

Stochastic endowment: the insurance problem

Now consider a di¤erent problem using the same diagrammatic approach �see
Figure 8.24. Suppose that the individual�s endowment is itself stochastic � it
equals if y0 if red is realised and y0 � L if blue is realised, where 0 < L < y0.
As a simple example, state blue might be having one�s house destroyed by �re
and state red is its not being destroyed, y0 is the total value of your assets in the
absence of a disaster and L is the monetary value of the loss. Let us suppose that
�re insurance is available and interpret Figure 8.24. If full insurance coverage
is available at a premium represented by

� = y0 � �y (8.14)
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Figure 8.23: Attainable set: safe and risky assets (2)

then the outcome for such full insurance will be at point �P . If the individual
may also purchase partial insurance at the same rates, then once again the whole
of the line segment from �P to P0 �and hence the whole shaded pentagonal area
�must lie in the attainable set A.

In this case too we can see that it may be that there are no further points
available to the individual. Again consider the implications of enlarging the set
A in the region above the horizontal line through point �P . At any point in this
area the individual would in fact be better o¤ if his house burned down than
if it did not. The person has over-insured himself, a practice which is usually
frowned upon. The reason that it is frowned upon is to be found in the concept
of moral hazard. Moral hazard refers to the in�uence that the actions of the
insured may have on the probability of certain events� occurrence. Up until
now we have taken the probabilities ��objective� or �subjective��attached
to di¤erent events as exogenously given. But in practice the probability of a
person�s house burning down depends in part on his carelessness or otherwise.
He may be more inclined to be careless if he knows that he has an insurance
company to back him up if one day the house does burn down; furthermore the
person may be inclined to be criminally negligent if he knows that he stands
to gain by event blue being realised. So insurance companies usually prevent
over-insurance and may indeed include an �excess clause�(otherwise known as
�coinsurance�) so that not even all of the shaded area is attainable.

Furthermore, for reasons similar to those of the portfolio selection example,
it is unlikely that the points in the shaded area to the right of A could be
included in the attainable set.
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Figure 8.24: Attainable set: insurance

8.7.2 Components of the optimum

To set out the individual�s optimisation problem let us assume that the person�s
opportunities are based on the model of section 8.7.1 with a determinate en-
dowment. However, we will introduce one further consideration �the possibility
of there being multiple �nancial assets in the form of �bonds.�The person has
a given amount of wealth �y initially which he or she could invest in bonds of
types 1; :::;m. Denote by �j the amount held of a type-j bond; then, under any
particular state-of-the-world ! we can de�ne income yielded by bond j as:

return holding
on j in � of = rj!�j
state ! bond j

Then the value of of one�s wealth after the �nancial decision becomes

y! = �y +
mX
j=1

rj!�j (8.15)

�see equation (8.13). We could then further specify a standard consumer op-
timisation model conditional upon the realisation of a particular state-of-the-
world !

max
x
U (x) subject to

nX
i=1

pixi � y!

where I have written pi as shorthand for pij! , the actual goods prices once
state-of-the-world ! has been realised. and obtain a set of demand functions
conditional upon !:

x�i = Di (p; y!) :
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Figure 8.25: Consumer choice with a variety of �nancial assets

If we assume that goods�prices are known to be �xed then we may write the
maximised utility in state ! as u(y!) := V (p; y!) where V is the conventional
indirect utility function (De�nition 4.6 page 88).
Suppose that there is a �nite number of all possible states-of-the-world. Then

clearly one also has to solve the problem:

max
�1;:::;�m

X
!2


�!u (y!)

subject to

y! = �y +
mX
j=1

rj!�j

But we have analysed this type of economic problem before. There is a close
analogy with the general �household production�or �goods and characteristics�
model discussed in chapter 5 (page 107). We just need to some translation of
terminology; in the present case:

� yred; yblue; ::: are the �consumption goods�from which one derives utility
directly.

� �1; :::; �m correspond to the �market goods� or �inputs�which are pur-
chased by the household.



8.7. INDIVIDUAL OPTIMISATION 211

� Given uniform interest rates, one has a linear technology which transforms
purchased assets into spendable income in each state of the world using
(8.15).

This is illustrated in Figure 8.25 where the vertices of the attainable set A
correspond to the various types of bond.23 The slope of each facet is given by

rj+1;blue � rj;blue
rj+1;red � rj;red

; (8.16)

Drawing on the analysis of section 5.4 what can one say about the person�s
decisions regarding the purchase of �nancial assets in this set-up? Dominated
�nancial assets will obviously be irrelevant to the optimal choice. There may be
many zeros amongst the m assets �as illustrated in Figure 8.25 just two types
of asset are purchased. As a result of this, when rates of return change one
may get jumps in demand for �nancial assets as particular assets are brought
into or dropped from the solution. One could also expect jumps in demand as
initial wealth grows if the individual�s indi¤erence curves are not homothetic.24

But can we say more about the way that this demand for �nancial assets will
respond to changes in the distribution of rates of return?

8.7.3 The portfolio problem

We can say much more if we restrict attention to what happens on just one
facet � i.e. if we rule out switching between facets of A as we change the
the parameters of the model. Then, in the case where there are two states-
of-the-world, the problem is e¤ectively equivalent to that discussed earlier in
section 8.7.1. However, although we will illustrate it for the two-state case
using diagrams based on Figure 8.22 our approach will be more general in that
we we will allow for arbitrarily many possible states of the world.
So we take a model in which there are just two assets: money and bonds.

The person is endowed with a determinate amount of initial wealth �y. The rate
of return on bonds is given by r a random variable with a known distribution
having positive, �nite mean; the density function of r is illustrated in Figure
8.26
If the person chooses to hold an amount � in the form of bonds, then wealth

after the �nancial decision has been made is

y = �y + �r; (8.17)

also a random variable �compare this with equations (8.13) and (8.15). Assume
that the person�s preferences are represented by a utility function of the form
Eu(y) where y is given by (8.17).
We can now set out the simpli�ed optimisation problem:

max
�
Eu (�y + �r) (8.18)

23 As depicted bonds 1 and 7 are likely to be uninteresting �brie�y explain what they are.
24 Explain why you get jumps in the demand for bonds in this case.
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Figure 8.26: Distribution of returns

subject to 0 � � � �y

Letting uy denote the �rst derivative of u with respect to y, the FOC condition
for this maximisation problem is

E (ruy (�y + �r)) = 0 (8.19)

for an interior solution �see Figure 8.27).25

Assuming the interior solution we can, in principle, solve equation (8.19) in
order to derive the optimal purchases of bonds �� which will be a function of the
endowment of assets �y and of the probability distribution of the rate of return
r.
One clear-cut conclusion can easily be drawn from this approach. Consider

what happens in the neighbourhood of point �P in Figure 8.27; speci�cally con-
sider the e¤ect on the person�s utility of a small increase in � away from 0:

@E (u (�y + �r))
@�

����
�=0

= uy (�y) Er (8.20)

So, given that uy (�y) > 0, the impact of � on utility is positive if Er is positive.
In other words:

25 What would be the FOC corresponding to (8.19) for the two possible corner solutions
(a) where the individual chooses to leave all resources in the riskless asset, (b) where the
individual puts all resources into bonds?
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Figure 8.27: Consumer choice: safe and risky assets

Theorem 8.6 (Risk taking) If the individual is nonsatiated and has a von-
Neumann-Morgenstern utility function and if the expected return to risk-taking
is positive then the individual will hold a positive amount of the risky asset.

It would be interesting to know how this optimal demand for risky assets
�� changes in response to changes in the market environment by modelling the
appropriate changes in the person�s budget constraint. We can use the �rst-
order condition (8.19) to look at a number of issues in comparative statics.

An increase in endowment.

Let us analyse the e¤ect of a change in the person�s assets by di¤erentiating
(8.19) with respect to �y:

E
�
ruyy (�y + �

�r)

�
1 + r

@��

@�y

��
= 0 (8.21)

which implies
@��

@�y
=
�E (ruyy (�y + ��r))
E (r2uyy (�y + ��r))

: (8.22)

The denominator of (8.22) is unambiguously negative, since uyy is everywhere
negative (the assumption of risk aversion) and r2 is non-negative. However, the
numerator could be positive or negative, since the risky asset could turn out to
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make a pro�t (r > 0) or a loss (r < 0). So it appears that the e¤ect of wealth
upon risk-taking is ambiguous.
In order to resolve this ambiguity, it is common to �nd the following addi-

tional assumption about preferences:

Axiom 8.7 (Decreasing absolute risk aversion) �(x) decreases with x.

This introduces a further restriction on the felicity function u.26 But if
we introduce decreasing absolute risk aversion along with the other standard
assumptions, then we can show (see Appendix C):

Theorem 8.7 (Risk-taking and wealth) If an individual has a von-Neumann-
Morgenstern utility function with decreasing absolute risk aversion and holds a
positive amount of the risky asset then the amount invested in the risky asset
will increase as initial wealth increases.

People whose risk aversion decreases with their endowment will buy more
risky assets if their wealth increases. Notice that the result for any distribution
of returns for which �� > 0. This can be illustrated in Figure 8.28. The
original equilibrium is at P � and the lightly shaded area shows the increase in
the attainable set when �y increases to �y+�. From (8.13) it is clear that if bond
holdings were kept constant at �� as �y increased then point P � would move
out along a 45� line. However the indi¤erence curves as drawn show decreasing
absolute risk aversion (constant relative risk aversion) and the new equilibrium
is at P ��, to the right of the 45� line through P �: the holding of bonds must
have increased.

A rightward shift of the distribution.

What happens to risk-taking if the returns on the risky asset change in an
unambiguously favourable fashion? We can analyse this by supposing that the
probability distribution of r is �translated� by adding the same determinate
amount � to every possible value of r; then we look at how �� changes in
response to small changes in � , in the neighbourhood of � = 0.
Adding the amount � to r as mentioned the FOC (8.19) becomes:

E ([r + � ]uy (�y + �� [r + � ])) = 0 (8.23)

Di¤erentiate (8.23) with respect to � :

E (uy (�y + �� [r + � ])) + ��E ([r + � ]uyy (�y + �� [r + � ]))

+
@��

@�
E
�
[r + � ]

2
uyy (�y + �

� [r + � ])
�
= 0 (8.24)

26 This further restriction can be expressed as a condition on the third derivative of u: what
is the condition?
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Figure 8.28: E¤ect of an increase in endowment

Figure 8.29: A rightward shift
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Setting � = 0 we �nd

E (uy (y)) + ��E (ruyy (y)) +
@��

@�
E
�
r2uyy (y)

�
= 0

where y is given by (8.17). So, in the neighbourhood of � = 0, we have

@��

@�
= � E (uy (y))

E (r2uyy (y))
� �� E (ruyy (y))E (r2uyy (y))

(8.25)

and, given (8.22), equation (8.25) becomes

@��

@�
= � E (uy (y))

E (r2uyy (y))
+ ��

@��

@�y
(8.26)

From the way that (8.26) is written it is clear that if �� increases with personal
wealth �y, then it must also increase with this favourable shift in the distribu-
tion. Decreasing absolute risk aversion is a su¢ cient condition (although not a
necessary condition) for this.
This is illustrated in Figure 8.30. The attainable set A expands in an un-

balanced way: the point P0 moves out along a 45� line, so that the boundary
of A rotates through �P as shown. Once again the dotted line through P � is the
locus that would be followed if the absolute amount of bonds bought � stayed
constant: clearly the new equilibrium P �� must lie to the right of where this
line intersects the new boundary of A (marked by ���).

An increased spread of the distribution.

We can handle this by supposing that the probability distribution of r is �scaled�
by multiplying every possible value of r by a determinate constant t; then we
look at how changes in t a¤ect �� in the neighbourhood of t = 1. The FOC
becomes:

E (truy (�y + ��tr)) = 0: (8.27)

Di¤erentiating this with respect to t we now �nd:27

t

��
@��

@t
= �1 (8.28)

Equation (8.28) implies that the optimal purchase of bonds, ��, is bound to
decrease; the elasticity of bond purchases with respect to the scale factor t is
�1. We do not need a special assumption about risk aversion in order to get
this result.

27 Fill in the missing lines from the di¤erentiation and illustrate the outcome using a �gure
similar to Figure 8.30.
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Figure 8.30: E¤ect of a rightward shift in the distribution

8.7.4 Insurance

From section 8.7.1 it appears that the economic problem of insurance can be
treated in essentially the same way as the portfolio problem just discussed �
i.e. as a trade-o¤ between safe and risky assets that is determined by the
person�s own subjective probability of events, the nature of risk aversion and
the returns to the risky asset. Some results can indeed just be copied across.
In particular Theorem 8.6 shows that if the expected return to risk is positive
then the individual will choose to hold a positive amount of the risky asset: let
us see how this translates.
From Figure 8.24 and the accompanying discussion we can deduce the fol-

lowing. If the risk of loss is �blue and the size of the loss is L then the expected
payout equals the expected receipts for an insurance company if

�blueL = � (8.29)

where �, the premium, is given by (8.14). A quick check reveals that this is
equivalent to

L� �
�

=
�red
�blue

(8.30)

where the left-hand side is clearly the slope of the boundary of the attainable
set A and the right-hand side is the slope of the indi¤erence curve where it
crosses the 45� line. So if the insurance premium is set such that the insurance
company expects to break even (8.29) then the indi¤erence curve is tangential
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Figure 8.31: E¤ect of numbers

to the opportunity set at point �P : the person fully insures at the optimum.
This means that if the terms of the insurance are unfair (replace the �=�by
�=�in expressions 8.14 and 8.29) then the individual will take out less than full
insurance or no insurance at all �i.e. equilibrium will be in either the interior
of or at the right-hand end of the line joining �P and P0. This is the exact
translation of the result concerning the positive expected return to risk.
Other results will work in the same way. For example, if an individual

with decreasing risk aversion chooses to be partially insured then, if his wealth
grows, the amount of his insurance coverage cannot increase (see exercise 8.12).
However, this type of analysis assumes that an insurance market exists for this
type of risk �but under what circumstances would such a market exist?
First, there is a necessary condition of large numbers in the market to permit

the pooling of risks. Take a simple example of an economy consisting of clones.
Each clone faces an identical independent risk on his wealth, and evaluates the
risk with identical subjective probability: $2,000 with probability 0.4 and $4,000
with probability 0.6. Let us suppose the clones assemble themselves and agree
to pool their wealth and share equally the combined realised payo¤. Clearly the
mathematical expectation is $3,200. Now consider Figure 8.31. As the economy
is replicated to 2, 4, 8, 16, ... persons, we can see that the distribution of
payo¤s to the individual soon becomes symmetric and concentrated about the
expected value. In the limit, of course, the probability of any payo¤ di¤erent
from the expected value becomes in�nitesimal. If the insurance company is
owned by a large number of �small� individuals � that is if the shares in the



8.8. SUMMARY 219

pro�ts and losses from insurance are reasonably di¤use � then the risks are
not only pooled but also spread. Under such circumstances there may be the
basis for e¤ective competition in both the demand side and the supply side of
a market for insurance.
So it appears that with a very large number of agents each one ought to be

able to �buy insurance�against the risk on his income at an actuarially fair price
corresponding to the probabilities given above. But the example also reveals
some obvious pitfalls:

� There is the �moral hazard� problem as described above. We must as-
sume that no person can have direct in�uence on the probability of any
particular payo¤ being realised.

� Each agent must be �small�in the limit.

� The risks must be independent �the results will not work if all the agents�
risks are closely correlated.

� The payo¤s must be tradeable amongst the individuals in the form of some
transferable commodity. Obviously there are some risks which people
confront where the payo¤s cannot be thus transferred, and where losses
cannot be compensated for in money.

For any of these reasons a market may simply not exist; more on this and
related problems in chapter 11.

8.8 Summary

The basic approach to decision-making under uncertainty can be analysed as a
straightforward extension of consumer theory, by considering a class of utility
functions that are additively separable over the states of the world. Furthermore
the analysis of market equilibrium and of individual portfolio behaviour in the
face of risk follow on immediately from the core analysis of previous chapters
once we have appropriately modelled preferences and opportunities.
It is evident that at the core of the approach is the concept of expected

utility � see the two Theorems 8.1 and 8.4. But why do the job twice over?
Our �rst approach to the subject showed that the special structure of utility
function follows naturally from a coherent representation of preferences over
a space of �contingent goods�without a speci�c construct of probability; the
second approach shows what happens when one treats probability distributions
�lotteries �as the focus of the choice problem. The �rst approach provides an
essential link to the standard analysis of decision making treated in chapters 2
to 7; we shall �nd this second approach is essential in providing the basis for
the analysis of games in chapter 10.
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8.9 Reading notes

On the foundations of expected-utility analysis in terms of choices over lotteries
refer to von Neumann and Morgenstern (1944) and Friedman and Savage (1948)
and for early, penetrating critiques see Allais (1953) and Ellsberg (1961). The
von Neumann-Morgenstern approach in some ways builds on the classic contri-
bution by Bernouilli (1954) originally published in 1738. A useful survey is to
be found in Machina (1987). The consumner-theoretic approach to uncertainty
is developed in Deaton and Muellbauer (1980).
The concept of risk aversion developed in Arrow (1970) and Pratt (1964).

On the discussion of conditions such as increasing risk aversion see Menezes
et al. (1980).

8.10 Exercises

8.1 Suppose you have to pay $2 for a ticket to enter a competition. The prize is
$19 and the probability that you win is 1

3 . You have an expected utility function
with u(x) = log x and your current wealth is $10.

1. What is the certainty equivalent of this competition?

2. What is the risk premium?

3. Should you enter the competition?

8.2 You are sending a package worth 10 000AC. You estimate that there is a 0.1
percent chance that the package will be lost or destroyed in transit. An insurance
company o¤ers you insurance against this eventuality for a premium of 15AC. If
you are risk-neutral, should you buy insurance?

8.3 Consider the following de�nition of risk aversion. Let P := f(x!; �!) :
! 2 
g be a random prospect, where x! is the payo¤ in state ! and �! is the
(subjective) probability of state ! , and let Ex :=

P
!2
 �!x!, the mean of the

prospect, and let P� := f(�x! + [1 � �]Ex; �!) : ! 2 
g be a �mixture� of the
original prospect with the mean. De�ne an individual as risk averse if he always
prefers P� to P for 0 < � < 1.

1. Illustrate this concept on a diagram similar to Figure 8.6 and contrast it
with the concept of risk aversion mentioned on page 183.

2. Show that this de�nition of risk aversion need not imply convex-to-the-
origin indi¤erence curves. (Rothschild and Stiglitz 1970)

8.4 This is an example of the Allais paradox (Allais 1953). Suppose you are
asked to choose between two lotteries. In one case the choice is between P1 and
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P2;and in the other case the choice o¤ered is between P3and P4, as speci�ed
below:

P1 : $1; 000; 000 with probability 1

P2 :

8<: $5; 000; 000
$1; 000; 000

$0

with probability 0.1
with probability 0.89
with probability 0.01

P3 :

�
$5; 000; 000

$0
with probability 0.1
with probability 0.9

P4 :

�
$1; 000; 000

$0
with probability 0.11
with probability 0.89

It is often the case that people prefer P1 to P2 and then also prefer P3 to P4.
Show that these preferences violate the independence axiom.

8.5 This is an example to illustrate disappointment (Bell 1988, Machina 1989)
Suppose the payo¤s are as follows
x00 weekend for two in your favourite holiday location
x0 book of photographs of the same location
x� �sh-and-chip supper
Your preferences under certainty are x00 � x0 � x�. Now consider the following
two prospects

P1 :

8<: x00

x0

x�

with probability 0:99
with probability 0
with probability 0:01

P2 :

8<: x00

x0

x�

with probability 0:99
with probability 0:01
with probability 0

Suppose a person expresses a preference for P1 over P2. Brie�y explain why this
might be the case in practice. Which axiom in section 8.3 is violated by such
preferences?

8.6 An example to illustrate regret. Let

P := f(x!; �!) : ! 2 
g

P 0 := f(x0!; �!) : ! 2 
g
be two prospects available to an individual. De�ne the expected regret if the
person chooses P rather than P 0 asX

!2

�!max fx0! � x!; 0g (8.31)

Now consider the choices amongst prospects presented in Exercise 8.4. Show
that if a person is concerned to minimise expected regret as measured by (8.31),
then it is reasonable that the person select P1 when P2 is also available and then
also select P3 when P4 is available (Bell 1982, Loomes and Sugden 1982).
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8.7 An example of the Ellsberg paradox (Ellsberg 1961). There are two urns
marked Left and Right each of which contains 100 balls. You know that in Urn
L there exactly 49 white balls and the rest are black and that in Urn R there are
black and white balls, but in unknown proportions. Consider the following two
experiments:

1. One ball is to be drawn from each of L and R. The person must choose
between L and R before the draw is made. If the ball drawn from the chosen
urn is black there is a prize of $1000, otherwise nothing.

2. Again one ball is to be drawn from each of L and R; again the person must
choose between L and R before the draw. Now if the ball drawn from the
chosen urn is white there is a prize of $1000, otherwise nothing.
You observe a person choose Urn L in both experiments. Show that this
violates Axiom 8.3.

8.8 An individual faces a prospect with a monetary payo¤ represented by a
random variable x that is distributed over the bounded interval of the real line
[a; a]. He has a utility function Ev(x) where

u(x) = a0 + a1x�
1

2
a2x

2

and a0; a1; a2 are all positive numbers.

1. Show that the individual�s utility function can also be written as '(Ex; var(x)).
Sketch the indi¤erence curves in a diagram with Ex and var(x) on the
axes, and discuss the e¤ect on the indi¤erence map altering (i) the para-
meter a1, (ii) the parameter a2.

2. For the model to make sense, what value must a have? [Hint: examine
the �rst derivative of u.]

3. Show that increases both absolute and relative risk aversion increase with
x .

8.9 A person lives for 1 or 2 periods. If he lives for both periods has a utility
function given by (5.13) where the parameter � is the pure rate of time pref-
erence. The probability of survival to period 2 is , and the person�s utility in
period 2 if he does not survive is 0.

1. Show that if the person�s preferences in the face of uncertainty are rep-
resented by the functional form in (8.1) then the person�s utility can be
written as

u (x1) + �
0u (x2) : (8.32)

What is the value of the parameter �0?
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2. What is the appropriate form of the utility function if the person could live
for an inde�nite number of periods, the rate of time preference is the same
for any adjacent pair of periods, and the probability of survival to the next
period given survival to the current period remains constant?

8.10 A person has an objective function Eu(y) where u is an increasing, strictly
concave, twice-di¤erentiable function, and y is the monetary value of his �nal
wealth after tax. He has an initial stock of assets K which he may keep either
in the form of bonds, where they earn a return at a stochastic rate r, or in the
form of cash where they earn a return of zero. Assume that Er > 0 and that
Prfr < 0g > 0.

1. If he invests an amount � in bonds (0 < � < K) and is taxed at rate t
on his income, write down the expression for his disposable �nal wealth y,
assuming full loss o¤set of the tax.

2. Find the �rst-order condition which determines his optimal bond portfolio
��.

3. Examine the way in which a small increase in t will a¤ect ��.

4. What would be the e¤ect of basing the tax on the person�s wealth rather
than income?

8.11 An individual taxpayer has an income y that he should report to the tax
authority. Tax is payable at a constant proportionate rate t. The taxpayer
reports x where 0 � x � y and is aware that the tax authority audits some
tax returns. Assume that the probability that the taxpayer�s report is audited
is �, that when an audit is carried out the true taxable income becomes public
knowledge and that, if x < y, the taxpayer must pay both the underpaid tax and
a surcharge of s times the underpaid tax.

1. If the taxpayer chooses x < y, show that disposable income c in the two
possible states-of-the-world is given by

cnoaudit = y � tx;
caudit = [1� t� st] y + stx:

2. Assume that the individual chooses x so as to maximise the utility function

[1� �]u (cnoaudit) + �u (caudit) :

where u is increasing and strictly concave.

(a) Write down the FOC for an interior maximum.

(b) Show that if 1� � � �s > 0 then the individual will de�nitely under-
report income.
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3. If the optimal income report x� satis�es 0 < x� < y:

(a) Show that if the surcharge is raised then under-reported income will
decrease.

(b) If true income increases will under-reported income increase or de-
crease?

8.12 A risk-averse person has wealth y0 and faces a risk of loss L < y0 with
probability �. An insurance company o¤ers cover of the loss at a premium
� > �L. It is possible to take out partial cover on a pro-rata basis, so that an
amount tL of the loss can be covered at cost t� where 0 < t < 1.

1. Explain why the person will not choose full insurance

2. Find the conditions that will determine t�, the optimal value of t.

3. Show how t will change as y0 increases if all other parameters remain
unchanged.

8.13 Consider a competitive, price-taking �rm that confronts one of the fol-
lowing two situations:

� �uncertainty�: price p is a random variable with expectation p.

� �certainty�: price is �xed at p.

It has a cost function C(q) where q is output and it seeks to maximise the
expected utility of pro�t.

1. Suppose that the �rm must choose the level of output before the particular
realisation of p is announced. Set up the �rm�s optimisation problem and
derive the �rst- and second-order conditions for a maximum. Show that,
if the �rm is risk averse, then increasing marginal cost is not a necessary
condition for a maximum, and that it strictly prefers �certainty� to �un-
certainty�. Show that if the �rm is risk neutral then the �rm is indi¤erent
as between �certainty�and �uncertainty�.

2. Now suppose that the �rm can select q after the realisation of p is an-
nounced, and that marginal cost is strictly increasing. Using the �rm�s
competitive supply function write down pro�t as a function of p and show
that this pro�t function is convex. Hence show that a risk-neutral �rm
would strictly prefer �uncertainty� to �certainty�.

8.14 Every year Alf sells apples from his orchard. Although the market price of
apples remains constant (and equal to 1), the output of Alf�s orchard is variable
yielding an amount R1; R2 in good and poor years respectively; the probability of
good and poor years is known to be 1�� and � respectively. A buyer, Bill o¤ers
Alf a contract for his apple crop which stipulates a down payment (irrespective
of whether the year is good or poor) and a bonus if the year turns out to be good.
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1. Assuming Alf is risk averse, use a diagram similar to Figure 8.21 to sketch
the set of such contracts which he would be prepared to accept. Assuming
that Bill is also risk averse, sketch his indi¤erence curves in the same
diagram.

2. Assuming that Bill knows the shape of Alf�s acceptance set, illustrate the
optimum contract on the diagram. Write down the �rst-order conditions
for this in terms of Alf�s and Bill�s utility functions.

8.15 In exercise 8.14, what would be the e¤ect on the contract if (i) Bill were
risk neutral; (ii) Alf risk neutral?
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Chapter 9

Welfare

Society is a kind of parent to its members. If it, and they, are to
thrive, its values must be clear, coherent and generally acceptable �
Milton R. Sapirstein, Paradoxes of Everyday Life (1955), 8.

9.1 Introduction

What is social welfare? In this chapter we shall look at a number of interpre-
tations of this concept. Perhaps it is not too contentious to say that �social
welfare� has to do with the welfare of individuals. Accordingly, the following
questions appear to be particularly relevant:

� What do we mean by an individual�s �welfare�?

� What do we mean by �social welfare�?

� How are the two related?

For the most part we shall continue to make a very simple assumption about
the �rst issue �that an individual�s (or household�s) welfare is determined by
the consumption of goods and services that he enjoys. However, larger issues
may well be involved. For example one person�s utility may be a¤ected by
another person�s consumption levels if he is a icted with altruism or envy. So
it is also useful to consider the wider aspects of individuals�preferences about
social states, especially when we come to consider the second and third questions
above. The issues raised are so many and varied that it is di¢ cult to combine
them all into a single uni�ed theme. Accordingly, to bring out some of the main
points, we shall adopt a piecemeal method of attack. We shall consider three
approaches:

1. We investigate whether �social preferences�, taken as an ordering over
all possible social states, can logically be derived from individual citizens�
orderings of all possible social states.

227
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2. We examine whether certain apparently reasonable principles provide a
satisfactory basis for evaluating social states.

3. We consider the implications of imposing a speci�c structure of social
preferences that to some extent respect individual preferences.

Of course these approaches are not necessarily incompatible, but they rep-
resent alternative, fruitful, lines of enquiry as to what can usefully be done in
the name of welfare economics.

9.2 The constitution

Rather than attempting to de�ne and specify in detail �social indi¤erence curves�
as such, we shall investigate a more fundamental concept: that of the existence
of a �social ordering�� in other words a ranking by �society� of all possible
social states. Let us begin with some terminology and notation.
When we come to consider issues that a¤ect the entire community it seems

reasonable to allow social states to be described in very broad terms. A social
state � may be taken to include, for example, the allocation a of all the private
goods, the supply of public goods, and other non-economic entities; the set of
all conceivable social states is �.
Each household or individual h has a well-de�ned ordering �h over the social

states in �; this means that each agent�s ranking of social states satis�es the
axioms of completeness and transitivity, and is also re�exive (so that � is ranked
at least as good as itself). We read the statement �� �h �0�as: �h thinks social
state � is no worse than social state �0�.
Denote by � (note the absence of h-superscript) the ordering over social

states that is to be taken as the social ordering, and use the symbols �h and �
to denote strict preference by household h and by society respectively. It may
be that there is some systematic way of deriving this � from all individual �h.
In other words it may be that we have some function � such that:

� = �(�1;�2; :::;�h; :::; ) (9.1)

The rule � will be termed a constitution (it is also referred to as a social welfare
function in some of the literature.). The constitution � has as its argument
a �pro�le�of preferences �in other words, a collection of individual orderings
or utility functions �not utility levels �one for each household;1 it yields an
ordering as its result.
The constitution � is thus a notional device for aggregating preferences.

A central issue of welfare economics is whether such a preference-aggregating
constitution can be found that meets certain �reasonable�preconditions. This
is of primary interest in giving substance to the idea of �social preferences�or a

1 Suppose we use a utility function Uh to represent preferences �h. If we were then to
replace Uh by a+ bUh in (9.1) what would happen to �? If we were to replace Uh by '(Uh)
in (9.1) what would happen to �?
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�social ordering�. After all, one might argue, of what does society consist but its
citizens? So, if the concept is to have any meaning, either social preferences are
imposed from the outside, or they are somehow related to individual preferences
about social states. The question that needs to be addressed immediately is
this: what characteristics might the constitution � possess for it to be seen as
a �reasonable�way of relating � to the individual �h? Consider the following
four requirements which we shall state as axioms.

Axiom 9.1 (Universality) The constitution is de�ned over all logically pos-
sible pro�les of individual orderings.

Axiom 9.2 (Pareto unanimity) For any �; �0 2 � if ��h�0 for all h then
���0.

Axiom 9.3 (Independence of irrelevant alternatives) Let two di¤erent pro-
�les be identical over some subset (�̂ � �). Then the social orderings corre-
sponding to each of these pro�les are identical over �̂.

Axiom 9.4 (Non-dictatorship) There is no individual h such that for all
�; �0 2 � : � �h �0 ) � � �0.

The �rst of these requirements is self-explanatory. Axiom 9.2 requires that
the constitution is such that if there is unanimous agreement that one social
state is strictly preferred to another, then �society�strictly prefers the said social
state. Axiom 9.3 is analogous to the requirement of �independence�(Axiom 8.2)
in the theory of choice under uncertainty and choice amongst lotteries (Axiom
8.5). Axiom 9.4 requires that there be no individual who is always decisive as
to whether society shall rank one particular state above another.
We have run through this list of axioms quite rapidly, because the principal

result that one has in this area is extremely simple and, unfortunately, rather
negative in tone.

Theorem 9.1 (Arrow�s impossibility theorem) If there are more than two
social states then there is no � satisfying axioms 9.1 to 9.4.

Should this negative result be regarded as overwhelmingly disturbing? Not if
one is careful about interpreting what it is actually saying. In fact, on re�ection,
it may not be all that surprising �given the potential con�icts of interest in a
community one might be rather amazed if the Impossibility Theorem did not
hold.
Note that the result does not say that reasonable constitutions can never

exist, which is a relief because societies seem to arrange for themselves consti-
tutions that are not wholly bizarre. But it does suggest that it is too ambitious
to expect a rule like � for deriving the �social will�or �social preferences�that
simultaneously satisfy the requirements to be:

� a bona �de ordering;
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� as general and as appealing as implied in Axioms 9.1 to 9.4;

� a function only of citizens�orderings over social states.

This remark suggests three possible ways forward from the apparent impasse
posed by the Impossibility Theorem. One possibility is to resign oneself to the
unpalatable conclusion that if Axioms 9.1 to 9.4 are to be accepted, then �social
preferences�just will not work like individual preferences in that they may not
exhibit either the property of completeness or of transitivity which characterise
an �ordering�as conventionally understood. Furthermore, this result concerns
not only the possibility of deriving rational social preferences, but also prefer-
ences in other smaller groups. Collective choice, whether it is by a nation, a
club, a corporation �or even a household �may therefore not be �rational�in
the sense that we usually assume individuals to be rational. Some progress can
be made by relaxing one or other of these two properties to some extent,2 but
even then some version of the above �Impossibility theorem�will still apply.
The second way forward is to examine whether one or more of Axioms 9.1

to 9.4 could, under certain circumstances, be done away with or modi�ed to
some extent. There are several ways in which this might be done, but let us
take as given Axioms 9.2 and 9.4 (there does not seem to be much future in a
speci�cation of a social choice rule that perversely �ies in the face of the Pareto
unanimity criterion or that abdicates choice to a Führer) How may one usefully
relax Axioms 9.1 and 9.3?
The problem with Axiom 9.1 is that one may be demanding far more of

one�s constitution � than one is ever likely to need, since Axiom 9.1 requires
that � shall work for every conceivable pattern of individual preferences. In
practice it may be reasonable to limit the range of �relevant� preferences in
some fashion, either by some empirical generalisation (�your average American
wants less government interference�) or by restricting the jurisdiction over which
individual preferences are to count. One aspect of this latter approach is pursued
below.
Consider the possibility that only certain types of preferences may be em-

pirically relevant. It might be true that, even though there is substantial dis-
agreement in the relative desirability of social states, nevertheless all citizens�
orderings have a similar structure. Consider, for example, a situation in which
all the social states could be represented by a single variable � let us say the
proportion of (homogeneous) national resources devoted to national defence;
every other possible variable is �xed. Now sketch the preferences of army vet-
eran Alf, ban-the-bomb Bill and common-sense Charlie: the horizontal axis
measures the proportion of national resources devoted to defence and the ver-
tical axis indicates intensity of preference of each person for each person over
the range of � �see Figure 9.1. The scale of the vertical axis is arbitrary: if

2 Some authors have suggested relaxing the requirement of trasitivity to quasi-transitivity
which could allow for the possibility that while (i) � � �0 and (ii) � and �00 are regarded as
di¤erent, yet (iii) � and �00 are also regarded as indi¤erent. Consider the usefulness of this
concept in making judgements about social states.
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Figure 9.1: Alf, Bill, Charlie and the Bomb

you like, you can imagine that this axis measures utility where utility scales
need not be in any way comparable between people. Observe that Alf always
prefers more resources to be devoted to defence; Bill has the opposite type of
preference structure; Charlie dislikes extremes of either sort. All three are ex-
amples of single-peaked preferences �where there is at most one peak along the
line representing social states. Let us assume that all persons�preferences have
this single-peaked structure, and consider a simple majority voting scheme as
a possible candidate for � in equation (9.1) (so that, given a choice between �
and �0, then � is ranked over �0 if and only if the number of people who prefer
� to �0 is greater than the number of people who prefer �0 to �). Then simple
experimentation will reveal that (in Figure 9.1) this condition produces a well-
behaved ordering of the states [�0; �; �00] �majority voting ranks the states in
exactly that order, in fact.
By contrast, if preferences looked like those in Figure 9.2 then majority

voting will not produce a well-de�ned ordering of the three states: in this case
one will �nd apparent intransitivities in the social choice rule.3 This property
on preferences generalises.

3 Write out Alf�s, Bill�s and Charlie�s preferences over f�; �0; �00g in terms of rankings.
Show that for the preferences in Figure 9.1 majority voting over pairs of states produces a
well-de�ned winner (known as a Condorcet winner ) and that for the preferences in Figure 9.2
majority voting does not produce a well-de�ned winner.
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Figure 9.2: Alf, Bill, Charlie and the Bomb (2)

Theorem 9.2 (Black�s Theorem) If the number of voters is odd and all in-
dividuals have single-peaked preferences, then the majority voting procedure pro-
duces a complete, transitive social ordering.

Unfortunately one should not get too excited about this result. In the �rst
place single peakedness may be quite a strong assumption in some cases. Sec-
ondly, the �single peakedness�idea is quite di¢ cult to apply to cases where the
set of social states � is multi-dimensional.4 It appears that simply restricting
the pattern of admissible preferences is not in itself of much help in dealing with
the result of the �impossibility�Theorem.
If one relaxes Axiom 9.3, the independence of irrelevant alternatives, then

one can certainly obtain a well-de�ned social ordering. But again it is not clear
whether this is necessarily a major step forward. Consider two simple examples
of voting systems that relax IIA:

1. Plurality voting (First-past-the-post). Put all the social states simultane-
ously to the vote. Choose that which attains the largest number of votes.

4 Consider a situation where social states have two dimensions �expenditure on defence and
expenditure on welfare. Suppose Alf, Bill and Charlie have a similar structure of preferences
over the set f�; �0; �00g as in note 3; Alf always prefers more on defence and less on welfare;
Bill prefers the opposite; Charlie prefers a middling amount of both. What restriction on
the set of alternatives f�; �0; �00g would be required for the �single-peakedness� property to
obtain?
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The problem with this system is that it focuses only on the �top candi-
date� states and takes no account of voter-preference in the rest of the
distribution. Votes for middle- and low-order candidate states might be
considered �wasted.�

2. Rank-order point voting (or de Borda voting). Let every voter assign
the number 1 to the worst alternative, the number 2 to the next worst,
3 to the next worst ... and so on. Let #(�) be the total number of
points voted for state �; then the constitution ranks � above �0 if and
only if #(�) > #(�0). Manifestly the use of #(�) provides a complete,
transitive ordering; but the ordering will depend crucially on the particular
point system attached to the votes. For example, if instead of the points
[1; 2; 3; 4; :::] one assigned the point system [1; 2; 4; 8; :::] then a di¤erent
social ordering might emerge. However there is a more disturbing feature
of this constitution, which illustrates directly why the independence of
irrelevant alternatives assumption may be attractive. Consider the subset
of social states that beat all others under this constitution; now reduce
the size of the set of social states by discarding only some of the inferior
states -one may �nd that even though the original subset of �best states�
is still available, they may not still be considered �best�when the choice
is made from the more restricted set of states.5

The third approach to coping with the Impossibility Theorem is to change
the domain of �. Recall that � is de�ned on a space of orderings; so if one
imputed a utility function Uh to household h one might apply an arbitrary in-
creasing transformation to Uh without a¤ecting the social ordering generated
by �. If one abandons this and imputes a cardinal signi�cance to the util-
ity functions Uh one is in e¤ect allowing the constitution to take account of
individuals�intensity of preference. This obviously demands much more infor-
mation about households�preferences; we examine this later when we consider
an explicit social-welfare function (section 9.5). There are many examples of
the oddities of voting systems in social decision rules.

Example 9.1 The selection by the International Olympic Committee of the lo-
cation of the games in the year 2000 is given in Table 9.1. Each column shows
a round of voting with an elimination at each round. Consider the ranking re-
vealed by the collection of columns clearly whether Sydney is ranked over Peking

5 Consider an economy with this voting scheme, where there are four social states and
three individuals with preferences thus:

Alf Bill Charlie
� �000 �0

�00 � �000

�0 �00 �00

�000 �0 �
Calculate the aggregate number of votes for each state, (a) on the assumption that � =

f�; �0; �00; �000g :(b) assuming that � = f�; �000g: Show that under (a) � is ranked equal to �000
and that they are regarded as superior to all other states. Show that under (b) � is ranked
inferior to �000.
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Round 1 2 3 4
Sydney 30 30 37 45
Peking 32 37 40 43
Manchester 11 13 11 -
Berlin 9 9 - -
Istanbul 7 - - -

Table 9.1: How the IOC voted 1993

depends on whether or not Manchester is forced to have a zero weight (compare
columns 3 and 4). The implied constitution violates the independence of irrele-
vant alternatives.

9.3 Principles for social judgments: e¢ ciency

Now let us turn to the second of three routes outlined in the introduction:
the search for �reasonable� principles on which to assess social states. The
most obvious of these principles is, perhaps, e¢ ciency. Because this issue is so
important we will consider not only the principle itself but also, in some detail,
its application to the type of economic model considered in chapter 7.
We often take the notion of e¢ ciency for granted. This is, perhaps, attribut-

able in part to the way in which we usually represent these problems graphically.
You see a production possibility set �and the eye immediately focuses on the
boundary. You see a budget constraint and again the eye focuses on the bound-
ary, where none of the budget is �wasted�. Moreover e¢ ciency appears to be
something which we might consider as a desirable attribute of economic systems.
How can it be expressed more generally?
First let us introduce some notation. Let �h be the utility level of household

h. For any state � 2 � write

�h = vh (�) (9.2)

where vh (�) is a kind of �reduced-form�function giving the utility of person or
household h in state �: the function encapsulates all the detailed information of
how the person�s utility level is the determined through the market allocation.
We introduce the following two concepts:

De�nition 9.1 For any two states �; �0, the state � is Pareto superior to the
state �0 if and only if (a) for all households h : vh (�) � vh

�
�0
�
and (b) for at

least one household h: vh (�) > vh
�
�0
�
.

As a synonym to the phrase �is Pareto superior to�we will sometimes use
the term �Pareto-dominates�. If social states are adequately described there
is a presumption to reject as �ine¢ cient�any state �0 when a Pareto superior
alternative exists. This leads to a de�nition of e¢ ciency.
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Figure 9.3: The utility possibility set

De�nition 9.2 A state � is Pareto e¢ cient if and only if (a) � is feasible
(� 2 �), and (b) there is no other feasible �0 that is Pareto superior to �.

The set of all Pareto-e¢ cient outcomes is illustrated in Figure 9.3. The
shaded area represents U, the utility-possibility set �the attainable set of utility
levels of Alf and Bill, given the technology of the economy total resources, and
possibly other constraints. The parts of the boundary marked with a heavy
curve are the Pareto-e¢ cient points.6 Once we have grasped these fundamental
ideas, a number of questions spring to mind:

� What type of allocations yield a Pareto-e¢ cient outcome?

� In what way does the speci�cation of a Pareto-e¢ cient state depend on
the characteristics of goods?

� What is the relation of e¢ ciency to the concept of equilibrium?

� How should departures from e¢ ciency be quanti�ed?

We will defer the last item on this list until chapter 13. In order to come to
grips with the other three issues we need to consider the relationship between

6 (a) How would this diagram alter if Alf�s and Bill�s utility functions Uh were replaced
by the transformed utility functions �+ �Uh? (b) How would the diagram alter if the utility
functions were replaced with the transformed functions 'h(Uh), where 'h is a monotonic
increasing function? (c) Plot an arbitrary point in the utility-possibility set, and show the set
of points which are Pareto superior to it.
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Rival Non-Rival

Excludable
Pure
private goods

?

Non-excludable ?
Pure
Public goods

Table 9.2: Classi�cation of goods

goods and services at the level of the individual household and commodities in
the economy as a whole. We introduce a simple classi�cation of goods by their
innate physical characteristics or the characteristics of the means by which they
are delivered; these are summarised in Table 9.2.
One cell of Table 9.2 is already familiar: we have encountered the idea of

�private goods�when considering the issue of aggregating commodity demands
over households in demand analysis (page 112) in general equilibrium (pages
146 and 112). It is often the standard unspoken assumption in microeconomics
that all goods are purely private. But in fact this assumption requires that
associated with each good are two properties that, in some cases, may just be
inappropriate for the commodity in question. The two properties are as follows.

1. Rivalness. Suppose there are nh consumers each consuming at least one
unit of good i and that the marginal cost production of good i in terms of
other goods is c. Now imagine that one additional person (person nh+1)
arrives and demands good i. If the nature of good i is such that the
provision of one unit to the new person requires a sacri�ce of c units of
other goods we will say that good i is rival. If the provision of one unit
to the new consumer requires a sacri�ce of 0 units of other goods we will
say that good i is non-rival.

2. Excludability. Suppose there are nh consumers each consuming at least
one unit of good i. If it is possible costlessly to prevent an extra person
from consuming one unit of good i then good i is said to be excludable. If
it is impossible to prevent the extra individual from consuming one unit
of good i then good i is said to be non-excludable.

A simple example of (pure) excludability is where one can charge a price
for the good without having to incur any compliance costs to ensure that the
consumer has actually paid. Clearly both rivalness and excludability properties
may change as technology changes. Clearly also excludability depends on the
institutions assumed to be present in the economy �for example whether it is
legal to deny individuals consumption of a particular commodity. Using these
two concepts we have:

De�nition 9.3 Good i is a pure private good if it is rival and excludable.

De�nition 9.4 Good i is a pure public good if it is non-rival and non-excludable.
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xhi consumption by h of good i
qfi net output by f of good i
Ri resource stock of i

Uh h�s preferences
�f f�s technology

Lagrange Multipliers
�h utility constraint
�f technical feasibility
�i materials balance

Table 9.3: Elements of the e¢ ciency problem

Other types of good � for example the cases marked �?� in Table 9.2 �
are also economically interesting. For example consumption externalities �see
section 13.4 �are examples of rival but non-excludable goods and page 449 gives
an example of non-rival excludable goods.

9.3.1 Private goods and the market

Let us outline a simple methodology for deriving the economic conditions which
characterise a Pareto-e¢ cient allocation. We do this within the type of economic
environment that we used for the standard competitive equilibrium approach.
In this environment there are n goods, nh households, and nf �rms; household
h consumes xhi of good i, and �rm f produces a net output qfi of good i; the
n-vector xh (whose ith component is xhi ) represents the consumption basket
of household h; and n-vector qf (whose ith component is qfi ) represents �rm
f�s activity. The social state � in such a world is completely determined by
the allocation which we denote by a := ([x]; [q]), where [x] is shorthand for
[x1;x2; :::;xh; :::], the list of consumption vectors for households h = 1; 2; :::; nh,
and [q] is shorthand for [q1;q2; :::;qf ; :::], the list of net output vectors for �rms
f = 1; 2; :::; nf .
Now let us see how to characterise economic e¢ ciency in this environment.

The method is as follows:

� We specify an economy in terms of its three basic components: preferences,
technology and total resources �see Table 9.3.

� For each household except household 1 we pick an arbitrary (feasible)
utility level ��h. There is no special signi�cance in choosing household 1
as the exception: any other household could have been chosen.

� Then we maximise the utility of household 1 subject to three constraints.
Every other household must achieve at least its target utility level speci�ed



238 CHAPTER 9. WELFARE

above:
Uh(xh) � ��h (9.3)

for h = 2; :::; nh; every �rm�s production must be technologically feasible:

�f (qf ) � 0; (9.4)

and the materials balance condition must hold for each commodity:

xi � qi +Ri (9.5)

If we consider this problem in the case of pure private goods with no pro-
duction externalities, then the following aggregation properties hold:

xi =

nhX
h=1

xhi (9.6)

qi =

nfX
f=1

qfi (9.7)

We may then set out the e¢ ciency problem as one of maximising the following
Lagrangean:

L ([x]; [q];�;�;�; ��;R) := U1(x1) +
Pnh

h=2 �h[U
h(xh)� ��h]

�
Pnf

f=1 �f�
f (qf )

+
Pn

i=1 �i[Ri + qi � xi]

9>>>>=>>>>;
(9.8)

where we have introduced the three sets of Lagrange multipliers �h; �f ; and �i
for the three constraints (9.3) to (9.5). The standard FOCs for a maximum
are:7

@L
@xhi

= �hU
h
i (x

h)� �i � 0 (9.9)

@L
@qfi

= ��f�
f
i (q

f ) + �i � 0 (9.10)

for all h; f and i, where the inequalities in (9.9) and (9.10) would be replaced by
the corresponding equalities if the relevant consumption or net output (xhi or q

f
i

respectively) is not zero at the maximum of L. To complete the FOCs we also
need to di¤erentiate L with respect to the three sets of Lagrange multipliers:

7 In fact condition (9.9) is very slightly di¤erent for household 1. Write down the modi�ed
condition that applies in this case.
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doing this we then get the inequalities (4.6) to (9.5) again, with the inequality
replaced by the corresponding equality if the Lagrange multiplier is not zero at
the maximum.
From these FOCs we can easily deduce the following features of an e¢ cient

state:

� If a household h is not satiated, then �h > 0.

� If there is at least one household that is not satiated with good i and
consuming a positive amount of good i then �i > 0: the �scarcity price�
of good i is positive in an e¢ cient allocation.

� If so, then there can be no idle stocks of good i.

� If �i > 0, and if the net output of good i by �rm f is not zero, then
�f (qf ) = 0.

� If this is so for at least one good and a particular �rm f , then �f (qf ) = 0,
which implies that any active �rm must operate in a technically e¢ cient
manner.

There are furthermore a couple of very strong points that we can infer from
the FOCs. Consider any household that consumes both goods i and j in positive
amounts:8

�hU
h
i (x

h) = �i (9.11)

�hU
h
j (x

h) = �j (9.12)

the right-hand sides of which are independent of h. Likewise for any �rm f
using or producing goods i; j in non-zero amounts:

�f�
f
i (q

f ) = �i (9.13)

�f�
f
j (q

f ) = �j : (9.14)

Using the standard de�nitions of the marginal rate of substitution of good i for
good j and of the marginal rate of transformation of good i into good j then,
on dividing (9.12) by (9.11) and (9.14) by (9.13) we �nd the following result:

Theorem 9.3 (E¢ ciency with purely private goods) In a Pareto-e¢ cient
state without externalities for any pair of pure private goods i and j that are
consumed by each household and produced by each �rm:

MRS1ij = MRS2ij = ::: = MRSnhij =
�j
�i
;

MRT1ij = MRT2ij = ::: = MRTnfij =
�j
�i

(9.15)

8Rework conditions (9.11) to (9.13) for the cases where (a) good i is not consumed by one
or more households, (b) good i is neither produced nor used by one or more �rms.
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Every household equates its marginal rate of substitution to the �shadow
price ratio��j=�i which represents the relative scarcity of goods j and i in the
economy. Likewise for �rms�marginal rate of substitution.

E¢ ciency and equilibrium

Clearly the conditions for a Pareto-e¢ cient allocation would be satis�ed if there
happened to be a competitive equilibrium in the economy under consideration.
The reason is simple. If (a�;p�) is a competitive equilibrium then, by de�nition,
all households are maximising utility and all �rms are maximising pro�ts. But
they do so by ful�lling FOCs that are very similar to those that we have just
discussed. Any household that consumes both good 1 and good 2 ensures that
its marginal rate of substitution from good 2 into good 1 exactly equals the
cost of good 1 (in terms of good 2) in the market: p1=p2. Likewise every pro�t-
maximising �rm will equate its marginal rate of transformation of good 2 into
good 1 to p1=p2. This is clearly just a special case of the result we have just
considered, with the pis replacing the �is. So we have established:

Theorem 9.4 (E¢ ciency of competitive equilibrium) If consumers are non-
satiated, in a private ownership economy, without externalities and consisting
entirely of pure private goods, any competitive equilibrium allocation is Pareto
e¢ cient.

So, in the very special circumstances of a pure private economy, competitive
equilibrium must be Pareto e¢ cient. This is illustrated in the case of an ex-
change economy. For, consider what the set of Pareto e¢ cient allocations must
be in this model: �x Alf�s utility at an arbitrary level ��a; now keeping Alf on
the given indi¤erence curve ��a, maximise Bill�s utility; one obviously ends up on
the contract curve. Hence in the exchange economy it is the contract curve itself
which forms the set of Pareto e¢ cient allocations. We know that the core is a
subset of the contract curve and that the competitive equilibrium allocation, if
it exists, must lie in the core.
What about the reverse? Suppose the preferences, technology and resource

totals are given. Consider a Pareto-e¢ cient allocation â. Will there be some d̂
such that â is a competitive equilibrium? In other words, can we �nd a property
distribution d̂ and a price system p̂ such that people choose â? This is not
always the case if there are non-convexities. This applies, in principle, to both
households�preferences and to �rms�production possibilities, and Figures 9.4
and 9.5 reveal what can happen:9 However in the absence of such pathological
structures we can state:

Theorem 9.5 (Support) If the conditions for Theorem 9.4 hold, if the tech-
nology set of each �rm is convex, and if consumers are greedy and have concave-
contoured utility functions, then any Pareto e¢ cient allocation â in which x̂hi >
0 for all h and i can be supported by a competitive equilibrium.

9 Use the contours in Figures 9.4 and 9.5 to sketch in the points that could not be supported
by a competitive equilibrium.
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Figure 9.4: Household h will choose ~xh not x̂h.

Figure 9.5: Firm f will choose ~qf not q̂f .
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For proof of this, see Appendix C. So it appears that under certain circum-
stances we can pick the Pareto-e¢ cient allocation that we would like to see, and
then arrange that the economy is automatically moved to this allocation by the
process of competition �the competitive equilibrium �supports�the allocation.
But a few words of caution are appropriate here.

� First, in order to manipulate the economy in this way we need to have the
right property distribution d̂ as a starting point. But how do we arrange
for this distribution in the �rst place? If history has thrown up some other
property distribution d then perhaps it is possible to arrange transfers of
entitlements of property from one group of households to another before
production and trade takes place. These transfers are not based on the
activities or choices of any of the agents in the economy �in the jargon they
are lump-sum transfers �and the political and administrative di¢ culties
associated with them should not be taken lightly (more of this in chapter
13, page 461). A principal di¢ culty is that of identifying who is entitled
to receive a transfer and who should be required to provide the resources.
Some resource endowments are intrinsically non-observable;10 some are
intrinsically non transferable.11

� Second, the conditions in Theorem 9.5 are fairly stringent. Reasonably
we could ask what guidance is available on e¢ ciency grounds once we try
to accommodate real-world problems and di¢ culties. These di¢ culties
will involve either departures from the ideals of perfect competition or
relaxation of some of the assumptions that underpin the theorem. This
issues are addressed in section 9.3.2.

� Third, the discussion of e¢ ciency has been conducted in a world of perfect
certainty. There are important issues raised by the model of uncertainty
that we developed in chapter 8. These are handled in section 9.3.5.

9.3.2 Departures from e¢ ciency

The pair of theorems, 9.4 and 9.5, are undeniably attractive but, to be applicable
they clearly impose somewhat idealistic requirements. So, two things deserve
further consideration: (1) In situations where we have a private goods economy
with technology and preferences that satisfy the conditions of theorems 9.4 and
9.5, how does one quantify departures from the ideal? It may be useful to
have some guidance of this to have an idea of whether one imperfect state is
�better�or �worse�than another in e¢ ciency terms. (2) What if the underlying
assumptions about the private-goods economy were relaxed? What could we
then say about the conditions for an e¢ cient allocation? We deal with each of
these in turn.
10 (a) Give an example of why this is so.
(b) Because of the problems of non observability policy makers often condition transfers on

individuals�actions, as with the income tax. Why will this give rise to e¢ ciency problems?
11 Again provide an example.
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Waste

Consider the problem of quantifying ine¢ ciency. Suppose that we are in a
purely private-good economy. All the conditions for a competitive equilibrium
are present �which would involve prices p� and incomes y�1; y�2; ::: �but we
�nd that in fact one good (good 1) has its price �xed up above p�1. This price-
wedge might be caused by a sales tax, for example, and it will in general distort
all other prices. Can we measure the loss that is induced by the price-wedge?
Let us suppose that we actually observe the consumer prices (p1; p2; :::; pn)

and producer prices (~p1; ~p2; :::; ~pn) such that

p1 = ep1[1 + �];
p2 = ~p2;
p3 = ~p3
::: ::: :::
pn = ~pn

9>>>>=>>>>; (9.16)

where � is the price-wedge imposed exogenously upon good 1. To make the
argument easier assume that all prices are positive and that all markets clear.
To measure waste we need a reference point. Since we have argued that under
the idealised conditions of a competitive equilibrium it seems natural to use
as the reference point the prices p� that would have prevailed in equilibrium.
Furthermore let

4pi := pi � p�i (9.17)

denote the deviations from the reference prices for each good i = 1; 2; :::; n.
Given that all consumers are maximising utility we must have that

MRShij =
pj
pi

(9.18)

for all goods i and j, and all households h,12 and

MRT1j =
pj
p1
[1 + �]

MRT2j =
pj
p2

::: ::: :::
MRTnj =

pj
pn

9>>=>>; (9.19)

Now consider the net gain that person h would experience were one to go from
the reference allocation a� to the actual allocation a:

EVh = Ch(p�; �h)� Ch(p; �h)� [y�h � yh] (9.20)

where Ch is h�s cost function. Summing (9.20) over all h expresses the total loss
measured in the same units as income. Assume that all producer prices remain

12 Sketch a diagram similar to Figure 9.5, but with a convex production possibility set, and
superimpose a set of indi¤erence curves; use this to illustrate the conditions (9.18) and (9.19).
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constant �an implicit assumption of in�nite supply elasticities. Then (minus)
the aggregation over the consumers of the loss in equation (9.20) gives the total
measure of waste involved in the price distortion 4p thus:13

�(4p) :=
nhX
h=1

�
Ch(p; �h)� Ch(p�4p; �h)

�
�

nX
i=1

Ri4pi �
nX
i=1

qi4pi (9.21)

We have �(0) = 0 and Shephard�s Lemma implies:

xhi = Chi (p; �
h) (9.22)

Using the materials�balance condition and taking an approximation we then
get14

�(4p) � �1
2

nX
i=1

nX
j=1

nhX
h=1

@Hhi(p; �h)

@pj
4pi4pj (9.23)

where @Hhi(p;�h)
@pj

is the substitution e¤ect of a rise in the price of commodity j
on the demand for commodity i by household h �in other words the slope of
the compensated or Hicksian demand curve.15

The interpretation of this can be based on the analysis of cost changes that
we developed for the �rm (page 33) and the consumer (page 91). The price
increase leads to an income increase for someone (because of the e¤ect on sales
revenue) and the contribution to this from agent h�s consumption this is given
by the lightly shaded rectangle with dimension p1xh1 in Figure 9.6. However the
component of cost increase to agent h represented by the change in price 4p1 is
represented by by the whole shaded area in Figure 9.6. The di¤erence between
the two represents the component of the waste generated by the price distortion
faced by person h directly from 4p1. It is illustrated in Figure 9.6 as (�) the
area of the heavily shaded �triangle�shape, approximated by

�1
2
4p14xh1

where

4xh1 =
@Hh1(p; �h)

@p1
4p1

Of course, one needs to take into account the other components of waste that
are generated from the induced price changes: the sum of the little triangles
such as that in Figure 9.6 gives the expression for loss (9.23).16

13 Use equations (7.8), (7.9) and theorem 2.7 to show how (9.21) follows from (9.20).
14Show how to derive (9.23) using a Taylor approximation (see page 494).
15Show how the the expression for waste must be modi�ed if supply elasticities are less than

in�nite.
16 (a) Suppose there is only a single �rm producing good 1 that uses the market power it

enjoys to force up the price of good 1. If we neglect cross-price e¤ects and use consumer�s
surplus as an approximation to EV interpret the model as one of the waste that is attributable
to monopoly. [Hint: use the equilibrium condition given in (3.11s)]
(b) How is the waste related to the elasticity of demand for good 1?
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Figure 9.6: Component of e¢ ciency loss

This idea of quantifying waste gives us the basis for developing a coherent
analysis of economic policy that may be aimed at yielding welfare improvements
rather than shooting just at a welfare optimum. More of this in Chapter 13.

E¢ ciency and market �failures�

Now let us turn to the other main thing that needs consideration. This intro-
duces us to a class of economic problems that are sometimes �perhaps somewhat
unfairly �characterised as instances of �market failure.� It is perhaps better to
say that these are instances where unquali�ed reliance on the market mechanism
cannot be relied upon to produce an e¢ cient outcome. This is hardly aston-
ishing: the requirements for the �support� result in Theorem 9.5 may appear
to be unacceptably strong. Relaxing these requirements raises two key issues.

1. The characterisation problem. Where the conditions for Theorem 9.4 are
violated the FOCs (9.12)� (9.13) are no longer valid. Furthermore, in
the presence of nonconvexities the FOCs are no longer su¢ cient to pin
down a unique allocation �see the two parts of the �gure where points on
di¤erent parts of on contour have the same MRS or MRT. So in all these
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cases the FOCs for the Pareto e¢ cient allocation need to be replaced or
supplemented in order to characterise an e¢ cient allocation.

2. The implementation problem. If the market mechanism cannot do the job
of supporting a particular allocation in this case, then what else might
work?

We shall discuss nonconvexities and the di¢ cult implementation issue further
in chapters 12 and 13. The characterisation issue where the conditions for
Theorem 9.4 are violated can be handled by a series of tweaks as follows in
sections 9.3.3 and 9.3.4.

9.3.3 Externalities

We have already seen the mechanics of externalities in a simple example of in-
teractions amongst �rms, discussed in chapter 3 (pages 55¤). Here we also need
to take into account a similar phenomenon of interactions amongst consumers.
We will handle each in turn under the labels production and consumption ex-
ternalities.

Production externalities

Unfortunately there are all too many practical examples of �negative�produc-
tion externalities�emissions into rivers, acid rain, tra¢ c congestion �where the
unregulated actions by one �rm signi�cantly a¤ects the cost function of other
�rms. So we shall focus on such detrimental interactions although virtually all
of the results can be easily reworked to deal with positive externalities too. We
can see the essential nature of the problem by considering a two-�rm example.
Suppose that q11 the output of good-1 by �rm 1 a¤ects the technological possi-
bilities of other �rms: �rm 1 produces glue. Consider the position of �rm 2, a
restaurant. In the no-externality case we would normally write �2(q2) � 0 to
characterise the net-output vectors q2 that are technologically feasible. How-
ever, in view of the externality, �rm 1�s output (q11) will shift �rm 2�s production
function. If the externality is detrimental (the smell of glue does not enhance
enjoyment of the restaurant�s meals) then we have:

@�2

@q11
> 0 (9.24)

Why? Consider a net output vector q̂2 that was just feasible for �rm 2, before
�rm 1 increased its output; this means that � in terms of the �gure � the
relevant point lies on the boundary, so that �2(q2) = 0. Now suppose that �rm
1 increases its output q11 : if the externality is strictly detrimental

17 , then this
must mean that q̂2 �which had hitherto been just in the feasible set �must now
be infeasible (you have to use more electricity to run air conditioning). This in

17Suppose �rms 1 and 2 experience diminishing returns to scale and generate negative
externalities: will production overall exhibit diminishing returns to scale?
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Figure 9.7: The e¤ect of pollution on a victim�s production set

turn means that we now �nd �2(q̂2) > 0 and that q11 has shifted �
2 inwards:

in other words condition (9.24) holds �see Figure 9.7.18

We could then appropriately de�ne the value, at the margin, of the damage
in�icted upon �rm 2 by the externality generated by �rm 2. We could measure
this in terms of �rm 2�s output:

� 1

�22

@�2

@q11
(9.25)

where �22 is the conventional di¤erential of �rm 2�s production function with
respect to its own output.
More generally, in the multi�rm case, we can represent an externality by

writing the production function for �rm g as:

�g
�
qg; q11 ; q

2
1 ; :::; q

g�1
1 ; qg+11 ; :::

�
(9.26)

and if the externality generated by any of these �rms is potentially detrimental
we would have:

@�g

@qfi
> 0 (9.27)

Once again this means that if the detrimental externality (noxious emissions)
by other �rms were to increase, then �rm gs production possibilities are reduced
�see Figure 9.7.

18Rework the analysis in equations (9.24) to (9.29) for a favourable externality.
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Figure 9.8: Production boundary and e¢ ciency with externalities

The general form of the marginal externality caused by �rm f when it pro-
duces good 1 (again evaluated in terms of good 2) may thus be written:

ef2l :=

nfX
g=1

1

�g2

@�g

@qfi
(9.28)

We can then plug the production function with externalities into the problem
de�ning an e¢ cient allocation. We then �nd:19

�f1

�f2
� ef2l =

�1
�2

(9.29)

which can be expressed as:

ratio of
MRT � externality = shadow

prices

One implication of this is that market prices, that the �rm would use, do
not correspond to the �scarcity prices�of commodities in an e¢ cient allocation:
there is a �wedge� between them corresponding to the value of the marginal
externality.20 This is illustrated in Figure 9.8. If the MRT were to equal just the

19Substitute (9.26) into equation (9.8) and di¤erentiate to get this result.
20Discuss how equation (9.29) might be interpreted as a simple rule for setting a �polluter

pays� levy on output.
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ratio of scarcity prices the �rm would produce at point q̂f . If the scarcity prices
are adjusted by the marginal externality then we �nd the e¢ cient allocation at
point ~qf .

Consumption externalities

Consumption externalities can be handled in a similar manner, and the main
idea conveyed by means of a simple example. Alf is an asthmatic non-smoker
who is a¤ected by the actions of Bill a boorish smoker. To simplify the example
we use the device of bundling together all goods in the economy except one.
Let good 1 be tobacco, and good 2 the composite of everything else. Then, we
can write the utility function for Bill as U b(xb1; x

b
2) and for Alf as U

a(xa1 ; x
a
2 ;x

b
1).

The signs of the partial derivatives of these functions are fairly obvious; in par-
ticular we may assume that @Ua=@xb1 < 0, since Alf su¤ers when Bill consumes
commodity 1. But how awful is it for asthmatic Alf to be in boorish Bill�s
company? One way of capturing this is to try to measure Alf�s willingness to
pay to have the nuisance reduced �to get Bill to cut down on the tobacco. We
can do this by computing the amount that Alf would be prepared to sacri�ce in
order to get Bill to have one less cigarette; this is:

eb2l :=
1

Ua2

@Ua

@xb1
� 0 (9.30)

where Ua2 is Alf�s marginal utility derived from other goods derived in the usual
way. From Alf�s point of view expression (9.30) is the marginal externality �or
the marginal damage �in�icted through the consumption of good 1 by Bill the
boor. Translating this into our more general model of e¢ ciency with n goods
and nh households let us suppose the consumption of good 1 by any household
h potentially a¤ects the utility of some other household `, possibly as the result
of some side e¤ect. We would then write:

�` = U `(x`; x11; x
2
1; :::; x

`�1
1 ; x`+11 ; :::) (9.31)

If the externality is detrimental by nature then we have

@U `

@xh1
� 0 (9.32)

for any two distinct households h and `. Analogous to (9.30) we may de�ne the
marginal externality imposed on others by household h as:

eh21 :=

nhX
`=1

1

U `2

@U `

@xh1
(9.33)

Notice that the summation is required because we want to know the marginal
damage in�icted on all parties, evaluated appropriately at the su¤erers�mar-
ginal utility of other goods. When we take this relationship into account in the
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FOCs for e¢ ciency, we �nd the following:21

Uh1
Uh2

+ eh21 =
�1
�2
: (9.34)

In other words we again have a simple relationship:

ratio of
MRS + externality = shadow

prices

Clearly, if there is a negative externality, then the marginal rate of substitution of
good 2 into good 1 will be greater than the price ratio in an e¢ cient allocation.22

The interaction between �rms or between consumers leads to fairly straight-
forward extensions of the rules covering the characterisation of e¢ cient alloca-
tions. However, although the characterisation problem is relatively simple in
this case, the implementation problem may prove to be intractable �even for
production externalities �in the absence of external intervention.

9.3.4 Public goods

The precise meaning of a public good is given in de�nition 9.4. So, if good 1 is
a pure public good it must be non-rival which requires that

xh1 = x1

for all non-satiated households. It must also be non-excludable, which can be
interpreted as an extreme case of consumption externality: once provided there
is no means of charging for it.
Let us explore the e¢ ciency implications of non-rivalness. In fact we only

require a di¤erent form of aggregation in the e¢ ciency condition. Notice that in
this case if, for some household h we have xh1 < x1 and yet Uh1 > 0; then a Pareto-
superior allocation can be attained by allowing household h�s consumption of
good 1 to increase (as long as xh1 is strictly less than x1 no additional resources
have to be used up to increase h�s consumption of this non-rival good, so we
might as well let household h increase its own utility since it will not thereby
reduce any one else�s utility). Therefore at the Pareto-e¢ cient allocation for each
household h, either xh1 = x1 so that the household is consuming the non-rival
good to its maximum capacity, or xh1 < x1 and Uh1 = 0 so that the household
is consuming less than it could, but is satiated with the public good 1. Let us
assume that everyone is non-satiated;23 each person must consume exactly the
same amount at a Pareto e¢ cient allocation. Thus we put xh1 = x1; h = 1; :::; nh

21Substitute (9.31) into equation (9.8) and di¤erentiate to get this result.
22 In a two-good model, show how condition (9.34) might be used to suggest an an ap-

propriate tax on the good causing the externality, or an appropriate subsidy on the other
good.
23 Derive the same condition assuming that the �rst h� households are non-satiated, and

the remaining nh � h� households are satiated.
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in the Lagrangean (9.8) as our new aggregation condition. Di¤erentiate the
Lagrangean with respect to x1 and set it equal to zero:

nhX
h=1

�hU
h
1 (x

h) = �1 (9.35)

Now pick any other pure private good i that is being consumed in positive
amounts by everyone: from equation (9.35) we get

nhX
h=1

Uh1 (x
h)

Uhi (x
h)
=
�1
�i

(9.36)

So we have established the result

Theorem 9.6 (E¢ ciency with public goods) In a Pareto e¢ cient state
without externalities for any pure private good i consumed by everyone and a
non-rival good 1 we have:

MRS1i1 +MRS
2
i1 + :::+MRS

nh
i1 = �1

�i

= MRTfi1; f = 1; :::; nf :

9=; (9.37)

Figure 9.9 illustrates the two-good, two-person case in the case where pro-
duction is carried out by a single �rm. The top part of the diagram plots Alf�s
marginal rate of substitution of the private good (good 2) for the public good
(good 1) as a function of the total supply of good 1. It is a graph of his willing-
ness to pay for additional units of the public good and it is downward sloping
on the assumption that Alf�s utility function is quasiconcave. The second part
of the diagram does the same job for Bill. At any level of provision of the public
good x1 we can imagine asking ourselves �what is the total willingness to pay for
an extra unit of the public good�(remember: because it is nonrival both parties
will bene�t from the extra unit). The graph of this total willingness to pay is
the downward sloping line in the bottom part of the �gure (MRSa21+MRS

b
21);

the marginal cost of providing the public good is given by the graph of MRT21
against x1; the intersection of these two curves gives the e¢ cient supply of public
goods x�1.

9.3.5 Uncertainty

It is reasonably straightforward to apply the e¢ ciency concept in de�nition 9.2
to the case where an economy is characterised by uncertainty, following on the
analysis of section 8.6. The key issue is whether e¢ ciency is to be viewed before
or after the uncertain state-of-the-world is revealed (be careful not to confuse
the concept of a state-of-the-world ! 2 
 with that of a social state � 2 �).
A standard approach is as follows. Consider a situation in which social states
are completely described by allocations. Take an allocation â in which the
consumption of household h under state-of-the-world ! is x̂h! and the resulting
utility for household h is �̂h, h = 1; 2; :::; nh.
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Figure 9.9: Conditions for e¢ cient provision of public goods

De�nition 9.5 An allocation â is ex-ante Pareto e¢ cient if it is feasible and
there is no other feasible allocation a with associated utility levels �h; h =
1; 2; :::; nh such that, for all h,

�h � �̂h (9.38)

with strict inequality for at least one h.

This is a general approach. If we wish to impose the restriction that each
person or household�s utility conform to axioms 8.1 to 8.3 (page 185) that un-
derpin the von-Neumann-Morgenstern functional form of utility (Theorem 8.1)
then we may write

�h = Ehuh
�
xh
�
=
X
!2


�h!u
h
�
xh!
�

(9.39)
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where �h!denotes the system of (subjective) probability weights used by house-
hold h, and Eh denotes expectation with respect to this set of subjective prob-
abilities. Using (9.39) the condition (9.38) becomesX

!2

�h!
�
uh
�
xh!
�
� uh

�
x̂h!
��
� 0: (9.40)

So ex-ante e¢ ciency has the interpretation that there is no other allocation
which dominates it in terms of expected utility. However, it is also reasonable
to consider e¢ ciency only from the ex-post standpoint, after the state-of the-
world has been realised

De�nition 9.6 The allocation â is ex-post Pareto e¢ cient if there is no other
feasible allocation a with associated utility levels �h = uh

�
xh!
�
; h = 1; 2; :::; nh

such that, for all h, and all ! 2 


uh
�
xh!
�
� uh

�
x̂h!
�
� 0 (9.41)

with strict inequality for at least one h.

Comparing (9.40) and (9.41) we can see that the following must be true:

Theorem 9.7 (Ex-ante e¢ ciency) If there is no state-of-the-world which is
regarded by any household as impossible then any ex-ante Pareto-e¢ cient allo-
cation must also be ex-post Pareto-e¢ cient.

However, the reverse is not true; one can easily �nd social states that are
e¢ cient ex-post, but not ex-ante. Figure 9.10 illustrates this point. The axes
of the diagram viewed from origin Oa are the same as in Figure 8.2 and give
consumption of a single commodity by person a in the two states-of-the-world;
the axes of the diagram viewed from origin Ob do the same job for person b.
The points along the contract curve from Oa to Ob represent ex-ante-e¢ cient
allocations; points o¤ the curve are not e¢ cient ex ante: you can then increase
the expected utility of one person without reducing the expected utility of the
other. However any point in Figure 9.10 is ex-post e¢ cient: once the state-of-
the-world ! is known you can only increase the ex-post utility of one person by
reducing the consumption (and hence the utility) of the other.

Theorem 9.8 (Ex-ante e¢ ciency) If a competitive equilibrium exists in the
market for contingent goods then it is ex-ante Pareto e¢ cient.

The proof of this result is straightforward, since the existence of all the
contingent markets permits one to extend the standard results on competitive
equilibrium and Pareto e¢ ciency just by rede�ning the particular markets in-
volved. Likewise we have:

Theorem 9.9 (Ex-ante support) If consumers are greedy and have concave-
contoured utility functions then any ex-ante Pareto-e¢ cient allocation with pos-
itive incomes for all consumers can be supported by a competitive equilibrium.
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Figure 9.10: Ex-ante and ex-post e¢ ciency

Again this follows by a simple extension of the results that we obtained in
the elementary model of e¢ ciency and equilibrium in the absence of uncertainty
in section 9.3 above. For the result to go through we require, in principle, lump-
sum transfers to be available in all states of the world !, and the existence of a
full set of n$ markets in contingent goods.

9.3.6 Extending the e¢ ciency idea

Let us reconsider the Pareto superiority criterion. Whilst it appears to have an
attractive interpretation in some welfare terms ��approve a switch from state
�0 to state � if no-one is worse o¤ in � than he would have been in �0 and at least
one person is strictly better o¤��it is very limited as a general policy rule. A
principal reason for this is that it is so wretchedly indecisive. There are a lot of
pairs of possible social states which just cannot be compared using this criterion;
and, as it is quite di¢ cult to think up lots of real-life examples where there have
been demonstrable Pareto improvements, the Pareto-superiority criterion does
not strike one as overwhelmingly useful in practice.
Let us consider what might be done to make the Pareto superiority criterion

more discriminating and, perhaps, more useful as a criterion for making wel-
fare judgements. To do this, we convert the problem into a two-stage decision
process.
To �x ideas, consider the example of a government which has to decide

whether or not to build an airport, and assume that the airport is a �one-o¤�
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project � either one has an airport of given size and quality or one does not.
There is in fact a huge range of possible social states associated with this decision
even though there is only one type of airport which could be built: the reason
for this is that there are all sorts of ways in which the gains and losses arising
from the project may be distributed amongst the community. So it may make
sense to consider (a) all the social states that could be obtained through a pure
redistribution (for example, by taxes and transfers) given that resources have
been committed to the airport; and (b) all the states of the world that could
be obtained (by similar methods) given that the airport is not built. In either
case we describe these other states (obtainable through redistribution) as being
accessible from the reference state. So the decision process is something like
this:

1. look �rst at the resource commitment that is involved in building the
airport;

2. then consider the states you can generate from the outcome of step 1 by
a further rearrangement of incomes.

On a more general note �with many possible projects of di¤erent types and
sizes � the idea in step 1 is that the alternatives are mutually exclusive and
irreversible, and that in step 2 all the states can be reached from one another
by steps that are in principle reversible. Clearly the distinction between the two
may be somewhat arbitrary and is reminiscent of the distinction between the
�short�and �long run�. Nevertheless one can perhaps think of many practical
decisions where such a distinction could reasonably be drawn.
To see how we may use this to extend the Pareto superiority criterion let

� and �0 be the two states under consideration (�airport� and �no airport�),
and let �̂(�) be the subset of � that is accessible from �. Then consider the
following:

De�nition 9.7 The state � is potentially superior to �0 if there exists �� 2 �̂(�)
such that �� is Pareto superior to �0.

The idea is this: � is potentially superior to �0 if there is some other state,
accessible from �, which is actually Pareto superior to �0. In the airport example,
the rule says: �building the airport (state �) is potentially superior to not
building the airport (state �0), even if some people actually lose out thereby,
if it can be shown that, once the airport is built, there is some hypothetical
income redistribution which (were it to be actually implemented) would mean
that everyone was at least as well o¤ as before and no one was worse o¤ (state
��)�.
Again there are some obvious drawbacks to this criterion. One is on moral

grounds. The state � is counted as being superior to �0 on the above conditions
even though the switch by income redistribution to �� never takes place. To some
people this will seem manifestly objectionable.
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Figure 9.11: �� is accessible from �0 and �0 is accessible from ��

There is a second, powerful objection, this time on the grounds of logic.
In Figure 9.11 v (��) represents

�
va (��) ; vb (��)

�
, the vector of utility payo¤s

corresponding to �� and �
�
�0
�
is the utility-vector corresponding to �0. The

set of utility vectors corresponding to states accessible from ��, and the set of
points corresponding to states accessible from �0 have been sketched in. Clearly,
there are points in the set accessible from �� that lie to the north east of �0, and
so �0 2 �̂(�) and thus, �� is potentially superior to �0. However we could just as
easily turn the argument round, examine the points lying to the north and east
of �� and �nd that �� 2 �̂(�0). We have the extraordinary conclusion that �� is
potentially superior to �0 and �0 is potentially superior to ��! The solution to
this problem that seems to suggest itself is to strengthen the de�nition so that
such apparent contradictions cannot occur. Consider the following:

De�nition 9.8 The state �� is unambiguously potentially superior to �0 if ��

is potentially superior to �0 but �0 is not potentially superior to ��.

Unfortunately this apparently more attractive criterion may be vacuous since
it could just restore the indecisiveness of the original Pareto superiority prin-
ciple, and it may also lead to intransitive rankings of social states. However,
despite the problem of �reversals�associated with the simple �potential superi-
ority criterion�there is a useful interpretation of this concept in terms of the ag-
gregate �willingness to pay�expressed as

Pnh
h=1 CV

h, the sum of all households�
compensating variations. Here CVh

�
�0 ! �

�
means (�) the cost of restoring
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household h to state �0 from state � and is positive if the move from �0 to � is a
welfare gain for h. In the case where �accessibility�is de�ned as above in terms
of monetary transfers at given prices p, we have:

Theorem 9.10 (Potential superiority) A necessary and su¢ cient condition
for � to be potentially superior to �0 is that

Pnh
h=1 CV

h(�0 ! �) > 0.

Note that this uses a strong de�nition of accessibility: for weaker versions
it is usually the case that

Pnh
h=1 CV

h > 0 is necessary, but not su¢ cient for
potential superiority. The practical importance of Theorem 9.10 is considerable
in that potential Pareto superiority is used as the intellectual basis for the
applied welfare-economic technique of cost-bene�t analysis.

9.4 Principles for social judgments: equity

We turn to another broad general principle that might be considered as a �rea-
sonable� basis for welfare economics. However, rather than an extension of
Pareto e¢ ciency � as in the case of potential e¢ ciency � in this case it is a
separate criterion that complements principles of e¢ ciency, namely equity. We
will have two attempts at this.

9.4.1 Fairness

In our �rst attempt equity is interpreted as �fairness�. Furthermore �fairness�
is to be given a very speci�c interpretation that enables us to carry through the
analysis with information about households that is no more speci�c than in our
treatment of e¢ ciency.
To assist in the exposition of this version of the equity principle it is conve-

nient to suppose that each social state � is adequately described by the allocation
a of goods embedded in it. In particular let a particular household�s evaluation
of a social state depend only on xh, the consumption vector that household en-
joys: households are sel�sh. Under this restricted interpretation it is convenient
to use the conventional utility function Uh(xh) as an index of household h�s
preferences.

De�nition 9.9 A consumption allocation [x] is fair if, for every pair of house-
holds h; ` = 1; 2; :::; nh, it is true that Uh(xh) � Uh(x`).

In other words an allocation is fair if it is such that no one in the community
wishes he had somebody else�s bundle instead of his own: fairness is the absence
of envy. This then yields:24

24 Prove this. Hint: Note that the de�nition of competitive equilibrium implies that, for
every household h : Uh(x�h) � Uh(xh) for all xh such that

P
i pix

h
i � Mh. Now consider

the utility h would enjoy were it to receive the consumption bundle of household h0 under this
equilibrium, and note that all households face the same budget constraints.
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Theorem 9.11 (Fairness of competitive equilibrium) If all households have
equal incomes then a competitive equilibrium is a fair allocation.

Of course not only would such an equal-income equilibrium be fair, it would
also be Pareto e¢ cient �which appears like a powerful endorsement.
However, just because it meets both the requirements of e¢ ciency and �no-

envy�fairness, one should not assume that such an equilibrium is ideal. Indeed
one has only to imagine two households one of which consists of several physi-
cally disabled people and the other composed of a single, able-bodied person, to
see that such an allocation of equal incomes, regardless of di¤erences between
households, is not very attractive. The �fairness� concept is, therefore, not of
itself overwhelmingly powerful or compelling.

9.4.2 Concern for inequality

It is reasonable to say that the fairness interpretation of the equity principles
is somewhat special, possibly even a touch arti�cial. Perhaps one might have
in mind that equity should involve the opposite of inequality � interpreted in
terms of the distribution of income, somehow de�ned, or the distribution of
utility. But here we reach a temporary check to our analytical progress. If one
is to interpret equity in this way one cannot avoid detailed utility comparison
between households, something that we have not yet introduced to the discussion
of this chapter. To make further progress we would �rst need to impose a lot
more structure on the welfare analysis.

9.5 The social-welfare function

Therefore let us look at what can be done using a third, more restrictive, ap-
proach to social welfare, one that underpins a lot of work in applied economics.
This will involve four main elements:

� a restriction on the range of issues on which each household�s preferences
is to count;

� an assumption that one either knows, or one may impute, the preferences
of households;

� a basis for comparing the levels and scales of utility of one household with
another;

� a function for aggregating the utilities enjoyed by (or imputed to) each
household.

To incorporate all these features we shall take a speci�c social welfare func-
tion:

W (U1(x1); U2(x2); :::; Uh(xh); :::) (9.42)
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Notice that W is de�ned on the space of individual utilities �not on orderings,
as was the �constitution�function �. We have further assumed that individual
utilities are determined by their own consumptions thus:

�h = Uh(xh); h = 1; 2; :::; nh: (9.43)

Clearly we have a rule which assigns a welfare level (some number W ) to any
consumption allocation [x] by a two-stage process

[x]
(1)! (�1; �2; �3; :::)

(2)! W: (9.44)

Where doesW come from? Of the various answers that have been attempted
in the social science literature over the last few decades I shall draw attention
to two in particular:

� Equal ignorance. Even though individuals may be perfectly informed
about what society actually looks like, society is supposed to form judg-
ments about alternative social states behind a �veil of ignorance.�It is as
though a representative individual were to make choices amongst alterna-
tive social states without knowing the identity that he or she would have
within the social state. If society chooses among distributions in the same
way that an individual makes choices amongst uncertain prospects then
it is appropriate to let W have the same basic structure as an individual
utility function under uncertainty (see Exercise 9.3).

� The PLUM principle: People Like Us Matter. Someone in the community
makes the decisions, and he/she/they impute their values to everybody
else. In practice this may mean that W is determined by the preferences
of a particular political interest group.

9.5.1 Welfare, national income and expenditure

To see the implications of assuming a well-de�ned social-welfare functionW as a
representation of social preferences, let us consider how the welfare level changes
when there is a small change in the allocation. Let each person�s consumption
of each commodity change by an amount dxhi . We �nd

dW =
nX
i=1

nhX
h=1

WhU
h
i dx

h
i (9.45)

Notice the following features which can be inferred from this simple relationship:

� the issues on which W ranks states are limited: each xh is assessed only
on the basis of h�s preferences for it.

� the cardinalisation of Uh is important here, since we need to aggregate �
add up �the changes in utilities.25

25 How will social welfare change if each Uh is subjected to an arbitrary a¢ ne transforma-
tion?
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� as a result a person�s �weight�depends on both Wh and Uhi �the impor-
tance of his utility to social welfare, and the marginal utility to him of
good i.

Suppose the government can choose the allocation [xh], subject to some
overall constraint

�(x1; :::; xn) � 0;
where xi :=

Pnh
h=1 x

h
i ; i = 1; 2; ::; n

�
Clearly we will �nd that for any pair of goods that are being consumed by any
two households:

Uhi
Uhj

=
U `i
U `j

(9.46)

(This we knew anyway from our consideration of e¢ ciency problems.) However
we will also �nd the condition

WhU
h
i =W`U

`
i (9.47)

Why? Because if the cost of producing good i is the same whoever consumes it,
then we shall only be at a welfare maximum if W cannot be increased by some
small transfer of bread, butter or toothpaste from h to `.
Now let us examine the properties of the social welfare function (9.42) in

the case of a market economy. Each household h maximises its utilityUh(xh)
subject to a budget constraint

P
pix

h
i � yh where yh is the household�s income:

the argument can easily be extended to the case where yh is endogenously
determined. We may substitute from the demand functions for each household
back into its utility function to obtain the indirect utility function for each
household V h(p; yh).This then yields the social welfare function in terms of
prices and households�incomes:

W (V 1(p; y1); V 2(p; yh); :::; V h(p; yh); :::): (9.48)

Recall that for a consumer�s optimum purchases in a free market we have Uhi =
��hpi if good i is purchased in positive amounts where the term ��h is the
marginal utility of money income for household h and equals @V h=@yh �see
(4.12) and page 88. So the social optimality condition (9.47) can be rewritten,
in the case of a market economy, as

WhV
h
y =W`V

`
y (9.49)

for any pair of households h and `. This is the e¤ect on social welfare of giving
one dollar to any household at the optimum; let us call it M . Hence it is
immediate that if there is some economic change a¤ecting individual incomes
(for example a change in natural resource endowments or in the technology),
the change in social welfare is

dW =

nhX
h=1

WhdU
h =

nhX
h=1

WhV
h
y dy

h =M

nhX
h=1

dyh (9.50)
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The right-hand side of (9.50) is proportional to the change in national income
y1 + y2 + :::+ ynh .
Now consider a change in the prices p leaving incomes yh unchanged. Dif-

ferentiating (9.48) we �nd that the e¤ect on social welfare is

nhX
h=1

Wh

"
nX
i=1

V hi dpi

#
(9.51)

But, since each household is assumed to be maximising utility, (9.51) becomes26

�
nhX
h=1

WhV
h
y

nX
i=1

x�hi dpi = �M
nX
i=1

x�i dpi (9.52)

This is simply �M times the change in the cost of aggregate expenditure (by
all households on all goods) as a result of the price changes. In a market
economy, aggregate expenditure equals national income; so we have established
that, whatever the reason for the change in the social state, the following result
holds:

Theorem 9.12 (National income) In the neighbourhood of a welfare opti-
mum, welfare changes are measured by changes in national income.

Unless we believe that somehow the distribution of resources just happens
to be ideal in every case we wish to examine this result is of limited appeal.
What of other cases?

9.5.2 Inequality and welfare loss

In our earlier discussion of equity as a general welfare principle (section 9.4) we
recognised that a method of comparing individual utilities would be necessary in
order to introduce a meaningful criterion based on the common-sense notion of
inequality. The social-welfare function approach enables us to take the necessary
steps.
Clearly there is some form of loss that would result if households�money

incomes were not �correctly�adjusted �according to the social welfare function
W �so as to be able to invoke Theorem 9.12. We can examine the nature of this
loss using an approach that is somewhat reminiscent of quantifying departures
from e¢ ciency ��waste��discussed in section 9.3.2 above. To do this let us
make two further simplifying assumptions:27

� all the V h are identical, and

� W is a symmetric and concave function.

26 Prove this. Hint: try using Roy�s identity.
27 Suppose the economy is composed of two types of households single individuals, and

couples (who share their income). Show how the results in this section can be established if
households are weighted by size and incomes adjusted to �per-person equivalents�.
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Given that all the households are assumed identical, the assumption of sym-
metry is a natural one: it implies that there is no signi�cance in the labelling of
individual households 1; :::; nh. The assumption that W is concave implies that
�society��as represented by the social welfare function �is weakly averse to
an unequal distribution of income. Now national income is equal to the value
of all the resources in the community plus all the pro�ts made by �rms which,
in a market economy, can be written:Pnh

h=1 y
h =

Pn
i=1 piRi +

Pnf
f=1�

�f (p);

where
��f (p) =

Pn
i=1 piq

f
i (p)

9=; (9.53)

So obviously national income will be �xed for a given price vector p and for
given resources and technology. So, in view of the concavity and symmetry of
W , we can see that for a given p, W would be maximised in a situation where
every household received has an equal share of national income; in other words
where everybody gets mean income Ey :=

P
h y

h=nh.
Consider now situations in which every household is not receiving an equal

share. A natural way of measuring the apparent loss attributable to the less-
than-ideal property distribution suggests itself in the light of chapter 8�s discus-
sion of the using the risk premium concept in the context of the expected-utility
model (see page 191). Consider the income that, were it to be given identically
to every household, would yield the same level of social welfare as the actual
incomes y1; y2; :::; ynh . This income is clearly less than or equal to �y, and the
di¤erence between the two can be regarded as a money measure of the shortfall
in social welfare attributable to the inequality of incomes.

De�nition 9.10 (a) The equally-distributed equivalent income � is a real num-
ber such that

W (V (�;p); V (�;p); :::) =W (V (y1;p); V (y2;p); :::): (9.54)

(b) The inequality index is 1� �=�y.

This is illustrated, for a two-household example, in Figure 9.12. The ray
through the origin is at 45� to the axes: any point on this represents a situation
of exact equality of income distribution. So, given an actual distribution of
income (ya; yb) represented by the point ŷ we �nd the mean by drawing a
perpendicular from ŷ to the 45� ray: this perpendicular meets the ray at Ey, the
point (�y; �y). The contour of the social welfare function W (V (p; ya), V (p; yb))
that passes through ŷ is symmetric about the ray, and cuts the ray at point �,
with coordinates (�; �). The more sharply curved is this contour, the greater
the inequality 1� �=�y.
You may have already spotted the similarity of these concepts to the concepts

of certainty equivalence and risk premium. This becomes even more evident if we
impose a further restriction on the social welfare function W . If we assume that
it is additively separable (analogous to the von Neumann Morgenstern utility
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Figure 9.12: The social-welfare function

function28) then, suppressing the price vector p (assumed to be held invariant)
we may rewrite (9.48) as

nhX
h=1

�(yh) (9.55)

where � is an increasing, concave function of one variable. Then the equation
de�ning the equally-distributed equivalent income can be rewritten

� = ��1

 
1

nh

nhX
h=1

�(yh)

!
(9.56)

Recall that in the case of choice under uncertainty the curvature of the
function re�ected the degree of risk aversion, and hence the risk premium to be
imputed to any particular prospect. Likewise the curvature of � determines the
degree of �inequality aversion�that is implicit in the social welfare function:in
fact, assuming di¤erentiability of �, we conventionally de�ne the following

De�nition 9.11 The (relative) inequality aversion of a social welfare function
is given by

�(y) := �y
�yy(y)

�y(y)
(9.57)

28 In this application what is the counterpart to the probabilities used in the von Neumann-
Morgenstern case?
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Then, borrowing results from the theory of choice under uncertainty we may
immediately state29

Theorem 9.13 (Concavity and inequality aversion) Let � and �̂ be in-
creasing, concave functions of one variable, such that �̂ is a concave transfor-
mation of �. Then (a) �̂ � �;(b) �̂ � �.

So the greater is the inequality aversion implicit in the social welfare function,
the greater is the apparent loss attributable to any given unequal distribution
of income. It is important to emphasise that this is an apparent loss since there
is no reason to suppose that in practice it is legitimate to take total income as
given.

9.6 Summary

Moving from individual preferences and decision-making �as in chapter 4 �to
preferences and decision-making for society is a challenge. Our three approaches
to social welfare show why this is so:

� The Arrow impossibility result (Theorem 9.1) is of fundamental impor-
tance in understanding why it is intrinsically so di¢ cult to express social
preferences as a general function of individual preferences.

� Of the principles for social judgment it is clear that Pareto e¢ ciency is
overwhelmingly important. It has a natural de�nition in models of perfect
certainty and can be extended without much di¢ culty to uncertainty.
In a pure private-goods economy the conditions for e¢ ciency are very
straightforward and can be ful�lled by a competitive equilibrium. But it
is di¢ cult to extend the notion of Pareto superiority (on which e¢ ciency
is based) to criteria that permit general application.

� The social-welfare function seems like a useful way of cutting through
the di¢ culties where general principles appear indecisive. But where is it
supposed to come from? On what basis can we compare the utility levels
or utility scales of one person with another?

9.7 Reading notes

A good overview of the main issues in welfare economics is provided by Boadway
and Bruce (1984). On the �constitution� approach see Arrow (1951), Black
(1958) and the excellent paper by Vickrey (1960) ; for the basis of Theorem 9.2
see Black (1948).
The standard references on e¢ ciency with public goods are Samuelson (1954,

1955).

29 Prove this using the results from Chapter 8.
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Keenan and Snow (1999) summarise a variety of criteria for potential su-
periority and the relationship between them; the literature on the �reversals�
problems associated with potential superiority was initiated by Kaldor (1939),
Hicks (1946) and Scitovsky (1941). The fairness discussion is based on an im-
portant contribution by Varian (1974).
Using the individual�s attitude to risk as the basis for a social welfare function

is attributable to Vickrey (1945) and Harsanyi (1955). On the social-welfare
interpretation of inequality and income distribution and its relationship to risk
aversion see Atkinson (1970). The developments of social-welfare criteria for
use in applied economics are reviewed in Harberger (1971) and Slesnick (1998).

9.8 Exercises

9.1 In a two-commodity exchange economy there are two large equal-sized groups
of traders. Each trader in group a has an endowment of 300 units of commodity
1; each person in group b has an endowment of 200 units of commodity 2. Each
a-type person has preferences given by the utility function

Ua(xa) = xa1x
a
2

and each b-type person�s utility can be written as

U b(xb) =
xb1x

b
2

xa1

where xhi means the consumption of good i by an h-type person.

1. Find the competitive equilibrium allocation

2. Explain why the competitive equilibrium is ine¢ cient.

3. Suggest a means whereby a benevolent government could achieved an e¢ -
cient allocation.

9.2 Consider a constitution � based on a system of rank-order voting whereby
the worst alternative gets 1 point, the next worst, 2, ... and so on, and the state
that is awarded the most points by the citizens is the one selected. Alf�s ranking
of social states changes during the week. Bill�s stays the same:

Monday: Tuesday:
Alf Bill Alf Bill
� �0 � �0

�0 � �00 �
�00 �00 �0 �00

What is the social ordering on Monday? What is it on Tuesday? How does
this constitution violate Axiom 9.3?
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9.3 Consider an economy that consists of just three individuals, fa; b; cg and
four possible social states of the world. Each state of the world is characterised
by a monetary payo¤ yh thus:

a b c
� 3 3 3
�0 1 4 4
�00 5 1 3
�000 2 6 1

Suppose that person h has a utility function Uh = log(yh).

1. Show that if individuals know the payo¤s that will accrue to them under
each state of the world, then majority voting will produce a cyclic decision
rule.

2. Show that the above conditions can rank unequal states over perfect equal-
ity.

3. Show that if people did not know which one of the identities fa; b; cg they
were to have before they vote, if they regard any one of these three identities
as equally likely and if they are concerned to maximise expected utility, then
majority voting will rank the states strictly in the order of the distribution
of the payo¤s.

4. A group of identical schoolchildren are to be endowed at lunch time with
an allocation of pie. When they look through the dining hall window in
the morning they can see the slices of pie lying on the plates: the only
problem is that no child knows which plate he or she will receive. Taking
the space of all possible pie distributions as a complete description of all
the possible social states for these schoolchildren, and assuming that ex
ante there are equal chances of any one child receiving any one of the
plates discuss how a von Neumann-Morgenstern utility function may be
used as a simple social-welfare function.

5. What determines the degree of inequality aversion of this social-welfare
function?

6. Consider the possible problems in using this approach as a general method
of specifying a social-welfare function.

9.4 Table 9.4 shows the preferences over three social states for two groups
of voters; the row marked �#� gives the number of voters with each set of
preferences; preferences are listed in row order, most preferred at the top.

1. Find the Condorcet winner (see footnote 3) among right-handed voters
only.
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2. Show that there is a cycle among left-handed voters only.

3. Suppose that the cycle among the left-handed voters is broken by ignoring
the vote that has the smallest winner. Show that the winner is then the
same as that among the right-handed voters.

4. Show that if the two groups are merged there is a Condorcet winner but is
di¤erent from the winners found for the left-handers and the right-handers
separately!

5. Would the above paradox occur if one used de Borda voting?(Moulin 2003)

Left-handers Right-Handers
# 10 6 6 12 18 17

� �0 �0 �00 � �00

�0 � �00 � �00 �
�00 �00 � �0 �0 �0

Table 9.4: Left-handed and right-handed voters

9.5 Suppose social welfare is related to individual incomes yh thus:

W =

nhX
h=1

�(yh)

where �(�) has the form

�(x) =
x1�� � 1
1� �

and � is a non-negative parameter.

1. What form does � take for � = 1? [Hint, use l�Hôpital�s rule].

2. What is relative inequality aversion for this W?

3. Draw the contours of the social welfare function for the cases � = 1, �! 0,
�!1. What is equally-distributed-equivalent income in each case?

4. If, instead of a �nite population f1; ::; nhg, there is a continuum of indi-
viduals distributed on R with density at income y given by f(y) write down
the equivalent form of the social welfare function W in general and in the
particular cases cited in part 3. (Atkinson 1970)

9.6 In a two-commodity exchange economy there are two groups of people: type
a have the utility function 2 log(xa1) + log(x

a
2) and an endowment of 30 units

of commodity 1 and k units of commodity 2; type b have the utility function
log(xb1) + 2 log(x

b
2) and an endowment of 60 units of commodity 1 and 210� k

units of commodity 2.
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1. Show that the equilibrium price, �, of good 1 in terms of good 2 is 210+k
150 .

[Hint: use the answer to Exercise 7.4].

2. What are the individuals�incomes (ya; yb) in equilibrium as a function of
k? As a function of �?

3. Suppose it is possible for the government to carry out lump-sum transfers
of commodity 2, but impossible to transfer commodity 1. Use the previous
answer to show the set of income distributions that can be achieved through
such transfers. Draw this in a diagram.

4. If the government has the social welfare function

W (ya; yb) = log(ya) + log(yb)

�nd the optimal distribution of income using the transfers mentioned in
part 3. [hint use the diagram constructed earlier].

5. If instead the government has the social welfare function

W (ya; yb) = ya + yb

�nd the optimal distribution of income using transfers. Comment on the
result.

9.7 This is an example of rent seeking. In a certain industry it is known that
monopoly pro�ts � are available. There are N �rms that are lobbying to get
the right to run this monopoly. Firm f spends an amount cf on lobbying; the
probability that �rm f is successful in its lobbying activity is given by

�f :=
cfPN
j=1 c

j

1. Suppose �rm f makes the same assumptions about other �rms activities
as in Exercise 3.2 (page 65). It chooses cf so as to maximise expected
returns to lobbying assuming the other �rms� lobbying expenditures are
given. What is the �rst-order condition for a maximum?

2. If the �rms are identical show that the total lobbying costs chosen by the
�rms must be given by

Nc� = �

�
1� 1

N

�
3. If lobbying costs are considered to contribute nothing to society what is the
implication for the measurement of �waste� attributable to monopoly, as
discussed in footnote question 16? (Tullock 1967)
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9.8 In an economy there are n commodities and nh individuals, and there is
uncertainty: each individual may have good or poor health. The state of health
is an independently distributed random variable for each individual and occurs
after the allocation of goods has taken place. Individual h gets the following
utility in state-of-the-world !:

uh
�
xh; !

�
:= ah

�
xh1 ; !

�
+

nX
i=2

bh
�
xhi
�

where xh :=
�
xh1 ; x

h
2 ; :::; x

h
n

�
, xhi is the amount of commodity i consumed by h,

the functions ah,bh are increasing and concave in consumption, and ! takes one
of the two values �poor health� or �good health� for each individual; good 1 is
health-care services.

1. The government estimates that for each individual the probability of state-
of-the-world ! is �!. If aggregate production possibilities are described
by the production constraint �(x) = 0 (where x := (x1; x2; :::; xn) and xi
is the aggregate consumption of commodity i) and the government has a
social-welfare function

nhX
h=1

X
!

�!u
h
�
xh; !

�
�nd the �rst-order conditions for a social optimum.

2. The government also has the ability to tax or subsidise commodities at
di¤erent rates for di¤erent individuals: so individual h faces a price phi
for commodity i. If the person has an income yh and estimates that the
probability of state-of-the-world ! is �h!, and if he maximises expected
utility, write down the �rst-order conditions for a maximum.

3. Show that the solutions in parts 1 and 2 can only coincide if

phi
phj
=
�i (x)

�j (x)
; i; j = 2; :::; n

ph1
phj
=
�1 (x)

�j (x)
�
"P

! �
h
!a

h
1

�
xh1 ; !

�P
! �!a

h
1

�
xh1 ; !

�# ; j = 2; :::; n
Is there a case for subsidising health-care? Is there a case for subsidising
any other commodity?(Sandmo 1983)

9.9 Revisit the economy of San Serrife (Exercise 4.11 on page 96) Heterogene-
ity amongst the inhabitants of San Serrife was ignored in the Exercise 4.11.
However, it is now known that although all San Serrife residents have prefer-
ences of the form Exercise 4.2 they di¤er in their tastes: Northern San Ser-
rifeans spend 34% of their budget on milk and only 2% on wine, while Southern
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San Serrifeans spend just 4% of their budget on milk and 32% on wine. The
question of entry to the EU is to be reviewed; the consequences for the prices of
milk and wine of entry to the EU are as in Exercise 4.11.

1. Assume that there are eight times as many Southerners as Northerners in
the San Serrife population, but that the average income of a Northerner is
four times that of a Southerner. On the basis of the potential-superiority
criterion, should San Serrife enter the EU?

2. Suppose Northerners and Southerners had equal incomes. Should San Ser-
rife enter the EU?

3. What would be the outcome of a straight vote on entry to the EU?



Chapter 10

Strategic Behaviour

You know my methods [Watson]. Apply them. �Sherlock Holmes
(Sir Arthur Conan Doyle: The Sign of Four.)

10.1 Introduction

In this chapter we focus on the con�ict and cooperation that are fundamental
to microeconomic problems. The principles of economic analysis that we will
develop will provide a basis for the discussion of chapters 11 and 12 and provide
essential tools for the wider study of microeconomics. Why a change in the
direction of analysis?
Our analysis of strategic behaviour in economics focuses on the theory of

games. Game theory is an important subject in its own right and it is impossible
to do it justice within a chapter or so. Here we use it as a further powerful
analytical tool. The methodology that we will introduce in this chapter o¤ers
new insights on concepts and techniques we have discussed earlier including the
speci�cation of the optimisation process and the nature of equilibrium. The
logical processes may require some mental adjustment in order to grasp the
methods involved. But, having mastered the methods, one can apply them �
Sherlock Holmes style �to a wide variety of models and problems.
The chapter covers the topics in strategic behaviour by grouping them into

three broad areas as follows:

� The essential building blocks. In sections 10.2 and 10.3 we review some
of the ideas that were taken for granted in the case of perfect markets
(chapters 2�7) and rethink the notion of equilibrium. Section 10.4 applies
these concepts to industrial organisation.

� Time. In section 10.5 we examine how the sequencing of decisions in
strategic interactions will a¤ect notions of rationality and equilibrium.
Section 10.6 examines these principles in the context of market structure.

271
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� Uncertainty. In section 10.7 we introduce some of the issues raised in
chapter 8 to the context of strategic interaction. The resulting models are
quite rich and the analysis here is continued into chapter 11.

10.2 Games �basic concepts

Many of the concepts and methods of game theory are quite intuitive but,
in order to avoid ambiguity, let us set run through a preliminary list of its
constituent parts and note those that will require fuller treatment.

10.2.1 Players, rules and payo¤s

The literature o¤ers several alternative thumbnail sketches of the elementary
ingredients of a game. The following four-part summary has claim to be a
consensus approach:

Players

The �players�are the individual entities that are involved in the economic prob-
lem represented by the game. We will take these to be economic agents such as
�rms, households or the government. But occasionally one needs to extend the
set of players in games that involve an element of exogenous uncertainty. It can
be convenient to treat the random elements of the game as the actions of an
extra player known as �Nature,�a kind of invisible bogeyman rolling the dice
behind the scenes.

Rules of play

The rules of the game focus on moves or actions of the players. The concept of
�action�is a wide-ranging idea covering, for example, the consumption choices
made by households, the output decisions of �rms, level of taxes...
In a parlour game it is clearly speci�ed what moves each player can legally

make at each stage of the game. For a well-speci�ed game in microeconomics
this must obviously be done too. But more is involved: in both parlour games
and economic problems: the information that is available at the point of each
move can be crucial to the speci�cation of the game. To illustrate, there is a
variant of chess known as Kriegsspiel, in which the players can see their own
pieces, but not those of their opponent; kings, queens, pawns and so on all work
in the same way, but the rules of the game obviously become fundamentally
di¤erent from ordinary chess in the light of this di¤erence in information.

Determination of the outcome

For each set of actions or moves (including moves by �Nature� to cover the
rôle of uncertainty) there is a speci�c outcome that is then determined almost
mechanistically. The outcome could be de�ned in terms in terms of lists of
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outputs, baskets of goods or other economic quantities. It could be something as
simple as the answer to the question �who wins?�It is given economic meaning
by evaluation in terms of payo¤s.

Payo¤s

The players�objectives (utility, pro�ts,...) are just as we have introduced them
in earlier chapters. As previously we have to be careful to distinguish cases
where the payo¤s can be treated as purely ordinal concepts (utility in chapter
4) from those where they have cardinal signi�cance (pro�ts in chapter 2 or
�felicity�in chapter 8).

These basic ingredients collectively permit a description of what the game
is about, but not how it is to be played. To see what more is involved we have
to examine some of the game�s ingredients more closely: we particularly need
to consider the rôle of information.

10.2.2 Information and Beliefs

Uncertainty and progressively changing information can greatly in�uence the
possible outcomes of a game: simply turning over cards in an elementary two-
person card game or in solitaire is enough to convince one of that. However more
is involved. Take the Kriegsspiel versus ordinary chess example again: without
being a chess expert oneself, one can see that it would be useful for player A to
try to discover ways of moving his own pieces that will force player B to reveal
information about the disposition of B�s concealed pieces. What players think
that they know is going to a¤ect the way that they play the game and will, in
turn, in�uence the way that information develops through time.
Because information plays such a central rôle in the way a game can un-

fold it is important to incorporate a precise representation of this within the
microeconomic model. The key concept in characterising the situation for an
individual agent at any point in the game is the agent�s information set : this is
a full description of the exact state of what is known to the agent at a particular
point in the game and will usually (although not necessarily) embody complete
recall about everything that has happened previously in the game. Obviously
the same individual will usually have a di¤erent information set at di¤erent
stages of the game. We will be able to make the de�nition of the information
set precise once we have considered how to represent the game precisely � in
10.2.4 below.
A central idea in the discussion of �who knows what?� is the concept of

�common knowledge.�An appeal to common knowledge is frequently a feature
of the reasoning required to analyse strategic problems and clearly has much
intuitive appeal. However, the term has a precise interpretation in the context
of games and microeconomics: a piece of information is common knowledge if
it is known by all agents and all agents know that the other agents know it...
and so on, recursively.
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For cases not covered by the comforting quasi-certainty of �common knowl-
edge�we need to introduce some concept of individual beliefs about the way the
game works. Of course in some very special cases beliefs are almost irrelevant
to the modelling of a game. But usually the use of available information in the
modelling of beliefs is an important extension to the concept of rationality that
we have employed in earlier chapters. If the individual agent were not making
a maximising choice subject to the reasonable beliefs that he has we could say
that the individual is irrational. Of course this begs the question of what consti-
tutes �reasonable�beliefs. It also leaves open the issue of how the beliefs could
or should be updated in the light of hard information that becomes available
during the playing of the game, a point to which we return in section 10.7.
The explicit treatment of uncertainty in models of strategic behaviour and

the unfolding of information with the passage of time are important features of
microeconomic models and are considered in further detail below.

10.2.3 Strategy

The essence of the game-theoretic approach �and the reason for the title of this
chapter �is the focus on strategy. A player�s needs to be clearly distinguished
from the idea of an action. Simply stated, player h�s strategy is a complete
contingent plan of action for all possible situations that could conceivably arise in
the course of a game. It can be expressed formally as follows. Take the collection
of all the information sets for agent h corresponding to reachable points within
the game: a strategy sh for agent h is a mapping from this collection to the set
of actions feasible for h.
The individual�s strategy is the fundamental tool that we will use to analyse

the working and outcomes of games.

10.2.4 Representing a game

A game is usually a complex form of strategic interaction. To make sense of it
a clear method of representation is required. There are two main forms

� The game in extensive form is a kind of tree diagram. The root of the
tree is where the game starts and the beginning of each new branch �each
node �characterises the situation reached at a given moment from a given
sequence of actions by the players. At each terminal node (i.e. where
the game ends) there is a vector of payo¤s, one for each agent. For now
these payo¤s could be considered to be purely ordinal and need not be
comparable between di¤erent agents �we will see below situations when
these assumptions are no longer satisfactory.

� The game in strategic form (also known as normal form) is a kind of
multidimensional spreadsheet. Each dimension (row, column, etc.) of the
spreadsheet corresponds to the set of strategies for each separate player;
each cell in the spreadsheet gives a list of numbers corresponding to the
payo¤s associated with that particular combination of strategies.
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Figure 10.1: Simultaneous move, extensive form

A simple example of the two forms of representation can help here. Figure
10.1 depicts the extensive form of a game where the two players each make a
move simultaneously and then the game ends. In this case the strategies for
both agents are very simple �each strategy consists of exactly one action. The
top of the diagram depicts Alf�s choice between the two strategies sa1 (play
[LEFT]) and sa2 (play [RIGHT]) : his choice then determines whether the left
or the right hand node in the middle of the diagram is the relevant one. In
the bottom part of the diagram Bill makes his choice (between the actions [left]
and [right]); but in view of the simultaneous move he does not, of course, know
whether the left-hand or the right-hand node is the relevant one; this lack of
clarity is depicted by the shaded box around the two nodes depicting the fact
that both nodes are in Bill�s information set.1 At the bottom of the �gure is the
list of (Alf, Bill)-payo¤s resulting from each

�
sai ; s

b
j

�
-combination. Table 10.1

shows the same game in strategic form. The rows correspond to Alf�s choice
of strategy; the columns to Bill�s choice; the contents of each cell correspond
exactly to the bottom line of Figure 10.1.2

Note the way the concept of the information set is implicitly de�ned in
Figure 10.1. If the agent knows for certain which node the game has reached he

1 The game could also be one where Alf moves �rst but conceals the move that he has
made: brie�y explain why.

2 Consider the game in the following table. Why might it be characterised as strategically
trivial? Assuming that both agents are rational, what is the game�s solution?

sb1 sb2
sa1 3; 3 1; 2
sa2 2; 1 0; 0



276 CHAPTER 10. STRATEGIC BEHAVIOUR

sb1 sb2
[left] [right]

sa1 [LEFT] 2; 2 0; 3
sa2 [RIGHT] 3; 0 1; 1

Table 10.1: Simultaneous move, strategic form

has very precise information to use in making his choice, all the basket of detail
associated with the knowledge of being exactly at that node; the information set
contains just one point. If there is the possibility of more than one node being
relevant �if the information set contains multiple points �then information is
less precise. More formally we have:

De�nition 10.1 Agent h�s information set is the set of nodes that h knows
might be the actual node, but that cannot be distinguished by direct observation.

Does it matter whether extensive form or strategic form is used? In most
cases that are relevant to microeconomic modelling the choice between the two
forms is largely a matter of expositional convenience, as long as the represen-
tation in each of the two forms has been properly done.3 However it is worth
noting that one particular strategic-form representation may correspond to more
than one extensive form representation �it is just that the alternative extensive-
form representations turn out to be economically equivalent in terms of the way
the game is actually played.4

10.3 Equilibrium

The players �economic agents �come to the game with their strategies: what
would constitute an equilibrium of the economic problem being represented by
the game? To address this we can draw on the understanding of equilibrium set
out in several contexts in chapters 2 to 7.
First, we introduce a concept that facilitates the de�nition of further con-

cepts by re-using a term from chapter 9. A pro�le of strategies is a particular
collection of strategies, one for each player in the game. Write this as

[s] :=
�
s1; s2; :::

�
:

Note that we use the same [ ] notation as for allocations in chapter 7. We also
need a notation to describe the strategy being played by all those other than

3A couple want to decide on an evening�s entertainment. He prefers to go to the West End
(there�s a new play); she wants to go to the East End (dog races). If they go as a couple each
person gets utility level 2 if it is his/her preferred activity and 1 otherwise. However, for each
person the evening would be ruined if the partner were not there to share it (utility level 0).
Depict this as a game in (a) strategic form (b) extensive form.

4 Draw another extensive-form game tree that corresponds to the strategic form given in
Table 10.1.
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agent h; this is of course just the pro�le [s] with the hth component deleted, so
we express this as

[s]
�h
:=
�
s1; s2; :::; sh�1; sh+1; sh+2; :::

�
: (10.1)

In order to evaluate the outcome of the game we will write payo¤s as utilities.
It makes sense to write utility as a function of strategies �in a kind of reduced
form. So, for a given pro�le of strategies [s], we write h�s utility as

vh
�
sh; [s]

�h
�
; (10.2)

person h�s utility is dependent on his own choice of strategy sh and on those of
everyone else in the game [s]�h.
Let us denote the set of all feasible strategies for agent h as Sh: this gives a

comprehensive description of what h can do and when he can do it. Then for
a given set of agents (players) we can completely diatribe a game by just two
objects, a pro�le of payo¤ functions and the corresponding list of strategy sets,
as follows: �

v1; v2; :::
�
;
�
S1; S2; :::

�
(10.3)

These elementary building blocks allow us to introduce the essential concept
to grasp in any consideration of economic strategy. This is the idea of an agent�s
�best response�to other agents�strategies and is de�ned as follows:

De�nition 10.2 The strategy ŝh is h�s best response to [s]�h if

vh
�
ŝh; [s]

�h
�
� vh

�
sh; [s]

�h
�

(10.4)

for all sh 2 Sh; sh 6= ŝh or, equivalently, if

ŝh 2 argmax
sh

vh
�
sh; [s]

�h
�

(10.5)

The form (10.5) uses the �argmax� notation to denote the set of values of
sh that do the required maximisation job � see Appendix section A.7.5 for a
formal de�nition. We could, of course, alter the de�nition to �strongly best�by
replacing the ���with �>� in (10.4) in which case the set on the right-hand
side of (10.5) has just one element.
The best-response idea is indeed a logical extension of what we have assumed

about agents in earlier chapters that focused on perfect markets. There we can
see each pro�t-maximising �rm making a �best response�in terms of inputs and
outputs to a ruling set of market prices; the utility-maximising consumer makes
the �best response�to the market in the light of the household budget and his
or her own preferences. But now, instead of the sharp information about market
conditions the individual agent has to form a view as to what the consequences
will be of his own actions as they are observed and interpreted by other agents.
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Contained within the concept of De�nition 10.2, there is a very special case
that deserves recognition in its own right. A dominant strategy is one that
remains a best-response strategy whatever the actions of the other players in
the game: there is a dominant strategy for agent h if ŝh in (10.5) is actually
independent of [s]�h. Of course in many interesting cases dominant strategies
just do not exist � but they are of particular interest in certain important
applications as we will see in chapter 12.
The idea of the best response leads us on to the fundamental concept of

equilibrium of a game.

De�nition 10.3 A Nash equilibrium is a pro�le of strategies [s�] such that, for
all agents h:

s�h 2 argmax
sh

vh
�
sh; [s�]

�h
�

(10.6)

The plain language interpretation of this is as follows. The Nash equilibrium
is a situation where everyone is making the best response to everyone else. No
agent has an incentive to deviate from his strategy given that all the other
agents do not deviate from their policy.
Finding an equilibrium in the kind of uncomplicated games that we have

used thus far can be quite easy. The method essentially follows Sherlock Holmes�
dictum �when you have eliminated the impossible, whatever remains, however
improbable, must be the truth.�So indeed one can often �nd equilibrium strate-
gies through a process of simple elimination �two examples of this are given in
Exercises 10.1 and 10.2. However, in richer models the solution method can be
much less straightforward.
Furthermore, although the Nash equilibrium is the main plank on which our

approach to strategic behaviour is based we ought to take immediate note of
three serious di¢ culties that are frequently encountered in applying the Nash
concept to microeconomic and other problems. These di¢ culties are handled in
10.3.1 to 10.3.2.

10.3.1 Multiple equilibria

In many interesting economic cases there is more than one Nash equilibrium.
For example, in Table 10.2 both

�
sa1 ; s

b
1

�
and

�
sa2 ; s

b
2

�
are equilibria. Clearly the

former generates outcomes that Pareto-dominate the latter but, as far as the
Nash concept is concerned, each is equally valid as an equilibrium outcome of
the game. The second example, in Table 10.3, appears more problematic: the
strategy pro�les

�
sa1 ; s

b
2

�
and

�
sa1 ; s

b
2

�
(yielding payo¤s (3; 1) and (1; 3) respec-

tively) are both Nash equilibria: in contrast to the previous example they are
the (only) unequal outcomes of the game �either Alf is exalted and Bill ends
in near despair, or vice versa.
So, in each game there are two equilibria: how to choose between them? In

some cases the economic context will provide an answer (more on this below);
but the Nash concept by itself is of no help.
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sb1 sb2
sa1 3; 3 1; 0
sa2 0; 1 2; 2

Table 10.2: Multiple equilibria 1

sb1 sb2
sa1 2; 2 1; 3
sa2 3; 1 0; 0

Table 10.3: Multiple equilibria 2

10.3.2 E¢ ciency

The terminology �best response� that was used to underpin the Nash equilib-
rium concept should be treated with caution � �best� in what sense? If we
are tempted to reply �best in the sense that a rational agent makes the choice
that maximises his own payo¤, given the environment that he is in,� then we
should be aware that rationality needs careful interpretation here. This can be
illustrated by the example just considered in Table 10.2 �only one of the two
equilibria is e¢ cient, but both equilibria are characterised by �best responses.�
The point comes out even more forcefully in the next example. To set the

scene let us pose an important question about games in general �what is the
worst that can happen to a rational economic agent? Formally we could write
this as the minimax payo¤ for agent h:

�h := min
[s]�h

�
max
sh

vh
�
sh; [s]

�h
��
; (10.7)

Checking back to de�nition 10.2 we see that expression enclosed in [ ] of (10.7)
means that h is making the best response to everyone else�s strategy; the �min�
operator in (10.7) means that everyone else is trying to punish him within the
rules of the game. This minimax value plays the rôle of reservation utility and
provides a useful reference point in judging the outcomes of games in terms of
their payo¤s.
Now for the example: this is the game introduced in Figure 10.1 and Table

10.1 �a game form known as the Prisoner�s Dilemma.5 Note �rst that there

5 Recreate the Prisoner�s Dilemma from the following. Two bad guys have been arrested
and are held in separate locations. The problem for the authorities is to prove that they are
bad guys: evidence is only likely to come from the individuals themselves. So the authorities
announce to each bad guy that if he confesses and implicates the other he will get o¤ with
a token sentence of 1 year while the other will go down for 20 years; if they both confess
then they each get 10 years. Both of them know, however, that if they both stay schtumm
the authorities can only get them for bad driving during the police chase: this will incur a
sentence of 2 years each.
Write the game in strategic form and show that there is a dominant strategy for each aof

the two bad guys. Find the Nash equilibrium payo¤s and explain why it appears ine¢ cient
from the bad guys�point of view.
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Figure 10.2: Utility possibilities: Prisoner�s Dilemma

is a single Nash equilibrium at
�
sa2 ; s

b
2

�
; note second that it is ine¢ cient: the

strategy pro�le
�
sa1 ; s

b
1

�
would yield higher payo¤s for both agents! This is

illustrated in Figure 10.2 where the utility possibilities representing the payo¤s
from the game consist of just the four dots.6 The Nash equilibrium yields
in fact the minimax outcome shown in the �gure as the utility pair

�
�a; �b

�
.

The equilibrium is myopically and individualistically rational, by de�nition.
However, it is arguable that the Pareto-e¢ cient outcome of (3; 3) is where some
sense of group rationality ought to lead us.7

This is not just a bizarre example carefully selected in order to make a
recondite theoretical point. The Prisoner�s Dilemma issue lies at the heart of
many economic questions where group interests and narrowly de�ned individual
interests do not coincide: we will discuss one important example from the �eld
of industrial organisation in 10.4 below; another important area is introduced
in chapter 12.

Suppose that the bad guys get the opportunity to communicate and are then put back into
their separate cells: will this make a di¤erence to the outcome of the game?

6Draw the same kind of diagram for the games depicted in footnote 3 (�Battle of the
Sexes�) and in Table 10.3 (�Chicken�).

7Suppose all of Alf�s payo¤s are subjected to a given monotonically increasing transforma-
tion; and that Bill�s payo¤s are subjected to another monotonically increasing transformation.
Show that the outcome of the game is una¤ected.
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sb1 sb2
sa1 2; 2 0; 3
sa2 0; 1 1; 0

Table 10.4: No equilibrium in pure strategies

10.3.3 Existence

There may be no Nash Equilibrium at all. To see this consider the problem
depicted in strategic form in Table 10.4 (more on this in exercise 10.3). Again
it is set up so that strategies coincide with actions. In this case if Alf ( agent
a ) were to select strategy sa1 then Bill�s best response is to select strategy s

b
2;

but if Bill selects strategy sb2 then Alf�s best response is to go for strategy s
a
2 ;

... and so on round the cycle. There is no strategy pro�le where each agent is
simultaneously making the best response to the other. What is at the bottom
of the problem and can one �nd a way round it?

A suggested solution

Consider the best response for agent a as a function of agent b�s strategy, and
vice versa: it is clear that they are discontinuous. We may recall from our
previous discussion of agents in perfect markets that where the response func-
tion was discontinuous it might be that there was, strictly speaking, no market
equilibrium (see, for example, pages 53¤. in chapter 3); we may also recall that
there is a common-sense argument to �rescue�the equilibrium concept in con-
ventional cases. The query might come to mind whether a similar issue arises
with strategic models like those depicted in Table 10.4: is lack of equilibrium in
some way attributable to the discontinuity of response in this case? And is there
a similar �rescue� argument? In the case of the �rm and the market it made
sense to appeal to a large numbers argument �on average the supply function
is continuous and then we know that there is a price-taking equilibrium. But
the large numbers device may not be appropriate here �perhaps there really
are only two players. However there is an approach that has a similar �avour.
This involves introducing an explicit probabilistic device that allows an agent
to enlarge the set of available strategies. We will see how this works in the
particular case of the game in Table 10.4 and then examine the issues that are
involved in the extra step that apparently o¤ers us the solution.
Suppose that Alf announces that he will adopt strategy sa1 with probability

�a and strategy sa2 with probability 1 � �a. Likewise Bill announces that he
will adopt strategies

�
sb1; s

b
2

�
with probabilities

�
�b; 1� �b

�
respectively. Fur-

thermore, let us take the criterion for each of the agents as being their expected
payo¤ (in utility terms). Then, from Table 10.4, if Alf takes �b as given and
chooses probability �a his expected utility is8�

3�b � 1
�
�a + 1� �b; (10.8)

8Use Table 10.4 to derive (10.8) and (10.9) .
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Figure 10.3: Equilibrium in mixed strategy

and if Bill takes �a as given and chooses probability �b, then his expected utility
is

[1� 2�a]�b + 3�a (10.9)

We can use (10.8) to derive Alf�s choice of �a as a best response to Bill�s
choice of �b. Clearly if �b = 1

3 the value of �
a has no impact on Alf�s expected

payo¤; but if �b > 1
3 then (10.8) is increasing in �

a and it would pay Alf to
push �a as high as it will go (�a = 1) � i.e. he would then adopt strategy sa1
with certainty; if �b < 1

3 the converse happens �(10.8) is then decreasing in �
a

and Alf would adopt strategy sa2 with certainty. Alf�s best-response behaviour
is summarised by the correspondence �a (�) in Figure 10.3 (we are being picky
here: �a is a correspondence rather than a function because it is multivalued at
the point �b = 1

3 ). The expression �
a
�
�b
�
will give the set of values of �a that

constitute Alf�s best response to an announced �b.
Now think about Bill�s best response to Alf�s chosen probability. From (10.9)

we see that his expected payo¤ is increasing or decreasing in �b as �a < 1
2 or

�a > 1
2 , respectively. So, by similar reasoning to the Alf case, Bill�s best-

response correspondence �b (�) is as depicted in Figure 10.3: for low values of
�a Bill uses strategy sb1 with certainty and for high values of �

a he adopts sb2
with certainty.
But now we can see an apparent solution staring at us from Figure 10.3. Put

the question, �is there a probability pair such that �a 2 �a
�
�b
�
and �b 2 �b (�a)

simultaneously?� and it is clear that the pair
�
��a; ��b

�
=
�
1
2 ;

1
3

�
does the

job exactly. If Alf and Bill respectively select exactly these probabilities when
randomising between their two strategies then each is making a best response
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Figure 10.4: Alf�s pure and mixed strategies

to the other. Again we seem to have an equilibrium in the Nash sense.
To summarise the suggested resolution of the problem, we see that each

agent...

� invents his own lottery that a¤ects the other agent�s payo¤s;

� knows and believes the probability with which the other agent will adopt
any particular strategy;

� formulates a best-response policy by maximising expected utility in the
light of that belief.

However, to make clear what is happening with this methodological devel-
opment we need to re-examine the basic concepts and their meaning.

�Mixed� strategies

First let us re�ne the description of strategies. We ought to refer to those that
have been discussed so far as pure strategies. If Sa, the set of pure strategies
for agent a, is �nite we can imagine each pure strategy as a separate radio
button that agent a can press. If in a particular game there were just three
pure strategies (three buttons) then we could depict the situation as on the left-
hand side of Figure 10.4: each of the agent�s three �buttons� is labelled both
with the strategy name (sai ) and with what looks like the binary code for the
button �(0,0,1) and so on.
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By introducing randomisation we can change the whole the idea of strategies
at a stroke. The picture on the right-hand side of Figure 10.4 is borrowed
directly from Figure 8.18 in chapter 8. It depicts the set of lotteries amongst
the three pure strategies �the shaded triangle with vertices at (0; 0; 1), (0; 1; 0)
and (1; 0; 0). Conventionally each such lottery is known as a mixed strategy
and the dot in the centre of the picture denotes a mixed strategy where agent
a adopts sa1 ; s

a
2 ; s

a
3 with probabilities 0:5; 0:25; 0:25 respectively. Obviously the

idea extends readily to any situation where the number of pure strategies is
�nite:

De�nition 10.4 Given a �nite set Sh of pure strategies for agent h, a mixed
strategy is a probability distribution over the elements of Sh.

We can represent the mixed strategy by writing out the elements of Sh in
vector form

�
sh1 ; s

h
2 ; :::

�
and representing the probability distribution by �h :=�

�h1 ; �
h
2 ; :::

�
such that �hi is the probability that s

h
i is the strategy that is actually

adopted by h.9

Expected utility

The extension to a mixed-strategy equilibrium also requires a new view of pay-
o¤s. In previous examples of games and strategic behaviour we were able to
assume that payo¤s were purely ordinal. However, by assuming that expected
utility is an appropriate criterion, we now have to impose much more structure
on individual agents�evaluation of outcomes. In the light of the discussion of
chapter 8 (see, for example, page 188) this is not something that we should
automatically assume is appropriate.

Two results

The advantage of the extended example based on Table 10.4 is that it conve-
niently introduces a powerful result lying at the heart of the game-theoretic
approach to strategic behaviour:

Theorem 10.1 (Nash equilibrium in mixed strategies) Every game with
a �nite number of pure strategies has an equilibrium in mixed strategies.

The equilibrium in mixed strategies can include degenerate cases where
�h = (0; 0; :::; 1; :::) (by a linguistic paradox, of course, these �degenerate�cases
involve pure strategies only...!). It is not hard to see where the result in Theorem
10.1 comes from in view of the result on competitive equilibrium in chapter 7.
There a mapping from a convex compact set into itself was used to establish the
existence of a general competitive equilibrium using a ��xed point�result (see
the discussion in Appendix section C.5.2); the mapping was induced by price

9 Introducing the possibility of mixed strategies will not change the outcome in the case of
the prisoner�s dilemma game form. Show this using the same reasoning as for equations (10.8)
and (10.9) in the case of the game in Table 10.4.
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adjustments using the excess demand function; and the set in question was the
set of all normalised prices. Here we have a very similar story: the mapping is
the best-response correspondence; the set is the set of mixed strategies, which
has exactly the same form as in the general-equilibrium problem � compare
Figure 10.4 with Figure B.21 (page 547).
However, in reviewing why this result works the thought might occur whether

there is some other way of obtaining an existence result without using the mixed-
strategy device �perhaps by appealing to the same �xed-point argument but
in a transformed problem. Indeed there is, and for a class of problems that
is especially relevant to microeconomic applications. Suppose, in contrast to
Theorem 10.1 and the examples used so far, the set of pure strategies is in�nite:
for example a �rm might select an output level anywhere between 0 and q.
Then, in many cases we can use the following:

Theorem 10.2 (Nash equilibrium with in�nite strategy sets ) If the game
is such that, for all agents h, the strategy sets Sh are convex, compact subsets of
Rn and the payo¤ functions vh in (10.2) are continuous and quasiconcave then
the game has a Nash equilibrium in pure strategies.

Mixed strategies: assessment

A mixed strategy can be seen as a theoretical arti�ce that closes up an oth-
erwise awkward hole in the Nash-equilibrium approach to strategic behaviour.
Whether it is an appropriate device depends on speci�c context of the micro-
economic model in which it is employed and the degree to which one �nds it
plausible that economic actors observe and understand the use of randomisation
devices as strategic tools.
This is not the last occasion on which we will �nd it necessary to re�ne the

concept of equilibrium as new features and subtleties are introduced into the
model of strategic behaviour. We will need to keep picking away at the concept
of equilibrium as the concept of the game becomes more sophisticated and more
interesting.

10.4 Application: duopoly

It is time to put the analysis to work. One of the most obvious gaps in the discus-
sion of chapter 3 was the idea that each �rm in a market might have to operate
without having a given, determinate demand function. The classic instance of
this is oligopoly �competition amongst the few. Each �rm has to condition its
behaviour not on the parameters of a determinate market environment on the
conjectured behaviour of the competition.
We are going to treat this by taking a very simple version of the strategic

problem. The rules of the game limit the players to exactly two �duopoly as a
special case of oligopoly. How the game is to be played will depend on whether
decisions about prices or decisions about quantities are to be treated as actions
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by the �rms; it will also depend on whether the �rms have to make their move
simultaneously (more on this below).

10.4.1 Competition in quantities

We will �rst examine the classic version of the Cournot model and then interpret
it in terms of the principles of strategic behaviour that we have set out earlier in
this chapter. The Cournot model assumes that �rms make decisions over output
quantities �the market price will be determined mechanically by market demand
�and they make their decisions simultaneously. As a reminder, in this simple
world we can treat these quantity decisions, the actions, as strategies.

Model speci�cation

There are two �rms simultaneously making decisions on the production of the
same homogeneous good. So total market output of the good is given by

q = q1 + q2 (10.10)

where qf is the output of �rm f = 1; 2. There is a known market-demand
curve for this single good that can be characterised by p (�), the inverse demand
function for the market: this is just a way of saying that there is a known market
price for any given total market output q, thus:

p = p (q) :

Each �rm f has a known cost function Cf that is a function just of its own
output. So the pro�ts for �rm f are:

p (q) qf � Cf
�
qf
�
: (10.11)

Optimisation

Firm 1 assumes that q2, the output of �rm 2, is a number that is exogenously
given. So, using the case f = 1 in (10.11), we can see that it is attempting to
maximise

�1
�
q1; q2

�
:= p

�
q1 + q2

�
q1 � C1

�
q1
�

(10.12)

on the assumption that q2 is a constant. This is illustrated in Figure 10.5 where
�rm 1�s objectives are represented by a family of isopro�t contours: each contour
is in the form of an inverted U and pro�ts for �rm 1 are increasing in the direction
of the arrow.10 To �nd �rm 1�s optimum given the particular assumption that
�rm 2�s output is constant at q20 just draw a horizontal line at the level q

2
0 ; this

can be repeated for any other given value of �rm 1�s output conditioned on a
particular value of q2. The graph of these points is conventionally known as
�rm 1�s reaction function, which is a slight misnomer. The reaction function

10 Give a one-line verbal explanation for each of these two assertions.
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Figure 10.5: Cournot �the reaction function

might be thought of as what �rm would do if it were to know of a change in the
other �rm�s action �in simultaneous move games of course this changing about
cannot actually happen.
Formally, di¤erentiating (10.12), we have the FOC:

@�1
�
q1; q2

�
@q1

= pq
�
q1 + q2

�
q1 + p

�
q1 + q2

�
� C1q

�
q1
�
� 0

= 0 if q1 > 0: (10.13)

We �nd q1 as a function of q2:

q1 = �1
�
q2
�

(10.14)

where �1 (�) is a function satisfying (10.13): this is also illustrated in Figure
10.5.11

Likewise for �rm 2 we get a relationship �2 giving q2 as a function of some
arbitrary value q1 of the output of �rm 1:

q2 = �2
�
q1
�
: (10.15)

Equilibrium and e¢ ciency

Treating �1 and �2 as characterising the �rms�best responses and combining
them, the Cournot-Nash solution is then evident �see the point labelled

�
q1C; q

2
C

�
11 Give a brief interpretation of the straight segment of the reaction function for q2 >.q2
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Figure 10.6: Cournot-Nash equilibrium

in Figure 10.6.12

Closer inspection of Figure 10.6 reveals a problem, however. Check the two
sets of isopro�t contours for the two �rms (�rm 2�s contours are those that run
across the diagram in the form of a reverse C-shape): we know that any point
lying below �rm 1�s contour that passes through the Cournot-Nash equilibrium
would yield higher pro�ts for �rm 1; by the same reasoning, any point to the
left of �rm 2�s contour through the Cournot-Nash outputs means higher pro�ts
for �rm 2; so any point in the shaded area would mean higher pro�ts for both
�rms. Both �rms would bene�t if they were able to restrict output and move
away from the Cournot-Nash point into this zone. Clearly the Cournot-Nash
equilibrium is dominated.

Collusion

Let us tackle the problem from a di¤erent direction. Suppose the two �rms
were able to join forces and pursue their common interest in pro�t: they form
a cartel. In the context of the simple model just developed we consider the
possibility that the two �rms maximise joint pro�ts and split the result between
them in some agreed fashion �in e¤ect we are treating the two �rms as though
they were a single monopoly with two separate plants.
In general the pro�ts for this two-plant monopoly would be

p (q) q � C1
�
q1
�
� C2

�
q2
�

(10.16)

12Using theorem 10.2 explain under what conditions we can be sure that the Cournot-Nash
equilibrium will exist.
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where q is given by (10.10). Di¤erentiating (10.16) with respect to qf we get:

pq (q) q + p (q)� Cfq
�
qf
�
= 0 (10.17)

f = 1; 2. So joint pro�t maximisation occurs where

C1q
�
q1
�
= pq (q) q + p (q) (10.18)

C2q
�
q2
�
= pq (q) q + p (q) (10.19)

�marginal cost for each �plant� (each �rm) equals overall marginal revenue.
From this pair of equations we get the joint-pro�t maximising outputs

�
q1J; q

2
J

�
illustrated in Figure 10.6.13

It is clear that the overall pro�ts associated with
�
q1J; q

2
J

�
are going to be

higher than they would have been at
�
q1C; q

2
C

�
.

Defection

However, if the joint-pro�t maximising solution is to survive the two �rms would
each need an iron resolution and a sharp eye. Each would be tempted by a
possibility that is easily demonstrated in Figure 10.6. Draw a line horizontally
from

�
q1J; q

2
J

�
to the right: it is clear that along this line pro�ts for �rm 1 will

increase for a while as one moves rightwards. What this means is that, if �rm 1
believes that �rm 2 is too slow-witted to observe what is happening, then �rm
1 might try to �chisel�: increase its own output and pro�ts while 2�s output
stays �xed.14 Of course �rm 2 may have the same temptation, with the rôles
reversed (look what happens to its pro�ts on a straight line upwards from the
joint-pro�t maximising solution).
By now we can see the familiar form of the Prisoner�s Dilemma emerging.

Take a stylised version of the problem we have been discussing: the two �rms
have identical cost structures and, instead of being able to choose output freely.
must select just one of two output levels: either low output or high. We can
then reconstruct Table 10.1 as Table 10.5. If both �rms choose strategy 1 [low],
then each get the joint-pro�t maximising payo¤ �J, but if they both choose
strategy 2 [high] then they get only the Cournot-Nash payo¤s �C < �J; if they
play di¤erent strategies then the one choosing [high] gets � > �J while the one
playing [low], gets 0 (this is just for simplicity it could be some positive value
less than �C). Likewise we can reinterpret Figure 10.1 as the extensive form of
the Cournot game in Figure 10.7.15

13The point
�
q1J ; q

2
J

�
lies on the tangency of the two iso-pro�t curves such that the tangent

passes through the origin. Show why this is so.
14What will be happening to �rm 2�s pro�ts? Why?
15 There is a possibility here that was not present when we discussed the Prisoner�s Dilemma

before. The payo¤s can be transferred between players �contrast this with Figure 10.2 where
the payo¤s were in utility (that may or may not be transferable) or footnote question 5 where
the payo¤s were in length of prison sentence (not transferable). So �rms in a cartel could
agree on arbitrary divisions of total pro�ts or on side-payments. Draw the set of possible
payo¤s in the Cournot game. Show that the transferability of the payo¤ makes no di¤erence
to the strategic outcome.
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s21 s22
[low] [high]

s11 [low] �J;�J 0;�
s12 [high] �; 0 �C;�C

Table 10.5: Cournot model as Prisoner�s Dilemma

Figure 10.7: Simpli�ed one-shot Cournot game
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10.4.2 Competition in prices

Suppose we change the rules of the game for the duopoly: �rms play by setting
prices rather than quantities: total market output is determined by the market
demand curve once the price is known. This the classic Bertrand model, adapted
slightly here to facilitate comparison with other models.

Model speci�cation

There is a market for a single good with a known market-demand curve. We
will assume a straight-line form of this curve so that the quantity sold in this
market at price p is given by:

q =
�0 � p
�

(10.20)

where �0 and � are positive parameters. If there were a single �rm with constant
marginal cost c operating in this market then it would announce the following
monopoly price16

pM =
�0 + c

2

However, suppose two �rms supply the market: each has zero �xed cost and
constant marginal cost c. They compete on price as follows. Firm 1 announces
price p1 and �rm 2 announces p2; in the light of this announcement there are
three possibilities:

1. If p1 < p2 �rm 1 sells �0�p1
� ; �rm 2 sells nothing.

2. If p1 > p2 the reverse happens

3. If p1 = p2 = p each �rm sells �0�p
2� .

Equilibrium

How will the �rms set the price? Consider the following steps of an argument:

� Clearly if one �rm charges a price above the monopoly price pM, the other
can capture the whole market by charging exactly pM.

� If one �rm charges a price p above c and at or below pM then the other
could charge a price p� � (where � is a small number) and again capture
the whole market.

� If one �rm charges a price c then the other �rm would not charge a price
below this (it would make a loss were it to do that); but it could exactly
match the price c, in which case we assume that the market is equally
split between the �rms.
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Figure 10.8: Bertrand model

This gives a complete characterisation of a function �f (�) for each �rm that
would enable us to conclude how it would set its own price given the price that
it anticipates would be set by the rival. In the case of �rm 1 we have

�1
�
p2
�
=

8<: p2 � � if p2 > c

c if p2 � c
(10.21)

It is clear from (10.21) that there is a Nash equilibrium at (c; c).17

Taken at face value the result seems really remarkable. It appears that there
is, e¤ectively, a competitive outcome with just two �rms. Contrast this with
the case of monopoly (analysed in chapter 3) where the �rm sets a price strictly
greater than marginal cost with a consequent loss of e¢ ciency. However, it is
important to recognise that the rules of the game here are rather restrictive:
there are constant marginal costs and no capacity constraints; the product of
the two �rms is perceived as identical by the customers; the game is played out
simultaneously and once only �there is no idea of a true price war. Relaxing
any of these assumptions would generate a much richer model; but we can think
of the Bertrand model and its solution as an instructive limiting case.
16 Derive the monopolist�s optimum price in this model.
17 In this case, strictly speaking, �f is not a �best-response�function: why? Take a modi�ed

version of this model where for administrative reasons it is only possible to set prices as integer
values (payment is by coins in a slot machine). Marginal cost is c, an integer, and pM = 4c.
Illustrate the game in strategic form; explain why, in this modi�ed model, there is a well-
de�ned best-response function for each �rm and con�rm that the Nash equilibrium outcome
is as above.
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sh strategy for agent h
Sh strategy set for agent h
[s]
�h strategies for all agents other than h

vh payo¤ function for agent h
� best-response correspondence
�h randomisation vector for agent h
�h type of agent h

Table 10.6: Strategic behaviour: notation

10.5 Time

Until now, there has been a signi�cant omission in the analysis of strategic
behaviour: the lack of an explicit treatment of time. However �time�here has a
signi�cance di¤erent from that where it has popped up in earlier chapters. We
have seen time in its rôle as the scope for economic �exibility (see the discussion
of the short run in section 2.4) and time as a characteristic of an economic good
(see the discussion of savings in section 5.3.2). Now we focus on time in its rôle
of sequencing �the ordering of decision-making.
Taking this step means that much more becomes possible within a strategic

microeconomic model. Several intuitive concepts in analysing games just make
no sense without the introduction of time into the model. One cannot speak
about reactions, an equilibrium path, or even threats without modelling the se-
quence of decision making and carefully consideration of the rôle of information
in that sequence.
With this temporal dimension of the strategic problem we will �nd it im-

portant to extend the use and application of the tools introduced in sections
10.2 and 10.3. The distinction between strategies and actions will emerge with
greater clarity and we will also need to re�ne the equilibrium concept. This can
be illustrated by re-examining the standard game introduced in Figure 10.1.
Suppose the two players now move in sequence �Alf, then Bill. The new situ-
ation is represented in extensive form in Figure 10.9. Representing the game in
strategic form is a bit more complex and less transparent; but it is done in Table
10.7. There is one small development in notation here; since Bill moves second
he has to condition his strategy on what Alf does when making the �rst move;
so we will write, for example, [left-right] for the strategy which states �move left
if Alf has chosen [LEFT] and move right if Alf has chosen [RIGHT].�Although
at each stage of the game there are exactly two possible actions that a player
can take (move left or move right) as far as Bill is concerned there are now four
strategies sb1; :::; s

b
4 as shown in the columns of the table.

Will sequencing the play in this way alter the likely outcome of the game? In
the case of this particular game the outcome is much the same18 but in others

18 Explain why. [hint: put yourself in Bill�s position and ask �what would I do if Alf had
played [LEFT]? What would I do if he had played [RIGHT]?�Then put yourself in the role
of Alf and think about what is going to happen after you have made your move.]
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Figure 10.9: Sequential move �extensive form

sb1 sb2 sb3 sb4
[left-left] [left-right] [right-left] [right-right]

sa1 [LEFT] 2; 2 2; 2 0; 3 0; 3
sa2 [RIGHT] 3; 0 1; 1 3; 0 1; 1

Table 10.7: Simultaneous move, strategic form
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there can be a drastic change.19 However, before we treat the solution to this
properly we need to consider how the explicit introduction of time allows for
more elaborate and illuminating game structures. In doing so we will assume
that there is perfect information in that everyone knows exactly what happened
at earlier stages of the game (this assumption about information will be dropped
in section 10.7).

10.5.1 Games and subgames

Let us begin by extending the kind of extensive-form diagram depicted in Figures
10.1 and 10.1. In Figure 10.10 there is a further stage of the game, in other
words a further level of decision making with additional nodes; the payo¤s after
the �nal stage of the game are given by the payo¤ pro�les [�1] ; :::; [�8] where
[�i] :=

�
�ai ; �

b
i

�
gives the payo¤s to Alf and Bill in terminal node i.

There is an obvious and useful way of referring to the position of nodes in
the structure: take, for example, the nodes highlighted at the bottom of the
diagram are those that can be reached from node labelled *: we can think of
these as successor nodes to *. This enables to make precise an important new
concept. A glance at the �gure suggests that by deleting part of the tree we can
again end up with another viable game tree starting from *. Indeed it is often
true that some subsets of the extensive form game can themselves be considered
as games and it is these that are of special economic interest:

De�nition 10.5 A subgame of a game in extensive form is a subset of the
game such that

1. It begins at a single node;

2. it contains all the successor nodes;

3. If the game contains an information set with multiple nodes then either
all of these nodes are in the subset or none of them are.

With reference to Figure 10.11 it is clear that the successor nodes to the
node marked * form a subgame as do the successor nodes to the node marked
**. But suppose we consider a modi�ed structure as in Figure 10.11: here
Alf�s choice of actions at the start of the game has been expanded (there is a
the [MID] option); furthermore there is an information set with multiple nodes
(indicated by the shaded area). Again * marks the beginning of a subgame;
but the successor nodes to the node marked # do not form a subgame.20 The
advantage of this new concept is that it permits a naturally intuitive description
of the way a game unfolds through time. Think again about the chess analogy
used earlier. Even if you are not a chess player you may have seen the kind of
chess puzzles that appear in newspapers: typically you are given the position

19 Take the model of footnote 3. What happens if the players move sequentially? What if
they have to move simultaneously?
20Explain why.
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Figure 10.10: Game and subgame (1)

Figure 10.11: Game and subgame (2)
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that a game has reached after many moves; then you are asked to �nish o¤ the
game. Given that the position shown in the puzzle can be reached by a sequence
of legal chess moves the puzzle is a subgame of the original game.
In the same way it is interesting to examine the �endgame� of situations

of strategic economic interaction. By analysing the endgame one gets a better
understanding of the whole of the game: this leads us naturally on to a further
discussion of solution concepts.

10.5.2 Equilibrium: more on concept and method

In the light of the multi-period nature of games we need not only to re-examine
the way in which a solution is derived but also what is meant by a satisfactory
solution. The reason for this is that, as we will see, some Nash equilibria can
appear as unattractive when examined from the point of view of each subgame.
So, how to solve for an equilibrium in this case? We will start with some

useful intuition and then move on to a more formal concept. Again we can use
another good principle from Sherlock Holmes (from A Study in Scarlet): �In
solving a problem of this sort, the grand thing is to be able to reason backwards.
That is a very useful accomplishment, and a very easy one, but people do not
practise it much.�This intuition is exactly what is required: start at the end
of the game and work back through the stages of the game �a process usually
known as backwards induction.
To see how this works let us apply the method to solve the game in the

case of Figure 10.10. Suppose it is true that �a1 > �a2 and �a3 > �a4 and so
on (we could easily retell the story if the inequalities were di¤erent). Then, if
the game had reached the lower left-hand node where it is Alf�s turn to play,
obviously Alf would choose 1; so the value of reaching this node is e¤ectively
[�1] =

�
�a1 ; �

b
1

�
; reasoning in this way we can see that the value associated with

reaching each of the other nodes on the same level of this diagram is [�3], [�5],
[�7] respectively. We have e¤ectively reduced a three-stage game to a two-stage
game with payo¤s [�1], [�3], [�5], [�7]. We can then solve the two-stage game
using the same method �see footnote 18 above.
Associated with the backward-induction method we can now introduce a

re�ned concept of equilibrium in a multi-stage game:

De�nition 10.6 A pro�le of strategies is a subgame-perfect equilibrium for a
game if

1. It is a Nash equilibrium

2. It induces actions that are consistent with a Nash equilibrium in every
subgame.

Two key points about this concept and the associated backwards-induction
algorithm should be noted right away:
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� De�nition 10.6 is quite demanding because it says something about all the
subgames, even if one might have thought that some individual subgames
are not particularly interesting and are unlikely to be actually reached in
practice.

� The straightforward backward-induction method is not going to be suit-
able for all games with richer information sets. We will come back to this
point in section 10.7.4 below.

Now for the reason why the concept of equilibrium needs to be re�ned in this
way when we take into account the temporal sequence of a game: some Nash
equilibria involve strategies that lack credibility. What we mean by this is as
follows. Imagine reaching the �nal stage of a game at a position where a speci�c
move by player h may well damage the opponent(s) but would cause serious
damage to player h himself. Taking the subgame starting from this position as
a game in its own right it is clear that h would not rationally make the move;
so, in the context of the overall game, threatening to make this move should the
position be reached is unlikely to be impressive. Yet there may well be Nash
equilibria of the whole game that imply the use of such empty threats: clearly
there is a good case for discarding such strategy combinations as candidates for
equilibria and focusing just on those that satisfy subgame perfection (de�nition
10.6).
This point is illustrated in 10.12. Alf gets to play �rst; Bill knows that if

Alf plays [RIGHT] then Bill gets a payo¤ of 2; but if they play the sequence
[LEFT],[right] then the situation would be disastrous for Bill � he would get
a payo¤ of no more than 1. Can Bill dissuade Alf from playing [LEFT] by
threatening to play [left] as well, so reducing Alf�s payo¤ to 0?
On checking the strategic form in Table 10.8 we can see that there are four

Nash equilibria
�
sa2 ; s

b
1

�
,
�
sa2 ; s

b
2

�
,
�
sa1 ; s

b
3

�
and

�
sa1 ; s

b
4

�
: the �rst two of these

are equivalent in their outcomes; likewise the third and fourth equilibria are
equivalent. So it appears that the case where Alf�s strategy is to play [RIGHT]
and Bill�s strategy is to play [left] whatever Alf does

�
sa2 ; s

b
1

�
is a valid equilibrium

outcome of the game. But it is a bit odd. Put the case that on Monday Alf
plays [LEFT] anyway and then says to Bill (who plays on Tuesday) �what are you
going to do about that?�Presented with this fait accompli one could imagine
Bill thinking on Monday night that maybe he ought to make the best of a bad
job and play [right]: the reasoning is that on Monday night we are at the node
marked * and, viewed from this standpoint, Bill would do better to play [right]
on Tuesday in order to secure a payo¤ of 1 rather than 0. Knowing that this is
how a rational opponent would reason on Monday night, Alf is unlikely to be
impressed by a threat from Bill on Sunday of �I�ll play [left] whatever happens.�
So, although

�
sa2 ; s

b
1

�
is a Nash equilibrium, it is not subgame perfect.21

21Back in the 1960s nuclear strategists (seriously?) discussed the idea of a �Doomsday
machine.�This was to be a gizmo that would automatically launch world-devastating nuclear
strike if (a) any nuclear missile landed on its home territory or (b) any attempt was made to
disarm it. Could a similar device assist Bill?
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Figure 10.12: An incredible threat

sb1 sb2 sb3 sb4
[left-left] [left-right] [right-left] [right-right]

sa1 [LEFT] 0; 0 0; 0 2;1 2;1
sa2 [RIGHT] 1;2 1;2 1; 2 1; 2

Table 10.8: Incredible threat: strategic view
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By restricting attention to equilibria that satisfy subgame perfection we are
insisting on an important aspect of consistency in economic behaviour. In doing
this we have to consider what a player would do in positions that are not actually
played out.

10.5.3 Repeated interactions

For some purposes it is useful to jump from the case of comparatively few
stages to the case of arbitrarily many. The principles that can be learned from
this apparently arbitrary exercise have some profound implications. They can
illuminate the possibilities for long-term cooperative outcomes that may appear
absent from a myopic analysis of a simple model of strategic interaction.
The basic idea of a repeated game is simple. One joins together multiple

instances of an atemporal game: the analysis models a repeated encounter be-
tween the players in apparently the same simple situation of economic con�ict.
Figure 10.13 shows an outline of the setup for the Prisoner�s Dilemma game: the
same players face the same outcomes from their actions that they may choose
in periods 1; 2; :::; t; :::. The example of the Prisoner�s Dilemma is particularly
instructive given its importance in microeconomics and, as noted earlier (page
280), the somewhat pessimistic outcome of an isolated implementation of the
game.
What makes the repeated game di¤erent from a collection of unrelated games

of identical structure with identical players? The key point is history. One typi-
cally assumes that everyone can know all the information about actual play that
has accumulated at any particular stage of the game �the perfect-information
assumption again. Individual strategies can then be conditioned on this infor-
mation and may be used to support equilibrium outcomes that could not have
arisen from play by rational economic agents of an isolated single encounter.

The stage game

The basic building block of repeated-interactions analysis is the stage game.
This is just an instance of one of the simultaneous-play atemporal games that
were considered in section 10.3: in particular we can see that each stage in Figure
10.13 is just a copy of Figure 10.1. It is important to distinguish between what
goes on in a single play of the stage game and strategy in the game as a whole.
If an instance of the stage game were to be played in isolation, of course, we can
take strategies as being equivalent to actions; but if the stage game is taken as a
component of the repeated game then the individual strategies refer to planned
choices over the entire sequence of play: the actions at stage t+1 will have been
conditioned by the sequence of behaviour up to t.
It is also important to understand the relationship between the payo¤s that

emerge from an isolated instance of the stage game and those that might be
obtainable from a repeated version of the game in which strategies can be con-
ditioned on history. In Figure 10.14, based on Figure 10.2, we have introduced
the set of all payo¤s that could be reached by mixing the payo¤s from the pure
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Figure 10.13: Repeated Prisoner�s Dilemma

strategy combinations in the basic Prisoner�s Dilemma game: these are repre-
sented by the heavily shaded lozenge shape. The mixes could be achieved by
agreeing on a coordinated randomisation plan or by taking it in turns to use
di¤erent strategy combinations, for example. Note the following features of this
�gure:

� The �south-west� corner of the shaded set represents the minimax out-
comes for the two players � the worst that can happen to player h in a
particular instance of the stage game; as we know it is also the Nash-
equilibrium outcome of the stage game.

� The set represented by lightly shaded area north-east of this point con-
sists of all the payo¤s that would be Pareto improvements over the Nash-
equilibrium outcome.

� The set U�, as the intersection of these two sets, consists of payo¤s that
are an improvement on the Nash outcome and that can be represented as
mixtures of payo¤s in a one-shot stage game.
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Figure 10.14: Utility possibilities: Prisoner�s Dilemma with �mixing�

� The points on the north-east boundary of U� correspond to the Pareto-
e¢ cient outcomes.

The issue is, can one achieve a Pareto-e¢ cient outcome in U� or, indeed,
anything other than the minimax value at

�
�a; �b

�
? As we know (check foot-

note 9) the use of mixed strategies in an isolated play of Prisoner�s Dilemma
does nothing to alter the single Nash-equilibrium outcome at

�
�a; �b

�
; however,

it may be that through the structure of repetitive play other points U� are
implementable as equilibrium outcomes.

The repeated game

To investigate this possibility we need a model of payo¤s in an in�nite-horizon
world. Obviously this is based on the model of payo¤s in a typical stage game:
but we also need a method of aggregating payo¤s across the stages. The ag-
gregation method is a generalisation of the intertemporal utility function in
equation (5.13). Speci�cally, let �h (t) denote the payo¤ for agent h in period t
and introduce the possibility of pure time preference in the form of a discount
factor � lying between zero and one inclusive; then the value of payo¤ stream�
�h (1) ; �h (2) ; :::; �h (t) :::

�
is given by

[1� �]
1X
t=1

�t�1 �h (t) (10.22)

Note two technical points about the speci�cation of (10.22). First, the term
[1� �] performs a normalisation rôle : if the payo¤ in the stage game were
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Alf�s action in 0; :::; t Bill�s action at t+ 1
[LEFT][LEFT].... [LEFT] [left]
Anything else [right]

Table 10.9: Bill�s trigger strategy sbT

constant throughout all time, so that �h (t) = �0, then the overall payo¤ is
itself �0. Second, if we allow � ! 1 then the overall payo¤ becomes a simple
average with current utility components being given equal weight with those in
the inde�nite future.
Why an in�nite number of periods? The short answer is that this ensures

that there is always a tomorrow. In many situations if there were to be a known
Last Day then the game would �unravel�: you just have to imagine yourself at
the Last Day and then apply the Sherlock-Holmes working-backwards method
that we outlined in section 10.5.2 above.
How could rational players use the information from a history of play in

a repeated game? We can illustrate a method in an argument by example
on Figure 10.14. Suppose Alf and Bill collectively recognise that it would be in
their interests if they could maintain actions in each period that would guarantee
them the Pareto-e¢ cient payo¤s

�
��a; ��b

�
in each period; to do this they need

to play [LEFT],[left] every period. The problem is they cannot trust each other,
nor indeed themselves: Alf has the temptation to jump at the possibility of
getting the payo¤ �a by being antisocial and playing [RIGHT]; Bill has a similar
temptation. To forestall this suppose that they each adopt a strategy that
(1) rewards the other party�s cooperative behaviour by responding with the
action [left] and (2) punishes antisocial behaviour with the action [right], thus
generating the minimax payo¤s

�
�a; �b

�
. What gives the strategy bite is that

the punishment action applies to every period after the one where the antisocial
action occurred: the o¤ender is cast into outer darkness and minimaxed for ever.
This is known as a trigger strategy.
Consider the trigger strategy for Bill, sbT, set out in detail in Table 10.9:

would it persuade Alf to behave cooperatively? The gain to Alf from behaving
antisocially in period t is �a � ��a. The consequence for Alf in every period
from t+1 onwards is a di¤erence in utility given by ��a� �a per period; so Alf
would not �nd it worth while to behave antisocially if22

�a � ��a � �

1� � [�
�a � �a] (10.23)

The trigger strategy for Alf follows the same reasoning �just interchange the a
and b labels.
Now let us examine whether the strategy pair

�
saT; s

b
T

�
constitutes an equi-

librium that would support the Pareto-e¢ cient payo¤s. Note �rst that if there
were antisocial behaviour at t then the sequence of actions prescribed by Table
10.9 and its counterpart for saT together constitute a Nash equilibrium for the

22Explain why.
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subgame that would then start at t + 1: Alf could not increase his payo¤ by
switching from [RIGHT] to [LEFT] given that Bill is playing [left]; likewise for
Bill. The same conclusion follows for any subgame starting after t + 1. Note
second that if � is large enough23 and [LEFT],[left] has been played in every
period up till t then it is clear from (10.23) that Alf would not wish to switch to
[RIGHT]; again a similar statement follows for Bill. So

�
saT; s

b
T

�
is a subgame-

perfect perfect equilibrium that will implement
�
��a; ��b

�
.24

It is important to recognise that this reasoning is not speci�c to an isolated
example, as the following key result shows:

Theorem 10.3 (The Folk Theorem) In a two-person in�nitely repeated game
any combination of actions observed in any �nite number of stages is the out-
come of a subgame-perfect equilibrium if the discount factor is su¢ ciently close
to 1.

Theorem 10.3 � known as the Folk theorem because informal versions of
it were around well before it was formally stated and proved � tells us that
any point in U� can be supported as a subgame-perfect equilibrium, given a
condition on the utility function in (10.22). However, this does not mean that
the result turns just on a quirk of individuals�intertemporal preferences. We can
consider the discount factor to be a product of a factor derived from a person�s
impatience �a pure preference parameter �and the probability that the person
will be around to enjoy utility in the next period. (Check out the reasoning in
Exercise 8.9 to convince yourself of this). So, in this case we can imagine that
although in principle the game could go on forever, there is a probability that it
will end in �nite time. Then Theorem 10.3 requires both that this probability
be �su¢ ciently low�and that the individual agents be �su¢ ciently patient.�
Although I have tagged Theorem 10.3 as The Folk Theorem there is actually

a family of results that deal with this type of issue in the �eld of repeated
games: the version stated here is somewhat conservative. Some results focus
only on Nash equilibria (which, perhaps, rather misses the point since credibility
is important), some deal with more than two agents (but ensuring subgame-
perfection then gets a bit tricky) and some discuss repeated games of �nite
length. However, in assessing the contribution of the Folk Theorem(s) it is
important to be clear about the main message of the result.
The implication of Theorem 10.3 is that there is a wide range of possible

equilibria in in�nitely repeated games: it does not predict that rational behav-
iour will generate one speci�c outcome. Should it seem troubling that there are
so many equilibrium outcomes for the repeated game? Perhaps not: we can
think of Theorem 10.3 as a kind of possibility result demonstrating that strate-
gic problems that do not have �sensible�solutions in the short run may yet be
susceptible of sensible solution in the long run through induced cooperation.

23We need to have � � � � 1. What is the value of �?
24 In the answer to footnote question 7 it is shown that a monotonic transformation of

utilities does not change the outcome of the Prisoner�s Dilemma one-shot game. Could such
a transformation a¤ect the repeated game?
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10.6 Application: market structure

The temporal sequence on which we have focused plays an important rôle in
the analysis of industrial organisation. We will illustrate its contribution by
considering three applications.

10.6.1 Market leadership

First, let us revisit the simple competition-in-quantities version of the duopoly
model Explicit recognition of the time sequence within the game structure per-
mits the strategic modelling of an important economic phenomenon, market
leadership.
Assume that social customs or institutional rules (of what sort, or from

where, we do not enquire) ensure that �rm 1 gets the chance to move �rst in
deciding output � it is the leader. The follower (�rm 2) observes the leader�s
output choice q1 and then announces its output q2. What would we expect as
a solution?
First let us note that the Nash concept does not give us much leverage.

In fact, using the reaction function given in (10.15), any non-negative output
pair

�
q1; q2

�
satisfying q2 = �2

�
q1
�
can be taken as the outcome of a Nash

equilibrium to the sequentially played game described above; but given the
sequence of decision making we know that many of these equilibria will involve
incredible threats �they are not subgame perfect.25 To �nd the subgame-perfect
equilibrium consider �rst the subgame that follows �rm 1�s output decision;
clearly this involves �rm 2 choosing �2

�
q1
�
as a best response to whatever q1

has been selected; reasoning backwards �rm 1 will therefore select its output so
as to maximise its pro�ts conditional on �rm 2�s best response.
The upshot of this argument is that the leader e¤ectively manipulates the

follower by choosing its own output appropriately. Given the reaction function
(10.15), the leader�s expression for pro�ts becomes

p
�
q1 + �2

�
q1
��
q1 � C1

�
q1
�

(10.24)

The prerogative of being the leader is the opportunity to construct an opportu-
nity set for oneself from the responses of one�s opponents: this is illustrated in
Figure 10.15 where �rm 2�s reaction function �2 marks out the boundary of �rm
1�s opportunity set. This is the essence of the Stackelberg model of duopoly.
The solution to the Stackelberg duopoly problem (10.24) is depicted by the

point
�
q1S; q

2
S

�
in Figure 10.15: the leader�s isopro�t contour is tangent to the

follower�s reaction function at this point. The leader has a �rst-mover advantage
in that �rm 1�s pro�ts will be higher than those of �rm 2 and, indeed higher
than would be the case at the Cournot-Nash solution.

25Let qM be the pro�t-maximising output for �rm 2 if it were an monopolist and assume
that �1 (qM) = 0 in the case of simultaneous play �see (10.14). Show that in the sequential-
play game a strategy pair yielding the output combination (0; qM) is a Nash equilibrium but
is not a subgame-perfect solution.
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Figure 10.15: Leader-follower

However, the Stackelberg analysis leaves upon a fundamental and important
question �what constitutes a credible leader? How is the leadership position
maintained? There are two responses here. First, this special duopoly model
establishes some important principles that are relevant for other economic ap-
plications (see chapter 12). Second, we can dig a little deeper into the issues of
industrial organisation that are raised by this model; this we will handle in the
topic of market entry.

10.6.2 Market entry

In chapter 3 we considered a simple mechanism of introducing new �rms to a
market (page 56); but the mechanism was almost mechanical and took no ac-
count of the strategic issues involved in the relationship between the incumbent
�rm(s) and the potential entrants that are challenging them. Here we will use
the analysis of time in games as the basis for modelling a strategic model of
entry.
The point of departure is the story depicted in Figure 10.12 and Table 10.8.

Replace player Alf with a potential entrant �rm (here [LEFT] means �enter the
industry�, [RIGHT] means �stay out�) and Bill as the incumbent (so [left] means
��ght a potential entrant�, [right] means �accommodate a potential entrant�).
The numbers in the example depict the case where the incumbent�s position is
relatively weak and so the subgame-perfect equilibrium is one where the incum-
bent immediately accommodates the potential entrant without a �ght.26

26Suppose the �rst two payo¤ pairs in Figure 10.12 are changed from �(0; 0) (2; 1)� to
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Figure 10.16: Entry deterrence

However, the model is rather naive and in�exible: the relative strength of
the positions of the incumbent and the challenger are just hardwired into the
payo¤s and do not o¤er much economic insight. What if the rules of the game
were altered a little? Could an incumbent make credible threats? The principal
way of allowing for this possibility within the model of market structure is to
introduce a �commitment device� (see footnote 21). A simple and realistic
example of this is where a �rm incurs sunk costs: this means that the �rm
spends money on some investment that has no resale value.27 A simple version
of the idea is depicted in Figure 10.16.
Figure 10.16 is based on Figure 10.12 but now there are now three stages

of the game. Stages two and three correspond to the story that we have just
described; the subgame starting at the node marked * on the left is e¤ectively
the same game as we discussed before where the incumbent conceded imme-
diately; in the corresponding subgame on the right-hand side (starting at the
node marked **) the payo¤s for the incumbent have been changed so that, in
this case, it will no longer be pro�table to concede entry to the challenger.28

In the �rst stage the incumbent makes a decision whether or not to invest an

�(0; 1) (2; 0).� How will this alter the equilibrium of the game? What interpretation can be
given in terms of the model of contested entry? What is the equilibrium?
27You set up a window cleaning business. You buy a ladder, window cleaning �uid and 1000

lea�ets to publicise your business in the neighbourhood. Identify (i) variable costs, (ii) �xed
costs, (iii) sunk costs.
28Show that the subgame starting at the left-hand node marked 2 in Figure 10.16 is es-

sentially the same game, up to an ordinal transformation of payo¤s, as the game in Figure
10.12.
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amount that will cost a given amount k: this decision is publicly observable.
The decision on investment is crucial to the way the rest of the game works.

The following is common knowledge.

� If the challenger stays out it makes a reservation pro�t level � and the
incumbent makes monopoly pro�ts �M (less the cost of investment if it
had been undertaken in stage 1).

� If the incumbent concedes to the challenger then they share the market
and each gets �J.

� If the investment is not undertaken then the cost of �ghting is �F.

� If the investment is undertaken in stage 1 then it is recouped, dollar for
dollar, should a �ght occur. So, if the incumbent �ghts, it makes pro�ts
of exactly �F, net of the investment cost.

Now consider the equilibrium. Let us focus �rst on the subgame that follows
on from a decision by the incumbent to invest (for the case where the incumbent
does not invest see Exercise 10.11). If the challenger were to enter after this
then the incumbent would �nd that it is more pro�table to �ght than concede
as long as

�F > �J � k: (10.25)

Now consider the �rst stage of the game: is it more pro�table for the incumbent
to commit the investment than just to allow the no-commitment subgame to
occur? Yes if the net pro�t to be derived from successful entry deterrence ex-
ceeds the best that the incumbent could do without committing the investment:

�M � k > �J: (10.26)

Combining the two pieces of information in (10.25) and (10.26) we get the result
that deterrence works (in the sense of having a subgame-perfect equilibrium) as
long as k has been chosen such that:

�J ��F < k < �M ��J: (10.27)

In the light of condition (10.27) it is clear that, for some values of �F, �J and
�M, it may be impossible for the incumbent to deter entry by this method of
precommitting to investment.
There is a natural connection with the Stackelberg duopoly model. Think

of the investment as advance production costs: the �rm is seen to build up
a �war-chest� in the form of an inventory of output that can be released on
to the market. If deterrence is successful, this stored output will have to be
thrown away. However, should the challenger choose to enter, the incumbent
can unload inventory from its warehouses without further cost. Furthermore the
newcomer�s optimal output will be determined by the amount of output that
the incumbent will have stashed away and then released. We can then see that
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the overall game becomes something very close to that discussed in the leader-
follower model of section 10.6.1, but with the important di¤erence that the
rôle of the leader is now determined in a natural way through a common-sense
interpretation of timing in the model.

10.6.3 Another look at duopoly

In the light of the discussion of repeated games (section 10.5.3) it is useful to
reconsider the duopoly model of section 10.4.1. Applying the Folk Theorem
enables us to examine the logic in the custom and practice of a tacit cartel. The
story is the familiar one of collusion between the �rms in restricting output so as
to maintain high pro�ts; if the collusion fails then the Cournot-Nash equilibrium
will establish itself.
First we will oversimplify the problem by supposing that the two �rms have

e¤ectively a binary choice in each stage game �they can choose one of the two
output levels as in the discussion on page 290. Again, for ease of exposition, we
take the special case of identical �rms and we use the values given in Table 10.5
as payo¤s in the stage game:

� If they both choose [low], this gives the joint-pro�t maximising payo¤ to
each �rm, �J.

� If they both choose [high], gives the Cournot-Nash payo¤ to each �rm, �C.

� If one �rm defects from the collusive arrangement it can get a payo¤ �.

Using the argument for equation (10.23) (see also the answer to footnote 23)
the critical value of the discount factor is

� :=
���J
���C

So it appears that we could just carry across the argument of page 304 to the
issue of cooperative behaviour in a duopoly setting. The joint-pro�t maximising
payo¤ to the cartel could be implemented as the outcome of a subgame-perfect
equilibrium in which the strategy would involve punishing deviation from coop-
erative behaviour by switching to the Cournot-Nash output levels for ever after.
But it is important to make two qualifying remarks.
First, suppose the market is expanding over time. Let ~� (t) be a variable

that can take the value �, �J or �C Then it is clear that the payo¤ in the stage
game for �rm f at time t can be written

�f (t) = ~� (t) [1 + g]
t�1

where g is the expected growth rate and the particular value of ~� (t) will depend
on the actions of each of the players in the stage game. The payo¤ to �rm f of
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the whole repeated game is the following present value:

[1� �]
1X
t=1

�t�1 �f (t)

= [1� �]
1X
t=1

~�
t�1 ~� (t) (10.28)

where ~� := � [1 + g]. So it is clear that we can reinterpret the discount factor as a
product of pure time preference, the probability that the game will continue and
the expected growth in the market. We can see that if the market is expected to
be growing the e¤ective discount factor will be higher and so in view of Theorem
10.3 the possibility of sustaining cooperation as a subgame-perfect equilibrium
will be enhanced.
Second, it is essential to remember that the argument is based on the simple

Prisoner�s Dilemma where the action space for the stage game just has the two
output levels. The standard Cournot model with a continuum of possible actions
introduces further possibilities that we have not considered in the Prisoner�s
Dilemma. In particular we can see that minimax level of pro�t for �rm f in
a Cournot oligopoly is not the Nash-equilibrium outcome, �C. The minimax
pro�t level is zero �the other �rm(s) could set output such that the f cannot
make a pro�t (see, for example, point q2 in Figure 10.5). However, if one were
to set output so as to ensure this outcome in every period from t+1 to 1, this
would clearly not be a best response by any other �rm to an action by �rm f
(it is clear from the two-�rm case in Figure 10.6 that (0; q2) is not on the graph
of �rm 2�s reaction function); so it cannot correspond to a Nash equilibrium
to the subgame that would follow a deviation by �rm f . Everlasting minimax
punishment is not credible in this case.29

10.7 Uncertainty

As we have seen, having precise information about the detail of how a game is
being played out is vital in shaping a rational player�s strategy �the Kriegsspiel
example on page 272 is enough to convince of that. It is also valuable to have
clear ideas about the opponents�characteristics a chess player might want to
know whether the opponent is �strong� or �weak,� the type of play that he
favours and so on.
These general remarks lead us on to the nature of the uncertainty to be

considered here. In principle we could imagine that the information available to
a player in the game is imperfect in that some details about the history of the
game are unknown (who moved where at which stage?) or that it is incomplete

29 Draw a diagram similar to Figure B.33 to shaw the possible payo¤ combinations that
are consistent with a Nash equilibrium in in�nitely repeated subgame. Would everlasting
minimax punishment be credible if the stage game involved Bertrand competition rather than
Cournot competition?
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in that the player does not fully know what the consequences and payo¤s will
be for others because he does not know what type of opponent he is facing (risk-
averse or risk-loving individual? high-cost or low-cost �rm?). Having created
this careful distinction we can immediately destroy it by noting that the two
versions of uncertainty can be made equivalent as far as the structure of the game
is concerned. This is done by introducing one extra player to the game, called
�Nature.� Nature acts as an extra player by making a move that determines
the characteristics of the players; if, as is usually the case, Nature moves �rst
and the move that he/she/it makes is unknown and unobservable, then we can
see that the problem of incomplete information (missing details about types of
players) is, at a stroke, converted into one of imperfect information (missing
details about history).

10.7.1 A basic model

We focus on the speci�c case where each economic agent h has a type �h. This
type can be taken as a simple numerical parameter; for example it could be an
index of risk aversion, an indicator of health status, a component of costs. The
type indicator is the key to the model of uncertainty: �h is a random variable;
each agent�s type is determined at the beginning of the game but the realisation
of �h is only observed by agent h.

Payo¤s

The �rst thing to note is that an agent�s type may a¤ect his payo¤s (if I become
ill I may get lower level of utility from a given consumption bundle than if I
stay healthy) and so we need to modify the notation used in (10.2) to allow for
this. Accordingly, write agent h�s utility as

V h
�
sh; [s]

�h
; �h

�
(10.29)

where the �rst two arguments argument consists of the list of strategies �h�s
strategy and everybody else�s strategy as in expression (10.2) � and the last
argument is the type associated with player h.

Conditional strategies

Given that the selection of strategy involves some sort of maximisation of payo¤
(utility), the next point we should note is that each agent�s strategy must be
conditioned on his type. So a strategy is no longer a single �button�as in the
discussion on page 283 but is, rather, a �button rule�that speci�es a particular
button to each possible value of the type �h. Write this rule for agent h as a
function &h (�) from the set of types to the set of pure strategies Sh. For example
if agent h can be of exactly one of two types f[healthy];[ill]g then agent h�s
button rule &h (�) will generate exactly one of two pure strategies

sh0 = &h ([healthy])
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Figure 10.17: Alf�s beliefs about Bill

or
sh1 = &h ([ill])

according to the value of �h realised at the beginning of the game.

Beliefs, probabilities and expected payo¤s

However, agent h does not know the types of the other agents who are players
in the game. instead he has to select a strategy based on some set of beliefs
about the others�types. These beliefs are incorporated into a simple probabilistic
model: F , the joint probability distribution of types over the agents is assumed
to be common knowledge. Although it is by no means essential, from now on we
will simply assume that the type of each individual is just a number in [0; 1].30

Figure 10.17 shows a stylised sketch of the idea. Here Alf, who has been re-
vealed to be of type �a0 and who is about to choose [LEFT] or [RIGHT], does not
know what Bill�s type is at the moment of the decision. There are three possibil-
ities, indicated by the three points in the information set. However, because Alf
knows the distribution of types that Bill may possess he can at least rationally
assign conditional probabilities Pr

�
� b1j �a0

�
, Pr

�
� b2j �a0

�
and Pr

�
� b3j �a0

�
to the

three members of the information set, given the type that has been realised for
Alf. These probabilities are derived from the joint distribution F , conditional
on Alf�s own type: these are Alf�s beliefs (since the probability distribution of
types is common knowledge then he would be crazy to believe anything else).
Consider the way that this uncertainty a¤ects h�s payo¤. Each of the other

agents�strategies will be conditioned on the type which �Nature�endows them
and so, in evaluating (10.29) agent h faces the situation that

sh = &h
�
�h
�

(10.30)

30This assumption about types is adaptable to a wide range of speci�c models of individual
characteristics. Show how the two-case example used here, where the person is either of type
[healthy] or of type [ill] can be expressed using the convention that agent h�s type �h 2 [0; 1]
if the probability of agent h being healthy is �.
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[s]
�h
=
�
&1
�
�1
�
; :::; &h�1

�
�h�1

�
; &h+1

�
�h+1

�
; :::
�

(10.31)

The arguments in the functions on the right-hand side of (10.30) and (10.31) are
random variables and so the things on the left-hand side of (10.30) and (10.31)
are also random. Evaluating (10.29) with these random variables one then gets

V h
�
&1
�
�1
�
; &2

�
�2
�
; :::; �h

�
(10.32)

as the (random) payo¤ for agent h.
In order to incorporate the random variables in (10.30)-(10.32) into a co-

herent objective function for agent h we need one further step. We assume the
standard model of utility under uncertainty that was �rst introduced in chapter
8 (page 187) �the von Neumann-Morgenstern function. This means that the
appropriate way of writing the payo¤ is in expectational terms

EV h
�
sh; [s]

�h
; �h
�

(10.33)

where sh is given by (10.30), [s]�h is given by (10.31), E is the expectations
operator and the expectation is taken over the joint distribution of types for all
the agents.

Equilibrium

We need a further re�nement in the de�nition of equilibrium that will allow for
the type of uncertainty that we have just modelled. To do this note that the
game can be completely described by three objects, a pro�le of utility functions,
the corresponding list of strategy sets, and the joint probability distribution of
types: �

V 1; V 2; :::
�
;
�
S1; S2; :::

�
; F (10.34)

However, we can recast the game in a way that is familiar from the discussion of
section 10.3. We could think of each agent�s �button-rule� &h (�) as a rede�ned
strategy in its own right; agent h gets utility vh

�
&h; [&]

�h
�
which exactly equals

(10.33) and where vh is just the same as in (10.2). If we use the symbol Sh the
set of these rede�ned strategies or �button rules� for agent h Then (10.34) is
equivalent to the game �

v1; v2; :::
�
;
�
S1;S2; :::

�
(10.35)

Comparing this with (10.3) we can see that, on this interpretation, we have a
standard game with rede�ned strategy sets for each player.
This alternative, equivalent representation of the Bayesian game enables us

to introduce the de�nition of equilibrium:

De�nition 10.7 A pure strategy Bayesian Nash equilibrium for (10.34) is a
pro�le of rules [&�] that is a Nash equilibrium of the game (10.35).
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This de�nition means that we can just adapt (10.6) by replacing the ordinary
strategies (�buttons�) in the Nash equilibrium with the �button rules� &�h (�)
where

&�h (�) 2 argmax
&h(�)

vh
�
&h (�) ; [&� (�)]�h

�
(10.36)

Identity

The description of this model of incomplete information may seem daunting
at �rst reading, but there is a natural intuitive way of seeing the issues here.
Recall that in chapter 8 we modelled uncertainty in competitive markets by,
e¤ectively, expanding the commodity space �n physical goods are replaced by
n$ contingent goods, where $ is the number of possible states-of-the-world
(page 203). A similar thought experiment works here. Think of the incomplete-
information case as one involving players as superheroes where the same agent
can take on a number of identities. We can then visualise a Bayesian equilibrium
as a Nash equilibrium of a game involving a larger number of players: if there
are 2 players and 2 types we can take this setup as equivalent to a game with
4 players (Batman, Superman, Bruce Wayne and Clark Kent). Each agent in a
particular identity plays so as to maximise his expected utility in that identity;
expected utility is computed using the conditional attached to the each of the
possible identities of the opponent(s); the probabilities are conditional on the
agent�s own identity. So Batman maximises Batman�s expected utility having
assigned particular probabilities that he is facing Superman or Clark Kent;
Bruce Wayne does the same with Bruce Wayne�s utility function although the
probabilities that he assigns to the (Superman, Clark Kent) identities may be
di¤erent.
This can be expressed in the following way. Use the notation E

�
�j �h0

�
to

denote conditional expectation � in this case the expectation taken over the
distribution of all agents other than h, conditional on the speci�c type value �h0
for agent h �and write [s�]�h for the pro�le of random variables in (10.31) at
the optimum where &j = &�j , j 6= h. Then we have:

Theorem 10.4 A pro�le of decision rules [&�] is a Bayesian Nash equilibrium
for (10.34) if and only if for all h and for any �h0 occurring with positive prob-
ability

E
�
V h
�
&�h
�
�h0
�
; [s�]

�h j �h0
��
� E

�
V h
�
sh; [s�]

�h j �h0
��

for all sh 2 Sh.

So the rules given in (10.36) will maximise the expected payo¤of every agent,
conditional on his beliefs about the other agents.

10.7.2 An application: entry again

We can illustrate the concept of a Bayesian equilibrium and outline a method
of solution using an example that ties in with the earlier discussion of strategic
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issues in industrial organisation.
Figure 10.18 takes the story of section 10.6.2 a stage further. The new twist

is that the monopolist�s characteristics are not fully known by a �rm trying to
enter the industry. It is known that �rm 1, the incumbent, has the possibility of
committing to investment that might strategically deter entry: the investment
would enhance the incumbent�s market position. However the �rm may incur
either high cost or low cost in making this investment: which of the two cost
levels actually applies to �rm 1 is something unknown to �rm 2. So the game
involves �rst a preliminary move by �Nature�(player 0) that determines the cost
type, then a simultaneous move by �rm 1, choosing whether or not to invest,
and �rm 2, choosing whether or not to enter. Consider the following three cases
concerning �rm 1�s circumstances and behaviour:

1. Firm 1 does not invest. If �rm 2 enters then both �rms make pro�ts �J.
But if �rm 2 stays out then it just makes its reservation pro�t level �,
where 0 < � < �J, while �rm 1 makes monopoly pro�ts �M.

2. Firm 1 invests and is low cost. If �rm 2 enters then �rm 1 makes pro�ts
��J < �J but �rm 2�s pro�ts are forced right down to zero. If �rm 2 stays
out then it again gets just reservation pro�ts � but �rm 1 gets enhanced
monopoly pro�ts ��M > �M.

3. Firm 1 invests and is high cost. Story is as above, but �rm 1�s pro�ts are
reduced by an amount k, the cost di¤erence.

To make the model interesting we will assume that k is fairly large, in the
following sense:

k > max f��J ��J;��M ��Mg :

In this case it is never optimal for �rm 1 to invest if it has high cost (check the
bottom right-hand part of Figure 10.18 to see this).
To �nd the equilibrium in this model we will introduce a device that we

used earlier in section 10.3.3. even though we are focusing on pure (i.e. non-
randomised) strategies let us suppose that �rm 1 and �rm 2 each consider a
randomisation between the two actions that they can take. To do this, de�ne
the following:31

� �0 is the probability that �Nature� endows �rm 1 with low cost. This
probability is common knowledge.

� �1 is the probability that �rm 1 chooses [INVEST] given that its cost is
low.

� �2 is the probability that �rm 1 chooses [In].

31Write out the expressions for epected payo¤ for �rm 1 and for �rm 2 and verify (10.37)
and (10.39).
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Figure 10.18: Entry with incomplete information

Then, writing out the expected payo¤ to �rm 1, E�1 we �nd that:

@E�1
@�1

> 0() �2 <
1

1 + 
(10.37)

where

 :=
�J ���J
��M ��M

> 0: (10.38)

Furthermore, evaluating E�2, the expected payo¤ to �rm 2:

@E�2
@�2

> 0() �1 <
�J ��
�0�J

: (10.39)

The restriction on the right-hand of (10.39) only makes sense if the probability
of being low-cost is large enough, that is, if

�0 � 1� �

�J
: (10.40)

To �nd the equilibrium in pure strategies32 check whether conditions (10.37)-
(10.39) can be satis�ed by probability pairs

�
�1; �2

�
equal to any of the values

(0; 0), (0; 1), (1; 0) or (1; 1). Clearly condition (10.37) rules out (0; 0) and (1; 1).
However the pair (0; 1) always satis�es the conditions, meaning that ([NOT IN-
VEST],[In]) is always a pure-strategy Nash equilibrium. Likewise, if the probabil-
ity of [LOW] is large enough that condition (10.40) holds, then ([INVEST],[Out])
will also be a pure-strategy Nash equilibrium.

32Will there also be a mixed-strategy equilibrium to this game?
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The method is of interest here as much as is detail of the equilibrium solu-
tions. It enables us to see a link with the solution concept that we introduced
on page 283.

10.7.3 Mixed strategies again

One of the features that emerges from the description of Bayesian Nash equilib-
rium and the example in section 10.7.2 is the use of probabilities in evaluating
payo¤s. The way that uncertainty about the type of one�s opponent is handled
in the Bayesian game appears to be very similar to the resolution of the prob-
lem arising in elementary games where there is no equilibrium in pure strategies.
The assumption that the distribution of types is common knowledge enables us
to focus on a Nash equilibrium solution that is familiar from the discussion of
mixed strategies in section 10.3.3.
In fact one can also establish that a mixed-strategy equilibrium with given

players Alf, Bill, Charlie,... each of whom randomise their play, is equivalent to
a Bayesian equilibrium in which there is a continuum of a-types all with Alf�s
preferences but slightly di¤erent types, a continuum of b-types all with Bill�s
preferences but with slightly di¤erent types,... and so on, all of whom play pure
strategies.
The consequence of this is that there may be a response to those who see

strategic arguments relying on mixed strategies as arti�cial and unsatisfactory
(see page 285). Large numbers and variability in types appear to �rescue�
the situation by showing that there is an equivalent, or closely approximating
Bayesian-Nash equilibrium in pure strategies.

10.7.4 A �dynamic�approach

The discussion of uncertainty thus far has been essentially static in so far as
the sequencing of the game is concerned. But it is arguable that this misses
out one of the most important aspects of incomplete information in most games
and situations of economic con�ict. With the passage of time each player gets
to learn something about the other players�characteristics through observation
of the other players�actions at previous stages; this information will be taken
into account in the way the game is planned and played out from then on.
In view of this it is clear that the Bayesian Nash approach outlined above

only captures part of essential problem. There are two important omissions:

1. Credibility. We have already discussed the problem of credibility in con-
nection with Nash equilibria of multi-stage games involving complete infor-
mation (see pages 299 ¤). The same issue would arise here if we considered
multi-stage versions of games of incomplete information.

2. Updating. As information is generated by the actions of players this can be
used to update the probabilities used by the players in evaluating expected
utility. This is typically done by using Bayes�rule (see Appendix A, page
518).
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So in order to put right the limitations of the uncertainty model one would
expect to combine the �perfection� involved in the analysis of subgames with
the logic of the Bayesian approach to handling uncertainty. This is exactly what
is done in the following further re�nement of equilibrium

De�nition 10.8 A perfect Bayesian equilibrium in a multi-stage game is a
collection of strategies of beliefs at each node of the game such that:

1. the strategies form a subgame-perfect equilibrium, given the beliefs;

2. the beliefs are updated from prior beliefs using Bayes� rule at every node
of the game that is reached with positive probability using the equilibrium
strategies.

The two parts of the de�nition show a nice symbiosis: the subgame-perfect
strategies at every �relevant� node make use of the set of beliefs that is the
natural one to use at that point of the game; the beliefs are revised the light of
the information that is revealed by playing out the strategies.
However, note that the de�nition is limited in its scope. It remains silent

about what is supposed to happen to beliefs out of equilibrium �but this issue
raises complex questions and takes us beyond the scope of the present book.
Note too, that in some cases the updating may be simple and drastic so that
the problem of incomplete information is resolved after one stage of the game.
However, despite these quali�cations, the issue of strategic interactions that in-
corporate learning is so important and so multifaceted that we shall be devoting
all of chapter 11 to it.

10.8 Summary

Strategic behaviour is not just a new microeconomic topic but a new method
and a fresh way of looking at economic analysis. Game theory permits the
construction of an abstract framework that enables us to think through the way
economic models work in cases where the simpli�ed structure of price-taking is
inapplicable or inappropriate.
But how much should one expect from game theory? It clearly provides a

collection of important general principles for microeconomics. It also o¤ers some
truly striking results, for example the demonstration that cooperative outcomes
can be induced from sel�sh agents by the design of credible strategies that
involve future punishment for �antisocial� behaviour (the folk theorem). On
the other hand game theory perhaps warrants an enthusiasm that is tempered
by considerations of practicality. Game theoretic approaches do not always
give clear-cut answers but may rather point to a multiplicity of solutions and,
where they do give clear-cut answers in principle, these answers may be almost
impossible to work out in practice. To illustrate: �nding all the outcomes in
chess is a computable problem, but where is the computer that could do the
job?
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To summarise the ways in which this chapter has illustrated the contribution
of the game-theoretic approach to economic principles and to point the forward
to later chapters let us focus on three key aspects:

� The nature of equilibrium. In moving to an economic environment in which
strategic issues are crucial we have had to introduce several new de�nitions
of equilibrium; in the formal literature on this subject there are even more
intellectual constructions that are candidates for equilibrium concepts. Do
the subtle di¤erences between the various de�nitions matter? Each can be
defended as the correct way of modelling coherence of agents�behaviour
in a carefully speci�ed strategic setting. Each incorporates a notion of
rationality consistent with this setting. However, as the model structure
is made richer, the accompanying structure of beliefs and interlocking
behaviour can appear to be impossibly sophisticated and complex. The
di¢ culty for the economic modeller is, perhaps, to �nd an appropriate
location on the spectrum from total naivety to hyper-rationality (more on
this in chapter 12).

� Time. The sequencing of decisions and actions is a crucial feature of many
situations of potential economic con�ict because it will often a¤ect the
way the underlying game is played and even the viability of the solution
concept. A modest extension of fairly simple games to more than one
period enables one to develop models that incorporate the issues of power,
induced cooperation.

� Uncertainty In chapter 8 uncertainty and risk appeared in economic de-
cision making in the rôle of mechanistic chance. Here, the mechanistic
chance can be a player in the game and clear-cut results carry over from
the complete-information case, although they rest on quite strong assump-
tions about individual beliefs and understanding of the uncertain universe.
However, we can go further. The Bayesian model opens the possibility of
using the acquisition of information strategically and has implications for
how we model the economics of information. This is developed in chapter
11.

10.9 Reading notes

A good introduction is provided by Dixit and Skeath (2004), Gardner (2003),
Osborne (2004) or Rasmusen (2001); the older Gibbons (1992) still provides
an excellent and thorough overview of the main issues; for a more advanced
treatment Vega-Redondo (2003) is useful. The Nash equilibrium concept �rst
appeared in Nash (1951); on the appropriateness of using it as a solution concept
see Kreps (1990). The rationale of mixed-strategy equilibria is discussed in
Harsanyi (1973) and the argument for treating �nature�as a player in the game
is developed in Harsanyi (1967). For the history and precursors of the concept of
Nash equilibrium see Myerson (1999); on Nash equilibrium and behaviour see
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Mailath (1998) and Samuelson (2002). Subgame-perfection as an equilibrium
concept is attributable to Selten (1965, 1975).
The folk theorem and variants on repeated games form a substantial liter-

ature. For an early statement in the context of oligopoly see Friedman (1971).
A key result establishing sub-game perfection in repeated games is proved in
Fudenberg and Maskin (1979).
The standard reference on industrial organisation is the thorough treatment

by Tirole (1988); the original classic contributions whose logic underlies so much
modern work are to be found in Bertrand (1883), Cournot (1838) and von
Stackelberg (1934).

10.10 Exercises

10.1 Table 10.10 is the strategic form representation of a simultaneous move
game in which strategies are actions.

sb1 sb2 sb3
sa1 0; 2 3; 1 4; 3
sa2 2; 4 0; 3 3; 2
sa3 1; 1 2; 0 2; 1

Table 10.10: Elimination and equilibrium

1. Is there a dominant strategy for either of the two agents?

2. Which strategies can always be eliminated as individually irrational?

3. Which strategies can be eliminated if it is common knowledge that both
players are rational?

4. What are the Nash equilibria in pure strategies?

10.2 Table 10.11 again represents a simultaneous move game in which strate-
gies are actions.

sb1 sb2 sb3
sa1 0; 2 2; 0 3; 1
sa2 2; 0 0; 2 3; 1
sa3 1; 3 1; 3 4; 4

Table 10.11: Pure-strategy Nash equilibria

1. Identify the best responses for each of the players a, b.

2. What are the Nash equilibria in pure strategies?
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10.3 A taxpayer has income y that should be reported in full to the tax au-
thority. There is a �at (proportional) tax rate  on income. The reporting
technology means that that taxpayer must report income in full or zero income.
The tax authority can choose whether or not to audit the taxpayer. Each audit
costs an amount ' and if the audit uncovers under-reporting then the taxpayer
is required to pay the full amount of tax owed plus a �ne F .

1. Set the problem out as a game in strategic form where each agent (taxpayer,
tax-authority) has two pure strategies.

2. Explain why there is no simultaneous-move equilibrium in pure strategies.

3. Find the mixed-strategy equilibrium. How will the equilibrium respond to
changes in the parameters , ' and F?

10.4 Take the �battle-of-the-sexes� game of footnote 3 (the strategic form is
given in Table B.1 on page 562).

1. Show that, in addition to the pure strategy, Nash equilibria there is also a
mixed strategy equilibrium.

2. Construct the payo¤-possibility frontier (as in Figure B.33 on page 566).
Why is the interpretation of this frontier in the battle-of-the-sexes context
rather unusual in comparison with the Cournot-oligopoly case?

3. Show that the mixed-strategy equilibrium lies strictly inside the frontier.

4. Suppose the two players adopt the same randomisation device, observable
by both of them: they know that the speci�ed random variable takes the
value 1 with probability � and 2 with probability 1� �; they agree to play�
sa1 ; s

b
1

�
with probability � and

�
sa2 ; s

b
2

�
with probability 1��; show that this

correlated mixed strategy always produces a payo¤ on the frontier.

10.5 Rework Exercise 10.4 for the case of the game in Table 10.3 (this is
commonly known as the Chicken game).

10.6 Consider the three-person game depicted in Figure 10.19 where strategies
are actions. For each strategy combination, the column of �gures in parentheses
denotes the payo¤s to Alf, Bill and Charlie, respectively. (Fudenberg and Tirole
1991, page 55)

1. For the simultaneous-move game shown in Figure 10.19 show that there
is a unique pure-strategy Nash equilibrium.

2. Suppose the game is changed. Alf and Bill agree to coordinate their ac-
tions by tossing a coin and playing [LEFT],[left] if heads comes up and
[RIGHT],[right] if tails comes up. Charlie is not told the outcome of the
spin of the coin before making his move. What is Charlie�s best response?
Compare your answer to part 1.
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Figure 10.19: Bene�ts of restricting information

3. Now take the version of part 2 but suppose that Charlie knows the out-
come of the coin toss before making his choice. What is his best response?
Compare your answer to parts 1 and 2. Does this mean that restricting
information can be socially bene�cial?

10.7 Consider a duopoly with identical �rms. The cost function for �rm f is

C0 + cq
f ; f = 1; 2:

The inverse demand function is

�0 � �q

where C0, c, �0 and � are all positive numbers and total output is given by
q = q1 + q2.

1. Find the isopro�t contour and the reaction function for �rm 2.

2. Find the Cournot-Nash equilibrium for the industry and illustrate it in�
q1; q2

�
-space.

3. Find the joint-pro�t maximising solution for the industry and illustrate it
on the same diagram.

4. If �rm 1 acts as leader and �rm 2 as a follower �nd the Stackelberg solu-
tion.
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5. Draw the set of payo¤ possibilities and plot the payo¤s for cases 2-4 and
for the case where there is a monopoly.

10.8 An oligopoly contains N identical �rms. The cost function is convex in
output. Show that if the �rms act as Cournot competitors then as N increases
the market price will approach the competitive price.

10.9 Two identical �rms consider entering a new market; setting up in the
new market incurs a once-for-all cost k > 0; production involves constant mar-
ginal cost c. If both �rms enter the market Bertrand competition then takes
place afterwards. If the �rms make their entry decision sequentially, what is the
equilibrium?

10.10 There is a cake of size 1 to be divided between Alf and Bill. In period
t = 1 Alf o¤ers player Bill a share: Bill may accept now (in which case the
game ends), or reject. If Bill rejects then, in period t = 2 Alf again makes an
o¤er, which Bill can accept (game ends) or reject. If Bill rejects, the game ends
one period later with exogenously �xed payo¤s of  to Alf and 1 �  to Bill.
Assume that Alf and Bill�s payo¤s are linear in cake and that both persons have
the same, time-invariant discount factor � < 1.

1. What is the backwards induction outcome in the two-period model?

2. How does the answer change if the time horizon increases but is �nite?

3. What would happen if the horizon were in�nite? (Rubinstein 1982, Ståhl
1972, Sutton 1986)

10.11 Take the game that begins at the node marked �*�in Figure 10.16 (page
307).

1. Show that if �M > �J > �F then the incumbent �rm will always concede
to a challenger.

2. Now suppose that the incumbent operates a chain of N stores, each in a
separate location. It faces a challenge to each of the N stores: in each
location there is a �rm that would like to enter the local market). The
challenges take place sequentially, location by location; at each point the
potential entrant knows the outcomes of all previous challenges. The pay-
o¤s in each location are as in part 1 and the incumbent�s overall payo¤ is
the undiscounted sum of the payo¤s over all locations. Show that, however
large N is, all the challengers will enter and the incumbent never �ghts
(Selten 1978).

10.12 In a monopolistic industry �rm 1, the incumbent, is considering whether
to install extra capacity in order to deter the potential entry of �rm 2. Marginal
capacity installation costs, and marginal production costs (for production in ex-
cess of capacity) are equal and constant. Excess capacity cannot be sold. The
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potential entrant incurs a �xed cost k in the event of entry.(Dixit 1980, Spence
1977)

1. Let q1 be the incumbent�s output level for which the potential entrant�s best
response yields zero pro�ts for the entrant. Suppose q1 6= qM, where qM is
�rm 1�s output if its monopolistic position is unassailable (i.e. if entry-
deterrence is inevitable). Show that this implies that market demand must
be nonlinear.

2. In the case where entry deterrence is possible but not inevitable, show
that if q1S > q1, then it is more pro�table for �rm 1 to deter entry than
to accommodate the challenger, where q1S is �rm 1�s output level at the
Stackelberg solution..

10.13 Two �rms in a duopolistic industry have constant and equal marginal
costs c and face market demand schedule given by p = k � q where k > c and q
is total output..

1. What would be the solution to the Bertrand price setting game?

2. Compute the joint-pro�t maximising solution for this industry.

3. Consider an in�nitely repeated game based on the Bertrand stage game
when both �rms have the discount factor � < 1. What trigger strategy,
based on punishment levels p = c; will generate the outcome in part 2?
For what values of � do these trigger strategies constitute a subgame perfect
Nash equilibrium?

10.14 Consider a market with a very large number of consumers in which a
�rm faces a �xed cost of entry F . In period 0, N �rms enter and in period 1 each
�rm chooses the quality of its product to be High, which costs c > 0, or Low,
which costs 0. Consumers choose which �rms to buy from, choosing randomly
if they are indi¤erent. Only after purchasing the commodity can consumers
observe the quality. In subsequent time periods the stage game just described is
repeated inde�nitely. The market demand function is given by

q =

8<: '(p) if quality is believed to beHigh

0 otherwise

where ' (�) is a strictly decreasing function and p is the price of the commodity.
The discount rate is zero.

1. Specify a trigger strategy for consumers which induces �rms always to
choose high quality. Hence determine the subgame-perfect equilibrium.
What price will be charged in equilibrium?

2. What is the equilibrium number of �rms, and each �rm�s output level in
a long-run equilibrium with free entry and exit?
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3. What would happen if F = 0?

10.15 In a duopoly both �rms have constant marginal cost. It is common
knowledge that this is 1 for �rm 1 and that for �rm 2 it is either 3

4 or 1
1
4 . It is

common knowledge that �rm 1 believes that �rm 2 is low cost with probability
1
2 . The inverse demand function is

2� q

where q is total output. The �rms choose output simultaneously. What is the
equilibrium in pure strategies?
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Chapter 11

Information

As we know,

There are known knowns.

There are things we know we know.

We also know

There are known unknowns.

That is to say

We know there are some things

We do not know.

But there are also unknown unknowns,

The ones we don�t know

We don�t know.

� Donald Rumsfeld. Feb. 12, 2002, Department of Defense news
brie�ng.

11.1 Introduction

We have already seen that economics can do a lot more than just talk about the
�known knowns.�The economics of information builds on elementary reasoning
about �known unknowns�and incorporates elements of both exogenous uncer-
tainty �blind chance �and endogenous uncertainty �the actions and reactions
of others; it has connections with previous discussions both of uncertainty and
risk (chapter 8) and of the economics of strategic behaviour (chapter 10).
In principle uncertainty can be incorporated into models of strategic behav-

iour in a variety of interesting ways, some of which were treated in chapter 10.
Here we focus on just one important class of problem that can be categorised in
terms of Bayesian games and we focus on perfect Bayesian equilibrium: but it

327
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type of hidden information
�rst move by... characteristics actions
uninformed adverse selection moral hazard
informed signalling �

Table 11.1: Types of incentive problem

is a rich class and the equilibrium behaviour can be readily interpreted in terms
of microeconomic intuition.
The structure of the problem is closely related to the issue of timing in

models of strategic behaviour. We imagine an economic relationship between
two economic actors or players, one of whom has some information that is key to
the economic relationship that the other does not possess. The central questions
concern (i) the nature of the hidden information and (ii) which of the players �
the well informed or the uninformed �gets to make the �rst move.
The three main paradigms are highlighted in Table 11.1 �they are discussed

separately in the three main sections of this chapter, 11.2 to 11.4. However,
before moving on to these two comments should be made on the simple clas-
si�cation in this table. First, the bottom right cell remains blank because the
situation where the uninformed player cannot observe an action of the player
who draws up the contract is not intrinsically very interesting. Second, the term
�uninformed� is a slight misnomer. Quite a lot of information about charac-
teristics and actions is common knowledge in these models, indeed it has to be
so for the economic problem to be well de�ned. In order to obtain and analyse
clear-cut principles to apply to the behaviour of economic agents we need to be
clear about the precise form of the distribution of the relevant random variables
that are used to represent the lack of speci�c information that characterises
many economic problems. We need to impose a rigid structure on the �known
unknowns�in the Rumsfeldian terminology.

11.2 Hidden characteristics: adverse selection

We begin with the problem that information about some crucial parameter in
an economic transaction �personal tastes or individual ability, let us say � is
known to one party in the transaction but not to the other. We will treat this
�rst in the context of a monopolist confronted by heterogeneous consumers.
The reason for starting like this is that it is fairly easy to see exactly how and
why the economic mechanism works in this case and to deduce the principles
underlying the solution. Although we work out the results in the context of a
highly simpli�ed model the lessons are fairly general and can be extended to
quite complex situations. Later we move on from monopoly to cases where there
are many partially-informed �rms competing for customers � see subsections
11.2.5 and 11.2.6.
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11.2.1 Information and monopoly power

In a two-good model suppose a monopolistic �rm produces good 1 from good
2 at constant marginal cost c. The monopolist is free to set whatever fees or
charges for good 1 that it wishes; the nature of good 1 is such that it is possible
to prevent resale of the good.
The analysis of the monopolist�s problem requires speci�cation of a fee sched-

ule F that gives the total amount to be paid F (x1) by a customer who consumes
a quantity x1 of good 1. For example Figure 11.1 depicts three alternative forms
that the fee schedule could take:

1. The simplest case with a uniform price p:

F (x) = px1:

2. The two-part tari¤ comprising an entry fee F0 (required to get access to
the market) and a �xed price for the marginal unit of good 1:

F (x) = F0 + px1 if x1 > 0:

3. The multi-part tari¤ that can take a huge range of forms. One example is

F (x) = F0 + p
0x1 if 0 < x1 � x1

= F0 + p
0x1 + p

00 [x1 � x1] if x1 > x1:

The �rm obviously needs to choose what sort of fee schedule is appropriate
in order to maximise pro�ts �not just what values parameters such as p and
F0 should take. But there is a further problem to be considered: in order to
maximise pro�ts would the �rm want to distinguish between di¤erent groups of
customers when setting its fee? If so, how should the �rm take account of this
potential di¢ culty in designing its fee structure?
We proceed by �rst setting out the problem in the special cases where infor-

mational problems do not arise (sections 11.2.2 and 11.2.3); then we look at the
case where an informational problem arises and examine how to solve it (section
11.2.4). Although we will only consider a simpli�ed form of the informational
problem, the principles that will be established are valid for a more general
structure.

11.2.2 One customer type

To start with we shall in e¤ect revisit the modelling of section 3.6 in chapter 3
but now with an explicit analysis of the welfare of the consumer; furthermore
we do not assume in advance the type of charging scheme that will be adopted �
that is going to emerge from the �rm�s optimisation problem. A typical customer
has income y (denominated in units of good 2) and preferences represented by
the utility function

U (x1; x2) =  (x1) + x2 (11.1)
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Figure 11.1: Alternative fee schedules

where  (0) = 0,  x (x) > 0,  xx (x) < 0 (subscripts on  denote �rst and
second derivatives, following our usual convention); the indi¤erence curves for
this utility function are illustrated in Figure 11.2. Notice that the form (11.1)
implies that the demand for good 1 has a zero income e¤ect:1 a convenient
feature of such a utility function is that for changes in the fee schedule for good
1 there is a unique measure of consumer welfare: the consumer�s surplus is equal
to the compensating variation and to the equivalent variation �see page 92 in
chapter 4.
The �rm sets a fee schedule F (�) as discussed on page 330: from the con-

sumer�s point of view this fee schedule simply determines his budget constraint
�just take a particular F (�) graph from Figure 11.1 and insert it, upside-down,
into the standard diagram of the consumer�s choices in commodity space (see
for example Figure 11.2 below). So the individual�s consumption of good 2 is

x2 =

8<: y � F (x1) if x1 > 0

y if x1 = 0

9=;
and utility is given by

U (x1; x2) =

8<: y +  (x1)� F (x1) if x1 > 0

y if x1 = 0

9=; : (11.2)

1 Explain why this is so.
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The consumer purchases good 1 under a given fee schedule F (�) if and only if
the top line in (11.2) is at least as great as the bottom line, in other words as
long as the following participation constraint is satis�ed:

U (x1; x2) � U (0; y) (11.3)

This constraint (11.3) is equivalent to the condition

 (x1)� F (x1) � 0 (11.4)

It is clear from (11.2) that �in the case where �>�holds in (11.4) �if the fee
schedule F (�) were to be shifted upwards, then the consumer�s utility would
decrease. Increasing the fee transfers consumer�s surplus to the monopolist�s
pro�ts.
The FOC for an internal solution to the consumer�s maximisation problem

is given by:
 x (x1) = p (x1) (11.5)

where p (�) is the �rst derivative of F (�) �the unit price of a marginal amount
of good 1. This has the interpretation �marginal willingness to pay = price at
the margin.�The solution to (11.10) can be written implicitly as

x�1 (F ) =

8<: ' (p (x�1)) if F (x�1) �  (x�1)

0 otherwise

9=; : (11.6)

where ' (�) is the inverse of the function  x (�).
The �rm has freedom to choose whatever the fee schedule it wants subject

to the consumer�s response speci�ed in (11.6). So its optimisation problem is to
choose F (�) to maximise

F (x�1)� cx�1 (11.7)

where x�1 is given by (11.6).
First note that if the case �<�were to hold in (11.4) then pro�ts could be

increased by shifting F (�) upwards. So at the �rm�s pro�t-maximising solution
the case �=�in (11.4) must hold; in other words we have

F (x1) =  (x1) : (11.8)

Therefore the problem (11.7) can be written:

max (x1)� cx1

subject to (11.6). Because the �rm can arbitrarily manipulate the fee schedule
it can e¤ectively choose the amount x1 that will be bought by the consumer,
subject to the participation constraint. The FOC for the �rm�s problem is
therefore

 x (x1)� c = 0 (11.9)
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a high-valuation customer type
b low-valuation customer type
� taste parameter
 (�) utility of good 1
y individual income
c marginal cost for good 1
� proportion of high-valuation types
F (�) fee schedule

Table 11.2: Adverse selection: Elements of the problem

or equivalently

p (x1) = c; (11.10)

the price of the marginal unit is everywhere equal to marginal cost, a constant
in this model.
Therefore the pro�t-maximising allocation can be implemented by o¤ering

the individual a contract consisting of the simple fee schedule

F (x1) = F0 + px1 (11.11)

where p = c and F0 is a �xed charge or �entry fee�chosen such that (11.8) is
satis�ed. Given that (11.5) characterises the individual customer�s reaction to
the fee schedule o¤ered by the �rm, using (11.8), (11.6) and (11.11) we �nd

F0 =  (' (c))� c' (c) : (11.12)

The resulting charging scheme is a two-part tari¤summarised by the pair (p; F0),
�rst introduced in section 3.6.3 on page 61. We see now that it involves com-
plete exploitation of the consumer (no consumer surplus is left): the individual
consumer is forced to his reservation utility level � := U(0; y). This is illus-
trated in Figure 11.2: the left-hand side shows the fee schedule set by the �rm,
where the intercept is F0 and the slope is simply marginal cost; the right-hand
side shows the impact of the fee schedule on the consumer with income y; the
reservation indi¤erence curve has been emphasised a little and the attainable
set �a triangle with a �spike�on top �has been shaded in; the boundary of the
attainable set is just the fee schedule from the left-hand panel, �ipped vertically.
However, although it is exploitative, the fee schedule is e¢ cient: unlike a simple
monopolistic pricing strategy (such as those outlined in sections 3.6.1 and 3.6.2
of chapter 3), the fee structure given in (11.11) and (11.12) does not force prices
above marginal cost.
One �nal note: the two-part-tari¤ (p; F0) is not the only way of implementing

the pro�t-maximising outcome. The �rm could, for example, just o¤er a single
�take-it-or-leave-it�contract which o¤ers an amount �x1 := ' (c) in exchange for
a given payment of �F :=  (�x1).
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Figure 11.2: An exploitative contract: fee schedule and consumption possibili-
ties

11.2.3 Multiple types: Full information

It is more interesting to suppose that individuals di¤er in their tastes for good
1. Instead of the utility function (11.1) we have

U (x1; x2) = x2 + � (x1) (11.13)

where � is a taste parameter. This special structure ensures that the indi¤erence
curves for di¤erent taste types satisfy a regularity requirement known as the
single-crossing condition.2 This is illustrated in Figure 11.3 where each a-type
indi¤erence curve intersects a b-type indi¤erence curve just once, from top left
to bottom right; the a-type curves are unambiguously steeper in the sense that
the value of � is higher than for the b-type curves.
If the consumer of type � is o¤ered a fee schedule F (�; �) then the FOC for

an internal solution to the maximisation problem is now:

p (x1) = � x (x1) : (11.14)

This characterises the consumer�s solution as long as

� (x1)� F (x1; �) � 0 (11.15)

holds �the participation constraint again. Therefore consumption of good 1 is

2Explain why the single-crossing condition holds for utility functions of the form (11.13).
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Figure 11.3: Two types: single-crossing condition

given by

x�1 (F ; �) =

8><>:
'
�
p(x�1)
�

�
if (11.15) holds

0 otherwise

9>=>; : (11.16)

and utility is

U (x�) =

8<: y + � (x�1)� F (x�1; �) if (11.15) holds

y otherwise

9=; (11.17)

Note that utility increases with the taste type.3

If the �rm could correctly identify each person�s taste type then it could
set a separate fee schedule conditioned on the type F (�; �). Suppose there are
many types, indexed by h; the proportion of consumers with taste type �h is
known to be �h. The �rm�s optimisation problem would then be to choose the
fee schedule so as to maximiseX

h

�h
�
F
�
xh1 ; �

h
�
� cxh1

�
(11.18)

where xh1 satis�es (11.16). The �rm knows the reaction of each of its customer
types and recognises that the fee schedule has to be designed in such a way that
the participation constraint is satis�ed for each type h.

3 Show this by using (11.17) .
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Figure 11.4: Full-information contracts: Consumption possibilities for each type

It is clear that the �rm could just separate out the problem and select
F
�
�; �h

�
so as to maximise each h-component enclosed in the [ ] in expres-

sion (11.18). The reason that this can be done is that the �rm can isolate each
speci�c group indexed by h as a separate submarket.
The solution is evidently that of section 11.2.2, slightly modi�ed to allow for

the distinct taste parameter in each group. Speci�cally we �nd that the optimal
policy can be implemented by setting price equal to marginal cost

p
�
xh1
�
= c: (11.19)

(for all consumer types and all units of the good) and o¤ering a consumer of
type h the fee schedule

F
�
x1; �

h
�
= Fh0 + px1 (11.20)

where p = c and Fh0 is an entry fee that could be di¤erent for each group. It is
given by

Fh0 = �h 
�
'
� c

�h

��
� c'

� c

�h

�
: (11.21)

This full-information solution �also known as the First-Best solution �is
illustrated in Figure 11.4: Alf the a-type consumer has a higher taste parameter
� than Bill the b-type. On inspecting the solution in (11.19)�(11.21) and Figure
11.4 the following points stand out:

� Each person is forced down on to his reservation utility level �h.
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� Each person faces the same unit price for the commodity (equal to mar-
ginal cost) � the slope of the budget constraint in each half of Figure
11.4.4

� Customer types with a higher value of the taste parameter � pay a higher
entry fee and consume more of good 1.5

� The �rm maximises revenue by use of discriminatory �xed charges Fh0 .

� The outcome is e¢ cient.

In other words the outcome of pro�t-maximising behaviour under these cir-
cumstances is achieved by setting of a fee schedule summarised by the pair�
p; Fh0

�
that is extortionary, but not distortionary.6 As a �nal comment let

us note that again the �rm could implement this allocation by o¤ering each
of the h-types a tailor-made �take-it-or-leave-it�contract specifying an amount
�xh1 := '

�
c=�h

�
in exchange for a given payment of �Fh := �h 

�
�xh1
�
.7

11.2.4 Imperfect information

The outcome of the problem addressed in section 11.2.3 is clear-cut and the
principles easy to grasp. But it might be argued that the main features of the
model and its clear conclusions are likely to be hopelessly unrealistic. In many
cases the precise information by taste type is just not going to be available, or
at least not at low cost; even in situations where the information is theoreti-
cally available it is easy to imagine that �rms may be prohibited by law from
exercising the kind of discriminatory power that the model implies. One way or
another it makes sense to consider the possibility that the �rm cannot get access
to, or is not allowed to use, the personal information that has been presupposed
in section 11.2.3. So we now move from a model of explicit interpersonal dis-
crimination by the �rm to one of self-selection by the customers in the face of
the apparently neutral fee schedule that the �rm chooses to specify.

4 Draw a diagram similar to the left-hand side of Figure 11.2 to show the fee schedule for
the �rm in this case.

5 Use (11.21) and (11.16) to show this.
6 The optimal contract takes no account of the customer�s income �why?
7A question involving little more than �ipping the diagram, changing notation and modify-

ing the budget constraint. In answering it check the answer to footnote question 3 in Chapter
5 (page 537) .
Suppose leisure is commodity 1 and all other consumption is commodity 2. Alf and Bill

are endowed with the same �xed amount of time and amounts ya0 , y
b
0 respectively of money

income (measured in units of commodity 2). Alf and Bill each have the utility function
(11.13) with �a > �b (Alf values leisure more highly). Alf and Bill consider selling their
labour to a monopsonistic �rm; they have the same marginal productivity w. Because the
�rm is a monopsony it can demand an up-front payment of Fh from worker h as a condition
of agreeing to employ h and can o¤er each worker h a di¤erent wage wh.
(a) Write down the budget constraint for worker h giving total money income yh (in terms

of commodity 2) as a function of `h, labour supplied by h.
(b) Draw a diagram analogous to Figure 11.4 in (`; y)-space to illustrate the full-information

contracts that the �rm will o¤er. Brie�y describe the solution.
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Figure 11.5: Screening: extensive-form game

Although we are now going to focus on the problems of a lack of information
it is important to recognise that in order to make the model precise and well
structured we will assume that rather a lot of things are well known. In partic-
ular we assume that the form of the utility function (11.13) and the distribution
of types � is common knowledge.
For the purposes of exposition we are going to take a simpli�ed version of

the distribution of tastes. Suppose that there are just two types of consumer a
and b with taste parameters �a; � b such that

�a > � b (11.22)

as before and that there are proportions �, 1 � � of a-types and b-types, re-
spectively. The values of �a, � b and � are all known by the �rm and by all its
potential customers. We will further assume that a person of type h has income
yh which, in view of (11.17), is the utility attained if he chooses not to consume
good 1.
As noted in the introduction we can see the core of the argument as the

equilibrium of a Bayesian game. Here the situation is that the �rm is involved
in a screening process that can be outlined using Figure 11.5. The stages of the
game are as follows:

0. �Nature�makes the move that determines whether a particular customer
is of [HIGH] or [LOW] type as far as the demand for the product is con-
cerned. The probability of being a high-demand type is �.

1. The �rm decides whether to o¤er a fee schedule.
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Figure 11.6: Possibility of masquerading

2. The customer, knowing his type (a or b) decides whether or not to accept
the contract implicit in the fee schedule.

This is just a sketch to clarify the timing of the various players�moves: the
payo¤s will be speci�ed in detail below.

The problem

From the above it is clear that the monopolist would want to o¤er fee schedules
(p; F a0 ) and

�
p; F b0

�
with F a0 > F b0 . But if it is possible for a high-demand a-type

consumer to masquerade as a b-type �i.e. to claim a b-type contract, though he
�should�have an a-type contract �then he would certainly do so, because utility
is decreasing in the component F0: it always pays to �nd a contract with a lower
�xed charge. This is a standard example of the problem of �adverse selection�.
If so then, de facto, we have a situation known as pooling where di¤erent types
get exactly the same contract. The monopolist�s pro�ts are lower under pooling
relative to the full-information solution. But can it avoid this situation? Should
it do so?
The answers to these questions these questions are yes and yes. To see

why examine Figure 11.6. The slope p of each of the budget lines in each case
is equal to marginal cost c. Under the full-information solution the �rm can
o¤er the a-type customer a contract characterised by the two-part tari¤ (p; F a0 )
that forces the customer on to the reservation utility level �a, but which will
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be (just) accepted: the a-type consumes at point x�a on the bottom budget
constraint. But if an a-customer can masquerade as a b-type he would clearly
be better o¤ consuming x�b1 and paying just F b0 + px

�b
1 in order to do so (point

x̂a on the topmost budget constraint). Now suppose that the �rm changed the
contract intended for the a-types to the two-part tari¤ (p; F a00) as illustrated by
the middle budget constraint. Now an a-type would be (just) willing to accept
this modi�ed contract giving him consumption �xa rather than pretend to be a
b-type: note that the points x̂a and �xa lie on the same indi¤erence curve. This
means that by persuading the a-type customers to move from x̂a to �xa the �rm
can increase its pro�ts relative to the masquerading outcome (the a-types are
paying a �xed charge of F a00 rather than F

b
0 ) without, of course, making any of

its customers worse o¤.8

There is an alternative argument that is also illuminating. Again start with
the pooling situation where the a-types �nd it worth while masquerading as
b-types. But now suppose that the �rm alters the fee structure by changing the
b-type contract from

�
p; F b0

�
to
�
p+ dp; F b0 � dF b0

�
where dp is a small positive

number and dF b0 is calculated to keep a low-valuation b-type exactly on the
reservation utility level �b at the new, higher unit price; we have in fact9

dF b0
dp

= xb1: (11.23)

Furthermore, because this change isolates a pure substitution e¤ect it is clear
that

dxb1
dp

����
Ub(xb)=�b

< 0: (11.24)

Consider the e¤ect of this change in contract on the utility of each of the two
types: by construction the change in the b-type�s utility is zero and, if a a-type
attempts to continue the masquerade by reducing consumption just like the
b-types, then the change in a-type utility is given by10

dUa (x̂a)

dp
=
�
�a � � b

�
 x
�
xb1
� dxb1
dp

����
Ub(xb)=�b

which, by (11.22) and (11.24), must be strictly negative. What this means is
that the small change in the b-contract leaves a genuine b-type no worse o¤,
but would make any a-type masquerading as an b-type strictly worse o¤. So,
by choosing a su¢ ciently large, compensated increase in the unit price in the
b-contract the �rm could separate the two types by making it worth while for
a-types to choose the a-contract. In so doing, of course, the �rm will increase
pro�ts from what would have happened in the pooling situation (although not
back to the pro�t level attainable under full information).

8Take the labour-monopsony example of note 7. Who has an incentive to misrepresent
himself?

9 Use (11.14) and (11.17) to show why this is so.
10 Use (11.14) and (11.23) to establish this.
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With the use of either of these two lines of argument we have established a
negative, but important, result.

Theorem 11.1 (No pooling) It is not optimal for the �rm to allow pooling
of contracts.

An approach

However, all this is suggestive: we have not yet established what the optimal
policy of the �rm should be if it cannot observe the taste parameter that a¤ects
the utility and behaviour of each of its customers. Let us see how this can be
tackled.
First let us recognise the limitations on the �rm in its quest for pro�t-

maximising fee schedule. We know that it cannot condition the fee schedule
upon the taste parameter � , but it could use the information from customer
demands to reveal something about their type and incorporate that information
into its planning. All a-types will consume the same amount xa1 and all b-types
will consume the same amount xb1; the amounts x

a
1 and x

b
1 can be forced to be

di¤erent by appropriate choice of fee schedule.
So the �rm�s objective function can now be written

� [F (xa1)� cxa1 ] + [1� �]
�
F
�
xb1
�
� cxb1

�
: (11.25)

Here we can also interpret this expression probabilistically: the �rm makes
contact with a customer, but does not know what the customer�s taste parameter
is: the customer has taste �a with probability � (taste � b otherwise) and (11.25)
then represents expected pro�ts. The �rm�s problem is to �nd a fee schedule
F (�) to maximise (11.25) subject, of course, to the participation constraint of
each consumer type (11.4) but also to a constraint that ensures that no-one
has an incentive to reveal false information. This problem di¤ers from that
of section 11.2.3 because of these extra incentive-compatibility constraints: we
can refer to this version as the information-constrained or second-best contract
problem.
For convenience write

F a := F (xa1)

F b := F
�
xb1
�

the total fee charged to someone with an a-type or a b-type contract respectively.
We have already seen that there is usually more than one way of implementing
a particular contract � see for example the equivalent two-part tari¤ and the
take-it-or-leave-it contract in the full-information case. To solve the monopo-
list�s second-best optimisation problem it is convenient to use the amounts sold
to each customer (xh1 ) and the total payments (F

h) as controls and treat the
problem as though it were one of selecting a take-it-or-leave-it o¤er. Later we
will return to the question of the shape of the fee schedule.
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So the problem can now be written:

max
fxa1 ;xb1;Fa;F bg

� [F a � cxa1 ] + [1� �]
�
F b � cxb1

�
(11.26)

subject to

�a (xa1)� F a � 0 (11.27)

� b 
�
xb1
�
� F b � 0 (11.28)

�a (xa1)� F a � �a 
�
xb1
�
� F b (11.29)

� b 
�
xb1
�
� F b � � b (xa1)� F a: (11.30)

Constraints (11.27) and (11.28) are the participation constraints � as be-
fore these are required to ensure that the a-types and the b-types respectively
stay in the market for good 1 rather than just consuming their bundle of other
goods. Constraints (11.29) and (11.30) are the incentive-compatibility con-
straints that are required to prevent individuals from misrepresenting informa-
tion about themselves: (11.29) ensures that an a-type would prefer the contract
intended for him rather than a b-type contract; (11.30) is the counterpart to
ensure that b-types do not masquerade as a-types.
Before proceeding to derivation of a solution it is useful to see whether the

problem speci�ed in (11.25)-(11.30) can be simpli�ed. This is done by analysing
whether each of the constraints is relevant at the optimum:

� First, note that if �>�were to hold in (11.28), then also one would have
�a (xa1) � F a > 0;11 if so it would be possible for the �rm to increase
pro�ts by increasing both F a and F b. This obviously means that the �rm
is not already maximising pro�ts and so it must be the case that at the
optimum:

� b 
�
xb1
�
� F b = 0: (11.31)

� Next, if �>�were to hold in (11.29) then this would imply that �a (xa1)�
F a > 0;12 but in turn this would mean that pro�ts could be increased by
increasing F a, without violating the incentive-compatibility constraints.
This again must mean that the �rm is not maximising pro�ts, so that at
the optimum

�a (xa1)� F a = �a 
�
xb1
�
� F b: (11.32)

� Third, given (11.32), we must have:13

�a (xa1)� F a > 0:
11 Show this by using (11.22) and (11.29).
12 Show this by using (11.22) and (11.31).
13 Show this using (11.32) and (11.31)
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� Finally, if �=�were to hold in (11.30) then this would imply that xa1 =
xb1.

14 But this is ruled out by Theorem 11.1, so at the optimum we must
have

� b 
�
xb1
�
� F b > � b (xa1)� F a:

So in practice two of the constraints � the participation constraint of the
high-valuation customer a and the incentive-compatibility constraint of the low-
valuation customer b �can be dropped because they are never binding at the
optimum. This means that the problem (11.25)-(11.30) can indeed be simpli�ed
since we only need to worry about constraints (11.31) and (11.32).

The solution

In the light of this reasoning the �rm�s optimisation problem can now be written
as a Lagrangean incorporating just two constraints:

max
fxa1 ;xb1;Fa;F bg

� [F a � cxa1 ] + [1� �]
�
F b � cxb1

�
+�
�
� b 

�
xb1
�
� F b

�
+�
�
�a (xa1)� F a � �a 

�
xb1
�
+ F b

� (11.33)

where � is the Lagrange multiplier for the participation constraint of the low-
valuation b-types (11.31) and � is the Lagrange multiplier for the incentive-
compatibility constraint of the high-valuation a-types (11.32).
The FOC for (11.33) are

��c+ ��a x (~xa1) = 0

� [1� �] c+ �� b x
�
~xb1
�
� ��a x

�
~xb1
�
= 0

� � � = 0

1� � � �+ � = 0

where ~xa1 and ~x
b
1 denote the second-best values of the consumption of good 1

by a-types and b-types, respectively. From these we see immediately � = � and
� = 1:15 so, substituting for these, we get

�a x (~x
a
1) = c; (11.34)

� b x
�
~xb1
�
=

c

1� �
1��

�
�a

�b
� 1
� : (11.35)

The left-hand side of these two expressions is just the marginal rate of substi-
tution for the two types of customer. Therefore at the optimum we have

MRSa21 = MRT21

MRSb21 > MRT21:

This establishes an important principle:
14 Use (11.32) to show this.
15 Give a brief verbal interpretation of these values of the Lagrange multipliers.
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Theorem 11.2 (No distortion at the top) In the second-best fee-setting op-
timum for the �rm the high-valuation types are o¤ered a non-distortionary (ef-
�cient) contract.

The principle carries over to richer models where there many taste levels:
the model then typically involves an incentive-compatibility constraint to make
sure that a person of each valuation type has no incentive to masquerade as
someone from the valuation type below; and for the topmost valuation type the
contract ensures that MRS=MRT.
The solution (11.34, 11.35) implies that:16

~xa1 > ~xb1 (11.36)

and that, when we compare the second-best contract with the full-information
contract, we �nd

~xa1 = x�a1 (11.37)

~xb1 < x�b1 : (11.38)

These facts are illustrated in Figure 11.7. Let us examine the structure of this
�gure.
The right-hand panel represents the income yb and preferences of Bill, a typ-

ical b-type. The point x�b, lying on the reservation indi¤erence curve �b, rep-
resents the consumption bundle that Bill would get under the full-information
contract: here MRSb21 = MRT21, the slope of the pale line in this �gure. The
second-best contract would give Bill a consumption bundle ~xb, also on the reser-
vation indi¤erence curve, but at a point where MRSb21 > MRT21; the total fee
in the second best contract is given by the amount ~F b. Note that in contrast
to the treatment of the high-valuation a-types the second-best optimal policy
requires that the �rm introduce a �distortion� into the price that e¤ectively
faces the b-types.
The left-hand panel shows the corresponding situation for Alf, a typical

a-type. The point x�a, on the reservation indi¤erence curve, represents the con-
sumption bundle that Alf would get under the full-information contract. The

point with coordinates
�
~xb1; y

a � ~F b
�
represents the consumption that Alf would

get if he took a b-type contract and the indi¤erence curve through this point rep-
resents the incentive-compatibility constraint for a a-type. The second-best con-
tract would give Alf a consumption bundle ~xa that lies on this indi¤erence curve;
this contract requires a total payment ~F a; and for both the full-information and
the second-best contract MRSa21 = MRT21.
Clearly this set of optimal contracts for the two types of customer could be

implemented by �take-it-or-leave-it�o¤ers for each type. But what sort of shape
would the fee schedule have? Clearly a simple two-part tari¤ will not work (the

16 Show that (11.36) is always true if the proportion of low-valuation types is nonzero.
Explain what features of the model yield the results in (11.37) and (11.38).
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Figure 11.7: Second-best contracts: consumption for each of the two types

two types have to be at di¤erent marginal rates of substitution), but a multipart
tari¤ would. This is illustrated in Figure 11.8: panel (1) shows the fee schedule
�note the kink at point x1 �and panel (2) the implied attainable set with which
a person of either type would be confronted, given this fee schedule; as in Figure
11.2 �ip the fee schedule in panel (1) to get the boundary of the attainable set in
panel (2). However a multipart tari¤ is not the only way of designing a suitable
fee schedule � one could do the job with, for example, a �quantity discount�
system.17

The monopoly paradigm used here is a convenient vehicle for conveying some
basic points about the model of hidden characteristics. But it is important to
realise that the issues are by no means con�ned to the special case that has been
discussed:

� First note the essentially same simple monopolistic framework can be
adapted to a variety of economic issues. For example the analysis is easily
extended to monopsony in the labour market, as in footnote questions 7
and 8;18 Exercises 11.2 and 11.3 at the end of this chapter further illus-

17 Draw a diagram similar to those used above to show that this outcome could also be
implemented by the �rm using a system of quantity discounts. [Hint: check the answer to
note 14 in Chapter 4 on page 84]
18Take the labour-monopsony example of notes 7.and 8
(a) Show how the optimal labour contract is determined by using an analogy to Figure

11.7.
(b) What is the analogy to Figure 11.8 (2)? Show that this implies a kind of �overtime�
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Figure 11.8: Second best contract: fee schedule and attainable set

trate the way the same paradigm can be applied. Chapter 12 builds on
this structure when considering further the principles of economic design.

� Second, we can relax the monopoly assumption to examine the adverse
selection model under competition.

11.2.5 Adverse selection: Competition

The results on the full-information and second-best solutions for the monopolist
are generally applicable and provide powerful insights; they also form the basis
of an important branch of economic policy prescription (see chapter 12) But
what would happen if the monopoly power of the �rm in sections 11.2.1 to
11.2.4 were to be undermined? To address this question we can apply the same
reasoning as in section 3.5 of chapter 3.
Given the fee schedule F (�), the pro�ts that the �rm makes out of the sales

to a type-h customer are

�h = F
�
xh1
�
� cxh1 : (11.39)

This can be interpreted in Figure 11.9: the piecewise linear schedule F (�) is the
fee schedule copied across from Figure 11.8 depicting the second-best contract.

payment.
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Figure 11.9: Pro�t on the contract

The straight line labelled C (�) is the cost function �again taken from the model
in in sections 11.2.1 to 11.2.4. So the vertical distance labelled �a in Figure 11.8
is therefore the amount of pro�t that the �rm would make on each customer
who accepts an a-type contract; a similar interpretation applies for �b. So, if
this situation were the case for one particular �rm, a potential entrant could
seize the opportunity of making a pro�t by introducing a fee schedule that lies
somewhere between C (�) and F (�). Such a revised fee schedule would obviously
increase the utility of at least one of the customer types.
If there were no barriers to entry (by assumption �xed costs are zero) then

it is clear that this would go on until �h in (11.39) is zero �i.e. until p
�
xh1
�
= c

for each customer type. The outcome would be an e¢ cient allocation with
MRSh21 = MRT21, for all types h.

11.2.6 Application: Insurance

The insurance market provides an important application of the insights from
the hidden-characteristics model; in particular it highlights a particularly dif-
�cult aspect of the problem of adverse selection. We will assume that there is
free entry to the insurance market so that the model of section 11.2.5 is the
appropriate starting point.

Outline of the model

A heterogeneous group of people have e¤ectively a stochastic endowment: all
individuals have the same initial wealth y0 and if state red occurs all of their
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wealth remains available for their consumption; but if state blue occurs they
su¤er a loss worth L in monetary terms. The probability of this loss di¤ers
between subgroups: each member of subgroup h knows that he or she faces a
probability of loss equal to �h.
To see the situation facing the individuals let us use Figure 11.10, a variant

on the diagram that we have already seen in Figure 8.24 (page 209). The �gure
has been split into two halves to make it easier to what is happening to each of
two types of individuals. Point P0 with coordinates (y0; y0 � L) corresponds to
the prospect that would face each individual in the absence of insurance. There
is a high-risk group of a-types (left-hand side of diagram) for each of whom
preferences are represented by the solid indi¤erence curves � the slope where
each curve intersects the 45� line is (�) 1��a�a ; there is also a low-risk group of b-
types (right-hand side of diagram) for each of whom preferences are represented
by the dashed indi¤erence curves that intersect the 45� line at 1��b

�b
; clearly

�a > �b �compare this with the right-hand panel of Figure 8.13 on page 194.
Both sets of indi¤erence curves are of the form:

�hu
�
xhblue

�
+
�
1� �h

�
u
�
xhred

�
= constant (11.40)

where the expressions

xhblue = y0 � L� phzh + zh

xhred = y0 � phzh

give consumption in the two possible states of the world. Clearly xhblue T
xhred as z

h T L. The form (11.40) ensures that the single-crossing condition is
satis�ed.19

Take a simple version of the individual�s optimisation problem. Suppose
an individual can buy insurance coverage zh at a price ph per unit of coverage
where 0 � zh � L. This means that if state blue occurs (so that the individual
su¤ers the loss L) he has the comfort of knowing that the insurance company
will pay him z; the total premium required for this service is

�h = phzh: (11.41)

We can characterise an insurance contract as a pair (zh; ph); an h-type chooses
the coverage in the light of the price ph and the risk of loss, �h. Given utility
of the form (11.40) the FOC for the maximisation problem is�

1� ph
�
�hux

�
xhblue

�
� ph

�
1� �h

�
ux
�
xhred

�
= 0 (11.42)

if 0 < zh < L, with �=�replaced by ���in (11.42) if zh = L at the optimum.
Condition (11.42) implies

ux
�
xhblue

�
ux (xhred)

=
ph

1� ph
1� �h
�h

(11.43)

19 Use an argument similar to that of note 2 to show that this is true. What would happen
if individuals di¤ered in terms of risk aversion as well as their risk characteristic?
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Figure 11.10: Insurance: e¢ cient risk allocation

for an interior solution. Clearly the right-hand side is T 1 as ph T �h. So

� If ph = �h the individual would buy full insurance (zh = L).

� If ph < �h the individual would want to over-insure.

� If ph > �h the individual would under-insure.

In the �rst of these three cases �full insurance at fair rates �the attainable
set for the a-types would be the shaded area bounded by the line P0P �a in part
(a) of Figure 11.10; and for b-types it would be the shaded area bounded by
P0P

�b in part (b) of Figure 11.10.
Now consider the model from the point of view of a �rm providing insurance.

Using the expression (11.41) for the premium, the expected pro�t made by a
�rm on a contract sold to a type-h customer is:

�h = �h � zh�h

=
�
ph � �h

�
zh: (11.44)

From this we can immediately see that the �rm avoids making a loss wherever
it can set the price for insurance such that ph � �h. This also has a nice
interpretation in Figure 11.10. We know that the slope of the line P0P �a is
1��ah
�a (left-hand side of the diagram); an insurance contract located along this

line will have pa = �a and so make zero pro�ts; contracts to the left and
below this line will have pa > �a yielding positive pro�ts; likewise contracts
located above the line will have pa < �a and would be loss-making. The same
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interpretation applies to the line P0P �b on the right-hand side of the diagram
(the extra point P �b marked on the left-hand side will be discussed in a moment)
However, we should note that in the expression for pro�ts of a typical �rm

in (11.44) there is a subtle di¤erence from the discussion of section 11.2.5. In
the standard model of a �rm or �rms serving a market, although the customer�s
characteristics will a¤ect their demand, they do not enter directly into the ex-
pression for pro�t � see equation (11.39); but here the characteristics of each
customer do explicitly enter the expression for pro�t, because the probability
�h is going to determine the expected value of the �rm�s payout to a type-h
person.

Full information

From these observations it is but a single step to see what would happen if
there were full information in the insurance market. Figure 11.10 shows the
situation where the characteristic that determines the individual�s risk type
is costlessly observable (sex? age?). Because individuals� characteristics are
observable, insurance companies can condition the price of insurance on each
person�s probability of loss. The competitive price for insurance is obviously
ph = �h and so the high-risk a-types get complete insurance coverage at P �a

and low-risk b-types get complete coverage at P �b.

Adverse selection: pooling

Now let us examine the di¢ cult, but perhaps realistic, case where insurance
companies cannot easily discern the di¤erences between risk types. To make
the point we shall make the extreme assumption that they know nothing about
an individual customer�s risk type, but they do know the distribution of risk
types in the population. To make this speci�c let us work again with the case
of two risk classes, the high-risk a-types and the low-risk b-types.
First let us note that the possibility of one type of customer trying to mas-

querade as another �the adverse selection problem �will inevitably arise, just
as in section 11.2.4. To see this we need only glance back at Figure 11.10: it is
clear that prospect P �b lies on a higher a-type indi¤erence curve than does P �a,
corresponding to the contract that a-types are �supposed�to take. This is clear
from part (a) of the diagram where the line P0P �b has been copied across from
part (b). But if high-risk a-types successfully masquerade as low-risk and take
b-type contracts (i.e. if they can attain point P �b) this is a �nancial disaster
for the insurance companies: since pb < �a the companies will expect to lose
money on every contract they sell to an a-type and, by assumption, at the point
of sale the �rms do not know which risk type the customer really is.
So, suppose instead that the insurance �rms make no attempt to distinguish

between customer types; they just try to sell insurance at a price that would be
expected to make them break even in the population as a whole. If the proportion
of a-types is  then the probability of loss in the pooled group consisting of both
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types is
� := �a + [1� ]�b (11.45)

and we can assume that the values of �a, �b and  are all common knowledge.
Obviously �a > � > �b. So, in the light of our argument on page 347, if an
insurance company o¤ers a single price for insurance at p = � then the low-
risk people would want to underinsure and the high-risk people would want to
overinsure.
Is such a �pooling�price viable? In Figure 11.11 the indi¤erence curves for

the two types and the initial endowment point P0 is just the same as for Figure
11.10. The �gure replicates the full-information contracts from Figure 11.10 as
pale grey lines; it also illustrates the o¤er of a pooled contract as the line segment
P0P with slope 1��

� . As we have just argued, because the price of insurance
p = � is high for the a-types they would not want to insure fully and would
therefore choose partial coverage that leaves them with a prospect represented
by the point P1, where the budget line is tangent to a b-type indi¤erence curve.
If a-types looked only at the terms of the contract and ignored what the other
customers in the market might be doing then they would choose P (actually
they would really like to move to a point further out along P0P but we have
supposed that over-insurance is ruled out). But, because information about
the distribution of risk-types is common knowledge, the decision that b-types
would rationally make is also common knowledge; so the a-types would use their
common sense about this and realise that if they actually selected P then they
would be revealing their true risk type to the insurance company, with obvious
consequences. Better for them to behave just like b-types and also go to point
P1.
But the situation where everyone takes the partial-coverage contract rep-

resented by P1 cannot be an equilibrium. The reason is the possibility of a
contract such as P2: if this were available the a-types would prefer it to P1 and
the b-types would not (check the �better-than-P1�sets that have been shaded
in); furthermore if a �rm o¤ered P2 it would expect to make money because
the slope of P0P2 is less than 1��a

�a , so the price at which it o¤ers the con-
tract is greater than �a. Contract P2 thus clearly dominates P1 and so we have
established:

Theorem 11.3 There is no pooling equilibrium in the insurance market.

Of course this result is not entirely surprising in view of Theorem 11.1 that
referred to monopoly provision.

Adverse selection: separation

So we have to return to the idea of the �rms trying to o¤er separate contracts
to the di¤erent risk types. We know that this has to be done in such a way
that the high-risk a-types would not �nd it worthwhile masquerading. Figure
11.12 depicts the indi¤erence curves and endowment point just as for �gures
11.10 and 11.11; once again it shows the full-information budget line for each of
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Figure 11.11: Insurance: pooling

the two risk types. Draw the a-type indi¤erence curve that passes through the
full-coverage point P �a; the point ~P b is where this curve intersects the a-type�s
full-information budget line (the slope of P0 ~P b is 1��

b

�b
). Obviously if insurance

companies allowed b-types complete freedom of choice on coverage they would
choose full coverage (zb = L); but then, as we have seen, the issue of a-types
misrepresenting themselves as b-types would emerge. So, suppose the insurance
companies restrict the choice of the low-risk b-types to just the coverage ~z < L
that allows them to reach the point ~P b. Clearly at, or near to this point, the
contracts o¤ered will separate the two groups: a-types will voluntarily go to
P �a (the contract (L; �a) ) and b-types will select ~P b (the contract (~zb; �b)).
The a-indi¤erence curve through P �a and ~P b forms the incentive-compatibility
constraint. Have we therefore found an equilibrium?
Maybe, but maybe not. The answer depends on the exact distribution of

types in the population.20 Suppose there are a lot of low-risk types � is fairly
small �such that the slope 1��

� (where � is given by 11.45) is that depicted by
the line P0P̂ . Since P̂ lies in the �better-than� sets of both types (the shaded
areas in Figure 11.12 ) it is clear that this pooling contract would dominate the
pair of contracts that we have just suggested as a separating equilibrium.
So in addition to the strong negative conclusion that there is no pooling

equilibrium we also have to accept the possibility that there may be no sepa-
rating equilibrium either. Why does this di¢ culty arise in the insurance model

20 Suppose the value of  were the same as that used in the construction of Figure 11.11.
Could a pooling contract somewher on the line P0P be used to dominate the separating
contract depicted in Figure 11.12?
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Figure 11.12: Insurance: Separating equilibrium?

when, after all no hint of this arose in sections 11.2.4 and 11.2.5? The principal
di¢ culty one that we have already �agged up: the insurance problem is some-
what special in that the pro�ts to be made on each customer depend directly
on the customer�s hidden characteristic, the risk-type �h.

11.3 Hidden characteristics: Signalling

Let us move on to a subtly di¤erent kind of �hidden-characteristics�problem:
one where the informed party makes the �rst move in the game. The move
involves making a signal which, depending on the economic context of the model,
could be a costly action such as physical investment, advertising, acquiring an
educational certi�cate or could be a costless message.
To motivate a simpli�ed version of the model let us suppose that individuals

di¤er in terms of some hidden talent � . This talent is valuable in the market,
but the di¢ culty is that the owner of the talent cannot convince the buyers in
the market that he has it without providing a signal. If it is not possible to
provide this signal a market equilibrium may not be possible.

11.3.1 Costly signals

We will begin with the case where the �signal� costs something in terms of
forgone income. Imagine that we are considering a labour market in which
there are able people with type �a and below-standard people of type � b where
�a > � b. There is a single type of job and potential employers know what the
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Figure 11.13: Signalling by workers

true product of a �a-person or a � b-person would be if only they could tell which
was which at the time of making a job o¤er.
The story can be encapsulated in the oversimpli�ed extensive-game form

depicted in Figure 11.13 that is based on Figure 10.18. It is oversimpli�ed
because the �gure assumes that workers can only make binary decisions on
education (whether or not to invest) and �rms can only make binary decisions
on wages (high or low wage): of course in each case the decision would involve
choice from a continuum of alternatives. The game has the following stages:

0. �Nature�makes the move that determines whether each individual worker
is of [LOW] or [HIGH] type. The probability of being a low type is �.

1. The individual workers decide on whether to spend time and money ac-
quiring an educational certi�cate.

2. Firms make wage o¤ers. The wage o¤ers are simultaneous so that this
stage of the game is e¤ectively Bertrand competition (compare section
10.4.2).

3. Each worker decides whether or not to accept a particular o¤er.

Let us examine stages 1-3 in more detail.
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Educational �investment�

Focus �rst on the decision by individuals about whether or not to acquire educa-
tion. Suppose it is common knowledge that talent at doing the job is identical to
talent at achieving educational credentials. Then it may be worth the person�s
while to �invest� in the acquisition of such credentials. Note that the present
discussion is in sharp contrast with the model discussed in Exercise 6.6 (page
141): in the simple model of Exercise 6.6 education worked like investment in
human capital in that it actually enhanced a person�s productivity. Here the
person�s education does nothing to enhance his or her productive ability: it is
simply an informative message or credential that �ags up innate talent; hence
the quotation marks around the word investment. Of course one could construct
more complicated combined models where education performs both the function
of signalling inner qualities and the function of enhancing productivity.
The acquisition of education requires time and money on the part of the

student. Let completed education be measured continuously by z � 0. The cost
of acquiring education z for a person with talent � is known to be C (z; �) � 0
where C is a di¤erentiable function such that

C (0; �) = 0; (11.46a)

Cz (z; �) > 0; (11.46b)

Czz (z; �) > 0; (11.46c)

Cz� (z; �) < 0 (11.46d)

This cost structure is illustrated in Figure 11.14. Note that a person of any
type faces a positive rising marginal cost of acquiring education and an able
person incurs lower cost for a given amount of education (so that C (z0; �a) <
C
�
z0; �

b
�
on the left-hand axis) and, for a given education level, has lower

marginal cost (the slopes of the two schedules at z0).
Assume that the talent indicator does not enter directly into the worker�s

utility function. The only thing that individuals care about is income so that
we can measure utility directly in terms of utility. However, if we were to write
utility (net income) in terms of gross income y and education z we have:

v (y; z; �) := y � C (z; �) ; (11.47)

the dependency of v on � , of course, arises from the fact that greater talent
reduces the cost of net income.21 Assume that a worker�s gross income y is
completely determined by his wage: if all know that the wage is conditioned on
the �signal�that they provide through the acquisition of educational credentials
then a type-� worker will choose z to maximise

w (z)� C (z; �) (11.48)

where w (�) is the wage schedule that the workers anticipate will be o¤ered by
�rms.
21Show that condition (11.46d) means that the indi¤erence curves for the utility functions

(11.47) satisfy the single-crossing condition. Illustrate this for the case where the cost of
education is given by C (z; �) = 1

�
z2.
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Figure 11.14: Costly signals

a �able�worker type
b �below-standard�worker type
C(�) cost of education
� ability parameter (�talent�)
z amount of education
� (�) productivity
w (�) wage schedule
� proportion of low-talent types
~� (�) �rms�belief function

Table 11.3: Signalling: Elements of the problem
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The �rms�decisions

Firms make wage o¤ers based on the information that is available to them about
the supposed productivities of the workers. They know that an individual with
talent � would have a marginal productivity � (�) and so, if there were full
information about these talents �rms would set a wage schedule based on talent
�each person would get paid exactly � (�). In the absence of full information
the �rms form beliefs about the talent of the individual workers presenting
themselves for employment. At the beginning of the game all they know is
that the probability of drawing a below-standard person at random from the
population is �. After the workers have made their education decisions the �rms
update their beliefs on the basis of this new information: they design a schedule
of the form that has been assumed in (11.48). The beliefs form an integral part
of the equilibrium of model. It remains to characterise what that equilibrium
is.
We need to distinguish between two types of equilibria, separating and pool-

ing equilibria, corresponding to the cases that we have previously distinguished
in models of adverse selection (see pages 340 and 349-350).

Separating equilibria

First we examine the case where the educational certi�cate seems to ful�l exactly
the job that it is supposed to do. Higher ability is signalled by an appropriate
education quali�cation and workers of each type are paid exactly their marginal
products, � (�a) and �

�
� b
�
. We can reason through the Bayesian equilibrium

verbally.
If each type of agent is maximising then neither would have an incentive to

switch to using the other�s signal. So for the talented a-types we have

� (�a)� C (za; �a) � �
�
� b
�
� C

�
zb; �a

�
(11.49)

�i.e. the net bene�t of being correctly identi�ed as an a-type must be at least
as great as the bene�t from being misidenti�ed as a b-type. Likewise for the
b-types:

� (�a)� C
�
za; � b

�
� �

�
� b
�
� C

�
zb; � b

�
(11.50)

From this we can see that rationally the able individuals would acquire more ed-
ucation than the below-standard individuals.22 Furthermore, in the very simple
model where there are just two types, at the optimum

zb = 0 (11.51)

The reason for this is that everyone knows that there are only two productivity
types, education has no innate productivity-enhancing rôle and so there is no
gain to b-types in buying any education at all. Conditions (11.49) and (11.50)

22Show that condition (11.50) implies za > zb.
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then become23

C (za; �a) � � (�a)� �
�
� b
�

(11.52)

C
�
za; � b

�
� � (�a)� �

�
� b
�

(11.53)

which implies that the optimal value of za must lie in the interval [z0; z1] where
z0 is the value that would ensure that condition (11.53) becomes an equality and
z1 is the value that would ensure that condition (11.52) becomes an equality.
Consider the position of the �rms. If a �rm is confronted with two groups of

workers, one of which comes with a positive level of education and the other with
zero education then, since it knows that there are only two levels of talent in the
population, it can reasonably form the belief that the educated applicants are
the high-talent ones. So if ~� (z) denotes the �rm�s subjective probability that a
person with education z has low ability, the belief system is very simple:

~� (0) = 1
~� (za) = 0

�
. (11.54)

In the light of this the �rm can con�dently set a wage schedule w (�) conditioned
on education such that

w (0) = �
�
� b
�

w (za) = � (�a)

�
. (11.55)

Thus there is, in fact, a family of separating equilibria with (11.54) and (11.55)
holding, low-talent optimal education given by (11.51) and high-talent education
lying somewhere in the interval [z0; z1].24 This situation is illustrated in Figure
11.15.
Take panel (i) �rst. Firms o¤er a wage schedule indicated by the curve

w (�): this �xes an attainable set for any worker shown by the solid shaded
area. A typical indi¤erence curve for a type-a person is labelled v (�; �a) (utility
is increasing in the �North-West�direction) and it is clear that such a person
maximises utility over the attainable set exactly at the point with coordinates
(za; � (�a)) Likewise a type-b (with indi¤erence curve labelled v

�
�; � b

�
) evidently

maximises utility at point
�
0; �

�
� b
��
.

However, we could expect there to be other separating equilibria and one
of these is illustrated in panel (ii) of Figure 11.15. The story set out in the
preceding paragraph could be repeated for this case, but with a higher value for
za and with the type-a people on a lower indi¤erence curve. In both panels the
cross-hatched area demarcates the interval [z0; z1] and we could have constructed
other separating equilibria with za somewhere else in this interval.
Notice that in either panel we could have redrawn the w (�)-schedule, as

long as the resulting attainable set for the workers still induced them to choose
points (za; � (�a)) and

�
0; �

�
� b
��
respectively. The shape of the w (�)-schedule

at other values of z is a re�ection of the �rms�beliefs about workers�types in
situations that do not show up in equilibrium. So the characterisation of the

23Show this.
24Use a diagram like Figure 11.15 to show how z0 and z1 are determined.
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Figure 11.15: Separating equilibria

perfect Bayesian equilibrium leaves open the form that these out-of-equilibrium
beliefs may take.25

Finally, which of these equilibria �should�emerge in practice? The require-
ments for the perfect Bayesian equilibrium do not help us to select among the
separating equilibria, but common sense may do so. Since an a-type�s payo¤
is strictly decreasing in za throughout the interval [z0; z1] it is clear that any
equilibrium that puts za > z0 is Pareto-dominated by the equilibrium at z0:
education level z0 is the minimum-cost signal for the talented a-types. It would
be nice if we could just assume away the Pareto-dominated equilibria as uninter-
esting, but, from chapter 10 we know that there are important cases of strategic
interaction that inevitably end up at Pareto-dominated outcomes. We need a
proper argument, based on the reasonableness of such an equilibrium.
So is an equilibrium at za > z0 �reasonable�? Note that, from Figure 11.15,

such an equilibrium requires a wage schedule that sets w (z0) < � (�a) for any
z0 greater than z0 and less than za. This means that �rms must be assigning
the belief ~� (z0) > 0. But imagine that someone were observed to deviate from
the equilibrium and to choose z0. Who could this be? Even if a b-type were
con�dent that he could pass himself o¤ to �rms as an a-type in this region it is
clear that the b-type indi¤erence curve passing through (z0; � (�a)) lies strictly
below the b-type indi¤erence curve through

�
0; �

�
� b
��
(z0 lies in the interior of

the interval marked by crosshatching). So, even if he were wildly optimistic, a

25Let z0 2 [z0; z1]. Sketch the w (�) schedule that corresponds to the beliefs that a worker
with z < z0 must be of type b and all others are of type a. Show the separating equilibrium
in this case.
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b-type would know that he would be worse o¤ than in the separating equilibrium
and so would never go to (z0; � (�a)). Therefore, if there were someone at z0

out of equilibrium, it would have to be an a-type. An intuitive criterion of
assigning beliefs out of equilibrium therefore suggests that ~� (z0) = 0, for any
such z0. The implication of this intuitive criterion is that the only separating
equilibrium worth considering is the one that places the a-types at (z0; � (�a))
and the b-types at

�
0; �

�
� b
��
.

Pooling equilibria

On the other hand, it may be the case that there are equilibria where the
educational signal does not work. It may be that the distribution of talents
and the relationship between marginal productivity and talent is such that no-
one �nds it pro�table to �invest� in education or, possibly, that all workers
�nd themselves compelled to acquire the same speci�c amount of education z�.
Again let us reason through the equilibrium conditions.
Here the �rms have no usable information on which to update their beliefs

�by assumption all workers present themselves with the same credentials and
are therefore indistinguishable. So �rms� beliefs are just those derived from
common knowledge about the distribution of talent in the population. The
expected marginal productivity is26

E� (�) := [1� �]� (�a) + ��
�
� b
�

and this is exactly the wage o¤ered to any job applicant.
Figure 11.16 panel (i) represents a typical pooling equilibrium. As in Figure

11.15 the wage schedule forms the boundary of the attainable set for any worker
(the heavily shaded area). However in this case it is clear that a worker of either
type will maximise utility at the point (z�; E� (�)). Given the wage schedule
on o¤er type a people �nd that the cost of acquiring additional education to
distinguish themselves from the common herd does not pay. On the other hand
b-type people dare not enter the market with less than z� for fear of being
identi�ed as below-standard and therefore being paid less than the net income
that they currently receive. If this is to be a serious worry to this group then it
must be true that z� < z2 where z2 is found from27

C
�
z2; �

b
�
= [1� �]

�
� (�a)� �

�
� b
��

(11.56)

However, once again the equilibrium is not unique. Panel (ii) shows another
pooling equilibrium that ful�ls the conditions described in the previous para-
graph but with a higher equilibrium value of z�. Other such equilibria can be
found for values of z� in the interval [0; z2] where z2 is given by (11.56). This
range of education values for which pooling equilibria are feasible is indicated
by the cross-hatched area in Figure 11.16.28

26Under what circumstances would be in the interests of all workers if educational institu-
tions were banned?
27Show this. Use a diagram similar to Figure 11.16 to show how z2 is determined.
28However, the intuitive criterion mentioned on page 359 indicates that all of these pool-
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Figure 11.16: Pooling equilibria

11.3.2 Costless signals

E¤ectively costless signals are all around us �manufacturers�assurances of qual-
ity, promises by service deliverers and so on. Whether they work is another mat-
ter. This is a di¢ cult area so that we will highlight the issue with a simpli�ed
example.
There are N risk-neutral persons with a shared project. Each person chooses

whether or not to participate, denoted by an e¤ort indicator zh that can take
the values 1 or 0 respectively. Output is given by

q = �
�
z1 � z2 � z3 � :::

�
where 0 < � < 1. The output is a public good so that, for all h, consumption is
xh = q. Agent h incurs a cost of participation ch that is known to himself, but
unknown to others; it is common knowledge that these costs are rectangularly
distributed on the interval [0; 1] (so that Pr

�
ch � c

�
= c �see page 519). The net

payo¤ to each agent is simply xh� ch. Suppose we take this as a simultaneous-
move game where the actions are the participation decisions by each agent.
Then the Nash equilibrium is zh = 0 for all h, as long as � is strictly less than
1.29 The problem is that each runs the risk of incurring cost ch while getting
consumption xh = 0.

ing equilibria be rejected in favour of the separating equilibrium that places the a-types at
(z0; � (�a)) and the b-types at

�
0; �

�
�b
��
. Show why this is so using an argument similar to

that on page 359.
29Show that this is true. [Hint: �nd the probability that h participates on the assumption

that each of the other agents participates with given probability �.]
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However suppose we introduce a preliminary stage to the game where each
agent has the opportunity to signal his or her intention as follows:

1. Each agent announces [YES] or [NO] to all the others.

2. Each agent then decides whether or not to participate.

Then there is an equilibrium in which the following occurs

1. Each agent h announces [YES] if and only if ch < �.

2. Each agent selects zh = 1 if and only if all agents have previously an-
nounced [YES].

In this equilibrium agents no longer run the risk of wasted e¤ort since if
there are genuinely high-cost individuals present that inhibit completion of the
project, this will be announced at the signalling stage of the game.
Obviously there are also equilibria that contains worthless information �for

example if everyone announced a decision to participate without checking their
own costs �rst. However it is clear from the example that it is possible for there
to be a signalling equilibrium that imparts useful information, even though the
signal is costless.

11.4 Hidden actions

Now for a di¤erent version of the informational problem. We are going to con-
sider an outline treatment of the �hidden actions�paradigm in microeconomics.
This issue pops up under a variety of names including the �Principal-and-Agent�
problem or (borrowed from the insurance industry) the problem of �moral haz-
ard.�

11.4.1 The issue

The main point can be encapsulated in the following brief description. Imagine
that one economic actor undertakes a transaction with another in which the
outcome is critically a¤ected by a blend of luck and e¤ort on the part of one
of the two parties involved. This �blending� is such that it is impossible to
disentangle the separate contribution of luck and of e¤ort to the outcome; it
therefore means that it is impossible to set up a veri�able payment system
based on e¤ort; it also means that information about a state of the world is
partially hidden.
In this thumbnail sketch we have an important component of the elementary

theory of contracts. The contract serves as a payment schedule that takes
account of the informational problem just described.
However, there is a slight terminological di¢ culty concerning the two eco-

nomic actors in this story. The type of problem that we will discuss is essentially
a �master-and-servant�situation where the servant has a motive to pretend to
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be doing more than he really is in ful�lment of his duties. It is commonly
known, perhaps less pejoratively, as the Principal-and-Agent problem; but here
the term �Agent�is rather narrowly de�ned. Contrast this to the general terms
of previous usage of �agent�as essentially equivalent to �actor��i.e. any indi-
vidual, �rm or other organisation that takes action within one of our economic
models. Following the usage of other authors I shall refer to Agent with a capital
�A�when I mean speci�cally the one in the Principal-and-Agent model, while
I have used �agent�(small �a�) for the general run of the dramatis personae in
the economic stories considered elsewhere in the book.

11.4.2 Outline of the problem

Alf is hired by Bill to do a job of work. There is a single output q, and Bill the
boss (i.e. the Principal) pays Alf, the Agent, a total wage payment w measured
in terms of this output. The central problem is that, as they both know, the
level of output depends on two factors

1. the amount of e¤ort, z, that Alf decides to put into the job and

2. the state-of-the-world ! (the weather?).

The idea is that e¤ort is just an invisible input in production. The further
di¢ culty is that, as they also both know, it may not be possible to determine
the exact contribution of the random in�uences to output even ex post �after
the state-of-the-world ! has been realised.
The Principal (Bill) o¤ers the Agent (Alf) a wage w for the work. In principle

Alf and Bill may agree to the wage w being tied to (contingent on) q, z, or !:
the way that this is to be done will depends on the information structure of
the problem �can z, or ! actually be observed? Following the usage of section
11.2 we shall refer to w as a wage schedule; discussion of the speci�cation of this
schedule needs to be deferred until other parts of the model have been examined.
The time sequence is shown in Figure 11.17. Nature decides on a particular

state of the world ([Red] or [Blue]). Bill, the Principal cannot observe this at
the time he draws up a wage schedule. In the light of this Alf decides whether
or not to work hard. Again the payo¤s at the last stage of the game will be
discussed once we have set out the model details.
However, even before specifying the detail , it is intuitively clear that the

possible lack of information will undermine the control that Bill can exercise
over Alf. Being forced to use a second-best policy Bill will be able to capture
less pro�t than would have been the case if had full information about Alf�s
activity. The agency cost is the expected net payo¤ for the Principal under full
information less what it is in the second-best situation.

11.4.3 A simpli�ed model

In order to examine the nuts and bolts of the economic problem we start with
a simpli�ed version and then (in section 11.4.4) move on to something that is
richer and more interesting. The simple version is a �two-by-two�set-up:
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Figure 11.17: Principal-and-Agent

� there are just two possible levels of production (�failure�, �success�) that
can be achieved:

q = q or q where q > q:

� there are also just two possible levels of e¤ort (�shirk�, �work�) by the
Agent.

z = z or z where z > z:

The probability of q (success) is � (z) where � (�) is an increasing function of
e¤ort, so that � (z) > � (z). So whether one gets failure or success depends both
on e¤ort and on a random component; working harder biases the distribution
in favour of good outcomes. All of this is common knowledge.
Alf the agent has preferences represented by:

Eua (xa; z) (11.57)

where ua is increasing in its �rst argument (the wage payment) and decreasing
in the second argument (e¤ort). If the Agent has no other source of income
then

xa = w. (11.58)

For the moment we will suppose that Bill as the Principal is risk neutral and
gets all the output that is not paid as wages to Alf. So Bill�s utility is the
expected value of his consumption Exb, where xb is given by

xb = q � w. (11.59)
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As with the discussion of section 11.2 how the two parties interact depends
crucially on the availability of information.

Full information

We can be brief here. If Bill can observe exactly how hard Alf is working then we
can deduce everything from some elementary reasoning based on the principles
we have considered in previous chapters.
Assume that Bill the Boss has �rst move. He can therefore devise a take-it-

or-leave-it contract for Alf the Agent. Because Bill can observe the e¤ort that
Alf actually makes, Bill can make the wage contingent on e¤ort such that Alf
is forced down on to his reservation utility �a, the utility that Alf could get in
some alternative activity.
The participation constraint for this problem is therefore

ua (w; z) � �a

where z is a given e¤ort level. Because Bill can fully observe what Alf does and
has the opportunity to set the terms of the transaction he can force Alf to a
wage level so that this constraint binds:

ua (w; z) = �a (11.60)

from which we get w = w (z) as the wage that will just induce Alf to participate
and provide e¤ort level z.
The principal�s aim is to choose the wage o¤er to maximise his expected

payo¤ Exb subject to the constraint (11.60). Formally we could represent this
problem as the standard Lagrangean

max
fwg

Eq � w + � [ua (w; z)� �a] (11.61)

but in the two-by-two case we can set out the problem even more simply. Know-
ing that Alf the Agent can only supply one of exactly two e¤ort levels, Bill as
the Principal would correspondingly o¤er only one of two wages �either w (z)
or w (z). These two o¤ers yield, respectively, the following expected payo¤s for
Bill

Eq � w (z) (11.62)

Eq � w (z) (11.63)

where E denotes the expectation when the probability of success is that gen-
erated by high e¤ort, � (z) and E is the corresponding expectation when the
probability � (z), that generated by low e¤ort.
Because Bill can observe and monitor Alf he can, in e¤ect, choose the e¤ort

level that Alf will put in. Clearly Bill will make the choice simply on the basis
of which of the two expressions (11.62), (11.63) is the greater. Bill will force the
higher e¤ort level if, and only if, the gain in expected output Eq � Eq exceeds
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Figure 11.18: Full-information contracts

w (z)�w (z), the increment in wage needed to get the extra e¤ort. The essence
of the story is depicted in Figure 11.18, based on the Edgeworth-box diagram
of Figure 8.21 (page 204). The 45� line through Oa is Alf�s certainty line; two
families of a-indi¤erence curves have been drawn in, the shallow ones for low
e¤ort level z (yielding probability to � (z)) and the steep ones for high e¤ort z;
likewise there are two shaded areas indicating reservation utility in the low-e¤ort
and high-e¤ort cases. Likewise the 45� line through Ob is Bill�s certainty line;
Bill being risk-neutral has straight-line indi¤erence curves; again two sets have
been drawn in corresponding to the two probabilities � (z) and � (z) Given that
e¤ort can be observed, Bill�s wage o¤ers to Alf can be tailored to z as shown:
in this case Bill wants Alf to produce high e¤ort level with the corresponding
wage w (z) (compare this with the answer to Exercise 8.15 on page 225).
Although we do not need it to characterise the solution to this simple prob-

lem, it is useful for future reference to check the FOC for the Lagrangean (11.61).
Take a given e¤ort level z and di¤erentiate (11.61) with respect to w. We im-
mediately �nd

1

uax (w; z)
= �: (11.64)

The interpretation of (11.64) accords with common sense: the marginal cost
(measured in terms of consumption) of increasing Alf�s utility exactly equals
the price on the participation constraint, �.
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Hidden information

Now assume that Bill cannot observe e¤ort z but that q, the combined outcome
of e¤ort and the random state-of-the-world !, is common knowledge. The fact
that information is hidden means that it is impossible for Bill to condition the
wage o¤er on the actual level; this limitation loosens his grip on power over Alf.
What Bill can do is condition the wage on the observed output: instead of

a payment-for-e¤ort scheme one substitutes a payment-by-results scheme, even
though the results are not entirely of the Agent�s making. So we now have a
wage schedule that will yield w

�
q
�
in the event of failure and w (q) in the event

of success.
If Bill wants Alf to choose the high-e¤ort level z then he must ensure that

Alf�s expected utility at z is no less than the utility level �a, the best that he can
do for himself elsewhere. In this case the participation constraint now becomes

� (z)ua (w; z) + [1� � (z)]ua (w; z) � �a (11.65)

To ensure that Alf does not shirk the structure of payments must be such that
expected utility is higher when Alf works hard. This requires that the following
incentive compatibility constraint be satis�ed:

� (z)ua (w; z) + [1� � (z)]ua (w; z) (11.66)

� � (z)ua (w; z) + [1� � (z)]ua (w; z)

or equivalently
Eua (w; z) � Eua (w; z) :

So, the problem facing Bill, the Principal, is to maximise expected pro�t
subject to the participation and incentive-compatibility constraints; this can be
expressed as

max
fw;wg

� (z) [q � w] + [1� � (z)]
�
q � w

�
subject to (11.65) and (11.66). Assuming that the Bill wants to ensure that Alf
puts in serious e¤ort (z = z) then, to solve the problem, set up the Lagrangean

max
fw;wg

� (z) [q � w] + [1� � (z)]
�
q � w

�
+� [� (z)ua (w; z) + [1� � (z)]ua (w; z)� �a]
+�[� (z)ua (w; z) + [1� � (z)]ua (w; z)
�� (z)ua (w; z)� [1� � (z)]ua (w; z)]

where, again, � is the Lagrange multiplier on the participation constraint (11.65)
and � is the Lagrange multiplier on the incentive-compatibility constraint (11.66).
Di¤erentiating the Lagrangean:

�� (z) + �� (z)uax (w; z) + � [� (z)uax (w; z)� � (z)uax (w; z)] = 0 (11.67)

� [1� � (z)] + � [1� � (z)]uax (w; z)
+� [[1� � (z)]uax (w; z)� [1� � (z)]uax (w; z)] = 0

(11.68)
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where uax is the Agent�s marginal utility of consumption.
If the function ua is additively separable then the marginal utility of con-

sumption uax (w; �) is independent of z and so, from the FOCs (11.67), (11.68),
we get:30

� (z)

uax (w; z)
+
1� � (z)
uax (w; z)

= � (11.69)

1

uax (w; z)
= �+ �

�
1� � (z)

� (z)

�
(11.70)

The interpretation of (11.69) can be seen as a straightforward extension
of the full-information case (11.64). The left-hand side of (11.69) can be ex-
pressed as E (1=uax (w; z)); so the price of the participation constraint is equal
to the expected marginal cost of increasing Alf�s utility. Solving for � from
(11.69) and (11.70) we can see that at the optimum � > 0 �the price on the
incentive-compatibility constraint is strictly positive in the hidden-information
case.31 From (11.70) we can then see that the marginal cost of utility in the
�success� state equals the price of of the participation constraint (�) plus the
price of the incentive-compatibility constraint (�) times an expression involving
the likelihood ratio � (z) =� (z).
The outcome is illustrated in Figure 11.19, based on Figure 11.18. Given that

Bill wants Alf to exert high e¤ort the participation constraint is represented by
the shaded are labelled PC. The incentive-compatibility constraint is indicated
by the shaded area labelled IC: notice that the boundary of this passes through
the point where Alf�s low-e¤ort reservation indi¤erence curve intersects his high-
e¤ort reservation indi¤erence curve. The intersection of these two areas (heavily
shaded) is the constraint facing Bill in the second-best case. He attains his
highest indi¤erence curve, subject to being in this area by o¤ering the contract
indicated by the point (w;w).

11.4.4 Principal-and-Agent: a richer model

It is time to generalise the Principal-and-Agent model of section 11.4.3 in three
important ways:

� We the drop the arti�cial assumption that there are only two possible
e¤ort levels to allow for something similar to that in the conventional
model of labour supply (section 5.3.1 on pages 103 ¤.)

� We likewise allow for the possibility that there is a large number of possible
states of the world !.

� We allow for a more general preference structure on the part of the Prin-
cipal.

30Show how (11.69) and (11.70) are derived.
31Show this.
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Figure 11.19: Second-best contracts

However, despite these enrichments of the model we will �nd that many of
the principles of the simple model in section 11.4.3 carry over.
In the generalised version of the Principal-and-Agent story we need to model

the dependency of output on e¤ort and the unseen random element. The de-
pendency is represented by the following production function

q = �(z; !) (11.71)

where we take z as lying in the interval [0; 1] and ! 2 
, some interval of values
of the possible states of the world.
Bill the Boss has a von Neumann-Morgenstern utility function which depends

solely on his own consumption. as in the simpli�ed model,once he has paid Alf,

! state-of-the-world
z e¤ort
q output
� (�) production function
w (�) wage schedule
ua (�) Agent�s cardinal utility
ub (�) Boss�s cardinal utility

Table 11.4: Principal and Agent: Elements of the Problem
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he has the rest of the output available for his own consumption, so that his
utility is

Eub
�
xb
�
= Eub (q � w) (11.72)

where E denotes expectation taken over the probability distribution of the states
of the world !. Alf the Agent has a utility function which depends on his own
consumption and on e¤ort z where now 0 � z � 1. So his utility is again given
by (11.57) and (11.58).. Now let us consider the optimisation problems of these
two parties.
Alf takes as given the wage schedule �not just a particular wage level �and

selects his e¤ort z so as to maximise his utility (11.57). This maximisation takes
place subject to the counterpart to (11.65), the participation constraint:

Eua (w; z) � �a (11.73)

In the manner of a Stackelberg leader the Principal (Bill) takes as given
the responses of the Agent (Alf) to the wage schedule. Working backward
to the stage where he takes the decision, the Principal can build the Agent�s
responses into his problem of designing the wage schedule. We will pursue this
optimisation problem under two information regimes, corresponding to those
that we brie�y reviewed in the simple model of section 11.4.3: where Alf�s e¤ort
is observable, and where it is not observable.

Observable e¤ort

Suppose Bill can monitor the e¤ort level z being put in by Alf. This is equivalent
to both parties, Principal and Agent, being able to determine unambiguously
the precise contribution of ! to output. The two parties could then agree to
conditioning the wage schedule upon the random element : they would then
specify a wage schedule w(�) where w(!) is the wage payment to be made if
state-of-the-world ! is realised.
Bill the Principal would choose w(�) so as to maximise his own utility. He

arranges this by setting, in e¤ect, a wage level for every possible state-of-the-
world that could occur (every ! 2 
). Moreover, because Bill has complete
freedom to specify the wage schedule, and because he can observe the e¤ort
level z, he can in e¤ect treat Alf�s e¤ort as though it were his own control
variable. However, once again, Bill has to do all this in the knowledge that,
if he is too demanding, Alf can pack his bags and go and get �a elsewhere.
Bill�s problem can be stated as �choose w(�) to maximise (11.72) subject to
(11.71) and the participation constraint (11.73).� This can be represented as
the Lagrangean:

max
fw(�); zg

Eub (�(z; !)� w(!)) + � [Eua (w(!); z)� �a] : (11.74)

Since w(!) may be speci�ed separately for each ! 2 
, the �rst order con-
ditions for an interior solution to (11.74) can be found in the usual way. We
equate to zero the di¤erential of (11.74) with respect to each w(!), thus:

�ubx (q � w(!)) + �uax (w(!); z) = 0 (11.75)
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for all ! 2 
, and we do likewise for the di¤erential with respect to z, so as to
give:

E
�
ubx (�(z; !)� w(!))�z(z; !)

�
� �Euaz (w(!); z) = 0 (11.76)

where the subscripts denote the appropriate partial derivatives. These two
conditions immediately yield:

ubx (q � w(!))
uax (w(!); z)

= � (11.77)

E
�
ubx (�(z; !)� w(!))�z(z; !)

�
Euaz (w(!); z)

= � (11.78)

Combining (11.77) and (11.78) we get

E
�
ubx (�(z; !)� w(!))�z(z; !)

�
� E

�
uaz (w(!); z)

uax (w(!); z)
ubx (q � w(!))

�
= 0 (11.79)

Since the marginal utilities in (11.77) are positive, we see that the Lagrange
multiplier � is also positive, and thus constraint (11.73) is binding. What this
means is that if Bill the boss has perfect information, he drives Alf the agent
down on to his reservation utility �a.
Observe also that in the special case where the Principal is risk neutral (so

that utility is a constant, independent of !) the key equation (11.79) may be
used to give the result

E�z(z; !) = E
�
uax (w(!); z)

uaz (w(!); z)

�
(11.80)

or, put in plain language:

expected expected
=

MRTS MRT

What we �nd therefore is that, under these circumstances where e¤ort is
observable, optimisation by the Principal (Bill the boss) ensures that the Agent
(Alf) acts in a fashion that is familiar from chapters 7 and 9. The expected mar-
ginal willingness to supply e¤ort (MRTS) exactly equals the expected marginal
product of e¤ort (the MRT). This situation �although it forces Alf the agent
down on to his reservation utility � is clearly ex-ante Pareto e¢ cient. Once
again we have the interesting condition of exploitative e¢ ciency.

Unseen e¤ort

Now suppose that it is not possible to observe e¤ort. What this means is that
you cannot distinguish the separate roles of z and ! in the production of output.
It is equivalent to saying that you cannot directly and costlessly verify which
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state-of-the-world has occurred: all you can see is a probability distribution of
output q. Even though this probability distribution is driven by the weather
we cannot introduce weather into the model. However it is common knowledge
that the worker�s e¤ort z will shift the distribution. To capture this write the
density function of q as f(q; z), where z acts as a shift parameter: the assumed
impact of this parameter on the distribution of output is illustrated in Figure
11.20. Notice that we have assumed:

� The support of the distribution of output is bounded above and below

� The bounds on the support [q; q] are publicly known.

� The values q and q are not shifted by z.

Let us introduce the �proportionate shift� in the probability distribution
from a small increase in z:

�z :=
fz(q; z)

f(q; z)
(11.81)

We see that �z is negative for low values of q, and positive for high values of q,
and that32

E�z = 0: (11.82)

Alf the agent�s maximand (11.57) can now be written as

Eua (w (q) ; z) =
Z q

q

ua (w (q) ; z) f(q; z)dq (11.83)

Maximising this with respect to z gives the FOC:

@Eua (w(q); z)
@z

= E (ua (w (q) ; z)�z) + Euaz (w; z) = 0 (11.84)

The �rst term in (11.84) gives the marginal change in expected utility if the
probability density were to be shifted in the direction of more favourable qs (as
illustrated in the Figure); the second term is the expected marginal utility of
leisure. Equation (11.84) implicitly determines a particular value of z for any
given payment schedule w(�): this behavioural condition acts as an e¤ective
constraint on the choice problem that the Principal has to solve in selecting
w(�).
Bill the boss chooses the wage schedule w(�)�a value w(q) for each realisation

of q �and manipulates Alf�s e¤ort z. Bill does this so as to maximise his own
utility (11.72) subject to two constraints:

� Alf�s participation constraint (11.73): Bill must take into account that Alf
can exercise his outside option and refuse to accept any wage o¤er.

32Use the standard property of a probability density function to explain why this is so.
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Figure 11.20: E¤ort shifts the frequency distribution

� Alf�s �rst order condition (11.84): Bill recognises that Alf can privately
adjust e¤ort z to suit himself.

Setting the problem out formally we see that Bill now tries to solve the
problem:

max
fw(�);zg

Eub (q � w(q)) + � [Eua (w(q); z)� �a] + �
�
@Eua (w(q); z)

@z

�
(11.85)

where � and � are the Lagrange multipliers for the participation constraint
(11.73) and the behavioural constraint (11.84). In solving this we shall simplify
the problem further by assuming that Alf�s marginal utility of leisure is inde-
pendent of income so that uazx � 0. So, let us derive the �rst order conditions
for the above problem. Di¤erentiating (11.85) with respect to w(q) and z, and
using (11.83) and (11.84), we now �nd the following two FOCs for the boss�
problem.33

First, for every output level q:

�ubx (q � w(q)) + �uax (w(q); z) + �uax (w(q); z)�z = 0: (11.86)

Second, di¤erentiating with respect to z, we must have:

E
�
ub (q � w(q))�z

�
+ �

�
@2Eua (w(q); z)

@z2

�
= 0 (11.87)

33Derive (11.86) and (11.87).
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Contrast these two equations with (11.75) and (11.76), in the full-information
case where z can be observed. The �rst term in (11.87) is positive because ub

is increasing in q; the term in [ ] must be negative in virtue of the second-order
conditions in the agent�s optimisation problem: so � is positive. Hence the
behavioural constraint (11.84) is binding at the optimum. Furthermore (11.86)
implies:

ubx (q � w(q))
uax (w(q); z)

= �+ ��z (11.88)

(cf. equation 11.77). So now we �nd that for high values of q (where �z > 0)
the ratio of marginal utilities lies above �: the payment to Alf the agent from
Bill the boss is relatively high, compared with the perfect information solution;
conversely if q turns out low (where �z < 0) then the payment to Alf from
Bill is relatively low compared with the full-information solution. As in the
adverse selection problem the presence of imperfect information again leads to
an incentive scheme that has a built-in �distortion�. The economic mechanism
designed to o¤set the inducement to misrepresentation o¤ered by the lack of
information will itself introduce an apparent distortion.
One implication of the Principal-and-Agent model is that � in contrast to

the result where e¤ort is observable �even if Bill were risk neutral he no longer
provides e¤ectively perfect insurance to Alf against the e¤ects of the weather.34

This can be seen from (11.88): putting ub1 equal to some constant we �nd that
the optimal payment solution is still to pay Alf relatively well when q is high
and poorly when q is low.

11.5 Summary

Information economics can be seen as a logical outgrowth of the theoretical
developments in chapter 10. Game-theoretic reasoning can be used to sort out
the logical structure of each of the variants of the fundamental problem that we
have addressed. In particular the perfect Bayesian equilibrium concept forms
the intellectual basis for the solution of the entire collection of models used in
this chapter. However, the method of solution often uses techniques with that
have become familiar from the earlier chapters featuring optimisation problems
under full information: the Lagrangean approach usually provides the required
tools with implicit prices on new constraints that allow for agents�behaviour
when they cannot be fully controlled.
A common feature of all of the models that we have considered here is the

way that the �known unknowns�have to be pressed into a form suitable for eco-
nomic analysis. Perhaps the most important example of this �although perhaps
the most questionable � is the appeal to common knowledge to make certain
features of the underlying probability distribution distinct and well known to
all economic agents. On top of this, if the models are to work well it is nearly

34However if Alf is risk-neutral and Bill is risk-averse then the solution in (11.86) and (11.87)
becomes equivalent to that in the risk-neutral case. Prove this.
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always necessary to introduce quite strong assumptions about the structure of
preferences and technology. In virtually every case we have used the �single-
crossing condition� for di¤erent families of indi¤erence curves in order to �nd
a tractable solution and to be able to draw interpretable conclusions from the
analysis.
Finally, let us remind ourselves of some common curiosities that emerge from

imperfect-information models.

� The possible multiplicity of equilibria �as in the signalling models (section
11.3). It is not clear that intellectual devices to reduce this plethora are
entirely convincing.

� More disturbing perhaps is the possible lack of equilibrium in some cases:
see the model of the insurance market (section 11.2.6) and some signalling
models (Exercise 11.5).

� The use of rationing and price distortions to force a second-best solu-
tion where imperfect information means that ��rst best� just cannot be
implemented.

We will see that some of these features will be particularly relevant for our
discussion of the problem of economic design.

11.6 Reading notes

Good introductions to the economics of information and the theory of contracts
are provided in Macho-Stadler and Pérez-Castrillo (1997) and in Salanié (1997).
An overview of the issues is provided by Arrow (1986). The classic reference on
adverse selection, screening and the economics of insurance markets (on which
subsection 11.2.6 is based) is Rothschild and Stiglitz (1976).
The classic papers on the economics of signalling are Akerlof (1970) and

Spence (1973). The intuitive criterion is attributable to Cho and Kreps (1987).
The case of costless signals �so called �cheap-talk�models �is treated in Craw-
ford and Sobel (1982). A good introduction is in Salanié (1997), pages 95¤ on
which the example in section 11.3.2 is based.
For an introduction to the Principal-and-Agent model see Ross (1973) and

for a thorough treatment refer to La¤ont and Martimort (2002). The classic pa-
pers are Holmström (1979) and Mirrlees (1999); for the diagrammatic treatment
using the Edgeworth box see Ricketts (1986).

11.7 Exercises

11.1 A �rm sells a single good to a group of customers. Each customer either
buys zero or exactly one unit of the good; the good cannot be divided or resold.
However it can be delivered as either a high-quality or a low-quality good. The
quality is characterised by a non-negative number q; the cost of producing one
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unit of good at quality q is C(q) where C is an increasing and strictly convex
function. The taste of customer h is �h � the marginal willingness to pay for
quality. Utility for h is

Uh (q; x) = �hq + x

where �h is a positive taste parameter and x is the quantity of consumed of all
other goods.

1. If F is the fee required as payment for the good write down the budget
constraint for the individual customer.

2. If there are two types of customer show that the single-crossing condition
is satis�ed and establish the conditions for a full-information solution.

3. Show that the second-best solution must satisfy the no-distortion-at-the-top
principle (page 343).

4. Derive the second-best optimum.(Mussa and Rosen 1978)

11.2 An employee�s type can take the value �1 or �2, where �2 > �1. The
bene�t of the employee�s services to his employer is proportional to z, the amount
of education that the employee has received. The cost of obtaining z years of
education for an employee of type � is given by

C (z; �) = ze�� :

The employee�s utility function is

U(y; z) = �e�y � C (z; �)

where y is the payment received from his employer. The risk-neutral employer
designs contracts contingent on the observed gross bene�t, to maximise his ex-
pected pro�ts.

1. If the employer knows the employee�s type, what contracts will be o¤ered?
If he does not know the employee�s type, which type will self-select the
�wrong�contract?

2. Show how to determine the second-best contracts. Which constraints bind?
How will the solution to compare with that in part 1?

11.3 A large risk-neutral �rm employs a number of lawyers. For a lawyer of
type � the required time to produce an amount x of legal services is given by

z =
x

�

The lawyer may be a high-productivity a-type lawyer or a low-productivity b-type:
�a > � b > 0. Let y be the payment to the lawyer. The lawyer�s utility function
is

y
1
2 � z:

and his reservation level of utility is 0. The lawyer knows his type and the �rm
cannot observe his action z: The price of legal services are valued is 1.
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1. If the �rm knows the lawyer�s type what contract will it o¤er? Is it e¢ -
cient?

2. Suppose the �rm believes that the probability that the lawyer has low pro-
ductivity is �: Assume � b � [1� �] �a: In what way would the �rm then
modify the set of contracts on o¤er if it does not know the lawyer�s type
and cannot observe his action?

11.4 The analysis of section 11.2.6 was based on the assumption that the in-
surance market is competitive. Show how the principles established in section
11.2.4 for a monopolist can be applied to the insurance market:

1. In the case where full information about individuals�risk types is available.

2. Where individuals�risk types are unknown to the monopolist.

11.5 Good second-hand cars are worth �a1 to the buyer and �
a
0 to the seller

where �a1 > �a0. Bad cars are worth �
b
1 to the buyer and �

b
0 to the seller where

�b1 > �b0. It is common knowledge that the proportion of bad cars is �. There is
a �xed stock of cars and e¤ectively an in�nite number of potential buyers

1. If there were perfect information about quality, why would cars be traded
in equilibrium? What would be pa and pb, the equilibrium prices of good
cars and of bad cars respectively?

2. If neither buyers nor sellers have any information about the quality of an
individual car what is p, the equilibrium price of cars?

3. If the seller is perfectly informed about quality and the buyer is uninformed
show that good cars are only sold in the market if the equilibrium price is
above �a0.

4. Show that in the asymmetric-information situation in part 3 there are only
two possible equilibria

� The case where pb < �a0: equilibrium price is pb.

� The case where p � �a0: equilibrium price is p.
(This is a version of the �Lemons model��Akerlof 1970)

11.6 In an economy there are two types of worker: type-a workers have pro-
ductivity 2 and type-b workers have productivity 1. Workers productivities are
unobservable by �rms but workers can spend their own resources to acquire edu-
cational certi�cates in order to signal their productivity. It is common knowledge
that the cost of acquiring an education level z equals z for type-b workers and
1
2z for type-a workers.

1. Find the least-cost separating equilibrium.
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2. Suppose the proportion of type-b workers is �. For what values of � will
the no-signalling outcome dominate any separating equilibrium?

3. Suppose � = 1
4 . What values of z are consistent with a pooling equilibrium?

11.7 A worker�s productivity is given by an ability parameter � > 0. Firms
pay workers on the basis of how much education, z, they have: the wage o¤ered
to a person with education z is w (z) and the cost to the worker of acquiring an
amount of education z is ze�� .

1. Find the �rst-order condition for a type � person and show that it must
satisfy

� = � log
�
dw (z�)

dz

�
2. If people come to the labour market having the productivity that the em-
ployers expect on the basis of their education show that the optimal wage
schedule must satisfy

w (z) = log (z + k)

where k is a constant.

3. Compare incomes net of educational cost with incomes that would prevail
if it were possible to observe � directly.

11.8 The manager of a �rm can exert a high e¤ort level z = 2 or a low e¤ort
level z = 1. The gross pro�t of the �rm is either �1 = 16 or �2 = 2. The
manager�s choice a¤ects the probability of a particular pro�t outcome occurring.
If he chooses z, then �1 occurs with probability � = 3

4 , but if he chooses z then
that probability is only � = 1

4 . The risk neutral owner designs contracts which
specify a payment yi to the manager contingent on gross pro�t �i. The utility
function of the manager is u(y; z) = y1=2 � z, and his reservation utility � = 0.

1. Solve for the full-information contract.

2. Con�rm that the owner would like to induce the manager to take action
z.

3. Solve for the second-best contracts in the event that the owner cannot
observe the manager�s action.

4. Comment on the implications for risk sharing.

11.9 The manager of a �rm can exert an e¤ort level z = 4
3 or z = 1 and gross

pro�ts are either �1 = 3z2 or �2 = 3z. The outcome �1 occurs with probability
� = 2

3 if action z is taken, and with probability � =
1
3 otherwise. The manager�s

utility function is u(y; z) = log y � z, and his reservation utility is � = 0. The
risk neutral owner designs contracts which specify a payment yi to the manager,
contingent on obtaining gross pro�ts �i.
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1. Solve for the full-information contracts. Which action does the owner wish
the manager to take?

2. Solve for the second-best contracts. What is the agency cost of the asym-
metric information?

3. In part 1, the manager�s action can be observed. Are the full-information
contracts equivalent to contracts which specify payments contingent on ef-
fort?

11.10 A risk-neutral �rm can undertake one of two investment projects each
requiring an investment of z. The outcome of project i is xi with probability �i
and 0 otherwise, where

�1x1 > �2x2 > z

x2 > x1 > 0

�1 > �2 > 0:

The project requires credit from a monopolistic, risk-neutral bank. There is
limited liability, so that the bank gets nothing if the project fails.

1. If the bank stipulates repayment y from any successful project what is the
expected payo¤ to the �rm and to the bank if the �rm selects project i?

2. What would be the outcome if there were perfect information?

3. Now assume that the bank cannot monitor which project the �rm chooses.
Show that the �rm will choose project 1 if y � y where

y :=
�1x1 � �2x2
�1 � �2

4. Plot the graph of the bank�s expected pro�ts against y. Show that the bank
will set y = y if �1y > �2x2 and y = x2 otherwise.

5. Suppose there are N such �rms and that the bank has a �xed amount M
available to fund credit to the �rms where

z < M < Nz

Show that if �1y > �2x2 there will be credit rationing but no credit ra-
tioning otherwise (Macho-Stadler and Pérez-Castrillo 1997).

11.11 The tax authority employs an inspector to audit tax returns. The dollar
amount of tax evasion revealed by the audit is x 2 fx1; x2g. It depends on
the inspector�s e¤ort level z and the random complexity of the tax return. The
probability that x = xi conditional on e¤ort z is �i(z) > 0 i = 1; 2. The tax
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authority o¤ers the inspector a wage rate wi = w(x), contingent on the result
achieved and obtains the bene�t B(x� w). The inspector�s utility function is

U(w; z) = u(w)� v(z)

and his reservation level of utility is �. Assume

B0(�) > 0; B00(�) � 0; u0(�) > 0; u00(�) � 0; v0(�) > 0; v00(�) � 0:

Information is symmetric unless otherwise speci�ed.

1. For each possible e¤ort level �nd the �rst-order conditions characterising
the optimal contract wi i = 1; :::; n.

2. What is the form of the optimal contract when the tax-authority is risk-
neutral and the inspector is risk-averse? Comment on your solution and
illustrate it in a box diagram.

3. How does this optimal contract change if the inspector is risk-neutral and
the tax-authority is risk-averse? Characterise the e¤ort level that the tax
authority will induce. State clearly any additional assumptions you wish
to make.

4. As in part 2 assume that the tax authority is risk-neutral and the tax
inspector is risk-averse. E¤ort can only take two possible values z or z
with z > z. The e¤ort level is no longer veri�able. Because the agency
cost of enforcing z is too high the tax authority is content to induce z.
What is the optimal contract?



380 CHAPTER 11. INFORMATION



Chapter 12

Design

The ill designed is most ill for the designer �Hesiod, Opera et dies

12.1 Introduction

The topic of design is not really new to our discussion of microeconomic princi-
ples and analysis. We have already seen examples of design in chapter 11 when
we considered the rôle that participation and incentive-compatibility constraints
play in shaping fee schedules and wage schedules. We have alluded to the design
problem in chapter 9 when we mentioned the implementation problem associ-
ated with e¢ ciency and other welfare criteria. Here we will focus more precisely
on the issues that we glimpsed in those contexts.
The purpose of the discussion in this chapter is to understand the principles

that apply to the design of systems that are intended to implement a particular
allocation or social state. The design issue could be precisely focused on a very
narrow context (a single market?) or implemented at the level of the whole
economy. The �designer��the economic actor undertaking the design problem
�could be just one �rm or one person endowed with the appropriate amount
of power, or �the government�as a representative agent for all the persons in
the economy under consideration. We will �nd that a lot of headway can be
made by reusing concepts and methods from chapters 9�11. Indeed some of
the analysis can be seen as an extension and generalisation of ideas that were
introduced in the discussion of Principal and Agent.
The key problem can be summarised thus. In most of our previous work we

have assumed the existence of an economic institution that sets and administers
the rules of economic transactions: usually this was the market in some form.
Occasionally we have noted cases where the shortcomings of the institution are
evident �for example in the allocation of goods characterised by �nonrivalness�
or in the presence of externalities (see pages 245¤). Now we want to turn
this mental experiment around. Can we establish the principles which would

381
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underpin a well-functioning economic system and thereby provide guidelines for
designing such a system?

12.2 Social choice

If we are to consider the problem of economic design from scratch then we had
better be clear about the objectives of the exercise. What is it that the economic
system is supposed to achieve? We need a representation of the workings of the
economy that it is su¢ ciently �exible to permit general modelling of a variety
of individual and social objectives.
We can do this simply and powerfully by revisiting the ideas that underlay

the concepts of social welfare discussed in chapter 9. First we will reuse the
very general description of a social state � and the concept of a �pro�le� of
preferences de�ned over �, the set of all possible social states: remember that
a pro�le is just an ordered list of preference relations, one for each household
in the economy under consideration (see page 228). However, we will �nd it
more convenient to work with the notation of utility functions rather than with
the weak preference symbol �h as in chapter 9, although this tweak is little
more than cosmetic. In particular let us use the �reduced-form� representation
of the utility function that expresses utility of household (agent) h as a direct
function of the social state, vh (�) (see page 234). So in this notation a pro�le
of preferences is an ordered list of utility functions,�

v1; v2; v3; :::
�
; (12.1)

one for each member of the population; as a shorthand for a particular pro�le
(12.1) we will again use the symbol [v] and as a shorthand for the set of all
possible pro�les [v] we use the symbol V.
Two other key concepts from chapter 9 are relevant here: the constitution

and the social welfare function. To these we need to add one new concept that
�ts neatly into the language of social choice, but that has wider applicability.

De�nition 12.1 A social choice function is a mapping from the set of prefer-
ence pro�les V to the set of social states �.

So, using the utility representation agent h�s preferences, vh (�), the social-
choice function in de�nition 12.1 can be written as:

�� = �
�
v1; v2; :::

�
(12.2)

A few points to note about the social-choice function �:

� As a true function (rather than a correspondence) it selects a single mem-
ber of � once a given pro�le of preferences is plugged in.

� The arguments of � are utility functions, not utility levels: this is like the
constitution � that we de�ned in chapter 9 (page 228).
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� social state
� set of all social states
vh (�) �reduced-form�utility function for agent h
[v] =

�
v1; v2; v3; :::

�
pro�le of utility functions

V set of all possible pro�les
� social-choice function

Table 12.1: Social-choice functions: Notation

� � subsumes technology, markets, and the distribution of property in a
summary of the process that transforms pro�les of preferences into social
states. So the expression (12.2) says �you tell me what people�s preferences
are � the collection of their indi¤erence maps �and then I will tell you
what the social state should be.�

� Because its speci�cation is similar in spirit to that of the constitution it
inherits some of the di¢ culties that we have come to associate with the
constitution �see the discussion on pages 229�234.

On a grand scale we can consider the social choice function as a kind of
black box that transforms a pro�le of preferences into a social state. It is an
intellectual device that focuses attention on consumer sovereignty as a principle
governing the workings of the economy: it is as though the social choice function
lies ready for the collection of consumers to express their wishes and then brings
forth an outcome � in accordance with those wishes. On a smaller scale we can
think of this apparatus as a convenient abstraction for describing a class of
design problems that a¤ect �rms and other decision makers.
To pave the way for a more detailed analysis let us consider some possible

properties of �. First we pick up on some essential concepts from the funda-
mental aggregation problem in social-welfare analysis (it is useful to compare
these with the four axioms on page 229).

De�nition 12.2 Suppose there is some �� such that for all h and all � 2 � :
vh (��) � vh (�). Then the social-choice function � is Paretian if

�� = �
�
v1; v2; :::

�
(12.3)

De�nition 12.3 Suppose there are two pro�les [v] and [~v] such that

�� = �
�
v1; v2; :::

�
and, for all h :

vh (��) � vh (�)) ~vh (��) � ~vh (�) : (12.4)
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Then the social-choice function � is monotonic1 if

�� = �
�
~v1; ~v2; :::

�

De�nition 12.4 A social choice function is dictatorial if there is some agent
whose preferences completely determine �.

De�nition 12.2 means that if there is some social state �� that is top-ranked
by everyone, then � is Paretian if it always picks out �� from the set of social
states �. The plain-language interpretation of monotonicity (De�nition 12.3) is
that the chosen social state is never dropped unless it becomes less attractive
for some individual agent h. De�nition 12.4 is intuitive: for example, if person
1 is a dictator then, when we replace the functions v2; v3; :::; vh; :::in (12.2) by
any other utility functions and leave the function v1 unchanged we will �nd that
� remains unchanged. The dictatorship property seems as unappealing in the
context of a social-choice function as it did in the context of a constitution.
A comparison of de�nitions 12.1�12.4 and the discussion of the constitution

(page 229) suggests that there may be a counterpart to the Arrow Impossibility
Theorem (Theorem 9.1) that applies to social choice functions. This is indeed
the case:

Theorem 12.1 (Dictatorial social choice functions) Suppose the number
of social states is more than two and the social-choice function � is de�ned for
all logically possible utility functions. Then, if � is Paretian and monotonic, it
must be dictatorial.

The �avour of Theorem 12.1 is similar to Theorem 9.1 and, indeed, the proof
is similar (check the reading notes to this chapter and Appendix C). But its
implication may not be immediately striking. To appreciate this more fully let
us introduce a crucial property that will enable us to build a bridge between the
welfare-economic discussion of the constitution and the behavioural analysis of
our discussion of the economics of information:

De�nition 12.5 A social choice function � is manipulable if there is a pro�le
of preferences [v] such that, for some household h and some other utility function
v̂h (�) 6= vh (�):

vh(�̂) > vh(�) (12.5)

1Suppose the social state is completely characterised by a consumption allocation � :=�
x1;x2;x3; :::

�
.

(a) In
�
xh1 ; x

h
2

�
-space draw the �better-than�(actually, �no-worse-than�) set B (��; v) when

individual preferences are given by the pro�le�
v1 (�) ; v2 (�) ; v3 (�) ; :::

�
:

(b) Suppose agent h�s preferences change from vh (�) to ~vh (�): interpret condition (12.4)
using B (��; v) and B (��; ~v)
(c) State the monotonicity condition using this diagram.
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where
� := �

�
v1; v2; :::; vh; :::

�
(12.6)

and
�̂ := �

�
v1; v2; :::; v̂h; :::

�
(12.7)

The signi�cance of this concept is worth thinking about carefully. If a social-
choice function is manipulable, this does not mean that some household or
individual is actually in a position to manipulate it � rather, under some cir-
cumstances someone could manipulate it. There is a close link with the idea of
masquerading that we discussed in the context of adverse selection (page 338).
For a manipulable social-choice function there may be a premium on false in-
formation for some agents in the economy: the form of the utility function is
of course the quintessentially private information. If there were a way for h to
reveal the false utility function v̂h then the economic system would respond in
such a way that h would be genuinely better o¤ �notice that the inequality in
expression (12.5) uses the genuine utility function vh.
However, monotonicity implies that the social-choice function cannot be ma-

nipulable.2 This leads us on to a key result that is really no more than just a
corollary of Theorem 12.1:

Theorem 12.2 If there are at least three social states and, for each house-
hold, any strict ranking of these alternative states is permissible then the only
Paretian, non-manipulable social choice function is dictatorial.

Theorem 12.2 is a �rst attempt at capturing an essential concept that car-
ries over from our consideration of information in chapter 11. It has profound
consequences for the way in which economic systems can be designed if there is
less than full information.

12.3 Markets and manipulation

To illustrate the power of misrepresentation and manipulation in a familiar
setting let us rework the standard model of an exchange economy.

12.3.1 Markets: another look

Take the particularly interesting example of a social-choice function from chap-
ter 7. Specify the details of the following:

� The technology of the �rms;

� The resource endowments;

� The ownership rights of all the households.
2Use de�nition 12.3 to produce a contradiction in the expressions (12.5)-(12.7).



386 CHAPTER 12. DESIGN

h = a; b households
i = 1; 2 goods
xhi consumption by h of i
Rhi endowment of h with i

Table 12.2: The Trading Game

Then we appear to have almost all the ingredients needed to construct the
economy�s excess-demand function (7.16); all that is missing is the pro�le of
preferences represented by the list of utility functions (7.1). Once we plug those
in, the general-equilibrium system is completely speci�ed: the excess-demand
functions determine the equilibrium prices; the prices determine the quantities
in the allocation; the allocation is itself the social state. So the paraphernalia
of the general-equilibrium model can be seen as a social-choice function � that
will convert a set of preferences into a complete list of consumption bundles and
net-output levels that constitute the social state �.
There are two particularly interesting things about this:

1. Under well-de�ned circumstances the function � produces an outcome that
has apparently desirable e¢ ciency properties.3

2. It does not require explicit design.

However, this version of the market system incorporates an assumption that
may be unwarranted: that each individual agent is e¤ectively too small to mat-
ter. Let us look more closely at the market system in the context of the el-
ementary model of a two-commodity exchange economy: this is illustrated in
the Figure 12.1 which represents a standard Edgeworth diagram box for the
two-person case.
The initial property distribution is Ra = (0; R2), Rb = (R1; 0): Alf has all

the commodity 2 and Bill all the commodity 1. Each person could survive on
his endowment, but would bene�t from trade with the other. Alf�s indi¤erence
curves are represented by the contour map with broken lines with origin at Oa;
Bill�s indi¤erence curves are those with origin Ob. The set of all Pareto-e¢ cient
allocations �the locus of is drawn in as the irregularly-shaped line joining Oa

and Ob. The core of the two-person game is represented by the subset of this that
is bounded by points [xa] and

�
xb
�
; in the two-person case this corresponds to

the set of allocations that could be regarded as full information equilibria where
both persons tell the truth.4

12.3.2 Simple trading

As we know from , the two-person case is a paradigm for a 2N -person case where
N > 1 is a factor of replication, and if N is su¢ ciently large then the only points

3Suppose � is the social-choice function outlined above. If an individual agent�s utility vh

is subject to a monotonic transformation how does this a¤ect �?
4 Identify the reservation indi¤erence curves for the two agents.
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left in the core are those that are competitive equilibria �in this case the single
equilibrium allocation at [x�] with corresponding prices p�. Now, in such a
competitive model, there is no point in misrepresenting one�s preferences: if a
person falsely states his marginal rate of substitution, all that happens is that
he achieves a lower utility level than if he had selected a point on the boundary
of his budget set at which his MRS equals the price ratio.
However if a person has market power � if he perceives that he is �large

enough�to in�uence the prices at which the market will clear, this conclusion
may no longer hold.

Figure 12.1: Manipulated trading

12.3.3 Manipulation: power and misrepresentation

Consider now a story about market power. Suppose Alf knows the trades that
Bill is to make at each price and has the power to dictate the price. We can
imagine an exercise in which various prices are tried out on Bill, and Bill�s
desired consumptions. Using this information Alf can exploit his position as
monopolist of commodity 2 to force up the price. The outcome would be at a
point such as [x̂] with prices p̂ where the terms of trade have been moved in
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favour of Alf.5

Alternatively we can see this as a story of misrepresentation in which Alf lies
and reveals a false indi¤erence to his trading partner. The story runs as follows.
Each day of the week each trader comes to the market with the endowments
represented by point [R]. But there is an apparent change of tastes during the
week:

� On Monday preferences are publicly declared to be as description of the
indi¤erence curves above. Haggling takes place between the two traders,
with each telling the truth, and revealing to the other his demand func-
tions. A competitive equilibrium is agreed upon, possibly by each side
agreeing to abide by the rulings of an impartial arbitrating auctioneer. So
each trader is acting as though he were a price-taker at prices p� �the
equilibrium is at point [x�] in the accompanying �gure .

� On Tuesday each trader arrives again with stocks [R], but Alf has now
decided to lie �purely for material advantage of course. He realises that
by trading at point [x̂] rather than point [x�] he will be better o¤: he
can induce honest, trusting Bill to accept point [x̂] by saying that his
true preferences have changed, and once again securing agreement that
a competitive equilibrium solution can be adopted. Alf misrepresents his
indi¤erence curve as shown by the heavily outlined curve passing through
[x̂]. This curve is deliberately chosen by Alf to be tangential to an Bill
indi¤erence curve exactly at point [x̂].

12.3.4 A design issue?

It is clear from the example that misrepresentation can generate an ine¢ cient
outcome. It is also clear that the above example could be considered as a lesson
in bad design. Imagine a public body or agency that regulates trade � if the
rules of trade allow for actions that mimic the behaviour of a monopolist then
the outcome will be suboptimal. We need to examine this issue in greater depth
and generality.

12.4 Mechanisms

So far we have illustrated the point that social choices can be manipulated by
individual economic agents to produce outcomes that are manifestly ine¢ cient
and therefore are likely to be considered undesirable by any reasonable system
of social values. But in order to introduce misrepresentation by economic agents
into the model we need a language of discourse and a method of analysis that
is �rmly rooted in the economics of information.

5Use a diagram based on Figure 12.1 to draw Bill�s o¤er curve. Show how Alf can maximise
his utility using the o¤er curve as the boundary of his opportunity set and so will force a
monopolistic solution at [x̂].
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� social state
� set of all social states�
v1; v2; v3; :::

�
pro�le of utility functions

V set of all possible pro�les
sh strategy of agent h�
s1; s2; s3; :::

�
pro�le of strategies

S set of all strategy pro�les
 outcome function
� social-choice function

Table 12.3: Mechanism: Notation

So our next step to examine the engine that drives this general class of
economic problem. To do this it is useful to pick up on the essentials of a game,
�rst discussed in chapter 10, in order to use them as ingredients of the design
problem. First, re-examine the description of a game in section 10.2.1 (pages
272-277). We can characterise these essentials as:

� The strategy sets of the agents S1; S2; S3; ::: . It is convenient to represent
these collectively by their Cartesian product (see page 486 for a formal
de�nition) S: each element of S is a pro�le of strategies

�
s1; s2; s3; :::

�
. .

� A convenient way of describing how the outcome of the game is determined
from any given combination of strategies. Call this the outcome function.
So, once the economic agents have each chosen a strategy, the social state
is determined as � =  (s) where s :=

�
s1; s2; s3; :::

�
.

� The speci�cation of the players�objectives. This consists of a pro�le of
preferences

�
v1; v2; v3; :::

�
. So, once the outcome (social state) � has been

determined, this leads to utility payo¤s v1 (�) ; v2 (�) ; v3 (�) ; :::.

If all three items in the above list are speci�ed in detail then the game is
fully described. Now the �rst two of these components give us exactly what
is needed for a general description of the �engine� that is at the core of this
chapter:

De�nition 12.6 A mechanism consists of the strategy sets S and an outcome
function  from S to the set of social states �.

The mechanism is an almost-completely speci�ed game. The key thing that
is missing is the collection of utility functions that will fully specify the maxi-
mand of and the actual payo¤ to each participating economic agent. So, once
the objectives of the players are known �once we have plugged in a particular
pro�le of utility functions �then we know the social state that will be determined
by the game and the welfare implications for all the economic agents.
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12.4.1 Implementation

The idea of a mechanism enables us to state the design problem precisely. The
mechanism provides a link from the space of all possible pro�les of preferences
to a social state via the medium of an economic game. To the question �can
a social-choice function be made to work in practice?� the answer is �yes, if
it can be characterised as the equilibrium of a game.� First let us sketch the
implementation process: the idea can be expressed as the following sequence of
steps:

� Specify a mechanism as a (strategy-set, outcome-function) pair (S; ) :

� Given their actual preferences
�
v1; v2; v3; :::

�
, and using the mechanism as

the rules of the game, the players determine their optimal strategies as
the pro�le �

s�1; s�2; s�3; :::
�
:

� The outcome function determines the social state in the light of the pro�le
of strategies

�� = 
�
s�1; s�2; s�3; :::

�
: (12.8)

� Is this �� the one that the designer would have wished from the social-
choice function � in (12.2)?

But this begs a number of important questions about the way in which
the process is to be carried through. First, what of the players? The role
of the nh agents is fairly clear: their preferences form the argument of the
mechanism; but there is an additional entity � the Designer � who remains
as a shadowy presence in the background: we will see some speci�c examples
of the designer below. Second, we spoke of an equilibrium: but what type
of equilibrium? As we discussed in chapter 10 there is a range of equilibrium
concepts that may be appropriate �which one is appropriate will depend on
the timing and information structure built into the model and any restrictions
that we may want to introduce on admissible strategies. The standard model
paradigm is the Bayesian game of incomplete information (see section 10.7.1
on page 311) that formed the basis of most of chapter 11 and we will need
to use both the conventional Nash equilibrium and also the more restrictive
equilibrium in dominant strategies (page 278). Third, the game may have several
equilibria: will they all lead to the desired �� as in (12.8)? If so we say that
the mechanism completely implements the social-choice function �. Otherwise
�if some equilibria yield �� but there is at least one equilibrium that leads to a
social state other than �� �then the mechanism only weakly implements �.6

6 In the light of this discussion it is clear that the simple statement �the social-choice
function is implementable�could be made to mean a number of things. Consider the following
four variants that di¤er in terms of the strength of the requirement of �implementability�:

There is a mechanism...

1. ...for which all the Nash equilibria yield ��.
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Drawing together this discussion for an important, but special interpretation
of the concept, we may summarise thus:

De�nition 12.7 The mechanism (S;  (�)) weakly implements the social-choice
function � in dominant strategies if there is a dominant-strategy equilibrium of
the mechanism,

�
s�1 (�) ; s�2 (�) ; s�3 (�) ; :::

�
such that


�
s�1
�
v1
�
; s�2

�
v2
�
; s�3

�
v3
�
; :::
�
= �

�
v1; v2; v3; :::

�
:

12.4.2 Direct mechanisms

Of course there may be a huge number of mechanisms that could conceivably
be designed in order to implement a particular objective. For the purposes of
e¤ective design and clear exposition we might reason that it would be better to
focus on those that are based on relatively simple games. So, let us consider a
very simple game indeed.
The game consists in just announcing one�s preferences: this means declaring

everything that there is to be known about motivation in playing the game. It is
a game of messages akin to those discussed in section 11.3 of chapter 11. In this
game the strategy space �the message space �S is exactly the space of all the
possible utility pro�les V;7 the outcome function maps announced announced
preferences directly into social states such that, for all pro�les in V,


�
v1; v2; v3; :::

�
= �

�
v1; v2; v3; :::

�
:

In other words, the mechanism is so simple that the outcome function is the
social-choice function itself; unsurprisingly this device is conventionally known
as a direct mechanism. The trick is to design such a simple mechanism so as to
ensure truth telling. But, what does it mean to ensure truth-telling?
To make this clear we use the concept of a dominant strategy, introduced

in chapter 10 (see page 278). We will say that the social-choice function � is
truthfully implementable in dominant strategies if

s�h
�
vh
�
= vh, h = 1; 2; :::; nh

is a dominant-strategy equilibrium of the direct mechanism. Note that by spec-
ifying a dominant-strategy equilibrium we require that it is such that everyone
�nds that �honesty is the best policy�irrespective of whether others are follow-
ing the same rule or, indeed, whether others are even rational.

2. ...with a unique Nash equilibrium that yields ��.

3. ...with a dominant-strategy equilibrium that yields ��.

4. ...with a Nash equilibrium that yields ��.

Arrange these descriptions of implementation in increasing order of strength.
7Suppose each the taste parameter �h for agent h is a number in [0; 1]. Write down the

exact expression for the combined strategy space [Hint: check the de�nition on page 486].
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12.4.3 The revelation principle

The direct mechanism �or direct-revelation mechanism �is of mild interest in
its own right: it is at least intriguing to think up tricks that will cause rational
agents to reveal all the personal information that would otherwise be hidden
from a designer. However direct mechanisms are of fundamental importance
in terms of the general problem of implementation. In the following, note that
the pair (S; ) represents any mechanism that you might think up, while (V;�)
represents the direct mechanism just discussed in section 12.4.2:

Theorem 12.3 (Revelation principle) If the social-choice function � is weakly
implementable in dominant strategies by the mechanism (S; ) then � is truth-
fully implementable in dominant strategies using the direct mechanism (V;�).

Figure 12.2: The revelation principle

The idea of this is illustrated in Figure 12.2. The implementation story can
be told in one of two ways:

1. The mechanism (S; ) works this way. Given a particular choice of pref-
erence pro�le [v] from V the agents select strategies�

s�1
�
v1
�
; s�2

�
v2
�
; s�3

�
v3
�
; :::
�

that produce one or more equilibria, a subset of S: this is the left-hand
arm of the diagram. The outcome function maps the equilibrium strategies
into the set of social states � (right-hand arm). For some of the equilibria
(all of them if it is complete implementation) this last step produces ��

given by (12.2).
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2. The direct mechanism (V;�) works this way. The social-choice function
is used as a mechanism that, for a particular [v] chosen from V, produces
�� (the bottom route in the diagram).

The revelation principle means that complex issues of implementation can be
analysed in a particularly simple fashion. You can focus on situations involving
the simplest possible message �a statement of your personal preferences. If you
want to establish whether a social-choice function is implementable in dominant
strategies there is no point in going the pretty way round in the journey from
V to � in Figure 12.2.
However, the direct-revelation mechanism is not necessarily the one that

would be used in practice to resolve a design problem and the above result does
nothing to clear up whether there are multiple equilibria in a mechanism that
is used to implement �, or, indeed whether there are any equilibria at all.

12.5 The design problem

Equipped with the concept of the mechanism as a basic tool we can now continue
the discussion we left in section 12.2: the issue of designing an economic system
in order ful�l a speci�c set of social objectives. We can build upon the results
about social-choice functions by applying the concept of truthful implementation
in section 12.4.
In particular, by combining the result on dictatorial social-choice functions

and the revelation principle (Theorems 12.1 and 12.3) we have the following:

Theorem 12.4 (Gibbard-Satterthwaite) If (i) the set of social states �
contains at least three elements; (ii) the social choice function � is de�ned for the
set V of all logically possible pro�les of utility functions and (iii) � is truthfully
implementable in dominant strategies, then � must be dictatorial.

This is a key result. We can better understand the strength of it if we use
the concept of manipulability of a social-choice function. By extension we can
consider a mechanism to be manipulable if it is not one that ensures truthful
revelation in dominant strategies. Having a mechanism that is non-manipulable
or strategy-proof seems like a particularly attractive property when we try to
design a method of implementing the social objectives. But Theorem 12.4 makes
clear that if all types of tastes are admissible and if the set of social choices is
large enough to be interesting then the only way to achieve this is to allow one
of the agents to act as dictator.
Another plain language interpretation of the result can be seen in terms of

cheating. We have already encountered particular situations in chapter 11 where
individuals have an incentive to misrepresent information about themselves:
high valuation customers might want to pass themselves o¤ as low-valuation in
order to take advantage of a more favourable fee schedule; an Agent would try
to get away with low e¤ort and pass o¤ poor results as being due to the weather.
However, the problem may be quite general: Theorem 12.4 implies that if the
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set of social states is large and the mechanism attempts to accommodate all
types of agents without allowing any to act as a dictator then it will no longer
be able to enforce truth-telling: cheating may be endemic to the system.
The design issue reduces in large part to �nding sensible ways around the

rigours of Theorem 12.4. Is it generally possible to design a mechanism that
would prevent this cheating or misrepresentation? A re-reading of the conditions
of the theorem suggests a number of possible avenues:

� Examine situations of choice where between just two possible social states.

� Consider cases where only a restricted class of individual utility functions
is admissible.

� Relax the stringent requirement of truth-telling in terms of a dominant-
strategy equilibrium.

We will �rst brie�y consider the issues involved in the last of these ideas
before looking at the others in greater detail.
Remember that our interpretation of truthful implementation by a mecha-

nism has been quite restrictive: telling the truth about one�s hidden information
had to be the best option for each agent h, irrespective of what everyone else
chose to do. This is a much stronger version of equilibrium than that typically
used in strategic settings, for example those discussed in chapter 10. Suppose
we consider a concept of equilibrium that is closer to what we used in discussing
economic games: what if we require truth-telling to be merely a Nash equilib-
rium rather than an equilibrium in dominant strategies?8

If we retain the requirement of merely weak implementation of the social-
choice function, then the Nash-equilibrium approach could produce very unsat-
isfactory results: the di¢ culty is that the agents might co-ordinate on an equi-
librium in which everyone is making a best response to everyone else�s strategy,
but where the outcome is very unattractive.9 Accordingly we should consider
the possibility of complete implementation using Nash equilibrium. Here each
person knows his own preferences and the preferences of all the other players;

8 We characterised the dominant-strategy version of truth-telling (page 262) as �honesty
is always the best-policy.� What is the plain-language expression of the Nash-equilibrium
version of truthtelling?

9 (a) Take the game represented in strategic form by Table 10.2 where there are two players
Alf and Bill and exactly two strategies for each player. Suppose the payo¤ (3; 3) is the social
state that is the outcome of the social-choice function that we want to implement. Let sh1 and
sh2 represent the strategy of truth-telling and of lying for h = a; b. Explain why

�
sa2 ; s

b
2

�
is an

equilibrium, but is unsatisfactory.
sb1 sb2

sa1 3; 3 0; 0
sa2 0; 0 0; 0
(b) Now slightly alter the payo¤ structure to that given above. Identify the Nash equilibria.
(c) Suppose that each player now has N � 1 ways rather than rather than 1 way of telling

a lie, where N > 2, but that lies always produce the payo¤ (0; 0): adapt the table in part (b)
to the case with N strategies and use this to argue that there may be an inde�nitely large
number of unsatisfactory Nash equilibria on which the game may focus.
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but this information is unknown to the Designer. For this case an apparently
attractive result is available:

Theorem 12.5 (Nash implementation) If a social choice function is Nash-
implementable then it is monotonic.

However, this Nash-implementation result is in itself quite limiting. First,
it may again imply that in economically interesting situations, the social-choice
function has to be dictatorial. Second, monotonicity may have unattractive
consequences for distribution (see note 26 below). Thirdly there is a problem
of consistency through time: it may be the case that individual agents would
choose to renegotiate the outcome � that has been generated by the mechanism.

12.6 Design: applications

The other approaches to dealing with the challenge of Theorem 12.4 can be
usefully illustrated with a number of key economic applications. These are all
of the type of Bayesian games of incomplete information that were modelled
in chapter 11: in particular all of the applications can be seen as versions of
the �adverse selection�class of problems involving hidden characteristics �see
pages 333 ¤.
Remember that the second of the list of three mentioned on page 394 involved

restricting the class of admissible utility functions. Accordingly we will simplify
the representation of individuals�preferences by using the same general form of
utility function as was used in the adverse-selection models. We assume that all
the economic agents in the game have the same general shape of utility function,
but that they di¤er in some �type�or �taste�parameter � , a real number. The
various values of parameter � that may be imputed to an individual completely
characterise the di¤erent objectives that the agent may have.

12.6.1 Auctions

An auction can be regarded as an exercise in posing the question �tell me what
your valuation is.�Someone sets up an event or an institution to extract payment
from one or more potential buyers of an object, a collection of goods, ownership
rights, ... How do the mechanics work? How can the principles of design help
us to understand the rules and likely outcomes?
Of course the problem that makes the analysis of auctions economically

interesting is the nature of the concealed information: the seller usually does
not know the characteristics of individual potential buyers, in particular their
willingness to pay. In view of this it is appropriate to formulate the problem
in terms of a Bayesian game and to use the revelation principle to simplify the
analysis. There is a great variety of types of auction that di¤er in terms of the
information available to participants, the timing, and the rules of conduct of
the auction. We will �rst discuss the informational issues and then the rules.
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The informational set-up

There a several ways in which we might consider representing the unknown
information that underlies an auction model. Here are the two leading examples:

� The common-value problem. There is a crock of gold, the value of which,
once uncovered will have the same value for everyone. At the time the
auction takes place, however, individual agents have imperfect information
about the value of the treasure and some may have better information than
others.

� The independent private values problem. An alternative approach is that
each person has his own personal valuation of the object that may di¤er
from that of any other bidder and that would not change even if he were
to know the other bidders�valuation: some may have a high regard for
the work of a particular artist and therefore place a high monetary value
on it; others may be much less impressed.

Of course there are interesting situations that combine elements of both
types of unknown information.10 However, to focus ideas, we will concentrate
on the pure private-values case. We assume that a single indivisible object with
known characteristics is for sale and that each potential bidder has a personal
valuation � of that object. Here � can be taken as a taste or type parameter
that corresponds to the agent�s valuation of the good: it is a simple measure of
the agent�s willingness to pay.

Example 12.1 Auctions with a substantial common-value element can produce
some apparently strange results. Bazerman and Samuelson (1983) ran several
instances of an experiment where they auctioned o¤ jars of coins to students.
Each jar had a value of $8. The average bid was $5.13. But the average winning
bid was $10.01. What was going on? See Exercise 12.4.

Types of auction

First a brief review of some terminology, summarised in Table 12.4: we will go
round the table starting from the bottom left-hand corner:

Open bid Sealed bid
Dutch �descending price �rst price
English �ascending price second price

Table 12.4: Types of auction

� The English auction involves public announcements of bids that are grad-
ually increased until only one bidder is left in the auction who wins the
auction and pays the last price bid.

10Provide a brief argument that this is the case in the auction of a painting.
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� The Dutch auction goes in the other direction. Starting from a high value,
the announced price is gradually adjusted downwards until someone is
ready to claim the object at that price.

� In the sealed-bid �rst-price auction all agents submit their bids in a way
that is hidden from the others: the object goes to the agent who submitted
the highest bid; the winner pays exactly the price that he or she bid.

� In the sealed-bid second-price counterpart the object again goes to the
highest bidder; but the winner is required to pay the price that the �runner
up�had bid �the next highest price.

Fortunately we can simplify matters further by noting that in some cases
these four possibilities e¤ectively reduce to just two, corresponding to the two
rows of the table. The Dutch open auction and the �rst-price sealed-bid auction
are essentially equivalent mechanisms; for our information model the English
open auction and the second price sealed-bid produce the same results. We will
establish these assertions in each of the next two subsections before moving on
to a more general approach to the auction mechanism.

First price

In strategic terms Dutch auction is equivalent to the �rst-price auction with
sealed bids: each bidder chooses a critical value at which to claim the object as
the price descends or to submit in the sealed envelope, knowing that if the bid
is successful he will be required to pay that price.
To consider equilibrium behaviour in a sealed bid, independent private-values

auction of an indivisible object where there are just two agents let us take a
simple example. Alf and Bill are a pair of risk-neutral agents who take part in a
sealed bid, �rst-price auction. They have private values �a and � b, respectively,
drawn from a distribution F on the support [0; 1]: i.e. the minimum possible
value that either could place on the good is 0 and the maximum is 1. The
problem is symmetric in that, although Alf and Bill may well have di¤erent
realisations of the taste parameter � , they face the same distribution and have
the same objective function: this considerably simpli�es the solution. Suppose
that Alf assumes that Bill�s bid will be determined by his type � b according to
the function � (�): if Alf bids a price pa then he gets the good if

pa � �
�
� b
�

The probability that Alf�s bid succeeds is

� (pa) := Pr
�
� b � ��1 (pa)

�
= F

�
��1 (pa)

�
(12.9)

where ��1 denotes the inverse function. Because it is a �rst-price auction, the
price you bid is the price you pay, if you win. Therefore, if Alf�s bid succeeds
and he gets the good, his bene�t is �a � pa; otherwise he gets no net bene�t.



398 CHAPTER 12. DESIGN

So, given that he is risk neutral, he seeks to maximise the expected net bene�t
� (pa) [�a � pa]. De�ning maximised expected net bene�t as

� (�a) := max
pa

� (pa) [�a � pa] (12.10)

we immediately �nd the e¤ect of an increase in the private value �a:11

@� (�a)

@�a
= � (pa�) (12.11)

where pa� is the optimal value of pa. Because the problem is symmetric, in the
Nash equilibrium each person has the same function �; so

pa� = � (�a) (12.12)

and, from (12.9)�(12.11) Alf�s expected net bene�t is:12

� (�a) =

Z �a

0

F (�) d� (12.13)

Alf�s expected net bene�t at the optimum can also be written as

� (�a) = � (pa�) [�a � � (�a)] (12.14)

from which we can deduce that Alf�s optimal bid in the �rst-price auction is
given by13

� (�a) = �a �
R �a
0
F (x) dx

F (�a)
(12.15)

which, because we are using �rst-price auction rules, is the price that Alf will
pay if he wins.
Because the problem is symmetric all of the above reasoning follows for Bill

just by interchanging the a and b superscripts.14 To illustrate this, suppose
that tastes are distributed according to the beta distribution with parameters
(2; 7): the density function for this is in Figure 12.3 and the formal de�nition
is given in Appendix A (page 519). Then the equilibrium bid function � (�) in
equation (12.15) and the resulting probability of winning (12.9) as a function of
individual values are as depicted in Figure 12.4.

Second price auction: a truth-telling mechanism?

Now take the English open-bid auction. In the case of the private-values infor-
mation model, the dominant strategy in such an auction is to carry on bidding
until the bid has reached one�s true value of the object and then, if the price

11Why is this true?
12Fill in the missing two lines to establish this point.
13Explain why, using (12.10).
14Take a population of size N > 2. How does the above reasoning change for this case?
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Figure 12.3: Distribution of tastes �Beta(2,7)

goes still higher, withdraw from the bidding; a successful bid need only be in�n-
itesimally greater than the bid made by the last person to drop out. So in e¤ect
the successful bidder pays the price set by the �runner-up� bid. If invited to
submit a sealed bid, knowing that, if successful, one is only required to pay the
price of the next-highest bid, it is again a dominant strategy to bid one�s true
valuation.15 So in the private-values case the English open-bid auction scheme
works out as essentially the same as a second-price auction.16

The remarkable thing is that we have immediately found a simple mecha-
nism that enforces truth-telling in this particular imperfect information setting.
However, this is a case where the mechanism only weakly implements the out-
come with truth-telling: there are other equilibria that will lead to dissimulation
in the auction �and this may lead to collusive outcomes.17

Let us look again at the two-bidder example, just switching from �rst-price
to second-price rules. Now, if Alf�s bid succeeds and he gets the good his bene�t
is �a � �

�
� b
�
. Risk-neutral Alf again seeks to maximise expected net bene�t

15Suppose your true valuation of the object is � .
(a) Why is it pointless to submit a bid p that is less than �?
(b) Why might it actually harm you to submit a bid p greater than �?
16Why might the English open-bid auction and the second price sealed bid auction not be

equivalent if one were selling o¤ the mineral rights on a plot of land?
17 In the independent private value model suppose there is a �xed number of bidders and

that the private valuations for the good are distributed on the interval [0; 1]. Consider the
following pro�le of strategies in the second-price auction: bidder 1 submits a price 1; all
the others bid 0. (i) Show that this is an equilibrium of the auction mechanism. (ii) Show
that collusion amongst the bidders in such an equilibrium may be self-enforcing. (iii) What
practical arrangements might be necessary for such collusion to work?
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Figure 12.4: First-price auction: bid and probability of winning

�h private value of agent h
ph price bid by agent h
Ph payment required of h by the auction rules
�h probability that h wins the auction
� (�) bid function

Table 12.5: Auctions: notation
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� (pa)
�
�a � pb

�
where pb = �

�
� b
�
.18 The optimal bid function in the second-

price auction must be19

� (�a) = �a (12.16)

and the probability that Alf gets the good in equilibrium is F (�a). Finally the
price that Alf will expect to pay, if successful in his bid, is

�a �
R �a
0
F (�) d� :

F (�a)
(12.17)

A natural question is to examine which of the two auction types ��rst or
second price �is in some sense preferable. However, instead of addressing that
comparison directly it is more useful to examine the fundamental design issues
that underlie them and other types of auction.

Design issues

So far we have treated the rules governing an auction as though they were
hardwired. Now we want to drop that assumption in order to think rather
more broadly about some basic questions. What principles ought to be brought
to bear in planning an auction? To answer this properly we would need �rst
to think through the objectives of the design problem �who plays the role of
Designer? In most cases it may be reasonable to suppose that the auctioneer
acts in the seller�s interest: so should we therefore make maximisation of the
proceeds of the auction the sole target of the design problem?
We will return to this in a moment: before doing so consider the way to

write down an auction model. Rather than assuming the existence of a speci�c
auction institution and a set of rules, we will describe it in fairly broad terms
as a mechanism. In general we can characterise the auction by two rules, that
are based on the signals that the bidders provide. Let the bid (the signal) by
agent h be ph. Then the two rules characterising the mechanism are as follows:

� The allocation rule

�h
�
p1; p2; :::

�
; h = 1; 2; 3; ; ; (12.18)

gives the probability that any particular agent h will be awarded the ob-
ject.

� The payment rule

Ph
�
p1; p2; :::

�
; h = 1; 2; 3; ; ; : (12.19)

speci�es who pays what when the auction is settled. It allows for the
possibility that not only the winner has to pay up.

18Could Alf�s expected net bene�t be negative?
19 Verify these conclusions by following an argument similar to that for the �rst-price case.
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Armed with little more than this we can introduce a fundamental result. The
only restriction that we need to impose a priori is that auctions are organised
in such a way that the object goes to the highest bidder. Then we have:

Theorem 12.6 (Revenue equivalence) If bidders are risk-neutral and each
has a taste type � that is independently drawn from a common distribution with
strictly positive density, then any auction mechanism in which (i) the object
always goes to the highest bidder and (ii) any bidder with the lowest possible
value gets zero net bene�t, yields the same expected revenue and results in each
bidder making the same expected payment as a function of his type.

The method for establishing this result is relatively simple (the proof is in
Appendix C). The main steps in the argument are:

� In view of the revelation principle we can characterise the auction as an
exercise in announcing a valuation.

� For the proposed mechanism to have a Bayesian-Nash equilibrium the
functions �h (�) and Ph (�) in must satisfy the participation and incentive-
compatibility constraints for every agent.

� Given that everyone is maximising expected net bene�t, the requirement
that the object goes to the highest bidder ensures that in equilibrium
your expected net bene�t, your bid and the probability that you win are
increasing functions of your true value of the object.

� The expected payment by the winner and the expected receipts of the
seller can then be expressed in terms of these solution functions. But the
solution is independent of the particular variant of the auction game.

Although Theorem 12.6 has been stated in terms of the private-information
case it can be established for a wide class of models, as long as the bidders and
the seller are interested only in expected payo¤s, the object goes to the highest
bidder and there is an appropriate constraint on the lowest-valuation bidders.
The revenue equivalence theorem at �rst sight seems extraordinary, because its
apparent generality. However, it is a good idea to highlight some quali�cations
that are evident on a close reading of the result.
First, it is important to note the special conditions under which Theorem

12.6 holds. If, for example, there were just two possible taste types � every
bidder is either �� or � 0 but nothing else � the requirement on the density
condition is violated and it is possible to �nd a Bayesian Nash equilibrium that
violates revenue equivalence.20

20Take an example where there are exactly two types with values � = 0 and � = 1. The
potential buyers Alf and Bill each have independent a probability of 0:5 of being of either
type. The auctioneer announces a price P ; if just one of the buyers accepts he gets the object
at price P . Otherwise the allocation is determined by spinning a coin and the price paid is
either P (if both accept) or 0 (if neither accepts). If both accept then only the winner of the
lottery has to pay.
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Second, the result is expressed only in terms of expected payo¤s. If the seller
were risk averse then he or she would be concerned with the entire probability
distribution of the price that will emerge from the auction, not just its expected
value. We can derive the distribution of price P from the underlying distribution
of taste � using (a) the the rules that determine the price paid P (�rst-price or
second-price) and (b) a result on order statistics (see page 517). As an example
take the two-person auction discussed earlier, with the distribution of values
depicted in Figure 12.5:

� the solid curve represents the distribution function for the �rst-price auc-
tion, formula. This is found by using the bid function in (12.15) for the
higher of the two random variables �a, � b.

� the broken curve represents the distribution function for the second-price
case. This is found by setting the price to the lower of the two random
variables �a, � b.

� Clearly the curves intersect just once: the probability of prices at the
extremes of the price range (towards zero or 1) is smaller than under the
�rst-price auction than under the second price auction.

� Because of Theorem 12.6 the mean of the two distributions is the same: so
comparing the two risk-averse seller would clearly prefer the distribution
with the lower dispersion of prices �the �rst-price auction.

Example 12.2 The auction of British third-generation mobile-phone licences
in 2000 raised £ 22 12 billion ($34 billion). �Not since the Praetorian Guard
knocked down the entire Roman Empire to Didius Julianus in AD 195 had there
been an auction quite as large.� Binmore and Klemperer (2002) examine the
issues involved in designing the auction and the lessons that can be learned from
it.

12.6.2 A public project

The second application of mechanism design concerns a special type of public
good �one that �ts well the working example used to discuss potential superi-
ority in section 9.3.6 (page 254).
The main issue can be represented by a model of the economy in which

agents consume quantities of just two goods. Good 1 is an indivisible project

(a) Suppose the announced price is P = 0:5. Alf assumes that Bill will only accept this price
if and only if it turns out that �b = 1. So, if Alf accepts the price what is the probability,
that he gets the object?
(b) Show that Alf will accept the price P = 0:5 if it turns out that �a = 1. Hence describe

the equilibrium probabilities of winning and the net bene�t as a function of � .
(c) Show that such an equilibrium can be generated for any price P such that 0 < P < 2

3
.

(d) Explain why this situation violates revenue equivalence.
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Figure 12.5: Distribution of price paid

�h taste parameter of agent h
 (�) utility of good 1
yh income of agent h
zh required contribution from agent h
�� �NO-PROJECT�state
�0 �PROJECT�state

Table 12.6: A public project: Elements of the problem

of �xed size: an airport, a bridge; good 2 is a basket of all other goods. The
assumption is that there are only two values of the quantity of good 1, that make
sense: x1 = 1 where the good is provided and x1 = 0 where it is not. To provide
the resources for the project will require agents to give up some consumption of
good 2.
In view of the restricted nature of the problem, the set of all social states can

be represented very simply as � = f��; �0g where �� and mean �NO-PROJECT�,
�PROJECT� respectively. Production conditions for the two social states can
be described as:

�� : �(0) = 0
�0 : �(z) = 1

(12.20)

where � is the production function and z is the minimum amount of the private
good that is required to produce the unit amount of the public good.
A complete speci�cation of the problem requires two further components:

� Preferences. Household�s preferences are given by a function Uh (�) de-
�ned over (x1; xh2 )-space where, x1 is common to all households and x

h
2 is
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household h�s private consumption of good 2 .We take the special �zero-
income-e¤ect� form of the utility function that we introduced in the dis-
cussion of a monopolist�s design of a fee function �see equations (11.1 and
11.13). So in this case we have

Uh(x1; x
h
2 ) = �h (x1) + x

h
2 (12.21)

where  is an increasing concave function, common to all agents and �h

is a taste parameter that captures household h�s strength of desire for the
public good. We may further simplify by normalising  such that

 (0) = 0;  (1) = 1: (12.22)

� An apportionment rule. Some apportionment of the total required contri-
bution z amongst the households. This rule could, but need not, involve
equal division. However, the individual required contributions or levies�
z1; z2; z3; :::

�
must satisfy

z �
nhX
h=1

zh: (12.23)

If household h is endowed with an income yh (denominated in units of good
2) then zh, the amount of levy required from h, determines consumption
of the private good:

xh2 = yh � zh

A full speci�cation of state �0 requires a listing of all the individual required
levies, which are public information. Given the list of individual levies and the
utility functions we can work out each agent�s compensating variation for the
switch �� ! �0, which we shall write as CVh. Of course there will be winners,
for whom this is positive, and losers, for whom the reverse is true � Figure
12.6 illustrates one of each in the special case where endowments and required
contributions are identical across persons; individuals di¤er only in tastes �i.e.
the function  in (12.21). Alf and Bill are each a¤ected by the implementation
of a large project that produces a public good of given size. In the absence of
the project they are at points labelled �� with coordinates (0; ya) and

�
0; yb

�
;

with it they are points labelled �0 with coordinates (1; ya � za) and
�
1; yb � zb

�
.

From the way in which Figure 12.6 is drawn it is clear that Alf�s CV for the
change in social state �� ! �0 is positive and Bill�s CV is negative.
If it is true that

nhX
h=1

CVh > 0 (12.24)

then it appears to be possible to obtain a potential Pareto improvement (see
page 255) by switching from �� to �0. Indeed, if the population consisted only
of Alf and Bill, then given the situation in Figure 12.6 the switch from �� to
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Figure 12.6: A �xed-size project

�0 would generate a potential improvement.21 Given the simpli�ed structure of
the utility function (12.21),the condition (12.24) is equivalent to22

nhX
h=1

�h > z (12.25)

The design problem

We have again the same issues as in the previous application to auctions. Indeed
we can reuse some of the same terminology and methods.
First the Designer and the objectives. In the present context it is reasonable

to assume that the government acts as Principal in the problem, deciding on an
appropriate implementation procedure that will a¤ect its citizens, but relying
on information from those citizens as agents. Unlike the seller in the auction
application the government is not out to make money for itself but to maximise

21 Using the same preferences, but with di¤erent costs draw a diagram similar to Figure
12.6 to show a case where the reverse conclusion holds.
22Calculate CV from (12.21) and show that (12.25) is equivalent to (12.24).
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social welfare: we will assume that the welfare criterion to be used in connec-
tion with the project is consistent with the �potential superiority�criterion in
De�nition 9.7.
Now for the problem of implementation. In order to make a choice from

the set � that is consistent with the welfare criterion the government needs to
know how large the CVs are in other words what agents�true values �h are: but
how would the government get accurate information about preferences? If there
were a list of agents perhaps it could do a house-to-house survey of people�s
willingness to pay, but of course this will not work. Irrespective of how the
actual burden of cost will be resolved, the government knows that it cannot rely
on the good nature of its citizens: it has to assume that each one will lie about
his true value so as not to be saddled with so much of the share of the cost.
The recourse that the government has is to devise a mechanism �an incentive

scheme �by which lying becomes pointless. Agents are invited to signal their
tastes �h for the project by announcing values ph: if h is telling the truth, of
course, we have

ph = �h (12.26)

Pursuing the auction analogy it is as though person submits a �bid� for the
project to go ahead. Corresponding to the expressions (12.18) and (12.19) that
were used to de�ne the auction mechanism we have here:

� The decision rule
�
�
p1; p2; :::

�
(12.27)

which determines whether the project goes ahead or not in the light of the
announced bids. Here � takes exactly one of two values: 0 (for �no go�)
or 1 (for �go�).

� The payment rule

Ph
�
p1; p2; :::

�
; h = 1; 2; 3; ; ; : (12.28)

speci�es who pays what when the decision is made: this amount may
include penalties as well as the cost allocations built into the project, as
we will see.

Consider a system of contingent penalties, based on individual agents�de-
clared bids ph. Note, �rst of all, that misrepresentation does not matter very
much if it is not �decisive�. In the binary-choice case, suppose we were in the
utopian situation where all agents tells the truth about their willingness to pay
and that the sum of the compensating variations is strictly positive. Then it
would not matter very much if one or two people lied a little bit, because we
might still �nd that the sum of the bids covers the required amount z (the sum
of the declared CVs was positive), so that the project would still go ahead: all
that would happen is that the liars would get a bit of surplus good 2. But there
is always the danger that the sum of the bids falls short of z (the sum of the
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Everyone else says...
Decision �YES� �NO�

�go� Nil
P
costs imposed

on everyone else

�no-go�
P
forgone gains

of everyone else
Nil

Table 12.7: Penalty table for public projects

declared CVs turns out negative). The trick is to punish anyone who might
frivolously tip the balance in this way.
To make this idea of �tipping the balance�more precise consider the follow-

ing expressions:
nhX
k=1

�
pk � zk

�
(12.29)

and

�h :=

nhX
k=1
k 6=h

�
pk � zk

�
(12.30)

The two expressions involve only things that can be directly observed and can
be interpreted as follows:

� Expression (12.29) gives the equivalent to the sum-of-CV condition where
one replaces the actual values �h by announced values or bids ph: if it is
non-negative then, analogous to (12.24), we can interpret this as meaning
�the announced willingness-to-pay for all the agents is large enough to
cover the costs of the public good�

� Expression (12.30) is the counterpart with agent h deleted: if it is non-
negative then we can interpret this as �the announced willingness-to-pay
for all agents except h is large enough to cover their share of the cost of
the public good�or, in a slight oversimpli�cation, �everyone except h says
�yes�to the project�.

A simple public-project mechanism relies just on these two quantities. Take
(12.29) as a criterion for going ahead with the project: �no-go�if it is negative,
�go�otherwise. so that the decision criterion can be represented as

�
�
p1; p2; :::

�
=

�
1 if

Pnh
k=1 p

k � z
0 otherwise

(12.31)

Suppose we �nd that (12.29) is indeed negative, but that (12.30) is positive
or zero: then, in a sense, agent h tips the balance, or is pivotal ; without the
announcement of his CV it looked as if the decision ought to have gone the
other way. In these circumstances the appropriate penalty for the government
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to impose on h would be the apparent gains forgone by all the other households
now that the project is �no go�; in other words a penalty equal to �h in (12.30).
So in this mechanism the payment system (12.28) is as follows. Each agent h is
required to pay:23

Ph
�
p1; p2; :::

�
=

8>><>>:
zh if � = 1 and h is not pivotal
zh ��h if � = 1 and h is pivotal
0 if � = 0 and h is not pivotal
�h if � = 0 and h is pivotal

(12.32)

where � is determined by (12.31). Note that the amount �h plays the role
of a penalty to be imposed on any pivotal agent.24 Given the assumption of
zero income e¤ects then this mechanism becomes �reversible�: in Figure 12.6
we could take �0 as the status quo and apply the mirror-image criterion for
�go/no-go�of a switch back to ��, with a mirror-image penalty for any �pivotal�
household.
Then the complete contingent penalty system can be summarised as in Table

12.7, and it yields the following important result. (For proof see Appendix C)

Theorem 12.7 (Clark-Groves) A scheme which (a) approves a project if and
only if (12.29) is non-negative, and (b) imposes a penalty of size (12.29) on any
household h if (12.29) and (12.30) have opposite signs, will ensure that truthful
revelation of CVs is a dominant strategy.

This result, which can be generalised,25 is typical of a class of mechanisms
that rely on restricting the form of the utility function and the set of states from
which one can choose in order to get a mechanism that is non-manipulable or
�cheat-proof�.26 The mechanism involved is essentially that of the second-price
auction that we discussed in the previous application on page 399.

12.6.3 Contracting again

As we noted in the introduction to this chapter, one aspect of the design problem
had already been glimpsed in the treatment of the economics of information
in chapter 11. There a �rm used its market power to design a truth-telling
mechanism: it adjusted the fee schedule so as to ensure that, in situations where
agents� characteristics were private information, the di¤erent customer types
(high-valuation or low-valuation) revealed themselves through the quantities
that they demanded. The general idea is clear: in cases where there is market

23Show that the penalty terms in (12.32) are never negative. What does this imply about
total payments for the project? Show that this implies that the mechanism may be ine¢ cient.
24Show that a pivotal agent can always a¤ord to pay the penalty if he or she is telling the

truth.
25 In the payment table you can add an amount to each payment that is an arbitrary function

of each of the other agents declared ps. Why?
26 Suppose Alf�s taste for the public project were to increase. What would happen to the

decision as to whether the project goes ahead and on who pays for the project?
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� talent of Agent
z e¤ort supplied
 (�) (dis)utility of e¤ort
q output produced by Agent
y income o¤ered to Agent
a high-ability type
b low-ability type
� probability of a high-ability type

Table 12.8: Contracting with hidden information: Elements of the problem

power the monopolist or monopsonist can act as a designer who sets up trading
rules; the designer�s objectives are the pro�ts generated by the trade.
We will now use this approach to consider an alternative interpretation of

the Principal and Agent problem. This interpretation focuses on hidden char-
acteristics on the part of the Agent rather than hidden actions. Accordingly
instead of constructing a model where a Principal hires a worker who puts in
unobservable e¤ort �as in section 11.4 �we simply adapt the adverse-selection
model that was set out in chapter 11. One of the reasons that we treat the
problem here rather than in chapter 11 is that it has such a close and powerful
relationship to our next application (section 12.6.4) that is arguably a design
issue par excellence.
We are going to take the model of section 11.2 and adapt it in order to get

some results on design that will have a familiar ring to them. Let us take the
case of a single pro�t-maximising �rm producing a single output: the �rm as
Principal hires an Agent �for example as a worker or manager �from a pool of
individuals who may di¤er in their productivity (note that we are again using
the convention of capitalisation when the Agent means speci�cally one elf of the
Principal-and-Agent double act). The behaviour of the Agent when employed
is based on the elementary model of labour supply in chapter 5: he can supply
an amount z of �e¤ort�where 0 � z � 1 (the total amount of e¤ort that can be
supplied by the Agent is normalised to be 1). It is known that each potential
employee in the pool has a constant marginal productivity �a �talent��that
is given by a parameter � : so the output from an Agent with talent � who puts
in an amount of e¤ort z is given by

q = �z (12.33)

What of preferences? We can re-use the model introduced in chapter 11 �see
page 329: in this model utility is given by

� =  (z) + y (12.34)

where y is the amount of income that the Agent gets and  (�) is a decreasing
concave function representing the disutility of e¤ort: the higher is z the lower
is the Agent�s utility for a given money income, but the marginal disutility of
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Figure 12.7: Indi¤erence curves in (z; y)-space and (q; y)-space

e¤ort falls as z increases; � z (z) is the marginal rate of substitution of money
income for leisure. The indi¤erence curves in (leisure, income)-space are shown
in the left-hand panel of Figure 12.7 Using (12.33) and (12.34), for an Agent of
type � we can also express utility in (q; y)-space as27

 
� q
�

�
+ y.

Take two individuals a, b with di¤erent talents where �a > � b. In the right-
hand panel of Figure 12.7 we can see that the indi¤erence curves for an Agent
with high talent (h = a) have unambiguously �atter indi¤erence curves than
those for the low-talent Agent (h = a); the �gure also shows the �single-crossing
condition�that has to hold for this type of utility function (see page 334). The
results that follow are not speci�c to this utility function, but they do require
the single-crossing condition �see Exercise 12.5.
In this model the key point to notice is that all of the individuals who could

potentially be employed as Agent by the Principal will have the same preferences
(unlike the case of the monopolist with heterogeneous customers on pages 333-
345) but the individuals di¤er from one another in terms of what they can
produce from a given amount of e¤ort.

Full information

Setting up the �rm�s optimisation problem is straightforward, since it has es-
sentially the same shape as that in chapter 11. Suppose the �rm (as Principal)
hires person h as Agent with known talent �h (remember that everything is ob-
servable in the full-information case) and contracts to pay him a given amount

27 What is the slope of an indi¤erence curve in this diagram?
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of income yh for a given amount of e¤ort zh . If the price of output is p then,
given the simpli�ed production function implied by (12.33) pro�ts are:

p�hzh � yh (12.35)

which is exactly the payo¤ to the Principal given the contract
�
qh; yh

�
. The

maximisation of pro�t (12.35) has to be subject to the constraint that the Agent
gets as much utility as in any alternative occupation (where the alternative oc-
cupation includes doing nothing at all). We assume that this reservation utility
for h is given by a number �h that is common knowledge. So the participation
constraint is

yh +  
�
zh
�
� �h: (12.36)

We have seen this kind of problem before so we can jump straight to the full-
information solution (compare page 335).28 For any individual h with talent
�h we must have:

� z
�
z�h
�
= p (12.37)

and
y�h +  

�
z�h
�
= �h. (12.38)

This solution is illustrated in Figure 12.8. The broken curve labelled �a and
the solid curve labelled �b are reservation indi¤erence curves for an Agent with
talent �a or � b, respectively, where �a > � b.29 The solution for an Agent with
talent �h must be on the reservation indi¤erence curve �h �see equation (12.38)
�exactly at the point where the indi¤erence curve is tangential to a line with
slope p �see equation (12.37) and note 27. The interpretation is that the �rm
operates e¢ ciently, adjusting the labour contract for any Agent h such that

MRSh = MRTh

and, having full knowledge of any Agent�s options, exploits him by driving him
down on to his reservation utility level �h.

Imperfect information

What if the productivity of workers cannot be independently observed or cost-
lessly veri�ed? How should the contract be designed then? Clearly we will have
a variant of the second-best problem that was introduced on page 340. Corre-
sponding to the situation described in chapter 11, where a monopolist did not
know whether a customer was a high-valuation or a low-valuation person, we
can model the situation in which the �rm does not know the productivity of
each potential employee at the time of signing the work contract. In order to
distil the essence of the problem we can take the case of exactly two types: the

28Nevertheless it is useful to con�rm this formally. Do so by setting up an appropriate
Lagrangean and using the FOC to get (12.37) and (12.38).
29Why do the two reservation indi¤erence curves meet exactly on the vertical axis?
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Figure 12.8: Two types of Agent: Full-information solution

able workers with talent �a and the bog-standard workers with talent � b where,
again, �a > � b.
The problem can be characterised in terms of designing a direct mechanism

(page 391) as a device for eliciting the truth. We can imagine the following
situation: once again the contract can be written as a pair (q; y) (output is
unambiguously observable); when a potential Agent applies for the job the
Principal states the contracts that are available for each level of talent and then
asks the applicant�s ability level ��a or � b? Can the Agent be induced to tell
the truth? In this imperfect-information case we have to take into account two
constraints:30

� The participation constraint. In this case it will be relevant for the type-b
Agent and is given by condition (12.36) with h = b.

30Strictly speaking there are four constraints, not two, but two of them are redundant.
Following the reasoning on page 342 explain why this is so using the model of indi¤erence
curves depicted in Figure 12.8.
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� The incentive-compatibility constraint. Check Figure 12.8 once again. No-
tice that an able worker would strictly prefer the full-information con-
tract o¤ered to a bog-standard applicant rather than the full-information
contract that would have been o¤ered to an able person: if we draw
the a-type�s indi¤erence curve that passes through the b-contract point�
q�h; y�h

�
�the faint broken curve in the �gure �we can see that it lies

strictly above the a-type�s reservation indi¤erence curve: the able would
rather get paid less, work less and go and play golf. To prevent an a-type
masquerading as a b-type the following would have to be satis�ed:

ya +  

�
qa

�a

�
� yb +  

�
qb

�a

�
: (12.39)

An implication of this is that in equilibrium the a-types must have a higher
(q; y)-combination than the b-types.31

If the proportion of the high-ability individuals in the pool of applicants is �
then the Principal assumes that a potential applicant is a-type with probability
�, b-type with probability 1� � So the �rm seeks to maximise

� [pqa � ya] + [1� �]
�
pqb � yb

�
subject to (12.36) and (12.39). The Lagrangean representation of the problem
is

max
fqa;qb;ya;ybg

� [pqa � ya] + [1� �]
�
pqb � yb

�
+�
h
yb +  

�
qb

�b

�
� �b

i
+�
h
ya +  

�
qa

�a

�
� yb �  

�
qb

�a

�i (12.40)

where � and � the Lagrange multipliers for, respectively, the participation con-
straint on the bog-standard workers and the incentive-compatibility constraint
for the able workers. From the �rst-order conditions for the problem in (12.40)
we derive the following for an interior solution:32

�  z
�
qa

�a

�
= p�a (12.41)

� z
�
qb

� b

�
= p� b +

�

1� �

�
 z

�
qb

� b

�
� � b

�a
 z

�
qb

�a

��
(12.42)

However, if  is concave and 0 < � < 1 then33 � z (�z) >  z (z) and so (12.41),
(12.42) imply

MRSa = MRTa

MRSb < MRTb:

Once again we have an example of the no-distortion-at-the-top principle
(Theorem 11.2).
31Use the answer to footnote question 30 and the indi¤erence curve map in (q; y)-space to

demonstrate this.
32Write down the FOC and derive (12.41), (12.42).
33Show this.
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Contract design

As a consequence of conditions (12.41), (12.42) the �rm, acting as Principal,
could design the pair of contracts (~qa; ~ya) and

�
~qb; ~yb

�
in Figure 12.9 as a simple,

truth-revealing direct mechanism. O¤ering just these two contracts to potential
applicants would ensure the following:34

� Able applicants would (just) prefer to take (~qa; ~ya) where they are paid
exactly according to their marginal product. They get a higher money in-
come than they would have done were a full-information solution possible,
but they put in the same amount of e¤ort.35

� Bog-standard applicants would be kept on their reservation utility level
(just as they would have been under a full-information solution). How-
ever the marginal return to e¤ort for this type of applicants is set below
their marginal product, in order to prevent misrepresentation by able ap-
plicants. So a typical b-type would produce less and earn less than under
the full-information outcome.

As an alternative to just o¤ering the pair of contracts the �rm could o¤er a
complete menu of (output, income) combinations for all potential applicants,
knowing, of course that an a-type would go for (~qa; ~ya) and ab-type for

�
~qb; ~yb

�
�the attainable set facing a potential applicant would look something like that
in Figure 12.9.36

12.6.4 Taxation

We can exploit the �hidden characteristics�version of the Principal-and-Agent
story in a particularly useful way. In chapters 7 and 9 we raised the possibility
of the government as a kind of disembodied spirit that could adjust the dis-
tribution of property in order to produce a speci�c allocation of consumption
bundles and a speci�c distribution of utility levels. By focusing on households�
or individuals�ownership of property �assumed to be exogenously �xed endow-
ments of resources and shares in �rms �we appear to sidestep what is sometimes
described as �the incentives issue.�This issue is this: if you were to try to reach
the desired allocation by imposing a tax on a people�s labour incomes, say, then
you would alter the e¤ective wage rate and thus alter the supply of labour (there
is a simple example of this in Exercise 5.5 on page 119); you will also have in-
troduced a price distortion that is ine¢ cient. However, trying to sidestep of the
incentives issue by focusing on property is perhaps illusory, for it glosses over

34 Use a diagram similar to Figure 12.8 to illustrate the second-best contract. (Hint: check
Figure 11.7). Show the income and utility gain made by the able types compared with the
situation under the full-information contract.
35How will an increase in (i) p and (ii) � a¤ect the payo¤s to type-a and type-b applicants?

Consider both the full-information equilibrium and the second-best equilibrium.
36Suppose it is common knowledge that there are three potential types of Agent, where

�a > �b > �c. What are the relevant constraints for the second-best problem? What is the
Lagrangean? Show that the no-distortion-at-the-top principle still holds.
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Figure 12.9: Two types of Agent: contract design

the fundamental problem of appropriately identifying who are the well-endowed
households or individuals from whom resources could be expropriated. To do
this comprehensively would typically require the government to know essentially
private information about individual economic agents. The problem of reveal-
ing private information, of course, places the issue �rmly within the general
approach to mechanism design that we have considered in this chapter.

The design issue

In order to keep the problem manageable and make the comparison with other
applications relatively easy we will restrict the discussion to a narrowly-de�ned
example of taxation. What drives the example is the need for a government to
raise revenue: this could be to fund transfers to support low-income households,
to pay for publicly provided goods, or to meet some exogenous obligation. How-
ever, the revenue raising through taxation ought not to be capricious but should
conform to some basic welfare-economic principles.
Our approach to the problem is to start with a very simple version of the

model �so simple that its connections with the section 12.6.3 are obvious �and
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then show that the conclusions from this largely carry across to more interesting
versions. Here is a brief summary of the main story that makes it easy to
compare with the contracting model just considered:

� At the heart of the analysis is a two-commodity model �the commodities
being leisure (i.e. the opposite of e¤ort) and all other goods. Individu-
als work (i.e. they give up leisure) to provide themselves with means of
acquiring other goods. Their preferences are given by the utility function
(12.34) where z is e¤ort and y is income (note that here and in what
follows, in the language of public �nance, �income� means �disposable
income�). This is very close to the previous application of the contracting
model.

� There is a community of individuals who di¤er in terms of their productive
ability or talent � . Higher ability people produce more and thus earn more
in terms of other goods: an individual with talent � who puts in e¤ort
z will produce an amount q given by (12.33). Again this is similar to
the contracting model: but instead of a single Agent with known ex-ante
probability distribution of talents, we have a population of workers with
a known distribution of abilities.

� There is an exogenously imposed constraint that requires the community
to raise a �xed amount K � 0 of revenue: this is to be done by the
government imposing a tax �driving a wedge between the market income
generated by the individual worker and the amount of income that he or
she has to spend on other goods.

� In each variant of the taxation model the designer is the government rather
than a private �rm acting as Principal. This follows the public-project
application of section 12.6.2.

� The objective function based on the welfare analysis of chapter 9. Social
welfare is an additively separable function of individual utilities (see page
263)..

A simple model

Consider �rst the economic opportunities facing the agents. As with previous
applications we assume that every agent h has a well de�ned best alternative
that yields utility level �h. In this �rst attempt at the taxation model we assume
that there are just two types of household in the economy: able workers with
productivity �a and the others with basic talents, who have productivity � b; it
is common knowledge that the proportion of type-a workers is �. So the output
(income) being generated in the community is as follows:

qa = �aza with proportion �
qb = � bzb with proportion 1� �
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� productivity of worker
z e¤ort supplied
 (�) (dis)utility of e¤ort
q output produced (gross income earned) by worker
y disposable income received by worker
a high-productivity type
b low-productivity type
� proportion of high-productivity types
� individual utility
 (�) social evaluation of individual utility

Table 12.9: Optimal taxation: Elements of the problem

Following standard practice we take a very simple interpretation of social
welfare: the objective is the sum of a transformation of individual utilities:

� (�a) + [1� �] 
�
�b
�

where  is an increasing, concave function that incorporates a possible concern
for inequality.37 Using (12.34), this gives us

� ( (za) + ya) + [1� �] 
�
 
�
zb
�
+ yb

�
(12.43)

In the absence of taxation the incomes in (12.43) are determined just by output:
yj = qj , j = a; b. Otherwise the government will determine what the income
yj of each type is; by an appropriate choice of income-tax schedule it can also
determine the output qj �or equivalently the e¤ort zj �of each type. This is
the heart of the design problem in the income-tax setting. How it is to be done,
of course, depends on the information that we assume to be available to the
government: we again examine two standard cases.
The full-information case requires only that each agent is persuaded to par-

ticipate in the production of output � so that condition (12.36) holds � and
that the government�s budget constraint be satis�ed. This budget constraint is
merely that the amount raised from the tax-payers must be at least as great as
the exogenous revenue requirement:

� [qa � ya] + [1� �]
�
qb � yb

�
� K (12.44)

The solution to the full-information case in the two-type model is then given
by:38

� z
�
qj

� j

�
= � i, j = a; b. (12.45)

which is of course MRS=MRT for each type.
However, the full-information solution is perhaps unreasonably demanding in

its requirements: should we expect the government to know the potential earning
37How is this related to the function � used in the additive SWF of chapter 9 (page 263)?
38Show this by setting up a Lagrangean and using the �rst-order conditions.
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capacity � of each agent and to impose a tax based on this potential? It surely
makes sense to look at the case where the value of the parameter � is private
to each individual, in other words the second-best solution. Comparison with
the contracting model suggests that we only need to introduce an appropriate
incentive-compatibility constraint. In designing the tax system �in e¤ect setting
up the output-income pairs (q; y) �the government must ensure that the a-type
citizens are not be encouraged to misrepresent themselves as b-types. This
means that the utility available to a-types given the pair (qa; ya) must be at
least as great as the utility available to them from the pair

�
qb; yb

�
; in other

words we have constraint (12.39) again. Also (for the same reasons as in the
answer to footnote 31) the incentive compatibility condition requires that�

qb; yb
�
< (qa; ya) (12.46)

Putting all the components together, the Lagrangean for this version of the
optimal tax problem is then

max
fqa;qb;ya;ybg

�
�
ya +  

�
qa

�a

��
+ [1� �] 

�
yb +  

�
qb

�b

��
+�
�
� [qa � ya] + [1� �]

�
qb � yb

�
�K

�
+�
h
yb +  

�
qb

�b

�
� �b

i
+�
h
ya +  

�
qa

�a

�
� yb �  

�
qb

�a

�i (12.47)

where � is the Lagrange multiplier for the government budget constraint (12.44)
and �, � are the usual Lagrange multipliers for the constraints (12.36) and
(12.39). Comparing (12.43) with (12.40) we can see that the structure of the
present problem is very similar to the second-best contracting model with un-
known talents. So it is unsurprising to �nd that the second-best equilibrium
consists of the following conditions:39

�  z
�
qa

�a

�
= �a (12.48)

� z
�
qb

� b

�
= � b � �

[1� �] � (�b) + �

�
� b +

� b

�a
 z

�
qb

�a

��
(12.49)

and
� [qa � ya] + [1� �]

�
qb � yb

�
�K = 0 (12.50)

�compare (12.48), (12.49) with (12.41), (12.42) in the contracting model. The
right-hand side of (12.49) must be strictly less than � b if the incentive-compatibility
constraint is binding.40 So, from (12.48) and (12.49), we can once again infer

MRSa = MRTa

MRSb < MRTb;

39Show this [Hint: follow the steps used in the answer to footnote question 32]
40Show this.
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a no-distortion-at-the-top result just as in the contracting model of section
12.6.3.41

A richer model

To reassure ourselves that this result is not a mere artefact of the simpli�ed
model just considered we now make a jump to a model that is closer to reality;
but it does not involve a very big jump. Suppose there is a large number N +1
of talent types such that

�0 < �1 < �2::: < �N :

with a known proportion �j of the population belonging to type j such thatPN
j=0 �

j = 1. One of the advantages of enriching the model in this way is that
the redistribution aspect of tax can be made more interesting: if, for example
K = 0 in (12.44), so that the taxation exercise is one of pure redistribution, then
it is perfectly reasonable to suppose that yj > qj for some types (a �negative
tax�) and the question is which groups should pay for this income subsidy in
the optimal design.
Let us think through how the design problem is changed. There is no point in

going through the full-information story once more �we know that the best that
can be done is achieved by (12.45) for j = 0; 1; :::; N . So let us again assume
that the talent � j is private information. Here we can take advantage of a point
established in the answer to footnote question 36: the two-type contracting
model is easily extended to the three-type contracting model and thereby to
as many types as you like. The key thing is that the incentive-compatibility
constraint must hold for every adjacent pair of types: no-one has the incentive
to misrepresent himself as the type �below�. So now need to replace (12.39)
with

yj +  

�
qj

� j

�
� yj�1 +  

�
qj�1

� j

�
(12.51)

for every j = 1; 2; :::; N . Following through the reasoning for the two-type model
�see condition (12.46) �this implies that

�
qj ; yj

�
increases with j.

Instead of the Lagrangean (12.47) we now have:

max
f(qj ;yj)g

NX
j=0

�j
�
yj +  

�
qj

�j

��
+�

24 NX
j=0

�j
�
qj � yj

�
�K

35
+�
h
y0 +  

�
q0

�0

�
� �0

i
+

NX
j=1

�j

h
yj +  

�
qj

�j

�
� yj�1 �  

�
qj�1

�j

�i
(12.52)

41Carefully explain what happens if � (�) is constant in (12.49): see also Exercise 12.8 at
the end of the chapter.
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where the only added complication is that we now haveN incentive-compatibility
constraints with corresponding Lagrange multipliers �1; :::; �N .
The great thing about this is that the shape of the conclusion remains unal-

tered despite the super�cial increase in complexity. Checking out the reasoning
that we have used several times before (see the answers to footnote questions
32, 36, 39 and 40) it is clear that

MRSN = MRTN

MRSN�1 < MRTN�1

::: ::: :::

MRS1 < MRT1

MRS0 < MRT0:

However, we can go yet one step further. Suppose that instead of a �nite
number of speci�c types we have the situation where the types are distributed
continuously on an interval [� ; � ] where the density at � is given by f (�). The
objective function and the participation constraint can be �translated� imme-
diately into the notation of this continuous distribution model:

�Z
�

 (� (�)) f (�) d� (12.53)

and

� (�) � � (12.54)

where

� (�) = y (�) +  

�
q (�)

�

�
:

and (q (�) ; y (�)) is the output-income pair for a person of type � . The incentive-
compatibility constraint (12.51) can be written as42

d� (�)

d�
� 0 (12.55)

The constraint (12.55) has a simple interpretation: when the government designs
the tax system it must ensure that the attainable utility level increases with
talent; it also implies that the marginal tax rate can never be greater than 1.43

42Show how (12.55) can be derived from (12.51) by using a linear approximation for the
derivative.
43 Show how this follows from the (q (�) ; y (�)) patterns that were identi�ed for the previous

versions of the model.
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Now the Lagrangean (12.52) becomes

max
fq(�);y(�)g

�R
�

 (� (�)) f (�) d�

+�

"
�R
�

[q (�)� y (�)] f (�) d� �K
#

+� [� (�)� �]

+
�R
�

h
� (�) d�(�)d�

i
f (�) d�

(12.56)

where � (�) is the Lagrange multiplier at talent level � . Although a more
sophisticated technique is required to �nd the full solution to (12.56) we can
infer one point directly from the analogy with (12.52):

� z
�
q (�)

�

�
= � (12.57)

exactly at � = � we must have MRS=MRT. Once again we see that the principle
of �no distortion at the top� applies. Figure 12.10 illustrates the relationship
between output and income implied by the optimal tax system: the three in-
di¤erence curves depicted there correspond to three di¤erent talent levels. The
shaded area is the opportunity set presented to the agents by the tax system, the
equilibria for the three di¤erent talent levels is where the indi¤erence curve is
tangential to the opportunity set. The implication of (12.57) is that at the top-
most (q; y) pair the slope of the indi¤erence curve and the slope of the boundary
of the opportunity set must be exactly 1 (see the angle marked 45�).
The no-distortion-at-the-top principle has an implication that may at �rst

seem surprising. The tax paid by someone on talent level � is of course

T (�) := q (�)� y (�) : (12.58)

The result that the slope of the boundary opportunity set at the top is

dy

dq
= 1

means that, whatever the attitude to inequality that is displayed in the objective
function (12.53), the marginal tax rate dT

dq at the top has to be zero!

12.7 Summary

The design problem consists in constructing an economic mechanism to imple-
ment the wishes of the government or the interests of a single economic agent.
At the level of society it is an essential complement to the general considera-
tions of welfare that were discussed in the early part of chapter 9; at the level
of the individual �rm it complements the market analysis of previous chapters.
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Figure 12.10: Output and disposable income under the optimal tax

Right at the heart of the problem is the issue of misrepresentation of infor-
mation. Putting it bluntly, sel�sh individuals may well try to cheat. Given
the strong connection with the economics of information the issues raised are
analysed using similar analytical tools: the fundamental equilibrium concept
is the Bayesian-Nash equilibrium. Recognising the possibility of misinforma-
tion, it is in the interests of the designer to neutralise this problem by explicitly
incorporating it as a constraint in setting up the design problem.

The common threads that run through various design problems are evident
from the solutions to the speci�c applications examined in section 12.6: the
auction of an indivisible private good and the method of deciding on an indivis-
ible public project have similar truth-revealing mechanisms; the Principal-and-
Agent problem with private information about personal characteristics and the
optimal tax problem have the same incentive-compatibility conditions. Other
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examples of this commonality of approach are shown in the Exercises (see in
particular Exercise 12.6).
The principles of design learned here will prove to be essential in dealing

with the questions addressed in Chapter 13.

12.8 Reading notes

The original sources for the results reported in Theorems 12.1 � 12.4 are in
Gibbard (1973) and Satterthwaite (1975); for an accessible proof see Benoit
(2000) and Reny (2001) which dramatically illustrates its relation to Arrow�s
theorem (Theorem 9.1). For Theorem 12.5 see Maskin (1999) and Repullo
(1987) For the related issue of strategic voting see Bowen (1945) and Vickrey
(1960). For examples of misrepresentation of preferences in trading models see
Hurwicz (1972, 1986).
The key statement of the revelation principle is attributable to Myerson

(1979) and to Dasgupta et al. (1979), Harris and Townsend (1981).
On auctions see Klemperer (1999, 2002) and Vickrey (1961).
For the key references on �tipping mechanisms�and their e¤ectiveness for

implementing the public-project problem in dominant strategies see Clarke
(1971), Groves (1977), Groves and Loeb (1975) and Green and La¤ont (1997).
For an exposition of the standard optimal-income tax model go to Salanié

(2003). The classic reference is Mirrlees (1971), but this is tough going on �rst
reading.

12.9 Exercises

12.1 In a two-good exchange economy there are two persons a and b with utility
functions, respectively:

�a
h
1� e�x

a
1

i
+ xa2

� bxb1 + x
b
2

where xhi is the amount of good i consumed by person h, and �
h > 0 is a taste

parameter for person h (h = a; b), where � b < �a. Person b owns the entire
stock of good 1, R1; a and b each own half of the stock of good 2, R2.

1. Assuming that both persons act as price-takers:

(a) Find the o¤er curve for person a,

(b) Describe the competitive equilibrium allocation. What would have
happened if � b > �a?

2. Now suppose that person b can act as a simple monopolist in the supply of
good 1 while person a continues to act as a price-taker. Show that b will
set a price strictly greater than � b; comment on the outcome in terms of
e¢ ciency.
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3. Now suppose that person b can set a fee (�xed charge) for the right to
purchase good 1 as well as setting the unit price of good 1. For any given
price of good 1 what is the maximum fee that person b can set so that a is
still willing to trade? Find b�s optimal fee and price of good 1; comment
on the outcome in terms of e¢ ciency.

12.2 There is a �xed number of bidders N in a �rst-price (Dutch) auction.

1. Suppose the values are drawn from the same rectangular distribution with
support [� ; � ]. What is the density function and the distribution function
for �?

2. Agent h assumes that all the other agents� bids are determined by their
type: so that a rival with value � bids � (�) where � is a strictly increasing
function. On this assumption show that, if agent h bids a price p, the
probability that he wins the auction is�

' (p)� �
� � �

�N�1
;

where ' (�) is the inverse function of � (�).

3. Suppose the agent is risk neutral and that � = 0, � = 1. Again assuming
that the other agents�bids are determined by the same bid function � (�) ,
show that the agent�s best response is determined by the following equation:

[p� ' (p)] [N � 1] d' (p)
dp

+ ' (p) = 0 (12.59)

4. Show that condition (12.59) implies

' (p) =
N

N � 1p (12.60)

and that the equilibrium bid function takes the form

� (�) =
N � 1
N

� (12.61)

5. Use the result that the expected value of the kth smallest member of a
sample of size N drawn from a rectangular distribution on [0; 1] is

k

N + 1
(12.62)

to show that the expected price received by the seller in the special case
� = 0, � = 1 is

� (�) =
N � 1
N + 1

:
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6. Use this to �nd the optimal bid function and the expected price received by
the seller for a rectangular distribution with support [� ; � ].

12.3 Suppose that in the model of exercise 12.2 a second-price (English) auc-
tion were used rather than a �rst-price auction

1. What is the optimal bid function?

2. Use the result in (12.62) to determine the expected price paid by the win-
ner.

3. Use the results on order statistics (page 517) to draw the distribution of
price the price paid to the seller in the case of the �rst and the second
price auction.

12.4 Alf and Bill are bidding in a conventional English auction for an object
of unknown market value: Alf�s valuation of the object is �a, Bill�s valuation is
� b and the true value is expected to be �a + � b, but at the time of the auction
neither bidder knows the other�s valuation. However, it is common knowledge
that �a and � b are drawn from a rectangular distribution with support [� ; � ].

1. What is the expected value of the object?

2. From Alf�s point of view, what is the expected value of the object, condi-
tional on his winning the object?

3. Show that the price 2min
�
�a; � b

	
is an equilibrium.

4. Suppose Alf followed a policy of bidding �a+E� b and believed that Bill was
following the same type of policy. Why might this bidding policy lead to
an unfavourable outcome for the winner? (a phenomenon known as �the
winner�s curse�).(Klemperer 1998)

12.5 A Principal hires an Agent to manage a �rm. The Agent produces an
outcome q given by

q = � (z; �)

where z is e¤ort and � is the talent of the Agent that may or may not be observ-
able by the Principal; the function � is twice di¤erentiable increasing in both
arguments, concave in z, and has a positive cross derivative. The Principal
contracts to pay the Agent an amount of income y in return for output q:The
Principal�s utility is

q � y

and the Agent�s utility is
# (y)� z

where # is an increasing, strictly concave function such that # (0) = 0.
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1. Using the production function � show that the the indi¤erence curves in
(q; y)-space for Agents of di¤erent types must satisfy the single-crossing
condition.

2. If the Principal can costlessly observe the talent of any potential Agent
at the time of hiring and knows that the utility available to any Agent
in alternative employment is 0, �nd the conditions that characterise the
full-information solution.

3. It is known that there are exactly two types of Agent and the proportion of
high-talent agents is �. Write down the incentive-compatibility constraint
for the second-best problem.

4. Find the conditions that characterise the second-best equilibrium and show
that the no-distortion-at-the-top principle holds.

12.6 Consider a good that is produced by a monopoly that is known to have
constant marginal cost c and a �xed cost C0; marginal cost is given by

c: =
1

�
(12.63)

where � is a parameter that characterises the �rm�s e¢ ciency. If the monopoly
sells a quantity q of output in the market then the price that it can command
is given by p (q) where p (�) is a known, decreasing function. A government au-
thority wants to regulate the behaviour of the monopoly. The regulation speci�es
an output level q and a subsidy (fee) F that is intended to ensure that the �rm
does not make a loss. The authority has been instructed to take into account the
interests of both consumers and the owners of the �rm. Consumers� interests
are assumed to be given by consumer�s surplus; the �rms�interests are assumed
to be given by pro�ts including the subsidy F .

1. If the authority places a weight 1 on consumer�s surplus and a weight
� (where 0 < � � 1) on pro�ts what show that the authority�s objective
function can be expressed as

V (q;R) :=

qZ
0

p (x) dx� [1� �]R� �C0 � ��q

where R is total revenue for the �rm.

2. If the parameters of the cost function C0 and � are common knowledge

(a) What is the relevant participation constraint and Lagrangean for the
problem?

(b) How will the authority set q and F?
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(c) Interpret this full-information result.
[Hint: In formulating the answer to this and the next part exploit the
close similarity with the contracting model of section 12.6.3]

3. Assume that C0 is known but marginal cost is unknown; however it is
known that the e¢ ciency of the �rm is either �a or � b where

�a > � b:

and marginal cost is again given by (12.63).The authority wants to use
the same kind of regulatory régime but it does not know for certain which
type of �rm, high-e¢ ciency or low-e¢ ciency, it is dealing with.

(a) What is the incentive compatibility constraint that the authority should
take into consideration?

(b) What form does the participation constraint now take?

(c) If the authority faces a high-e¢ ciency type �rm with probability �
and it intends to maximise expected welfare what is the Lagrangean
for the problem?

(d) Find and interpret the second-best solution.
(Baron and Myerson 1982)

12.7 An economy consists of two equal-sized groups of people. The gifted, with
an ability parameter � = 2 and the deprived, for whom � = 1. All persons have
a utility function given by

U (x; z) = log x+ log (1� z)

where x is consumption and z is e¤ort in the labour market, 0 � z � 1. Con-
sumption is given by

x = w + T

where w is the market wage given by

w(z; �) = �z

and T is a transfer from the government (if positive) or a tax (if negative). The
government would like to set T = � > 0 for deprived individuals and T = ��
for gifted people.

1. If utility is observable and each person chooses z so as to maximise utility,
draw the graph of utility against earnings. for a gifted person and for a
deprived person, for a given value of �. What is the optimum value of
earnings for each type of person?
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2. Assume utility is not observable. The government plans the following
transfer scheme

T =

8<: � if w � w�

�� if w > w�

where w� is the optimum earnings for deprived people in part 1. Show that
gifted people may �nd it in their interest to pretend to be deprived. In the
diagram for part 1 plot the utility of someone carrying out this pretence.

3. Use the above diagram to show the case where a gifted person is just in-
di¤erent between acting as though utility were observable and pretending
to be deprived.

4. Show that deprived people�s utility could be increased by restricting the
amount that they are allowed to earn.

12.8 The government has to raise a �xed sum K through income tax. It is
known that there are two types of worker a and b in the economy and that the
output (gross income) produced by each is given by

qj = � jzj ; j = a; b

where zj is the amount of e¤ort supplied by a person of type j and �a > � b. it
is also known that workers have preferences given by the function

�j = qj � T j +  
�
zj
�

where T j is the tax on a worker of type j and  is a decreasing concave function.
The government has no interest in the inequality of utility outcomes and so just
seeks to maximise

��a + [1� �] �b

where � is the proportion of a-type workers.

1. What is the government�s budget constraint?

2. Write the government�s objective function in terms of qa, qb, � and K.

3. If the value of � j for each worker is private and unknown to the gov-
ernment, write down the Lagrangean for the government�s optimisation
problem.

4. Show that the second-best solution in this case is identical to the full-
information solution.

5. Set up the problem in an alternative, equivalent way where the govern-
ment�s budget constraint is modelled as a separate constraint in the La-
grangean. What must be the value of the Lagrange multiplier on this con-
straint at the optimum?
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Chapter 13

Government and the
Individual

�Frankly, I�d like to see the government get out of the war altogether
and leave the whole �eld to private industry�[Milo Minderbinder] �
Joseph Heller, Catch-22

13.1 Introduction

Until now we have taken for granted that the principles and analysis of micro-
economics should relate to the individual: decisions should be at the individual
level; individuals�or households� interests are those that are considered to be
paramount; unorganised individuals are the decision-makers in the market place.
But there is no compelling economic reason why this should be so. Although
this is not the place for an extensive discussion of the interesting questions
raised by the economics of institutions, it is appropriate to examine a number
of issues that may not be well suited to approaches that entirely focused on
the individual. In this chapter we will put chapter 9�s welfare concepts to work
in a number of areas where we have earlier noted some di¢ culties; we do this
having now bene�ted from the strategic and informational analysis in chapters
10�12. There are two main themes from earlier discussions that need to followed
through.
First we will examine the issue of market failure �sections 13.2�13.6. Can

the desired social state be achieved through the market mechanism or is ex-
plicit intervention required? If the �rst is true, then maybe everything can
indeed be left to Milo Minderbinder and unfettered private enterprise; an es-
sentially individual-focused approach would indeed be appropriate. Otherwise
the question of correcting market failure will require application of the lessons
of economic design from chapter 12

431
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Second we will look at how income �ought to be�distributed �section 13.7.
This issue requires more than application of basic criteria such as e¢ ciency; we
need a full welfare approach. In order to �nd a way of shaping the economy to
achieve this desired goal we again need the analysis from the chapter on design.

13.2 Market failure?

We begin with the economic mechanism that underpinned much of the �rst half
of this book. We re-examine the rôle that can be played by the market and
its possible limitations in achieving the outcomes that one might desire for the
economy . Put crudely, why and how do markets �fail?�
To address this question properly we need to use the welfare-economic analy-

sis that was introduced earlier in the book. Speci�cally we will build on of the
idea of the e¢ ciency of an allocation of consumptions and net outputs: this
concept can be a powerful tool in the design of economic policy prescription.
The key questions to be addressed are those that were raised in chapter 9 (page
245). They are:

1. The characterisation problem. What combination of goods will result in a
Pareto-e¢ cient allocation? We already know the answer to this question,
not only for private goods, but in several other interesting cases. But we
will need to refer back regularly to the answer in order to deal properly
with question 2.

2. The implementation problem. In other words, what mechanism could be
used to support the e¢ cient allocation characterised in question 1?

In some cases the answer to the second question follows almost as a matter
of course from the �rst. In chapter 9 we established that, under certain condi-
tions, the workings of the market would ensure an e¢ cient allocation. The key
requirements for characterising an e¢ cient allocation ([x�]; [q�]), distilled from
equations (9.11)�(9.15), can be written as

Uhj (x
�h)

Uhi (x
�h)

=
�j
�i
; (13.1)

�fj (q
�f )

�fi (q
�f )

=
�j
�i
; (13.2)

where

� the left-hand side of (13.1) is the MRS of good i for good j in when
household h consumes x�h (page 80);

� the left-hand side of (13.2) is the MRT of good i into good j when �rm f
�s activity is given by net output q�f (page 40);
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� the right-hand side of both equations is just the ratio of shadow prices,
re�ecting the relative scarcity of the two goods, that emerges from tak-
ing account of the materials balance condition in deriving the e¢ ciency
condition.

From this characterisation of e¢ ciency it is but a step to replace the shadow-
price ratios �j

�i
in (13.1) and (13.2) with market prices to see the suggested:

implementation; we then get, for any pair of goods i and j

Uhj (x
�h)

Uhi (x
�h)

=
pj
pi
; (13.3)

�fj (q
�f )

�fi (q
�f )

=
pj
pi
: (13.4)

Equation (13.3) is clearly the FOC for a utility-maximisation problem for house-
hold h given prices p; equation (13.4) is the necessary FOC for a pro�t-maximisation
problem for �rm f given prices p. If the necessary conditions are also su¢ cient
conditions �and as we shall see, this quali�cation is important �then allowing
�rms and households to maximise given the prices p is su¢ cient to implement
the allocation. In e¤ect we have a re-run of the decentralisation argument that
we �rst encountered in the Robinson Crusoe economy (page 135); it is also the
logic underlying the support theorem (page 240). The allocation is illustrated
in Figure 13.1 �compare this with Figures 7.15 and 6.9.
But, beyond the cases where the conditions for this result apply, how can

implementation be achieved? Should we look to market intervention �a kind
of tweaking of the price system? Should we consider regulation � allowing
pro�t/utility maximisation to take place subject to the imposition of some side
constraints? Or does the answer lie in some more arcane form of non-market
administration?
We will examine the issues in the following four cases

� increasing returns or �nonconvexities��section 13.3;

� �externalities�or �spillovers��section 13.4;

� non-rival goods �section 13.5;

� public goods �section 13.6.

13.3 Nonconvexities

We begin with the problem that prevented decentralisation on Crusoe�s island
(page 136) and that re-emerged in chapters 7 and 9. Although there are other
examples of nonconvexity that we can choose we shall examine just one of the
most obvious and relevant cases: that of increasing returns in production. This
is an issue that is typical of large infrastructure projects and public utilities.



434 CHAPTER 13. GOVERNMENT AND THE INDIVIDUAL

Figure 13.1: Implementation through the market

However, it is purely an issue of the technology set �or of the cost structure if
you like �and should not be confused with �public goods�; the issue of public
goods is dealt with separately in section 13.6 below.
We need to think about non-convexity both in the small � at the level of

individual �rms �and in the large �the overall technology set that describes
the production possibilities for the economy as a whole. The technology set of
an economy may prove to be nonconvex for either of two reasons

� Interactions amongst individual �rms (positive externalities).

� Technology sets of individual �rms are nonconvex � in other words, for
some �rms in isolation, production possibilities display increasing returns
to scale.

If neither of these phenomena is present then we can state we know that the
aggregate technology set must be convex �see Theorem 6.1 in chapter 6.
Recall that the support theorem presupposed rather stringent requirements

of convexity � not only of aggregate production possibilities, but also at the
level of the individual �rm and of each household�s �better-than�set �see the
argument relating to the �gures on page 241. Given the examples of �xed cost
or other indivisibilities that casual observation suggests are commonplace in the
world around us, it seems like a good idea to examine more closely the problem
of characterising economic e¢ ciency in the presence of nonconvexities.
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We will do this in three stages: �rst we will consider the possibilities if there
is a large number of small �rms each with increasing returns to scale; then we
will look at how the interactions generated by externalities might be handled;
�nally we look at the general problem of �large�nonconvexities (section 13.3.3).
and the regulation problems to which they give rise (section 13.3.4).

13.3.1 Large numbers and convexity

Let us start by thinking about nonconvexities at the �rm level that are in
some sense �su¢ ciently� small. We know from the discussion of Theorem 9.5
that if there are nonconvexities in individual �rms� technology sets then an
arbitrary e¢ cient allocation ([x̂]; [q̂]) may not be capable of being supported
by a competitive equilibrium �see the case illustrated in Figure 9.5,. However
where there are many small �rms each with increasing returns to scale we may
not need to be concerned about the implementation role of the price mechanism.
There are two reasons for this.
First, on aggregating up the individual �rms�production possibilities (the

technology sets Qf ) the overall e¤ect may nevertheless be to produce a convex
aggregate technology set Q: the non-convexity of one �rm�s technology set may
be o¤set by the convexity of that for another �rm (see footnote question 2 in
chapter 6). The fact that production possibilities overall have the appropriate
property will permit the existence of separating prices as in Figure 7.15.
Second, even if the aggregation procedure over a �nite number of �rms does

not produce an overall technology set Q that is convex one may nevertheless be
able to appeal to a �large-numbers�argument used in chapter 7 . This follows
along the lines of the example on page 169: in the limit the aggregation of an
in�nite number of in�nitesimally small �rms will produce a Q that is convex,
even if each �rm has an increasing-returns technology. Clearly it is a matter
of judgment as to whether this argument is limit appropriate for modelling a
particular economy.
For each of these two arguments, even though the price mechanism may not

support any and every arbitrarily chosen allocation (as in the example of Figure
9.5) nevertheless it may do the job well enough. The competitive-equilibrium
allocation is e¢ cient and can yield individual utilities that are su¢ ciently close
to those obtainable under ([x̂]; [q̂]).

13.3.2 Interactions and convexity

Consider now the case where the nonconvexity arises from positive externalities
amongst �rm. In some respects we know how this can be resolved. If �rms do
interact in this way, then competitive equilibrium may still be possible. Each
�rm acting as a price-taker can make non-negative pro�ts in equilibrium al-
though, as we have seen in the discussion in chapter 3, the relationship between
overall supply and the supply curve of each �rm will be a bit di¤erent from
the case of no interaction, and the supply curve may actually slope the �wrong
way��see page 56. However, although competitive equilibrium may exist, the
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market mechanism will not in general produce an e¢ cient outcome because of
the production externalities involved.1 These and other related issues are dealt
with in section 13.4.

13.3.3 The infrastructure problem

If we cannot appeal to large numbers argument then the implementation prob-
lem becomes more di¢ cult: we cannot just rely on the marginal conditions
(13.3), (13.4) for guidance. Furthermore, the implications can be quite dra-
matic as can be seen with the aid of an example that, as a convenient short-hand
description, may be called the infrastructure problem.
Consider the situation in �gure 13.2. Good 1 is commodity where the pro-

duction requires a large initial investment: something like electricity, water
supply, the telephone service, rail travel. Good 2 is a �basket�of all other con-
sumer goods which is again used as numéraire. The production function for the
economy as a whole is given by

� (q) � 0

and there are zero resource stocks of good 1 and good 2 so that materials balance
requires

x1 � q1

x2 � q2:

However, � is not a concave function and the associated attainable set is shown
as the shaded area in each of the two halves of the �gure:2 notice in particular
that this set includes the little spike on the vertical axis, with its peak at the
point x�. The signi�cance of this spike is to represent the assumption that
electricity (or whatever) is subject to substantial initial set-up costs: if there
were no electricity produced then an amount equal to xo2 of consumption of
good 2 is available . However, the moment you want even one kilowatt-hour of
electricity a substantial amount of good 2 �equal to the height of the �spike�
�has to be sacri�ced; thereafter additional units of electricity require further
sacri�ce of good 2.
Now consider the two sets of indi¤erence curves illustrated in the two halves

of Figure 13.2: these can be taken to represent the preferences of a �represen-
tative citizen�, so that social welfare is just this person�s utility function (this
will imply that the �willingness-to-pay�criterion mentioned in the discussion of
potential superiority on page 257 is unambiguous).
Each set of contours has a tangency at point x0 �which suggests the same set

of shadow prices for the two cases �but the contours have di¤erent curvatures.
Notice that the left-hand diagram has a single Pareto-e¢ cient point at x0: simple
inspection reveals that it would be impossible to get to a higher indi¤erence

1Suggest a policy which might be used to ensure e¢ ciency in this case.
2 Identify the technically e¢ cient points in this diagram.
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Figure 13.2: Non-convexities in production and e¢ ciency: Two cases

curve. However in the right-hand diagram the corresponding point is not Pareto-
e¢ cient: although it would yield some sort of �local maximum�of utility, one
clearly does better at point x�: in this case Pareto e¢ ciency implies that none
of good 1 should be produced.
This example illustrates the two-stage procedure that has to be adopted in

order to characterise the e¢ cient allocation in the presence of nonconvexities:

1. Find the relevant part of the feasible set by searching for a global maximum
of welfare: in the present case this means �nding the global maximum of
the representative person�s utility.

2. If the good is to be produced in positive amounts, then production should
take place such that

�1(q
0)

�2(q0)
=
p1
p2
=
U1(x

0)

U2(x0)
(13.5)

the marginal rate of transformation exactly equals the marginal rate of
substitution for the representative consumer � just as in the elementary
case of private goods.3

Notice that, while standard e¢ ciency conditions are enough to characterise
stage 2, stage 1 explicitly involves the introduction of an assumption about the
social-welfare function.

3 (a) Show how the compensating variation can be used as a measure of welfare in Figure
13.2. (b) Why might it be problematic to extend this idea to an economy with heterogeneous
consumers?
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Figure 13.3: Nonconvexity: e¤ect of the competitive market

Also notice that leaving things to the market has a demonstrably disastrous
e¤ect here. Suppose the situation is as in the left-hand panel of Figure 13.2 and
that someone has estimated what customers�willingness to pay for good 1 at
the optimum (at point x0). The willingness to pay for an extra unit of good
1 is represented by the relative prices p1

p2
as shown in Figure 13.3. But what

would happen if a price-taking �rm or �rms maximised pro�ts at those prices?
Pro�t-maximisation would be achieved at x�, not x0.4 In e¤ect it is a re-run of
the version of the Robinson Crusoe story that we considered on page 6.10; but
here it means that the electric power grid or the rail service never gets built,
even though it is clearly desirable that it should.5

13.3.4 Regulation

So leaving the infrastructure to the free market is in this case produces a dis-
astrous outcome. But simply transferring ownership or restricting competition

4Explain why this will occur.
5Suppose the attainable set is given by

�(x1; x2) � 0

where

�(x1; x2) =

�
x21 + x

2
2 � 1; x1 > 0; x2 � 0

x2 � 1� k; x1 = 0; x2 � 0
Interpret this in terms of Figure 13.2. Let p1 = p2 = 1. If there is a single price-taking �rm
producing plot pro�t as a function of x1. For what value of k will a price-taking �rm produce
zero amount of good 1?
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Figure 13.4: Nonconvexity: an e¢ cient fee schedule

will not do �for example nationalisation cannot be the complete answer to the
problem. Just creating a simple monopoly, whether public or private, will also
be suboptimal.6

However, one may be able to do much better by adapting the analysis of
information and monopoly power in Chapter 11 (pp 328�345).

Full information

We begin with the full-information approach: the utility functions of the house-
holds are assumed to be common knowledge. Suppose a �rm or an agency is
empowered to charge an entrance fee for the right to consume good 1: clearly
this will only work for certain types of good or service that might be modelled
by good 1.7 By assigning the production of good 1 to such a �rm it is possible
to construct an e¢ cient fee schedule: this can be of the type of nonlinear fee
schedules that we considered in chapter 11 (see Figure 11.2)
Examine Figure 13.4. The kinked line passing through x� and x0 is the

required fee schedule.8 It consists of a �xed fee F0 and a variable charge at the
price p1; note that

p1
p2
is the marginal cost of producing good 1 in terms of good

2. This fee schedule clearly satis�es the FOC in (13.5) that characterise the
e¢ ciency condition. It will also enable the �rm to break even.9 The �rm can

6Why is this so? See exercise 3.1 on �natural monopoly.�
7What types?
8Will such a regulated �rm produce more of good 1 than a non-regulated monopolist?

[Hint: check Exercise 3.4 on page 66]
9Show this.
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construct such a schedule given that it knows the customers�demand functions
and, if we were to extend the argument to the case where there are di¤erent
types of consumers, it can introduce a more complex version of the same charging
structure as long as it can identify the type each consumer (see the argument
on pages 333 �336).
However this form of fee schedule is not the only way of setting up an e¢ cient

payment system for the �rm or agency. Suppose the government allows the
�rm to charge the price p1 (equal to marginal cost of production) and then
underwrites its losses by paying the �rm a subsidy equal in value to F0. By
the same reasoning the �rm covers its costs: the subsidy can be �nanced by
levying a tax on the population and it is clear that there is a welfare increase
because the representative consumer is assured of the utility level �0 rather than
��. The implementation in terms of a tax-�nanced subsidy combined with price
regulation apparently produces the same e¤ect as allowing the �rm the freedom
to set a fee. With some extra caveats the argument can also be applied to the
heterogeneous-consumer case.10

Private information

The assumption of perfect information that underlay these proposed e¢ cient
solutions may be particularly inappropriate. There are at least two respects in
which this may be a poor way to model the situation facing such a �rm or public
agency.
First, the �rm may face di¤erent types of customers. It then has the now

familiar problem of masquerading by high-valuation types as low-valuation types
in order to acquire a more favourable contract for themselves, with a lower �xed
charge. The analysis is essentially that outlined in section 11.2.4: it retains the
essentially private and individualistic approach to �nding the e¢ cient solution.
Second, the government in attempting to regulate the �rm may not be full

informed about the �rm�s circumstances. Common sense suggests that in order
to regulate it e¤ectively the government must have some information about the
�rm�s cost function: otherwise how will it know whether or not the subsidy
paid to cover F0 is in fact an overpayment? However, imagine the situation
confronting the government that is to award the right to supply good 1 subject
to the price regulation and subsidy scheme that we have discussed. Although
the government may be informed about the distribution of cost structures of
the possible candidate �rms the speci�c information about the costs of any one
particular �rm may be unobservable to the government: in other words the
shape of � (�) in Figure 13.4 may be information that is private to the �rm.
Figure 13.5 illustrates the case where there are two possibilities for the (x1; x2)-
trade-o¤: the larger, lightly shaded area corresponds to that in Figure 13.4 and
the other depicts a case in which less of the infrastructure good 1 is obtained for
any given sacri�ce of good 2. If there were perfect information about which of

10Suppose, following note 3,that
P
h CV

h were proposed as the objective function for the
government, where CVh is the compensating variation of household h. Why might this prove
unsatisfactory as a welfare criterion?
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Figure 13.5: Nonconvexity: uncertain trade o¤

the two cases were true then one could achieve an e¢ cient outcome either at x0

(if the true situation were as in Figure 13.4) or at x00 (if the true situation were
as in the new, smaller, attainable set): in either case one uses the marginal-cost-
price-plus-subsidy method of ensuring that a producer of known cost operates
e¢ ciently. However, under imperfect information about the producer�s type,
this approach is not going to be implementable.11

This conclusion about imperfect information should come as no surprise:
it is just what we had in the case of the contracting model of section 12.6.3,
for example. It can be handled using the principles of design that are by now
fairly familiar. The designer here is of course the government and it attempts
to maximise expected social welfare, where the expectation is taken over the
various types of monopoly producer that the regulator may be confronting.
This is a �second-best� maximisation problem because the regulator has to
incorporate an incentive-compatibility constraint that ensures that a low-cost
producer would not �nd it pro�table to masquerade as a high-cost producer:

11Show that the low-e¢ ciency type of �rm would like to pretend to the regulator that it is
a high-e¢ ciency type �see also Exercise 12.6 (page 427).
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the detail of how it works in a speci�c model is contained in Exercise 12.6 (page
427). The outcome will be a multipart payment schedule that is contingent
on output. Maximised social welfare will be lower than the full information
solution, but then that is just what we have come to expect from this type of
model.
The nonconvexity problem that undermines the operation of the unfettered

free market can be solved without abandoning the approach that focuses on
individual pro�t maximisation. However it usually requires some external in-
tervention (the government regulator) to ensure that the producers stay solvent
as well as operate e¢ ciently.

13.4 Externalities

Externalities imply a particular type of interdependence amongst economic
agents; but we must be careful what kind of interdependence. Take the stan-
dard multi-market model of the economy introduced in chapter 7. In a market
economy there are bound to be interdependencies induced by the forces of com-
petition. The demand for ice-cream goes up in the summer; as a result the
wages of ice-cream vendors increase; as a result the wages of other workers
increase; as a result up go the marginal costs of apple-growers, bicycle-repair
�rms, car-parks, ... However the type of interdependency that is relevant here
does not operate through the regular channels of the market: if it did then the
economic issues involved would be much simpler. Instead the interdependency
works by shifting one or more of the basic components of the model that we
set for examining economic e¢ ciency: the production function �f or the utility
function Uh of other agents in the economy.
The externality problem emerges in a number of guises; we had a glimpse

of this in chapter 3 and in chapter 9 where the method for analysing e¢ ciency
was developed. Some of the standard versions of the externality issue are:

� Networking e¤ects. Firms bene�t from each others�investment in certain
capital and human resources that facilitate cooperation or otherwise lower
other �rms�costs. This is the kind of phenomenon that in the aggregate
may give rise to the increasing returns or �nonconvexity �problem men-
tioned in section 13.3.2.

� Civic action. �Good citizenship�activity by some consumers may bene�t
others �painting the house, for example.

� Common-ownership resources. Suppose �rms have access to a resource
where the ownership rights are vague or unde�ned ��shing grounds be-
yond territorial waters, common land. A typical �rm may use the common-
ownership resource as an input in a way that takes no account of indirect
fact on other �rms�costs in accessing the resource �as the �shing grounds
get depleted or the land is over-grazed. The phenomenon is epitomised as
the �tragedy of the commons.�
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� Pollution. Actions by �rms or consumers may directly a¤ect others pro�ts
or utility.

The �rst pair of these are clearly activities that provide bene�ts to others
and intuition suggests that individual agents pursuing their private interests
may in some sense �underprovide.� The others are examples of negative or
detrimental externality and the same intuitive reasoning suggests that private
interests responding to market signals will lead to over-indulgence in the market
activity that is producing the externality. However, is the intuition likely to be
right here, or has it missed a key point about the market mechanism?
We will address this by examining �rst the production case and then con-

sumption : the essential di¤erence between them concerns not only the nature
of the agents�objectives and constraints but also the informational questions
associated with the particular externality, as we shall see. Dealing �rst with
production externalities enables us to develop a method of analysis and set of
criteria for other types of externality and for introducing the issue of public
goods.

13.4.1 Production externalities: the e¢ ciency problem

The essence of the problem can be expressed in the form of a two-commodity
model of a closed economy. Firm f�s production of good 1 causes a spillover
e¤ect that impinges on the production costs of other �rms: the greater the
activity the larger is this e¤ect. We will again assume that there is a single
individual whose preferences are represented by a standard quasiconcave utility
function. Equation (9.29) states the basic principle of the e¢ ciency condition
with the production externality; for the consumer the relevant condition for a
private good is (13.1); combining the two one has:

�f1

�f2
=
U1
U2
+ ef21 (13.6)

where ef21 is the marginal valuation of the externality. The other two terms
in (13.6) have essentially the same interpretation as in equations (13.1)�(13.4):
they are the marginal cost of producing good 1 in terms of good 2 (left-hand
side) and the the consumer�s willingness to pay for good 1 in terms of good 2
(right-hand side).
We can exploit the e¢ ciency condition (13.6) to provide a method of imple-

mentation in a market economy.

13.4.2 Corrective taxes

Given that the consumer(s) are maximising utility in a free market (13.6) could
be interpreted as a simple rule for setting corrective taxes. We simply need to
rede�ne the components as

~p1
~p2
=
p1
p2
� t (13.7)
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where the ~ps denote producer prices, the ps are consumer prices, and t is a tax
on the output of polluters. If we arrange things so that

t = �ef21

then we have a corrective tax that imposes the value of the marginal externality
on the one generating it. Note that, by de�nition, this tax is positive if the
externality is deleterious (as in the case of pollution), but that t is negative (a
subsidy to the �rm producing good 1) if the externality is bene�cial.12

It is clear that although there could be informational problems with this neat
solution, including the question of de�ning the boundaries between taxable and
nontaxable commodities and the problem of enforcement, it has the advantage
of simplicity in that requires only a relatively minor modi�cation of the market
mechanism.

13.4.3 Production externalities: Private solutions

However, does the government need to get involved at all with corrective taxes or
subsidies? Perhaps if the interests of the various �rms involved in an externality
are correctly modelled then outside intervention by the government may be
irrelevant.

Internalisation through reorganisation

In some cases, where the production externality impinges only on one or a few
other �rms an industrial organisation solution can be sought. A merger of the
�victim��rm with the �rm generating the externality would change the nature
of the problem. What had been two separate decision-making entities relying
on market signals become two component plants of a single �rm A rational
manager of the combined �rm would recognise the interdependencies amongst
the plants and allow for this in making decisions on net outputs for the combined
�rm. The merger has thus �internalised�the externality. Of course this leaves
open the question of whether a large organisation would be e¢ ciently organised
internally to take account of the richer information that becomes available from
the merger of the erstwhile separate �rms.

Internalisation through a pseudo-market

However, changes in the industrial structure may not be necessary to do the job
of internalisation. It could be that self interested but enlightened managers of
the �rm can extend the operation of the market.
To see the argument here take the case where there are just two �rms: �rm 1

is a polluter and �rm 2 the victim. We assume that both �rms are fully informed
about technological possibilities and production activities, including the impact
of the externality: this information assumption is important. We also assume

12Does this imply that the �polluter pays�? [See footnote questions 20 and 22 in chapter
9.]
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that there is no legal or other restraint on the activities of �rm 1, the polluter.
So it would appear that �rm 2 would have to su¤er a loss of pro�ts that, ceteris
paribus, becomes larger as �rm 1 increases its output.
The key to the private solution is for �rm 2 (the victim) to make an o¤er of a

side-payment or bribe to �rm 1. The bribe is an amount that is made conditional
upon the amount of output that �rm 1 generates: the greater the pollution, the
smaller is the bribe; so we model the bribe as a decreasing function � (�) having
as argument the polluter�s output. The scheme can be implemented because
we assume that the pollution activity is common knowledge. How should � be
determined? We can treat it as one more control variable for �rm 2, and so the
optimisation problem is

max
fq2;�g

nX
i=1

�
piq

2
i � �

�
� �2�2

�
q2; q11

�
(13.8)

The �rst-order conditions are:

pi � �2�2i
�
q2; q11

�
= 0 (13.9)

�1 + �2
d�2

�
q2; q11

�
dq11

dq11
d�

= 0 (13.10)

Using the de�nition of the externality we can write (13.10) as

�1 + �2�22
�
q2; q11

�
e121

dq11
d�

= 0 (13.11)

which, in view of (13.9), implies

d�

dq11
= �2�

2
2

�
q2; q11

�
e121 = p2e

1
21 (13.12)

Now look at the problem from the point of view of �rm 1. Once the victim
�rm makes its o¤er of a conditional bribe, �rm 1 should take account of it. So
its pro�ts must look like this

max
fq1g

nX
i=1

�
piq

1
i

�
+ �(q11)� �1�1

�
q1
�

(13.13)

� there is explicit recognition in (13.13) that the size of the sidepayment will
depend upon q11 , which is under �rm 1�s direct control. The �rst-order conditions
for �rm 1�s problem are then given by

p1q
1
i +

d�(q11)

dq11
� �1�11

�
q1
�
= 0 (13.14)

p2 � �1�12
�
q1
�
= 0 (13.15)

which, taking into account (13.12), imply

�11
�12

=
p1
p2
+ e121: (13.16)
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Figure 13.6: A fundamental nonconvexity

Remarkably we seem to have come to the same e¢ cient solution as would
have been reached by an optimally designed pollution tax �see equations (13.6)
and (13.7). What is more this apparently e¢ cient outcome can be obtained
even if the legal system assigned rights to the victim rather than the perpetra-
tor. It appears, therefore, that if there is perfect information, costless enforce-
ment and meaningful negotiation is possible, that e¢ cient an outcome can be
attained through a purely private mechanism. In e¤ect the set of markets has
been augmented by the creation of a pseudo-market in pollution rights, and the
appropriate pricing of these rights plays the central role in implementing the
e¢ cient allocation. This extension of the market has e¤ectively internalised the
externality by placing an implicit price on it that the producer of the externality
cannot a¤ord to ignore.
However, there may yet be problems:

� If a polluter is allowed to sell rights to pollute inde�nitely then it is pos-
sible that the process might go on until �rm 2 goes out of business. In
which case the feasible set will look like that illustrated in Figure 13.6.
However, if this occurs it is then clear that reliance on the extended mar-
ket mechanism will not work for the very same reason that we encounter
in section 13.3: the pricing of pollution rights leads one to point q̂ rather
than the e¢ cient point ~q. One may have transformed the externality-type
problem of market failure into a nonconvexity-type problem.

� The argument implicitly supposes that transactions costs are negligible:
the bribe is negotiated and paid with no more fuss than a conventional
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market transaction; the quid pro quo of the reduction in the polluting
activity is veri�ed with no more fuss than checking the quality of goods in
the market. But it is not hard to think of situations where this assumption
just will not do. For example, where there are many potential perpetrators
and victims, isolating the particular polluter involved, implementing the
bribe and monitoring the actions contingent on the bribe may be di¢ cult.

� Each �rm is supposed to be well informed about the cost functions of
others in order to implement the optimal bribe function. This assump-
tion could seem rather unsatisfactory in view of the regulation problem
highlighted in section 13.3.4: will a competitor know a rival�s costs better
than the government?

13.4.4 Consumption externalities

We can use some of the production-externality analysis to handle external e¤ects
in consumption as well. Now, in contrast to the case considered above, we take
the situation where production takes place without externality, but there may be
interdependencies between agents�utility functions. Good 1 is some commodity
that a¤ects the utility of other people either negatively (tobacco?) or positively
(deodorant?) and good 2 is just a basket of other goods. Using the basic
e¢ ciency principles from equation (9.34) and (13.2) we get

Uh1
Uh2

=
�1
�2

� eh21 (13.17)

where eh21 is the marginal externality generated by h in consuming good 1 (val-
ued in terms of good 2) obtained from equation (9.33): at an e¢ cient allocation
each household�s marginal willingness to pay for good 1 should just equal the
marginal cost of producing good adjusted by the value of the marginal exter-
nality. Again we might think of a modi�ed market solution using a corrective
tax. So, reasoning as before, equation (13.17) would lead to

p1
p2
=
~p1
~p2
+ t (13.18)

where p1
p2
again represents the consumer�price ratio, ~p1~p2 is the producer�s price

ratio and
t = �eh21 (13.19)

is the required corrective tax.13

To follow through on the example used in the e¢ ciency on discussion on
page 250 the implication of (13.18) and (13.19) is that if smoking generates a
negative externality (eh21 < 0) then there should be a positive corrective tax on
smoking equal to the value of the marginal externality. The tax can be seen as a

13On this basis should deodorant and perfume be subsidised?



448 CHAPTER 13. GOVERNMENT AND THE INDIVIDUAL

way of incorporating the social costs of a negative externality in with the private
cost of supplying the consumer with the good that generates the externality.
However, it is clear that in the case of consumption externalities the problems

of information and measurement might be fairly intractable. In some cases (as
with smoking) it may be true that there is independent information on the
damage to other peoples�health so that the value of the marginal externality is
common knowledge. But in many cases the informational problems will be at
least as great as those associated with knowing �rms�costs in the production-
externality model. Given the heterogeneity of tastes it may be impossible for
someone to provide accurate and veri�able information about the externality; it
may even be impossible to determine in which direction (positive or negative)
the externality works! In the light of this people may have an incentive to
misrepresent their preferences 14 �a problem that emerges more sharply in the
analysis of public goods �section 13.6 below.

13.4.5 Externalities: assessment

Can all the various types of externality be satisfactorily handled through the
workings of private interests? This central question that we have addressed in
this section resolves into the questions: can the externality be internalised? If
so, how?
In some cases the answer appears to be positive, but the workings of the

market need to be adjusted appropriately. These cases cover situations where
the e¢ cient outcome can be sustained by a corrective tax that drives a wedge
between consumer and producer prices. Some versions of internalisation rely on
explicitly superseding the conventional market mechanism by merging separate
production entities. Internalisation may be trickier in situations where agents
voluntarily set up their own extended market or where the problem of imper-
fect information means that it is impossible to prevent agents misrepresenting
preferences or costs.

13.5 Public consumption

Check out Table 9.2 (page 236) once more. It gives four special cases on the
public-private spectrum of goods. We have examined two of these (those on the
left of the table, corresponding to �Rival�goods); it is now time to look at the
analysis of the case in the top-right-hand corner, marked with an enigmatic �?�.
This special case is �public consumption� in the sense that the good lacks

the rivalness property �making it available for an extra person to consume
involves no extra resources. But it is not truly �public�because we assume that
it is excludable. It is interesting half-way house on the way to discussing the
topic of public goods in section 13.6. Fortunately we can deal with the issues
that it raises in comparatively short order.

14Provide an example to show this based on footnote question 13.
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13.5.1 Nonrivalness and e¢ ciency conditions

So, let us think through the provision of a good that exhibits the characteristic
of non-rivalness but yet is excludable �pay-for-view TV, for example. The ex-
cludability property means that you can charge for the good; and so an e¢ cient
allocation could be implementable through some type of market mechanism.
How should the price be set and can we rely on the free market to set it?
Let good 1 be the non-rival good and good 2 a basket of all other goods.

The argument of section 9.3.4 implies that the e¢ cient allocation must satisfy15

nhX
h=1

Uh1 (x
h)

Uh2 (x
h)
=
�1
�2

(13.20)

This immediately suggests an implementation method. Because the good is
assumed to be excludable we can introduce a charge ph for each agent h that
is the price (for that agent) for the right to consume good 1, denominated in
terms of good 2. The condition (13.20) then gives

nhX
h=1

ph =
�1
�2

(13.21)

Each consumer is set a price that corresponds to his marginal willingness-to-pay
for the service supplied; each could be cut o¤ if he does not pay; the sum of
these prices totals the marginal cost of supply of the service.16

Two di¢ culties with this allocation rule suggest themselves:

� The assumption of perfect excludability in this case is a strong one �things
will go wrong if individual consumers�marginal willingness to pay cannot
be readily observed.

� It is often the case that this type of good is to be supplied not by a col-
lection of competitive �rms but by just one, or a few, large producers. So
there may also be a problem of monopoly supply that requires regulation,
as discussed in section 13.3.4.

However there is a commonly-encountered institution that, it could be ar-
gued, is designed precisely to supply such non-rival goods.

13.5.2 Club goods

The club can be seen as a device that does exactly that job. Through its mem-
bership rules it implements an e¤ective exclusion mechanism. Let us analyse a
simple version of a club that provides good 1.

15Explain why.
16What is the marginal unit of the product that is being supplied in the TV example?
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First we introduce the idea of the size of the club and its relation to the good
or service that the club provides. If there are N members then the amount x1
of good 1 produced by the club is given by a production function � such that

x1 = � (z;N) (13.22)

where z is the input of good 2 (the basket of all other goods). Let us make
conventional assumptions about �: it is increasing and strictly concave in z; it
is decreasing or constant in N .17 This latter assumption allows both for the
pure nonrivalness case and for the case where the services provided by the club
are subject to congestion.18

Agent h�s preferences are assumed to be represented by the following utility
function

Uh(x1; x
h
2 ) (13.23)

The membership fee of the club must be set to cover the cost of producing the
good. We can simplify the exposition by assuming

1. The cost of the club is allocated equally amongst its members.

2. All members of the club are identical in their preferences and incomes.

The boundary of agent h�s budget constraint is then

z

N
+ xh2 = yh: (13.24)

where yh is the same for all h. The agent�s utility can then be written

Uh
�
� (z;N) ; yh � z

N

�
(13.25)

For any agent who is interested in joining the club it must be true that

Uh
�
� (z;N) ; yh � z

N

�
� Uh

�
0; yh

�
(13.26)

What is the optimal amount of x1 the good or service provided by the club? We
can answer this by �nding the amount of input z that maximises the utility of
a representative agent. Di¤erentiating (13.25) with respect to z the �rst-order
condition for a maximum for a club of given size N is

Uh1

�
� (z;N) ; yh � z

N

�
�z (z;N)�

1

N
Uh2

�
� (z;N) ; yh � z

N

�
= 0 (13.27)

Therefore, rearranging and summing over all the h in the club, we have

NX
h=1

Uh1
�
� (z;N) ; yh � z

N

�
Uh2
�
� (z;N) ; yh � z

N

� = 1

�z (z;N)
(13.28)

17 It is sometimes convenient to work instead with the club�s cost function. The cost of
providing an amount x1 of good 1 is C(x1; N) measured in terms of good 2. Explain the
relationship between C and �. Show that the above assumptions on � imply that C is
increasing and convex in x1 and is nondecreasing in N .
18Explain why.
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in other words19 P
hMRS

h = MRT (13.29)

�compare equation (9.36) and (13.20). An e¢ cient allocation characterised by
(13.28) implementable because (13.26) ensures that any agent h would rather
pay the membership fee z=N than be excluded from the club.20

Clearly we have a story of the private provision of something that has essen-
tially public characteristics. But the assumption of perfect excludability may
be unreasonably strong: more of this in the next section.

13.6 Public goods

We have encountered public goods at a number of points. In chapter 9 we
discussed the issue of e¢ ciency in an economy with public goods; in chapter
12 we saw how to do a kind �auction�of an indivisible public project in order
to �nd a simple mechanism in this special case. However, beyond this special
case, what of the general problem of providing public goods? Can we �nd a
suitable mechanism for doing this could it be implemented by an individualistic
approach?

13.6.1 The issue

Recall that a public good has two key characteristics �it is both (1) completely
non-rival and (2) completely non-excludable (check Table 9.2 on page 236 and
the accompanying discussion).
The �rst of these two properties is at the heart of the question of allocative

e¢ ciency with public goods. From Theorem 9.6 and the discussion of section
13.5 we know that the e¢ ciency rule is to choose the quantities of goods on
the boundary of the economy�s attainable set such that (13.29) holds. The
sum-of-mrs rule follows directly from the non-rivalness property.
The second property is central to the implementation question. Here we

have a potentially serious problem, simply because, by assumption, the good
is non-excludable. The intrinsic non-excludability will make the design issue
quite tricky: the intuition here is that the problem contains in extreme form
the feature that which we considered on page 447. Unlike the club story that
we have just analysed it is impossible to run a membership scheme: you cannot
keep non-payers out of the club.
To see the nature of the problem in more detail let us look at a couple of

simplistic mechanisms that can fail catastrophically.

19Show how (13.28) can be generalised to a heterogeneous membership.
20 (a) If there is congestion, �nd the condition for the optimal membership of the club. [Hint:

assume that N can be (approximately) treated as a continuous variable and di¤erentiate.] (b)
Show that this condition can be interpreted as �marginal cost = average cost.�(c) Show that
at the optimum the can be interpreted as setting the membership fee equal to the marginal
cost of admitting the marginal member
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13.6.2 Voluntary provision

The essential points can be established in a model that is very similar to that
considered in section 12.6.2. We have a two-commodity world, in which there are
nh agents (households): commodity 1 is a pure public good and commodity 2 is
purely private. An important di¤erence here is that we are no longer considering
a �xed-size project but the general problem of allocating the two goods, public
and private.
Each agent has an exogenously given income yh, denominated in units of the

private good 2. We imagine that the public good is to be �nanced voluntarily:
each household makes a contribution zh which leaves

xh2 = yh � zh

of the private good available for h�s own consumption. Good 1 is produced from
good 2 according to the following production function:

x1 = �(z) (13.30)

where z is the total input of the good 2 used in the production process, derived
simply by summing the contributions as in (12.23): What contribution will each
household make and how much of the public good will be provided? The answer
will depend not only on the model of each agent�s preferences but also on the
agent�s assumption about the actions of others.
We again suppose that agent (household) h has preferences given by (13.23).

Each agent realises that the total output of the public good depends upon his
or her own contribution and upon that made by others. Suppose that everyone
assumes that what others choose to do is independent of his own contribution:
in other words h takes the contribution of the others as a constant, �z, where

�z :=

nhX
k=1

k 6=h

zk: (13.31)

so that
z = �z + zh:

The constant-�z assumption appears to be rational for h but, as we will see, there
is a catch when we consider h�s wider interests.
Combining equations (13.30) to (13.31), agent h�s optimisation problem be-

comes:
max
xh2

Uh(�(�z + yh � xh2 ); xh2 ): (13.32)

The �rst-order condition for an interior solution is:

�Uh1 (x1; xh2 )�z(�z + yh � xh2 ) + Uh2 (x1; xh2 ) = 0 (13.33)

and a simple rearrangement of (13.33) gives:

Uh1 (x1; x
h
2 )

Uh2 (x1; x
h
2 )
=

1

�z(z)
(13.34)
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where z is given by (12.23). This condition has the simple interpretation

MRSh = MRT :

However, by contrast, Pareto e¢ ciency requires (13.29) to be satis�ed, which,
in terms of the simple two-good model used here, means

nhX
h=1

Uh1 (x1; x
h
2 )

Uh2 (x1; x
h
2 )
=

1

�z(z)
(13.35)

The implication of the contrasting individual optimisation condition (13.34)
and the e¢ ciency condition (13.35) can bi illustrated in Figure 13.7 represents
the production possibilities in this two-commodity model, with the prublic good
on the horizontal axis. the total amount of the private good on the vertical
axis.21 If agents are myopically rational they choose a consumption bundle
satisfying (13.34) that yields the aggregate consumption vector such as x̂ in
Figure 13.7. But if there were some way of implementing the e¢ cient outcome
�satisfying equation (13.35) � then the aggregate consumption bundle would
be at point ~x where the slope of the tangent is �atter. Clearly voluntarism leads
to an under-provision of the public good.
What is going on here can be understood in strategic terms by reference to

the Cournot model of quantity competition discussed in chapter 10 (page 286).
Figure 13.8 represents Alf�s and Bill�s contributions to a public good where
nh = 2. Alf�s indi¤erence curves are given by the U-shaped family where the
direction of increasing preference is upwards.22 Bill�s indi¤erence curves work
similarly: they are C-shaped and the direction of increasing preference is to
the right. Using the logic of the argument on page 240 we can construct the
e¢ ciency locus as the path connecting all the points of tangency between an a-
indi¤erence curve and a b-indi¤erence curve: allocations corresponding to these�
za; zb

�
are Pareto e¢ cient.

But now consider the myopic optimisation problem of each of the two agents.
In a¤ect they play a simple simultaneous-move game to decide their contribu-
tions to the public good. If Alf chooses za on the assumption that zb is �xed
he selects a point that is just at the bottom of one of the U-shaped indi¤erence
curves: the locus of all such points is given by the reaction function �a that en-
ables one to read o¤ the best-response value of Alf�s contribution to any given
level of Bill�s contribution. A similar derivation and interpretation applies to
Bill�s reaction function �b and, of course, the same remarks about the slight

21Assume that all nh agents are identical and that agent h has the utility function

Uh(x1; x
h
2 ) = 2

p
x1 + x

h
2

Assume that production conditions are such that 1 unit of private good can always be trans-
formed into 1 unit of the public good. What is the condition for e¢ ciency? How much of the
public good should be produced? How much would be produced if it were left to individual
contributions under the above assumptions?
22Explain why this is so, given the model of utility in (13.23) and (13.32) where Uh is a

conventional quasiconcave function.



454 CHAPTER 13. GOVERNMENT AND THE INDIVIDUAL

Figure 13.7: Myopic rationality underprovides public good

inexactitude of the term �reaction function� apply to this simultaneous move
game as in the context of Cournot quantity-competition on page 287. In the
light of this argument the point of intersection of the curves �a and �b in Figure
13.8 represents the Nash equilibrium of the public-good contribution game: each
agent is simultaneously making the best response to the other�s contribution.
A glance at the �gure is enough to see that the Nash-equilibrium contributions
fall short of the contributions required to provide a Pareto-e¢ cient outcome.
There are other ways in which the story of voluntary provision of the pub-

lic good could have been dressed up but typically they have the same sort of
suboptimal Cournot-Nash outcome. Each agent would like to �free ride�on the
contributions provided by others rather than providing the socially responsible
contribution himself. This conclusion seems rather depressing:23 what might
be the way forward?

13.6.3 Personalised prices?

In the light of the discussion of other aspects of market failure such as the
nonconvexity issue (section 13.3) we might want to consider a direct public
means of providing the public good �perhaps a benevolent government agency
that produces the public good and is empowered to requisition the amounts
zh in order to do so. But this would presume that an important apart of the
problem had already been solved: in order to do this job the agency would need

23Could we rely on a version of the folk theorem (Theorem 10.3) to ensure an e¢ cient supply
of public goods?
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Figure 13.8: The Cournot-Nash solution underprovides

to know each household�s preferences (not just the distribution of preferences).
There is an alternative approach that avoids making this assumption of

frightening omniscience on the part of the government agency. It builds directly
on the representation of an e¢ cient allocation with public goods given in Figure
9.9 (page 252). Instead of assuming that the government is all-knowing imagine
that the agency which produces the public good is empowered only to �x a
discriminatory �subscription price�that is speci�c to each household h, in the
manner of a discriminating monopolist. Once again ph measures the cost per
unit of good 1 in terms of good 2. The agency announces the set of personalised
prices and then household h announces how much of the public good it would
wish to purchase. The decision problem of household h is then:

max
(x1;xh2 )

Uh(x1; x
h
2 ) (13.36)

subject to the following budget constraint:

phx1 + x
h
2 = yh: (13.37)

Clearly the household will announce intended purchases (x1; xh2 ) such that

Uh1
Uh2

= ph (13.38)

Apparently all the agency needs to do to ensure e¢ ciency �equation (13.35)
above �is to select the personalised prices appropriately. This means selecting
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all the ph simultaneously such that

nhX
h=1

ph =
1

�z
: (13.39)

Figure 13.9: Lindahl solution

Condition (13.39) �known as the Lindahl solution to the public goods prob-
lem �embodies the principle that the sum of households�marginal willingness-
to-pay (here the sum of the personalised prices ph) equals the marginal cost
of providing the public good. (13.35). It can be illustrated in the two-good,
two-person case as in Figure 13.9, derived from Figure 9.9 in chapter 9. This
can be interpreted as an illustration of aggregating individual demands for a
public good: for each person an individual subscription price is set equal to
that individual�s MRSh21 (equation 13.38) By contrast to the case of private
goods (where for a given, unique price each household�s demanded quantity
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is summed) we �nd that for a unique quantity each household�s subscription
price is summed. One adds up everyone�s marginal willingness-to-pay, and the
aggregated subscription price matches the production price of the public good
(equation 13.39). If this sounds like club goods again then this impression is
correct �Figure 13.9 could have been used to illustrate the optimal charging
rule for the nonrival excludable good in equation (13.21).
However now, with true public goods, there are two rather obvious problems.

The �rst is that the procedure may be computationally rather demanding, since
one might have to iterate through several personalised price schemes and pro-
vision levels for a large number of people �all the potential bene�ciaries of the
public good and not just those who self-select by applying to join the club. The
second problem is more fundamental. Why should each household reveal its true
marginal rate of substitution to the agency? After all, there may be no way of
checking whether the household is telling lies or not, and the higher the mar-
ginal rate of substitution one admits to, the higher the subscription price one
will be charged. So, once a household realises this, what will be the outcome?
The household then realises that it can e¤ectively choose the price that con-

fronts it by announcing a false marginal rate of substitution. It seems reasonable
to suppose that it will do this to maximise its own utility subject to the actions
of all other households assumed to be given. Once again we assume that equa-
tion (13.31) holds: household h assumes that the net contribution of everyone
else is �xed. So household h in e¤ect chooses both xh2 and x1 so as to maximise
expression (13.23) subject to

x1 = �(�z + phx1) (13.40)

and the budget constraint (13.37).
However, this is exactly the problem above where each household made its

own voluntary contribution. Because there is no incentive for any household to
reveal its true preference and no way of checking the preferences independently,
the ine¢ ciency persists: the subscription mechanism is open to manipulation:
evidently we have re-encountered the problem of misrepresentation on page 394
or �chiselling�in the oligopoly problem (page 289 in chapter 10).
Is this conclusion inescapable?

13.6.4 Public goods: market failure and the design prob-
lem

Let us think again about the implications of the Gibbard-Satterthwaite Theorem
(page 393). Recall the essence of the result: for any mechanism � in an economy
with a �nite number of agents:

� if there is more than a single pair of alternatives,

� and if � is de�ned for possible pro�les of utility functions,

� and if � is non-manipulable in the sense that it is implementable in dom-
inant strategies,
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then � must be dictatorial.
It is clearly this result (Theorem 12.4) that underlies the problem that we

have encountered with the implementation of public goods via voluntarism or
the attempt at subscription-price taxation. So, following through the three main
parts of the theorem that we have repeated here, perhaps it might be possible to
make some progress on the implementation problem if we were to relax one or
more of these conditions. For example, what if we reconsider the nature of the
voluntary model in the light of the public-project mechanism of section 12.6.2?
Perhaps a possible solution to the di¢ culties of sections 13.6.2 and 13.6.3 is to
recast the public goods decision problem: instead of considering the possibility
that the amount of public goods x1can take any real value, we could focus on a
�xed-size project as in chapter 12 (page 403). Although this is obviously restric-
tive, the insight provided by the tipping mechanism is important: it provides
a way of internalising the externality that each agent imposes on the others
though a signalling procedure that is similar to that discussed in section 11.3.2
(page 360). Can the lesson of the tipping mechanism be extended to other cases
so as to �nd a way of internalising the externality associated with the public
good? Second, we could focus attention on a speci�c class of utility functions
rather than admitting all types of preferences over public and private goods.
Third, we could consider weakening dominant-strategy truthful implementation
to, say, Nash implementation: agent h reveals his true preferences just as long
as everyone else does the same.
Some elements of these approaches will become evident in the mechanisms

discussed in section 13.6.5.

13.6.5 Public goods: alternative mechanisms

Our examination of alternative mechanisms for providing public goods is driven
by two motivations. First, it would be interesting to �nd a device for assisting
the cooperation of individual agents in achieving either an e¢ cient outcome or,
at least, one that is an improvement on that which arises from the pursuit of
myopic interests. Second, there is the question of private rather than public ap-
proach that has run as a theme through this chapter. Relying automatically on
the institution of government for the provision of public goods seems somewhat
restrictive: is it not possible to �nd a method of coordinated individual action
that would take into account more than just their myopic interests?

The rôle of government

If we are prepared to assume that the government has a lot of knowledge and
expertise at implementation then it is the public-project can provide the foun-
dation for more sophisticated mechanisms: using a more complex penalty and
taxation scheme the tipping mechanism could be applied to situations other
than the simple �xed-size project, although this is likely to be administratively
complex.. However, the government may also have a rôle to play in modifying
other types of individualistic equilibria: by making it in individual agents�inter-
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est to consider the outcomes for others implementation of an e¢ cient solution
may be possible; there is an example of this kind of thing in exercise 13.5). The
government may also have a role to play in setting up the institutions required
for essentially private, individualistic, but non-market forms of provision. This
is illustrated in the following two applications.

Money-back guarantees

The �rst attempt has a pleasantly parochial feel to it and may be familiar
from the o¢ ce or neighbourhood. Everyone is encouraged to provide voluntary
contributions for the public good so as to achieve a given target value z�, some-
times known as the �provision point.�If the target is not reached then no public
good is produced; but if the target is reached or surpassed then any excess is
returned to the contributors on a pro-rata basis. The money-back guarantee
aspect of the scheme is central: without it the target becomes a mere aspiration
for exhortation, devoid of economic incentive.
To model the scheme let the utility of agent be given by the zero-income-

e¤ect form
U
�
x1; x

h
2

�
=  (x1) + x

h
2 (13.41)

� compare equation (12.21) on page 405. Under the rules of the money-back
guarantee the individual�s utility is thus given by

Uh
�
x1; x

h
2

�
=

�
 (� (z�)) + �h [z � z�] + yh � zh if z � z�

yh otherwise
(13.42)

where z :=
P

h z
h denotes the total contribution and �h := zh=z is agent h�s

proportion of the total. Clearly if the public good is valuable to the individual
agent h then h will voluntarily contribute under this scheme.24

However, there are two interconnected problems with this approach. First,
who decides the provision point and how? To �x z� appropriately one would
have to have prior information about preferences for the public good; perhaps
the government has this information, but otherwise it comes close to assuming
away a major part of the problem. Second, if the provision point is not exoge-
nously �xed then one will immediately revert to the under-provision outcome
of voluntarism.25

Lotteries

A common method of �nancing the provision of public goods is a national or
local lottery. Suppose that there is a �xed prize K and that agents are invited
to buy lottery tickets that will be used to fund a public good. The prize, of
course, also has to be paid for out of the sum provided by the lottery tickets.
Therefore the total amount of the public good provided is given by

x1 = � (z �K) : (13.43)

24Show that under these circumstances contibuting for the public good is a Nash equilibrium.
25Show that each agent h would wish to argue for a smaller contribution.
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where z is the sum of all the agents�lottery-ticket purchases. The lottery is fair,
so that if agent h purchases an amount zh of lottery tickets, the probability of
h winning is

�h =
zh

z
(13.44)

If agent h makes the Cournot assumption so that the total input provided for
public good production is

z = z + zh (13.45)

where z is the sum of everyone else�s ticket purchases. Again we take the utility
function for agent h to be given by (13.41). So expected utility is

EUh
�
x1; x

h
2

�
=  h (x1) + �

hK + yh � zh (13.46)

where x1 and �h are given by (13.43)�(13.45). The �rst-order conditions for the
maximum of (13.46) are straightforward and yield26

 hx (x1) =
� (K)

�z (z �K)
(13.47)

where
� (K) := 1� z

z2
K < 1

The left-hand side of (13.47) is MRS; the right-hand side is � (K) times MRT.
From this we can deduce that, although the lottery will not provide the e¢ cient
amount of the public good given by (13.35), it will attenuate the problem of
underprovision that arises from simple voluntary initiative by individuals. A
higher prize K will result in more public good being provided through this
mechanism.27 Why does this happen? Setting up a �xed-prize lottery introduces
an o¤setting externality: each time you buy a lottery ticket you a¤ect everyone
else�s chances of winning the prize.28

13.7 Optimal allocations?

As a �nal topic we turn to an issue which could be called, rather grandly, the
optimal distribution of income. The basic question is how should the resources
in the economy be deployed in the best possible way given the preferences that
are imputed to society and the limitations imposed by the technology?
We use the approach to the social-welfare function developed in section 9.5

of chapter 9 (pp 258�264). Social welfare is individualistic and can interpreted

26Show this.
27Show how to represent the case of voluntary provision as a special case of this model. Use

the example of footnote question 21 (page 453) to ecaluate condition (13.47) and to illustrate
that z will increase with K. [Hint: make use of the assmption that all agents are identical to
write the FOC as a function of z; then draw graphs of MRS and � (K)MRT.]
28But, be careful here! Suppose the prize itself is related to the amount of lottery tickets

bought. Speci�cally let K be equal a proportion of � of ticket sales. What will then be the
equilibrium behaviour of each agent?
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in terms of the distribution of income as well as its aggregate. Of course spec-
i�cation of the social-welfare function is not su¢ cient to determine what the
social state should be. As with other types of optimisation problem we also
need to specify the feasible set.
Speci�cation of the feasible set in this case is di¢ cult because it is not

self evident what the limitations are on the freedom of action of the govern-
ment. Contrast this with the optimisation problem of the monopoly used as
an extended example in chapter 11 (pp 11.2.1�11.2.5). In the chapter 11 case
we could contrast two sharply de�ned informational regimes that corresponded
clearly to two contrasting assumptions that could reasonably be made about the
�rm in relation to its market: the full-information situation where each potential
customer could be correctly identi�ed as to his/her type and the second-best
solution where the distinction between types could not be made and the pro�t-
maximising �rm had to build in an incentive compatibility constraint in order
to prevent customers of one type masquerading as the other so as to get a better
deal for themselves. The distinction between full-information and second-best
approaches is again crucial to the present analysis, but we may need to extend
the meaning of the term �second best.� It could once again be principally a
question of incomplete information; but it may also be that the government or
other agency is not allowed to use certain information in seeking to achieve a
redistribution of resources or income.
The consequence for the structure of the optimisation problem is that we

have to consider a number of side-constraints on agents that are analogous to the
side-constraints that we build in to model the short-run optimisation problem
of the �rm.

13.7.1 Optimum with lump-sum transfers

Consider what is meant by lump-sum transfers. It is as though there were some
means of transferring resource endowments or shares in �rms from agent to
agent costlessly as though they were title deeds in the game Monopoly. Can
we achieve so-called ��rst-best� solutions with such transfers? The answer is
probably yes, but the range of application is likely to be very limited and some
of these �solutions�could well be unattractive for a variety of reasons.29

However, if lump-sum transfers of income are possible, then the solution
to the social optimum problem is immediate. To analyse this case we can use
either a diagram representing the utility possibility set, or one like Figure 9.12
in terms of incomes (see page 263). If it is costless to transfer incomes between
agents then, given that there are nh agents (�households�) and total income of

29 Suppose all the world consists of one jurisdiction and the government has a complete
register of all the citizens. The government wants to �nance the provision of a given amount
of public good. (a) If the required taxes were divided equally among the citizens, would this
be lump-sum? (b) If the required taxes were assigned to the citizens at random would this be
lump-sum?
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K the set of possible income distributions is given by:

Y � :=

(
(y1; y2; :::) :

nhX
h=1

yh = K

)
(13.48)

In the two-person case this is simply a line at 45�. Likewise it is easy to see
that if all commodities are costlessly transferable the set of feasible income
distributions is given by (13.48). Then, as we have already noted, the optimal
distribution of income is going to be on the 45� ray through the origin. These
are just two ways of motivating the idea that there is a �xed-sized �cake� of
national income to be shared out.
Let us brie�y consider two problems that may arise.

� Not all resources may be costlessly transferable.

� Even with goods which are transferable, it may not be possible to transfer
them on a lump-sum basis.

If the property distribution is changed in a market economy then the total
income in the community is also likely to change since the equilibrium price
vector will also change. Consider Figure 13.10 (drawn using the same axes as
Figure 9.12) and suppose the economy is initially at point ŷ. The incomes of
the households are determined, (i) by d, the property distribution of resources
and shares in �rms, and (ii) by the equilibrium prices at ŷ. Now imagine
all the possible income distributions corresponding to changes in the property
distribution away from that which was in force at ŷ: we may do this by using
the equivalent variation concept, and taking as our starting point the household
utility levels that were attained at point ŷ. Each d determines a particular
equilibrium price vector, and thus each d �xes a market-determined income for
household h, yh(d). We may thus construct the set of all feasible (market-
determined) income distributions.

Y := f(y1(d); y2(d); :::) : d 2 Dg (13.49)

This is illustrated by the shaded area in Figure 13.10. As we saw in Figure 9.12
in chapter 9 the apparent welfare loss from being at point ŷ is given by the
ratio of the distance Ey � � to mean income Ey. But, by construction, ŷ is in
fact a welfare optimum on the assumption that Y represents the set of feasible
income distributions: the frontier of Y is tangential to a contour of the social
welfare function at that point. Whether ŷ is an optimum in some wider sense
depends on what we are prepared to assume about the scope for intervention
in the economy. For example, as we have seen, if lump-sum transfers of income
are possible, then the optimum would be at point �y and the set of all possible
income distributions will be the set bounded by the 45� line through this point.
However, if such transfers are not practical policy then the �true�attainable

set may be somewhere intermediate between that determined by the market (as
shown by Y ) and that which would have been relevant had lump-sum income
transfers been attainable.
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Figure 13.10: Opportunities for redistribution

Of course it is impossible to specify the attainable set without the structure
of possible interventionist policies being speci�ed. So one cannot in general state
that equality of incomes is a welfare-maximising condition. One simple result
is available, however.30

Theorem 13.1 Given identical individuals, an equal distribution of income is
welfare-maximising for all symmetric concave social welfare functions if Y is
symmetric and convex.

To say more about the possibilities for redistribution need to examine the
second-best issue more closely.

30Prove this using an elementary geometrical argument.
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13.7.2 Second-best approaches

Our treatment of the second-best approach to optimal allocation will focus on
the kind of constraints that we ought to try to model and an example of the
way in which the government�s optimisation problem can be set up under such
constraints.

Administrative costs and information

Clearly a major part of the �second-best�approach is the nature of information
as it relates to taxes and government transfers. Broadly speaking we can imagine
that the government may have some information about personal characteristics
� including income-generating attributes as in the income-tax problem and
some information about transactions. We have an examples of a second-best
approach to the problem of income redistribution when personal characteristics
are hidden in the chapter on �design�: namely the optimal tax model of section
12.6.4 and exercise 12.7 on income support. But we have yet to consider the
way in which information about transactions might be used.
In addition there is the related question of administrative complexity that

is of enormous practical importance when considering the constraints on redis-
tribution but which is di¢ cult to model convincingly. One way of doing this
to impose some additional restriction on the form of the policy instrument by
which the tax or transfer is to be administered: for example restricting the
functional form of the income-tax schedule (see exercise 13.6) or requiring that
taxes that are conditioned on transactions are simple modi�cations of market
prices rather than taking some complex, nonlinear form. Let us look at this a
little further.

Commodity taxation

The idea of measuring waste as in section 9.3.2 can be used to underpin practical
policy making. A principal example of this concerns the design of commodity
taxes: which commodities should bear the higher rates of sales tax or value-
added tax? One approach would be to adjust the rates so as to minimise waste
while meeting the overall revenue requirements. But what is the rationale for
this and would it produce an �acceptable�tax structure?31

To analyse this consider the second-best optimisation problem for the gov-
ernment. Let us assume that the government has information about consumers�
transactions but not about their wealth or income. It needs to raise taxes,
perhaps to fund public goods or because of some external constraint, such as
foreign debt, that it is to be incorporated into the second-best problem. To
simplify things let us suppose for the moment that distributional questions are
irrelevant: the government just needs to

31Suppose that the price distortion is caused by an ad valorem tax t on good 1, and that
�pi t 0 for i = 2; 3; :::; n. Identify the tax revenue received by the government, and the total
burden imposed on the consumer.
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Use the notation of section 9.3.2 but adapt it so that there are now n + 1
goods. We assume that there is a representative consumer who supplies labour
(commodity 0) and purchases commodities (1; 2; :::; n). Consider the constraints
facing the consumer and the government:

� The consumer. The only income-yielding resource is one unit of commod-
ity 0. The consumer�s budget constraint is

nX
i=1

pixi � y (13.50)

where pi is the price of commodity i. The consumer actually chooses
quantities of all n+1 goods including x0 (leisure) so that income in (13.50)
is given by

y := p0 [1� x0] + y
where y is the consumer�s lump-sum income, if any (there is no di¢ culty
caused by setting y = 0).

� The government. Details about the consumer�s income are assumed to
be unknown to the government, but some transactions carried out by
the consumer are observable and taxable. Goods 1; :::; n are taxable. So
consumer prices are given by

pi = ~pi + ti; (13.51)

where ~pi is the producer price of commodity i (assumed to be �xed) and
ti is the speci�c tax imposed on commodity i. Good 0 is assumed to be
non-taxable. If a given revenue K is to be raised in taxation hen the
government�s budget constraint is:

nX
j=1

tjxj � K (13.52)

Let the consumer�s preferences be represented by the indirect utility func-
tion V (�) which is assumed to be common knowledge. Since there is assumed
to be a single representative consumer social welfare is represented by the con-
sumer�s utility. The government�s second-best problem is therefore to choose
(t1; t2; :::; tn) so as to maximise V (p; y) where p : = (p0; p1; p2; :::; pn), subject
to (13.52). This is equivalent to solving

max
ft1;t2;:::;tn;�g

V (p; y) + �

24 nX
j=1

tjxj �K

35 (13.53)

where pj is given by (13.51). The �rst-order conditions for the problem are:

Vi(p; y) + �xi + �
nX
j=1

tj
@xj
@pi

= 0; i = 1; 2; :::; n (13.54)
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and the �equality�part of (13.52). This yields32

nX
j=1

tj
@xj
@pi

= �
�
�� �
�

�
xi: (13.55)

where � is the consumer�s marginal utility of income. From the Slutsky equation
(4.21) we know that

@xj
@pi

= Hj
i � xi

@xj
@y

(13.56)

where Hj (�) is the individual�s compensated demand function for good j (4.10)
and Hj

i is its derivative respect to pi, the consumer�s substitution e¤ect. Sub-
stituting (13.56) into (13.55) and rearranging we obtain33Pn

j=1 tjH
i
j

xi
= �� (13.57)

where

� :=

�
�� �
�

�
�

nX
j=1

tj
@xj
@y

(13.58)

is a constant independent of the particular commodity i under consideration.
The rule (13.57) says that at the optimum tax policy should bring about

the same proportional reduction in compensated demand for each commodity i.
So how should second-best taxes be structured? The answer depends on which
commodities are inelastic in demand. But it is important to remember that this
rule has been derived solely on the basis of e¢ ciency within the second-best
context: in practice this can lead to relatively high tax rates on goods that are
likely to form a large part of the expenditure of poorer people �see Example
13.1.

Example 13.1 Atkinson and Stiglitz (1972) using Stone (1954)�s Linear Ex-
penditure System produced the following estimates of optimal taxes by broad
commodity groups. They are tabulated for three di¤erent values of the ratios
of � and �, the Lagrange multipliers in the government�s and the individual�s
optimisation problems respectively. The larger is the ratio �

� , the greater is the
marginal cost of the government�s budget constraint. I.e. larger values corre-
spond to higher values of the exogenous revenue requirement K. Note that in
every case food (in the �rst two rows) is taxed much higher than durable goods,
re�ecting the compensated-demand elasticities of the di¤erent types of commodi-
ties.

32Explain why. [Hint: use Roy�s identity]
33Show this. [Hint: Use the symmetry of substitution e¤ects.]
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�
� = 1:025

�
� = 1:05

�
� = 1:075

Meat, �sh, dairy products and fats 11.1 27.8 63.2
Fruits and vegetables 8.2 18.6 33.4
Drink and Tobacco 10.1 24.1 48.5

Household running expenses 5.3 11.4 18.2
Durable goods 5.6 11.8 19.0

Other goods and services 6.2 13.4 22.0

13.8 Conclusion: Economic Prescriptions

One sometimes looks to micro-economic principles for guidance on how the
economy should be run. E¢ ciency criteria can sometimes provide useful pre-
scriptions. The simple �MRS and MRT� rules can be extended �with some
modi�cations �to di¢ cult cases such as externalities, public goods or decreasing
cost industries. However, the characterisation problem that we have considered
here really just opens the door on to a much more interesting and intractable
economic problems �that of implementing e¢ cient allocations in the presence
of these types of economic phenomena.
The full welfare approach is obviously more ambitious. Clearly the discus-

sion of the speci�cation of a social-welfare function and the nature of a welfare
optimum has been on an extremely limited basis. For example, in discussing
the optimal distribution of income we have, for the sake of interpretable results,
swept aside di¢ culties that would be essential to practical policy making. Most
notably we assumed in chapter :

� that the choice of an appropriate social state e¤ectively amounts to the
choice of an allocation of pure private goods;

� that the social welfare function is individualistic and self-interested (W is
a function of individual utility levels, and each Uh is a function only of
household h�s consumption). Each of these assumptions can be relaxed,
at a cost.

Consider the problem of extending the analysis beyond a pure private-good
economy. Obviously the problems of ine¢ ciency arising from the presence of
production or consumption externalities, will mean that the National Income
theorem ( Theorem 9.12) is no longer applicable: prices will have to be �cor-
rected� if a social optimum is to be attained. The marginal bene�t to each
household of any change in the level of public good supply needs to be taken
into account in determining the optimum: even if people are similar in tastes,
di¤erences in income between persons and the possible lack of a satisfactory
preference revelation mechanism will make this information di¢ cult to obtain.
Social-welfare functions that is not individualistic and self-interested may

well be worth considering. For example if households had other households�
incomes or utilities as arguments of their own utility functions then it is clear
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that a modi�ed form of the above analysis will still go through. It may also
provide a basis for assuming W to be strictly concave in incomes: if households
�feel bad�about income inequality (in a manner that is similar to the way they
are adversely a¤ected by other externalities) and if the social orderings respect
individual tastes then the social welfare function will exhibit inequality aversion.
However, this may not, in itself, be an entirely satisfactory reason for supposing
the social welfare function to be inequality averse.

13.9 Reading notes

The standard reference on market �failure� is Bator (1958). Hotelling (1938)
provides an early treatment of the nonconvexity (�increasing returns�) issue.
On the analysis of regulation of �rms see Baron and Myerson (1982), Demsetz
(1968) and La¤ont and Tirole (1993).
The classic treatment of the market approach to externalities is in Meade

(1952) and Buchanan and Stubblebine (1962). The corrective taxes discussed
in the context of externalities are commonly known as Pigovian taxes after
the contribution by Pigou (1926) The seminal paper on the internalisation of
externalities is Coase (1960) and the issue of information in connection with this
approach is discussed in Farrell (1987). Starrett (1972) showed the problem of
the fundamental nonconvexity that can arise when pollution rights are traded.
The economics of club goods owes much to Buchanan (1965); for further

analysis see Cornes and Sandler (1996).
The classic reference on the pseudo-tax pricing of public goods is Lindahl

(1919) On the shortcomings of the private provision of public goods see Andreoni
(1988) and Bergstrom et al. (1986) . For approaches that relax the dominant-
strategy requirement for the implementation of public goods see Groves and
Ledyard (1977) (Nash equilibria) and d�Aspremont and Gérard-Varet (1979) (a
Bayesian approach). The provision-point mechanism and money-back guaran-
tees are dealt with in Bagnoli and Lipman (1989) and Palfrey and Rosenthal
(1984). The use of the lottery as a public-goods allocation mechanism is con-
sidered by Morgan (2000).
On the commodity-tax problem the classic reference is Ramsey (1927); for

the same principles applied to the regulation of a monopoly see Boiteux (1956).

13.10 Exercises

13.1 A local public good is one that is speci�c to a particular municipality:
within the municipality good 1 is provided as a public good, but the consumer
has to be resident there to bene�t from good 1. Residence in a municipality also

1. Use the model of club in section 13.5.2 to explain how a municipality will
set its local tax.

2. If there is a given number N of municipalities @@(Tiebout 1956)
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13.2 (A continuation of Exercise 4.13 on page 97) There is a single �rm pro-
ducing good 1 with costs as described in Exercise 4.13; all consumers are identi-
cal with preferences given as in Exercise 4.12. The government allows the �rm
to charge what price it likes but o¤ers to pay the �rm a subsidy equal to the
consumer�s surplus generated by the price the price that it charges.

1. Is the regulation mechanism e¢ cient?

2. Does the government as regulator need to know (a) the cost function? (b)
the utility function?

3. Show that this mechanism allows the �rm to exploit consumers completely.(Loeb
and Magat 1979)

13.3 The government of the tiny island of Mugg is considering whether it would
be a good idea to install piped gas. Once the gas distribution system is installed
each unit of gas (commodity 1) costs a �xed amountm of other goods (commodity
2); there is additionally a �xed cost F incurred in setting up a distribution system
on the island. Before the system is installed Mugg enjoys a total amount R2 of
commodity 2. The residents of Mugg are assumed to be identical in every respect
and their tastes are represented by the utility function

�
�
1� e�x1

�
+ x2

where (x1; x2) represent the quantities consumed of the two goods and � is a
non-negative parameter.

1. What is the maximum number of units of gas that could be a¤orded on
Mugg?

2. Draw the production possibility set; draw the indi¤erence curves in two
cases: where � is large and where � is small.

3. Use the diagram to show that whether it is a Pareto improvement to install
the gas system depends on the value of �. If the installation of gas on Mugg
is Pareto-improving, describe the Pareto-e¢ cient allocation of goods and
suggest a scheme by which the publicly-owned corporation MuggGas could
implement this allocation if it knows the willingness-to-pay of the residents.

4. The government of Mugg has a horror of public enterprise and decides to
delegate the decision on installation and supply by selling o¤ MuggGas.
Will this generate an improvement on the no-gas situation? Will it gen-
erate an e¢ cient allocation?

5. How would your answers be a¤ected if MuggGas were split into a number
of private companies, or if consumers were allowed to resell gas to each
other?



470 CHAPTER 13. GOVERNMENT AND THE INDIVIDUAL

13.4 In an economy there are two �rms each producing a single output from a
single non-produced resource according to

q1 =
p
z

q2 = max
�p

R� z � �q1; 0
�

where qi is the amount produced of good i, z is the amount of the resource used
in the production of good 1, R is the total stock of the resource and � is a
parameter.

1. What phenomenon does this model represent?

2. Draw the production-possibility set.

3. Assuming that all consumers are identical, sketch a set of indi¤erence
curves for which (a) an e¢ cient allocation may be supported by a pseudo
market in externalities; (b) a pseudo market is not possible.

4. What role does the parameter � play in the answer to the previous parts?

13.5 In a large economy all agents have a utility function of the form

 (x1) + x
h
2

where x1 is the amount provided of a public good and xh2 is agent h�s consumption
of a private good. All agents are endowed with the same amount of private good
Rh2 = 1. Each individual can choose whether to contribute to the public good:

zh2 =

�
1 �contribute�
0 �not contribute�

The unit contribution costs an amount ch to agent h; the individual costs are
unobservable but the distribution function F (�) of costs is known. The production
of the public good is given by

x1 = �(�)

where � is the proportion of contributing individuals.

1. Show that an e¢ cient outcome implies that there is cost level c0 such that

zh2 =

�
1 ch � c0

0 ch > c0

2. The government introduces a tax-subsidy scheme based on individual ac-
tions as follows. Each contributor receives a subsidy s and each non-
contributor has to pay t. Given c0 and the distribution of costs F what is
the condition for a balanced budget if agents behave as in part 1?
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3. Under the conditions of part 2 what is the utility of someone with ch < c0?
Of someone with ch > c0?

4. By requiring that someone with ch = c0 be indi¤erent between contribut-
ing and non-contributing show that this tax-subsidy scheme induces an
e¢ cient equilibrium.

5. How much of the public good is provided and what is the tax rate and
subsidy rate? (Gradstein 1998)

13.6 An economy consists of individuals whose income is only from labour:
each person is endowed with a speci�c level of ability which is re�ected in his or
her market wage w, and chooses `, the amount of time he or she works 0 � ` � 1.
The minimum value of w in the population is w0, and the mean value is w0,
where  > 1. The government imposes a tax-transfer scheme such that a person
with pretax cash income y has after-tax cash income of x = [1� t][y � y0] + y0.

1. Interpret the parameters t and y0.

2. Assume that every individual�s preferences can be represented by the utility
function in Exercise 5.5. What is optimal labour supply as a function of
w, t and y0?

3. If the government wants to ensure that everyone works what constraint will
this impose on the values of t and y0? Assuming that everyone does work,
and that the tax raised is used solely for the purposes of redistribution,
show that this implies that t and y0 must satisfy the constraint:

y0 = �w0
1� t
1� �t

4. If the government seeks to maximise the after-tax cash income of the poor-
est person (the welfare function with � =1 in Exercise 9.5) subject to the
above constraints show that the optimal tax rate is

t� =
1

�

�
1�

r
 � �
 � 1

�
Interpret this result.(Broome 1975)
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Appendix A

Mathematics Background

A.1 Introduction

This appendix intended to be a brief review of some of the main concepts and
results that are used intensively in the body of the book. However, it does not
pretend to be comprehensive or exhaustive in its treatment of the mathematical
topics covered. The emphasis of the book is on economic results not on math-
ematical technique, and so in what follows we usually state lemmas, theorems
and corollaries without formal proof. For more detail and further discussion you
are invited to check out the references given in section A.9.

The symbol conventions used in this book include the following:

Symbol Context Meaning
:= De�nitions �LHS is de�ned by RHS�

and equations
� Vector expressions �every component of LHS

is greater than or equal to
corresponding component of RHS�

� Vector expressions �vector on LHS is as good as,
or better than, the vector on
RHS�

Rn Vector spaces n-dimensional real space
log(x) functions natural logarithm of x
exp(x) functions ex

fi(x1; x2; :::) Di¤erentiable functions Partial di¤erential with
respect to ith argument

# Sets number of elements in the set
) Logical expressions �expression on LHS implies

expression on RHS�
() Logical expressions �expression on LHS is true if and

only if expression on RHS is true�
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A.2 Sets

We use the standard operators:

Membership x 2 A �x is a member of A�
Equality A = B x 2 A if and only if x 2 B
Subset A � B x 2 B if x 2 A
Intersection A \B A \B = fx : x 2 A and x 2 Bg
Union A [B A [B = fx : x 2 A or x 2 Bg

In addition the operator �n�is often useful. If B � A then

AnB = fx : x 2 A and not x 2 Bg

Where relevant, the notation #A is used to denote the number of elements of
A. The symbol ? is used to denote the empty set �the set with no elements.
The Cartesian product of sets A and B is the set of all ordered pairs with

the �rst element of the pair taken from A and the second element from B

A�B = f(x; y) : x 2 A; y 2 Bg :

A binary relation on a set A is subset R of the Cartesian product A�A, the
set of pairs f(x; x) : x 2 Ag; but, rather than writing, for example, �(x; y) 2 R�
to characterise the relationship between two elements x; y of A it is common to
write �xRy�. Examples of binary relations include the ordinary mathematical
operator ���and the weak preference relation �<�.

A.2.1 Sets in Rn

The symbol R stands for the set of real numbers: the numbers that are in one-
to-one correspondence with the points on an in�nite line (the real line). By
extension the following conventions are used

� Rn is n-dimensional real space, the set of all vectors (x1; x2; :::; xn) where
each xi is a real number. Rn is just the n-fold Cartesian product

Rn = R� R� :::� R| {z }
n terms

:

� R+ is the subset of R consisting of nonnegative numbers.

In what follows we assume A;X � Rn. For any x, x0 2 X let

kx� x0k :=

vuut nX
i=1

[xi � x0i]
2 (A.1)
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De�nition A.1 A set A � X is open in X if, for every x 2 A, there is some
� > 0 such that

x0 2 X and kx� x0k < � imply x0 2 A:

De�nition A.2 A set A � X is closed in X if XnA is open in X.

De�nition A.3 A set A is bounded if, for every x 2 A,there is some � > 0
such that vuut nX

i=1

[xi]
2
< �

De�nition A.4 A set A is compact if it is bounded and closed in Rn.

A.3 Functions

By a mapping from a set D to a set R, written

f : D 7! R;

we mean a rule that sets up an association between the elements of D and the
element of R; the set D is known as the domain of the mapping and the set R
is the range. A function is a mapping that associates with each x 2 D a single
element f (x) 2 R. A correspondence is a mapping that associates with each
x 2 D a set of points f (x) � R.
Consider a function f : D 7! R where D is a set of vectors in Rn and R is a

subset of the real line R.

A.3.1 Linear and a¢ ne functions

Consider a function f : D 7! R where D and R are sets of real numbers; f is
an a¢ ne function (a¢ ne transformation) if and only if it can be written in the
form

f(x) = ax+ b; (A.2)

where a and b are real numbers. The a¢ ne function f in (A.2) is a linear
function (transformation) if and only if b = 0.
If D is a set of vectors in Rn and R is a set of vectors in Rm then f : D 7! R

is an a¢ ne function or transformation if and only if it can be written in the
form

f(x) = Ax+ b; (A.3)

where A is an m� n matrix26664
a11 a12 ::: a1n
a21 a22 ::: a2n
...

...
am1 am2 ::: amn

37775
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and b 2Rm. Written out in detail (A.3) becomes

f1(x) =
nX
j=1

a1jxj + b1

f2(x) =
nX
j=1

a2jxj + b2

...

fm(x) =
nX
j=1

amjxj + bm

where f :=
�
f1; f2; :::; fm

�
. Again f in (A.3) is also a linear function or trans-

formation if and only if b = 0.
The special case where m = n is of particular interest. In this case both

D and R are subsets of Rn and A is an n � n square matrix. De�ne the
[n� 1] � [n� 1] submatrix Aij as the matrix formed by deleting the ith row
and jth column from A. Then we can de�ne the determinant of A for the cases
where n = 1; 2; 3 as follows:

case 1 : detA = a11

case 2 : detA = a11a22 � a12a21
case 3 : detA = a11 detA11 � a12 detA12 + a13 detA13

In the general case we have

De�nition A.5 The determinant of the n� n square matrix A is given by

detA = a11 detA11 � a12 detA12 + :::+ [�1]n+1 detA1n:

A.3.2 Continuity

Consider a function f : D 7! R where D and R are sets of real numbers, and
let y 2 D.

De�nition A.6 The function f is continuous at y if and only if the following
holds: For any number � > 0 there exists some � > 0 such that for all x satisfying
y � � < x < y + �, the value of f(x) satis�es f(y)� � < f(x) < f(y) + �.

There is an alternative approach to continuity that is more easily expressed
for more general functions de�ned in n-dimensional real space. It uses the
concept of a limit. In what follows we assume that D � Rn and R � Rm. By
a sequence in D we mean an assignment of elements of D to the set of natural
numbers, written fx1;x2; :::g or fxig1i=1 where xi 2 D, i = 1; 2; :::. Denote by
N� (x

0) a �-neighbourhood of x0:

N� (x
0) := fx : kx� x0k < �g:

Then we can introduce the following intuitive concept:
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Figure A.1: (a) A continuous function (b) An upper-hemicontinuous correspon-
dence

De�nition A.7 ~x 2 D is the limit of the sequencefx1;x2; :::g, written

lim
i!1

xi = ~x

or
limxi = ~x;

if and only if for every neighbourhood N� (~x) of ~x there is an i� such that xi 2
N� (~x) for all i > i�.

We may call ~x a limit point of D if there is a sequence fxig such that, for
all i, xi 2 D and limxi = ~x. From De�nitions A.1 and A.2 it is clear that if D
is a closed set then it contains all its limit points.
Now use the concept of a limit as the basis of an alternative de�nition of

continuity:

De�nition A.8 The function f : D 7! R is continuous at a point c 2 D if the
following are satis�ed:

1. lim f(x) exists;

2. lim f(x) = f(c).

The function is (everywhere) continuous if it is continuous at every point of
its domain �see Figure A.1 part (a).
Now consider a correspondence f : D 7! R where R is closed.

De�nition A.9 The graph of f is the set f(x; y) 2 D �R : y = f(x)g.

De�nition A.10 The correspondence f is upper hemicontinuous if it has a
closed graph and the image of every compact set is bounded.
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Note that in part (b) of Figure A.1 the upper-hemicontinuous correspondence
f is multivalued at point x0.

A.3.3 Homogeneous functions

Unless otherwise stated all functions are assumed to be from X � Rn to R. The
symbol x denotes (x1; x2; :::; xn).

De�nition A.11 A homogeneous function f has the following property. For
any positive scalar t:

f(tx) = trf(x) (A.4)

For obvious reasons such a function is said to be �homogeneous of degree
r�; the case r = 1 is sometimes referred to as �linearly homogeneous�.
Assume that f is di¤erentiable. Then, di¤erentiating (A.4) with respect to

xi, where i is any number from 1 to n, we get

tfi(tx) = trfi(x) (A.5)

where

fi(y) :=
@f(y)

@yi
;

for any y 2 X. Rearranging (A.5) we have:

fi(tx) = tr�1fi(x) ; (A.6)

and so:

Lemma A.1 For a di¤erentiable function f : X 7! R that is homogeneous of
degree r: each of its �rst derivatives is a function that is homogeneous of degree
r � 1.

Lemma A.1 has a tremendous signi�cance for economics. To see why consider
any collection of vectors x,x0,x00,x000,... such that each is a scale transformation
of any one of the others:

x0 = t0x

x00 = t00x

:::

We can imagine all these as being in the same �direction�: they are all points
along the same ray through the origin. Then, noting that (A.5) is true for
arbitrary i; j, we have

fi(x)

fj(x)
=
fi(x

0)

fj(x0)
=
fi(x

00)

fj(x00)
= :::; 1 � i; j � n (A.7)

So:
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Corollary A.1 For any pair (i; j), the homogeneous function f has the same
slope for all vectors in a given direction.

Given that slopes often have the interpretation of relative prices in economics
it is clear that this property implies that the relevant relative prices of i and j
would be independent of scale transformations of the quantities of i and j.
Now, di¤erentiating (A.4) with respect to t, we get

f1(tx)x1 + f2(tx)x2 + :::+ fn(tx)xn = rtr�1f(x) (A.8)

Taking the case where t = 1 in (A.8), we immediately get the following:

Lemma A.2 For a di¤erentiable function f : X 7! R that is homogeneous of
degree r:

8x 2 X :=
nX
i=1

fi(x)xi = rf(x)

A.3.4 Homothetic functions

Homothetic functions have a more general structure than homogeneous func-
tions.

De�nition A.12 Let ' : R 7! R;

g := '(f) (A.9)

where f is a homogeneous function X 7! R; then g is a homothetic function
X 7! R.

Now suppose that is a di¤erentiable and monotonic function. Using (A.4)
and (A.9) we have, for any scalar t and any x 2 X:

g(tx) = ' (f(tx))

= ' (trf(x))

= '
�
tr'�1 (g(x))

�
(A.10)

where '�1 (�) denotes the inverse function corresponding to '. Di¤erentiating
(A.10) with respect to xi we get

gi(tx) = '1
�
tr'�1 (g(x))

�
tr

1

'1 (f(x))
gi(x)

=
'1 (t

rf(x)) tr

'1 (f(x))
gi(x) (A.11)

where '1 denotes the �rst derivative of '. However (A.11) is also true for any
other component j:

gj(tx) =
'1 (t

rf(x)) tr

'1 (f(x))
gj(x) (A.12)
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and so (A.11) and (A.12) together imply

gi(x)

gj(x)
=
gi(tx)

gj(tx)

Corollary A.2 For any pair (i; j), the homothetic function g has the same
slope for all vectors in a given direction.

A.4 Di¤erentiation

A.4.1 Function of one variable

Let f be a function from R to R:

De�nition A.13 The derivative of f is

df(x)

dx
= lim

4x!0

f(x+4x)� f(x)
4x

where the limit exists.

Some useful examples of di¤erentials:

f(x) df(x)
dx

xt, t 6= 0 txt�1

log x 1
x

ex ex

tx tx log t

The following result can often get you out of di¢ culty.

Theorem A.1 (L�Hôpital�s rule) Let I = (x0; x1) � R be an interval and
let � 2 I. Suppose f and g are di¤erentiable on Inf�g such that limx!� f(x) =

limx!� g(x) = 0 and
dg(x)
dx 6= 0 for x 2 Inf�g. If

lim
x!�

df(x)
dx
dg(x)
dx

= z

then

lim
x!�

f(x)

g(x)
= z
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A.4.2 Function of several variables

Let f be a function from Rn to R:

y = f(x1; x2; :::; xn) = f(x)

Consider a variation in the ith component of x:

f(x1; x2; :::; xi�1; xi +4xi; xi+1; :::; xn)

De�nition A.14 The derivative of f with respect to xi is given by

@f(x)

@xi
:= lim

4xi!0

f(x1; x2; :::; xi�1; xi +4xi; xi+1; :::; xn)� f(x1; x2; :::; xn)
4xi

where the limit exists.

In the main text we have often used fi(x) as a shorthand for
@f(x)
@xi

. Now
consider a simultaneous variation of all n components of x.

y +4y = f(x1 +4x1; x2 +4x2; :::; xn +4xn)
In the limit we may write:

dy =
@f(x)

@x1
dx1 +

@f(x)

@x2
dx2 + :::+

@f(x)

@xn
dxn

This is the total di¤erential of f .

A.4.3 Function-of-a-Function Rule

Suppose f and ' are continuously di¤erentiable functions from Rn to R and
from R to R, respectively, and that g is a composite function of f and ' thus:

y = f(x)

g(x) = ' (y) = ' (f(x))

then the partial derivative of g with respect to xi is

@g(x)

@xi
=
d' (y)

@y

@f(x)

@xi

�the �function-of-a-function rule�. The result carries over to the case where '
takes a vector argument. Let f1; :::; fm be continuously di¤erentiable functions
from Rn to R; and ' a continuously di¤erentiable function from Rm to R, and
g is a composite function of f and ' thus:

y = f(x)

g(x) = ' (y) = ' (f(x))

Then we have:
@g(x)

@xi
=

mX
j=1

@' (y)

@yj

@f j(x)

@xi
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A.4.4 The Jacobian derivative

Consider a set of m di¤erentiable functions f j : Rn 7! R, j = 1; :::;m; this
could be represented equivalently as a vector-valued function f : Rn 7! Rm
where f(x) =

�
f1(x); :::; fm(x)

�
. Use a subscript notation as shorthand for

partial derivatives thus:

f ji (x) :=
@f j(x)

@xi

Suppose we have a relationship y = f(x) where y 2 Rm. The e¤ect of a change
4x in the variables x can be expressed thus:

4y= f (x+4x)� f(x) ' @f(x)

@x
4x (A.13)

=

2664
f11 (x) f12 (x) ::: f1n(x)
f21 (x) f22 (x) ::: f2n(x)
::: ::: ::: :::

fm1 (x) fm2 (x) ::: fmn (x)

3775
2664
4x1
4x2
:::
4xn

3775(A.14)
where the expression @f(x)

@x in (A.13), expressed in full as the n �m matrix on
the right-hand side of (A.14), is known as the Jacobian matrix.

A.4.5 The Taylor expansion

The following approximation result can also be restated in the case of many
variables.

Theorem A.2 Let f be di¤erentiable n times on an open interval D: Then,
for x and x+ h 2 D:

f(x+ h) ' f(x) +
df(x)

dx
+
1

2!

d2f(x)

dx2
h2 +

1

3!

d3f(x)

dx3
h3 + :::+

1

n!

dnf(x)

dxn
hn + :::

where n! = n� [n� 1]� :::� 3� 2.

A.4.6 Elasticities

Point elasticities: the simple case

Assume that we have a relationship between y and x given by

y = f(x) (A.15)

where f is a di¤erentiable function of one variable.

De�nition A.15 The elasticity of y with respect to x is given by

� :=
x

y

dy

dx
(A.16)
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Note that there is no single standard notation for elasticities. Furthermore,
the is not even a standard sign convention: for example if y is a decreasing
function of x for x; y > 0 then obviously (A.16) is negative; but it is quite
common to �nd the elasticity expressed as a positive number � i.e. j�j rather
than �. Check carefully and use common sense to determine the convention
that is being used in any particular instance.

Remark A.1 An equivalent way of writing (A.16) is

� =
d log y

d log x
(A.17)

To establish this let us de�ne

u := log x

v := log y

Note that dv=du is exactly (A.17) and that we may write the inverses

x = eu

y = ev ;

from (A.15) we have

ev = f (eu)

v = log (f (eu)) (A.18)

Di¤erentiating (A.18) we have

dv

du
=

1

f (eu)

df (eu)

du

=
1

f(x)

df (eu)

du
=

1

f(x)

df (x)

dx

deu

du

=
1

f(x)

df (x)

dx
eu =

x

f(x)

df (x)

dx

=
x

y

dy

dx

which is exactly (A.16).

Multivariate functions

This does not introduce any major new complication of substance, but one has
to be careful about notation. Let f1; :::; fm be functions from Rn to R:

y1 = f1(x1; x2; :::; xn)

y2 = f2(x1; x2; :::; xn)

:::

ym = fm(x1; x2; :::; xn) (A.19)

then
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De�nition A.16 The elasticity of yj with respect to xi is given by

�ij :=
xi
yj

@yj
@xi

(A.20)

Remark A.2 An equivalent way of writing (A.20) is

�ij =
d log yj
d log xi

(A.21)

Where i 6= j one sometimes uses the term �cross-elasticity�and where i = j
one uses terms such as �own-price elasticity.�

A.5 Mappings and systems of equations

A.5.1 Fixed-point results

In a number of settings it is useful to be able to appeal to a class of results that
refer to the mapping of a set into itself. They are typically used to establish
whether a system of equations has a solution. To make this precise consider a
set A � Rn and a mapping f : A 7! A; f may be a system of equations that
describes an economic process
First let us assume that the mapping is a well-de�ned function �i.e. each

element of A is mapped by f into a unique element of A. Suppose there were a
member of of A such that

x� = f(x�): (A.22)

Such a value x� is known as a �xed point. of the mapping f . If a �xed point
exists then the process described by f has an �equilibrium�in A: the point x�

reproduces itself.
In what follows we will assume that A is a convex, compact set.

Theorem A.3 (Brouwer) If the function f : A 7! A is continuous then there
exists x� 2 A such that (A.22) is satis�ed.

The result is illustrated in Figure A.2 using the simplest possible example
where the convex, compact set A is the closed interval [0; 1]; the elements of A
are scalars, x. The function f transforms any value x from A on the horizontal
axis into a value x̂ in A on the vertical axis. The value marked x� is clearly the
required �xed point.
Now suppose that the map of A into itself is not single-valued �i.e. one has

a correspondence rather than a function. In this case the �xed-point concept
(A.22) generalises in a natural way to:

x� 2 f(x�) (A.23)

and one needs to use the following result.
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Figure A.2: Continuous mapping with a �xed point

Theorem A.4 (Kakutani) Let C (A) be the set of all nonempty closed convex
subsets of A. If the correspondence f : A 7! C (A) is upper-hemicontinuous then
there exists x� 2 A such that (A.23) is satis�ed.

The result is illustrated in Figure A.3, again for the case where A = [0; 1].
here values of x from A on the horizontal axis are mapped into possibly multiple
values x̂ in A on the vertical axis: in particular the image of x� is a proper
interval of points, a closed convex subset of A.

A.5.2 Implicit functions

It is often the case that the conditions characterising the solution to an op-
timisation problem lead to an expression that appears to contain an implicit
relationship between a vector of unknown variables and a vector of given pa-
rameters. The question is whether one can solve this relationship in order to
obtain the variables as a function of the parameters. To address this we need
the concept of solvability as follows.

Suppose the variables in question are x 2 Rn and the parameters are p 2 Rm.
The relationship between them is given by a set of n functions f1; :::; fn such
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Figure A.3: Upper hemicontinuous mapping with a �xed point

that

f1 (x;p) = 0

f2 (x;p) = 0

...

fn (x;p) = 0.

This set of relationships can be written more compactly as

f (x;p) = 0:

If there are points x� 2 X � Rn and p� 2 P � Rm (where X and P are open
sets) and functions g1; :::; gn P 7! X such that

x�1 = g1 (p�)

x�2 = g2 (p�)

:::

x�n = gn (p�)

and
f (g (p) ;p) = 0

for all p 2 P , then we say that f is solvable at (x�;p�). The following result
makes use of the Jacobian matrix, introduced in section A.4.4.
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Theorem A.5 (Implicit function) If f is continuously di¤erentiable in the
neighbourhood of (x�;p�) and the determinant of the Jacobian matrix @f(x;p)

@x is
nonzero then f is solvable at (x�;p�).

A.6 Convexity and Concavity

A.6.1 Convex sets

The idea of convexity is quite intuitive, but it is useful to see how it can be
made precise. Although the concept can be expressed more generally, we will
con�ne ourselves to discussion of subsets of Rn. The symbol � will denote a
scalar.

De�nition A.17 The set A is convex if, for every x;x0 2 A it is always true
that x� 2 A, where

x� := �x+ [1� �]x0; 0 � � � 1

Let �A andA0 denote respectively the boundary and the interior of a set
A � Rn.

De�nition A.18 The set A is strictly convex if, for every x;x0 2 A it is always
true that x� 2 A0, where

x� := �x+ [1� �]x0; 0 < � < 1

Note that, by contrast to de�nition A.17, de�nition A.18 states that the
points lying along the line between x and x0 (excluding the endpoints) must
lie in the interior of the set. This rules out �A being made up, in part, of line
segments �see Figure A.4.
De�ne the sum of two sets A, B in Rn as follows:

A+B = fx+ y : x 2 A;y 2 Bg : (A.24)

Then we have:

Theorem A.6 (Addition of convex sets) If A and B are convex sets then
A+B is a convex set.

Proof. Let z; z0 2 A+B; then, from (A.24), there are x;x0 2 A and y;y0 2
B such that z = x+ y and z0 = x0 + y0 2 A+B. Then, by (A.24), x+ y 2 A+B
and x0 + y0 2 A+B. By De�nition A.17 �x+[1��]x0 2 A, �y+[1��]y0 2 B,
where 0 � � � 1. So, from (A.24), � [x+ y]+[1��] [x0 + y0] 2 A+B. Therefore
�z+ [1� �]z0 2 A+B.
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Figure A.4: A strictly convex set in R2

A.6.2 Hyperplanes.

A hyperplane is a set in Rn de�ned thus

H(p; c) :=

(
x 2 Rn :

nX
i=1

pixi = c

)
: (A.25)

In R2 (the case relevant to many of our examples and questions) this is just a
straight line; in R3 it is a plane. Clearly a hyperplane is itself a convex set. A
hyperplane divides the space into two halves: points x that lie �above�it such
that

Pn
i=1 pixi > c and points x that lie �below�it such that

Pn
i=1 pixi < c �

see Figure A.5

A.6.3 Separation results

The theorems on separating and supporting hyperplanes can be expressed in
a number of ways �see Theorems A.8 and A.9. The fundamental result is as
follows:

Theorem A.7 (Separation of convex set and a point) Let A � Rn be a
closed convex set and let y2 RnnA. Then there is p 2 Rn, p 6= 0 and c 2 R
such that

Pn
i=1 piyi > c and 8x2 A

Pn
i=1 pixi < c.
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Figure A.5: A hyperplane in R2

Figure A.6: A hyperplane separating A and y
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Proof. Let x� be the closest point in A to y, i.e. the point such that

8x 2 A :
nX
i=1

[yi � x�i ]
2 �

nX
i=1

[yi � xi]2 :

�see Figure A.6. Given that y does not lie in A one must have
nX
i=1

[yi � x�i ]
2
> 0 (A.26)

Let
p := y � x� (A.27)

and

c0 :=
nX
i=1

pix
�
i : (A.28)

From (A.26) we have
nX
i=1

[yi � x�i ] yi �
nX
i=1

[yi � x�i ]x�i > 0

and so, on rearranging,
nX
i=1

piyi �
nX
i=1

pix
�
i > 0

which implies
Pn

i=1 piyi > c0.
Now suppose there is some x 2 A such that

nX
i=1

pixi > c0: (A.29)

Let x� := �x+[1 � �]x�; 0 < � < 1. Clearly x� 2 A (by de�nition A.17) and
the distance from y to x� is

nX
i=1

[yi � x�i]2 =
nX
i=1

[yi � x�i ]
2 � 2�

nX
i=1

[yi � x�i ] [xi � x�i ] + �2
nX
i=1

[xi � x�i ]
2

which �using (A.27) and (A.28) becomes:

nX
i=1

[yi � x�i ]
2 � 2�

"
nX
i=1

pixi � c0
#
+ �2

nX
i=1

[xi � x�i ]
2 (A.30)

However, as �! 0, (A.30) has the sign of
Pn

i=1 pixi � c0. But if (A.29) is true
then this would imply that, for � su¢ ciently small:

nX
i=1

[yi � x�i]2 <
nX
i=1

[yi � x�i ]
2

which is an impossibility.
Finally choose c := c0+ � where � is su¢ ciently small that

Pn
i=1 piyi > c.
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Figure A.7: Supporting hyperplane

Theorem A.8 (Separating hyperplane) Let A;B � Rn be closed convex
sets with no points in common. Then there is p 2 Rn, p 6= 0 and c 2 R such
that

Pn
i=1 pixi < c 8x2 A and

Pn
i=1 pixi > c 8x2 B.

Theorem A.9 (Supporting hyperplane) Let A;B � Rn be closed convex
sets with only boundary points in common. Then there is p 2 Rn, p 6= 0 and
c 2 R such that

Pn
i=1 pixi � c 8x2 A and

Pn
i=1 pixi � c 8x2 B.

A.6.4 Convex and concave functions

Let us use the idea of convexity to characterise a class of functions. As in
section A.3.3 we will assume that all functions are from X � Rn to R. The
main de�nitions are really quite easy since they seem to accord closely with
common sense.

De�nition A.19 The function f is convex if and only if the set

f(x; y) : x 2 X; y � f(x)g

is convex.

De�nition A.20 The function f is strictly convex if and only if the set

f(x; y) : x 2 X; y � f(x)g

is strictly convex.
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Figure A.8: A strictly convex function of one variable

The de�nition of (strict) convexity is a natural one since it means that the
function is convex if the set of points �above its graph� is (strictly) convex �
see Figure A.8. The next de�nition is even easier.

De�nition A.21 The function f is concave if and only if the function �f is
convex.

If you turn the graph of a convex function upside down you get a concave
function and vice versa. A similar de�nition applies for strict concavity. Finally
note the following

Remark A.3 (a) De�nition A.19 is equivalent to:

for all x;x0 2 X; 0 � � � 1 : �f (x) + [1� �]f (x0) � f (�x+ [1� �]x0)

(b) De�nition A.20 is equivalent to:

for all x;x0 2 X; 0 < � < 1 : �f (x) + [1� �]f (x0) > f (�x+ [1� �]x0)

Also, from de�nition A.21 :

Remark A.4 (a) A function is concave if:

for all x;x0 2 X; 0 � � � 1 : �f (x) + [1� �]f (x0) � f (�x+ [1� �]x0)
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(b) A function is strictly concave if:

for all x;x0 2 X; 0 < � < 1 : �f (x) + [1� �]f (x0) < f (�x+ [1� �]x0)

These alternative equivalent forms are often particularly convenient in prac-
tical application.
Finally two very powerful results that underpin important parts of the dis-

cussion in chapters 2 and 4.

Theorem A.10 Let f be a twice-di¤erentiable function. Then f is concave if
and only if, for all x 2 X and for any vector w 2 Rn,

nX
i=1

nX
j=1

wiwj
@2f(x)

@xi@xj
� 0:

This property is used to characterise the substitution properties for both the
�rm and the household�s optimisation problems.

Theorem A.11 (Continuity of concave function) Let f be a concave func-
tion on an open set X � Rn. Then f is continuous on X.

For a proof see de la Fuente (1999) page 253. Since solution functions are
typically concave (or, in the case of the indirect utility function �V is concave)
we can also be sure that they are continuous.

A.6.5 quasiconcave functions

Unfortunately the above intuitive characterisation does not extend so neatly to
a broader class of functions that are of tremendous importance in economics.
To introduce this broader class consider the contours of a real-valued function
f .

De�nition A.22 The y0-contour of the function f is the set of points

fx : x 2 X; y0 = f(x)g

Clearly the y0-contour is the boundary of the set

B(y0) := fx : x 2 X; y0 � f(x)g : (A.31)

�see Figure A.9. It is also clear that

� If f is a concave function then B(y0) must be a convex set.

� If f is a strictly concave function then B(y0) must be a strictly convex
set.
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Figure A.9: A strictly concave-contoured (strictly quasiconcave) function

� There are functions for which the contours look like those of a concave
function but which are not themselves concave. An example here would
be ' (f(x)) where f is a concave function and is an arbitrary monotonic
transformation.

These remarks lead us to the de�nition:

De�nition A.23 A function f is (strictly) concave-contoured if all the sets
B(y0) in (A.31) are (strictly) convex.

A synonym for (strictly) concave-contoured is (strictly) quasiconcave. Try
not to let this (unfortunately necessary) jargon confuse you. Take, for example,
a �conventional�looking utility function such as

U(x) = x1x2: (A.32)

According to de�nition A.23 this function is strictly quasiconcave: if you draw
the set of points B(�) := f(x1; x2) : x1x2 � �g you will get a strictly convex
set. Furthermore, although U in (A.32) is not a concave function, it is a simple
transformation of the strictly concave function

Û(x) = log x1 + log x2; (A.33)

and has the same shape of contour map as Û . But when we draw those contours
on a diagram with the usual axes we would colloquially describe their shape
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as being �convex to the origin�! There is nothing seriously wrong here: the
de�nition, the terminology and our intuitive view are all correct; it is just a
matter of the way in which we visualise the function. Finally, the following
complementary property is sometimes useful:

De�nition A.24 A function f is (strictly) quasiconvex if �f is (strictly) qua-
siconcave.

A.6.6 The Hessian property

Consider a twice-di¤erentiable function f from D � Rn to R. Let fij(x) denote
@2f(x)
@xi@xj

. The symmetric matrix2664
f11(x) f12(x) ::: f1n(x)
f21(x) f22(x) ::: f2n(x)
::: ::: ::: :::

fn1(x) fn2(x) ::: fnn(x)

3775
is known as the Hessian matrix of f .

De�nition A.25 The Hessian matrix of f at x is negative semide�nite if, for
any vector w 2 Rn, it is true that

nX
i=1

nX
j=1

wiwjfij(x) � 0:

A twice-di¤erentiable function f from D to R is concave if and only if f is
negative semi-de�nite for all x 2 D.

De�nition A.26 The Hessian matrix of f at x is negative de�nite if, for any
vector w 2 Rn,w 6= 0, it is true that

nX
i=1

nX
j=1

wiwjfij(x) < 0:

A twice-di¤erentiable function f from D to R is strictly concave if f is
negative de�nite for all x 2 D; but the reverse is not true �a strictly concave
function f may have a negative semi-de�nite Hessian.
If the Hessian of f is negative de�nite for all x 2 D we will say that f has

the Hessian property.

A.7 Maximisation

Because a lot of economics is concerned with optimisation we will brie�y overview
the main techniques and results. However this only touches the edge of a very
big subject: you should consult the references in section A.9 for more details.
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A.7.1 The basic technique

The problem of maximising a function of n variables

max
x2X

f(x) (A.34)

X � Rn is straightforward if the function f is di¤erentiable and the domain X
is unbounded. We adopt the usual �rst-order condition (FOC)

@f(x)

@xi
= 0; i = 1; 2; :::; n (A.35)

and then solve for the values of (x1; x2; :::; xn) that satisfy (A.35). However the
FOC is, at best, a necessary condition for a maximum of f . The problem is
that the FOC is essentially a simple hill-climbing rule: �if I�m really at the top
of the hill then the ground must be �at just where I�m standing.�There are a
number of di¢ culties with this:

� The rule only picks out �stationary points�of the function f . As Figure
A.10 illustrates, this condition is satis�ed by a minimum (point C) as well
as a maximum (point A), or by a point of in�ection (E). To eliminate
points such as C and E we may look at the second-order conditions which
essentially require that at the top of the hill (a point such as A) the slope
must be (locally) decreasing in every direction.

� Even if we eliminate minima and points of in�ection the FOC may pick
out multiple �local�maxima. In Figure A.10 points A and D are each
local maxima, but obviously A is the point that we really want. we may
be able to eliminate. This problem may be sidestepped by introducing
a priori restrictions on the nature of the function f that eliminate the
possibility of multiple stationary points �for example by requiring that f
be strictly concave.

� If we have been careless in specifying the problem then the hill-climbing
rule may be completely misleading. We have assumed that each x-component
can range freely from �1 to +1. But suppose �as if often in the case
in economics �that the de�nition of the variable is such that only non-
negative values make sense. Then it is clear from Figure A.10 that A is
an irrelevant point and the maximum is at B. In climbing the hill we have
reached a logical �wall�and we can climb no higher.

� Likewise if we have overlooked the requirement that the function f be
everywhere di¤erentiable the hill-climbing rule represented by the FOC
may be misleading. If we draw the function

f(x) =

8<: x x � 1

2� x x > 1
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Figure A.10: Di¤erent types of stationary point

it is clear that it is continuous and has a maximum at x = 1. But the
FOC as stated in (A.35) is useless because the di¤erential of f is unde�ned
exactly at x = 1.

If we can sweep these di¢ culties aside then we can use the solution to the
system of equations provided by the FOC in a powerful way. To see what is
usually done, slightly rewrite the maximisation problem (A.34) as

max
x2Rn

f(x;p) (A.36)

where p represents a vector of parameters, a set of numbers that are �xed for the
particular maximisation problem in hand but which can be used to characterise
the di¤erent members of a whole class of maximisation problems and their
solutions. For example p might represent prices (outside the control of a small
�rm and therefore taken as given) and might x represent the list of quantities
of inputs and outputs that the �rm chooses in its production process; pro�ts
depend on both the parameters and the choice variables.

We can then treat the FOC (A.35) as a system of n equations in n unknowns
(the components of x).Without further regularity conditions such a system is
not guaranteed to have a solution nor, if it has a solution, will it necessarily
be unique. However, if it does then we can write it as a function of the given
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parameters p:

x�1 = x�1(p)
x�2 = x�2(p)

:::
x�n = x�n(p)

9>>=>>; (A.37)

We may refer to the functions x�1(�) in (A.37) as the response functions in that
they indicate how the optimal values of the choice variables (x�) would change
in response to changes in values of the given parameters p.

A.7.2 Constrained maximisation

By itself the basic technique in section A.7.1 is of limited value in economics:
optimisation is usually subject to some side constraints which have not yet been
introduced. We now move on to a simple case of constrained optimisation that,
although restricted in its immediate applicability to economic problems, forms
the basis of other useful techniques. We consider the problem of maximising a
di¤erentiable function of n variables

max
x2Rn

f(x;p) (A.38)

subject to the m equality constraints

G1(x;p) = 0
G2(x;p) = 0

:::
Gm(x;p) = 0

9>>=>>; (A.39)

There is a standard technique for solving this kind of problem: this is to in-
corporate the constraint in a new maximand. To do this introduce the Lagrange
multipliers �1; :::; �m, a set of non-negative variables, one for each constraint.
The constrained maximisation problem in the n variables x1; :::; xn, is equivalent
to the following (unconstrained) maximisation problem in the n +m variables
x1; :::; xn; �1; :::; �m,

L(x;�;p) := f(x;p)�
mX
j=1

�jG
j(x;p) (A.40)

, where L is the Lagrangean function. By introducing the Lagrange multipliers
we have transformed the constrained optimisation problem into one that is of
the same format as in section A.7.1, namely

max
x;�

L(x;�;p) (A.41)



A.7. MAXIMISATION 511

The FOC for solving (A.41) are found by di¤erentiating (A.40) with respect
to each of the n+m variables and setting each to zero.

@L(x�;��;p)
@xi

= 0; i = 1; :::; n (A.42)

@L(x�;��;p)
@�j

= 0; j = 1; :::;m (A.43)

where the ���means that the di¤erential is being evaluated at a solution point
(x�;��). So the FOC consist of the n equations

@f(x�;p)

@xi
=

mX
j=1

��j
@Gj(x�;p)

@xi
; i = 1; :::; n (A.44)

plus the m constraint equations (A.39) evaluated at x�. We therefore have a
system of n+m equations (A.44,A.39) in n+m variables.
As in section A.7.1, if the system of equations does have a unique solution

(x�;��), then this can be written as a function of the parameters p:

x�1 = x�1(p)
x�2 = x�2(p)

:::
x�n = x�n(p)

9>>=>>; (A.45)

��1 = ��1(p)
��2 = ��2(p)

:::
��m = ��m(p)

9>>=>>; (A.46)

Once again the functions x�1(�) in (A.45) are the response functions and have the
same interpretation. The Lagrange multipliers in (A.46) also have an interesting
interpretation which is handled in A.7.4 below.
If the equations (A.44,A.39) yield more than one solution, but f in (A.38)

is quasiconcave and the set of x satisfying (A.39) is convex then we can appeal
to the commonsense result in Theorem A.12.

A.7.3 More on constrained maximisation

Now modify the problem in section A.7.2 in two ways that are especially relevant
to economic problems

� Instead of allowing each component xi to range freely from �1 to +1.we
restrict to some interval of the real line. So we will now write the domain
restriction x 2 X where we will take X to be the non-negative orthant of
Rn. The results below can be adapted to other speci�cations of X.
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� We replace the equality constraints in (A.39) by the corresponding in-
equality constraints

G1(x;p) � 0
G2(x;p) � 0

:::
Gm(x;p) � 0

9>>=>>; (A.47)

This is reasonable in economic applications of optimisation. For example
the appropriate way of stating a budget constraint is �expenditure must
not exceed income�rather than �...must equal...�.

So the problem is now
max
x2X

f(x;p)

subject to (A.47). The solution to this modi�ed problem is similar to that
for the standard Lagrangean �see Intriligator (1971), pages 49-60. Again we
transform the problem by forming a Lagrangean (as in A.40):

max
x2X;�>0

L(x;�;p) (A.48)

However, instead of (A.42, A.43)we now have the following FOCs:

@L(x�;��;p)
@xi

� 0; i = 1; :::; n (A.49)

x�i
@L(x�;��;p)

@xi
= 0; i = 1; :::; n (A.50)

and

@L(x�;��;p)
@�j

� 0; j = 1; :::;m (A.51)

��j
@L(x�;��;p)

@�j
= 0; j = 1; :::;m (A.52)

This set of equations and inequalities is conventionally known as the Kuhn-
Tucker conditions. They have important implications relating the values of the
variables and the Lagrange multipliers at the optimum.
Applying this result we �nd

@f(x�;p)

@xi
�

mX
j=1

��j
@Gj(x�;p)

@xi
; i = 1; :::; n (A.53)

with (A.44) if x�i > 0. Note that if, for some i, x�i = 0 we could have strict
inequality in (A.53). Figure A.11 illustrates this possibility for a case where the
objective function is strictly concave: note that the conventional condition of
�slope=0�(A.42) (which would appear to be satis�ed at point A) is irrelevant
here since a point such as A would violate the constraint xi � 0; at the optimum
(point B) the Lagrangean has a strictly decreasing slope. Similar interpretations
will apply to the Lagrange multipliers:
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Figure A.11: A case where x�i = 0 at the optimum

1. If the Lagrange multiplier associated with constraint j is strictly positive
at the optimum (��j > 0), then it must be binding (G

j(x�;p) = 0).

2. Conversely one could have an optimum where one or more Lagrange mul-
tiplier (��j = 0) is zero in which case the constraint may be slack � i.e.
not binding �(Gj(x�;p) < 0).

So, for each j at the optimum, there is at most one inequality condition: if
there is a strict inequality on the Lagrange multiplier then the corresponding
constraint must be satis�ed with equality (case 1); if there is a strict inequality
on the constraint then the corresponding Lagrange multiplier must be equal
to zero (case 2). These facts are conventionally known as the complementary
slackness condition. However, note that one can have cases where both the
Lagrange multiplier (��j = 0) and the constraint is binding (G

j(x�;p) = 0).
Again if the system (A.53,A.47) yields a unique solution it can be written as

a function of the parameters p which in turn determines the response functions;
but if it yields more than one solution, but f in (A.38) is quasiconcave and the
set of x satisfying (A.47) is convex then we can use the following.

Theorem A.12 If f : Rn 7! R is quasiconcave and A � Rn is convex then the
set of values x� that solve the problem

max f (x) subject to x 2 A

is convex.
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A.7.4 Envelope theorem

We now examine how the solution, conditional on the given set of parameter
values p changes when the values p are changed. Let v(p) = maxx2X f(x;p)
subject to (A.39). Using the response functions in (A.37) we obviously have

v(p) = f(x�(p);p) (A.54)

The maximum-value function v has an important property:

Theorem A.13 If the objective function f and the constraint functions Gj are
all di¤erentiable then, for any k:

@v(p)

@pk
=
@f(x�;p)

@pk
�

mX
j=1

�j
@Gj(x�;p)

@pk

Proof. Evaluating the constraints (A.39) at x = x�(p) we have

Gj(x�(p);p) = 0 (A.55)

and di¤erentiating (A.55) with respect to pk and rearranging gives:

nX
i=1

@Gj(x�;p)

@xi

@x�i (p)

@pk
= �@G

j(x�(p);p)

@pk
(A.56)

Di¤erentiate (A.54) with respect to pk

@v(p)

@pk
=
@f(x�(p);p)

@pk
+

nX
i=1

@f(x�(p);p)

@xi

@x�i (p)

@pk
(A.57)

Using (A.44) evaluated at x = x�(p) (A.57) becomes

@v(p)

@pk
=
@f(x�(p);p)

@pk
+

mX
j=1

�j

nX
i=1

@Gj(x�(p);p)

@xi

@x�i (p)

@pk
: (A.58)

Using (A.56) in (A.58) gives the result.
The envelope theorem has some nice economic corollaries. One of the most

important of these concerns the interpretation of the Lagrange multiplier(s).
Suppose we modify any one of the constraints (A.39) to read

Gj(x;p) = �j (A.59)

where �j could have any given value. This does not really make the problem any
more general because we could have rede�ned the parameter list as �p := (p; �j)
and used a modi�ed form of the jth constraint �Gj de�ned by

�Gj(x; �p) := Gj(x;p)� �j = 0: (A.60)

In e¤ect we can just treat � as an extra parameter which does not enter the
function f . Then



A.8. PROBABILITY 515

Corollary A.3
@v(p)

@�j
= �j

The result follows immediately from Theorem A.13 using the de�nition of �j
in (A.60) and the fact that @f(x

�;p)
@� = 0. So �j is the �value�that one would put

on a marginal change in the jth constraint, (represented as a small displacement
of �j).
A similar result is available for the case where the relevant constraints are

inequality constraints �as in section A.7.3 rather than section A.7.2. In partic-
ular, notice the nice intuition if constraint j is slack at the optimum. We know
then that the associated Lagrange multiplier is zero (see page 513), and the im-
plication of Corollary A.3 is that the marginal value placed on the jth constraint
is zero: you would not pay anything to relax an already-slack constraint.

A.7.5 A point on notation

For some maximisation problems in microeconomics it is convenient to use a
special notation. Consider the problem of choosing s from a set S in order to
maximise a function '. To characterise the set of values that do the job of
maximisation one uses:

argmax
s

' (s) := fs 2 S : ' (s) � ' (s0) ; s0 2 Sg

where the function ' may, of course, incorporate side constraints.

A.8 Probability

For the basic de�nition of a random variable and the meaning of probability
see, for example, Spanos (1999). We will assume that the random variable X
is a scalar. This is not essential to most of the discussion that follows, but it
makes the exposition easier. The case where the random variable is a vector
is discussed in standard books on probability and statistics � see section A.9
below.
The support of a random variable is de�ned to be the smallest closed set

whose complement has probability zero. For the applications in this book we
can take the support to be either an interval on the real line or a �nite set of
real numbers. For the exposition that follows we take the support of X to be
the interval S := [x; x].
A convenient general way of characterising the distribution of a random

variable is the distribution function F of X. This is a non-decreasing function

F (x) := Pr (X � x) (A.61)

where 0 � F (x) � 1 for all x and F (x) = 1; the symbol Pr stands for �proba-
bility.�In words F (x) in (A.61) gives the probability that the random variable
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X has a value less than or equal to a given value x. For the present purposes
we will take two important sub-cases

1. Continuous distributions. Here we assume that F (�) is everywhere contin-
uously di¤erentiable. In this sub-case we can de�ne the density function
f as

f(x) :=
dF (x)

dx
.

By the de�nition of f we haveZ x

x

f(x)dx = 1. (A.62)

2. Discrete distributions. There is a �nite set of possible states of the world


 := f1; 2; :::; $g (A.63)

and the density associated with state ! is a non-negative number �!. If
the states are labelled in increasing order of payo¤x! then the distribution
is characterised by the vector of probabilities

� := (�1; �2; :::�$)
such that �1 + �2 + :::+ �$ = 1

�
: (A.64)

and the distribution function takes the form of a step function:

F (x) =

8<:
0 if x < x1P!

j=1 �j if x!�1 � x < x!, ! = 2; :::$
1 if x � x$

Although there are many economically interesting �hybrid�cases these two
categories are su¢ cient for the types of models that we will need to use. Section
A.8.3 contains some simple examples of F .

A.8.1 Statistics

For our purposes a statistic is just a mapping from the set of all probability
distributions to the real line. Some standard statistics of the distribution are
useful for summarising its general characteristics

De�nition A.27 The median of the distribution is the smallest value xmed
such that

F (xmed) = 0:5



A.8. PROBABILITY 517

De�nition A.28 The expectation of a random variable X with distribution
function F is

Ex :=
Z
xdF (x):

De�nition A.29 The variance of a random variable X with distribution func-
tion F is

var(x) :=

Z
x2dF (x)� [Ex]2

From the given distribution of the random variable we can derive distri-
butions of other useful concepts. For example the variance can be written
equivalently in terms of the distribution of the random variable X2 as

var(x) =
�
Ex2

�
� [Ex]2

Often one is interested in the distribution of a general transformation of the
random variable represented by some function ' (�): for example the distribution
of utility if utility is a function of wealth and wealth is a random variable. The
property of concave functions given in Remark A.4 (page 504) also gives us:

Corollary A.4 (Jensen�s inequality) If ' (:) is a continuous, monotonic,
concave function de�ned on the support of F then:Z

' (x) dF (x) � '

�Z
xdF (x)

�
or, equivalently

E' (x) � ' (Ex) : (A.65)

Now consider a collection ofN variables with the same distribution F , Order
them in such a way that

X[1] � X[2] � ::: � X[N ]:

Then X[k]; k = 1; 2; :::; N is known as the kth order statistic of the sample of
size N . Because of the special order imposed on them the statistics X[k] are
not distributed according to the distribution function F but according to the
derived distribution F[k](�) given by

F[k](x) =
NX
j=k

�
N

j

�
F (x)j [1� F (x)]N�j : (A.66)

The expectation and the variance of the order statistic can be derived from
(A.66) as @@
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A.8.2 Bayes�rule

Let E1, E2, E3 be subsets of S (the support of the distribution) and let �Ei :=
SnEi be the complement of Ei in S. Write Pr (Ei) as equivalent to Pr (X 2 Ei).
By de�nition of probability, if E1 \ E2 = ? then

Pr (E1 \ E2) = Pr (E1) + Pr (E2) :

and

Pr (Ei) + Pr
�
�Ei
�
= Pr (S) = 1:

De�nition A.30 The conditional probability of E2 given E1 is the probability
that X 2 E2 given that X 2 E1:

Pr (E2jE1) :=
Pr (E2 \ E1)
Pr (E1)

By de�nition of the complement of E1 we have

Pr (E1) = Pr (E1 \ E2) + Pr
�
E1 \ �E2

�
= Pr (E1jE2) Pr (E2) + Pr

�
E1j �E2

�
Pr
�
�E2
�

(A.67)

From de�nition A.30 and (A.67) we get Bayes�rule:

Pr (E2jE1) =
Pr (E1jE2) Pr (E2)

Pr (E1jE2) Pr (E2) + Pr
�
E1j �E2

�
Pr
�
�E2
�

A.8.3 Probability distributions: examples

A number of standard statistical distributions are often useful in simple eco-
nomic models. We review here just a few of the more useful:

Elementary discrete distribution.

F (x) =

8>>>><>>>>:
0; x < x0

�0; x0 � x < x1

1; x � x1

9>>>>=>>>>;
This example puts a probability density of �0 on the value x0 and a probability
density of 1� �0 on the value x1.
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Rectangular distribution. The density is assumed to be uniform over
the interval [x0; x1] and zero elsewhere:

f(x) =

8<:
1

x1�x0 if x0 � x � x1

0 elsewhere

9=;

F (x) =

8>>>><>>>>:
0 if x < x0

x�x0
x1�x0 if x0 � x < x1

1 if x � x1

9>>>>=>>>>;
Normal distribution. This has the whole real line as its support. The

variable x is distributed with the density

f(x) =
1p
2�
e�

1
2�2

[x��]2

where�, � are parameters with � > 0. The mean of the distribution is � and
the variance is �2.

Lognormal distribution. This has the set of nonnegative reals as its
support. If the logarithm of x is distributed normally, then x itself is distributed
with the density

f(x) =
1p
2��

e�
1

2�2
log[x��]2

where �, � are parameters with � > 0. The parameter � determines location:
e� is the median of the distribution. The parameter � is a measure of dispersion.
In contrast to the normal distribution the lognormal is distribution skewed to
the right.

Beta distribution. A useful example of a single-peaked distribution with
bounded support is given by the density function

f(x) =
xa [1� x]b

B (a; b)

where 0 � x � 1, a, b are positive parameters and B (a; b) :=
R 1
0
xa [1� x]b dx.

The corresponding distribution function is found by integration of f .

A.9 Reading notes

For an overall review of concepts and methods there are several suitable books
on mathematics designed for economists such as Chiang (1984), de la Fuente
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(1999), Ostaszewski (1993), Simon and Blume (1994) or Sydsæter and Ham-
mond (1995). A useful summary of results is to be found in the very short, but
rather formal, book by Sydsæter et al. (1999).
On optimisation in economics see Dixit (1990) and Sundaram (2002). For

more on applications of convexity and �xed-point theorems see Green and Heller
(1981) and (for the mathematically inclined) the very thorough treatment by
Border (1985)
A useful introduction to the elements of probability theory for economists is

given in Spanos (1999); for a more advanced treatment see Ho¤man-Jørgensen
(1994). For more information on speci�c distribution functions with applications
to economics see Kleiber and Kotz (2003).



Appendix B

Answers to Footnote
Questions

B.1 Introduction

1. The answer depends on the exact shape of the pencil. Suppose it has an
octagonal section. Then there is an equilibrium corresponding to each one of its
eight �faces.�Each of these equilibria is stable. There is also an equilibrium at
the blunt end of the pencil �this is stable under small shocks. There is also an
unstable equilibrium at its sharp end: you could in principle balance the pencil
on its point, but the slightest perturbation would take it back to one of the eight
�face�equilibria.

B.2 The �rm

1. Sales-maximisation, or maximisation of managerial utility subject to a pro�t
constraint, for example.
2. We need to introduce time and/or uncertainty into the model, or some

return from the �rm which is not measured in money (for example the supposed
power that comes from owning a newspaper).
3. Figure B.1 illustrates the Z(q) set for the minimum size of operation

of the �rm. Points z0 and z0 represent situations where the headquarters is in
location 1, 2 respectively. The minimum viable size of o¢ ce and of headquarters
constitute indivisibilities in the production possibility set.
4. Write rij := log (zj=zi) for the log-input price ratio andmij := �j(z)=�i(z)

for the log-MRTSij . Then the de�nition in equation (2.6) can be written

�ij = �
@rij
@mij

(B.1)

But it is clear that rji = log (zi=zj) = � log (zj=zi) = �rij and mji = �mij . So

521
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Figure B.1: Labour input in two locations

we have drji = �drij and dmji = �dmij , which means that

�ji = �
@rji
@mji

= � �@rij�@mij
= � @rij

@mij
(B.2)

as required.
5. Increasing returns: r > 1; constant returns r = 1; decreasing returns:

r < 1.
6. For case 2 see Figure 6.3.
7. Case 1 in Figure 2.1 corresponds to case 1 in Figure 2.8. As an example

consider the production function q =
p
z1z2. Case 4 (bottom right) in Figure

2.1 corresponds to case 2 in Figure 2.8. Example q = minfa1z1; a2z2g. The
other two panels represent non-concave production functions and so cannot be
constant returns to scale.
8. In nontrivial cases we must have at least one input i which is utilised in

positive amounts and for which the input price wi is positive. Applying (2.13)
gives the result.
9. If �(z) > q then you could cut all the inputs a little bit and still meet the

output target; cutting the inputs would, of course, reduce costs, so you could
not have been at a cost-minimising point.
10(a) The equilibrium is a corner solution, illustrated in Figure B.2.(b) If

the �rm were not using any of input j and its valuation of j at the margin were
strictly less than the market price then it would not want to use any j. (ii) The
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Figure B.2: Cost minimisation: a corner solution

�rm would go on substituting i for j up until the point where its valuation of j
exactly equals the price of j in the market.
11. The �rm might not be buying any of input i at the optimum. Therefore

its costs are una¤ected by a small increase in wi.
12. Note �rst from Remark A.4 on page 504 that function f is concave if for

all x;x0 2 X; 0 � � � 1:

�f (x) + [1� �]f (x0) � f (�x+ [1� �]x0) (B.3)

Now consider any two input price vectors w and w0 and let � be any number
between zero and 1 inclusive. We can form another input-price vector as the
combination w:=�w + [1 � �]w0; if z� is the cost-minimising input vector for
wthen, for any q, by de�nition:

C(w;q) =
mX
i=1

wiz
�
i =

mX
i=1

[�wi + [1� �]w0i] z�i

A simple rearrangement gives

C(�w + [1� �]w0;q) = �
mX
i=1

wiz
�
i + [1� �]

mX
i=1

w0iz
�
i (B.4)

By de�nition of cost minimisation we have, for prices w, C(w;q) �
Pm

i=1 wiz
�
i

and, for prices w0, C(w0;q) �
Pm

i=1 w
0
iz
�
i . Therefore, substituting these two
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inequalities in (B.4) we have

C(�w + [1� �]w0;q) � �C(w;q) + [1� �]C(w0;q) (B.5)

But checking this against the property of a concave function given in (B.3) we
can see that (B.5) implies that C is concave in w.
13. Label the inputs z�i > 0 for i = 1; :::;m

� and z�i = 0 for i = m�+1; :::;m,
where m� � m. Then minimised cost may be written as

C(w;q) =
mX
i=1

wiz
�
i =

mX
i=1

wjH
j (w; q) : (B.6)

Di¤erentiating (2.20) as suggested, we have

@

@wi

0@ mX
j=1

Hj (w; q)

1A = z�i +
mX
j=1

wjH
j
i (w; q) (B.7)

where Hj
i (w; q) :=

@Hj(w;q)
@wi

. However condition (2.15) implies, for a given q,

0 =
mX
j=1

�j(z
�)Hj

i (w; q) : (B.8)

Using the assumption that z�j > 0 (2.13) and (B.8) imply

0 = ��
mX
j=1

wjH
j
i (w; q) : (B.9)

From this we immediately see that the last term in (B.7) must be zero and the
result follows. See also the remarks on the envelope theorem in section A.7.4
on page 514.
14. Let there be increasing returns to scale over the output levels �q to t�q

where t > 1, and let �z be cost-minimising for �q at input prices w. Now consider
the input vector ẑ := t�z, and let q̂ := �(ẑ). Given increasing returns to scale we
know that

q̂ = �(t�z) > t�(�z) = t�q (B.10)

However, by de�nition of the cost function,

C(w; q̂) �
mX
j=1

wj ẑj (B.11)

which, by de�nition of �z, yields

C(w; q̂) � t

24 mX
j=1

wj �zj

35 = t [C(w; �q)] (B.12)
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From (B.10) and (B.12) we immediately get

C(w; q̂)

q̂
� C(w; �q)

�q
(B.13)

which shows that average cost must be falling as output is increased from �q to
t�q. The decreasing return to scale case follows similarly.
15. Di¤erentiate average cost C(w; q)=q with respect to q:

@

@q

�
C(w; q)

q

�
=
1

q

�
Cq(w; q)�

C(w; q)

q

�
(B.14)

The term in [ ] is MC-AC, which proves the result.
16. From (2.12) and (2.13) the maximised value of the Lagrangean is.

L�(w; q) :=
mX
i=1

wiz
�
i (w; q)� ��(w; q) [�(z�(w; q))� q] (B.15)

at the optimum. Given that production is e¢ cient here (see 2.15) we have also

C(w; q) = L�(w; q) (B.16)

Di¤erentiating (B.15) with respect to q, and using (2.15) and (2.13), we have

@

@q
L�(w; q) =

mX
i=1

wi
@

@q
z�i (w; q)� ��(w; q)

�
@

@q
�(z�(w; q))� 1

�

= ��(w; q)
mX
i=1

�i(z
�)
@

@q
z�i (w; q)

���(w; q)
"
mX
i=1

�i(z
�)
@

@q
z�i (w; q)� 1

#
= ��(w; q)

This and (B.16) establishes the result. For a more general treatment see section
A.7.4.
17. Presumably similar new �rms would set up to exploit these pro�ts..
18. We want AC to be at �rst falling and then rising: by virtue of question

14 this requires �rst increasing returns to scale and then decreasing returns to
scale.
19. Boundary should look rather like that in panel 1 of Figure 2.1, but with

a �nite number of kinks: draw it by overlaying one smooth curve with another
and then erasing the redundant arc segments. Conditional input demand is
locally constant with respect to input price wherever the isocost line is on a
kink, and falls steadily with input price elsewhere.
20. Because C is homogeneous of degree 1 in w, so too is Cq: therefore the

�rst-order condition p = Cq(w; q
�) �which is used to derive the supply function
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�reveals that if both w and p are multiplied by some positive scalar t, optimal
output q� remains unchanged; this implies that S is homogeneous of degree
zero in (w; p). We know that Hi (w; q) is homogeneous of degree zero in w; so
the homogeneity of degree zero of S implies that Hi (w; S(w; p)) also has this
property; this means that Di(w; p) is homogeneous of degree zero in (w; p).
21. Di¤erentiate (2.33) with respect to p

@

@p
Cq(w; S(w; p) = 1 ;

using the function-of-a-function rule, we get

Cqq(w; S(w; p))Sp(w; p) = 1: (B.17)

So, rearranging and using (2.30), we �nd (2.34).
22. Shephard�s Lemma tells us that

Hi(w; q) = Ci(w; q) (B.18)

Di¤erentiating (B.18) with respect to q:

Hi
q(w; q) = Ciq(w; q) = Cqi(w; q) (B.19)

23. Di¤erentiate (2.33) with respect to wj :

Cqj (w; S(w; p)) + Cqq (w; S(w; p))Sj(w; p) = 0

which will give us the derivative of the supply function, Sj . This and the answer
to question 22 then gives the result.
24. Because C is concave, for any m-vector x it must be true that

mX
i=1

mX
j=1

xixjCij � 0 (B.20)

(see Theorem A.10). So take the case where x has 1 for the ith component, and
0 elsewhere: x = (0; 0; :::; 0; 1; 0:::; 0). It is immediate that (B.20) implies that
Cii � 0.
25. No. See page 87 for an explanation.
26. Yes: the ordinary demand curve must always be �atter than the condi-

tional demand curve (although this is not the case in consumer theory). The
reason for this result is in (2.40): whether Ciq is negative (the inferior case) or
non-negative (the normal case) we must have Di

i � 0.
27. In macro models one often considers capital to be �xed, with labour

(and possibly raw materials) variable.
28. Observe that because wm�zm is a constant (in the short run) it drops out

of the expressions involving derivatives.
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29. At the point q = �q, the input level �zm is cost-minimising; therefore costs
will be invariant to small changes in �zm. Di¤erentiate (2.45) with respect to q
so as to yield, in the neighbourhood of q = �q:

~Cq (w; q;H
m(w; q)) +

@ ~C (w; q;Hm(w; q))

@�zm
Hm
q (w; q) = Cq(w; q) (B.21)

Given that @ ~C=@�zm = 0 at q = �q the result follows.
30. Writing short-run costs as V (w1; :::; wm�1; q; �zm)+wm�zm where the �rst

term represents variable costs and the second term �xed costs we can see that
short-run marginal cost q is Vq(w1; :::; wm�1; q; �zm) which is independent of wm.
Hence we have @ ~Cq=@wm = 0, and so di¤erentiating (2.47) with respect to wm
we get

~Cq�zm (w; �q; �zm)H
m
m (w; �q) = Cqm(w; �q) (B.22)

Use Shephard�s lemma for the right-hand side to obtain:

~Cq�zm (w; �q; �zm) =
Hm
q (w; �q)

Hm
m (w; �q)

(B.23)

Substitute this into (2.50) and the result follows.
31. Di¤erentiating equation (2.49) with respect to wi as suggested we get

~Hi
i (w; �q; �zm) + ~Hi

�zm(w; �q; �zm)H
m
i (w; �q) = Hi

i (w; �q) (B.24)

Di¤erentiating (2.49) with respect to wm we get

~Hi
�zm(w; �q; �zm)H

m
m (w; �q) = Hi

m(w; �q) (B.25)

(Compare the answer to problem 30 in order to see why @ ~Hi=@wm = 0).
Substituting from (B.25) into (B.24) gives the answer.
32. If �ideal size�means the situation where the �rm is just breaking even in

the long run then redraw the short-run average cost curve so that it is tangential
to the long-run AC curve exactly at its minimum point.
33. �(q) becomes qm+1 � �(�q1;�q2; :::;�qm) where qi = �zi � 0; i =

1; 2; :::;m (the inputs) and qm+1 = q � 0 (the output).
34. The convention is that �(q) � 0 denotes feasibility and �(q) > 0 infea-

sibility. Consider a net output vector q� which is just feasible: �(q�) = 0; by
de�nition, raising output (increasing a positive component of q�) or cutting an
input (increasing a negative component of q� towards zero) must be infeasible:
it must make � positive. In other words � should be increasing in each of its
arguments.
35 If, for some y, �(y) = 0 then �(ty) = 0 for all t > 0 �see also page 127.
36. Using (2.62) condition (2.27) becomes just

Pn
i=1 piqi�0.

37. In Figure B.3 both goods 1 and 2 are outputs. Clearly

p1
p2

>
�1(q

�)

�2(q�)
: (B.26)

and the market price of good 1 is so high relative to that of 2 that the �rm
specialises in the production of good 1: q�2 = 0.
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Figure B.3: Pro�t maximisation: corner solution

B.3 The �rm and the market

1. Consider the cost function

a+ bq1 + cq
2
1 :

Marginal cost is
b+ 2cq1

and this will form the supply curve in the region where MC�AC, i.e. where
q1 �

p
a=c.

2. There will be nf + 1 blobs with output values given by the set�
16

i

nf
: i = 0; 1; :::; nf

�
:

As nf !1, this set becomes dense in the interval [0; 16].
3. If demand increases then (at the original quantity supplied) the price

would initially have to rise to clear the market. This rise in price would induce
each �rm to increase it output which shifts down the marginal cost curves for
all the other �rms: output goes on increasing, and marginal cost and price goes
on falling until equilibrium is reached at a lower market price and a higher
aggregate output level.
4. This will shift up the average cost curve for each �rm and (for normal

inputs) marginal cost curve too.
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5. If there were fewer than nf �rms at least one could set up and make
non-negative pro�ts; if there were more than nf �rms one of them would have
to go out of business.
6. If the �rm perceived itself in a situation of strategic interaction with rivals

or potential rivals.
7. (a) We have q = Ap�, so AR is [q=A]1=�, MR= [1 + 1=�]AR. (b) Draw

downward-sloping straight lines that intersect on the vertical axis. Point of
intersection of MR curve on the horizontal axis is halfway between the origin
and the point of intersection of the AR curve.
8. If the elasticity condition is not satis�ed then @�=@q < 0 for all q > 0:

pro�ts get larger as output approaches zero (but does not reach zero). Pro�ts
jump to 0 if q actually reaches zero. So there is no true maximum.
9 From the FOC we would get

p1q
�
q1
�
q1 + p1

�
q1
�
= Cq

�
w; q1

�
; q2� = 0

or
p2q
�
q2
�
q2 + p2

�
q2
�
= Cq

�
w; q2

�
; q1� = 0

10 Assume that �1 < �2. Suppose that the �rm ignored the possibility
of splitting the market and just implemented the simple monopolistic solution
(3.10) with same price p in both submarkets. Now consider the possibility of
transferring some product from market 2 to market 1. The impact on pro�ts of
a small transfer is given by

p1q
�
q1
�
q1 � p2q

�
q2
�
q2 = p

�
1

�1
� 1

�2

�
:

Given the assumption on elasticities this is obviously positive. Therefore pro�ts
will be increased by abandoning the common-price rule for the two markets �
see also Exercise 3.5.
11 The good must not be easy to resell by the consumers. Otherwise they

could, in e¤ect, set up rival �rms that would undermine the �xed charge.

B.4 The consumer

1. If all goods were indivisible then, instead of X being a connected set, we
might take it to be a lattice of points. For the (food, refrigerator) example, X
is a set of horizontal straight lines.
2. See Figures B.4 and B.5.
3. You could get sudden �jumps�in preference in parts of X. This might be

reasonable if certain parts of X have a special signi�cance. See note 1 on page
181.
4. The standard answer is �no�, and does not rely upon changing prefer-

ences: the behaviour could be accounted for by transitive but cyclical preferences
(see page 75 of the text). But this requires a rather special restriction on the
alternatives from which you make a choice (Sen 1973).
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Figure B.4: Price changes (i) and (ii) in two cases

Figure B.5: Prices di¤er for buying and selling
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Figure B.6: Lexicographic preferences

5. In Figure B.6 good 1 is booze and good 2 is other goods. Clearly x0 � x�;
but in view of the lexicographic assumption x00 � x0 even though x00 contains a
lot less of other goods. In the case of n goods lexicographic preferences imply:

x0 < x� if x01 � x�1

x0 � x� if x01 > x�1

x0 � x� if x01 = x�1 and x
0
2 > x�2

x0 � x� if x01 = x�1, x
0
2 = x�2 and x

0
3 > x�3

::: etc.

6. Yes. No.
7. Draw a budget constraint so that the bliss point is in the interior of the

budget set. Consider a point to the �North-East� of the bliss point: you see
immediately that by moving away from into the interior of the set you move to
a higher indi¤erence curve. If the person could a¤ord the bundle at the bliss
point then he would buy this bundle and leave the rest of the income unspent.
8. All the results go through except that the optimal commodity demands

x� may no longer be well-de�ned functions of p and � (or of p and y): at
certain sets of prices there may be multiple solutions, and we have demand
correspondences which will, however, be upper semi-continuous.
9. Indi¤erence curves with the direction of preference as in Figure 4.8, but

concave to the origin rather than convex.
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Figure B.7: Utility maximisation: corner solution

10. Using the function-of-a-function rule. ~Ui(x) = 'u(U(x))Ui(x). Likewise
for ~Uj(x). So

~Uj(x)
~Ui(x)

=
'u(U(x))Uj(x)

'u(U(x))Ui(x)
=
Uj(x)

Ui(x)
:

11. Some consumer purchases have close analogies with the computer exam-
ple on page 35: houses, cars, central heating systems, for example. Also where
the consumer is rationed (either by the intervention of some public agency, or
through some additional market constraint such as unemployment), consumer
behaviour can exhibit features similar to the short run.
13(a) The equilibrium is a corner solution, illustrated in Figure B.7.(b)(i) If

I do not have any of good j and my marginal willingness to pay for good j (my
personalised price for j) is strictly less than the market price then I do not buy
any j. (ii) I go on trading i for j up until the point where my willingness to pay
for j exactly equals the cost to me in the market.
14. In Figure B.8 the quantity discount corresponds to the �horizontal�

part of the boundary of the budget set. For the given prices the consumer is
indi¤erent between the bundles x� and x��: if the price p1 were a little higher
the equilibrium would be just to the left of x�; if it were a little lower the
equilibrium would be just to the right of x��. Demand is discontinuous at this
point.
15. Part (a) follows directly from equation (4.13), the budget constraint

which is binding at the optimum given the greed assumption. (b) Can also be
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Figure B.8: Quantity discount

deduced from the binding budget constraint: multiplying each pi and y by some
factor t clearly leaves (4.13) unaltered, since the t will cancel on both sides;
therefore the optimal commodity demands x� will remain unchanged. Also
consider equation (4.9). We know that C is homogeneous of degree 1: so if all
prices are increased by a factor t the cost function tells us that income has to
be increased by the same factor to be able to attain the same utility level as
before. Also the left-hand side is homogeneous of degree zero in p because it is
the �rst derivative of C with respect to pi. So rescaling prices and income by t
leaves Di(p; y) unaltered.
16. For very �nely-de�ned commodity speci�cations we might �nd quite a

few inferior goods (Co-op margarine, sliced white bread...); for more broadly-
de�ned commodities we would expect them to be non-inferior goods (edible fats,
bread...).
17. (a) The Slutsky equations for the e¤ect of the price of good j on the

demand for good i and vice versa are:

Di
j(p; y) = Hi

j(p; �)� x�jDi
y(p; y) (B.27)

Dj
i (p; y) = Hj

i (p; �)� x�iDj
y(p; y) (B.28)

Although the substitution term (�rst term on the right-hand side) has to be
equal in equations (B.27) and (B.28), the income e¤ects could be very di¤erent.
So it is possible for the left-hand side to be negative in one case and positive
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in the other. (b) In the two-good case the result is obvious from the indi¤er-
ence curve diagram: we know that if the price of good 1 goes up then, along
an indi¤erence curve, the demand for good 1 must fall; but to keep on the
same indi¤erence curve good 2 would have to rise. However, the result can be
generalised. Di¤erentiate equation (4.13) with respect to y:

nX
i=1

piD
i
y(p; y) = 1 (B.29)

�a convenient adding-up property for the income e¤ects.
Alternatively di¤erentiate it with respect to pj :

x�j +
nX
i=1

piD
i
j(p; y) = 0 (B.30)

Using the Slutsky equation (4.21), we get

x�j +
nX
i=1

pi
�
Hi
j(p; �)� x�jDi

y(p; y)
�
= 0 (B.31)

which, in view of the adding-up property of the income e¤ects (B.29), yields:

nX
i=1

piH
i
j(p; �) = 0 (B.32)

Now, because the own-price substitution e¤ect must be negative, equation
(B.32) implies that at least one of the cross-price substitution e¤ects must be
positive. In other words at least one pair of goods i, j must be net substitutes.
18. In Figure B.9 the income e¤ect is from x� to � and the substitution

e¤ect from � to x��.
19. The �rst term on the right-hand side of equation (4.23) must be negative;

so if Di
y is positive or zero, the left-hand side must be negative.

20. If you do not consume commodity i then you are not hurt by an increase
in pi, so Vi would be zero for this good; but you must be consuming something,
so there must be some good whose price rise would hurt you.
21. Vy is the marginal increase in maximal utility that you would get if your

income were to rise: it is the �price�of income in utility terms; this is exactly
what is meant by the optimised Lagrange multiplier.
22. Di¤erentiation of (4.27) yields

Vi (p; C(p; �)) + Vy (p; C(p; �))Ci(p; �) = 0 (B.33)

Using Shephard�s Lemma gives the result immediately.
23. From (4.27) we see that

V (tp; C(tp; �)) = � ; (B.34)
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Figure B.9: Gi¤en good

for any t > 0 and, because C is homogeneous of degree 1 in prices, we have

V (tp; ty) = � = V (p; y) : (B.35)

24. By de�nition we have:

� = V (p0; C(p; �)� CV) = V (p0; C(p0; �)) (B.36)

from which the result follows.
25. Take (4.31): on the right-hand side we subtract the cost of getting

reference level utility after the price change from the original cost. If there has
simply been a price fall then the cost must have fallen, and so the expression is
positive, the same sign as the welfare change.
26. Use equation (4.23) and apply reasoning similar to the answer to question

19.
27. Compare equations (4.37) and (4.40). By de�nition of the optimal

commodity demands and the cost function the denominators on the right-hand
side must be equal; but by de�nition of the cost function the numerator of (4.37)
must be less than or equal than the numerator of (4.40). A similar argument
can be applied in the case of (4.38) and (4.41).

B.5 The consumer and the market

1. Substitute in @y=@pj using equation (5.1).
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Figure B.10: Supply of good 1

2. Re�ect Figure 5.1 about the vertical axis and shift the origin to (R1; 0) �
see B.10. Then, to obtain Figure 5.2, rescale the vertical axis to plot p1 rather
than x2.
3. Suppose the person is paid at the rate w0 for working hours up to `0 and

at the rate w1 > w0 for working hours in excess of `0. The budget constraint
is.

y =

8<: w0`+ y0 ` � `0

w1 [`� `0] + w0`0 + y0 ` > `0

9=; (B.37)

Figure B.11 illustrates this
(a) The left-hand panel gives the (x1; x2) view. The horizontal axis measures

�leisure�so that labour is just measured on the same axis, but in the opposite
direction. Assuming that y0 = 0, the endowment point is marked in as R.
(b) The right-hand panel gives the (`; y) view. Note the natural upper bound

on `.
(c) In either view it is clear from the indi¤erence curve that has been drawn

in that the consumer�s optimum may be non-unique and that labour supply may
be discontinuous (consider what happens in Figure B.11 if w1 is a little higher
or lower.)
4. Equation (5.13) generalises to

U (x1; :::; xn) =
nX
i=1

�i�1u (xi) (B.38)
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Figure B.11: Budget constraint with overtime

If n ! 1 one may need to have � < 1 to ensure that the right-hand side of
(B.38) converges.
5. The speci�c version of (B.38) required is given by

u (xBreakfast) + �u (xLunch) + �
2u (xTea) (B.39)

It is immediate from this that MRSBreakfastTea is independent of consumption
at Lunch .
6 It is the distance between the two blobs on the vertical axis.
7. The Lagrangean is

u (x1) + �u (x2) + �

�
y � x1 �

x2
1 + r

�
(B.40)

The FOC for an interior maximum of (B.40) are

ux (x
�
1)� � = 0

�ux (x
�
2)� �

1

1 + r
= 0

On rearranging we get
ux (x

�
1)

ux (x�2)
= [1 + r] � (B.41)
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If � > 1= [1 + r] then RHS of (B.41) is positive and, because ux (�) is a decreasing
function we must have x�1 < x�2.
8. Suppose that x0 and x1 are two points on the boundary of A, that z0 is the

minimum cost combination of inputs to produce x0, and that z1 is the minimum
cost combination required to produce x1. If the technology is convex, then the
vector xt := tx0 + [1� t]x1 (where 0 < t < 1) can be produced from the input
combination zt := tz0+ [1� t] z1. But

P
wjz

t
j = t

P
j wjz

0
j + [1� t]

P
j wjz

1
j =

ty + [1� t]y = y; so z� can certainly be purchased, and xt must lie in A .
9. Every input is always essential so such any such change is bound to shift

the cost of any given output bundle.
10. If R3 > 0 the household�s budget y increases and the frontier moves

outwards at all points: consumption of goods 1 and 2 increases.
11. Given the linear technology in equation (5.20) it is clear that if the per-

son�s income increases then the attainable set expands along the rays shown in
Figure 5.5; if the indi¤erence curves are homothetic then the utility-maximising
output bundle x� remains at the same relative position on the �gure �it too is
moved out radially. So, in view of the linearity of the model, the inputs that are
purchased will always increase proportionately. But if the indi¤erence curves
are nonhomothetic then as income expands x� will move along a facet and even-
tually may switch between facets. When such a switch occurs one input j is
no longer purchased and another input is substituted. In this case as income
increases the demand for good j at �rst increases and then, when, the switch
occurs, a further increase in income causes the demand for j to fall to zero.
12. Apply an induction argument.
13. There are several interpretations. One is the problem of obtaining a

coherent ordering for a group of persons fa; b; :::g from their individual orderings
<a, <b ::: . See chapter 9.
14. The services of a wide congestion-free bridge are non-rival. The perfume

or aftershave that you wear may be providing a non-excludable service to other
consumers.
15. Given the speci�ed tastes my demand for cider falls continuously with

an increase in price until the price of cider equals that of beer; if the price of
cider increases further the demand for cider jumps to zero (I buy only beer).
But this jump for each consumer is just like the jump in supply considered in
chapter 3. Therefore in a large number of consumers the demand for cider at
this critical price is e¤ectively continuous �see also Exercise 5.7.
16 There is a class of such de�nitions that may involve some type of gener-

alised mean of incomes:

ŷ := '�1
�X

h
'
�
yh
��

where ' is a monotonic increasing function and '�1 is its inverse.
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Figure B.12: Indivisibility in production

B.6 A simple economy

1. In Figure B.12 good 1 is input, good 2 is output.
2. See �gure B.13. The combined set

Q = fq� + q0 : q� 2 Q�:q0 2 Q0g

will be identical to Q0.

Figure B.13: Combination of technology sets

3. See Figures B.14 and B.15
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Figure B.14: Answer to 2a

Figure B.15: Answer to 2b
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Figure B.16: 2-input, 1-output production function

4. See answer to footnote 33 in chapter 2: rewrite q � �(z1; z2) as��(�q1;�q2)+
q3 � 0 where q1 := �z1, q2 := �z2, q3 := q. Figure B.16 illustrates this �com-
pare this with Figure 2.7.
5. If Q1 and Q2 are the technology sets for processes 1 and 2 then be-

cause there are no externalities Q1 +Q2 is the technology set for the combined
processes. From Theorem A.6 convexity of Q1 and Q2 implies convexity of
Q1 +Q2.
6. Each constraint restricts you to a triangle. So the attainable set is the

polygon shown in Figure B.17.
7. If we concentrate on interior solutions we do not have to worry about

constraint 1. the Lagrangean is

U(x) + � [q+R� x]� ��(q)

Di¤erentiating with respect to xiwe get:

Ui(x)� � = 0: (B.42)

Di¤erentiating with respect to qi we �nd:

�� ��i(q) = 0: (B.43)

A simple rearrangement gives the result.
8. Shift the line corresponding to constraint 4 outwards. Do this for the

case (a) where the equilibrium is on this facet, (b) where the equilibrium is
elsewhere.
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Figure B.17: The attainable set

9. Draw an elongation rightwards of the attainable set.
10. Use the same argument as on page 41. Labelling goods 1; :::;m as inputs

and m+ 1; :::; n as outputs, [Revenue� Cost] can be written:

nX
i=m+1

�iqi �
mX
i=1

�i [�qi] (B.44)

which immediately gives the result.
11. There may be costs of monitoring Friday. Also if Crusoe cannot costlessly

observe all inputs and outputs there may be ine¢ ciency.
12. Introduce a set of notional or shadow prices such as � in Figure 5.4.

Then household production is carried out to maximise �pro�t�at input pricesw,
output prices �; household consumption maximises U(x) subject to

P
�jxj � y.

13. If there are �xed costs there may be a non-convexity in the attainable
set with trade.
14. See Figure B.18: q��1 � x��1 is imports; q��2 � x��2 is exports.
15. The standard budget set (see Figure 4.2) is convex.

B.7 General equilibrium

1. Suppose �rm 1 sells q units of good 1 to �rm 2. Then q11 = (+)q and q
2
1 = �q;

�rm 1 would have an entry (+)p1q in its revenue account; �rm 2 would have an
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Figure B.18: Imports and exports

entry (�)p1q as a component of its costs. If the two �rms merge the net output
of good 1 becomes q11 + q21 = 0; nil pro�t is made by the merged �rm on good
1; transactions in good 1 are now purely internal to the merged �rm.
2. Substituting from equation (7.3) we see that the last term in (7.8) becomes

nfX
f=1

&fh

nX
i=1

piq
f
i

Simple rearrangement then gives the result.
3. Alf�s budget constraint is p1xa1 + p2x

a
2 � p1R

a
1 + p2R

a
2 ; the �rst-order

condition simpli�es to Ua1 (x
a)=Ua2 (x

a) = p1=p2.
4. Alf sells some of his endowment of good 2 to Bill and buys some of Bill�s

endowment of good 1.
5. The point marked [R] is a horizontal distance Ra1 from the left-hand axis

and Rb1 from the right-hand axis: in the two-person case Ra1 + Rb1 = R1. A
similar argument applies to R2. If there is a gift from outside the economy then
this must a¤ect the size of the box.
6. We could end up at a point o¤ the contract curve.
7. Pick some point o¤ the contract curve: now move along Alf�s indi¤erence

curve (so that his utility stays constant): notice that Bill�s utility must rise;
therefore you would reach a point at which one of the pair would be better o¤
and (because the point lies in the box) can be attained by pooling Alf�s and
Bill�s resources.



544 APPENDIX B. ANSWERS TO FOOTNOTE QUESTIONS

Figure B.19: The o¤er curves and equilibrium

8. From the remark on page 146 it is clear that competitive equilibrium in
an exchange economy must lie at the intersection of the consumers�o¤er curves:
in the two-person case this can easily be drawn within the Edgeworth box. At
this intersection (point [x�] in Figure 7.2) each person�s indi¤erence curve is
tangential to the same line. Therefore [x�] must lie in the set of allocations
that represent common tangencies of the two persons�indi¤erence curves, the
contract curve. Clearly it must lie on or above the reservation indi¤erence curve
for each person or the trade would not be o¤ered. See Figure B.19.
9. See Figure B.20. Note that there is a third intersection of the two o¤er

curves between [x�] and [x��]! The economic issues concerning an equilibrium of
the sort corresponding to this third intersection are discussed further in sections
7.4.3 and 7.4.4.
10.Using (7.14) and (7.15) we �nd the total consumption of the Alf-Arthur-

Bill coalition to be

2x̂a +Rb = 2 � 1
2
[Ra + xa] +Rb +Ra � xa

= Ra + xa +Rb +Ra � xa

= 2Ra +Rb

11 Clearly Ben would be unhappy about the situation in Table 7.2; it would
be in his interests to propose a coalition with Alf and Arthur that would give
them slightly more than they would have enjoyed in (7.15) and himself corre-
spondingly less than his treacherous brother would have enjoyed in (7.14). This
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Figure B.20: O¤er curves and multiple equilibria

could always be done in any proposed allocation that did not treat agents of a
given type (each of the pair of twins in our example) equally in the allocation.
12. It might happen that one side can exert monopoly power.
13. Let L1 be the line from [R] to [~x]; if it is not a tangent to the indi¤er-

ence curves at [~x] then it must cut the Alf indi¤erence curve through [~x] again
somewhere: call the point where it does so [x0] and let L2 be the line from [x0]
to [~x]. Notice that at any point in L2 the Alf tribe would be at a higher utility
level than at [~x]. De�ne � as the ratio

length(L2)
length(L1)

:

Given that there are N of the a-tribe and N of the b-tribe let m be an integer
between [1� �]N and N . A coalition of N a-types and m b-types will then
secure a consumption allocation for a-type members of the coalition at a point
[x̂] in the interior of L2 (they are better o¤ than at [~x]) and for b-members of
the coalition at the point [~x] (they are no worse o¤). If a coalition of N of the a-
tribe and m of the b-tribe is formed, will the proposed consumptions x̂a and ~xb

for individual a- and b-members respectively be feasible? Total consumption is
N x̂a +m~xb so that the condition for feasibility is

N x̂a +m~xb � NRa +mRb

N [x̂a �Ra] � m
�
Rb � ~xb

�
(B.45)
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But, using the property
~xa + ~xb = Ra +Rb

condition (B.45) can be rewritten

N [x̂a �Ra] � m [~xa �Ra] (B.46)

x̂a �Ra � m

N
[~xa �Ra] : (B.47)

However, condition (B.47) is satis�ed by construction of [x̂] at a point mN along
the line L1.
14. Costs of forming and enforcing coalitions; information costs.
15. Household h�s o¤er curve is given by the graph of

�
xh1 (p);x

h
2 (p)

�
in a

two-good economy (see Figures B.19 and B.20) or, more, generally the graph of�
xh1 (p); :::;x

h
n(p)

�
. From (7.16) it is clear that the vector of excess demands in

an exchange economy is found just by summing
�
xh1 (p); :::;x

h
n(p)

�
over h and

then subtracting R.
16. If there is a good which actually no-one wants to buy (used tooth-

brushes?) there could just be an unutilised stock of this �good�in equilibrium.
17. Each �rm�s supply function is homogeneous of degree zero in all prices,

and each household�s demand function is homogeneous of degree zero in all prices
and income (Theorem 4.6); and in this model income in turn is homogeneous of
degree 1 in prices.
18. If each household is greedy, then in equilibrium it must be on the bound-

ary of its budget set:
nX
i=1

pix
h
i = yh (B.48)

Substituting in for yh from equation (7.9) and summing (B.48) over all house-
holds h we get

nX
i=1

pixi =
nX
i=1

pi

24Ri + nfX
f=1

qfi

35 (B.49)

(remember that the sum over h of &fh is 1). Simple rearrangement of (B.49) and
using the de�nitions of excess demand Ei gives the result.
19. See Figure B.21..
20. Given the normalisation of prices (p2 = 1� p1) and Walras�Law:

E2 = �
p1E1
1� p1

If E1 stays positive as p1 ! 1, the result immediately follows.
21. Examine Figure 7.12. A perturbation might shift the system from the

neighbourhood of one equilibrium allocation to another: in the process, prices
may change dramatically. This could be bad news for people whose incomes are
derived mainly from one commodity.
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Figure B.21: Normalised prices, n = 3

22. Squaring equation (7.24) and di¤erentiating, we get

2�(t)
d�(t)

dt
=

nX
i=1

[pi(t)� p�i ]
dpi(t)

dt
(B.50)

Using the adjustment dpi(t)=dt = Ei(p) and applying Walras Law in (B.50)
gives the result.
23. If aggregate demand satis�es WARP, then for two distinct price vectors

p and p̂, we have
nX
i=1

pixi(p) <
nX
i=1

pixi(p̂) (B.51)

By pro�t maximisation we must have

nX
i=1

piqi(p) �
nX
i=1

piqi(p̂) (B.52)

Subtracting (B.52) from (B.51) and subtracting the value of resources from both
sides of the inequality we get:

nX
i=1

piEi(p) <
nX
i=1

piEi(p̂) (B.53)
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24. We would have a series of adjustments in which individuals�endowments
change during the process.
25. For household h let

Bh:=
�
xh:Uh(xh) � Uh(x�h)

	
: (B.54)

Clearly Bh is convex if Uh is quasiconcave. Also, from (7.33) B =
P

hB
h; so,

by Theorem A.6 B is also convex.
26. For diagrams showing this see Figure 9.4 and 9.5.

B.8 Uncertainty and risk

1. If the continuity axiom is violated in this way then there will be a �hole�in
each indi¤erence curve exactly at the point where it intersects the 45� ray. .
2. Risk-neutral � straight line contours. Risk-lover � contours bend the

�wrong�way.
3. The behaviour is inconsistent with the continuity axiom. However there is

a large literature on the preference-reversal phenomenon and it has been argued
that the transitivity axiom is problematic here (Loomes and Sugden 1983).
4. �Disappointment� refers to the relationship between di¤erent outcomes

on the same gamble. �Regret� requires a comparison between two di¤erent
gambles (Sugden 1986).
5. Given that the function u in (8.1) is de�ned up to an a¢ ne transformation,

we could always replace u by u=
P
�!.

6. The slope of the utility function is given by

� �redux(xred)

�blueux(xblue)

Putting xred = xblue on the diagonal gives the result.
7. According to the standard theory expounded here the answer must be

�no� if the person is risk-neutral or risk averse. Of course one could assume
that the act of participating in the lottery itself yielded pleasure.
8. Consider a prospect P0 :=

�
x0
red
; x0

blue

�
and let

R := �redx
0
red
+ �bluex

0
blue

(B.55)

for arbitrary positive values of �red ; �blue such that �blue = 1 � �red . De�ne
�P := (R;R) and draw a line from P0 through �P to intersect the indi¤erence curve
again at P1 :=

�
x1
red
; x1

blue

�
. By construction U (P0) = U (P1) and quasiconcavity

implies
U
�
�P
�
� U (P0)

However, using (B.55) and the de�nitions of �P and P0, the last equation implies.

u
�
�redx

0
red
+ �bluex

0
blue

�
� �redu

�
x0
red

�
+ �blueu

�
x0
blue

�
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Figure B.22: Ambiguous risk attitude

Given that this holds for arbitrary weights �red , �bluethis implies that u is con-
cave.
9. Figure B.22 provides an example � for more see Friedman and Savage

(1948), page 297.
10. Let a new function û be de�ned as in (8.2). Clearly, for any value of x,

we have

ûx (x) = bux (x)

ûxx (x) = buxx (x)

So

�̂(x) := � ûxx (x)
ûx (x)

= �(x)

11. Expanding the left-hand side of (8.4) we have

u(Ex) + ux(Ex)[� � Ex] +
1

2
uxx(Ex)[� � Ex]2:::

Similarly the right-hand side, expanded around Ex , becomes:

u(Ex) + ux(Ex)E [x� Ex] +
1

2
uxx(Ex)E [x� Ex]2:::

Equating these we get

ux(Ex)[� � Ex] +
1

2
uxx(Ex)[� � Ex]2::: =

1

2
uxx(Ex)E [x� Ex]2:::
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For small risks � is close to Ex and we may neglect terms in [��Ex]r for r � 2.
So, noting that var(x) = E [x� Ex]2; we have

ux(Ex)[� � Ex] '
1

2
uxx(Ex)var(x)

Dividing the equation in the question by ux(Ex) and using the de�nition of �
we get Theorem 8.2.
12. It is immediate from De�nition 8.2 that

%(x) = x�(x) (B.56)

Di¤erentiating:
d%(x)

dx
= �(x) + x

d�(x)

dx
:

13. Given the cardinal utility (felicity) function u, let a new function û be
de�ned as

û = ' (u) (B.57)

where ' is a di¤erentiable function with �rst derivative positive and second
derivative negative. Applying the function-of-a-function rule of di¤erentiation,
for any value of x we have

ûx (x) = 'u (u)ux (x)

ûxx (x) = 'uu (u)ux (x)
2
+ 'u (u)uxx (x)

So

�̂(x) := � ûxx (x)
ûx (x)

= �'uu (u)
'u (u)

ux (x) + �(x)

Given that 'u (�) and ux (�) are positive and 'uu (�) is negative we must have

�̂(x) > �(x):

Using (B.56) and multiplying the last equation by x gives

%̂(x) > %(x):

14. Using equation (8.4) we have

û(�̂) = E û(x)
= E' (u(x)) (B.58)

By Jensen�s inequality (A.65), if ' is a concave function then

E' (�) � ' (E�) : (B.59)

Using (B.58) and (B.59) we have

û(�̂) � ' (Eu(x)) (B.60)
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so that, using (8.4) and (B.57), we have

û(�̂) � ' (u(�)) = û(�) (B.61)

Given that û is monotonic, this implies �̂ � �.
15. Constant absolute risk aversion means

�uxx (x)
ux (x)

= �: (B.62)

De�ne the function ' as the logarithm of the �rst derivative of u so that

' (x) := log (ux (x)) : (B.63)

Then (B.62) implies
d' (x)

dx
= �� (B.64)

Integrating both sides, (B.64) has as a solution

' (x) = ��x+ constant

which implies
ux (x) = e'(x) = be��x (B.65)

where b is an arbitrary positive constant. Integrating B.65 we get

u (x) = a� b

�
e��x (B.66)

where a is an arbitrary constant.
16 For part (a) see Figure B.23 depicting two sets of indi¤erence curves

in state-space. Notice that, for either set of indi¤erence curves, where the
indi¤erence curves intersect any given 45� line, the slope of the indi¤erence
curves is the same. Also note that, by inspection of the slopes where they
intersect the 45� ray through the origin, the solid indi¤erence curves represent
higher �red=�blue than the dashed indi¤erence curves. For part (b) see Figure
B.24.
17. CRRA means

�xuxx (x)
ux (x)

= %: (B.67)

As in 15 we de�ne ' as the logarithm of ux �see (B.63) above �(B.62) implies

d' (x)

dx
= �%

x
: (B.68)

Noting that
d log x

dx
=
1

x
;
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Figure B.23: CARA: changing �

Figure B.24: CARA: � = 2 and � = 5
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integrating both sides of (B.68) we �nd the solution

' (x) = �% log x+ constant

which implies
ux (x) = bx�% (B.69)

where b is an arbitrary positive constant. Integrating (B.69) we get

u (x) = a+
b

1� %x
1�% (B.70)

where a is an arbitrary constant.
18 The argument generally follows the answer to footnote question 16 but

now, for either set of indi¤erence curves the slope is the same along any ray
through the origin, rather than along all the 45� lines. For part (a) see the
right-hand panel of Figure 8.13. For part (b) see the left-hand panel of Figure
8.13.
19. (a) The area contained in an isosceles right-angled triangle. (b) �red is

determined implicitly from equation (B.71). (c) Straight lines �see the discus-
sion of footnote question 20. See Machina (1982), page 305 or Marschak (1950),
page 115.
20. By de�nition of probability we have

�red + �green + �blue = 1 (B.71)

so that
�
green

= 1� �red � �blue (B.72)

In this case the bilinear form (8.11) can be written

�red�red + �green�green + �blue�blue

which, in view of (B.72), can be written

�0 + �1�red + �2�blue

where
�0 := �green

�1 := �red � �green
�2 := �blue � �green :

So indi¤erence curves in the space of probabilities have the form:

�1�red + �2�blue = const

The slope of the indi¤erence curve is given by

d�blue
d�red

= ��1
�2
=
�red � �green
�green � �blue
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Figure B.25: Portfolio choice: playing safe

The above equation shows that if �red > �green > �blue , the slope
d�blue
d�red

is positive.
Also, if �blue increases, then the slope also increases.
21. If there is a large number of traders and all the individuals are appropri-

ately �small�in the sense of section 7.5.2 (page 167) then once again prices may
play their decentralising rôle �see the �second thoughts�discussion in Arrow
(1970), essay 2.
22. (a) The sides of the box will be of equal length and the two 45� lines

collapse into one. (b) the slope of the a-indi¤erence curves where they cross
the 45� line through Oa equals the slope of the b-indi¤erence curves where they
cross the 45� line through Ob.
24. As �y the set A expands proportionately �each vertex moves along a ray

through the origin and the slopes of the facets stay constant. If the indi¤erence
curves in the state-space diagram were homethetic then it is clear that the
point indicating the optimal portfolio mix would also move outward along a ray
through the point P � as A expands. But if preferences were non-homothetic
then the optimal portfolio mix will shift and it may be that one eventually
switches to another facet of A.
25. (a) We have

E (ruy (�y + ��r)) � 0 (B.73)

for the case where �� = 0 �see Figure B.25. We also have

E (ruy (�y + ��r)) � 0 (B.74)

for the case where �� = �y. �see Figure B.26.
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Figure B.26: Portfolio choice: plunging in the risky asset

26. From De�nition 8.1 we have

�(x) = �uxx (x)
ux (x)

:

Di¤erentiating this with respect to x we have

d�(x)

dx
= �uxxx (x)

ux (x)
+ :

�
uxx (x)

ux (x)

�2
:

So, the condition for decreasing absolute risk aversion is

:uxxx (x) >
uxx (x)

2

ux (x)
:

27. Di¤erentiating (8.27) with respect to t we obtain

E (ruy (�y + ��tr)) + E
�
t��uyy (�y + �

�tr) r2
�
+ E

�
tuyy (�y + �

�tr) r2
@��

@t

�
= 0

(B.75)
The �rst term in (B.75) is zero because of the FOC (8.27); so (B.75) can be
written

E
�
uyy (�y + �

�tr) r2
� �
t�� + t

@��

@t

�
= 0 (B.76)

Given that E
�
uyy (�y + �

�tr) r2
�
> 0 for any distribution where �� > 0 we

immediately get 1
��

@��

@t = �1. The solution is illustrated in Figure B.27 where
t > 1 is the proportion by which the line through �P and P0 has extended.

xred � �y = ��tr0]
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Figure B.27: E¤ect of an increase in spread

xblue � �y = ��tr�]:

B.9 Welfare

1 Utility is ordinal, and so � will be invariant if utilities are transformed by some
monotonic function '. See the answer to part (a) in question 6 on e¢ ciency
below.
2. Quasi-transitivity does not get us very far �see Sen (1970).
3. In 9.1 the preferences are

Alf Bill Charlie
�00 � �0

�0 �0 �
� �00 �00

If they vote as between pairs of states then the ordering is clearly �0 � � � �00

where ���denotes strict preference.
4. Given the independent �single-peaked�rankings of each of the two char-

acteristics we only get single peaked rankings over the social states if the set of
alternatives can be represented along a straight line in the space of the two char-
acteristics. This is a serious restriction on the applicability of the �single-peak�
criterion.
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Figure B.28: Points that cannot be supported in an equilibrium

5. (a) The votes cast for [�; �0; �00; �000] are [8; 7; 7; 8]. (b) The votes cast for
[�; �00] (when other states have been excluded) are [4; 5]: inspection of the voting
points yields the result.
6. (a) Scale and origin changes clearly leave the shape of the diagram unal-

tered. (b) Although the curvature and slope of part of the frontier will change,
horizontal and vertical segments will still remain; in (a) and (b) the set of Pareto
e¢ cient states is unaltered. (c) Points to the �North-East�in the diagram.
7.

8h : @L
@xhi

= Uhi
�
xh
�
� �i � 0 (B.77)

8. (a) Replace (9.11) by

�hU
h
i

�
xh
�
� �i (B.78)

(b) Replace (9.13) by

�f�
f
i (q

f ) � �i (B.79)

9.Take a contour and �convexify� it by laying a ruler or straight edge as a
tangent at two points. Figure B.28 illustrates it for the case of a single �rm;
Figure 7.17 illustrates it for a single consumer.
10. (a) Potential earnings that may be inherent in someone�s innate talents

�see chapters 11 and 12 for an account of the issues to which this gives rise.
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Figure B.29: Utility loss through price distortion

(b) The income tax is e¤ectively a tax on working time. We can think of
this as introducing a distortion such as the �price-wedge�� discussed in section
9.3.2.

11. Some resources such as human capital or �labour power�may be re-
garded as inalienably the right of their possessor even if they could be costlessly
observed. See Exercise 9.6 as an example of what may happen in such cases.

12. Notice the slope of the two tangents representing consumer and producer
prices and the welfare loss in Figure B.29. We are on the bottom indi¤erence
curve at the point marked with a ���, whereas we could be on the middle
indi¤erence curve marked with a ���.

13. From equations (7.8) and (7.9) we have

yh =
nX
i=1

piR
h
i +

nfX
f=1

&hf�
f (p) (B.80)

Substitute this in (9.20) and use theorem 2.7 in chapter 2, from which we know
that the e¤ect of a change in price pi on the pro�ts of �rm f is given by qfi (p)
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where the function qfi (�) is the counterpart of (2.69). Then using the facts that
nhX
h=1

&hf = 1;

nhX
h=1

Rhi = Ri;

nfX
f=1

qfi = qi

gives (9.21).
14. A Taylor expansion of (9.21) gives

�(4p) � �(z) +
nX
i=1

@�(z)

@zi
4pi +

1

2

nX
i=1

nX
j=1

@2�(z)

@zi@zj
+ ::: (B.81)

evaluated at z = 0. Because �(0) = 0 the expression (B.81), when evaluated,
provides the following approximation.

�(4p) �
nX
i=1

"
nhX
h=1

xhi �Ri � qi

#
4pi�

1

2

nX
i=1

nX
j=1

nhX
h=1

Chij(p; �
h)4pi4pj (B.82)

Because of the materials balance condition, the �rst term in (B.82) vanishes.
So, applying Shephard�s Lemma again, we �nd (9.23).
15. We follow the same reasoning as in the answer to footnote 14 but allow for

the possibility that @qi(~p)@~pj
6= 0 where ~p denotes producer prices. The counterpart

of (B.82 is

�(4p) �
nX
i=1

"
nhX
h=1

xhi �Ri � qi

#
4pi

�1
2

nX
i=1

nX
j=1

"
nhX
h=1

Chij(p; �
h)� @qi(~p)

@~pj

#
4~pi4~pj

and so the counterpart of (9.23) is:

�(4p) � �1
2

nX
i=1

nX
j=1

nhX
h=1

Hhi
j (p; �

h)4pi4pj +
1

2

nX
i=1

nX
j=1

@qi(~p)

@~pj
4~pi4~pj

16. (a) Use the notation of chapter 3, so that p is the price of good 1, etc..
From (3.11) we get

p� Cq(w; q)
p

= �1
�

(B.83)

Waste is measured by the area of the triangle in Figure 9.6 1
24p14x1. Given

that 4x1 = ��4p1 x1p1 , in this case we see that 4p1 is p � Cq and the change
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in quantity is 4x1 = �� [p� Cq] q=p. So, using (B.83), the measure of waste is
given by

� �

2p
[p� Cq]2 q

= ��
2

�
p� Cq
p

�2
pq

= � 1

2�
pq:

Clearly the loss increases as [��] falls. The intuitive reason for this is that,
given � < �1, the less elastic is consumer demand, the more the monopolist can
pro�tably force price above marginal cost according to (3.11).
17. Yes. Consider a t-fold increase in the inputs of each �rm: given decreas-

ing returns to scale then output of each �rm taken in isolation would increase
by some factor t0 < t. If there were no externality, then total output would also
increase by t0. Under the conditions stated total output will increase by less
than t0.
18. Reverse the inequality in (9.24). Everything else stays the same except

that ef21 is now negative.
19. Notice that qf1 is now an argument in all �rms�production functions.
20. The �rst term on the left-hand side of (9.29) represents the price that

the polluter gets for good 1 (measured in terms of good 2); the term on the
right-hand side is the price that consumers will be paying for good 1 (in terms
of good 2): the di¤erence is the tax on the polluter, which of course is just the
marginal valuation of the externality. However, the apparently simple answer
may neglect some serious implementation problems � see chapter 13, section
13.4.
21. Notice that xh1 now enters the utility function of every household.
22. As in answer 20. Again, check section 13.4.
23. If households 1; :::h� are non satiated, and the rest are satiated with

good 1, then we have Uh1 > 0, h = 1; :::h�, and Uh1 = 0, h = h� + 1; :::; nh.
Equation (9.35) still holds (the last nh � h� terms are zero) and so too does
equation (9.36) if there is some good i in which no-one is satiated.
24. Suppose everyone has the same income y� and that the competitive

equilibrium occurs at prices p� yielding a bundle x�h for household h. Because
everyone is utility-maximising in a competitive equilibrium it must be true that:

Uh(x�h) � Uh(xh) (B.84)

for all xh such that
nX
i=1

pix
h
i � y� (B.85)

Suppose household h were instead to have x�` �the bundle of household `. Since
everyone has the same income and faces the same prices x�` must also satisfy
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(B.85), and so (B.84) implies

Uh(x�h) � Uh(x�`) (B.86)

Nobody wants anyone else�s bundle in equilibrium, and so the equilibrium allo-
cation is fair.
25. If all utilities are subjected to a uniform transformation welfare orderings

can change. To see this, supposeW =
P

h log(U
h), and let state � yield utilities

2 and 4 for Alf and Bill and let state �0 yield utilities 1 and 6 for Alf and Bill.
Now let Uh be replaced by a+ �Uh.
Welfare in state � is log(�+ 2�) + log(�+ 4�) = log(�2 + 6�� + 8�2)
Welfare in state �0 is log(�+ �) + log(�+ 6�) = log(�2 + 7�� + 6�2)
This social welfare function ranks state � over state �0 if 2� > � and �0 over

� otherwise. See also the answers to questions 1 and 6.
26. Using Roy�s identity V hi = �x�i V hy . Substituting this in (9.51) gives

the left-hand side of (9.52). Writing M for WhV
h
y gives the right-hand side of

(9.52).
27. We just need the following reinterpretation. Suppose there are n1 house-

holds of type 1 and n2 households of type 2 and that each person in a type-2
household with household income yh gets the same level of welfare as if he were
living alone with income yh=� where � > 1. Then we can say that there are
hnh persons in the economy with �equivalised�incomes yh� , such that y

h
� = yh

for type-1 persons, yh� = yh=� for type-2 persons. Mean equivalised income is

n1�y
1 + 2n2�y

2=�

n1 + 2n2

where �yj is the mean household income of type j.
28. In the case where all households are of the same type, each �probability�

is just 1=nh. In the two-type example in note 27 the �probability�is 1=[n1+2n2]
for type-1 persons and 2=[n1 + 2n2] for type-2 persons.
29. (a) Let �̂ = '(�). Then by de�nition we have

�̂(y) = ��y(y)
'�� (�(y))

'� (�(y))
+ �(y)

Clearly if ' is increasing and concave the �rst term on the right-hand side is
non-negative and the result follows. (b) Follows from the answer to note 13 on
page 193.

B.10 Strategic behaviour

1. If Alf makes his move but can hide the announcement until after Bill has
made his move then Bill�s information set is exactly the same as in Figure 10.1.
Therefore Bill�s problem is exactly the same as in the simultaneous move game.
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sb1 sb2
[West] [East]

sa1 [West] 2,1 0,0
sa2 [East] 0,0 1,2

Table B.1: �Battle of the sexes��strategic form

Figure B.30: Battle of the sexes: extensive form

2. For each agent it is clear that the payo¤ is higher if he chooses strategy 1
rather than 2, irrespective of what the other agent does.

�
sa1 ; s

b
1

�
is the solution,

yielding the payo¤ (3; 3).
3. The game form, known as �Battle of the Sexes�is depicted in Table B.1

and in Figure B.30.
4. Compare Figure B.31 with Figure 10.1. Now it is as though Bill moves

�rst but then conceals his move until Alf has made his move (see the answer to
footnote question 1). It is clear that the two versions are equivalent in economic
terms.
5. Measure payo¤s in terms of (�) the length of the sentence. Then for

the two bad guys (labelled a and b as usual) the strategic form of the game is
as in Table B.2; the dilemma is immediate �whatever you believe the other
person to be doing, given that you are held in separate locations it is always
in your interest to confess rather than stay shtumm. �Confess�exactly �ts the
de�nition of a dominant strategy on page 278. Moreover, even if this trick of
the authorities is well known and the bad guys communicate to each other the
desirability of their both staying shtumm, the moment they are separated again
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Figure B.31: Extensive form: alternative representation

sb1 sb2
[shtumm] [confess]

sa1 [shtumm] �2;�2 ;�20;�1
sa2 [confess] �1;�20 �10;�10

Table B.2: The Prisoner�s Dilemma

the dilemma re-emerges.
6. In Figure B.32 the possible outcomes are illustrated by dots; Nash equi-

libria are circled.
7. The answer is immediate from Figure 10.2. With the transformations

suggested all one is doing is transforming each of the two utility axes � the
problem remains unaltered.
8. If Alf believes that Bill will use strategy sb1 with probability �b and

strategy sb1 with probability 1� �b then, from the top row of Table 10.4, Alf�s
payo¤ from using strategy sa1 is �

b � 2 +
�
1� �b

�
� 0 = 2�b; likewise, from the

bottom row of Table 10.4, his payo¤ from using strategy sa2 is �
b �0+

�
1� �b

�
�1 =

1 � �b. So if Alf randomises between sa1 and s
a
2 with probabilities (�

a; 1� �a)
his expected payo¤ is

�a
�
2�b
�
+ [1� �a]

�
1� �b

�
= 3�b�a � �a + 1� �b

By similar reasoning, if Bill believes that Alf will use strategies sa1 and s
a
2 with

probabilities (�a; 1� �a) then his payo¤ from using strategy sb1 is �a�2+[1� �a]�
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Figure B.32: (a) Battle of sexes (b) Chicken

1 = �a+1, and his payo¤ from using strategy sb2 is �
a �3+[1� �a] �0 = 3�a. So

if Bill randomises between sb1 and s
b
2 with probabilities

�
�b; 1� �b

�
his expected

payo¤ is

�b [�a + 1] +
�
1� �b

�
[3�a]

= �b + 3�a � 2�a�b

9. We follow the same track as footnote question 8. If Alf believes that Bill
will use strategy sb1 with probability �

b and strategy sb1 with probability 1� �b
then, from the top row of Table 10.1, Alf�s payo¤ from using strategy sa1 is
�b �2+

�
1� �b

�
�0 = 2�b; likewise, from the bottom row of Table 10.1, his payo¤

from using strategy sa2 is �
b � 3 +

�
1� �b

�
� 1 = 1 + 2�b. So if Alf randomises

between sa1 and s
a
2 with probabilities (�

a; 1� �a) his expected payo¤ is

�a
�
2�b
�
+ [1� �a]

�
1 + 2�b

�
= 1 + 2�b � �a:

But this is everywhere decreasing in �a: the optimum for Alf is clearly to put
�a = 0, in other words adopt only strategy sa2 . Because the game is symmetric,
the same logic works for Bill: his optimum puts �b = 0 so that he adopts
only strategy sb2. The outcome is exactly the same as when we considered pure
strategies only.
10. Consider what happens horizontally on the diagram assuming that you

represent �rm 1: given q2 constant, increasing your own output from zero at �rst
increases pro�ts and then, as the market becomes saturated with your output
(the price is declining as your output increases) pro�ts must decrease. Now
consider what happens vertically: cutting q2 while keeping your own output
constant must always increase your pro�ts because the price will rise as q2 falls.
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11. For any given q2 � q2 the market price would be so low that �rm 1
would choose q1 = 0; the situation would become a monopoly for �rm 2.
12. If there is some q such that a monopolist setting q > q would make

negative pro�ts then it is reasonable to assume that the set of strategies is
convex and compact �the interval [0; q] would do. From (10.12) the requirement
that payo¤ functions be continuous is clearly satis�ed if the inverse demand
function is continuous (innocuous?) and cost functions are continuous in output
(not so innocuous). The requirement that payo¤ functions be quasiconcave
imposes conditions on the second derivative of the demand function and the
cost functions.
13. The isopro�t contours are given by

p (q) qf � Cf
�
qf
�
= const (B.87)

f = 1; 2. The slope of �rm 1�s isopro�t curve is therefore found from

pq (q) q
1

�
1 +

dq2

dq1

�
+ p (q)� C1q

�
q1
�
= 0 (B.88)

so that
dq2

dq1
=
C1q
�
q1
�
� p (q)

pq (q) q1
� 1 (B.89)

The slope of �rm 2�s isopro�t curve is found from

pq (q) q
2

�
1 +

dq2

dq1

�
+ p (q)

dq2

dq1
� C2q

�
q2
� dq2
dq1

= 0 (B.90)

so that
dq2

dq1
=

pq (q) q
2

C2q (q
2)� pq (q) q2 � p (q)

(B.91)

If (10.18) and (10.19) are satis�ed then (B.89) and (B.91) become

dq2

dq1
=

C1q
�
q1
�
� p (q)� pq (q) q1

pq (q) q1
=
q2

q1
(B.92)

dq2

dq1
=

q2

q1
(B.93)

The last two equations demonstrate that at the joint-pro�t maximising solution
the slopes of the two isopro�t curves (B.89) and (B.91) become identical and
equal to q2

q1 , the slope of the ray through the origin.
14. Under the stated conditions �rm 2�s pro�ts must fall if market demand

is downward-sloping. If �rm 2�s output is kept constant and �rm 1 increases its
output then the increase in total output must reduce the market price and so
reduce �rm 2�s pro�ts.
15. The possible payo¤s are shown in Figure B.33 where the labelling con-

vention is the same as for Table 10.5. The pro�t frontier has slope 45�. However,
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Figure B.33: Payo¤ possibilities

suppose that the �rms adopt the joint-pro�t maximising strategy and then agree
on some other point on the frontier as a division of the pro�t. It is clear each
�rm would still have the incentive to try to increase its own output (and thereby
its pro�t) if it thought that the other �rm�s output were �xed.
16. For a quantity q price in the market is given by

p = �0 � �q (B.94)

and so pro�ts are
� = [�0 � �q] q � cq:

Di¤erentiating this expression one has

�0 � c� 2�q = 0

which implies the monopolist�s optimal quantity as

qM =
�0 � c
2�

or, equivalently, using (B.94) optimal price is

pM =
�0 + c

2
:

17. The number � is not well de�ned in (10.21) it is just small and positive.
This means that �rm 1 could always �nd a �better�response than p2 � � just
by halving the value of �.
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s21 s22 s23 s24
p = c p = 2c p = 3c p = 4c

s11 p = c 0; 0 0; 0 0; 0 0; 0
s12 p = 2c 0; 0 1

2�2;
1
2�2 �2; 0 �2; 0

s13 p = 3c 0; 0 0;�2
1
2�3;

1
2�3 �3; 0

s14 p = 4c 0; 0 0;�2 0;�3
1
2�4;

1
2�4

Table B.3: Bertrand model with integer prices

Write �m for the total pro�t being made in the industry when the price is
set equal to mc, m = 1; :::; 4 (of course �1 = 0). Following the rules of the
Bertrand game, the situation is then as set out in Table B.3. Now that prices
have to be integers there is a well-de�ned best response: if you anticipate the
competitor will set price equal to mc you set price equal to [m� 1] c, as long as
m > 1; if you anticipate that the competitor will set price equal to c you cannot
do better than just match the price.
18. If it were known that Alf had played [LEFT] then Bill would do better to

play [right] (he would get a payo¤ of 3 rather than 2) and if it were known that
Alf had played [RIGHT] then Bill would also do better to play [right].; knowing
this it seems clear that Alf would choose to play [RIGHT] (to avoid the Alf payo¤
of 0 that would be the consequence of a [LEFT],[right] sequence).
19. The possible payo¤s are illustrated in Figure B.32 (a). If the players

move sequentially then it is clear that the outcome will be either (2,1) or (1,2)
depending on who gets to move �rst. If they have to move simultaneously there
is a coordination problem. Independent randomisation by the two agents does
not help much �it produces an outcome pair

�
2
3 ;

2
3

�
But if the two agents imple-

ment a correlated random strategy they could guarantee an expected outcome
of
�
3
2 ;

3
2

�
�see Exercise 10.4 on page 321.

20. Take the left-hand successor node of the node marked #. It belongs
in an information set along with two other nodes (the shaded area); but these
other two nodes are not successor nodes to #.
21. The Doomsday machine is an extreme version of a commitment device. If

Bill could set up such a device on Sunday then indeed the �play [left] whatever�
threat becomes credible: Alf would know that Bill cannot change his mind on
Monday night.
22. The di¤erence in utility per period is �a � ��a; this applies for every

period t + 1; t + 2; ::: . Discounting this stream back to period t + 1 using the
constant discount factor � gives the value

V :=
1

1� � [�
�a � �a]

Evaluating this in period t gives

�V =
�

1� � [�
�a � �a] :
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sb1 sb2 sb3 sb4
[left-left] [left-right] [right-left] [right-right]

sa1 [LEFT] 0; 1 0; 1 2; 0 2; 0
sa2 [RIGHT] 1;2 1;2 1; 2 1; 2

Table B.4: Strong incumbent

23. Rearranging (10.23) we get the condition for Alf that

� � �a � ��a
�a � �a :

Applying this to Bill also we see that the condition required is

� � � := max
h

�
�h � ��h

�h � �h

�
24. Yes. Check the de�nition of � in the answer to footnote 23: it is clear that

this critical value could change if utility is subjected to a nonlinear transforma-
tion (one that is not just a simple change of the origin or the slope). Changing
the critical value could a¤ect the existence of a subgame-perfect equilibrium.
25. If �rm 1�s strategy involved selecting an output of zero, then clearly �rm

2�s best response is q2M = �2 (0); likewise if �rm 1 were to believe that �rm 2�s
strategy involves producing output q2M whatever �rm 1 does then it is clear that
�rm 1�s best response to this involves choosing output 0. So the strategy pair
yielding

�
0; q2M

�
is a Nash equilibrium. But it is not credible because if �rm 1

goes �rst and produces an output q1 > 0 then �rm 2, following, would want to
reconsider its output decision. So we do not have subgame perfection.
26. With the modi�ed payo¤s the incumbent becomes relatively strong. The

game can be expressed in strategic form as in Table B.4. The strategy combi-
nation

�
sb1; s

a
2

�
�or equivalently

�
sb2; s

a
2

�
�is a subgame-perfect equilibrium.

27. (i) The window-cleaning �uid is a variable cost. (ii) The ladder is a �xed
cost, but not a sunk cost (you could sell it again, good as new). (iii) The lea�ets
are �xed costs that are also sunk costs.
28. Note �rst that bottom right-hand subgame in Figure 10.12 is irrelevant

since the same payo¤s arise whatever move Bill makes. If Bill is the incumbent
then putting �M = 2, �J = 1, �F = 0 and making similar equivalences for Alf
completes the demonstration.
29. See Figure B.34.
In the case of Bertrand competition the Nash equilibrium of the stage game

involves setting price equal to marginal cost (see page 292) which, of course,
results in zero pro�ts. This is the minimax outcome. So the minimax outcome
is implementable as a Nash equilibrium in all the subgames that follow on from
a defection from the cooperative solution.
30. Assign the numbers 0 to type [healthy] and 1 to type [ill] and let the
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Figure B.34: Payo¤s consistent with Nash equilibrium in a repeated Cournot
game

joint probability distribution have the property

F
�
�hj��h

�
=

8<: �; 0 � �h < 1:

1 �h = 1
:

31. De�ne K := �2�J +
�
1� �2

�
�M and K� := �2��J +

�
1� �2

�
��M. Then

expected payo¤ to �rm 1 is

E�1 = �0
�
�1K� +

�
1� �1

�
K
�
+
�
1� �0

�
K

=
�
�0�1 + 1� �0

�
K� + �0

�
1� �1

�
K

= K + [K� �K]�0�1

This is increasing in �1 if K� > K, i.e. if

�2��J +
�
1� �2

�
��M > �2�J +

�
1� �2

�
�M

Rearranging this gives

�2 <
��M ��M

��M ��M +�J ���J

a small further rearrangement gives (10.37). Note that the sign of  in (10.38)
follows from the assumptions made that ��M > �M and ��J < �J.
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De�ne H := �2�J +
�
1� �2

�
� and H� :=

�
1� �2

�
�. Then the expected

payo¤ to �rm 2 is

E�2 = �0�1H� + �0H � �1�0H +H � �0H
= H + [H� �H]�0�1

= �2
�
�J ��� �0�1�J

�
+�

This increases with �2 if and only if

�J � �1�0�J �� > 0

This is equivalent to

�1 <
�J ��
�0�J

If �0 is small then �1 is bound to be less than the right-hand side of this
expression and so E�2 must increase with �2. Hence the solution involves
setting only solution is �2 = 1; this implies that E�1 must be decreasing in �1
so that solution is �1 = 0.
32. Yes, if (10.40) holds. The mixed-strategy equilibrium is characterised

by �
��1; ��2

�
:=

�
1

�0

�
1� �

�J

�
;
1

1 + 

�

B.11 Information

1.Consider the demand for good 1 in the simplest case of the fee schedule, where
there is a uniform price p for good 1 and no entry fee. From (11.5) and (11.6)
below it is clear that we get

x�1 = ' (p) (B.95)

where ' is the inverse of the marginal-utility function  x. From (B.95) we can
see that @x�1=@y = 0.
2.Suppose that for some (x1; x2) and (x̂1; x̂2) we have the crossing points of

the two persons�indi¤erence curves given by

�� = x2 + �
� (x1)

= x̂2 + �
� (x̂1)

such that

�0 = x2 + �
0 (x1)

x̂2 + �
0 (x̂1) :

where � 0 > ��. Then

0 = x2 � x̂2 + �� [ (x̂1)�  (x1)]
0 = x2 � x̂2 + � 0 [ (x̂1)�  (x1)]
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This is only true if
[� 0 � ��] [ (x̂1)�  (x1)] = 0

But if  is strictly increasing this implies x̂1 = x1 which, in turn, implies
x̂2 = x2.
3. Di¤erentiating (11.17) we get

@U (x�)

@�
=  (x�1) + � [ x (x

�
1)� p (x�1; �)]

@x�1
@�

=  (x�1) > 0:

4.See Figure B.35. Note that the �rm has enough information � and the
power �to switch individuals on to the low entry-fee contract (solid line) or the
high entry-fee contract (broken line).

Figure B.35: Full-information contracts: fee schedule

5.Di¤erentiating (11.21) we get:

@Fh0
@�h

=  
�
'
� c

�h

��
+
�
�h 

�
xh1
�
� c
� @' �c=�h�

@�h

=  
�
'
� c

�h

��
> 0: (B.96)

On di¤erentiating (11.16) we �nd

@x�1 (F ; �)

@�
= � 1

 xx (x
�
1)

p

�2
> 0: (B.97)
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6.Follows from the assumption of zero income e¤ects of the good under
consideration.
7. (a) The budget constraint is

yh =

�
yh0 + w

h`h � Fh if `h > 0
yh0 otherwise

(b) Flipping Figure 11.4 and drawing in the budget constraint we have Figure
B.36. The �rm pays each worker his marginal product: wa = w and wb = w (the
slope of the budget constraint in each part of the �gure). It sets the up-front
fees F a and F b so as to keep Alf and Bill on their reservation utility levels.

Figure B.36: Full-information contracts: Labour supply for each type

8 In this case hard-working Bill has an incentive to misrepresent himself as
an a-type: see Figure B.37. Bill realises that if he were ale to use the a-type
budget constraint unrestrictedly he could achieve the topmost indi¤erence curve
depicted on the right-hand side of the �gure and supply an amount `�b of work.@
9. From (11.17) the condition that the b-type stays on the same utility level

is given by

yb+� b 
�
xb1
�
+� b x

�
xb1
�
dxb1�[p+ dp]

�
xb1 + dx

b
1

�
�F b0+dF b0 = yb +� b 

�
xb1
�
�pxb1�F b0

which, on simpli�cation, yields

dF b0
dp

=
�
p+ dp� � b x

�
xb1
�� dxb1

dp
+ xb1:

Using (11.14) we get
dF b0
dp

= xb1
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Figure B.37: Bill masquerades as an a-type in labour supply

10.Given that the a-type is mimicking an b-type�s consumption we have

dUa (x̂a)

dp
= �a x

�
xb1
� dxb1
dp

����
Ub(xb)=�b

� p dx
b
1

dp

����
Ub(xb)=�b

� xb1 +
dF b0
dp

Using (11.23) and simplifying this becomes

dUa (x̂a)

dp
=
�
�a x

�
xb1
�
� p
� dxb1
dp

����
Ub(xb)=�b

:

Using (11.14) then gives the result.
11.Conditions (11.22) and (11.29) imply that

�a (xa1)� F a � � b 
�
xb1
�
� F b:

Therefore, if �>�were to hold in (11.28), then also one would have �a (xa1)�
F a > 0.
12. Assuming that �>�holds then, given (11.22), we have

�a (xa1)� F a > �a 
�
xb1
�
� F b

> � b 
�
xb1
�
� F b
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In view of (11.31) this would imply that �a (xa1)� F a > 0.
13.In view of (11.22) and (11.32) we obtain

�a (xa1)� F a > � b 
�
xb1
�
� F b

and so, from (11.31):
�a (xa1)� F a > 0:

14.If the incentive-compatibility constraint (11.30) were binding as well as
(11.32) then:

�a (xa1)� F a = �a 
�
xb1
�
� F b

� b 
�
xb1
�
� F b = � b (xa1)� F a

which implies

 (xa1) =  
�
xb1
�

xa1 = xb1

15.�: the �price�of the participation constraint is exactly one unit of good 2
because the utility function is linear in good 2. �: the �price�of the incentive-
compatibility constraint increases the more of the potentially masquerading a-
types there are.
16.� < 1 implies

ch
1� �

1��
�
�a

�b
� 1
�i
� b

>
c

�a

Since  x (�) is monotonic decreasing (11.34) and (11.35) imply that ~xb1 < ~xa1 ; for
this to make sense requires

��a < � b:

The result ~xa1 = x�a1 follows from the fact that preferences are such that good 1
has a zero income e¤ect: since there is no distortion for a a-type in either the
full-information or the second-best solution, MRSa21 is the same in both cases
which means, for this type of preferences, that the quantity of good 1 consumed
must be the same. The result ~xb1 < x�b1 follows from the fact that for both the
full-information and second-best solutions a low-valuation b-type is kept exactly
on his reservation indi¤erence curve: given that MRSb21 is higher in the second-
best case the quantity of good 1 consumed must be lower because of the pure
substitution e¤ect involved.
17.See Figure B.38; part (1) illustrates the fee schedule and part (2) the

attainable set that confronts a consumer of either type. Note that there are two
levels of quantity discount giving two �steps� in the fee schedule and that the
price (slope of boundary of attainable set) is not unique �you could increase
the price and o¤set it with larger quantity discounts, for example.
18. By analogy to Figure 11.7. the optimal contract must resemble that in

Figure B.39. Combining the a- type and b- type schedules the analogy to the
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Figure B.38: Second best contract: quantity discount

right-hand side of Figure 11.8 is that shown in Figure B.40. There is a kink at
point `; to the right of the �rm pays exactly the worker�s marginal product w;
but for ` < ` the �rm pays less than the marginal product. This shape of the
attainable set is the same as for the overtime example in footnote question 3 of
chapter 5 (see Figure B.11 on page 537).
19.Suppose there are two prospects that lie both on a given b-type indi¤er-

ence curve and on a given a-type indi¤erence curve. Then we have

�bu (x�blue) +
�
1� �b

�
u (x�red) = �bu (x0blue) +

�
1� �b

�
u (x0red)

�au (x�blue) + [1� �a]u (x�red) = �au (x0blue) + [1� �a]u (x0red)

where the superscripts � and 0 refer to the two prospects. But simplifying these
two equations we get�

1� �b
�b

� 1� �
a

�a

�
u (x�red) =

�
1� �b
�b

� 1� �
a

�a

�
u (x0red)

Since �a > �b this must mean that x�red = x0red and therefore also x
�
blue = x0blue.

In other words the two prospects must be identical: the indi¤erence curves
intersect only once. If the individuals di¤ered in terms of risk aversion it is easy
to see that the single-crossing property could be violated � see the left-hand
panel of Figure 8.13.411
20.No. If you superimpose the line P0P carefully on Figure 11.12 it is clear

that it passes below the b-contour through ~P b. So none of the low-risk b-types
would accept any contract on P0P .
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Figure B.39: Second-best labour contracts

21. For a given utility level � and a given value of the talent parameter �
the equation of an indi¤erence curve in (z; y)-space is given by

y = � + C (z; �) (B.98)

Clearly the slope of the indi¤erence curve is:

dy

dz
= Cz (z; �)

Consider the indi¤erence curve for someone with a higher parameter value � 0 > �
that passes through the point (z0; y0) that satis�es (B.98). By (11.46d) this
curve has a slope that is less than the slope of the original indi¤erence curve
for every z. It therefore lies above the original curve for z < z0 and below the
original curve for z > z1. See �gure B.41.
22. Rearranging (11.50) we have

C
�
za; � b

�
� C

�
zb; � b

�
� � (�a)� �

�
� b
�

(B.99)

The right-hand side of this is strictly positive because � (�) is strictly increasing
and �a > � b. However, given (11.46b) the left-hand side is positive if and only
if za > zb.
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Figure B.40: Second-best labour contract: attainable set

23. Using (11.51) in (11.49) and (11.50) and then rearranging we get

C (za; �a)� C (0; �a) � � (�a)� �
�
� b
�

C
�
za; � b

�
� C

�
0; � b

�
� � (�a)� �

�
� b
�

Using (11.46a) then gives the result.
24. See Figure B.42. From the de�nition z0 is where the net payo¤ to a

b-type in the separating equilibrium exactly equals net payo¤ to an b-type if he
mimicked an a-type�s education.

�
�
� b
�
= � (�a)� C

�
z0; �

b
�

Also z1 is where the net payo¤ to an a-type in the separating equilibrium exactly
equals payo¤ to an a-type if he had zero education:

�
�
� b
�
= � (�a)� C (z1; �a)

25. See Figure B.43.
26. It would be in the interests of both types of worker to prevent signalling

if the amount of income that each group would get in the no-signalling case
exceeds the highest net income that it could get under signalling. Figure B.44
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Figure B.41: Indi¤erence curves for quadratic cost

illustrates this. The indi¤erence curves through the point (0; E� (�)) show situ-
ations equivalent to the no-signalling case. The type-b indi¤erence curve must
always lie above the indi¤erence curve for a type-b person under signalling.
However, given this value of E� (�), it is clear that the type-a indi¤erence curve
through (0; E� (�)) also lies above above the one passing through the point
(z0; � (�

a)), the highest type-a indi¤erence curve possible under signalling.
27. If the net income for b-type people in the pooling equilibrium is to exceed

what they could get with zero education then it must be true that

[1� �]� (�a) + ��
�
� b
�
� C

�
z�; � b

�
� �

�
� b
�
� C

�
0; � b

�
:

Using (11.46a) and rearranging this implies

C
�
z�; � b

�
� [1� �]

�
� (�a)� �

�
� b
��

Given (11.46b) the result then follows. Figure B.45 illustrates the determination
of z2.
28. Take the pooling equilibrium given by (z�; E� (�)) in Figure B.46 and

de�ne z0 to be the education level such that

E� (�)� C
�
z�; � b

�
= � (�a)� C

�
z0; � b

�
Suppose one were to observe an out-of-equilibrium choice (z; � (�a)) where z >
z0. Could this be some over-optimistic b-type trying to convince �rms that he
is an a-type? No because the b-type indi¤erence curve through (z; � (�a)) lies
below the b-type indi¤erence curve at the pooling equilibrium. The intuitive
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Figure B.42: Bounds on education (1)

criterion therefore suggests that �rms beliefs are ~� (z) = 0 so that w (z) =
� (�a). But if this were done then any a-type would migrate from the pooling
equilibrium: the a-type indi¤erence curve through (z; � (�a)) lies above the a-
type indi¤erence curve at the pooling equilibrium. So the pooling equilibrium
cannot be consistent with the intuitive criterion.
29. Consider the choice facing agent h. If � is the probability that any other

agent decides to participate then the payo¤ to h is

�� ch with probability [�]N�1

�ch otherwise

so that the expected payo¤ is
c� ch (B.100)

where c := � [�]
N�1. In view of the assumed distribution of cost in the popu-

lation, the probability that (B.100) is positive is c; but this probability is the
probability that agent h actually participates. So we must have

� = � [�]
N�1

which, if � < 1, can only be satis�ed if � = 0.
30. From (11.67) and (11.68):

� =
� (z)� �� (z)uax (w; z)

� (z)uax (w; z)� � (z)uax (w; z)
(B.101)
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Figure B.43: A simple set of beliefs

� =
[1� � (z)]� � [1� � (z)]uax (w; z)

[1� � (z)]uax (w; z)� [1� � (z)]uax (w; z)
: (B.102)

Using the assumption that the marginal of consumption is independent of z we
get uax (w; z) = uax (w; z) and so (B.101) and (B.102) become

� =

�(z)
uax(w;z)

� �� (z)
� (z)� � (z) (B.103)

� =
� [1� � (z)]� 1��(z)

uax(w;z)

� (z)� � (z) (B.104)

Rearranging (B.103) we immediately get (11.70). Combining (B.103) and (B.104)
to eliminate � we get

� (z)

uax (w; z)
� �� (z) = � [1� � (z)]� 1� � (z)

uax (w; z)

from which a simple rearrangement gives (11.69).
31. Eliminating � between (11.69) and (11.70) we get

�

�
1� � (z)

� (z)

�
+
1� � (z)
uax (w; z)

=
1� � (z)
uax (w; z)

:
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Figure B.44: No-signalling dominates

Rearranging this gives

� =

241� � (z)
1� �(z)

�(z)

35� 1

uax (w; z)
� 1

uax (w; z)

�
(B.105)

We know that, by nature of a constrained optimisation problem, the Lagrange
multiplier must satisfy � � 0. So, could (B.105) be zero? By assumption
� (z) < � (z) and for nontrivial cases � (z) < 1. So the only way that (B.105)
could be zero is if uax (w; z) = uax (w; z) which in turn implies w = w. But
this means that the incentive-compatibility constraint would be violated: by
paying only the same wage irrespective of output � irrespective of anything �
Bill cannot persuade Alf to supply high e¤ort.
32. By de�nition we have

E�z =

qZ
q

fz(q; z)

f(q; z)
f(q; z)dq

=

qZ
q

fz(q; z)dq =
@

@z

0B@ qZ
q

f(q; z)dq

1CA
From the standard property of the density function (A.62) we know that the ex-
pression in the parentheses is identically 1 so that di¤erentiating it with respect
to z (or anything else) produces the answer zero.
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Figure B.45: Bounds on education (2)

33. Write (11.85) out in full as

max
fw(�);zg

Z q

q

ub (q � w(q)) f(q; z)dq (B.106)

+ �

"Z q

q

ua (w(q); z) f(q; z)dq � �a
#

+ �

"Z q

q

[ua (w(q); z)�z + u
a
z (w(q); z)] f(q; z)dq

#
We can treat each integral as though it were a summation over all the values
of q and then di¤erentiate (B.106) with respect to any speci�c value of w(q) as
though it were a separate variable. This gives (11.86). Di¤erentiating (11.85)
with respect to z we use (11.84) to note that the term involving � [�] is zero.
34. If Alf is risk-neutral then the marginal utility uax is nonstochastic, in-

dependent of q. Multiply (11.86) by f (q) and integrate from q to q (i.e. take
expectations); using (11.82) we get:

�Eubx (q � w(q)) + �uax = 0: (B.107)

If Bill is risk averse then (B.107) can only be true if w(�) has been designed
such that ub (q � w(q)) is independent of q. Using this in (11.87), the �rst term
becomes ubE�z which is zero, in view of (11.82). Hence � = 0 and, from (B.107),

ubx
uax
= �:
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Figure B.46: Equilibrium under the intuitive criterion

which is the condition obtained under full information.

B.12 Design

1. (a) In Figure B.47 the lightly-shaded set is the original B (��; v). (b) Clearly
B (��; ~v) � B (��; v) for condition (12.4) to be satis�ed. (c) The chosen alloca-
tion remains at point �� when preferences switch from v to ~v.
2. Let �; �̂ 2 �. vh(�̂) > vh(�). Let v̂h (�) 6= vh (�) and v̂k (�) = vk (�), k 6= h.

We know that
�̂ = �

�
v̂1; v̂2; :::; v̂h; :::

�
Now let preferences change from [v̂] to [v]. For all k 6= h it is immediate that �̂
maintains its position (tastes have remained unchanged for those individuals).
But for h we are given vh(�̂) > vh(�). So monotonicity requires

�̂ = �
�
v1; v2; :::; vh; :::

�
contrary to the de�nition of a manipulable social choice function.
3. It will have no e¤ect at all. The reason is that � is concerned only

with market outcomes and because individual and household demands depend
on only on ordinal preferences. Transforming vh as suggested has no e¤ect on
anyone�s preference map.
4. The curve through [xa] and [R] is Alf�s reservation indi¤erence curve;

that through
�
xb
�
and [R] is Bill�s reservation indi¤erence curve.
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Figure B.47: Implications of monotonicity

5. Figure B.48 is adapted from Figure 12.1. The straight lines through [R]
indicate alternative prices that Alf (as a monopolist) might try out on Bill (a
price taker). The locus of tangency points with the Bill indi¤erence curves traces
out Bill�s o¤er curve. The o¤er curve is then treated by Alf as an attainable
set A. Alf maximises pro�ts with a trade that induces consumption at point
[x̂] �note the representative Alf indi¤erence curve that has been drawn in as a
broken curve. Prices charged are given by p̂1=p̂2 �the slope of the line joining
[R] and [x̂]; this slope is of course equal to Bill�s MRS, but is di¤erent from
Alf�s MRS (the slope of the dotted line through [x̂]).
6. 2,3,4,1.
7. Using the Cartesian product notation we have S = [0; 1]� [0; 1]� :::� [0; 1]| {z }

nh

.

8. �Tell the truth just as long as everyone else is telling the truth.�
9. (a) By inspection it is clear that sa2 is a best response to s

b
2 and that

sb2 is a best response to s
a
2 . (b) All four strategy combinations are now Nash

equilibria. (c) The resulting payo¤s are now given by Table B.5.
All N2 strategy combinations are now Nash equilibria: once focused on a

particular combination of lies there is no incentive for anyone to switch to truth-
telling. Clearly this holds for N arbitrarily large.
10. The private-values argument is provided by the example in the text.

However, if the painting is easily resold then there may be an important common-
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Figure B.48: Monopolistic trading

value element: the work of an as-yet-unknown artist may be like the crock of
gold example.
11. It follows from the envelope theorem �Theorem A.13.
12. From (12.9) and (12.12) we get

� (pa�) = F (�a) (B.108)

so that, from (12.11),
@� (�a)

@�a
= F (�a)

Integrating from 0 (the lowest possible value of �) we get (12.13).

sb1 sb2 ::: sbN
sa1 3; 3 0; 0 ::: 0; 0
sa2 0; 0 0; 0 ::: 0; 0
::: ::: ::: ::: :::
saN 0; 0 0; 0 ::: 0; 0

Table B.5: Lots of uninteresting Nash equilibria
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13. By de�nition of the optimum (12.10) immediately gives (12.14) on sub-
stituting in the optimal bid function �. Rearrange this to give

� (�a) = �a � � (�a)

� (pa�)

Substituting in from (12.13) and using the formula for � (pa�) from footnote
question 12 gives the result.
14. The probability in (12.9) is now

� (pa) = [F (' (pa))]
N�1 (B.109)

and (12.13) becomes

� (�a) =

Z �a

0

[F (�)]
N�1

d� (B.110)

15. (a) If p0 > � you lose the auction, but then you would have lost it anyway,
so you are no better or worse o¤ than if you had bid truthfully. Otherwise, if
� > p � p0 you win the auction and pay p0 �but that would have happened if
you had bid truthfully. But if � � p0 > p your underbidding will cause you to
lose the auction and forgo a potential gain of � � p0. (b) Suppose the highest
bid other than yours is p0. If p < p0 then you do not win the auction and you
are no better or worse o¤ than bidding truthfully. Otherwise, if p0 � � you pay
no more more than your true valuation, but you do not improve your chance of
winning �again no better or worse o¤ than for a truthful bid; but if p0 > � you
win the object but you are forced to pay a price that is greater than your true
valuation �you make a loss.
Conclusion: in this second-price sealed-bid auction bidding p = � is a weakly

dominant strategy.
16. In the case cited one is dealing with a common-value problem: the

private-values assumption used in the argument is not satis�ed. Each potential
bidder may have private information about the common value of the mineral
rights that are being auctioned. Under an English open-bid auction each per-
son�s bid may be used as a signal to the other bidders: so a rational agent may
update the information that is used in his bidding strategy. However, if the
auction involved sealed bids this updating is impossible.
17. (i) Under the rules of the second-price auction the object goes to bidder

1 who bid 1, but the price P is zero. If all other bidders are believed to be
bidding zero bidder 1 cannot improve on the outcome by changing his bid �if
he changes it by a small amount he still wins and gets exactly the same net
bene�t �1 � P = �1; if he drops the bid to zero he may lose the object and get
zero net bene�t. Now consider bidder 2: if he believes that bidder 1 is bidding
1 and bidders 3,4,... are bidding zero, he cannot improve on the outcome by
raising his bid a little � he still will not get the object and his net bene�t
remains at zero �and if he raises his bid to 1 he may get the object but his net
bene�t is still at most zero. The same applies to every other bidder. So it is an
equilibrium. (ii) By this argument it is clear that collusion in such arrangement
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would be self enforcing. (iii) To make the collusive arrangement work it would
be necessary to have a means of communication in advance and, possibly, side
payments from bidder 1 to make the other bidders interested in the collusion.
18. Yes if �

�
� b
�
is high.

19. Because the problem is symmetric and because truth telling is a weakly
dominant strategy (12.16) follows, with the function � (�) common to both
agents. Alf wins the auction if his bid is higher than Bill�s. In equilibrium
both are bidding their true valuations so the probability that Alf wins is the
same as the probability that the realisation of Bill�s taste parameter is less than
the realised value of Alf�s �a, i.e. F (�a) �see B.108 in the answer to footnote
question 12. If Alf wins the auction then he pays the price bid by Bill, which in
equilibrium is Bill�s true value. The expectation of this price is

1

F (�a)

Z �a

0

�f (�) d� (B.111)

where f (�) is the density function dF (�)
d� . On integrating this expression by

parts we get (12.17).
20. (a) The probability that Bill has � b = 0 (in which case Alf certainly

wins) is 0:5; otherwise if � b = 1 Alf and Bill would have an equal chance of
winning at price P ; so the combined probability of Alf winning is 0:75.
(b) Suppose �a = 1. If Alf accepts the price 0:5; there is probability 0:75

that he gets the good in which case he gets net bene�t �a � P = 1� 0:5 = 0:5;
otherwise net bene�t would be 0. If Alf does not accept then there is the
probability 0:25 that he gets the good anyway (if � b = 0 and the good is awarded
by lottery to Alf).Therefore Alf�s expected net bene�t from accepting price
P = 0:5 is 0:75 � 0:5 = 0:375 and the expected net bene�t of refusing is 0:25. so
he accepts. Letting � (�) be the equilibrium net bene�t for type � and �� (�)
the probability that a type-� person gets the good we have

� (0) = 0; �� (0) = 0:25
� (1) = 0:375; �� (1) = 0:75

(c) By the same argument for some other price P a person with �h = 1
(h = a; b) would accept paying price P for the object as long as

0:75 � [1� P ] > 0:25

i.e. as long as P < 2
3 . In equilibrium at price P we would have:

� (0) = 0; �� (0) = 0:25
� (1) = 0:75 [1� P ] �� (1) = 0:75

(d) There is evidently a multiplicity of equilibria corresponding to di¤erent
prices set by the auctioneer. The value to the seller is obviously strictly increas-
ing in P . So the seller would not be indi¤erent between the outcomes to these
alternative auctions�see Klemperer (2004)
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Figure B.49: A �xed-size project (2)

21. See Figure B.49

22. Using the de�nition on page 89. We have

vh (��) = �h (0) + yh (B.112)

vh
�
�0
�
= �h (1) + yh � zh (B.113)

where yh is the income of agent h. Therefore

CVh = �h [ (1)�  (0)]� zh

= �h � zh:

where the last step follows from the normalisation of  (�).
24. Suppose the project goes ahead but agent h is pivotal. This means that

�h < 0: collectively the agents other than h are reportedly su¤ering a negative
impact from the project. The condition

nhX
k=1

�
pk � zk

�
> 0

can be written as

�h + ph � zh > 0

ph > zh ��h
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So if condition (12.26) is satis�ed, the pivotal agent h can pay his own contri-
bution (zh) and the compensation to everyone else (��h) and still make a net
gain (�h > zh ��h).
Suppose now the project does not go ahead but agent h is pivotal. This

means that �h > 0: collectively the agents other than h are reportedly pre-
vented from gaining a positive impact from the project. The condition

nhX
k=1

�
pk � zk

�
< 0

can be written as
zh � ph > �h (B.114)

If condition (12.26) is satis�ed, then the left-hand side of (B.114) is the true loss
(as measured by the compensating variation) to agent h if the project were to
go ahead; condition (B.114) means that this is strictly greater than the required
compensation to the other agents (�h > 0) under the payment rule.
23 Take the case � = 1, which means

nhX
k=1

pk � z:

If h is pivotal then
nhX
k=1
k 6=h

�
pk � zk

�
< 0

So the penalty payment is ��h > 0 in this case. If � = 0, which means

nhX
k=1

pk < z;

then, if h is pivotal, we have

nhX
k=1
k 6=h

�
pk � zk

�
� 0

and the penalty payment is �h � 0. Adding up over the h means that if there
is a pivotal agent total payments may exceed z. But this excess cannot be
returned to the agents themselves because this would a¤ect behaviour.
25There is nothing that agent h can do about pk; k 6= h, so it would just be

treated as a constant in h�s decision process. See the last part of section C.9.2
of Appendix C.
26. If, in the original situation, the decision on the project would have been

negative (��), then clearly the critical question is by how much Alf�s willingness
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to pay has increased: if it is large enough to tip the balance of the sum-of-
reported-CV rule then we switch to �0. However, if we would already have been
at �0 then nothing would change �not even the apportionment of the costs!
27.

dy

dq
= �1

�
 z

� q
�

�
:

28. For any individual h that is employed as Agent the Lagrangean is

p�hzh � yh + �h
�
yh +  

�
zh
�
� �h

�
(B.115)

where �h is the Lagrange multiplier for the participation constraint (12.36) in
the case of agent h. Di¤erentiating (B.115) with respect to zh, yh and �h

respectively, and setting them to zero we get:

p�h + �h z
�
z�h
�
= 0 (B.116)

�1 + ��h = 0 (B.117)

y�h +  
�
z�h
�
� �h = 0 (B.118)

from which (12.37) and (12.38) follow.
29. The two types of agent di¤er only in their productivity. Therefore when

e¤ort is zero (so that output is zero) they must enjoy the same level of utility
for any given level of income.
30. In Figure 12.8 the reservation utility levels are given by

ya +  

�
qa

�a

�
= �a

yb +  

�
qb

� b

�
= �b

If  (0) = 0 and both a and b indi¤erence curves pass through the same point
(0; y0) then �a = �b. The four constraints (two participation constraints and
two incentive-compatibility constraints are then:

ya +  

�
qa

�a

�
� �a (B.119)

yb +  

�
qb

� b

�
� �b (B.120)

ya +  

�
qa

�a

�
� yb +  

�
qb

�a

�
(B.121)

yb +  

�
qb

� b

�
� ya +  

�
qa

� b

�
(B.122)

Given �a > � b it is clear that if �>�holds in (B.120) then (B.121) implies
that �>�holds in (B.119). This cannot hold if the �rm is pro�t-maximising �
it would wish to reduce ya and/or yb in the menu of contracts on o¤er, thus
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increasing pro�t while making sure that potential Agents of either type still
participated; therefore �=� holds in (B.120). If �>�were to hold in (B.121)
then, using the fact that �a > � b, we see that �>�would hold in (B.119. Again
this cannot hold if the �rm is pro�t-maximising � it could reduce ya without
violating the participation or incentive-compatibility constraints for the a types.
So (B.121) must hold with equality. In view of this and the fact that �a > � b

it must be true that �>� holds in (B.119). Finally notice that by virtue of
the single-crossing condition (page 411) it must be the case that if �=�holds
in (B.121) it cannot be the case that �=�holds in (B.122). This last point is
illustrated in Figure B.50 below where (B.121) is depicted by the heavy broken
a-type curve passing through

�
~qb; ~yb

�
and (~qa; ~ya); on this curve the a-type gets

just as much utility as if he were to masquerade as a b-type and claim the
contract

�
~qb; ~yb

�
; but if we drew a a-type indi¤erence curve through (~qa; ~ya) it

is clear that because of the single-crossing condition condition this curve must
lie strictly below the b-type indi¤erence curve passing through

�
~qb; ~yb

�
; in other

words we have automatically �>�in (B.122).
The upshot is that constraints (B.119) and .(B.122) are never binding (con-

dition �>�holds) and so can be dropped from the optimisation problem.
31. See Figure B.50 below. Because of the incentive-compatibility constraint

the solution for the a-types must lie on the a-indi¤erence curve that passes
through the (q; y) combination for the b-types: but it cannot lie to the left,
because then the b-types would prefer the a-contract, in contradiction to the
arguments in the answer to footnote question 30; so it must lie to the right.
32. Di¤erentiating (12.40) with respect to qa; qb; ya; yb respectively the FOC

are

�p+
�

�a
 z

�
qa

�a

�
= 0

[1� �] p+ �

� b
 z

�
qb

� b

�
� �

�a
 z

�
qb

�a

�
= 0

�� + � = 0

� [1� �] + �� � = 0

which imply the following values for the Lagrange multipliers:

� = �

� = 1

Substituting these values in the FOC we get

p+
1

�a
 z

�
qa

�a

�
= 0

[1� �] p+ [1� �] 1
� b
 z

�
qb

� b

�
+ �

�
1

� b
 z

�
qb

� b

�
� 1

�a
 z

�
qb

�a

��
= 0

which, rearranged, gives (12.41), (12.42).
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33. De�ne x := �z as �leisure�and a function v such that

vx (x) :=  (z)

�vx (�z) =  z (z) < 0

vxx (�z) =  zz (z) < 0

If 0 < � < 1 then ��z > �z and so

vx (��z) < vx (�z)
�vx (��z) < vx (�z)

therefore
� z (�z) >  z (z)

34. See Figure B.50. Second best output and income values are given by ~qa,
~qb, ~ya, ~yb. Note that ~ya > y�a and that the able types are on an indi¤erence
curve that lies strictly above �a: this curve passes through the b-type�s second
best contract

�
~qb; ~yb

�
but is below the indi¤erence curve that passes through

the b-type�s �rst-best contract
�
q�b; y�b

�
.

35. Consider �rst the e¤ects of p. In the full-information equilibrium it is
clear from (12.37) or Figure 12.8 that the increase in product price will change
the contract so that an Agent of any type is induced to provide higher output for
an increased amount of income (the slope of the tangent increases); however the
Agent will be kept on the same indi¤erence curve �none of the price increase
is �passed on�in the form of a utility increase. The conclusion also apply to an
a-type in the second-best equilibrium �see equation (12.41) and Figure B.50.
The conclusion on utility also applies to a b-type in the second-best equilibrium.
However, on di¤erentiating (12.42) we have

dqb

dp
=

1� �
�
�
1
�a

�2
 zz

�
qb

�a

�
�
�
1
�b

�2
 zz

�
qb

�b

� (B.123)

the denominator of which is of ambiguous sign. We know that  zz (�) is negative;
if  zz (�) is constant or decreasing then the right-hand side of (B.123) is positive;
clearly, in order to maintain the b-type on the same utility level, yb has to move
in the same direction as qb. It is also clear from Figure B.50 that because of
the incentive-compatibility constraint (captured by the a-indi¤erence curve that
passes through the b-contract) the utility level achieved by an a-type rises or
falls according as yb and qb rise or fall.
Now consider the e¤ect of changing �. This is irrelevant to the full-information

equilibrium and, in the second-best equilibrium, it leaves una¤ected the output
of an a-type and the utility level of a b-type. Now consider the e¤ect on a
b-type�s output. Di¤erentiating (12.42), using (12.41) and rearranging we get

dqb

d�
=

 z

�
qa

�a

�
�  z

�
qb

�a

�
� 1
�a zz

�
qb

�a

�
� �a

�
1
�b

�2
 zz

�
qb

�b

� (B.124)
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Figure B.50: Two types of Agent: Second-best solution

the numerator is negative because  z is a decreasing function; the sign of the

denominator is determined in exactly the same way as for (B.123); so dqb

d� will
be negative if if  zz (�) is constant or decreasing. The conclusions on a-type
utility levels then follow as before.

36. Given �a > � b > � c. The participation constraints are as in (12.36). The
incentive compatibility constraint (12.39) still applies as does its counterpart
that stops b-types masquerading as c-types. Drawing together these points we
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have:

ya +  

�
qa

�a

�
> �a (B.125)

yb +  

�
qb

� b

�
> �b (B.126)

yc +  

�
qc

� c

�
= �c (B.127)

ya +  

�
qa

�a

�
= yb +  

�
qb

�a

�
(B.128)

yb +  

�
qb

� b

�
= yc +  

�
qc

� b

�
(B.129)

By the reasoning in the answer to footnote question 30 above participation con-
straints (B.125) and (B.126) must be slack and participation constraint (B.127)
must bind: furthermore, it is clear from Figure B.51 that if (B.128) and (B.129)
hold, then an a-type has no incentive to masquerade as a c-type.
If the proportions of each type are �a, �b, �c then the constraints (B.127)�

(B.129) yield the Lagrangean:

�a [pqa � ya] + �b
�
pqb � yb

�
+ �c [pqc � yc]

+�

�
yc +  

�
qc

� c

�
� �c

�
+�b

�
yb +  

�
qb

� b

�
� yc �  

�
qc

� b

��
+�a

�
ya +  

�
qa

�a

�
� yb �  

�
qb

�a

��
where �a and �b are the Lagrange multipliers for constraints (B.128) and (B.129)
respectively. Di¤erentiating the Lagrangean with respect to qa and with respect
to ya we get, for an interior solution:

�ap+
�a

�a
 z

�
qa

�a

�
= 0

��a + �a = 0

and so, once again we have (12.41): the no-distortion-at-the-top principle holds.
Evaluating the rest of the conditions for the second-best equilibrium it is easy
to see that

MRSb < MRTb

MRSc < MRTc:

�the solution is shown in Figure B.51.
37. � was a function of income whereas  is a function of utility.
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Figure B.51: Three types of Agent: Second-best solution

38. The Lagrangean is

max
fqa;qb;ya;ybg

�
�
ya +  

�
qa

�a

��
+ [1� �] 

�
yb +  

�
qb

�b

��
+�
�
� [qa � ya] + [1� �]

�
qb � yb

�
�K

�
+�a

h
ya +  

�
qa

�a

�
� �a

i
+�b

h
yb +  

�
qb

�b

�
� �b

i (B.130)
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The FOCs are

�� (�
a)

�
1

�a
 z

�
qa

�a

�
+ �a

�
+ �� = 0 (B.131)

[1� �] �
�
�b
� � 1
� b
 z

�
qb

� b

�
+ �b

�
+ � [1� �] = 0 (B.132)

�� (�
a)� �� + �a = 0 (B.133)

[1� �] �
�
�b
�
� � [1� �] + �b = 0 (B.134)

Substituting from (B.133) and (B.134) into (B.131) and (B.132) immediately
gives the result.
39. The FOC for an interior solution to (12.47) are

�� (�
a)
1

�a
 z

�
qa

�a

�
+ �� +

�

�a
 z

�
qa

�a

�
= 0(B.135)

�
[1� �] �

�
�b
�
+ �
� 1
� b
 z

�
qb

� b

�
+ � [1� �]� �

�a
 z

�
qb

�a

�
= 0(B.136)

�� (�
a)� �� + � = 0(B.137)

[1� �] �
�
�b
�
� � [1� �] + �� � = 0(B.138)

� [qa � ya] + [1� �]
�
qb � yb

�
�K = 0(B.139)

Substituting from (B.137) and (B.138) into (B.135) and (B.136) gives the result.
40. We can use a simple proof by contradiction. From inspection of (12.49)

it is clear that �
�
�b
�
> 0, � � 0 and so if the incentive-compatibility constraint

is binding (such that � > 0) the right-hand side of (12.49) must be less than � b

if

� b +
� b

�a
 z

�
qb

�a

�
is positive. Suppose the opposite, that the above expression is � 0; then

 z

�
qb

� b

�
<  z

�
qb

�a

�
� ��a

which implies

� z
�
qb

� b

�
> �a > � b

�a contradiction.
41. If

� (�
a) = �

�
�b
�
= 1



B.12. DESIGN 597

then the FOCs (B.135)-(B.138) become

1

�a
 z

�
qa

�a

�
[� + �] + �� = 0 (B.140)

[[1� �] + �] 1
� b
 z

�
qb

� b

�
+ � [1� �]� �

�a
 z

�
qb

�a

�
= 0 (B.141)

� � �� + � = 0 (B.142)

[1� �]� � [1� �] + �� � = 0 (B.143)

from which we get

� = [�� 1]�
� = �� 1
� = ��

and so

� z
�
qb

� b

�
= � b � [�� 1]�

�� �

�
� b +

� b

�a
 z

�
qb

�a

��
However, comparison with Exercise 12.8 (page 429) reveals that � = 1: in this
case the government is indi¤erent from whom it raises the taxes and an increase
in the external revenue requirement K would have a dollar-for-dollar impact on
the objective function; we get the full-information solution.
42. Expression (12.51) can be written

y
�
� j
�
+  

 
q
�
� j
�

� j

!
� y

�
� j�1

�
+  

 
q
�
� j�1

�
� j

!
: (B.144)

Letting � := � j and d� := � j � � j�1 we have

y (�) +  

�
q (�)

�

�
� y (� � d�) +  

�
q (� � d�)

�

�
: (B.145)

which, for small d� , gives

y (�) +  

�
q (�)

�

�
� y (�)� y0 (�) d� +  

�
q (�)

�

�
�  z

�
q (�)

�

�
d� (B.146)

which, on rearranging and dividing by d� (a positive number) yields

y0 (�) +  z

�
q (�)

�

�
� 0 (B.147)

43. We know that in the two-type and the N -type case (q (�) ; y (�)) must
increase with � . The same reasoning applies here. This implies that in the
optimal design it is impossible to have a situation where q is increasing at the



598 APPENDIX B. ANSWERS TO FOOTNOTE QUESTIONS

same time as y is decreasing. From the de�nition of personal tax in (12.58) we
have

dT (�) = dq (�)� dy (�) : (B.148)
dT

dq
= 1� dy

dq
(B.149)

Since dy
dq is positive,

dT
dq must be less than 1.

B.13 Government and individual

1. If the overall nonconvexity arises from positive externalities then a subsidy
to each �rm�s output (proportional to the size of the externality) may be ap-
propriate: see footnote question 20 in chapter 9 and section 13.4 below.
2. Technically e¢ cient points consist of the point x� and the �north-east�

boundary of the smooth curve (except for the point just below x�).
3. Figure B.52 shows the CV as a measure of the utility gain from introducing

the infrastructure project, using units of good 2 as a measure of value (b) If
consumers di¤er in their preferences then there may be winners and losers in the
move from x� tox0. In this case how one treats (or fails to treat) distributional
issues is crucial (see Exercise 9.9): just adding the CVs up may be problematic.
Getting the information may also be problematic because in this situation people
may misrepresent their CV �see the argument in the following section 13.3.4.
4. The line through x0 is one of a family of parallel isopro�t lines. The

direction of increasing pro�t is �North-East��see Figure 2.18 on page 42. The
highest one of the family isopro�t lines that you can reach over the attainable
set is at the peak of the spike, x�.
5. The main part of the diagram is contained by a quarter-circle from (1; 0)

to (0; 1). The spike is of height 1 + k: the �xed cost of producing good 1 is k.
Pro�ts are as in Figure B.53: note the graph consists of the isolated point at
1 + k on the vertical axis and the curve. There would be a global maximum at
x1 = 0 if k >

p
2� 1 ' 0:414.

6. A simple monopoly will set price above marginal cost and thus marginal
willingness to pay will be above marginal cost. This will incur a welfare loss as
analysed on page 245.
7. Goods or services where resale can be prevented by virtue of their physical

characteristics or legal constraint �see footnote question 11 in chapter 3.
8. It may be higher or lower depending on the position of the demand curve

i.e. the shape of the indi¤erence curves �compare cases 3a and 3c in Exercise
3.4
9 The �rm is assured of the pro�ts obtainable at x�, the status quo. The

isopro�t lines depicted in �gures 13.3 and 13.4 are of the form

p1x1 + p2x2 = const

Clearly the di¤erence in the constant term between the isopro�t-line through
x� and that through x0 is exactly F0. So the assurance of an entry fee F0 is just
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Figure B.52: Compensating variation measure of welfare

su¢ cient to assure the �rm of the same level of pro�t at x0 as it would have
received at x�.

10. This proposal is e¤ectively the �potential superiority�criterion again. It
takes no account of distributional issues and it assumes that the possible losses
of one agent could just be o¤set by the gains to another. See page 255 and
Exercise 9.9 on page 269.

11. See Figure B.54.If the high-e¢ ciency �rm were correctly identi�ed it
would produce at x0. However, it knows that a low-e¢ ciency type would produce
an amount x001 ; if it mimics this behaviour it will be producing at point x

000.
Given the subsidy o¤ered to a low-cost �rm it could therefore make the increase
in pro�ts shown by �� (To see this, just shift the payment schedule for a
low-e¢ ciency �rm up from x00 to x000).

12. No, because nothing is being said about ownership and legal liability.
It is certainly consistent with that principle, but it is also consistent with, for
example, a subsidy on good 2.

13. In principle, why not? If deodorant is commodity 1 then it may be
common knowledge that eh21 > 0 for all consumers. Then (13.19) requires that
there be a negative corrective tax �i.e. a subsidy �on good 1. But see footnote
question 14.

14. Check the de�nition of eh21 in equation (9.33). For some speci�c com-
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Figure B.53: Pro�ts in the nonconvexity example

modity 1 it will be the case that

@U `

@xh1
> 0 (B.150)

for some pairs of agents h and `, while for others the reverse is true. Agent `
may like h�s perfume but strongly dislike the awful stu¤ used by h0. Worse still
agent ` may appreciate all types of perfume worn by everyone else, but agent `0

could be completely perfume-intolerant. The sign of (B.150) could be di¢ cult
to verify on a case-by-case basis. Knowing this, even if it were true that all
in the population were perfume appreciators �so (B.150) is true, eh21 > 0 and
there is a case for a subsidy �individuals might even to try to pretend that they
were actually being harmed by the perfume. Misrepresenting their preferences
might be seen as a way to avoid having to the tax required to fund the subsidy
on the socially bene�cial good 1.
15. Although section 9.3.4 deals with public goods (those that are both

nonrival and nonexcludable) condition (9.36) is valid irrespective of whether or
not the good is excludable. Combining this with (9.13) and (9.14) gives (13.20).
16. Hours of TV broadcasting service.
17. From (13.22) we must have

x1 = � (C(x1; N); N) (B.151)

Note that it is assumed that �z > 0 and �zz < 0. Therefore, di¤erentiating
(B.151) twice with respect to x1 we get

1 = �z (C(x1; N); N)C1(x1; N)

0 = �zz (C(x1; N); N) [C1(x1; N)]
2
+ �z (C(x1; N); N)C1(x1; N)
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Figure B.54: High-e¢ ciency type masquerades as low-e¢ ciency type

From this we have

C1(x1; N) =
1

�z (C(x1; N); N)
> 0

C11(x1; N) = ��zz (C(x1; N); N)
�z (C(x1; N); N)

[C1(x1; N)]
2
> 0

It is also assumed that, for any N :

� (C(x1; N + 1); N + 1) � � (C(x1; N + 1); N)

But, from (B.151) we get

x1 = � (C(x1; N + 1); N + 1) (B.152)

and so

� (C(x1; N + 1); N)�� (C(x1; N); N) = � [� (C(x1; N + 1); N + 1)� � (C(x1; N + 1); N)] � 0
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so that �C(x1; N) must be nondecreasing in N .
18. Use the terminology of note 17. If good 1 is completely nonrival then it

costs no more to serve N+1 people than it costs to serve N .; so C (x1; N + 1) =
C (x1; N). If there is congestion then an additional person raises the cost of
providing any given level of service x1: C (x1; N + 1) > C (x1; N).
19. The heterogeneity among the membership can be handled by having

di¤erent membership fees for di¤erent agents. Let the membership fee for agent
h be zh. For each member of the club the following must hold:

Uh
�
� (z;N) ; yh � zh

�
� Uh

�
0; yh

�
(B.153)

Now consider a small variation in all the membership fees
�
z1; z2; :::; zN

�
. The

e¤ect on agent h�s utility is

Uh1
�
� (z;N) ; yh � zh

�
�z (z;N)

NX
k=1

dzk � Uh2
�
� (z;N) ; yh � zh

�
dzh = 0

(B.154)
so that

Uh1
�
� (z;N) ; yh � zh

�
�z (z;N)

NX
k=1

dzk = Uh2
�
� (z;N) ; yh � zh

�
dzh (B.155)

Rearranging and summing over h in the club we get

NX
h=1

Uh1
�
� (z;N) ; yh � zh

�
Uh2 (� (z;N) ; y

h � zh)
=

1

�z (z;N)
(B.156)

which is the counterpart of (13.28) .
20. (a) Di¤erentiating (13.25) with respect to N we have

Uh1

�
� (z;N) ; yh � z

N

�
�N (z;N) +

z

N2
Uh2

�
� (z;N) ; yh � z

N

�
= 0

Using (13.27) we then get

1

N
Uh2

�
� (z;N) ; yh � z

N

� �N (z;N)
�z (z;N)

+
z

N2
Uh2

�
� (z;N) ; yh � z

N

�
= 0

and so, on rearrangement, the condition is

��N (z;N)
�z (z;N)

=
z

N
(B.157)

(b) The term on the left of (B.157) is the marginal cost of increasing N ,
evaluated in terms of extra input z. The term on the right is just average cost.
(c) The right-hand side of (B.157) is the membership fee for the club. So

(B.157) can be interpreted as stated.
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21. The MRS for each agent is

1
p
x1

So the e¢ ciency condition is

nh
1
p
x1

= 1

x1 = [nh]
2

22. Suppose there are two persons, Alf and Bill. Alf�s utility can be written

Ua(�(za + zb); ya � za)

Given that Ua is increasing in both arguments and � is an increasing function
it is clear that Ua is everywhere increasing in zb and that the �rst argument of
Ua is increasing in za but the second argument of Ua is decreasing in za. Now
consider the slope of the indi¤erence curve in

�
za; zb

�
-space.

Ua1 (�(z); y
a�za)�z(za+zb)dzb+Ua1 (�(z); ya�za)�z(za+zb)dza�Ua2 (�(z); ya�za)dza

dzb

dza
= 1� Ua2 (�(z); y

a � za)
Ua1 (�(z); y

a � za)�z(z)

where z = za + zb. Given that U is quasiconcave the ratio Ua
2

Ua
1
is everywhere

decreasing in xa1 , increasing in x
a
2 ; therefore it is everywhere decreasing in z

a;
therefore dzb

dza is negative for low values of z
a, where

Ua2
Ua1

> �z(z)

and positive for high values of za. This establishes the U-shape.
23. In principle it could, but the requirements of the folk theorem would

be quite demanding. One needs very long-lived individuals and everyone must
be able to observe the actions (contributions in this case) of all others at each
stage of the game.
24. Equation (13.42) can be written.

Uh
�
x1; x

h
2

�
=

�
 (� (z�))� zh

z z
� + yh if z � z�

yh otherwise

Therefore if

 (� (z�)) >
zh

z

and z�
�
z1; z2:::; zh; :::

�
satisfy

P
h z

h = z� noone will have an incentive to de-
viate.
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25. Note that if z � z�

@Uh

@zh
= �z

�

z
+
zhz�

z2
< 0

and so everyone would like to argue for a lower contribution.
26. Di¤erentiating (13.46) with respect zh to we get the FOC for an interior

solution:

0 =  hx (x1)�x (z �K) +
1

z
K � zh

z2
K � 1 (B.158)

Rearranging and using (13.45) we have

 x (x1)�x (z �K) =
�
1� z

z2
K

�
(B.159)

from which the result follows.
27. Evaluating (13.34) with the utility function (13.41) we immediately get

(13.47) for the special case K = 0: note that � (0) = 1.
Using the assumption that 1 unit of private good can always be transformed

into 1 unit of the public good, from (13.44)�(13.46) expected utility is

2
p
z + zh �K +

zh

z + zh
K + yh � zh (B.160)

The FOC gives us
1p

z �K
= 1� z

z2
K (B.161)

If they are all identical then z = z, where  := nh= [nh � 1] and so the FOC
becomes

1p
z �K

= 1� K

z
(B.162)

which corresponds to (13.47) for this model. Plotting the LHS and the RHS of
this relationship in Figure B.55 it is clear that for low K we get z0 and for high
K we get z00 where z0 < z00.
28. Using the relationship K = �z the amount of the the public good is

x1 = [1� �] z

and expected utility is

 h (� ([1� �] z)) + ��hz + yh � zh

=  h (� ([1� �] z))� [1� �] zh + yh (B.163)

Maximising this with respect to zh yields the FOC

 hx (� ([1� �] z))
@� ([1� �] z)

@z
� [1� �] zh = 0
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Figure B.55: Public good provision under lottery

which leads to eactly the same �rst-order conditions as for voluntary provision
�see the answer to footnote quesiton 27 above.

29. Under the stringent conditions imposed, the answers to both parts is
yes. But it does not require too much e¤ort to think of a number of practical
di¢ culties with introducing either form of tax system. Clearly tax scheme (b)
would be regarded as inequitable by many.

30. Suppose, to the contrary, that y� maximises a concave social welfare
function where y is not perfectly equal. Let y�� be some vector, distinct from y�,
that is formed from a permutation of y�; by symmetry of Y we have y�� 2 Y ; by
symmetry of the social welfare function welfare at these two vectors is identical.
Now consider �y := �y� + [1��]y��; by convexity we have �y 2 Y ; by concavity
of the social welfare function, welfare at is at least as great as at y�. Hence,
for any distribution of income that is unequal we can always �nd an equalising
redistribution that yields an income distribution vector for which social welfare
is at least as high.

31. (a) Tax revenue is given by the lightly shaded rectangle in Figure 9.6;
total burden on consumer is this rectangle plus the dark triangle.

32. Fom Roy�s identity (4.28) we know that

Vi(p; y) = �Vy(p; y)xi (B.164)
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and, substituting (B.164) into (13.54) we get, for all i = 1; 2; :::; n

[�� �]xi + �
nX
j=1

tj
@xj
@pi

= 0; (B.165)

and � which is the Lagrange multiplier in the consumer�s primal problem (see
page 88).
33. From (13.56) and (13.55) we get

nX
j=1

tj

�
Hj
i � xi

@xj
@y

�
= �

�
�� �
�

�
xi (B.166)

which yields
nX
j=1

tjH
j
i = xi

24 nX
j=1

tj
@xj
@y

�
�
�� �
�

�35 (B.167)

Use the symmetry of the substitution e¤ect, so that Hj
i = Hi

j . Then (B.167)
can be expressed as

nX
j=1

tjH
i
j = ��xi (B.168)

where � is given by (13.58). Writing (B.168) in a slightly di¤erent form we get
the result.



Appendix C

Selected Proofs

The proofs provided in this appendix are intended to satisfy the curiosity of
the reader who needs to know how and why certain results come about. They
should be seen as a supplement to the argument of the main text, rather than
a focus of interest in their own right. Following through a proof, line by line,
is not a substitute for understanding the intuition underlying key economic
principles. Where a proof is too long or intricate to warrant setting out here I
give a pointer to the literature either in this Appendix or in the chapter where
the result appears. In some cases I show how a simpler, related result can be
established.

The proofs presented here follow the main chapter sequence although some-
times the order within the chapter is not respected where it is useful to build
one proof upon another.

C.1 The �rm

C.1.1 Marginal cost and the Lagrange multiplier

The numbering of inputs is arbitrary, so label them such that z�i > 0 for i =
1; :::;m� and z�i = 0 for i = m� + 1; :::;m, where m� � m. Then (2.22) can be
rewritten

C(w;q) =
m�X
i=1

wiz
�
i + �

�(w; q) [q � �(z�)] :

=

m�X
i=1

wiH
i(w; q) + ��(w; q) [q � �(H(w; q))] (C.1)

607
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where H :=
�
H1;H2; :::;Hm

�
is the vector of conditional demand functions.

Di¤erentiating (C.1) with respect to q we get

Cq(w;q) =
m�X
i=1

[wi � ��(w; q)�i(z�)]Hi
q(w; q)

+��q(w; q) [q � �(z�)]
+��(w; q) (C.2)

where Hi
q and ��q may be multivalued if z

� is multivalued at (w; q). Using
equations (2.13) and (2.15) the �rst two terms on the right-hand side of (C.2)
are zero and we get equation (2.23).

C.1.2 Properties of the cost function (Theorem 2.2)

We establish each of the principal properties in separate subsections.

Homogeneous of degree 1 in prices:

Let z� be a solution to the following problem: choose z to minimise

nX
i=1

wizi (C.3)

over the set
Z(q) := fz : z � 0; � (z) � qg : (C.4)

where w 2 Rm+ .
By de�nition the cost function is the minimised value of (C.3) and may be

written

C (w; q) =
nX
i=1

wiz
�
i : (C.5)

Now consider the problem of choosing z to minimise
Pn

i=1 [twi] zi over (C.4)
where t is an arbitrary positive number. The constraint set is independent of t
and so z� is a solution to the modi�ed problem as well. Therefore, applying the
general relationship (C.5) to the input-price vector tw we get:

C (tw; q) =
nX
i=1

[twi] z
�
i = t

nX
i=1

wiz
�
i = tC (w; q) : (C.6)

Shephard�s Lemma (equation 2.21):

Consider an arbitrary small variation in input prices dw for which the ith com-
ponent is dwi > 0 and all other components are zero. Let Z� (w; q) be the set
of cost-minimising input vectors for input prices w and output level q (in the
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�conventional�case this set will have just one element) and let z� 2 Z� (w; q)
and z�+dz 2 Z� (w+dw; q). By de�nition of cost minimisation

C (w+dw; q) �
mX
j=1

[wj + dwj ] z
�
j (C.7)

= C (w; q) + dwiz
�
i (C.8)

and

C (w; q) �
mX
j=1

wj
�
z�j + dz

�
j

�
=

mX
j=1

[wj + dwj ]
�
z�j + dz

�
j

�
�

mX
j=1

dwj
�
z�j + dz

�
j

�
= C (w+dw; q)� dwi [z�i + dz�i ] (C.9)

Conditions (C.8) and (C.9) imply respectively:

C (w+dw; q)� C (w; q)
dwi

� z�i (C.10)

C (w+dw; q)� C (w; q)
dwi

� z�i + dz
�
i (C.11)

Clearly as dwi ! 0 the left-hand side of (C.10) and (C.11) becomes Ci (w; q)
and the right-hand side is z�i .

Strictly increasing in at least one wi:

In view of (2.3) a positive q requires that at least one input is positive. Now, for
given q let z� be cost minimising for w0 and let z�� be cost minimising for w00,
where w0;w00 2 Rm+ . Suppose w00 > w0 with w00i > w0i for some i where z

��
i > 0.

Then

C (w00; q) =
nX
i=1

w00i z
��
i >

nX
i=1

w0iz
��
i :

Also, by cost-minimisation

C (w0; q) =
nX
i=1

w0iz
�
i �

nX
i=1

w0iz
��
i (C.12)

which implies C (w0; q) < C (w00; q). This is only possible if C is strictly in-
creasing in at least one wi.
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Nondecreasing in every wi:

Suppose w0;w00 2 Rm+ and w0 � w00. Then

C (w00; q) =
nX
i=1

w00i z
��
i �

nX
i=1

w0iz
��
i :

and using (C.12)

C (w0; q) =
mX
i=1

w0iz
�
i �

mX
i=1

w0iz
��
i

we �nd C (w0; q) � C (w00; q).

Increasing in q.

For a given vector of input prices w 2 Rm+ let z� be cost-minimising for q�

and z�� be cost-minimising for q0 where q0 > q�. By de�nition z� is on the
q�-isoquant and z�� is on the q0-isoquant. Consider a ray from the origin to
z��; by the continuity of � this must cut the q�-isoquant; call the point where
it does so ẑ. By construction it is clear that

mX
i=1

wiẑi <

mX
i=1

wiz
��
i (C.13)

Furthermore, by de�nition of the cost function

C (w; q0) =

mX
i=1

wiz
��
i (C.14)

C (w; q�) �
mX
i=1

wiẑi (C.15)

From (C.13)-(C.15) it is clear that C (w; q�) < C (w; q0).

Concavity in w:

For arbitrary w0 and w00 and for any t such that 0 � t � 1 de�ne

w := tw0 + [1� t]w00

and let z� be cost-minimising for (w; q). By de�nition of w:

C (w; q) = t
mX
i=1

w0iz
�
i + [1� t]

mX
i=1

w00i z
�
i
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By de�nition of minimum cost:

C (w0; q) �
mX
i=1

w0iz
�
i

C (w00; q) �
mX
i=1

w00i z
�
i

Therefore

tC (w0; q) + [1� t]C (w00; q) � C (tw0 + [1� t]w00; q) .

Continuity in w:

Because C is concave in w, continuity follows from Theorem A.11 in Appendix
A.

C.1.3 Firm�s demand and supply functions (Theorem 2.4)

We �rst show that, under the speci�ed conditions, z� is unique, given w and q.
Suppose �(�) is strictly concave-contoured and let there be two distinct solutions
z�; z�� to the problem: then we would have

�(
1

2
[z�+z��]) > �(z�)

by de�nition of the strictly concave-contoured property and

q = �(z�)

by de�nition of z� and q. Hence there is some ẑ lying on the q-isoquant (�(ẑ) =
q) where ẑ := 1

2 t[z
�
+ z��] where 0 < t < 1. But the outlay on inputs at ẑ

would be
mX
i=1

1

2
t[wiz

�
i + wiz

��
i ] = tC(w; q):

If w > 0 then tC(w; q) < C(w; q); but this implies that ẑ would have a lower
input cost than z� or z��: a contradiction.
Now let us write the unique z�i as a function Hi(w; q) for given w and

q; we investigate whether H i is continuous under the above conditions. Let
(w1;w2;w3; :::) be a sequence of input price vectors which converge to w:

limwt = w > 0:

and write
�zi := limw

t = H i(wt; q);
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we need to prove that �z = z�. The fact that z� is cost minimising for (w; q)
implies

mX
i=1

wi�zi �
mX
i=1

wiz
�
i

where one has equality if and only if �z = z�. If �z = z� then there is some �;
where 0 < � < 1, such that

mX
i=1

wi�zi =
1

�

mX
i=1

wiz
�
i (C.16)

Consider any member of the above sequence of input prices. By cost minimisa-
tion we have

mX
i=1

wtiH
i(wt; q) �

mX
i=1

wtiz
�
i (C.17)

Subtracting (C.17) from (C.16) we have

mX
i=1

�
wi�zi � wtiHi

�
wt; q

��
�

mX
i=1

hwi
�
� wti

i
z�i : (C.18)

C.1.4 Firm�s demand and supply functions (continued)

It is instructive to look at the proof in a slightly di¤erent version of Theorem 2.4
which brings out more clearly the way in which the solution function is derived
from the FOC ( 2.13).

Theorem C.1 (a) If there is some transform of the production function which
has the Hessian property, then the conditional input demand functions are al-
ways well de�ned and continuous.
(b) If the production function has the Hessian property, then input demand

functions are always well-de�ned and continuous.

Consider the proof of part (b) �rst since it is slightly more straightforward.
Write the �rm�s maximisation problem as

max p�(z)�
mX
i=1

wizi

where we have substituted in q = �(z) from the conditions for technical e¢ -
ciency (2.15). Assuming that attention is restricted to inputs that are actually
purchased, the �rst-order conditions give us:

�1(z) =
w1
p

:::
�m(z) =

wm
p

(C.19)
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a system of m equations in m unknowns z. From the implicit function theorem
(Theorem A.5) we may solve for the unknowns in terms of the parameters
w1=p; :::; wm=p if the matrix

M =

26664
@�1
@z1

@�1
@z2

; :::; @�1
@zm

@�2
@z1

@�2
@z2

; :::; @�2
@zm

::: ::: ::: :::
@�m
@z1

@�m
@z2

; :::; @�m
@zm

37775 (C.20)

is non-singular. But �i of course is simply @�(z)=@zi and so the (i; j)-th element
of the matrixM is just �ij . M is the Hessian matrix of second partial derivatives
(see page 507). But if we assume the Hessian condition to hold, M is negative
de�nite and so is non-singular. Hence there exist continuous functions  1; :::;  m

such that we may write

zi =  i
�
w1
p
; :::;

wm
p

�
(C.21)

as a solution to (C.19). A change in notation gives (2.31).
The method of proof of (a) is similar to the above. Minimising

Pm
i=1 wizi

subject to �(z) � q is clearly equivalent to minimising
Pm

i=1 wizi subject to
�̂(z) � q̂ where �̂(z) := ' (�(z)), q̂ := '(q) and  is an increasing function.
In view of the premise of the theorem we may select  such that �̂(z) has the
Hessian property. The FOCs for this modi�ed problem yield:

�0�̂i(z) = wi; i = 1; :::;m

�̂(z) = q̂

(C.22)

where �0 is the Lagrange multiplier, cf. equations (2.13) and (2.15). This is
a system of m + 1 equations in m + 1 unknowns z1; :::; zm; �0. Consider the
matrix:

M̂ :=

24 �0�̂11 ::: �0�̂m �̂1
�0�̂m1 ::: �0�̂mm �̂m
�̂1 ::: �̂m 0

35 (C.23)

M̂ is non-singular because �̂ has the Hessian property so that the m � m is
non-singular, and �̂i are not all zero. Hence by the implicit function theorem
there exist continuous solutions of the form (2.29).

C.1.5 Properties of pro�t function (Theorem 2.7)

For the properties of nondecreasingness, continuity, homogeneity of degree one
and concave in p see the proof of Theorem 2.2. To show (2.68) consider an
arbitrary small variation in prices dp such that dpi > 0 and dpj = 0; j 6= i. Let
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Q� (p) be the set of pro�t-maximising net output vectors for input prices p and
let q� 2 Q� (p) and q�+dq 2 Q (p+dp). By de�nition of pro�t maximisation

�(p+dp) �
nX
j=1

[pj + dpj ] q
�
j

= �(p)+dpiq
�
i (C.24)

and

�(p) �
nX
j=1

pj
�
q�j + dq

�
j

�
=

nX
j=1

[pj + dpj ]
�
q�j + dq

�
j

�
�

nX
j=1

dpj
�
q�j + dq

�
j

�
= �(p+dp)� dpi [q�i + dq�i ] (C.25)

Conditions (C.24) and (C.25) imply respectively:

�(p+dp)��(p)
dpi

� q�i (C.26)

�(p+dp)��(p)
dwi

� q�i + dq
�
i (C.27)

Clearly as dpi ! 0 the left-hand side of (C.26) and (C.27) becomes �i (p) and
the right-hand side is q�i .

C.2 The consumer

C.2.1 The representation theorem (Theorem 4.1)

We establish here a modi�ed form of the theorem that also requires the greed
assumption.
For any x 2 X we construct the sets illustrated in Figure 4.5. Let 1 denote

the n-vector (1; 1; :::; 1). By virtue of the greed assumption there is some real
number m su¢ ciently large such that the vector m1 � x �this is the vector
xM . Likewise there must be a nonnegative real number ` such that the vector
`1 � x �this is vector xL. By continuity there is some real number U(x) such
that

` < U(x) < m

and
U(x)1 � x (C.28)

Now consider some other x0 2 X where

U(x0)1 � x0 (C.29)
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If U(x0) > U(x) then U(x0)1 > U(x)1 and, by Axiom 4.6 it is clear that
U(x0)1 � U(x)1 so that x0 � x. So we have

U(x0) > U(x) if and only if x0 � x
U(x0) = U(x) if and only if x0 � x:

For a demonstration of the general result see Debreu (1954).

C.2.2 Existence of ordinary demand functions (Theorem
4.5)

Noting that in the case of the �rm strict convexity of input requirement sets
means that the production function is strictly concave-contoured it is immediate
that the proof of Theorem 4.5 follows from Theorem 2.4.

C.2.3 Quasiconvexity of the indirect utility function

We use De�nition A.24 and the fact that the cost function is concave in prices.
Consider any p and p0 such that

� = V (p; y) = V (p0; y) (C.30)

and, for any � 2 [0; 1], let

p := �p+ [1� �]p0 (C.31)

y := C(p; �): (C.32)

Because C is concave in p we have

C(p; �) � �C(p; �) + [1� �]C(p0; �) (C.33)

In view of (C.30) the right-hand side of (C.33) is just y. Hence y � y, and so,
because V is increasing in income:

V (p; y) � V (p; y): (C.34)

In view of (C.32) the left-hand side of (C.34) is just �; so (C.30) and (C.34)
imply

�V (p; y) + [1� �]V (p0; y) � V (p; y).
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C.3 The consumer and the market

C.3.1 Composite commodity (Theorem 5.1):

Using the de�nitions
p := p2 + p3 (C.35)

� :=
p2
p

rewrite the cost function as:

�C (p1; p; �) := C (p1; �p; [1� �]p; �) (C.36)

From (C.35) and (C.36), given that both C and p are concave, homogeneous of
degree 1 and non-decreasing in prices �C is also concave, homogeneous of degree
1 and non-decreasing in prices. Given that C increasing in utility, so too is �C.
Also, di¤erentiating (C.36) with respect to p1 and p respectively gives:

�C1 (p1; p; �) = C1 (p1; �p; [1� �]pp; �) = x�1
�Cp (p1; p; �) = �C2 (p1; �p; [1� �]p; �) + [1� �]C3 (p1; �p; [1� �]p; �)

= �x�2 + [1� �]x�3 = R:

So �C is actually the cost function that would be derived from maximising
U(x1; R).

C.3.2 The representative consumer (Theorem 5.2):

Consider the e¤ect on demand of a small redistribution of income from person
1 to person 2: dy1 = �dy2 > 0, dyh = 0; h = 3; :::; nh. Clearly, �y remains
unchanged. So, di¤erentiating equation (5.27), we get:

@D1i
�
p; y1

�
@y1

= �
@D2i

�
p; y2

�
@y1

(C.37)

But households 1 and 2 were chosen arbitrarily and y1 and y2 could be arbitrary
values. So (C.37) means that the income e¤ect is independent of the household
h and of income. This implies

@Dhi (p; y)

@y
= bi(p) (C.38)

where bi is some function of prices. So, if (5.27) is to hold the income e¤ect for
each household h, must be independent of yh. Integrate (C.38) over y to get

Dhi (p; y) = ahi (p) + bi(p)y (C.39)

where ahi is a function of prices that may be speci�c to each household: (C.39)
implies that all households� demands must be linear in income and have the
same slope with respect to income.
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C.4 A simple economy

C.4.1 Decentralisation (Theorem 6.2)

The core of this proof is the demonstration of the existence of a supporting hy-
perplane. A hyperplane is de�ned in (A.25); separating and supporting hyper-
planes are de�ned in section A.6.3. Given the assumptions about the attainable
set and the utility function it is clear that a maximum to the problem (6.16):
let (q�;x�) denote the values of (q;x) that achieve this maximum. De�ne the
attainable set A(R; �) as in (6.19) and the �better-than-x�� set B(x�) as in
(6.20): it is clear that both A(R; �) and B(x�) are closed in X and convex. By
de�nition, the point x� belongs to both sets. It is also clear that no point in
x� 2 A(R; �) that also lies the interior of B(x�); if it did then, by the greed
axiom we would have U(x�) > U(x�); this would mean that x� would be both
attainable and strictly preferred to x�, a contradiction of the de�nition of x�.
So A(R; �) and B(x�) can have only boundary points in common (these can

only be points, like x�, that solve the problem 6.16). Then, using Theorem A.9
(with modi�ed notation) there is � 2 Rn, � 6= 0 and a real number y such that

For all x 2 A(R; �) :
nX
i=1

�ixi � y (C.40)

and

For all x 2 B(x�) :
nX
i=1

�ixi � y: (C.41)

De�ne

y :=

nX
i=1

�ix
�
i

=

nX
i=1

�i [q
�
i +Ri]

Then it is clear from (C.41) that x� solves the problem (6.18) given the shadow
prices � in (C.41). But it is also true that q� = x��R solves the problem (6.17)
given the shadow prices � in (C.40).

C.5 General equilibrium

C.5.1 Competitive equilibrium and the core (Theorem 7.1)

If there is an allocation â that blocks a� then it must be possible to �nd a
coalition K such that its members can achieve â from their own resources. This
requires:

8i :
X
h2K

x̂hi �
X
h2K

Rhi (C.42)
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which implies X
h2K

nX
i=1

pix̂
h
i �

X
h2K

nX
i=1

piR
h
i (C.43)

However, if a� is a competitive equilibrium allocation with associated prices
p�, everyone maximises utility at a� given p�. So if Uh(x̂h) � Uh(x�h) it
must be the case that x̂h is at least as expensive as x�h (which of course costsPn

i=1 piR
h
i ); if U

h(x̂h) > Uh(x�h) then x̂h must be strictly more expensive than
x�h. So if a� were a competitive allocation and â were to block a� then we would
�nd: X

h2K

nX
i=1

pix̂
h
i >

X
h2K

nX
i=1

piR
h
i (C.44)

which is a direct contradiction of (C.43).

C.5.2 Existence of competitive equilibrium (Theorem 7.4)

The proof relies on the setting up of a continuous function � from the set of
normalised prices J (which is convex and compact) into J itself. This function
can be thought of as a notional �price adjustment� for any given price vector
selected from J , and is constructed so that no such �adjustment� takes place
if the vector selected happens to be an equilibrium price vector. Choose an
arbitrary large positive number 4, and de�ne �i, i = 1; :::;m thus

�i :=

�
minfEi;�g if Ei � 0
maxfEi;�pig if Ei < 0

(C.45)

Now consider the vector of �adjusted�prices p̂ given by

p̂i = �i(p) =
pi + �i

1 +
Pn

j=1 �j
(C.46)

By construction �i is a continuous function. Also p̂i � 0 and
Pn

j=1 p̂j = 1: so
p̂ 2 J . Hence � is a continuous function from the convex set J into itself.
From Brouwer�s theorem (Theorem A.3) there must exist a �xed point of

the mapping �, in other words some p� 2 J such that

p� = �(p�): (C.47)

The vector p� must satisfy the conditions given in (7.17) for equilibrium price
vector, see page 156. For, suppose that for some i : Ei(p�) > 0, then (from C.45)
�i > 0: If p�i > 0 then Walras�Law (7.18) implies that there is some l which
p1E1(p) < 0 so that (from C.45) �1 > 0; otherwise we must have �1 = 0 for
some l. In either case we clearly would not have p� = �(p�) thus violating the
de�nition of p� in (C.47). Again, suppose Ei(p�) < 0 and p�1 > 0. Then (C.45)
implies �i < 0, and Walras�law implies that for some j we have Ej(p�) > 0, so
that �j > 0. So again, we would �nd p� 6= �(p�), in violation of (C.47). Hence
p� is indeed the required equilibrium price vector.
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C.5.3 Uniqueness of competitive equilibrium (Theorem
7.5)

If p� is an equilibrium price vector then, from (7.17), Ei (p�) � 0 for all i. Also,
from Walras�law, equation (7.18) holds for any price vector p. Combining these
two facts

nX
i=1

piEi (p
�) �

nX
i=1

piEi (p) (C.48)

where the right-hand side of (C.48). If all �rms maximise pro�ts at any price p
then this implies

nX
i=1

piyi (p) �
nX
i=1

piyi (p
�) (C.49)

Equations (C.48), (C.49) and the materials balance condition (7.6) imply that,
for any price p:

nX
i=1

pixi (p) �
nX
i=1

pixi (p
�) : (C.50)

In particular, if p�� is another distinct equilibrium price vector, then

nX
i=1

p��i xi (p
��) �

nX
i=1

p��i xi (p
�) : (C.51)

If WARP holds with reference to the equilibrium p� then (C.51) implies

nX
i=1

p�i xi (p
��) >

nX
i=1

p�i xi (p
�) : (C.52)

Together (C.51) and (C.52) imply

nX
i=1

[p��i + p�i ]xi (p
��) >

nX
i=1

[p�i + p
��
i ]xi (p

�) (C.53)

But if p�� is an equilibrium price vector and WARP holds then, by the same
reasoning,

nX
i=1

[p�i + p
��
i ]xi (p

�) >
nX
i=1

[p��i + p�i ]xi (p
��) (C.54)

�a contradiction.

C.5.4 Valuation in general equilibrium (Theorem 7.6)

Follows immediately from the proof of Theorem 6.2 above.
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C.6 Uncertainty and risk

@@EU theorem
@@Lottery representation

C.6.1 Risk-taking and wealth (Theorem 8.7)

From the FOC of the portfolio problem (8.18) we know that at an interior
solution �� we must have @��

@�y given by (8.22). Given decreasing absolute risk
aversion we have

r� (�y + �r) � r� (�y) (C.55)

for r positive, negative or zero, with strict inequality if r is nonzero. Using
De�nition 8.1 (C.55) becomes

�ruyy (�y + �r) � � (�y) ruy (�y + �r) : (C.56)

Taking expectations of both sides (C.56) yields

�E (ruyy (�y + �r)) � � (�y) E (ruy (�y + �r)) (C.57)

The case �=� in (C.57) is very special: it only applies if there is a degenerate
distribution where r is always zero; but this is ruled out if the risky asset is
distinct from the safe asset. Hence we only need consider case �<� by �=�
in (C.57). By the FOC for an interior maximum (8.19) the right-hand side of
(C.57) is 0. Hence we have

�E (ruyy (�y + �r)) < 0: (C.58)

This is the numerator of (8.22); we already know that the denominator of (8.22
is negative, so @��

@�y > 0.

C.7 Welfare

C.7.1 Arrow�s theorem (Theorem 9.1)

First a reminder of notation and a few extensions. � is the set of all social
states and �, ��, �0and so on are used to denote elements of �: in what follows
we assume that � has at least three elements. The expression ��h�0 denotes
that state � is no worse than social state �0 according to household (agent) h
with preferences �h.A pro�le of preferences for the population of nh households
is written as

[�] :=
�
�1;�2; :::;�h; :::;

�
and the corresponding set of social preferences is written �, without the enclos-
ing [ ]. Where we need to distinguish between di¤erent pro�les of preferences
that may be imputed to the population we will write them as [�1] and [�2].
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De�nition C.1 A subset K of the population f1; 2; :::; nhg is decisive if, for all
pro�les and for any pair of states

�
��; �0

�
:�

8h 2 K : �� �h �0
�
) �� � �0:

The proof proceeds by establishing three lemmas.

Lemma C.1 If preference pro�les [�1] and [�2] are such that

8h 2 K : � �h1 �� and �0 �h2 �00 (C.59)

8h =2 K : �� �h1 � and �00 �h2 �0 (C.60)

then
� �1 �� () �0 �2 �00: (C.61)

� �1 �� () �0 �2 �00: (C.62)

Proof. Suppose � �1 ��. By Axiom 9.1 there exists a pro�le [�] such that
the following are true

8h 2 K : �0 �h � �h �� �h �00 (C.63)

8h =2 K : �� �h �00 �h �0 �h � (C.64)

Noting that both � �h1 ��; h 2 K (C.59) and � �1 �� then, by Axiom 9.3
(independence of irrelevant alternatives) given that � �h �� (C.63) it must also
be true that � � ��. Axiom 9.2 (Pareto unanimity) implies �0 � �and �� � �00

so that, by transitivity implies �0 � �00. By the same reasoning as above, if
�0 � �00 then Axiom 9.3 implies �0 �2 �00. If � �1 �� but �0 �2 �00 then we have
a contradiction: by Axiom 9.3 �0 �2 �00 would imply � �1 ��.

Lemma C.2 If, for all pro�les, it is true that�
8h 2 K : �� �h �0

�
and

�
8h =2 K : �0 �h ��

�
=) �� � �0 (C.65)

then K is decisive.

Proof. Let the pro�le [�] be such that �� �h �0, 8h 2 K. Choose some �
such that

8h 2 K : �� �h � �h �0 (C.66)

8h =2 K : � �h �� �h �0; (C.67)

so, by construction

8h 2 K : �� �h � and 8h =2 K : � �h �� (C.68)
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From Lemma C.1 conditions (C.65) and (C.68) imply

�� � �:

Axiom 9.2 and the transitivity of � then imply that �� � �0.
However, given that (C.65) implies �� � �0 Lemma C.1 means that for any

other pair of states
�
�00; �000

�
�
8h 2 K : �00 �h �000

�
=) �00 � �000 (C.69)

Lemma C.3 If K is decisive and contains more than one element then there
is a subset of K that is decisive.

Proof. Let K be partitioned into two non-empty subsets K1 and K2 such
that

8h 2 K1 : � �h �� �h �0 (C.70)

8h 2 K2 : �
� �h �0 �h � (C.71)

8h =2 K : �0 �h � �h �� (C.72)

If K is decisive then �� � �0. Furthermore one of the following must hold

Case 1 � � ��. By transitivity we have � � �0 then in view of Lemma C.2 K1 is
decisive.

Case 2 � � ��. Same argument as for Case 1.

Case 3 �� � �. In view of Lemma C.2 K2 is decisive

It is easy to �nd a decisive group: by Axiom 9.2 the whole population
collectively is decisive. The implication of Lemma C.3 is that one can carry on
considering ever smaller decisive subsets until we arrive at a subset consisting
of a single household h that is decisive, i.e. such that for all �; �0 2 � : � �h
�0 ) � � �0. But this means that h is a dictator, in violation of Axiom 9.4.

C.7.2 Black�s theorem (Theorem 9.2)

In this case we can represent the set of social states as a subset � of the real
line; this permits the following de�nition.

De�nition C.2 �h is single-peaked if there is a �h 2 � such that (i) � < �� �
�h implies �0�h� and (ii) �h � �0 > �00 implies �0�h�00.
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Lemma C.4 If the pro�le [�] consists of single-peaked preferences then major-
ity voting yields a unique Condorcet winner

Proof. Let F be the distribution function of the peak values: F (�) is the
proportion of the population with a peak � �. Let �� be the median of the
distribution (i.e. such that F (��) = 1

2 ) �see de�nition A.27 on page 516. Take
any � < ��. Consider households for which �h � ��: there are at least 12 [nh + 1]
of these. Clearly, by de�nition of single-peakedness for all households in this
group �h�h�. By contrast consider households for which �h < ��: there are at
most 1

2 [nh � 1] of those. So a simple vote on � versus �
� will unambiguously

select ��. A symmetric argument follows for any � > ��.

Lemma C.4 establishes that there is a best alternative. The following proof
of Theorem 9.2 then requires a slightly stronger form of single-peakedness �no
household is indi¤erent as between any two distinct alternatives.
Proof. Because nh is odd and indi¤erence is ruled out for each �h on any

pair of states in � voting between pairs always produces a decisive majority.
Suppose � � �0 and �0 � �00. From Lemma C.4 we know that the set

�
�; �0; �00

	
must have a unique best alternative if the pro�le consists of single-peaked pref-
erences: this has to be � because, by assumption, �0 and �00 are outvoted by �
and �0 respectively We have thus established that � � �0 and �0 � �00 together
imply � � �00.

C.7.3 The support theorem (Theorem 9.5)

As with Theorem 6.2 the core of this proof is the demonstration of the existence
of a separating hyperplane. If â := ([x̂]; [q̂]) is the Pareto e¢ cient allocation,
then de�ne the set

B(x̂) :=

(X
h

xh : Uh(xh) � Uh(x̂h)

)
: (C.73)

analogous to the de�nition in equation (7.33). Since all goods are private goods
x̂ =

P
h x̂

h and B(x̂) represents the set of aggregate consumption vectors which
correspond to allocations that are Pareto superior to, or are equivalent to â .
By virtue of the assumption of concave-contoured utility functions this set is
convex; by virtue of the assumption of greed any x̂ � x̂ must belong to B(x̂),
and any x̂ � x̂ must be an interior point. Also de�ne the set of attainable
aggregate consumption vectors

A := fx : x � q+R;q 2 Qg

where R is the vector of resource endowments for the economy. Since it is
assumed that each �rm�s technology set is convex and there are no externalities,
A is convex. By de�nition of a Pareto e¢ cient allocation x̂ 2 �B(x̂), and x̂ 2 A,
but no vector in A could also belong to the interior of �B(x̂) for, if it did, then
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there would be some feasible allocation in which some greedy consumer could
be made better o¤, without anyone else being made worse o¤. So there is a
separating hyperplane (A.25) such that, for all x 2 A:

nX
i=1

pixi � y (C.74)

and, for all x 2 B(x�):
nX
i=1

pixi � y: (C.75)

where y :=
Pn

i=1 pix̂i since x̂ lies on the boundary of both sets. From (C.74)
we have X

i

pi[xi � x̂i] � 0 for all x � x̂ (C.76)

which reveals immediately that p � 0.
It remains to be shown that the semi-positive vector p plays the rôle of a

genuine competitive equilibrium price vector. Using (C.75) and the de�nition
of A we have

nX
i=1

pi[qi +Ri] �
nX
i=1

pi[q̂i +Ri] for all q 2 Q: (C.77)

In view of the absence of externalities we have q =
P

f q
f and so the inequality

(C.77) implies

nX
i=1

nfX
f=1

piq
f
i �

nX
i=1

nfX
f=1

piq̂
f
i for all q

f 2 Qf : (C.78)

But this implies
Pn

i=1 piq
f
i �

Pn
i=1 piq̂

f
i for any �rm f : in other words, given

prices p, �rm f would maximise pro�ts at qf .
Next observe that an analogous argument yields the result:

Uh(~xh) � Uh(x̂h) )
nX
i=1

pi~x
h
i � yh for all h (C.79)

where

yh :=
nX
i=1

pix̂
h
i > 0:

In other words: any bundle that yields h at least as much utility as x̂h must
cost at least as much as x̂h when valued at prices p. So, consider any arbitrary
xh that h could a¤ord at these prices, i.e. such that

Pn
i=1 pix

h
i � yh. Take

some positive scalar t. Obviously t
Pn

i=1 pix
h
i < yh: for all t < 1. So, in view of

(C.79) we have, for any t < 1:

t
X
i

pixi < yh ) Uh(txh) < Uh(x̂h) (C.80)
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and in the limit, as t �! 1 we see that we indeed have the result that, given
prices p, x̂h maximises Uh(xh) over the budget set

�
xh : xh � 0;

Pn
i=1 pix

h
i � yh

	
:

Hence the allocation â and the associated price vector p is indeed a competitive
equilibrium since each household is maximising utility, each �rm is maximising
pro�ts and the allocation satis�es the materials balance condition (7.7).

C.7.4 Potential superiority (Theorem 9.10)

The state � is potentially superior to �0 if there exists �� 2 �̂(�) such that �� is
Pareto superior to �0. Let p be the prices in state � and let yh = Ch

�
p;vh (�)

�
be h�s income in state �. By de�nition 9.7 there exists some feasible �� such
that

nhX
h=1

Ch
�
p;vh (��)

�
�

nhX
h=1

yh (C.81)

and
8h : vh (��) � vh

�
�0
�

(C.82)

with strict inequality for at least one h. Condition (C.82) implies
nhX
h=1

Ch
�
p;vh (��)

�
>

nhX
h=1

Ch
�
p;vh

�
�0
��

(C.83)

and so, from (C.81):
nhX
h=1

yh >

nhX
h=1

Ch
�
p;vh

�
�0
��

(C.84)

nhX
h=1

Ch
�
p;vh (�)

�
>

nhX
h=1

Ch
�
p;vh

�
�0
��

(C.85)

which implies that
Pnh

h=1CV
h(�0 ! �) > 0. This establishes necessity.

For the su¢ ciency part let

y�1 := C1
�
p;vh

�
�0
��
+

nhX
h=1

CVh(�0 ! �); (C.86)

y�h := Ch
�
p;vh

�
�0
��
; h = 2; 3; ::::nh (C.87)

Note that
nhX
h=1

y�h =

nhX
h=1

Ch
�
p;vh

�
�0
��
+

nhX
h=1

CVh(�0 ! �)

=

nhX
h=1

Ch
�
p;vh (�)

�
(C.88)

So this produces a social state �� which is superior to �0 and accessible from �.
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C.8 Strategic behaviour

C.8.1 Nash equilibrium in pure strategies with in�nite
strategy sets (Theorem 10.2)

Let the Cartesian product of all the agents�strategy sets be

S := S1 � S2 � :::� Sh � ::: :

Also, let �h (�) be the best-response correspondence for agent h de�ned by (10.5)
so that

�h
�
[s]
�h
�
= argmax

sh
vh
�
sh; [s]

�h
�

(C.89)

is the set of h-strategies that maximise vh given the strategies of all other
agents. Using Theorem A.12 it is clear that, given the quasiconcavity of vh and

the convexity of Sh, the set �h
�
[s]
�h
�
is convex. Consider any sequence of

strategy pro�les
f[s1] ; [s2] ; :::; [si] ; :::g

where [si] 2 S for all i such that

1. the sequence converges to a limit:

lim [si] = [~s] 2 S (C.90)

2. and for every pro�le i in the sequence:

shi 2 �h
�
[si]

�h
�

(C.91)

Condition (C.91) implies that

for all sh0 2 Sh : vh
�
shi ; [s]

�h
�
� vh

�
sh0 ; [s]

�h
�

(C.92)

�see equation (10.4) on page (277). By the continuity of vh it is therefore the
case that

for all sh0 2 Sh : vh
�
~sh; [~s]

�h
�
� vh

�
sh0 ; [~s]

�h
�

(C.93)

so that
~sh 2 �h

�
[~s]
�h
�
: (C.94)

Now consider a correspondence � : S 7! S given by

� := �1 � �2 � :::� �h � ::: (C.95)

The expression � ([s]) gives the pro�le of strategies that are best responses to
an arbitrarily given pro�le of strategies [s]. By de�nition the correspondence �
maps a convex, compact set S into itself. The graph of � is closed because, from
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(C.90) and (C.94), the set f([s] ; � ([s])) : [s] 2 Sg contains all its limit points.
Also, given that S is assumed to be compact, it is true that the image under � of
every compact set is bounded. So, from de�nition A.10 the correspondence � is
upper-hemicontinuous. One may therefore apply Kakutani�s theorem (Theorem
A.4) to establish that there is some [s�] 2 S such that

[s�] 2 � ([s�]) :

C.8.2 Existence of Nash equilibrium (Theorem 10.1)

For a �nite set of pure strategies Sh let �h denote the vector of probabilities
characterising a mixed strategy for agent h, where �h has dimension #Sh, and
write �h for the set of all such probability vectors. Clearly �h is a convex,
compact set and so the Cartesian product

� := �1 ��2 � :::��h � ::: :

is also convex and compact. Write vh
�
�h; [�]

�h
�
for the expected utility of

agent h if he uses the probability vector �h given that all other agents are using
[�]

�h. Also, let �h (�) be the best-response correspondence for agent h de�ned
by (10.5) so that

�h
�
[�]

�h
�
= argmax

�h
vh
�
�h; [�]

�h
�

(C.96)

De�ne the correspondence � : � 7! � as in (C.95). Then by the same argument
as in the proof of Theorem 10.2 (section C.8.1) � is an upper-hemicontinuous
mapping of a convex compact set � into convex subsets itself of �.
From Theorem A.4 the correspondence � has a �xed point [��]. This is the

mixed-strategy equilibrium.

Note that in the above result the pro�le [��] may include components such
as ��h = (0; 0; :::; 0; 1; 0:::) �i.e. pure strategies �as a special case.

C.8.3 The Folk theorem

We establish here a result that is somewhat weaker than Theorem 10.3. The no-
tation used is taken from section 10.5.3 (page 300 onwards), slightly generalised
to allow for more than two players.

Theorem C.2 Given a stage game with Nash-equilibrium payo¤s [�] :=
�
�1; �2; :::

�
that lie in the interior of U� there is a nonnegative � such that a repeated game
with discount factor � 2 (�; 1] has a subgame-perfect equilibrium yielding payo¤s
that strictly dominate [�].
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Denote the actions for the stage game by [q] :=
�
q1; q2; :::

�
and let the actions

that yield the Nash equilibrium of the stage game be [q]. Suppose that there is
some given pro�le of actions [q̂] that yields payo¤s [�̂] where �̂h > �h, h = 1; 2; :::.
Let the maximum payo¤ available to agent h in the stage game be �h > �̂h and
de�ne

� :=
�h � �̂h

�h � �h
:

Note that, by construction, 0 < � < 1.
For the repeated game with discount factor � payo¤s are given by the sum

(10.22). Consider the trigger strategy shT de�ned as follows:

Observed actions in 0; :::; t action by h at t+ 1
[q̂] q̂h

Anything else qh

The strategy pro�le [sT] is a Nash equilibrium as long as

[1� �] �h + ��h < �̂h

This is satis�ed as long as � < � � 1. Given that in every subgame o¤ the
equilibrium path [sT] speci�es the actions [q] that form the Nash equilibrium
of the stage game we see that [sT] induces a Nash equilibrium in all subgames.
Hence it is subgame-perfect.

Note that the proof introduced the assumption that there was a given action
pro�le [q̂] that would yield the payo¤s [�̂]. If this assumption is not satis�ed for
a particular game then it is possible to introduce a coordinated randomisation
between two or more action pro�les that would do the job. The coordination is
important here, in that independent randomisations may not produce a point
on the frontier of U� �see Exercise 10.4 (page 321) for an example.

C.9 Design

C.9.1 Revenue equivalence (Theorem 12.6)

We take the case where the tastes � are distributed according to the distribution
function F with support [� ; � ]; it is assumed that the density f (�) is strictly
positive everywhere in [� ; � ].
Suppose all bidders ` 6= h: are following an optimal strategy p` = �

�
� `
�
.

Using the general description of the auction mechanism given in (12.18) and
(12.19), the probability that h wins and the expected payment that h faces are

�
�
ph
�
:= E�h

�
�
�
�1
�
; �
�
�2
�
; :::; �

�
�h�1

�
; ph; �

�
�h+1

�
; :::
�

P
�
ph
�
:= EPh

�
�
�
�1
�
; �
�
�2
�
; :::; �

�
�h�1

�
; ph; �

�
�h+1

�
; :::
�
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where the expectation is taken over the joint distribution of � `; ` 6= h. The
utility from bidding ph is

V
�
ph; �h

�
= �

�
ph
�
�h � P

�
ph
�

Let � be de�ned by
� (�) := V (� (�) ; �)

Because � is a maximum-value function we can apply the envelope theorem:

d� (�)

d�
= � (� (�)) (C.97)

For (C.97) to be de�ned everywhere on . Consider two values � 0 < � 00; let
�� := t� 0+[1� t] � 00 for some t such that 0 < t < 1 and let p� := � (��). Clearly

� (��) = t� (p�) � 0 + [1� t]� (p�) � 00 � P (p�) (C.98)

Because � is a maximum-value function we have

� (p�) � 0 � P (p�) � V (� (� 0) ; � 0) (C.99)

� (p�) � 00 � P (p�) � V (� (� 00) ; � 00) (C.100)

From (C.98)-(C.100) we have

� (��) � t� (� 0) + [1� t] � (� 00)

In other words � (�) is convex so that d�(�)d� is non-decreasing in � .
We have a Bayesian Nash equilibrium if, for all h such that �h � �h:

�
�
�h
�
� V

�
ph; �h

�
, for all �h � �h :

�
�
�h
�
= 0

or equivalently

�
�
�
�
�h
��
�h � P

�
�
�
�h
��

� �
�
ph
�
�h � P

�
ph
�

(C.101)

�
�
�
�
�h
��
�h � P

�
�
�
�h
��

= 0 (C.102)

Condition (C.101) is an incentive-compatibility constraint; condition (C.102) is
a participation constraint. To satisfy (C.101) � (�) must be a non-decreasing
function; so, given that d�(�)

d� is non-decreasing, equation (C.97) implies that
� (�) must be nondecreasing. However, if the auction goes to the highest bidder
then � (�) cannot be constant over some interval: if � 0 < � 00 were such that
� (� 0) = � (� 00) then a bidder with taste � 00 would be able to increase expected
payo¤ by raising the bid slightly to win the auction. So � (�) is a strictly
increasing function.
A consequence of this is that in equilibrium if a bidder with taste parameter

� wins then all the other bidders must have values less than � . So the probability
of a person with taste � winning must be

�� (�) := � (� (�)) = [F (�)]
N�1 (C.103)
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Using (C.103) and integrating (C.97),the utility that an agent gets if � � �
is therefore

� (�) =

Z �

�

d� (x)

dx
dx =

Z �

�

� (� (x)) dx =

Z �

�

[F (x)]
N�1

dx

At the optimum
� (�) = � (� (�)) � � P (� (�))

So, P � (�), the expected equilibrium payment by a participating agent with
taste � is :

P (� (�)) = �� (�) � � � (�)

= � [F (�)]
N�1 �

Z �

�

[F (x)]
N�1

dx (C.104)

The expected revenue to seller is given by N times the expected value of (C.104)

N

Z ��

�

� [F (�)]
N�1

f (�) d� �N �
Z ��

�

�Z �

�

[F (x)]
N�1

dx

�
f (�) d�

= N

Z ��

�

�
� � 1� F (�)

f (�)

�
dF (�)

N

d�
d�

= N

Z ��

�

�
� � 1� F (�)

f (�)

�
�� (�) f (�) d�

= N

Z ��

�

��� (�) f (�) d� �N
Z ��

�

[1� F (�)]�� (�) d�

C.9.2 The Clark-Groves mechanism (Theorem 12.7)

The payment rule (12.32) can be written

Ph
�
p1; p2; :::

�
= �

�
p1; p2; :::

� �
zh ��h

�
+max

�
�h; 0

�
(C.105)

where � is determined by (12.31) and �h is given by (12.30). Given (12.21),
(12.22) and income yh the utility of agent h is then given by

�h (x1) + x
h
2 = �h (�) + yh � Ph

= �h� � �
�
zh ��h

�
�max

�
�h; 0

�
+ yh

= �
�
p1; p2; :::; ph; :::

� �
�h � zh +�h

�
�max

�
�h; 0

�
+ yh

= �
�
p1; p2; :::; ph; :::

� " nhX
k=1

�
pk � zk

�
+ �h � ph

#
�max

�
�h; 0

�
+ yh

There are two cases to consider
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1. Suppose �h � zh +�h � 0, then declaring ph = �h implies

nhX
k=1

pk � z

so that � = 1; declaring ph > �h will not improve on this outcome;
declaring ph < �h may result in � = 0 which will reduce utility.

2. Suppose �h � zh +�h < 0. Declaring ph = �h implies

nhX
k=1

pk < z

and declaring ph < �h will not improve on this outcome; declaring ph > �h

may result in � = 1 which will reduce utility.

Therefore declaring ph = �h is a weakly dominant strategy.
Finally notice that the problem remains essentially unchanged if the term

max
�
�h; 0

�
in (C.105) is replaced by �h

�
[p]

�h
�
where �h (�) is an arbitrary

function and [p]�h is the list of announced valuations
�
p1; p2; :::

�
with the hth

component deleted, as in (10.1).
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